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PEEFACE

Analytic Geometry is a broader subject than Conic Sections. It is far

more important to the student that he should acquire a good knowledge of the

analytic method, that he should comprehend the generality of its processes, and

learn how to interpret its results, than that he should obtain a detailed knowl-

edge of the properties of any particular set of curves. Furthermore, there is

a certain interrelation, or interdependence, between the various branches of

elem-entary mathematics. Experience in teaching these subjects has convinced

"me that, on the ground of expediency alone, this interdependence should be

recognized in the class room. In the study of mathematics, as well as in its

applications, Algebra and Geometry, Analytics and Calculus, are mutually

helpful. Hence these branches should not be studied entirely apart. As all

these branches, or at least more than one, must finally be used in the complete

solution of many problems, tliere seems to be no good reason why the student

should not be taught to do this as soon as possible.

For these reasons a fuller treatment than usual is given of the general analytic

method before taking up the study of the conic sections, and subjects have been

introduced that are not ordinarily included in text-books on Analytic Geometry.

The method of the Differential Calculus is the only way of studying the slope of

curves, and furnishes the best means for finding the equation of the tangent

and the normal. The graphical method of illustration and the derivative are

indispensable in the study of the Theory of Equations. The use of the Deriva-

tive Curve in the theory of equal roots, together with the fact that the ordinate

of the derivative curve is the slope of the Integral Curve, naturally suggests a

possible converse relation, and leads easily and logically and with no difficult

transition to the study of Quadrature and Maxima and Minima.

It is believed that the elementary treatment of these subjects here given will

tend to meet the needs of scientific and technical students, who now require a

knowledge of the graphical method and the simpler elements of the Calculus at

the earliest possible moment ; and that it will also be helpful to the general

student who pursues the study of mathematics no farther. Moreover, in the

^« i/AkJi «>j^ -^ C % ^~V
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secant method of finding the equation of the tangent, the reasoning is essen-

tially the same as in the method here used, but the student seldom or never

comprehends its significance. And, furthermore, he never uses the method

save in the case of the conic sections, whereas the derivative method is one that

he can always use.

The subjects discussed in Chapter VI need not be taken at the time or in the

order in which they occur in the book. Or, if the teacher prefers to pursue the

old established method of teaching each branch of mathematics exclusively, he

. may, at his discretion, omit this entire chapter without interfering in any way

with the continuity of his course. While this book has been in preparation,

my own plan has been (with students who have not previously had the Theory

of Equations) to give in substance the theorems contained in §§ 63-71 immedi-

ately after the work on curve tracing, or symmetry. The remainder can be

given any time after Chapter V has been read.

In finding the equations of loci, special emphasis is given to the meaning of

the parameters which appear in the final equations, and the significance of a

variation in their value, and a full discussion and a thorough geometric inter-

pretation of the result are rigidly insisted on from the beginning. The teacher

should never lose sight of this vital principle.

Polar coordinates and their relations to rectangular coordinates have been

introduced at the very beginning.

The conic section is first briefly studied geometrically. Its defining property

is proved in this way, from which its general equation is shown to be of the

second degree. The two central conies are treated simultaneously by using the

double sign in the standard equation. In this way much time is saved, and

the similarities of the properties of the two conies are presented in a striking

manner.

As the book is intended for beginners, numerous illustrative examples are

given in the first part on Plane Geometry, and also a large number of exercises.

The numerical examples have all been prepared especially for this book. An-

swers are given to only a few of these, as it is far better to check results in such

exercises by constructing an accurate figure. A unique feature in the way of

exercises is found in the list of Miscellaneous Problems on Loci that occur in

the phenomena of everyday life. These cover a wide range of subjects and

should be of interest to students in any department. The study of mathematics

should not only develop the power of investigation, but should also cultivate the

habit of carefully examining interesting phenomena. I hope these problems

will help toward the accomplishment of these ends, and at the same time tend

to bridge over the chasm between the theoretical and the practical. They are
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placed at the end of Part I, so that they may be assigned at any time without

seeming to have been passed over.

The theory of the second part on Solid Geometry is somewhat fuller, and the

examples are considerably more extensive both as to number and character, than

is usually the case in elementary books. The chief new feature that has been

introduced is the use of the notion of Contour Lines in the tracing of surfaces.

This idea, as well as the whole subject of surface tracing, has not hitherto been

sufficiently emphasized.

Where the proof in Solid Geometry is the same as in the corresponding propo-

sition in Plane Geometry the demonstration has not always been repeated. In

two instances, viz. § 154 and § 169, an entirely different method of proof has

been used. This has not been done simply for the sake of variety, although

this would be a sufficient reason, but because the algebraic results obtained in

this way admit of a much broader interpretation. The student should be re-

quired, as an exercise, to apply these methods of proof to the corresponding

propositions in Plane Geometry, and vice versa. As a suggestion to this end,

appropriate references are given in all these sections. If this is done, the student

will be able to prove for himself the harmonic properties of the conic section.

I have put two small sections, I and II, in the Appendix rather than assign

them to any particular place in the body of the text. The method of finding

the direction of a curve at the origin, given in I, I have found to be helpful as

early as in the section on curve plotting in Chapter II. If used at all, it should

at least precede the formal study of slope.

I wish to thank most heartily all my colleagues in this university who have

aided me so kindly in the work, and to acknowledge my special obligation to

Professor Ellery W. Davis, who, from the inception of the plan to the completion

of the book, has given me much valuable assistance. I am also much indebted

to Professor George D. Olds, of Amherst College, and Professor E. V. Hunting-

ton, of Harvard University, who have read the entire manuscript with great

care and offered many helpful suggestions.

A. L. C.

Thk University of Nebraska,
May 25, 1904.
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ANALYTIC GEOMETRY

CHAPTER I

COORDINATES, LENGTHS OF LINES, AND AREAS OF POLYGONS

Rectilinear Coordinates

1. Let X'X and F' Y be two fixed, non-parallel straight lines, in-

tersecting in the point O. Let P be any point in the plane of these

lines. Draw HP and QP parallel to X'X and Y' Y respectively.

These distances, RP and QP, determine the place of P within the

angle XOY. That is, to every position of P there is one and only

one pair of distances, to every pair of distances one and only one

position of P. Moreover, the position of P can be found when the

lengths of the lines RP and QP are given, and vice versa.

Suppose, for example, that we are given EP= a, QP= b, we need

only measure OQ = a and OR = h and draw the parallels RP and

QP, which will intersect in the required point.

2. The two lines RP and QP, ot OQ and OR, which thus de-

termine the position of the point P with reference to the lines
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X'X and T^Y are called the Rectilinear or Cartesian''^ Coordinates of

the point F. QP is called the Ordinate of the point P, and is denoted

by the letter y; RP, or its equal OQ, the intercept cut off by the

ordinate, is called the Abscissa, and is denoted by the letter x.

The fixed lines X'X and F'F are called the Axes of Coordinates,

and their point of intersection is called the Origin. When the

angle between the axes of coordinates is oblique, the axes, and also

the coordinates, are said to be Oblique ; when the angle between the

axes is right, the axes and the coordinates are said to be Rectangular.

If OQ = a and OR = 6, then at P, x±=a and y = h; at Q, x = a

and 2/ = ; at i?, « = and y = h', and at 0, cc = and 2/ = 0.

The axis XX is called the Axis of Abscissas, or the x-axis; and

F'F is called the Axis of Ordinates or the y-axis.

3. Let OQ and OQ' be equal in magnitude to a, and let OR and

OR' be equal in magnitude to h. Through Q, Q', R, and R' draw

lines parallel to the axes, and intersecting in Pj, P2, P3, P4.

Jy'

Now at all of these four points x=a, in magnitude, and y =h,

in magnitude. Hence in order that the equations x= a and y=^h

* This method of determining the position of a point in a plane is due to the French

philosopher and mathematician, Descartes. Hence the name Cartesian. The new
method was first published in 1637.

" It is frequently stated that Descartes was the first to apply algebra to geometry.

This statement is inaccurate, for Vieta and others had done this before him. Even
the Arabs sometimes used algebra in connection with geometry. The new step that

Descartes did take was the introduction into geometry of an analytical method based
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shall determine only one point, it is not sufficient to know the lengths

of a and 6, we must also know the directions in which they are

measured.

In order to indicate the directions of lines we adopt the rule that

opposite directions shall he indicated by opposite signs. It is agreed, as

in Trigonometry, that distances measured in the directions OX (or

to the right) and OY (or upwards) shall be considered jxysitive.

Hence distances measured in the directions OX' (or to the left) and

Y' (or downwards) must be considered negative. Therefore (assum-

ing a and b to be positive numbers)

at P„ a; = a, 2/ = & ; at Pg, a; = — a, 2/ = 6

;

at P3, ic= — (X, y = — 6 ; 3i>t P^, x = a, y = —b.

Thus the four points are easily and clearly distinguished, for no

two pairs of values of x and y are the same.

If all possible values, positive and negative, be given to x and

to y, i.e., if both x and y be made to vary independently from

— 00 to 4-00, all points in the plane will be obtained. Moreover,

to each pair of values of x and y there corresponds, in all the plane,

one and only one point ; to each point, one and only one pair of values.

4. For the sake of brevity, a point is represented by writing

its coordinates within a parenthesis, the abscissa being always

written Jirst. Thus, in the preceding figure. Pi, Pg, P3, P4, are the

points (a, b), (—a, b), (—a, —b), (a, —b), respectively. In general,

the point whose coordinates are a; and y is called the point (x, y).

When the axes are rectangular it is convenient to distinguish the

parts into which the axes divide the plane as first, second, third, and

fourth quadrants, as in Trigonometry.

Because of simplicity in formulae and equations, it is generally

more convenient to use rectangular axes.

on the notion of variables and constants, which enabled him to represent curves by
algebraic equations. In the Greek geometry, the idea of motion was wanting, but with
Descartes it became a very fruitful conception. By him a point on a plane was deter-

mined in position by its distances from two fixed right lines or axes. These distances

varied with every change of position in the point. This geometric idea of coordinate

representation, together with the algebraic idea of two variables in one equation hav-

ing an indefinite number of simultaneous values, furnished a method for the study of

loci, which is admirable for the generality of its solutions. Thus the entire conic

sections of Apollonius is wrapped up and contained in a single equation of the second
degree." [A History of Mathematics by Florian Cajori, p. 185.]
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Accordingly, throughout this book, except when the contrary is

expressly stated, the axes may be assumed rectangular.

EXAMPLES

1. In what quadrants must a point lie if its coordinates have the same sign ?

different signs ?

2. Locate the points (1,- 3), (- 2, 4), (5, 0), (- 1, - 3), (4, 2), (0, 3).

3. Construct the triangle whose vertices are the points (0, 4), (—5, — 1),

and (4, - 3).

4. Construct the triangle whose vertices are (4, — 1), (1, 2), (-1, - 3).

6. Construct the quadrilateral whose vertices are the points (3, 4), ( — 1, 4),

(— 1, —2), (3, —2). What kind of a quadrilateral is it? Consider both

oblique and rectangular axes.

6. Plot the points (8, 0), (5, 4), (0, 4), (- 3, 0), (0, - 4), (5, - 4), and con-

nect them by straight lines. What kind of a figure do these six lines enclose ?

7. P is the point (x, y) ; Pi, P2, P3 are its symmetrical points with respect

to the X-axis, y-axis, and origin, respectively. What are the coordinates of

Pi, P2, Ps ?

8. The side of a square is 2a. What are the coordinates of its vertices when
the diagonals are the axes ?

9. The side of an equilateral triangle is 2a. What are the coordinates of its

vertices, if one vertex is at the origin and one side coincides with the x-axis ?

10. Where may a point be if its abscissa is 2 ? if its ordinate is — 3 ?

11. Can a point move and yet always satisfy the condition x = 0? y z=0 ?

both the conditions x = and y = 0?

12. How must a point move so as to satisfy the condition x=c? y = d? both

these conditions, c being a negative and d a positive number ?

13. If a point moves along either of the bisectors of the angles between the

axes, what is the relation between its coordinates ?

14. Where may a point be if its coordinates satisfy the condition x^ + y^ =: a^?

What is the relation between the coordinates of a point which moves so that its

distance from the origin is always 2 ?

16. If a line AB is two units to the left of the y-axis, what are the coordinates

of a point whose distance from AB is three units ?

16. If P be any point on the bisector of the angle between the ?/-axis and a

line three units above the x-axis, what is the general relation between the

coordinates of P ?
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PoLAK Coordinates

5. Let be a fixed point called the Pole, and OX a fixed line

called the Initial Line.

Take any other point P in the plane and draw OP. The position

of the point P with reference to the line OX is known when the

distance OP and the angle XOP are given.

The line OP is called the Radius Vector of the point P, and will be

denoted by p ; the angle XOP, which the radius vector makes with

the initial line, is called the Vectorial Angle of the point P, and will

be denoted by ^. .p

Then p and 6 are the Polar Coordinates* of P; that is, P is the

point (p, 6). As in Trigonometry, it is agreed that the angle shall

be positive when measured from OX counter clockwise ; that p shall

be positive when measured in the direction of the terminal line of

the vectorial angle 0.

In determining the position of a point whose polar coordinates are

given the following direction will be useful : Suppose I stand at

facing in the direction of OX To get to the point (p, 6), I turn

through the angle 6 to the left or right according as 6 is positive or

negative, then, keeping my new facing, I.go a distance p forward or

backiuard according as p \^ positive or negative. '\

Whenever the position of a point in a plane is determined by any two magnitudes
whatever, these two magnitudes are the coordinates of the point. Tims there may be

an indefinite number of systems of coordinates. For an explanation of other systems
which are in common use see Chap. I of Elements of Analytical Geometry by Briot and
Bouquet, translated by J. H. Boyd.

t This method of locating points by means of coordinates is not altogether new to

the student, neither is it confined to mathematics. For example, when we locate places

on the surface of the earth by means of their latitude and longitude, we make use of a
system of rectangular coordinates in which the axes are the equator and some chosen

meridian. When we say the city B is forty miles north-east of the city A, we locate B
with reference to A by means of a system of polar coordinates in which the initial line

is tlie meridian through A, and A is the polo. Let the student suggest other familiar

examples, if possible. How are places located in cities? in AVashington, D.C.

?
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EXAMPLES

Plot on one diagram the following points :

1. (4,30°), (-3,135°), (3,120°), (-4,-30°).
*

2. (5,45°), (-4,120°), (3,-150°), (-6,-240°).

3. (a, iTr), (-a, -J-tt), (a, -fTr), (2a, -fTr), (-!«, -^tt), (a, 0), (2rt, tt).

4. (5, tan-15), (-2, tan-i2), (3, -tan-i3), (- 4, tan-i - 1).

5. ,(«, tan-12), (a, -tan-i3), (-a, tan-if), (-a, - tan-i f),

[a, tan-i(-4)].

6. Plot the points (-6,30°), (2,150°), (2, -90°) and connect them by

straight lines. What kind of a figure do these lines enclose ?

7. Plot the points (a, 00°), (&, 150°), (a, 240°), (&, - 30°), and join them by

straight lines. What kind of a figure do these lines enclose ?

8. Find the polar coordinates of the vertices of a square whose angular

points in rectangular coordinates are (3,-1), (-1, - 1), (- 1, 3), (3, 3).

9. The side of an equilateral triangle is 2a. If one vertex is at the pole,

and one side coincides with the initial line, what are the polar coordinates of its

vertices ? of the middle points of the sides ?

10. Change " equilateral triangle " to " square " in Ex. 9.

11. Change " equilateral triangle " to " regular hexagon " in Ex. 9.

12. How must p and d vary in order to obtain all points in the plane ?

(See § 3.)

13. Show that to each pair of values of p and 6 there corresponds in all the

plane one and only one point.

14. Show by plotting the four points, (3,60°), (-3,240°), (3, -300°),

(— 3, —120°), that the converse of Ex. 13 is not true.

15. Show that in general the same point is given by each of the four pairs of

polar coordinates,

(p,0), (-p,7r + ^), [p, _(27r-^)], [-P, -(tt-^)].

16. Show that for all integral values of n the same point (p, 6) is also given by

(p, e ± 2mr) and [- p, 6 ± (2w + l)7r].

17. Where does the point (p, (9) lie if ^ = ? if ^ = tt ? if p = 2 ?

18. How can the point (p, 6) move ii 6 = cc? it p = a? where a and a are

constants ?

19. What condition must p and 6 satisfy if the point (p, 6) moves along a line

perpendicular to the initial line ? parallel to the initial line ?

20. What is the position of the point (p, 0) if p = a cos ^ ? p = a sin d ?
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Relations between Rectangular and Polar Coordinates

6. Let P be any point whose rectangular coordinates are x and y,
and whose polar coordinates, referred to O as pole and OX as initial

line, are p and 6.

T

x' a r S X

'/ O

y

/
P/ Y^

Draw PQ perpendicular to OX.
Then, according to the preceding definitions,

Oq = x, QP= y, OP=p, zxop=e.
From the right triangle PQO we have

0Q=: OP cos XOP and QP=OPsmXOP.
:.sc = p cos 0.

1

y = psme. t
(1)

These equations (1) express the rectangular coordinates in terms

of the polar coordinates.

From equations (1) we find the corresponding equations express-

ing the polar coordinates in terms of the rectangular coordinates to

be ^ ., ^

p = Vic2 + 2/2, e = tan-i^
3C

sine = V
cos e =

iC
.

(2)

Va;2 + 2,2'
^"'"

Vic2 4.yi'

By means of formulae (1) and (2) equations in either system of

coordinates can be changed into the other system of coordinates.

It is seldom necessary, however, to use equations (2).
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EXAMPLES

1. Change the equation p2 := (fi cos 2 ^ to rectangular coordinates.

Multiplying the equation by p^^ and putting cos 2 ^ = cos^ d — sin^ 6 gives

p4 = a2 (p2 cos2 ^ - p2 sin2 61)

.

Whence by substituting equations (1) we have

(X2 + 2/2)2 - 052(a;2 _y2).

Change to polar coordinates the equations

2. x2 4- y2 — 2 rx. Ans. p = 2 r cos 6.

4. (2 x2 + 2 7/2 - ax)2 = a\x'^ + 2/2).

Transform to rectangular coordinates

5. p2 sin 2 ^ = 2 a2. Ans. xy = a^. 6. p^ cos J ^

3. x2-?/2 Ans. p2 = 0^2 sec 2 ^.

Ans. p^ = a^ cos i ^.

Ans. ?/2 + 4 ax = 4 a2.

Distance between Two Points

7. To j^/i(Z the distance between two points whose rectilinear coordi-

nates are given.

Let P^ix^j ?/i) and P2(^2? 2/2) be the given points, and let the axes be

inclined at an angle w.

Draw PiQi and P2Q2 parallel to OY, to meet OX in Q^ and Qg-

Draw P^R parallel to OX to meet P^Qi in i?.

fY VY

Then OQ, = x,, OQ^^x^, QiPi^Vi, ^2^ = 2/2-

.-. P2R= ^2^1= OQ, - 0Q2=x, - x„

and liP,= QiPi-Q,R=QiPi-Q2P2 = yi-y2'

Also Z P2RP1 = Z OftPi = TT - (o.



7] DISTANCES 9

From the triangle P1RP2 we have, by the law of cosines,

P,P^^ = P^P^ + RP,^ _ 2P2R . RP^ cos (tt - io).

Whence by substitution, since cos (tt — w) = — cos a>,

PiP\ = [(a^i - 352)'^ + (2/1 - 2/2)'^ + 2 (a5i - 052) (Vi - 1/2) cos «]2. (1)

When the axes are rectangular, a> = 90° and cos w = 0.

Hence for the distance between two points whose rectangular

coordinates are given, we have the very useful formula

P^Pi = V(a?i- 072)2+ (2^1-2/2)2.* (2)

If the plus sign before the radicals in (1) and (2) gives P2P1, the

minus sign will give PiPi- It will aid the memory to observe that

the meaning of (2) is expressed by writing

(Distancey = (EastingY -\- {Northingf.

Cor. If P2 coincides with the origin X2 = 2/2 = 0, and equations

(1) and (2) give for the distance of a point Pi(a7i, 2/1) from the origin

OJ*i = ^ici^ + 2/i2 + 2 xxvx cos CO, for oblique axes, (3)

OP\ — ViCi^ _|_ y^2^ for rectangular axes. (4)

EXAMPLES

1. Find the distance between (— 5, 3) and (7, — 2).

2. Show that if the axes are inclined at an angle of 60°, the distance between

the points (- 3, 3) and (4, - 2) is \/39.

3. Find the distance from the origin to the point (— 2, 4) when the axes are

inclined at angle of 120°.

4. Find the lengths of the sides of the triangle whose vertices are (4, 1),

(-2, 4), and (1,-2).

6. Show that the four points (2, 4), (1, 7), (- 2, 4), and (- 1, 1) are the

angular points of a parallelogram.

6. If the point (a;, y) is 6 units distant from the point (3, 4), then will

JC2 + y2 _ 6 X - 8 ?/ = 0.

*The student should convince himself of the generality of equations (1) and (2) by

constructing other special cases in which the given points lie in different quadrants.

He will thus have an illustration of the general principle that formulsB and equations

deduced by considering points lying in the first quadrant, where both coordinates are

positive, must, from the nature of the analytic method, hold true when the points are

situated in any quadrant.
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8. The distance between two points in terms of their polar coordinates.

Let Piipx, 6y) and P2(p2> ^2) be the two given points.

Then OPr = p,, OP, = p„ ZXOP, = e,, ZXOP2 = e2,

and Z P2OP1 = 0,- O^.

Erom the triangle PxOP^^ as in § 7, we have

P^Pi = OPi' + OP2' -2 0P,' OP, cos P2OP1,

.
•• P1P2 = ^Pi'^ + P'2^ - 2 P1P2 cos (61 - 62).

Ex. 1. Derive equation (2), § 7, from equation (1), § 8.

Expanding the last term and squaring (1), § 8, gives

P1P22 = pi2 + p,^2 _ 2(pi cos ^1) (p2 cos 6-2) - 2 (pi sin ^1) (pa sin ^2).

Substituting the values given in equations (1), § 6, we have

P1P22 = Xi2 + yi^ + x^^ + yo^ -2 xixa - 2 yi^a-

(1)

. •. P1P2 = V(xo - xi)2 + (?/2 - yxy\

Ex. 2. Show that the distance between the points (4, 90°) and (-3, 30°),

is V37.

Ex. 3. Find the distance between (2 a, 180°) and (-a, 45°). .

9. To find the coordinates of the point which divides the line join-

ing two given points in a given ratio (mi : m<^.

Let Pi{x^, 2/1) and P^ix^, 2/2) be the two given points, and let P{x, y)

be the required pointo

Draw PiQi, PQ, P2Q2 parallel to the ?/-axis, and PR, P^Ri parallel

to the ic-axis.

Then P^E^ = x — x^, PR = x.2 — x,

RiP=y-yx, JKP2=2/2-2/.
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From the similar triangles PiPIii and PP2R, we have

PiP_ PiRi _ RiP _'nh _x — x^ _y — y^

PP., PR RP,, ma x^-x 2/2 y
.-. wii (x2 — x) = m^ (x — Xi),

and mi (2/2 -y) = m^ (y - 2/1).

Solving (1) and (2) for x and y, respectively, we obtain

ac
miX2 + tn^ooi

y = miijQ + ^^22/1

(1)

(2)

(3)

TTxT' ^- i + x • W
These equations, (3) or (4), cover all cases, the division being

internal or external according as A is positive or negative.

It P be the middle point of PiP,, ni^ = mo, and therefore the

coordinates of the middle of a line joining two given points are

If we let A = mi : mg, equations (3) reduce to the form

«! + Xa?2 V\ + X2/.2
05 =

» = |(a?i + £C2), 2/ = 2 (2/1 + 2/2)- (5)

These formulae, (3), (4), (5), are independent of the angle between

the axes, and hold for both rectangular and oblique axes.

Ex. 1. Find the points which divide the line joining (2, 5) and (—6, — 2)

internally in the ratio 8 : 4, and externally in the ratio 2 : 9.

Ex. 2. In what ratio is the line joining the points (2, 1) and (— 8, 6) divided

by the point ( - 2, 3) ? by the point (8, - 2) ?
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Areas of Polygons

10* To find the area of a triangle in terms of the coordinates of its

vertices, the axes being inclined at an angle w.

Case I. When one vertex is at the origin.

Let Pi(xi,yi), Po(x2,y^ be the other two vertices. Draw PiQi, P^Qo

parallel to the ^/-axis, and Q^R perpendicular to ^9^2-

Then OQ^ = x^, 0Q2 = x,, Q^P^ = y^, ^2^ = 2/2,

RQ^ = Q.2Q1 sin 0) = (x^ — X2) sin w, and

A OP1P2 = A OQ2P2 + trap. QsQi^iA* - A OQ^P^,

= i[0Q2 • Q2P2 + Q2QM2P2 + QiA) - OQ, . QiPJ sin CO,

= i [a;22/2 + (a^i - ^2) (2/1 + 2/2) -^i2/i] sin w,

=
I (Sx^iUi - ^iVi) sin (0

in the notation of determinants.

2/1

2/2

sin (1)

* The area of the trapezoid ABCD, in which the non-parallel sides intersect, is

the difference of the areas of the two triangles formed by the diagonal AC. That is,

ABCD = ABC-ADC = ABE- CDE.
This is expressed analytically by saying that the area is the algebraic sum of the

triangles. The base CD is then regarded as changing its direction (and sign) with

reference to AB ; for in going along the sides con-

secutively in the order ABCDA, the base CD is

traversed in the same direction as A B, which is not

the case in the ordinary trapezoid. That is, when
D is to the left of C, both the base CD and the

area of the triangle ACD are positive, say. But as

D moves to the right, both CD and the area ACD
>B become zero and change sign as D passes through C.
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Case II. When the origin is not a vertex of the given triangle.

Pa \Y P.

Let Pi(xi, ?/i), Po(x2, 2/2)? ^3(^3) y:i) be the vertices of the given

triangle. Draw the lines OP^, OP^, OP^. Then by Case I we have

^i, yiA OP1P2 = i(a;i2/2 — X2I/1) sin to=l

A OP.Ps = K^22/3 - ^32/2) sin o> = i

A OPiPi = i(.T3.?/i - .T12/3) sin o) = ^

•'i'2j 2/2

^3) 2/3

Sin o).

sm o).

sin o).

.-. A PiP2^3= i[(^*i2/2- a^iVi) + ('<^-22/3 - ^3?/2) + (^^sZ/i " aTi^s)] sin o> (2)

=i
(

a^i, 2/1

a^2, 2/2

+
^'2, 2/2 ,

3^3,2/3

a-*3, 2/3

a^i, 2/1

^1, yi, 1

=i ^2, 2/2,

1

sill (U.

^h, ys, ^

sin (u

(3)

When the axes are rectangular sin w = 1, and equations (1), (2),

(3), respectively, reduce to

A OP1P2 =
I (i»i?/2 - OC27Jl) = I (4)

A P1P2P8 = I i^K^iVi - a^-22/i + ^'iV'i - «82/2 + 3582/1 - ^iVfi) (5)

oci, 2/1, 1

a?2, 2/2J 1 = k

i»8, 2/8J 1

Xi .Tj, 2/1 3^2

X2 — x^, y^ 2/3

(6)
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11* When the origin is within the given triangle, the given

triangle includes the three triangles OP^P^, OP^P^, OP^P^ (§ 10)

;

hence the expressions ^{x^^ — ^22/i)> ^(^'22/3 — ^32/2)5 and ^{x.^^ — x^y^

must have the same sign. When the origin is outside, the given

triangle does not include all of these triangles, and therefore the

above expressions can not have the sa^ne sign.

Suppose a person to start from and walk consecutively around

the triangles OP^P^, OP2P3, OP^P^ in the direction indicated by this

order of vertices. This imaginary person would thus walk along

each side of the given triangle once in the same direction around the

figure, as indicated by P^P^P&y and along each of the lines OP^, OP2,

OPsf twice in opposite directions. When the origin is inside the given

triangle, he would walk around each of these triangles in such a

manner that he would have its area always on his left hand. When
the origin is outside, he would go around those triangles which in-

clude no part of the given triangle, in such a manner that he would

have their area ahcays on his right hand.

Thus direction around a triangle may be taken to indicate the sign

of its area. (See footnote under § 10.)

The expressions for area in § 10 will be found to be positive, if

the vertices are numbered so that in passing around in the direction

thus indicated the area is always on the left.

Let the student show by trial that (x^y^ — x^jy^) is ± according as

Z P1OP2 is ±; Z P1OP2 is ± according as the cycle OP^Po is ±.

12.* To express the area of a triangle in terms of the polar coordi-

nates of its vertices.

Let Pi(pi, ^1), P2(p2) ^2)? ^sfe) ^3) be the three vertices.

Then x^ = pi cos 61, X2 = p2 cos 62, x^ = p^ cos 9s,

2/1 = pi sin 61, 2/2 = p2 sin O2, 2/3 = Ps sin ^3. [(1), § 6.]

Substituting these values in (5) and (6) of § 10 gives

OP1P2 = i pip2 (sin $2 cos 61 — cos 62 sin Oi) = | pipa sin (62 — ^1). (1)

PiP2Ps= i [piP2 sin (82 - e,) + pops sin (^3 - O2) + PsPi sin (6, - 6^)^ (2)

From (1) it follows that the three terms of (2) represent, re-

spectively, the areas of the triangles OP1P2, OP2PS, and OP3P1.
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The signs of these terms are the eigns of the angle differences

(since p can always be made positive), and we therefore have an

independent proof of the statements in § 11.

Let the student prove (1) and (2) directly from a figure.

13* To find the area of any polygon when the rectangular coordi-

nates of its vertices are known.

LetPi(a;i, 2/1), ^^2^ .^2), -^sfe Vs^ A (^'4, 2/4)
••• -^nC^n, 2/«) be

the n vertices of the given polygon. Then, we have, from (5) § 10,

A OP.Po

A OP,P, = i

x^, 2/1

X2, 2/2

^3, 2/3

X,, 2/4

A OP,P, = \

A OP,P, = i.

^2, ?h

•^3> 2/3

^4, 2/4

X3, 2/5

AreaPiPa • ^«

A OP.P, = \
a?„, 2/«

^1, 2/1

=H
Xi, 2/1

a^2, 2/2 % ^3

a^3,

^A1

2/3

2/4

+ ^A, 2/4 + •••
aJ„, y„

a^5, ^5 aji. 2/1

(1)

since the area of the polygon is the algebraic sum of the areas of

these triangles. This formula is easy to remember, but by expand-

ing the determinants and collecting the positive and negative terms

it may be written,

Area PiPg ••• 1*„ = \ [(0512/2 + ^aVs + ^^V\ + ••• ^nVi)

- (yii»2 + 2/2^53 + Vti^i^ + ••• yn«l)]) (2)

which gives the following simple rule for finding the area of a

polygon when the rectangular coordinates of its vertices are known

:

(1) Number the vertices consecutively, keeping the area on the left.

(2) Multiply each abscissa by the next ordinate.

(3) Multiply each ordinate by the next abscissa.

(4) From the sum of the first set of products subtract the sum of the

second set and take half of the result.

If the axes are oblique, the second members of (1) and (2) must

be multiplied by the sine of the angle between the axes.

The law of the sign of the area is the same as for the triangle.
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EXAMPLES ON CHAPTER I

Find the area of the polygons the coordinates of whose vertices talcen in

order are, respectively,

1. (1,3), (-2, -4), and (3, -1).

2. (2, 5), (-6, -2), and (-1, 5), when w = 60°.

3. (4, 15°), (-5, 45°), and (6, 75°).

4. (3, -30°), (-5, 150°), and (4,210°).

5. (2, 15°), (6, 75°), and (5, 135°).

6. (-a, ^tt), (a, I it), and (-2a, -|7r).

7. (a, b + c), (a, b — c), and (—a, c).
*

8. (a, c + a), («, c), and(— a, c — a).

9. (2,3), (-1,4), (-5, -2), and (3, -2).

10. (4,5), (1,4), (-2,6), (-5,3), (-2,-1), (-3,-4), (1,-2),

(3, -4), and (2, 1).

11. What are the rectangular coordinates of (4, 30°), (—2, 135°),

(-3,1^)?
12. What are the polar coordinates of (3, - 4), (- 5, 12), (1, 3) ?

13. Find the coordinates of the points which trisect the line joining the

points (-2, -1) and (3, 2).

14. Find the coordinates of the point which divides the line joining (3, — 2)

and ( — 5, 4) internally in the ratio 3 : 4.

15. Find the coordinates of the point which divide:; the line joining (5, 3)

and (— 1, 4) externally in the ratio 3:2.

16. Find the length of the sides and medians of the triangle (2, 6), (7, — 6),

(—5, — 1). What kind of a triangle is it ?

17. Find the length of the sides and the area of the triangle (3, 4), (—1, 0),

(2, - 3). What kind of a triangle is it ?

18. Find the sides and area of the quadrilateral whose vertices taken in

order are (5, - 1), (- 1, 2), (- 5, 0), and (1, - 3). What kind of a quad-

rilateral is it ?

Change to polar coordinates the equations

19. x^ + y^ = r\ 20

21. x^ = y%2a-x). 22,

Transform to Cartesian coordinates

23. d= tsin-^ m. 24.

25. p = a sin 2 6. 26.

y = xta,u a.

(x^^y^)(x-ay == &2^2.

p2 = a2 sec 2 6.

pi = ai sin | d.
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Prove analytically the following theorems :

/
27. The diagonals of a parallelogram bisect each other.

28. The lines joining the middle points of the adjacent sides of any quadri-

lateral form a parallelogram.

29. The three medians of a triangle meet in a point, which is one of their

points of trisection.

30. The lines joining the middle points of opposite sides of any quadrilateral

and the line joining the middle points of its diagonals meet in a point and bisect

one another.

y
31. The area of the triangle formed by joining the middle points of the sides

of a given triangle is equal to one-fourth of the area of the given triangle.

32. If in any triangle a median be drawn from the vertex to the base, the

sum of the squares of the other two sides is equal to twice the square of half

the base plus twice the square of the median.

33. The sum of the squares of the four sides of any quadrilateral is equal to

the sum of the squares of the diagonals plus four times the square of the line

joining the middle points of the diagonals.

34. Pi(xi, yi), Fiix^, yz), T-iixz, 2/3), I'^ix^, 2/4) •• • Tr,{x,,, yn) are any n
points in a plane. PiPo is bisected at Qi ; QiP^ is divided at Qz in the ratio

1:2; ^2^4 is divided at Q^ in the ratio 1:8; ^jjPs at Q4 in the ratio 1 : 4, and
so on till all the points are used. Show that the coordinates of the final point

so obtained are

a:i + a:2 + a:3 -}- a;4 + ... a:,. ?/i + 2/2 + 2/3 + 2/4 + . . . Vn
and

n n

Show that the result is independent of the order in which the points are taken.

[This point is called the Centre of 3Iean Position of the n given points.]



CHAPTER II

» >o

LOCI AND THEIR EQUATIONS

14. It has been shown in § 3 that to each pair of values of x and

y there corresponds in all the plane one and only one point, and that

to each point corresponds one and only one pair of values. Also, if

X and y vary independently and unconditionally from — oo to oo,

every point in the plane will be obtained.

If, on the contrary, one or both of the coordinates cannot take all

values, or if all values cannot be

independently taken by both, the

point cannot move to all positions

in the plane.

If, for example, ic > 0, the point

X (x, y) must lie to the light of the
~ 2^-axis ; ii x<0, the point must lie

to the left of the ^/-axis; if x is

neither greater nor less than zero, the

point can lie neither to the right nor

to the left of the ?/-axis ; i.e. if x=0,

the point must lie 07i the 2/-axis.

15. If x>a, the point (x, y)

must lie to the right of the parallel

AB, which is a units to the right

of the 2/-axis ; if x<a, the point

must lie to the left of AB. There-

fore, if x = a, the point will lie on

the line AB.

Ex. 1. Where will the point {x, y) lie

ifx>-3? x< -S? x= -S?
Ex. 2. Where is the point (x, y) if

y>&? ?/<6? y = 6? y>-hf
y<-b? y=-b?

18

X <0

Y

a

A

X <Ca x:>a

X

1

B
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16. Draw a circle with centre

at the origin and radius equal to a.

Then the point P{Xf y) will be

outside, inside, or on this circle

according as

OP>a, OP<a, or OP=a.
But OP' = a.-^ + y'. [(4), § 7.]

Therefore the point P(x, y) is

outside, inside, or on the circle,

according as

01^ -\- y' > a% x^ -\-y^ < a-, or oc^ -\- y^ = a-.

Ex. 1. Write down the conditions that the point (x, y) shall be outside,

inside, or on the circle whose centre is at the origin and radius 3.

Ex. 2. What are the conditions that the point (a;, y) shall be outside, inside,

or on a circle with centre at (— 3, 1) and radius 4 ?

Ex. 3. Draw a circle with centre at (a, 6) and radius r, and write down the

conditions that the point (x, y) shall be outside, inside, or on this circle.

17. Let the line AOB bisect the angle XO Y.

Y
X 1

Y
B

V y P

X < y/ y

} / y

/ o

./
/

Y'

X'

Then every point on AB is equidistant from the axes. Hence the

point Pix^ y) is above AB, below AB, or on AB, according as

y>x, y<x, or y = »,

or according as y — x >, <, or = j

i.e. according as y — a; is positive, negative, or zero.



20 LOCI AND THEIR EQUATIONS [19

18. Draw CD parallel to ABj cutting the ^/-axis in E, three units

above 0.

Then every point on CD is three units farther from the a>axis

than from the ?/-axis. Therefore the point P{x, y) will be above CD,

below CD, or on CD, according as

?/>, <, or =aj + 3;

i.e. according as ?/ — a; — 3 is positive, negative, or zero.

Y
>' p y^

"" /q. /"
/
/
y

/
E/

/

p

y y

^/ A.

o

Y'

Ex. 1. Draw a Hne parallel to AB^ cutting the y-axis two units below ; and

write down the conditions that the point (ic, y) shall be above, below, or on

this line.

Ex. 2. What are the conditions that the point (cc, xj) shall be above, below,

or on the line through E parallel to the bisector of the angle X'OF?

19. Let CD be the perpendicular bisector of the line joining

A{-\,V) and i5(3, -1).
Then all points on CD are equidistant from A and B, and all

other points are not equally distant from A and B. Hence the

point P{x, y) will lie to the rujlii of, to the left of, or on CD,
according as ^P >, <, or = BP,

or according as AP"- >, <, or = BP'^-,

i.e. according as [(2), § 7]

(a; + l)2 + (2/-iy>, <,or = (a:-3)2 + (2/ + iy; "

whence 2x — y — 2>, <, or = 0.



20] LOCI AND THEIR EQUATIONS

Yl p /D

21

Ex. 1. Find the conditions that the point (x, y) shall be above, below, or on

the perpendicular bisector of theiine joining (2, 3) and (— 1, — 2).

Ex. 2. What is the condition that (x, y) shall be on the perpendicular

bisector of the line joining (a, 6) and (c, d) ?

\^^ 20. The examples in §§ 14-19 illustrate certain general principles,

of which we will here make only a preliminary statement.

I. All points whose coordinates satisfy an equation of condition

(not an identity) lie on a certain line ; and conversely, if a point lies

on a fixed line, its coordinates must satisfy an equation.

II. Points whose coordinates satisfy a condition of inequality do

not lie on any fixed line.

If /(a;, //) be used to represent any expression containing the two

variables x and y and certain constants, these principles may be

stated more definitely, as follows

:

I. All points whose coordinates make /(a;, y) = 0, lie on a certain

line ; and conversely, the coordinates of all points on this line make

/(^, y) = 0.

II. If f(oci, ?/i) > and /(ajo, 2/2) < ^j t^© *wo points (ar„ y,) and

(x2, y>^ lie on opposite sides of the line the coordinates of whose

points make /(a;, y) = 0.

Hence every line, as well as the axes of coordinates, is said to

have a positive and a negative side.
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Def. The locus of a variable point subject to a given condition is

the place, i.e. the totality of positions, where the point may lie and sat-

isfy the given condition.

Def. The line (or lines) containing all points, and no others, whose

coordinates satisfy a given equation is called the Locus of the Equation
;

conversely, the equation satisfied by the coordinates of all points on a

certain line (or lines) is called the Equation of the Line, or the Equation y^
of the Locus.

Def. That part of the plane containing all points, and no others,

whose coordinates satisfy a given inequation is the Locus of the

Inequatio7i.

Thus the Locus of a point in Plane Geometry is not ahvays a

line.

In the examples of §§ 14-19 only Cartesian coordinates have been

used, but the fundamental principles there illustrated, and also the

above definitions, hold for all systems of coordinates.

Let the student give some similar illustrations with polar co-

ordinates.

EXAMPLES
What is the locus of

1. x2 + ?/2 =0 ? x'-^ + 2/2 > ? x^ -\-y'^<0?

2. X= VX^ + ?/2 ? X > Vx^ + ?/2 ? X < \/x2 -f- ^2 ? i

3. p = a sec ^ ? p > a sec ^ ? p < a sec ^

?

il )-

4. p = & CSC ? P > & CSC ^ ? p < 6 CSC ^ ? 'J-
5. 4 < x2 + ?/ < 9 ? ^i^^f^ --^ '

6. 9<(x-2)2+(?/_3)2'<16?/.r^P>'

7. a sec ^< p < 6 sec ^ ? i-j //^
8. p = a COS ^ ? p > a cos ^ ? X

<

a^fffid ? fr^^
*

9. acos0<p< 6cos^? ^"jMj'
10. p =a sin ^ ? p > a sin ^ ? ^^(z sinJ^m'*^—
11. P = a? p>a? p<a?^X^>/£__

12. What is the locus of a poiWmpving so that the sum of its distances from
the Unes x = and x = 3 is 1, 2, 3, 4 ?
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To Find the Locus of a Given Equation

21. If the locus of an equation is a straight line, the locus is

easily drawn; it is only necessary to locate two points on it

(preferably the intersections* with the axes) and draw a straight

line through these points. Likewise, if the locus-is a circle, the

complete locus can be drawn when the centre and radius are known.
It will be shown farther on that straight lines and circles can

easily be recognized by the forms of the equations.

In general, having given an equation of condition between the

coordinates (in any system) of a variable point, we may assign any
value we please to one coordinate and find a corresponding! value, or

values, of the other. To every such pair of corresponding value's will

correspond a definite point of the locus. Since these pairs of values

may be as numerous as we please, we can in this way locate as many
points of the locus as we please. A smooth curve drawn through

these points will be an approximation to the locus of the given equa-

tion. The degree of approximation will depend upon the proximity

of the points thus located. This method of constructing a locus is

applicable to any equation that can be solved for one of the variables,

and is called Plotting $ an Equation, or Plotting the Locus of an

Equation. The steps of this process are as follows

:

* Unless both intersections are near the origin, when the line will be inaccurately

determined, or both at the origin, when its direction will be quite undetermined.

t " Corresponding values " of the variables, x and y say, involved in a given equa-

tion are a pair of values of x and y which satisfy the equation.

X The logic of the process of

plotting is that of induction, and
should be so recognized by the ,' ; •'*., \

.''

student. Given the points A, B,

C, D, E, F on n curve; then, in

the absence of further knowledge,

we take as a probable approxi-

mation a smooth curve drawn
through them like the full curve

in the figure. We are not war- '
'
'

ranted in drawing such a curve as the dotted one through the points, because it is

unlikely that, taking points at random on such an irregular curve, tlu- jxisititui of

these points should fail to disclose any of the irregularity. The student should also

be warned that sudden changes of slope or curvature areas unlikely as sudden changes

in the value of an ordinate.
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\
T

/

>
L /
\ /L
P)

V /
\ \ / p.

X

>X O y p.

p. r.

'

X = ^8 -6 -4 — 2

y = 6.8 3.4 .8 - 1

X = 2 4 6 8

y = -2.2 -1.6 .2 2

(1) Solve the equation with respect to one of the coordinates.

(2) Assign to the other coordinate a series of values differing but

little from each other.

(3) Find each corresponding value, or values, of the Jirst coor-

dinate.

(4) Locate the point corresponding to each pair of corresponding

values thus found.

(5) Join these points in order by a smooth curve, and this curve

will be approximately the required locus. If there be doubt how to

fill up any of the intervening spaces, interpolate more points.

22. Illustrative Examples.

Ex. 1. Plot the locus of the equation lOy = a;^ — 3x — 20.

Assigning to x values from — 8 to + 10, differing by two units, we iind the

following pairs of values of x and y to satisfy the equation

:

-2
10

5

Plotting the corresponding points

Pi, Pa, Pa, etc., and drawing a smooth

curve through them in the order of the

increasing values of x, we find the locus

to be approximately the curve drawn

in the figure.

Ex. 2. Plot the locus of the equation y'^=\.x.

Solving for y gives y = ± 2 ^ x.

When X = 0, 1, 4, 9, ... to od,

y = 0, ±2, ±4, ±6 . . . to ± 00,

The corresponding points of the locus are

0(0, 0), Pi(l, -2), P2(l, 2), P3(4, -4),
P4(4, 4), PcCO, - 6), and PeCO, 6). . . .

When X is negative, y is imaginary. There-

fore no points of the locus lie to the left of the

?/-axis. For every positive value of x there

are two values of y numerically equal but

opposite in sign. Hence the two correspond-

ing points of the locus are equidistant from

the X-axis. As x increases, both values of y
increase numerically.

Y ^ P»

jpj/.

[
x_

o

_

^***«. ^ p."
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Therefore the locus cannot be such a curve as that represented by the dotted

line, but must be approximately that indicated by the full line.

Ex. 3. Plot the locus of the equation 25(x - 1)2 + \Q{y - 3)2 = 400.

Solving for y gives y = 3 ± fVlG — (x-l)2.

This form of the equation shows that y is imaginary when a; < —3, or a: > 5,

since 16 — (oj— 1)2 is then negative ; and when x is neither less than — 3 nor

greater than 5 there are two real unequal values of y, one found by using the +
sign before the radical, the other by using

the — sign. Hence the locus lies between

the two parallel lines a; = — 3 and x = 5.

The equation is satisfied by the follow-

ing pairs of values of x and y

:

-3 -2 -1
3 6.3 7.3 7.8

3 - .3 -1.3 -1.8

X

y

y

X =

y =

y =

2

7.8

1.8

3

7.3

1.3

4

6.3

- .3

7 Vl--\
P

The corresponding points are P(— 3, 3),

Pi(-2, 6.3), P2(-2, - .3), etc., and the

locus Is the curve shown in the figure.

Ex. 4. Plot the locus of the equation, p = 2a sin d.

Here p has its greatest value when sin d

has its greatest value, i.e. when d = \ir.

As d increases from to J tt, sin ^ in-

creases from to 1, and p increases from

to 2a ; as ^ increases from ^tt to tt, sin

decreases from 1 to 0, and p decreases

from 2a to 0. Hence the locus starts

from the origin and returns to the origin

as 6 is made to vary from to t.

Assigning to 6 values from to 180°,

differing by 30*^ we find the following

points are on the locus :

0(0, 0), A{a, 30°), P(aV3, 60°),

C(2a, 90°), D{a^y 120^"^), E{a, 150°),

and 0(0, 180°).

The complete locus is the curve shown in the figure.

Ex. a. Show that the points A, B, . . . all lie on a circle tangent to OX at

O and whose radius is a. Show also that every point on this circle satisfies the

given equation.
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Ex. 6. Show that the same circle will be described as 6 varies from 180° to

360°
; also as 6 varies from any value a to a -h v.

We have in this example an illustration of a characteristic property of equa-

tions in polar coordinates containing a periodic function of 6. In such equations

p takes all possible values as 6 varies through a limited range of values called the

period of the function. The complete locus is described at least once as 6 varies

through this period, and is repeated as 6 varies through any other equal period.

The period of sin is 2 tt ; hence p takes all possible values from —2a
to + 2 a as ^ varies from to 2 tt. The whole circle is described tivice as 6

varies through this period, once as 6 varies from to tt with p positive, and once

as 6 varies from tt to 2 tt with p negative. Also the whole circle is described

twice if 6 starts from any value and varies through 2 tt in either direction.

Ex. 5. Plot the locus of the equation p = sin 2 6.

This equation I& satisfied by the following pairs of values of p and 6 :

e = 45°, 225°, p=l.

e = 135°, 315°, p= -\.

e = 30°, 60°, 210°, 240°,

P = ly/S.

6 = 120°, 150°, 300°, 330°,

P = - I V3.

e = 15°, 75°, 195°, 255°,

e = 105°, 165°, 285°, 345°,

P=-\-
e = 0°, 90°, 180°, 270°, 360°,

P = 0.

The corresponding points are

found by drawing three circles

with centres at O and radii i,
| V'^, and 1, and then drawing radii dividing these

circles into arcs of 15°. The locus is the four-leaf curve shown in the figure.

As e varies from to 2 tt, the four leaves are described in the order 1, 2, 3, 4,

and in the direction indicated by the arrow heads.

EXAMPLES
Plot the loci of the following equations :

*

(2x-Sij - 6 = 0. W
/ 1. \4x-6y- 6 = 0.\ 2.

[Qx-dy + 27 =0.

2x-\-Sy + 5 = 0.

3x-2?/-12=0.
5x4-2?/- 4=0. J

* For convenience in plotting loci the student should be supplied with " coordinate

paper," both " rectangular" and "polar."

t Loci grouped under the same number should be plotted on the same diagram.
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r
r 2 a; + 9 y + 13 = 0.

3. y = lx-^.

2y-x = 2.

7. 6 a;2 + 5 a;?/ - 6 1/2 = 0.

8.
[x2-2/2 = 4.

J

'
a;?/ = 2.

x?/ = - 2.

11.
r4(x+i)=i 2)^

10y=(x+l)2.

4. (a;-4)(y + 3)=0.

6. (x2-4)(y-2) =0.

6. x2- 2/2 = 0. 4x2-«/2_o.

f a:2 4. y2 _ 25.

10. (a;-8)2+(?/-4)2 = 25.

I (a; -4)-' +(2,-2)2 = 5.

12. «/ = x3-4x2-4x+16.

MS. ( !=(,^:-!r-

14.

[2/2=(x2-4)2.
J

y = a:4 _ 20 a;2 + 64.

1

x4 - 20 a;2 + 64.
J

^5. (x2 + y2)2 = a2(x2-y2).

16. // = x, x2, x3, x*, x^, ... x«. x = 2/, 2^2^ 2/8, 2/*, y^,-- y".

Note the effect of interchanging x and y ; e.gr. the locus of x = ?/* is obtained

from the locus of y = x^ by revolving the plane through 180° around the line

17. y = (x-l), (x-l)2, (x-l)3. y. 18. 2/ = x3, x3-x, x8 + x. - f

/" 19. 2/^ = X, x2, x^, x*. 20. 2/ = sin x, cos x, sin-i x, cos"* x.

21. 2/ = tan X, cot x, tan-i x, cot-i x. ^2. 2/ = sec x, esc x, sec-^ x, csc-i x.

-f • 23. 2/=sin 2 x, sin ^- , | sin 2 x, 2 sin ^ . 24. 2/ = 6 sin -, 6 sin
x + c

25. p = sin ^, cos 0, sec 0, esc ^.

27. p = cos 2 e, cos 3 0, cos 4 ^.

/ 29. p = sin \ e, cos ^ 6.

^31. p=:acos^ + ?).

^^33.
2/ = 2^ log2X.

fZb. y = a^, logaX. (a>, =, <1.)

2 a a

f 26. p = sin3^, 8in4tf.

28. p = tan ^, cot d.

30. p= ^
6

1 — cos d 3 — 2 cos ^

32. p2 = sec 2 ^, CSC 2 ^. (Cf. No. 9.)

34. 2/ = 10^, logio X.

i 36. 2/ = 2*, 2-^ i(2' + 2-').

37. 2/ = e«, e «, ^ (e« + e «). Catenary, if e = 2.7 +.

38.2/ = ^^, (x-l)(x-2)
,

x-3 x-3

X 40. y = ^+2,(^-l)(^-3).'^ ^ x + 3 x-2

42 y^ (a;-l)(x.-3)(x-5)

(x-2)(x-4)(x-6)

44.y- (a;-l)(a;-3)(x-5)
(x-2)(x-4)

89 2/=
(^-^)(^-^)

,
(^-^)(»-3).

• ^ (x-3)(x-4) (x-2)(x-4)

J ,^ (x+l)(x-2) (x + 2)(x-4)

(x + 3)(x-4) (x-l)(x-3)

48 ^^ (a;-H)(x-4)(x-6)
(x-l)(x + 2)(x-3)

46.
(x-l)(x + .3)(x-6),

(x-2)(x-4)
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^ 46. , = ^^. 47. , =—

^

-e 48. y=j^,^y

«• y
= (^^rry/ ^«- ^ = (x--2)2 • 5^- ^ = (x-2)(x-3y

' 52. Are the points (3, 60°) (f , — 90°) on the same or opposite sides of the

loci of Ex. 30 ? , ^

53. Which of -the following loci pass throug^the origin ?^yuiu&JO
^-^^^^^"^^

^ 4. (1 ) 2 X + 3 y = O.i- (4) 2/2 - a2a;2>^5?^7) yi = ^a^\\

Lv<^^) iK^ + 2/2 = 1. (5) ax + &?/ + c = 0. (8) ^2 ^ 4a (x + a).)^

iT f_(3) 2/ = 3x2-x. (6) ax2 + &?/2 = 1. (9) (x - a)2 + (y - 6)2 = a2 + 62.

. kv'^^^^^What is the necessary and sufficient condition that the locus of an equation

N\ in Cartesian coordinates shall pass through the origin ?

The Use of Graphic Methods

23. It has been shown in §§ 14-20 that whenever the relation

between two quantities, whose values depend upon one another, can

be definitely expressed by an equation, then the geometric or graphic

representation of this relation is given by means of a curve. Such

a curve often gives at a glance information which otherwise could

be obtained only by considerable computation ; and in many cases

reveals facts of peculiar interest and importance which might other-

wise escape notice.

The use of graphic methods in the study of physics, analytical

mechanics, engineering, and many other branches of scientific inves-

tigation, is already extensive and is rapidly increasing. Graphic

methods can be used, however, not only in examples where the

equation connecting the two variable quantities is known, such as

those already given, but also in examples where no such relation can

be found ; in these latter cases the graphic method furnishes almost

the only practical means of studying the relations involved.

Comparative statistics, and results of experiments and direct

observations, can frequently be more concisely and forcibly repre-

sented graphically than by tabulating numerical values. The fol-

lowing are simple examples of this kind:

1. The following table shows the net gold (to the nearest million of dollars)

in the U. S. Treasury at intervals of one month, from Jan. 10, 1893, to Oct. 31,

1894 (Report of the Sec. of the Treas., 1894, p. 8)

:
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1898
Millions

of Dollars.
1898

Millions
of Dollars.

1894
liiUions

of Dollars.
1894 MiUiuus

of Dollars.

Jan. 10

Feb. 10
Mar. 10
Apr. 10
May 10
June 10

120
112
102
106
99
91

July 10
Aug. 10
Sept. 9

Oct. 10
Nov. 10
Dec. 9

97
104
98
87
85
84

Jan. 10
Feb. 10
Mar. 10
Apr. 10
May 10
June 9

74
104
107
106
92
69

July 10
Aug. 10
Sept. 10
Oct. 10
Oct. 81

65

62i
56
60
61

Using time (in months) as abscissas, and dollars (1,000,000 per unit) as

ordinates, the separate points represented by the table have been plotted

(Fig. 1) and then joined by a smooth curve.

100

50

^
;5

123456789 10 11 2 3 4 5 6 7

1894
8 9 10 11 12

Fig. 1.

In this example the curve gives no new information, but it presents in a much

more concise form the information given by the tabulated numbers. Observe

also that if the points are inaccurately located, the diagram becomes not only

worthless, but misleading.

2. An excellent example of the use and advantages of the graphic method

of representing comparative statistics is found in the large engraved plate placed

under the front cover of the Annual Report of the Secretary of the Treasury

for 1894. This plate presents on a single sheet information that covers several

pages when expressed in tabulated numbers. All of the curves given on this

plate, except one, are shown (on a smaller scale) in Fig. 2. This figure should

be carefully studied, and if possible the original plate should be consulted.

3. The curves in figures 1 and 2 were constructed by locating separate points

and then drawing a smooth curve through these points. Such curves give no

new information, but represent graphically information already ascertained.

In some cases, however, curves can be drawn mechanically. When this is

possible the curve is constructed, not for the purpose of exhibiting facts

previously known, but for the purpose of obtaining new information. For

instance, in the stations of the U. S. Weather Bureau an instrument called
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the Thermograph* constructs automatically a curve which shows the continuous

variation of the local temperature. Similarly the Barograph* records the varia-

tion of the barometric pressure, etc.

10 11

Fig. 3.— Thermographs for Aug. 9-10 and Sept. 27-28, 1899, at Lincoln, Neb.

Mon. 13 Tu. Wed. Th. Fri. IT

XII Mt XII Mt XII Mt XII Mt XII Mt

28

-4-t.

(IllililllllllllllllllllllilM

Fig. 4.— Barograph Sheet, March 13-17, 1899. at Lincoln, Neb.

Figures 3 and 4 are copies of curves thus constructed in the local station at

Lincoln, Neb. The upper curve in Fig. 3 sliows the temperature from 10 p.m.

Aug. 8, 1899, to 9 a.m. Aug. 11, 1899 ; the lower from 11 p.m. Sept. 26, 1899, to

8 A.M. Sept. 29, 1899. Interpret these curves. Notice especially the record

from 6 P.M. to midnight Aug. 10.

The varying pressure on the piston in the cylinder of a steam engine is deter-

mined in the same way by means of a similar instrument, called an Indicator.*

4. Exhibit graphically the information contained in the following table of

wind velocities for Jan. 20 and June 15 and 25, 1894 :

For a description and cut of the " Thermograph," " Barograph," and '* Indicator,"

see these words in the Century. Standard, or Webster^s International Dictionary.
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Day 12-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12

Jan. 20, A.M. . .

June 15, A.M. . .

June 25, a.m. . .

8
15
17

6
11

14

7
8

13

7
10
13

8
8

11

9

9
23

12
3

23

15
3

13

15
11

9

19
15
4

12
17
2

21
21
10

Jan. 20, P.M. . .

June 15, P.M. . .

June 25, p.m. . .

22
15
12

22
21

15

18
22
11

19

20
12

14
17
12

9
17
5

6

12
1

7
5
3

5
5
6

6

6

7

5
6
7

4
3
3

Intersection op Loci

24. To find the points of intersection of two loci when their equations

are knoivn.

Since the points of intersection of two loci lie on both curves,

their coordinates must satisfy both equations. Therefore, to find

the coordinates of the points of intersection of two loci we treat

their equations simultaneously, regarding the coordinates as the

unknown quantities, and thus find the values of the coordinates

which satisfy both equations. A pair of values which satisfy both

equations are the coordinates of a point of intersection of the two

loci.

If the equations are both of the first degree, there will be but one

pair of values of coordinates satisfying them, and therefore but one

point of intersection of the loci.

If one or both of the equations be of a higher degree than the

first, there will be several pairs of roots, and one point of intersec-

tion for ea^h pair. The loci will then have several points of inter-

section.

If of a pair of roots even one is imaginary, there is no correspond-

ing real point common to the two loci. We then say the intersection

is imaginary.

Since imaginary roots of equations always occur in pairs, imagi-

nary intersections of loci always occur in pairs, and hence the passage

from a real pair of intersections to an imaginary one is through a

coincident pair. Suppose, for example, that a straight line intersects

a circle in two real points. If the line be moved so that it becomes

tangent to the circle, the two points of intersection coincide in the

point of contact. If the line be moved still farther, the intersections

are said to become imaginary.
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25. Intercepts on the axes of coordinates.

This is a special and very important case of the preceding section

in which one of the given equations is a; = 0, or 2/ = 0.

To find the points of intersection of a curve with the a>axis, put

y= in the equation of the curve and solve the resulting equation

for X. The roots of this equation in x represent the distances from

the origin to the points of intersection ; and these distances are called

the x-intercepts of the given curve.

Similarly, to find the y-intercepts, put a; = in the given equation

and solve the resulting equation for y.

Ex. 1. How many x-intercepts may a curve of the nth degree have ? <^Vv^ ^ > i^-w^

Ex. 2. What does it mean when in an equation in polar coordinates we put

^ = 0? p = 0?

26. A line may be defined as the path of the moving point. Then,

if (Xf y) be the moving point, both x and y are variable quantities,

and are called the variable or current coordinates of the moving

point. The path of the moving point is then determined by the

condition that its coordinates must vary only in such a manner as

always to satisfy a given equation ; i.e. although both coordinates vary

the relation between them remains fixed.

EXAMPLES

Find the intercepts and the points of intersection of the following loci :

1. 2 a; + 3 y = 12, 4 a; - y = 5.

2. 3x + 5y = l, x-3y+7 = 0.

8. 5x-22/-f-4 = 0, x-2y = A.

4. X + 3 y = 15, x2 + y2 = 25.

6. 3 X - 4 y = 20, x^ + y2 _ 10 x - 10 y + 25 = 0.

6. 5x+4y = 20, x2 + ?/2 = 4.

11. Find the points of intersection of the loci of Nos. 1, 2, 3, 9, 15, 17, 18, 19,

20, 21, 26 in the last preceding set of examples.

12. Find the intercepts of the loci of Nos. 7, 9, 10, 11, 12, 13, 14, 18, 19, 20 of

the same set and check tlie results by the plots already made.

13. Find the area of the triangle whose sides arex — 3y + 5 = 0, 3x-|-4y=ll,
*? X + 7 y = 3.

7. x-3y = 0, x2 + y2 + 20 y = 0.

8. y'' = 4.ax, 2xy = a2.

9. y2 = 4ax, y2 _ x2 = a2.

10. y^ = iax, x2 = 4 ay.
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27. The process of constructing a locus explained in § 21 is

long and tedious. It may often be shortened by an examination

of the peculiarities of the given equation, such as the limiting

values of the variables for which both are real (see Ex. 3, § 22),

symmetry, etc. Such considerations will often reveal the general

form and limits of the curve and give all the information desired

with little labor. The intercepts (§ 25) are almost always useful for

this purpose.

Definitions. Two points A and B are said to be symmetrical

with respect to a ceiitre when the line AB is bisected by 0.

Two points C and D are said to be syminetrical with respect to an

axis when the line CD is bisected at right angles by the axis.

The two points (x, y) and (— x, — y) are symmetrical with respect

to the origin
;

(x, y) and (x, — y) with respect to the avaxis.

A curve is said to be sym-

metrical with respect to a centre

O when all lines passing

through meet the curve in a

pair, or pairs, of points sym-

metrical with respect to 0.

A curve is said to be sym-

metrical with respect to an axis

when all lines perpendicular

to the axis meet the curve in

a pair, or pairs, of points sym-

metrical with respect to the

axis.

Or, in other words, a curve is symmetrical with respect to an

axis, if the figure appears the same when a plane mirror is placed

on the axis perpendicular to the plane of the curve.

The curve PQ is symmetrical with respect to the origin, and RS
is symmetrical with respect to the y-axis.

The principal kinds of symmetry arising from the form of the

equation are as follows

:
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28. Equations in Cartesian Coordinates.

(1) If f{Xy y) =/(«, — 2/)>* i^^ locus of the equation fix, y) =0 is

symmUrical with respect to the x-axis; i.e.

If an equation is not altered when the sign of y is changed, its locus

is symmetrical with respect to the x-axis.

Let (x', y') be any point on the locus f(x, y) = 0.

Then, since f(x, y) =f{x, - y), by hypothesis,

f(x',y',)=f(x',-y') = 0.

That is, the point (x', — y') is also on the locus. Therefore, since

the line x = x' meets the locus in any point (x', y'), it will also meet

the locus in the symmetrical point (x', — y'), and the curve is

symmetrical with respect to the a;-axis,

Ex. Let/(aj, y)=y^-4x, thenf(x, - y) = (- yy - 4 x = y^ - i x.

Therefore /(x, y,) =/(x, — y) and the curve ?/2 — 4 x = is symmetrical with

respect to the x-axis. (See Ex. 2, § 22.

)

(2) Similarly, if fix, y)=f(^ — x, y), the locus of f{x, y) = is

symmetrical with respect to the y-axis.

Ex. y — cos x = y — cos (— x)

.

Therefore the locus ot y = cos x is symmetrical with respect to the y-ajoa.

(3) If f(x, y) = ±f(- x, - y), the locus of fix, y) = is sym-

metrical ivith respect to the origin.

Let (x', ?/') be any point on the locus f(x, y) = 0.

Then, since /(», y) ~ ±f( — x, — y) by hypothesis,

/(a^',2/')=/(-a^', -.^/)=0.

Hence the straight line through the origin and the point (x', y')

meets the locus again in the symmetrical point ( — x', — y').

Therefore the curve is symmetrical with respect to the origin.

a^ b-^ ~a^ 62 a^ 6'"*

= i-^)\{-yy _i,~
a^ b^

* The sign " = " means " identical with," i.e. the same for all values of x and y, and

therefore that the two expressions vanish for the same values of x and y.

E.g. (x + y)2=x2+2x2/-f-y2, eosx = cos (-x).
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Therefore the curve— + ^ = 1 is symmetrical with respect to both axes
or Jr-

and the origin. (See figure, § 34.

)

(4) If f(x, y) f= {y, x) the locus off(x, y) = is symmetrical with

respect to the line y = x. E.g. a^ -f- ?/^ = 1.

(5) If f{x,y)=f{ — y, — x) the locus of f{x, y) = is sym-

metrical with respect to the line y = — x. E.g. xy — ±1.

Let the student prove propositions (4) and (5).

The foregoing conditions of symmetry are both 7iecessary and

sufficient; i.e. if either one of the conditions (3), for example, is

satisfied, the locus is symmetrical with respect to the origin, other-

wise not. The student, however, should examine the opposite

propositions independently.

The following conditions, (6), (7), (8), are sufficient, but not

necessary ; i.e. the opposite propositions are not necessarily true.

(6) If an equation contains only even powers of y, its locus is sym-

metrical with respect to the x-axis. [From (1).]

(7) If an equation contains only even powers of x, its locus is sym-

metrical with respect to the y-axis. [From (2).]

(8) If an equation contains only even powers of both x and y, its

locus is symmetrical with respect to both axes and also with respect to the

origin. [From (3).]

In an algebraic * equation either one of the following conditions is

sufficient, and one or the other is necessary.

(9) If all the terms of an algebraic equation are of even degree, or

if all the terms are of odd degree, its locus is symmetrical with respect to

the origin. [From (3).]

Show that (6), (7), (8), and (9) follow from (1), (2), and (3).

Show that (6), (7), (8) are necessary conditions of symmetry if the equation

* A function in which the variables are involved in no other way than by addition,

subtraction, multiplication, division, and root extraction is called an Algebraic Func-

tion. All others are called Transcendental Functions.

E.g. 3a;2_2a; + 4, x2— aa;?/ + 6r/2, ^,J +n Vxy.

are algebraic functions; while a*, sin x, sec-i y, log (x^-j-y) are transcendental

functions.
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29. Equations in Polar Coordinates.

The best way to determine the symmetric properties of loci in

polar coordinates is to transform their equations to rectangular co-

ordinates, and then apply the tests given in § 28.

The following conditions, however, are useful in simple cases.

They are sufficient but not necessary, conditions of symmetry.

(1) If fid) =f{- 0), or, iffiO) = -/(tt - 6), the locus of p = f{e)

is symmetrical with respect to OX.

(2) Similarly, if f(e)=f(-7r- 6), or, if f(e) = -f(-0), the locns

of p =f{0) is symmetrical with respect to O Y.

(3) If f{6) =/(7r + 6), the locus of p =f{6) is symmetrical with

respect to O.

EXAMPLES

In what respects are the loci of the following equations symmetrical ? Af*

4 1. y = x2.V>^ 2. y^x^. y 3. t = ^- "^4. y^ = x.Y

5. y = 7^. 4 6. x^r=:yx^\ 7. y2^x3. ^ 8. y^^x^.

9. 2/2 = a;2. -f 10. y = x\ «^ ^ 11. y'^ = x*. 12. ^ = y^-

13. y'^ = xfi. -^ 14. f = x^.
^' 15. y^ = x^. 16. y"' = x*.

18. y=x^-x'^. Ad. y = x*-x^.20. y = x*-3fi.y — x^ — X.

21. xy = a. 22. x'^y = a. ^^S. ax^ + hy'^ = \.\^ Vr>^«w^

24. ax2 ^2bxy + cy^ = 1. 25. ax^ + 2bxy-^ ay^ = 1. ^
26. xy - 2 (X + y) = 1. /^7. x8 + y3 = 1. \> «tMWv

^^28. X* 4- y* = l.-l(]^ \sr^H^ 29. x< = y2 (4 a^ - x2). M

30. x(y + x)2 + a^y = 0S> 31. xV = rt2(x2 + 2/2).

yZ2. x^ + y-' = a^. \j^ ^m^A^ 33. x^ -\- y^ = a^.

34. (a - X) 2/2 = (a + x)x2. ^ 35. (a - x) y2 + x^ = 0.

36. ?/ = K2' + 2-*). 37. y=i(2*-2-^). 38. p2_cos2^. 39. p2_sin2^.

40. Point out the symmetric properties of the loci in the last two preceding

sets of examples, especially those given in polar coordinates.

41. Show that if an equation is not altered when — x is written in the place

of y. and y in the place of x, its locus will show no change in position when the

curve is turned about the origin through a right angle in its plane. For an

example see No. 7, p. 27 ; also 2 x2 — 3 xy — 2 ?/2 = ?.

The locus of x* + a'^xy - y* = is also such a curve.
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To Find the Equation of a Locus, having given its Geo-

metric Definition

30. It should be borne in mind that to find the equation of a locus

we have merely to find an equation that is satisfied by the coordi-

nates of every point on the locus, and not satisfied by the coordinates

of any other point. It is not easy to give specific directions which

can be applied in all cases, but the following plan will be useful to

the beginner, at least in the simpler cases

:

(1) Choose the system of coordinates best adapted to the locus

under consideration, and select a convenient set of axes.

(2) Write down the geometric equation which expresses the given

geometric definition, or any known geometric property of the locus.

(3) Express this geometric equation in terms of the chosen system

of coordinates, and simplify the result.

The following examples will give a better idea of the method of

procedure than any formal rules ; they should be carefully studied

:

31. To find the equation of any straight line.

Y

Let ABC be any straight line meeting the axes in A and B.

Let OB = &, let tan XAO= m.

Let P(xj y) be any point on the line.

Draw PQ parallel to OF, and BE parallel to OX
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Then for the geometric equation we have

QP=QR + RP=OB+BR tan PBR.

But QP= yy OB = h, BR = x, tan PBR = m.

.'. y = mx + b, (1)

which is the required equation.

For any particular straight line the quantities m and b remain the

same, and are therefore called constants. Of these, m, tlie tangent

of the angle between the line and the »-axis, is called the Slope of

the line, while b is the ^/-intercept.

By giving suitable values to the constants 7ii and 6, (1) may be

made to represent any straight line whatever, e.g.

If 6 = 0, we have ^^^^^^ ^2)

for the equation of any line through the origin.

Quantities entering into an equation, such as m and //, which
remain constant so long as we consider any particular curve, but

whose variation causes a change in the position, size, or shai)e of the

curve, are called Parameters of the curve.*

Moreover, any equation that can be put in the form (1), i.e. y equals

some multiple ofx plus a constant, represents a straight line.

The general equation of the first degree

Ax-\-By + C=0 (3)

may be written y=— — x— —
,

and therefore (3) represents a straight line whose slope is —

—

C ^
and whose y-intercept is . (See § 43.)

Ex. 1. If b varies in (1) while m remains constant, how will the line

change position ? If m varies while b remains constant ? If m varies

in (2)?

Ex. 2. What will be true of the signs of m and b when the line crosses the

various quadrants ?

* The difference between parameters and coordinates shonld be carefully noted ;

also tb(! diffi^roiice in the effect of a vsiriation of the parameters of an eqnation and

the variation of the current coordinates. (See § 26.)
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32. To find the equation ofa circle referred to any rectangular axes.

Let r — radius, and let C(a, h) be the centre.

Let P(xj y) be any point on the circle.

Then CP = r. [Geometric equation.]

But CP'= {x - af + (2/
- hy. [(2), § 7.]

... (pc-a)^^{y-l>)^ = r^ (1)

is the required equation.

If a = r and 6 = 0, (1) reduces to

aj2 + 2/2-2/'ic=0. (2)

If a = — r and 6 = 0, (1) becomes

x^^y^ + 2rx = Q. (3)

y The circle at the right in

the figure is the locus of

equation (2) ; the circle at

the left is the locus of equa-

tion (3).

When the centre is at

the origin, a = 6 = 0, and

we have for the simplest

equation of the circle in

Cartesian coordinates the standard form (§ 16),

aj2 4. 2,2 = rK W
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Moreover, any equation of the second degree in which the term in

xy is wanting and the coefficients of a^ and tf are equal, can be written

in the form of equation (1), and therefore will represent a circle, real

or imaginary. For example, the equation

a;2 + /-4a; + 62/-3 =
may be written in the form

(x-2f + {y + ^f=U,
which shows that its locus is a circle whose centre is at the point

(2, — 3), and whose radius is 4.

EXAMPLES

1. What is the form of the equation and the position of the circle, if 6 = i r

and a = ?

2. What are the parameters in these equations ? Discuss the effect produced

by their variation.

Find the centres and radii of the following circles :

5. a;2^ i/2^2x-4i/ = 0. 6. a:2 + 2/2-3x + 5i/ = 0.

7. a;2 + y2_,.6^_4y ^9^0.*^ - 8. 4(a;2 -f 2/2)_12 x + 8y - 23 = 0.

9. x2 + ?/2-|. (3a; + 8«/- 11 =0. 10. 4(x2 + ^z^)- 20x - 32 ?/ + 25 - 0.

11. Find tue general equation of a circle which touches both axes.

33. Polar equations of the circle.

It follows from (1), § 8, that the polar equation of the circle whose
centre is at the point (a, a) and whose radius is r, is

p2 -2 ap cos ((9 - a)+ a' - /-^ = 0. (1)

If the pole is on the circle, the equation is

p = 2rcos(^-«); (2)

if the centre is also on the initial line, the equation is

p = 2rcos^; (3)

if the circle is above the initial and tangent to it at the pole, its

equation is p = 2 r sin 0. (4)

Ex. 1. Why is (1) of the second degree in p while (2), (3), and (4) are of the

first degree ? When is the pole outside, and when inside the circle ? Discuss

the effect of the variation of the parameters in these polar equations.

Ex. 2. Transform equations (1), (2), (3), (4) to rectangular coordinates.
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34. The Ellipse. The ellipse is the locus of a point which moves

so that the sum of its distarices from two fixed points, called foci, is con-

stant.

Take the line through the foci as the a>axis, and the point midway
between the foci as origin.

Let 2 a = the sum of the distances from any point on the ellipse

to the foci. Let F{cj 0) and F\—c, 0) be the two foci.

Let P{x, y) be any point on the locus.

Then FP + F^P= 2 a. [Geometric equation.]

But FP =^ (x-cy + y\

and FP = -\/ {x-^cf + y\

Transposing the first radical and squaring

[(2), § 7.]

2 a. (1)

(oj + cf + 2/' = 4a2+(a;-c)24.2/2-4a V(a;-c)2 + /,

or a V (a; — c)^ + y- == a^ — ex.

Squaring and transposing again

{a^ _ c2) a^ + ay = a^a" - c").

If we put a^ — c^—b^, we get the equation of the ellipse in the

standard form,

a* 62
(2)
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35. An examination of this equation (2) as to symmetry, limiting

values of the variables and intercepts, will give the general form and

limits of the curve.

(1) Only the square of the variables x and y appear in this

equation.

Therefore the ellipse is symmetrical with respect to both axes,

and also with respect to the origin. [(8), § 28.]

Hence every chord passing through O is bisected by 0. For this

reason, the point O is called the Centre of the ellipse. Likewise

the lines AA^ and BB^ are called the Major Axis and Minor Axis,

respectively.

(2) When yz=0,x=±a, a>-intercepts.

When a; = 0, 2/= ± 6, ^/-intercepts.

Therefore the curve cuts the «-axis a units to the right and a units

to the left, the ?/-axis b units above and h units below the origin.

(3) Solving the equation (2) for y and x respectively we find

h , .„ a

r^^

Hence y is imaginary when a;> a, or a;< — a ; and x is imaginary

when 2/ > 6, or 2/< — &.

Therefore the curve lies wholly within the rectangle formed by

the lines x= ± a.and y= ±b.

Also, as either variable increases, the other diminishes. The form

of the curve is shown in the figure.

Such an examination of an equation is called A Discussion of the

Equation.

Ex. 1. Transform equation (2), § 34, to polar coordinates and show that p is

finite for all values of 6.

Ex. 2. Where is the point (h, k) if - + ^-l>0? < ?

Ex. 3. Show the relation of the ellipse ^^ + ^ = 1 to the circles x^ + y^ = a*

and x'^ + y^ = 62. « ^

/
X. 4. Find the axes, coordinates of the foci, and plot the ellipses
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36. The Hyperbola. The Jiyperbola is the locus of a point which

moves so that the difference of its distances from two fixed points {foci)

is constant.

Choose axes as in the case of the ellipse, let 2 a be the constant

difference, and show that when b^= c^— a^ the equation of the hyper-

bola reduces to the standard form. [See Fig. § 90.]

Ex. 1. Discuss equation (1).

Ex. 2. Show that the hyperbola (1) lies wholly between the two straight

lines ay = ±i bx, and that as x becomes infinite the ordinates of the lines become

equal to the ordinates of the hyperbola. These lines are called the Asymptotes

of the hyperbola. [See Fig. § 110.] C-- r 4. ': v

Ex. 3. Transform equation (1) to polar coordinates, and find the value of p
b

when ^ = ± tan-i -•

Ex. 4. Find the foci, equations of the asymptotes, and trace the curves

^ ^ 16 9 ^ ^ 16 25 ^ ^ 4 16

^ (4) a;2 - if = a2. (5) tf - x'^ = h\ (6) 4 x2 - ^/2 = 4.

37. The Parabola. Tlie parabola is the locus of a point whose

distance from a fixed straight line is equal to its distance from a fixed

point.

The fixed point is called the Focus; the fixed line is called the

Directrix.

Take the line through the focus perpendicular to the directrix as

the a^axis, and the origin midway between the focus and the direc-

trix ; let 2 a denote the distance from the focus to the directrix.

[See Fig. § 88.]

Then show that the equation of the parabola is

2/2 = 4 ax. (1)

Ex. 1. Discuss this equation (1), also 2/2 = — 4 ax and x!^ = ±4 ay.

Find the foci, equations of'the directrices, and draw the parabolas

(2) 2/2 ^ 4 a;.

.

(3) ^2 ^ _ 8 X. (4) y^ = Qx.

(5) a;2 = 8 2/. (6) x2 = - 10 j/. (7) x2 = - 12 2/.
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EXAMPLES

I 1. A moving point is always four times as far from the x-axis as from the i/ -s ^
y-axis. What is the equation of its locus ? A

2. Find the locus of a point which is equidistant from the two points (3, 2) \y^
and ( - 2, 1). Ans. 6 x + 2/ = 4.

Y-
3. Find the locus of a point which is equidistant from the points (a, 6) ^

and (c, d).

4. A point moves so that its distance from the point (3, — 4) is always 5.
^^"^

Find the equation of its locus. Does the locus pass through the origin ?

Why? Ans. a;2 ^ y2 - 6x -f- 8 y = 0.

f- 6. Find the equation of a circle touching both axes and having its centre

at that point ( — 3, 3).

6. Find the equation of a circle touching both axes and having a radius

equal to 4.

"f
7. A point P is two units from a circle with radius 4 and centre at (2, — 6).

What is the locus of P?

8. A point moves so that its distance from the origin is twice its distance

from the x-axis. What is the equation of its locus ? Ans. x^ — 3 y2 _ q.

-r 9. A point moves so that its distance from the x-axis is equal to its dis-

tance from the point (2, — 3). Show that the equation of its locus is

x2-4x + 6y + 13 = 0.

10. A point P moves so that its distances from the points A (2, 2) and

5 (— 2, — 2) satisfy the condition AF + PP = 8. Show that the equation of

its locus is 3 x2 - 2 x?/ + 3 ?/2 = 32.

11. What is the locus of a point which moves so that (1) the sum, (2) the

difference, (3) the product, (4) the quotient of its distances from the axes is

constant (a) ?

12. What is the locus of a point which moves so that (1) the sum, (2) the

difference, (3) the product, (4) the quotient of the squares of its distances from

the axes is constant (a^) ?

13. Find the locus of a point which moves so that the sum of the squares \^
of its distances from the points (a, 0) and (— a, 0) is constant (2 c^).

14. Find the locus of a point which moves so that the sum of the squares

of its distances from the three points (5, - 1), (3, 4), (-2, - 3) is always 64.

16. Find the locus of a point which moves so that the difference of the

squares of its distances from (a, 0) and (— a, 0) is the constant 2 c^.

"^ 16. Find the locus of a point such that the sum of the squares of its distances
^

from the sides of a square is constant.



CHAPTER III

THE STRAIGHT LINE

38. It was shown in § 31 that the equation of any straight line

when expressed in terms of its slope m and ^/-intercept h is an

equatiion of the first degree,

y = mx+ 6

;

and also that the general equation of the first degree,

Ax-^By-\-C= %
represents a straight line. It is sometimes more convenient, how-

ever, to write the equation of the straight line in other forms ; i.e.

to express it in terms of some other pair of parameters.

39. To find the equation of the straight line in terms of its inter-

cepts on the axes.

Y

Let A and B be the points in which the straight line meets the

axes ; let OA = a, and OB = h. Let P (x, y) be any point on the line.

Draw PQ parallel to the ?/-axis, and join and P.

Then A OAP+ A OBP= A OAB.
Hence

"

bx-\-ay= ab.

or a o (1)



40] THE STRAIGHT LINE 47

If Z = - and m = j, the equation may be written

lx-{-my = 1. (2)

40. To find the equation of a straight line in terms of the length of

the perpendicular from the origin iqyon the line and the angle which that

perpendicular makes with the x-axis.

Let ON be perpendicular to the straight line AB, and intersect it

in R. Let OR =p, and angle XON= a.

Let P(x, y) be any point on the line.

Then since OQPR is a closed polygon, OR is equal to the sum of

the projections of OQ, QP, and PR upon OR. That is,

022 = proj. of OQ + proj. of QP+proj. of PR
= OQ cos a + QP sin a + 0.

.*. occo^a + ymna=p^ (1)

which is the required equation.

Let Z XAP= y = 90° -^ a. Then cos « = sin y, sin a = — cos y,

and, by substituting in (1), the equation of the line becomes

a5 sin -y - 2/ cos -y = p, (2)

Since equations (1) and (2) involve the trigonometric functions, sin

and cos, ON and AB must be regarded as directed Hues. As in

Trigonometry, we will consider the directions of the terminal lines

of a and y as the positive directions of these lines.

If y = 90° 4- «, as assumed above, then standing at R facing the

positive direction of ON, the positive direction of AB is to the lefl;
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and standing at R facing- the positive direction of ABj the positive

direction of ON is /rom AB toivard the right.

This will be called the positive side of the line AB.
Then in equations (1) and (2) p is positive when taken in the

positive direction of ON. Hence when p is positive the origin is on

the negative side of the line.

U.g. In the equations

>y^'^
cos a = sina =—

.

V2

/. a = 45° and y = 135°

for both lines ; but

for AB p = 3,

for CD p=-S.

Hence the two lines are parallel but

on opposite sides of 0. Also is on

the positive side of CD and on the

negative side of AB.

Since sin (^ ± 7r)= — sin ^ and cos (^ ± 7r)= — cos 0,

if the signs of all the terms in (1), or (2), be changed, the direction

of AB, and also of ON, will be changed by ± tt ; and therefore the

positive and negative sides of the line will be reversed. That is,

the equation of a line may be written so as to make either side of

the line positive or negative, just as we choose.

E.g. The equation of the line AB,

2 2

may also be written

X VSy
2 2

In (1) p :

-2,

2.

-2,

cos ct = sin 7 = -,
2'

sni a
Vs— cos 7 = .

\a = - 60° and y = 30°.
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In (2) i? = 2, cos a = sin y

. •. a = 120° and 7 = 210^

^, sina = — CO87 =A^.
2 2

Angles and directions corresponding to (1) are denoted by single arrow-heads,

those corresponding to (2) by double arrow-heads.

The origin is on the positive or negative side of the line according as the

equation is written in the form (1) or (2).

Ex. Point out the combinations of signs of cos «, sin a, and p when the line

crosses the different quadrants.

41. Transformation of the equations of the straight line.

In §§ 31, 39, and 40 we have found, by independent methods, the

three standard forms of the equation of a straight line involving

different pairs of parameters, m and h, a and &, a or y, and p ; viz.

:

y = mx + b. Slope form, (1)

- + ? = 1 , Intercept form, (2)

"i • ^.^r.^ Z c Distance, or normal form. (3)
i X smy - y cos y = p,

)

' *' ^ '

Any one of these forms of the equation may, however, he deduced

from any other.

I. From the figure we obtain di-

rectly the relations

cos a _ b
~ a

,
sin ym = tan y =——^ =
cos y sin a

and j9 = a cos a = 6 sin a

= — 6 cos y = a sin y.

Then substituting these values of m in (1), for example, gives

cos«

sin a
x-[-b,

and
smy

^ cos y '
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Whence, since 6 sin a = —h cos y = p, we get

a; COS ot H- 2/ sin ct =^,

and X sin y — yGOSy=p.

Moreover, the general equation of the first degree,

Ax + By+C= 0, (4)

can be transformed into any one of the three standard forms.

II. Solving (4) for y gives (see § 31)

A Oy= --X--. Slope form. (5)a Jo

III. If we transpose and divide by C, (4) may be written

—TvH p=l. Intercept form. (6)

^A ~B
IV. To reduce the general equation (4) to the distance form.

In this case we are to transform (4) so that the sum of the squares

of the resulting coefficients of x and y shall be unity. Hence, if we

assume the transformed equation to be

KAx + KBy + KG= 0, (7)

then K^A^ + KV- = cos^ a + sin^ a = 1.

j^^ 1

Whence V3M^^
.-.

^
x-^

^ y= ^
(8)

V^^ + 52 VA'-^B' VA'+&
is the required equation.

Hence, to reduce the general equation (4) to the distance form, trans-

pose C and divide by \/A^ + B^.

The general equation of the first degree must therefore represent

a straight line, since, by transposing .and multiplying by a suitable

constant, it can be reduced to any one of the standard forms of the

equation of the straight line. {Cf § 31.)
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V. Values of parameters in terms of A, B, and C.

Comparing coefficients in (1) and (5), (2) and (6), (3) and (8), we

get a = -^» ^ = -^' m = -^, p= ~^
A' B' B' ^ ^W+B'

A B
cos a = sin v =— . sin a — — cos v =

V^2 + ^ V^- + B'

Observe that the values of a and h thus obtained are the same
as those found by putting y = 0, then x — in (4) ; also that

A bm = — — = , as found above directly from the figure. ThenB a
sin a, cos a, and p can be found by Trigonometry and the relations

obtained from the figure.

EXAMPLES

1. When is it impossible to write the equation of a straight line in the

intercept form ? in the slope form ?

Change the following equations to the standard forms and thus determine

their parameters. Also draw the lines

:

3. 4?/ = 3 a; + 24.

6. 5x+4«/ = 20.

7. 2x-4y + 9 = 0.

9. 2x + 3y = 0.

11. y = 4.

Transform Ax ]- By ^ C = so that the sum of the three coefficients

shall be if; so that the square of the first shall be three times the second ; so

that the product of the three shall be twice their sum.

13. Transform 5 a; + 4 y — 20 = so that the sum of the three coefficients

shall be 22 ; so that the product of the first and third shall be equal to the second.

14. Transform 3a;-4?/+12 = 0so that the square of the second coefficient

shall be equal to twice the third minus four times the first ; so that the product

of the three shall be minus three times the last.

16. Transform 5 a; — 2 y — 3 = so that the product of the first and second

coefficients minus ten times the third shall be equal to — 40 ; so that the s(iuare

of the second plus twice the sum of the first and third shall be equal to 24.

2. x-\-V3y + 10 = 0.

4. y = x-6.

6. 5 X - 12 y = 13.

8. 2x-Sy = i.

10. x-a = 0.

12. Transform Ax + B

\}^



52 THE STRAIGHT LINE [42

42. To jind the polar equation of a straight line.

Let N{p, a) be the foot of the perpendicular from upon the

given line AB.
Let P(p, 6) be any other point on AB.

Then Z NOP = {6 - a),

and OP cos JV'OP = ON.

.•.pcos(e-a)=i>, (1)

which is the required equation.

EXAMPLES

Find the parameters and draw the lines whose equations are

1. p cos {6 - 30°) =2. 2. p cos (d - 60°) = 1.

3. p cos {d + 45°) =3. 4. p cos {6 + 120°) +4 = 0.

5. p cos {e - 120°) +1=0. 6. p cos {6 + 60°) + 5 = 0.

< 7. Transform aj cos a + y sin a = j? to polar coordinates.

8. What is the polar equation of a line perpendicular to the initial line ?

parallel to the initial line ?

•^9. What is the polar equation of any straight line through the pole ? of the

initial line ?

10. What locus is represented by sin ^ = ? sin 2 ^ = ? sin 3 ^ = ?

•.. sin w5 = ?

11. What is the locus of cos nO = when w = 1, 2, 3, ... ?

12. Find the coordinates of the point of intersection of p cos {6 ± 45°) = 1.

J 13. Find the polar equations of the bisectors of the angles between the lines

p cos (d - 60°) = 2, and p cos (J9
- 30°) = 2.

V

V^:
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43. To find the equation of a straight line passing throufjh a fixed

point {xij t/i) in a given direction.

Let the line make with the a^axis an angle tan~^ m.

Its equation will then be (where b is unknown) _ _

y = mx-\-bj (1)

and since the line passes through (x^, ?/i),

yi = mxi-\-b. (2)

Whence, by subtracting (2) from (1),

y-yi = m{ac-i€i). (3)

The line given by (3) will pass through the point (xy, y^ for

all values of m\ and may be made to represent any line through

{xiy ?/i) by giving to m a suitable value.

If then we know a line passes through a certain point, we may
write its equation in the form (3), and determine the value of m
from the other condition the line is made to satisfy.

Since m = tan y = ^(§ 40), equation (3) may be written in

the form

^^^im^iLzJll^r,
(4)

cos-y sinY ^ ^

where r is the variable distance from the fixed point (x^, y^ to any

point (x, y) on the line. This is a very useful formula.

Let the student prove (4) directly from a figure.

44. To find the equation of a straight line ivhich passes through two

given points (x^ 2/1) ci'^d (x2, y^.

Since the line passes through (ajj, 2/1), its equation will be of the

form [(3), § 43]
y-y^ = m(x-Xi)', (1)

then, since (ajg, ^2) is also on the line, we have

y2-yi='m(x2-Xi). (2)

Dividing (1) by (2) gives the required equation

2/2 - 2/1 iK2 - «! (3)



54 THE STRAIGHT LINE [45

Equation (3) may also be written

X, y, 1

xu 2/1, 1=0. (4)

which is obvious, since the area of the triangle formed by (fl?i, 2/1)

(x2, 2/2) and any other point (x, y) on the line is zero.

EXAMPLES

Find the equation of the straight line

1. if 6 = f and 7 = tan-i \. /a. if a = h and p
3. if 7 = 30° and p = 4. 4. if 6 = - 3 and 7 = 150°.

6. if 7 = tan-i 2 and the line passes through (3, — 4).

6. if 7 = tan-i - and the line passes through (—a, h).

7. passing through the pairs of points (2, 3) and (— 6, 1) ;
(- 1, 3) and

(6, - 7) ;
(a, 6) and (a + 6, a- b).

8. Find the equations of the sides of the triangle whose vertices are the

points (1, 3), (3, - 5), and (- 1, - 3).

9. Find the equations of the three medians of this triangle, and show that

they meet in a point.

10. Find the equation of a line passing through (—1, 4) and having inter-

cepts (1) equal in length, (2) equal in length but opposite in sign.

^ 11. What is the equation of the line through (4, — 5) parallel to2x4-32/ = 6?

45. To find the angle between two straight lines whose equations are

given.

Let AB and A'B' be the given lines.
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Let
<f>

be the required angle.

Then, using the same notation and the same convention as to

direction of the lines as in § 40,

<j> = a-a' = y-y'. ~ (i)

I. If the equations of the given lines be

X cos a-\-y sin a =p and x cos a' -\-y sin a' =i>',

cos </) can be found by direct substitution in

cos <^ = cos a cos a' + sin a sin a'. (2)

II. If the equations of the given lines be

y = mx-\-b and y = m'x + b',

we have from (1), since tan y = m, and tan y' =m',

. , . / ,x tan y — tan y' m — m' ,^.
tan d) = tan (y — 7') = ::

-^ '—, = ,. (3)^ ^'^ ^^ 1 + tanytany' l+mm' ^^

When m = m\ tan <^ = 0, and the lines are parallel.

When 1 + mm) — 0, tan <^ is infinite.

Therefore, when wi'= , the lines are perpendicular to one

another.

III. If the equations of the lines be

^a; +%H-C=0 and ^'x-f B'l/ + C' = 0,

A A'
then m = -— , m' = -— ; and therefore, from (3),

If ^'JB - AB' = 0, ie. if ^, = ^, the lines will be parallel.

If AA' -\- BB' = Of the lines will be at right angles to one

another.

It should be noticed that (2) gives the angle between two di-

rected lines. For if all the signs in one of the equations in I be

changed, the direction of the line will be changed by ± tt, (§ 40).
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The sign of cos <^ given by (2) will also be changed and <^ becomes

the supplement of its former value. But if all the signs in both

equations be changed, <^ is unaltered.

If the equations be so written that the origin is on the sa7ne side

(either positive or negative) of both lines, it will be in the obtuse

angle between the lines when cos <^ is positive, and in the acute

angle when cos <^ is negative.

If m and m' be so taken that m' > m, then y' > y and (3) will

give tan (— <^) = — tan <^ = tan (tt — <^), instead of tan <^.

46. To find the equations of two lines passing through a given point

(xi, yi)j the one parallel, the other perpendicular, to a given line.

Let the given line be
Ax + By+C= 0.

Then the parallel line is

Ax-\-By + K==0, [§45, III.] (1)

and the perpendicular line is

Bx-Ay + K' = 0, [§ 45, III.] (2)

where K and K' are constants to be determined.

Since both (1) and (2) are to go through (xi, y^), these constants

are such that

Ax,-^By,-]-K=0
I ^3^

and Bxi — ^?/i +^ = 0, J

i.e. K=-(Ax, + By,)
|

,^.

and K' = -(Bxi-Ay,).]

Therefore, the required equations are, respectively,

A(ac-iet) + B{y- y{) = 0, (5)

and Bix-xt)-A(y-yi) = 0. (6)

If the equation of the given line is in the form

y = mx + b,

the required equations may be written [(3), § 43, and II, § 45]

y-yi = m(i€-xi) (7)

and V-yi=^-^(^-oci)» (8)
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EXAMPLES

Find the angles between the following pairs of lines

:

1. 3 a; + 4 ?/ = 8 and 7 y - X + 14 = 0.

2. 2a; + 3|/ = 6 and 2y = 3x- 12.

^ 3. x + 4 = 2y and x + Sy = 9.

4. 3 2/ + 12 a; + 16 = and 2 y = 4 a; + 5.

^. 5. --f = 1 and ^-- = 1.^ a b ah
-|L 6. Prove that the points (1, 3), (5, 0), (0, - 4), and (-4, - 1) are the

vertices of a parallelogram, and find the angle between its diagonals.

Find the equations of the two straight lines

7. passing through the point (2, 3), the one parallel, the other perpendicular,

to the line 4 x — 3 y = 6.

^ 8. passing through (4, — 2), the one parallel, the other perpendicular, to the

line y = 2 X + 4.

J 9. passing through the intersection of4x + y + 6 = and 2x — 3y + 13 = 0,

one parallel, the other perpendicular, to the line through the two points (3, 1),

and (-1, -2).

.^, 10. Find the equation of the perpendicular bisector of the line joining the

points (3, -1) and (-2, 1).

i 11. Find the equations of the lines perpendicular to the line joining (2, 1)

and ( — 3, — 2) at the points which divide it internally and externally in the

ratio 2 : 3.

12. What is the equation of a line parallel to 3 x + 4 y = 12 and at a distance

4 from the origin '?

13. Find the point of intersection of two parallel lines. (eP, o^]

The vertices of a triangle are (3, 1), (- 2, 3), and (2, - 4):

14. Find the equations of its altitudes and show that they meet in a point.

15. Find the equations of the perpendicular bisectors of its sides, and show

that they meet in a point which is equidistant from the three vertices.

16. Find its interior angles.

17. Find the equations of two lines through the origin, each making an angle

of 30° with the line 4 x -f ?/ + 4 = 0.

/ 18. Show that the equations of the two straight lines through a given point

(3Ci, J/i) making a given angle with the line y = mx + b are

m i- tan ,
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47. To find the perpendicular distance from a given straight line to a

given point Px{x^y 2/i)-

Let HK be the given line, and let H^K^ be parallel to HK and

pass through Pj. Let P^Q be the perpendicular from P^ on HK^
and OR, OE' the perpendiculars from on HKsind H'K'.

Let the equation of HK be

a; cos a-\-y sin a=p.

Then the equation ofWK is

a; cos a + 2/ sin a =p + RR = p + QPi ;

and since this line (2) goes through Pi(x^, y^,

fljj cos a + 2/i sin a=p -\- QP^.

.'. QP\ = oc\ cos a + 2/1 sin a - p,

which is the distance from the line a, p to the point (x^y 2/1).

If the equation of the given line be

Ax + By-\-C = 0,

A . B -0

(1)

(2)

(3)

(4)

cos a =
V ^^ + B'

sina =
Va' + b'

i>
=
Va' + b'

[§ 41, v.]

and substituting these values in (4) gives

Aact + Byi + C

which is the distance from line A, B, C to the point (x^, y^.

(5)
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Hence the length of the perpendicular from a given line to a given

point is found by substituting the coordinates of the point in the equa-

tion of the line reduced to the distance form with all the terms trans-

posed to the first member.

The expression (5) will be positive or negative accordrng- as

Ax^ + Byi -f C is positive or negative (if V^^ + J5^ be positive). If

Ax^ + By^ -f C is positive, the point {x^, t/i) is said to be on the positive

side of the line Ax + By +(7=0; if Ax^ -f- By^ + C is negative,

(^1? 2/i) is said to be on the negative side of the line. If the equation

of the line be written so that p is positive, the expression (5) will be

found to be positive when Pj and are on opposite sides of the line.

{Cf § 40.)

Hence the points (x^, y^) and (ajg, 2/2) are on the same side or oppo-

site sides of the line Ax-^By-[-C— according as Axi-\- Byi-\-C

and Ax2 + By2 + C have the same sign or opposite signs. This

proves for the straight line the principles illustrated in §§ 14-20.

48. To find the equations of the bisectors of the angles bettveen the

lines

Ax -\-By+C=0, or x cos a + y sin « —p = 0, (1)

and A'x-\-B'y-\- O = 0, or xcos a' -^-ysina' —2)'=0. (2)

Suppose the equations of the lines written so that the origin is on

the same side of both lines.

Then for any point (x, y) on the bisector of the angle which
includes the origin,

Dist. from (1) to (x, y) = Dist. from (2) to (x^ y) ;

and for any point (a;, y) on the other bisector,

Dist. from (1) to {x, y) = — Dist. from (2) to (x, y).

Therefore the required equations are [§ 47]

V^2 + £2 V^/2 + B/2 • ^ ^

or a;cosa + 2/sina-j» = ± (ajcosa' 4- 2/sina' -^')» (4)

Ex. Show that these two lines are perpendicular to each other. [Use (4).] •
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EXAMPLES
Find the following distances :

1. From 3 a; + 4?/ + 10 = to (1, 12), (-3, -9), (3,4).

2. From x-Sy = 7 to (3, 2), (6, 3), (2, -5).

3. From 5a; + 12y = 13 to (3, -2), (-3,2), (4, -7).

4. From ?>(x — «)+ a(y — b) =0 to (—a, — &), (- &, — «), (&, «).

5. From 4(x-3)=3(2/+l) to (6,1), (4, -5), (-7,2).

Are the above points on the same or opposite sides of tlie lines ?

Find the equations of the bisectors of the angles between the lines

6. Sx + 4y + 12 = and 4x-Sy = 12.

7. 3 a: - 4 ?/ + 5 = and 12 a; + 5 «/ + 14 = 0.

8. 2/ = 2x+5 and x — 2y = 8.

^ 9. y=V3x+3 and ic + V3 y = 9.

,J\
10. Find the lengths of the altitudes of the triangle whose vertices are (3, 4),

(-4,1), and (-1, -5).

\ 11. What is the locus of a point which is 3 units distant from the line

2x-42/ = 9?

f 49. To find the equation of a straight line passing through the inter-

section of two given straight lines.

The most obvious method of finding the required equation is to

find the coordinates x\ y' of the point of intersection of the two

given lines, and then substitute these values in equation (3), § 43.

The following method of dealing with this class of problems is,

however, sometimes preferable, both on account of its generality and

because it saves the labor of solving the two given equations

:

Let the equations of the two given straight lines be

Ax + By-^C=0, (1)

and A'x + B'y + C" = 0. (2)

The required equation is then written

Ax + By + C + \ (A'x + B'y + C) = 0, (3)

where A is any constant.

V^
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Equation (3) is of the first degree, and therefore represents a

straight line ; if (x', y') is the point common to (1) and (2), we have

Ax' -j-By'+C =
and A'x'-}-B'y'-{-C' = 0.

/. Ax' + By'+C + X (A'x' + B'y' + C) =0, - -

which shows that the point (x', y') is also on (3).

Hence (3) is the equation of a straight line passing through the

point of intersection of the two given lines. Moreover, equation (3)

contains one arbitrary parameter, A, and therefore, by giving a suit-

able value to A., the line may be made to satisfy any other given con-

dition; it may, for example, be made to pass through any other given

point, may be made parallel, or perpendicular to a given line. Hence

equation (3) represents, for different values of A., all straight lines

through the point of intersection of (1) and (2).

The other condition which any particular line is made to satisfy

will give an equation for the determination of the value of \.

Ex. Find the equation of a straight line passing through the point of inter-

section of2a;4-52/-4 = and 4x — 2?/+2 = 0, and perpendicular to the line

2x-4ij = 7. (1)

Any line through the intersection is given by

2x-\-5y-4 + \(Ax-2y-\-2)=0,

or (2 + 4 \)x + (5 - 2 \) ?/ + (2 X - 4) = 0. (2)

Now (2) is perpendicular to (1) if (§ 45, III)

2(2 + 4 X) - 4(5 - 2 X) = ; i.e. if X = 1.

.'. 6 X + S y = 2m the required equation.

EXAMPLES
''^

1. Find the equations of the lines joining the points (0,0), (4, 2), (— 1, 3),

(_ 3^ — 4) to the point of intersection of the lines 2x + y = 2 and 2 ic — 3y = 6.

2. What is the equation of the straight line passing through the intersection

oiix-2y = 4: and 7 a; - 3 y + 21 = 0, and parallel to9x-iy = 0?

/^
3. Find the equations of the two lines passing through the intersection of

t — 2y — \ and 2x |-5?/ + 4 = 0, the one parallel, the other perpendicular, to

z -f- 2 j^ = 0.

4. Find the equations of the two lines passing through the intersection of

7 x — 5 ?/ = 35 and 8 a; — 3 y + 24 = 0, the one parallel to y = 2 x, the other per-

pendicular to 3 a; + 4 2/ = 0.
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^ 6. Show that it S = and S' = represent the equations of any two loci with

terms all transposed to the first member, and \ denotes an arbitrary constant,

then the locus represented by the equation

will pass through all the common points of the two given loci.

Consider the two cases X = and \ = co

.

6. Find the equation of the circle which passes through the origin and the

common points of the circles

x2 + ?/2 = 25 and a;2 + 2/2 _ 18a: + 20 = 0.

V 7. Find the equation of the circle which passes through the common points of

a;2 4- ?/2 = 16 and x — y = 4,

and (1) passes through the origin, (2) touches the aj-axis.

50. To Jind the equation of a straight line referred to axes inclined

at an angle <u.

Y

Let ABP be any line meeting the y-axis at a distance h from the

origin, and. making an angle y with the cc-axis.

Draw PQ parallel to the ?/-axis and OR parallel to the given line

ABP.
Let P(x, y) be any point on the line ABP., then

OQ = x, and QR= QP- RP = y-b.

.
Since Z Oi?Q = Z i20F= o> — y, we also have
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y — b _QIi _ sin QOE _ sin y
X OQ sin ORQ sin (<o — y)

,.y= . f y x + b, (1)
sin (ci> — y)

which is the required equation. *

Let m= .
^^y =-. ^-^^

(2)
Sin (o> — y) sin (t) — cos o> tan y

mt- J. *W sin

«

/ONThen tan v = ,— , (3)
' 1 + wt cos

»' ^ ^

and equation (1) becomes y = ma? + b, (4)

which in oblique coordinates represents a straight line inclined to

the a?-axis at an angle tan-^f .,

^^^^°"
).^ \l + »*cos«/

51. Some of the investigations in the preceding sections of this

chapter apply to oblique as well as to rectangular axes. Let the

student show that this is true of the following equations

:

- + f=l. [(!),§ 39.]
CL

y-y, = m{x-x,\ [(3), § 43.]

[(3), § 44.]

EXAMPLES ON CHAPTER III

1. What are the loci of the following equations ?

(1) x'^ + axy = {i. (2) x^-xy'^z=iO.

(3) a;3 + ?/8 = o. (4) x^-y^=Q.

(5) a2^,2_ 52^2 = 0. (6) a2a;2^.^,2y2 = o.

(7) (a;2-l)(y2_4)^o. (8) (ax + 6y)2 = A
(9) 2/2-(a;-a)2 = 0. (10) (x- a)2+ (y- 6)2 =0.

(11) (x - a)2 - (// - 6)2 = 0. (12) x3-x2y + xy2_y2 = o.

(13) /) = asec (^-a).
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2. Find the equations of the lines which bisect the opposite sides of the

quadrilateral (3, 4), (5, 1), (- 3, 4), and (5, - 1).

^ 3. Find the equations of the lines which go through the origin and trisect

that portion of the line Sx — 2y = IS which is intercepted between the axes.

4. Find the equation of the line through (a, b) parallel to the line joining

(0, -a) and (fc, 0).

5. Find the equations of the lines which pass through (—2, 1) and cut off

equal lengths from the axes.

^ 6. Show that the three lines 2x — y = 4:, x-{-2y = 7, and Sx + y = 11 meet

in a point,

7. Show that the three points (1, 3), (—1, 4), and (9, — 1) are on a straight

line ; also (3 a, 0), (0, 3 6), and (a, 2 b).

/ 8. For what value of m will the line y = mx — 4 pass through (4, 2) ? be 2

units distant from the origin ?

9. A line is 3 units distant from and makes an angle of 60° with OX.
What is its polar equation ? its rectangular equation ?

10. Find the locus of all points which are equidistant from the two lines

Sx-2y = S and Sx-2y + 2 = 0.

}/ 11. What is the distance between the parallel lines

3 X + 4 ?/ = 5 and 6x-\-Sy-\-lb = 0?

12. Find the points on the axes which are 4 units from the line

x-7y-h21=0.
^ 13. Show that the perpendiculars let fall from any point of 22x — 4y = 15

upon the lines 24:X-\-T y = 20 and 4x — Sy = 2 are equal. Find another line

of which this statement is true.

14. Find the perpendicular distance of the point (I, m) from the line through

(a, b) perpendicular iolx-{- my = \.

* 16. Show that the bisectors of the interior angles of a triangle meet in a

point.

16. Find the locus of a point which is equally distant from the lines

5 aj - 3 ?/ = 15 and Zy = 5x^Q.
» 17. Show, by the use of (1), § 42, or by transforming (3), § 43, that the polar

equation of a line passing through the fixed point (pi, ^i) may be written

p cos {d — a) = p\ cos (^1 — a).

18. Show, directly from a figure, or by transforming (3), § 44, that the

polar equation of the straight line which passes through the two fixed points

Cpi, ^i) and (/02, ^2) is

pipo sin (02 — 61) + P2P sin (d — 62) + ppi sin (^1 — 6) =0,
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^ 19. Show that the equations
n

^ COS ^ + -B sin + - = 0, ^ cot ^ = IT, V
P

p = kaec{d — a), p = icsc (^- /3),

represent straight lines.

20. Show that the equations of the lines passing through (—3, 2) and

inclined at an angle of 60° to the line VSy — x = 'S are

ic + 3 = and VSy + x + 3 = 2 V3.

/ 21. Find the equations of the sides of a square of which the points (2, 2)

and (—2, 1) are opposite vertices.

22. What are the equations of the sides of a rhombus if two opposite vertices

are at the points (— 1, 3) and (5, — 3), and the interior angles at these vertices

/e each 60° ?

23. Prove that the equation of the straight line which passes through the point

(a cos^ 6, a sin^ d) and is perpendicular to the straight line x sec 6 -{- y esc ^ = a is

X cos 6 — y sin 6 = a cos 2 0.

24. Show that the equations of the lines passing through the point (4, 4)

and whose distance from the origin is 2 are x{l ± y/1) + 1/(1 T V^) = ^'

25. Find the area of the triangle formed by the lines

y + 3a; = 6, y = 2a:-4, ?/ = 4x + 3.

26. Show that the area of the triangle formed by the linea

y = m\X + 6i, y = m^x + 62, and « = 0,

is
1 (&1 - &2)^

2 m\ — m2

27. Show that the area of the triangle formed by the lines

y = mix + 61, y = m^x + ^2, and y — mspc -f 63

is
1 r(ft.-W + (6.-W' + (fes-ft.)']

.

(Use Ex. 26.)
2 L wii — m2 m2 — ms ma — mi J

28. What is the equation of a line passing through the intersection of

3a; — 2?/ + 12 = and x + 4 y = 20, and (a) equally inclined to the axes ?

(6) whose slope is — 2 ?

29. The distance of a line from the origin is 6, and it passes through the

intersection of 2x + Sy = 6 and 3a; — 6y + 29 = 0. Find its equation.

30. Find the equations of the two lines which pass through the intersection

of a; + 2 y = and 2x — y + S = 0, and touch the circle

x2 + yi = 9.
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31. Find the equations of the two lines which pass through the intersection

of x + Sy + 9 = and 3 x = ?/ + 13, and touch the circle

(x + 2)2 +(y- 3)2 = 25.

32. Find the equations of the diagonals of the rectangle whose sides are

x-\-2y = 10, x + 2y + 2 = 0, 2x- y = 12, and 2x — y = lQ, without finding

the coordinates of its vertices.

33. A circle passes through the common points of

a;2 + 2/2 _ 25 and a; - 4 y + 13 = 0,

and cuts the avaxis in two coincident points. Find its equation.

34. Show that the locus of a point which moves so that the sum of its dis-

tances from the two lines

X cos a -{- ysin a=p and x cos cc' + y sin a' = p'

is constant and equal to K is the straight line

2 X cos ^ (a + a') +2y sin H« + a') = (p -\- p' -\- K) sec \ (a - a').

Show that the locus is parallel to one of the bisectors of the angles formed by

the two given lines.

Show also that if the difference of the distances from the two given lines is

constant, the locus is a straight line parallel to the other bisector.

35. If p and p' be the perpendiculars from the origin upon the straight lines

whose equations are

X sec 6 -\- y esc = a and x cos 6 — y sind = a cos 2 0,

prove that 4p^ + p'^ = a\

36. Show that the equation of the line passing through the points (a cos a,

6sin«) and (acosjS, 6sin)3) is

bx cos ^ (a + ^) +ay sin ^ (a + j3) = a& cos ^ (a — p).

37. Show that the equation of the line which passes through the points

(a sec a, b tan a) and (a sec /3, b tan /3) is

bx cos I (a — /3) —ay sin ^ (a + j3) = a& cos | (« + /3).

38. Show that the three straight lines

aix + biy + ci = 0, azx + b2y + C2 = 0, a^x -\- bsy + cs =
will meet in a point if

ai, &i, Ci

a2, 62, C2 = 0.

39. Find the determinant expressions for the coordinates of the vertices,

and for the area of the triangle formed by the three lines in Ex. 38, and show

that the determinant there given is a square factor of the determinant expression

for the area of the triangle.
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CHAPTER IV

TRANSFORMATION OF COORDINATES, OR CHANGE OF AXES

52. The formulae for changing an equation from rectangular to

polar coordinates and vice versa have already been found in § 6, and

their usefulness amply illustrated. Moreover, the equation of a

curve in any system of coordinates is sometimes greatly simplified

by referring it to a new set of axes of the same system. Hence, it is

also desirable to be able to deduce from the equation of a curve

referred to one set of axes its equation referred to another set of

axes of the same system. Either of these operations is known as a

Transformation of Coordinates, or Change of Axes.

The equations, which express the relations between the two sets

of coordinates of the same point, and by means of which these opera-

tions are performed, are called Formulae of Transformation.

53. To move the origin to the point (7i, k) without changing the direc-

tion of the axes.

Let OX and F be any pair of axes inclined at an angle w, and

let O'X' and O'Y' be a new pair parallel respectively to the old.

Let/ P be any point whose coordinates are (x, y) with respect to the

original axes, and (x\ y') with

respect to the new axes.

Then from the figure,

OQ=ON-^NQ,

and QP=QE-^EP.

But OQ=x, NQ=x', ON=^h,

QP=y, RP=y', QR^k.

.'. oc = gc' -\-h9

y = y'^k.
(1)
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As these equations are independent of w, they hold for both rec-

tangular and oblique coordinates.

Hence to find what a given equation becomes when the origin is

moved to the point (h, k), the new axes being parallel to the old,

substitute x' + h for x and y' -\-k for y. After the substitution is

made we can write x and y instead of x' and y' ; so that practically

this transformation is effected by simply writing x-{-h in the place

of X, and y -{-k in the place of y.

54. To transform from one set of rectangular axes to another, having

the same origin.

Let {x, y) be the coordinates of any point P referred to the old

axes OX and OF; and {x\ y') the coordinates of the same jDoint

referred to the new axes OX' and OY'. Let the angle XOX ' = 0.

Draw the ordinates MP and J^P, and the lines QJ^ and BN par-

allel to OX and OY respectively.

Then Z NPQ = 6,

OM=x, MP^y,
ON=x', NP=7j\

OR=ONGose = x'eose,

BN= ONsin e = x' sine,

QN= NP sine = y' sinOj

QP= NP cos e=y' cos 9.

But OM=OR-QN,
and MP = EN-j- QP.

Therefore

and

a? = a5'cos6 - 2/'sm0,

1

2/ = iK' sin 6 + y' cos B.
j

(1)

If at the same time the origin he changed to the ptoint (h, k), the re-

quired formulm will he

a? = a?' cos 6 - y' sin 6 + ^,

2/ =: a?' sin e + y' cos + Tc,]
(2)

This transformation is clearly obtained by combining the two

formulae (1) and (1) of § 53.
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EXAMPLES

Transform to parallel axes through the point (3, — 2)

1. 2/2_4a; +4y + 16 = 0. 2. 2x^ + 3y^ - 12 x + 12y + 29 = 0.

What are the equations of the following loci when referred to parallel axes

through the point (a, 6) ?

3. (x - a)2 + (y - 6)2 =z r^. 4. xy - bx - ay -\- ah = a^.

6. 1/2 _ 2 6y + 4 ax = 4 a2 _ 62. e. x^ - y2 _ 2 ax + 2 62/ = 6^ - a^.

7. 62(aj2 _ 2 ax) + a2(?/2 _ 2 &«/) + a2&2 = 0.

Transform by turning rectangular axes through an angle of 45°.

8. x2 - 2/2 = flj2. 9. 3x2 - 2 xy + 3 2/2 = 32. (10. p. 45.)

10. 2(y + x) = (y- x)K 11. ax2 + 2 tey + ay^ = 1.

12. x^ + 2/^ = ai 13. (x^ + y'^y = 4a^xY-

In 13 change the given equation and the result to polar coordinates.

yl!l4. Transform - 4- ^ = 1 by turning the axes through tan-i^ *

a b b

"f- 15. What does 2x2 — 3x2/ — 2^/2 — 50^2 become when the axes are turned

through tan-i — 2 ?

16. If the axes be turned through an angle of 30°, what does the equation

9x2 - 2 V^xy + 112/2 = 4 become ?

/ 17. Show that the equation 2x2 4-x2/ — 2/^ + 5x — 2/ + 2 = can be reduced

to 2 x2 4- xy — y^ = 0, by transforming to parallel axes through a properly chosen

point.

Through what angle must the axes be turned to cause the term in xy to disap-

pear from the following equations ?

18. x2-6xy + y2 = i6. 19. 8x2 + 4xy + 5y2 = 36.

20. (4 2/ - 3 x)2 - 20 X + 110 2/ = 75. 21. ax2 -{.2hxy + by^ = c.

22. Show that the transformation a: = ^, 2/ = x simply changes the scale of

the curve, k being the factor of magnification.

28. Compare the curves y = sin x and 2/ = i sin 2 x.

24. Show that the curve y = sin2 x differs only in position and size from

y = sin X.



CHAPTER V

SLOPE, TANGENTS, AND NORMALS

55. It sometimes happens, that the substitution of a particular

value for the variable in a fraction causes both numerator and de-

nominator to vanish, and the fraction takes the form ^.

Thus, z — becomes j- when x = ^.
-

. 1 — CSC a; 2

The fraction is then said to be indeterminate ; that is, the fraction

has no value, or meaning, for this particular value of the variable.

Such a fraction, however, usually approaches a defiyiite limit as the

variable approaches this particular value as its limit. This limit is

the value we then assign to the fraction, because it fits in continu-

ously with the other values of the fraction. This definite limit can

be found by reducing the given fraction to an equivalent one whose

terms do not both vanish when the particular value is substituted

for the variable.

In all the investigations which follow in this chapter it will be

found to be necessary to determine the limit which a ratio approaches

when its terms both approach zero. Hence the student should now

fix in mind the following definition, viz .

:

A constant is called the limit of a variable if the difference between

the constant and the variable can be made to become and remain as

small as ive please.

56. Examples of limiting values of ratios.

(1) Let Khe the area of a square whose side is x.

Then rlil^L^l = 5. But ^'^^ ^ = i^"^. ^ = Jl% (x) = 0.

* The sign " = " in these conditions for a limit should be read " approaches."

70



56] SLOPE, TANGENTS, AND NORMALS 71

(2) Let K be the area of a rectangle with a constant base h and a variab)e

altitude x.

Then pill^l =5. But ^^!" :^=1'[^^=:6.
LliraxJ;,^o ^=^ X ^=^ X

(3) Let V be the volume, T the total surface, C the circumference of the

base of a right circular cylinder whose altitude is constant and radius variable.

Then r^^^^l =^' \^^^^JL^ =2.
LlimCJr=o LlimFJr=o

, lim T _ lim 2 7rr(r + h) lim 2 (r + /i) 2 /i

If S be the convex surface, find ^!^^ —

•

Llim (x2 - a-2) J^^« 0'

lim (x — a)2 _ lim a; — « _a
^-(^x'-a^~^ = o,x + a~ '

Multiplying both numerator and denominator by 1 + y/l — x^ gives

lim 1 - Vl - a;-' _ lim x^ lim 1 _1
x = ^2 -x = 0^,^^_^^.^--^^-x = 0Y:^-/==-1'

EXAMPLES

Find the limits indicated in the following expressions :

- lim x^-gg „ lim x^ - a^ , lim (x-a)
x = ay^2_a^ x = ay;2_a2 ' x-ax^-ax'^-a'^x+ a^

^ lim 3 a;2 - 6 a; + 3 _ lim x'^ lim 2 x^^ + a; - 1

• x = l2x2-4x + 2'
' ^-^a-VS^^T^^' **• x = co x^^x + 2'

lim V4+X-V4-X lim / , , , 9 Hm sin^.j

,Q lim sec x _ . ,, lim 1 — cos x _ 1 -g li"i tan x — sin x _/^
' x-^^°t'dnx~ ' ' x = sin2x ~2* * x = i_cosx ~ '

,0 lim sinx _ lim tanx _ -, ^m lim sec x — 1 _ 1
***• X =

a;
~ X = y, ~ •

^*' X =
a;2

~ 2*

16. If V be the volume, T the total surface, ^S* the convex surface, C the

circumference of the base of a cone of revolution whose altitude h is constant,

oi,«™ *u»* lim T h lim T lim T . lim T «show that .^_ = -, .^— = Go, .^ — =1, . — = 2.
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57. Definitions. Let two points P and Q be taken on any
curve PQMf and let the point Q move along the curve nearer and

nearer to P; the limiting position, TT',

of the secant PQ when the point Q ap-

proaches indefinitely near to P is called

the Tangent to the curve at the point P.

The straight line PN through the point

P, perpendicular to the tangent TT', is

called the Normal to the curve at the

point P.

The Slope, or Gradient, of a curve at any
point is the slope of the straight line tangent to the curve at that

point.

58. Tofind the slope of a curve at any point*

Y

Let P(x,y) and Q(x + Sx, y -h ^y) be two points close together

on any curve AB ; then 8x is the difference of the abscissas, Sy the

difference of the ordinates of P and Q.

Let the secant PQ meet the ic-axis in S, and let the tangent line

at P meet the a>axis in T.

Draw the ordinates MP, NQ, and draw PR parallel to the a;-axis.

Then PR = hx, RQ = Sy.

Let the equation of the curve be

y^m- (1)

Bead Ex. 1, § 59, in connection with this general demonstration.
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Then at the points P and Q we have

OM=x, MF= y=f(x),

ON=x + ^, NQ = y + 8y=f(x-\-8x).

.'.8y=:f(x + Sx)-f(x). _ _

Also tan XSQ = tan RPQ =^ =^

.

PR &c

.•.tanX^Q= |^==£(^±MziiM. (2)
oX ox

The slope of the tangent TP, which is the slope of the curve at

the point P, is the ultimate slope of the secant SPQ when the point

Q moves along the curve close up to P; i.e.

tan XTP= lim tan XSQ = lim -^ as Q approaches P.
ox

When the point Q approaches the position of P as a limit, the dif-

ferences Bx and 8y simultaneously approach zero as a limit, and the

limiting value of the ratio -^ is denoted by -^
; therefore in the limit

ox ax
we have

The ratio represented by the last member of equation (3) is also

a function of x ; and if, x being regarded as fixed, this ratio has a

definite limiting value as Sx approaches zero, this limiting value is

called the Derived Function, or the Derivative of f(x) with respect to

X, and will be denoted hy f'(x), or i)x[/(^)] >

i.e. if V=f{ic), then ^| =f\x) = I)^if{x)^.

Hence to find the slope at any point of a curve whose equation is

in the form y =f(x) we find/'(x), the derivative oi f(x) with respect

to Xf and in this substitute the abscissa of the given point.

To find the derivative of a function of a;, denoted by /(»), we
assign a small increment Sx to ic, producing an increment, denoted

by f(x -{- 8x) —/(«), in the function, and then find the limiting value

of the ratio

Sx
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59. Examples of derivatives and slope of curves.

Ex. 1. Find the slope of the curve whose equation is

y z=x'^ -\- a. (1)

Let P{x, y) and Q{x + 5a;, y + 8y) be any

two points close together on the curve ; and

let TP be the tangent at P.

Then at P, y = x^ -\- a, (2)

and at §, y -\- Sy = (x + Sxy + a. (3)

Whence

(y + 5y)-y ^ (x-j- 8xy + a - (a;^ + a)

5x 5x
= tan EPQ. (4)

.:^ = 2x-{-8x = tan XSQ. (5)
dx

When Q approaches P, or as we say, pro-

ceeding to the limit 5x = 0, we have (§ 58)

dy ^
doc

J? X = tan XTP, (6)

Hence the slope of the curve at any point is equal to twice the abscissa of the

point.

At Po, x = Q.

.'. PqTq is parallel to the x-axis.

At Pi, x = l,

.-. tan XTiPi = 1.

At Pa, x = l

.: tan XP2P2 = 3.

At P3, X = —
^,

.-. tan XT3P3 = - 1.

Ex. 2. Let the equation of the (jiven curve he y

In this example we have given /(cc) = x5. Then from the definition of the

derivative given in equation (3) of § 58, we have,

fir^\- ^i^" /(x + 8x)-f(x) _ lim (x + 8xy — x^
J '-''>- 8x = ^ -Sx = sx

= 3^*2 (^ ** + 10 xHx + 10 xHx"^ + 5 x8x^ + 8x^) = 5 a*.

That is, the slope of this curve at any point (x, y) on the curve is equal to

five times the fourth power of the abscissa of the point.
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Ex. 3. Find the slope of the curve y = —
^

1We now have from the definition of a derivative, since f(x) =-,
z

1 1

dy _ lim x -\- bx

dx~
"
lim

5a; =

lim

a; + 5a; x

8x

-1

lim
= 5x =

1

a; - (a; + 5a;)

' x(x + 5a;)5x

5a; = a;(a; + 5x)

That is, the slope is always negative and varies inversely as the square of

the abscissa of the point.

Ex. 4. Let y = Vx be the given curve.

Then, since f(x) = Vx, we have from the definition

dy _ lim f(x + 5x) - /(x) _ lim y/x + 5x — Vx
^^~5x =

5a. -5x = 5a;
'

lim 1 ^1
^^-^v^T5x + VS 2V^

Ex. 5. To find the derivatives of sin x and cos x. *

Let 5x = h, for convenience, then will

i>,(sin X) = /f(J

sin(x +
^)

.,-sinx ^ ^iim^ r ^ / ^ |\ sii^i^j

i.e. Da.(sina?) =cosa5; (Ex. 13, p. 71.)

D.(cos x) = j^%
co8(x + A)-cosx ^ Mm

^ ^_
^.^ / ^ |\

sin|^j

1. e. I>x (cos x) = — sin x.

Check the results found in Exs. 2, 3, 4, and 5 by constructing the loci.

EXAMPLES

Find the slope at the points where x = 0, ± 1, ±2, etc., of the curves whose

equations are .

/ 1. y = x\ * 2. y = x4. 3. x^ = 1. 4. y^ = x^

^'b. y = x8-4x. / 6. y = x*-20x2 + 64. ^7. y = (^~p .

X — £i

8. Find the slope ot y = Va^ + x-^, where x = 0, ± a, oo .

9. Find the slope oi y = Vd^ — x^, where x = 0, ± a, ± la.

10. Find the slope of 10 ?/ = x2 - 3 x - 20, where x = 0, ± 1, ± 4. [§ 22.]

V
y^
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General FoRMULiE for Differentiation

60. Tlie derivative of the product, and sum, of two functions.

Let ff>{x) and F{x) be any two functions of x. Then (§ 58)

ox

Introducing <\>{x+ 8x)F(x) — <fi(x + 8x)F(x) in the numerator gives

D^[<t>{x)F{x)2 =

i.e. I>«,[<t»(a5)l^(a5)] = ^ix)F'(ix) + F(x)^>(ie). [(3), § 58.] (3)

By an extension of this process it can be shown that

I>x[«|>i(a5)<|>2(a5)<|>3(a5) ...] = <t>i'(a5)<|>2(a5)<|)3(cc) ... + 4>2'(iK)<|>i(a5)«|>3(a?) ...

+ <l>3'(a?)<|>i(a5)«|>2(a5) ... + .... (4)

Or, as a special case of (4), we have, if n is a positive integer,

ALX«)]" = D,[<li(x)<l>(x)(fi(x) -'ton factors] (5)

= [<A(^)]""V(a^) + [</>(aj)]""V(^) + ••• to n terms] (6)

E.g. i>x(sin x)^ = S (sin xyD^isin x) =3 sin^ x cos a;. [Ex. 5, p. 75.]

One of the most important results that follows from (7) is

I>a,(cc") = nx^-^. (8)

In like manner it can easily be shown that

I>a.[cf(x)'\ = cf'(x}, where c is a constant, (9)

and I>a5[<t>i(a5) + <|>2(a5) + <|>3(a5)+ ...] =«|>i'(a?)+ <t)2'(a?) + <l>3'(ic)+.— (10)

Hence, if f(x) is a rational and integral algebraic function of x

(§ 63), f'(x) is found by midtiplying the coefficient of each term by the

exponent of x in that term and diminishing each exponent by unity.

E.g. D^[x* - 2 x3 + 4 x2 - 3 cc + 6] = 4 ^3 - 6x2 + 8 X - 3.
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61. To find the derivative of a function of the type F(x, y) = 0.

When we desire to differentiate a function of the type F(Xj y) = 0,

we may try first to solve the equation with respect to ?/, so as to put

it in the form y = f(x) ; or to solve with respect to x, so as to bring

it to the form x=f{y). It is useful, however, to have a rule to meet

cases when this process would be inconvenient or impracticable. It

will be sufficient for the purpose of this book to illustrate the rule

by considering the general equation of the second degree (§ 87).

Let F{x, y) = ax' + 2 hxy + hy^ + 2 gx-it-2 fy + c = 0. (1)

Let P{x, ?/) and Q{x-{-hx, y-{-hi) be two points close together

on the locus of (1) ; then at P and Q, respectively,

ax^-\-2hxy + hy^-\-2gx-{-2fy-\-c = 0, (2)

a{x + hxY + 2 h(x + 8x) (y + 8y) + b(y + Syf
-^2g{x-\-dx)-^2f(y-{.Sy)+c = 0. (3)

Subtracting (2) from (3) gives

a(2 xBx + Sx2) + 2 h(ySx + xSy + SxSy)

+ 6(2 ySy + Bf) + 2 g8x-{-2 fhy = 0. (4)

Whence ^^ - - ^ aa^ + 2 % + 2^ + a3a^ + /%wnence ^^- 2 hx + 2 by-\-2f+b8y -hhSx ^^A

In the limit when &c and Sy approach zero, we have

dy__ ax^^hy + g ,„.

dic~ hic + hy+f' ^^^

Now apply to (1) the rule deduced in § 60 and differentiate first

with respect to x regarding y as constant; then differentiate with

respect to y regarding x as constant. Denoting these partial deriva-

tives respectively by FJ(xy y) and FJix, y), we thus obtain

FJ(x, y)=2{ax + hy + g), (7)

and FJ{x, y) = 2 (hx + by +.0- (8)

, dy_ _ F^'Juo^ V ) ^ _ ax-{ hy + g .g.
* dx~ Fy'ix, y) hx + by^f' ^ ^

It can be proved that this formula (9) expresses the rule for differ-

entiating any function of the type F{Xy y) = 0.



78 SLOPE, TANGENTS, AND NORMALS [62

Tangents and Normals

62. To find the equations of the tangent, and the normal at any

point (x', y') of a curve.

dv'
For the tangent, m = /-,. (§ 58.)

aoc

dx'
For the normal, m = — t-,- (§ 57 and § 45.)

dy'
The primes in ~-^ denote that the coordinates x', y' of the point

of contact are to be substituted in the derivative of the equation.

Since both lines pass through the point (x', y'), the equation

of the tangent is (§ 46)

y-y'=^,(^-^')', (1)

and the equation of the normal is

V-y' = -^, {oc-oc'). (2)

CoR. If the axes are oblique,

dy sin -y zo ^a \

doc sm C« - 7)
^' ^

Hence equation (1) holds also for oblique axes.*

EXAMPLES ON CHAPTER V

Find the equations of the tangent and the normal to the curve.

1. x2 + ?/2 Z3 25 at (3, 4). 2. x2 + ?/2 = 169 at (- 12, 5).

3. ?/2 = 8xat(2, 4), (8, 8). 4. 6 ?/ + a;2 = 0, at (6, -6).

5. y = x^-A:X2X (2, 0), (- 1, 3). 6. y^ = a;2, at (- 8, 4).

7. x2 + ?/2 — 4 aj + 6 y = at the points where x = 0.

8. x2 + 1/2 + 4 X — 6 y = 12 at the points where x = 2, x = — 6.

9. x2 4- ^/2 — 8 X — 4 ?/ + 15 = at the points where x = 3, x = 5.

10. x2 + ?/2 _ 16 X - 8 2/ 4- 55 = at the points where x = 3, x = 5.

* The theory of this chapter proves what has hitherto been assumed (see note on
logic of plotting, § 21), viz., that loci of equations are usually smooth curves without

sudden changes in slope or curvature. For, since the slope of a curve f{x, ?/) = at

any point (x, y) is a function of x and y, a small change in x and y will ordinarily

produce only a small change in the slope.
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Ans.
x' yi

Ans.
y' X' •

Ans.
3x y ^1
2x' 2y'

Ans.
3 X 2y ,

x' 2/'

Ans. ^ + 2^=1.
2x' 2y>

Ans. xx' + 2/2/' = 1.
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Find the equation of the tangent to each of the following curves at the

point (x', y')

:

11. y = x^.

^ 12. 2/2 = X.

13. y = x^.

^^ > 14. y^ = xK

15. xy = l.

^ 16. x2 + 2/2 = 1.

17. x2- 2/2 = 1.

^ 18. x^ + y^ = 1. ^ws. xx'2 + yy'2 = 1.

19. -, + ^ = 1. 20. x« + r = l-

\ii!}' 21. What are the equations of the tangents to 16, 17, 18, 20 at the point

(1, 0) ; and to 16, 18, 20 at the point (0, 1) ?

Find the equation of the tangent to

' 22. y^ = ix-S x2, at the point (1, 1).

23. 10 2/ = (x + 1)2 at the point where a; = 9. (Ex. 11, p. 27.)

24. 4 (x + l) = (y- 2)2 at the point where x = 3. (Ex. 11, p. 27.)

25. (x - 8)2 + (2/ - 2)2 = 25 at the points where x = 4.

26. x(x2 4- 2/2) = a(ic2 — y^) at the point where x = 0, and ± a.

27. Find the equation of the tangent to [-] 4-(-) =2, and show that at

the point (a, b) it is the same for all values of n.

Cf^'^-JS. Show that the curve a;* + 2/^ = a^ becomes steeper as it approaches the

2/-axis, and is tangent to the axes at the points (± a, 0) and (0, ± a).

29. Let y=f{x) and y = F(x) be two curves intersecting in the point

(xi, 2/1) » ^^^ l6t be the angle at which they intersect. Show that

tan0= /^CxO-F^(xO,
l+/'(Xi).i^'(Xi)

What is the condition that the two curves shall meet at right angles? be

tangent to each other ?

[The angle at which two curves intersect is the angle between their tangents

at the point of intersection of the curves.]
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30. Find the angle of intersection between the parabolas

y'^ = iax and x^ = 4 ay.

31. Show that the confocal parabolas

y^ = 4 a{x -h a) and ^2 _ _ 4 ^(^ — b)

intersect at right angles.

32. At what angle do the rectangular hyperbolas

y.^ _ yi — gp. aj^(j xy = b

intersect ? Draw several sets of these curves by assigning different values to

a and b.

33. Find the angle at which the circle x^ + y^ + 2x = 12 intersects the parab-

ola y^ = 9x.

^ 34. Find the angle of intersection between x^ -\- y^ = 25 and 4 ?/2 = 9 x.

>^ 35. Find the equations of the tangent and the normal to the parabola y^ = 'ix

at the point (4, 4).

Also find the angle at which the normal meets the curve at its other point of

intersection with the curve.

36. Find the derivative of the quotient of two functions.

f(x)Xet y = -'^ ^
, and write h in the place of 5x. (1)

(p(x)

Then ^ = /"i /r/(^±^_/Ml^a. (2)
dx h = ^\l<p(x-]-h) 0(x)J i

^^

^ lim r<f>(x)f(x + h) -/(x)0(x + h) l ,3^

^-OL h(f>(x)(/>{x + h) J

Introducing <f)(x)f(x) — <t>{x)f{x) in the numerator gives

[x + h)- <f>(x)

d^ h — ]dx A • (4)

<p{x)(p(x + h)

*L<|.(a?)J [<|>(ic)]2

Find the derivatives of the following functions

:

o- ^ - «
Ans. _2A_. 38. ^^ + ^. Ans. " ^

x + a (x + a)2 x + l (x + 1)2

39. '-±^. 40. -^ ^. ^ns. /^

^j a-2bx ^2 __^!L_.
(a - &x)2 (1 -I- x)«
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43. Show that formula (7), § 60, holds (a) when n is a negative integer, and

(6) when « is a rational fraction.

[To prove (a) use the formula in Ex. 36 ; for (6) use (9), § 61.]

^ 48. Show that I>a.(taii a?) = sec^ a?.

Let tf = tan a; = ^^^. Then from (5), Ex. 36, we get
cosx

dy _ cos a; • Z>x(sin x) — sin x • Z)a;(cos x)

dx cos2 JC

But Z>a;(sin x) = cos x, and i)x(cos x) = — sin x. [Ex. 5, p. 75.]

. dy cos2 X + sin2 x 1

dx cos2 X

Prove the following formulae

:

= sec2 X.

f- 49. l>a.(cot 05)= -csc^o?. ^ 60. I>a,(sec ») = scc'a? tan a?.

sj^ 51. l>a. (CSC a?) = — CSC a; cot x, ^ 52. Z>a.(sin oc cos a?) = cos 2 x.

Find the derivatives of the following functions :

/ 63. cos^ X. 54. sin X — 4 sin^ x. Ans. cos^ x.

65. tanx-x. se. 3tanx + tan3x.

67. X sin X + cos x.
53^ ^^^3 ^ _ 3 ^os x. Ans. 3 sin-3 x.

60. (rtx2 -}- 6)3. ^ws. 6 ax{ax'^ + &)2.
59. sec* X — tan2 x.

61. (x2 + a)(x2 + 6)

63.
^2_^2 62. (a4-x3)(6 + 3x2).

a^ + a:2* 64. tan2x ^ ^ ^"^^^"^^•- ^ns. 2sec22x.

66. (« + x)V^^. l-2sin2x

^ .
g

66. cot2x = Kcotx-tanx). Ans. -2csc-2x.

a-
68. (2x3+3)2(1-3x2)3.

Vl4-x2 70. sec x + cosx.
'0S2 X

X3
*^^'

(1 + jca)2

*

72. 2 X sin x + (2 - x2) cos x. ^ws. x2 s. x.

73 2 x2 — 1 sin" .X COS"* X

xv'l + x2
* cos'"x sin^x
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CHAPTER VI

THEORY OF EQUATIONS, QUADRATURE, AND MAXIMA
AND MINIMA

W\,\ THEORY OF EQUATIONS

>J 63. An expression of the form

aa;" + &aj"-i 4-ca;'^-2 _| y-kx-^-l, (1)

where n is a finite positive integer and the coefficients a, 6, c, • • • A:, I

do not contain x^ is called a Rational and Integral Algebraic Function

of X of the nth degree ; and

ax"" + 6a;"-^+ ca;"-2 H \-'kx-\-l = ^ (2)

is called the General Equation of the nth degree. This is the kind of

equation we shall consider in this section.

If we divide the left side of equation (2) by a, the coefficient of

a;", we shall obtain the genefal equation of the nth degree in the

standard form,

X- -\-p,x^-' -{-p^^-' + ... +p^_^x +p^ = 0, (3)

where Pi, P2, " • Pn-i^ Pn do not contain x, but are otherwise unre-

stricted. As will be seen hereafter, some of the properties of

equations can be stated more concisely when the equation is in the

standard form.

In this section the symbols /(ic), /i(a;), (l){x), <f)i(x), etc., will be used

to denote rational integral functions of x, such as (1) and (3).

Any quantity which substituted for x in f(x) makes f{x) vanish is

call . a Root of f(x) ; or a Root of the Equation f(x) = 0.

xf we put y=f(x) and plot the locus of this equation, we shall

obtain a curve which is called the Graph of f{x). The real roots of

fix) are, therefore, the x intercepts of its graph.
^~ ^

64. A rational integral function ofx is continuous, and finite for ayiy

finite value ofx.
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Let f{x) = p^-+piaj"-i+p2»«-2+ ... +p„_ia;+/)„. (1)

Then each term will be finite, provided x is finite ; and therefore,

as the number of terms is finite, the sum of them all, that is/(ic),

will be finite for any finite value of x.

Now suppose X receives a small increment ^, producing in f{x) the

increment f{x -\- li) —f{x) ; then

+ "'+Pn-i[.{x-\-li)-x-\. (2)

Each of the terms in the right member of (2) will become indefi-

nitely small when h is indefinitely small ; hence their sum will

become indefinitely small. Therefore f(x -f h) —f(x) can be made
as small as we please by making h sufficiently small. This shows that

as X changes from any value a to another value b, f(x) will change

gradually and without interruption, i.e. without any sudden jump,

from f(a) to f(b) ; so that f(x) must pass at least once through every

value intermediate to /(a) and /(&). That is, f(x) is a continuous

function:

Hence the graph of f(x) is a continuous curve with finite ordinates

for finite values of x.

65. To calculate the numerical valv^ off(a).

Let f{x) =p^ -\-p^x^ ^-p>pi 4-^3- (1)

Then we wish to calculate the numerical value of

/(a) =po«' +p^a^ -\-p2a +ps. (2)

This result is most easily obtained as follows

:

Multiply Pq by a and add to pi, this gives poa -{-pi ;

Multiply this by a and add to j72, this gives Pffi^ -\-p^a -\- P2',

Multiply this by a and add topg, this gives Poa^ +i>ia^ +i?2« +pt'

The process may be arranged in the following way

:

Po Pi P2 Ps

Po« Poa^-\-Pia poa^+pia^+p^
Po i>oa+i>i Poa^-hl)ia-\-p2 Poa^ + Pia^ +p^a -\- ps.
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We may proceed in the same way, whatever the degree of /(x).

Ex. Find the numerical value of /(3) if

/(a;) =2 X*- 7x3 + 13 a^ _ 16.

2 -7 13 -16
6 -3 -9 12

V -1 -3 4 -4

•• /('^) = -4.

is process is called Synthetic 1Substitution.

66. To find the remainder and the quotient when f(x) is divided by

X — a, where a is any constant.

Divide /(a?) by a; — a until the remainder no longer contains x.

Let fj>{x) denote the quotient and R the remainder. We then have

the identical equation

f{x) = <ly{x){x-a)-\-R, (1)

which must be satisfied when any value whatever is substituted for

X. Let ic = a, then

f{a) = ^(a){a-a)+It = It; (2)

for (ji (a) (a — a)= 0, since by § 64 <^ (a) is finite. That is, the

remainder is equal to the result obtained by substituting a for x

in the given function.

CoR. If 3. is a root off(x), thenf(x) is divisible by x — sl.

Conversely^ iff(x) is divisible by x — sl, then a is a root off{x).

For, if either f(a) = 0, or E = 0, in (2) the other is also equal to

zero, which proves the proposition.

Let f(x) = PqX^ -{-p^x^ +P2^ + jPs, for example.

By actual division we find

<f>(x) =P(fl^-h (poa -\-p;)x 4- (Poa^ +i>ia +P2),

and R = p^a^ -f- p^a"^ 4- p^ci + p^.

By comparing these expressions with the results found in § 65
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we see that R and the coefficients in <^(cc) are the same as the sums

obtained by synthetic substitution.

Ex. Find 0(x) and B when 3 x^ — 2 x* — 16 x^ - x + 7 is divided by (x + 2).

3 _2 -10 -1 +7 -^ _-6+100 0+2
3 -8 U -I +9

Thus 0(x) = 3 X* - 8 x3 - 1, and i? = 9.

. •. 3 x5 - 2 x* - 16 x3 - X + 7 = (x + 2) (3 x* - 8 x^ - 1) + 9.

This process can be applied to any function of any degree, and

is a particular case of Synthetic Division. (See Todhunter's

Algebra, Chap. LVIII.)

67. An equation of the nth degree has n roots, real or imaginary.

Let the equation be

fix) = a;" +piaj"-^ +^2^""^ + ••• + Pn = 0. (1)

Let «! be one root* of the equation /(ic) = 0, then/(.c) is divisible

by(a;-aO. (^66.)
.'. f{x) = {x-a,)f{x), (2)

where f{x) is an integral function of x of degree (w — 1).

In like manner if ag is a root of /i(a;), then

f{x) = {x-a,)f^{x\ (3)

where /2(a;) is an integral function of x of degree {n — 2).

Proceeding in this way we shall find n factors of the form

{x — a^), and we have finally,

f(x) = (qc— ay) ipc - at) (a? - as) ••• (» - a«) = 0. (4)

It is now clear that ai, as, otg . . . a„ are roots of the equation

f{x) =0; and as no other value of x will make fix) vanish, the

.equation can have no other roots.

The factors of /(ic) need not all be different from one another;

thus we may have

* We here assume the fundamental theorem that every equation has one root, real or

imaginary. Proofs of this theorem have been given by Argand, Cauchy, Clifford, and

others, but they are too difficult to be included in this book. The student, however, is

already familiar with the fact that every equation of the first degree has one root;

that every equation of the second degree has two roots, real or imaginary ; and it will

be shown in § 71 that every equation of an odd degree has oive real root.
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f(Qc) = (Qc-a\)p(pc-a2Yidc-azy-", " (5)

where p -\-q + r -\- • • • = 7i.

In this case f{x) has p roots each a^, q roots each ag, etc., the whole

number of roots being

p + q + r -\- ••• =n.

Therefore the graph of f{x) will cut the x'-axis in n points, which

may be real, coincident, or imagmary: and the real roots are its

i^ntercepts.

f ( Hence the real roots of a function may be found exactly or approxi-

mately by constructing its graph.

EXAMPLES

1. Divide 2 a;^ - 6 a:* - 5 ic2 + 10 x + 18 by x - 3.

Find the other roots of the following equations :

' 2. Two roots of x* - 12 x^ + 49 x2 - 78 x + 40 rr are 1 and 5.

3. One root of x^ - 16 x2 + 20 x + 112 = is - 2.

4. Two roots of x* + 8 x^ - 22 x2 - 16 x + 40 = are 2 and - 10.

5. Two roots of x* - 12 x^ + 48 x2 - 68 x + 15 = are 5 and 3.

6. Three roots of 6 x^ + 11 x* - 21 x^ + 7 x^ + 15 x - 18 =^ are ± 1 and - 3.

Find graphically the exact or approximate roots of

7. x3-2x2-llx+ 12 = 0.

8. x4 - 8 x3 + 14 x2 + 8 X - 15 = 0.

9. x* - 2 x3 - 13 x2 - 14 X + 24 r= 0.

10. x3 - 8 x2 - 28 X + 80 = 0.

11

.

6 x3 - 13 x2 - 21 X + 18 = 0.

12. 8x^-18 x2- 71 x + 60 = 0.

13. x*-6x3-5x2 + 56x-30 = 0.

Form the equations whose roots are

14. 1,3,-5. 15. -2, 3, -4, 6.

16. h -
I, f. 17. ± 1, ± 4.

18. 0, 1, -4, 5. 19. ± V2, ± V3.

20. 0, - 2, ± V^^. 21. 3, 5 ± V^-

22. 4 ±V3, - 1 ± v/6- 23. 1, - 2, 3, - 4, 5.

24. 0, 2 ± V^^, - 3 ± y/Q. 25. 0, 0, \, - f, 1 ± V2.

26. 1 ± V^=^, - 2 ± V^. 27. - 3, 2 ± V-Z, - 3 ± V^^.
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68. Relations betiveen the roots and the coefficients of an equation.

If there are two roots, a^ and ag, we have (§ 67)

x^-hPiX-\-p2 =(x- ai)(x — a^

= x^— (ai + a^^x + aya^. ~~ (1)

.-. «! 4- ttg = — pi, a^a^ =p2.

If there are three roots a^, a^^ and a^, we have

yf' + pior H- p^ +p^={x— ay){x — a^{x — a^)

= a^ — (tti + tta 4- ag)^.-^ 4- (aiCtg + «2 «3 + cisai)x — a^a^a.^. (2)

.-. Oi 4- ttg + ttg = — j9i, aia2 + «2«3 4- ^s*^! = i^2j «i«2a3 = — i>3-

In like manner if the equation is of the nth degree and therefore

has n roots a^, ag ••• a,. ••• a„, then

a;" 4-i)i^"-' +i>2^"-' 4- ••• H-p.a;''-'- 4- ••• +i)„

= {x — ay){x — as) ••• {x — a,) ••• (« — a„) (3)

= a;** - S,x^-^ 4- /Saa)"-^ + ( - 1)'->S'X"*"

±-+(-ir^n, (4)

where S,. is the sum of all the products of aj, a2, •" a^"- a^ taken

r together.

Equating the coefficients of the same powers of x on the two sides

of the identity (4) gives

Sl = -Pu S2-=P2, Sr=(-lVPr9

Sn = i- ^)^Pn = «l«2 ••• «r •.• «n.

//* Pn = 0, one rooi is zero ; if p^ = p„_i = 0, tivo roots are zero ; if

Pn = Pn-i = • • • Pn-r = 0, r + 1 roots are zero.

EXAMPLES

Find the other roots of the following equations

:

1. Two roots of a;3 + a;2 — 4 X — 4 =0 are 2 and — 1.

2. Two roots of a;^ _ 4 a;2 _ 3 a; + 12 = are 4 and ^3.

3. Two roots of ic^ - 13 a; + 12 = are 1 and 3.

4. Three roots of x* - 10 x* + 35 a;^ - 50 x 4 24 = are 1 , 2, and 3.

5. One root of x» - 6 a:^ ^ 12 x^ = is 3 - V - 3.

6. Two roots of 6 ar* - 7 a:^ _ 14 ^2 .{- 15 ^ = are 1 and f

.

7. Two roots of 4 xf^ - 5 x* + 2 x^ 4 6 x2 = are 1 ± V^HT
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69. Tlie first term of f(x) can he made to exceed the sum of all the

other terms by giving to x a value sufficiently great.

Let fix) = ii^x" +pi.c'*-^ +^2^*'"^ H VPn,

and let k be the greatest of the coefficients ; then

\i^

_ p^x'Xx - 1) p^\x - 1) ^ Po . . .

~ k{x''-l) -^ kx'' k^ ^'

Now %^(x — l) can be made as great as we please by sufficiently
k

increasing x, which gives the proposition.

70. An even number, or an odd number, of real roots of f(x) =
lie between a and b according as f(a) and f(b) have the same sign, or

opposite signs.

The two points A[a, /(a)] and B[b, /(6)] are on the same side, or

on opposite sides, of the a>axis according as /(a) and f(b) have the

same sign, or opposite signs.

Therefore, since the graph of f{x) is a continuous curve (§ 64), in

passing from ^ to B along the graph the ic-axis will be crossed an

even number, or an odd number, of times according as f(a) and f(b)

have the same sign, or opposite signs. This proves the proposition.

(An even number includes the case of ?io roots.)

E.g. If /(x) =x^-Zx + \, then/(I) = - 1 and/(2) = 3.

.-. At least one real root ofa;^ — 3x + l=:0 hes between 1 and 2.

71. An equation of an odd degree has at least one real root.

Let the given equation be

f{x)= x^--^^ +Pia^" 4-JP2aj'"-' + • • • +i^2n+i = 0.

Let a be a positive value of x sufficiently large to make the first

term of f{a) greater than the sum of all the other terms (§ 69).

Then the sign of f(a) will be the same as the sign of a-"+^, i.e. the

same as the sign of a.

Hence if a be sufficiently great, /(a) is positive, /(O) =_P2n+ij and

f( — a) is negative.

Therefore in all cases there is one real root, which is positive or

negative according as p2n+i is negative oi positive (§ 70).
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Hence the graph of a fiinctioii of an odd degree in the standard form

extends to infinity in the first and third quadrants.

72. An equation of an even degree in the standard form with the

last term negative has at least tivo real roots with opposite signs.

Let the given equation be
~

f(x) = x'- +i>iar'"-' +i>2a^-'"-' + ••• + P'm = 0.

If a is taken sufficiently great, f(a) will have the same sign as

a'^"(§ 69), which is positive for both positive and negative values

of a; that is, /(a) and/(— a) will both be positive, while /(O)= 2>2n;

which by hypothesis is negative. Therefore there is at least one real

root between and a, and another between and — a (§ 70).

Tlie graph of a function of an even degree in the standard form ex-

tends to infinity in the first and second quadrants.

73. To find approximately the real roots of f{x) = ().

Plot the graph of f{x) and thus find the pairs of numbers, usually

consecutive integers, between each of which one root lies.

Suppose /(a) = CA, a positive number ; and f{a + 1) = DB, a

negative number.

Then there is at least one real root (§ 70) between a and a -h 1.

Draw the chord AB cutting the a;-axis in E ; draw BF parallel to

the a?-axis meeting AC produced in F.
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Then, if there is only 07ie root between a and a + 1, it is approxi-

mately equal to OE ; if the graph were a straight line, it would be

exactly equal to OE.

Since the triangles ACE and AFB are similar, and FB = 1,

^^^ FB^CA ^ CA ^ f(a) .^.

FA CA + BD f(a) - f(a + 1)

If we use numerical values of f{d) and f(a -f 1), we shall then

have for all cases

OE = a + f~^^ *
(2)

Ex. Find the roots of x^ - 29 a; + 42 = 0.

Here / (4) = — 10 and / (5) = 22. Hence there is a root between 4 and 5.

Substituting in (2) gives OE = 4 +——— = 4.4 -.
" ^ ^ ^

10 + 22

Then /(4.4) = - .416 and /(4.5) = 2.625.

Hence the root lies between 4.4 and 4.5.

When the root is greater than OE, as in the diagram and also in this example,

it is better to try the figure next greater than that given by the quotient.

The next figure of the root may now be approximated in the same way.

Thus f(iA)x.l ^-OilG^
Q^ gj ^^-^ ^

/(4.4)+/(4.5) 3.041

.*. The approximate root is 4.41. The exact root is (3 + ^^2).

EXAMPLES

Calculate to two places of decimals the real roots of the equations

1. a;3 - 3 a: - 1 = 0. 6. x* - 12 x + 7 = 0.

2. ccS - 7 ic + 7 = 0. 7. a:* - 5 a;3 + 2 x2 - 13 a; + 55 = 0.

Z. x^ + 2x'^ -Sx-9 = 0. 8. a;3-3x2-2a; + 5 = 0.

4. x3 + 2 x2 - 4 a; - 43 = 0. 9. a;^ - 81 a; + 40 zir 0.

5. a:3 - 15 X + 21 = 0. 10. x^ - 55 x2 - 30 x + 400 = 0.

74. In any equation with real coefficients imaginary roots occur in

pairs.

I. Let f(x) = be an equation with real coefficients having r real

roots and the other roots imaginary. Then

f{x) = (x- a,) (x - a,) ... (x - a,)<l>(x) = 0, (§ 67) (1)

* The student should compare this method with Horner's Method of Approximation
found in almost any complete algebra.
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where <f>(x) is a function with real coefficients whose roots are all

the imaginary roots of f{x), and no others. Hence <f)(x) must be

of even degree, and therefore has an even number of roots. Other-

wise it would have at least one real root (§ 71).

Therefore (1) has an even number of imaginary roots. _

II. If a + 6V— 1 is a root of an equation with real coefficients,

then a — bV— lis also a root.

Let the equation be

a;" +pix^-'' +i92a5"-2 + ... +p„ = 0. (2)

Substituting a -f- 6V— 1 for a; in (2), we have

(a -h bV^^y+2h{a + bV^^y-^ +P2(a + bV^ly-^

-\-"'+Pn = 0. (3)

Expanding by the binomial theorem, and collecting together the

real and imaginary terms, we shall have a result in the form

P+QV^1 = 0. (4)

In order that this equation may hold we must have

P=Q = 0. (6)

Since P and Q are real, they contain only even powers of V— 1,

and hence will not be changed by changing the sign of V— 1.

Therefore, when a — foV— 1 is substituted for x in (2), the result

willbeP-QV^^.
But from (5) p _ QV- 1 = 0.

.-. a — 6V— 1 is also a root of (2).

Corresponding to the roots a ± 6V— 1 of f(x) = 0, f(x) will have

the real quadratic factor l(x — ay + b^].

The two quantities a ± ftV— 1 are called conjugate imaginary ex-

pressions.

Show that the locus of the equation y = x^-^k cuts the a^axis

in two points which are real and distinct, real and coincident, or

imaginary according as k is negative, zero, or positive. Hence

illustrate graphically the preceding theorem by showing that, as

the absolute term of f(x) is changed, real intersections of its graph
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with the ic-axis disappear or reappear in pairs; and that the pas-

sage from a pair of real distinct roots to a pair of imaginary roots

is through a pair of real coincident roots.

EXAMPLES

1. Show that if either a ±^b is a root of an equation with rational co-

efficients, the other is also a root.

2. Solve the equation x^ — 2x^ — 22x^ + &2x — 15 = 0, having given that

one root is 2 -f ^^3.

3. Solve the equation 2x3 - ISac^ + 46x - 42 = 0, having given that one

root is 3 + V— 5.

4. If y/a + y/b is a root of an equation with rational coefficients, y'a and

y/b not being similar surds, show that ±^ya ±^b will all four be roots.

5. Form the biquadratic equation with rational coeflBcients one root of which

is V2 + V^-

6. Show that Ex. 4 holds when either or both a and b are negative.

7. Find the biquadratic equation with rational coefficients one root of which

is V2 + V^=~3.

8. Solve the equation 2x^ - Sxp -\- 5x^ + Qx^ - 27x + 81 = 0, having given

that one root is ^2 + V— 1.

Transformation of Equations

75. To find an equation whose roots are those of a given equation

with opposite signs.

If the given equation is f{x) = 0, the required equation will be

/( — a;) = 0. For, when x = a,f(x) =f{a), and when x = — a,f{ — x)

=f{a) ; hence, if a is a root of f{x) — 0, then — a will be a root of

/(-x) = 0.

The graph of /( — x) is the reflection of the graph of f{x) in a

mirror through the ?/-axis perpendicular to the plane; i.e. the two

graphs are symmetrical with respect to the ?/-axis, which proves the

transformation for real roots.

li f{x) =f(-x) [§ 28, (2)], the two graphs will coincide, and

the roots otf(x) will occur in symmetric pairs of the form ± a.

The transformed equation is found by simply changing the signs

of all the terms of odd degree, or of all the terms of even degree, in

the given equation.
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76. To find an equation whose roots are those of a given equation,

each diminished by the same given quantity.

If we put x = x' -{• hj the origin will be moved to the right a

distance equal to h [§ 53, (1)].

Hence the avintercepts of the graph of f(x), i.e. the real roots

of f(x), will each be diminished by h.

Therefore, if f(x) = is the given equation, the required equation

will be f(x-{-h)=0. For, when x = a, f(x)=f(a), and when
X = a — h,f(x -{- h) =f(a)', hence, if a is a root of /(a?) = 0,

then a — ^ is also a root of f(x -f- h) = 0, whether a is real or

imaginary."*^

The coefficients of the new equation can be found by synthetic

substitution as follows

:

Ex. Transform the equation cc* — 3 a;^ — 15 x^ + 49 a; — 12 = into another

whose roots shall be those of the first each diminished by 2.

1 - 3 - 15 +49 - 12
^Pei'ation

2 -2 -34 +30
1 -1

2

-17
2

+ 15

-30
+ 18

1 + 1

2

-15
+ 6

-16

1 + 3

2

- 9

1 5

.'. a;* + 5 x^ — 9 x2 — 15 a; + 18 = is the required equation.

[Check this result by substituting directly a; + 2 for x.]

If we put x = x' —— , where »i is the coefficient of a;**~^, each root
n

will be diminished by (
— -^

i, and therefore the sum of the roots

will be diminished by n f —^]= —p^,
\ nj

Hence the sum of the roots of the new equation will he zero (§ 68)';

le. the coefficient of the second term ivill be zero,

Ex. lYansform the equation x'J + 0x2 + 4x + 5 = into another in which the

coefficient of x^ is zero.

* This transformation is used iu Horner's Method. See foot-note, p. 90.
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Let x = x^ — 2, since pi = 6 and w = 3 ; then we obtain

1 +6 +4 +5
-2 -8 + 8

1 + 4

-2
-4
-4

+ 13

1 + 2

-2
-8

1

. •. ic^ — 8 jc + 13 = is the required equation.

77. To find an equation whose roots are the reciprocals of the roots

of a given equation.

Let the given equation be

P^^ + p^X^-^ + P2^"-' + • • • + Pn-V« +Pn=0- (1)

Substituting - for x in (1) gives
z

i)»+,,Q"-V^,Q"-V ... +„„_.(r)+^„ = 0, (2)

which is the required equation, for (2) is satisfied by the reciprocal

of any quantity which satisfies (1).

Multiplying (2) by z'^ gives

K2" + Pn-i^""-' + Pn-^""-' + '" -{-PiZ+Po==0. (3)

Therefore the required equation is obtained by merely reversing the

order of the coefficie7its of the given equation.

If p^^ = 0, one root of (1) is zero, and hence the corresponding root

of (2) is infinite. Therefore, as the coefficient of the highest poiver of

X in f{x) ap])roaches the limit zero, 07ie root of fix) becomes infinite.

If the coefficients of (1) are the same (or differ only in sign) when
read in order backwards as when read in order forwards, the roots of

(1) and (3) are the same. That is, the roots of (1) will then occur

in pairs of the form a and -•

a
An equation in which the reciprocal of any root is also a root is

called a Reciprocal Equation.

E.g. C a;3 _ 19 ^2 _|_ 19 -y _ 6 _ is a reciprocal equation in which the coeffi-

cients differ in sign when read in order backwards and forwards ; two roots

are f and f

.
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EXAMPLES

Find the equations whose roots are those of the following equations with

op{)osite signs :

1. ic2 - 4 a; - 5 = 0. 2. ,x^ + 6x^ - 7 x - GO = 0.

3. x8 - 8 X--2 - 28 X + 80 = 0. 4. a:* - 12 x"^ + 12 x - 3 = 0. - -

Find the equation whose roots are those of

6. x3 - 16 x2 + 20 X + 112 = 0, each diminished by 4.

6. X* - 12 x3 + 49 x2 - 78 X +40 = 0, each diminished by 2.

7. x* - 3 x8 - 6 x2 + 14 X + 12 = 0, each diminished by - 2.

Transform the following equations so as to make the second terms dis-

appear :

8. x2 - 4 X - 21 = 0. 9. x3 - 6 x2 + 8 X - 2 = 0.

10. X* + 4 x8 - 29 x2 - 156 x + 180 = 0.

11. Find the equation whose roots are those of x^ + 6 x2 — 15 x + 12 =
each diminished by c, and find what c must be in order that, in the trans-

formed equation, (1) the sum of the roots, and (2) the sum of the products

of the roots two together, may be zero.

12. Transform the equation x^ + 3 x2 — 9 x — 27 = into another in which

the coefficient of x shall be zero.

Find the equation whose roots shall be the reciprocals of the roots of

13. x2 - 8x - 9 = 0. 14. 2 x3 + 3 x2 - 13 X - 12 = 0.

16. 6 X* - 5 x3 - 30 x2 + 20 X + 24 = 0.

16. Show that a reciprocal equation of an odd degree whose corresponding

coefficients have the same sign has one root equal to — 1.

17. Show that a reciprocal equation of an odd degree in which corresponding

coefficients have opposite signs has one root equal to 4- 1.

18. Show that a reciprocal equation of an even degree in which correspond-

ing coefficients iiave opposite signs has the two roots ± 1.

Solve the following equations

:

19. 2 x3 - 7 x2 + 7 X - 2 = 0. 20. x^ - 7 x2 - 7 x + 6 = 0.

21. 3 x^ + 5 x2 -I- 5 X + 3 = 0. 22. 5 x=^- 7 x'^ + 7 x - 5 = 0.

23. 2 X* + 5 x=^ - 5 X - 2 = 0. 24. 12 x* - 25 x» + 25 x - 12 = 0.

25. 6 x* - 7 x« + 7 X - 6 = 0.

26. Solve the equation 2 x* - 3 x^ - 16 x2 - 3 x + 2 = 0, having given that

one root is — 2.

27. Solve the equation 14 x^ - 3 x< - 34 x^ - 34 x2 - 3 x + 14 = 0, having

given that one root is 2.

28. Solve the equation 10 x'^ - 21 x-' + 21 x - 10 = 0, having given that one

root is 2.
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78. Successive Derivatives. If f(x) denote any function of x,

its derivative f'(x), (§ 58), will in general be a function of x that

can also be differentiated. The result of differentiating f'{x) is

called the Second Derivative of f{x). If this, again, can be differ-

entiated, the result is called the Third Derivative, and so on.

The successive derivatives of f(x) will be denoted by

n^), /"(^), f"'(^) -/"H^).
Let f(x) =Aq + Aix -f- A.2x' + A^x^ -{-...+ A,,x''.

Then /' (x) = A, i- 2 A^ -\- 3 A^x" + • • • + wyIX"', ( § 60)

/"(ic) = 2 ^2 + 2 . 3 ^3^; + ••• + w(n - 1) A^x^-\

f"(x) = 1.2. 3 ^3+ ••• + n{n-l) (n - 2) A^x^'-'',

f^^\x) = n{n -l){n - 2) ... 3 • 2 • 1 /!„ =A * ** ! •

E.g. if f(x) =x4 - 3 a;3 - 5 x'-^ + 2 X - 1,

then /'(x) =4a;3-9a:2- lOx + 2, /'"(a:) = 24 a: - 18,

ff'{x) = 12 a;2 - 18 a; - 10, f""(x) = 24 = 4 !

.

Hence the ^-th derivative of a rational integral function of the

nth degree is itself a rational integral function of degree {n — r),

(where r is not greater than n) ; and the nth. derivative is a con-

stant. Therefore the preceding theorems pertaining to a rational

integral function f{x) will also hold for its derivatives,

79. The Derivative Curve, and Elboivs.

Y

Let the curves LM and L'M' be the loci, respectively, of the

equations

y=f(^) (1)

and y=f\x). (2)
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We will call VM\ the locus of (2), the Derivative Curve, (or

D. C), and LM the Integral Curve. (See § 81.)

Draw any line parallel to the 7/-axis meeting the a>axis in Q, and

the curves in P and P\

We will call P and P' corresponding points. ~ ~

Then, if OQ = a, we have by § 58

qp =f(a) = slope ofLMat P.

Hence the D. C. is a curve such that its ordinate at any point is

the slope of the integral curve at the corresponding point.

Let A, B, C, D be the points on LM where the slope, i.e. f\x), is

zero ; then the ordinates of the corresponding points A\ B', C, D'

on L'M' are zero. Hence A', B', C, D' are the intersections of V3r
with the cc-Sixis. Between A and B the slope of LM is positive,

between B and C negative, etc. Therefore, between A' and B' the

curve L'M' is above the a>axis between B' and C below, etc.

It will be convenient to call such points as A, B, C, D, Elbows

of the curve. Then the abscissas of the elbows of the graph of

f(x) are the roots of /'(«), and may therefore be found by plotting

the D. C. or by solving the equation f'(x) = 0.

Since / (x) is of degree {n — 1), (§ 78) the graph of f(x) cannot

have more than (n — 1) elbows.

If f(x) is of an odd degree, its graph will have an even number

of elbows (including no elbows), and therefore f(x) will have at least

one real root. (Cy. § 71.)

If the roots of /' (x) are all imaginary, the graph of f(x) will have

no elbows.

If two roots of f'(x) are equal, its graph will touch the a^axis, as

at D', and the two corresponding elbows of the integral curve will

coincide as shown at D. Hence the slope of LM has the same sign

on both sides of D. The integral curve therefore changes the direc-

tion of its curvature at D, and crosses its own tangent, which it cuts

in three coincident points. Such a point is called a Point of Inflection.

Ex. Find the coordinates of the elbows of the following loci

:

1. y = x^-12x. 2. 2/ = 2x8 -16x2 + 24x4-5.

3. ?/ = x3 - 6 x'-^ + 32. 4. y = 3x*- 20x8+ 18x2+ 108x.

6. y = 3x6 - 20 x^^ + 10. 6. y = 3 X* - 8 x8 - 66 x2 + 144x.
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Equal Roots

80. Rolle's Theorem. At least one real root of the equation

f(x)=0 (1)

lies between any two consecutive real roots of

f(x) = 0. (2)

For there is at least one elbow of the integral curve, LM (§ 79),

between any two consecutive intersections of it with the a;-axis.

Conversely, LM cannot meet the ic-axis more than once between

any two of its consecutive elbows.

Therefore, at most one real root of (2) lies between any two con-

secutive real roots of (1).

That is, the real roots of (1) separate those of (2).

If by a continuous modification of the form oif{x)— for example,

by the addition or subtraction of a constant (§ 74)— two roots are

made equal, the root of f{x) lying between them must approach the

same value. Hence a double root of (2) is also a root of (1).

In general, if f{x) has an r-fold root, such a root being regarded

as due to the coalescence of r distinct roots, then will /' {x) have an

(r — l)-fold root due to the coalescence of the (r — 1) intervening

roots. That is, if f{x) has r roots each equal to o, f{x) will have

(r — 1) roots each equal to a.

Then, by the application of Rolle's theorem to f'(x) and f'\x),

f"{x) and f"'(x), and so on,

if f(x) = {x- aycf>(x),

we have . f'(x) = (x — a)''~Vi(^)j

f"(x)=^(x-ay-'<l>,(x), (3)

j(r-i)(^) = (a: - a)cf>,_,(x).

Conversely, if r roots of /'(a?) coalesce and become equal to a, the

corresponding r elbows of the integral curve LM will coalesce

;

then, if a is a root of f(x), this r-fold elbow will rest on the «-axis

and give an (r -j- l)-fold root of f(x).

Hence, if

/-='(«) =/"-''(«) =/"-''(«) = •••/;(«) =/(a) = 0,
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and a is a single root of p''~\x), then a is a double root of P''~^\x),

a triple root oi p''~^\x)y ••• an (r — l)-fold root of /'(aj), and an r-fold

root oif{x).

This suggests an easy method of finding real multiple roots of an
equation, when the roots are all equal except one or two. ^__ZI

E.g. it /(ic) = x5-5a^ + 40a;2-80x + 48 = 0,

we have f'{x) = 5 a;* - 20 x^ + 80 a: - 80,

/"(a;) = 20x3 -60x2 4- 80,

/'"(x) = 60x2- 120 X.

The roots of 60 x^ - 120 x = are and 2.

Since/'"(2) = /"(2) = /'(2)=/(2)= 0, 2 isafourfold root of/(x) = 0. Hence
all its roots are 2, 2, 2, 2, — 3.

Moreover, equations (3) are true whether a is real or imaginary.

For suppose f{x) has an r-fold root equal to a, then, whether a is

real or imaginary, we have {%^^ and § 67)

f{x)= (x-aY<j>{x). . (4)

In this case the given function f(x) is expressed as the product of

two distinct functions of x, viz. {x — aj and <fi{x). Hence its deriva-

tive may be found by formula (3), § 60.

That is, f{x)= (x- ay • D, [<^(x)] + <f>(x) • D,{x - ay. (5)

But D,{x-ay=r{x-ay-^ • DXx-a)= r{x-ay-^ . [(7), § 60] (6)

.-. fix)= {x- ay<t^'(x) + r(x - ay-'<t>(x) (7)

= (a, _ ay-'[{x - a)4>\x) + r<^(x)] (8)

= {x-ay-'<i>,{x). (9)

That is, if a is an r-fold root oi f{x), then it is also an (r— l)-fold

root of fix), whether a is real or imaginary.

In like manner if f{x) also has a g-fold root equal to h, and an

s-fold root equal to c, and so on, then

f{x)= {x-ay{x-hyix-cy ... <^(^); (10)

and f{x) = {x-ay-\x-hy-\x-cy'^ ... 4>,{x). (11)

... (^x-ay-\x-hy-\x-cy-^'^*

isthe G. C. D of /{x) and/'(x).



100 THEORY OF EQUATION'S [80

Hence the multiple roots of an equation f{x) = 0, if there are any,

can be detected by finding the G. C. D. of f(x) and f'(x) by the usual

algebraic process.

Likewise the common roots of any two functions can be obtained

by finding the G. C. D. of the two functions, and then finding the

roots of this G. C. D.

Ex. If f(x) = x^ + x^-lSx^-x'^-\-^8x-S6=0,
then /'(x) = 5x* + 4x3- 39x2-2£c + 48.

The G. C. D. oif(x) and/'(ic) will be found to be

x^ + X - 6= (x - 2)(x + S). .'. f{x)={x - 2)2(x + 3)2(x -1) = 0,

and the roots are 2, 2, — 3, — 3, 1.

EXAMPLES

Solve the following equations by testing for equal roots

:

1. x^-\- Ilx2 + 24cc-36zr0.

2. ic3-2ic2-15x + 36r=0.

3. a;*-7a;3 + 9x2 + 27^-54 = 0.

4. X*- 11x3 + 44x2- 76x + 48 = 0.

6. x* - 5x3 - 9x2 + 81 X - 108 = 0.

6. x5 - 15x3 + 10x2 + 60x - 72 = 0.

7. x» - x* - 5 x3 + x2 + 8x + 4 = 0.

8. x* - 2x8 - 11x2 +12X + 36 = 0.

9. x5- 10x2 + 15x- 6 = 0.

10. X* -3x3 -6x2 + 28x -24 = 0.

11. x5- 10x3 + 20x2- 15x + 4=0.

12. X* + 10x3 + 24x2 -32x- 128 = 0.

13. x5 + 19x4 + 130x3 + 350x2 + 125x - 625 = 0.

14. x6 - 5x5 + 5x* + 9x3 - 14x2- 4x + 8 = 0.

15. x5-2x4-6x3 + 8x2 + 9x+ 2 = 0.

16. x6 + 7 x5 + 4x4 - 58x3 - 115x2 - 49x -6 = 0.

17. x^^ - 8x3 + 24x2 -28x+ 16 = 0.

18. x5 - 6x3 - 28x2 -39x- 36 = 0.

19. What is the condition that the cubic equation x3 + ^x + r = shall have

a double root ?

20. Show that in any cubic equation with rational coefficients a multiple root

must be rational.
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Quadrature

81. Let y = f(x) and yz=f'(x) be the equations of the continuous

curves LM and L'M' respectively.

It is required to find the area included between the curve L'M',

the avaxis, and the ordinates corresponding to x — a = OQ, and

x = b= OR, where b>a. Let K denote the area QA'B'R.

Divide the distance QR into (n + 1) equal parts, each equal to

h = Sx. Then (n-\-l)h = b — a. Draw ordinates at the points of

division and construct rectangles as shown in the figure.

Let Xi = a-\-h= OQi, X2 = a + 2h,'-'Xn = a-\-nh= OQn-

Then QA'=f'{a), Q, P/=/'(a^,)r- QnPJ = f'(^nl

and the sum of the areas of the (m + 1) rectangles is

hf'(a) + hfXx,)+hf'ix,) + - hf'(x„).

Now f(x) = ^f/J^±R:iJM. (§68.)

Let /-(.)+p =-^^^±4=M,

where p is a quantity that approaches zero when A = 0.

Then lif{x) + lip = f{* + h)-f{x).

(1)

(2)

(3)

(4)
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Hence we may put /i/'(a) + hpQ = f(xi) —/(a),

¥'(^2) + hp2 = f(x^ - /(a-s),

¥'(^n-l) + JiPn-1 =f(Xn) - f(.^n-l),

From these equations we have by addition

2hf(x) + ^hp=f{b)-f(a). (5)

The second member of (5) is independent of 71, %hf'(x) represents

the sum of the areas of the (n + 1) rectangles however great their

number, and '^hp = when h = 0, i.e. when n becomes infinite. For

"^hp < (n -[- l)hp' = (b — a)p', where p' is the greatest of the quanti-

ties pi, p2"-pn} and p'= when k = 0.

.•.^=,/r^ :^f'(x)8x=f(b)-f(a) = EB-QA. (6)

The notation used to express this is

K=rfix)dx= f{b)-f(a), (7)

where the symbol
J
stands for ^Hhe limit of the sum," in this case,

the limit of the smn of an infinite number of infinitesimal rectangles.

Therefore, in order to find the required area, we must first obtain

a function which when differentiated will give f'(x) ; then substitute in

this new function /(x) the abscissas of the bounding ordinates and

take the difference of the results. Hence equation (7) may be written

In applying the formula we must first find /(a;) from /'(a;), i.e. we
must reverse the operation of differentiation. In this sense the sym-

bol r denotes an operation which is the inverse of differeyitiation.

This inverse process is called Integration.

If then the symbol D be used to denote differentiation, the two

symbols f and D neutralize each other, i.e. \ Df(x) =f{x).
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E.g. if Df{x) =f {x)dx = (4 x^ - 3 x2 + 4 x - 6) dx, .

then f -0/(35) = {f'{^)dx = f(x) = x* - x^ + 2 x^ - 6 x + c.

Hence, to integrate an integral function of x, increase tlie exponent of each

power of X by unity and divide the coefficient by the increased exponent.

Thus, I x^cZx = , provided n ^—1.
J n-\-l

If /'(it*) is the derivative of f(x), then f(x) is called the Integral

of f'(x). The curve LM may be called the Integral Curve with

respect to L'M'. Then we may say that the area bounded by the

D. C, the a>axis, and two ordinates is numerically equal to the dif-

ference of the two corresponding ordinates of the I. C.

If L'M' lies below the ic-axis between A' and B', the slope of LM
between A and B will be negative (§ 79). Hence BB < QA, i.e.

f(h) <f(a), and the area is negative. The rectangles will then lie

above the curve.

Therefore the area will be positive or negative according as it lies

to the right or left of the curve viewed in the direction of x increasing.

If L'M' cuts the a>axis between A' and B', the formula gives the

excess (positive or negative) of the area which lies to the right over

that which lies to the left.

Ex. 1. Find the area of the segment of

the parabola y^ = 4ax cut off by the double

ordinate through P(x', y').

Here y = 2 Vax"^ =f'(oc)-

.-. Area

ONP = P 2 Vax^dx = 2 y/aC x^dx

2V~a
A^^'l-

2 Va-|x/f

= 1 x'.2\/ax'^ = |xy
=

f rectangle OBPN.

.'. Area OPQ = f rectangle ABPQ.

.*. Area between AB and the curve is

equal to ^ ABPQ.

That is, the parabola trisects the rec-

tanffle.

B

Y
P^^^

x'

y'

O

A

N

c^^^^
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Ex. 2. The curve y = x^ — Sx^ -\- 2x cuts the a-axis in the points (0, 0),

B(h 0), i>(2, 0).

p We now have f'{x) =x^ -Sx^ + 2x.

: OAB= Cf'(x)dx

= Cix^ -Sx'^-\-2x)dx

= rJ
- a:3 + x2 + cT = 1.

BCD =z r^ - cc3 + x2 + cT

= (4-8 + 4 + c)-a + c)=-i.
|3

-r-^ DEF = [j - x^ -{-
x^

-{- cY

DEF = ( 8^ - 27 + 9 + c) - (4 - 8 + 4 + c) = 2f

EXAMPLES

1. Find the area included between the curve y = x^ — Qx"^ \-2Zx — \b^ the

X-axis, and the lines a; = 1, x = 3 ; also x = 3, x = 5; a: = l, 5C = 5.

2. Find the area included between the curve ^ = ^2— 2x— 8, the x-axis, and the

lines X = — 2, x = 4 ; also between the curve y = x'^ — 2x + \ and the same lines.

Find the area between the x-axis and the curve

3. y n: x3 - 3 x2 - 9x + 27. 4. ?/ = x^ + ax^.

5. ?/ = x* - 4 x3 - 2 x2 + 12 X + 9.

Find the area between the curves

6. ?/2 =: 4 ax and x^ = 4 ay. 9. ?/"» = x" and y" = x"*.

7. ?/2 = 4 X and ?/2 = x^. 10. y = x^ — x and y = x.

8. ?/3 = x2 and 2/2 = x^. 11. y = x* — x and y2 =: ^^^2.

12

ylws.
Wl — 71

12. y^ = 4 ax and y = 2 x — 4 a.

-4ns. «'(^113. x2?/ = a^, x = b, X = c, and ?/ = 0.

14. y = x2 — 5 X + 4 and x + y = 4.

16. y = x^ and ?/8 = x.

16. Show that the area included between the curve y = Ax**, the x-axis

and the line x = a is
ah

w + 1

Show that the parabola is a particular case

where & is the ordinate corresponding to x = a.



b2] MAXIMA AND MINIMA 106

Maxima and Minima

82. Let the curves ML^ L'M\ and L"M" be the loci, respectively,

of the equations

(1) y=f(x), (2) y=f'(x), (3) y=f\x)r
~

It is assumed in this investigation that the functions f(x), f'(x),

f\x) are finite and continuous for all finite values of x.

Then 7>"Jf" is the Second Derivative Curve.

Since f\x) is the first derivative of f'ipi), the ordinate of L"M"
at any point represents the slope of L'M' at the corresponding

point; and the intersections E", F'\ G" of X"J/" with the a?-axis

correspond to the elbows E', F', G' of L'M' (§ 79).

Let the line x = a meet the curves in the corresponding points

P, P'j P"f and the x-axis in Q.

Then QP=:f(a), QF =f{a\ QP'^ =f"(a).
That is, QP' is the slope of LM at P, and QP" is the slope of

L'M' at P.
Suppose the point P to move along the curve LM toward the rigJU.

As P approaches the elbow B, the ordinate QB increases ; but as

P passes through B, the ordinate ceases to increase and begins to
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decrease. At such a point the ordinate, i.e. f(x), is said to have

a Maximum Value, or to be a Maximum. In like manner as P
approaches the elbow A, or C, the ordinate QP decreases ; but as

P passes through A, or C, the ordinate ceases to decrease and begins

to increase. At such points QP, i.e. f{x), is said to have a Minimum
Value, or to be a Minimum.

That is, a function, fix), is said to have a maximum value when
x = a, if /(a) >/(a ± h) ; and a minimum value, if /(a) <f(a ± h),

for very small values of li.

Since in these definitions the comparison is made between values

of f{x) in the immediate vicinity only of A, B, C, a maximum is

not necessarily the greatest, nor a minimum the least, of all the

values of the function.

Moreover, since maximum and minimum ordinates occur only at

the elbows of a curve where the tangent is parallel to the a?-axis,

a necessary but not a sufficient condition for a maximum or minimum
value of fix) is f\x) = (§ 79).

Suppose a tangent to be drawn to LM at any elbow, i.e. at any
point where f {x) =0. Then the curve will lie below or above this

tangent line for a short distance on both sides of the elbow, accord-

ing as the ordinate of the elbow is a maximum or a minimum. If

the curve crosses this tangent, as at D, the ordinate is neither a

maximum nor a minimum.
Hence, as P passes (toward the right) through an elbow, as B,

whose ordinate is a maximum, the slope of LM, i.e. f'(x), changes

from positive to negative ; and as P passes through an elbow, such

as A or C, whose ordinate is a minimum /'(a?) changes from negative

to positive.

Therefore, the necessary and sufficient conditions that f{x) shall

be a maximum or a minimum when x = a are as follows

:

For max.,f'(a) =0-f'(a — h), positive; f'{a + h), negative, i

For min., f (a) =0; f (a — h) , negative ; f (a + h)
,
positive. )

If f'((^ + '0 ^^^ /'(<* — ^) have the same sign, /(a) is neither a

maximum nor a minimum value of f{x).

Now suppose, as is usually the case, that « is a single root of

fix) = 0, so that /"(a) =^ 0. (§ 80.)
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Then if QP passes through a maximum value, as B'B, when
x = a, the slope of LM changes from + to — . Hence the corre-

sponding point P crosses the a;-axis from above dotonwards, and there-

fore the slope of L'M' at B' is negative, i.e,

B'B" =f"(a) is negative. ~~^ ~

If QP passes through a minimum value, as C(7, the slope of LM
changes from — to +. Hence P crosses the avaxis from below

upwards, and therefore the slope of L'M' at C is positive, i.e.

C'C" =f"{a) is positive.

Therefore, if /" (a) =f= 0, the necessary and sufficient conditions

that f{a) shall be a maximum or a minimum value of f(x) are

:

For a maximum, f'(a) = ; /"(ft), negative.
|

,-v

For a minimum, f'(a) = ; f"((i), positive. >

If a is an r-fold root of f'(x) = 0, then f"(a) = when r>l
(§ 80) and the conditions (5) fail to disclose the nature of the corre-

sponding ordinate.

If r is an odd number, the curve L'M' will cut the avaxis in an

odd number of coincident points, and hence will cross the a?-axis at

the point (a, 0). Therefore the sign of /'(a;), will change from

-f to — for a maximum, and from — to -f for a minimum. In

this case we must use conditions (4) to determine the nature of /(a).

If r is an even number, L'M' will not cross the aj-axis at the point

(a, 0), as at D'. Hence f'(x) will not change sign, and therefore

/(a) is neither a maximum nor a minimum.
The maximum and minimum ordinates of L'M' can be determined

in the same manner. The points E, F, G, D on IjM corresponding

to the maximum and minimum ordinates of L'M' are therefore,

respectively, the points of maximum and minimum slope of LM.
At the points where the slope of a curve ceases to increase and

begins to decrease, or vice versa, the curve changes the direction of

its curvature. Therefore E, F, G, D are the points of inflection

of LM (§ 79).

Hence the position of the points of inflection of a curve are obtained

by finding the position of the maximum and minimum ordinates of the

p. a
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83. Illustrative Examples.

Ex. 1. The curves y = s'm x and y = cos x are good examples of the relations

and principles explained in § 81 and § 82.

Let / (x) = sin x.

Then fix) =^% ^n(x^h)-sinx ^ ^lim^
^^^^ ^^ ^ , ^^ sin|_^J

^^^

= cos x. (Ex. 13, p. 71.) (2)

Similarly it has been shown that Dx(,cosx) = — sin x. (p. 75.)

Let

and

y =f (x) = sin x, equation of LM,

y =fi(x) = cos X, equation of L'M',

y =f"(x) = — sin x, equation of L"M".

Y
A p. -. ^"^^^^""^^/PX ^\./-' /\/\
O Q \ /\ \
\ \,- ^^ y / '-- \

.c..--\- L' /\^__^ "--»?:---'

2 " > Z "1 ^ "•)Then /'(^) = cos x = 0, when x = ^ tt, %ir,

and /"(I tt) = — sin ^ TT = — 1. .-. sin ^ tt = 1 is a max.

/"(I tt) = — sin f TT = 1. .-. sin f ir = — 1 is a min., etc.

Also f"(^) = — sin X = 0, when x = 0, tt, 2 tt, 3 tt, etc.

These values of x make cos x alternately a maximum and a minimum, and
hence give the points of inflection of LM. That is, the sine curve changes the

direction of its curvature as it crosses the x-axis.

Let X = 0^ be any line parallel to the y-axis.

Then f '(x) = cos x=: QF' = slope of L3I at P.

Moreover, by § 81 we have

Area OAP'Q= (
''f'(x)dx = T ""cos xdx = fsin xT = sin x = QP. (3)

That is, the ordinate of any point of the cosine curve is equal to the slope

of the sine curve at the corresponding point; and the ordinate of the sine

curve is equal to the area bounded by the ordinate, the cosine curve, and the

axes of coordinates.
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Ex. 2. Find the maximum and

minimum values of the function

fix) = x4 - 4 x8 - 2 x2 + 12 X + 4.

Here /'(x) = 4 x^ - 12 x^ - 4 x + 12

and /"(x) = 12 x2 - 24 X - 4.

The roots of /'(x) =0

are -1, 1, 3.

/"(-I) =32.

/"(I) =-16."

/"(3)=32.

/. /(— 1) = — 5 is a minimum.

.-. /(I) = 11 is a maximum,

•*• /(3) = — 5 is a minimum.

The roots of /"(x) = are 1 ± f ^3,- which are the distances of the points

of inflection from the ^/-axis.

In the solution of problems in maxima and minima, we must first obtain

an algebraic expression, /(x), for the quantity whose maximum or minimum is

required. We may then proceed as in the preceding examples.

Ex. 3, Find the maximum rectangle that can he inscribed in a given

triangle.

Let h = the base of the given

triangle ABC, h the altitude, and x

the altitude of the inscribed rectan-

gle. Then from similar triangles,

FG:b = ih-x):h.

,:EG = \ih-x).
h

Then - {hx — x^) is the area of
h

the rectangle, which is to be made
a maximum. Any value of x that

will make (^x — x^) a maximum will also make -Qix — X') a maximum.
Hence we may put

Then

Also

/(x) =hx- x2.

/'(x) = /i - 2 X = when x = \h.

/"(x)=-2.

•*• f{\^) = 4 ^^ ^s ^ maximum.

Therefore the altitude of the maximum inscribed rectangle is one-half the

altitude of the triangle.
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Ex. 4. Find the area of the largest rectangle ivhich can be inscribed in the

ellipse

Y • a;2 y2
+ ^ = 1. (1)

Let K denote the area of the

rectangle. Then

K=2X'2y='^ Va^x^ - x* (2)
a

is the function of x which is to be

a maximum.

Any value of x which will make
a^x^ — a;* a maximum, or a mini-

mum, will also make K a maximum,
or a minimum.

Therefore, let f(x) = a^x^ - a;*.

Then f<{%) = 2 a^a; - 4 x^ = o when x = 0, or ± ^ a V^,

and /"(x) = 2 a^ - 12 x2 = - 4 a2 when x = ^ a ^2.

.\x — \a y/2 will make K a maximum.

Therefore K=2ab is the area of the maximum rectangle, which is half

the rectangle whose sides are the axes of the ellipse.

Ex. 5. Find the dimensions of a cone of revolution which shall have the

greatest volume with a given surface.

Let X = the radius of the base, y = the slant height, V = the volume, and

/S' = the total surface.

Then

and

S = 7rx2 + TTxy ; whence y =— — x,
TTX

(Altitudey = ?/2 _ a;2 = -^ _ 2^.
7r2x2 IT

VS^x^ - 2 ttSx*

Let

Then

.
y^^7rx2 r^2 2S^

3 >'7r2x2 T

fix) = Sx'^-2 TTX*.

/'(x) = 2 6^x - 8 7rx3 = when x = 0, or ± -J-,

' /"(x) = 2 19 - 24 7rx2 = - 4 aS' when x = -J^- •

2 \7r

.-. F is a max. when x = -^/-, and y = --./-•

That is, if the surface is constant, the volume of the cone is a maximum
•when the slant height is three times the radius of the base.

and
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EXAMPLES

Find the maximum and minimum ordinates and the points of inflection

(points of maximum or minimum slope) of the curves

1. y = x3 - 3 ic'^ + 4. 2. y = x^- 9x^ + 15 x-S. ^^ _

3. y = ic8 - 3 x2 + 6 a; + 7. 4. y = x^ - 9 x^ + 2i x + 16.

5. Find the sides of the maximum rectangle which can be inscribed in

a circle ; in a semicircle.

6. Find the sides of the maximum rectangle which can be inscribed in a

semi-ellipse.

7. Find the altitude of the maximum rectangle which can be inscribed in

a segment of a parabola, the base of the segment being perpendicular to the

axis of the parabola.

8. What is the least square that can be inscribed in a given square ?

9. Find the altitude of a cylinder inscribed in a cone when the volume of

the cylinder is a maximum.

la What are the most economical proportions for a cylindrical tin can ?

That is, what should be the ratio of the height to the radius of the base that the

capacity shall be a maximum for a given amount of tin ?

11. What are the most economical proportions for a cylindrical tin cup ?

12. What are the most economical proportions for an open cylindrical water

tank made of iron plates, if the cost of the sides per square foot is two-thirds of

the cost of the bottom per square foot ?

13. An open box is to be made from a sheet of pasteboard 12 inches square

by cutting equal squares from the four corners and bending up the sides. What
are the dimensions of the largest box that can be made ?

14. If a rectangular piece of pasteboard, whose sides are a and 6, have a

square cut from each corner, find the side of the square so that the remainder

may form a box of maximum capacity.

15. A person being in a boat 3 miles from the nearest point of the shore,

wishes to reach in the shortest possible time a place 5 miles from that point

along the shore ; supposing he can walk 5 miles an hour, but can row only at

the rate of 4 miles an hour, required the place where he must land.

16. The cost per hour of driving a steamer through still water varies as the

cube of its speed. At what rate should it be run to make a trip against a four-

mile current most economically ?

1^7. Find the altitude of the greatest cylinder that can be cut out of a given

sphere.
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18. Find the altitude of the maxim uin isosceles triangle that can be inscribed

in a given circle.

19. Find the altitude of the greatest cone that can be inscribed in a given

sphere.

20. Find the altitude of a cone inscribed in a sphere which shall make the

convex surface of the cone a maximum.

21. If the slant height of a cone is constant, what is the ratio of the radius

of the base to the altitude when the volume of the cone is a maximum ?

22. Find the dimensions of a cone with a given convex surface and a

maximum volume.

23. Find the altitude of the least cone that can be circumscribed about a

given sphere.

24. Find the altitude of the maximum cylinder that can be inscribed in

a given paraboloid.

25. What is the diameter of a ball which, being let fall into a conical glass

of water, shall expel the most water possible from the glass ; the depth of the

glass being 6 inches and its diameter at the top 5 inches ? Ans. m in.

26. The sides of a rectangle are a and b. Show that the greatest rectangle

that can be drawn so as to have its sides passing through the corners of the

given rectangle is a square whose side is ^-X_2.

27. The strength of a beam of rectangular cross-section, if supported at the

ends and loaded in the middle, varies as the product of the breadth of the cross-

section by the square of its depth. Find the dimensions of the cross-section of

the strongest beam that can be cut from a log 18 inches in diameter.

28. A Norman window consists of a rectangle surmounted by a semicircle.

If the perimeter of the window is given, show that the quantity of light admitted

is a maximum when the radius of the semicircle is equal to the height of the

rectangle.

29. What are the most economical proportions for a cylindrical tin can, and

a cylindrical tin cup, if the top and bottom are cut out of regular hexagons,

and allowance is made for waste ? Ans. tt^ = 4 r V 3, and irh =2 r VS.

30. Show that the curve (x^ + a^)y = a^x has three points of inflection, and

that they all lie on the line x = 4.y,
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CHAPTER VII

CONIC SECTIONS

84. The general equation of the first degree and also some special

cases of the equation of the second degree have been considered in

Chapters II and III. We now proceed to the general equation of the

second degree, and the standard forms to which it can be transformed.

It will presently be shown that the locus of such an equation is al-

ways a curve that can be obtained by making a plane section of a right

circular cone. For this reason the locus is called a Conic Section.*

85. The Fandamental Property of a Plane Section of a Eight Cir-

cular Cone, or a Conic Section.

Let VO be the axis of a right circular cone, and APB any section

made by a plane not passing through F.

Inscribe a sphere in the cone tangent to the plane of the section

at F'j then the line of contact HRK of the sphere and cone is a

circle with centre C in VO, whose plane is perpendicular to VO and

meets the plane of the section APB in the line ES.

Pass the plane FJO^ through VO perpendicular to the plane APB,
meeting it in the line AB, meeting the plane HKR in HK, and the

line ES in Z>; then the plane VMN is also perpendicular to the

plane HKR, and therefore perpendicular to ^*S'.

* After studying the straight line and the circle, the old Greek mathematicians
turned their attention to the conic sections, and by investigating them as sections of

a cone soon discovered many of their characteristic properties. The most important

of these discoveries were probably made by Archimedes and.Apollonius, as the latter

wrote a treatise on conic sections abovit 200 b.c.

These curves are worthy of careful study, not only on account of their historic

interest, but also on account of their importance in the physical sciences and their

frequent occurrence in the experiences of everyday life. For example, the orbit of a
heavenly body is a conic section. For this reason they were thoroughly studied by
the astronomer, Kepler, about 1600 a.d. The path of a projectile is a parabola.

The graphical representations of the law of falling bodies, the pressure-volume law
of gases, the law of moments in uniformly loaded beams, are all conic sections. The
bounding line of a beam of uniform strength, the oblique section of a stove-pipe, the

shadow of a circle, the apparent line dividing the dark and light parts of the moon,
etc., are conic sections. The reflectors in head-lights and search-lights are parabolic.

113
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Let P be any point on the section.

Draw PF, and the element PV which will be tangent to the

sphere at R.

Through P draw a line perpendicular to the plane HKRy which

will meet CR produced in Q ; and through PQ pass a plane perpen^

dicular to ES meeting it in S.

Let /3 = Z PRQ = Z AHD, the complement of the semi-vertical

angle of the cone. Let a = ZADH= Z PSQ. Then, since tangents

from an external point to a sphere are equal, PF= PR.

From the right triangles PQR and PSQ we get

Pq= PR^\np= PS^ina. p $

. PF_sin« f/ . -^) ...

••:^-^i^* i..4
^''' ^^^

So long as we consider any particular section, the point F and the

line ES are fixed, a is constant, and therefore the ratio of PF to PS
is constant.

Equation (1) expresses the Fundamental Property of a Conic Sec-

tion, which is used as the defining property. Moreover, all curves

which have this property are plane sections of some cone ; for all

possible curves satisfying this condition are gotten by giving this

constant ratio all possible values, and also letting the distance, FD,

from the fixed point to the fixed line have all possible values. We
can do this with a conic section. For any particular value of )8, i.e.

for any particular cone, the ratio can vary from zero (when a = 0) to

CSC (3 (when « = ^ tt). For any particular value of a the ratio can

vary from sin a (when P = \tt) to oo (wheu (i = 0). Thus the ratio

can have any value from to oo . Also the distance of F frora ES,

depending as it does upon the size of the inscribed sphere, for any

particular cone and any particular value of a can vary from zero

to oo . Therefore the property expressed by (1) is indeed a defining

property of a conic section, that is :

A Conic Section, or a Conic, is the locus of a point which moves in a

plane so that its distance from a fixed point in the plane is in a con-

stant ratio to its distance from a fixed line in the plane.*
•

* This is generally known as Boscovich's definition of a conic section, bnt, in the

article on Analytic Geometry in the Encyclopedia Britannica, nintli edition, Cayley
calls it the definition of ApoUonius.
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The fixed point F is called the Focus; the fixed line ES is called

the Directrix; the constant ratio is called the Eccentricity, and k

denoted by the letter e ; the line BFD, through the focus perpen-

dicular to the directrix, is called the Principal Axis of the conic.

86. Classification of the Conic Sections.

Using e to denote the eccentricity, we have, by (1) of § 85,

PF sin a z^n

When a<p, e<l; the plane of the section meets all the ele-

ments of the cone on the same side of the vertex ; the section is a

closed curve as shown in the figure § 85, and is called an Ellipse.

When a = 0, e = ; the plane of the section is perpendicular to

the axis of the cone, VO, and the section is a Circle. Hence a

circle is a particular case of the ellipse.

When « = ^, 6 = 1 ; the line AB (§ 85) is then parallel to VN,
and the point B moves off to an infinite distance ; the section

consists of a single infinite branch, and is called a Parabola.

When a> ^, e > 1, and the plane APB (§ 85) meets NV produced

on the other sheet of the conical surface ; the section is then com-

posed of two infinite branches, one lying on each sheet of the cone,

and is called a Hyperbola.

Thus the parabola is the limiting case of both the ellipse and the

hyperbola.

Let the plane of the section pass through the vertex of the cone.

Then if e < 1, the section is a point ellipse or a point circle.

If e = 1, the plane is tangent to the cone, and the parabola reduces

to two coincident straight lines.

If e > 1, the hyperbola becomes two intersecting straight lines,

which approach in the limit two parallel lines as the vertex of the

cone moves off to an infinite distance.

Hence a point, two intersecting straight lines, two parallel straight

lines, and two coincident straight lines are all limiting cases of conic

sections.

Under the head of conic sections we must therefore include

:

(1) Tlie Ellipse, including the circle and the point;

(2) The Parabola; (3) Tlie Hyperbola; (4) The Line-pair.
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EXAMPLES

1. Inscribe a sphere* tangent to the plane APB (fig. § 85) on the other

side and thus show that the ellipse has another focus and a corresponding

directrix; and that the two directrices are parallel and equidistant from the

foci.

2. By means of these two inscribed spheres, prove the property of the ellipse

given in § 34.

3. Inscribe spheres* in both sheets of the cone and show that the hyperbola

also has two foci and two directrices.

4. Prove the property of the hyperbola stated in § 36.

5. Where are the foci and the directrices of the circle, the parabola, and

two intersecting straight lines ?

iX,
General Equation of the Conic Sections

87. To find the equation ofa conic section in rectangular coordinates.

I. Let the equation of the directrix EC be

X cos a -\- y sin a — }} = 0.

Let F(k, I) be the corresponding focus.

Let P(x, y) be any point on the conic.

Draw PS perpendicular to EC, and join P and F.

Then from equation (1) of § 86 we have

PF=e'PS.

(1)

(2)

* For complete diagrams see Some Mathematical Curves and their Graphical
Construction, by F. N. Willson, pp. 45, 46. Also his Descriptive Geometry, pp.
44, 45. -
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Now PF'' =(x- ky 4- (2/ - l)% [(2), § 7.]

and PS = xGOsa-\-y sina^p. [(4), § 47.]

Therefore the required equation is

(x — ky -\- (y — ly = e^(x cos a -{-y sin a— py. (3)

Expanding (3) and collecting terms we have

(1 — e^ cos^ a)a^ — 2{e^ sin a cos a)xy + (1 — e^ sin^ a)y^

+ 2(e^p cos a - k)x + 2{fp sin a - V)y -[ 1^ -\-
1"^ - eY = 0. (4)

Since equation (4) contains five arbitrary constants, k, Z, a, p, e,

it may be any equation of the second degree. That is, any equa-

tion of the second degree represents a conic section.

The most general equation of a conic is, therefore, the complete

equation of the second degree, and may be written

ax' + 2hxy + bf + 2gx + 2/^/ + c = 0. (5)

II. Let the directrix be taken as the y-Sixis, the principal axis,

FD, (§ 85) as the o^-axis. Then a = l=p = 0, and k = DF. There-

fore the equation of the conic (3) takes the simple form.

(x — A;)^ -\-y^ = e'x^f

or (1 — e^)a^ -\-y' — 2kx

If a^ = in (6), then y = ± kV^^.
Hence a conic does not intersect its directrix.

If 2/ = 0, then there are two real values of x, viz.,

Therefore a conic section cuts' its principal axis in two points.

These points are called the Vertices of the conic. The point mid-

way between the vertices is called the Centre of the Conic.

The Latus Rectum of a conic is the chord through either focus

perpendicular to the principal axis.

To find its length, \Qt x = k in (6), then

y = ± ekf and 2y = Latus Rectum = 2 ek.

The different cases corresponding to the different values of e will

now be separately considered.

^'^'

I X (6)
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Standard Equations of the Conic Sections

88. The Parabola. e = l.

When e = 1, equations (7) of § 87 give

a^= |A;= Z>0, 072 = - =00.

Hence the parabola has one vertex midway between the focus and

directrix, and the other at infinity.*

When e = ly equation (6) of § 87 gives for the equation of the

parabola referred to its axis and directrix

f= 2k(x-i7c). (1)

Let a = ik = DO= OF-, then this equation becomes

y^ = 4:a(x-a). (2)

Now write a; + a in the place of x ; this moves the origin to the

vertex 0(af 0) [§ 53, (1)], and the equation becomes

y^ = ^ax, (3)

which is the standard form of the equation of the parabola.

When a;= a in (3), y = ±2a.

.-. L'L = 4 a = Latus Rectum.

Ex. Construct the parabola, having given the focus and the directrix.

Compare this result with the position of B in the figure of § 86 when a = /S.
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89. The Ellipse. e<l.

When c < 1, the two a;-intercepts [(7), § 85] are both finite and

positive; that is,

^1
1 + e

k

1-e
= DA'>k.

Hence the ellipse has two vertices lying on the same side of the

directrix, but on opposite sides of the focus.

c

R

B

Y

P
R'

X'-f

L />
\^

D

.A
P O Q r /A' D'

^- NJ|i;

B'

y'^

Let O be the centre, and let AA = 2 a.

Then

whence

Also

2a = X2 — Xi
k ^ 2ek

1-e l+e l-e"
a k

e

a

1-e'

k = ae.
e

l,0 = i(., + ..) =i(^ +^)
a

1-e' e

.: FO=DO-DF=~~k = ae.

(1)

(2)

(3)

(4)
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Substituting in equation (6) of § 85 the value of k given by (2)

gives for the equation of the ellipse referred to DC and DX

(x---\- ae\+ f = 6^x2. (5)

The origin may be transferred to the centre, ( -,
J,
by writing

aj + - in the place of x [§ 53, (1)] ; this gives

(a; + ae)2 + / = e2(^aj +
fj,

or a^(l - e'-^ + / = a'(l - e^-

.-. ^+ t = 1.
y^

(6)

When a; = 0, we have

2/ = ± a Vl — e^

;

which gives the ?/-intercepts OB and OB?.

If these lengths are denoted by ± 6, we have

62=a2(l-e2), (7)

and equation (6) takes the standard form

Since e < 1, 6 < a from (7) ; therefore

Hence the line AA} is called the Major Axis, and BB^ is called the

Minor Axis of the ellipse.

Take OF' = FO and OD' = DO; draw D'C perpendicular to OX.
Then F' is the other focus, and D'C the corresponding directrix

(Ex. 1, p. 117). Hence the foci are the points F' (ae, 0) and F{— ae, 0)

from (4) ; and the equations of directrices are, from (3),

a
<» = ±~- (9)e

Let P(x, y) be any point on the ellipse ; draw a line through P
parallel to AA' meeting the directrices in R and R\ and draw PQ
perpendicular to AA'.

* For a discussion of this equation see § 35.
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Then FP^e-RP,

and F'P = e'B'P. [(2), § 87.]

.-. FP = e'DQ = e(DO+OQ)

= ef^-\-x) = a + ex, (10)

and F'P= e • QD' = e(OD' - OQ)

= el xj = a— ex. (11)

Whence FP + F'P =2 a. (Cf. § 34.) (12)

From equations (7) and (4) we get

ae = Va^ - b- =F0= OF'.

To find the length of the latus rectum we put a; = ± ae in (8) ; this

gives

2/' = b\l- e") = -

.

from (7)

.: X'i = ?|^. (14)

If tt = 6, equation (8) reduces to

a;2 + 2/2 = a^,

and equations (13), (4), and (3), respectively, give

e = 0, FO=OF'=0, DO=OJ)' = oo.

That is, the circle is the limiting form of the ellipse, as the eccen-

tricity approaches zero, and the directrices recede to infinity.

Ex. Construct an eUipse, having given the foci and the length of the major

- T n • distance betweenfoci , ^, ,. , , . « .^ . .i.* In all comes e = 37-^ i—

;

^.— ; both distances become infinite in the
distance between vertices

parabola, and both become zero in the case of two intersecting lines. (See also (11), §90.)
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90. The Hyperbola. e>l.

From equations (7) of § 87 we have for the vertices

aji= and X2
k

1+e 1-e
Since e > 1, Xi=DA< k, and X2 = DA' is negative.

Therefore, the hyperbola has two vertices lying on the same side

of the focus but on opposite sides of the directrix.

Let be the centre, and let A'A = 2 a.

Then 2 a = A'D + DA = — x2 + Xi

k . k 2ek

e-1
a k

e

+
e + 1 e'^ — l

e'-l
and k = ae —

30 -

(1)

(2)
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The equation of the hyperbola referred to DC and DX is, from

(2), and (6) of § 87,

/aj-ae-h-Y + Z^eV. (5)

Moving the origin to the centre 0( — -, ] gives

(a; — aef -\-y^ = e'^[x
i >

or —

H

^ = 1. (6)

Since e > 1, the quantity a^(l — e-) is negative; if we put

-b^ = a-(l-e-),

or
52^^2(g2_-|^s^^

^^^^

equation (6) reduces to the standard form

^_^-l (8)

When X = 0, y = ±bV—l. Since these vahies of y are both

imaginary, the hyperbola does not meet the line through its centre

perpendicular to its principal axis in real points ; but, if B, B' are

points on this line such that B'O = OB = b, the line BB' is called

the Conjugate Axis. The line AA' joining the vertices is called the

Transverse Axis.

On the line OX take OF' = FO, and OD' = DO ; then F' is the

other focus and D'C, perpendicular to OX, is the corresponding

directrix (Ex. 3, p. 117). Hence the coordinates of the foci are

( ± ae, 0), from (4), and the equations of the directrices are, from (3),

oo = ±^' (9)
e

As in the ellipse, we find the latus rectum

LL' = ^^' (10)
a

Equations (7) and (4) give

ae=Va:' + b'=OF.

_V^:^i^OF ^F'F
_ ,j^.

a OA A'

A

^ ^
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Let P(a7, y) be any point on the hyperbola ; draw a line through P
parallel to AA^ meeting the directrices in R and R', and draw PQ
perpendicular to AA\
Then FP^e- RP, F'P = e • WP. [(2), § 87.]

.-. FP^e'DQl=e{Oq-OB)=e{x-^= ex-a', (12)

andi<^'P=e.Z)'Q = e(Oe + i>'0)=e('aj + -)= ea; + a. (13)

Whence F'P-Fr = 2a. {Of. § 36.) (14)

If a = 6, the equation of the hyperbola becomes

x'^-y'^ = a^. (15)

This is called the Equilateral or Rectangular Hyperbola. (See

§§ 169, 170.)

Then from (11), (3), and (4) we have, respectively,

e = V2, OD = i aV2, OF= a v'2.

Ex. Construct a hyperbola, having given the foci and the distance between
the vertices.

91. Limiting cases of conic sections.

If A; = 0, equation (6) of § 87 reduces to

2/2 = arXe2-l).

This equation represents two straight linesy which are real if e > 1,

coincident if e = 1, and imaginary, but with a real point of intersec-

tion, if e < 1.

From (7) of § 87 we then have a^j = x^ = 0. Hence the foci, the

vertices, and the centre of two intersecting lines all coincide on the

directrix. The two directrices also coincide.

When e=cc (a being finite), the equation of the hyperbola [(8),

§ 90] reduces to x^ = a', which represents two parallel lines. Equa-

tions (3) and (4) of § 90 then show that the foci of two parallel lines

(considered as the limiting case of a hyperbola) are at infinity while

their directrices coincide and are equidistant from the two lines.

Hence we must consider two intersecting lines, real or imaginary

{i.e. a real point), two coincident lines, and two parallel lines ns

limiting cases of conic sections. (Cf. § 86.)

Jv^V
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Tangents

92. To find the equation of the tangent to the conic represented by the

general equation

ax'+ 2hxy + bf + 2gx + 2fy-hc = 0. (1)

The equation of the tangent to any curve f(x, y) = at the point

(x', y') is (§ 62)

2/-2/' = ||!(^-«^'). (2)

For equation (1) we have found in § 61

dy ^ ax-\-hy-{-g
^

dx hx 4- by -+-/

Therefore the required equation is

(3)

or axx^ + h (xy' + x'y) + byy' + gx +fy

= ax" + 2hx'y'-\-by" + gx'+fy'. (5)

Add gx' -\-fy' + c to both sides of (5) ; then, since (x', y') is on

the conic, the right member will vanish and we have the required

equation,

axx' + h (xy' + x'y) + byy' + gr (a? + x') +fiy + y')+c = 0, (6)

Observe that the equation of the tangent at (x', y') is obtained

from the equation of the conic by writing xx' for xr^ x'y + xy' for 2 xy,

yy' for /, x + x' for 2 x, and y -{-y' for 2 y. Note also that putting x

for x' and y for y' in (6) reproduces the equation of the curve.

E.g. the equation of the tangent

to the circle x'^ + y'^ = r^ at the point (x', y') is xx' + yy' = r^,

to the parabola y^ = 4ax at the point (x', y') is yy' = 2a(x-{- x'),

to the ellipse ^ + 1^ = 1 at the point (x', y') is^ + ^' = 1,

to the hyperbola ^ _
|^ = 1 at the point (x', ?/') is^ -^ = 1.
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Jsj^!)

93. Two tangents can be drawn to a conic from any pointy which

will be realf coincidentj or imaginary^ according as the point is outside,

on, or within the curve.

Let the equation of the conic be [§ 87, (6)]

aa^ + f-{-2gx-{-g' = 0, (1)

where a = 1 — e^, and g= —k.
Let (Jij Tc) be any point j then the equation of any line through

this point will be (§ 43)

y — k = m(x — h). (2)

Eliminating y between (1) and (2) gives

(a + m^x" + 2(km - hm^ + g)x -f^V - 2 hkm -{-k^ + g^ = 0. (3)

The roots of (3) are, by § 24, the abscissas of the points of inter-

section of (1) and (2). If these roots are equal, the points of in-

tersection will coincide and, by § 57, (2) will be tangent to (1). The

condition that (3) shall have equal roots * is

{km - hm^ -f gf = (a +, m^){hV - 2 hkm + k^ -[-g^ (4)

or {ah^ + 2 gh -^g") m" - 2{ahk -f gk)m + {ale"+ ag''-g^ = 0. (5)

Equation (5) is a quadratic in m whose roots are the slopes of

the tangents from (/i, k) to the conic. Since a quadratic equation

has two roots, two tangents will pass through any point (Ji, k).

The conic is, therefore, a curve of the second class.

The roots of (5) are real, equal, or imaginary, according as

a/i2 4-A;2 + 2^/i + />,=, or <0. (6)

Therefore the tangents are real, coincident, or imaginary accord-

ing as the point (h, k) is outside, on, or within the conic. (§ 20, II.)

(The directrix is outside, the focus inside the conic.)

Since equation (3) is a quadratic in x, any straight line meets a

conic in two points, which may be real, coincident, or imaginary.

Therefore the conic is also a curve of the second order.

If e = 1 and m = 0, then a-\- m^ = 0, and hence one root of (3)

is infinite (§ 77). Therefore a straight line parallel to the axis of

the parabola meets the curve in one point at a finite distance, and in

another at an infinite distance from the directrix.

* The two roots of ax^ -f 6x + c = will be equal, if 6^ = 4 ac.

The method here used is worthy of special attention because of its wide application.
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Pole and Polar

94. The equation of the tangent to the conic

ax' + y'-^2gx+g' = (1)

at the point (a;', 2/'), if this point is 07i the conic, is (§ 92)

axao' + yy' + g(.oo + oc') +g^ = 0. (2)

Suppose, however, that F'(x'j y') is 7iot on the conic. Then what

is (2)? It still has a meaning, still represents a straight line related

in a definite way to the point (x', y') and the conic (1). Moreover

this line will cut the conic in two points (§ 93).

Let these points be Pi(xi, y^) and P^ix^, 2/2)-

Then the equations of the tangents at these points are (§ 92)

axx^ + yyi 4- g(x + x^) -\-g'^ = 0,

and axx2 -\- yy^ -\- g{x -\- ^2) -\- 9^ = 0-

The conditions that (3) and (4) shall pass through {x\ y') are

ax% + 2/ '2/1 + 9(:^' + ^i) +f = 0,

and ax% + y'y, + g{x' + x,) + / = 0.

But (5) and (6) are also the conditions that (2) shall pass through

both of the points (xi, y{) and (xo, y^)-

Therefore (2) is the line passing through the points of contact of

the tangents from the point F'(x', y').

The point (x', y') and the line (2) are called Pole and Polar ivith

respect to the conic (1).

(3)

(4)

(5)

(6)
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The tangents from the point (x', y^ will be real or imaginary

according as (x', y') is outside or inside the conic (§ 93) ; but the

line (2) is real when (x'j y') is real. So that there is always a

real line passing through the imaginary points of contact of the

two imaginary tangents drawn from a point within a conic.

If (x'f y') is on the conic, the two tangents from it will coincide,

and each of the points (iCi, y^) and (x2, y^ will coincide with {x\ y').

Tlierefore the tangent is the particular case of the polar which passes

through its oimipole. (See demonstration in § 169.)

95. If the polar of a point P\x\ y') pass through P"(x"j y"), then

will the polar ofP" pass through P'. (See fig. § 94.)

Let the equation of the conic be [§ 93, (1)]

ax' + y'-^2gx-^g'= 0. (1)

The equations of the polars of P' and P" are

axx' + yy' +g(x + x')+g' = (2)

and axx" + yy" + g(x + x") + g' = 0. (§94.) (3)

The line (2) will pass through the point P" if

ax'x"-j-yY+g{x' + x") + g' = 0; (4)

but this is also the condition that (3) shall pass through P', which

proves the proposition.

CoR. I. The locus of the poles of all lines passing through a fixed

point is a straight line; viz. the polar of the fixed point.

CoR. II. If the polars of two points P and Q meet in i?, then R is

the pole of the line PQ.



130 CONIC SECTIONS [95

Two straight lines are said to be conjugate with respect to a conic

when each passes through the pole of the other.

Two points are said to be conjugate with respect to a conic when
each lies on the polar of the other.

EXAMPLES

Find the equations of the tangent and normal to

1. x^ = 2y, at (-2, 2). 2. y^ = Sx, at (2, -4).

3. x2 + ?/2 = 25, at (4, - 3). 4. x^-y^ = 16, at (- 5, 3).

5. ic2 + 4 ?/2 = 8, at (- 2, 1). 6.2 y'^ ~-x'^ = 4, at (2, - 2).

Find the equations of the tangents to the following conies at the origin :

7. x2 + ?/2 + 2x = 0. S. x^ + 2x + 3y = 0.

9. 2xy + bx-3y = 0. 10. Sx^ -2xy -\-4:X-2y = 0.

11. State a rule for finding the tangent to a conic at the origin,

ind the polar of the point

12. (3, 2) with respect to y^ = 6 x.

13. (— 2, — 4) with respect to x^ + ?/2 = 4.

14. (1, 1) with respect to 2x^ -\-Sy^ = l.

15. (0, 0) with respect to 2 x^ - 3 y2 _|_ 12 x - 6 y + 21 = 0.

16. Give a rule for writing the equation of the polar of the origin.

Find the tangents to the following conies drawn from the given points (see

A IS

K ' 17. 1/2 = 4 X, (2,3). 18. y^ = 6x, (-3, -1).

19. x2 + ?/2 = 25, (-1,7). 20. 9x2 + 25 2/2 = 225, (10, -3).

^ 21. Show that the polar of the focus is the directrix.

What is the locus of the intersection of tangents at the ends of focal chords ?

(Use equation (1), § 93.)

22. Show that the line joining the focus to any point on the directrix is per-

pendicular to the polar of the latter point.

23. Show that tangents to a conic at the ends of a chord through the centre

are parallel.

24. What is the polar of the centre of a conic ? Where is the pole of a line

passing through the centre ?

\i' 26. What is the pole of a; cos a 4- J/ since =^ with respect to

x^ + y'^ = r^? y'^ = 2x?

\i 2



CHAPTER VIII

THE PARABOLA

96. Standard /equations of the tangent, polar, and normal to the

parabola.

In studying the properties of the parabola in this chapter we shall

use the standard form of the equation found in § 88, viz.

2/2 = 4 ax. (1)

Then the focus is the point (a, 0), the directrix is the line x= — a,

and the latus rectum is 4 a.

Equation (6), § 92, applied to (1) gives

yy' =2a(i€ + ic'), (2)

as the equation of the tangent at the point («', y'), if (»', y*) is on

the curve; but always the equation of the polar of (x, y'), (§ 94),

with respect to the parabola (1).

The equation of the normal at the point (x', y') on the curve is

[(2), § 62]

II _ 1/' = —
2a

or 2 a{y - y') 4- y\oc - a?') = 0. (4)

The tangent at the vertex (0, 0) is the line a; = ; and the normal

at the same point is y = 0, i.e. the axis of the curve.

Ex. 1. Show that the equation of the parabola is

2/2 = 4 a(x ± a),

according as the origin is at the focus or on the directrix.

Ex. 2. Change the equations of the parabolas

(y -ky = i a(x - h) and (x -hy = 4 a(y - k)

to the standard form, and show that their vertices are at the point (h, k).

Ex. 3. What relation does the line (3) have to the parabola when the point

(x'iy') is not on the curve ?

181

y-y' = -:^(^-^')^ (3)
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97. Geometnc properties of the parabola.

M

R

^ P-X^^^

\

\ X
T D OIf n g

Let the tangent at the point P{x\ if) meet the axis in jT, the

directrix in i2, and the tangent at the vertex in Q. Let PM and
PN be the perpendiculars from P to the directrix and axis, re-

spectively.

Let the normal at P meet the axis in G,

Then we have the following properties ;

TO=:ON=x\ [(2), §96.] (1)

.-. Subtangent = T]Sr= 2 0N= 2 x'. (2)

OQ = iNP=^y'. (3)

TF=FP=FG = a-hx'. (4)

Z.FPR = ZMPR. (5)

ZRFP= Z BMP= i ,r. (See Ex. 22, p. 130.) (G)

FM is perpendicular to TP. (7)

FM, PT, and OY meet in a point (8)

0G = 2a + x\ [(4), §96.] (9)

.-. Subnormal = NG = 2 a, a constant. (10)
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The use of parabolic reflectors depends on the property expressed

in (5). Let the student explain.

Properties (5) and (7) suggest a method of drawing tangents from

an exterior point. Show how this can be done.

98. Equations of the tangent and normal in terms of the slope m.

The equation of the tangent [(2), § 96] may be written

2a , 2 ax' 2a , 4: ax' ,^.

Let —p = m ; then ^=—, and (2) may be written

l/ = ^^^^j (3)

which is the required equation. That is, the line (3) will touch the

parabola y^ = 4 ax, whatever the value of m may be.

In a similar manner it can be shown from (3), § 96, that the equa-

tion of the normal expressed in terms of its slope is

y = mx — 2 atn — atn^* (4)

EXAMPLES

1. Find the equations of the tangents, and the normals at the ends of the

latus rectum.

2. Show that the line y = 3 a; 4- - touches the parabola y'^ = Aax', and also that

y= Ax-\-- touches y'^ = S ax.

3. Find the equation of the tangent to y^ = 12 x which makes an angle of 60° ""^

with the X-axis.

4. Find the tangent to the parabola y^ = 6 a; which makes an angle of 45° with

the X-axis.

Find the coordinates of the vertex, of the focus, the length of the latus rectum,

and the equation of the directrix of each of the following parabolas

:

6. y2_3a;^.6. 6. x2 + 4x + 2y = 0. 7. (y- 4)2 = 6(x + 2).

8. 4(x-3)2 = 3(y-M). . 9. y^-l- 8x- 6y-M = 0.

\Xm
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99. Tlie locus of the middle points of a system ofparallel chords of a

parabola is a straight line parallel to the axis of the parabola.

Let ABhe any one of the chords, let P'(x'j y') be its middle point,

and let y be the angle it makes with the axis of the parabola.

Then the equation of AB may be written [(4), § 43]

x — x' y — y = r, (1)

(2)

cos y Sin y

or a; = ic' -|- r COS y, y = y' -{- r sin y.

Let the equation of the parabola be

y' = 4.ax. (3)

Substituting in (3) the values of x and y given by (2), we have for

the points common to the chord and the curve

(y' + r sin y)^ = 4 a (x' -\- r cos y),

or 7^sm^y-^2(y'siny — 2aGosy)r-{-y'^ — 4:ax'=:0j (4)

a quadratic equation in r, whose roots are represented by the dis-

tances P'B and P'A. Since P' is the middle point of AB, the sum
of these roots is zero. That is,

2/' sin y — 2a cosy = 0. (§ ^8.)

2a
Whence

where m is the constant slope of the chords.

y'=2a cot 7 =— J
' m (5)
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The coordinates of P' therefore satisfy the equation

y=^=2acoty. (6)

Hence the locus of P', as AB moves keeping m constant, is a

straight line O'X' parallel to the axis of the parabola.

Definition. The locus of the middle points of a system of

parallel chords of a conic is called a Diameter; and the chords it

bisects are oblique double ordinates to that diameter considered as

an axis of abscissas.

We have seen in § 93 that a diameter of a parabola meets the

curve in only one point at a finite distance from the directrix. This

point is called the Extremity of the diameter.

CoR. The line (6) meets the curve in 0' where

x= —^ = EO', y = (7)

The equation of the tangent at 0' is, therefore [(2), § 96],

2/ = ^^^ + ^- (8)

Hence the tangent at the extremity of a diameter is parallel to the

chords bisected by that diameter.

100. To find the equation of a parabola ivhen the axes are any

diameter and the tangent at its extremity.

Using the figure of § 99, and keeping the same notation, we will

let 0'P' = x, the new abscissa, and P'B = yf the new ordinate.

Then y is always the same as r of equation (4), § 99. And since

the coefficient of the first power of r in this equation is zero, we have

where

and

„ 4:ax' — y'^

^- sin^y
' (1)

, 2a
m [(5), § 99.]

f = RO'-\-0'P' = —,
rn?
+ x. [(7), § 99.]

„ 4a
.'. y^= . „ X.

^ sin^'y
(2)
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Now Fa--

1 + tan^r a
[(4), § 97.]

(3)- Oi 7)
—

tan^y sin^y

Therefore, if a':
sm^y

', the required equation is

2/2 = 4 a'x. (4)

Hence the equation y^ — 4iax always represents a parabola, the

a>axis being a diameter, the ^/-axis the tangent at its extremity, a the

distance from the focus to the origin, and 4 a the length of the focal

chord parallel to the ^/-axis.

Formula (6), § 92, by means of which equation (2), § 96, was

obtained, and also the derivation of equation (3), § 98, from equation

(2), § 96, hold good equally whether the axes are rectangular or not.

That is, if the equation of a parabola is 2/^ = 4 ax, the line

yy^ = 2a{x-\-x^) (5)

will be the tangent at the point {x\ y') if the point is on the curve

;

but always the polar of (ic', y') with respect to the parabola. And
the line ^

y = mx-\-— (6)

will also touch the parabola for all values of m, the meaning of d

being that given in § 50.

Cor. The polar of any j^oint with respect to a parabola is parallel tr>

the chords bisected by the diameter through the point.

Conversely, the locus of the poles of parallel chords is the bisecting

diameter.

For the polar of any point {x\ 0) is, by (5), x = — x\

EXAMPLES ON CHAPTER VIII

1. Find the equation of that chord of the parabola y'^ — Qx which is bisected

by the point (4, 3).

/ 2. Find the equation of the chord of x'^ = —^y whose middle point is

(-3,-2).

3. Find the equations of the tangents drawn from the point (—2, 2) to the

parabola y'^ = Qx.
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4. Show that the axis of the parabola y^=:Sx divides each of the chords

whose equations are . p = —ottb iijl^ two segments whose product is 64.

6. For what point on the parabola y^^'iaxm (1) the subtangent equal to

the subnormal, and (2) the normal equal to the difference between the sub-

tangent and the subnormal ?

'"'^
6. Show that the lines y = jt (a; -f 2 a) touch both the parabola y'^ — %ax and

the circle a^ +,j/2 _ 2 ^2. '
' ^

7^ Find the equation of the common tangent to the parabolas y"^ = iiax and

»2 = 4 hy. Show also that if a = &, the line touches both at the end of the

latus rectum.

E 8. Two equal parabolas, A and 5, have the same vertex and their axes In

opposite directions. Prove that the locus of the poles with respect to -B of tan-

, gents to A is the parabola A.

9. Show that the locus of the poles of tangents to the parabola y^ = 4:ax

with respect to the parabola y^= 4:bx is the parabola ay^ = 4 b^x.

•\ y 10. Show that for all values of m the line

/ . . . . a

/

1/^
y — m(x + a) + — will touch y^z=:4 a(x + a);

tTl

y = m(x — a) -h — will touch 2/2 — 4 q^^x — a) ;

and (y — k) = m{x — h) -\— will touch (y — k)'^ = 4 a(x — h").

11. If (a;', y') and (ic", y") are the points of contact of two tangents to

y2 = 4 ax, show that the coordinates of their point of intersection are

X = Vx'x", y = i(y' + y").

4' 12. Show that the directrix is the locus of the vertex of a right angle whose

sides slide upon a parabola. (§ 98.

)

13. Two lines are perpendicular to one another; one of them is tangent to

?/2 = 4 a(x + a), and the other is tangent to y^ = 4 6(a; + 6) ; show that these

lines intersect on the line x + a + b = 0.

14. Show that the line Ix + my + n = will touch the parabola 2/^ = 4 ax,

if In = am^.

15. If the chord PQR passes through a fixed point Q on the axis of the

parabola, show that the product of the ordinates, and also the product of

the abscissas of the points P and i?, is constant.

T 16. Find the coordinates of the point of intersection of y = mx -\ and

y = m'x H

—

-. . Show that the locus of this point is a straight line if mm is
m'

constant. What is the locus when mm' = — 1 ?
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17. K perpendiculars be let fall on any tangent to a parabola from two points

on the axis which are equidistant from the focus, the difference of their squares

will be constant.

18. The vertex ^ of a parabola is joined to any point P on the curve, and

PQ is drawn at right angles to AP to meet the axis in Q. Prove that the

projection of PQ on the axis is always equal to the latus rectum.

19. If P, Q, and B be three points on a parabola whose ordinates are in

geometrical progression, the tangents at P and B will meet on the ordinate

of q.

20. Show that the locus of the intersection of two tangents to a parabola at

V points on the curve whose ordinates are in a constant ratio is a parabola.

21. Prove that the circle described on a focal radius as diameter touches the

tangent drawn through the vertex.

22. Prove that the circle described on a focal chord as diameter touches the

directrix.

23. Find the locus of the point of intersection of two tangents to a parabola

which make a given angle a with one another.

If a = 45°, show that the locus is ?/2 — 4 ax = (x-\- a)^.

lia = 60°, show that the locus is y- - 3 x^ - 10 aa: - 3 a^ = 0.

[Suggestion. The line y = mx + — will go through (x', y') if m^' — my' + a = 0.

The roots of this equation are the slopes of the two tangents which meet in

(x', y'). Let mi, m^ be these roots, then see § 68.]

24. The two tangents from a point P to the parabola y"^ = 4: ax make
angles tan-%i and tan-im2 with the ai-axis. Find the locus of P, (1) when
wij + mi is constant, (2) when wii^ + m^^ is constant, and (3) when m\m2 is

constant.

25. If K is the area of a triangle inscribed in the parabola y^ — 4 dx, and

K' is the area of the triangle formed by the tangents at the vertices of the

inscribed triangle, prove that

8 a^=r 16 aK' = (yi ~ 2/2) (^2 ~ 2/3) (2/3 ~ Vi),

where 2/1, ?/2, ys are the ordinates of the vertices of the inscribed triangle. (See

Ex. 11.)

Find the locus of the middle points

26. Of all ordinates of a parabola. 27. Of all focal radii.

28. Of all chords through the fixed point (h, k).

As special cases, let (h, k) be (1) the focus, (2) the vertex, (3) the point

(4 a, 0), and (4) the point (— a, Q).

29. Show that the parabola is concave towards its axis.



CHAPTER IX ^_
THE CIRCLE

XOl. Equations of the circle, and the corresponding equations of the

tangentj polar, and normal.

We have seen in § 32 that the equation of the circle whose radius

is r takes the simple form
a^ + / = v'2, (1)

when the origin is at the centre ; while if the centre is at the point

(a, b) the equation may be written

(x-ay-^(y-by='r'. (2)

Moreover, we have found in § 87 that the locus of any equation

of the second degree is a conic. Now the conic represented by the

general equation (5), § 87, will be a circle if a = 6 and h = 0. For

this equation may then be written

x^-\-y' + 2gx + 2fy-^c = 0. (3)

Equation (3) may be put in the form of (2), which gives

{x + gy+(y+fy = 9'-{-r-c. (4)

Hence the locus of (3) is a circle whose centre is the point

(— g, —/), and the radius is equal to ^ g^
-\-f^ — c.

The circle will therefore be real, a point, or imaginary according

a'S(/2+/^-c>, =, or <0.
By applying the rule of § 92 to equations (1), (2), and (3), re-

pectively, we obtain

xoc' 4- yy' = r'^9 ®
{X - a)(x' -a) + {y- h){y< -b)= r^, (6)

and XX' + yy' + g(x + x') + f(y + y') + c = 0. (7)

These are the equations of the tangent to the circles (1), (2), (3),

respectively, at the point (x', y') if this point is on the curve; but,

139



140 THE CIRCLE [101

by § 94, they are always the equations of the polar of the point

(x\ y') with respect to the circles represented by (1), (2), (3).

Since the normal (§ 57) at any point (x', y') of the circle a:F-\-y^ = 7^

is perpendicular to (5), its equation is [(2), § 62']

or • scy' - oc'y = 0. (8)

That is, the normal at any point of a circle passes through the

centre.

The equations of the normals to the circles (2) and (3) at the

point (x'j 2/') are, respectively [(2), § 62],

y-y' = ^\^(x-x'), (9)
x' — a

and y-y' = yL±f(x-x^): (10)
x' + g

or xy' — x'y — b(x — x')-\-a(y — y')=0, (11)

and xy' — x'y -\-f(x — x') — g(y — y') = 0. (12)

The general equation of the circle (3), or (2), contains three

parameters, or constants. Therefore a circle can be made to satisfy

three conditions, and no more. If we wish to find the equation

of a circle which satisfies three given conditions, we assume the

equation to be of the form (3), or (2), and then determine the

values of the constants g, f, c, or a, b, r, from the given conditions.

Ex. Find the equation of the circle passing through the three points (0, 1),

(2,0), and (0, -3).

Let the equation of the required circle be

x^ + y^ + 2gx + 2fy + c = 0. (1)

Since the given points are on the circle, their coordinates must satisfy

equation (1).

.-. l + 2/+c = 0, 4 + 4^ + c = 0, 9-6/+c = 0.

Whence we find gr = — ^, /= 1, and c = — 3. Substituting these values in

(1) the required equation becomes x^ + y^ — I x +2^-3=0.

The centre is the point (^, - 1), and the radius is ^VOd.
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102. A geometrical construction for the polar of a point with respect

to a circle.

Let the equation of the circle be

x'^,/ = 'i^, (1)

Let P(x', y') be any point, BC its polar, and let OP and BC
intersect in Q. Then the equation of BC is [(5), § 101]

xx' + yy' = r^,

and the equation of the line OP is (§ 44)

xy' — x'y = 0.

Hence BC is perpendicular to OP (§ 45), and therefore

(2)

(3)

0Q =
Vx^' + y''

Also

[(5), §47.]

[(4), §7.]

(4)

(5)

(6)

OP=Vx'^-{-y''.

.-. OP' OQ = r'.

We therefore have the following construction for the polar of

a point P. Draw OP and let it cut the circle in R; then con-

struct a third proportional, OQ, to OP and r, i.e. take Q on the

line OP, such that OP: OP = OR:OQ, and draw a line through Q
perpendicular to OP.

Ex. 1. Construct the pole of a given line.
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103. To find the equation of the tangent to the circle

a? + f = i^ (1)

in terms of its slope m.

The line y = mx + h (2)

will touch the circle (1) if the perpendicular distance from it to the

origin is equal to the radius r of the circle ; that is, (§ 47) if

^
:, or 6 = rVrT^. (3)

Vl + m^

Therefore the straight line

y = mx + ^Vl + in^ (4)

will touch the circle (1) for all values of m.

Since either sign may be given to the radical Vl + m^ in (3), it

follows that there are two tangents to the circle for every value of m

;

i.e. there are two tangents parallel to any given straight line.

Ex. 1. Derive equation (3) by treating (1) and (2) simultaneously and taking

the condition for equal roots.

EXAMPLES

Find the equation of the circle passing through the three points

1. (1, 0), (6, 0), (0, 4). 2. (0, 0), (1, 1), (4, 0).

3. (2, -3), (3, -4), (-2, -1). 4. (1,2), (3, -4), (5,6).

Find the equations of the tangents to the circle

5. x2 + 2/2 = 4 parallel to2x + 3?/ + l=0.

1^6. a;2 + ^2 _ 6 a; parallel to3x-2y + 2 = 0.

Find the polar of the point

7. (1, 2) with respect to a;2 + y2 _ 5.

8. (3, - 2) with respect to 3(x2 + y2) _ 14.

9. (-4, 1) with respect to ic2 + y2 _ 2 aj 4- 6 y + 7 = 0.

Find the polar of the line

10. 2 oj + y = 1 and x — ^y = \ with respect to ic2 + ^2 _ 2.

11. X — 2 ?/ = 3 and 2 x + 2/ = 4 with respect to x^ + if = 6.

12. x + 2/+l=0 with respect tox2 + ?/2 + 4x-6i/ + ll=0.

\l.jr^
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104. To find the length of a tangent drawn from a given point

P{x\ y') to a given circle.

Let the equation of the circle be

(x-ay-h(y-by-r^ = 0. ^ (1)

Let C be the centre and PT one tangent from P.

Then, since CPT is a right triangle,

PT^=CP^-CT\
But OT2=r2, and CP'= (x' - ay + (y' - by. [§ 7, (2).]

.-. PT^ = («' - a)2 + (2/' - 6)2—^2. (3)

That is, the square of the tangent is found by substituting the

coordinates x', y' of the given point in the left member of equation (1).

Since the general equation of the circle,

a^H-/ + 2i/x + 2/2/ + c = 0, (4)

can be put in the form of (1) by merely adding and subtracting

g^ and /^ in the first member, it follows that if the coordinates of

any point are substituted in the first member of (4) the result will be

equal to the square of the length of the tangent drawn from the point

to the circle ; or the product of the segments of any chord (or secant) •

drawn through the point. (See proof of § 154.) >- .-^

Ex. 1. What is the meaning of (3) when the second member is negative

Ex. 2. What is represented by c in equation (4)?

Ex. 3. Where is the origin if c is positive ? if c is zero ? if c is negative ?

,^
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105. If a circle passes through the common points of two given circles,

tangents drawn from a7iy point on it to the two given circles are in a

constant ratio.

Let S = x^-^y'-h2gx + 2fy-\-c = (1)

and S'^x'-\-y^-\-2g'x-\-2f'y-\-c' = 0, (2)

be the equations of the two given circles.

Then the locus of aS' = kS^, i.e. (See Ex. 5, p. 62.)

a?-\-f-^2gx + 2fy-\-c = X(x' + f + 2g'x-\-2fy-\-c'), (8)

for all values of X, will pass through the common points A, B, of

(1) and (2). Moreover, (3) is a circle (§ 101), and therefore, for

different values of X, represents all circles through the intersection

of (1) and (2).

Let P(x', y') be any point on (3) ; let PT and PT^ be the tangents

to (1) and (2) respectively. Then the coordinates x', y' must satisfy

(3), and we therefore have

x" -\-y" + 2 gx' + 2/?/' + c = \(x'' + y"-^2 g'x' + 2f'y' + c'). (4)

Therefore PT' = X'PT'% (§104.) (5)

which proves the proposition, since X is constant for any particular

circle.
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When A. = 1, it is easy to show that the radius and the coordinates

of the centre (§ 101) of the circle represented by equation (3) all

become infinite. In this case the equation reduces to

2(flr-fir')« + 2(/-/')2/ + c-c' = 0,
_^ (6)

which is of the first degree, and therefore represents the straight

line AB through the common points of the two given circles.

Let QR and QR' be tangents to /iS = and S' = 0, respectively,

from any point Q on AB] then, since ABQ is the circle through the

common points of (1) and (2) corresponding to X= l, it follows from

(5) that

QR = QR'. (7)

That is, tangents drawn to the two given circles from any point

on the line (6) are equal.

It is to be noticed that the straight line given by (6) is in all cases

real, provided g, f, c, g\ f\ c' are real, although the circles /S' = and

>S' = may not intersect in real points ; in fact one or both of the

circles may be wholly imaginary. We have here, therefore, the case

of a real stiaijght line passing through the imaginary points of inter-

isection of two real or imaginary circles. (Cy. § 94.)

Definition. The straight line through the points of intersection

(real or imaginary) of two circles is called the Radical Axis of the

tAvo circles.

From equation (7) it follows that the radical axis may also be

defined as the locus of the points from which tangents drawn to the

two circles are equal to one another.

Cor. If the coefficients of o^ in S and S' are unity, the equation of

the radical axis of the two circles S = and S' = is S — S' = 0.

Ex. 1. Show that the radical axis of two circles is perpendicular to the line

joining their centres.

Ex. 2. If tangents are drawn to two circles from any point on a line parallel

to their radical axis, show that the difference of the squares of these tangents

is constant.

Ex. 3. Show that the radical axis of two circles divides the line joining their

centres into two segments, such that the difference of their squares is equal to

the difference of the squares of the radii.
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106. The radical axes of three circles, taken in pairs, meet in a point.

Let Si = 0, /iS'2= 0, ^iSg = be the equations of three circles, in each

of which the coefficient of ic^ is unity.

Then the equations of their three radical axes are (§ 105, Cor.)

Si — /S'2 = 0, S2 — ^3 = 0, Sq — Si = 0.

The sum of any two of these equations is equivalent to the third.

Hence they form a consistent system, and therefore their loci meet

in a point. Or, prove by § 49, letting A = 1.

TMs point is called the Radical Centre of the three circles.

EXAMPLES ON CHAPTER IX

Find the length of the tangents (or the product of the segments of the chords^

drawn from the points

V 1. (3, 2), (5, - 4) to the circle x"^ + y^ = 4.

2. (- 3, 2), (4, - 4) to the circle x^ -h y^ = 25.

3. (3, - 2), (1, 3) to the circle x^ -\-
y"^ - 2x - 4y = 0.

i 4. (2, 1), (0, 0) to the circle 2 (x2 + ?/) _ 12 x - 4 y + 15 = 0.

6. (0, 0), (- 2, - 5) to the circle x'^ -j- y^ - 6x -\- 4y + 4 z=0.

6. (0, 0), (6, - 3) to the circle x'^ + y"^ -\- 6 x - 8y - U =0.

Find the radical axis of the circles

I 7. x2 + ?/2 + 6 x - 4 ?/ - 3 = and a:2 + ?/2 - 4 X + 8 ?/ - 5 = 0.

8. a;2 + ?/2 - 8 X - 10 y + 25 = and x2 +?/2+8x-2y + 8 = 0.

9. x2 + ?/2 + ax + 6y - c = and rtx2 + ay"^ + a^x + b^y = 0.

10. Find the radical axis and the, length of the common chord of the circles

x^ + y^ + ax-\-by + c = o'and x^ + y^ -^ bx + ay + c = 0.

11. Show that the three circles

x2 + y2_2x-4y = 0, x2 + 2/2_6x + 4^ + 4 = 0,

x2 + ?/2_8x + 8i/ + 6 =
have a common radical axis. Find the equation of a fourth circle such that the

four shall have a common radical axis.

Find the radical centre of the three circles

12. af2 + 2/2 _ 4 a; ^ 8 y _ 5 ^ 0, x2 + y2 _ g x - 10 ?/ + 25 = 0,

' x2 + y2 + 8x + ll?/- 10 = 0.

13. x2-}-y2_|.6x-8?/ + 9 = 0, x2+?/2 + 8x + 2y + 9 = 0,

2(x2+2/2)_5(3a; + y) + 18 = 0.
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/
14. What is the equation of the normal in terms of its slope ?

^ 16. How many normals can be drawn from a point to a circle ?

16. Find the equation of a circle passing through (0, 4) and (6, 0), and hav-

ing V 13 for radius.

9 17. Find the equation of a circle whose centre is (3, 4) and which tmiches

the line 4x-3y + 20 = 0.

18. Find the equation of the circle passing through the point ( — 3, 6) and

touching both axes.

^ 19. Find the equation of the circle touching the line y — c and both axes.

Write down the equation of the tangent to the circle

J80. x2 + y2 _ 2 a; + 3 y - 4 = at the point (2, 1).

'^21. a;2 ^_ y2 ^_ 4 aj _ 6 y _ 13 = at the point (- 3, - 2).

22. Show that the lines y = m{x — r) ±r V 1 + wi^ touch the circle

x2 + ?/2 = 2 rx,

whatever the value of m may be.

Find the equation of the tangent to the circle

23. 9 (x2 + y2) _ 9 (6 X - 8 y) + 125 = parallel to 3 x + 4 j^ = 0.

24. Show that the line x — 2 y = touches the circle

a;2 _|_ ^2 _ 4 a; 4- 8 2/ = 0.

-4. 25. The line y = 3 a; — 9 touches the circle

ic2_|_2/2 + 2x + 4y-6 = 0.

Find the coordinates of the point of contact.

26. Find the equation of the tangent to x2 -f 2/2 _ ,.2 ^j) which is perpendic-

ular to y = mx 4- 6, (2) which passes through the point (c, 0), (3) which makes

with the axes a triangle whose area is ifi.

Find the polar of the point

. 27. (2, - \) with respect to x2 + 2/2 + 3 x - 5 ?/ + 3 = 0.

28. (- a, 6) with respect to x2 + ?/2 - 2 ax + 2 6y + a2 - 52 = 0.

Find the pole of the line

•( ^ 29. 2 X -I- 14 2/ = 15 with respect to 2 (x2 + ?/2) _ 3 ^j 4. 5 j,
_ 2 = 0.

30. 3 (ax - 6y) -a^^-lfi with respect to x2 + 2/2 _ 2 ax -f- 2 6?/ = a2 -l- h\

^ 31. Show that the circles x2 + ?/2_4a;^2i/ = 15 and x^ \-y'^ — ^ touch one

another at the point (—2, 1).

32. Show that the radical axis of two circles bisects their four common tan-

gents.

33. The distances of two points from the centre of a circle are proportional

to the distances of each from the polar of * other.
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/"^ 34. What is the analytic condition that the origin shall be the radical centre

of three given circles ?

v^ 35. Find the equation of the circle through the origin and the points of inter-

section of the circles

x'2-\-y'i-^x-1y + 6 = and x^ + y"^ + ix + dy - 12 = 0.

-; What is the ratio of the tangents drawn from any point on it to the two given

circles ?

/ >^ 36. Find the equation of the circle which touches the line 4 ?/ = 3 x and passes

through the common points of

x2 4-2/2 = 9 and ic^ + ?/2;+ x + 2y=U.

37. What is the ratio of the tangents drawn from any point on the third

circle in Ex. 11 to the other two circles ?

^_ 38. Find the equations of the straight lines which touch both of the circles

x2 + 2/2 = 4 and (x - 4)2 -f ^2 _ i, ^^g^ Sx±V7 y = S and x ± vT5 y = 8.

39. Find the equations of the common tangents to the circles

x'^ + y^-\-6y-\- 6 = and x"^ -h y^ - 12 y -\- 20 = 0.

40. If the length of the tangent from the point (x', y') to the circle x2 + ?/2 = 9

is twice the length of the tangent from the same point to x2 + 2/2 _j_ 3 ^j _ g ^ _ q^

show that
^,2 + 2/'2 + 4 X' - 8 y' + 3 = 0.

41. If the tangent from P to the circle x2 -i- ?/2 -f 3 y = is four times as long

as the tangent from P to the circle x^ + y^ = 9, show that the locus of P is

5(x2-f?/2) = ?/ + 48.

42. The length of a tangent drawn from a point P to the circle

x'^ + y'^+4:X-6y + 4 =
is three times the length of the tangent from P to the circle

x2 + 2/2-6x + 2?/ + 6 = 0.

Find the locus of P.

43. Find the locus of a point whose distance from the origin is equal to the

length of the tangent drawn from it to the circle

x2 + ^2_8x-4?/ + 4 = 0.

44. Find the locus of a point P whose distance from a fixed point is in a

constant ratio to the tangent drawn from P to a given circle. Under what
condition is the locus a straight line ?

46. Show that the polar of any point on the circle

x2 + 2,2 _ 2 ax - 3 a2 = 0,

with respect to the circle x^ + ^2 ^ 2 ax - 3 a^ = 0, will touch the parabola

2/2 + 4 ax = 0.
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46. Show that the polars of the point (1, 0) with respect to the two circles

x^ -^ y^ + 4:X — 14: = and x^ -\- y^ = 4 are the same line ; show that the same is

true of the point (4, 0).

47. Find two points such that the polars of each with respect to the two
circles x'^ + y^-2x-S = and x^ -{-

y^
-i- 2 x - 17 = coincide.

48. A certain point has the same polar with respect to two circles
;
prove that

any common tangent subtends a right angle at that point. Show also that there

are two such points for any two circles.

49. Find the locus of the intersection of two tangents to jc2 4. ^2 _ ,.2 which

are at right angles to one another.

50. Find the locus of the intersection of two tangents to x^ -\- y^ = r^ which

intersect at an angle a.

61. Show that if the coordinates of the extremities of a diameter of a circle

are (xi, yi) and (x2, y^), respectively, the equation of the circle will be

{x - xi){x - X2) -\- (y ~ y\) (y - 2/2) = 0.

[Suggestion. Lines joining any point (a;, y) on the circle to (xi, yi) and

(X'z, y-z) are at right angles to one another.]

Find the equation of the circle which touches

62. the lines x = 0, x = a, and 3y = 4x + 3a.

OneAns. 4 {x^ + y^)- 4: a {x-h 6 y)+ 26 a^ = 0.

53. both axes and the line - + | = 1.
a

64. Prove analytically that the locus of the middle points of a system of

parallel chords of a circle is the diameter perpendicular to the chords. (See

§ 99.)

' 65. Show that as a varies the locus of the intersection of the lines

X cos a + y sin cc = a and a; sin a — y cos a = b
is a circle.

66. A circle touches the y-axis and cuts off a constant length (2 a) from the

X-axis ; show that the locus of its centre is x'^ — y^ = a^.

57. Two lines are drawn through the points (a, 0) and ( — ,a, 0) and make an

angle a with one another. Show that the locus of their point of intersection is

x^ -\-y^ ±2 ay cot a = a^.

58. If the polar of the point (x', y') with respect to the circle x^ + y^ = ^2

touches the circle x^-i- y^ = 2 ax, show that y'^ + 2 ax' = a^.

59. Show that if the axes are inclined at an angle w, the equation of the circle

is (§ 8) (a; _ a)2 + (y - by + 2 (x - a) (y- 6) cos w = »^,

where (a, 6) is the centre and r the radius.



CHAPTER X

THE ELLIPSE AND HYPERBOLA

107. Standard equations of the tangent^ polar, and normal to the

ellipse and hyperbola.

It has been shown in § 89 and § 90 * that, if the axes of the curve

are taken as coordinate axes, the equations of the ceyitral conies may
be written in the standard form

Then the coordinates of the foci are (± ae, 0); the equations of

a 2b^
the directrices are « = ± - ; the length of the latus rectum is— ; and

e =
a

For equation (1) formula (6), § 92, gives

Equation (2) is the equation of the polar (§ 94) of the point («', y')

with respect to the central conic (1), which polar is a tangent at the

point {x'y y') when (x', y') is on the conic.

The equation of the normal at any point (x', y') on the conic (1) is

"-"' = ffc("-^'>' "'^ ="'• f (')' « ^2-] (3)

Ex. 1. Find the equations of the central conies when the origin is at either

focus ; at either vertex ; at the point (^, k) , the coordinate axes being parallel

to the axes of the conic.

Ex. 2. What relation does the line (3) have to the conic when (x', y') is not

on the curve ?

* These sections should now be carefully reviewed.

t We shall use this form of the equation, although the simpler form ax^ + by^ = 1 is

sometimes more convenient. When the double sign db or =p is prefixed to b^, the

upper sign holds for the ellipse and the lower for the hyperbola. All results are true

for both curves unless the contrary is expressly stated. Furthermore, results for the

ellipse include those for the circle as the special case when a = 6.

160
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108. To find the equation of the tangent to the conic

in terrns of its slope m. "

Assume the equation of the tangent to be

y = mx + c, (2)

where m is known, and c is to he determined so that (1) and (2) shall

intersect in two coincident points (§57). t

Eliminating y between (1) and (2) gives

^ + (^^ + cf_ -I /
a' 6^

or x" {a^m" ± 6' )+ 2 ahmx + a^ {<? T 6') = 0. (3)

The roots of equation (3) will be equal if

a2 (c2 IF 62) (aV ^ j2>^ ^ ^a^^2

Whence c" = a'm^ ± h\ (4)

That is, the points of intersection of the straight line and the

conic will coincide if

c = ± V a'm' ± h\ (6)

Hence the line whose equation is

y = mx ± V a2m2 ± 62, (6)

will touch the conic (1) for all values of m.

The double sign before the radical in (6) shows that there are two

tangents for every value of m ; i.e. there are two tangents to a central

conic parallel to any given straight line; and these two parallel -

tangents are equidistant from the centre of the conic.

Ex. 1. Derive equation (6) by the method used in § 98.

Ex. 2. In a similar manner show that the equation of the normal to (1)

expressed in terms of its slope is

w(a2 T 62)

Va2±62w2

Ex, 3. How many normals can be drawn from a given point to a central

conic ?
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109. Geotnetric properties of the ellipse and hyperbola.

Y ^

Let the tangent at P(x', y') meet the axes in T and T"; let the

normal at P meet the axes in N and N' ; let BP be the ordinate of

P and F, F' the foci of the conic.

Draw FG, F'G', and O/iT perpendicular to the tangent PT.

^^ThenOr=^,^ OT'^-^.^;.^ ^[(2), § 107.]

y
a^— X

2/'

.1^

0N= eV, ON' = ^^y'- 'l^^ [(3), § 107.]

Subnormal = i2iV= (e^ — l)x' = ?/

die'

N^ T

OK'NP=FG . JF^'G^' = ± 61

PN^PM'= FP.'F'P:=± (a' - eV). (§§ 89, 90.)

F^G and FG^ bisect ^JV.

The locus of G^ and G^' is a^ + 2/' = «^ [Use (6), § 108.]

(1)

(2)

(3)

(4)

(P)

(6)

(7)

(B)

(^)

F^N __ F'6 +777r2 ae + e^x' ^ a + ex'

]^F " OF- 0N~ ae- e^x' ~ a - ex'

F'N^ F'P y
*** NF ±FW (§§89,90.) (10)
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Therefore the tangent and the normal bisect the angles between

the focal radii FP and F'P.

Hence, if an ellipse and a hyperbola have the same foci, the

tangent and the normal to one of the curves at any one of their four

common points are, respectively, the normal and the tangent to the

other. That is, the two conies intersect orthogonally.

Conies having the same foci are called Confocal Conies.

Ex. 1. Explain what would happen if a light were placed'at one focus of an

ellipse ; a hyperbola.

Ex. 2. What is the limit of ON, ON', and BN asx' = a? asx' = 0?

Ex. 3. Show that equations (1), (3), and OK' NP=b^ are also true when

P is any point, TT' the polar of P, and PN is perpendicular to TT'.

Ex. 4. Show that the equation 1 represents a system of coit-
al ^\ 62 4. X

focal conies, where X is the arbitrary parameter. Investiijate the nature of

these conies for values of X ranging from — oo to + oo . Show that two confo-

cals, an ellipse and a hyperbola, pass through every point in the plane, and that

these meet at right angles. \
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EXAMPLES

Find the eccentricity, foci, and latus rectum of each of the following conies :

1. a;2 + 2 2/2=:4. 2. ix^-9y^ = S6.

3. 4 x2 + y2 = 8. y 4. 3 a;2 - 2/2 = 9.

f 6. 3(x- 1)2 + 4(^ + 2)2=1. y/ 6. 3(2/ - 1)2 -4(«+ 1)2 = 1.

Find the equation of an ellipse referred to its axes

7. if the latus rectum is 6 and the eccentricity ^.

8. if the latus rectum is 4 and the minor axis is equal to the distance

between the foci.

9. Find the equation of the hyperbola whose foci are the points (+4, 0)

and whose eccentricity is y/2.

10. Find the eccentricity and the equation of the ellipse, if the latus rectum

is equal to half the minor axis.

11. Find the equation of the hyperbola with eccentricity 2 which passes

through (-4, 6).

/ 12. Find the equation of the ellipse passing through the points ( — 2, 2) and

(3, — 1); also the equation of the hyperbola through (1, — 3) and (2, 4).

Through how many points can a central conic be made to pass if its axes are

given ? Why ?

13. Find the eccentricity and the equation of a central conic if the foci lie

midway between the centre and the vertices ; if the vertices lie midway between

the centre and the foci.

14. Show that the tangents at the ends of either axis of a central conic are

parallel to the other axis ; and also that tangents at the ends of any chord

through the centre are parallel.

16. Find the equations of the tangents and normals at the ends of the latera

recta. Where do they meet the a;-axis ? One Ans. y + ex = a.

/ 16. Show that the line ?/ = 2 a; — y'| touches the conic

3 x2 - 6 2/2 = 1.

17. Find the equations of the tangents to the ellipse x"^ + 4ty'^ = \Q which

make angles of 45° and 60° with the x-axis.

18. Show that the directrix is the polar of the focus.

19. If the slope of a moving line remains constant, the locus of its pole with

respect to a central conic is a straight line through the centre of the conic.
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110. Conjugate Hyperbolas.

The two hyperbolas whose

equations are

^_r_i
a' W~ '

and

or

x" -1,

62
-".=1,

(1)

(2)

are so related that the trans-

verse axis of the one is the

conjugate axis of the other.

The two hyperbolas are then

said to be conjugate to one

another.

The eccentricity of the Conjugate Hyperbola* is ei =

the coordinates of its foci are (0, ± be^) ; the equations of its direc-

trices are 2/ = ± — ; and its latus rectum is —^•

When a = b, equations (1) and (2) become, respectively,

V6' + a'

/2 = a\\and y^ — Qi? = c?.)

Hence if a hyperbola is equilateral or rectangular [§ 90, (15)],

its conjugate is also rectangular.

Two conjugate hyperbolas are not, in general, similar (§ 116), i.e.

of the same shape, but two conjugate rectangular hyperbolas are

equal."

* The hyperbola (2) is usually called the Conjugate Hyperbola, while (1) is called

the Original, or Primary Hyperbola. It is to be noticed that the equation of the

conjugate hyperbola is found by changing the sign of one member ot the equation ol

the primary hyperbola. Likewise the equation of the conjugate ellipse is found to be

Henoe the conjugate of an ellipse is imaginary.
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111. To find the locus of the point of intersection of two perpendicu-

lar tangents to the conic

or ¥

The equation of any tangent to (1) may be written (§ 108)

y = mx + ^ahn^ ± h^. (2)

If this line (2) passes through (ccj, 2/i)> we shall have

which when rationalized becomes

(x,'-a')m'-2x,y,7n+(y,'Tb')=0. (3)

This equation is a quadratic in m whose two roots are the slopes

of the two tangents which pass through the point (x^, y^), whose
locus is required.

Let mi and mg be the two roots of (3) ; then (§ 68)

mimg —— •

Xi — a^

The two tangents will be at right angles if mimg= — 1 (§ 45)

;

i.e. if

or
,

aj/ + 2/i' = a'±&2. (4)

The required locus is, therefore, the circle

x^ + y^ = a^±b^, (5)

which is called the Director Circle of the conic.

Cor. I. Ifa<b, the director circle of a hyperbola is imaginary.

Hence one of the director circles of two conjugate hyperbolas is always
imaginary.

Cor. II. The director circle of the ellipse ^ + ^ = 1 passes through

x^ 7/2
a^ b^

the foci of the hyperbolas ——^ = ±1 and vice versa,
a^ b^

What does this mean when a = b?
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112. Auxiliary Circle, and Eccentric Angle.

I. The circle described on the major axis of an ellipse as diame-

ter is called the Auxiliary Circle.

Y

If the equation of the ellipse is

(1)

the equation of the auxiliary circle will be

x^ + f = a\ (2)

If the ordinate NP of any point P on the ellipse is produced to

meet the auxiliary circle in Q, then P and Q are called Corresponding

Points.

Let P(.Ti, .?/i) and Q{x^, y^ be any two corresponding points ; then,

since these points are on (1) and (2), respectively,

2/1 = 5Va^ - xi'^ (3)

a

and ?/2 = Va^ — x^^- (4)

(5)

2/2 = Va^ — x^.

... yi=K

That is, the ordinates of corresponding points are in a constant ratio.

Ex. Show that the area of the ellipse is irab.
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The angle XOQ is called the Eccentric Angle of the point P. It

will be denoted by <^.

Then the coordinates of the point Q are

a^ = a cos
(f>j y2 = ci sin <^.

Since 2/1 = -2/2 = & sin
<f>,

the coordinates of P are
a

Xi = a cos «t), Vi-h sin <|>. (6)

II. The circle described on the transverse axis of a hyperbola as

diameter may be called the Auxiliary Circle of the hyperbola.

Let P(x, y) be any point on the hyperbola and NP its ordinate.

Draw NQ tangent to the auxiliary circle at Q, so that P and Q are

on the same side of the transverse axis when P is on the right

branch, and on opposite sides when P is on the left branch of the

curve. Then, as P describes the complete hyperbola in the direc-

tion indicated by the arrows, Q will move consecutively around the

circle in the direction indicated. Thus, for every position of P on

the hyperbola, there is one and only one corresponding position of

Q on the circle.

Hence P and Q may be called Corresponding Points, and the

angle XOQ = <fi may be called the Eccentric Angle of the point P.
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Let the equation of the hyperbola be

$-$='
,

(^

Then ON= a; = a sec +, _ (^)

which substituted in (7) gives

y = b tan ^. (9)

That is, P is the point (a sec «|>, b tan <|>).

Similarly, se^ -\- y^ — b^ is the auxiliary circle of the conjugate

hyperbola, and (a tan
<f),

b sec
<f>)

is any point on the curve if
<f>

is

measured clockwise from the positive end of the 2/-axis ; if <^ is meas-

ured from the x-axis the point is (a cot <^, b esc <^).

113. To find the equatioii of the straight line joining two points on a

conic whose eccentric angles are <^ and <^'.

If the conic is an ellipse, the points are (§ 112)

(a cos <^, b sin <^) and (a cos <^', b sin <^').

The equation of the line through these points is [(3), § 44]

a; — a cos </> _ y — 6 sin <^ ^^x

a cos <fi
— a cos

<f>'
b sin

<f>
— b sin

<f>'

Since cos </> — cos <^' = — 2 sin |(</> + <^') sin ^{<f>
—

<t>')

and sin <^ — sin <^' = 2 cos J(<^+ <^') sin ^(<^ — <^'),

equation (1) reduces to

^-"^^^ ^ |-^^^^
(2)

-2sinK</» + <^') 2 cos K<^ + </>')*

.-. ^ cos i(<|> + 4.0 + 1 sin !(<!>+ <!»') = cos |(<|»-<|»0, (3)

which is the required equation.

In like manner the equation of the line joining the points (a sec
<f>y

b tan <^) and (a sec <^', b tan tf>') on the hyperbola can be shown to be

^ cos ^(4. - 4>') - 1 sin |(<|> + 4>') = cos 1(4. + 4»'). W
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To find the equation of the tangent at the point (}>, we put <^' = <^

in equations (3) and (4), and we obtain for the ellipse

^cosc|» + |sm<|> = l, (5)

and for the hyperbola

-sec<|>-gtan<|» = l. (6)

From equation (3) we see that if the sum of the eccentric angles

of two points on an ellipse is constant and equal to 2 a, the equation

of the line joining them is

- cos « + T sin a = cos
J(</>

— <^'). (7)

Hence the chord is always parallel to the tangent

i cos a + 1 sin « = 1. (8)

Conversely, in a system of parallel chords of an ellipse, the sum
of the eccentric angles of the extremities of any chord is constant.

Similarly from equation (4) we see that if the sum of the eccen-

tric angles of two points on a hyperbola is constant and equal to 2 a,

the equation of the chord through these points is

- cos i(<f>
— <^')—

I
sin a = cos a, (9)

and therefore the chord, and the tangent at the point a, viz.,

*t sin a — cos a, (10)ah ' ^

always meet the 2/-axis in the same fixed point.

114. To find the equation of the normal at any point in terms of the

eccentHc omgle of the point.

Let (a cos
<f),

b sin <^) (§ 112) be any point on the ellipse; then the

slope of the tangent at the point <^ is - ^£2^. [§ 113 (5).-j

a sin </)
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Hence the equation of the normal at <^ is [(2), § 62]

, . , a sin <^ , ,

.

.^ ^y-b8m<l> = :^-^^(x-acos4>), (1)

Similarly we find the equation of the normal to the hyperbola at

the point (a sec
<f>,

b tan </») to be

EXAMPLES

1. The point P(— 3, — 1) is on the ellipse x^ + S y"^ = \2 ; find the correspond-

ing point on the auxiliary circle, and the eccentric angle of P.

2. An ellipse slides between two perpendicular lines ; show that the locus of

the centre is a circle. (§ 111.)

3. Show that, for all values of 6, tangents to the ellipse -^ + p = -^ *^ points

having the same abscissa meet the oj-axis in the same point. Hence show how a

tangent can be drawn to an ellipse from any point on the x-axis.

4. Two tangents are drawn to a conic from any point on the director circle
;

prove that the sum of the squares of the chords which the auxiliary circle inter-

cepts on them is equal to the square of the line joining the foci. (See (9), § 109.)

5. If the points Q and Q' are taken on the minor axis of a conic such that

Q0= OQ' = OF, where is the centre and F a focus, show that the sum of the

squares of the perpendiculars from Q and Q' on any tangent to the conic is con-

stant.

6. A line is drawn through the centre of a conic parallel to the focal radius/

of a point P and meeting the tangent at P in Q. Find the locus of Q.

7. From one focus of an ellipse a perpendicular is drawn to any tangent and

produced to an equal distance on the other side. Show that its terminus Q is in

the straight line through the other focus and the point of tangency. Also find

the locus of Q.

8. Show that the locus of the point of intersection of tangents to an ellipse at

two points whose eccentric angles differ by a constant is an ellipse.

x'
[If the tangents at + a and — a meet at (x', y')> then — = cos sec a,

^ = sin sec a. Eliminate for the locus.]

What is the corresponding theorem for the hyperbola ?

A



(1)
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115. Def. An Asymptote* to a curve is the limiting position

of the tangent line as the point of contact moves off to an infinite

distance, while the line itself remains at a finite distance from the

origin.

Tojind the asymptotes of the hyperbola.

a^ b'"

As in § 108, the abscissas of the points where the line

y = mx 4- c (2)

meets the hyperbola are given by the equation

x"(aV - 5') + 2 a'cmx + a' (c" + b^) = 0. (3)

If the line (2) becomes an asymptote, both roots of equation (3)

must become infinite. Hence the coefficients of a^ and x must both

approach zero (§ 77). That is,

a^cm = 0, and a^m^ — b^ = 0.

.-. lim c = 0, and lim m = ± — (4)
a ^ ^

Substituting these limiting values in (2), we have for the required

equations of the asymptotes

or expressed in one equation \) C^

Therefore the hyperbola has two asymptotes, both passing through

the centre and equally inclined to the transverse axis.

The equations of the asymptotes to a hyperbola can also be found

by considering the limiting form of the equation of the tangent as the

point of contact moves off to an infinite distance.

The equation of the tangent to (1) at (x'j y') is

xx' vv' . ,_

^-f = l- (7)

* Greek, dtriJ/xn-Twros, not falling together.
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Since the point (x\ y') is on the conic (1), we have

0/

Hence quotation (7) may be written H _

If now the point of contact («', y') moves off to an infinite distance

so that x' becomes infinite, the limiting position of the line (8) is

given by the equation x v

5±f = 0, (9)

which is the same as equation (5) above.

CoR. I. Two conjugate hyperbolas have the same asymptotes, which

are the diagonals of the rectangle formed by the tangents at their vertices.

CoR. II. A straight line parallel to an asymptote will meet the conic

in one point at infinity.

For, if c is not zero, only one root of (3) is infinite.

Cor. III. The line y = mx will cut the hyperbola in real or imagi-

nary points according as m<,or^-- It will meet either the hyperbola
a

or its conjugate in real points for all values of m.

Cor. IV. The asymptotes of an ellipse are imaginary.

For, if we change the sign of 6^, the values of m for infinite roots

in (3) become imaginary.

It is to be noticed that the equations of two conjugate hyperbolas

and the equation of their common asymptotes, viz.,

-2-^=±l and ^-^= 0,
a^ Ir a^ Ir

differ only in their constant terms. Moreover, this must always be

true ; for any transformation of coordinates will affect the first mem-
bers of these equations in precisely the same way. Hence the new
equations will differ only in their constant terms (not usually by

unity) ; and the value of the constant in the equation of the asymp-

totes will be equal to half the sum of the constants in the equations

of the two hyperbolas.
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116. Similar and Coaxial Conies.

Since a^Ksbnd 6^^ are the semi-axes of the ellipse

S+P=^' (1)

its eccentricity is given by the equation

e = (§ 107.)a^K a

That is, the eccentricity of (1) is the same as the eccentricity of

the ellipse represented by the standard equation

5+S= l- (2)

Two conies having the same eccentricity are said to be similar ; for

one is then merely a magnification of the other.

Conies having their axes on the same lines are said to be Coaxial.

Hence if K is an arbitrary parameter, (1) will represent a system

of similar and coaxial ellipses.

For any particular value of K the equations

i-t=±K (3)

represent a pair of conjugate hyperbolas (§ 110).

If, however, jfiTis arbitrary, equations (3) will give (as in the case

of the ellipse) a system of similar and coaxial hyperbolas, together

with their corresponding conjugate hyperbolas, which are also similar.

It follows from § 115 that these two infinite systems of hyperbolas

all have the same asymptotes. Moreover, the asymptotes are the

limit which both systems approach as K becomes zero. Thus two

intersecting lines are not only one of a system of similar and coaxial

hyperbolas, but may also be regarded as a pair of self-conjugate hyper-

bolas.

It is also to be noticed that although both axes of two intersecting

lines are zero, the limit of their ratio as they approach zero is the

tangent of half the angle between the lines.

Cor. The axes of similar conies are proportional.
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117. To find the locus of the middle points of a system of parallel

chords of a central conic.

I. Let AB be any one of a system of parallel chords of the

ellipse

^ + t = K. (1)

Let P(x', y') be the middle point of ABj and y its inclination

to the aj-axis.

Then the equation of AB may be written [§ 43, (4)]

x—x' y — y'

cos y Sin y

ot x = x' -\-r cos y, y = y' -; r sin y, (2)

where r is the distance from (a;', y') to any point (a;, y) on the line.

If the point (x, y) is on the ellipse, these values (2) may be sub-

stituted in equation (1) ; this gives

(x' + r cos y^*^
,
(7' -f r sin y)'^ j^ ^^-p ~ 7^

"-^ = -fl., or

/cos

^2 ^ ^2 y T- ^ ^2
-^

52 y ^^2-^52 ^ "• W
The values of r lound by solving this quadratic equation are

the lengths of tka lines PA and PB, which can be drawn from P
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along AB to the ellipse. Since P is the middle point of the chord,

these two values of r must be equal in magnitude and opposite m
sign ; i.e. the sum of the roots of (3) must be zero. Hence (§ 68)

a;'cos Y y' siny^r. .^.

a' ^ b'
'

^ ^

The required locus is, therefore, the straight line

y= cot 7 • a?. (5)

Henee every diameter (§ 99) of an ellipse passes through the

centre.

CoR. I. All chords intercepted on the same line, or on a series of

parallel lines, by a system of similar and coaxial ellipses are bisected by

the same diameter.

Since equation (5) is independent of K, the locus of P is the

same whatever value may be given to K in (1). (§ 116.)

CoR. II. If a straight line meets each of two similar and coaxial

ellipses in two real points, the tico portions of the line intercepted between

them are equal ; i.e. AA = BB'.

CoR. III. Chords of an ellipse which are tangent to a similar and

coaxial ellipse are bisected at the point of contact.

CoR. IV. The tangent at either extremity of any diameter is parallel

to the chords bisected by that diameter.

II. In like manner, if "y is the inclination to the a>-axis of a

system of parallel chords of the hyperbolas

a^ b^
'

^ ^

we find the locus of the middle points of the chords to be the

straight line

y=-^cot7-a^, (7)

for all values of K, including the case K— 0.

Hence all diameters of a hyperbola pass through the centre.

The preceding corollaries apply also to similar and coaxial hyper-

bolas.
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Cor. V. Cliords intercepted on the same line, or on a system ofpar-

ellel lines, by two conjugate hyperbolas, and their asymptotes, are bisected

by the same diameter.

Cor. YI. If a straight line meets each of two conjugate hyperbolas

in real points, the two poHions of the line intercepted between the curves

are equal. TJie portions intercepted between either hyj)erbola and the

asymptotes are also equal; i.e. A"A = BB" and A'A = BB'. Hence

the part of a tangent to a hyperbola included between the two branches

of its conjugate, and also the part included between its asymptotes, are

bisected at the point of contact.

Ex. 1. Find the locus of the middle points of chords of the ellipse

4 x2 + 9 y2 = 36 parallel to 3 a; - 2 ?/ = 1.

Ex. 2. Find the equation of the chord of the hjrperbola 26 x^ - 16 j/2 = 400

which is bisected at the point (2, - 6).

Ex. 3. Find the equation of the chord of the ellipse 4 a;^ + 8 t/^ = 32 which

is bisected at the point ( — 2, 1).

\ A.l^L/
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Conjugate Diameters

118. We have seen in § 117 that all diameters of a central conic

pass through the centre. Conversely, every chord which passes

through the centre is a diameter, i.e. bisects some system of parallel

chords. For, by giving y a suitable value, equations (5) and (7) of

§ 117 may be made to represent any chord through the centre.

If y' is the inclination to the aj-axis of the diameter which bisects

all chords whose inclination is y, we have, from (5) and (7) of § 117,

h-
tan y'—^— cot y,

a^

or tan y tan y' = q= (1)
a^

Let y= mx and y = m'xhe any two diameters.

Then, if the first bisects all chords parallel to the second, we have

from (1) , o

mm'=T^' '

(2)

Since this is the only condition that must hold in order that the

second may bisect all chords parallel to the first, it follows that,

if one diameter of a conic bisects all chords parallel to a second, the

second diameter will also bisect all chords parallel to the first.

Def. Two diameters, so related that each bisects every chord

parallel to the other, are called Conjugate Diameters.*

For example, the axes are a pair of conjugate diameters.

From equation (2) we see that the slopes of two conjugate

diameters of an ellipse have opposite signs, whereas in the hyper-

bola the signs are the same. (See figures under § 117.)

If m < -, then m' > -, numerically,
a a

Hence conjugate diameters of an ellipse are separated by the

axes, and also by the lines ay= ±bx; while conjugate diameters of

a hyperbola are separated by the asymptotes, but not by the axes.

* It is evident that none but central conies can have conjugate diameters, since in

the parabola all diameters have the same direction (§ 99)

.
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If m = - , then m' = in the ellipse.

The two diameters are then equally inclined to the major axis, and,

from the symmetry of the curve, the two diameters are equal in length.

The equations of the equal conjugate diameters of an ellipse are,

therefore, i,

v=±l^. (3)

If m = ± -, then in the hyperbola m' = ± -, respectively.
a a

Therefore equi-conjugate diameters of a hyperbola coincide with

an asymptote, so that an asymptote may be regarded as a self-conju-

gate diameter.

The equi-conjugate diameters of a conic, therefore, in all cases

-Vcoincide in direction with the diagonals of the rectangle formed by
>a: tangents at the ends of its axes.

^ CoR. I. If tivo diameters are conjugate with respect to one of two con-

^" jugate hyperbolas, they will be conjugate with respect to the other also.

^%m. and (7), § 117.]

v^ >^5^ CoR. II. One of two conjugate diameters of a hyperbola meets the

y *
jf

curve in real points, and the other meets the conjugate hyperbola in real

JTT^ points. (Cor. Ill, § 115.)

r ^^^ For this reason we will call the extremities of any diameter of a

^ *^ ^ hyperbola the points in which it cuts either the primary or the con-

K^J jugate hyperbola, as the case may be ; and the length of the diameter

^ O will be the distance between these points.

^^Jv Cor. III. Tangents at the ends of any diameter are paraMel to the

^ n conjugate diameter. /N^
^% _ ^'^^^
•1 ^ Ex. 1. Write down the equations of the diameters conjugate to f^ \iJi*^

^ x-y = 0,x-\-y = 0,by = ax,ay = bx. ^^ ^
Ex. 2. In the ellipse 2x^ + ^y^ = S, find two conjugate diameters, one of

which bisects the chord as + 2 y = 2.

g^^^^ Ex. 3. Find the equation of the diameter of the hyperbola 16x^ — 9y^ = 144

TC conjugate to x -f- 2 y = 0.

•^>i^ y^ ^^* "*• ^^^^ ^^^ conjugate diameters of the ellipse 4 a? -f- 25 y* = 100, one of

/which passes through the point (3,-1).

'^^.A Ex. 6. Find the equation of the chord of the hyperbola x^ — y^ = l6, whose

^«^ddle point is (- 2,

'N^ftW-'"^
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119. Oiven the extremity of any diameter, to find the extremities of

the conjugate diameter.

I. Let Pi(fl7i, 2/i)j -Pa (''^2) 2/2) be the extremities of two conjugate

diameters of an ellipse.

Then the equations of OP^ and OP2 are

or

= —x and y = ^x.
Xi X.2

XiX.2

.2
~^

a^

= 0.

[(1),§118.]

(1)
a^ h^

Let <^i, <^2 be the eccentric angles of P^ Pg, respectively.

Then ajj = a cos <^i, 2/i = ^ sin <^i,

0^2 = a cos <^2> 2/2 = ^ sin <^2- (§ 112, 1.)

Substituting these values in (1), we have

cos <^i cos </)2 + sin <^i sin <^2 = cos (<^i~ <^2) = 0. (2)

.*. ^1 -"^
<j^2 ^^^ 90 ./

That is, the eccentric angles of the extremities of two conjugate

diameters of an ellipse differ by a right angle. >Hence the corre-

sponding diameters OQi, OQ2 of the auxiliary circle are perpendicu-

lar to one another.



119]

Since

THE ELLIPSE AND HYPERBOLA 171

<^2 = <^i±90°,

sin <;^2 = ± cos <^i, cos
<f>2
— T sin <^i.

Therefore the extremities of two conjugate diameters of an ellipse

may be written

JPi (a cos <|)i, 6 sin <|»i) and 1*2 ( ^ « siii<|>i, ± 6 cos <|>i)

,

']

(3)or ^i(a?i, Vi) and Pgf T ^2/1? ± -^ij-

(4)

II. If Pi, F2 are the extremities of two conjugate diameters of a

hyperbola, equation (1) becomes

Then from § 112, II, and § 118, Cor. II, we also have

Xi = a sec ^1, 2/1 = 6 tan <^i,

X2= a tan <}>2, 2/2 = 6 sec ^2-

Substituting these values in (4) gives

sec <^i tan <f>2
— tan <^i sec <^2 = 0,

sin
<f>2

sin <^i
or

cos ^1 cos <^2 cos <^i cos <f>2

,; ^2= <^ or <^2 = TT —
<j!>i

= 0.

(6)

(7)
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That is, the eccentric angles of the ends of two conjugate diame-

ters of a hyperbola are either equal or supplementary. Therefore

the corresponding diameters OQi, OQ2 of the auxiliary circles are

equally inclined to the transverse axes of the two conjugate hyper-

bolas.

Since tan <^2 = ± tan <^i and sec <^2 = ± sec «^i,

the extremities of any two conjugate diameters of a hyperbola may
be expressed in the form

Pi (a sec <|>i, b tan 4>i) and J*2 (± « tan c|>i, ± b sec «|>i),

Pi(^ 2/1) and J^2(±^yi, ±-^1)'or
(8)

120. The sum of the squares of two conjugate semi-diameters of an
ellipse is constant.

Let the extremities of any two conjugate diameters be [§ 119, (3)]

Pi (a cos </), h sin <^) and P2(T a sin <^, ±h cos <^).

Let OPi= a', OP2 = b'j being the centre.

Then a'^ = a' cos^ <f>-}-b^ sin^ <^, [(4), § 7]

h"'= a^sm^<f>-\-b^cos^<f>.

... a'^ + 6^2 = a2 + 62.

121. The area of the parallelogram formed by tangents at the ends

of conjugate diameters of an ellipse is constant.

Let Pj (a cos <^, b sin <^) and P2 ( =F « sin
<l>,

±b cos <^)

be the extremities of any two conjugate diameters, and let ABCD be
the parallelogram formed by tangents at the ends of these diameters.

Draw P^N perpendicular to OP2 ; then

Area ABCB= 4.0P2' P^N= 4 6'
. P,N.

Since OP2 is parallel to the tangent at Pj [§ 118, Cor. Ill], the

equation of OP2 may be written [(5), § 113]

- cos A 4- 1 sin d> = 0. X
a mm \
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cos^ <^ + sin^ <^ ah *

173

ab

Vcos^-5 52

.-. AreaABCD = ^ab.

Y

Cor. If angle P1OP2= w, then

-x;^

^
a' a'V

EXAMPLES

1. The difference of the squares of two conjugate semi-diameters of a hyper-

bola is constant.

2. The area of the parallelogram formed by tangents to two conjugate hyper-

bolas at the ends of two conjugate diameters is equal to 4 ab.

3. If w denotes the angle between two conjugate diameters of a hyperbola,

then sin w = ab

a'h'

\f 4. Show that the acute angle between two conjugate diameters of an ellipse

^is least when the diameters are equal.

5. Show that the eccentric angles of the extremities of the equi-conjugate

diameters of an ellipse are 45° and 136°.

6. Conjugate diameters of a rectangular hyperbola are equal, and equally

inclined to the asymptotes.

7. Tangents to two conjugate hyperbolas at the extremities of two conjugate

diameters meet on the asymptotes. (See Fig. § 117, H.)
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8. The area of the triangle formed by two conjugate semi-diameters and the

chord joining their ends is constant.

9. Prove that for all values of m the line

passes through the extremities of two conjugate diameters of an ellipse. "What

is the corresponding equation for the hyperbola ?

10. The product of the focal radii of a point P is equal to the square of the

semi-diameter parallel to the tangent at P.

122. To find the eqvxition of a hyperbola when referred to its asymp-

totes as axes of coordinates.

The equation of the asymptotes, referred to themselves as axes of

{coordinates, is xy = 0.

Therefore the equations of any two conjugate hyperbolas referred

to them is of the form (§ 115)

xy = ±K. (9)

Hence the equation xy = K, where K is any constant, always

represents a hyperbola referred to its asymptotes as axes of coordi-

nates; so that, if the axes of coordinates are at right angles, the

hyperbola xy = K is rectangular.

123. To find the polar equation of a central conic, the pole being ai

the centre.

The formulae for changing from rectangular to polar coordinates

are (§6) /i
•

z,^ ^ a; = pcos^, 2/ = psm^.

These values substituted in

or n2=
±^'^' - ±^'^'

r
a? sin2e±W cos'' B a"- (a? T b"") cos^ 6

which is the required equation.

^ l-e2cos2e'
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EXAMPLES ON CHAPTER X

1. Show that the sum of the squares of the reciprocals of two perpendicular

diameters of an ellipse is constant. (See § 123.)

2. If an equilateral triangle is inscribed in an ellipse, the sum of the squares

of the reciprocals of the diameters parallel to the sides is constant.

3. Find the inclination to the major axis of the diameter of an ellipse the

.sqii ire of whose length is (1) the arithmetical mean, (2) the geometrical mean,

and (3) the harmonical mean between the squares on the major and minor axes.

(§123.) ^ws. «o (3), 45°.

4. The locus of the poles of a series of parallel chords is the diameter which

bisects the chords. Hence the line joining the intersection of two tangents to

the centre bisects the chord of contact.

i<^ 6. Find the equations of two conjugate diameters of the hyperbola

b'^x^ — a-y- = a-b'^, one of which bisects the chord through (0, b) and (ae, 0).

6. In the hyperbola 4 aj2 _ 5 ^-2 _ 20 find the equations of two conjugate

diameters, one of which bisects the chord 2 a; + 3 y = C.

7. If straight lines drawn through any point of an ellipse to the ends of any

diameter POP' meet the conjugate diameter P\OP\' in Q and .B, show that

Oq'OR = OPx^.

8. Show that the locus of the intersection of the perpendiculars from the foci

upon a pair of conjugate diameters of an ellipse is a similar concentric ellipse.

9. Two conjugate diameters of an ellipse are drawn, and their four extremi-

ties are joined to any point on a given circle whose centre is at the centre of the

ellipse. Show that the sum of the squares of these four lines is constant.

10. P, is a point on a branch of a hyperbola, P2 is a point on a branch of its

conjugate, OPi and OP-i being conjugate semi-diameters. If F\ and F^ are the

interior foci of these two branches^ respectively, show that

F2P2 ~ FiPi = a'^b.

11. Find the equation of the chord passing through the extremities of two

conjugate diameters.

12. The lengths of the chords joining the extremities of two conjugate

diameters of an ellipse are

Va2 + 6* ± a2g2 sin 2 <p.

For what value of are these chords, one a maximum and the other a minimum 7

Show that the corresponding result for the hyperbola is

o«(8ec 0±tan0).
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13. Find the equations and the coordinates of the points of contact of tangents

to h^x^ ± a^y^ = a^^ which make equal intercepts on the axes.

14. If the normal at the end of the latus rectum of an ellipse passes through
the extremity of the minor axis, show that the eccentricity is given by the equa-

tion e* -f e2 = 1. Find the corresponding equation for the hyperbola and inter-

pret the result.

16. If any ordinate MP oi a central conic is produced to meet the tangent at

the end of the latus rectum through the focus F in Q, show that FP = MQ.

16. Find the product of the segments into which a focal chord of a central

conic is divided by the focus.

17. Two tangents can be drawn to a central conic from any point, which will

be real, coincident, or imaginary according as the point is outside, on, or inside

the conic. Thus determine which is the inside of a hyperbola.

18. The polar of a point P with respect to an ellipse cuts the minor axis in A
;

and the perpendicular from P to its polar cuts the polar in B and the minor axis

in C. Show that the circle through A, B, and C will pass through the foci.

[Prove AO ' OC=F'0' OF, where O is the centre.]

19. Prove that the circle on any focal radius as diameter touches the auxiliary

circle.

20. Prove that the line lx + my + n = is normal to

^2+52-1' 1^ Z2+„j2- ^2
•

[Compare Zx + wiy + n = with-^ --^ = a'^- b^. (See § 114.)]
cos sm V 3 yj

21. Prove that a circle can be drawn through the foci of a hyperbola and the

points in which any tangent meets the tangents at the vertices.

22. The perpendicular from the focus of an ellipse upon any tangent and
the line joining the centre to the point of contact meet on the corresponding

directrix.

23. If Q is the point on the auxiliary circle corresponding to the point P on
the ellipse, the normals at P and Q will meet on the circle

x2-\-y2 = {a+by.

24. Prove that the focal radius of any point on a central conic and the per-

pendicular from the centre on the tangent at that point meet on a circle whose
centre is the focus and whose radius is the semi-major axis.
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25. Show that the minor axis is a mean proportional between the major axis

and the latus rectum.

26. Any tangent to an ellipse meets the director circle in P and Q. Prove

that OP and OQ are conjugate diameters of the ellipse.

27. Show that the line lx-{-my = n will touch

^±|? = 1 if a2Z2±62m2 = n2.

The line a; cos a + y sin a = j) will touch the same curves if

a2cos2a±52sin2a=p2.

28. Show that the equation of the locus of the foot of the perpendicular from

the centre of a conic on a tangent is p2 = q2 cos2 d±h^ sin2 d. [Use Ex. 27.]

29. If a polar with respect to a central conic touches the circle a;2 + y2 _ 52^

what is the locus of the pole ?

80. Show that the polar of any point on either of the curves

a2^62

with respect to the other touches the first curve.

31. The polar of any point P on either of the curves

a;2 w2— = -1-1

a2 62- ± A

with respect to the other touches the first curve at the opposite extremity of the

diameter through P.

82. The polars of any point with respect to the two conies

a2 62- ±^

are parallel and equidistant from the centre.

33. The product of the focal radii of any point on a rectangular hyperbola is

equal to the square of the distance from the centre to that point.

34. The distance of any point Q from the centre of a rectangular hyperbola

varies inversely as the perpendicular from the centre upon the polar of Q.

35. If the normal at any point P of a rectangular hyperbola meets the axes in

N and N*, and O is the centre, then PN = PN' = OP.

36. A line parallel to the y-axis meets two conjugate hyperbolas and one of

their asymptotes in P, Q^ P. Show that the normals at P, Q, B meet on the

OS-axis.
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37. If ^ is the point on the auxiliary circle corresponding to the point P on

the ellipse, show that the perpendicular distances of the foci F^ F' from the

tangent at Q are equal to FP and F'P respectively.

38. If P is a point on the director circle of an ellipse, and the centre, the

product of the distances of and P from the polar of P with respect to the

ellipse is constant.

39. Show that the ellipse is concave towards both axes, while the hyperbola

is concave only towards its transverse axis.

40. Chords are drawn through the end of an axis of an ellipse. Find the

locus of their middle points.

41. If the eccentric angles of two points P, Q on an ellipse are 0i, 02, prove

that the area of the parallelogram formed by tangents at the ends of diameters

through P and Q is

4a6csc(0i — 02);

and hence show that this area is least when P and Q are the ends of conjugate

diameters.

42. The sides of a parallelogram circumscribing an ellipse are parallel to con-

jugate diameters
;
prove that the product of the perpendiculars from two opposite

vertices on any tangent is equal to the product of those from the other two vertices.

43. The radius of a circle which touches a hyperbola and its asymptotes ia

equal to that part of the latus rectum intercepted between the curve and the

asymptotes.

44. Show that the area of a triangle inscribed in an ellipse is

\ a6[sin (« — /3) + sin (jS — 7) + sin (7 — a) ]

,

where a, /3, 7 are the eccentric angles of the vertices.

Prove also that its area is to the area of the triangle formed by the corre-

sponding points on the auxiliary circle as 6 : a ; and hence its area is a maximum
when the latter is equilateral ; i.e. when

a~)3 = i3~7 = 7'^a=f7r.

45. If a tangent drawn at any point P of the inner of two similar coaxia-

conics meets the outer in the points T and T\ then any chord of the inner

through P is half the algebraic sum of the parallel chords of the outer through

rand r.

46. Def. The two chords of a central conic which join any point on the curve

to the extremities of any diameter are called Supplemental Chords.

Show that two supplemental chords are parallel to a pair of conjugate

diameters.



CHAPTER XI

GENERAL EQUATION OF THE SECOND DEGREE

124. It has been shown in § 87 that the most general equation of

a conic is the complete equation of the second degree. We shall

now show that the general equation,

aar^ + 2 /io;?/ 4- &2/' + 2 ^a; + 2 /?/ + c = 0, (1)

can always be changed into one of the standard forms [§§ 88-90],

and will thus prove that its locus is always a conic, eitl^er in one of

the common forms or in one of the limiting cases. In order to do
this we will first remove the terms of the first degree.

The equation referred to parallel axes through the point (a;', ?/')

will be found by substituting x-\-x' for x and y-\-y' for y [§ 53], and
will therefore be, after collecting terms,

aar^ + 2 hxy -^bf-\-2 x(ax^ ^ hy' -\- g) -[- 2 y(hx' + by' +/)
+ ax" + 2 hxy + by'' + 2gx'-\-2 fy' + c= 0. (2>

If, as is generally possible, x' and y' be so chosen that

ax'-\-hy'-{-g= 0, (3)

and hx' + by'-\-f=0, (4)

the coefficients of x and y in (2) will both vanish, and the equation

referred to (a;', y') as origin will then be

aa^ + 2 hxy + by"^ + c' = 0, (6)

where c' = ax'^ + 2 hx'y' + 6y '2 ^ 2 gx' + 2 /?/' + c. (6)

The locus represented by (5) is symmetrical with respect to the

origin [§ 28, (9)] ; i.e. the origin is now at the centre.

Hence the coordinates of the centre of the conic represented by

(1) are the values of x' and y' which satisfy equations (3) and (4),

ab -h^ ab- h^

Hence, if h'-^ab^ 0, the coordinates of the centre are both finite^

and this transformation is possible.

179
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Multiply equations (3) and (4) by a;' and y\ respectively, and sub-

tract the sum from the right member of (6) ; we thus get

c' = gic' +fy' +c. (8)

where A = dbc + 2 fgh - af^ - hg'^ - ch^, (10)

If A = 0, then c' = 0, and equation (5) may be written

ax + hy= Ty^fi^ — ab. (11)

Hence the locus is two straight lines, which will be real, coinci-

dent, or imaginary according as ^^ — a& >, =, or < 0.

If A = 0, and also ah — h? = 0, then c' is not necessarily zero.

The first three terms of equation (5) are then a perfect square.

The equation may therefore be written

Vaic -f Vfty ± V^^ = 0, (12)

and represents two parallel lines, which coincide when c' = 0.

The function of the coefiicients denoted above by the symbol A is

called the Discriminant of the General Equation.

Hence an equation of the second degree will represent two straight

lines if its discriminant vanishes.

125. Whenh^-ah^O.

In order to reduce the equation [(5), § 124]

ax^ + 21ixy + hy^+ c' = 0, (1)

to any one of the standard forms (§§ 89, 90) we must remove the

term 2 hxy. For this purpose we turn the axes through a certain

angle 6, keeping the origin fixed.

To turn the axes through an angle 6 we substitute for x and y,

respectively [§ 54, (1)],

« cos d — 2/ sin 6 and XB>mB + y cos B. (2)

Substituting these values in (1), expanding and collecting terms,

we have
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(a cos^ ^ H- 2 ^ sin ^ cos ^ + & sin^ ^)ar'

+ 2[(6 - a) sin ^ cos ^ + ^(cos^ 6 - sin^ e)'\xy

+ (a sin^ ^ - 2-^ sin d cos ^ + 6 cos^ e)y^ + c' = 0. (3)

The coefficient of xy in equation (3) will vanish if B be so chosen

*
^*

2(6-a)sindcosd + 2A(cos2^-sin2d) = 0. (4)

i.e. if (a-6)sin2^= 2^cos2^. (5)

.-. tan2e=-^. (6)a-b ^ ^

Whence sin 2 ^ = ±
^^ —

, (7)
V(a-6)2 4-4^2

^

and cos 2 ^= ±
^~^

(8)

Any value of obtained from (6) will reduce (3) to the form

a'aj2 + 6'2/2 + c' = 0, or-^ +-^ = 1, (9)

a' &'

where a' = a cos^ ^ + 2 ^ sin ^ cos ^ + & sin^ 6, (10)

and 6' = a sin* d - 2 fe sin ^ cos ^ + & cos* 0. (11)

Equation (9) is therefore the required result.

The values of a' and 6' may be expressed in terms of a, 6, and h

as follows

:

From (10) and (11), by addition and subtraction, we obtain

a' + 6' = a4-&, (12)

and a'-6' = (a-6)cos2^+2Asin2^. (13)

Substituting (7) and (8) in (13) gives

2h
a'-6' = ±V(a-6)* + 4/i2= ^^=^. (14)

sin2d
Whence, from (12) and (14),

a' = ||a + 6±V(a-6)2 + 4^|, (15)

and. 6' = ||a + 6q:V(a-6)2 + 4/i2}. (16)
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The ambiguity in the values of a' and b' given by (15) and (16)

may be removed by (14). From the many values of $ which satisfy

(6) we will agree always to choose that one which lies between 0**

and 180°. Then will always be an a^ute angle, and sin 2^ will

always he positive. Therefore it follows from (14) that a'—b' will

always have the same sign as h.

It is also worthy of notice that the values of a' and b' given by

(15) and (16) are the two roots of the equation

x'-(a-^b)x- Qv" - ab) = 0. (17)

Hence a' and b' will have the same sign or opposite signs, i.e. the

conic will be an ellipse or a hyperbola according as

A^ — a&<, or>0.

If a 4- 6 = 0, then a'= — b' and the conic is a rectangular hyperbola.

Ex. transform the equation

S x^ -\- 4:xy + 5 y^ + S X - 16 y - IQ =
to the standard form, and construct the conic.

\^^ \ It

> O / X

The equations for finding the centre are4a; + y + 2 = and 2 x + 5 y = 8.

.-. «' = -!, y' = 2.

Then c' — gx^ +fy' -\- c = - 36.

Therefore the equation referred to parallel axes O'JP, O'T through the
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centre is 8x^ + ixy -{ 5y'^ = Z6.

Also a' = ^\a + b± V(a -6)2 + d/i^ j = J (13 ± 5) = 9 or 4,

6' = I {a + 6 T V(a-6)2 + 4^2J = J(13 T 6) = 4 or 9.

Since h is positive, we take a' = 9 and 6' = 4.

Hence the equation of the curve referred to its own axes O'X", 0' T' as axes

of coordinates is « ,,„

- + ^ = 1.4^9*
Also tan2^=»^^=i

a-b 3

Therefore the line O'X" must be drawn so that Z X'O'X" = ^ tan-i |,

126. Whenh^-ab = 0.

In this case the coordinates of the centre [(7), § 124] are both

infinite, and therefore the first degree terms cannot be removed by
changing to a new system of axes parallel to the old.

Since the second degree terms now form a perfect square, the

general equation may be written

(l3y-{-axy + 2gx + 2fy+ c= 0, (1)

where a= -y/ay p=^b, a has the same sign as h, and fi is always

P°«^^i^®-
.-. h = a/3. (2)

First Method. From equation (6), § 125, we have

tan2fl- ^^' __2«^_^tan^ .„.tan2^---^^-^-^^_^—^-^. (3)

.-. taii<? = |,or-^. (4)

If we turn the axes through an angle given by either of these

values of tan d, the coefficient of icy in the new equation will vanish.

If we take ^= tan~^[ — —
j,
the equation of the new ic-axis will be

ax-{-/3y = 0. (5)

We will use this value, and will agree always to take the positive

direction of the new a^axis so that $ shall be numerically less than

90°. Then $ will be positive or negative according as h (or a) is
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negative or positive, and we have from (4)

sin 6 = , cos ^ =

Hence, to turn the axes through an angle $ thus chosen, we must

substitute for x and y, respectively [§ 54, (1)],

Va^ + P' -y/a' + P'

Substituting the expressions (6) in (1) gives

(a'+^f +2-^f^x +2^^i^y + c= 0. (7)
Va^ + jS Wa^+ p^

Completing the square in the terms containing y, equation (7) may
be reduced to the form

where
^^c(.^+ ^y- («, + ff/)^

and ^^_ «^+ ^/

If now the origin be moved to the point {H, K), equation (8) will

take the standard form

y2 = 2 f- =̂x. (9)

Therefore equation (1) represents a parabola whose axis is par-

allel to the line (5), and whose latus rectum is

Second Method. Equation (1) may be written

(ax+ l3y-{-\y= 2(a\-g)x+ 2(l3\-f)y+ \'--c, (10)

where X is any constant, for which a particular value will now be

determined.

We observe that the line whose equation is



126] GENERAL EQUATION OF THE SECOND DEGREE 185

ax + py-{-k = (11)

is parallel to the axis of the parabola [see (5) above] for all values

of A. Hence we will choose A. so that the straight line

2(ak-9)x-\-2{p\-f)y + X'-c = - ^12)

shall be perpendicular to the line (11).

The lines (11) and (12) wiU be at right angles (§ 45) if

-if ^ =^-A. (13)

With this value, Xi, equation (10) may be written

{ax + py + X,y = 2^:z^(fix-ay + K), (14)

where K^^±^(bl^\ (ig)

Changing the linear expressions in (14) to the distance form gives

/ax±Ji^y^ af--pg /px-ay + K\ .^q.

If now we take the lines

ax + py + Xj^ =.0 (17)

and px-ay + K=0 (18)

for new axes of x and y, respectively, the new equation will be

y2 = 2 «/-Pg^a.. (19)

Hence (17) represents the axis of the parabola, and (18) the tan-

gent at the vertex. The curve will lie on the positive or negative side

of the line (18) according as (af—Pg) is positive or negative.

If, a\i — g = p\i — g= 0, the line (12) cannot be determined.

But in this case equation (10) reduces to

(ax + py + k,y = Xr*-c, (20)

that is, the conic then consists of two parallel lines.
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Ex. Find the standard form of the equation

(4 y - 3 x)2 - 20 a; + 110 y - 75 = 0. (1)

First Method. Take 4 y— 3a; = as the new jc-axis; i.e. turn the axes

through an angle 0, such that tan ^ = |, and therefore sin tf = |, cos ^ = |.

Then the formulae of transformation are

4x'-Sy[
x = x' cos e — y' sme =

and y = aj' sin ^ + y' cos 6
Sx' + 4y'

5

Substituting these values in equation (1), it becomes

y'2 + 2 5c' + 4 3 = 0,

(2)or (y' + 2)2 = - 2(x' - 1),
,

which is the equation of the curve referred to the new axes OX, Or'.

Moving the origin to the point O' (|, — 2), with respect to the new axes, we
obtain from (2) the required equation

y"2 = - 2 x".

Hence the curve is on the negative side of the y-axis 0' T".

Second Method. The given equation (1) may be written

(4 y - 3 a; + X)2 = (20 - 6 X)x + (8 X - 110)y + X^ + 75.

We will now determine X so that the two lines

4y-3a: + X =
and (20 - 6 X)a; + (8 X - 110)y + X^ + 75 =
shall be at right angles.

(3)

(4)

(5)

(6)
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The required value of X is given^by the equation (§ 45)

- 3(20 - 6 X) + 4 (8 X - 110) = 0.

.-. X = 10.

With this value of X equation (4) becomes

(4y _3a;-f 10)2 = - 10(4 x + 3y-17i),

^, /iv-^+ioy ^ _ 2 fix + 3y-n\ \
(7^

Draw the lines

4y-3a; + 10 = 0, O'X", (8)

and 4a; + 3 y- 17i = 0, O'F'. (9)

These lines are at right angles. If we take (8) as the new x-azis and (9) as

the new y-axis, the equation of the curve will be

y2 = - 2 x. (10)

Therefore the locus is a parabola whose latus rectum is 2, and lies on the

negative side of the line (9).

EXAMPLES

Construct the following conies by transforming the equations to their standard

forms

:

1. (4y-3«)« + 4(4a; + 3y) = 0. 3. 3a;a + 2a:y + 3ya = 8.

2. (3a;-4y-12)2 = 16(4a; + 3y). 4. x^-6xy + y^ = lQ.

6. 4a;«-24a;y + lly2-16a;-2y-89 = 0. 7. 2 x^
-\- ixy -\- 6 y^ = 3Q.

, 6. 5a;2-4xy + 8y2-22iB + 16y-10 = 0. 8. 8x2-6a;y-4 y2 = 34.

9. 9a;«-12xy + 4ya = 10(2x + 3y + 5).

10. 3a;2-2xy + 2y2-16x-8y + 8 = 0.

11. 6x« + 24xy-y2 + 50y-56 = 0. 16. 2x2 + a^ + 3y2 = 23.

12. a;a-2xy + y2-5x-y-2 = 0. 16. xy + 3x-6y + 5 = 0.

18. x2-6xy + 9y2-2x + 6y + l=0. 17. x2 + 4y2 + 4x = 0.

14. 4x2 + 4xy + y2-f4x-3y + 4 = 0. 18. 4x3-9y2 + 24x = 0.

19. 24xy + 7y2-6(8x-10y-9)=0.

20. 25x«-20xy + 4y2 + 5x-2y-6 = 0.

21. 2x!» + 7xy-4y24-4x + 7y-18J = 0.

22. 2x2 + xy-6y2-5x+lly-3 = 0. 26. xa-2xy-y2 = 20.

28. x2 + 2xy + ya-'12x + 2y-3 = 0. 26. (5 y + 12 x)^ = 102 x.

M. a:a-xy-2ya-x-4y-2 = 0. 27. x2-4x-3y = 5.
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EXAMPLES ON LOCI

1. Show that the locus of a point, the sum of the squares of whose distances

from n fixed points is constant, is a circle.

2. Find the locus of the centre of a variable circle which touches a fixed

circle and a fixed straight line.

3. Find the locus of the centre of a circle which touches two fixed circles.

Four cases should be considered. What does the locus become when the fixed

circles are equal ?

4. Find the locus of the middle points of all chords of a given circle which

pass through a fixed point. [Take the fiLxed point as pole.]

6. A straight rod moves so that its ends constantly touch two fixed perpen-

dicular rods. Find the locus of any point P on the moving rod.

6. On a level plain the crack of a rifle and the thud of the ball striking

the target are heard at the same instant. Find the locus of the hearer.

[S. L. Loney's Coordinate Geometry, p. 283.]

7. In a given circle let AOB be a fixed diameter, OC B.nj radius, CD the

perpendicular from C on AB ; let P and Q be two points on the line through O
and C such that QO = OP = DC. Find the locus of P and Q as OC turns

about O.

8. A and B are two fixed points, and P moves so that PA = n • PB. Find

the locus of P.

9. AOB and COD are two straight lines which bisect one another at right

angles. Find the locus of a point P such that PA- PB = PC • PD.

10. If ABC is an equilateral triangle, find the locus of a point P such that

P^2 = p^_|.pce.

11. AB is a fixed diameter of a given circle and -<4.C is any chord ; P and Q
are two points on the line AG such that QG = CP = CB. Find the locus of P
and Q2& AC turns about A.

12. Any straight line is drawn from a fixed point meeting a fixed straight

line in P, and a point Q is taken in this line such that OP • OQ is constant.

Find the locus of Q.

13. Any straight line is drawn from a fixed point O meeting a fixed circle in

P, and on this line a point Q is taken such that OP • 0§ is constant. Show
that the locus of Q is a circle. [See suggestion under Ex. 4.]

14. Find the locus of a point such that the sum of the squares of its distances

from the sides of an equilateral triangle is constant.

15. The square of the distance of a point P from the base of an isosceles

triangle is equal to the product of its distances from the other two sides. Find

the locus of P.
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MISCELLANEOUS PROBLEMS ON LOCI

1. Show that the curve on the concave side of the new moon is an ellipse.

2. A circular cylinder rolls along on a plane surface. Find the locus of the

point of contact between the plane surface and an oblique plane section of the

cylinder.

3. What kind of a curve must be used in making a pattern for cutting elbows

of stovepipe from sheet iron ?

4; If the hub of a cart-wheel is not perpendicular to the plane of the wheel,

what kind of a curve is the track of the wheel on a level road ? Is this problem

the same as No. 2 ? If not, why ?

5. If a wheel is rotating on a fixed axle with a uniform angular velocity,

while a fly is crawling outward along a spoke of the wheel at a constant rate,

what is the equation of the locus of the fly in the plane ?

6. If a spiral spring rolls on a plane surface, what kind of a track does

it make ?

7. What kind of a curve is the shadow of a spiral spring, if the rays of light

are all perpendicular to the plane of the shadow, and the axis of the spring parallel

to the plane ?

8. The curve described by a piece of paper sticking to the rim of a cart-

wheel as the wheel rolls along in a straight line on a level road is called a
Cycloid.

Take the origin at the pomt where the piece of paper was originally on the

ground, and use the wheel's track as the x-axis ; let 6 represent the angle through

which the wheel has turned, and a the radius of the wheel. Then show that

X = a{d — sin ^), and y = a(l — cos 6).

Eliminate and show that the equation of the cycloid is

x = a vers-i - — V2 ay — y^.

9. In 2 minutes after leaving a station a railroad train attains a speed of

40 miles an hour, which it maintains for 3 minutes ; then it strikes a grade, and
in 1 minute its speed is reduced to 30 miles, which it maintains for 3 minutes

;

in 1 minute more it slows down and stops at the next station. Draw a curve

whose ordinate shall represent approximately the speed of the train. What is

the approximate distance between the stations ?

10. In a steel bar the stretch varies as the strain until the elastic limit is

reached. From this on the stretch varies at a greater and greater rate with

regard to strain until the bar snaps. Draw a curve which will illustrate this law.
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11. The specific heat of ice is .5, of water 1. It requires 80 calories of heat to

convert 1 gram of ice at 0° C. into water at 0° C, and about 600 calories to con-

vert 1 gram of water at 100° C. into steam at 100° C. Draw a curve whose

ordinate shall show the change in temperature, per calorie^ at every stage of the

process as 1 gram of ice at — 40° C. is converted into steam.

12. It is a law of physics that the product of the volume and pressure of a

gas is constant. Construct the graphical representation of this law. What kind

of a curve is it ?

13. Suppose the steam is allowed to enter a cylinder during only one-fourth

of the stroke. Draw a curve whose ordinate shall represent theoretically the

pressure on the piston.

14. Waves from two different centres have the same length. Find the locus

of the points where crest coincides with crest and where trough meets trough.

Find also the locus of the points where the crests of one wave coincide with the

troughs of the other.

16. Find the locus of all points in a plane that are equally illuminated by two
lights situated in the plane. What is the locus in space ?

16. If a vertical tube is moved horizontally with a uniform velocity, while a

ball is falling freely through the tube, what is the path described by the ball ?

(We here assume that the student is familiar with the law of falling bodies,

viz. s = Jsr«2.)

17. Show that the equation of the path of a projectile fired from a gun with

an initial velocity of c feet per second, 6 being the angle of elevation of the gun, is

y = a;tane-^sec2^,

the origin being at the muzzle of the gun, and the a^axis horizontal.

Find also the horizontal range of the projectile, and show that any two com-

plementary angles of elevation will give the same range.

Show also that the range is a maximum when 6 = 45°.

Show that the angle of elevation required to strike a given point («', y') is

given by the formula

tan g ^ c2 j, Vc^ - g^'^ - 2 c^gy'

gx'

18. Draw a curve which will show the relation between a man's daily wages

and the number of days he must work in order to be able to meet his necessary

annual expenses.

19. The manager of a gas plant finds that his customers will spend annually

a fixed sum for gas. Find the curve that will show the relation between the

price of gas and the quantity of gas that can be sold.
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20. The annual expense of a business firm for rent, interest, taxes, insurance,

depreciation of plant, etc., is practically constant. Draw a curve which will

show the relation between the daily volume of business and the number of days

necessary to run the business in order to meet these fixed charges.

21. The revenue from the sale of a commodity is the product of the price by
the quantity sold. Using price as ordinate, draw a curve which shall show the

relation between the price (p) and the quantity sold (5), if the revenue (i?) is

constant.

Such a curve may be called a Constant Bevenue Curve. What kind of a

curve is it ?

22. Draw a curve showing the relation between the demand for a commodity
and its market price, using price for ordinate. (Demand Curve.) Draw another

curve showing the relation between the supply and the cost of production of this

same commodity, using cost for ordinate. (Supply Curve.) What is indicated

by the point of intei-section of these two curves ? Draw a third curve whose

ordinate shall be the ordinate of the demand curve minus the ordinate of the

supply curve. (Monopoly Bevenue Curve.) What does the ordinate of this

third curve represent ? Now construct a constant revenue curve (see Ex. 21)

which shall touch this last curve. What is the significance of this point of

contact? (See Principles of Economics by Alfred Marshall, Vol. I, 3d Ed.,

p. 636.)

23. Find the equation of a curve whose ordinate shall represent the amount
of a given principal at a fixed rate of compound interest, using time as abscissa.





SOLID GEOMETRY

CHAPTER XII

SYSTEMS OF COORDINATES, THE POINT, RECTANGULAR
COORDINATES

127. In the rectangular system of coordinates, three mutually

perpendicular planes XOT, TOZy ZOX are chosen as planes of

reference. These planes are called Coordinate Planes ; their lines of

intersection OX, F, OZ, Coordinate Axes ; and their point of inter-

section, 0, the Origin.

The position of a point P in space is then completely determined

when its distances APy BP, CP, from each of these planes, measured

parallel to the coordinate axes, and the direction in which these

distances are measured, are given. These three lines, or the num-

bers which represent them, are called the Rectangular Coordinates of

the point P, and are always written in the order (x, y, z).

193
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We shall consider distances positive when measured in the direc-

tions OX, OT, or OZ; that is, to the right, forward, or upward.

Then distances measured in the opposite directions will be negative.

The coordinate planes divide all space into eight equal compart-

ments, which may, for convenience, be called Octants. The octant

0-XYZ is called the first, but there is no established order for

numbering the others.

The position of any point P(a, 6, c) (a, 6, and c being positive

numbers) may be found as follows: measure on the axes the dis-

tances OD = a, OE — hy OF=c, and through the points D, E, F
draw planes parallel to the coordinate planes, forming a rectangular

parallelopiped ; the intersection of these three planes will be the

required point P.

There are seven other points whose absolute distances from the

coordinate planes are the same as those of P. What are their coor-

dinates ? What do these eight points form ? What are the coor-

dinates of the points A, B, C, D, E, F?
Moreover, it is obvious that x = a for all points in the plane

PBDO indefinitely extended; also that x = a and y = b for all

points on the indefinite line PC. Or, in other words, a; = a is the

equation of the plane; x = a, y — h are the equations of the line

PC'y while x= a, y = b, z = c are the equations of the point P.

Thus, the more the location of a point is restricted, the greater the

number of equations its coordinates must satisfy. What are the

equations of the other faces of this parallelopiped? the other edges?

It is easy to see that the system of rectangular coordinates in a

plane is a special case of the more general system here described,

in which one of the coordinates has become zero. Hence we shall

find that we can reduce formulae in solid geometry to the cor-

responding formulae in plane geometry by placing z equal to zero.

The student should bear this constantly in mind.

EXAMPLES

1. What are the equations of the coordinate planes ? the coordinate axes ?

2. What is the locus of the point (x,yjz)U.x = y? y = z? z = x? x = -y?
yzz — z? z =- xf
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8. What is the locus of the point {x^ y, z) if x = y = 2!? x = — y = «?
x=y=-z? x=-y=-z?

Let P in the figure be the point (a, b, c).

4. Show that for every point in OP - = ^ = -.

a c

6. Show that the equation of the plane ABDE is- + ^ = l.

~~
a b

6. Find the equations of the planes OFPd ODPA, and OEPB.

128. To find the coordinates of a point which' divides the straight

line joining two given points in a given ratio 7% : ini^

Let (xif ^1, z^ and {x^, ^2? ^2) be the two given points, and (a;, y, z)

the required point.

The proof is precisely the same as that given for the correspond-

ing theorem in plane geometry (§ 9). The results are

05 = : 5 y -
mi + m^ mi + wt2 ^wi + w^

If (x, y, z) is the middle point of the line, then

a,=^i+£?, j,=l?i + » = (2)

129. To find the distance between

two points whose rectangular co-

ordinates are given.

Let Pi(a;„ 2/1, 2i) and PgCa^ ^2, ^^

be the given points.

Through the points Pi and P2 draw-

planes parallel to the coordinate

planes, forming a rectangular par-

allelopiped, whose diagonal is P1P2,

and whose edges P2Q, QB, RPi are

parallel to the axes.

Then PaPi^ = P2Q' 4- QR^+ RPi^-

But P2Q= »! — X2, QR = yi — Vii and RP^ = z^ — z2.

/ '/^.^
/ [

then

.-. P2P1 = y/{X\ - a32)2 + (1/1 - 1/2)2 + (21 - »2)2. (1)

If p represents the distance of any point (a?, y, 2) from the origin,

P = Vaj2 + 2/2 + »2. (2)
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EXAMPLES

1. Show that the coordinates of the centre of gravity of the triangle whose

vertices are (xi, yi, z{), (X2, 2/2, 22), and (xs, ys, zz) are

xi + a;2 + xz yi + ^2 + yz and ^1 + ^^^ + zz3*3' 3

2. Show that the four lines which join the vertices of a tetrahedron to the

centres of gravity of the opposite faces meet in a point which divides the lines

in the ratio 3 : 1. (This point is the centre of gravity of the tetrahedron.)

3. Show that the centre of gravity of any tetrahedron bisects each of the

three lines joining the middle points of the opposite edges. "What does this

theorem become if we consider the four points as vertices of a twisted quadri-

lateral ? What when the fourth point moves into the plane of the other three ?

4. Show that the sum of the squares of the diagonals of any quadrilateral is

twice the sum of the squares of the lines joining the middle points of the

opposite sides. State the corresponding theorem for a tetrahedron.

6. Show that the sum of the squares of two pairs of opposite edges of a

tetrahedron is equal to the sum of the squares of the third pair of opposite

edges plus four times the square of the line joining the middle points of the

third pair. What is the corresponding theorem for a twisted quadrilateral?

For a plane quadrilateral ?

Orthogonal Projections

130. The points A, J5, C (§ 127) are the projections of P on the

three coordinate planes ; while D, E, F are its projections on the

axes. The projection of any locus on a given plane is the locus of

the projections of all the points of the given locus. The angle

between a straight line and a plane is the angle the line makes with

its projection on the plane. Hence, from plane geometry, the pro-

jection of a limited line on any plane is equal to the line multiplied

by the cosine of the angle between the line and the plane.

The projection of a limited line on an a>xis (any other line) is

that part of the axis intercepted between two planes through the

ends of the line perpendicular to the axis. The projections of a

line on a series of parallel axes are evidently all equal. The angle

between two lines which do not intersect is equal to the angle

between two intersecting lines parallel respectively to the two given

lines.



131] COORDINATES 197

Hence, as in plane geometry, the projection of a limited line on any

axis is equal to the line multiplied by the cosine of the angle between

the line and the axis.

Also, the projection of a broken lijie (in space) on any axis is equal

to the projection^ on the same axiSj of the straight line joining the ends

of the broken line.

For example, let p be the distance from the origin to the point

(Xj y, z). Then, projecting on any line we get

Proj. of p = Proj. of a? + Proj. oty + Proj. of z, (1)

This equation is evidently true if p is the diagonal, and a;, y, z are

the three dimensions of any rectangular parallelopiped. We shall

frequently have occasion to use this special case of the last theorem.

Polar Coordinates. Direction Cosines

131. Let P(x, y, z) be any point in space referred to rectangular

axes.

The position of P will evidently

be determined if we know its dis-

tance p from the origin and the

angles «, )8, y, which OP makes

with the axes. The four quantities

0>> «> Pf y) a.re the Polar Coordinates

of P. The distance p is called the

Radius Vector of the point P, and

a, /8, y are called the Direction Angles

of the line OP.

Since a;, 2/, and z are the projec-

tions of p on the three axes, we have

05 = pcos a, y = p cos P, » = p COSY, (1)

Cos a, cos Pj and cos y are called the Direction Cosines of the line

OP. Hereafter we shall represent them by the letters Z, m, and n,

respectively. Then equations (1) become

aj = ip, y = mp, z = np. (2)

It is to be carefully noticed that Z, m, n are the direction cosines

of a directed line; that if the signs of l, m, n are all changed, the
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direction of the line is reversed. It is evident from equation (2) that

the signs of I, m, and n for any line through the origin will be the

same respectively as the signs of the rectangular coordinates x, y,

and z of any point P on the line, provided OP be taken as the posi-

tive direction of the line. Hence we may always choose the polar

coordinates of a point so that p shall be positive, and each of the

angles a, /8, y shall be less than 180°.

The direction cosines of any line are evidently the same as the

direction cosines of a parallel line through the origin, since parallel

lines make the same angles with the axes.

Squaring and adding equations (2) we get

p\V^+ w?-\-n^^;>?-^f+ z'', (3)

and, since p^ = a^+/ + z\ [(2), § 129] we have

l^ + m^ + n^^l. (4)

That is, the sum of the squares of the direction cosines of any line is

equal to unity.

Hence the four polar coordinates of a point are equivalent to only

three independent conditions.

If we divide each of the three numbers a, 6, c by the square root

of the sum of their squares, we get

Since these results are numbers which satisfy equation (4), they are

the direction cosines of some line, whatever the values of a, 6, c

may be.

That is, any three numbers are proportional to the direction cosines

of some line.

Note. — Custom is not uniform in regard to the use of the name Polar

Coordinates. Many authors apply the name to the system described in § 132.

Spherical Coordinates

132. Let OX, OF, OZ, be a set of rectangular axes, and P any

point. Then OP, or p, the angle 6 which OP makes with OZ, and

the angle <^ which the plane ZOP makes with the fixed plane XOZ
are the Spherical Coordinates of the point P, and are written (p, 6, <^).
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Since OC= p sin Oj the relations between rectangular and spherical

coordinates are

0? = p sin 6 cos <i>, 2/ = p sin 6 sin <f>,

iS = pCO80. (1)

Whence the relations between

polar and spherical coordinates

are found by equation (1) § 131

to be

cos (x = sin 6 cos <|>, cos § = sin sin <f>,

7 = e. (2)

If P is a point on the surface

of the earth and Z the pole, then $

is the co-latitude and
<f>

the longi-

tude of P. If P is a point on the

celestial sphere and Z the pole, is the co-declination and <^ the right

ascension of P; if ^ is the zenith, then is the zenith distance and <^

is the azimuth of P.

133. Cylindrical Coordinates.— If the position of the foot of the

coordinate z in the plane xy is defined by the polar coordinates (p, 6)

instead of (a?, y), then (p, 0, z) are called Cylindrical Coordinates.

EXAMPLES

1. Find the direction cosines of a line equally inclined to the three axes.

2. A line makes an angle of 60° with each of two axes. What angle does it

make with the other axis ?

3. If one direction angle of a line is 135°, another 120°, what is the third ?

4. What are the direction cosines of a line perpendicular to the a>axis ? the

y-axis ? the 2;-axis ?

5. What are the direction cosines of a line parallel to the x-axis ? the ?/-axis ?

the 5j-axis ?

6. Find the direction cosines of the line joining the origin to the point

(3, - 2, - 1). Of the line joining the points (- 2, 4, 2) and (1, 2, - 4).

7. Find the direction cosines of the line joining the two points (xi, yi, zi)

and (X2, yz, 22)-

8. Show that the square of the distance between the two points whose polar

coordinates are (pi, «!, Pi, 71) and (p2, a2» P2, .'2) is

pi^ + />2^ — 2 pi/)2(cos «! cos a2 + COS ft COS P2 + cos 7i cos 72).



CHAPTER XIII

LOCI

134. We have seen in § 127 that x = ais the equation of a plane

parallel to the 2/2;-plane ; that x = a, y = b are the equations of a line

parallel to the 2;-axis ; and that a; = a, y = b, z = c represent a point.

So that here we have a plane represented by one equation, a straight

line by two equations, and a point by three.

We shall now show that, in general, one equation represents a sur-

face of some kind ; two equations represent a line of some kind ; and

three equations represent one or more points.

Let the equation of the locus be F(Xj y, z) = 0. We have seen that

the equations of the line through the point (a, b, 0) parallel to the

z-axis are x= aj and y = b. Hence, if we put x = aj and y = b in the

equation of the locus, we get the equation F(a, 6, z) = 0, which must

be satisfied by the coordinates of all points common to this line and

the locus. Let the roots of this equation be Zi, 22, etc. Then the

locus is met by this line in the points (a, b, z^), (a, b, z^, etc. Since,

in general, the number of roots of the equation F{aj bjZ) = is finite,

the straight line will meet the locus in a finite number of points.

Hence the locus, which is the assemblage of all such points found

by assigning different values to a and 5, is a surface and not a solid

figure.

If the coordinates of a point (x, y, z) satisfy two equations

F{x, y^ z) = and <^(ic, y, z) = 0, simultaneously, the point must be

on both of the surfaces which these equations represent. Therefore

the locus is the curve determined by the intersection of the two sur-

faces. When three equations are used simultaneously, they are

sufficient to determine absolutely the values of the unknown quan-

tities oj, 2/, z. Hence three equations represent one or more points.

135. Equations involving only one or two variables.

If an equation contains only one variable, x say, let it be put in the

form <l>(x) = 0. We know that this equation is equivalent to (x — a)

200
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(a? — 6) (x — c)"' = 0, where a,b,c, ••• are roots of <^(«). Hence such

an equation represents one or more planes parallel to the coordinate

plane x = 0.

Let only one of the variables be absent, so that the equation is of

the form F(x, y) = 0. Let P{x, y, 0) be any point in the icy-plane

whose coordinates satisfy the equation F{x, y) = 0. Draw a line

through P parallel to the 2J-axis. Then all points on this line have

the same x and y as P. That is, they are all on the surface. Hence

the locus of the equation F(Xj y) = is the cylindrical surface, or

cylinder, traced out by a line which is always parallel to the z-axis,

and which moves along the curve in the a^-plane defined by the

equation F(x, y) = 0. In like manner the equations /(y, z) = and

<li(Zj x)=0 represent cylinders whose .elements are parallel to the

avaxis and y-axis, respectively.

If we treat the two equations F(x, y, z) = and /(a;, y, 2) =
simultaneously and eliminate 2, we obtain an equation of the form

<^(a;, y) = 0. This equation is satisfied by the coordinates of all

points on the curve represented by the two given equations. Since

<^(a;, 2/) = contains only two variables, it represents a cylinder

through this curve having its elements perpendicular to the Qcy-^\3iXiQ.

Or, interpreted as an equation in plane coordinates, it represents the

projection of this curve on the a;2/-plane. Similarly, by eliminating x

and y we can find the projections of the curve on the other two

coordinate planes.

It is often convenient and desirable to represent a curve by means

of the equations of two of its projecting cylinders.

If, however, we eliminate z between F{Xy yyZ) — and the equation

of the plane z = k, we obtain the equation F(x, y, k) = 0. This equa-

tion also represents a projecting cylinder through the intersection of

the surface and the plane z = k', but in the plane z = it represents

a curve equal in all respects to the plane section of the surface,

since the plane of the section z = k is parallel to the plane 2= 0, on

which the curve is projected.

The curves of intersection of a surface with the coordinate planes

are called the Traces of the surface. Their equations may be found

by putting x, y, z in turn equal to zero in the equation of the surface.

These curves are very useful in determining the nature of the surface.
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To Trace the Logics of an Equation

136. Contour Lines.—A Topographical Map is one which gives

not only the geographical position of objects on the surface of the

ground, but also the relative elevations of the different parts of the

surface. On such a map the configuration of the surface is repre-

sented by means of Contour Lines. A contour line is the projection

on the plane of the paper of the intersection of a horizontal, or

rather level, plane with the surface of the ground. These cutting

level planes are taken 5, 10, 20, 50, or 100 feet apart vertically,

beginning with the datum plane, which is usually taken below any

point in the surface of the region included in the map.

The following principles will assist in interpreting the meaning of

contour lines : All points in one contour line have the same elevation

above the datum plane. Where ground is uniformly sloping the

contours must be equi-spaced for equal changes in elevation, and

where it is a plane they are also straight and parallel. In general

contour lines never intersect or cross each other. Two exceptions to

this rule should be carefully noted, viz. a contour line will cross itself

at a pass, they cross each other at overhanging precipices. Every con-

tour line must either close upon itself or extend continuously across

the map. Where a contour line closes upon itself the included area

is either a hill-top or a depression without an outlet.

What is the nature of the surface shown by the contour lines in this figure ?
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It is obvious that this method of contours can be used to determine

the general nature of the surface represented by any given equation

F{Xy y, z) = 0. If we put z = k in this equation we get the equation

F(x, y, A;) = 0, which represents the projection on the plane 2 = of.

any plane section of the given surface parallel to this coordinate plane.

By assigning different values to k we can get as many such sections as

we choose. In like manner, by putting a; = A;, and y = k,we can find

sections parallel to the other coordinate planes. We may for con-

venience call these sections contours of the given surface. These three

systems of contours will indicate the general nature of the surface.

Find the contours of the surfaces whose equations are

I. x-\-y + z = l. 2. a;2 4. 2,2 4. ^2 = a2. 3. x^ + y2 = c^.

137. An equation of the first degree represents a plane.

The most general equation of the first degree is

Ax-{-By-^Cz-{-D= 0. (1)

If we put z= kin this equation, we get

Ax + By+Ck-{-D=:Oy (2)

which for different values of k represents a system of parallel

straight lines. The contours on the planes yz and zx are also par-

allel straight lines.

The distance between the two contours made by the planes z = ki

and 2J= /cg is
]

^^
. But this distance varies directly as (fcj — kX

V-4^ + B^
the distance between the two planes z = kx and 2 = ^2. Therefore

equation (1) represents a plane.

138. Trace the surface represented by the equation

x'-{.fj^z^-{.2Ax + 2By-\-2Cz-{-D= 0. (1)

The jcy-contours of this surface are the concentric circles

a? +f + 2Ax-\-2By + k^ + 2Ck-^D=:0, (2)

with centres at (— ^, —B) and radii equal to

V^^+ ^-(Ar*-f.2Cfc4-i>),

which become zero if k =—C± V-4' -\- B^ -\- C^ — D^ and imaginary

if k>-C+^/A^+ EP-^C'-D,

or if kK-C-^/A'-^B'-^-C-D.
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The a»-coiitours are circles whose equations may be written

(x-\-Ay-\-(z-\-Cy= A'+C'-(J<^+ 2Bk + D). (3)

Likewise the 2/2!-contours are circles whose equations are

(y-{-By-{-(z+Cy = B'+C'-{lc'-{-2AJc-\-B). (4)

Moreover, the centres of these three systems of concentric circles

are the projections of the point (—A, — B, — C), and the radius of

each system is -y/A^ -\-B^-{-C^— D when k is equal respectively to

— O, —B, and — A. Hence these contours indicate that the sur-

face is a sphere with centre at the point (—A, —By — C) and radius

equal to V^^ 4-^ + C^ — D. This can be shown to be true by

writing the given equation (1) in the form

(x-^Ay-\-{y->rBy + {z + Cy = A' + B'-{-C'-D, (5)

and comparing with equation (1) § 129.

Hence the equation of the sphere whose centre is the point (a, 6, c)

and radius r is

{nc - a)2 + (y - &)2 + (s - C)2 = r2. (6)

If the centre is at the origin, the equation is

i»2 + 2/2 + s2 = r2. (7)

139. Trace the surface whose equation is [Frost's S. G. p. 5.]

{x + yy= az.

When x = 0,y^ = az; therefore the trace on the 2/2;-plane is a parabola OQ,
whose axis is OZ and vertex O.

Similarly the trace OP on the x^-plane is

the equal parabola x^ = az, having the same

vertex and axis.

If z = Jc, (x + yy = ak. That is, any xy-

contour is two parallel straight lines, equally

inclined to the x and y-axes.

Hence the surface is a cylinder generated

by a straight line PQ moving along the two

equal parabolas y"^ = az and x^ = az, and

always parallel to the straight line a; + y =
in the cc?/-plane.

The other two systems of contours are

parabolas which are all equal to the traces

OP and OQ.
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EXAMPLES

Trace the surfaces represented by the following equations

:

1. 2x-^Sy-4z = 12.
^^ ^^t-^^i

2. X2 + 2/2 + ;j2 = 16. a2 52 c2
'

3. x^ + y^ + z^-ix + 6y-2z = ll. 15. ^_l^_?! = i

4. .2 + ,2 = «2.
«^ ft^ c2 •

5.y^^z^ = 2az.
'' (x^yy^z^^a^

B.y^ = 4az.
1^- ^^ = 2...

7. ;22_y2 = «2.
18. (aj + y)2 = 2(a2-02).

8. x'^+y^ = z\ 19- (a; + y - a)2 + 2;2 = a2.

9. X2 + 2/2 = <j;j. 20. (X - 2)2 + (1/ - 0)2 = a2.

10. 2^ + ?' = 4a;2.
21- (« + 2/)^ = c(;3 - a;).

*'* ^^ 22. C2y2 = a.2(«2 _ ;22).

a;2 w2
jr \

^1- ^2+52 = ^^- 23- a;02 = c22,.

12. z^ = ax+by. 24. a;y = a^.

j3 ^ y2^_j 25. y = xUnz.
«^ ft'^ c2 26. xyz = a.

Show that the following pairs of equations represent the same locus, and
trace their loci

:

27. p = a cos and x^ + y^-\- z^ = az.

28. p = a sin and (pfi + y^ + ^2)2 _ ^2(jc2 ^y'^),

2B. p = a cos and (x^ + y"^ + z"^) {x^ + 2/2) = ^{23.2.

80. p = a sin and (ajS + 2/^ + 2;2) (a;2 + 2/^) = a^y\

To Find the Equation of a Locus

140. If a point moves in space subject to a given condition, it will

generate a locus. This locus is the totality ofpositions the point may
have under the given condition. For example, a point keeping at a

constant distance from a fixed plane will generate a parallel plane

;

a point keeping at a constant distance from a fixed straight line will

generate a cylinder. If we can find, in any system of coordinates,

an algebraic equation that is satisfied by the coordinates of every

point on the locus, and not satisfied by the coordinates of any other

point, we shall have, as in plane geometry, the equation of the locus.
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In the second example just cited, for instance, if the 2;-axis is taken

as the fixed line and a as the constant distance, the equation of the

locus will be a^ + 2/^ = a^ ; for this equation is satisfied by the coordi-

nates of any point (x, y, z) whose distance from the z-axis is a, and

by no other point.

In finding the equation of a locus in space, the general method of

procedure is the same as in plane geometry.

Surfaces of Kevolution

141. A Surface of Revolution is a surface generated by revolving

a plane curve around a fixed line in the plane of the curve.

To find the general equation of a surface of revolution we will take

the aj-axis for the fixed line, and let the equation of the generating

curve be ^, ^

y^fix). (1)

Any point P on the generating

curve AB will describe a circle whose

plane is perpendicular to the jc-axis,

and whose radius is CPy the ordinate

of the generating curve. Hence for

every point Pix, y, z) on this circle

^^^^^^^
f + ,^=OP\ (2)

For all positions of P on the gen-

erating curve

CP=f(x). (3)

Therefore the required equation is

2/2 + «2 = [/(a?)]2. (4)

Similarly, the equations of surfaces of revolution about the other

two coordinate axes are

a;2 + 2j2 = [/(i,)]2 and a;2 + 2/2 = [/(2;)]2, (^

For example, if the circle ix^-\-y^ = 7^ is revolved about the a:-axis,

we have CP = Vr^ — x^= f(x) ; and the equation of the generated

sphere is x^ -^ y^ -\' z^ = r^.
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Likewise the equation of the cone generated by revolving the line

y = mx about the ic-axis is

1/2 + «2:= ^2^.2. (6)

If we eliminate z between this equation (6) and the equation of the

plane z = m'x + c we get for the projection of the conic section on the

iB^-plane
^^^ ^^n _ ^2) ^.2 ^ 2 cm'x + c^ = 0. (7)

Show that this section is an ellipse, a parabola, or a hyperbola

according as m'>, =, or <m; and that if c = 0, it is either a point,

two coincident lines, or two intersecting lines. What property of the

conic section does this prove ?

EXAMPLES

1. Show that the locus of all points in space equally distant from the two
points (3, — 2, 1) and (— 2, 1, — 3) is the plane 5a; — 3y + 45? = 0.

2. Show that all points which are equidistant from the three points

(4, — 1, — 2), (— 2, 4, — 1), and (—1, — 2, 4) are on the line whose equations

are x:=y = z.

3. A point moves so that its distance from the origin is twice its distance

from the plane z = 0. Find the locus of the point. Ans. x^-\-y^ = S z^.

4. Find the locus of a point which moves so that (1) the sum, (2) the dif-

ference of the squares of its distances from the points (a, 0, 0) and (—a, 0, 0)

is the constant 2 c^.

6. Find the locus of a point such that the sum of the squares of its distances

from the three points (3, - 3, 5), (- 1, 1, - 2), and (4, 2, - 3) is 38.

Ans. ic2 _|. y2 + 2-2 _ 4 jc _|_ 26 = 0.

6. Show that the locus of a point the sum of the squares of whose distances

from n fixed points is constant is a sphere.

7. Find the locus of a point such that the sum of the squares of its distances

from the faces of a cube is constant.

8. Find the equations of the surfaces of revolution generated by revolving

the conic sections around their axes.

9. Find the equation of the surface generated by revolving the parabola

around the tangent at the vertex.

10. Find the locus of a point which moves so that its distance from the point

(2 a, 0, 0) is always equal to its distance from the plane cc = 0.
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11. Find the locus of a point such that (1) the sum, and (2) the difference, of

its distances from the two points (c, 0, 0) and (— c, 0, 0) is constant and equal

to 2 a.

12. Show that the equation of the surface generated by revolving the circle

a;2 ^. 2;2 = 2 ax around the 2;-axis is

(a:2 + 2/2 + 22.)2 = 4 ^2 (a;2 + 2/2)

.

Show also that the equation in spherical coordinates is

p = 2 a sine. (See Ex. 28, p. 205.)

13. The six points ^(a,0,0),5(- a, 0,0), C(0, a,0), Z>(0, -a, 0), ^(0,0, a),

and F(0, 0, — a) form a regular octahedron.

Find the locus of a point P in space such that

(1) ^P2 + 5P2 + ^P2=CP2 + 2)P2 + i?'P2; Ans.z = 0.

(2) u4P2+C'P2 + JSrP2 = PP2 + 2)p2 + PP2; Ans.x + y-\-z = 0.

(3) ^P2+C'P2=PP2+2)p2+^p2+i^p2. Ans, x'^+y^-\-z'^+2a(x+y)+a'^=0,

(4) ^p2 + PP2=OP2 + i)P2+^p2 + pp2; Ans. z^ + y^ + z^ + tt"^ = 0.

(5) ^P2 + PP2 =01^ + DI^= EP^ + PP2 ; Ans. All space.

14. If ABCD is a regular tetrahedron, show that the locus of a point P, such

that 2 P^2 _ pj52 _}. pc'2 + P2)2^ ig a sphere passing through the points, P, 0, D,

and having a radius equal to twice the face altitude of the tetrahedron.

15. Show that the equation 8+ ^8' — represents a surface passing through

all the common points of the two surfaces ^S'= and 8^ — 0. Show also that

88' — represents both of the surfaces /S'= and 8' — 0.

16. Find the equation of the surface of the blade of a screw-auger.



CHAPTER XIV

THE PLANE AND THE STRAIGHT LINE

142. To Jind the equation of a plane.

Let OH be perpendicular to the given plane ABC, intersecting it

in jfiT; and let I, m, n be the direction cosines of OH. Let OK=p
be the distance measured from the ongin to the plane, and let P(xj y, z)

be any point in the plane. Draw PR perpendicular to the plane

XOFand BQ perpendicular to OX.

Then OK, the projection of OP on OH, is equal to the sum of the

projections of OQ, QB, and MP on OH [(1), § 130]

Therefore Ix + my \-nz = Pf (1)

which is the equation of the plane in the Normal or Distance Foi-m.

Since changing the signs of all its direction cosines reverses the

direction of a line, the equation of a plane may always be written

so that p shall be measured along the positive direction of OH-,

i.e. so that p shall be positive. The positive side of the plane is

209
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found by going from the plane in the positive direction of p. Hence

when p is positive the origin is on the negative side of the plane.

Equation (1) may also be written in the form

^+ i^+^= l. (2)
P P P
I m n

T) T) If)

If now we let a= ^, 6 = —, and c= -, we have
V m n'

which is the equation of the plane in terms of its intercepts on the

Les.

The general equation of the first degree

may be written

By ^ Cz _ -D

(4)

=' (5)
V^2+_B2+C2 V^2+ jB2_,.Cf2 V^2+ ^2+(72 -^A^+B^+C^

in which the coefficients of a;, y, and z are the direction cosines of

some line [(5), § 131]. Comparing this with equation (1) we see

that (5) is the equation of a plane in the distance form.

143. The distance from a given plane to a given point.

The demonstration is precisely the same as that for the corre-

sponding proposition in Plane Geometry.

If d represents the distance and (x^, y^ z^ is the given point, the

required formula is

d = lxi + mm + nzi -p, or g^ ^xi ^ Byi + Czi + D
^ .^

according as the equation of the plane is

lx-\-my-\- nz =py or Ax + By + Cz-\-D= 0.

As in Plane Geometry a point (x'j y\ z') is on the positive or

negative side of the plane Ax -{- By -{- Cz -\- D = 0, according as

Ax' + By' -\-Cz' -{-D is positive or negative.



X, y, 2^, 1

Xi, Vh «1, 1

X2, ^2, 5?2, 1

X3, 2/3, ^3, 1
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EXAMPLES

1. Show that the equation of a plane through the three points (xi, yi, 01),

(3^2, 2/2, 22), and (X3, 2/3, 5?3) is

= 0.

2. Find the equation of the plane through the three points (1, 2, 2),

(2, —4, —3), and (— 6, 2, 5). Find j9, the intercepts, and traces of the plane.

Ans. 2x — 3y + 42; = 4.

3. Find the equation of the plane through the point (3, 2, — 4) parallel to

the plane 2x — 3y — 5^ = 0. Ans. 2x — Sj/ — 6^ = 20.

4. If >S^= and S' = are the equations of two planes, show that S+\S' =
will be the general equation of a plane through their intersection.

5. Find the equation of a plane through the origin and through the inter-

section of the two planes 3x + 4y — 2^ + 4 = and 4x — 5x — ^ = 6.

Ans. nx-\-2y-Sz = 0.

6. Show that the four planes x— y— 2z= lj 2x— 2/4-2 + 1 = 0, x-\-2y — z = 6,

and 4x4-y + 60 = O meet in a point.

Find the general condition that four planes shall meet in a point.

7. Show that the four points (0, 1, 3), (1, 1, 1), (-2, -3, -5), and

(4, 2, —2) are in the same plane. (Use the determinant in Ex. 1.)

8. Show that the two points (1, —4, —2) and (—1, 2, 3) are on opposite

sides of the plane 7x — 3«/ + 42; = 5, and equidistant from it.

9. Show that the equations of the planes which bisect the angles between the

two planes Az + By + Cz -]- D = and A'x + B'y + C'z + Z>' = 0,

are
Ax -h By -[ Cz }- D ^ ^

A'x -^- B'y + C'z + D'

V^2 + ^ + 02 V^'2 4. B'^ + C'^

144. Equations of a straight line^

We have seen in § 134 that it requires two equations used simul-

taneously to represent a line in space. Since two planes intersect

in a straight line we may take the two general equations of the

first degree

Ax-{-By + Cz-^D= Oy and A'x + B'y-{-C'z-\-D' = 0, (1)

as the most general equations of a straight line.

If we treat these equations simultaneously and eliminate 2, y, x,
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respectively, we obtain three other consistent equations which may
be reduced to the form

b~^' h' ' c~"' c' ' a'~" (^)

Since each of these equations (2) is satisfied by the coordinates of

every point on the line, they will each determine a plane through

the line. These planes are seen to be the projecting planes of the

line, while their equations also represent the projections of the line

on the coordinate planes. The equations of any two of the project-

ing planes may be chosen as the equations of the line.

If the line is parallel to one of the coordinate planes, two of the

projecting planes coincide and the equations of the line will be of

the form bx -\- ay = ab, z = c; if the line is parallel to one of the

axes, one of the projecting planes is indeterminate, and the other

two are of the form x = a, y=b.
From the equations (2) of the projecting planes we see that the

coordinates of the points where the line meets the coordinate planes

x = 0, 2/ = 0, z = Oj are respectively (0, 6, 0% (a, 0, c), (a', b', 0).

The equations of a straight line contain four independent constants.

145. The symmetrical equations of a straight line.

Let P'(x', y', z')he a fixed point on the line, and P(Xj y, z) any

other point on the line at a distance r from P' ; let I, m, n be the

direction cosines of the line P'P.

ThroughP ' and P draw planes

parallel to the coordinate planes,

making a parallelopiped whose

edges P'Q, QR, and MP are

respectively equal to the projec-

tions of P'P, or r, on the axes.

Since these edges are respectively

equal to x — x', y — y', and z — z\

we have

aj — «' = Zr, y — y^ — mr, z — z^ — nr, (§ 130) (1)

or a?-ac'

I m, n
which are the required equations of the line.
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146. To find the equations of a straight line through two given

points (»!, yi, z^ and (a^g, Vz) ^2)-

Since the line passes through the point (ajj, y^ Zi) its equations

will be of the form [(2), § 145]

I m n

Then, since the point (ajg, 2/2? ^2) is also oli the line, we have

X2- xi _ y2- yi ^ Z2- Zi
^2)

I m n

Dividing (1) by (2) gives the required equations,

x-xi y-vi z-zx
(3)

a?2-a?i y^-vt z^-zi

Hence, the direction cosines of the line are proportional to the

differences of the coordinates of the two given points.

147. The equations of any two straight lines in rectangular co-

ordinates can be written in a very simple form by a proper choice of

axes.

Take the middle point of the shortest distance between the two

lines for the origin, and the z-axis along this line. Take the yz and

xz planes so that they bisect the angles between the two planes

determined by the z-axis and the two given lines. Then the equations

of the two lines can be written

y = mx, z = Ct and y = -mx, s = -c, (1)

or in the symmetric form

EXAMPLES

1. Find the symmetric equations, and the direction cosines, of the line of

intersection of the planes 6x — y-\-z + 6 = and x — y — z-\-l = 0.

Eliminating z and y in turn between these equations, we get

Zx = y-S and 2x-{-z-\-2 = 0.

Whence ^ = 1L^ = ^.±1.13-2
Hence the direction cosines of the line are proportional to 1, 3, and — 2 ; and

1 o 2
their actual values are , ,

Vli Vli V^lT
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Find the projections, the symmetric equations, the points where they pierce

the coordinate planes, and the direction cosines of the lines whose equations are

2. x-{-y-z + l=0 and ix + y + z = 5.

3. x + y-z + l = and ^x-\-y-2z-\-2 = 0.

4. 2x-y-\-z-S = and x-{-2y + z = 5.

5. 8x-2y + ^z = 12 and 6 x - 4 y - S z -{ 2i = 0.

6. 5x-Sy + 2z-{-6 = and Sx-5y-2z = 7.

7. Write the symmetric equations of a line perpendicular to a coordinate

axis; a coordinate plane.

8. Write the symmetric equations of the line through the point (2, — 3, 1)

equally inclined to the axes.

9. Find the equations and direction cosines of the line through the two

points (- 1, 3, 2) and (2, - 3, 0).

10. Find the equations of the line through the origin perpendicular to the

plane lx + my + nz= p.

11. Find the coordinates of the point where the line

meets the plane 2a; — y — 355 + 15 = 0.

x-2
1

y - 2 ^ g + 3

-2 -3

148. To find the angle between two straight lines whose direction

cosines are given.

Draw OP and OP through the

origin parallel respectively to the

two given lines. Let l, m, n and

V, m'j n' be the direction cosines

of OP and OP' respectively, and

let 6 represent the angle POP'.

Let p be the distance from the

origin to the point P{xy y, z).

Then projecting p, x, y, and z on

OP' we get [(1), § 130]

p cos d= I'x 4- m'y + n'z. (1)

But x^lp, y = mp, and z = np.
. [(2), § 131.] (2)

.-. cos9 = ir -\-tnni'-\-nn'. (3)

It = 90°, cos d= 0. Hence the condition for perpendicularity is

W + mm' + nn' = 0. (4)
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It should be noticed that equation (3) gives the angle between two

lines directed from the origin. If the signs of Z, m, n are all changed,

the direction of OP will be reversed, the sign of IV+ mm' -\- nn' will

be changed, and will be the supplement of its former value. But if

the signs of V m' n' are also changed, the direction of both lines will

be reversed, the sign of cos will not be changed, and 6 will be un-

altered.

149. To find the angle between two planes.

The angles between two planes are evidently equal to the angles

between the lines through the origin perpendicular to the planes.

Let the equations of the planes in the distance form be

Ix + my -\- nz = py (1)

and l'x-{-m'y-{-n'z=p', (2)

Then cos 6 = W + mn' + nn'. [(3), § 148.] (3)

If the planes are at right angles, cos ^ = ; i.e.

IV + mm' + nn' = 0. (4)

If l= V, m = m', and n=:n', then cos = 1, and the planes are

parallel. ^

If the equations of the planes are

Ax + By-^Cz + D = Oy (5)

and • A'x + B'y-\-az-\-D' = 0, (6)

eos9= AA' + BB ' + Ca _ , [(5), § 142] (7)
V^2 + ^2 + (72 . VJL'2 + JB'2 + Cf'2

and the condition for perpendicularity is

AA' + BB' + CC' = 0.
'

(8)

If ^ = kA', B= kB' and C= kC, the planes are parallel.

Let the equations (1) and (2) be written so thatp and jp' have the

same sign. Then, when cos 6 is positive the angle between p and p'

is acute, and the angle between the planes in which the origin lies is

obtuse. If cos 6 is negative^ the origin lies in the a^mte angle between

the planes.
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EXAMPLES

1. Show that the lines 4x = — ?/ = 3;s and Sx = — 4ty = — z are perpen-

dicular to each other.

2. Find the angle between the lines

Ans. cos-^ .

26

3. Find the angle between any two of the four lines through the origin

equally inclined to the axes.

4. Find the angle between any two of the lines which bisect the angles

between the axes.

5. Find the angle between one of the lines in Ex. 3 and one of the lines

in Ex. 4.

6. Find the angle between the planes x + y-\- z = 1 and x — y — 2z = 2.

Is the origin in the acute or the obtuse angle ? the point (1, 3, — 1)?

V2
Ans. cos-i——, Acute, Obtuse.

o

7. Find the equation of the plane through the line x-\- y — z = 2j

2x — Sy-\-4:Z-\-6 = and perpendicular to the plane x — 2y + z = 0.

Ans. Sx-\-Sy -2z = 7.

8. Find the equation of the line througji the point (1, 4, 3) perpendicular to

the plane 3x — 2^ + 42; = 0.

9. Find the equation of the plane through the point (2, —1, 3) and perpen-

dicular to the line 2x + Sy — z=2, x-2y + z = S.

Ans. x-Sy-7z + lQ = 0.

10. Find the dihedral angles of a regular octahedron.

11. Show that the line - = — = - will be parallel to the plane
I m n

I'x 4- tn'y + n'z =p, if W + mm' + nn' = 0.

12. Show that the equations of the straight lines which bisect the angles

between the lines

? = l = i and | = J^ = 1.
I m n V m' n'

are ^-^V^^ and * - ^ - '^

l + V w -r m' w + n' l — V m — m' n — n'
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Transformation op Coordinates

150. To change the origin of coordinates loithout changing the direc-

tion of the axes.

This transformation is evidently similar to the corresponding one

in Plane Geometry. Hence if we wish to find the equation of a

locus referred to new axes parallel respectively to the old, and

passing through the point (ajo, 2/o? ^o)) we have only to write in the

place of X, 2/, 2;, respectively,

151. To change the direction of the axes without changing the origin.

Let Zi, mi, «i ; Zg? ^2j ^2; a,nd Zg, mg, %, be the direction cosines of

the new axes OX', Y^, OZ' respectively, referred to the old axes.

Let P be any point (a;, y, z) referred to the old axes, and let its

coordinates referred to the new axes be OQ= a;', QR = y\ RP = z'.

Then projecting the lines OP, x',

y', z' on the old axes OX, OT, OZ,

respectively, we get [(1), § 130]

y = mtoc' + m^y' + mgs', I (1)

and z = n\x' + n^y' + ns^'. J

These are the required formulae.

The student should compare

them with the corresponding for-

mulae in Plane Geometry.

It is evident that the degree of

an equation will not be altered by

either of these transformations.

The direction cosines of the old axes referred to the new are

respectively l^, I2, /g ; m^ m^, m^ ; and Wj, 712, Wg.

Hence we have the six relations

h^ + mi^ +V = 1, ]

(2)
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n^ + rii + ni = 1. J

(3)

Since both sets of axes are rectangular, we also have the six

equations

1^2 -H m-i^mi + 921^2 = 0,

Uz + wigms + W2W3 = 0, • (4)

^1 + Wgrni + Tiarii = ;
-

liTTix -h Zgma + ?3m3 = 0,

miWi + mgWa 4- mgWg = 0, (5)

Wi^i + 712^2 + WgZg = 0.

EXAMPLES ON CHAPTER XIV

1. Transform the equation (x + yy^ = az by turning the axes of x and y
around the 0-axis through an angle of 45^. Ans. 2x^ = az,

2. If P is a fixed point on a straight line through the origin equally inclined

to the axes, any plane through P will intercept lengths on the axes the sum of

whose reciprocals is constant.

3. The equation of the plane through the line - = ^ = -, and which is per-
l m n

pendicular to the plane containing the lines — = ^ = ? and - = ^ = — , is

m n I n I m
(m — n')x + (w — X)y + (Z — m)z — 0.

4. Show that the three straight lines

x_'f_z x_y_z ^-.y_-.^a^y^abc^lmn
Will lie in one plane if

a{bn — cm) + /3(d — an) + y{am —^l) = 0.

6. If a, 6, c and a', b', d are the intercepts of a plane on two sets of rectan-

gular axes having the same origin, then

i +l + l = i + -l + l.
a2 62 c2 a'2 &'2 ^ c'2

6. The locus of a point whose distances from two given planes are in a

constant ratio is a plane.
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7. Show that the locus of a point which moves so that the sum of its distances

from two fixed planes is constant is a plane parallel to one of the planes which

bisect the angles between the two fixed planes. "What is the locus if the difference

of these distances is constant ?

8. Find the locus of a point which moves so that the sum of its distances

from any number of planes is constant.

9. Transform the equation z"^ = ax -{ by by turning the axes of x and y
around the «-axis until the new y-axis coincides with the line ax + by = 0, z = 0.

Ans. 02 - xVa^ + 52.

10. What is the equation of the surface

x^ + y^ -{- 2 z^ - 2 z(x + y) = a^

when referred to new axes such that the new ic-axis is equally inclined to OX,
O F, and OZ, and the new y-axis is the line x + y=0, = 0? Ans. y^ + Sz^ = a^.

11. Show that the six planes, each passing through one edge of a tetrahedron

and bisecting the opposite edge, meet in a point.

12. Through the middle point of every edge of a tetrahedron a plane is drawn
perpendicular to the opposite edge. Show that the six planes so drawn will meet

in a point such that the centroid of the tetrahedron is midway between it and

the centre of the circumscribed sphere.

13. Through two fixed straight lines in space two planes are drawn at right

angles to one another. Find the locus of their line of intersection. (See § 147.)

14. A line of constant length has its extremities on two given straight lines.

Find the equation of the surface generated by it, and show that any point on the

line describes an ellipse.

16. A straight line meets two given straight lines and makes the same angle

with both of them. Find the equation of the surface which it generates.

16. Three straight lines mutually at right angles meet in a point P, and two
of them intersect the axes of x and y respectively, while the third passes through

the fixed point (0, 0, c) . Show that the equation of the locus of P is

x^ + i/^ + z^ = 2cz.

17. Show that when the new axes are chosen, as in Ex. 10, the equation of the

surface xy + yz + zx=:0 becomes 2x^ — y^ — z^ = 0.



CHAPTER XV

CONICOIDS

152. A surface whose equation is of the second degree is called a

Conicoid. In this chapter we shall investigate some of the properties

of the conicoids by taking the equations of these surfaces in their

Standard Forms. We shall begin with the Sphere, which may be

defined as the locus of a point whose distance from a fixed point is

constant. From this definition it follows at once from equation (2),

§ 129, that, if the centre is at the origin and the radius is r, the

equation of the sphere is

x^-]-y^ + z^ = r^; (1)

and if the centre is at the point (a, b, c), the equation is

(X - a)2 + (2/- 6)2 + (;s _ c)2 = ^2, (2)

Moreover, the general equation

x^ + y^ + z^ + 2Ax-h2By + 2Cz + D = 0, (3)

may be written in the form

(x-^Ay + iy + Bf-hiz-^Cy^A' + B'+C'-D, (4)

which shows that the equation represents a sphere whose centre is

the point (—A, —Bj —C) and whose radius is -y/
A^

-{- B^ -\- C^ — D.

That is, every equation of the second degree in which the coefficients

of a^, 2/^ and z^ are equal, and in which the terms containing xy, yz,

and zx do not appear, represents a sphere.

153. To find the equation of the tangent plane at any point (a;', y\ z')

of the sphere.

Let the equation of the sphere be x^ -\-
y"^

-\- z^ = i^. (1)

The equations of the radius drawn to {x\ y\ z') are

^=2^= ^. (2)
x' y' z'

^^

Since the tangent plane passes through the point (x\ y\ z') and is

perpendicular to this radius, its equation is

220
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x'(x-x')-]-y'(i/-y')+z'{z-z') = 0, (3)

Since x'^ -\-y'^ + z^ = 7^, this equation reduces to

icx' + yy' + zz' = r^, (4)

In like manner, the equation of the plane tangent to the sphere

ix^-{-y^ + z^-^2Ax+ 2By-^2Cz-\-D = (5)

at the point (a;', y', z') can be shown to be

xx'-\-yy' + zz' + A(x + x')+B(y + yf) + C(z + z')+n = 0. (6)

154. Interpretation of the expression

(x' - ay + (y' - by + (z' -cy-cP (1)

when the point P(x', y\ z') is not on the sphere

(x^ay+(y-by-{-(z-cy-d'= 0. (2)

Let I, m, n be the direction cosines of any line through P. Then
the equations of this line may be written (§ 145)

I m n
'

^
'

Let this line intersect the sphere in the points Q and B. Then at

the points Q and E [from (2) and (3)]

(lr + h'-ay'^(mr-\-y'-by-{-(nr-\-z'-cy-d^= 0. (4)

If Ti and ra are the roots of this equation, we have

nrg = (X' - a)2 + (y' - &)2 + (2,/ _ c)2 -d^ = rQ. JPB, (5)

That is, the expression (1), or (5), is always equal to the product

of the distances from P to the sphere measured along any straight

line passing through P.

If
7'i Vz is negative, P is inside the sphere. Then (5) is the product

of the segments of any chord passing through P; it is also numei-i-

cally equal to the square of the radius of the small circle on the

sphere, whose centre is at P.

If ri rj is positive, P is outside the sphere. In this case the expres-

sion (5) is equal to the product of the whole secant by the external

segment ; and therefore it is also equal to the square of any tangent

PT drawn from P to the sphere, (Cf § 104.)

Cor. All tangents drawn from an external point to a sphere are

equal.
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155. If a sphere passes through the line of intersection of two given

spheres, tangents drawn from any point on it to the two given spheres

are in a constant ratio.

Let S= x' + y'+ z' + 2Ax+ 2By+ 2Cz+ D = 0, (1)

and S' = x'-}-y'-{-z' + 2A'x-^2B'y-{-2C'z + D' = 0, (2)

be the equations of two spheres, in each of which the coefficient of

x^ is unity. Then the equation of any sphere through their line of

intersection is <^ __^^i-.q (3)

If PTf and PT' are tangents drawn from any point on (3) to (1)

and (2) respectively, it follows from § 154 that

JPT2 = X.1>T'2, (4)

which proves the proposition, since X is constant for any particular

sphere.

If X= 1, equation (3) reduces to

2iA-A')x + 2(iB-B')y + 2(C-C')z + D-I>' = 0, (5)

which is of the first degree, and therefore represents a plane.

The plane through the line of intersection of two spheres is called

their Radical Plane. The radical plane of two spheres may also be

defined as the locus of all points from which tangents drawn to the

two spheres are equal.

EXAMPLES

1. What does the constant term D represent in the general equation of the

sphere ? Where is the origin if D is positive ? if Z) is zero ? if Z> is negative ?

Where is P in § 154 if nrz = - fZ^ ?

2. How many independent conditions can a sphere be made to satisfy ?

8. Find the equation of a sphere through four given points.

Find the centres, radii, position of the origin, length of tangents from the

origin, and the intercepts of the following spheres.

4. a;2 + ?/2 + 2;2_2ic_42/-60 + 5 = O.

5. x^ + y^ + z^ + 10x-2iy = 0.

6. x:^-\-y^ + z'^ + 6x-8y + 2z-10 = 0.

7. a;2 + y2 + 02 _ 4 X + 6 2/ + 10 5! = 0.
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Find the equation of a sphere

8. With centre on one of the coordinate axes and passing through the origin.

9. Touching two of the coordinate planes.

10. Touching the three coordinate planes. — -

11. Touching two of the coordinate axes.

12. Touching the three coordinate axes.

13. Touching the three axes and passing through the point (2, 4, 0).

How many such spheres are there ?

14. Show that if the coordinates of the extremities of a diameter of a sphere

are (xi, yi, zi) and (x2, Vi, Zi) its equation may be written

ix - xi) (x - Xi) + (y- yi) (y - 2/2) + (« - zi) {z - Zi)= 0.

16. Show that the polar equation of the sphere

x2 + 2/2 + 02^_2^4ic + 2^y + 2Cfe + 2> = O

is p2 + 2 p{Al + 5m + Cw) + D = 0.

What property of the sphere follows from the fact that the product of the

roots of this last equation is constant ?

16. Show that the radical plane of two spheres is perpendicular to their line

of centres, and bisects all their common tangents.

17. Show that the radical planes of three spheres meet in a line which is

perpendicular to the plane through the centres of the spheres.

This line is called the Radical Axis of the three spheres.

18. Show that the radical planes of four spheres meet in a point.

This point is called the Radical Centre of the four spheres.

19. What is the geometric property of the radical axis of three spheres ? of

the radical centre of four spheres ? What is the analytic condition that the

origin shall be the radical centre of four spheres ?

20. A and B are two fixed points, and P a variable point such that

PA = n ' PB. Show that the locus of P is a sphere. Show also that all such

spheres, for different values of n, have a common radical plane.

21. Show that the spheres whose equations are

x*+2/2 + «2 + 2^ + 2JBy + 2(7« + 2> =

and a;2 + ya _^ 2;2 ^ 2 ^'a; + 2 B'y + 2 C'2? + 2>' =

will cut one another at right angles if

2 ^14' + 2 JB£' + 2 CC" - 2> - D' =t a
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The Cone

156. To find the equation of a cone generated by a straight line

passing through the origin, of which the guiding curve is a conic.

Let the equations of the guiding conic be

«?^y'
1, z= c. (1)

a' ' b'

Let Q(xi, i/i, c) be any point on

the guiding conic ; then

^4-^ 1, (2)
a- b^

and the equations of the generating

line OQ are

X _y z

Xi~yi c

Whence

(3)

^1 = -, yi = -, and-, . = 1. (4)
r cr ^ ^

Substituting these values in equa-

tion (2) gives

^
^ f ^ z^

a'r^'^b'r' c'r'

2 ^ 62 c2
0,

(5)

(6)

which is the required equation.

By putting x, y, and z respectively equal to zero in (6), we find the

equations of the traces of the cone to be

b' (^ ^'
^+ 2^ = 0. (7)

Each of the first two of these sections is a pair of straight lines

through the origin, and the third is a point ellipse.

By putting cc, y, and z respectively equal to fc, we find the equations

of the three sets of contours to be

?!_^ —^ ^ — — x^ y k'

¥ c^
(8)
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each of which for different values of k represents a system of similar

and coaxial conies (§ 116). The first two are hyperbolas with trans-

verse axes along the 2J-axis, and whose asymptotes are the traces on

the corresponding coordinate planes. The last are ellipses which
increase indefinitely in size as the cutting plane recedes from the

origin. As a check it should be noticed that the section made by

the plane 2 = c is the guiding conic.

If we take as the guiding conic the hyperbola

the equation of the surface will be

which is a cone extending along the 2/-axis, since the sections per-

pendicular to this axis are ellipses with centres on this axis.

Similarly, if the guiding conic is the hyperbola

-2-^2= 1, 2; = c, (11)

the resulting equation will be

052 1/2 «2

which represents a cone extending along the aj-axis.

If we take as the guiding conic the parabola

2/2 = 4aajj z = c, (13)

the equation of the cone will be

cy'^ = 4 axz, (14)

The traces of this surface show that the cone is tangent to the

coordinate planes a;=0, 2=0, along the 2;-axis, and a^axis respectively

;

I.e. these axes are elements of the cone. The a»-contours are the

rectangular hyperbolas 4 00:2; = cT^. The other two sets of contours

are the parabolas ^,^ ^ ^^^ ^^^ ^ ^ 4 ^^^ ^^^^

Observe that these parabolas are sections made by planes parallel to

an element of the cone.
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If we transform equation (14) by turning the axes of x and z

clockwise through an angle of 45°, the new equation will be

^+ |l_?!= 0, (16)
c 2a c ^ ^

which is of the same form as equation (6), and therefore represents a

cone extending along the new 2;-axis. It follows from equations (6),

(10), (12), and (16) that the conical surface generated is essentially

the same, whatever the form of the guiding conic.

The equations of the cone found above are all homogeneous.

Moreover, if they are referred to any new set of rectangular axes

having the same origin [(1), § 151], the new equations will also be

homogeneous. Furthermore, any homogeneous equation represents a

cone whose vertex is at the origin. For if the coordinates of the point

(a;, y, z) satisfy a homogeneous equation, so also will the coordinates

of the point (kx, ky, kz), whatever the value of k may be. Hence a

line through the origin and any point on the surface lies wholly on

the surface.

157. Definitions.— The form of equations (6), (10), (12), and (16)

of § 156 shows that the surfaces which they represent are sym-

metrical with respect to each of the coordinate planes, and also with

respect to the origin. That is, each of these planes bisects all chords

of the surface which are perpendicular to the plane. A plane which

bisects all chords of a conicoid which are perpendicular to it, is

called a Principal Plane. The sections made by the principal planes

are called the Principal Sections of the conicoid. The lines of inter-

section of the principal planes are called the Axes of the conicoid;

they are also the axes of the principal sections. The point of inter-

section of the principal planes is called the Centre of the conicoid.

It follows from these definitions that the cones in § 156 have three

principal planes and three axes. These are the coordinate planes

and the coordinate axes, with the single exception of the locus of

equation (14). Moreover, we have also found in § 156 that if the

guiding conic is an ellipse, a hyperbola, or a parabola, the cone is

such that sections perpendicular to one of its axes are ellipses. Such

a cone is called an Elliptic Cone to distinguish it from the cone of

revolution, or circular cone.
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The Ellipsoid

158. Let + -, = 1, y= 0;

and ^ + ^'= 1,2 = 0,
or Ir

(1)

(2)

be two fixed ellipses, XZ, XY^ having a common major axis; and

let ABC be a variable ellipse which moves so that its plane is

always parallel to the 2/2;-plane, and which changes in size so that

the ends of its axes, A and B, always lie in the two fixed ellipses.

The surface generated by this variable ellipse is called an Ellipsoid.

Let Pix, y, z) be any point in the ellipse AB^ whose semi-axes are

CA, CB ; and let PD be drawn perpendicular to CA. Then, since

DP= y and CD = Zy yi ^2

CB^'^CA' '

(3)

Since A and B are also on the two fixed ellipses (1) and (2),

respectively, and their coordinates are (x, 0, CA) and (x, CB, 0), we
have ^ +M' = l, and ^ + «^

a* y"
1. (4)
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Substituting in (3) the values of Gj^ and CI^ given by equa

tions(4),weget
^ ^ ^^'^^-^'--=1,

(5)

which is the standard equation of the ellipsoid.

The surface is symmetrical with respect to each of the coordinate

planes, and also with respect to the origin. Hence these are the

principal planes of the surface, the coordinate axes are its axes, and

the origin is the centre.

The principal sections are the ellipses

.+% = ^> ^.+ ^ = 1^ fe + :i = i- (^)

The equations of the three sets of contours are

t^t^l-^ tj^t^l-t t^t^l-^. m
y" c" a"' a^ & h^ a^ W- (?

^^

Each set is a system of similar ellipses which vanish, respectively,

when Tc is equal to ± a, ± 6, ± c.

In general, it is here assumed that a';>h'> c.

If c = &, the equation (5) becomes

The 2/2;-contours are now concentric circles, and the surfaxje is

an ellipsoid of revolution generated by revolving the ellipse

6V H- ay = a^W about its major axis. This surface is called a

Prolate Spheroid.

If 6 = a, the equation of the surface (5) takes the form

05^
J/2

«2

of which the a;2/-contours are concentric circles. The surface is an

ellipsoid of revolution generated by revolving the ellipse (1) about

its minor axis, i.e. the z-axis. Such a surface is called an Oblate

Spheroid.

If c = 6 = a, the ellipsoid becomes the sphere

a^ + 2/^ + 2^ = a\ (10)
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159. Let

and

The Hyperboloid of One Sheet

a?

,2 ^2

T2-^= l^
2/ = 0; (1)

(2)

.^
'^

z /• ^^
V Hv y/ ^ ^
\

v"-""\

/
\ c/r D ~'-^

V"^—

I

/ '' /
/J*"

\-""l
---- J

/

/ o

\
/'"'

Zt""-A
/^~—

i

/ HA/ -7 — - — i \
/""

/ z^-'-X
'v^ //

/

be two fixed hyperbolas, EFy HK, having a common conjugate axis

OZ', and let ABC be a variable ellipse which moves so that its plane

is always parallel to the an/-plane, and which changes its size so that

the ends of its axes, A and JB, always lie in the two fixed hyperbolas.

The surface generated by this variable ellipse is called a Hyperboloid

of One Sheet.
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Let PiXy ?/, z) be any point in the ellipse AB^ and let PD be drawn

perpendicular to AC) then, since CD = x, DP= yj and CA, CB are

the semi-axes of the ellipse,

^
I y _ i /Q\

CA^'^ CB"" '
^^

Since ^ and B are on the fixed hyperbolas (1) and (2),

which is the standard equation of the hyperboloid of one sheet.

The surface is symmetrical with respect to each of the coordinate

planes, and also with respect to the origin. Hence the coordinate

axes are the axes of the surface, and the origin is its centre.

The principal sections made by the planes x = and y= are the

two fixed hyperbolas (2) and (1), and the section made by the plane

2 = is the ellipse ^ ^,2

^+1= 1- (6)
a^ Ir

The intercepts on the axes of x and y are ± a a,nd ± 6, but the

surface does not intersect the 2-axis.

The equation of the a^-contours made by 2; = A; is

-2+ r2 = i + l'- (7)
a^ W (f

These sections are similar coaxial ellipses for all values of A;, which

increase in size without limit as the cutting plane recedes in either

direction from the origin.

The equation of the contours made by the plane a; = A; is

^-^=1-^- (8)

These sections are hyperbolas for all values of A;. If — a< A;< a

these hyperbolas have their transverse axes along the 2/-axis, but if

A; > a, or A: < — a, their transverse axes lie along the z-axis. When
A; = ± a, the contour is a pair of straight lines, which are the asymp-

totes of the entire system of hyperbolas.
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Similarly, the contours made by y = A; are the hyperbolas

which have their transverse axes along the a>axis, or 2-axis, according

as A;<, or >6, numerically, and whose common asymptotes are the

contours made by the planes y = ±b.

When b = a, the equation (5) of the surface becomes

^+IL*_5j = i, (10)
a2 a2 c2 ' ^ ^

which is a hyperboloid of revolution generated by revolving the

hyperbola (1) about its conjugate axis.

160. Asymptotic cone of the hyperboloid of one sheet.

Let the equation of the hyperboloid be

be the equation of a cone along the z-axis [(6), § 156].

The equations of the contours of these two surfaces made by the

plane z = k are, respectively,

^+ 2^-1 +^ (3)

^a y2 J^
and

a^+h=r W
A comparison of equations (3) and (4) shows that, for the same

finite value of k, the section of the cone is smaller than the section

of the hyperboloid. Hence the cone may be said to lie inside of the

hyperboloid.

Equation (3) may also be written in the form

which shows that the sections of the two surfaces become equal, i.e.

they approach the same limit, when the cutting plane recedes in

either direction to an infinite distance from the origin. That is, the
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cone is tangent to the hyperboloid at infinity, and is, therefore, called

the Asymptotic Cone of the hyperboloid of one sheet.

161. Let

Thh Hyperboloid of Two Sheets

and

= 1, 2/ = 0;

1, . = 0,

(1)

be two fixed hyperbolas, EF, EHy having a common transverse

axis; and let ABC be a variable ellipse which moves so that its

plane is always parallel to the ysi-plane, and which changes its size

so that the ends of its axes, A and B, always lie in the two fixed

hyperbolas. The surface generated by this variable ellipse is called

a Hyperboloid of Two Sheets.

Let P{Xy y, z) be any point on the ellipse AB, and let PD be

drawn perpendicular to CA\ then, since CD = Zy DP= y, and CA,

CB are the semi-axes of the ellipse,

CB^'^CA' ^'

Since A and B are also on the fixed hyperbolas (1) and (2),

-i ;;^ = l,and- ^= 1.
a' a' b'

(3)

W
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which is the standard equation of the hyperboloid of two sheets.

The surface is symmetrical with respect to each of the coordinate

planes and the origin. Hence the axes of coordinates are the axes,

and the origin is the centre of the surface.

The intercepts on the a^axis are ± a, but the surface does not

intersect either of the other axes.

The equation of the contours made by the plane a; = A; is

These sections are imaginary for all values of k between 4- a and
— a. Hence there are no real points on the surface between the

planes x— a and x— — a. If A: is numerically greater than a, these

sections are real ellipses which increase indefinitely in size as k
increases without limit, but reduce to points when k = ±a. Hence
the planes x= ± a are tangent to the surface. Thus the surface

is shown to consist of two distinct parts, and for this reason the

hyperboloid is said to have two sheets.

The xy and a;2;-contours are hyperbolas with transverse axes along

the iP-axis, and whose asymptotes are the traces of the asymptotic

cone on the xy and a;2j-planes. From § 160 it is evident that the

equation of the asymptotic cone is

a2 62 c2 "• ^^^

If c= 6, equation (5) becomes

a;2 y^ 2:2^~62-^-l' W
which is the equation of a two-sheeted hyperboloid of revolution

generated by revolving the hyperbola (2) about its transverse axes.

Two conicoids are similar if their principal sections are similar

conies. Hence, if K is an arbitrary parameter, the equations,

represent systems of similar conicoids (§ 116).
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The Elliptic Paraboloid

162. Let ABC be a variable ellipse whose plane is always parallel

to the a^-plane, and whose vertices A, B move along the two fixed

parabolas OA and OB, whose equations are

x'= 2az, 2/= 0; (1)

and 2/'= 2&^, a; = 0. (2)

•The surface generated by this moving ellipse is called the Elliptic

Paraboloid.

Let P(xj y, z) be any point in the

ellipse AB, and let PD be perpen-

dicular to AC ; then since CD = x,

SiJid DP= y

CA^^CB" '

(3)

Since A and B are also on the para-

bolas (1) and (2), respectively, and

OC=z
CA^ = 2az,

and CB'= 2bz. (4)

X y
a o ' (5)

which is the standard equation of the

elliptic paraboloid.

The surface is symmetrical with

respect to the xz and yz planes, and the 2;-axis. Hence the 2;-axis is

called the axis of the paraboloid. The surface passes through the

origin, cutting the z-axis once, the x and y axes each twice, but does

not cut the axes at any other point.

If we put z =km (5), we get

?+f= 2^-
a (6)

Hence a section parallel to the aJ2/-plane is imaginary if k is negative.

If k is positive, the section is an ellipse which increases in size as

the plane recedes from the origin, and diminishes to a point when
fc = 0. Therefore the surface is tangent to the a^-plane, and lies

wholly above this plane.
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The equations of the xz and 2/2;-contours are

a^= 2az-^,ajidf= 2bz-—'
b a

(7)

From equations (1) and (2) we see that, for all values of A;, these

sections are respectively equal to the two fixed parabolas OA and OB.
If 6 = a, equation (5) may be written

ac2 + 2/2 = 2a«, (8)

which represents a paraboloid of revolution about the 2;-axis.

The Hyperbolic Paraboloid

163. Let a^=:2az, y = 0, (1)

be the equations of a fixed parabola OA, and let AE be another

given parabola with a constant

latus rectum 2 6. Let the parab-

ola AE move, keeping its vertex

A in the fixed parabola OA, its

plane parallel to the 2/2;-plane, and

its axis AR in the os^-plane, the

concavities of the two parabolas

being turned in opposite directions.

The surface generated by this

moving parabola AE is called a

Hyperbolic Paraboloid.

Let P{x, y, z) be any point on

the parabola AE. Draw PD per-

pendicular to AR ; DC and AB perpendicular to OZ.

Then BA^^x'^^^a - OB, and DP^= y''=^2h • DA.

Whence ^-^= OB-DA = OC=z.
2a 26

a b '

which is the standard equation of the hyperbolic paraboloid.

The surface is symmetrical with respect to the planes x= and

y = 0, and the z-axis. Hence the 2-axis is called the axis of the sur-

face. The surface cuts the z-axis in one point, the x and y axes

each in two coincident points at the origin.

(2)

(3)

(4)
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If we put z=km equation (4) we get

a b
' (5)

which represents a hyperbola with transverse axis on the aj-axis or

y-axis according as k is positive or negative. When A; = 0, the section

is two straight lines, HK and LM (large figure), which are the

asymptotes of all these contours.

The equations of the xz and yz-contovLTs are

a^= 2a2 + ^, and2/'= -26« +^,
b a

(6)

which for all possible values of k represent two systems of parabolas.

The first are all equal to the fixed parabola OA with axes turned

upward, the second are all equal to the movable parabola AE with

axes turned downward.
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164. The paraboloids are the limiting forms of the central conicoids

as the centre recedes to infinity.

Let the equations of the central conicoids be _

If the origin is moved to the point (— a, 0, 0), the new equation

may be written ^ ^^ ^^2

52 c*
Let — = l, and ~ = l' j then i, V are respectively the semi-latera

recta of the principal sections made by the planes 2 = 0, and i/ = 0.

Equation (2) may then be written

aJ* V^ 25* f» /ON

Now, if a becomes infinite, while I and V remain finite, equation (3)

becomes in the limit, for the ellipsoid, hyperboloid of two sheets,

and one sheet, respectively,

f+F=2»' f+f=-2.,
t-t=2.. (4)

The first two are elliptic paraboloids, the last is a hyperbolic parabo-

loid, all with axes coinciding with the aj-axis.

EXAMPLES

1. Show that a hyperboloid degenerates into a cone when its axes become

indefinitely small, preserving a finite ratio to eacb other.

2. Show that the traces of the asymptotic cone are the asymptotes of the

contours of the hyperboloids.

3. Compare the section of the hyperboloid of one sheet [(5), § 159] made

by the plane x = k with the section of its asymptotic cone made by the plane

X = y/k^ - a*. What does this show ?

4. Show how an elliptic paraboloid may be generated by a moving parabola.

6. Show how a hyperbolic paraboloid may be generated by a moving hyper-

bola.

6. Show that all planes parallel to the axis of a paraboloid cut the surface in

parabolas.

7. Show that the projections, on a plane perpendicular to the axis of a para-

boloid, of all plane sections not parallel to the axis, are similar conies.
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8. Show that all parallel parabolic sections of a paraboloid are equal.

9. Let ri, r2, rg be any three semi-diameters of an ellipsoid which are

mutually at right angles. Show that

i. +^ +± = l + l + l.
n^ n^ rs^ a2 &2^c2

10. Show that the equation of the cone whose vertex is at the origin and

which passes through all the points of intersection of the ellipsoid [(6), § 158]

and the plane Ix + my + nz = 1 is

/v2 f<2 «2

11. Show that the two conjugate hyperboloids

have a common asymptotic cone, and show how they are situated with respect

to this cone.

12. What are the limiting forms of the asymptotic cones as the hyperboloids

pass into paraboloids in § 164 ?

Tangent Planes

165. To find the equation of the tangent plane at any point {x\ y\ z')

on a conicoid.

Let the equation of the conicoid be

Let the equations of any line through the point (x', y\ 2') be

I m n \ / \ /

or x= x^ + lry y = y'-{-mr, z = z'-\-nr. (3)

The distances from the point (ic', y'^ z') to the points where this line

meets the conicoid are the values of r given by the equation

(x' + lry (y'^mrf (z' + nry _
a' + P "^ ? -^' ^^^

JP ,
m2 n2\ „ fix' .

my'
.
nz'\

.
x'^

,

y''
, z" ^ ^ .^,

Since the point (x', y', z') is on the conicoid,

x^ y^.z^
^2 + 52 + ^2

„12 ,/2 «f2
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Therefore one value of r is zero, whatever the direction of the line

(2) may be. But if we choose the direction of the line so that we
also have 7 , , ,

^2+ 52 + ^ -"» —-iJ;

the other value of r will also vanish ; that is, the line will then meet
the surface in two coincident points, and is therefore a tangent line

at the point (a;', y\ z').

The equation of the locus of all the tangent lines which can he drawn
through the point {x\ y\ 2') is found by eliminating Z, m, n between

equations (2) and (7). We thus obtain

^(»-«')+^(2'-/) + 5(^ -«') = <>, (8)

which, by virtue of equation (6), reduces to

XX' yy' zz' _ .^.

Hence the tangent lines all lie in a plane. This plane is called the

Tangent Plane at the point (a;', y\ z').

By a proper choice of signs in (9) we can write the equation of the

tangent plane to either of the hyperboloids.

It should be noticed that the factors before the parentheses in

equation (8) can be obtained by taking half the partial derivatives

(§ 61) of equation (1) with respect to x, y, z, respectively, and then

substituting in these derivatives a;' for a;, y' for y, and 2' for %. It

can be shown that this rule holds for any surface.

Assuming this rule to hold for the paraboloids

J±f-2. = 0, (10)

we have for the tangent plane at the point (a;', y\ z')

J(a5-aj')±|'(2/-y)-(^-«')=0, (11)

or ^^yf=^^ + z'). (12)

This should also be proved independently.

Ex. Show by means of equation (5) that every plane section of a conicoid is

a conic.
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166. The Normal to a surface at any point P is the straight line

through P perpendicular to the tangent plane at P.

Hence the equations of the normal to the ellipsoid at the point

(«', y\ z') are [(9), § 165]

- {irJ 1M — «#'« — «'

(i)

a2

y -y' z-z'
~ y' ~ z' ^

and to the elliptic paraboloid [(11), § 165]

y -y' z-z'
- y -1' (2)

a b

From these, by a proper choice of signs in the denominators, we
easily obtain the normals to the other conicoids.

167. To find the condition that the plane

Ix -\- my -\- nz =p (1)
shall touch the ellipsoid.

The equation of the tangent plane at any point {x\ y\ z') of an
ellipsoid is [(9), § 165]

Equations (1) and (2) will represent the same plane if

p p p a^ ly" c^ ' ^ ^

Equating the coefficients of the identity (3) gives

l_x^ 'rfi_y[ ^_^'
p a^ p H^ p~^ (4)

Whence a^l±^^ri_±^^x- y^ z^^^^
p" a^^ V"^ & ^^

Therefore the plane Ix -\- my -\- nz =p will touch the ellipsoid if

a2«2 + 62^2 + ^2^2 =p2, (6)

In like manner it can be shown that the same plane (1) will touch

the paraboloid ^ •

-4-^= 2« (7)ah
if al^ + hm^ + 2 pn = 0. (8)
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168. To find the locus of the point of intersection of three tangent

planes to an ellipsoid which are mutually at right angles.

Let the equations of the three tangent planes be [(6), § 167]

?!»+ wiiy + ni« =VaV 4- ft^w^i^ + c^V> — (1)

l^c 4- rn^ -\-n^= ^o^li + h'^rti} + (?n}, (2)

and l^ -h may + 7132; =VaV + 6^3^ + <^n}. (3)

Squaring and adding these equations we get, by virtue of the

relations between the direction cosines of mutually perpendicular

lines (§ 151),
aj2 + y2 + 2;2 = a2 + 62 + c2. (4)

Therefore the required locus is a sphere. This sphere is called

the Director Sphere of the ellipsoid.

Poles and Polar Planes

169. The equation of the plane tangent to the conicoid

t^tj^t^X (1)

at the point (a;', y\ 2'), if this point is on the surfa^e^ is (§ 165)

a^ h^ cf

Suppose, however, that the point {x\ y\ 2*) is not on the surface.

What, then, is the meaning of this equation (2) ? It still represents

a real plane, which is related in some definite way to the point

(x\ y'f z^ and to the conicoid, since its parameters involve both the

coordinates of the point and the parameters of the conicoid. In

order to determine what this relation is, we will let

x = x' + lr, y = y' + mr, z = z' + nr [(3), § 165] (3)

be the equations of any straight line through the point (a;', y', 2').

Substituting these values of a;, y, z in equation (2), we find the dis-

tance from the point («', y', 2') to the point where this line meets the

plane (2) to be the value of r given by the equation

te| , my^ ,
nz'

r~ (r^^ 7/'* «'2
• \*)

- + ^-4-
a* ^ 6» ^ c
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Let Vi and r2 be the distances from the point (x*, y\ z') to the points

where this line (3) meets the conicoid (1). Then from equation (5),

§ 165, we get
Ix^ my[ ,

n£

2 11 2ri^2 fa\
.'. - =— +— , or r = =-=-• (6)

r ri r^ ^i + rg

That is, the plane (2) and the point (x\ y\ z*) divide harmonically

every chord of the conicoid (1) drawn through the point (x', y\ z').

This plane is called the Polar Plane of the point («', y' z'), and the

point (x\ y\ z') is called the Pole of the plane with respect to the

conicoid. (Cf. § 94.)

If ri = rj, the line (3) is tangent to the surface. But when Vi = 9*2,

we find from equation (6) that r = ri = rg.

Therefore the polar plane passes through the points of contact of all

tangent lines drawn from its pole to the surface.

The assemblage of such tangent lines forms a cone, which is called

the Tangent Cone from the point to the surface.

Moreover, if ri = and ?'2 =^ 0, then r = also, in whatever direc-

tion the line is drawn ; i.e. if the point («', y', z') is on the conicoid,

it is also on its own polar plane. If ri = r2 = 0, then r is indetermi-

nate ; i.e. when the line is tangent to the conicoid it lies wholly in

the plane.

Therefore the pole of a tangent plane is the point of contact.

When the point (x', y\ z') coincides with the centre of the conicoid,

ri= — r2, and therefore ?• = oo.

Hence the polar plane of the centre is at infinity.

Furthermore, the second of equations (6) shows that r is always

realf although ri and ra may be imaginary. This is evidently

necessary, since the line will always meet the plane in one real

point.

In a similar manner it can be shown that equation (12), § 165,

is the polar plane of the point (x', y\ z') with respect to the parabo-

loids.
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170. If the polar plane of a point P, with respect to a conicoid, passes

through a point Q, then will the polar plane of Q pass through P.

The proof of this proposition is precisely the same as that of the

corresponding proposition in Plane Geometry (§ 95). -_ _

Let R and S be any two points on the line of intersection of two

planes A and B, whose poles with respect to the same conicoid are

P and Q. Then, since E is on both of the planes A and B, the polar

plane of R will pass through both P and Q, and therefore through

the line PQ. For the same reason the polar plane of S will pass

through the line PQ. Similarly, the polar plane of any point Pj on

the line PQ will pass through the line RS.

The two lines PQ and RS which are such that the polar plane,

with respect to a conicoid of any point on the one, passes through

the other, are called Polar, or Conjugate Lines.

EXAMPLES ON CHAPTER XV

1. Show that every tangent plane to a cone, and the polaj plane of any point

(except the vertex) with respect to a cone, passes through the vertex.

2. Show that all normals to a sphere pass through its centre.

3. Show that the line OP joining the centre O of a sphere to a point P is

perpendicular to the polar plane of P. If the line OP meets the polar plane in

Q, show that OP'OQ = r^.

4. Show that the distances of two points from the centre of a sphere are

proportional to the distances of each from the polar plane of the other.

6. Show that the locus of the point of intersection of three mutually

perpendicular tangent planes to a paraboloid is a plane.

6. Find the equation of the director sphere of the surface generated by

revolving a rectangular hyperbola around its conjugate axis.

7. Show that tangent planes at the ends of a diameter of a conicoid are

parallel.

8. Prove that the locus of the poles of a series of parallel planes is a straight

line through the centre of the conicoid.

9. Find the equation of a sphere which cuts four given spheres orthogonally.

[See Ex. 21, p. 223.]

10. Show that a sphere which cuts each of the two spheres S=0 and S' =
at right angles, will also cut the sphere S + \S' = a.t right angles.
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11. Find the equation of the sphere which touches the plane y = 0, and cuts

the plane 2: = in the circle (x — ay + (y — by = r^. Show that the area of

the section of the sphere made by the plane x = is ir{b^ — a^). Why is this

result independent of r ?

12. A straight line is drawn through a fixed point 0, meeting a fixed plane

in Q, and in this line a point P is taken such that OP- OQ ia constant. Show
that the locus of P is a sphere passing through 0, whose centre is on the line

through O perpendicular to the plane.

13. A straight line moves so that three fixed points, A, B, C, on the line lie

one in each coordinate plane. Show that any other point P on the line generates

an ellipsoid whose semi-axes are equal to PA, PB, and PC.

14. Show that the equation of the cone whose vertex is at the centre of

the ellipsoid, and which goes through all points common to the ellipsoid and the

sphere x^ -{ y^ -\- z"^ = r% is

16. If a> 6 > c and r = 6 in Ex. 14, show that the cone breaks up into two
planes, whose intersections with the ellipsoid are circles.

16. If P and Q are any two points on an ellipsoid, the plane through the

centre and the line of intersection of the tangent planes at P and Q will bisect

the chord PQ.

17. P and Q are any two points on an ellipsoid, and planes through the

centre parallel to the tangent planes at P and Q cut the chord PQ in P' and Q'.

Show that PP' = QQ'.

18. The normal at any point P of an ellipsoid meets a principal plane in G.

Show that the locus of the middle point of PG is an ellipsoid.

19. The normal at any point P of an ellipsoid meets the principal planes in

d, ^2» Cfs. Show that PG^ PG2, PGz are in a constant ratio.

20. The normals to an ellipsoid at the points P, P' meet a principal plane in

G, G'. Show that the plane which bisects PP' at right angles bisects GG'.

21. Show that a section of a hyperboloid made by a plane parallel to an

element of the asymptotic cone is a parabola.

22. Show that the general equation of a cone referred to three of its generators

as axes of coordinates is fyz + gzx + hxy = 0.
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I. The Direction of a Curve at the Origin.

It is often useful to know how to find the direction of a curve at

the origin before taking up the formal study of slope. In many
instances this can easily be done.

For example, let the equation of the

curve be „ ...

2/ = ar'. (1)

Let P{x, y) be any point on the curve

close to the origin. Draw the line

OPj and let B represent the angle

XOP.

Then tan^==^=^.
OD X

Since the point P is on the curve, we have, from equation (1),

tan^:

(2)

(3)

The direction of the curve at the origin is the limiting direction

of the line OP as we make the point P move along the curve and
approach as near as we please to the origin. From equation (3) we
get for this limiting direction of OP

J™ tan « = ,«-„(.) 0. W
That is, the direction of the curve at the origin is the same as the

direction of the x-axis.

If the equation of the given curve is

then

2/ = a^-ar, or - = a^-l,

245

(5)

(6)
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Hence the direction of the curve at the origin is that of the line

y = -x. (See the curve FQ in § 27.)

The direction of the curve at the origin can be found in this way
whenever the equation of the curve can be put in the form

i
= *(»'). (7)

provided we can find the limiting value of <;^ (x) as a; = 0.

Moreover, the direction of a curve at the points where it crosses

the axes can be found in a similar manner. For example, the locus

of equation (5) cuts the fl>axis at the point (1, 0). Let this point be

R, and let P(x, y) be a point on the curve close to B such that

x>l. Let $ be the angle XEP.

Then tan (9 = -J- = ^ 4- a;. (8)X— 1

..^f^t^ne =^%(^+ x)=2. (9)

Hence the curve has the direction of the line y = 2(x— 1).

EXAMPLES

Find the direction of the following curves at the origin :

I. y = x^. 2. y = X". 3. y'^ = x^.

4. y'^ = ax. 5. x^-y\a-x) = 0. 6. a;(x2 + ?/2)- a(x2 - y2) = 0.

Find the direction of the following curves at the points where they cut

the axes

:

7. ?/ = x3-3a;2 + 2x. (See Ex. 2, § 81.) 8. 2/ = a;^ - x^.

9. y = x8-x2-6x. 10. ?/ = x3-2x2-llx + 12.

II. Example illustrating § 81.

Let f'(x) = 2kx. (1)

Then f(x)=kx' + c, ' (2)

where c is an arbitrary constant which will disappear when we take

the derivative.



APPENDIX

Then y = 2'kx=f{x)

is the equation of the straight line L'M\ and

y= kx'^-c= f{x)

is the equation of the parabola LGM^ where OG = c.

lY My

247

(3)

Let OQ = a and OB = h. Then QA' = 2 fca, RB' = 2 fc6, the area

of the triangle OQA' — ka^^ and the area of triangle OBB' = kb\

.'. area of QRB'A' = kV - ka\ (5)

Also, RB=f(b)=^kh''^c, and qA=f{a)=^ko?^-c [from (4)]. (6)

.-. BB-QA = f(b) - /(a) = fc62 _ fcal (7)

.-. area of QRB'A' =f(b) -/(a) = RB - QA. (8)

That is, the number of square units in the area of the trapezoid is

equal to the number of linear units in (RB— QA).

Similarly, the area of EFD'C = EC— FD, a negative number.

If we put c = 0, the parabola will pass through the origin, and the

ordinate QA will be zero when the area of the triangle OQA' is zero.

Then the number of units in the ordinate QA will be equal to the

number of units in the area of the triangle OQA'.



248 APPENDIX

III. Trigonometrical formulce.

1. sin ^ CSC ^ = 1. 8. sin (— ^)= — sin 6.

2. cos ^ sec ^ = 1. 9. Cos (— 6)= cos 0.

3. tan ^ cot ^ = 1. 10. sin (90° ± $)= cos 6.

4. tan^ =^. 11. cos(90°±^)=Tsin^.

5. sin2 $ 4- cos^ 6 = 1. 12. sin (180° ± ^) = =F sin 0.

6. sec2 6 - tan^ ^ = 1. 13. cos (180° ±6) =- cos $.

7. csc^ ^ - cot^ ^ = 1. 14. sin (270°±^)= -cos^.

16. cos (270° ±^)= ± sin 9.

16. sin (6 ± 6') = sin 6 cos 0' ± cos 6 sin $'.

17. cos (9 ± 9') = cos 9 cos 9' T sin 9 sin ^'.

18. tan(^±g^)= tan^±tan^'^
^^ ^^^2^= ^^^^^

iTtan^tan^' 1-tan?^

20. cot (9 ± 9')
^^ot^^ot^-Tl^

21^ ,ot 2 ^ = 22^iz-_l.
^ ^ cot^'±cot^ 2cot^

22. sin2^ = 2sin^cos^.

23. cos2^ = cos2^-sin2^ = 2cos2d-l = l-2sin2^.

24. sini-^ = VKl-cos^). 25. cos J ^ = VJ(lTcos^.

26. sin ^+ sin ^' = 2 sin ^(9 + 9*) cos |(^ - 9').

27. sin ^ - sin ^' = 2 cos ^(9 + ^') sin i(9 - 9^

28. cos ^ 4- cos 0' = 2 cos ^(9 + ^') cos ^(9- 9').

29. cos^-cos^' = -2sini(d + ^')sin|(^-^').

In any plane triangle

30 ^^^ ^ _ sin ^ _ sin C gi a+ ^ _ tan -|(.^ 4- ^)
a b G '

' a — b tani(^ — J5)'

32. a^ = b^-\-c^ — 2 be cos A. 33. Area = -^ 6c sin ^.
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CHAPTER I

Page 4.-7. (x, -y), (-«, y), (-«, -y). 8. (a\/2, 0), (0, aV2),
(- aV'2, 0), (0, - ay/2). 9. (0, 0), (2a, 0), (a, aVS) for one position of the

triangle. 10. On a line two units to the right of the x-axis. On a line three

units below the y-axis. 11. Yes. Yes. No. 13. y = x, or y = — x. 14. On a
Circle with centre at the origin and radius equal to a \ x^ -^ y'^ = 'k. 15. x= — 5,

or X = 1. 16. y = X + 3.

Pages. —6. An isosceles triangle. 7. A parallelogram. 8. (VlO, tan-i-^),

(- \/2, 45°), ( VIO, tan-i - 3), (3v^, 45°). 9. (0, 0), (2 a, 0), (2 a, 60°)
;

(a, 0), (a\/3, 30°), (a, 60°). 10. (0, 0), (2 a, 0), (2aV2, 45°), (2 a, 90°)
;

(a, 0), (aVB, tan-4), (aV5, tan-i2), (a, 90°). 11. (0, 0), (2a, 0),

(2aV3, 30°), (4 a, 60°), (2aV3, 90°), (2 a, 120°); (a, 0), (aV7, tan-i^V

(aVl3, tan-i^V (a\/l3, tan-i2\/3), (avT, tan-i-§^V (a, 120°).

12. p must vary from to co, while d varies from to 2 ir, or ^ must vary from
— 00 to 4- CO, while d varies from to tt. 19. p — a sec ^, where a is the distance

from the pole to the line
; p = hc&cd. 20. On a circle passing through the pole,

with centre on the initial line and diameter a ; on a circle with diameter a, above
the initial line and tangent to it at the pole.

Page 9.— 1. 13. 3. 2\/7. 4. 3V5, 3V6, 3V2.

Page 10.— 3. a^b-2y/2'

Page 11. - 1. (- 2, 1) and (~ 1, 2), (4, 7) and (-7,-4). 2. 2 : 3
;

-(3:8).

Page 16.— 1. 13. 2. ^VS. 3. 12^ + 6a/3. 4. 2V3. 6. 8\/3.

6. ia2V3. 7. 2ac. 8. a\ 9. 31. 10. 47. 11. (2V3, 2), (\/2, - V2),

(!i-fV2). 12. (5,tan-i-f), (13,tan-i-J^), (\/l0,tan-i3). 13. (-^,0),

(I, 1). 14. (- J^, J^), (- \, \), 16. (17, 1), (- 13, 6). 16. Sides 13, 13,

7\/2. Medians i V366, \y/m>, ^y/2, isosceles. 17. Sides 4\/2, 3V2, 6V2,
area 12, a rt. A. 18. Sides 2V5, 2V6, 3V5, 3\/5, area 24, a parallelogram.

19. p = a. 20. e=a. 21. p = 2asin^tan^. 22. p = asecd ±b. 23. y=mx.
24. x2-2/2 = flf2. 26. (x2 + ya)8 = 4a2xV. 26. (2xH22/Hax)2= a2(x«+y2).

249
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CHAPTER II

Page 19. — 1. x^ + 2/2 >^ <^ or = 9. 2. (x + 3)2 + (y - 1)2 >, <, or =16.

3. (X - ay + {y- 6)2 >, <, or = r^.

Page 20. — 1. ?/ - X + 2 >, <, or = 0. 2. y + ic - 3 >, <, or = 0.

Page 21. —1. 3x + 5?/-4>, <, or =0.
2. 2(rt - c)x + 2(& - d)y = a"^ + b^ - c^ - cP.

Page 22. — 1. The origin. All the plane except the origin. No locus in

the plane. 2. The jc-axis. No locus. All the plane except the x-axis. 3. The

line X = a. All the plane to the right of the line x = a. All the plane to the

left of the line x = a. 4. The line y = b. All the plane above this line. All

the plane below this line. 5. The circular ring bounded by the circles x^+y^=4t

and x2 + 2/2 = 9. 6. The ring bounded by the concentric circles (x — 2)2 +
(y- 3)2 = 9 and (x - 2)2-f (y - 3)2 = 16. 7. All the plane between the two

lines x= a and x = b. 8. A circle. All the plane outside of this circle. All

the plane inside of this circle. 9. That part of the plane bounded by two circles

passing through the pole, with centres on the initial line and diameters a and b.

10. Similar to No. 8. 11. Similar to Nos. 8 and 10. 12. x=2, x=|, x=3, x=|.

Page 33, § 25. — 1. n. 2. The values of p corresponding to ^ = are the

intercepts of the locus on the initial line. The values of 6 corresponding to

p = give the direction of the lines tangent to the curve at the pole.

Page 33, § 26. — The points of intersection are : 1. (f|, V)- 2. (-^^, V)-
3. (-2,-3). 4. (0,6), (3, 4). 6. (8,1). 6. Imaginary. 7. (0,0),

(-6,-2). 8. (^av^,av^). 9. la(2 -\-V5), 2a^2 ±Vll 10. (4a,4a).

13. 6|.

Page 37. — The loci of these equations are symmetrical with respect to

:

1. 2/-axis. 2. j^-axis. 3. x-axis. 4. x-axis. 6. Origin. 6. Origin. 7. x-axis.

8. 2/-axis. 9. Both axes, and the origin. 10. Origin. 11, 12, 13, 14, 15,

16. Both axes, and the origin. 17. Origin. 18. Nothing. 19. ?/-axis.

20. Nothing. 21. The origin, and the lines y = x and y = — x. 22. y-axis.

23. Origin. 24. Origin. 25. The origin, and the lines y = x and ?/ = — x.

26, 27. The line y = x. 28. The origin, both axes, and both lines y = x, y=z — x.

29. Both axes, and origin. 30. Origin. 31. Same as 28. 32. The line y = x.

33. Same as 28. 34. x-axis. 35. x-axis. 36. y-Sixis. 37. Origin. 38. Both

axes, and origin. 39. The origin, and the lines y = x, y = — x.

Page 41, § 32. — 1. x2 + y^ =_± 2ry. 2. a, b, r. 3. (T 2, 0), 2.

4. (0, T 3), 3. 5. (- 1, 2), V5. 6. (|, - f), ^Vsi. 7. (- 3, 2), 2.

8. (I, -1),3. 9. (-3, -4), 6. 10. (f,4),4. 11. x'^+y^±2rx±2ry+r^=0.

Page 41, § 33.— 1. (2), (3), (4) are of the first degree because the pole is

on the circle. Hence any line through the pole can cut the circle in only one

other point. In (1) the pole is outside if a > r, inside if a < r. 2. See for-

mulae in § 32.
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Page 43.— 1. p^ = — r-^ ; Since the denominator is the sum
6^ cos2 e + a'^ sin2 d

of two squares, it can never be zero. Hence p can never be infinite. 2. Out-

side, inside. 4. (1) 10,6, (±4,0). (2) 4>/2,4, (±2,0). (3) 10,8,(0, ±3).

Page 44, 1 36. -3. .-
,.,„,. /T,. 3,„.

,

- Infinite. 4. (1) (± 5, 0),

3x + 4?/ = 0, 3a;-4?/ = 0._ (2) (0, ±\/4l), 25 2/2-16 a;2=0. (3) (±2>/6, 0),

4x2-2/2 = 0. (4) (±V2, 0), x2-?/2 = o. (5) (0, ±\/2), x^ - y^ = 0.

(6) (±V6,0), 4x2 -2/2 = 0.

Page 44, § 37. -(2) (1, 0), x = - 1. (3) (- 2, 0), x = 2. (4) (f, 0),

2x = -3. (5) (0,2), 2/ =-2. (6) (0, - f), 2 2/ = 5. (7) (0, - 3), 2/ = 3.

Page 45.— 1. 2/ = 4x. 3. 2(a - c)x + 2(6 - d)y = a2 + 52 _ ^2 _ ^.
5. x2 + 2/^ + 6x-62/ + 9 = 0. 6. x2 + 2/2 ± 8x ± 8?/ + 16 = 0. 7. (x-2)2 +
(2/ + 6)2 = (4 ± 2)2. 11. (1), (2), (4) a straight line

; (3) a hyperbola.

12. (1) a circle
; (2) a hyperbola

; (3) two hyperbolas
; (4) two straight lines.

13. x2 + 2/2 = c2 - a2. 14. x2 + 2/2-4x = 0. 15. 2ax = c2. 16. A circle with

centre at the centre of the square.

CHAPTER in

Page 51. — 1. When the line goes through the origin. When the line is

n 1 X XI- . « 1 10 X V - X VSv
parallel to the 2/-axis. 2. y = -—x -—, —^^ +-^=1, - +-^= - 5

V2
3. 2/-fx + 6, 3g + | = l, -|a: + t2/ = ¥. 4. y = x-6, ^ + "^^ = 1

V2 \/2 . 4 ,5 V41 V41 \/41

6. 2/ = Ax-l|, ^^ +_^ = l,,5^x-H2/ = l. 7. 2/ = ix + |, 1^ + 1=1

^-A.y = 9_. 8. y=ix-i, ? + -iL=i, .2_x-_3_'^ = ^_,
V6 V5 2V6 * ^ 2^-t ' Vi3 VI3^ Vl3

»• 2/ = -|a;, 4^ + 4^ = 0. 10. ? = 1, x = a. 11. 2/ = 4, ? = 1, y = 4
\/l3 Vl3 a 4

12. ^^ :e+ ^^ 2/+ ^^ =0;i^x +^2/+^^ =
^ + Jg+0 ^ A + B+0^^ A + B +C ' A A^ ^ A^

J2A{A + B+C)^ I2B{A+B + C) j2C(^ + ^+C) _
\ BG ^y CA ^^y AB
13. _iOa;-82/ + 40 = 0; -^x-^2/ + l = 0. 14. |x-32/ + 9 = 0;

± fa; 1=22/ ±6 = 0. 16. -6x + 22/±3 = 0, or 20x - 82/ - 12 = 0;
10x-4 2/-6 = 0, or - 15x + 62/ + 9 = 0.

Page 52.— 1. a = 30°, p = 2. 2. a = 60°, ;) = 1. 8. « = - 45°, p = 3.

4. a= -120°, j)= -4. 6. « = 120°, p = - 1. 6. « = - 60°, i?
= - 5.
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7. pcoa{e — a)=p. 8. pcoB0 =Pt psine—p. 9. ^ = A;, where A; is any con-

stant angle ; ^ = 0. 10. ^ = ; <? = 0, and ^ = 90°
; ^ = 0, ^ = 60°, and 6 = 120°

;

n straight lines through the pole and equally inclined to each other._ 11. Simi-

lar to Ex. 10. 12. (0, V2) . 13.^ = 0, and p cos (^ - 45°) = 2 (V6 - V2)

.

Page 54. —1. 3a; - 15y + 10 = 0. 2. x + y=±6y/2, 3. a; - yV3 = 8.

4. a;vi + 3 y + 9 = 0. 6. y = 2x - 10. 6. ax - by -\-
a^

-h h^ = 0. 1. x-^y
4-10 = 0, 10 a; -1-7 2/ = 11, (ia -2h)x- by - a^ -\-

b"^
-\- 2 ab = 0. 8. y + ^x

= 7, x + 2y + T = 0,y = Sx. 9. «= 1, 5x -}- 3y = 0, 2x - 3?/ = 7. 10.(1)

a;-|-y = 3, (2 x - y + 5 = 0. 11. 2z + Sy + l=:0.

Page 57.— 1. 45°. 2. 90°. 3. 45°. 4. tan-if. 5. tan'i ^^^=-^.
2ab

6. tan-i3|. 7. 4x - Sj/ + 1 = 0, 3x -|- 4?/= 18. 8. y= 2x - 10, x -i- 2?/ =0.

9. 3x -4y -1- 18 = 0, 4x + 32^ = 1. 10. 10x-^y = S. 11. 25x-M5y + 3

= 0, 25x-M5y-f37 = 0; 5x -f 3y = 81, 5x -f 3y -f 89 = 0. 12. 3x-|-4y

= 20. 13. (oo,od). 14. 4x-7y = 5, x-j-6y=13, 6x-22/ = 18. 15. 8x
-14y=7, X 4-5?/ 4-5 = 0, lOx - 4?/ 4- 3 = 0. 16. tan-i ||, tan-iff,

tan-i--^. 17. y = (16il7\/3)x.

Page 60.— 1. 12i, -7,7. 2. - VlO, - \/iO, VIO. 3. -f|, -
i%,

_^. 4.
4a&_,-j(:£+^

^
(a-b)\ 5. i^, _ 31, _

9i. 6. 7x
Va2 -F 62 Va2 4- 6-2 VoMTp

4-y = 0, x~7i/ = 24. 7. llx-3i/4- 15 = 0, 21x4- 77y 4-6 = 0. 8. x-y
= 1, x4-2/ + 13 = 0. 9. x(l-V3)4-yCl+V^)=12, x(l4-V3)-2/(l -V3)

= 6. 10. ^'»-^ ,-^ . 11. The two straight lines 2x-4y = 9± 6VS.
y/6 V58 V79

Page 61. — 1. 2x4-3y = 0, 6x-5y = 14, 8x4-5y = 7. 2. 9x-4y
= 23. 3. 9x4- 18y 4- 15 = 0, y = 2x. 4. 38x - 19y 4- 2 = 0, 76x - 57y
= 444. 6. x2 4-2/2_iOx = 0. 7. (1) x^ 4- y2 _ 4^ 4- 4y = 0, (2)x24-y2

-8x4-8y-f 16 = 0.

Page 63. — 1. (1) x = and x 4- «y = 0. (2) x = 0, x 4- y = 0, x - y = 0.

(3) X 4- 2/ = 0. (4) X - y = 0. (5) ax+by = 0, ax-by = 0. (6) The origin.

(7) X 4- 1 = 0, X - 1 = 0, y 4- 2 = 0, y - 2 = 0. (8) ax 4- 6y 4- c = 0, ax+by
-c = 0. (9)y4-«-a=0,y-x4-a = 0. (10) The point (a, 6). (11) x 4- 2/

— a — 6 = 0, X — y — a4-& = 0. (12) x — y. (13) x cos a 4- y sin a = a. 2. 2 *

-62/4-7 = 0, 4x4- 52/ = 20. 3. x 4- 32/ = 0, 4x 4- 32/ = 0. 4. ax-by = a^

- 62. 6. X 4- 2/ + 1 = 0, 2/ = « -f 3. 8. f , ± V3. 9. p cos (^ -\- 30°) = ±3,
xV3-2/ = ±6. 10. 3x-22/ = 3. 11. 2|. 12. (0, 3t^V2),
(-21±20V2,0). 13. 2x4-ll2/ = 5. 14.

^
^ ~ ^^

. 16. 10x-62/ = 9.
• VZ2 4- wi2

21. 5x-32/ = 4, 3x-|-52/ = 16, 5x-32^4-13 = 0, 3x-f52/4-l = 0. 22. 2/ =
(_ 2 ± \/3)x 4- 75 q= V3, 2/ = (- 2 ± \/3)x 4- 1 ± V3. 25. 21||. 28. {a) 7 x

.-7 2/4- 40=0 or 7x4- 7 2/ = 32, (6) 2x4- 2/ = 4. 29. 3x- 42/ 4- 25 = 0.
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30. ic(80±\/95)-y(15=F2V95) + 120 = 0. 31. a; = 3, 12a; + 35y+ 104 = 0.

32. 7a; - y = 46, 5x - 5y = 88. 33. x^ -^ y^ -h 2x -8y -^^ I =0, x^ -\- y^ -\- 60x

-200y + 625 = 0.

CHAPTER IV

Page 69.— l.y^ = ix. 2. 2x^-\-Sy^=zl. 3. x^-^y^ = r^. 4. xy = a^.

5. 2/2 + 4aa; = 0. 6. x^-y^ = 0, 7. ^ + |^=1. 8. 2a;y + a2 = 0. 9. x^

+ 2y2 = 16. 10. X - y\ 11. (a + K)x'^ + (a - h)y'^ = 1. 12. 2y2 =
a{2xV2--a). 13. (a;^ + y2)8 _ cf2(a;2 _ y2)2^ P = asin2^, /) = acos2^.
14. xy/a^ + b-^ = ah. 15. xy = ± a\ 16. 2a;2 + 82^2 _ i. 13. 45°. 19. tan-i \,

ortan-i-2. 20. tan-i f , or tan-i ~
f. 21. ^tan-i-?A_. 23. The two

a — h
curves will be the same if the unit of the scale of the second is taken twice as

large as the unit of the scale of the first.

CHAPTER V

Page 71. — 1. fa. 2. 2a2. 3. 0. 4. f. 5. 2 a. 6. 2. 7. ^ 8. 0.

Page 75.-1. 0, 8, 12, .... 2. 0, ±8, ±32, .... 3. 00, T2, Ti, -.

4. 0, ±f, ±fV2, .... 6. -4,-1, 8, .... 6. 0, =F36, ^48, .... 7. -J,
- 1, 00 , - 1, - i,

-
i,
-

T^^,
..., for X negative, - \, ^'^, .... 8. 0, ± i>/2,

±1. 9. 0, 00 , ± |V3. 10. - .3, - .1, - .6, .5, - 1, 1, ....

Page 78. — 1. 3a; + 4y = 25. 2. 12a; - 5y + 169 = 0. 3. 2^ = a; + 2,

2y = a; + 8. 4. 2a; + 2/ = 6. 5. y = 8a;-16, a; + y = 2. 6. a; + 3y = 4.

7. 2a5-3y = 0, 2x + 3y+18 = 0. 8. 3y = 4a;-8, 4x + 32/ = 26,

4a; + 3y + 24 = 0, 3y = 4a;4-42. 9. x-^2y = S, 2y = x + 5, 2y = x-5,
x + 2y = lS. 10. a; = 3, 3a; + 4y = 15, 4y-3a; + 17. 17. a;a;' - yy' = 1.

20. a;a;'~-i + yy'^-^ = 1. 21. a = 1 ; y = 1. 22. a; + 2 y = 3. 23. y = 2 a; - 8.

24. 2y = x + 9, « + 22/ + l=0. 25. 3!/=4a;-l, 4a; + 3y = 13.

26. a; — 2/ = 0, a; + 2/ = 0, a; = ± a. 27. The equation of the tangent at any

point (a, /3) on the curve is ^^^ +^^ = 2, at the point (a, 6), - + ^ = 2.
a« &»* a b

30. tan-if. 32. 90°. 33. 90°. 34. tan-i3^3j. 35. 2 y = a; + 4, 2x + y = 12,

46°. 39. -^^. 41. -r^^^' 42. -J^^ll-. 63. -sin 2 a;.

(1 - a;2)2 (a - bxy (1 + a;)"+»

55. tan2 x. 56. 8 sec* x. 57. x cos x. 59. 2 sec2 x tan x(sec2 x + tan^ x).

61. 4x8 + 2x(a + 6). 62. 15x* + 3x(2a + 6x). 63. ~ ^ "'^
.

a - 3 X 2 X -4- 3 x8 ^^ "^ ^^
65-

,
67. / ' 68. 6x(2x« + 3)(l-3x2)2(2x-12x8-9).

2Va-x Vl+x2 V -T- yv j\ j

^
71. ^,f~^^ ' 73. _i^i±J_. 74. (m sin2 X + n cos2 X)

(i + x2)t a+«^^)*

(

8in**-^x cos"*-^x\

cogm+ix sin»+ix ]
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CHAPTER VI

Page 86. — 1. 0(ic) = 2x^ -5x^-6, B = ^. 2. 2, 4. 3. 4, 14. 4. ± V2.

5. 2±V3. 6. '^^Yo~^^ ' '^' 1,-3,4. 8. ±1,3,5. 9. Two real roots,

one between and 1, the other between 4 and 5. 10. 2, — 4, 10. 11. 3, and

one root between and 1, the other between — 1 and — 2. 12. 4, and one root

between and 1, the other between — 2 and — 3. 13. — 3, 5, between and 1,

and between 3 and 4. 14. x^ + x^ - 17 x + 15 = 0. 15. x* - 3 cc^ - 28 x"^

+ 36 a; +144 = 0. 16. 30^3 + 77 x2 - 92x + 21 = 0. 17. x* - 17 a;2 + 16 = 0.

18. x* - 2 x3 - 19x2 + 20 X = 0. 19. x* - 5 x2 + 6 = 0. 20. x* + 2 x^ + 2 x2

+ 4 X = 0. 21. x3 - 13 x2 + 50 X - 60 = 0. 22. x* - 6 x^ - 8x2 - 66x - 65 = 0.

23. x5-3x*-23x3 + 61x2 + 94x-120 = 0. 24. x^ + 2 x* - 16x3 + 18x2

+ 15x = 0. 25. 6x6 -11x5 -10 x* + 3x3 + 2x2 = 0. 26. x* + 2 x^ + 9x2

+ 2x + 66 = 0. 27. x5 + 5x4-20x2 + 71x + 231 = 0.

Page 87.— 1.-2. 2. - V3. 3. - 4. 4. 4. 5. 0, 0, 0, 3 + V^^.
6. 0, - f . 7. 0, 0, - |.

Page 90.— 1. 1.879, -.347, -1.532. 2. 1.356,1.692,-3.048. 3. 1.939.

4. 3.264. 5. 1.769,2.672, -4.441. 6. .593,2.047. 7. 2.382,4.618. 8. 3.128,

1.201,-1.33. 9. .494,2.861,-3.112. 10. 2.583,7.169,-3.399,-6.353.

Page 92. 2. 3, -5, 2 - y/3. 3. f, 3 - V^. 7. x* + 2 x2 + 25 = 0.

8. ±V2±V3I,3±V363.
4

Page 95.-1. x2 + 4x-5 = 0. 2. x3-6x2- 7 x + 60 = 0. 3. x3 + 8x2

- 28 X - 80 = 0. 4. X* - 12 x2 - 12 X + 3 = 0. 5. x^ - 4 x2 - 60 x = 0.

6. x* - 4 x3 + x2+ 6 X = 0. 7. x* - 11 x3 + 36 x2 - 30 X = 0. 8. x2 - 25 = 0.

9. a;3 _ 4 a; _ 2 = 0. 10. x* - 35 x2 - 90 x + 304 = 0. 11. (1) c = - 2, (2) c = 1,

or - 5. 12. x3 + 6 x2 - 32 = 0, or x3 - 6 x2 = 0. 13. 9 x2 + 8 x - 1 = 0.

14. 12x3 + 13x2-3x -2=0. 15. 24 x4 + 20x3 -30x2-5x + 6 = 0. 19. 1,2,

4. 20.-1,11. 21. -1, -1±2V^. 22. i,l±2^. 23. 1,^I±^.
o 5 4

25. ±1, 1±^-Z^. 26. -2, -I, 2 + V3. 27. -1,^,2,

^i±V^n5. 28. ±1,4.2, ^i±|^E«.
14 5

Page 97.-1. (2, -16), (-2, 16). 2. (1, 16), (4, -11). 3. (0, 32),

(4, 0). 4. (-1, -67), (3, 189). 5. (0, 10), (2, -54), (-2, 74).

6. (1,73), (-3, -567), (4, -224).

Page 100. — 1. - 6, - 6, 1. 2. 3, 3, - 4. 3. 3, 3, 3, - 2. 4. 2, 2, 3, 4.

6.3,3,3,-4. 6. 2, 2, 2, - 3, - 3. 7.-1,-1,-1,2,2. 8.3,3,-2,-2.

9. 1, 1, 1,
-3 + V-15 , ^Q 2, 2, 2, -3. 11. 1, 1, 1, 1. -4. 12. -4,-4,
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-4,2^ 13. _5, -6, -5, -5,1. 14.2,2,2,-1,-1,1. 16. 1 ± v^
1± V2, - 2. ^16. - 2 ± V3, - 2 ± VS, - 2, 3. 17. 1 ± V^, 1 ± V^, - 4.

18. _l±V-2, -l±V-2, 4. 19. 4g8 + 27r2 = 0.

Page 104. — 1. 4, - 4, 0. 2. - 36, 18. 3. 108. 6. 34^2^. 6. ^^ a'^.

7. f|V2. 8. I. 10. 1. 11. |. 12. 9a2. 15. i-

Page 111. —1. Max. 4 ;
min. ; (1, 2). 2, Max. 4 ; min. -28

; (3, -12).

8. Neither a max. nor a min.; (1, 11). 4. Max. 36; min. 32; (3, 34). 6. rV2;
rV2 and lrV2. 6. aV2 and ^6V2. 7. f the altitude of the segment.

8. The square with corners at the middle points of the sides of the given square.

9. ^ the altitude of the cone . 10. h=r. 11. h=2r. 12. /i= fr. 13. 2x8x8.
14. l(a -h h— \^a'^ — ab -\- b'^), where a, b are the sides of the given rectangle.

15. He must walk one mile. 16. 6 miles an hour. 17. | rVS. 18. | r.

19. fr. 20.fr. 21. V2. 22. r=J-^, h =J^. 23. 4 r. 24. i the

altitude of the paraboloid. 27. 10.392 in. and 14.697 in.

CHAPTER VII

Page 117. — 5. The two foci of a circle coincide at the centre, and the direc-

trices are at an infinite distance from the centre ; one focus and one directrix of

a parabola are in the infinite region of the plane ; in the case of two intersecting

lines the two foci coincide with the point of intersection of the lines, and the

two directrices also coincide and pass through this same point.

Page 130. —1. 2x + y + 2 = 0, 2y = a; + 6. 2. x-^y-{-2 = 0, y = x-6.
8. ix-3y = 25, Sx-{-iy = 0. 4. 6a; + 3?/ + 16 = 0, Sx-6y-\-30 = 0.

5. «-2?/ + 4 = 0, 2x + y + S = 0. 6. x + 2y + 2 = 0, 2x-2^ = 6. 7. x = 0.

8. 2 ic + 3 ?/ = 0. d. 5x-Sy = 0. 10. 2x-y = 0. 11. Put the first degree

terms of the equation of the conic equal to zero
;
the result will be the equation

of the tangent at the origin. 12. 2y = Sx + 6. 13. x + 2y-\-2 = 0.

14. 2 a; + 3 ?/ = 1. 15. 2 x - y + 7 = 0. 16. The equation of the polar of the

origin with respect to a conic is found by putting half of the first degree terms

plus the constant term of the equation of the conic equal to zero. 17. y = x + l,

2y = x + 4. 18. 6y = 5x + 9, x + 2y-f-5 = 0. 19. 3y = 4x + 25, 3x + 42/ = 25.

20. 2^ + 3 = 0, 4 X + 5 2/ = 25. 24. The line at infinity. At infinity.

25^
/r^cos« r!lllL^V(-Psec«, -tana).
\ P P J

CHAPTER VIII

Page 131. — 3. It passes through the point (x , y') and is perpendicular to

the polar of this point.
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Page 133. •— 1. Tangents, y =x-\-a, y = — x — a; normals, y = - a; + 3 a,

y = x-Sa. 3. 2/ = \/3(a; + l). ^.2y = 2x + 3. 5. F(- 2, 0), i^C- f, 0),

L.R. = 3, directrix a; = - 2|. 6. F(- 2, 2), F^- 2, f), L.R. = 2, directrix

y = 21. 7. F(- 2, 4), .F(- i, 4), L.R. = 6, directrix x = 3J. 8. F(3, -1),

j?'(3, _ ^1), L.R. = I, directrix y =- 1^^. 9. F(l, 3), F{- 1, 3), L.R. = 8,

directrix x = S.

Page 136. — 1. y=x-l. 2. 3ic-4y+ l=0. 3. 2y= x+6,Sx+2y+ 2= 0.
a r 3 ,-7

6. (1) (a, ±2 a), (2) (0, 0) and (3 a, 2aVB). 7. 2^ + W? + «a/- = 0-
'0 'a

24. (1) y = A^a:, (2) kx/^ — y^ + 2ax = 0, (3) A;x = a, where A; is the constant.

26. y'^ = ax, where y^ _ 4 Qj/g is the given parabola. 27. y^ = a(2x—a).
28. y'^-2ax'-ky + 2ah = 0, (1) 1/2 = 2 a(a: - a), (2) y2 = 2ax, (3) 2/2 =
2 a(x - 4 a), (4) y* = 2 a(x + a).

CHAPTER IX

Page 142. —1. 2(x^ + y^)-Ux-ny + 12 = 0. 2. x2 + y^-ix-\-2y = 0.

3. ar2 + y2 + 8 a; + 20 2/ + 31 = 0. 4. x^ + y^ -ISx - y -i-lO = 0. 5. 2 a; + 3

y

= ±2Vl3. 6. 3a;-22/ = 9±3\/l3. 't.x + 2y = 5. 8. 9a; -6?/ = 14. 9. 6«
-42/ = 14. 10. (4,2), (2,-6). 11. (2,-4), (3, |). 12. (-3,2).

Page 143.— 1. The point (x', y') is then inside the circle. 2. The product

of the segments of any chord (or secant) drawn through the origin. 3. The ori-

gin is outside, on, or inside the circle according as c is positive, zero, or negative.

Page 146. — The products of the segments of the chords in examples 1 to 6

are : 1. 9, 37. 2. - 12, 7. 3. 15, - 4. 4. - IJ, 7J. . 5. 4, 25. 6. - 11, 94.

7. 5a; -6y + 4 = 0. 8. 16x + 8y = 17. 9. h{a-h)y = ac. 10. x-y = 0,

VJ^(a + 6)2-4c. 12. (0,1). 13. (0,0). 14. y = m(a; - a) + 6, where (a, 6)

is the centre. 15. One, viz. the line through the given point and the centre.

16. a;2+?/2-6a;-4?/=0. 17. x'^+y'^-Qx-^y+^-O. 18. x^+y^-\-Qx-Qy-\-^-0,

a;2+?/2+30a;-30y-|-225=0. 19. 4(a;2+y2^cx_ci/)+ c2=0. 20. 2x+5y=9.
2L a; + 5y + 13 = 0. 23. 9 x + 12 y = 29, 9 a; + 12 y + 71 = 0. 25.(2,-3).
26. (1) X + my = ± rvTTwi2, (2) /x±yVc2-r2 = cr, (3) x±y=±rV^.
27. 14 X - 12 y + 29 = 0. 28. ax - &y = a2. 29. (ff , ^j). 30. ( - 2 a, 2 6).

34. ci = C2 = cs, where ci, cs, cz are the constant terms in the equations of the

circles. 35. 3(x2 + y2) _ 6x - By = 0, 1:V^^. 36. Imaginary. 37. 1 : \/3.

39. 2y = ±xV5, and 2y±x\/77 + 24 = 0. 42. 4(x2 + y2)_29x+ 12y + 25 = 0.

43. 2 X + y = 1. 44. The circle (x^ + y2) (\2 _ 1) _ X2(2 ax - a2 + r2) = 0, where

(0, 0) is the fixed point, X the constant ratio, and (x — a)2 + y2 _ ^2 jg t^e fixed

circle. The locus will be a straight line if X = 1. 47. (2, 0), (5, 0). 49. x2 + y^

= 2 r2. 50. x2+ y2= y2 csc2 § • 53. The radius of the circle is J(a+ 6± VoHP) .
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CHAPTER X

Page 150.-1. (^±fl%|-: = l, ^: + g±'-^ = 0, (-^%(l4^^ = l.

2. It is perpendicular to the polar of the point (x', y') with respect to the conic.

Page 151.— 3. Four.

Page 153.— 1. In the case of the ellipse the reflected rays would converge

and meet in the other focus. In the hyperbola the reflected rays would diverge^

taking the directions of lines which meet in the other focus. 2. ae^, 0, a(e'*— 1);

Page 154.— 1. |V2, (±\/2, 0), 2. 2. ^\/l3, (iVlS, 0), f._ 3. ^VS,
.

(0, ± V6), V2. 4. 2, (±2V3, 0), 6V3. 6. i, (l±iV3, -2), ^VS. 6. jV?,

(-1, l±jV21),iV3. 7.^ +^ = 1. 8- i + f = 1- 9. x^-2/^ = 8.

10. JV3, a;2+42/2=rt2. n. 3a;2-i/2=i2. 12. 3xH5 2/2= 32 ; 3^2-7x2=20.
13. i, 3x2+ 42/2 = 3a2. 2, 3 a;2 ^ 2,2 _ 3 ^2. 17. y = x±2y/b, y = xV3±2Vl3.

Page 161. — 1. (- 3, - V3), 210?. 6. a;2 + ^2 = ^2. 7. The locus of § is a

circle with centre at the other focus and radius 2 a.

Page 167. — 1. 8x + 27 2/ = 0. 2. 5a; + 8y + 30 = 0. 3. y = a; + 3.

Page 169 — 1. h'^x-\- ahj = 0, 62a; _ a^y = 0, 6'ic + a^y = 0, 6a; + ay = 0,where
62^2 + a2?/2 = a262 is the conic. 2. x-y = and a; + 2y = 0. 3. 32« + 9y = 0.

4. x + 3y = 0and 12x-25y = 0. 6. 2» + 3y = 5.

Page 175.-3. (1) tan-i-, (2) tan-i^-^ (3) 46°. 6. 6x + aei/ = 0and

6ex-ay = 0. 6. 2x + 3y = and 6x + 5y=[0. 13. y = ±x± Va^ ± h\

[ ,
» ^- ). 16. ^ where Q is the angle the chord

VVa2±62 V^-j-62y a2sin2e±62cos2^^

makes with the axis of the conic. 40. An ellipse with major axis equal to the

semi-major axis, and minor axis equal to the semi-minor axis of the given ellipse.

CHAPTER XI

Page 187. —The standard forms of these equations may be written as

follows :

1. t^-^x. 2. y2 = 3x. 3. f +f
= 1. 4. f-f = 1. 6.

f-^;
= l.

94 6^36 468 Vl3

10. _^+_J^ = 4. 11. ^-1^ = 1. 12. y2 = J_a;. 13. (x-3y-l)2=0. ^
5 + V6 h-Vh 2 3 V2

14. ya=__2_x. 15. —2L_ + _J^ = 2. 16. y2 _ a;a -. 40, or xy = - 20.

\/6 5-\/2 5 + V2
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17. ?! + y! = i. 18. ^-t. = l, 19. 9 w2- 16x2 = 202. 20. (5x-22/-2)
4 1 9 4

(5x-2y+3)=0. 21. —^ ?^ = 1. 22. (2a:-3y+l)(x+2?/-3)=0.
V85+2 V85-2 2

23. 2/2__Lx. 24. (x + y + l)(cc-2y-2)=0. 25. ^2_a;2 = ioV2.

26. 2/2 = ^x. 27. x2 = 3y.
13^

EXAMPLES ON LOCI

Page 188. — 2. A parabola whose focus is the centre of the fixed circle.

3. A hyperbola, an ellipse, or a circle. 4. A circle having the line joining the

fixed point and the centre of the given circle for a diameter. 5. An ellipse

whose axes are the fixed rods. 6. A hyperbola, with one focus at the rifle and
the other at the target. 7. The two circles p = ± r sin ^, where r is the radius

of the given circle, and 6 is the angle BOG. 8. A circle with its centre on the

line AB. 9. A rectangular hyperbola with centre at 0. 10. A circle passing

through the points B and C. 11. Two circles passing through the points A and

B, and having their centres on the given circle. 12. A circle passing through 0.

14. A circle with centre at the centre of the given triangle. 15. A circle tangent

to the two equal sides of the triangle at the ends of the base.

MISCELLANEOUS PROBLEMS ON LOCI

2. A sinusoid. 3. A sinusoid. 4. This problem would be the same as

No. 2, if the cylinder in No. 2 were an elliptic cylinder. 5. Let a = the

distance the fly crawls in a unit of time, w = the angle through which the

wheel turns in a unit of time, and t = the time. Then p = at and 6 = wt.

Hence the polar equation of the locus is p = ( - ) ^. If w represents the number
\w/

f a \
of revolutions the wheel makes in a unit of time, the equation is p = r— ^•

\£i TTW/

6. A series of parallel lines. 7. A sinusoid. 12. A rectangular hyperbola.

14. A series of confocal hyperbolas with foci at the centres of the waves.

15. The locus in the plane is a circle. In space the locus is a sphere. 16. A
parabola with its axis vertical. 18, 19, 20, 21. If the axes are rectangular,

these curves are all rectangular hyperbolas. 23. a =p{\ + ry, where a repre-

sents the amount, p the principal, r the rate per annum, t the number of years.

If the interest is calculated at n equal intervals each year and added to principal

as soon as it is earned, this equation becomes a=j9 ( 1 + - 1 • If we put n = mr,

so that when n becomes infinite m also becomes infinite, the equation may be

written a=j9flH— j
*"• If now n becomes infinite, we approach the con-

dition in which the interest is added on continuously. The equation then

becomes a =i)e'*, where e is the base of Naperian logarithms. This is known
as the Compound Interest Law.
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SOLID GEOMETRY

CHAPTER XII

Page 194. —1. x = 0, ?/ = 0, z = 0. z = 0, y = 0; x = 0, z = 0; x = 0,

y = 0. 2. The planes bisectiug the angles between the coordinate planes.

3. The lines through the origin equally inclined to the coordinate axes.

6. bx = ay, cy = bz, az = ex.

Page 199. — 1. ±-^, ±-^, ±-^. 2. 45° or 135°. 3. 60° or 120°.

V3 \/3 V3
4. 0, m, n, where m^ + n^ = 1. Z, 0, w, where l^ -{ n^ = l. I, m, 0, where

Z2 + to2 = 1. 6. 1,0,0; 0,1,0; 0,0,1. 6. -|=, - -|=, i=. - h h ^^

Vli Vli Vli

^ xi -X2 yi -y2

y/ixi - x^y + iyi - 2/2)2 + (^;si - z.)^' Vixi - x^y + {y^ - y^y + (^i - z^Y
Z\ — Zi

V(Xl - X2)2 + (2/1 - 2/2)2 + (;^j _ ;j2)2

CHAPTER XIII

Page 203. — 1. Straight lines. 2. Circles. 3. The ccy-contour is the circle

jp2 ^ y2 _ (.2 . the other contours are all straight lines parallel to the ^-axis. The
locus is a circular cylinder around the 2!-axis.

Page 207. —4. (1) The sphere x^-\-y'^-\- z'^=c'^-a'^
; (2) the plane 2ax = c^.

7. A sphere with centre at the centre of the cube. 8. If the ellipse — + ^ = 1
a^ b^

is revolved about its major axis, the equation of the generated surface is

— 4- ^ +— = 1, if revolved about the minor axis the equation is— +^ + — = 1.

The equations of the surfaces generated by the hyperbola ^ — ^ = 1 are

-— V- — — =:\ and — -f ^^— — = 1. The equation of the surface generated by
02 62 ^,2 «2^a2 52

^ ^ ^

revolving the parabola ?/2 = 4 ax about its axis is y2 _[. ^^a _ 4 q^^. 9. The equa-

tion of the surface generated by revolving the parabola z^ = 4iax around the

2;-axis is 16 oP' (x2 + y^) = 2*. 10. The paraboloid of revolution y^ + z^=.

lai^-a). U. (l)^ + | + |? = l,where6^=a»-A (2) |-|!-|? = 1,.

where 62= c2 _ ^2. 12. y = xtan az, where a depends upon the number of

turns the blade makes per unit of length.

CHAPTER XTV

Page 214. — The symmetric equations may be written as follows :

2 ^-y-S- g-2 3 a;_ y-4 _ g-3 . x + 2 _y

_

z-l"2-5-3' 12 3 ' '31 -6*
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5. ? = yZlM:
2 3

M. 6.

a line perpendicular to the 2!-axis;

the plane e = 0. 8. « — 2 = y + 3 =

10. ? = 1^ = ^. 11. (0,6,3).

70° 32'.

8. ±-^-1 = ^-^1^ = =^:^. 10. cos-i-^

1 1 -1
X — a _ y — b _z

~ ~

a_ y - h

m
z — c
~0~'

z-\. 9.

— c

x-4-

1

? = 1^ = -.
Z m n

Page 216. — 3. cos-^| =
ar — l _ y — 4 _ g — 3

3

4. 60°.

: 109° 28'.

3

5. cos

perpendicular to

y-3 _ g--2
-6 -2'

3
35° 16^

2 4

Page 218.— 8. A plane. 13. If the equations of the two fixed lines are

y + mx = 0, 2; + c = 0, and y — mx = 0,_ 2; - c = (§ 147), the equation of the

locus is 2/2 _ wi%2 _ (^a _ 1) (2;2 - c2).

14. . Let the equations of the two fixed lines be taken as in Ex. 13, and let 2 1

be the constant length of the moving line. Then the equation of the surface is

c\cy - mxzy^ + m\\cmx - yzY + m\c^ - P) (c^ - z'^Y = 0. The locus de-

scribed by any fixed point on the line is found by putting z = k\n this equation,

where k is any constant.

16. If the fixed lines are the same as in Ex. 13, the equation of the surface

is y2! — cmx = 0.

CHAPTER XV
Page 222.— 1. The constant term D represents the square of the length of

any tangent drawn from the origin to the sphere, or the product of the segmei4%

into which the origin divides any chord passing through the origin. The origifi

is outside, on, or inside the sphere, according as D is positive, zero, or negative.

If nn = — d2, P is at the centre of the sphere.

2. Four, since there are four independent constants in the general equation.

8. The equation of a sphere through the four points (Xi, 2/1, zi), (xa, 2/2, «2)»

(«3, ys, «8), («4, 2/4, «4) may be written

:

+ 2/2 +z^ X, J/, z, 1

Xi2 + 2/i2 + 012, xx, yu «i, 1

1

1

1

Xi^ + 2/2^ + ^2% «2, 2/2, ^2, = 0.

Xs^ + ys^ + zs», xs, 2/3, Z8,

Xi^ + yi^ + Zi% X4, 2/4, «4,

4. (1, 2, 3), r = 3, outside, t = VE; intercepts 1 ±2V^ ; 2 ±V^ ; 1, 5.

6. (- 6, 12, 0), r = 13, on, « = ; intercepts 0, - 10 ; 0, 24 ; 0, 0.

6. (- 3, 4, - 1), r = 6, inside, t = V- 10 ; intercepts -3 ± VTd ; 4 ± V26
;

-1± VTT. 7. (2, -3, -5), r= \/38, on, t=0 ; intercepts 0, 4 ; 0, -6 ; 0, -10.

8. x^ + y^ + z^±2rx = 0. 9. (x ± r)2+ (2/ ± r)2+ (^ - c)2 = r2.

10. (x±r)2+(2/±r)2+(«±r)2=r8. - H. x2+2/H«2±2ax±2a2/±2c«+a2=0.
12. x2+2/2+«2^2ax±2a2^±2a«+a2=0. 13. x2+2/2+«2-4x-42/±4«+4=0,
and x2+y2+«2-20x-202/±20«+100=0.
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19. The radical axis of three spheres is the locus of all points from which

tangents drawn to the spheres are equal. The radical centre of four spheres is

the point from which taugents drawn to the four spheres are all equal. If 2)i,

2>2, i>3, 2>4 are the constant terms in the equations of the circles, the condition

isDi=2>2=^3= 2>4.

Pag© 237. — 3. Sections of the two surfaces are equal, if their planes are

parallel to the y^-plane, and the difference of the squares of their distance*;fr^m

*^s^ plane is equal to a^. '.

•_ .

"

:.
, J'-j-ttii^f

^^,<y%' In both cases the asymptotic conis pas/ses entirely itifo.-^i^fcfi^ijt^glwK

^ Page 243.— 6. a;2+2/H«2=a2.- 11. "^^^^.^.(y^^^

The area of the section .made by thft pJaHe'^'^ii isindie'^)^!^ r,1[)e^&!^'a

variation in r causes no chaoge in th^^s^io^vj^^sgltjer^v or^bf 'ite'distan!i;e'|r^m

the y5;-plane ; it produces athanee on>pKi(^BJK^j(icioB3inate ofthe centj^.*- -

^^ / APPENDIX '^^?'

Page 246.— 1, 2, 8. The same a^the ayfxis. 4. The y-axis. 6.. The je-axis.

6. The lines y = x and 2^= — «, -fei^i^^O, 0) y = 2a;, at (1, 0) y =-J x:-}- 1,

at (2, 0) y = 2 X - 4. / 8. At ,(()^:%V == 0, at (1, oj 2^ = 2 x - 2, at (^ 1, 0)

2/ =- 2x~ 2. 9.,.At (0, 0) V=5^'l5!^,.at (- 2, 0) y = lOx - 20, at (3, 0)

2/=Jl^x-45. 10. A:t.(.Q, 12,)'yi:^r^ilx + 12, at (1, 0) y = - 12:^'il),

at(--8,())y = 28(x+5), at(4,0)2/ = 21(x-4).
'

.S"^*"
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