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PREFACE.

The Work now laid before the Public consists

of two Treatises, the former on Plane and the latter

on Spherical Trigonometry, and in the execution of

them both the Author has adopted that Arrangement

which appeared to him the most natural, and at the

same time the most elementary. The whole of the

former Treatise with the exception of the last chapter,

has been made to depend solely upon the Propositions

usually read in Geometry, and the first Principles of

Algebra. For an account of the particular Articles

which may be found in the work the reader is referred

to the Table of Contents, but the following brief

outline will put him in possession of the general

plan upon which the performance has been con-

ducted.

The first Chapter contains the Definitions of the

subject and the Terms made use of in it, accompanied

by various Observations and Deductions of great im-

portance to the complete understanding of the subse-

quent parts of the work. With respect to the

explanation and elucidation of the geometrical Lines

which form the leading feature of this part of Mathe-
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matical Science, it may be observed that a Notation

has been adopted, in which small Figures are suffixed

to, or placed under, the Letters employed: this does

away with the necessity of introducing a greater

number of different letters, and has also the ad-

vantage of establishing and pointing out a Connection

between the geometrical Lines and their algebraical

Affections, which cannot fail greatly to assist the

progress of the student ; and it is of course always to

be understood, when neither of the above-mentioned

objects is to be attained, that the suffixes may be

altogether suppressed.

The second Chapter comprises what is generally

called the Arithmetic of Sines, and commences with

a geometrical Demonstration of a Proposition which

fonns the basis of the whole Doctrine: from this

proposition and the definitions of the preceding-

Chapter, all the other parts of it are either directly

or indirectly derived, various Examples of great utility,

or at least remarkable either for the frequency of

their occurrence or for the singularity of their results,

being occasionally introduced.

The third Chapter is a short treatise on the Con-

struction and Verification of sets of Tables adapted to

practical purposes, and commonly knovm by the name

of the Trigonometrical Canon, It is this part of

the subject which is most laborious, and renders it
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available in the concerns of life. In this Chapter

some Approximations to the numerical value of the

Circumference, or to the Rectification, of the Circle,

have been made.

The fourth Chapter contains the Application of

Trigonometry to the determination of the Relations

between the different Parts and Properties of Triangles

and other rectilinear Figures, and it will be seen that

a variety of Problems has been expeditiously solved

by it, in which the operations of common Geometry

would have been long and tedious. The Properties

of regular Polygons have been here introduced, but

for the subject of Pohjgonometry in general, the reader

is referred to ' Polygonometrie, ou de la mesure des

figures rectiligiies i^ar Simon LliuiUer,' or to a

masterly extract from it, contained in the third

volume of Dr. Hutton's Course.

The fifth Chapter exhibits the Solutions of all

cases of triangles that usually occur, points out briefly

the methods to be preferred under different circum-

stances, and concludes with several examples of their

application in the Mensuration of Heights, Distances,

&c. This Chapter with the assistance of the tables of

whose formation a short account has been given in the third,

constitutes the general practical use of Trigonometry.

The sixth Chapter presents the subject in a more

general aiul analytical point of view, and treats of what
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was termed by Vieta and the Mathematicians of the old

School, Angular Sections: this is, in fact, a generaliza-

tion of the Arithmetic of Sines, and in a work not

designed for the purpose of affording elementary Infor-

mation, might have rendered unnecessary many of the

propositions demonstrated in the second Chapter of

the present.

The last Chapter on Plane Trigonometry is made up

of such Propositions as could not without a violation

of method be disposed of in any of the preceding

divisions of the work.

The Treatise on Spherical Trigonometry is also

comprised in seven Chapters, and in a great degree

a similar plan of arrangement has been adhered to.

Of course this Treatise has been made to depend almost

entirely upon the preceding one, and its division into

Chapters seemed so obvious that it is unnecessary here

to attempt to assign any reasons for it, the only novelty

in addition to the substance of the generality of works

on the same subject being a Chapter on Polyhedrons.

The reader will readily learn what he may expect to find

in it by casting his eye over the Table of Contents.

Throughout the whole of both Treatises it has

been the Author's object to present to his reader every

proposition proved in a plain concise form; and with

the view of forwarding the purposes of Academical
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Instruction, for which the work is principally intended,

the leading propositions are stated in Italics, though

it may be observed that the Corollaries and Deductions

sometimes involve results of no less importance than

the articles which have been so distinguished.

A collection of Theorems and Problems connected

with the substance of each Treatise has been annexed

in two Appendices at the end of the work, and they

have been partially allotted to the respective Chapters

in order to direct the student in some degree to the

knowledge necessary to enable him to attempt their

solution.

In the Table of Contents asterisks have been prefixed

to such articles as may be reserved for the student's

perusal after he has made a partial progress in some of

the other subjects of his Academical Education.

, -~«

Cambridge^

Nov. 25, 1828.
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PLANE TRIGONOMETRY.

CHAP. I.

DEFINITIONS AND INTRODUCTORY OBSERVATIONS.

Article I. Definition I.

Plane Trigonometry in its original acceptation is that

part of Mathematical Science which treats of the mensuration

of the sides and angles of plane rectilinear triangles ; but it is

here used in a more comprehensive sense, and includes the

general doctrine of plane rectilinear angles, as well as their

relations to one another, and to the straight lines by which

they are formed, or with which they are in any manner con-

nected.

2. In a chxle of given radius, the arcs may he considered

as the measures of the angles which they subtend at the centre.

For, let C be the centre of the circle, of which FQ, P'Q\

are any two arcs subtending the angles PCQ, P'CQ! re-

spectively: draw the diameters ACD, BCE at right angles

to each other, which divide the circumference into four equal

parts called Quadrants : then (Euclid, 6. 33.) we have

arc PQ : arc P'Q' :: angle PCQ : angle PXQ' :

A
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that is, the arcs are proportional to the angles which they

subtend, and may therefore be taken as the measures of them

to the given radius C^.

3, If the radii of circles he supposed to he of different

magnitudes, the angles at their centres will he directly pro-

portional to the arcs which suhtend them^ and inversely pro-

portional to the radii; and every angle may he measured hy

the fraction , (—-— ) .

\raaius/

For, let PQ, P'Q! be two arcs of different circles subtending

at the common centre C, the angles PCQ, P'CQ! respectively

:

draw the diameters ACD, BCE at right angles to each other

then

arc PQ : arc JB :: angle PCQ : angle JCB,

PQ
or angle PCQ = —— angle ACB; again,

A. D

arc P'Q! : arc A'B' :: angle PXQ' : angle AXB",

or angle P'CQ' = ~ angle AXB' :

\ angle PCQ : angle P'C& ::

PQ P'O'~ angle ACB : ^. angle AXB:



s

but the angle ACB is the same as the angle A'CB\ and the

quadrants of circles are proportional to their radii, therefore

we have

angle PCQ : angle P'CQ' J^ ~i^ >

that is, the angles are as the arcs directly and the radii inversely :

PQ P'Q
and the fractions, —^ , , may therefore be taken as the

JxL/ j4 (_/

measures of the angles PCQ and P'CQ! respectively,

4. In Article 2. we have seen that an angle may be

measured by the corresponding arc of a circle, whose radius

is given ; and in Article 3. that an angle may be measured

(arc ^
:— I ; now it is manifest that

radmsx
these measures will not be upon the same scale, unless the given

radius in Art. 2. be supposed to be 1 : hence, therefore, adopting

this hypothesis, we conclude generally that any angle may be

measured by the corresponding arc of the circle whose radius is 1,

(Ixth
- ) part of the corresponding circular arc whose radius

is r; or generally by the fraction, ( :— )• that is, angle
Vradius/

arc

radius

5. Cor. 1. Hence, therefore, if a represent the length

of the arc which measures a given angle to the* radius 1, and

a' to the radius r, we shall have a= l~^ J } or a=ra.

6. Cor. 2. If the angles at the centres of different circles

be of the same given magnitude, the arcs by which they are

measured will be proportional to the radii ; and, if the arcs

be of the same given magnitude, the angles will be proportional

to the reciprocals of the radii.
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Ex. 1. If the arc whose length is a measure a given angle

denoted by A to the radius 1^ then will an arc whose length is ra
measure the same angle when the radius is supposed to be r.

Ex. 2. If the arc a of given length measure an angle A to

the radius 1, then will an arc of the same length be the measure

(A\—
J when the radius used is r.

7. Def. 2. If the radius of the circle be supposed = 1,

the circumference (hereafter proved=6. 28318, &c.) is represented

by 27r, and is supposed to be divided into 360 equal parts

called degrees : each degree is again supposed to be divided

into 60 equal parts called minutes : each minute into 60 equal

parts called seconds, and so on. These are expressed by the

characters ^, ', '\ '\ &c. placed above the line to the right

of the numbers : thus 45° 35' 25" 14'" represent 45 degrees,

25 minutes, 25 seconds, 14 thirds.

In the following pages we shall always suppose the radius

to be 1, unless the contrary be expressed.

8. Cor. 1. It appears from the last definition that one

71"

right angle will be measured by - or 90^;
lit

Two right angles by tt or 180°;

Three by — or 270°;
2

Four by 27r or 360°.

9. Cor. 2. If we suppose the circumference of the circle

to be taken a second, third, &c. time, w^e may in the same man-

ner represent the sum of any number of right angles whatever

:

thus,

Five right angles will be measured by— or 450°

;
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Six right angles will be measured by 3 tt or 540®
j

Seven or 630°

;

&c &c.;

UTT n
n — or w.go .

2

10. Most modern mathematicians, with the exception of

the English, divide the circumference of the circle into 400

equal parts, which they call degrees ; each degree into 100

equal parts, which they call minutes, and so on.

In this division of the circle

One right angle will be measured by - or 100°;
2

Two 7ror200°;

&c &c.;

nir
n —

2
or n . 100°.

11. Cor. Hence, we may easily investigate rules for re-

ducing degrees, &c. in either of these scales into degrees, &c. in

the other.

For, let IV=the number of degrees, &c. in the English

scale, then since 360 English degrees = 400 foreign,

we shall have 1 English degree = -— foreign

= -— foreign ;

.'. JV English degrees = foreign

= :\ -} loreign,

which gives the first Rule ;



To the number of English degrees, 8cc. add one-ninth

part^ and the sum will be the number of foreign degrees^ 8cc.

Ex. 1. Represent 31^ 45' 5l" English in the foreign

scale.

Here N = 31^ 45' 51'' = 3l\ 765833....

N
9

3^529537...

N
.'. IV 4- —

J
or the number of foreign degrees^ 8cc.

• =35\29537....=35^ 29'53" &c.

Ex.2. Hence also, 1° English =1^ ll' ll"&c. foreign;

l' English = r 85' 18" &c. foreign
;

l" English = 3" 08'" 64"" &c. foreign.

Agairij let w = the number of degrees, 8lc. in the foreign

scale, then

9
1 foreign degree = — English

;

.'. w foreign degrees = — English = ?z English,

which gives the second Rule :

From the number of foreign degrees, &c. subtract one-

tenth part,, and the remainder will be the number of English

degrees, 8ic.

Ex. 1. Express 25° 44' 89^' foreign, in the English scale.

In this case n = 25^.4489;

fi

.'. — = 2^ 54489;
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n J or the number of English degrees, 8cc.

= 22\ 9040 1=22*^ 54' 14" ^c.

Ex. 2. Similarly we find that

1° foreign = 0^ o4' English ;

l' foreign = O' 32".4 English
;

\" foreign = 0".324 English.

We may here observe that in both cases minutes, seconds,

&c. must be expressed as decimals of a degree, and that it is

usual in practice to express all inferior denominations as deci-

mals of seconds.

12. Def. 3. If A represent any angle or arc, then 90^

-- A, or f — ^ ^ is called its Complement.

Ex. 1. The complement of 34^ Id' = 90^ -34^ 15' = 55° 45':

and the complement of 23° 2?' 53".67 = 90°- 23° 2?' 53".67

= u6° 32'6".33.

Ex. 2. The complement of

a±^)=i-(;±^)-a'=-')-

Ex. 3. The complement of

(i±^)-i-(ii-')="-

Ex. 4. If the angles of a plane rectilinear triangle be A,

B, C, whereof C is a right angle^ then since A+jB+C = 7r,

we have A-}-B = 7r — C = 7r—-=-, and .*. ^ = ^
— -D,
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B= - — J, or each of the acute angles of a right-angled

triangle is the complement of the other.

13. Def. 4. If il be any angle or arc, 180^— ^^ or

TT—A is called its Supplement.

Ex. 1. The supplement of 44° 16' = 180° - 44° 16'

= 135° 44', and the supplement of 173° 3' 13^81 = 180°-

173° 3' 13''.81 =6° 56' 46". 19.

Ex. 2. The supplement of

Ex. 3. The supplement of

(tT ± J[) = TT - (tT ± 1) = + A.

Ex. 4. If A, B, C be the angles of a triangle, and,

therpfnr^ A-\ B^C = Tr, we shall have A = tt — (B -f C),

J5 = TT - (A + C), and C = TT — (1 + £) : that is, each of

the angles of a triangle is the supplement of the sum of the

two others.

14. If in the last two articles, the foreign scale be used^

the complement of A will be = 100°-— A, and the supplement

of A = 0^00^-. A.

15. Since the magnitudes of angles or of the arcs by

which they are subtended, cannot without inconvenience be

determined by actual measurement, and since all measures found

by means of instruments are subject to error, both on account

of the unavoidable defects in their construction and the neces-

sary inaccuracy of their application, angular magnitudes as well

as the relations of angles to one another, are more easily, and

on that account more generally, found by means of certain

straight lines which are supposed to belong to all arcs and

angles, and are termed trigonometrical functions of the same

:
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these are the Sine, Co-sine, Versed sine, Chord, Tangent, Co-

tangent, Secant, and Co-secant : to' which are sometimes added,

though but little used, the Co-versed sine, Su-versed sine, Co-

chord, and Su'Chord. These lines are properly called the

Natural Sine, Natural Co-sine, &c. when the arc is supposed

to be the measure of the angle_, or the radius is supposed to

be 1.

16. If positive quantities be represented by lines measured

in any direction from a given point, it is easily shewn that

negative quantities will be represented by lines taken in the

opposite direction ; and it therefore follows conversely, that

if lines drawn in any direction be considered positive, those

lines which are drawn in the opposite direction must be con-

sidered negative. Again if lines drawn from 'the centre of

a circle through any point in its circumference be called

positive, those lines which are drawn from any point in the

circumference, through the centre,, must be supposed negative.

Also, if a point be taken in the circumference of a circle, and

through it a diameter be drawn, the positive arcs being mea-

sured in one direction from this point, the n^ative arcs will

be measured in the other.

The algebraical signs of lines are also sometimes determined

from the principle, that every quantity which admits of different

magnitudes has its sign changed* in passing through zero or in-

finity.

In the following pages, arcs of the circle which we begin

to measure upwards from the extremity of a diameter are

termed positive, and those which commence from the same

point downwards, negative. Also, all lines, in whatever man-
ner drawn, are termed positive for any arc not greater than a

quadrant.

I/* Def. 5. The sine (sin) of an arc is the straight line

drawn from the end of the arc, perpendicular to the diameter

passing through the beginning of it. Thus,

B
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PiE

The sine of APi is N^Pij which is positive

;

^Pg is JV2JP2) positive;

-4P3 is N3P35 negative;

JP4 IS NiP^j negative.

It appears therefore, that the sine is positive in the first and

second quadrants, and negative in the third and fourth.

Hence it is also manifest^ that if the arc A Pi be called A,

NiPi is also the sine of the arcs denoted by 9,7r + J, 47r+ ^,

67r-\-A, &c.(2w7r+ ^).

18. Ex. "'From the definition, we have sin = 0;

sin 90^ = sin (^^ ~ CP = 1

;

sin 180^= sin (tt) = 0;

\= CE= - 1
;

sin 360°= sin (Stt) = 0.

Hence, in the first quadrant, the magnitude of the sine

lies between and 1 ; in the second, between 1 and ; in the

third, between and — 1 ; and in the fourth, between — 1

and 0.

19. Cor. 1. Sin (-A)= - Si?i A,

For, take APi = A, AP^ == — A ; then it is manifest, that

P4N4 = PiNi, or sin {- A)=—sm A, by (16), that is, the
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algebraical sign of the sine of an arc changes with that of the

arc itself.

By means of this corollary, we have sin ^ = — sin { — A)

=— sin (Stt— ^'^)=— sin(47r— J.)=&c.=— sin(2w7r— ^).

Also^ from this corollary and (17) we have

sin (272 TT + ^)=— sin (Stztt — -^).

20. Cor. 2. Sin (x-A) = Sin A.

For, let AP^=:J, AF2 = {7r- A)\ therefore BCP^^^ir
-ACP2 = 7r-{7r-J) = A=ACP,, and .*. P^Nz = P,N„
or sill (tt— y4) = sin A; in other words, the sine of an angle

or arc is equal to the sine of its supplement.

From this corollary we have immediately, sin A = sin (tt — A)
= sin (Stt — ^)= &c. = sin

{
(2;z— 1) tt - ^}, and therefore

from (17) we conclude that

sin {2n7r-\-A) = sin {(Q.n— l) tt- A].

21. Def. 6. The cosine (cos) of an arc is the sine of its

complement, and is therefore equal to that part of the diameter

which is intercepted between the centre and the sine. Thus,

The co-sine of APj^ is P^M^ = CNi, which is positive;

AP2 is P2M2 = CiVg, negative;

AP^ is P3M3 = CN3, negative;

^4P4 is P4M4 = CIV4, positive.
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Hence, the cosine is positive in the first and fourth quadrants,

and negative in the second and third.

Here, as before, CA^i = cos ^ = cos (27r+ ^) = cos (47r4-^)

= &c. = cos (2?2 7r + A).

22. Ex. We have, therefore, cos = CA = 1
;

cos 90" = cos ^- J =0;

cos 180° = cos (tt) = CD= — 1;

cos 270° = cos {—) = 0;

cos 360° = cos (27r) = C^ = 1.

By these Examples it is seen, that in the first quadrant the

magnitude of the cosine lies between 1 and ; in the second,

between and — 1 ; in the third, between — 1 and ; and in

the fourth, between and 1.

23. Cor. 1. Cos ( - A) = Cos A.

For, take AP, = ^, AP^= -^; then cos(-^)=CiY4
= CNi = cos A ; that is^ whether an arc be considered positive

or negative, the algebraical sign of the cosine is the same.

From this and (2J) it foliowSj that cos ^ = cos ( — J.) =
cos ('27r± ^) = cos (47r± ^)=;&c. = cos (2rt7r + A),

24. Cor. 2. Cos(7r - A)= -- Cos A.

For, let APi = A, AP^r^^Tr— A) ; therefore, as before, we
shall have CN^^CNj,, or cos {7r—A)= -cos J, by (l6), that

is, the cosine of any arc is equal to the cosine of its supplement

with a different algebraical sign.

Hence also, cos A — —cos (tf— A)= —cos {o7r—A)=^



Ici

See. = — cos {(2/* -- 1) TT — ^} ; and by the last corollarj,

cos (2W7r±^) = — C0S{(2«— 1) TT — ^}.

25. Cor. 3. From the right-angled triangle CNiPi, we
have (Euclid, i. 47.)

P,N,'+CK = CPi\ or sin^ J+ cos' A=l;
.*. also sin^ -^ = l—cos^ Az=z{l + cos -^)(1 —cos J)-,

and cos^ ^ = 1 - sin^ ^ = ( 1 + sin ^) ( 1 - sin J).

Ex. If7l=45", we shall have

1 = sin' 45'+ cos' 45*^ = sin' 45^ + sin' 45°

= 2 sin^ 45^ = 2 cos^ 45^, by (21),

and .'. sin 45*^ =—;;r-=cos45'.
V 2

26. Def. 7. The versed sine (vers) of an arc is the part

of the diameter, intercepted between the beginning of the arc

and the sine. It is sometimes called the Sagitta. Thus,

The versed sine of AP,^ is ANi, which is positive

;

^Pg is AN2, positive;

AP^ is AN3, positive;

AP^ is ANi, positive.

Hence, the versed sine is positive in every quadrant.

Also, it is clear that vers il = vers (2 7r+ A) = vers (47r+ i4)

= &c. = vers (2 «7r + ^).

27. Ex. It follows therefore, that vers = 0;

vers 90' = vers (-) =AC = \',

vers 180' = vers (tt) =AD=zQ,;

vers 270' = vers (-~) =^C = 1

;

vers 360^ = vers (27r) =0.
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From these Examples it appears that in the first quadrant,

the versed sine lies between and 1 ; in the second, between

1 and 2 ; in the third, between 2 and 1 ; and in the fourth,

between 1 and 0.

28. Cor. 1. Vers{-'A)= Vers A.

For, let AP^=A, AP^=—A) then is AN^ = AlSi^y or

vers (—--4) = vers A,

From this we have vers A = vers ( — j4.) = vers (Stt — A)
= vers (47r — ^) = &c. = vers (2«7r— J.) : and therefore also,

vers (2w7r+ ^) = vers (2;i7r— ^).

29. Cor. 2. Fers (tt — A) = 2— Fer5 A.

For, let J.Pi=^5 AP^ = {7r — A)y then vers {tt — A)
= AN^ = DN, ^AD- JN, = 2 - vers A,

This is called the Su-versed sine of A, because it is the

versed sine of its supplement.

Hence also, vers A =2— vers (tt— ^) = 2 — vers (Stt— J.)

= &c. = 2- vers {(2;z— l)?:-^}.

30. Cor. 3. Since AN^ = AC — CN^, we have vers

A = l— cos A, and cos A= I —vers A, Also, vers {tt— A)

= 2 - (1 — cos 1) = 1 -f cos J.

31. Cor. 4. The versed sine of f^—Aj is BM^,

which = £0- CM^ = BC- N^P^ = 1 ~ sin A, and is called the

Co-versed sine of A, since it is the versed sine of its com-

plement.

Ex . Hence vers 45^ -= 1 — cos 45° =1 7=-

;

su-vers 45° = 1 + cos 45° = 1 H j^ ;

and CO" vers 45° = I — sin 45° =1 pr •

x/2
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32. Def. 8. The Chord (chd) of an arc is the straight line

which joins the beginning and end of the arc. Thns,

B
^

J'/

The chord of ^Pj is AP^, which is positive;

J.P2 is AP2, positive;

J.P3 is AP3, positive;

J.P4 is iLP4, positive.

Hence, the cliord is positive in every quadrant.

And we likewise observe, that chd J. =chd (^tt-j- A) = chd

(47r+ A) = &c. = chd {Qnir + A).

33. Ex. From the last Article we have chd = 0;

chd 90' = chd (^) =AB =^AC +BC = J2;
chdl80° = chd (tt) =AD = 2;

chd 270" = chd (^—^ =AE = ^AC'-{-EC'=^ ;

chd 360^ = chd (^tt) =0.

Hence, then, in the first quadrant the chord lies between

and \/'2.; in the second, between ^2 and 2; in the thirds

between 2 and ^^2 ; and in the fourth, between .^/^"and 0.

34. Cor. 1. Chd {- A) = Chd A.

For, let AP^ = Af AP4= —A; then it is manifest, that

AP^=zAP,, or chd (- A) = chd A.
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Therefore we have chd A = chd ( — .4) = chd (Stt - J)

=:chd (47r — ^) = 8cc. = chd (^wtt — A); and by (32) chd

(2}i7r + A) = chd {Inir-A).

35. Cor. 2. Chd (tt - A) = ^4 - CA^' A.

For^ let APi=A, AP2 = (7r — A); .•. the straight line

AP^=DP, =sJaD'' - ^P,", orchd(7r-J) = ^y4-chd'^ J.

This is called the Su-chord of ^.

36. Cor. 3. From the right-angled triangles, AN^P^,

AP,D, we have AP,^-AN,^+ NiPi\ or chd" J = vers^ J
4-sin^ J, and .*. chd ^= ^ vers^ J + sin" A.

Also, JPi^= A-D.Ai\^i, or chdM = 2vers^ = 2-2cos74,

and chd A = >^2 — 2 cos A ; and therefore chd (tt — -^)

= V^2 + 2 cos 1, from {35).

37. Cor. 4. Chd (^^
- J.) = J5Pi=^PMi'+MiPf

= a/ci— sin ^)^ + cos''^ = ^^2-2 sin A, by (25).

This is called the Co'chord of j4.

Ex. If the arc IP be taken equal to 60', and CP, AP, PN
and PM be drawn, it is manifest that the triangle ACP is equi-

lateral, and that CA is bisected by PN: hence it follows that

^^^"^p--- p

/
I c N I

A

chd 60' = JP= ^C= radius = ]

vers 60' = ^1^= | JC = ^ radius r= f
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Again, we have

cos 60' = CIV = I IC = i radius = | = sin 30"
;

, , \/3
sin 60" = PN = V CP'- CN''^ s/T^ = -^ = cos 30^

Hence also,

su-chd 60^ = >v/4~^^~ckF60^ = x/4-l= 1/3 = did 120^
;

co-chd 60' = »y2 — 2 sin 6o' = V^^-~V^= chd 30^

38. Def. 9. The tangent (tan) of an arc is the straight

line touching the arc at the beginning, and terminated by the

radius through the end of it, produced. Thus,

The tangent of ^Pi is ATi, which is positive;

^IPg is J. To, negative;

APs is AT3, positive;

AP4 is A 2 4, negative.

We observe, therefore, that the tangent is positive in the

first and third quadrants, and negative in the second and fourth.

Hence likewise, tan A =tan (^tt + ^) = tan (47r + A)=&c.
= tan (2«7r + A).

39. Ex. From this definition, we have tan = 0;

tan 90' = tan
(J^J

= 00;

C
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tan 180" = tan (tt) =0;

tan 270^ = tan (— } = ~ QO ;

tan 360^ = tan (Stt) =0.

These two articles prove that in the first quadrant, the mag-

nitude of the tangent lies between and oo ; in the second,

between — oo and ; in the third, between and QO
; and in

the fourth, between — co and 0.

40. Cor. 1. ^«y^ (-A)= - Tan A.

For, take JPi = A, AP^ = — ^ ; then it is manifest that

AT^ = ATi, or tan ( — A) = -tan J, by (16); that is, the

algebraical sign of the tangent of an arc changes with that of the

arc itself.

Hence therefore, tan A = — tan { — A)=- — tan {^tt —A)
= ~ tan (47r— ^) = &c. = ~ tan (2/27r- A).

And, from (38) we have likewise tan (2/Z7r+i4)= —
tan (2;i7r — A).

41. Cor. 2. Tan {it ^ A) =^ — Tan A.

For, take APi = A, AP^ = w — A ; therefore Z ACT2
= zACTi, and AT^ = ATi, that is, tan (tt— ^)= — tan ^,
by (16); or the tangent of an arc is equal to the tangent of its

supplement with a different algebraical sign.

From this we have also, tan ^ = — tan (tt— A)= —
tan (37r— ^)= -tan (57r — J[)=&c.= — tan {{2n-~ l)7r— J.};
and also from (38), tan(2w7r+ ^)= -tan {(2^i-l) tt-A],

42. Cor. 3. By the similar triangles CNiPi, CATi,
we have

CNi : NiPi :: CA : ATi,

or cos J. : sin :4 :: 1 : tan A,

and therefore tan A = —7.
cos A



that
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Ex. From this corollary and the preceding pages^ it follows

tan 30^ =

tan 45" =

tan 60^ =

sin 30^

cos 30" ^3'
sin 45"

COS45"

sin 60"

1;

cos 60'
= x/3.

43. Def. 10. The co-tangent (cot) of an arc is the tangent

of its complement, and is therefore the straight line touching the

circle at the end of the first quadrant, and terminated by the

radius through the end of the arc, produced. Thus,

ts U B /;? I

>xC
-y^y^
yt

D
1 ^/x .

V /^JV/

^x^d
/

The co-tangent of AY^ is -B^j, which is positive;

AV^ is ^t^y negative;

A^n, is 5^3, positive;

^P4 is Bt^, negative.

The co-tangent is therefore positive in the first and third

quadrants, and negative in the second and fourth.

For the same reason as before, we shall have cot A =
cot (Stt + A) = cot (47r + A)= &c. = cot (Q,tnr + A).

44. Ex. Hence therefore, cot 0= co;

cot go'' = cot (^^ =0;



cot 180° = cot (tt) = — CO
;

cot 270° = cot {^^} =0;

cot 360° = cot (Qtt) = CO .

From these two articles, it appears that the co-tangent

in the first quadrant is between co and ; in the second,

between and -co; in the third, between co and 0; and in

the fourth, between and — c»

.

45. CoR.l. Cot {'-A)= - Cot A.

For, let APi^A, AP^= —A; then, it is evident that

Bt^ = Bt^, and therefore cot (— ^)= -cot A, by (l6); or the

algebraical sign of the co-tangent of an arc changes with that of

the arc itself.

Therefore also, cot ^ = — cot ( — A) = — cot (Stt — ^4)

= — cot (47r — A) = 8cc. = — cot (Swtt — A)\ and thence

by (43) we have cot(2«7r + A)= - coi {Q.nir - A).

46. Cor. 2. Cot {tt - A)= — Cot A.

For, let APi — Ay JP2 = tt — A\ then, it is manifest that

Bt^ — Bti, or cot (tt — A)=— cot A, by (16); that is, the

co-tangent of an arc is of the same magnitude as the co-tangent

of its supplement, but with a different algebraical sign.

From this corollary, we have likewise cot A= — coi {tt — A)
= - cot (Stt— A) = &c. = - cot {{Q.n — 1) tt— A] ; and

therefore also by (43), cot {^n'Tr-\~A)= —cot {(2«— \)'7r—A}.

47. Cor. 3. By the similar triangles, CMiPi, CBti,

we have

CM, : M,P, :: CB : Bt,,

or sin A : cos ^ :: 1 : cot A,

cos A 1 . .

and .*. cot A = -: = r , by (4'2).
sm A tan A ' -^

^
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Ex. It follows from what has been already proved, that

cot 30^

cot 45'

cot 60°

cos 30

sin 30^

cos 45°

tan 30" -V3;

sm 45 tan 45^

cos 60° 1

"^iiTeo^

~

= 1

tan 60° - V5
•

48. Def. 11. The secant (sec) of an arc is the straight

line drawn from the centre through the end of the arc, and
termmated by the tangent. Thus,

The secant of APi is C2\, which is positive;

AP2IS CTo, negative;

^Pg is CT3, negative;

' AP4 is Cl\j positive.

Therefore the secant is positive in the first and fourth

quadrants, and negative in the second and third.

Hence also as before,, secil = sec (^tt-}- -4)=^ sec (47r -j- j4)

= &c. =:sec i2n7r + A).
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49. Ex. We shall therefore have sec 0=1;

sec 90^ = sec ( - ) = 00 ;

sec 180^ = sec (tt) =— 1;

sec 270^ = sec ^— J
= — go

;

sec 360^ = sec (27r) =1.

We conclude then^ that the magnitude of the secant in the

first quadrant lies between 1 and oo ; in the second, between

— 00 and — 1 ; in the thirds between — 1 and — co ; and in the

fourth^ between oo and 1

.

50. Cor. 1. Sec (- A)=^Sec A,

For, let APi = J, AP4 = - A; then CT4 = CT^, or

sec ( — ^) = sec J.; that is, the magnitude and algebraical sign

of the secant is the same whether the arc be positive or negative.

Hence also^ sec ^ = sec ( — A) = sec (Stt — A) = sec

(^TT— A) = 8cc. = sec (SwTT — A); and therefore by (48) we have

sec (2w'7r+ ^) = sec {^utt— A),

51. Cor. 2. Sec i'7r— A)= - Sec A,

For, let lPl =^ AP2^7r-A; then, CT^^^CT^, and

,'. sec {t7--A)= —sec A, by (16); or the secants of an arc

and of its supplement are of the same magnitude, but have

different algebraical signs.

And as before, sec j1 = — sec (tt — ^)= — sec (Stt — A)
= &c.= -sec {(2?i— 1) ir-A}: also by (48), sec (2/7 7r+ A)
= —sec {(2yi— 1) tt— ^}.

52. Cor. 3. From the similar triangles CNiP^, CATi,
we get

CTi : CA :: CPi : CNi,

or sec A : 1 :: 1 : cos A,



and therefore sec A =
cos A

Also, from the triangle CATi, we have CTi' = CA^ + AJ?,

that isj sec^ A=-\'\- tan^ ^, and .*. tan^ A = sec" A — 1,

Ex, From either of these formulae, we shall have

2
sec 30' ,^, sec 45^ = ^2, and sec 60^ = 2.

x/3

53. Def. 12. The co-secant (cosec) of an arc is the secant

of its complement, and is therefore the straight line drawn from

the centre through the end of the arc, and terminated by the

Thus,

t^ t^. B ts f

\,K<"
^>r//yX/

J) A/x \

\ /\ "I

V 3*^
/

The co-secant of A Pi is Ct\, which is positive;

ilP2 is Ctc^i positive;

AT^ is C^3, negative;

J.P4 is C^4, negative.

Hence, the co-secant is positive in the first and second

quadrants, and negative in the third and fourth.

Alsoj cosec A = cosec (2 tt 4" ^) = cosec (4 tt -f- A) = &c. . .

.

= cosec (2/Z7r -j- A).

54. Ex. This definition gives cosec = co
;

cosec 90 = cosec G) = 1;
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eosec 180^ = cosec (tt) = oo
;

/^'^\
cosec 270 =cosec f — I = — 1;

cosec 360^ = cosec (Qtt) =00.

In the first quadrant therefore^, the co-secant is between co

and 1 ; in the second^ between 1 and co ; in the third,

between — co and — 1 ; and in the fourth, between — 1 and — co .

55. Cor. 1. Cosec { — A) = — Cosec A,

For, let APi = A, ^P4= —A; then Ct^ = Ctu or cosec

(— J.)= —cosec A, by (I6); that is, the algebraical sign of the

cosecant changes with thjit of the arc.

Hence also, cosec A= -- cosec (— A)= — cosec (2 tt — A)

= — cosec (47r — A) = &c. = — cosec (Q.mr — A).

And therefore by (53) j cosec (2;?7r + A) = — cosec

{2n7r— A).

56. Cor. 2. Co.sec (tt— A)= Cosec A.

For, let APi = A5 AP2 — 'n-- A; then Ct2=^Cti, as is

evident; that is, cosec (tt— A) = cosec A, by (I6); or the co-

secant of an arc is equal to that of its supplement.

So also, we have cosec A = cosec (tt - A) — cosec {Sir — A)

= &c.= cosec {(2«— 1) TT — A] ; and therefore by {o3)t cosec

(2«7r4- A)=:cosec {(2w— 1) TT— A}.

57. Cor. 3. From the triangle CBt^, Ch'^^ CB^ -^ Bti\

that is, cosec^ A = 1 + cot'^ A, and .*. cot" A = cosec'A — 1.

Also, cosec^ A =z\ -j- cot^ A

cos^ A sin^ A 4- cos^ J I

= 1 -f . . .
= 7-2-1 = -:^T-r y by (25),

sin A sm A sm A

and therefore cosec A
sin A
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Ex. These formulae _, with what has gone before, give

cosec 30^ = 2, cosec 45° = /n/2, and cosec 60^ =

58. In the preceding articles, we have determined the

algebraical signs of the tangent, co-tangent, secant^ and co-

secant, from an examination of the lines which represent them

in the figures, according to the principles assumed in (16);

but it may be observed that they are all easily deducible from

those of the sine and co-sine previously found.

IhuSj tan Ari= 7-— must be positive, since sin Ar^i
cos A Pi

and cos APi are both positive:

. _ cos APo
.

. . . „
and, cot AP2= ~ r-~ must be negative, since cos A-Tg

sin AP2
is negative, and sin AP^ positive :

also, sec AP3 = 7^=r- must be negative, since cos AP3
cos AP3

is negative

:

and. cosec APa^^ . . .^ must be negative^ since sin AP4
sm AP4

The same method may be used to determine the magnitudes

of the same functions. Thus,

sin
tan = = - = 0;

cos 1

i,, C)sm
X7r\

tan

sec =

cosQ
aj;

1

cos

1
__"

1

~ 1

;

D
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sec
(f)

= ~ = CO :

cos
(I)

°

and so of the rest, as alread}? found.

59. To transform trigonometrical formula constructed to

the radius 1, into others which shall be adapted to any radius r.

NA N A

Let Ci4-I, CA'=r, and let ACP = AXP' be any

proposed angle, which is represented by A : then, to the radius 1

,

we have

PN=s\n A,

CN=cosr A,

AN = vers A,

AP = chd A,

AT = tan A,

Bt = cot A^

CT= sec A,

Ct =cosecil;

and to the radius r, we have

P'iV' = sin A,

CN' =cos A,

A'N' = rers A,

.4'F=chd A,

A'r = t2iu A,

B' l' =cot A^

Cr =sec A,

Ct' =coseCil:
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hence, denoting these lines on the latter scale by accents placed

over them, we shall have (Eucl. 6. 4.)

Sin^ : sin' A :: PN : FN' :: CP : CF :: 1 : r;

.*. sin A = " sin' A, and sin' A=r sin A
r

Cos A : cos' A :: CN : CN' .: CP : CP' ::

.*. cos -4 = - cos' Af and cos' A = r cos A
r

Vers A : vers' A :: AN : A'N' :: CP : CP' ::

.*. vers A — - vers' ^4, and vers' A=r vers il
r

did A : chd' A :: ^P : A'P' :; CP : CP' ::

.'. chd A = - chd' A, and chd' i4=r chd A
r

Tan^ : tan' A :: AT : AT' :: CA : CA' ::

•'. tan A = - tan' yl, and tan' A=r tan il
r

Cot vl : cot' A :: JB^ :
5'^' :: CB : CB' ::

.*. cot A = - cot' ii, and cot' A = 7- cot A
r

Sec A : sec' A :: CT : Cr :: CA : CA' ::

/. sec A = -- sec' J^, and sec' A = r sec A

r ;

Cosec A : cosec' A :: C^ : C^' :: CB : Ci3' :: I

.*. cosec A = -- cosec' A^ and cosec' tI = /• cosec A.

Hence, therefore, if we wish to make use of the radius r

instead of the radius 1, we have only to substitute in any proposed
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formulae which are true on the supposition of the radius being 1,

sin A cos A ^ . .
, r A A

the quantities , , &c. ni the places ot sm A, cos A,

&c. respectively, and the results will be adapted to the radius r.

Ex. 1. We have seen in (25) that sin^ A+cos^ ^ = 1^ to

the radius 1
;

(sin A\' ,
/cos A\^ . ..

/ "^ ( / ~ 1, to the raduis r,

or sin^ A + cos'^ A = r^, when the radius is r.

Ex. 2. By article (42)^ tun A =
, to the radius 1 ;

cos A

sin A
tan A\ \ r /

(¥)
(tan A\ \ r ^

1 = — tQ tjje raduis r.
r y ycosA^ '

. /sm ^\ .

or tan A = r i I , it the radius be r.
vcosA/

Ex. 3. If the formula, cos m^=acos'" A-\-h cos*"~^^

+ c' cos*"~'" ^ + &c. were true on the supposition of the radius

being !_, then according to the article, we have

(QOsmA\ /cos^x*" ,/cosJ.\'"~^ /cos it\'"~''' „

or r*'*-^ cosmJ = « cos'" A+r/'; cos'"--^ ^4 +7''c cos""'"^ A+&c.
which would be true if the radius were represented by r.

6*0. Cor. 1. From the last example, which involves j

general expression, may be deduced the following Rule

:

Render all the terms of any formula homogeneous, by

multiplying each by such a power of r as shall make its dimen-

sions equal to the highest involved in it, and the result will be

adapted to the radius r.
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Ex. To the radius 1, we have seen in (52) that sec^ A
= 1 + tan A ; therefore to the radius r, we shall have sec^ A
= r^ + tan^ A, by making each of the terms a quantity of two
dimensions.

6l. Cor. 2. By similar substitutions, formulae deduced on
the supposition of the radius being R, may be transformed into

others which shall be true when the radius r is made use of.

For, let sin A represent the sine of A to the radius R,

sin' A ..r,

then, sin A : sin' ^ :: jR : r, as before,

and .*. sin A=— sin A ;

J-

similarly, cos A—— cos' A, &c. = &c.
;•

hence, for sin A, cos A, &c. we have only to substitute

R
. ,

R ,
-^ sin A, — cos Ay &c. respectively,

and the results will be adapted to the radius r.

Ex. 1. The formula tan .4 = 2 -, is true for the radius
cos A

2, by (59); therefore if we wish to use the radius 3, we shall have

2
^

^ sin A
, ^

sin A
- tan A = 2 , and .*. Ian A=^S .

S -t cos A cos A

Ex. 2. Sec" A= l6-f-tan' A, is true by (60) for the radius 4
;

therefore if the radius be 10^ we shall have

(iysec^4=,6+(lyta.r4,

and .*. sec^ A = 100 + tai/ A, to the radius 10; and so on.

The same methods are applicable to transform any other

similar and similarly situated lines, from one radius to another.
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62. By means of the relations between the trigonometrical

functions of an arc established in this chapter, we are enabled

to prove divers theorems, and to solve a variety of problems.

Ex. 1. It is required to prove that

in A = .y/2 vers A — vers^ A, to the radius 1

.

sni

By (25) we have sin^ ^=1— cos^ J.= l — (1— versil/ from (30),

= 1 — 1+2 vers A - vers^ A = 2 vers A — vers^ A ;

sni

sni

A = ^2 vers A — vers^ A, to the radius 1.

Also, to the radius r, by (59) we shall manifestly have

n j4 a/ yvers A\ ><vers ^\'— = V "-K-j-)-KrT~) '

and .'. sin A =,^2r vers tI— vers" A,

^ _. ,
tan A + tan B . ,,

Ex. 2. lo prove that =- = tan A tan B. to
cot J + cot B

the radius 1.

From (42) we have

_. sin A sin B sin A cos B + cos A sin B
tan A -f tan B = H = :

cos A cos i) cos A cos B

also, from (47) we get

, . „ cos A cos B cos A sin B -f- sin ^1 cos B
cotA + cotJ5= -—- 4- -—~= ^

—

-i—.
—5

:

sm A sni B sm A sni i>

and the numerators of these fractions being the same, it follows

that

tan j4. 4- tan B sin A sin B /sin A\ /sin B
cot A + cot B cos ^4 cos B

tan il tan B, by (42), to the radius 1.

(sm A\ ysui n\
cosA^ \cosB/
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tan A + tan B tan A tan B . ,.

Likewise — = 5—— to the radius /', as
cot -4 -i- cot 15 r"

easily appears by means of the rule laid down in (60).

Ex. 3. Given m sin A=Ji cos A, to find the values of

sin A and cos A.

Here, m^ sin^ A =11' cos^ A = 71^ (1— siir A), by (25),

= n^— ?t^ sin'^ -4
;

/. (m^+w^) sin^ A^n^, whence sin A= ±y7?i^ + w^

also cos J. = 1 — sm ^1 = 1 —

m
and .*. cos -4= Hh /—r^=^, to the radius 1.^m +71"

If the radius r be used, we have by what is proved in (59),

sin A n cos A m
^ i'^^m'+ n r ^m^ + rr

whence sin ^ = ± —y -„ -„ , and cos A = ±/—2-^ 5 aim VV.D ^ — T. .———
- .

Ex. 4. Given sin A = m sin JB, and tan A=w tan J3, to

find the values of sin A and sin B.

Since tan -4 = w tan B, we have

sin il sin -B , , ^ ^-
. = n -, by (42);

cos A cos .0

sin A cos A , . cos A
:. -—5 = 71 5, that is, w = w -;

sm jD cos 75 cos i)

m« ^^.2 A T _ ,-.,2 ^ 1 _ 2 '1
cos^ 1 _ 1 - siir A _ 1 - m^ siir B
cos' -B

""
1 - sin'' J?

~
1 - sin^ B '



32

whence m^-^rri' sin^ B = ri^ - n^rt^ sin' By and

m^ ( 1 — w^) sin^ 3=^71^ — w', or sin^ 5 = —^"^ ~^ ,m (1 — w")

and /. sin jtf= + — V/ ;

ni ^ 1 - w^

wherefore sin il =#?2 sin jB= Hh 'y/ ^ ,

1 — IlL^

in both of which the radius is 1.

Adapting these values to the radius ? , since ni and n are

merely numerical magnitudes and therefore not considered of

any dimensions, we shall have by (60),

sm A I 4 / W^ —if J • D I

'' 4 /W^ — ifA = + r V , and sni 5 = + - \/

From these two equations all the other trigonometrical

functions of A and B are easily deduced.



CHAP. II.

On the relations between the Trigonometrical Functions of arcs

or angles, and those of their sums and differences, and also

of some of their multiples, sub-multiples and powers.

63, To express the sines and cosines of the sum and dif-

ference of tivo arcs, in terms of the sines and cosines of the arcs

themselves.

Let the arcs AP, PQ, be the measures of any two angles

ACP, PCQ denoted by A and B to the radius CA: draw QM
perpendicular to CP, and QR, MS, PN perpendicular to CA *

draw also MT parallel to CA. Then^

N A

PN=sm ACP, CIV= cos ACP

;

QM=sin PCQ, CM= cos PCQ;
QR = sin ACQ = sin {ACP ± PCQ)

;

CR = cos ACQ = cos (ACP ± PCQ)

:

Now QR = RT±QT= MS ± QT, the upper and lower

signs being used for the first and second figures respectively
;

E
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but by similar triangles,

MS ; CM :: PN : CP,

and QT: QM :: CN i CP
',

PN CN
from which MS = CM— , and QT=QM-^;

PN CN
/. we have QE =CM— ± QM

—

:=-^{PN.CM± CN,QM) = PN.CM ± CN.QM,

if the radius be supposed to be 1 ; that is,

sin iA± E) = sin A cos B ±cos A sin B (a).

Again, CR=CSTRS=zCS + MT;

but by similar triangles,

CS : CM :: CW : CP,

and Mr : QM :: PN : CP;

CN PN
whence CS= CM ;^, and Mr=QM-—

;

Ux Ox

CAT PN
.V we have CR=^CM~ + ^^ CP

^ JL(CN.CM+ PN.QM)= CN.CM+ PN.QM,

if CP= I, as before; that is,

cos {A±B) = cos il cos B ^ sin A sin B (/3)

Ex. 1. Let 5 = ^, or ^ + 5 = ^ + ^:

--^ -f ^ 1 = sni ~ cos ^ -I- cos - sm J

= cos A, by (18) nnd (22):
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and cos I - + ^ I = cos - cos ^ — sin ^ sin A

= -sin A, by (18) and (22).

Ex.2. Lct^ = 7r, or A +B = 7r-\-A:

therefore sin (tt -\- A) = sin tt cos A 4- cos tt sin A

= -sin ^, by (18) and (22):

and cos (7r+ 74) = cos x cos A— sin tt sin A

= — cos ^5 by (18) and (22).

64. Cor. 1. The construction and investigation above

given hold good whatever be the magnitudes of the angles

ACP, PCQy due regard being had to the algebraical signs of

the trigonometrical lines as determined in the preceding chapter

:

and any three of the functions just mentioned may with great

facility be deduced from the remaining one. Thus,

mn(A-B) = sm {7r-(^-.B)}, by (20),

= sin {{7r-A) + B}

= sin (tt — A) cos B + cos (tt — A) sin B, by (a),

= sin A cos jB— cos A sin B, from (20) and (24):

again,

cos {A 4- B) = sin {3
- (^ + -B)| , by (21),

= sm |(^ +^) + i^j, by (22),

= sin f^ + Aj cos B + cos T- + A
J

sin B, by (a),

= 095 A cos B - sin A sin jB^ from (ti3) :
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and, cos {A-B)= sm |^
-(^~ JB)j, by (21),

= ,n{(l-A)+B}

= Sin f^ —Aj cos B + cos C- - AJ sin E, by (a),

= cos ^ cos £ -\- sill ^ sin i3, from (21).

The same values of cos (A ± B) are also easily deducible from

the equation cos (A± B) = -.^/l^--sir?(^±5).

65. Cor. 2. If the radius CP be supposed = ;•, we shall

have

sin {A± B)= - (sin A cos B ± cos A sin B) ;

and cos (^ + jB) = - (cos A cos B + sin y4 sin B),
r

which are the same as would have been derived from those just

found by means of the rule laid down in article (60).

66. Cor. 3. Let •S' and s be the sines of any two arcs^

C and c their cosines ; then by {QS) we have,,

The arc whose sine is 5 + the arc whose sine is s =
the arc whose sine is (*Sc + sC): also, the arc whose cosine

is C + the arc whose cosine is c = the arc whose cosine

is {Cc T Ss),

These are usually written abbreviatedly as follows

:

Sin-' ,S ± sin"' s = sin"' {Sc ± sC)

;

Cos''C± cos-'c = cos-^' (CcT^5).

Ex. Sin-.(0+.i„-.©=™-.j2J + liS
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125 25) ^ *

= (^), as appears from (18).

67. From (63)j we obtain by addition and subtraction

the following formulae

:

sin (A + £)-{- sin (A ~- B) = 2 sin A cos B;

sin (A+ B) — sin {A — B) = 2 cos A sin B
;

cos (J[ — ^) + cos (^ + B) = 2 cos J cos ^

;

cos (A — B)- cos(A 4- -B) = 2 sin ^ sin B.

These expressions furnish the following useful equations :

1. The sum of the sines of any two arcs is equal to twice

the rectangle of the sine of their semi-sum, and the cosine of

their semi-difference.

£. The difference of the sines of any two arcs is equal to

twice the rectangle of the cosine of their semi-sum, and the sine

of their semi-difference.

3. The sum of the cosines of any two arcs is equal to

twice the rectangle of the cosine of their semi-sum^ and the

cosine of their semi-difference.

4. The difference of the cosines of any two arcs is equal

to twice the rectangle of the sine of their semi-sum, and the

sine of their semi-difference.

68. From the same article we obtain by multiplication,

sin {A + B) sin {A - B)

= (sin A cos B + cos A sin B) (sin A cos B — cos ^ sin B)

= sin'^ A cos" B — cos^ A sin^ B
= sin" A (1 —sin' 5) — (1 —sin' A) sin^ B
= sin^ A — sin" A sin^ B — sin^ B + sin" A sin^ B
= sin' A — sin" B = (sin A -{- sin B) (sin A — sin B) :
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= cos^ B — cos^ A = (cos B + cos A) (cos B — cos A).

Similarly,

cos (^4-B) cos(^-B)

= (cos A cos B — sin A sin JB) (cos A cos jB + sin A sin B)

= cos^yi cos^ B— sin^ ^ sin^ ^

= cos' A {I- sin' 5) - (1 -cos^ A) sin' B

= cos^ A — cos- ^ sin^ B — sin^ ^ + cos' A sin^ JB

= cos^ A - sin- B — (cos J + sin jB) (cos A — sin B)

:

or

= cos^ B— sin' A = (cos B+ sin A) (cos B — sin A).

69. By division, we have from the same article,

sin {A + jB) sin A cos B + cos A sin jB

sin (A — jB) sin A cos B — cos tI sin B

(sin J.X >^sin 5\
cos Ay Vcos JB/

(sin A\ >^sin Bx
cos tI/' Vcos B^^

(by dividing both numerator and denominator by cos A cos jB)

tan A 4- tan B
tan il - tan JB

'

In like manner,

cos (A + B) _ cos A cos B — sin A sin B
cos {A — i^) cos A cos J3 + sin A sin B

_ 1 - tan A tan JB

~
1 4- tan A tan B

above.

by proceeding as
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The former of these expressions furnishes the following

useful proportion:

The sine of the sum of two arcs : the sine of their

difference :: the sum of their tangents : the difference of

their tangents,

70. To express the sines and cosines of tivo arcs in

terms of the sines and cosines of their semi-sum and semi-

difference,

therefore we have by means of (63),

.in ^ = sin {(i^) +(^^^)}

= sm (-^-; cos {^-^) + cos (-5-) sm (-^^ ;

and sin B = sin {{-~) - (^)}

Similarly, cos A = cos \ I—— / "^ ( )
i

= cos (—^; cos {—^) -sm {—^) sm {—^)^

and cos B = cos
| (^—^J - i^—^)

(
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= eos (-^-) cos {-Y-) +s... {-^) «m {^-^-)

71. This article, by addition and subtraction, gives

sm id + sin B =2 sin f—-— 1 cos f —-— 1
;

sin A - sin B = Q. cos I —5°~~
I ^"^*

I —5

—

J '

cos B + cos ^ = 2 cos I —-— I cos f I

;

, ^ . /A + B\ . /^ - J5\
cos J5— cos A = 2 sin f I sm I 1

;

in which expressions are comprised the Rules laid down in (67).

72. From the same article, we obtain by division,

'A-\-B\ /A-B^. /A + B\ /A-B\
sin A 4- sin B
sin A ~ sin B /A + jB\ ^^-^(A + ±>'\

. /A- ±S\

TJ^-gT' by (42) and (47);

tan (^)
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- cos jB+ cos a
and

2 cos {—^) cos(^-^J

cosi)— costI . /<A -\- B\ .
/A~B^

A+B\ /A-B^
cos (^") - (^0

cot

From the former of these formula^, we have the following

useful Proportion.

The sum of the sines of any two arcs : the (hfference of

the sines :: the tanoent of their semi-sum : the tanc-ent of their

semi-difference.

By a similar process it is easily proved that

sin .i + sin E __ /A+ B\
cos J -{- cos B "^

' \ 2 /
*

and if i>=Oj we shall find by reduction that

J ] — tan ~
. ^ A / 1 - cos ^

, ,
2

tan — = V -, and .". cos A = r .

2 ^
1 + cos A

^ ,
.
yl

1+tan- —

73. To express the sine and cosine of (n + 1) A, in terms

of the sines and cosines o/'nA, (n— 1) A, and A.

Here, attending to the formulce of (63) we have

sin (n 4- 1) A = sin 0^^ + A)

= sin 71 A cos A + cos ?iA sin Aj

and sin (/^— 1) A = sin (nA — A)

= sin nA cos A — cos n A sin A;
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hence by addition, we have

sin (n-i- ]) A + sin (n — \) A = 2 sin ti A cos A,

and .'. sin {n -r I) A = Q sin nA cos A — sin (71 — \) A. .

Again, cos {12+ I) A = cos {nA-\'A)

= cos nA cos tI — sin nA sin ^,

and cos {n — \) A = cos (/i^ ~ A)

= cos 7f A cos A + sin //A sin A ;

whence as before, we get

cos (n -{- 1) A + cos (n — 1) A = Q cos 7iA cos il^

and .'. cos {n + l) A = 2 cos nA cos A — cos (?^ - 1) ^.

74. Ex. Let n be taken equal to 1, 2, 3, 4, &c.

successively, and we shall have

sin 2 J. = 2 sin A cos A ;

sin 3 A —9. sin 2 J. cos A - sin J.;

sin 4j1 = 2 sin 3 J. cos ^1 — sin 2^4 ;

&c = &c

cos 2 J. =2 cos A cos A — 1 ;

cos 3^ = 2 cos Q.A cos tI — cos A ;

cos 4^ = 2 cos 3 tI cos A — cos 2 J[
;

&c = &c

75. To express the sine and cosine of twice an arc in terms

of the sine and cosine of the arc itself.

Here, by means of {QS), we have

sin 2 J. = sin (A + -4) = sin A cos A + cos A sin A

= 2 sin A cos A ;

or = 2 sin A /s/ l—" s\n^ A ; or = 2 cos A ^ 1 -- cos'^ A
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Also_, cos 2^ = cos (A -jr A) = cos A cos A — sin A sin A

= cos^ J[ — sin^ A ;

or = 2 cos^ tI — 1 ; or = 1 — 2 sin* A.

A
76. Cor. Putting A and — in the places of 2A and A

respectively, we have from the last article^

sni ^ = 2 sni — cos —
2 2

and cos il = cos^ — — sin'' — = 2 cos'' 1 = 1—2 sin
A
2'

A . o A o A— sni — = 2 cos^
2 2 2

also, from the latter of these we obtain

A
2 sin^ — = 1 - cos A = vers A = |- chd^ A, by (36),

A A
and .'. 2 sin — = chd A. or sin — = ^chd A ;

2 2 ^

that is, the chord of an arc is equal to twice the sine of

its half, or the sine of an arc is equal to half the chord

or its double.

77- By some writers, the properties just mentioned are

made the basis of many of the fundamental propositions of

Trigonometry, and they may be proved merely by a comparison

of the respective lines in the following figure : thus,

Let AP = A, AQ=^QP =^ —
j then it appears from the
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definitions laid down in the preceding chapter, that j4.P = chd A,

and QM=sin —
- : it is also manifest that AL = LP. or AP

2

= 2AL, and AL=:QM: whence it follows that ^P = 2 QM,
j4 a I

or chd ^ = 2 sin — . and .*. sin — = - chd A.
2 2 2

78. To express the sine and cosine of half an arc in terms

of the sine of the arc itsef,

A A
Since cos^ \- sin' - = 1, by (25),

2 2

A A
and 2 sin — cos — = sin A^ by (76)

;

we have by addition,

o A .A A . ^ A . .

cos —4-2 sin — cos f- sni — = 1 -f sm J.
2 2 2 2

and by subtraction,

2 ^ .A A
^ , ^ A . ^

cos 2 sni — cos h sar — = 1 — sm A ;

2 2 2 2

whence, by extracting the square roots of both sides of these

equations, we obtain

j^ j^ ^ j^

cos~+sin -= V^J 4-sin A, cos ~ - sin —= + ^1 — sin A'-,

in the latter of which the positive or negative sign must be

used according as cos — is greater or less than sm — ;

2 2

.'. by addition and subtraction and division by 2,

A 1

cos — = -
2 2

and sm -
2

|x/(H-sin A) ± J\^\~ sin A)\ ,

-=- |x/(l+sin A) + V(l-sin 1)|
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These two expressions are frequently used to examine the

accuracy of results deduced by other means, and on that account

are termed Formulte of Verification.

A 1

Ex. Let A=SO^, then - = 15^ and sin J= - , from (37),

wherefore sin lo^ = - {^1+sin 30^— ^1 —sin 30^}

and cos 15^ = - {^1+siu 30^ + >/l -sin 30^}
2

79- 2^0 express the sine and cosine of half an arc in terms

of the cosine of the arc itself

From (76)5 it appears that

cos — — sin — = cos A.
2 2 .

also, cos^ — + sin" — = ] , by (25)

;

A
.*. by addition_, 2 cos' — = 1 +cos A^

A
and by subtraction, 2 sin" — = 1 — cos A ;

whence,, dividing each of these equations by 2, and extracting

the square roots, we have

. A 4 /xl —cos ^X
sin — = + V I )

,

2 ~ ^ V 2 y'

a„acosf=±v/(^).
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A 1

Ex . Let A = 45^ then - = 22^ 30\ and cos A =—r- from
2 ^2

(25)_, whence we have

/ A /l — cos 45^ A /l 1 ./Vq-I
sin 22° 30'= V = V 7- =V 7— '

^ 2 ^22l/2^2V2

eos 2.» 30'= x/i±^°^ = \/V^ = \/^?±^.^
2 ^22\/2 2 1/2

80. From articles {QS) and (75) may easily be deduced

what is called Delambre's formula.

For, sin {A-\- l^) = sin A cos l^ 4- cos A sin 1^^

and sin (^4. — 1^) = sin A cos 1^ — cos A sin l''

;

whence by addition,

sin {A + 1^) + sin (J - 1^) = 2 sin A cos 1^

and .•. sin (A + 1^) = 2 sin A cos 1° - sin (A - 1^)

= 2 sin 1 (1 - 2 sin^ 30') - sin (A - 1°)

= 2 sin A - sin {A — 1^)—4 sin A sin" 30'

= sin ^ + {sin J. - sin (A — 1^)} - 4 sin A sin^ 30\

8 1 . We have seen in the last article but one, that

• ^ \/^~~~^
7sin — = V - — - cos A

2 2 2

and from these are readily derived the following equations :

. A ./~i i A
sni -7T = V cos —

2- ^22 2

= \/i-iv/.-si.,»-^
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4 = \/i^ 1 A
sin —^ = V — ;: cos -^

2 2 2 2

- V ^ - ^ V 1 - sin -, ;2 2

(fee = &c

1 1

Sin —- = V ^ -- - cos
2" 2 2 2*""

Also, from the same article it appears that

2

whence we similarly obtain

cos - = V 5 + 5 cos 4

= V i + 5 \/l-siu^^

cos^.
i
= V 2 + 5COS-

1 JL
cos -o = V " + ~ cos —

2^ 2 2 2-

- V - + - V 1 ~ sm -.
2^

ike = Sec r.
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cos COS ,n-l

82. From the last article, by substitution we shall have

sin

sni cos ^ ;

Sec. = 8cc.

sm —
- =

v^^FI^
the radical sign being repeated ii times.

In the same manner, we get

cos

cos A;

&c. = &c.

COS — =

yl^Wl^lVl^lV^c \/i+icos^,

where the radical sign is repeated n times.
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Ex. Let A= C-^ ; and /. cos A=0, and we have

{r4''^i-Wi*W^ n/^COS

the radical sign in each case occurring n times.

83. To express the sine and cosine of thrice an arc in

terms of the sine and cosine of the arc itself.

Here we have from (63),

sin 3 ^ = sin (2 A-\-A) = sin 2 ^ cos A + cos 2 A sin A

= 2 sin A cos^ A + (1 — 2 sin^ A) sin A, by (75)

= 2 sin A - 2 sin^ il + sin A — 2 sin'^ A

= 3 sin A— 4 sin^ A
;

and from the same article,

cos 3 A = cos (2 A +-4)=: cos 2 A cos A — sin 2 A. sin A.

= (2 cos^ J - 1) cos A - 2 sin^ A cos A, by (75)

= 2 cos' ^ — cos ^ — 2 cos A + 2 cos^ A
= 4 cos^ A -- 3 cos A.

84. From the two formulae just proved, we have immediately

sin^ A=\{^ sin A — sin SA), and cos'' A=\{S cos A-\- cos 3 A).

85. By substituting in the formulae just investigated,

A and — in the places of 3 A and A respectively, we get

sm A = 3 sm —
' — 4 sm — . and cos A = 4 cos 3 cos — :

3 3 3 3

and thence the equations,

4 sin" (- } - 3 sin ("^ + sin A = 0,

G
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and 4 cos^ ( ~~ ) "*" "^ ^^^ V
""

) — ^^^ il = ;

by the solution of which, sin ( — ) and cos ( -7 ) may be found

in terms of sin A and cos A respectively.

Ex. 1. Let A= 180^ then sin ^1 = 0, and —= 60^;

therefore, 4 sin^ 60°— 3 sin 60^ = 0,

V^S 1

and sin 60^ = , and .*. cos 60^= - .

Ex. 2. Suppose 1 = 90^ then cos ^ = 0, and -- = 30°;

hence, 4 cos^ 30^— 3 cos 30^ = 0,

and cos 30" =
, and .'. sin 30° = - .

2 ' 2

86. From the last examples, combined with some of the

preceding articles, we are enabled to find the sines and cosines

of 15^ 75', 105°, 165°, &c.

For, sin 15° = sin (45° — 30°) = sin 45° cos 30° - cos 45° sin 30°

I VS I \ 1

a/2 2 \/2 2 21/2
(/3- 1) = cos 75°;

similarly, cos 15° = —-r- ( ^^3+ 1) = sin 75°.
2 V 2

Again,

sin 105° = sin (60° +45°) = sin 60° cos 45°+ cos 60° sin 45°

=^ -i- +i J- = -V(V^3 + l)=-cosl65°;
2 V^2 21/2 2/2

similarly, cos 105°= - TT/^ ( /3-l)= —sin l65°.
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87. Articles (75) and (83) afford us the means of deter-

mining the sines and cosines of 18^ and 72^.

For, since sin 2^1 =2 sin A cos A,

and cos 3^=4 cos^ A — 3 cos A :

if ^ = 18^ we have 2^=36^ and 3^ = 54^

also, sin 2.1 = sin 36^ = cos (90° — 36^) = cos 54° = cos 3 yl :

hence 2 sin 18° cos 18° = 4cos'^ 18°— 3 cos 18°,

and 2 sin 18° = 4 cos" 18°—3= 1 - 4 sin" 18°;

.'. 4 sin^ 18°+ 2 sin 18°= 1, which gives

V5- 1

4

and cos 18° = ^/l - sm^ 18° = — = sin 72°.
4

88. Hence the sines and cosines of 36^ and 54° are easily

found.

For, sin 36°= 2 sin 18° cos 18°

= P / ^^-^ \ x/lQ+2^1 _ ( l/5~l) v^lO+ 2 j/J~
4

""
8

sin 18°= = cos 72°;

V 10 -2 1/5
= cos 54° :

4

and cos 36° = 2 cosM8°-l

2(10 + 2 1/5) 1/5 + 1= 1 = = sm 54 .

16 4

89. From the last two articles is derived Eider's Formula
of Verification, which is

sin A = sin {36'' + il) + sin (72°- A)

- sin (36° -_4)- sin (72° + J):
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For, sin (36^^ + A)- sin (36°- A) = 2 cos 36° sin A,

and sin (72^ -\- A)- sin (72° - ^) = 2 cos 72° sin A :

therefore by subtraction^ we have

sin (36° + ^) + sin (72° - Jl)- sin (36°-A)- sin (72°+ A)

= 2 sin -A (cos 36°- cos 72°)

= 2 sin A \ \ = sin A,A f ^^ + ^ _ Jl^zlII

90. Legendre's Formula of Verification is, in fact, the

same as Euler's, though different in form, that is,

cos A = sin (54°+ A) -{- sin (54° - A)

-sin (18°-|-il)--sin (18°-^).

Here, sin (54°+ ^) + sin (54°— ^) = 2 sin 54° cos A,

and sin(18° + ^)+sin (18°— 1) = 2 sin 18° cos A-,

therefore by subtraction, as before, we have

sin (54° + A) + sin (54°- A) - sin (18°+ A)- sin (18°— .4)

= 2 cos yl {sin 54° -sin 18°}

= 2cos^|i:^i±i-J^^]=cos4.14 4 J

91. By means of (78) the sine and cosine of 9^ and 81°

are easily obtained from the sine of 18°; from the sines and

cosines of 9^ and 15°, the sines and cosines of 6° and 24°,

and therefore of 84° and 66^ are very readily deduced ; from

the sines and cosines of 6° and 84° may be found those of

78° and 12°; and so on.

92. By a process in every respect similar to that used in

article (83), we readily obtain the following results

:

sin 4 A ={4 sin J. — 8 sin^ A) cos A
;

sin 5A—0 sin A — 20 sin^ A + Id sin^ A;

sin 6A =(0 sin 1—32 sin" JL + 32 sin^ A) cos A ;

&c =&c
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cos 4^ = 8 cos* ^ — 8 cos^ A + I;

cos 5 ^ = ] 6 cos^ A -20 cos^ A + 5 cos A;

cos 6A =32 cos^ ^-48 cosM + 18 cos" .4 - 1;

&c =&c

93 . To express the versed sines of the sum and difference of
two arcs in terms of the versed sines of the arcs themselves.

From (30) we have

vers {A±B)=zl- cos (A ± B)

= 1 — cos A cos -B + sin A sin B
which, by (30) and (62),

= 1 -(1- vers A) (1— vers B)

± ^J{2 vers A - vers^ A) (2 vers 5— vers^ B)

= vers A + vers B — vers A vers B

+ V (2 vers ^— vers° A) (2 vers £— vers" B).

94. From the expressions just proved we have immediately,

vers (A + B) + vers {A - B)

= 2 vers A + 2 vers J3 — 2 vers A vers B ;

or = 2(1 — cos j1 cos J5);

also_, vers (A + B) — vers (A — B)

= 2 /vy(2 vers A— vers^ A) (2 vers ^— vers" B);

or = 2 sin A sin B
;

and vers {A 4- i>) vers (J — B) = (vers ^ — vers JB)^,

95. The vahie of vers (A + B) may however be exhibited

in a much neater form than that in which it is given in the

last article but one. Thus,

vers (A ± B) = vers A 4' vers B — vers A vers B

± x/(2 vers A — vers^ J) (2 vers B — vers" B)
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= ^ {vers -4. (2 — vers B) -f vers B (2 — vers A)

± 2 ^(2 vers A - vers^ ^4) (2 vers B — vers^ B)}

=
"I-

{vers tI vers (tt — B) + vers 5 vers (tt — A)

+ 2 A^vers ^4 vers (tt — J) vers jB vers (tt — B)

}

— 2 Is/ ^^^^ ^ v^^s (tt — B) ± M^ vers J5 vers (tt — A)}'^,

96. Cor. 1. In (93), suppose B = J, and we have im-

mediately

vers 2 A = 2 vers A — vers^ ^ + 2 vers -^ — vers'^ A

= 4 vers JL — 2 vers^ ^ = 2 vers A (2 — vers A)

= 2 vers J. vers (tt— A), by (29).

97. Cor. 2. In (95) for JB put 2 J, and we have vers 3A

=
"l^
{^vers ^ vers (tt— 9. A) + ^versQ,A vers(7r — ^)}^

= -^ {v vers A (2 — vers 2^) + /y^ vers 2 ^ (2 — vers ^)}'^

= ^ {/^2versy4(l — vers^)" + ^2 vers A (2— vers ^4)^ }^

= f { (1 — vers ^) ^2 vers ^ + (2 ~ vers ^) ;y/2 vers j4 }^

= ~{(S — 2 vers^) ^2 vers 1}^ = vers A (3 — 2 vers ^)^

A similar process may be used to express the versed sines

of 4 A, 5 A, &c. in terms of vers A.

98. Since vers 2 A = 4 vers ^ — 2 vers" A, by substituting

A and — in the places of 2^ and A, we shall have
2

*^

vers A = 4 vers 2 vers —
,

2 2

,
3 ^ ^ vers A

and .'. vers — — 2 vers — = — ,

2 2 2 '
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,
c, A ^ A

^ 2 - vers A
whence vers 2 vers — + i =

2 2 2

and .*. vers — = 1 +
o — v/(--^|:ii)

.

Ex. 1. Let 1 =90*^; .'. vers ^ = 1, by (27), and — =45°,

whence vers 45^^ = 1 — v - = 1 7- = —7— ( v^2— l).^2 1/2 t/2^
^

Ex. 2. Let A = 60^ .-. vers^= -, by (37), and - =30',

.-. vers 30° = 1 - V^= 1 -— = - {2 - ^3}.
4 2 2 ^

A A
Similarly the versed sines of — , — , &c. may be found in

terms of vers A, by the solutions of a cubic^ biquadratic, &c.

equation respectively.

99* By means of the last article we have the following

equations :

^ 4/1
vers — = 1— v 1— - vers A ;

2 2

A ./ \ A
vers ^ = ^ - V 1 - - vers -

;

A ./ \ A
vers^ = 1 - V 1- o^ers-,;

^c . — &r

and hence

vers
A ./ \ A
-5 = 1 — V 1 vers -
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1 _ \/i 4-- \/l-iversA;

A
Q.

= 1 - \/7-veis —, = 1 - V 1 — " ^ers -5

= - \/RvT^I7r:i^i;2 2

&c =&c

and generally, vers — = 1 - V 1 —
J

vers ^^^j

= ' - \^\^WWz\/\ +&C.... \/l- iversl,

where the radical sign is repeated n times.

100. By substituting in the expressions for vers {A±B
(A + B\

,
/A-B\

) and i —-— 1

in the places of A and B respectively^ the values of the

versed sines of J and B will be exhibited in terms of the

versed smes or I I and f 1 .

101. To express the chords of the sum and difference of two

arcs in terms of the chords of the arcs themselves-

From (36) we have

chd^ U ± -B) = 2 vers (1 ± 5) = 2 { 1 - cos(A ± ^)}

= 2 { 1 — cos A cos B + sin A sin B } :

now, from the same article it is easily proved that

, 2-chdM , . , V^4chd^^- did* A
cos A = — , and sm A = :

;
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cos i5 = , and sin B = -^^

2
'

2

therefore chd' (A ± B)

(2 - chd^ J) (2 - chd' B)= 2 |l -
4

.y (4 did" A - chd' ^) (4 chd" B - chd"^)
|-

4 ^

= i. {4 - 4 + 2 chd^ A +2 chd' B - chd' A chd' B

± >v/(4 did' A - chd' A) (4 chd"- B - chd^ 5)}

=
I- {2 chd' A + 2 did' 5 - did' A chd' jB

± >/(4 did' ^ - did' A) (4 did' ^ - chd' B)]

and chd (A ± B)

= -^ {2 did' 1 + 2 did' 5 - did' A did' 5
K 2

± V(4 chd' A - chd' 1)(4 did' ^- chd* ^)!^.

102. From the result above found^ we shall have

chd" (A + JB) + chd' {A - i^)

= 2 chd" A -b 2 chd- ^ - chd' A chd- 5

;

or = 4 vers A + 4 vers B — 2 vers ^4 2 vers JB;

or = 4 ~ 4 cos 4+4 — 4 cos 7^

— 4 (1 — cos A — cos B + cos j4. cos B)

= 4—4 cos A cos J5 = 4 (1 — cos A cos 5);

and chd= {A+B)- chd' (1 - B)

= V(4 chd- A - chd'^ 1) (4 chd' B - chd^ jB) ;

or = chd A chd B ^/(4 — chd^ 1) (4 - chd" B)
;

or = 4 sin 4 sin B.

H
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103. A more convenient expression for the chord of

{A + ^>) may easily be deduced from that found above.

Thus, chd' U ± B)

= I {did' A (4 - chd' B) + chd' i] (4 - chd- A)

± V^'tid' ^ (4 - chd' A) chd^ B (4 — chd' B)]

= ^ { chd- A chd- {TT- B) -h chd' B chd' {TT- A)

± 2 Vchd' A chd' (tt - il) chd' B did' (tt- J5)}

= |- {chd^ chd (tt-JB) + chd JB chd(7r-i4)}^

and .-.chd {A±B)

= |- {chd A chd (tt - 5) ± chd B chd (tt-A)},

104. Hence, by the common operations of arithmetic,

we have immediately,

chd (A+ B) + chd (A- B) = chd A chd (tt - jB)
;

chd (^ + jB) - chd {A - B) =z chd B chd (tt - ^);

and chd {A + B) chd (J - B)

= ^ {chd' A chd' (tt - 5) - chd' 5 chd' (tt - A)\
;

1 { chd" ^ (4 - chd' B) - chd^ i? (4 - chd' 1) }
or

= chd' A -chd- 5= (chd A + chd jB) (chd A - chd B).

105. In (101) if we suppose B=^ A, we shall obtain

chd 2 A = >/4 chd' A — chd'^ ^ = chd A ^4 -chd' A\

or = chd A chd (tt— A).

Hence also, by the solution of a quadratic equation,

chd ~ = Y/s-^I-chdM or = ^S-cluKTr-il).
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TT

Ex. Let A = 90^; then we have chd (tt — A) = chd -

= V2, by (33) ; and therefore chd 45^ = >/2- \/2.

By making jB successively equal to 2 A, 3 A, &c. the chords

of 3^1, 4<Aj &c. will be found in terms of chd A, and by the

. . . . A A
solutions of a cubic_, biquadratic, Sec. equation^ chd — ^ chd — ,

Sec. may be expressed in terms of the same line.

106. As in the last article, we obtain the followino: results:

chd ^ =Va-v.- chd^-
2

= n/«-- chd (tt-!)

1

1^
.x/...V.- M'i

= \/'i-chd(x-^);

&c = ik.c

chd| = \/'2- v/4-chd^^

and therefore by substitution, we have

4 . .. ..

chd ^ = a/ 2 - v^2 4- chd (tt - .1)

;

- = ^/ 2 - x/2 + x/2 4- chd (tt ~ A) ;chd
2^

&c =&<
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chd - = Y 2- V 2 -fVs +&c....Ay2 + chd(7r- J),

in which the radical sign occurs n times.

Ex. Let A=^TT\ therefore chd (tt— A) = chd = 0, and

chd ~ = \/2 — n/^ + \I^ + Sec... /v/2.

107. By pursuing the method pointed out in (100),

the chords of A and i5 may be expressed in terms of the

chords of ( ) and ( ) ; but as the results possess

no elegance, and are at the same time, of little use, the

operations in this case as well as those in the Article just

alluded to, are omitted.

108. To express the tangents and co-tangents of the sum

and difference of two arcs in terms of the tangents and co-

tangents of the arcs themselves.

From (42) we have

sin {A ± B) sin A cos B + cos J sin B
tan (J. ± IJ) =

cos {A + B) cos A cos B + sin A sin B

sin A sin B
cos A ~ cos B . „. .

tan A + tan B
as m (69), =

_ sin A sin B 1 + tan J tan B
^
+

-A Bcos^ cosi>

Again, from (47) we get

( A
X

ry\ __ ^os {A + B) __ cos A COS jB + sin A sin B
""

sin (^ + B) sin A cos B + cos A sin B
COS A cos B _
sin A sin B 1 1 ^^^ -^ ^'ot B + I

= — '—~-
5 bv a similar process, = —

cos B cos A col i5 4- cot A_
f-
_ —

sin B sin A.
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109- Either of the expressions given in the last article,

might have been deduced from the other.

Thus, cot (A±B) = -—-±-— by (47),
tan (A + B)

1 1 + tan A tan B
tan A 4- tan B \ tan A + tan B(tan A ± tan p \

1 + tan A tan b)

_ 1 1

1 +
cot A cot B cot A cot B + 1

1 1 cot J5 + cot A
+

cot A ~~ cot 5

m . A. t'*^" 45*' + tan A
Ex. 1. Tan (4o'' + .1) = —:= r=o 7-

1 + tan 45° tan .4

1 + tan A r ,.^K
J as appears irotn (42).

1 + tan A

tan 90° + tan A
Ex. 2. Tan (90° 4- 1) = _ -»

;-
1 + tan 90 tan A

tan A
GO + tan A ~ CO _ 1

1+00 tan A 1 _ tan A
h tan it

00

= + cot Af as is manifest from (39) and (47).

110. Cor. Let T and t be the tangents of any two arcs^

T' and t' their co- tangents ; then, using the kind of notation

adopted in {QQ)y we shall have

Vi + rJ'
Ian' T ± tan-' t = tan"

1
(T't'+\

cof' I" + col"'(' = cot /£_L±J\



62

1 1

3 1

Ex. 2. Cot~* - +cot~' ~ = cot
4 7

Ex. 1. Tan-^- +tan*^- = tan*' ^
2 3 i 1

=:tan-'(l) =45^from (42). m
= cot-' ( _ 1) = - 45%r = 135^ from (47) and (46).

Ex.3. Tan~' - +tan-'- 4-tan-'-« ^tan"'-
3 5 7 8

=:{tan-i+tan-i} + {tan"' i + tan^ i}

= tan~' - +tan-'— = tan*' (l) = 45^
7 11

111. To express the tangents and co-tangents of two arcs

in terms of the tangents and co-tangents of their semi-sum and

semi-difference.

si„„..(i±^)+(i^-).

from article (108) we have

tan A —
/A -h B\ /A + 7^\

'

-t-'(-T-)'-("^)
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/A + B\ (A- B\
tan (

J
— tan ( I

tan B = —_
;

/A + B\ /A + B\

/A-B\
, (A + B\

'

/A + B\ /A-B\
eot (-—) cot (-^) + i

/I - B\ /A + B\
'

cot A =

cot J5 =

112. To express the tangent and co-tangent of ttoice an arc

in terms of the tangent and co-tangent of the arc itself.

tan A + tan A
— tan .

2 tan A 2

Here, tan 2l =tan {A+ A)= r- , from (108),
1 — tan A tan A

1 - Ian" A I — tan A
tan A

2 cot J 2

cot A — 1 cot A — tan A

^ ^ .^ cot A cot A — I

Also, cot 2^ = cot {A-{-A)= , from (108),
cot ^ + cot J ^

'

cot^ A — I cot A 1

2 cot J 2 2 cot A

1 — tan^ ^ cot A — tan J
2 tan -4 2



64

113. To express the tangent and co-tangent of half an arc

in terms of the tangent and co-tangent of the arc itself

By substituting in the expressions found in the last

article, A and — in the places of 2^ and A respectively, we

shall have

2 tan -
2

A — , and cot A =
cy A

1 - tan^ -
2

cot^ 1

2

A
2 cot —

2

of which gives

oA , 2 A
tan^ 1 7 tan - =

2 tan A 2
1.

A ~ 1 ± V 1 + tan^ A
and ,*. tan — =

2 tan A

— 1 4- sec A
or

tan J ; or = 4- cosec A — cot A ;

and from the latter we get, cot^ 2 cot A cot — = 1,
2 2

whence, cot — = cot J. + x/ 1 + cot' A :'2 ~ ^ '

or = cot A i cosec A.

Ex.1.' Let ^=90°; .-.tan ^ = oo , and cot ^ = 0;

and from the equations above given we get

tan 45° = 1 = cot 45^

Ex. 2. Let J = 45° ; /. tan ^ = 1 = cot ^

;

whence, tan 22°30'= Vl±t^!l_A = ^g- 1 = cot 67° 30':
tan 45

and cot 22° 30' = cot 45° + x/H^'c^?45°= >v/2 -j-l = tan 67° 30'.
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114. To express the tangent and co-tangent of thrice

an arc in terms of the tangent and cotangent of the arc

itself.

As before we have,

tan 3i4 = tan (2^ + A)

tan %A -f tan A
1 — tan 9.A tan A

2 tan A

, by (108),

3 tan A - tan^ A
/ 2 tan A \ .

(1:1^^7:1) + '='"^ _ -

tan'^ iL - 3 tan il 3 cot~ J— 1 1-3 cot^ A
3 tan^ ^ — 1 cot ^1 — 3 cot A 3 cot il — cot^ A

also, cot 3 ^ = cot (2 1 + A)

cot 2 A cot A
, by (108),

cot 2 A + cot ^

/cot^ A — 1\ .

I
7- I cot A - 1 3 ,

V 2 cot A / , , X
cotM—3cot4

= 2—

i

> bv (112), = — ^—
/cot^ A - 1\ . , -

V
/^ 3 cot^ A- 1

I
—

) + cot A
\ 2 cot A /

3 cot A — cot^ A 1-3 tan^ A 3 tan^ A - 1

1 — 3 cot^ A 3 tan A — tan' A tan A - 3 tan A
'

115. By substitutions similar to those used in some of the

preceding articles, we readily obtain,

I
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A , A
3 tan tair — 3 cot cot" -

3 3 , , 3 3
tan A = —

, and cot A = —
-;— :

n A ^ A
1 - 3 tan^ — 1-3 cot^ --

3 3

and thence the equations,

tan^ 3 tan A tan^ 3 tan f- tan A = 0,
3 3 3

A A A
and cot^ 3 cot J cot^ 3 cot — + cot ^ = ;

A A
by the solution of which, tan — and cot — will be expressed in

terms of tan A and cot A respectively.

A
Ex. 1. If ^1=90^ we have tan ^ = oo , and —=30°;

•J

therefore, 1 — 3 tan^ 30° = 0, and tan 30° = -^=^ cot 60°.
V3

Ex. 2. Let A = 180°; then tan il = 0, and - =60°;

therefore, tan^ 60° - 3 tan 60° = 0, and tan 60°= '/3 = cot 30°.

11 6. The method used in the last article to determine

the tangent and cotangent of 3 Aj may be applied to express

the tangents and cotangents of 4 Ay oA, 6 A, &c. in terms of

tan A and cot A ; and there will result

. 4 tan ^ — 4 tan^ A
tan 4 A=z

tan 5 ^ =

1—6 tan^' A + tan"* A '

5 tan ^ - 10 tan^ A + tan^ A

tan 6 ^ =

1 - 10 tan^ A + 5 tan^ A '

6 tan ^ — 20 tan^ A + 6 tan^ A
1 - 15 tan^ A-i-\5 tan^ A - tan^ A '

&c = &c
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cQt^ A -6 cot' A + 1

4 cot^ ^ — 4 cot ^ '

. c A ^^^ J -10 cot^ A+ 5 cot A
cot 5 J. = 5 i

;

5 cot' ^—10 cot^ ^+1

cot^ A -15 cot^ ^ 4- 15 cot^ ^ - 1

""
6 cot^ ^ - 20 cot^ ^ + 6 cot ^ '

&c = &c

117- To express the secants and coseca?its of the sum and
difference of two arcs in terms of the secants and cosecants of
the ai'cs themselves.

From (52) we have

1 1

sec {A±B)=^
cos {A i B) cos A cos B + sin A sin B
1 I

cos A cos B . ^ V
sec A sec B

,, as m (69), =7"=-
cos A cos B _ sin A sin B 1 + tan A tan jB

cos A cos i^ cos -^ cos B

sec il sec JB
. by (52);

1 + v^(sec' A- l)(sec' 5-1)

also, from (57)

cosec (^± -B) = -
sin (A + -B) sin il cos B ± cos il sin B

1 1

sin A sin 5 . ., . cosec A cosec £
, similarly

_,
=

sin A cos 5 , cos A sin 5 ' cot 5 + cot A
sin A sin 5 ^ sin A sin J5

cosec A cosec B
>/cosec^ 5— 1 ± >/ cosec" A — 1

, by (57).
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118. The functions in the last article may be expressed

in terms somewhat different,

Thus^

1 1

sec {A ± B) =
cos {A ± B) cos A cos J5 -f sin J. sin B

1_ _ _

J

sec A sec B cosec A cosec B

sec A sec B cosec A cosec B
cosec A cosec J5 + sec J. sec B

and

cosec {A±B)=
sin (A ± B) sin ^ cos B ± cos ^ sin B

1_
-^

_ _ _

cosec A sec B sec A cosec B

__ cosec .4 cosec jB sec A sec B
cosec ^ sec J. + cosec A sec jB

119. By means of the substitutions used in articles (72)

and (107)^ the secants and cosecants of two arcs are expressed

in terms of the secants and cosecants of their semi-sum and

semi-difference.

120. To express the secant and cosecant of twice an arc

in terms of the secant and cosecant of the arc itself.

HerCj from (117), we have

sec A sec A sec^ A
sec 2 il = sec (J + -A) = :; 24,, =

;;
2-7 5

1 —- sec ^ + 1 2 — sec tI
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and

cosec A cosec A
cosec 2 4 = cosec (A + A) =

2 .y/cosec^ 4 — 1

cosec* J.

2 />/cosec^ ^ — 1

Or thus, by (118), we get

sec A sec A cosec A cosec A
sec 2 il =

cosec A cosec A — sec il sec A

sec^ A cosec^ A
cosec^ ^ — sec^ A '

and

cosec A cosec A sec A sec A
cosec 2 A =

cosec A sec A + cosec A. sec A

cosec^ A sec^ A 1

. = - cosec ^ sec A.
2 cosec A sec A 2

121. 2o express the secant and cosecant of half an arc in

terms of the secant and cosecant of the arc itself.

By the requisite substitutions in the last article we obtain

i.±K/-
2 sec A

sec
2 - ^ 1 + sec A'

and

A
cosec — = + \/ ^ cosec" A ± 2 cosec A ^ycosec^ A — 1,

Ex. Let A = 90^
; therefore since sec A = oo , cosec A = 1,

and — = 45^, we shall have

sec 45° = 1/2 = cosec 45^



70

122. lb express the secant and cosecant of thrice ati arc in

terms of the secant and cosecant of the arc itself.

From (117) we have

sec SA = sec (2A + A)

sec 9>A sec A
1 - >/(sec^ 21 — 1) (sec" .1-1)

sec^ A
4 — 3 sec^ A

also,

cosec 3il = cosec {2A -^^ A)

cosec ^A cosec A

y by substitution and reduction ;

^cosec'^ A — 1 + ^ cosec 2 A — 1

cosec"^ A
3 cosec^ 1—4 5 by the same process.

123. Let A and — be put for 3A and A respectively in
o

the last article, and we get

3^sec-

4 -3sec'-

3^
cosec —

;osec 4
3

3c

which give the following equations,

A „ A
sec^ h 3 sec 1 sec' 4 sec A = 0,-

3 3

and cosec'' — — 3 cosec 1 cosec^ —4-4 cosec 1=0;
3 3
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by means of which the secant and cosecant of — are expressed

in terms of the secant and cosecant of A.

Ex. 1. Let A = 90°; then sec A =^ oo , cosec il = 1,

and - =30%
3

'

therefore 3 sec"^ 30^ - 4 = 0^

2
and sec 30 = —7- = cosec 60 .

1/3

Ex. 2. Let A = 180^; therefore sec A = — \, cosec

il = 00 , and — = uO

:

3

hence sec^ 60^ - 3 sec^ 60^ + 4 = 0,

from which we obtain sec 60^ = 2 = cosec 30**.

It may be observed that the formulae in these two articles

might have been deduced from those in (83) and (84), by

means of (52) and (o7) ; and by continuing the process we
should in a similar manner obtain the values of

sec A A, cosec 4^. &c. sec — , cosec — , &c.
4

'
4

124. To express the sine and cosine of the sum of three arcs

in terms of the si?ies and cosines of the arcs themselves.

By considering the sum of two of the proposed arcs as one,

we have

sin (^ + 5 4- C) =: sin {{A + B) ^ C]

= sin {A + B) cos C + cos (A + B) sin C

= (sin A cos B + cos A sin B) cos C

+ (cos A cos 5 — sin ^ sin jB) sin C, by {63),

= sin A cos B cos C + sin B cos A cos C

+ sin C cos A cos B ~ sin il sin jB sin C

;
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and cos (A+ B + C) = cos {(A \- B) + C]

= cos {A + B) cos C — sin (^ + JB) sin C

= (cos -4 cos B — sin ^ sin B) cos C

— (sin A cos J5 + cos A sin B) sin C, by (6S),

= cos A cos B cos C — cos A sin ^ sin C

— cos 5 sin il sin C — cos C sin J. sin B.

Ex. 1, If we have (A + B -h C) = 2w - , or riTr, then will
2

sin A sin ^ sin C = sin A cos B cos C

4- sin B cos A cos C + sin C cos A cos ^.

Ex. 2. U A + B -\- C = (9.JI - 1) - , we shall have
2

cos A cos B cos C = cos A sin ^ sin C

+ cos B sin A sin C + cos C sin A sin B.

125. Cor. Let A = 5=C, then the formulae in the last

article become

sin 3 A = 3 sin A cos^ A — sin'^ A = 3 sin A — 4 sin^ A,

and cos 3 A =cos^ A — 3 cos A sin" A =4 cos"*A — 3 cos A ;

which have been already proved in (83).

126. By a process similar to that used in (124)^ we may

prove that

sin (A + B) sin (5 + C) = sin A sin C+ sin B sm{A-\-B+ C).

For,

sin (A+J3H-C) = sin A cos (5 + C) + cos A sin (5 + C)

= sin A cos B cos C - sin A sin B sin C + cos yl sin (5+ C)
;
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.*. sin B sin {A + B + C) + sin A sin C

= sin A cos B cos C sin B + sin A sin C (1 — sin^ B)

+ cos j1 sin B sin (5 + C)

= sin A cos -B (sin B cos C + cos B sin C)

+ cos A sin 5 sin (B 4- C)

= sin^ cosB sin (B + C)+ cos A sin 5 sin(B+ C)

= (sin ^ cos JB + cos A sin B) sin (-S + C)

= sin (A+B) sin (J5+C).

Similarly, sin {A — jB) sin (C — B) = sin il sin C

— sin jB sin {J~B+ C).

Ex.1. Let^ + 5+C = 7r; then sin (^ + 5 + C) = 0,

and it follows that

sin {A + B) sin (5 -}- C) = sin A sin C.

Ex. 2. Let A - JB + C = ; then sin (1 — 5 + C) = 0,

and we have

sin (A — B) sin {C — B) — sin J. sin C.

127. From (93) and (101) the versed sine and chord

of (A + jB+ C) are obtained after the same manner.

128. To express the tangent and cotangent of the sum

of three arcs in terms of the tangents and cotangents of the arcs

themselves.

Proceeding as in (124) we have

tan (^ + ^ + C) = tan {(A +\B) + C]

tan {A -\- B) + tan C

1 - tan {A 4- B) tan C

tan A + tan B

by (108),

(" ^ , + tan C
tan A tan B/

, by (108),
/ tan A + tan i/ \ ^
(

A ^ ) tan C
\1— tan A tan B/
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tan A 4- tan B + tan C — tan A tan B tan C
""

1 - (tan A tan 5 -f- tan A tan C + tan jB tan C)

and cot (1 + B -f C) = cot {(A + 5) + C)}

cot (A + 5) cot C - 1

cot (A 4- i5) + cot C

cot J. cot -B — 1

, by (108),

/cot A cot i5 — 1\
( ^ \ cot C - 1

V cot A + cot JB / ^ ^^^ .=
, by (108),

/cot A cot ^ — 1\ , r./ ^\ _|- cot C
\ cot J + cot ii /

_ cot A cot 5 cot C — (cot j1 + cot JB + cot C)
~"

cot A cot 5 + cot A cot C + cot -B cot C - r

Ex. 1. Let (.4 + 5 + C) = (2w - 1) ~
; therefore

£

tan (A+5+ C)= 00, and cot (J+5+C) = 0; and hence

tan A tan B + tan A tan C + tan 5 tan C = 1

;

also, cot A cot jB cot C = cot A + cot jB + cot C.

Ex. 2. Let (il + B + C) = 2w - = WTT ; then

tan (A + B + C) = 0, and cot (^ + jB + C) = oo
;

therefore tan A + tan 5 4- tan C = tan A tan B tan C

;

and cot ^ cot B + cot v^ cot C + cot B cot C= 1.

129. Cor. In the last article^ suppose ^ = JB = C; then

3 tan A — tan^ A
, ;^ , 3 cot ^ - cot^ A

tan 3 A = —2—— 5 and cot 3 A = r—— ;

1 - 3 tan^ A 1-3 cot^ A
which are the formulas proved in (1 14).

130. The same method leads to expressions for the secant

and cosecant of (A + ^ -|- C) in terms of the secants and

cosecants of A, B and C
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131. By separating the arcs into two parts as has been

done in some of the preceding articles, we are enabled to

determine the sine, cosine, &c. of the sums of 4, o, &c.

n arcs : but as the methods are so very simple, notwithstanding

the prolixity of some of the results, we shall not pursue the

subject further in this place except to notice a curious property

of the tangent and cotangent of the sum of any number of arcs,

which shall be the subject of most of the remaining articles of this

chapter.

132. If ^i denote the sum of the tangents of n arcs,

Af B, C, D, &c. Kj L; So the sum of their products taken

two and two together ; S^ the sum of their products taken three

and three together ; and so on : then will

tan (^4--B + C + &c. + K+ L) =
I- S^ + S^- &c.

T- 1 /,^^v .A ^v tan A -\- tan B Si
For, by (108), tan U + B)- - ^

1 — tan ^ tan jB 1 — .Sg

'

again, by (128), tan {A -\- B + C)

_ tan A + tan B + tan C — tan A tan jB tan C _ •S'l
— S^

l-(tan ^ tan jB + tan A tan C + tan B tan C)
""

1 — Sc^
'

and so on : and generally, if

tan(^+J5 + C+&c.+ i^)
6'i-^3+ S5~&C.

1 - ^2 + ^4 - &C.
'

we shall have, from (108),

tan (^ + i? + C + &c. + K + L)

- tan (J + B -{- C + ^c.-\- K) + tan L
~"

1 - tan (A + jB + C + &c. + K) tan L

Si — S^ -\- S5 "— &c.'

C'
-

:-' + ?^ - ^^-
^ + tan L

VI — ^\ + S.^ - &c./
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{S, - ^3 4- ^5 - &c.) + (1 - ^2 4- ^4 - &c.) tan L
(1-^2 + s. - &c.) -•(S,

t

- Ss + '% - &c.) tan L

(5,+ tariX)-iSs + S, tan L)+(^5+'S4 tan X) -&c.

1 - ("Sa + ^1 tan L) + (^^4 + S^ tan X) - &c.

which expression is manifestly formed after the same law as

the preceding one :

Therefore^ if the form be true for the tangent of the

sum of tt— I arcs, it will also be true for the tangent of the

sum of n arcs. Now it has been shewn that the law obtains

for the tangents of the sums of two and three arcs : hence it

obtains also for the tangents of the sums of 4, 3_, &c. arcs ;

that isj generally for the tangent of the sum of n arcs.

Ex. ]. If (^ + 5 + C + &c. + X + Jv) = 27i - , or
2

fiTT, we have

and therefore 5^ + S,^+ &c.... = *S3 + ^Sy + &c.

Ex. 2. If (A + 5 + C + &c. + X + X) = (2w - ]) -

,

we have

^ S,- Ss + S,- &c .

and thence 1 + ^4 -}- &c. = ^Sg + Sq -f &c.

133. Cor. Supposing A =B=C= &ic. to n terms, we

shall manifestly have

n tan J — ?i i j (
j tan A + &c.

tan nA = ~

1 — n C- j tan^ A + &c.
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134. In the last article but one, let il = - — A',
2

B = - - JB', C= - - C; &c. = &c., then will

A -\' B ^ C 4- &c. to w terms

=— -
I A' + K + C + &c. to n terms}

;

and tan A = cot A!, tan ^ = cot B'^ tan C = cot C\ &c. = &c.

also, on this hypothesis, we have

S^ = the sum of the cotangents of A, B\ C\ &c.

aS'2 = the sum of their products taken two and two together

;

&c. = &c.

Hence if 7i be even,,

cot (^' -f ^ + Cr + &c.) = cot 1^ - (J + 5+ C + &c.)|

tan (1 + J3 + C + &c.) S,-S^-\-S-,-^c.
'

and if n be odd,

cot(A' + 5^+C+&c.) = cot 1^ -U-f5 + C+&c.)|

•^i
- 8.^ + 5^5 - &c.= tan (J -f- B + C 4- &c.) =

1 - 6^2 + 'S'4 - &c.

135. Cor. If A' = i^' = C = &c. to n terms, we shall

have, when n is even,

n - 1

cot nA
1 - w (—;7— ) cot" A' + &:c.

n coiA' - ;. (^) (^) cot^^ 1' + &c.
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and when n is odd,

n cot A' - n {~-) C^—-\ cot^ A' + &c.

cot 71 A' = ——

.

1 «- n (——-) cot^ A' + &c.

136. In the various articles of this chapter, the trigo-

nometrical functions of {A + B) and (^1 — B) have each been

deduced by a separate process; but this is unnecessary, for in fact

the corresponding functions of both are contained in the same

expressions.

Thus, if we put — jB in the place of B, and — sin B, — tan B,
— cot B, — cosec B in the places of sin B, tan J5, cot B, and

cosec B respectively, the rest remaining unchanged agreeably to

what has been proved in Chap. I ; any trigonometrical function

of either {A-\-B) or {A — B) will be changed into the cor-

responding one of the other. Thus,

since sin (-4 -f- i^) = sin A cos B + cos A sin B
;

by changing B into — B, and sin B into — sin B^ we have

sin (^ — J5) = sin A cos B — cos -4 sin jB :

_,^ tan A — tan B
agam, because tan {A — B) =

1 4- tan J tan J5
'

.*. by putting - B for JB, and — tan B for tan JB, we get

, . „, tan j1 + tan i?
tan (A + jB) =

;:
: and so on.

1 — tan A tan B
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CHAP. Ill

On the computation of the sines, cosines, 8fc. of one, two, three,

Sfc, minutes, and succeeding arcs, and on the construction of
the Trigonometrical Canon. On the uses of Formulcz of

Verification- On the Logarithmic sines, cosines, Sfc. of arcs.

On the ratio of the circumference of a circle to its diameter,

Sic.

137. To express the sine and cosine of one minute in

terms of the radius 1.

In the last chapter at (81), it has been proved that

. A
sin

2
i=\/i-i\/;r~rA,

^ • ^ \/^ 1 . / . 2 ^
and sm ~ = V - - - V 1 - sni -^^

A = 30^, we have sin tI = -
, from (37), and thence

sin 15^= - V 2 - VS = .2588190 8cc.

sin 7' 30'= i \/- — ^= .1305262 &c.
2 2

&c....= &c = &c
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and it is manifest that by this process we shall obtain succes-

sively the sines of 3^ 45/ 1^ 59! 30'\ &c.

Now, at the end of the tenth division from 3(f, the arc be-

comes l' 45'' 28'" 1"" 30'"" and its sine .0005113269 &c.; also

at the end of the eleventh, the arc becomes 52" 44'" 3"" 45""'

and its sine .0002556634 &c. : from which it appears, that

when the operation above-mentioned has been repeated so many
timesj the sine of the arc is halved at the same time that the arc

itself is bisected ; that is, the sines become then proportional to

the arcs : hence

sm 52 44 3 45 : sm 1 :: 52 4 3 45 : 1

:: .0002556634 &c. : .0002908882 &c.

and therefore sin l'= .0002908882 &c.

also, cos l' = »/ 1 - sin^ l' = .999999957 &c.

138. Cor. From what has been proved in the preceding-

article, it is clear that the sine of any number n of seconds may

be obtained simply by a proportion. Thus,

sm n : sm 1 :: n : 1 :: n : DO,

and therefore sin it" = -rr- sin l'; and the cosine may be deter-
60

mined by means of the equation, cos A = \/ I — sin^ •^, as

before.

139. To express the sine and cosine of 2, 3, 4, 5, <5)T.

minutes in terms of the radius 1.

From (73), we have the equation

sin (;i + 1 ) A=Q. cos A sin n A — sin (w — 1 ) ^
;

and if in this we suppose A to be l', and n to be taken equal

to the numbers 1, 2, 3, 4 &c. successively, we get

sin 2=2 cos l' sin l'

= .0005817764 &c. = cos 89^ 58';
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sin 3' = 2 cos l' sin 2' -sin l'

= .0008726645 &c. = cos 89^ ol' \

sin 4'= 2 cos l' sin 3' - sin 2'

= .0011635526 &c.=cos 89** 56^

sin 5' = 2 cos 1' sin 4' — sin 3'

= . 0014544406 &c. = cos 89^ 5o ;

&c.... = &c =&c

Again, from the other forntiula proved in the same article,

cos (w + 1) il = 2 cos ^ cos ?^ J. — cos {n — \) A,

we shall have by the same substitutions,

cos 2' = 2 cos 1' cos 1'—

1

= . 9999998308 &c. = sin 89° 58'

;

cos 3' = 2 cos 1' cos 2' —cos 1'

= . 9999996192 &c. = sin 89° 57'

;

cos 4' = 2 cos 1' cos 3' — cos 2

= . 9999993231 &c. = sin 89° 5Q'
;

cos 5' = 2 cos 1' cos 4'— cos 3'

= . 9999989423 &c. = sin 89° 6o
;

&c....= &c = &lc

We may observe from the latter of these sets of equations,

that when an arc becomes very nearly equal to 90^ and 0°, the

changes which the sine and cosine respectively undergo, are of

no value as far as five or six places of decimals.

140. The process adopted in the last article being con-

tinued would enable us to determine the sines and cosines of all

L
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arcs whatsoever ; but by reason of the long and tedious numeri-

cal operations that are required, expedients of various kinds have

been had recourse to, to facilitate the computation : thus, by

means of the formula,

sin {A+ B) = 2 sin A cos B— sin {A — B)(R\
l-2sin^— )-sin {J— B)

— 2 sin A — sin (A ~ B) — 4 sin A sin^ —

;

if we suppose B~ \', and A to take the values l', 2', 3', &c. in

succession, we shall have,

sin 2' =2 sin l' — sin O' — 4 sin l' sin" SO"

sin 3' = 2 sin 2'— sin l' - 4 sin 2' sin^ 30"

sin 4' = 2 sin S' - sin 2^—4 sin S' sin" 30"

&c.= &c

Again, if ^=l', and A assume the values 1°, I*' l', 1° %\

&c. we get

sin 1^ l' = 2 sin 1^— sin 59'— 4 sin 1^ sin^ SO" \

sin 1^ 2' = 2 sin I*' l' - sin 1^-4 sin 1^ l' sin^ 30"
;

sin 1° 3' = 2 sin 1^2'— sin 1° l'— 4 sin 1° 2' sin^30'';

&c. =&c

and so on ;

and these operations are somewhat less laborious than those

which would be necessary by the former method.

141. The formulae,

sin {A + B) sin {A— B) — (sin A + sin B) (sin A — sin B),

and

cos {A -f B) cos {A— JB) = (cos A + sin B) (cos A — sin B),
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proved in (68)^ will also enable us to deduce the sines and

cosines of arcs from the sines and cosines of others pre-

viously determined, and may likewise be the means of verifying

the results found by the preceding methods : thus by making

J5= 1^5 and A = QP, 3^, &c. in order, we obtain

_:„ oO_ (sin 2^+ sin 1°) (sin 2° -sin 1^)^

sin 1«

sin 4*^= (sin 3° + sin 1°) (sin 3° - sin l*")

sin 2^

&c.= &c

cos 3° = (cos 2^ -f sin 1°) (cos 2' -sin f)

cos 1

cos 4 = (cos 3^ + sin 1^) (cos 3^ -sin 1°)

cos 2^

&c.= &c

and the values thus found may be checked by assigning different

values to A and B, so that their sum may still remain the

same.

By one or other of these methods we may proceed to de-

termine the values of the sines and cosines of all arcs as far as

30
J
after which the tediousness of the numerical operations may

in a great degree be avoided, by means of certain formulae which

have already been investigated in the second chapter.

142. To express the sines and cosines of arcs greater than
30^ and less than 45^ in terms of the radius 1.

»

It has been shewn in (67), that

sin (^ + jB)+ sin (A - i?) = 2 sin ^ cos 5
;

therefore sin {A + B) = 2 sin A cos B — sin {A — B),
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and if A be made equal to 30^ and B be assumed equal to l',

2', 3', ficc... successively, we get, since sin 30^= -
, from (37),

sin 30^ 1' = cos 1' - sin 29^ 59';

sin 30^ 2'= cos 2'— sin 29^ 58'

;

sin 30"^ 3' = cos 3' - sin 29"" 5?'

;

&c.... = &c

and thus the sines of all arcs as far as 45^ may be derived from

the sines and cosines of those previously found :

cos (A - 5)- cos (1 + 5) = 2 sin A sin B, by (67),

we have

cos (^ 4- jB) = cos ( Jl — B) — 2 sin A sin S :

and if A be supposed = 30° as above, and jB equal to 1 , 2', 3

,

&c. in succession,

cos 30° 1' = cos 29° 59' - sin 1'

;

cos 30° 2' = cos 29° 58' - sin 2'

;

cos 30° 3' = cos 29^ 5/- sin 3'

;

&c..-.= &c

and hence the cosines of all arcs up to 45° may be determined

by means of the sines and cosines of those which are less than

30°.

143. To express the sines and cosines of arcs greater than

45° and less than 90° in terms of the radius 1

.

Since by (12) and (21), sin (45°+l)=cos (45°— i.), we have

sin 45° l' = cos 44° 59'

sin 45° 2' = cos 44° 58'

sin 45° 3'= cos 44° 57'

<&c.... = &c
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and since cos (45° + jI) = sin {4i5^— A), by the same articles, we

get

cos 46^ l' = sin44^59';

cos 45^ 2'= sin 44^ 58';

cos 45^ 3' = sin 44^ 5?'

;

&c....= &c,

and thus the sines and cosines of all arcs as far as 90° may be

found.

From this it is manifest that if the sines and cosines of all

arcs up to 45^ were formed into a table, such a table would

serve for the sines and cosines of all arcs as far as 90°.

144. jf'o express the sines and cosines of arcs greater than

90^ in terms of the radius 1.

From (63), we have

sin (90°+ A) = sin 90° cos A + cos 90° sin A = cos A
;

cos (90°+ A) = cos 90° cos A — sin 90° sin ^ = — sin A :

again,

sin (180°+^) = sin 180° cos ^-j-cos 180° sin A = -sin A;

cos (180°+ ^) = cos 180° cos ^ — sin 180° sin A = - cos A :

and,

sin (270° + J) = sin 270° cos A + cos 270° sin A~ - cos A;

cos (270°+ ^) = cos 270° cos A — sin 270° sin A = sin J :

&c....=&c

therefore the values of the sines and cosines of all arcs greater

than 90°, will be the same as the sines and cosines of corres-

ponding arcs less than 90° : and if a table be formed to contain

the sines and cosines of all arcs less than a quadrant_, such table

will contain the sines and cosines of all arcs greater than a
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quadrant, proper regard being paid to the algebraical signs of the

quantities according to the principles laid down in (16) and applied

in the subsequent articles of the first chapter.

145. The sines and cosines of all arcs being determined

by the methods just explained, the tangents, cotangents, secants,

and cosecants are immediately deduced from the following equa-

tions :

sin J. . cos A I

tan A =
, cot A = -:

, sec ^1 =
cos A sin A cos A

1

and cosec A =
sin A

and the versed sines and chords, if necessary, from the equations,

^
vers j1 = 1 — cos A, and chd A =^ 2 — Q cos A, or = 2 sin — .

2

146. The tangents of arcs greater than 45^ may however

be easily found from the tangents of those that are less, by

simple addition only.

. . sin A cos A
For. smce tan A — cot A = :

cos A sm A

sin^ A — cos^ A cos 9>A
= :

—- = -2-: = — 2 cot 2^ :

sin A cos A sm 2^1

if we suppose, A=45^-^B, and .*. 2J = 90^ + 2JB,

we shall have

tan (45°+ B) - tan (45°- ^) = - 2 cot (90° + 2 J5) = 2 tan 2 B ;

.-. tan (45° + 5) = 2 tan 2^ + tan (45° - B) :

hence, assuming B to be equal to 1°, 2°, 3°, &c. successively,,

we have

tan 46° = 2 tan 2° + tan 44°

;

tan 47° = 2 tan 4° + tan 43°

;
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tan 48° = 2 tan 6^ + tan 42°

;

&c =&c

These expressions may also be used to try the correctness

of the values of the tangents deduced by the other method.

147. The sines, cosines^ &c. of all arcs being thus cal-

culated and tabulated, form what is called the Trigonometrical

Canon; and it is easily seen that the sole difficulty in con-

structing such tables arises from the application of the

fundamental rules of arithmetic to numbers consisting of many
places of figures ; and some of the expedients generally resorted

to, to remove this difficulty ^ have already been explained. As
a check upon such computations, Formulcz of Verification have

been introduced, which involving the dependance of the trigono-

metrical functions of arcs upon one another, may be applied to

ascertain the correctness of a numerical calculation from the

known accuracy of one or more others.

Formulae of Verification might be multiplied indefinitely,

but the most useful and those most generally used, have been

proved in (78), (89)? and (90), and their utility will be manifest

from the two following articles.

148. In article (78) it has been proved that

sin— = - {x/(l + sin A) + ^(1 - sin ^1)},
2 2

A 1

and cos - = - { ^/(l + sin A) ± s/ {^ - sin A)\ :

2 2

now if we assign any value as 25^ to A, we shall have

sin 12^ 30' = -
{ v^(l+sin25') - ^ {\ - sm Q.o'')}

,

2

and cos 12^ 30' = ^ { ^(H-sin 25") + ^(1 - sin 25")} ;
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hence if the results of these equations be the same as the sine

and cosine of 12^ 30' calculated by the method before given,

we may conclude with a considerable degree of certainty that all

the operations concerned are correct.

The formulae just mentioned might manifestly have been

likewise employed to deduce the sine and cosine of — im-

mediately from the sine of J,

149. In Elder's formula proved in (89) we have seen that

sin ^=sin (36^ ^)+ sin (72°-^)-sin (36^-^)~sin (7^''+^):

and if A be taken equal to 5^, we shall have

sin 5^ = sin 41V sin 67^— sin 31°- sin 77°:

therefore if the values of the sines of these arcs already com-

puted satisfy this equation, they may each be reasonably

presumed to be correct, and the contrary.

Again, in Legendre's formula,

cosil=sin(54°+ ^)+ sin(54°-^)-sin(18°4-A)-sin(l8°- A),

which is proved in (90), if we suppose A = 7°, we get

cos 7° = sin 61°+ sin 47° -sin 25° -sin 11°,

from which the same inferences may be drawn as before.

Similarly, of the sines and cosines of other arcs.

150. In the Trigonometrical Canon, constructed and

verified by these methods, the radius has been supposed to be

equal to 1 ; but as the logarithms of quantities afford great

facilities in the multiplication, division, involution and evolution

of large numbers, it is desirable that the logarithms of the sines,

cosines, &c. of arcs should also be tabulated, many of which

from their nature would to this radius be negative. On this

account the Tabular Radius has been assumed equal to ten
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thousand millions, and consequently each of the sines, cosines,

&c. thus computed, must be increased in the same proportion,

and their logarithms will then become positive quantities. Thus,

since to the radius 1, we have sin l' = .0002908882 8cc.

.*. to the radius 10^^ we shall have sin l' = 2908882. &c.

and hence, log sin j' =log 2908882. &c.

=6.4637261 Scc.andsoon:

and a table constructed on this principle, is called a table of

logarithmic sines, cosines, &c. by the use of which most of the

practical applications of trigonometry are greatly facilitated and

generally performed.

151. If the logarithmic sines and cosines of all arcs be

found as in the last article, the logarithmic tangents, cotangents,

secants and cosecants, as also the versed sines and chords, may
be deduced from them by the operations of addition and sub-

traction only. Thus,

log tan A=]oglr j) =logr 4 log sin ^ — log cos tI

= 10 + log sin A — log cos A ;

(cos A \
r -—— ) = log r + log cos A — log sin A
sm A. /

= 10 + log cos A — log sin A
;

log sec A = log ( 1=2 log r — log cos A
\ cos A/

= 20 — log cos A ;

log cosec A = loo-
( I

= 2 losf r — log sin A
^ Vsin A/ ^ °

— 20 — log sin A

;

A

= iog\—-—y = log 2 +log vers A = logV^ -J = log 2 + 2 log sin log ?•

M
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= log 2 + 2 log sin — — 10 ;

2

and log chd A = log ( 2 sin — ) = log 2 + log sin — .

\ 2/ 2

152. To Jind the numerical ratio of the circumference of
a circle to its radius and diameter.

In (137) where the radius is supposed to be 1, the sine

of l' has been shewn to be .0002908882 &c. and ithas been

proved also that the sines of arcs so small as l' are very nearly

equal to the arcs themselves : hence_, since the number of

minutes in the whole circumference is 360 X 60 = 6 X 60 X 60^

we shall have

the whole circumference = . 0002908882 8cc. x 6 X 60 X 60

= . 0017453292 &c. x 60 x 60

= . 1047197520 &c. x 60

= 6.28318512 &c.

which was assumed in (7) to be represented by 27r; therefore

the circumference of a circle : the radius

:: 6.28318512 &c. : 1 ;

and the circumference of a circle : the diameter

:: 6.28318512 &:c. : 2 :: 3 . 14159256 &c. : 1.

153. By the method of converging fractions, approxima-

tions to the ratio just found are 3 : 1 ; 22 : 7 ; SSS : 106, &c.

which are alternately less and greater than_, but more and more
nearly equal to, the true ratio, and may be adopted in most cases

of practice without sensible error.

154. To find the magnitude of the angle which is subtended

by an arc of the circle equal to the radius.

Since 6 .28318512 &c. or the whole circumference subtends

four right angles^ or is equivalent to 360^ on the same scale

on which 1 represents the radius^ we shall have

360^ : the required Z :: 6.28318512 &c. : 1,
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and therefore the required angle will be

360^

6.28318512 8vc.
= 57^2957795 &c.=57^ 17' 44" 48''' &c.

156. 3b express the length of the arc zohich Jiieasures

a given angle, in terms of the radius.

Since the arc subtending an angle of 57° 17' 44" 48'" Sec.

is in every circle equal to the radius, because the arcs are pro-

portional to the radii, when the angles which they subtend at the

centres are equal ; if A^ be the magnitude of any angle^ and a the

arc subtending it, we have

r : a :: 57^2957795 &c. : A"",

and .'. the arc a expressed in terms of the radius r

A'

5f.0.951195 &c,

E (1
\^ / 1 \^—
) , (tit) , succes-

sively, then we have

the lenoth of one degree = r ( —„ —
) ,

V57^2957795 &c./

= ?• (.017453292 8cc.),

the length of one minute = r (.0002908882 &c.),

the length of one second = r (.00000484813 &c.).

156. Cor. if 57^2957795 &c. be represented by r^,

we shall have a = r —(T , and thence - = -tt , which agrees
r r r

A^
with what is assumed in (4) : also if r=z\, then will a = —q-.
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CHAP. IV.

On the relations between the sides, angles, areas, circumscribed

and inscribed circles, ^c. of plane triangles. On the relations

between the sides, angles, diagonals, areas and circumscribed

circles, Sfc, of certain quadrilaterals. On the perimeters,

areas, Sfc, of regular polygons. On the periphery, area, S^c.

of a circle,

157. 2^HE sides of a plane triangle are proportional

to the sines of the angles which they respectively subtend.

Let ABC be a plane triangle, of which the angles

A /^' D '
V B

are A, B and C; with centres A, B, and radius \, describe

circular arcs cutting CA and CB, or these lines produced

in the points a and /3 ; draw afx, jiv and CD perpendicular to

AB (produced if necessary) ; then by similar triangles

AC : CD :: Ja : afx :: 1 : sin J, by (17);

and CD : BC :: f^v : Bfi :: s'm B : 1, by (17) or (20)

;

.'. by compounding these proportions^ we have

AC : BC :: sin B : sin A;
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similarly, AC : AB :: sin jB : sin C;

and AB : BC :: sin C : sin il ;

and therefore generally

BC : AC : AB :: sin A : sin B : sin C.

158. This fundamental property of plane triangles may
hkewise be proved as follows :

Suppose a circle to be described about the triangle ABC,
and let its centre be O, and its radius equal to R ; then it is

manifest that the sides of the triangle are the chords of the

arcs they respectively cutoff, to the radius R
;
join AO^ BO, CO,

and by (oQ) we have

CB
R

chd BOC = 2 sin ("V") ~ '^ ^"^ ^ ' ^^ ^'^^'

-— = chd AOC = 2 sin ( ) = 2 sm B
;R V 2 /
'

J 7?

and -— = chd AOB
R

2 sin (

iOB\

2 )
= 2 sin C;

whence
CB CA AB

:: 2 sin ^ : 2 sin B : 2 sin CR R R

that is, CB : C^ : AB :: sin ^ ; sin B : sin C
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If the sides which subtend the angles A, Bj C be called

a^ b, c respectively, we have

a : b : c :: sin A : sin jB : sin C;

a __ sin A a s'm A b sin jB

b sin B ' c sin C ' c sin C
'

159. Cor. 1. By either of the last two articles, we have

a : b :: sin A : s'm B,

.*. a + b : a— b :: sin ^1 + sin J3 : sin ^ — sin B

/A+ B\ /A-Bx
, ^

'"''" (-^)^tan(-^-),by(72);

similarly

rA-\-C\ /A-C\
« + c : a— c : : tan I | : tan | I :

and o-jrc : 0^ c : : tan I I : tan I ) .

V 2 / V 2 /

Hence^ in a plane triangle, the sum of any two sides : the

difference :: the tangent of the semi-sum of their opposite angles :

the tangent of the semi-difference,

160. Cor. 2. Let CE drawn to bisect the angle ACB

c

A E B

meet the base AB in £, then by (157) we have

AE : AC :: sin ACE : sin AEC
:: sin BCE : sin BEC :: BE : BC',

.\ AE : BE ;: AC : BCi
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that is, the segments of the base have the same ratio which the

other sides of the triangle have to one another.

Also, if AE= a'j BE = b', we have a : h' w b : a,

whence we find a = ——r , and h =
a + /;

'

a+b'

and .• . a b' =^ ab I ) :

\a + b)

or a b' : ab :: c~ : {a-^bf.

A similar process may be used if the exterior angle be bisected^

and it will appear that

a'b' : ab :: c^ : {a^bf.

161. Cor. 3. If CF be supposed to bisect the side AB,
we have from (157),

A F B

sin ACF : sin CAF :: AF : FC

:: BF : FC :: sin BCF : sin CBF;

.-. sin ACF : sin BCF :: sin CAF : sin CBF:

or the sines of the segments of the vertical angle are proportional

to the sines of the corresponding angles at the base.

Also, if A' and B' represent the segments of the angle C,

we have

sin A' : sin B' :: sin A : sin B,

and .*. sin A' + sin B' : sin A' — sin B' ;:

sin A + sin B : sin A — sin B,
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o.. tan {~:r-) • t"" (-^-j '=»> {-^) t-»
(-i- j

;

tan (^)

V 2 7 . C /A - X>\ O—
, or = tan I I tan —

2
'

V 2 / 2
- tan

from which, and the equation A' -{-B' = C, the values of A and

J3' become known.

162. To find the relations betiveen the sides and angles of

right-angled triangles.

Let ACB be a triangle having its sides represented by «, h, c,

as before, and the angle at C a right angle, then

A

BC : AB :: sin BAG : sin ACB

:: sm A : sni ~
2

:: sin A : 1, by (18);

whence BC-AB sm A - AB sin (^ ~ b\ =: AB cos B;

similarly, AC = AB sin J5 = AB sin N - J j
= JJB cos A;
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again, BC : AC ;in BAC : sin ABC
sin J : cos A
tan A : 1, by (42),

/. 5C = ^Ctan A = ^C tan ^- - Jb") =AC cotE;

similarly, ^C = 5C tan B=:BC tan /^- - a) = JBC cot A :

whence we have

AB=
BC
sin ^4

5C
COS B

= i?C cosec A = BC sec 5;

7iC TiC
also, sin A = —^ = cos £, and tan A = ——

; = cot B.AH AC
163. To find the relations between the sides and angles of

oblique-angled triangles.

Let ACB be an oblique-angled triangle, draw CD perpen-

dicular to AB, and let the sides subtending the angles Ay B, C
be called a, b, c respectively

:

c

A D B

then, c=1jD+ ED
= AC cos A + BC cos B, by the last article,

= b cos A -T a cos B ;

similarly
_, b = a cos C -{- c cos A

;

and a = b cos C-^c cos B:

and from these equations any one of the quantities involved

may be found in terms of the rest.

164. Cor. The last article combined with the property

proved in (157), is sometimes applied to express the sine of the

sum of two angles in terms of the sines and cosines of the

angles themselves. Thus,

since c =b cos A +a cos B, we have ~ = - cos A -|- cos B
;

a a

N



98

c sin C sin (tt -- C) sin (A -{- B) b sin B
but - = -^—7 = :

;;— =
:
—

-: , and - = -.—j ;

a sin A sni A sni A a sm A

., „,e shall have ^^liA^ = fjlL^ eos ^ +cos B,
sui A sin iL

and thence, sin {A •{ B) = sin jB cos A + sin ^ cos B
= sin j1 cos B -\- cos il sin By

as has been already proved in (63).

Since ^-f- jB is less than tt, the proof just given may at first

sight seem partial ; but by means of the relations established in

the first chapter, it is easily extended to the sine of the sum of

any two arcs whatever.

165. To express the cosines of the angles of a plane triangle

in terms of the sides.

If ^, I^, C be the angles of any plane triangle, a, bj c the

corresponding sides which subtend them, we have seen that

a =^ b cos C + c cos J5,

b = a cos C + c cos A,

c = a cos B -{ h cos A
;

and multiplying both sides of these equations by a, b, c re-

spectively, we obtain

d^ =zab cos C-\- ac cos B,

h^ =.ab cos C -{-be cos A,
-2
C ac cos B-\- be cos A

;

therefore,, by addition,

a" +5' -f-c-^ = Q.ab cos C +Q.ac cos B'{-2bc cos A :

from this equation, subtract successively 2a^, 2Z>", 2c^ and their

equals, and we have

b'^ -h c^ — a'^ ~2bc cos A ;

J.

a^ -\- c" — b'^ = 2ac cos B
;

a--^b'~ c'':=:Qab cosC:



h' + c'- a'

9.hc

2
a + c-°-

- b'

2ac

a' + 6^-c'
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from which equations immediately result

cos A =

cos B =

cos C= ^ ,

l66. The values above found are frequently deduced by

means of the twelfth or thirteenth Propositions of the Second

Book of EudicVs Elements.

For, BC^ = AC--{ AK T 9.AB . AD,

but AD = AC cos A, by (l62),

or = AC cos (tt - A) by (l62), = - IC cos ^, by (24) ;

.-. BC' = AC' -h AB'-^AB. AC cos A,

or a' = ^'^ + c^ — 2 6f cos ^,

and .*. cos A =
;^

, as before.
2bc

It may here be observed, that the Propositions of Euclid above

referred to, are in reality proved in the last article.

For_, since a^ = b~ + c^ — 2b c cos J, we have

BC' = JC + AB'-qAB. AC cos A

= AC''^AB^^'2AB. ADy

as appears from (l62).

Ex. 1. Let a = b, or the triangle be isosceles: then

c' r c _
cos A = -— = r" — 771 — cos ^ j

also, cos C = 5— = 1 - 77-3 ,
.and vers C = -;:--y

2a 2a 2a
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Ex. 2. Let a — b^c, or the triangle be equilateral: then

cos il = ^ = cos 60^ = cos B = cos C.

167. Cor. 1. Since cos C= ; , we have
2ab

c^ = a^ — 2ah cos C -H b^, and thencec = ^a^~2(2 6 cos C-i- b'^,

which is the value of one side expressed in terms of the two

others and their included angle,

Ex. ]. Let C = 90", then cos C =0, and /. c^ = a^ + ^>^

which is the 47th Proposition of the first book of Euclid^

s

Elements established by the Principles of Trigonometry.

Ex. 2. If C = 60^ we have cos C = X^ from (37),

md .'. c"^ = a" — ab -}- b'

2

a' + ¥

a -{- b

Ex. 3. If C = 120^ we have cos C = - ^, by (24),

" 2 7 , 12 a —b^
and .•.£' = « -h cib -\- b =

.

a— b

168. Cor. 2. From (165), we have immediately

2 6c- cos A = b^' -h c" - a^

or a' — b" = c^ — ^bc cos A =Q.c (- — b cos A \ :

V2 ;

that is, the difference of the squares of the sides is equal to

twice the rectangle contained by the base, and the distance of its

middle point from the perpendicular.

Again, {a + b) {a — b) = c (c — 2b cos J),

ore : a + b :: a — b : c — %b cos A

:

that is, the base : the sum of the sides :: the difference of

the sides : the difference or sum of the segments of the base

made by a perpendicular let fall upon it from the opposite

angle, according as it falls within or without the triangle.



101

169. Cor. 3. From the preceding articles it is seen, that

^ =• c^ •\' h' — %ab cos C

= a — ah cos C + b^ — ab cos C

= a {a^ b cos C) + b {b— a cos C)

:

suppose now AP and BG to be drawn from the angles A and B
respectively perpendicular to the subtending sides

;

then « - 6 cos C = i?C - CF= BF,

and b — a cos C = AC— CG =^ AG;

hence replacing a, b, c by 5C, AC and ^J5 respectively,

we have

AB^=:BC.BF+ AC, AG:

or the square described upon any side of a triangle is equal

to the sum of the rectangles contained by the two others

and their segments respectively cut off by perpendiculars let fall

upon them (produced if necessary) from the opposite angles.

170. Cor. 4. If the angle C be bisected by the straight

line CE meeting the opposite side in E, the value of this line

may be found; for by (I66) we have

A E B

CE' = AC'' + AE'-2AC.AE COS J

b'c- 2 6 c

(a + by a + b

b'c" {a^-b^)b bc^
= b'' + , . ... +

{a-\-br a\h a-^h



b'c' ^ be'

''^'^{a-\'bf a + 6

abc^
=.ab —

(a + bf \a -\-bJ \a-]r b)

or AC. BC= AE,EB-\-CE^:

that is, if any angle of a triangle be bisected by a straight line

which cuts the opposite side, the rectangle of the two other sides

is equal to the rectangle of the segments of the divided side

together with the square of the dividing line.

171 • Cor. 5. Supposing CF to bisect the side AB in F,

we shall have by (I66),

CF'==CA'+ AF'-'2AC . .IF cos A =6'+ {^^
- be cos A

2 j2i2 2 2i7 2
c b '\-c — a a -\-

= 6^ + -
4 2 2 4

therefore a' + 6' = 2 (- j + 2CF^

which shews that the sum of the squares of any two sides

of a triangle is equal to twice the square of half the other side,

and twice the square of the straight line which is drawn from the

opposite angle to bisect it.
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172, Cor. 6. If we suppose CF = h, and the coi-

responding lines drawn from the angles A and B to bisect the

opposite sides, equal to k and / respectively, we shall have from

the last article,

a-^ + i' = 2 g)+2/i^

6^ + c= = 2g)'+2ft^

and therefore by addition,

and thence

that is, three times the sum of the squares of the sides of a plane

triangle is equal to four times the sum of the squares of the lines

drawn from the angles to bisect the opposite sides.

173. To express the sines of the atigies of a plane triangle

in terms of the sides.

From {25)y we have sin" A-= I — cos" A

b^ + e- a\' {2bcf - (b- + c' - a-f

4b'c'

(Qbc + 6" + c^ - fl^) (^bc - b--c^+ a')

4 /re'

{(b + cf--a'}{a'^{b-cf]
4b'c^
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_ ia'{-b-^c) {b-\-c - a) (a -j- c - b) (a-\-b''c)

4>b'c'

and therefore

1

sin A = —r- />7(a+6 + c) (6 + c- a) (a4-c-6)(a+6-c);
Qbc

similarly,

sin 5 = ^J{a+ b + c){b-\'C-a){a^i^c-b){a + b-c)',

and

sin C = —r i^{a-\- b + c) {b + c— a) (a+c- /;) (a + 6— c):

assume now, 2AS' = fl -\- b +c = the sum of the sides

;

then Q.{S-a) = b \- c- a,

2{S - b)=a + c — b,

2(S- c)=a -{- b -c;

whence by substitution we obtain

sin ^ = ~ \/s (S~a){S-~b)(S-c);
be ^

sin5 = — \/s (S-a)(S-b)(S-c)',
ac ^

sin C = — \/ S {S— a){S-b)(S-c\
ab ^

Ex. 1. Let a = b, or the triangle be isosceles; then

in^=-^ \/ S{S-a)iS'-a){S'-c)sm
ac

^^'-^\/7^,
ac

-y(-3("-i)
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4 ?/ — <? — sin B ;

and sin C ='-i^ \/s(S-c) = J \/(« + fJ
(„-i)

Ex. 2. Leta = Z> = c, or the triangle be equilateral, then

sm ..iv/.„.-.>-=iN/(fy©^

= =sin 60° = sin B = sin C.
2

Ex. 3. If the sides of the triangle a, h^ c be respectively

equal to 3, 4, 5, we shall have

2 ^ = 3 + 4+5=12, and *S = 6,

.-. S— a==S, S—b = 2, and 5-c= 1 :

2 A / 12 3
and sin 1 = — V 6 . 3 . 2 . 1 = — = -

;

20 ^ 20 5

. T. 2 4 /^ 12 4
sm jB=— V 6.3.2.1=—=-;

sin C = -^ V 6.3.2. 1 = ~= 1 =sin^:
12 12 2

TT
hence C = - , or the triangle is right-angled at C.

til

174. Cor. From the last article we have

V 6' (5 - a) {S -b){S-c)=: ^' sill C, wliich, if C = -

gives 2 ,yT(^^~«)(5-6)(.S~c)^«^:

O
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and by substituting for a, b, c, the quantities 71^ — Ij 2;/ and

n^ 4- 1 respectively, it will be found that this equation is verified
;

and therefore the sides of any rational right-angled triangle may
be represented by these quantities^ n being assumed at plea-

sure equal to any quantity greater than unity.

175. To express the sine, co-sine, tangent, Sfc. of half

an angle of a triangle in terms of the sides.

From (79) we have

^A
, b~'\-c"'-a~ %hc'-J)'-c^+a^

2 snr — = 1 — cos A= \

a^-{b-cf __ {a-\-b'-c){a^-C'-b) ^ 2 (S-b) 2 (S -c)

Qbc
~

2bc Q,bc

_ . A _ /(S-b)(S-^)
sin

similarly,

$m — = V
2 ac

. C /(S-a)(S-'b)
and sm — = V "

;
—~~~ =

2 ab

Again, from the same- article, we have

A'
cosec —

2

1

cosec
2

]

cosec
c
2

,A
. ,

Z»' + c^~«"- Qbc-i-b'+ c^-,
£ cos'— = 1-f cos 7i= 1 +

2 2bc 9.bc

{b-\-cf-a'
___

{a + b-^c){b+ c-a) _ 2S 2(8 -a)

2b~c 2bc
""

oOc
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^ A/SiS-a) 1

= n/
2

^
be A'

sec —
2

,
B /s{S- b) 1

ally, cos - = V =
7t;

similar ,, _ ,

ac B
sec —

2

,
C /SiS-c) 1

and cos — = y/^

2
^ ab C

sec —
o

Hence .*. we shall have by (42)

^ A ./iS-b){S-c) 1

tau — = V —tttt: ^— = •,

cot —
o

cot —
o.

. C /iS-a)(S
and tan — = y -—

—

b)

2
^ S{S-c) C

cot —
2

176. Cor. 1. If the angle C be a right angle^ we shall

have

. C . , } . C
sm — = sin 45 =—7- = cos 45 = cos —

;

2 V 2 2

1 ./{S-a)(S--b) /S(S--c)
hence —7- = v ; = V ;— ;

and therefore

a6 = 2(S-a)(6"-6) = 2 6' (5-c),

and {S-a){S'--b)=:S (S-c),
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177- Cor. 2. From (175) we may easily deduce what is

proved in (173).

A A
For, sin A = 2 sin — cos — , by (76),

2 2

=.\/^-b) {S - c) S{S- a)

be be

= ^s/S{S-a){S'~b){S~-el
he ^

as before : similarly of the others.

178. To express the area of a plane triangle in terms of

the sides.

D B

The area of the triangle ABC ^- AB . CD

= - AB , AC sin A, by (l62),

= ^^ -^, s/S{S--a){S-b){S'-e\ by (173),
2 b

= ^/^^(5-«)(S-6)(S-c).

179* The area above found might easily have been deter-

mined without assuming the expression for the sine of an angle

of the triangle. Thus,

since «^ = 6^ + c'-2r AD, by (l66), .-. AD = ' "^^
"

2<:

CD"- = AC^-AD^- = ,^~(^^±^)
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- (Q-t-^-^g) {h-hc- a) (a + c-6) ja + b-c)

4c^

Q.S 2{S-a)<^{S-b) 2 (S-c)

hence the area = = yj S {S - a) (S — b) (S— c),

From either of these articles, we obtain the following

Rule :

From the semi-sum of the sides, subtract each side sepa-

rately; multiply the semi-sum and the three remainders together,

and the square root of the product will be the area.

Ex. 1. Let « = ^, then the area of an isosceles triangle

whose base is c = {S^a)sJ S (S — c)

=i^/(-n)("j)_

4 4

Ex. 2. If a = 6 = c, the area of an equilateral triangle

whose side is a = S^ (S" — a)^ = ( —
)

( ""
) ~ "

•

Ex. 3. If a, b, c be equal to 18, 24, and 30 respectively,

we shall have

5: = i (18 4-24 + 30) = ^ (72) = 36;
2 2

.-. S-a = 36- 18 = 18,

.S- A = 36-24=12,

S ^ c = 36 - 30 = 6 ;
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and .'. the area = ^36.18.12.6 = ^36.36.36

= 6,6.6 = 216.

180. Cor. 1. Hence the perpendicular drawn from any

angle to the opposite side is easily expressed in terms of the sides

of the triangle : for

4S{S-a) {S-'b){S-c)

and . . LIJ =

181. Cor. 2. The area of the triangle may very easily be

expressed in different terms.

Thus, by (178) the area =z^bc sin A;

or = V ——— j^ S {S- a)bc

A .

= sin — as/ S {S — a)bc
;

or = \/^Z^ ^(S-b)iS-c)bc
be

A ,

= tan — S (S - a): &c.

182. Cor. 3. If the triangle be right-angled at C, we
shall have
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c
tan — or 1 ^ ^/(S-a)(S-b)

and .*. the area = S (6'— c), or = {S — a) (S — b)

:

that is, the area of a right-angled triangle is equal to the

rectangle contained by the semi-perimeter and its excess above

the hypothenuse ; or to the rectangle contained by the excesses

of the semi-perimeter above each of the sides containing the

right angle.

183. Cor, 4. From the values of the area above deter-

mined, it may be demonstrated that the areas of similar triangles

are in the duplicate ratio of their homologous sides.

Let A, B, C ; a, by c, and A' , B\ C ; a, b\ c' be the cor-

responding angles and sides of two similar triangles ;

then if 2 *S = a + 6 + f, and 2 5^ = a \- b' -\- c\

. ^ ../{S-b){S-0 . A ./{S'-U){S'-c)
wehavesm— = V 1

=sni—-= y rn ;

A /S{S-a) A' / S'iS'-a)
and cos — = V ; = ^'os — = \/ ——-^-7

;

2
^

he 2
^ be

.'. area of the triangle ABC : area of the triangle A'B'C

:: ^S{S~a){S~b){S-c) : ^ S\S'-a){S'-b')iS'-e)

,, ,
e shi B , c sin B 2 ,q

:: he : be' :: c . ,, : c . ^, , by (157), :: c : c .

sm C sm C

184. Cor. o. Smce ABC : AlB'C ::^
he : Ve, if we

suppose 1BC = A'jB'C', we shall have be^b' e\

and /. h : h' \: c : c :

or, if the areas of two triangles which have one angle of the one
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equal to one angle of the other, be equal ^ the sides about the

equal angles are reciprocally proportional : and conversely.

185. To express the radius of the circle inscribed in a plane

triangle in terms of the sides.

Let ABC be the triangle, its angles and corresponding

opposite sides being denoted by A, B, C; a, b, c as before:

bisect the angles A and B by the straight lines Ao, Bo
meeting in o, draw o«, ob, oc perpendicular to BC, ^ICand

AB respectively; then o is the centre, and o« = o^ = oc the

radius of the inscribed circle ; let this be called r

:

now by (157), we have

Ac sin ^oc cos oAc

oc sin ou4c sin oAc tan oAc

1

tan
A'

', ilc =
oc

; snnilarly. Be =
tan

and

A
tan —

2

Ac -\- Be = 7' \-—

B
tan —

2

B'
tan —

o

(./ S(S-a)
'' {^ (S-b)(S-c)

— tan — S
^2 2>'

. / ^ (S - b) 1V ,., \,o J > by (175),
(S-a) iS-c))

( S(S-a) + S(S-b)
)

\s/S{S-a)(S-b){S-c))
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26' - (a + b)

i^S{S-a) {S-b){S-'c)}

rcS

whence we obtain

^S(S-a)(S- b)(S -c)

w{S -a){S- b) (S - c)

S

Ex. 1. Let a = by or the triangle be isosceles, then

/ o \ \ /^ "" ^ ^ \ /^^ -^
o 2 2a + c

Ex. 2. If a = b = c, or the triangle be equilateral, we

shall have

== x/^^
- of ^ sj~i_
S 12 SV'S

186. Cor. 1. Since r5 = ^^^ (5 - a) (5 - ^>) (5 - c),

we have

/a + 6 + c\ , ^ ,
. ,

J.
I I — the area or tlie triangle.

This is also manifest from the consideration that the triangle

^JBC= the sum of the triangles AoB, AoC, BoCj

AB.oc AC.ob BC.oa /a-^b + r= -\- -j-

2

/a-j-0-\-c\

and from this property the value of r is very easily obtained
;

thus

2 area js/ S {S - a) {S - b) [S - c) , .

r = — = -^^ —
, as before.

a + b -\- c S

P
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187- Cor. 2. We may hence find the segments of the

sides of the triangle made by the points of contact with the

inscribed circle.

From (185) and (175) we have

B
Ac 2 S—a Ac S — a S — a

Be A S—h' " AB 2S-{a + b) c
'

tan —
2

wherefore Ac = S — a = ^{b -\-c~-a) :

In the same manner Be = S — 6=^(a-|-c— 6):

and similarly of the rest.

Hence also, Ac. Bc = (S'-a) (S— b); and -jr- = ^ . ;

DC o — 6

and so of the rest.

188^ To express the radius of the circle circumscribed about

a plajie triangle in terms of the sides.

Let ABC be the triangle, the angles and sides being

Af B, C; a, b, c as before: bisect the sides AC and BC

in the points 5 and a; draw bo, ao at right angles to AC
and BC respectively, meeting in a ; then is o the centre, and
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Ao = Bo = Co the radius of the circumscribed circle : call

this jR. Then

^0 1 1 1 ^ , V

"7T = "-—
T~l

=
-A
— = ":—;; >

(Eucl. S. 20.);Ab sm Job . Aoc sm B
sin

2

^ Ab b 1

ac

abc

4^S{S-'a)(S'-'b){S-c)'

Ex. 1. Let a = b, then in an isosceles triangle we have

2 9.

n __ _^ ^_f _ a

Ex.2. If a = b=^c^ we shall have for an equilateral

triangle,

3 3

I89. Cor. 1. By means of the last article, we have

abc
Q,R =

^^S{S-a)(S'-b)(S-c)

ab
""

2 ^S{S-a){S-b){S^)
c

= -T7f:y as appears from (180);

and .-. Q,R,CD = ab ^ AC . BC

i
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or the rectangle contained by any two sides of a plane triangle

is equal to the rectangle contained by the diameter of the cir-

cumscribed circle, and the perpendicular let fall upon the

remaining side from its opposite angle.

190. Cor. 2. The property just mentioned which may be

proved by means of similar triangles, is frequently made use

of to determine the radius of the circumscribed circle.

^ . ^,, «6 , ^ AB.CD abc
ror, smce CD = —~

, therefore = —^;

^
AB,CD

^ . . • 1

but = the area of the triangle

= ^S{S-a){S-'b){S''c\

hence^ = ^ S {S - a) {S - b) (S-c\
4 it

and R =
4 V*S(*S'-«)(6^-6)(5-c)'

as before proved.

191. Cor. 3. The segments of the angles A, B, C made

by the radii of the circumscribed circle may easily be foluid.

TT TT

For, /L oAb = - — Aob = - — B = / oCb:

TT TT
similarly, /. oAc ='^ — ^oc = - — C= Z oBc,

•

2 2

and Z oBa = - — Boa = - — A = Z oCa.
2 2

192. To express the cosines of the angles of a quadrilateral

in terms of the sides^ two opposite angles being supplemental

to each other.

Let the angles of the quadrilateral be denoted by the letters

at its angular points, j4, Bj C, D: also join AD, and suppose
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AB = a, BC = b, CD = c, and DA=d: draw the diagonals

AC, BD and let BD = a, AC = f^ : then by (1 65) we have

2 ad cos A = rt* + d'' - a^, from the triangle ABD ;

also,

26c cos C = b' -{- c^ — a^y from the triangle BCD
now cos C = cos {tt — A)= — cos J.^

therefore —2bc cos A = />>^ + c^ — a :

hencCj by the elimination of a, we obtain

2 (a J 4- be) cos ^ = «- 4- ^"^ - /r -^6-'
;

a^-\-d'~b'-c'
and cos ^ =

2 (ad + be)
cos C:

sHTiilarly, cos ii = ; — = — cos JJ.^
2{ab-]-cd)

193. To express the sines of the angles in terms of the

sides of the quadrilateral.

As in (173) we have sin^ A

•a'^d^-b'^-c-^= 1 —cos'

1

~^~
V 2{ad-^bc) J

4(af/+ bcY

2{ad+ bc)

{4{ad-{-bcf-{a'+ d'-b'--cy]

1

4{ad + bcY
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4(ari + />c)

4(ac? + ^>c)-

{(a+^'+^-cXa+c + rf-^Xfl + ^ + c-^iX^+c + cif-fl)}:

now let cf + 5 + c + c? = 2 6'

;

« + 6+ 6;— c=2(6'-c),

4(a^ + 6c)

(flc? + 6c)

and sin A=—- — J (^S ~- a) {S - b) {S - c) {S - d) :

ad + be

and similarly of the rest.

194. By a process very similar we may express the sine,

cosine, tangent, &c. of half an angle of the quadrilateral in

terms of the sides.

Thus, 2 sm^ — = 1 — cos ^ = 1

2 Q. (ad + bc)

ad-i-^hc-a^-d'^+ b' + c^ (b + cy-{a-~dy

2(ad-i-bc) 2(ad+ bc)

(a+ b + c-d) (b + c+d-a) 2 (S - a) 2(S-d)
2(ad-{-bc) Q.{ad+ bc)

. . ^ ./(S'^a){S-d) 1
and .*. sHi — = \/ ; =

^ ;

2 ^ ad+bc A
cosec —

2
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similarly, cos
A^ ^(S-h)iS^) 1

ad-\-bc A
sec —

2

A ./{S-a){S-d) 1

and .*. tan — = \/o ^ ^S'-'b){S-c) A'
cot —

2

similarly of the others.

195. On the same supposition to express the diagonals of

the quadrilateral in terms of the sides.

The construction and notation remaining the same as in

(192), we have

2
I

j2 2
a +0 —a

cos A —

and cos C = — cos A

therefore

^ad

Q.bc
'

2ad 2bc

hence a' (ad + be) = (a^+ d') b c
-{- (b' -}- c') ad,

. /(a^ + d') bc + (b^ + c^)ad
and a = V JTTad + be

_ ./a^c + d'bc-hb'^ad+ c'^ ^ ./{ac+ bd){ab+c
" ^ ad + bc

^ ad+ bc

similarly, since cos B= — cos D, we shall have

_ y/{a''+b')cd + (c^ + d')ab

_ y/ a^c d+ b\d-^c^ab-\- d^b _ ./{ac-^-bd) {ad-\- be)

ab-\-cd ab + cd
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190. Cor. 1. From the last article, we have immediately

a/^ = ac + bd, or AC.BD = AB,CD'\' BCAD:
that is, the rectangle of the diagonals is equal to the sum of the

rectangles of the opposite sides.

a _ ab+ cd AC _ AB.BC + CD.DA
'

f3
" ad + bc' ""'bd" AB.AD + BC.CD'

that is, the diagonals are to each other as the sums of the

rectangles of the conterminous sides respectively meeting their

extremities.

197* Cor. 2. The former property deduced in the last

article, which may be proved geometrically, is sometimes made
use of to express the sine of the sum of two arcs in terms of

the sines and cosines of the arcs themselves.

For, if A and B be the proposed arcs, take yJP = 2A, PQ
= 2l?; draw the diameter PR and join AP, JQ, AR, PQ,
QR:

then AP = chd 2A = 2 sin J, PQ = chd 2B = 2 sin B,

^l^ = chd (tt- Q.A) = 2 sin (^ — Aj =2 cos A,

QR = chd (7r-2.B) = 2sin (^-b\ = 2 cos B,

and ^Q = chd (2^ + 2 6) = 2 sin (A-f-B):
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now PR . JQ = AP . QR + AR . PQ, by the last article;

.*. 4 sin (A-hB) = <2. sin A 2 cos 1^ + 2 cos ^ 2 sin B,

or sin (A + B) ~ sin A cos B + cos A sin i)j as before.

198. On the same hypothesis, to express the area of the

quadrilateral in terms of the sides.

The area of ABCD = the area of the triangle ABC + the

area of the triangle ACD

=— sin B H sin D, by(l78),
2 2

f J ^ y^

ah . ^ cd ah + cd .

= — sin B-i sm (tt - /5) = sm h
2 2 2

ab + cd 2
^{S-a){S-h){S''c){S-d)

2 06 + <:c?

= ^(6:- a) (S-b) {S - c) {S^d).

199» Cor. From the last article, it appears that

A ABC = ""^
, VC'^ - «) ("^- ^) (-^ - f) (-^ - A

ab + cd

and

ab + cd

Also, if denote the angle in which the diagonals intersect

each other, and AG, CH be drawn perpendicular to the diagonal

BDj we manifestly have

the area of ABCD =aABD-^A CBD =^^^ + ^^^T^

=^ {AG+CH}=^ [AE sin 0+CE sin 0}

= ^ sm
;

Q
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whence

sin
2 ABCD 2 ^/{S - a) {S-b) {S -c){S- d)

AC.BD ac + bd

200. A circle may be circumscribed about the above-men-

tioned quadrilateral, and its radius may be determined.

Let Jf^ be the radius of the circle circumscribed about the

triangle ABD, R that of the circle circumscribed about the

triangle BCD: then by (188) we have

aad aad a
Jx =

4 A ABD ad . , 2 sin A '

4 — sm A
2

similarly^

tbc abc
R' =

4 A BCD ^c . ^, 2 sin C
4 — sm C

now sin C = sin (tt— i4) = sin A, and therefore R' = R:

or the circle which can be circumscribed about the triangle ABD,
will also be circumscribed about the triangle ACD, and there-

fore about the quadrilateral ABCD.

Also, R =
A A ABD

a {ad-{- be)

4 ^(S-a) (S- b) iS-c) (S-d)
, by (198),

-W% b+ cd)(ac+ bd)(ad+ bc)
, from (193).

{S-a){S'-b){S-c){S-d)

By making any one of the sides of the quadrilateral equal to

nothing, all the formulae just proved will manifestly be true of a

triangle.
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201. To express the area of a regular polygon in terms of

the side.

Let ABy BC be two adjacent sides of the polygon each = a :

bisect the angles at A and B, by the straight lines AO and BO
meeting in O; then if n be the number of sides of the polygon,

and therefore the number of angles, we have (Euc. 1.32) the

sum of the angles

= (271— 4) -=(«-2)7r;

(n— 2\
I TT :

Draw Oa perpendicular to the side AB, then Aa = Ba, and

the area of the polygon

,^^ AB.Oa a a ^^ nc? /;* — 2\ tt
— ni^AOB^n = /j tan U^ tt = --- tan

2 2 2 4

/n — 2\ TT

\ n ) i

na /TT 7r\ na tt na
= — tan I I = — cot - = —

.

4 \2 7^/ 4 n ^ IT
4 tan -

n

Ex. Let n be taken equal to 3, 4, 5, &c. successively,

and we shall have

. , 3a- 1 TT ?:>a^ ^0 a'Vs
area of a triangle = tan - - = —- tan 30 = :^4324 4

4 a~ 1 TT

area of a square = — tan - - = a^ tan 45^ = a^

:

^ 4 2 2

5 a" 3 TT 5q'
area of a pentagon = tan - - = tan 54 : and so on.

4 5 2 4
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202. To express the radius of the circle inscribed in a

regular polygon, in terms of the side.

Let AB and BC as before be two adjacent sides of the

polygon, n the number of sides : bisect the angles at A and B by

the straight lines AO and BO meeting in 0; draw Oa, Ob per-

pendicular to AB and BC respectively, and therefore bisecting

them ; then will O be the centre and Oa = Ob the radius of the

inscribed circle ; let this = r :

now

Oa m OB a sin OBa
Ba sin a OB cos OBa

(TT 7r\ TT
- — -

) = cot -

;

2 n/ n

— tan OBa

a TT

/. 7' = - cot -' =
2 n

a

TT
2 tan -

n

203. Cor. Hence from article (201), we have

.1

the area =
na

4 tan
TT 2 TT

2 tan -

nar r .= " pernneter.

204. To express the radius of the circle circumscribed

about a regular polygon, in terms of the sides.

Bisect the angles A and B by the straight lines AO and BO
meeting in ; then it is manifest from the fourth book of
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Euclid's Elements, that O is the centre of the circumscribed

circle, and OA = OB the radius^ which call R ; then

OA sin AaO
A a sm AO

a

(i - «•«)SHI
COS OAa

(~); -G-d Sin -
n

R = a

2sm -
71

205. Cor. 1. Hence also the area of the polygon

na cos 11 a K cos -
na

4 tan
TT

21 sni -

TT

it cos -

2
perimeter.

206. Cor. 2. From articles (202) and (204) we have

directly

R a

TT
tan -

a n

r . TT TT . TT

2 sin — 2 tan - sin — cos —
n n 2 n
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Ex. Let n be taken successively equal to 3, 4, 5, Scc, then

. , ^ 1

m a triangle — = —-q = 2

:

r cos 60

in a pentagon - = ^„ = V^- 1 :

and so on.

207. To express the perimeter and area of a regular

polygon inscribed in a circle^ in terms of the radius.

Let r be the radius of the circle, n the number of sides of

the polygon ; then the angle at the centre of the circle subtended

by each side AB \s— ;

a:

now by article (59), we have

— = did AOB = chd — = 2 sin -, by (76),
r n n

.*. Ai) = 2r sui - :

and the perimeter of the polygon = nAJB = 2«r sin - ;

Again,

AO.BO r' 27r
A AOB = — sin AOB, by (178), = — sin —

;
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iir^ . Qtt
and the area of the polygon = n A AOB =— sin

^ Tl

r TT . TT r TT .= " COS - 2/zr sm - = - cos -« perimeter.
2 w n 2 n

208. 7^0 express the perimeter and area of a regular

polygon circumscribed about a circle, in terms of the radius.

Let r be the radius, n the number of sides of the polygon,

then the angle at the centre subtended by each side AB\s —

;

n

draw Oa perpendicular to AB which is therefore bisected in a:

then;, AB = 2lrt = 2 0« tan AOa — Q.r tan -;
n

therefore the perimeter :=. Q^nr tan -
.

w

.^i> AB.Oa
. ^ 2 TT

Also, aAOB== =Aa.Oa = r tan -",

.'. the area of the pologon = nr^ tan -

r TT r .= - 9,?ir tan - = - perimeter.

209. Cor. From the last two articles, if P, P' and ^,
A represent respectively the perimeters and areas of the inscribed

and circumscribed regular polygons of the same number n of

sides, we perceive that
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„ Sin -
. sm —

jP 7i__ TTjI ^*_ 9 '^ ,

P' TT A<
'

A' TT n'
tan - 2 tan -

n n

210. 3o express the periphery of a circle in terms of the

radius.

Let p and p represent the perimeters of two regular

polygons of n sides, the former inscribed in, the latter cir-

cumscribed about, a circle whose radius is 1
;

then p = 2n sin -
, by {9.01),

and p = 'In tan - , by (208) ;

n

sm -

therefore — = = cos —

:

p IT n
^ tan -

n

and if we suppose the value of n to be increased indefinitely, the

value of -- will be indefinitely diminished,
n

and .*. cos - = 1, or p = p :

now the periphery of the circle evidently lies between p and p\
and therefore in this case is equal to either of them; hence

on this supposition — th part of the perimeter of the polygon is

equal to —- th part of the periphery of the circle
;

. TT 27r TT , TT TT TT
that is, 2 sm «- = — = 2 tan - , or sm -«='-= tan --

;

n n n n n n

therefore the perimeter of a polygon described about the circle

whose radius is r

TT
= ^Zur tan -

,
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TT
and the circumference of the circle = 9,nr tan -« when n is

n

Hihnite^ = 2wr - = 27rr.

211. Cor. 1. Let a be an arc of a circle whose radius

is r, A^ the angle subtended by it at the centre ; then by

(Eucl. 6. SS) we have

27rr : a :: 27r : A^

and thence A = = - :

2 TT r 7'

or an angle is equal to the corresponding arc divided by

the radius.

212. Cor. 2. From what has been proved in (210), if r

and r be the radii of two circles, D and D' their diameters,

C and C their circumferences, it appears that

C = 27r?', and C' = Stt/;

C 27rr r 2/' J)
and

' C 27r/ r' 2/-' jy*

that is^ the circumferences of circles are proportional to their

radii or diameters.

The properties proved in this and the preceding article were

assumed in articles (3) and (4) ; but it may be observed that no

conclusion was drawn from them, upon which any of the

propositions on the trigonometrical functions of arcs or angles

in any way depend.

213. Cor. 3. From the demonstration of (210) it appears

that if a circular arc be continually diminished, it ap-

proaches continually to a ratio of equality with its sine or

A A
tangent : also, since chd A = 2 sin — by (76) = 2 — (if A be

indefinitely diminished) = A, we conclude generally that the sine,

R
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chord, and tangent of a circular arc are all ultimately equal

to one another^ and to the arc itself.

214. To express the area of a circle in terms of the

radius.

If A and A' denote the areas of two regular polygons of

the same number n of sides,, described, in and about the

circle whose radius is r, we have seen by (207) and (208)

that

iir" . 9>7r
, „ TT

A = sni — , and A =iir' tan - ;

2 n n

sm
A 1 n

hence —-. = -
^ 2 TT

tan ~
n

•= cos^ - = 1^ if n be indefinitely increased

;

n

.*. A — Al\ and on this supposition the area of the circle is

equal to either of them, that is,

• 1 wr^ . 27r . . ^ .

the area of the circle = sm when n is infinite,

nr 9,1?
^ ^ 9- — by (210) = Ttr^ :

2 n

T r
the area also =- 27rr = - the circumference, from (210).

2 2

If the radius = 1, we have the area = tt : that is, ir which

represents the semi-circumference of a circle whose radius is 1,

will also represent the area.

215. Cor. 1. By means of the last article, the area

of a circular sector is easily found.
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FoFj let A^ be the angle of the sector, a the arc ; then

(Eucl. 6. 33) the area of the sector : the area of the quadrant

:: a : :: - : - :: A° : -, from (211);
4 7-2 2

.'. the area of the sector = — area of the quadrant
TT

2

2A TT?'" ^ ^
A?'^ r ^ r

= — from (214) = = - A r = - the arc, from (21 1).

TT 4 2 2 2
^ V

/

2l6. Cor. 2. Hence it is easily shewn that the areas of

circles are proportional to the squares of their radii, diameters^ or

circumferences.

For, let r, / be the radii of two circles^

D, ly the diameters, C, C- the circumferences ;

then by (214) we have A = 7rr^ and A' =.7^'^
;

A irr" 7-^ 4/^ D"-
and .*. — = -^^, = I^ =

ZZr-
=•

Tvl' = 7^^ *^>' (-^^^'
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CHAP. V.

On the Solution of Triangles and the Jpplication of Trigono-

metry to the Mensuration of Heights, Distances, &,-c.

217. In every triangle there are six parts, the three

sides and the three angles ; and if a, b, c represent the former^

and A, B, C the angles subtended by them respectively, it

has been proved in (l63) that their mutual dependence upon one

another is expressed by the equations

a = b cos C + c cos B,

b = a cos C + c cos A,

c = a cos B -jr b cos A :

now, since n independent equations are in general necessary and

sufficient for the determination of n unknown quantities, it is

manifest that if three of the above-mentioned quantities be

given, the other three may generaUij be found.

On further examination however, it will appear that wlien

the three parts given are the angles, the magnitudes of the

sides will be indeterminate, though their ratios to one another

may be found ; for, in addition to the dependance expressed

in the equations just mentioned, the sides and angles are

further connected by the equations proved in (158), namely

a sin A a sin A b sin B
1 = -—^, - = —7;, a"(^ - = ~^~7^-
o sm i5 c sm L c sm C

hence, by division and substitution we have immediately

- = cos C + - cos B = cos C -I—^—=r COS B
;

b b sm i>
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. , « „ . sin A ^= cos A -\— cos C = cos A -{

—

:

—- cos C;
c sin C

= cos i> -f- - cos A = cos i) + -: 7 cos A :

« r^ sin A

therefore if A, B, C be given, and the latter sides of either of

these two sets of equations be called w, n, p, respectively,

we have

a h c
-. = m, - = ;^ and - = p^be a

from which it is evident that the magnitudes of a, b, c cannot be

determined, though their ratios to each other are found.

From what has been said, it follows that in every triangle, if

any three parts not all angles be given, the remaining parts can

be found ; and the reason of the exception above stated is still

further apparent from the circumstance that the lengths of the

sides of triangles may be increased or diminished, while the

magnitudes of the angles remain the same.

218. If one of the angles of the triangle be equal to 90^,

or the triangle be right-angled, it follows that this angle may
in all cases be considered as one of the parts which are given,

and therefore that only two other parts will be necessary

and sufficient for the determination of all the rest ; the same

exception being made, and for the same reason as in oblique-

angled triangles.

219. From the considerations of the last two articles,

it is manifest that the solutions of all right-angled triangles

are comprised in those of the two following cases

:

I. When one side and one angle are given :

II. When two sides are given :

and the solutions of all oblique-angled triangles in the following

four

:
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I. When one side and two angles are given:

II. When two sides and the angle opposite one of them,

are given

:

III. When two sides and the angle included by them,

are given :

IV. When the three sides are given :

and the investigations of the solutions of these cases in order,

will be contained in the following articles.

Solution of right-angled triangles.

Case I, in which one side and one angle are given.

' 220. Let cf, h, c be the sides of the triangle. A, B, C the

angles subtended by them respectively, C being the right angle
;

then since A -\- B = -
, (Euc. 1. 32), if one of these angles be

2

known, the other is likewise found

:

a sin A sin A = tan A — cot B
;

= sin A = cos B ;

= sm B — cos A :

and from these equations, if il or jB and any one of the

quantities a, by c, be given, all the rest may be determined.

221. Ex. 1. Given the side a and tlie opposite angle A,

to find the rest.

Here i> = - —A. and is therefore found :

o '

.so, -
sin B cos A

a sin A sin A
^ — —
c sin C . IT

Sin -
2

, b sin B sin JB
and - = =

c sin C
sin -

2
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also,

a sm A sni A = tan A J or b
a

=- a cot A
b sin B cos A tan^

and
c

a

sin

sin

c
A

"
i

1

C :=
a

sin A
a cosec A:

iin A'
"'

hence b and c are also found.

These values of b and c being adapted to the radius r by

means of (60), become

ra ra

tan A^ sin J.
'

and taking the logarithms of both sides of each, we have

log b = log r -f- log a — log tan A ;

log c = log 7' -f log a — log sin A :

from which, by means of logarithmic tables, the logarithms

of b and c, and therefore b and c themselves, may be found.

222. In the expressions for the logarithms of b and c

just found, the radius r has been introduced, because the natural

sines, cosines, &c. being all calculated to the radius 1, the

logarithms of many of them would of course be negative or

decimals ; and to avoid this, the radius used in the tables of

logarithms as has been observed in (loO) is generally supposed

to be ten thousand millions, and consequently its logarithm

to be 10.

Hence, therefore the equations above given become

log 6=10+ log a — log tan A
;

log c = 10 + log a — log sin A

.

To illustrate what has just been said, let us suppose

a = 4, and A = 53^ l' 54'';

.-. B = 90^-53' f 54" = 36^ 52' 6":
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also Jog ^» = 10 + log 4 - log tan 53^ 7' o4"

= 10 + 0.60206 - 10.12494

= 0.47712

= log 3 ;

therefore 6 = 3:

and log c = 10 + log 4 - log sin 53^ 7' 54''

= 10 + 0.60206 - 9.90309

= 0.69897

= log 5

;

therefore c = 5.

223. The quantities, 10 — log sin tI, 10 — log tan J, &c.

are called the Arithmetic Complements of log sin A, log tan j4j

&c. and it is manifest that if we denote these complements

by colog sin Ay colog tan A, &c. we shall from (222) have

log 6= log a + colog tan A;

log c = log a -f- colog sin A :

and it may here be further observed that to obtain the arithmetic

complement of a logarithm, it is necessary merely to subtract

the first digit to the right-hand from 10, and all the rest from 9
in succession.

224. Ex. 2. Given the side c and the adjacent angle A,

to find the rest. ^

Here, we have B = 90^ — A, which is therefore known ;

c sin C 1 . .

and - = -:—- = —, , or a = c sm A
;

a sm A sm A

c sin C 1 1 .

also 7 = -:—^ = ~—^ = ~
7, or 6 = c cos ^;

b sm i> sm Ji cos A

whence a and b are known.
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Adapting the expressions for a and b to the radius r, and

taking the logarithms of both sides as before, we have

sin A cos A
a = c , 6 = c ;

r r

.', log a = log c + log sin A ^ log r = log c + log sin A — 10

= log c — ( 10— log sin A)= log c — colog sin A
;

log b = log c + log cos A — log r = log c -{- log cos A— \0

= log c — ( 10~ log cos A) = log c — colog cos A :

and from these equations, the logarithms of a and b, and thence

a and 6 themselves, are found.

Case II, in which two sides are given.

225. Using the same notation as before, we have (Euc. I.

47. )j c^ = a^ + b^y whence if any two of the quantities a, b^ c

be given, the remaining one is found :

a sin A sin A
also, - = -—— = ; = tan A = cot B

;

b sm B cos A

a sin A sin A .

- = ~ = = sm A = cos B ;

c sin C . TT

= sin B = cos A ;

from which, if any two of the quantities a, 6, c be given, the

angles of the triangle will be found.

226. Ex. 1. Given the sides a and 6, to find the rest.

sin ^
2

b sin jB

c sin C

sin B

sm ^
2

Here, c = t^a^ + b^ is found
;

a sin J. . 1

also, 7 = -—=: = tan A
b sin B tan B
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,\ tan A — T 3 and tan ij = -

;

b a

and hence A and B are found.

Adapting the expressions above deduced to the radius r, and

taking the logarithms of both sides of the equations, we shall

have

A
^ T^ ^

tan A = r -
J tan i5 = r -

,

a

log tan A = log r+ log a — log b

= (10— log b) + log a = colog b -\-\og a;

and log tan B = log r+ log 6 — log a

= ( 10— log a) -j- log b = colog a + log b
;

and thus, by means of the tables, the logarithms of tan A and

tan B, and therefore A and B themselves, are found.

227. If the values of a and b be expressed in numbers, we
have only to add together their squares, and by extracting the

square root, to obtain the value of c ; but if these quantities

involve trigonometrical functions of angles, the value of c may
be adapted to logarithmic computation by the following pro-

cess :

smce c = Va^ + 6"- = a \/l + ^;

assume a subsidiary angle 6 such that tan = —

;

a

therefore c = a ^Z 1 + tan^ 6 = a sec 0;

jp

b

CL seo'v
and to the radius r we have tan ^= — , c = —

;

a r

whence log tan ^ = logr + log /; — log a = 10+ log 6 — log a,

from which is found :
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also log c = log a + log sec — log r — log a + log sec — 10,

from which the value of c is obtained ;

or if the logarithmic secants be not found in the tables,

log c=log a + 20 — log cos ^—10, by (lol)

= 10 + log a — log cos Of

from which the value of c is readily determined.

228. Ex. 2. Given the sides a and c, to find the rest.

In this we have, b = \J (? — c^ ^ which is found;

a sin A .

and by (lo8), - = -;—— = sni A = cos B
;

c sni C

whence A and JB are determined.

As in (226), we have to the radius r, sin A = r - = cos B,
c

.*. log sin ^=log ?'+ log a — log c= 10 + log a— logc= log cos B,

from which, by the tables, A and B are found :

also, as in (227), since b = ^ c — (^ — c y 1 — —
;

assume cos ^ = - , then h — c sj \ — cos'"^ = c sin d ;

^ ?vz c sm
and to the radius r we have cos \3 = — , and b=- :

c r

hence log cos d — log v + log a — log c = 10 + log a — log c,

which gives the value of Q
;

and log 6 = log c -f log sin — log r = log c + log sin 0—10,

from which b is determined.
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Solution of oblique-angled Triangles.

Case I, in which one side and two angles are given.

229. In the triangle, let a, b, c; A, B, C be the sides and

opposite angles respectively; then since A-}- B-\'C = ir, (Euc. 1

.

32), if any two of the angles A, B, C be given, the remaining

one is found :

a sin A a sin A b sin B
also, - = -—~ , - = -—~, - = -—-

;

o sm B c sm L c sin C

from which equations it is manifest that if any one of the quanti-

ties a, bj c, and any two of the quantities A, B, C be given, the

rest may be found.

230. Ex. Given the side a and the angles A^ B, to find

the rest.

Since A -jr B -Jr C = w, we have C = tt - ( A + jB), which is

found
;

a sin A sin B
also, - = -:—-, .'. h = a ~ -;

o sm i) sm A

a _ sm A __ sin A
^ _^ sin (^+ B)

c sin C sin (A -f J5)

'

sin A '

and thence b and c are also determined.

The values of b and c just found being already adapted to

any radius, we have immediately,

log b = log a + log sin B— log sin A ;

log f = log a+ log sin (J. -|- J5) — log sin ^ ;

therefore, by means of the tables, the logarithms of b and c, and

thence b and c themselves are obtained.

Case II, in which two sides and the angle opposite one of
them

J
are given.

23 1 . Retaining the notation of (229), we have

« _ sin ^ a sin A b sin B
b sin B' c ""sin C ' c ~ sin C '
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and from these equations, if two of the quantities a, b, c and a

corresponding one of the quantities A, B, C be given, all the rest

may be found.

232. Ex. Given the sides a, b and the angle Aj to find

the rest.

a sin A
. . „ b

Here, - = -—7, , . . sm b = - sm A,
o sm Jb a

from which B is found^ and hence C = tt — (A + jB) is determined

:

a sin A sin C
also, - = -:—

-:, , .'. c = a -—- ,

c sm C sm A

which is therefore found.

The side c as here found involves the value of C which is

not one of the quantities given, though it has been determined in

the previous part of the solution. The same side may however

be found in terms of a, b and A only :

for, cos A = , by (105),
206'

.*. 26c cos A = &^ + c^— a^, and c^ — 9.bc cos A=a^ — b'.

from which c = b cos A ± sj c? — Jf sin^ A.

The equations sm o = - sm A. and c = a ——- ,^ a sm A

are already adapted to an v i adius ;

.*. log sin B = log b — log a + log sin A ;

and log c = log a -f log sin C — log sin Ay

which_, by the tables, give the values of B and c.

The equation c = ^ cos A + ^ cT — b^ sin^ A, is not much
used, owing to the difficulty of adapting it to logarithmic compu-

tation, and is indeed rendered almost unnecessary by the facility

with which the angles B and C are determined.
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233. Cor. In the last example we have seen that sin B = -
a

sin A ; and because the sine of an angle and the sine of its sup-

plement (20) are equal, we are left in doubt whether the angle B
should be acute or obtuse. If however the side b adjacent to

the given angle A be less than the side a which is opposite to it,

it follows (Euc. 1. 18) that the angle B is less than the angle Aj

and therefore the ambiguity is in this case removed. But if h be

greater than a, the case remains ambiguous, as is also easily

shewn by geometrical construction.

For, at the point A in the indefinite straight line AD make

the angle CAD equal to the given angle A; take AC equal to

the side b, and with centre C and radius equal to the side a,

describe a circular arc, which, since a is less than b, will cut AD
in two points B, B on the same side of A : therefore each of the

triangles ABC possesses the same data, and consequently each of

the required parts admits of two different values.

The same construction shews that if a be greater than b^

there is no ambiguity, the intersections B, B being then on

opposite sides of A.

Case IIIj in zohicJi two sides and the angle included by them,

234. The same notation remaining, we have from (159)

fA + B\ C
tan I

) cot —
a-\-b

_^
\ 2 J £

rT^ " /A-Bx" /T - B\
'
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/A+C\ B
tan (

I cot —
a -\- c \ 2 / 2

a — c /A — C\ /A — C
tan

J^4-C\ A
tan I I cot —

b + c

h - c /B-C\ /B^ C\'
tan (^) -r-i^)

from which, if any one of the angles A, Bj C and the two

sides containing it be given, the difference of the two remaining

angles is found : also the sum of the same angles being the

supplement of the given one is known, whence the angles them-

selves are found : and the remaining side is then determined

from (157).

235. Ex. Given the sides a, b and the included angle C,

to find the rest.

c
, cot --

XT U "^ + ^ ^
Here we have a-b /A-B

tan
I

/A-B\ /a-h\ C D' '"" {--J-) = to) ""'i =''"¥' ^"''P"^^'

from which ( ) is found = — ; then we have
\ 2 / 2

A-\-B TT C ,A-B D= —
, and = —

:

2 2 2 2 2

whence, by addition and subtraction, are obtained

2 V 2 / 2 V 2 /'

which therefore both become known :
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- c sin C sin C sin C
also, - = ——

-r =
a sin ^ . /TT C-Dx /C-D\'

sill I \ cos I I

a sin C

(^")
, which becomes known.

cos

The value of c may also be found directly, without

previously determining the angles A and B, for in (167) it has

been proved that

c = ^a^-{-b^-C :'^ cos C.

The equation, tan [—^) =
(^^:p^j

cot
-^ ,

is already adapted to any radius, and if a and b be numerical

magnitudes, it is also adapted to logarithmic computation ; thus,

log tan (——j = log {a - b) — log (a + b) -{- log cot —

,

from which by the tables, /
J
becomes known.

If however a and b be not numbers, but involve trigono-

metrical functions of angles, assume j = tan 0,

V 2 / \a+ bj 2 }a
,'. tan

/tan 0- 1\ C ^_ 0^ C
= I TTTT I cot — = tan (t^~ 45 ) cot -- to the radius 1 ;Vtan^+1/ 2 2

, ,. . a tan
.*. to the radius r we have - =

,

b r

/A-B\ tan (0-45^) C
and tan I I = cot — :{^)-
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hence log tan = log r -f- log « — log ^=10 + log a — log 6,

from which is found ;

and log tan (
—— )

-= log tan (0— 45^) + log cot log r

C
= log tan {0 ~ 45^) + log cot - - 10,

from which ( ] is determined:
V 2 /

again, log c = log a + log sin C — log cos (

J ,

from which, by the tables, c becomes known.

The other expression for c is also easily adapted to lo-

garithmic computation, for

c = ^a"-\-b^'-Q.ab cos C = >>/ (a - 6)" + 2 « 6 ( 1 — cos C)

= \/(a -hY+ 4.ab sin^ ^ = {a-h) \/ x + -^^~^^ :

let .*. the subsidiary angle be such that tan^ = ^ -r> sin^ — ,

{a—oy 2

whence c = {a-' h) ^J 1 + tan" = (« — h) sec ;

and to the radius r, we have

o ^ 4 a ^ . o C , ,

, ^ sec
tan' 9 = —7 sm' — , and c — (a—o) ,

{a — by 2 ?'

therefore taking the logarithms of both sides, we get

log tan 6 = -^ [log 4a b -^ 2 log sin — — 2 log (a — ^)},

which determines the value of ;

and log c = log (« — b) + log sec ^ — log r

= log {a — b) 4- log sec ^ — 10,

= log (fl — 6) + 10 •— log cos Oy

from which c is found.

T
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236. In practice, when two sides AC^ AB oi a triangle

and the included angle A are given, a perpendicular CD is

generally let fall upon one of the given sides AB from the

opposite angle C ; the triangle is thus divided into two right-

angled triangles ACD^ BCD, of which the sides and angles are

easily found by the methods already laid down ; and hence the

remaining side and angles of the proposed triangle may be

determined.

Case IV, in which the three sides are given.

237. The notation of the preceding articles remaining, we

have seen by (173), that i( %S = a + b + c,

sin JL = -^ ^S(S-a)(S-- b) {S - c);
DC

sin B = — JS{S-'a){S-h)(S -c);
ac ^

sin C=— J^S{S-a)(S-b){S''c)

also, in (175), it has been shewn that

. A /(S-b)(S^)^"? = V
^^

;

sm
2 ac

. C ./(S-a)(S'-b)
sm - = V — -T

2 ab
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2
^

ac

C ^/S(S-c )
s — = V ; :

Q
^

ab

A ^ ^(S-b)(S~c)
and .*. tan „ ^ ^ .

2
^ S(S-a)

^"^2 ^ SiS^b)

C . /{S ~a){S- b)
tan = V ^-Tq T" •

2 S (S -- c)

and from any of these sets of equations the values of the angles

A, B, C may be determined.

238. Ex. Given the sides a, b, c, to find the angle A.

From the first set of equations given in the last article,

we have

sin A = ^ ^S{S-a)iS^b)(S-^c),
be

which being adapted to the radius r by means of (59) becomes

sin A = ^ ^S{S-a)(S''b)iS'^c),
be

and in logarithms gives

log sin 4 = J 4- log 2 — log 6 — log c

+ f {logS + log(5-«)+log(S-6) + log(5-c)},

from which the value of A is found.

This solution might at first sight seem to be all that

is necessary, and sufficient for the determination of an angle
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in all cases ; but upon examination of the tables of logarithmic

sines, and from (139), it appears that when an angle becomes

nearly equal to 90^, its logarithmic sine does not differ by any

significant figure from those of several other angles nearly equal

to it, though this does not happen in other cases. If therefore,

from the relations of the sides of the triangle, we perceive that

no one of its angles is nearly equal to 90^, tliis method of solution

will not be liable to objection^ owing to any imperfection in

the construction of the trigonometrical and logarithmic tables,

and may therefore be applied without apprehension of great

inaccuracy in the result.

239. The second set of equations mentioned in (237), gives

^ y/'{S--b)(S-c)
sin — = Y , to the radius 1,

... A ./(S-J^HS-c)
and . . sm — = r y , to the radms r

;

2 he

.\ log sin- = 10+ - {log(6'-6) + Iog(^-c)-log^»-~logcl,

from which — , and therefore A, may be found.

To determine in what cases it may be expedient to make

use of this solution.

Since sin a' — sin a — 2 cos (—^
\ sin / \ , by (()7),

sin a — sin a (a + a\ V ^ /
we have -. == cos I 1 ', 3

a - a V 2 / /g - o-\

which, if a and a be very nearly equal to one another, becomes

sin a — sin a c (ox c^\ .

-, = cos a, nearly, as appears irom (2io;.
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that is, corresponding to a given change in the angle, the change

of the sine will be nearly proportional to the cosine, or the greater

as the angle is the less ; and hence it follows that this method

of solution is to be preferred when the angle required is acute.

From this it is also manifest why the changes in the sines of

angles nearly equal to 90° are very small, the cosines being then

nearly equal to 0; and also, that this second method of solution

may be employed when the angle of the triangle which is

required is nearly equal to a right angle.

240. From the third set of equations enumerated in (237),

we have

- = v-^'^'
~ "*

cos — = v ; -, to the radms 1,
2 be

A /s{S-a) ^ . ,.

and .*. cos — = ?• V/ : > to the radius r :

£ ^
be

A 1

hence log cos — = 10 + - { log «S -(- log {S — a) — log ^ — lo

from which —
, and therefore A. becomes known.

To determine the eligibility of this solution in anj case.

a -T a

\

6 "-
]

o" c

m\Since cos a "^ cos a = 2 sin y—^ ) si" (—^) > ^y (^

cos d '^ cos a .
(a -r o.\ \ ^ J

we have ^_^ = s.n (^-^-j , _ ,

cos a '^ cos a .
,

which becomes -, =sm a, nearly,
a — a

when a and a are nearly equal to one another: hence the

change in the cosine corresponding to a given change m the angle

varies nearly as the sine of the angle, and will therefore be the
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greatest when that angle is nearly equal to 90°. This solution

will therefore be best adapted to those cases in which the angle

considerably exceeds a right angle, and consequently when its

half differs not greatly from a right angle.

Hence also^ this solution and the next preceding one will

respectively have the advantage, according as the angle sought

is obtuse or acute.

241. The fourth set of equations given in (237)j has

A . /{S ~b){S- c) . ^. ^

2 o (o — a)

/ . . ^ K/(S-h)(S-c)and . . tan — = r V —~—^ r— , to the radius r
;

2 o {o — a)

A
.*. log tan ^

= 10+ I {log {S - ^»)4-log (S-c)-log 6^-log (^~«)},

and hence — and A are found.
2

As in the two preceding methods of solution,

sin a sin a
snice tan a - tan a =

cos a cos a

sin a cos a — cos a sin a sin (a — a)

cos a cos a cos a cos a

we have

tan a — tan a 1 sin (a' — a)

a — a cos a cos a (a' -- a)

1

cos a
sec^ Uj nearly, if a be very nearly equal to a

:
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hence, if the change in the angle be given, the change in its

tangent will be proportional to the square of its secant^ and

therefore very great when that angle is nearly equal to 90 . This

method of solution therefore,, owing to the want of accuracy in

the proportional parts, will be least eligible when the angle

required considerably exceeds a right angle, but in other cases

may generally be used with advantage.

242. This case, like the preceding, is in practice generally

solved by drawing a perpendicular from one of the angles C
upon the side which subtends it, and thus dividing the triangle

into two others ACD, BCD having each a right angle at D:

then, since by (l68), the base AB : the sum of the sides

(AC+ BC) :: the difference of the sides {AC - BC) : the dif-

ference or sum of the segments of the base {AD^ DB) made
by a perpendicular let fall upon it from the opposite angle,

according as it falls within or without the triangle: therefore

the difference or sum of the segments of the base may be found,

and their sum or difference AB being given, the segments AD
and DB become known, and consequently two parts in each of

the right-angled triangles are determined, from which all the rest

are immediately derived.

Meiisuration of Heights, Distances, 8sf.

243. The solutions of triangles given in this chapter, will

in all cases enable us to determine the relations between their

different parts, and if the number of quantities which are given

be sufficient, to find the rest ; and the mensuration of heights,

distances, &c. is merely the application of these solutions to par-

ticular instances, together with the use of certain instruments, by

which the lengths of lines and the measures of angles are ascer-
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tained. Gunter's chain of 4 poles or ^2 yards, or common
tape of 50 or 100 feet is used to measure distances ; a graduated

quadrant furnished with a plumb-line to measure angles of eleva-

tion or depression ; a theodolite, to measure horizontal angles,

and a sextant or quadrant, such as are oblique. This ap-

plication of trigonometry involves no principles but what have

been aheady explained, and no general rules can be laid down,

except that such lines must be measured and such angles observed,

as may most easily and conveniently lead to the determination of

those which are required. The following examples will be suf-

ficient to make this part of the subject understood.

244. Ex. 1 . Tofind the height of an accessible object stand-

iiig upon a horizontal plane.

Let AB be the object standing upon the horizontal plane

JBD; measure off BC = a feet, and at C let the angle ACB be

observed : then

AB sin C sin C ^= -:—T =
p, = tan C,

BL sm A cos G

.*. AB = BC tan C = a tan C, which is the height of the

object •

, ^C sin i^ 1

a»« --- = -,—- = = sec C,
i)C sm A cos C

.*. AC = BC sec C = a sec C, which is the distance of its

summit from the place of observation.

If the observed angle were C instead of C, and h, K the

heights deduced from these two angles, we have

K = a tan C', and h = a tan C,

w ; , ^,, .,, (sin O sin C)
/. h — h = a (tan C —tan C) = a < —, — -J.

(cos C cos C)

{sin C cos C -- cos C sin C) sin (C — C)
77, 7^ (

=« w, n,cos C cos C } cos C cosC
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h'—h a sin (C — C) a
and .*. —,—7, = 7^7 t;

—
jTr 7^

—

= 2-7,9 by (187),
C — C cos C cos C C — C cos C

(if C' be very nearly equal to C)

h h Qh

tan C cos'"^ C sin C cos C sin 2 C

hence, if a small error of given magnitude be made in the ob-

servation of the angle, the error in the computed height will be

inversely as the sine of double that angle^ and therefore the least

when that angle is 45° ; which consequently points out the place

in which it is desirable that the observation should be made.

245. Ex. 2. To Jind the height of an inaccessible object

above a hoi'izontal plane.

Let the point A denote the place of the object : draw AB
perpendicular to the horizontal line jBD, and in this line take

two positions C, D distant a feet from each other, at which ob-

serve the angles ACB, ADB equal to C and JD respectively;

then zDAC= L BCA - z.BDA = C-D:

, AC sin ADC sin D
and

CD sin CAD sin (C-D)'

CD sin D a sin D
AC =

sin (C-jD) sin (C~ D)'

AB sin ACB . ^
also, —-7 = —^ = sm C,

AC sm ABC

.-. AB = AC sm C = . .^ ^r- ,sm (C — D)

which is the height required :

Likewise

. ^ a sin D
. ^ r*

a sin C
AC 5= —

k;? and AD =
sin (C-D)' sin(C-D)'
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which are the distances of the object from the places of observ-

ation.

This example determines the distances of an inaccessible

object from two stations in the same plane with it.

246. Ex. 3. To Jifid the height of an accessible object

standing upon an inclined plane.

Let AB he the object upon the inclined plane, in which

take any two positions C, D in a line with it; suppose BC==a,
CD = b, and let the angles ACB, ADB be observed, and called

C and D : then

AC sin D
^ ,^ CD sin D b sin D

and ,\ AC
CD sin (C-D)' sin(C-D) sin(C~D)'

also, in the triangle ACB, we have by (234),

C
cot —

AC + CB 2

AC - CB
tan (^)

/^-^\ AC-CB C

6 sin D-a sin (C-D) C E
= ,—:—7^:

:—77; 7^ cot — = tan — , suppose,
6 sm jD+fl sm (C— jD) 2 2 ' ^'

B-A E
, B+ A IT C

,'. = — , also = ^ -_ —
2 2 2 2 2

whence B = ( | and A = ^ — ( |2\2/ 2V2/
AB __ sin C sin C

" IC" sin B
""

/C~£\'
cosim
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sin C h sin C sin D

cos ( ) sin(C— jD)cos( \

which is the height required.

247. Ex. 4. Tojind the height of an object standing upon

a hill contiguous to a horizontal plane.

Let AB be the object^ C, D two stations on the plane in a

line with it
;
produce AB to meet the plane in jE ; at C observe

the angles ACE, BCE, and let them be C and C respectively;

suppose CD= a, and let the angles ADE, BDE be called D
and Z)' : then

AC sin D
, ^/n C^ sii^ ^ a sin D

, and ,'. AC =
CD sin (C~D)'

'

sin (C-D) sin (C-D)'

BC sin D' CD sin D' a sin D'
also, 7^-7:: = -:

—

-p;-^—Tv", and.*.i5C=
Ci) sin{C-D')' sin{C-D') sin {C-DY

hence in the triangle ACB we have found the two sides AC,
BC and the included angle ACB= C— C^ from which AB the

height of the object may be determined as in the last example.

Precisely in the same manner the distance between two

objects at A and B which are inaccessible to the observer at C
and D, and to each other, may be ascertained.

248. Ex. 5. From the top of an eminence of given height

the angles of depression of two objects on the horizon in the

same plane ivith it are observed, to find the distance between

them.

Let AB be the given eminence and = fl^ C, D the ob-

jects in the horizon: draw AE parallel to the horizon and
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let the angles of depression EAC, EAD of the objects be C
and D ;

, AC sin ABC
then -^—r =AB sin JCD sm EAC sin C'

AB a
•. AC

sin C sin C

CD _ sin CAD _ sin {C-D)
^" C^ ~

sin ^DC"" sin D '

. ^7^ _ 6t sin (C - D)

sm C sni D
which is the distance between the objects.

Hence also the distances of the objects from the point of

observation are ——- and -:

—

- .

sm C sm D

249. Ex. 6. To determine the height of an object standing

upon a horizontal plane, by means of observations made at the

top of another object of given height on the same plane.

Let the height of the given object AB be a; observe the

angles of depression or elevation of the bottom and top of the

other CD, and let these be /3, a respectively ; then AE being

drawn horizontal to meet CD or CD produced in E, we have

aADB == DAE = /3,

= ~
7c, whence AIJ =

AB sm ADB sin /3 sin /3

CD sin CJD sin (/3 ± a)
and AD sin ACD

smi„(| + a)
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^^ _ AD sin (/3±a) _ a sin (/3±a)

/TT _ \ COS a sni p
sm (j + «)

which is the height required.

Hence also the distances of the bottom and top of the

object CD from the place of observation A may be found :

for AD = ——-
, as above,

sm p

, AC cos B ,„ AD cos B a cos B
and ——- = , /. AC = ~

AD cos a cos a cos a sin /3

250. Ex. 7. To determine the height and distance of an

object standing on the horizon, from two observations of its

altitude, one made on the horizon, and the other at a given

height above it.

Let A and B be the two points of observation in the

same vertical line, at which the angles of elevation are a,

)3 respectively; AB = a, CD the object whose height and

distance are required; draw A IE, parallel to the horizon, meeting

it in Ey then

CD = BD tan /3, and CE = AE tan a,

,'. AB=^ED=:CD- CE=:BD (tan /3-tan a),

, _,_ BA a cos a cos B
and BD = ^ = —:—-^ -~,

tan p — tan a sni (p — a)

which is the required distance

:

^x^ T^T^ n « cos a cos /3 « cos a sin /3
also, CD = BD tan /3 = —7—73 ~ tan /3 = —r-—5 ^,sm (p — a) sm (p— a)

which is the height required.

251. Ex. 8. Given the distances between three stations in

a straight line with an object standing upon a horizontal plane,
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TT
and the angles of its elevation at these points 0, -^ — 0, and 0,6

in order, being unknown^ to find its height.

Let ^ J5 be the object, C, D, E the stations in a straight

line with it, CD = a, DE = b : then

zAEB = e, /.ADB:='^ -G, and^ACB^^O;

.-. ^EAC= ^ACB- zAEB = 2e-e^0== a AEC,

and .-. AC=CE', also, zE^i)= /. ADB- /. AEB

2 2
'

hence, in the triangle ADE, we hr^ve

DA sin AED sin

DE sm DAE
SHl G-")

s'ln _ . b sin
DA =

cos 20 ' '

*

cos %0

again_, in the triangle ACD, we have

sin (- -e)
AC _ sin ADC _ ' \2 J _ cos

AD ^
sin ACD ""

sin 20 ~ sin 2

, ^ . _^ cos 6 sin cos b
/. AC=^D . ^^ = -r—-7^ -r = —r = EC=a-i-b,

sin 2 sin 20 cos 20 2 cos 20 '

whence cos 20 = —;—rrrj ^nd is .'. found;
2 (a -f- o)

and AB = AC sin 20 = (« + /;) V 1 ^——,
4 (a + 6)"

=— , Uic required height.
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252. Ex. 9* Given the distances between three objects,

and the angles contained by the lines drawn from each of them
to a certain station in the same plane with them, to find its

distance from each.

Let Ay B, C be the objects, D the station, at which let the

angular distances of ^ and C^ C and JB be a, ^ respectively ;

then calling the sides of the triangle a, b, c as before, if the

angles DAC, DEC be and 6',

sin a b sin 0' DC
we shall have -:—;: = -p^-p^, and -:

—

-pr = ,

sin 6 DC sm p a

.
s"^ cc sin 0' b

. • /3' 7 • /3 • ^
• •
~—

7r~-
—

7^ = •"
* or a sm a sni t^ = 6 sin p sin ^ :

sm 6 sin p a

but the angles of the quadrilateral ADEC being together equal

to four right-anglesj we have

0'=27r - (a + /3+C)— ^= 0-^, suppose,

.'. b sin /3 sin 9 = a sin a sin {(p — 6)

= a sin a (sin (p cos 6 — cos (p sin ^),

and b sin j3 tan = c sin a (sin — cos tan 0)^

a sin a sin d>
whence tan d — —:

~7~7~i
—

'•—3 *

a sin a cos <p-rb sin p

and therefore the angles CAD, CED become known, and

consequently the distances ADj ED and CD.

This problem may be solved geometrically, by describing

upon AC and EC two segments of circles containing angles

equal to a, /3 respectively, and intersecting each other in the

point D.

253. Ex. 10. To determine the height and distance of an

object from its observed equal elevations at two points whose

distance from each other is given, and its elevation at the

middle point between them.

Let AE hQ the object, C, D the two points whose distance

from each other is a, and E the middle point between them :
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a the elevations at C and D, and /3 the elevation at E: join

BC, BD, BE, AC, AD, AE; then

tana BE rtrv

since BCE is manifestly right angled at E, because CBD is

isosceles
;

a sin BCE a tan a
BE=:CEt^n BCE =

2 cos BCE 2 ^tan-/3-tan^ a

whence AB = BE tan /3

a tan a tan /3 a sin a sin /3

""
5 ^tan^/B-tan'"^

""
2 ^sin(/3-a) sin (p + a)

*

which is the height of the object

:

^ fl cos a sin B ^^
also, BC = AB cot a = . ^ ^ -

x
= ^I> >

2 ^sin(j3 - a) sin (/3 + a)

^ „ . ^. ^ ^ sin a cos i8

and BE =AB cot /3 = ^
2 ^sin (j3 - a) sin (/3 + a)

'

which are the horizontal distances of the object from the places

of observation.

254. Ex. 11. Given the elevations of an object above

a horizontal plane at three points at given distances from one

another in the same straight line, to find its height.

Let AB he the object standing at the point B on the

horizontal plane ; and at the three stations C, D, E in a straight

line, let the observed elevations be a, /3, y^ and suppose the

height AB to be represented by h: then

BC = h cot a, BD = h cot /3 and BE = h cot y :

draw BE perpendicular to CE, then from (l66), if CD and DE
be called a and b, we shall have

h^ coV a = a- + h:' cot^ (3 + 2aDF,

and h^ cot" 7 = // + /r cot^ ^— 2/; DF;
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hence bh^ cof a = a b-{-bh^ cot^ fi + 2a b DF,

and ah^ cofy — ab^ + ah^ cor/3 — 2a6 DF,

.'.by addition_, we get

{a cot^ y + b cot^ a) h^ = a'b-\-ab' + (a + b) cot' fth\

and consequently,

{a cot^ y — {a-\'b) coV fi -{ b cot" a] h^ = ab {a-\-b);

a/ ab (a + b)
whence h = y 5 — 5-75—

;

2~
a cot 7— (a + 0) cot p + b cot a

the required height

:

I „.^ ; 4 / « 6 (a + 6)
also, xJC =:/iCOta = cot a v 5 —

q-?^—

;

5~ >

« cot 7 - (a+ 6) cot^ ^ + 6 cot^ a

which is the horizontal distance of the object from one of the

stations.

If we suppose b = a, and 7 = a, the perpendicular height

and horizontal distance of the object will be the same as

determined in the last example.

255. Ex. 12. Four objects situated at unequal but given

distances in the same straight line, appear to a spectator in the

same plane zcith them to be at equal distances from each other,

it is required to determine his position.

Let Ay B, C, D be the objects, E the place of the eye;

draw EF perpendicular to DA produced if necessary, and

suppose AB = a, BC = b, CD = c;

also let lAEB= ^BEC= ^CED = (j), and zEAF=e:

sin 3(p _ sin AED __ AD
sin EAD ~

sin EAD "" ED'

sin EAD _ sin EAD __ EB
""""^

sin "" sin AEB " ~AB'

X
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sin 3 . 2 , AD EB
whence —:—p- or 3 — 4 sni = —— —-—

sin
(f)

^ AB ED

AB CD ac

and /. sin = A/ ,

consequently is determined :

again,

EF EF
sin = sin EJF= -— , and sin (0 - 20) = sin ECF = -~

,

AJb EC

sin CE BC
^ ^ ^, ^ b

sin(y—-20) -4il/ 7li5 a

and a sin = 6 sin (^ — 20) = 6 (sin ^ cos 20 — cos ^ sin 20),

6 sin 20
whence tan = ; , and .*. 6 is found:

o cos 2(p — a

AE sin EBA sin (0-0)
, , ^ « sin (0 - 0)

•'• ITB = "^

—

TWB = • ^ ^
and ^E = . ,

^ ;

il5 sm ^Ej« sin sm

. 1 4 77 ^ I? /3
« sin (0 - 0) cos

whence also At = AE cos U = :

—

'-
,

sm

^ rj? AT? D ^ ^"^ (0-0) sin
and EF=AE sm — -.—

f

,

sm

and thus the position of E is completely determined.

It is obvious that if (a-\-b-^c)b be greater than Sac, the

problem is impossible: also, if we suppose a = b = c, we shall

have sin = 0, and AF and EF indefinitely great ; that is_,

equidistant objects in the same straight line appear to be so to

a spectator indefinitely distant.

256. It would be no difficult matter to extend the number

of examples on this subject, but from what has been already
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done, the method of proceeding in other cases cannot but be

manifest, though few or no general rules have been given.

The Trigonometrical Survey of a Country or large tract of

land is conducted in a similar manner^ by selecting conspicuous

places which may be seen from one another as stations at which

angles are observed, for instance, the mutual bearings and

directions of such objects as it is intended to include ; and the

distances between two or more of these stations being found by

actual measurement, each of the other parts of the triangles

employed may be determined : this may also be verified by

taking the measure of a different line and proceeding with it as

with the first, so that if the whole be correct, the conclusions

will necessaiily be the same by each process.

In Navigation, the computations used in what is called

Plane Sailing are nothing more than the solutions of right-

angled triangles, the hypothenuse being termed the Distance, the

other two sides the Difference of Latitude and Departure, and

one of the acute angles the Course: and if any two of these

quantities be given, the remaining two may be found by the

methods already explained.
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CHAP. VI.

On Algebraical Expressions fo?- the sinesj cosines, Sac of arcs,

and their sums, differences, multiples, Sfc. On the general

relations between the sine, cosine, S^c. of an arc, and those

of its multiples and submultiples. On the general relations

between the poivers of the sine, cosine, <S)C. of an arc, and

the sines, cosines, S^c. of its multiples. On general ex-

pressions for the sine, cosine, S^c. of an arc in terms of

the arc, and impossible exponential quantities,

257. 2o express the sine and cosine of an, arc by means of

algebraical binomials.

Since, by article (25),

l=cosM+sin^J.=(cosA+ ^ — 1 sin -4) {cosA —^ — lsmA),

,
. 1

we have cos A— j^ — \ sin A = / : 7 •^
cos ^ + ^ — 1 sm A

let then cos A + ^ — 1 sin A=^x, .', cos A— ^ - \smA= -
,

and by addition and subtraction we get

2 cos A = x -\r - , or cos A — - (:r + -|: and
X Q\x/

2 x/ - 1 sin A=x— - , or sin ^ = 7=- ( x | .

X 2^-1 V xJ

By means of the relations established in the first chapter,

the versed sine, chord, &c. of A might be expressed in terms

of X, if it were necessary.
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1258. To express the sines and cosines of the sum and

difference of tzvo arcs by means of algebraical binomials.

Let cos A -\- ^ —• \ s'm A=^x, .'. cos A — a^ — I sin A= -
;^ X

and cos B -\- ^ — 1 sin B =y, .*. cos B — yj — \ sin £ = - :

hence cos A = --
\ x -\— \ . sin ^ = 7-=- ( x | ;

2 V x)' '^J-\ V x)'

and cos B = -
( y + -

| , sin jB = -—7== \y )

:

^K y) 2^-1 V^ y)

.• . cos (jI + 5) = cos A COS B— %\w A sin B

COS (A — 5) = cos A COS B+ sin A sin B

2 V 0^/ 2 V'^ y) 2 V^^ ^ ^'/ 2^ - 1 V-^ y)

4 1 y X j 2 (j/ a j

'

sin (^ + B) = sin J. cos B + cos ^ sin B

7^H-41 = 7= U-y r;

sin (^1 — i>) = sill A cos B — cos ^4 sin B
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259. Cor. 1. If C be another arc, and cos C+ >^ — l sin C
be assumed equal to z, we shall, by a process exactly similar,

have

and sin (^ + JB + C) = > \xyz v;
2 V — 1 I ^j/ 2

)

and generally, if there be any number of arcs whatever,

cos (A + -B + C -{- &c.) = -i^xyz &c. +
xyz &c.j'

in(iH-i^ + C + &c.) =sm _L_|lj/2 &C.
xyz &cj

260. Cor. 2. By multiphcation and addition, we obtain

from the expressions just deduced,

cos(il + jB+C+&c.)-i-A/^sin(^ + ii4-C + &c.) = j?3/2&c.

= (cos A H- ^ — 1 sin ^) (cos B + >^/ - 1 sin B)

(cos C + >/°^ sin C) &c.

and by multiplication and subtraction,

cos (1 + B+ C+ &C.) -V^ sin (1 4- jB 4- C + &cJ
;ry2:&c.

(cos il + /^ - 1 sin 1) (cos ^+ ^— 1 sin B)

1

(cos C 'f V — 1 .''in C)
, &c.
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= (cos A — ^— 1 sin A) (cos B ~ ^ — 1 sin £)

(cos C — v~ 1 sin C) &c.

20l. The properties proved in the last article are frequently

deduced by a direct process ; thus^ by actual multiplication

we have

(cos A ± ^/ - 1 sin A) (cos B ± ^ - l sin 7^)

= (cosA cosB — sin A sin B) ± ^/ — 1 (sinA cos B + cos A sin J5)

= cos {A-hB)± >/^ sin (A + B):

again,

(cos^l + ^y — lsin^)(cos B ± ^^— 1 sinB)(cosC± /y/ — 1 sin C)

= {cos(7i + jB) ± v^^n'sin(^ + 5)} {cosC± v^^ sin C}

= cos(^ + -S+C)± ^~^ sm{A + B+C), as before;

and by the principle that if the formula be true for the sum
of n — I arcs, it will also be true for the sum of n arcs,

we have generally

(cos A ± v"--~l sin A) (cos B ± sj — 1 sin B) &c.

= cos(A + B + &c.) ± \f-^\ sin(^ + jB+ &c.)-

262. Cor. From the last article is easily deduced what

was proved in (132).

For, cos {1 + JB+ C+ &C.} -f >y/^ sin {1 + B + C+ &C.}

= (cos A + s/ — ^ sin A) (cos JB + >>/ -— 1 sin J5)

(cos C+ ^/^ sin C)&c.

= cos7lcosJ5cosC&c. (1 + ^/— 1 tan J){\ + ^/-l tan B)

(1 + ^y - 1 tan C) &:c. = cos A cos B cos C &:c.

{14- V^ ^1 - ^2 - >s/^-~l '^3 + '^^+ V^-^o-^c.}
the notation used in article (132) being retained :
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hence, equating the possible and impossible parts respectively

on both sides of this equation, we get

cos{J+B+ C+&ic.} =cosAcosJBcosC&c. { 1 — ^Sa + S4— &c.}
;

and

sin {^ +5+ C+ &:c.}=cos^ cos B cos C &c. {^'i-^Sa+ ^s-Scc}

.-. tan (A +£+C+ &c.) = p ,
/^ , Q—

N

cos (A -{-3 + + Sec.)

as before.

263. To express the sine and cosine of the multiple of an

arc hy means of algebraical binomials involving the same quau-

tities as the sine and cosine of the arc itself

Let cos A-\-^ —l sin id = :r, .'. cos yi — ,>/ — 1 sin ^4 = -
,

X

and 2 cos A — x -\--
, 2^ — 1 sin A=x :

X ^ X

hence, cos 2 ^ = 2 cos' ^—1=2- ( x { ) — 1

4 V x/

= - (x^-\--A. or 2 cos2 ^=x^ + -^;
2 \, x^J /'

J = 2 sin A cos A= 2 7-=^^- (x ] - (x -{- -
|^^ - i \ x/ 2 \ ^ xj

= ;;—/-
I x^ — -^ ) , or 2 /v/ — 1 sin 2 ^ = .r^ 5 : and so on :

2 V — 1 V ^' /
^

x^

and

sin 2
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if then,

2 cos(//- 1) A = .r^^*' +—_-,,

and .-. 2^—1 sin (n — \) A — r"~ ^ ~ "X^rr >

we shall have

2 cos /iy4=:- {2 COS (;i - 1) J. 2 cos A — 2 sin {n — \) A 2 sin^}

= - (2 a^^^ + --) = .r^' + — , and .*. 2 ^/"^ sin //^ = ^" - - ;

2 \ X / X X

hence therefore it appears that if these formulae be true for any

one value of n, they are necessarily true for the next superior

value : also, it has been just shewn that they are true when
?i = 2, therefore they will likewise be true when ?^ is equal to

3, 4, 5, &c, ; that is^ they will be generally true.

It may here be remarked, that these two formulie are im-

mediately derivable from (259) by making A = B= C = &.c. and

therefore x=iy = z=- &c.

264. If n be an odd number, n-\-\ will be an even one,

and therefore, as we have seen by the last article, we shall

have

. cos ('^)l = .-+-!,,
X

^

and 2^ — 1 sni I 1 ^ = .r
"

-^^^ :

\ 2 / — 2~
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but the formulae are equally true when n is even, and therefore

an improper traction.

Since 2cos^— = l-fcos ^4=1+- (i-f-W- ( Vx-{ y- \ ,

A y \
,

/— .Ay 1

.*. 2 COS — = Va' + —/-, andSv^ - i sm— = Vx --r-

:

2 Vx ^ 2 Vx

hence^ if 2 cos ( i A ^ x + ^_^ ,

^-
^

1 V >» — 1 1

. //<— 1\ , -IT 1

and .'. 2 >/ -1 sin (-~—) ^ =

we shall, as in the last article^ have

X —
n — l )

2 COS (-^j ^=^ "^"^

. //i+l\ ,
^^ 1

and 2 ^/ — I sin (—7-) ^ = :i
"" -

and therefore^ as before^ the formulag will be generally true.

265. Cor. From the preceding articles of this chapter, it

may easily be proved, on the suppositions there made^ that we
shall have

2 cos {nA^mB)^xy + -^^-^; 2 cos {iiA - 7?2J5) =—+^ ;

2 J~^\ sin ill A + mB) = x^'f -~^ ;
X y
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these formulae are however more curious than useful.

266. The following singular property of the chords of a

circle, the discovery of which has been attributed to Vieta,

Waring, &c. may be immediately deduced from (263).

Let PA be the diameter of a circle, and let there be taken

any number of contiguous equal arcs ABf BC, CD, &c.

then, if the chords PB, PC, PD, &c. be drawn, and PB be

assumed equal to .r +- ; we shall have

1 ^^ , 1PC = .r" + ^, PD = .r" + ~, &c. = &.c.

tor, P^= chd(7r— iljB) = 2sm ( )=2 cos = 2' + -
;

\2 2 / '2. X

PC = chd(7r-lC) = 2 sin f- -• ~\ = <z cos —
\2 2 / 2

= 2 cos 2 ( \ = X' + -
, by (263)

;

PD = chd (tt- i4D) = 2 sm I ) = 2 cos—
\2 2 / 2

/AB\ - 1

= 2 cos 3 ( "IT ) = '^"+ —
J ^"^ so on.



172

267. Demoivre's fornuilit, which are

and

(cos A ± v^ — 1 sin AT = con uA ± \/ — 1 sin n A^

(cos A ± ^ —
It sin A)" = cos — yi ± \/ — 1 sin — A,

m m

may also be proved by means of the expressions investigated in

Let X — cos A-^- sj — 1 sin A^ /. '", = cos ^4 — ^ — 1 sin ^

then we shall have

x'' - (cos A -^ ^ — 1 sin A)^ and - = (cos A - sj - 1 sin J)" :

but on the assumption above made we have shewn in (263)

that

x^ 4 =21 cos n A, and x'' —% ^J -\ sin nA ;

therefore, by addition and subtraction, we get

1

a'"=cos 7f^-l- \J — 1 m\nA, and ~ = cos ?iJ. — \f — 1 sin?/ A;
I*

whence

(cos A + \/ — I sin ^ly = cos ?iA+ \/ - 1 sin ^iid,

and

(cos A — ^/ — 1 sin A)" = cos ^^4 — >>/ — 1 sin tiA,

Again, let nA z= mB, then (cos A ± s/ — \ sm A)"'

= cos 71 A ±^ /v/ — 1 sin ?iA = cos mB ± \/ — \ sin ^/zi^
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= (cos B± J - 1 sin 5)'" = (cos - A± x/~^l si" " -^V".m

and .'. (cos A± v — 1 sm A) =cos - ^ + ^ — 1 sin —

^

m m

26s. Cor. 1. If the indices n and - be negative^ the
m

formulae will still hold good, by changing the algebraical sign

of the arc in the latter sides of the equations.

For, (cos A ± V--1 sin A)-" =
. ^ j

.

-—
-,^

(cos ^ ± >/ — 1 sui Ay

, by (257),

Vcos J. + V — 1 sin A/

= (cos A + ^ - I sin A)" = cos «^ + V — 1 si" ^^A

= cos { — iiA) ± v—l sin {
— iiA)',

and similarly of the other case.

269. Cor. 2. We may here observe that the formula? of

Demoivre contained in the last two articles are in reality only

particular cases of those which were demonstrated in (260) and

(261), and may be immediately derived from them by supposing

l = B = C = &c.

«

Also, from the truth of the formulae (cos A± \/ — I sin Af'

= cos — A + ^ — \ sin — A, if we put 2 cos A = x -r ^

,

m ~~ ^ m X

we may prove conversely, that 2 cos— A = x H
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n , m 1

and 2 ^ — 1 sin — ^=.r ^: and thence conclude that
m —

these formulae are general

270. 2'o express the sine and cosine of the multiple of an

arc in terms of the powers of the sine and cosine of the arc

itself.

By Demoivre's formulae proved in (267), we have

cos nA-^ ^ - 1 sin nA = (cos A -{- a^ — 1 sin A)''

= cos" 1 + w cos"-' A x/-^ sin A -71 C^^-—) cos"'^ A sin' A

- n C^^) C—A) cos"-' A J'~^\ sin^" 1 +&c. +( - 1)^ sin^' A,

by the binomial theorem :

hence, equating the impossible and possible parts of these ex-

pressions respectively, we obtain the follovt'ing equations
;

f>J -—A sin n A

n cos"-'A v^- 1 sin A-n C^-^-) (~T" ) cos"-'yl >/^ sin'^ + &c

.*. dividing both sides by ^ — ]^ we get

n— 1 \ /n — 2^
SHl nA=n cos"-' ^ sin ^ - n C^—\ C- -\ cos""' J[ sin" J.

11 -^ \

+ &C. which will be continued to terms if // be odd
2

n
and to - terms if n be even :

2
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n— 1

and cos jiA = cos" A — ?t ( ) cos" ^ A sin^ A -{- Sec.

n-\- 1

which will be continued to terms if n be odd, and to

- + 1 terms li // be even.

Ex. Making n equal to the numbers 2, 3, 4, 8cc. succes-

sively, we shall have

sin 2 A = 2 cos A sin A ;

cos 2 A = cos" A — sin' A :

sin 3 A = 3 cos^ A sin A - sin^ A ;

cos 3 il = cos^ A — 3 cos A sin^ A :

sin 4 A = 4 cos"^ ^ sin ^ — 4 cos J. sin^ ^ ;

cos 4 A =^ cos"* A — 6 cos^ A shr J. + sin'^ A :

8cc. = &c

The versed sines and chords of the same multiples may be

expressed in terms of the sines and cosines, and therefore in

terms of the versed sines and chords of the same arcs, by means

of the observations made in Chap. i.

271. Cor. From the last article, the tangent of the mul-

tiple of an arc may be expressed in terms of the powers of the

tanoent of the arc itself.'&'

sin n A
row tan tiA =

cos ?iA

n cos"~^ A sin A-n C- \ C-—^\ cos"~^ A sin^ A+&c.

- A-n (^) cos'^-- A sin" ^+ Scc.
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sin A /n— \\ /n — 2\ sin'' A
cosA

fn— \\ /n - 2\ sill A

/n— 1\ sin A
' \ 2 / cos^ A

(by dividing both numerator and denominator by cos" A)

\ tan-* ^ + &c.

as has

n tan ^ — /* (—^—
j (~^) ^^"^ ^ "^ *^^*

1 ~ n (—^— j tair A + &c.

been proved in (133), and in which if ?i be odd, the numerator

n + 1

and denominator will each be continued to terms, and
2

.. , n n
if n oe even, to - and - + 1 terms respectively.

2 2

This expression for tan nA might however have been found

without taking for granted those for sin nA and cos nA.

Ihus. tan nA =
COSHA

1 ((cos tiA + jsj — 1 sin ?i^) — (cos uA — /^ — \ sin?/^)>

^ — 1 ((cos iiA+ /v/
~ 1 sin nA)-\-{cos nA — \/ — \ smnA)J

_ 1 |(cos A + aJ - 1 sin Ay - (cos A — sj — 1 sin AY\

V"-^ Kcos A + x/~^ sin ^r - (cos A - ^/^ sin A)"]

= __L_ (
+ \/^ tan ir~-(l - ^"^ tan ^r )

n/"^ kT+'y^^tan Ar + {\ - ^ITtan iy'i

?i tan A--n {j—^^ (~~~) ^''"^ ^ "'" ^^'

= —~— —
, as before.

1 — w ( —^ j tan" ^ + ^c.
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The expressions just found for the sine, cosine and

tangent of nA, have been deduced on the supposition that

ti is a whole number ; they are however true whether ii be

whole or fractional, but in the latter case the number of terms

will be indefinitely great, and consequently they are approxima-

tions to the true value only when the series converge ; and by

substitutions similar to those made above, we can find expres-

sions for the co-tangent, secant, and co-secant of nA, whether

71 be whole or fractional.

272. 3b express the poivers of the cosine of an arc in terms

of the cosines of its multiples.

Assume cos A + x/"--~l sin A^x, then 2 cosA = jt+ - by (257)

:

X

.', by the binomial theorem we have 2" cos" A= {x-\— \

('+i)-'('"--?^.)-('^)('-' + ^)--

First let n be odd, therefore the number of terms in

the expanded binomial will be n + 1 which is even, and there

will be an exact number of pairs of terms ; hence by
2

{2,^^) we shall have

2" cos''1=2 cos »il +27?cos(«-2)A4-2«^—— j cos{n-4)A

;z + 1

\- Sec. to — terms
;
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and .*. cos" A

_ -rlcosnA + n cos{n—Q.) Ai-n I | cos(w—4)^+&c.to terms> :

Next let 71 be even, then the number of terms of the

expanded binomial being w + I will be odd_, so that in addition

to the pairs of terms above, there will be an additional one

which is the middle or ( - + 1 j th term of the expansion, and is

equal to

w(w-l)(?i-2)&c.{- + 1 )
^ ^ \2 ^ I 1.3.5 &c. (;2 -1)

^ — 2 ;

n n
1 . 2 . 3 &c. - 1 . 2 . 3 &c. -

2 2

hence 2" cos"^ = (x''+ -A +?i{x'"^+ -7rr^?i -f &c. to ~ terms

, r 1 .3.5&C. (/i-l)
+ 2

n
1 . 2 . 3 &c. -

2

= 2 COS nA-\r^n cos (n — 2) A-\-&c. to - terms

I 1 .3 .5 &:c. Oi~l)
+ 2 ;

n
1 . 2 . 3 &c. -

2

If w
and .*. cos" A = ——r ^cos w J. +w cos(7Z— 2)^ + &c. to - terms2"- ( 2

-
1-1 1.3.5 &c. (w-1)")

n r
1 . 2 . 3 &c. -

2 ^
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273. Ex. Let 71 be taken equal to the numbers 2, S,

4, 5, &c. successively, and the formulae just demonstrated

alternately give

cos'^ A = - {cos 2A-{-\}
;

2

cos^ A = " {cos 3il + 3cos ^} ;

cos'* A = ^
^ cos 4^ + 4 cos 2 A +3} ;

cos^ A = — {cos 5A +5cos3A + 10 cos A} ;

&c. = &c

274. 2o express the powers of the sine of an arc in terms

of the sines or cosines of its multiples.

If cos A + ^ — ] sin A =^ X,

we have 2 ^/-- 1 sin A=x — , by (257)

;

therefore 2" (x/'^)" sin^'A= (x- -X

now n must necessarily be of one or other of th e forms A-m,

Am + ], 4m + 2, 4m+ 3> and therefore (v — i)" must admit

of four different values :
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In the first place^ let Ji be equal to 4m, and therefore

(
x/"^! )" = ( x/*^)'''* = ((s/~^)Y = l^'* = 1 ;

then

2" sin" A

(' + f)-(--+p^)-'(=^)('-'+?^0

n 11.3.5 &c. (n - 1)— <?fec. to - terms +2
2 n

1 .2. 3 &c. -
2

= 2 cos nA — 2n cos (w — 2) A + 2w ( --) cos (w — 4) J.

71 f 1 .3.5 &c. (n- 1)—
• &c. to z terms + 2

;

1 . 2 . 3 &c. -
2

.'. sm''^A

= ^_y I cos wA — w COS {n — 2) A + w
(

) cos {n — 4) A

n
,

1-11.3.5 &c.(;z- l)"!— oCc. to - terms + 2 f

2 ^^ > :

1 . 2 . 3 &c. -
2 -^

Secondly, let 7i =4m+ 1,

hence 2" 7 - 1 sin" A = (x» - i;) - n (y- - ^ - ^)

+„('l^)(."---i,)-Scc.to!i±ite™,
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= 2 ^Z - 1 sin w^ - 2n ^ - 1 sin {n—Q) A

-
. w -f-

1

1 sin (n — 4) A — &c. to terms

;

2

/. sin" A

=
^^_i < sin JiA — n sin (/« — 2) il + w ( ) sin (?z— 4) A

7Z+ 1

— &c. to terms

Thirdly, if n = 4m + 2, we have

• •. -2" sin''

A

w 4 1 .3. 5 &c. (?z- 1)— &c. to - terms — 2
2 ^ ?i

1 . 2.3&C.-
2

= 2 cos nA — 2« cos (/z — 2) A + 2;z (
j cos {n- 4) A

^ 1 .3 .5 &.C. (72- 1)— &c. to - terms — 2
2

1 . 2 . 3 Sec.

.-. sin" A

= ^^j I
cos nA^n cos (?t— 2) A+/2 (—^— jcos(/i—4)A

T-i 1 .3 .5 &c. (w— 1)'

—Sec. to - terms — 2
o

.5 &c. (w— lA

2 . 3 &c. - \
2 J
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Lastly, if // = 4m + 3, we have

=('-?)-"(''-.-) ^"(=ii)('"--p^)

w+ 1

-&c. to terms

4-27i

2 .>y — 1 sin nA-2nA>y — I sin (« - 2) ^

w—

1

1 sin (« - 4) yl — &c. to terms

;

sm

~ __
I
sin nA — n sin {n — 2) A+n (—^ ) 9in(/i— 4) A

n+l \-- &c. to — terms f .

275, CoPt. The first and third cases of the proposition

proved in the last article are both comprehended in the formula,

sm"A

= ± ~;;;:^ \ cos n A— n cos {n— 2) A -\rn ( jcos(/i—4)J.—

1-1 1.3.5 8cc. {?i- lU
± 2 ^ -\

1.2.3&c.i'
'

2 J

&c.

to - terms
2

and the second and fourth in the formula,

sin^ J.

= ± 1
|sinM7l-?/sin (n—9)A +n( —^— j sin(w — 4)^ ~ &c.

]

M+1
to terms
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and attention to the algebraical signs might have made it

sufficient to divide tlie proposition into the two cases only,

in which 7i is even and odd.

Ex. If we suppose w to assume the particular values

2, 3, 4, 5, &c. successively, we shall, by attending to the different

forms, immediately obtain from these formulae,

sin^A= (cos 2 A. — 1) = - (1 — cos 2^)

;

2

- (sin 3A'-3smA)= -
4

^
4

sin^ J. = — - (sin 3A'-3smA)= ^ (3 sin y^— sin 3 A);

sin* J.= -(cos4l - 4cos2yl -f 3)= -(3-4cosG^ + cos4J.);
8 8

sin^A= —: (sin 5 ^— 5 sin 3 A + 1 sin 1)= -~ ( 10 sin ^— 5 sin 3A + sin 5 A)
;

&c. = 8cc,

276. To express the sine of an arc in terms of the arc

itself

In article (270) we have proved that

sin72A = wcos"-^A ^\\\A-nC- j C- j cos"-^^sin^A+&c.

, ( sin A /w— ]\ /n-2\ s'm^ A ^ )

I cos .4 \ 2 / \ 3 / cosM )

= cos'^ A L tan A - 71 (~-) (~J~)
^^"^ ^ + ^c.j

;

Q
assume now 7iA=0, ox A = -

,

71

e { /n—\\rn — Q.\ ^0 )
.. sin = cos"

^^

[n tan
;^
- . (-^) (—) tan^ - ,. &c.

[
;

. .

then if n become indefinitely great, - will be indefinitely small,
n
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.°, we have cos -- = 1, tan - = -
_,

fi 71 n

71 {71- 1) (W, — 2) = n^ (l \ (l \ = 71% &c.

. ^ e li' 0' 71' 0'
. . ^ .

iience sin 6 = 71--
r- + ? — &c. in iniimtum

71 1 .2.3 rf ] .2.3.4.5 ?^^
^

0' 0'
=:: ^ _j ^Q^ iji infinitum,

1.2.3 1.2.3.4.5 ^

277* Since in the expression for the sine of 7iA, the

quantities involved are trigonometrical functions of the arc

and therefore expressed in terms of the radius 1, it follows

that before the expression just investigated can be applied

the value of must be found in terms of the same radius :

hence therefore if r^ = 57^.2957795 &c. the number of degrees

contained in an arc equal to the radius, and 0^ be the number in

any proposed arc, we shall have

r^ : 0^ :: 1 : -n = the value of 0^ in terms of the radius,
r

id.\sm^^= (-^) -(ii) + (-t) -&c.
VrV 1.2.3 VrV 1 , 2. 3.4. 5 V/'V

Ex. 1. Suppose d^ = 1°, theUj in (155) we have seen that

-0 = .0174532 Sec,
r

,'. sin 1^=. 0174532 &c. (.0174532 &c.)^+&c.
1.2.3^

= .0174524 &c.

(1.0 ^0—
) = l'; then -5- = .00029088 &c.

00/ r

from (155),

and sin l' = .00029088 &c. (.00029088 SiccY-r&c.

= . 0002909 &x.
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(1 \ fi^—
j
= \'\ we have -^ = .000004848 &c.

and .*. sin l" = .000004848 &c. (.000004848)^ + &c.
1 .2.3

= .000004848 &c.

and so on.

278. Cor. From the last of the examples above given,

it appears that the arc of one second and its sine do not differ

by any significant figure, and therefore in all practical applica-

tions of trigonometry, we may without sensible error assume

sin 1'' = 1'': similarly, sin 2" = 2 sin l"=2", sin S" = 3 sin l" = S"

&c. very nearly, by (74).

Also, if (j) (A) denote any trigonometrical function of A
expressed in terms of the radius, we shall have

sin T' : (b (A) :: l'' :

the value of the same function expressed in seconds, which

I'XD 0(A)
. . = —/ , = ^.—-jy seconds,

sin 1 sm 1

279- To express the cosine of an arc in terms of the arc

itself

It has been proved in (270) that

cos nA = cos" A-\- n ( \ cos"~^ A sin^ A + &c.

= cos" A \\-n (r—^ tan^ A + &c.

|

.'. as before cos = cos**- \\—n ( ) tan^ - +&c.(
w I \ Q. J n 5

n' e' n' 0' ^ . . ^. .= 1 -^ H — -- &c. tn rnhmtnm,
1 . 2 «^ 1 . 2 . 3 . 4 n*

-^

by reasoning as in (276),

A A
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— 1 — \~ Sec. in mfimtum.
1.2 1 .2.3.4 ^

and pursuing the steps taken in article (277), we get

1.2 VrV 1.2.3.4 \r/

Ex. If the same values of 0^ be assumed as in the last

examples, we shall find

cos 1^ = .9998477 &c.

cos l' = .9999998 &c.

cos l"= .9999999 &c.

280. By means of the expressions for sin 6 and cos 6>,

found in articles (276) and (279), formulae for the other trigo-

nometrical functions are easily obtained. Thus,

(gi r\\

1 1 &c. I

1.2 1.2.3.4 /

= j- &,c. in infinitum:
1.2 1.2.3.4 ^ '

chd = 2 sm - = 2 ^ -^ -{ -^ - &cA
2 (2 1.2.3 2' 1.2.3.4.0 2^

j

"" ^ "^
773 ? "^ 1.3.4.5 ¥ " ^''* ''' '''^"'^'''^

'

Q ^
sinO 1.2.31.2.3.4.5

tan ^ = 2f
~

B^^ m —
cos d 6 6^

1 + &c.
1.2 1.2.3.4

^ . 20' ....
r= H H-

-—-—- + &c. m tnjinitum

;
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0' 0*

^n COS 1.2 1.2.3.4
cot0 =

sin e 0^ e^
e + .— &c.

1.2.3 1.2.3.4.5

r: — &c. in infimtum;^1.31.5.9
1 1

sec 9

1 + &c.
1.2 1.2.3.4

S^ 5 9*
= 1 H H h &c. m infinitum ;^

1 .2 1.2.3.4
-"

1 1

COSec 9 = -:—;r = ^

Sin

sin ^ ^ 9 9""

9 &c.
1.2.3 1.2.3.4.5

1 . 9 14^'
^ . . ^ .= 7; H i ^ + &c. ?w infinitum^

9 1 .2.3 1.2.3.4.5.6 -^

281. Cor. If the arc be small,, approximate values of

some of the preceding functions are readily obtained. Thus, if

9 be very small, we shall have

^ = ^-r:l:3 = H'-r:?:i) = K'-i^/ = ^<-^)*'

hence, log sin 9 = log 9 -{- ^ log cos 9,

and log 9 = log sin — ^ log cos 9 :

9 9
again, tan 6> = +— =^(l+—) =

9\^
(1--)- (co.#

.*. log tan 9 = log ^ — 7;
log cos 9,

2
and log 9 — log tan ^ + - log cos 0:
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also, 2 mi e+ tan 6 = ^0 h -\ = 3 6:
1.2.3 '

1 .3

and 8chd - - chd^^S ( 5)- (^ ; "Ts)
2 V2 1 . 3 4V V 1 . 3 2V

10^^ \ 0'
„ — + =

1.32^ 1.32'
= 46-^^,-6+^^=36,

1 / f? \
whence = -^

( 8 did chd 6),
3 \ 2 /'

which is an useful approximate formula for practice; and in all

these instances, the arc is of course supposed to be expressed in

terms of the radius.

282. To express the sine and cosine of an arc in terms of
impossible exponentialfunctions of the arc itself

1 3XX X
In the expression e^ = 1 H h 1 1- &c.^ 11.21.2.3

where e = 2.71828 &c. the base of hyperbolic logarithms, let

\/ — l and — d j^ — 1 be successively substituted in the place

of X, and we shall have

' ^1 1.2 1.2.3 ^1.2.3.4^

1 1.2 1.2.3 1.2.3.4

hence by exddition and from (279), we get

+ ,-e-.=.,{l_Jl+_i__Scc.S = 2cos6,
1.2 1.2.3.4

and . . cos v =
2

and by subtraction and from (276), we obtain
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~=2yirr|0—^ +—^ &c.^
I 1.2.3 1.2.3.4.5

= 2^ - 1 sin 0,

hence .'. sin

eev/^i_^-9v/—

1

2x/-l

283* These two formulae, as before, enable us to find

expressions of the same kind for all the other trigonometrical

functions. Thus,

vers e=l-cos0=!-

chd = 2 sm -- =2
2 2V^=T x/- 1

sin ^
tan = sni ^ 1 e ' — e 1

cos^ 7-le^^-^+e-^^-^ 7-le^^^-i + l'

cos^ ,—

;

e^-^+e-e-^ e^^^^+1

— e~~ ^

'

cosec
1 _ 2^-1 ^^-1

sine e^^-i-.-^^-i ^ g2e^/^ .9v-:ri-

284. If the equations investigated in the last two articles

were established by any independent method, they might be used

to determine the relations between other different trigonometrical

expressions. Thus,

2 sin cos = 2
[^

1— \ (

-i_.-^^^. ^e^^^+ e-'^=^-
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{e — e J (e' +e )

= i=. (/^ -^1 -,e-2e v^)=:si„ 2^, as in (76)

;

2 V -1

also, cos u = (

I

8
^

_ 1 je +^ . Q <? +g I

~ 4 I 2 2 -f

= - {cos S0 + 3COS 0},
4

as has been before proved in (273)

:

again, (cos + \/ — I sin BT^

=( 2 ~ )
=*

2 -

= cos mO ¥ fk.

2

/ — 1 sin w^.

which is Demoivre's formula already established by a different

process.



191

CHAP. VII.

On the application of Trigonometrical FormuliZ to the solution

of quadratic and cubic equations. On Theorems for the

decomposition of certain Functions into their simple and

quadratic Factors, On Expressions for the sine and cosine

of an arc by means of continued products, and their use.

On Expressions for an arc in terms of its tangent, sines of

its multiples, S^c. On the Solution of certain cases of triangles

by means of series^ and without the aid of Tables, S)C. On
Expressions for the cosine and sine of the multiple of an arc

in terms of the cosine and sine of the arc itself. On the

Summation of the Trigonometrical Functions of certain series

of arcs, S^c,

285. To f?id the roots of a quadratic equation by means

of a table of sines, cosines, Sfc.

First, let the proposed equation be x^±px-\-q = 0,

let sin" = —q-

,

P

-rP^.-rand .', x= + - {l +^l-sm^O\ = + - ! 1 +cqs^!:

9
now, ] •— cos 0=2 sin^ - , and 1 + cos = 2 cos" -

;

2 2

6 9
,', the values of x will be + » sin^ -

, and + p cos^ - .

2 2
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These values may be exhibited in a different form : for

snice p = —.—- , we have
sni V

_ . ,e _ CL\^q . 2 ^ _ / 6
+ p snr - = + -:—T snr - = + v ^ tan ;- ,

^e „ 2A/r/ ,0 _ . e
and + » cos - = + -:

—

~ cos - = + v 7 cot - .^
2 sni^2 ^2

If these solutions be applied to practice^ the formulae must

be adapted to the radius r by (60), and then we get

log sin ^ = |- {20+2 log 2 +log g' - 2 log p},

Q
log J7 = + { log 2? + 2 log sin 20 }

,

Q
and log j; = + { log p + 2 log cos - — 20} :

similarly of the other solutions.

Next, let the equation proposed be a*+ px — q=:0,

from which we have x = + -^ ] 1 + y 1 -i 1 [ ;

let tan^ = -f

,

P

and .-. j: = + ? { 1 + ^l+tm^^O} = + ? { 1 + sec ^} :

2 2

fi

now, I — sec 0= — tan ^ tan - , and 1 -hsec = tan cot -
;

2 2

.'. the values of x are + - tan tan - , and T - tan cot - :~ 2 2 2 2

. . 2 \/^
and these, by substituting for p its value ^-^ become

tan

± V </ tan -
, and + v </ cot -

, respectively.
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Each of these sets of formula? must be adapted to practice

as before ; and it may be observed that all these soUitions can

be advantageously employed in those cases only, in which p and q
are very large or very complicated quantities.

286. To find the roots of a cubic equation by means of

a table of sines, cosines, 8^c.

Let the equation be reduced to'x" — qx + r = 0, by taking

away the second term, and assume sin = x,

.•. sin 30 = 3 sin ^ — 4 sin'^^, to the radius 1:

hence sin'^ ~- sin { sin 3^ = 0, to the radius R,
4 4

,
• 3 3R- R' . ^

that iSj x^ a H sin 30 = 0;
4 4

therefore equating the coefficients of the corresponding terms

of this and the proposed equation, we have

3R^ R^ . ^= 7, and — sm 30= 4- r

;

4 4
~

/o 3t
whence jR = 2 v - - and sin 30= H :

.*. to the radius 2 y - find an angle 3 whose sine is + —

,

and thus sin or x will be determined :

3 7'

also, since + — =sin 30 = sin (Stt + 30) = — sin(27r— 30)

= sin (47r+30)= — sin (47r-30) = &c. by (17) and (20), the

values of .r will be

SHI 9,si„(^f + e).-si„(^=J-e), si„(ir+^)

(47r \— — 1 , 8cc.

Bb
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but sin (^ 4- eV - sin (stt - -y - e^ = - sin (-—- -~ e\
;

-sin(ij^ - e) =sin(2.- ^ ^- o) = sin (^ +0);

&c =&c

(27r \
~^^—h ^ ) 5

and ^ sin ( ^
J

to the radius 2 S/ -
^ since after these

three, the same values continually recur.

To the radius 1, the values of x will manifestly be

2 \/i" sin 9, 2 \/^s,n (^ + O) , and -2 x/^in (^ - o) ,

because sin to the radius R= R sin 9 to the radius 1.

If we had assumed cos 6 = x, the roots might have been

obtained in a similar manner.

Ex. Let it be required to determine the roots of the

equation .r"^ — 3 .r —- 1 = 0.

In this case ^ = 3, r=:l;,

.-. JR = £ \/ - = 2, and sin 30— = — 1, to the radius 2 :

3 q

hence to the radius 1, sin S6= - i = sin 210^, and 9 = 70^^

;

.'. the values of a are 2 sin 70^ 2 sin IQO^, and - 2 sin 50^.

287. In the solution above given^, we have assumed

JJ = 2 V ^ , and therefore if q be negative, R will be
o

3r
impossible : again, if q be positive and ± — be greater than
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Vi-e shall have sin 30 greater than R, which is also

impossible : hence therefore in both these cases this solution by

the trisection of an arc fails^ but Cardati's solution does not.

two roots being then impossible, and it is observable that both

solutions succeed when + — =2 \/ -- , or two roots are equal.- q ^ 3

288. Though the solution just given fails in the instances

above enumerated, trigonometrical formulae may still be applied

in finding the only root which is possible: thus, if the proposed

cubic be x^-\-qx-\- r = 0, we have by Cardan's rule.

assume tan' kj — _, or — = ^r-r-'

27 r' 4 27 tan-

e

.-. a= V -\ [V l-sec^+ Vl+sec^l

= V -
^ |V sec^+1- V sec^- l|

— \/ ^ [\/ ^^^^ +^ _ 4 '/ sec -T
|~ ^ 3 (^ tan^ ^ tan^ )

let V cot- =cot<p, .*. V tan- = tan ^;

and .r = V ? {cot — tan 0} = 2 y ^ cot 20,
3

wliiqh is the possible root.
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If the equation proposed be x^ — qx + r =0, and

— be greater than 2 y 7 , we have as before^

an ^^^
!!l _ 9

assume sin = o ? o*' —
Q7r' 4 27sin^e'

.-. a = V -
^ I
VI - c«se -r S/i+cos^l

* /7f\/l-cosa ^ y 1 4- cos e|

— V ? {tan + cot 0} = 2 V
the possible root

{tan (^ + cot 0} = 2 \/ -^ cosec 2^,

289. The latter solution alkided to in article (286) might

without much difficulty have been deduced from that of Cardan,

but the process will be less simple than the one which would

result immediately from the assumption there pointed out.

For, since :.= \7 -i' + \/IIC+ \/ZIZ\/ZZl ,

let - l^a, and V ~ - '^ =/3./^, and .-. «'+ ^^ = |r'

hence x = V a +/3>/^^ + V a - /3^ - 1 :

now
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|3

and if we assume cos S6=
, , and .*. sin S0= ,——— ,

we shall havea±/3.y^= V^^ {cos 30+ V~^l sin 30};

.-. V a+/3.y^= Vl {cos0-{-.y~^ sin0},
o

and \/a-/3V~^= V- {cos - V"^! sin 0} ;

whence a = 2 \/ -- cos :

also since cos 30 = cos (Stt + 30) = cos (Stt - 30),

the two remaining values of .r will be

2\/Fcos(^;+e), and2sAcos(^-e),

as would have been found from (286).

This is the solution of what is called the Irreducible Case

of Cardan s Rule.

By an assumption similar to the one just made, that is,

if tan = — , it is easily proved that
a

7ri?7^ = 7^"^'
fcos

-^ + ^~l sin ^-\
.

^ 7f n)

290. To decompose x*" — 2 cos x^ -[- 1 i)(to its simple and
quadratic factors.

Assuming ar^" — 2 cos x" 4-1=0, we obtain

a" = cos ± ^y - 1 sin 0, and also by (1?) and (21),

= cos(27r + 0)± >y — 1 sin (27r + 0)

= cos (47r-f0)± s/ - 1 sin(47r4-0)

= &c
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= cos {2 in- \)7r + 0) ± ^y - \ sin (2 (/^ ~ l)7r + ^):

but, by (267), we shall have from these equations,

i
—

. e
a- = cos —I- /s/ - I sin -

;

n n

27r-hO
sniX = COS + n/ ~" ^

47r-i-^ / . 47r-f0
X = cos — + lU — I sni

11 n

ac. = &c,

2(7/-l)7r + y . 2O/-l)7r+
x = cos ± V "~ ^ ^'"

hence, by the nature of equations, we have

x'"-2cos0x"+l

. 0\\
= [r - (cos ; + 7 - 1 sin

^)} {. - (cos
^^
- Vri sin

^J

f / 27r + . /- . 27r + ^\l

f- (^"^-^;— ^ -^
^ ^"^-T~)i

^^^-

Jx — ( cos
2(72-l)7r+ ^ y— . 2(w-])7r4-^—^ h >^/ — 1 sni —

2(«— 1)77 + ^
! 1 — ( cos —^^

' ^y — 1 sin

. )1

2(;/,~l)7r + ^\|^

and combining each of these pairs of simple factors, we get

t"* - 2 cos (9 .r" 4-

1

= Tr" — 2cos - X + \\ ^1
27r + ^

2 cos X H- 1
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/x^— 2cos —-— T4- 1] ^c.lx^ ~ 2cos—^^ 2+1 K

the number of factors being ;/.

This theorem of Demoivre contains the solution of the

equation a'" — 2 cos .r" + 1 =0, all the quadratic factors of

which appear to be possible, and all the roots impossible,

unless some extreme value be assigned to cos 0.

291- Cor. 1. In the formula just investigated suppose ^=0,

or cos 0=1; then we have

^^2«_2.r"+l=(2^'-e2 + 1) /^x--2cos -^ X + \\

/o 47r \ /o 2(7i— Ott \
( x — 2 cos .r -j- 1 j 8zc. ( jt" — 2 cos x + 1

j ,

to 71 factors :

2(«- Dtt
now cos

cos

- l)7r / 27r\ 27r= cos ( 2 TT I = COS—

:

n \ n / n

2(w--2)7r / 47r\ 47r= COS ( 27r
)
= COS :

n \ n J n

&c =&:c =&c.

,'. :r'" -2.r" + l=(x'~2a^+l) /'/--2 cos— .r + l)

(rr - 2 cos x -{- \\ &c.

First let n be odd, then

:r^«-2A^"+l=(x^--2.r+l) Tr' - 2 cos — .r + A
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(47r \" /a C^*""' 1) TT
, \^

/_2cos .r + \j &c. (a^--2cos a^ + ij ,

n + 1

the number of factors being manifestly—-— ; and extracting

the square roots of both sides, we have

x" - 1 = (a: - 1) ( X- '- 2 cos— X -{ \j

Next let n be even,

a A.(27r \ / 47r \
2^" -2 cos .r+1) r/-2cos-

—

x -\- \ \ &c.

./-2C0S^^ — r + Ij {X^— 2 cos IT X + ])

^(x^ — Qx-hl) (x"' -2C0S—X -{- l\ &c. (j:' + 2^:4-1),

the number of factors being ~
; and extracting the square roots

as before, we get

a?"— l=(x- 1) r/ — 2cos— X + l\ &c. (a:-f l)

^^- 2 COS x-\-\\ &c. rr^-2cos ^ + 1
)

In the same manner, if we make = 7r, ^^^^+1 may be

decomposed into its simple and quadratic factors, and the roots

of the equation x" + 1 = 0, will be determined.
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These formulae which are from their inventor called Cotes^s

Theorems, include the solution of the equations j;" + 1 = 0,

the roots of which are the n roots of + ], and it is evident that

only one of them is possible when n is odd, and two or none

when n is even.

292. Cor. 2. By means of the formula of (290), we are

enabled to prove also Cotes^s Properties of the Circle.

For, since a;^*' —2 cos x" + 1

= (x^— 2 cos -' X + 1
j ( T^— 2 cos X + 1 ) &c. to n factors,

if we suppose ^ = 27rj we shall have

__2'7r 27r + 0__47r 47r+ __67r
_ __

' n n ' n n n n ^

and .-. :i'"-2i" + l

27r \ / c 47r(M 71" \ / 4 TT \
/— 2cos ^^ j: + 1

) ( / - 2 cos — x + \\ &c. to n factors

now if P be any point in the diameter (produced if necessary)

of a circle whose radius is 1, and the whole circumference

be divided into 71 equal parts, AB, BC, CD, &c. we have,

if OP = x,

^^n „ 22"-M = 0P^"~20P''-i- 1 =(0P"-^0^'^)';

Cc
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^'-2 cos —:r+l = 0P'-20P cos A0J5+1 = PP';
n

oc^^Q, COS -^:r + l = 0P'-2 OP cos ^0C + 1=PC';
n

x'-Q cos — :r+l= OP'-£OP coslOD+l = PD';
n

&c =&c.

.'. (op^'-o^^f =pJ3^pc^pJ)^&c.

and OP"'^OA''=:PB . PC . PD . &ic.

Again, if the arcs AB, BC, CD, &c. be bisected in the

points ttj b, Cj &c. and P«, Pb, Pc, 8cc. ; Oa, Ob, Oc, &c.

be joined, we shall have as before

OP^''^ OA^'' = Pa.PB,Pb.PC. &c.

^Pa.Pb.d^c, PB,PC. &c. = Pa. Pb . &c. {OP"'^OA''\

and /.P..P6.Pc.&c.= gpn^oA'^ =OP'^+OA\

293. Cor. If the point P be supposed to coincide

with J[, Pa, Pb, &c. will become the chords of -, , 8lc.
n n

and /. chd - chd chd &c. to n factors =2,
21 n n

TT . Sir . OTT
or 2 sm 2 sin 2 sm &c. = 2,

2/i 2?i 2^^

,
. TT . Stt . 57r „ 1

and .*. sin —- sin — sm— &c, = 1

.

2^ 2w 2w 2"~
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294. To express the sine and cositie of an arc by meajis of
continued products,

1 + 8cc. [ , if we
1.2.3 1.2.3.4.5 J'

assume sin = 0, the corresponding values of 9 will be

0, ±'Jr, ±2 7r, ±37r, &c.

.*. by the nature of equations, we have

sin e=Ce {tt-B) (7r + ^) i^TT-O) (27r+0) &c.

= C7r^2V3V"-&€
e\ / G"»(-5)(-^)-

but when is indefinitely small, we have seen in (213) that

-^— = 1, and .*. we have C tt^ 2" tt^ 3^ tt^ &c. = 1
;

u

hence, sin = (\ -^ (\ ^-^ &c.

Again, smce cos t7 = 1 + — &c. if we^ 1.2 1.2.3.4
suppose cos = 0, the values of will be

TT Sir OTT „

+ -
, + — , ± , &c.- 2 - 2 2

= C -7; jj- &c. '

2' 2

and if be indefinitely small, we shall have

2 o2 2

cos ^= 1, or C—2 —2"" ^^' = 1 »

2 2~

hence, cos 0= {\ ^j ( 1 — 7^—2) occ.
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295. Cor. 1. It is manifest that if we suppose C=C\ there

will be the same number of factors in the expressions for

both sin and cos : omitting therefore one of the first of

the equal factors in the latter to make the number correspond

with that of the former, we have

w fSV'^ 5'w' 7V= 1 ,„,,„,, „
^

2 ( 2" 2^ 2" J

^ TT 2^ 4' 6' &c. in inf. ^. ^ . ^^^ ^^. ,and . . - = <, c,
—TT— :

—

7—7 3 which is Wains s expression
2 3" 5- 7~ &c. in mj. ^

for the circumference of a circle whose diameter is I.

Hence also from (214) it appears that the area of a circle :

the square of its diameter

2^ 4^ 6" &c. in inf, 8 24 48
:: ^g ^^ ^2 . . . r ' 1 :: - X — X — X &c. : 1.

3^ 5^ 7 &c. in znf. Q 25 49

296. Cor. 2. From the two theorems above proved, the

logarithmic sines and cosines of arcs are easily derived without

previously computing their natural sines and cosines.

m IT
'

For, let ^ = — — ; therefore we have
'

n 2

sin — — = — —
( 1 ~-

) ( 1 — -——
J Sec.

w TT / m^\ / m^ \
cos = I 1 ^ I I

I ^-5 I &C.
n 2 \ ir) \ 3^n'}

and thence

log s.n _ _ = log ^ + log (-j +log(^l - ^,j +&C.

,„g,os- - =log(. - -,) +Iog (1 - -,-^) +&C, .
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297* To express the length of mi arc in terms of its

tangent-

From (282) we have

cos ^ 4- \A^ sin = 6^"^', and cos 0- ^'^l smO = e'^"^^;

e^"""^ c:Q^m__ cos0-\-^ —\sin9 _ \ + ,y -ItanO

^''F^^^''
~ cos^-^^sin^" l-V'^ltan^'

hence, taking the logarithms of both sides, we get

2^>y/"^=log(l + ^/^ tane)-log(l- x/-~i ^an^)

= >/^ tan^+;; tan'e- - ^'^ tan^ - - tan'^+ &c.

+ ^/~^l tan^ tan^a- - ^7 - 1 tan^^+ - tan^0— &c.
2 3 4

and .*. 6 = t3in0 tan^ + - tan^^ — &c.
3 5

Ex. 1. Let 6 = 45^, or tan 6= \,

.-. the arc of 45^= 1 4- + \-^c. in iff.
3 5 7 9 11

= (l I + f- - -I + (-
1 +&C. in infinitum

\ 3/ \5 7/ V9 11/
^

2 2 2 . . . ^. .

H 1 h&c. 2w infinitum:
1.3 5.7 9.11

and the whole circumference of the circle whose radius is r

(1 1 1 .... 1= I6r \ ( 1 h dc. ?7f infimtum\ .

ll ..3 5.7 9.11 -^
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Ex. 2. Let tan and tan 0' be taken respectively equal

to - and "
, then

2 3

2 3 Q,^ 5 9.^
'

3 3 3^ 5 3^

^il
, . „-il _..o

but by (110), e + 0' = tan''- +tan-^- =45^;

.•.thearcof45°= f- +-^- - (-k + ~^^+- f -5 + -r") - &c.
\2 3/ 3 \2^ 3V 5 W 3V

298. Cor. 1. Since log u = (w - m"') - - (w^ - m"')

4- - (w^— w~^) — 8CC.5 if we suppose ti= \/ — 1, we shall have

log V~=^l

/ 1 If > 1 f / 1 1 o

= 2V~I {' - 5 + 5
-

:)
"^ &c.} = 2^^ ^, by Ex. 1;

.*. Stt or the circumference of the circle whose radius is 1

x/^i •

299. Cor. 2. Since w'^ = e"'^^^ if u = V^, we have

TT 1 TT^ 1 Tt''

= 1 " :: + T-;: ::
— + &c. = .207879 &c.

2 1.2 4 1.2.38

The discovery of these singular formulie is due to the

celebrated John Bernoulli,
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300. To express the length of an arc in terms of its sine,

and the sines of its successive multiples.

Since log .r = Cr-a?-') - - (x'^-jr"^) + - {x^ - x'^) --^c.

= sill sin 20 + - sin SG - &c.
2 3

301. To express the length of an arc in terms of its sine,

and the secants of successive suhmultiples.

By article (76) we have immediately,

. e Q
sni y = 2 sm - cos -

,

2 2

. ^ .0
sm^ = '^«'"5i^«V^'

^ 6
sill-. = 2sin^cos^,

&c. = &c.

. e . 9
sin j;7T-r

= 2 sm ^ cos -
;

therefore by multiplication, we get.6000,
sm = 2" sm — cos - cos — cos -^ ccc. cos —7

.
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. . ^ ^

and 2" sin — = sm u sec -- sec — sec —^ cCc. sec -— :

2" 2 2 2 2"

suppose now n to be infinite, in which case sin ~ = — by (213),

9 6
,'. =z s\n sec - sec -^ &c. in infinitum;

2 2^ ^

which is generally known by the name of Euler^s formula.

302. Given two sides a, h of a triangle, and the included

angle C, to find the remaining side and angles hy means of

infinite series.

By (167) we have

c' = a^ -^b^ — 2ab cos C

= a' + b' - ab (e^''^' ^e'^^~) = {a^b e^''^)(a'- b e'^'^'^'\

.'. as before, 2 log c = log (« — ft e^' ~^) -r log (a — & e"^ ~^)

= 2 log « + log ( 1 - - e^^~^j + log ( 1 e~^^^~^
J

&c.

b b^ /
^

and loar c = loo- a cos C — —^ cos 2 C — —it cos SC— &c.^
a 2a^ Sa"^

the logarithms being taken in the system whose base is e or

2.71828 &c.

,
. a sin A sin(5+C) „ , sin C

also, snice -r = -:—- = :—-— = cos C + —

,

b Hm B sin B tan B

, _, 6 sin C
we nave tan B

a — b cos C

'

and .*. -
-, /— ^—F= = T= —
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and taking the logarithms of both sides, we get

2l^-v/^ = log (a- he-^''^~^^)-\o^ {a- hc^'^^)

__ ^ /^Cv'— ^-Cv^TZY. ^r/^V--T_^-2C^^>
a 2a

3a

and .'. B = - sin C + —5 sin 2C -1
-, sin SC + &c.

a Q,ar Sa-^

which is expressed in terms of the radius 1 : and hy (278)

6 sin C h^ sin 2 C , h^ sin 3 C ^^ -3 —^—^ .J
__ ^ ^ __ ^ ^ g^^,^

« sin 1 2 a sm J 3 a sm 1

b sin C 6^ sin 2 C ^^ sin 3 C
a sm 1 a . sni 2 a"^ sm 3

which is the value of B in seconds ; also, if b be much less

than a, a few terms of these series will be sufficient.

303. By processes similar to those pursued in the last

article, we shall find that the equation

n sin cb
tan u = -, cives

1+W COS0 "^

^ = n sin <p sm Q.(p \- — sin 3 0-*&c.

Dd
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tan O^n tan (p gives

tan ^= cos a tan ^ gives

= d) — tan* - sin 2d) 4- - tan"* - sin 4d) — &c.

and sin =: sin a sin (/3 + ^) gives

^ = sin a sin /3 + - sin'^ a sin 2/3 + - sin^a sin 3/3+ &C.
2 3

304. To solve triangles without the aid of tables.

In (224) we have seen that « = c sin A, .*. by (277) we have

(/A\ 1 /A\' 1 /A\' )

also ta»*l^^ = -t , and /. by (297) we obtain

^•-'"{(-:)-3©'+j(-:)'—1^

2 I
f 2 2

again, since cos C =
^—

7

, we shall have from (279)

and so on for all other cases.

305. By a similar process if r be the radius of the circle

circmnscribed about a triangle whose sides are 2^, 2&, 2c, it will

readily appear that
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'a+b+c\
.

1 /a^^b'+ c\ .
1.3 /a'+ b'+c'

1.3.5 /a^ -\- b'^ + c\
H :—::—- ( :; i "f &c. = the sean-circumference or

a circle whose radius is 1.

306. To solve triangles, two of whose angles are very

acute.

First, let the two very acute angles A, B and the side c be

given, then will the remaining angle C be found to be very

obtuse : also by (276) we have

A^ . ^ ,. B^
sin A = A , sin B=B-~

1.2.3' 1 .2.3'

and sin C = sin {A -{- B)-{A^ B) - ^ "^
^ nearly

:

csinil cA f 2.154-^^)
hence a = -: rr- = —

{ 1 + > ,smU + jB) A-\-B\ 1.2.3 r
cs'mB cB ( , A^-{-2AB)

^"^ ^= sinUH-^) = TT^ r "^ Tr^rrl'
which are the true values after neglecting such terms as contain

four or more dimensions of A and B.

Hence the excess of the sum of the two other sides above

c A B
that which subtends the greatest angle = a'{'b — c = — , and

2

it may be observed that A and B are both understood to be

expressed in terms of the radius.

Next, let the two sides a, b and the included angle C which is

very obtuse be given : assume C = 7r--a, then by (l67) we have

c^ = «^+ 6^—- 2at cos C = a^ '^b'^-\-Q,ab cos a

= a~-^b' + 2ab (\ - -^) ^(a^-bf- aba\



1 aha

2 a + b

3

A
a . ^ a . a \ a \

a2;ain, sin A= - sin C= - sin a = - la — ; ^ A
° c c c V 1 .2 .3;

__ rt r \ aba *^ \
""

rt + 6 I" 5 {a + 6)'
""

1.2. si

a a j («" + b") — a b a 1

^7+7^ r (a-f-W' 1.2.3)'

sin"^ J. a a
,
nb{a— b) a^

whence A = sin ilH ^

—~ = 4-

sim

1.2.3 a+6 ' {a + bf 1.2.3

_ gg
\

bja-b) g'
I

which would have been found to be of the same value from the

equation B = a ~ A.

307. To express the cosine of the multiple of an arc in

terms of descending powers of the cosine of the arc itself

Since

(1 -ax) (\ - -\ =1- fa+ '-\ .r+/=l - x (a -\ x\,

if we assume rt 4- - = p, and take the logarithms of both sides

of this equation, we have

log ( 1 ~ « j:) + log M — '-<

j
= log \i—x(p- x)}, and

a „ a ^ a
« r + -r x^ + - a '

-f &c. + — i" + cScC.

2 3 n
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2 3 n

therefore equating the coefficients of a'^ in both sides,, we get

«. ^ n « 2 n(fi—3) „^. n{n—4)(n—5) „ ^

^
y^(,^-77^--l)8cc. (7^-2;y^-^- l) ^.-2.»^

1 . 2 . 3 &c. 7?^
^ "^

'

in which the last term will be 2 or rip according as w is

even or odd :

nowif/9 = a + - = 2 cos il, we have 2 cos 72^ = a'* + —

:

a a"

and if n be even^ we shall have

2 cos JiA

= (2cos^)"-n(2cos^r-'+
^^

(2 cos l)"-*-8cc. ± 2;
1 . 2

also if n be odd, we shall tind

2 cos ?« J.

= (2 cos AT - n (2 cos 1)"" ^ + n{n-S)
^^ ^^^ AY'^-'&c.

1 .2

+ 7Z (2 cos A).

If we differentiate both sides of the equations just investigated,

we shall obtain similar expressions for sin nA,

308. To express the cosine of the multiple of an arc in terms

of ascending powers of the cosine of the arc itself.

Reversing the order of the terms of the expressions found in

the last article, wc get immediately, if n be even.
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- I 1.2 1.2.3.4 j

and if fi be odd,

cos7iil= +7/cos^ J I COS A-\ COS A—&cA,-
I 1.2.3 1.2.3.4.5 J

in which the upper signs must be used when 7i is of the forms

4m and 4m + 1^ and the lower when of the forms 4!m+2 and

4;72+ 3.

Differentiating both sides of these equations, we shall

immediately obtain expressions of the same kind for sin nA.

309. To find the sum of the sines of a series of arcs in

arithmetical progression.

Let sin^+ sin(^-}-^)+ sin(^ + 2^) + &c.+ sin(^+(«-l)^)

be the proposed series, then by (67), we have

2 sin - sin = cos ( | — cos ( 4- -) 9

2 \ 2/ V 2/

2 sin- sin {0-^^) = cos (o ^ ''^-cos/^^^- —V

&c =&c

2sin^sin(^+ (;z-l)^)=cos(^ + ?^^)-cos(^ +?^^^
and denoting the sum of the proposed series by Sj

we shall have by addition^
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sin ( ^ H I 8111 —
A . <;?

V ^ / ^and . . o = ' --^ .

sin -
2

310. Ex. If I be taken equal to d, 2^, 3^, &c. suc-

cessively, we shall have

sin^ -I- sin 2^ + sin 30 + &c. + sin nQ

. (n^\\^. 71$
sin I I

6 sm --—

.

sm -
2

sin0 -f- sin 30 + sin o0+ &c. + sin (2/2- 1)0= --. - :

sm C7

sin + sin 40 + sin 70 + &c. + sin (3w - 2)0

3n- 1\ ^ . 3n0
sinin (

I 0sin
\ 2 / 2

. 30
sin —

2

&c = &c,

311. Coil. Hence also,

sin - sin (0 + ^) + sin (0 + 2^) ~ &c.

^{sin0 + sin(0+2S)+&c.}-{sin(0 + ^) + sin(0 + 3^)+ &c.}

may be found ; and if — ^ be substituted in the place of S,

the sum of the series sin + sin (0 — ^) + sin (0— 2^) + &c.

will be obtained.

312 By proper substitutions in the formula above deduced,

the summation of the sines of any series of arcs in arithmetical

progression may be effected : also, if

2«-i ^ ^''K^-i)
^_| — ^ = (2wi — 1) - , the sum will be k— ,

2 2 .0
2 sm -

2
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and this has been erroneously called the sum of the series con*

tinued in i?ifinitum, but which in fact cannot be determined.

313. To find the sum of the cosines of a series of arcs

in arithmetical progression.

Let cos0 + cos(f)+^)+ cos(^-h2S)-|-&c. + cos(O + (?i-l)^)

be the proposed series, then as before,

2 sin - cos ^ = sin (04-'-] — sin (O |

,

2sin -- cos(0 + ^) = sin {$-{ \ -sin (Oi- -V

&c =&c

2 sin ^ cos{e+ (n- l)^)= sin (O-^—-! ^^ - sin (^0 +?^^);

whence by addition, we have

2 sin ^ S= sin (o + ?^^) -sin (o -
^)

= 2 cos (^ + '^ ^^) sin ~ , by (67).

cos ( a H ) sni —
V 2 / 2

w— 1

cos(6^ +
and /. S =

sui --

2

314. Ex. Let ^ be taken equal to 0, 20, 30, &c. in

succession, and

cos -f cos 20 + cos 30 -f (fee. + cos nO

nO

C^)cos I
—— ] sin

,

sni --

2
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cos + COS 3 -h COS 50 + &c. -I- cos {Qn — 1)0

_ cos nO sin ti9

sin 9

cos 6 + cos 40 + cos 70 + &c. + cos {Sn- 2)0

/3n— 1\ _ . 3ft9
cos ( I 0sin

= V 2 / 2

. 30
'

sin —
&c =&c.

315. Cor. The sums of the cosines of the series men-

tioned in article (311) may be found by the formula above

deduced, as indeed may the sums of the cosines of any series

of arcs whatsoever in arithmetical progression.

31 6. As in the preceding articles^ the sums of the squares,

cubes, &c. of the sines and cosines of the same arcs may be

obtained by means of (272) and (274). Thus

sin^ + sin' (0 + ^) + ^c, + sin' (0+ (« - 1 ) ^) =

1

icos 20 +

1 {cos (2 0-f(»-l)^) sin ?rS]

--- {cos 20 + cos 2(0 + ^) -f&c. -f cos2(0+ (/i- 1)^)}
2 2

_7i ^ I
f
cos {0 9-\-in — \)d) sm y?d

|
*"

5
""

2 I sin ^ J
'

by (313), and so on.

Also, by successive diflferentiations of the examples given

in (310) and (314), the sums of such series as

sin + 2'" sin 2 + 3'" sin 30+ &c.

and cos + 2"' cos 2 + 3"^ cos 3 + &c.

will be obtained.

Similarly, by multiplying by dO, and integrating succes-

sively, the sums of such series as

. , 1 . ^ 1 . ^
sm 9-^— sm 2 0+— sm 30+ <S:c.

Ee
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and cos -\
—— cos Q. -] — cos 30 + &Ca
2 3

may be determined.

317. The series menlioned in the preceding articles might

have been summed by means of the expressions for the sine and

cosine of an arc investigated in (263) and (282). Thus, if we

suppose sin 6 = ^= ( oc — -
) , we shall have

sin ^ + sin 2 + sin 3 ^ -}- &c. to n terms

?.r -4- r'^ 4- r^ -I- &c. to ?i terms

V

, .X + X -\- X' + &c. to ?i terms,

1 fl 1 1 }
. - <- + -17 H—5 -|- &c. to n terms?

2 ^ _
I U x' x^ )

1 p (:r"- 1) l-x"
)

2^^ 1 ^r-1 "^ .r'^(a:-- l)j

2^"=^ i x''{x-]) J

._ ((''-;;)C' -ip
)

5 5

sm— sm I
—

I y
2 V 2 y

;, as berore.

I

.

sin -
2

Again, since cos = we have
2

cos -f cos 2^ -f cos 30 + &c. to ?i terms
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= i {e^^-^ + e'S^-' + ^^^^^4. &e. to n terms}
2

+ i {e~^^-^ + e-'^^^-f^-''^-' + &c. to^^ terms}

5
I

i -i
i

. nO
sin — cos

—
J
as before.

.

sin -
2

It moreover appears from (73) that these are recurring

series^ and may therefore be summed by the rules laid down for

that purpose ; but there still remains to be explained another

method not inferior to any that have yet been given.

Let 5' = sin ^H-sin 30 + sin 50 + &c. + sin (2n— \)0,

.'. 5 sin 20 = sin sin 20+ sin 20 sin 30 + sin 2 sin50+&c.

+ sin 20 sin (2w — 1) 0, and as appears from (6?) =

- J cos — cos 30+ cos 0— cos 50 + cos 30 — cos 70 + 8cc.
2

+ cos (271 - 5) 0— cos (2?i— 1)0 + cos (2 n - 3) 0— cos (2??+ 1)0
[

= - {2cos0-cos(2«~ 1)0- cos(2?i+ 1)0}

= - {2cos0 — 2cos2?i0 COS0}, by (67),
2

_ cos — cos 2;i0 COS 1 — cos 2 7^0 _ siir;/0

* ' " 2 sin cos
~~

2 sin "~ sin
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318. To Jind the sum of the series^ cosec -i- cosec 0.8

+ cosec 2' 6 + S:c. to n terms,

9
Here, cosec = cot cot 9.

cosec 9.9 =^ cot 9 -cot 2 9,

&c. = . . . . &.C.. ...

cosec 2^*-'a = cot 2"-'e-cot2"-'^;

.*. by addition, we shall have

cosec 9 4- cosec 20 + 8cc. + cosec 2''~^9;

9= cot cot Q'^~^9,

2

319. To find the sum of the series^ tan 9 -^ 9, tan 9.9 +
2"^ tan 2' 9 + <S)C. to n terms.

It is easily proved that

tan = cot ^ - 2 cot 2 9,

2 tan 2 = 2 cot 2 — 2* cot QT 9,

2^ tan 2^9 = 2^ cot 2'^ - 2^ cot 2^9,

&c. . . . = &c

2"-' tan 2"-'^ = 2""' cot 2"-'^ -2'' cot 2"^;

.*. by addition, we get

tan (9 + 2 tan 2 ^ -f &c. +2"-' tan 2"*^^ = cot ^ - 2" cot 2'*^.

320. To find the sum of the series

10 1 \ 9 9
^tan- + -, tan -, + ~, tan -tan ;: + :::2 ^^'^ ~2 "i—3 ^^^^ ~r &c. to n terms.

9 9
We have seen in (112) that tan - = cot - — 2cot0;

2 2



221

\ e \ e
,'. - tan - = - cot coty,

2 2 2 2

1 ^1 e \ e
-7 tan -^ = --2 cot -z — -^ cot -

,
<2^ 2^ 2^ 2-2 2

Szc = &c.

10 10 1—
- tan -r = — cot —- —7 cot

2» £/j 2'* 2" 2""^ 2'^~^ '

1 9
hence by addition, the required sum = — cot ~ — cot ;

and if « be infinite^ this becomes ^ — cot 0.
u

321. To find the sum of the series, (tan + cot 0)

+ {tan 26 + cot 2 0) + (tan 2'0 + ^ot 2^0) -f ^c. to u terms.

In this case, we have

tan 6 + cot = 2 cot — 2 cot 2 9,

tan 20 + cot 2 = 2 cot 20 — 2 cot 2^0^

&c = &c

tan 2"-'0 + cot 2''-'0 = 2 cot 2"-^0 - 2 cot 2"0;

.'. the required sum = 2 cot — 2 cot 2"0.

322. To find the sum of the series x sin + x* 5/;/ 2

+ x^ sin 39 + S^c. to n terms.

By means of the formulae investigated in (282), if S be the

required sum, we shall have

...(•:^7::-^)^..c-^---"-'")

-j- &c. to ;/ terms
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2^-1
=^|^.e*^^^ + ^V'^-"^ + ^r^e'^^+&c.+ ^"e"^^-')}

2 V -1 ^

~ £^^ 1 x'-{e'^' + e-'^^^) :r + 1 I

1 ( x{e^^-'^e-'^-^) )

.t'*+^ sin nO- ^" + ^ sin (/i + l) ^ + :r sin^

2~ ~ 2 cos X -\- \

If :i^ be a proper fraction and n indefinitely great^ we
shall have the sum of the series continued in infinitum

X sin S

x^ •— 9, cos X -^ \

323. To find the sum of the series x cos -^ x^ cos 2

+ x^ C05 3 + Sfc to n terms.

As before,

2

~2+ :r (— ) + &c. to n terms

= - {^ e^^-^ + / e-^^^ + a^^^
^'^'^ 4- &c. + a-" e"^^-^:

2
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2

^^e^^-i cr^J^rzrr^n

« + 2 /gnQvCrr
_|_ ^-«6

,6v _ i ,
^-^vzn

11 ^ u

.r^ + ^ cos ne- 0?" + ' cos (w + l) ^ + x cos - x"

x" — 2 cos X -{- \

and as in the last article, the snni of the series indefinitely

continued

X cos — x"^

"~
x'^ ~ 2 cos 9 X \- \

'

324. By means of the operations of differentiation and

integration as pointed out in article (v3l6), the sums of various

other trigonometrical series may easily be determined ; but the

almost entire absence of utility renders it unnecessary now to

devote more time to the subject. We shall however conclude

this Chapter with two or three instances in which some of

the preceding series are made available to the solution of

more important Problems.

325. From (322) it appears that the sum of the series

sin d-]rx sin 20+.r^ sin 30-|~Slc. continued in injinitum is

sin 9 sin 9

x^ — 2 cos 9x + 1 1 — .r (2 cos ^ — .r)
'

and therefore bv actual division we shall have
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sin e + x sill '^e+x' sm SO + Sic.+x'*~' siiiw^ + Scc.

= sin {\-\-x{9, cos 0-x)+ x^ {2 cos - xY-{-^c.

+ ar"-2 (2 cos - xT-^-hx''^' (2 cos -^rr"' + 8cc.} :

whence by expanding the binomials and equating the coefficients

of x^^"^ on both sides, we shall obtain

sin nO = sin G ((2 cos OT''' - ^^^—^{2 cos Of-''

(.-3)(.-4) ^^^ 1^

Similarly by means of the series summed in (323), it may be

shewn that

cos;i0= l.|(2cos^r--w(2cos^r-^^+^^^^i^(2cos^f--'-8cc.|,

which might have also been readily derived from the preceding

by the operation of differentiation.

27r
326. If we suppose = — or 72*^, the second example

5

of (314) gives

^ cos2^sin2^ , sin40 sin(27r-^)
cost^+ cos3y= 7—7^ = ^ ^ = ^ :

—

=— i;
sin a 2 sm^ 2 s,n^ 2'

also from (6?) we have sin cos 30= ^ ^cos 4^+ cos 20

\

= §{cos(27r-^)+ cos(27r-3^}= | {cos + cos 30} = - ^ :

and from these two equations are immediately deduced

cos = cos 72^=
"^^"^

andcos30=cos2l6'= " "^
^
" \4 ' 4

^

which are the same as would have been found by the methods

pointed out in the second chapter*
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327. Let = — or 170 = 7r, then from the example re-

ferred to in the last article we have

cos 80 sin 8
cos 04-cos 30-f COS50 + &C. + cos 150 =

;in0

I
sin 160

__ J
sin (ti— 0) ^

sin0 ~2
^iJT^ - 2'

assume now x = cos + cos 90 + cos 130 + cos 1 5 0,

and y = cos 3 + cos 5 0+ cos 70 + cos 110;

then if these two quantities be multiplied together, and their

product be reduced by (67)j we shall obtain

X7/ = Q. {cos20+ cos40 + cos60 + &c. + COS 160}

= -2 {cos 150 + COS 130 + cos 1 10 +&c. + cos0}= - 1,

by what has just been proved :

whence the equations x-\-i/=—, and jry= — 1, give

i+x/Tt" ,
i-^'y?

X = 5: and y = ^^^ :

4 -^ 4

Again, let s = cos 0+cos 130, and ^=cos 9^4-cos 150,

also M = cos 30 + cos 5 0, and v=qos 7 + cos 11 0,

.K . ^. 1+n/^ ^ l-x/T7
so that s + ^ = ^^^

, and u +v — —
;

4 4

whence proceeding as before we shall obtain

St = —
J:

, and uv = —
|:;

and thus the four quantities 5, t, u, v, may be determined

:

hence since cos0+cos 130 = 5, and by (67), cos cos 130

= i {cos 120 + cos 140} = - ^ {cos 30 + COS50} = - ^ .

u

5
the values of and 130 are readily obtained.

Ff
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This article enables us to determine the side of a regular

polygon of 17 sides inscribed in a circle whose radius is 1^

which is manifestly = chd 2^ = 2 sin ^ = 2>/l— cos^ 0,

In what we have just been doing, no reason has been

assigned for the assumptions there made : and in fact no reasons

can be given without entering upon a theory much too difficult

for a place in an elementary Treatise like the present. The
invention of such a theory is due to M, Gauss, Professor of

Mathematics at Strasburgh, and it may be seen fully developed

in his work entitled Disquisitiones Arithmeticcz^ which has been

translated into French by M. PouUet-Delisle under the title of

Kecheixhes Arithmetiques. On this subject the reader is referred

also to the last chapter of Barlow'^s Elementary Investigation

of the Theory of Numbers.



SPHERICAL TRIGONOMETRY.

CHAP. I.

DEFINITIONS AND PRELIMINARY PROPOSITIONS.

Article I. Definition I.

Spherical Trigonometry treats of the relations between

the sides and angles, &c. of figures formed by the intersections

of three or more planes with the surface of a sphere.

2. Everi/ section of the surface of a sphere made by a plane

cutting it, is the arc of a circle.

Let O be the centre of the sphere, ABC the section made

by a plane passing through it ; draw OD perpendicular to this

plane and produce it both ways to meet the surface in E and F,

join ADf BDj CD, and draw the radii of the sphere OA,
OB, OC: then by Euclid xi. Def. 3, ODA, ODE, ODC
are right angles

;
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that is DA^ = DB' :=DC' = &c. or DA = DB=DC = &c.

and therefore the section ABC is a circle whose centre is D,

and radius - DJ = DB= DC = &c.

3. Cor. If the distance of the cutting plane from the

centre of the sphere be called d, and the radius of the sphere r,

we shall have the radius DA of the section = s^ OA^ — OD^
= A^r^ - d'^: and if d = 0, or the cutting plane pass through

the centre of the sphere, the radius of the section is equal to

the radius of the sphere, and its centre coincides with the

centre of the sphere.

4. Def. 2. The pole of a circle of the sphere is a point

in the surface of the sphere from which all straight lines drawn

to the circumference of the circle are equal.

6. Cor. Hence if the line OD be produced both ways

to meet the surface of the sphere in E and F, these points a e

called the poles of the circle ABC, the former the near, the

latter the remote pole.

6. Def. 3. When the cutting plane passes through the

centre of the sphere, the radius of the section being equal

to the radius of the sphere is the greatest possible, and the

circle is called a Great Circle of the sphere : in all other cases

the section is termed a Small Circle.

7. Cor. 1. If the section pass through the centre of the

sphere, the points O and D coincide, and the poles of a great

circle are the points of intersection with the surface of the sphere

made by a perpendicular to the circle passing through its centre ;

and it is manifest that the arc of the sphere intercepted between

the circumference of a great circle and either of its poles is

a quadrant.

8. Cor. 2. Hence two great circles of the sphere bisect

one another^ because they have a common centre^ and iheir
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common section being a diameter of each therefore bisects

them.

Q. Def. 4. The arcs on the surface of a sphere are

always understood to be portions of great circles unless the

contrary be expressed : a figure formed by three such arcs is

a spherical triangle : by four a spherical quadrilateral, &c : and

by n such arcs a spherical polygon of 7i sides.

10. Def. 5. The angles of spherical triangles, &c. are

those on the surface of the sphere contained by the arcs of

the great circles which form the sides, and are the same with

the inclinations of the planes of those great circles to one

another.

11. Ani/ two sides of a spherical triangle are together

greater than the third, and the three sides are together less than

the circumference of a great circle.

Let ABC be a spherical triangle on the surface of a sphere

whose centre is O ; draw the radii of the sphere OA, OB,

B

OC to the angular points : then since the solid angle at is

contained by the three plane angles AOB, AOC, BOC, any

two of which are by Euclid xi. 20. together greater than the

third, it follows that any two of the arcs which measure these

angles are together greater than the third: that is, AB + AC
is greater than BC, AB + BC greater than AC, and AC+BC
greater than AB.

Also, since the solid angle at is contained by the three plane

angles JOB, AOC, BOC, which by Emc/?V7 xi. 21. are together
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less than four right angles, it is manifest that the three arcs AB,
AC and BC are together less than the circumference of a great

circle.

Hence if the sides be denoted by a, b, c, and the radius of

the sphere be 1, then a + b > c, a + c > b, b + c > a, and

a + b + c < 27r.

12. CoR. For the same reason, since {Euclid x\. 21.) every

solid angle is contained by plane angles which are together

less than four right angles, it follows that all the sides of a

spherical polygon are together less than the circumference of

a great circle.

13. Def. 6. If with the angular points of a spherical

triangle as poles, great circles of the sphere be described,

the figure formed by the intersections of these circles is called

the Polar Triangle, in contradistinction to which, the proposed

one is styled the Primitive Triangle,

14. The angular points of the polar triangle are the poles

of the sides of the primitive triangle.

Let A BC be the primitive triangle, DFE the polar triangle

D

described according to the definition, and let the great circles

be produced as in the figure : then

since A is the pole of DE, AD is a quadrant,

and since B is the pole of DF, BD is a quadrant:
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.•. the distances of the points A and B from D being quadrants

are equal to one another,, and consequently D is the pole

of AB: for the same reason the angular points E and F oH the

polar triangle are the poles of the sides j^C and BC of the

primitive triangle.

15. The sides and angles of the polar triangle are the

supplements of the angles and sides respectively of the primitive

triangle.

The same construction remaining, and the radius of the

sphere being supposed =1, so that an angle may be equal

to the arc which measures it, we have

zA=HM=DH-DM=:DH+ME'-DE='n—DE',
similarly A B = nr— BF, and zC = 7r--EF:

again A D = GH= GB -h BH= GB+AH- AB^ir - AB:

similarly z£ = 7r-lC, and Z.F=7r—BC.

Hence if «, hj c. A, By C be the sides and angles respectively

of the primitive triangle, and a\ b', c, A\ B', C' those of the

polar triangle, we shall have

a'=7r — u4, b' = TT— B, c'=7r— C,

and A'= TT — a, B' = tt— b, C' = tt — c;

and from these properties the polar triangle is frequently styled

the supplemental triangle.

16. Cor. 1. If one or more of the sides or angles of the

primitive triangle be quadrants or right angles, the corresponding

angles or sides of the polar triangle will be right angles or

quadrants.

17. Cor. 2. Hence the sum of the three angles of a

spherical triangle lies between two and six right angles.

For, since by (11) a''\-b'-\-c is less than Stt, it follows

that A + B + C = Stt — {a + b' -{- c) is greater than w or two
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right angles: and we manifestly \m\e A-\-B+C=37r—{a-}-b' -^c)

less than Stt or six right angles.

A spherical triangle may therefore have two or three right

angles, or two or three obtuse angles.

18. Cor. 3. Hence also the sum of any two angles of

a spherical triangle exceeds the third by less than two right

angles.

For, since by (11) a -{-b' is greater than c , we have

TT — A-\-7r — B greater than tt — C, or tt greater than A +B— C,

.*. ^ + -B — C is less than tt : similarly J + C—B, und B+ C-

A

are each less than tt.

19. Cor. 4. In the same manner if the sides of a sphe-

rical polygon be each less than a semicircle, and with its

angular points as poles great circles be described, another

spherical polygon will be formed which will be supplemental

to the former.

20. Def. 7. If one of the angles of a spherical triangle

be a right angle, it is called a right-angled triangle; if one of

the sides be a quadrant, it is called a quadrantal triangle, and all

others are called oblique-angled triangles.
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CHAP. II

On the relations between the sides and angles, S)X. of spherical

triangles.

21. 7^0 express the cosines of the angles of a spherical

triangle in term^ of the sides.

Let ABC be a triangle on the surface of a sphere whose

centre is O and radius = 1, the angles being A, J5, C and the

corresponding opposite sides a, b, c : let ADj AE touching

the arcs AB, AC nt the point A^ meet the radii OB, OC pro-

duced in D, E, and join DE : then we have

AE = tan AC = tan b, AD = tan AB = tan c,

OE = sec AC = sec b, OD = sec AB = sec c :

now in the triangle DOE, we have from (l65) PL Trig,

DE' = OjE'+0D'-20E. OD cos DOE
= sec^ b + sec^ c — 2 sec b sec c cos a

= 2 -f tan^ 6 + tan^ c — 2 sec 6 sec c cos a ;

Go
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also, in the triangle EAD, we have by the same article

DE' = AE^+AD^'-QAE.AD cos DAE

= tan^ b 4" tan^ c — 2 tan 6 tan c cos A :

whence equating and transposing we get

2 tan b tan c cos A = 2sec b sec c cos a — 2,

2 sec b sec c cos a — 2 cos « — cos b cos c

and .*. cos A =
2 tan b tan c sin b sin c

cos /;— cos a cos c ^ cos c — cos a cos 6
similarly cos JD= ^ :

, and cos C= :
:—

7

•^

sin a sm c sm a sni

Ex. 1. If a = 6, we have

cos a —- cos a cos c cos a (1 — cos c)

cos il =

2 sin^

sm « sm c sm a sm c

c

cos a 2 ^ 7 ^ r>= -: : = cot a tan - = cot b tan - = cos ±> i

sm a sm c 2 2

cosc-cos^a
2

and cos C = r-^ = cos c cosec a— cot a.
sm a

Hence we have A ^^ B, or the angles at the base of an

isosceles spherical triangle are equal to one another.

Ex. 2. Let a=^b = c, then we shall have

cosa — cos^a cos«(l— cos«)
cos A =

sin a yy/ 1 — cos^ a

a
tan

4/1 —cos a « 2 _, ^= cot a y —; = cot a tan - = = cos B = cos C
1 + cos a 2 tan a

Hence every equilateral spherical triangle is also equiangular.
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22. Cor. If the angle at C be a riglit angle^ we have

= cos c — cos a cos b^ and therefore according as cos a and

cos b have the same or different signs, cos c will be positive or

negative ; that is, according as the sides are of the same or

different affections^ the hypothenuse is less or greater than a

quadrant.

23. To express the sines of the angles of a spherical

triangle in terms of the sides.

Since sin ^ = ^ 1 — cos^ A = ^(1 — cos A) (1 + cos A),

cos a — cos b cos c
and cos A =

we have 1 — cos J. = 1 —

sin b sin c

cos a — cos b cos c

sin b sin c

sin b sin c — cos a + cos b cos c cos (6 — c) — cos a

sin 6 sin c sin 6 sin c

/a-^-b-cx . /a + c-^»\

^«^«(—i—)-(-^—

)

r-f-. ^ ^, by (67), PI. Trig.
sm 6 sm c ^ n » o

, , . , cos a " cos b cos c
and 1 + cos A = 1 ^ :—;—

:

sm b sm c

sin b sin c + cos a — cos b cos c cos a — cos (b + c)

sin 6 sin c sin b sin c

= r—^—

:

, by (67);
sm sm c

\eta + b +c=Q.S, .-. 6 + c - a = 2 (5 - a);

a + c — 6 = 2 (5 — 6), and « + 6 — c = 2 (5 - c)

;

2 sin (5-6) sin (*S - c)
1 — cos A =

^nd 1 + cos A =

sin 6 sin c
'

2 sin S sin (5 — a)

sin 6 sin c
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2
whence sin -4= -:

—

-—
:
— /^ sin S sin {S — a) sin {S — b) sin (6* — c) -

sin 6 sin c

2 / : :

similarly sinB=— :— aV sin S sin (S — a) sin (S — b) sin (S— c),
sin a sin c

and sin C= -: r—r ^/ sin 5 sin (5 — a) sin (S — b) sin (S - c).

sin a sin 6

Ex. 1. Let a = b, or the triangle be isosceles, then

. . 2sin(^ — «) f-—-—.
sin A = —:

: /v/ sin S sin (S — c)
sin a sin c

. c
% sin -

2

sm a sm c
\/sin(a+^)sin(a-0

V sin ( a H— \ sin ( a
-

2/

c
sm « cos -

2

V sin(/>+ ''-\^mih -

-D = sin ^

:

sm 6 cos -^

2

. 2sin(5-«) 1 . .. • .o V
and sin C = r-^ \J ?A\\ o sin (o— c/

2 sin -

• 2sm

I

^
y

^
^

\/ sin ( a -)— ) sin (a )

a ^ V 2/ V 2/

Ex. 2. Let a = ^=6', then in an equilateral triangle

we have
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A / . 3a . ~ a
2 V sin — sni --

sin a
. o a ofl

4 sm" -- cos

. 3a
sm

.2«3—4 sin*^ - = sin J3 = sin C.

2 cos - sin

24. Cor. 1. Hence rejecting the common factors, we have

sin j4 : sin B : sin C = sin a : sin b : sin c ;

or the sines of the sides of a spherical triangle are to one

another as the sines of the opposite angles.

A
25. Cor. 2. Since 1 — cos -4 =2 sin"^ — , and 1 + cos A

2

= 2 cos' — , we have from (23) by reduction,
2

sm — = v
sin (5 — h) sin {S — c)

2 sin h sin c

^ ^ /sin 6' sin (8 - a)
and cos — = v ^

—

t—:^

>

2 sin sin c

A A / s'm (S— b) sm (S — c)

and thence tan ~ = y -.

—^—.—— ;

—

2 sin o sin (o — a)

sin —
,. ^ „ ,

2 ^ /sm a sm (S — b)
20, Cor. 3. Hence also 5 = V "^—;

—

•

—
77^ ^ >

. B sin b sin (o — a)
sin —

2

and therefore according as a is greater or less than b, sin --



238

will be greater or less than sin — , and theiice A greater or

less than B : that is^ the greater side of every spherical triangle

is opposite the greater angle, and the contrary.

27. To express the cosines of the sides of a spherical triangle

in terms of the angles.

Let a, 65 c, Aj B, C be the sides and angles of the pro-

posed triangle, a, b', c , A\ B/ C those of the polar triangle,

then by (21), we have

. , cos a — cos h' cos c'

cos A =
. ,. .

;;
;

sni o sm c

but cos ^' = cos (tt — a)= — cos a, cos a' = cos (tt^ A) = — cos A,

cos b' = cos (tt— jB) = — cos B, cos c = cos (tt— C) = — cos C,

sin b'= sin (tt — JB) = sin B, sin c' = sin (tt — C) = sin C;

cos A + cos B cos C
/. the formula just given becomes cos a = :

—

j^
—:—7; -

^ ° sm B sm C

cos B -f cos A cos C
similarly, cos 6 = :

—
-.—:—7; ,

sm A sm C

cos C + cos A cos jB
and cos c = :

—

-.
—

:

—
fi

•

sm A sm i>

cos A I + cos C
Ex. 1. Let A = B, .'. cos a = -:—;;

:—7^—
sm A sm C

c c
= cot ^ cot — = cot B cot — = cos 6 ;

cos C + cos A „ ^ i . ..2 ^
and cos c = r-r—, = cos C cosec" ^ + cot A .

sm A

Hence if two angles of a spherical triangle be equal to one

another, the sides which subtend them are also equal.
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Ex. 2. hetA=B=C, .'. cos a=cotyl cot — =cos 6=cosc:
2

wherefore equiangular spherical triangles are also equilateral.

cos A
28. Cor. If C =90", we have cos a = -:

—

—\ .'. cos a
sin i5

will be positive or negative according as cos A is positive

or negative : that is, a will be less or greater than a quadrant

according as A is less or greater than a right angle: or the sides

of right-angled triangles are of the same affections as their opposite

angles.

29. To express the sines of the sides of a spherical triangle

in terms of the angles.

From the last article but one we have

cos A + cos B cos C
1 — cos a = \

sin B sin C

sin 5 sin C — cos A — cos B cos C _^ cos A + cos (B -{ C)

sin B sin C sin B sin C

A + B-{-C\ /B-\-C-A
2 cos

sin B sin C

cos yl + COS B COS C
and 1 + COS a = ] + • ti • ^^

sni ±> sin C

sin B sin C + cos A -^ cos i^ cos C __ cos A + cos (B - C)

sin £ sin C sin J3 sin C

2 cos (l±|^)cos(^i±^)

sin B sin C

.'. assume 2.S' = A -f 5 + C, whence we shall have

2 cos S' cos{S' -A)
1 — cos a =

sin B sin C
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2 cos (5' - B) cos {S' - C)

sin ^ sin C
whence sin a

= ^- ^^ -cosS'cosiS'-A)cos{S'-B)cos{S''-'C);
sin ±> sm C

similarly sin b

_ 9,

sin A sin C

and sin c

2

sin J. sin B

^-cosS' cos (5'-^) cos (S'-B) cos (S-C);

V - cos y cos (6"-^) cos (S'- jB) cos (6"- C).

It may here be remarked that since by (17) the sum of the

three angles of a spherical triangle is greater than two right

angles and less than six, -S' is manifestly greater than one right

angle and less than three, and consequently cos 5' is a negative

quantity; also since by (18) the excess of the sum of any two

angles of a spherical triangle above the remaining one is less

than two right angles, it follows that .S'— ^, S'— B and 5'— C
are all less than one right angle, and therefore that cos {S'— A),

cos {S' — B) and cos (S^— C) are all positive, from which it

results that all the expressions just investigated are possible,

though they appear in an imaginary form.

30. Cor. 1. From the demonstration of the last article

we have

. 2 «
2 sin - = 1 — cos a= —

^ /A + B+C\ /B-{-C-A\
2 cos I

1 cos ( I

V 2 / V 2 /
sin jB sin C

/^4-B~C\ /A +C-B\
2 cos I ) cos ( I

V 2 7 V 2 /
_

sin B sin C

/ /A+B + C\ /B + C-A\
/ — cos ( ) COS I I

I
^^ \/ V 2 / V 2 /

whence sin - = y
2 sin B sin C

- 2 ^
and 2 cos -- = 1 -f cos a
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cos .S' (cos S' — A)

sin B sin C

/ /A + B-C\ /A + C-B^
^

/eos(~^-^—)cos(—^
)

and cos ~ = V
sin B sin C

-Vcos (*S'- jB)cos (S'~ C)

and .*. tan

sin B sin C

5 ^ ^ cos(y-ii) cos(6"-C)

31. To express the tangents of the semi-sum and semi-

difference of two angles of a spherical triangle in terms of their

opposite sides and the remaining angle*

cos a— cos 6 cose cos c — cos fl cos 6
Snice cos A— :—;—

:

. and cos C = : :

—

sm h sni c sin a sin b

cos a — cos 6 cos c
.'. cos A sin c = :—

;

sm

cos a cos b

sm b sin b
(sin a sin b cos C + cos a cos /;)

cos a . 1 r^
^^^' ^^

—. —'sin a cos b cos L — cos a ——r-

sin b sin b

cos a . 1 r^ cos a .

= ~—r — Sin a cos b cos C :—r -f- cos fl sm f/

sm b sin 6

= cos a sin & — sin a cos /; cos C

:

similarly cos B sin c = cos ft sin a — sin ft cos a cos C;

.*. (cos A -}- cos jB) sin c = sin (rt -|- ft) ( 1 — cos C) :

sin j1 sin B sin C
, ,,

but since from (24) —: = —:—r = —r

—

sm a sin ft sm c

Hh
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(sin A ± sin B) sin c = (sin a ± sin b) sin C J

hence using the upper sign we obtain

sin A + sin B sin a + sin b sin C
cosil+cosjB sin (a + 6) 1 -- cos C

'

a — b^/a- d\
cos

I I

A + B V £ /

and by means of the lower we get

or tan = r— cot —

;

a-\-b\ 2
cos

sin A — sin B __ sin « — sin b sin C

cos A + cos 5 sin {a-\-b) 1 — cos C

iin I
1

( ) = — cot
—

sin

These equations converted into proportions constitute what

are from their inventor called Napier^s first and second Analo-

gies.

Ex. If C = 90^, we shall have for a right-angled triangle,

a - ^A . /a— b'/a - ^;\ . /a— \

\ 9. J /a + b\ \ 2 / . /a-h

cos
/A+B\

tan
\ 2 /

cosm ^
^

' -c-f^)

32. Cor. From the two equations just investigated we
have

'a-\-b\ . /a+ b'

. Q ) /A-^-Bx _ ^^"\
2 .

/a- b\ ^ \ o )" ^a — bx

C V 2 / /A-\'B\ V 2 / /A-B\
cot — = 7— tan

I
I = — tan ( ).

2 /a-~b\ \ 2 / . /a'-b\ \ 2- /
cos
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33. To express the tangents of the semi-sum and semi-

difference of two sides of a spherical triangle in terms of their

opposite angles and the remaining side.

Retaining the notation before used, we shall by the last

article but one have in the supplemental triangle

cos
/A' + B\ ^^^

V 2 ) C
tan I I = , . w cot —

,

cos

a-'b'
sin

'

and tan I
^— )

= ;
—-7— cot — :

V 2 / . /a +h\ 2
'

sin I I

V 2 /

and by effecting the proper substitutions as in (27) we shall

obtain

a + h^/a-i- o\
tan ( I = . . ^ tan r->

V 2 / /A-\'B\ 2'
cos

sin (
^~^

\

and tan (^)=-—^ tan-;

sm

which converted into proportions as before are Napier's third

and fourth Analogies.

34. Cor. Hence in the same manner as in (32), we have

cos
I 1

, ,
sin (
—-—

) ,

cos(-^) s,n(-^-j
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Ex. Let c = ~
, then in a quadrantal triangle we have

tan
\ 2 /

cos

(£zj?)
^

3...
(i^)

—

^

-— , and tan ( )
= =7-

35. To express the co-tangent of an angle of a spherical

triangle in terms of another ajigle, and the sides zohich include it,

cos a — cos 6 cos c ^ cos c— cos a cos 6
Suice cos A — :

—

-—
-.

J and cos C= -. -.

—
;

sin sin c sm a sm

.*. sin b sin c cos A = cos a — cos b cos c

;

sin C . • • 7 ri
, L

but sin c = -:

—

- sin (?, and cos c = sin « sin b cos C+ cosrz cos 6;
sin A

.*. cot A sin « sin 6 sin C=cos a— sin a sin b cos 6 cos C

— cos a cos^ 6 = cos a sin^ 6 — sin a sin 6 cos b cos C,

cos <^ sin 6 cos C
.'. cot A — —. -:

—

— — cos o ——

—

sm a sin C sin C

= cot a sin /> cosec C — cos 6 cot C.

36. 2 a express the co-tangent of the side of a spherical

triangle in terms of another side, and the angles which are

adjacent to it,

cos J.+COS i3 cos C cos C + cos il cos ii
Since cos « = :

—r—-.—— , and cos c = -.

—-—:—
;sm h sm C sm A sm h

we have sin B sin C cos a = cos ^-|-cos B cos C;

but sin C = -— sin A, and cos C=sin A sin B cos c—cos A cos B
;

sin«

.*. cot a sin A sin jB sin c = cos A + sin ^4 sin B cos JB cos c

~ cos A cos" jB = cos A. sin^ i^ + sin A sin 5 cos B cos c,

cos A sin jB cos c

whence cot a = -: -: 1- cos B —
sin A sm c sm c

= cot A sin B cosec c+ cos B cot c.



CHAP. Ill

On the Solution of Spherical Triangles.

37. r*ROM the pieceding chapter it appears that the

following relations between the sides and angles of spherical

triangles have been established; namely, from (21)

cos a — cos b cos c _ cos b — cos a cos c
cos A =

:

—-—. , cos B = :
:

'

sni o sni c sm a sm c

cos c — cos a cos ^
, , .

cos C = : :

—

; and from (27),
sm a sm o

cos A+cos B cos C , cos ^ + cos A cos C
cos a = : ^—:—p:; , COS 6 = : -—

:

,

sin B sin C sm ^ sm C

COS C + cos A COS JB
cos c =

sin tI sin B

and since each of these sets contains three independent equations,

of the six quantities involved in them any three being given^ the

remaining three may be found ; but if one of the parts of the

triangle be a right angle or a quadrantal arc^ it is manifest that

only two other parts will be necessary for the discovery of all

the rest.

On this account therefore the solutions of spherical triangles

are distributed under the three following heads :

I. Solution of right-angled triangles.

II. Solution of quadrantal triangles.

III. Solution of oblique-angled triangles.
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and a proper application of the propositions contained in the

last chapter, will enable us to effect the solutions of all their

particular cases.

I. Solution of Right-Angled Triangles.

38. From what has been said, it appears that all the

cases of right-angled spherical triangles may be solved by

means of either of the sets of formulae above given ; but it

may also be observed that the substitutions and eliminations

necessary to effect these solutions would in many cases be

too tedious for practice, and their results burdensome to the

memory. To remedy this inconvenience, Baron Napier the

celebrated inventor of logarithms devised two rules easy to

be remembered, which are sufficient for the solutions of all

cases of right-angled spherical triangles, and of which the

following explanation may be given.

If C be supposed to be the right angle, there remain five

other parts belonging to every triangle, namely, the two sides

or legs a, b, the hypothenuse c, and the two angles A, B : now
TT

the two legs a, ft, the complement of the hypothenuse - — c,

2

and the complements of the two angles - — J^, - — B are

by Napier termed Circular Parts, the right angle being left

entirely out of the consideration, and any one of these parts

may be assumed to be what he calls a Middle Part : then the

two parts which lie close on each side of it are called Adjacent

Extremes, and the two remaining parts which are farthest off

from it and separated from it by an adjacent part are termed

Opposite Extremes. This being premised, the two following

equations are found universally to obtain, and are called Napier's

Rules

:

(1) Radius x the sine of the middle part = the rectangle

of the tangents of the adjacent extremes.
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(2) Radius x the sine of the middle part = the rectangle

of the cosines of the opposite extremes :

and from these equations if any two of the quantities involved be

given, the remaining parts may be immediately derived.

39. To prove Napier's Rules.

TT

First, let one of the legs a be the middle part, then - — JB

and h are the adjacent^ and -^ — A and - — c the opposite

extremes :

, . , cos JB+ cos^ cosC cos £ .

now by (27) cos = ^

—

-—:—

—

= -—- , smce C=90 ,

sHi A sm C sHi A

. sin B sin a
.'. cos B =: sin A cos o = :—

;;
cos 0, by (24);

sm

sin b cos B
» t^

whence sm a = r -.
—— = tan cot B,

cos sm B

or r sin a = tan 6 tan (
- -- Bj (1)

similarly r sm b = tan a cot A = tan a tan ( A\ (2)

^ sin a sin j1 . . . , .

agam by (24) —. = -:

—

— = sm ^, .'. sma = sm c sm A,
sm c sm C

or r sm a = cos (- - cj cos (- — A\ (3)

similarly r sin 6=sinc sin B=cos(- — c\ cos (-

—

B\ (4)

TV

Secondly, let the complement of the hypothenuse -— c be the

die part, then the adjacent extrei

and the opposite extremes a and b :

o

middle part, then the adjacent extremes are A and - — 5^
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248

cos C + COS A cos B
sin A sin B

cos J. cos B
sin J. sin B

cot A cot jB,

••• »• ^i"
(i

- <') ='""
(i
- ^) '''"

(i
- ^) (^>

^ ^ ^ cose— cos a cos Z> ,

and by (21) cos C = :—;—

:

= 0, .'. cos c=cos a cos by

sin sm c

in (- — c) =cosa cos b (6).or r sm

TT

Lastly, let the complement of one of the angles -- — ^ be

TT

the middle part, then the adjacent extremes are h and ^ — c,

TT

and the opposite extremes a and jB

:

cos c — cos b cos c
. . cos a — cos o cos c cos 6

now by (21) cos A = -

sin b sin c sin b sin c

cose (1 — cos^6) cose sin b sin 6 cos c

:
— = tan b cote;

sin b cos 6 sin c sin 6 cos b sin e cos 6 sin e

or r sin / - — A )
= tan b tan (

- - e ) (7)

similarly r cos B — tan « cot c,

or r sin( ^)~ ^^"^ ^^'^
{ " "" ^ ) (S)

. , ,^ , cos J. + cos S cos C cos tI
. ^, -

again by (27) cos a = :
—-—^— = ~r~~ , since C=90^

sin i5 sm C sm B
.'. cos tI = cos a sin B,

or r sin ( Aj = cos a cos f -— B
| (Q)
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similarly cos B = cos b sin A,

or r sin ( jB )
= cos b cos f - — ^ j (10),

and since out of five things taken two and two together, there

5.4
can be formed -— or 10 combinations, it follows that the ten

1 .2

equations above deduced include all the cases that can possibly

occur : moreover they are all adapted to logarithmic com-

putation.

We will now illustrate the use of these rules by the following

examples in which the radius is supposed to be 1.

Ex. 1. Given a and b, to find the rest.

From (l), sin a=tan b cot B, .'. cot B = = sin acotb:
tan b

(2), sin b=tan a cot A, .', cot A = = sin b cot a :

tan a

(6), cosc=cos a cos ^ ;

whence B, A and c may be found, and it is manifest that there

is no ambiguity.

Ex. 2. Given a and c, to find the rest.

sin a
From (3), sin a = sin c sin A, .*. sin A =

(6), cos c = cos a cos ^, .*. cos ^ =

sni c

cos c

cos a

(8), cos B = tan a cot c

:

whence Ay c, B may be determined, and there can be no

ambiguity except in the value of A, and this is removed by

means of the circumstance stated in (28).

Ii



250

Ex. S. Given a and A, to find the rest.

_ . . • . i • sin a
From (3). sin a = sm c sm A, .'. sm c = -:—7 ^

sin A
(2), sin Z> = tan a cot A :

cos A
{9)3 cos A = cos « sin B, ,\ sin jB =

cos a

hence the sines of c, h, and B, and therefore the parts them-

selves may be found : but it may be observed that there is

nothing to decide whether c, h, and B should be greater or less

than - or QO^^ and therefore the solution is ambiguous; and as

in Plane Trigonometry (233), it is readily shewn that there

may be two right-angled spherical triangles, which possess the

proposed data, and in which the required parts are supplemental

to each other.

Ex. 4. Given a and B, to find the rest.

From (1), sin a = tan 6 cot 13, .'.tan 6= =sinatani5:
cotB

/^\ Ti cos_B _
(8)5 cos jd = tan a cot c, .*. cote = = cosi5cota:

tan a

(9), cos A = cos a sin B
;

therefore h, c and A may be determined, and there is no

ambiguity in the solution.

Ex. 5. Given c and J, to find the rest.

From (3), sin a = sin c sm A:

cos c

(5), cos c = cot A cot ^, .*. coti5= r=cosctanJ^:
^

cot A

(7), cos -A = tan 6 cot c, .'.tan 6 = = cosAtanc;
cot c

whence a^ B and b may be found, and there can be no ambiguity

except in the first, which may be removed by means of the

considerations noticed in (28).
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Ex. 6. Given A and B, to find the rest.

From {5), cos c = cot A cot 5 :

(9), cos j1 = cos a sin Bj .*. cos a =
cos ji

sin ii

cos B
(10), cos 5 = cos & sin A, .*. cos 6 = —

.

^ ^'
'

sin ^

therefore c, a, and Z> may be found without ambiguity.

II. Solution of Quadrantal Triangles,

40. Let ABC be a spherical triangle whose sides and

angles are denoted by o, h, c, A, B, C respectively, whereof

c is a quadrantal arc : construct the polar triangle, and let

its sides and angles be expressed by a, h , c\ A , B', C respec-

tively as in (27), then it is manifest that C will be a right angle.

Now by the last article we have

r sin a' = tan h' cot B', and r sin a = sin c sin A :

whence by substitution we get

r sin {it — A)-=- tan (tt — B) cot (tt — b), or ;• sin A = tan B cot b
;

and

r sin (tt— A) = sin (tt — C) sin (tt — a), or ?' sin A = sin C sin a :

In the same manner all the ten cases of the polar triangle as

enumerated in the last article being resolved, those of the primi-

tive triangle will be immediately deduced from them, and it will

readily be observed that the two Rules of Napier above ex-

plained will be applicable to the solution of all the cases of

quadrantal triangles, if the two angles adjacent to the quadrantal

side, the complements of the two other sides, and the com-

plement of the hypothenusal angle, or angle subtended by the

quadrant be considered as the circular parts ; and to all

ambiguity of solution whether real or apparent, the remarks
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made in the different examples at the end of the preceding

article may be applied.

These solutions like the preceding are already adapted to

logarithmic computation.

III. Solution of Oblique-Angled Triangles,

41. Since every oblique-angled triangle has six distinct

parts, the three sides and the three angles, it follows that

the number of solutions in which from three parts given a fourth

may be found, will be equal to the number of combinations

that can be formed out of six quantities taken four at a time,

that is, = 15; but from a little consideration it will appear that

all the solutions essentially different will be comprised in the

six following cases :

I. When two sides and the angle opposite one of them are

given.

II. When two angles and the sides subtending one of them

are given.

III. When two sides and the included angle are given.

IV. When two angles and the adjacent side are given.

V. When the three sides are given.

VI. When the three angles are given;

and the resolution of oblique-angled spherical triangles will

be complete, if we can show that the expressions already

investigated can be applied to effect the solution of each

particular case.

42. Case I, in which two sides a, b, and the angle A
opposite one of them are given, to find the rest,

sin B sin ^ . ^
,

. sm b .

Smce —. = —— by ('24), we have sm B = -: sni A,
sm A sm a sm a

which is therefore found :
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again from (32), cot — = — tan (

)

cos I I

V 2 /

which is also determined;

c V 2 / /a + h^c \ '^ J /« "^ ^\ • , .

and from (34), tan — = -. 77— tan (
—-—

) is obtained,
2 /A-B\ \ 2 /

cos

sin C . sin C .

or sin c = —:—r sm a = -:—=: sin o becomes known,
sin A sin B

All these formulas are adapted to logarithmic computation

;

but it must be observed that C and c are here expressed in

terms involving B which was not originally given_, but has

been determined in the previous part of the solution. This

is however by no means necessary, for in (35) we have seen

that cot A sin C = cot a sin b — cos b cos C, and to adapt it

to logarithms^ assume the subsidiary angle such that

tan = cos b tan A ; then we shall have

cos 5 sin C .— = cot a sin — cos cos C,
tan 6

.*. cos b sin C cos = cot a sin b sin 9 — cos b cos C sin 0^

whence

cot a sin 6 sin 6=cos 6 (sin C cos ^+ cos C sin O)=cos 5 sin (0+^),

and .'. sin (C-l-^) = cot rt tan ^ sin 0_, from which C+ ^_, and

therefore C may be determined.

Again, from (21), sin b sin c cos A = cos « — cos b cos c

;

.*. if we assume tan ^ = cos A tan b, we shall have

cos b sin c tan = cos a — cos 6 cos r,

and cos & sin c sin = cos a cos — cos b cos c cos 6,
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whence

cos h cos {c — 6) = cos a cos 0, or cos (c — ^) = cos 0,
cos o

which is adapted to logarithms^ and gives the value of c— and

therefore of c.

43. Case II, in zohich two angles A, B and the side a

subtending one of them are given, to find the rest.

sin 6 sin J5
. sin 5 .

Since -.— = -:—r by (24), we get sin b = -:—r sin a,
sin a sm A sin A

which is found :

A^- B
c \ 9. y /a + b

cos
\ 9. y ^n A- h\

becomes known:
/rA-- B\ \ 2 /

cos

and from (34) tan - = .A-B^ '""(^)

(a + b\

~ir) z^+Bx.
also trom (32) cot — = tan ( ) is determined,

2 xg- b\ V 2 /
cos

. sin c . sin c .

or sm C = -.— sin A = ——- sin B is found,
sin a sm b

These solutions are all adapted to logarithmic computation,

and to these methods of finding c and C the same observations

may be applied as in the last case ; but articles {SQ) and (27)

by the introduction of subsidiary angles may as above be the

means of expressing in logarithmic forms the values of these

two parts without the previous determination of the side b,

44. Case III_, in which two sides a_, b^ and the included

angle C are given^ to find the rest.

In (31) we have seen that

b^

A-\-B\ ™(_^ C
COS

a + b\ 2'
COS
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'a — h^
sin

and tan {
—-— )

= cot—

,

V 2 / ^ /^ +
'

sni (
I

V 2 y

whence and — become known and therefore A and B:
2 2

sin C . sin C . , . ,

also sni c =* -^

—

- sni a = ^

—

— sni o is thence round,
sin A sin B

These forms are all adapted to logarithms^ but the side c may
likewise be expressed in terms of a, /;, C immediately and in

a form fitted for practice.

. cos c — cos « cos 6
For, since cos C = : -.—

;

, we have
sin a sm o

cos c = cos a cos h + sin a sin h cos C

= cos a cos 6 + sin « sin ^ — sin a sin 6 vers C

= cos {a — h) -— sin a sin h vers C

.*. vers c = vers (« — h) + sin a sin h vers C

{sin a sin 5 vers C)

vers {a— o) )

, . ,
. sin rt sin h vers C 2 /^ i

which, by assuming ; = tan t/, becomes
vers ia — b)

vers (.fi ~~" o^ sec yj

vers c = 2 t^ ^^6 radius r, and is adapted as

before.

45. Case IV, in which two angles A, B and the adjacent

side c are given, to find the rest.

In (SS) it has been proved that

A-B
a f h\ \ Q J c

¥¥)

cos
/a •+- ft\ ,. ^ ,

tan I I
= : ^^r-tan

\ 2 /
cos
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sin (
^-^

\

,ndtan(-^)= ^ ., jg
tan ^^ ,

from which and , and therefore a and b are known :

2 2

. sin c . . sin c . ^- . , ,
. .

and sm C = —.— sin A = -:—- sm i> is thus determined,
sin a sin 6

These formulie are all ready for logarithmic computation, but

as in the last case, the value of C may be expressed in terms

of the given parts A, B and c alone, and adapted to practice.

_ . , , ,
cos C + cos A cos B

tor. since by (27) cos c = -.

—-—
-.—

=; , we have
sin A sin B

cos C = sin A sin B cos c — cos A cos B
;

.*. vers C = 1 — sin it sin jB (1 — vers c) + cos A cos B
= 1 — sin A sin JB+ sin A sin jB vers c -j- cos A cos B
= 1 + cos (J. + -B) + sin A sin B vers c,

^ . ,C ^ /A4-Bx . , . ^
.*. 2 sin —=2 cos I I + sm A sin B vers c.

2 V 2 /

A , T) C ,
sin ^ sin B vers c'X

A 4- B\ <, - . sin A sin jB vers c
be

2/A + i^\ 2/1 f= 2 cos (
—

I sec t7, ir

V 2 / . 2/-4 + jB>
2 cos {^)

assumed = tan"^ 0, and thus the value of C may be found from

the tables.

46. Case V, in which the three sides a, b, c are giveriy

to find the rest.

In (23) and (25) it has been demonstrated that

2 ,
sin A = . , .

— ^sin S sin (S - a) sin {S — h) sin {S - c\
sm 6 sin c ^ ^ / v / \

/?
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. A . / sm{S— h) sin (S—c) A ^ /sin S sin (S—a)
sm--=y :

—

-—
: , cos — = V —

;
—:

^

2 sin /; sin c 2 sm 6 sin c

A 4 / s'm (S — b) sm (S — c)
and tan — = \/ ^ ^ ^

:

;

2 sin S sin {S —a)

all of which when adapted to the radius r will be prepared for

logarithmic computation : and to which of these the preference

ought to be given above the rest, must be decided by means of

the remarks made in (238)^ (239)^ (240) and (241)/ of the

Plane Trigonometry.

47. Case VI_, in ivhich the three angles A, B, C are

given, to find the rest.

In (29) and (30), we have seen that

sin a = . ^ . ^ ^-cos^ cos(.S'-^)cos(S'-^)cos(.S'-C),
sin i5 sm C

. a A / — cosaS cos(6 — 7I) a a / cos{S — B) cos(S —C)
m - = V :

—

T,
——7; ,COS- = V :

—

^—:

—

7; 5

2 ^ sm 5 sin C 2 ^ sm B sm C

a A / —COS S' cos{S' — A)
""•^ '^"

5 = ^ cos(S'-B)cos(S'-Cy

from any of which when adapted to the radius r, the value of a

or - may be logarithmically determined, the preference as to

method being given according to the remarks referred to in the

last article.

48. Though there has just been given a solution of every

one of the six cases above enumerated, and which, it was

•observed, are all that are essentially different from each other,

it may still be added that by supposing an arc of a great circle

to be drawn from one of the angles perpendicular to the opposite

side, Napier s Rules for the solution of right-angled triangles

are sufficient for the solution of all spherical triangles whatsoever.

For brevity's sake, we will exemplify their application in the last

two cases only.

Kk
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First, let the three sides a, b, c be given, to find the three

angles, and suppose the arc CD of a great circle to be drawn

from the angle C perpendicular to the side AB; then by

Napier's Rules we have

/' cos a = cos BD cos CD, and r cos ^ = cos AD cos CD,

cos a cos BD
whence 5 or the cosines of the segments of

cos b cos AD
the base are proportional to the cosines of the adjacent sides

;

cos a — cos 6 cos 51)— cos j4D

cos a + cos b cos BD + cos AD

. AD + BD . AD-BD
sm sm—.

AD+BD AD^BD
cos — cos

2

c /AD—BDx
= tan - tan i )

2 \ 2 /

AD-BD . ^ , , AD + BD
^ . .

whence is lound, and being given^ two

parts in each of the right-angled triangles ACD, BCD become

known, and consequently all the angles of the triangle may be

determined.

Hence also the perpendicular CD may be found from

.. '

, . _,_ rcosa ^,^ rcosb
either of the equations, cos C jL)= 777^, or cos CD =

cos BD cos AD
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Nextj let the three angles A, B, C be given, to find the rest;

then the same construction remaining, we have by Napier s

Rules,

r cos A = cos CD sin A CD, and r cos B = cos CD sin BCD ;

, , ^ cos ^ sin ACD . . ^ ,

and therefore ~ = ^

—

ttftf: j o*" the smes of the segments
cos B sm BCD

of the vertical angle are proportional to the sines of the cor-

responding angles at the base

;

hence if these segments be called a, /3 respectively, we have

cos A — cos B sin a — sin /3

cos A + cos B sin a + sin /3
'

tan (
—

z— I tan ~

from which may be found, and or — bemg given,

the values of the segments a, /3 may easily be determined ; and

thus in each of the right-angled triangles ACD. BCD two angles

being known, the sides of the proposed triangle may be found.

As before, the magnitude of CD may be found from either

of the equations
"^

r cos A ^^ r cos B
cos

sm ACD sm IJCD
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CHAP. IV.

Ofi the Areas of Spherical Triangles, 8^c. and the Spherical Excess,

On the Measures of solid Angles, S^c,

49. The surface of a spherical Liine is proportional to the

angle contained betioeen the planes of the two semi-circles by

which it is formed.

Let APNQ be the lune formed by the two great semi-circles

of the sphere PAQ, PNQ: then it is obvious that if the arc

P

AN which measures the angle APNhe doubled, or increased in

any other ratio, the surface APNQ will be doubled, or increased

in the same ratio, because equal portions of surface will mani-

festly correspond to equal parts of the arc : that is, the surface

APNQ is proportional to the arc AN, or to the angle APN.

50. Cor. 1. Hence, if 5 represent the whole surface of

the sphere, the surface APBQ = — , and we shall have
2

the area of the lune JPNQ : - :: Z APN : 180°;
2

.% the area of the lune APNQ =
180° 2
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and if the radius = lj we have seen in (£14) PL Trig, that the

<S

area of the circle = tt, and .*. — = 27r= 180^,
2

z APN
whence the area of the lune APNQ = „- 27r= Z APN.

51. Cor. 2. The area of the lune may be expressed

in other terms.

For since the spherical angle APN = the plane angle

AON= ^ao7i= — = -:——— , we have the area of the lune
ao sjn Pa

APNQ= ""
sin Pa

52. To express the area of a spherical triangle iti terms of

its angles.

Let ABC be a spherical triangle on the surface of a sphere

whose radius is 1, and produce the sides AC, BC till they meet

in c on the opposite hemisphere ; then it is manifest that the arcs

Cac, Cbc are semi-circles; whence, since -4 Ca, BCb are also

semi-circles^ it follows that AC = ac and BC = bc: therefore

the angles at C and c which measure the inclination of the

same planes being also equal, we have the triangles ACB,
atb in every respect^ equal to one another:
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Now if the area of the triangle ACB be called x, and BCa,
ACb, CBa be assumed equal to a, (i, y respectively, we
shall have

A. S B S C S

^+"=Ti5^¥' ^+^=T85-«-5' ^+^=Ti3-»-i'

.*. by addition, observing that x + a 4-/3-|-7 = —, we get

S A + B-^-C S

1
, r .u .

• 1 ^ + ^ + C--180" S
whence x. or the area of the triangle = ^^ 180^ 4

=^+E + C-180^ as appears from (214).

53. Cor. 1. Hence the area of the triangle is equal to

the excess of the sum of its three angles above the two right

angles, which is called the Spherical Excess.

54. Cor. 2. It follows therefore by (17), that the area of

a spherical triangle may be represented by any number of

degrees between and 360, and also that if two of the angles

be right angles, the area varies as the third.

55. Cor. 3. If the radius of the sphere be supposed = r,

we shall have S = 47rr^, Diff, Cal.j and therefore the area of the

. , ^4-5 + C-180" 2 ^ . ,.
triansle = n ttv : and to the radius 1, ir re-

presents 180^ expressed in terms of that radius, therefore the

area of the triangle expressed hi seconds

= (A + i^H-C~180')/sinl".

56. Cor. 4. By means of this article the area of a spherical

polygon may likewise be expressed in terms of its angles.

For let ABCD Sec. be a polygon of n sides whose angles

are Aj B, C, D &c. : take any point F in its surface, and from
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it to the angular points draw arcs of great circles of the sphere:

then the area of the polygon ABCD &c. = the sum of the areas

of the triangles AFB, BFC, CFD, DFE, &c. = the sum of

the angles of the polygon, together with the angles at P— w 180°

= ^ + 5 + C + D-f-&c. + 2.180''-wl80°

= A + 5 + C + D + &c.— (;*— 2) 1 80^ the radius of the sphere

being supposed = 1.

57. To express the area of a spherical triangle in terms of
two sides and the included angle.

Let a, b be the proposed sides and C their included angle,

and suppose the area of the triangle or the spherical excess

A + ^ + C — 180^ to be represented by E : then in (31)

we have seen that

b^
cos {"¥)A+B\ V 2 / C/A + DA

tan I I
= r-7- cot — ,

\ 2 / /a-^b-
cos

whence cot
_2

1 — tan (
" '

"
) tan—

V 2 y -

/a-b\ C /a + b\ C
I I cot 1- cos I I tan —V2/ 2 \2/ 2

/a-b\ /ai-b\
cos I —

I
~ COS I 1

\ 2 / \ 2 /
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/a-b\ gC
, /« + 6\ . 2 C

cos I 1 cos hcos I I sin —

. a . b . C C
2 sm ~ sin - sin — cos —

2 2 2 2

a b a . b / C . oC\
cos - cos - -f-sin- sin -

| cos sin'— I

2 2 2 2 \ 2 2/
. a . b

sin - sm -" sm C
2 2

cot - cot f- COS C
2 2

sm c

58. Tb express the area of a spherical triangle in terms of

the sides.

It has been shewn in the last article that

^ cot - cot - -f- cos C
E 2 2

cot — =
2 sin C

a b (1 4-cos «)(1 -|-cos 6)
now cot - cot - = : :—

;

2 2 sin a sm b

1 + cos a + cos Z/ -|- cos a cos 6 ^ cos c — cos a cos Z>

: r-T , COsC= : r-j
sm a sm o sin a sin o

and sin C = -:
:

—- v sin S sin (*S — a) sin (5 — b) sin (S — c),
sin a sino

according to the notation adopted in (23);

E 1 4- cos a + cos b + cos c

/. cot — =
2 2 v^ sin 5^ sin (5 - a) sin (5 - b) sin (6' - c)

This formula for the spherical excess was discovered by

De Gua, but it is not adapted to logarithmic computation.

a b „
„ cot - cot- +cosC
E 2 2

5 Q. Co R . 1 . Since cot - = r—p; , we shall have
2 sm C
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,,a ^'o a o ^
T, ^ 1 + cot' - cot^ - + 2 cot - cot - cos C

«

£

o -E 2 2 2 2
cosec"— = 1 + cot' — =

r,

2 2 sin- C

out cot" - cot -

(i-Wg(i-,i,r-J)

2 2 . „a . 2^
sill - sin -

1 — sin - — sm - + sm - sm -
2 2 2 2

sm - sm -
2 2

, ^ cos c— cos a cos Z>

also cos C = :
:

—
sin a sm b

l-2sin^^ - A-2sin-j'\ i\ -2sii/-^

. a . h a h
4 sm - sm -- cos - cos --

2 2 2 2

/. 2 cot - cot - cos C =
l-2sin'- - /^l-2sm-^'\ /^l-2sin^-^

2 sin - sm"-
2 2

. „ a , . r. ^ . oC ^. . oa . ^h
sin^ - + sin sm 2 sin - sin" -

2 2 2 2 2

sin - sm -
2 2

.'. by substitution we get cosec —

. .a . ,b . pfl . o^ . . £« • 2^
1 • e« . -2^ -2^ ^ . 2« • «»^

sm^-siir- + 1-8111"- - sur- +sin -sm -4-sm - + sm - - sm - -2sin -sm"-22 22222 22 22
sm -- sin - sm C

2 2

Ll
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. qC ^ 2« 2 ^ £ ^
1 — sm - 4 COS - COS - COS -

2 2 2 2

• 2 « . 2 ^ . 2 ^ s"i '^ s^" (*^ " ^) si« iS— 6) Sin (S — c)

sin - sin - sin C
2 2

, • :^ _ x/si" *^ sin {S — a) sin (8 — b) sin (S'— c)

2 a h c
2 cos -" cos — cos -^

2 2 2

The discovery of this formula is due to Cagnoli, and it has

the advantage of being easily adapted to logarithms.

60. Cor. 2. Since cos — = cot— sin — , we have from the
2 2 2

last two articles

1? , . . 7
COS^-+ COS -'+COS--— 1

-c/ 1 +cos« + cos t> -r cosc 2 2 2
cos— = = ?

2 a b c a b c
4 cos-- cos- cos- 2 cos -- cos-- cos -

2 2 2 2 2 2

which is rational_, but not adapted to logarithmic computation.

61. Cor. 3. Because

E E
1 — cos

—

1 — COS—
2 2

. E
sm —

2
\/(l + cos|) (l-cos|)

E= tan — , we shall have by substitution^

2« ^b ^c a b c
1 — cos - — cos -—COS - H- 2 cos- cos- cos

-

E 2 2 2 2 2 2

4 V sin S sin (5 — a) sin (5 — b) sin (*S— c)

2« ob oC a 6 c
but 1 — cos - — cos cos - + 2 cos - cos - cos -

2 2 2 2 2 2

/ 9«\ / 2 ^\ / ^' ^^ ^\'
= I 1 ~ cos - I I 1 — cos - I — I COS - COS— cos - I

\ 2/ V 2/ V 2 2 2/
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b\' / a h( . a . b\ /ah c\
= I sin - sin - I — I cos - cos cos -- I

\ 2 2/ V 2 2 2/

{. a . b a b c )
sin - sm - + cos -' cos cos -- > x

2 2 2 2 2 j

{. a . b a b c\
sm - sin - -- cos - cos - + cos --

\
2 2 2 2 2j

. S . /S-a\ . /-S-z^x . /S-c\
= 4 sm — sin 1 1 sin { j sm | I ,

2 V2/ V2/ \ 2 J
'

if we adopt the notation of (23);

S . /S-a\ . /S-b^
A. mn

jE
tan

. S . f^-a\ . (S-b\ . (S~c\
4 sin — sm 1 j sin {

J sm I 1

2 \ % ) \2/ \2/
^ x/sin *S sin (S'— a) sin (8 — Z>) sin (^ — c)

= \/tan
I

,an (^") tan (^) .a» (^^) ,

which being transformed to the radius r will be adapted to

logarithmic computation.

This singular formula for the spherical excess was discovered

by Simon Lhuillier of Geneva.

62. A solid angle being the angular space included between

the several planes by which it is formed, will manifestly have

the same relation to the corresponding spherical surface whose

centre is the angular point, as plane angles have to their cor-

responding circular arcs_, and therefore the magnitudes of solid

angles may be compared by determining the ratios between

the spherical surfaces by which they are, as it were, respect-

ively subtended. Now we have seen (52) that the area of

a spherical triangle is measured by the excess of the sum of

its angles above 180°, and {56) the area of a spherical polygon

of n sides by the excess of the sum of all its angles above (n — 2)

180°; hence it follows that these quantities may be assumed as
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the measures of the solid angles formed by the planes whose

inclinations to one another are the same as the angles of the

triangle or polygon. The maximum limit of solid angular

space will manifestly be a hemisphere and its measure the

surface of the hemisphere in the same manner as the max-

imum limit of plane angular space is a semi-circle and its

measure the arc of the semi-circle. Representing therefore the

maximum solid angular space by the content of the hemisphere

27r
whose radius is 1, or by -;—

, {Diff. Cal.) we shall have its

o

measure equal to the corresponding hemispherical surface Stt

or 360^

Ex. 1. In a cube each of the solid angles is formed by

three plane right angles, and thence we have

the solid angle of a cube _ QO^ + 90^ -f 90^ - 180° _ 90^ _ 1

the maximum solid angle
~"

36o"
""

36o"
~" 4

'

which we also know to be true from the circumstance that if four

cubes be placed together upon a plane, they exactly fill up the

angular space about a common point.

Ex. 2. In a regular right prism with a triangular base two

of the plane angles which form each solid angle are manifestly 90^^,

and the remaining one 60° : therefore

the solid angle of this prism _ 90° + 90° + 60° — 180^
__

60° 1

the maximum solid angle 360° 360° ~ 6
*

Hence by means of the last Example, we have

the solid angle of a cube 11 6 3

the solid angle of this prism 4 6 4
~"

2
*

Ex. 3. Let there be two regular light prisms of m and n

sides respectively, then each of the angles of their bases will be

—
j

180° and I j 180" respectively : hence
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the solid angle of the first prism \ m )
'^^ mI )
180^

\ m J

the maximum solid angle 360° 2m

("-^\ 180°
the solid angle of the second prism _ \ w / _ ?i — 2

the maximum solid angle 360° Q.ti

the solid angle of the first prism (m — 2) ?i

and
the solid angle of the second prism (ii — 2) m

and by means of this example, the solid angles of all regular right

prisms whatsoever may be compared.

Ex. 4. If there be any two prisms whatever, whose numbers

of sides are m and w, we shall manifestly have

the sum of all the solid angles of the first prism _ (m— 2) 180** m^2
the maximum solid angle 360° 2

the sum of all the solid angles of the second prism (n — 2) 180° « ~ 2

the maximum solid angle 360° 2

the sum of all the solid angles of the first prism m— Q

the sum of all the solid angles of the second prism ?i — 2*

63. The vertical angles of pyramids whether regular or

irregular may be ascertained and compared by the same methods :

thus if there be two regular pyramids of m and n sides

having the inclinations of two contiguous sides to each other

represented by a and /3 respectively, then according to the

principles above explained, we shall have

the vertical angle of the first pyramid _ ma — (m— 2) 180°

the vertical angle of the second pyramid 11 (^ — {ii — 2) 180°*

o4. The same principles enable us to compare the vertical

angles of cones, by comparing the areas of corresponding

spherical segments of spheres of equal radii, whose centres are

the angular points.
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Hence since {Diff. Cal.) the surface of a spherical seg-

ment varies as its altitude, if H and h be the altitudes of two

cones corresponding to L the common length of their sides,

we shall have

the vertical angle of the first cone the height of the first segment

the vertical angle of the second cone the height of the second segment

\
L- H 1 — cos vers ^

L — h 1 — cos vers (p'

if 9 and (j) be the vertical angles of their generating triangles.

Ex. For the equilateral and right-angled cones we have

= 30°, and (p = 45^, respectively

;

1/3

the vertical angle of the equilateral cone vers 30°
__

2 _2-- V^3

the vertical angle of the right-angled cone vers 45° 1 2— 1/2

Whenever the spherical surface by which any solid angle is

measured can be divided into 7i parts either equal to one aijother,

or having any assigned ratios^ the solid angle itself can be divided

into n parts having to each other the same ratios.

This method of measuring and comparing solid angles by

means of the positions, and not the magnitudes^ of its plane

angles, was first suggested by Albert Girard in his Invention

nouvelle en Algebre published about the year 1629, and has been

extended and exemplified by several modern writers.
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CHAP. V.

On the regular Polyhedrons, and on the Parallelopiped and

triangular Pyramid.

65. In every Polyhedron, the numbers of Solid Angles and

Plane Faces together exceed the ?iumber of Edges by 2.

Let :c be the number of solid angles^ y the number of plane

faces and z the number of edges ; then since every edge is

common to two plane faces, Qz will be the number of sides

of all the faces :

Within the polyhedron suppose a point to be assumed

from which to all the angular points straight lines may be

drawn, and with this point as a centre let a spherical surface

be described cutting these lines, and let the points of intersection

be joined by arcs of great circles of the sphere so as to form

as many spherical polygons as the solid has faces : let ABCD
&c. be one of such polygons, the number of whose sides is 72

;

then by (56\ its area = A +B+ C + D-\-^c. - (n - Q) 1 80^•

and the same being found for all the polygons, we shall have the

whole surface of the sphere or 720° equal to the sum of all the

angles of all the polygons —(2 z ~2y) 180^ or the sum of all



272

the angles of all the polygons = 720^ + (2 ~j/)360^ but the

sum of all the angles about any point as A being = 360^, we

have the sum of all the angles of all the polygons = cr 360^:

whence x 360^ = 720^ + (z - y) SQO\ or or = 2 + 2 -y,

and .*. X +3/ = z -^-^l.

QQ. Cor. 1. Hence the sum of all the plane angles forming

all the solid angles of any polyhedron = {x — 2) 360^.

For if any face have n sides_, the sum of all its angles

= (2?z - 4) 90^ = (/2 - 2) 180^ ; hence the sum of all the angles

of all the faces = (2 ? - 2j/) 180^ = (z -y) 360^ = (^-2) 360°.

67. Cor. 2. In a regular polyhedron, if ?i be the number of

sides of each plane face, m the number of plane angles constituting

-\ 180° be the magnitude of

TTl ( tl — 2 )

each plane angle^ and — 180° the sum of all the plane

angles forming each solid angle ; hence retaining the notation

above used, we shall have the sum of all the plane angles

tl 1 1-1 1
m(n-'2)x

formmg all the solid angles = — 180 :

therefore from the last article, we get

(x ~ 2) 360° = —^ — 180°,
n

and .•. 2wr-— 4w = m»jr — 2mj,

4n
whence the number of solid angles x = -

2 {??i -f n) — mn

,
ny 4n

also smce i/ = 2+jz— a: = 2+ -^^

we have the number of plane faces y =

2 2{m -{- ii) — m n

4m
2 (m + 7i) -^ mn
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68. Cor. 3. From what has just been proved, we imme-

diateJy obtain the number or edges 2 = -^ = • ; :

and therefore the number of solid angles, the number of plane

faces, and the number of edges of any regular polyhedron, are

to one another respectively as 4w, 4m and ^miiy or as 2?/,

2m and mn,

^^, There can he only Jive regular polyhedrons.

For^ the notation above adopted being retained, if x, y^ z be

finite positive quantities, the denominator 9.{m^rn)—mn must be

positive, and .'. 9>m-\-2n must be greater than mn, from which

m
, ^

we have greater than - .

772- 2 ^
2

First, let m = 3, or each solid angle be formed by three plane

angles^ and n = 3, or the faces be triangular, then being

3 . .
•

. 12
greater than -

, a solid will be formed having— — or 4 solid^
2 ''2.6-3.3

angles; — or 4 plane triangular races; and or
^ '2.6-3.3 ^ *= ' 2.6-3.3

6 edges, and is therefore called a Tetrahedron.

3
Again, let m = 3 and « = 4, and we shall have greater

3 -2 *=

4
than -

, and thus a solid will be formed having eight sohd

angles, six plane square faces, and twelve edges, and is therefore

called a Hexahedron^ which is the same as a cube.

3 5
Next, let 772 = 3 and n = 5, which gives —— greater than -

,

and therefore a solid will be formed having twenty solid angles,

twelve plane pentagonal faces, and thirty edges, and on this

account is termed a Dodecahedron.

M M



If m==3, and 7i be any number greater tb an 5, the condition

771 W
that must be orrealer than - will not be satisfied: and

thence it appears that there can be constructed only three regular

polyhedrons in which each solid angle is formed by three plane

angles.

4
Secondly, let W2 = 4 and w = 3, and we have greater

3
than - : wherefore there will be formed a solid having six solid

angles, eight plane triangular faces, and twelve edges, which is

therefore called an Octahedron.

Again, let /?2 = 4 and n = 4, or any larger number, and the

condition will no longer be fulfilled; and consequently there can

be constructed only one regular polyhedron in which each of the

solid angles is formed by four plane angles.

5 3
Thirdly, let m=5 and n= 4, then being greater than ~

,

there will be formed a solid having twelve solid angles, twenty

plane triangular faces, and thirty edges : this solid is therefore

called an Icosahedron.

If m = 5j or any larger number, and ti be greater than 3_,

the specified condition cannot be fulfilled, and thence it appears

that there can exist five, and only five regular polyhedrons.

By supposing 2(m + ?0 — ^^w = 0, we find the values of

X, ?/, z indefinitely great : and a sphere may be considered

as a regular polyhedron of an infinite number of solid angles, &c.

70. To find the inclination of tivo contiguous faces of a

regular polyhedron to one another.

Let AB he the side common to the two contiguous faces,

C and JB being their centres, from which let CD and jEZ)

be drawn perpendicular to it, then will the angle contained

between CD and ED be the incHnation of these two faces

to each other : in the plane in which CD and TLD lie, let



275

CO and EO be drawn perpendicular to them respectively

and meeting in O, join OA, OB, OD, and from as a centre

suppose a spherical surface to be described cutting the lines

OJ., OCy OD in the points p, q, r, and let these points be

joined by arcs of great circles : then it is manifest that the

angle prq is a right angle: hence retaining the notation before

used, we shall have

TT TT
Z.qpr= — 5 and /.pqr= - :

m n

«ow by Najyier's Rules, the spherical triangle pqr gives

TT

cos —
m

cos qpr-=-i\\\pqr cos qr^ and .*, cos ^r = ;

TT
sm -

n

CD F
but cos qr = cos COD = sin CDO = sin

2 '

. CDE ""'l
/. sm —-— =

5

2 . TT

sm -
;i

from which the required angle CDE may be found,

(1) In the Tetrahedron m = 3 and 7i = 3,

. CDE cos60« 1
. ^rir' 1

" sm—:— = —^—^TTfT = ~r~ ^ and cos LDE = - .

sin 60^ V3
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(2) In the Hexahedron m = 3 and n = 4,

r,'s\n^^=
cos_6^^

1 ^^^ ^^^ CD£=0, or CjDE=90^
2 sm 45^ /2 '

(3) In the Octahedron m = 4 and w = 3,

. CDE cos 45^ ./a" , ^^^ 1

.*. sui = ——^-77 = v - 5 and cos CDi^= —
7; .

2 sm 60^ ^3 3

(4) In the Dodecahedron m = 3 and 71 = 5,

. Ci)E cosGO** 2
, ^T^T^ l-'^^

.'.sin = -77=

—

.. . . == . and cos CiJil/=- 77.
2 sin 36' ^10-2^5 5-V5

(5) In the Icosahedron m = 5 and w = 3,

. CjDE cos 36' 14-/5
, ^^^ . ^5

.*. sm = -:—;;-7r
= 7— , and cos CiJil/ =- .

2 sm 60' 2 V^3 3

71. To ^/zc? //te radii of the spheres inscribed in and

circumscribed about a regular polyhedron.

Retaining the construction and notation of the last article,

it is manifest that CO and £0 are respectively perpendicular to

the planes ABCf ABE and equal to each other; and the same

being true of any other two contiguous faces, it follows that C
is the centre of the inscribed and circumscribed spheres whose

radii are OC and OA respectively

:

OC TT 'TT , ,^ . ,

now -—— =: COS pq = cot qpr cot pqr = cot — cot - , by Napier s

Rules: but if a side of one of the faces = a, we have

from (204)

2

CA = --^—, and /. 0A^= 0C"+ ""
9

rnr . o tt
2 sm — 4 sm'' -

n n

wherefore r and R representing these radii, we have the two

following equations

;



277

cot — cot — , and Br — r^
—

R m n . .
2 '""

4siu —
n

to determine their values.

72. Cor. If the angle CDE be found as in the last

article but one, we shall manifestly have

a TT CDE
, ^, a tt CDE

r— - cot -- tan and K= - tan — tan .

Ex. 1. In the Tetrahedron W2 = 3 and 11 = 3,

r 1
.*. — =cot 60° cot 60°= "

, whence R = 3r\
K 3

also R^-'r^= —. <2 ^ n = —
i
fiom which are obtained

4 sn/ 60° 3
'

a 3a
r = r:; und it =

2 V"6 21/6

Ex. 2. In the Hexahedron and Octahedron, since in the

former m = 3 and n = 4f, and in the latter tw = 4 and 71 = 3, we
r 1

shall have — = cot 60° cot 45° = —7—; which shews that if
it V 3

these two solids were inscribed in one sphere, they might both be

circumscribed about another sphere, and the contrary : also, in

the former it is easily proved that r = --
, J^ = - /sj 3^ in the

latter r = —7— and R = -7- .

Ex. 3. In the Dodecahedron and Icosahedron m = 3,?i = 5,

and m=^5, 7i = 3 respectively,

.-. ^ = cot 60° cot 36°= \/i±^^,
R 15

and the same remark may be made as in the last example :

hence also in the former r = — x/250+ 1 10 V^,
20 -
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R=^(\^15+ 1/3); in the latter
4

r = — ^42+18 t/5, jR= 2 ^10 + 21/5.

73. To find the content of a regular polyhedron.

From the centre of the inscribed sphere, let straight lines

OAy OB, OC, &c. be drawn to all the angular points, then will

the polyhedron be divided into as many pyramids with equilateral

bases as there are plane faces^ and whose altitudes are each

equal to the radius of the sphere r : now if we retain the nota-

tion which we have before adopted^ we shall by (201) have the

area of each face =
;

TT
4 tan —

n

n c? y
and therefore the whole surface = ^—

,

TT
4 tan —

n

ni^ry
whence the content = \ whole surface x r = •

^ TT

1 2 tan -
n

Ex. In the Tetrahedron w = 3, 3/ = 4, r = —T7?> ^"^
%VQ

tan - = tan 60^ = /3 ;

n
«'

/. (1) the content of /the Tetrahedron = f= = — '^2.

2^18 12

Similarly,

(2) the content of the Hexahedron = c^ :

a^
(3) Octahedron = — 1/2 :

(4) Dodecahedron = ~ x/470 + 210.^^ •

4 ^^

c ^.3 /

(5) , Icosahedron = vl4+ 6>y/5.
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By means of the last proposition there will be no difficulty

in expressing the content in terms of the radii of the inscribed

or circumscribed spheres.

74. Given the three edges of a parallelopiped which meet,

and the angles included between theniy to find its perpendicular

altitude.

Let OA, OB, OCj the three edges of a parallelopiped

meeting at the same angle be represented by a, b, c ; draw CD
perpendicular to the plane AOB, join OD, and let the angles

AOB, AOC, BOC be called a, /3, 7 respectively, then

CD=OC sin COD'-, now to find the sine of the angle COD,
with centre O and radius = 1, suppose the surface of a sphere

to be described cutting the edges OA and OC in p and cj^ and

OD in r\ then if 2»S = a + /3 + 'y, we shall manifestly have

sin COZ) = sin <5r7' = sinp^ sin qpr, by Napier's Rules^

= sin B— :—7;: ^/sin -S' sin (5' — a) sin (S— 3) s\n(S— y)
sm a sm p ^ '

^y sin S sin (5 - a) sin (S — /3) sin (6' — 7Xsm a

whence CD = -, ^sin 5 sin (5 - a) sin (S— 3) sin (S - y\
sm a '

75. Cor. The whole surface of the parallelopiped will

manifestly = Q {ab sin a-\-ac sin (3 -{-be sin 7}.

76. On the same hypothesis, to find the content ofi the

parallelopiped.
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The content = area of the base x the perpendicular altitude

==0A, OB sin AOB. CD
Qq ._ - --...

= ab sin a — \/ s'lnS s'm{S —a) s'm{S— Q) sin^S — y)
sni a

= 2a he ^y «in «S' sin(i5^ — a) sin (5-/3) sin(«S — 7).

77* On the same supposition^ to find the diagonal of the

parallelopiped.

Let 2 CD (which, if the figure were completed, would be

the diagonal of one of the faces) = d, then

d" = a'^-\-b'^ + 2ab cos a :

also if D be the diagonal of the parallelopiped, we shall easily

perceive that

D^=d''+^-h2cd cos COD=:a^+ b^+ c^-\-2abcosa+2cdcosCOD:

now the angle COD is manifestly measured by the arc qr,

and cos ^ r = cos p q cos pr + s'm pq sin p r cos qp

r

^ . n • fcos'V — cosa cos/3)= cos p COS pr + smp sm pr < : :

—

y: r

i sm a sm p )

^ . . rcos 'y — cos a cos /3)= cosp cos pr-\- sm pr{ : >

I sin a )

cos 7 sin pr cos /3 (sin a cos/? r — cos a sin pr)—
; 1 ^

sm a sm a

__ cos 7 sin pr cos fi sin (a— pr)

sm a sm a

sin AOD , ^ sin BOD
= cos 7 : h cos p :

:

sm a sin a

but in the parallelogram whose diagonal is 20Df it is evident

that

sin.iQD _ OB _b sin BOD _ OA _a
sm a SOD J' sma 2 0£) d
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.*. cos qr or cos COD=^ - cos /3 -|- - cos 7;
a a

whence by substitution we get

D = /sj a^ -{- h^ + c^ -\- Q, a h cos a 4-2«c cos fi-\-2bc cos y.

78. Cor, By proper substitutions in the last expression,

the other diagonals are determined : and thence it may easily be

shewn that the sum of the squares of the four diagonals of

a parallelopiped is equal to the sum of the squares of the twelve

79* Given three edges of a triangular pyramid which meet,

and the angles which they make with each other, to Jind its

content.

Since by Euclid xii. 7? every prism having a triaiigular base

may be divided into three pyramids that have triangular bases

and are equal to one another, it follows that the content of the

triangular pyramid will =§• of the corresponding parallelopiped:

that is, retaining the notation of the last article, we shall have

the content of the triangular pyramid

abc=— /y/sin S sin {S— a) sin {S — /3) sin {S — y).

80. Cor. The sum of the areas of the three sides of the

pyramid manifestly = j {ah sin a-\-ac sin /3+ ^c sin 7}.

81. Given the six edges of a triangular pyramid, to Jind

its content.

Retaining the notation of the preceding articles, and in

addition thereto representing the sides AB, AC3 BC of the

base by h, k and / respectively, we have

a'+b'-'h^ ^ a''-{-c^-k' b'-^-c'-'l'
cos a = — '

, cosp = — , cos'y= ;
;2ab '

^ 2ac '
^ Qbc '

hence the content = y^sin S sin {S ~ a) sin {S - /3) sin {S - 7)

N N
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ab(= —— >/ 1— cos^a— cos^j3—cos*7+ 2cosacos^cos7;asin(6l),
6

— ^ V^ .2/2 .22 .729"+'
HKL

the quantities i?, K, L representing the numerators of the values

of cos a, cos /3 and cos y respectively.

82. We shall conclude this chapter with a few remarks

upon certain consequences resulting from Euler's Theorem

demonstrated in (65), extracted and slightly altered from Note 8,

of the Elements de Geometrie of M. Legendre, to which work

the student is further referred for the geometrical construction of

the regular polyhedrons treated of in the preceding part of the

chapter.

(l) Let yg be the number of triangles, 3/4 the number of

quadrilaterals, 3/5 the number of pentagons, &c. which form the

surface of a polyhedron : then the whole number of faces is

3/3 + y4 + ys + 3/6 + Sec,

and the whole number of their sides is

37/3 + 4^4 -f 5^5 + 6^6 + &c.

which is also twice the number of edges : hence as in (65) if x

be the number of solid angles, y the number of plane faces,

and z the number of edges, we shall have

y =y3 +y4 +3/5 +^6 + ^^-^ and 2z = Sys -f 4^4 + 5i/^+ %6- + &c-

but since by (65), .r +y = 2; + 2, we get

2x = 4-\-2z- 2y = 4+y3 + 2y4 + 3y5 + 4y6 + &c.

from which we conclude that the number of faces of a polyhe-

dron having odd numbers of sides is always even.
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(2) Since 2 = ^^ + 2 2/4 +^ + 3j/,. + 8cc.

and ^ = 2 + — + 3/4 + -~^ + ^j/g + &c.

= 2 + i {^3 + 2y4 H- 3^5 + 4i/6 + &c.}

it follows that % cannot be less than | y, nor x less than 2+^y.

Also the whole number of plane angles being Sz, and the

number of solid angles ar, it is manifest that the mean number

22 42
of plane angles constituting each solid angle = — = —

^ 2(3^3 + 4y4 4- 5^5 + 6^6' + ^^')
.

4 + 3/3 + 2j/4 + 3^5 + 4^6 + &c.
'

also since no solid angle can be formed by fewer than three

2z
plane angles, — cannot be less than 3, or 22 cannot be less

X

than 3 a? : hence

3^3 + 4j/4 + 5y5 H- 6j/6 4-&c. cannot be less than

6 +^ + 3^4 4- 5|^ + 6y, + &c.

nor 61/3 + 8^4 4- lOys + 12^^ + &c.

less than 12 + Sys + 63/4 + 9^5 + l^y^ + &c.,

and therefore Sys 4- 2y4 + ys cannot be less than

12 + y7 + 2y8 + 3y9 4- &c.

from which we learn that ys, y4, y^ cannot all be zero at the

same time ; or in other words, that there cannot exist a poly-

hedron all of whose faces have more than five sides.
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* From what has been proved, it appears that y cannot be

less than

4 + ^ ,

and therefore x not less than

4t -4- ,

3
'

and consequently 3; not less than

6 + y4 + 2^5 + 3y, + &c.

also since 3y is not less than 12+3/4+ 2y5-|-3j/g+ &c. we shall

evidently have Qy not less than JC + 4, and 3y not less than

z-j"6^ for all polyhedrons whatever.

(3) If we suppose 2 2 greater than 4x, so that all the solid

angles shall be formed by four or more plane angles, we shall

manifestly have

3/3 +3/4 +3/5 +3/6+ ^c. not less than 8+3/4+ 23/5 + 3J/6+ &C.

or 2/3 not less than 8 -|- 3/5 -+ ^y^,- + Sy^ + &c. and therefore we

infer that such a polyhedron must have at least eight triangular

faces.

This likewise gives x not less than

6 + 2/4 + 2^5 -f 3y, + &c.

and z not less than

12 + 2?/4 + 4j/5 + 8j/tj + &c.

from which it follows that :r is not greater than y - Q, and z not

greater than 2y — 4.

(4) Let 22 be greater than 5x, so that all the solid angles

shall be formed by at least b plane angles, then we have

3/3 +3/4 +3/5 +3/6- + ^c. not less than 20 + 3j/4 + 63/5+ 93/6"+ &c.

and .*. j/g not less than 20+ 23/4 4- ^3/5 + 83/5 + &c.

and thence it appears that the solid must have at least twenty

triangular faces.
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Also on the same hypothesis x cannot be less than

nor z less than

from whence we conclude that a: cannot be greater than - (y— 2),
o

6
nor z greater than -

(j/
— 2).

(5) Smce 2^ + 2^4+ 4^5+ 6^6+ ^c. + 12

= 33/3 + 4^4 + 53/5 + 6y, + &c.+ 23/4 + 4j/5 + 6j/6+ &c. + 1

2

= 12 + 3^3 + 6y4+ 9j/5 + 12^6 + &c.

==6 J2+^ +^4+ ^y5+23/,+ &c.| =Qx,

therefore it is evident that 9.Z must always be less than Qx\

or in other words, that there cannot exist a polyhedron, all

of whose solid angles are constituted by six or more plane

angles : and in fart six angles of equilateral triangles = 360°

which exceeds the sum of the plane angles forming any solid

angle whatever.

(6) If all the faces of a polyhedron be triangular, we have

^4 + 23/5 + ^ye + &c. =0, and thence we find that r = |y,
and :r = 2 + ^y.

If all the solid angles of a polyhedron be formed by five

and six plane angles, the number of the former being jCg,

and of the latter org, then j? = ^Tg + arg, and ^z = 5xr^-\-6x^f

whence 6>r — 22 = 3:5 : also z = |y, and .r = 2 + \y, from which

it follows that 2'5 = 6r — 2z= 12, and this shews us that the

number of solid angles formed by five plane angles will always

be twelve, and Xq being indeterminate proves that the number

formed by six may be any whatever.
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CHAP. VI

On the Variations of the Sides and Angles of Spherical

Triangles.

83. In the practical applications of Spherical Trigono-

metry to philosophical subjects_, wherein certain parts of

spherical triangles are determined from instrumental observation,

and the remaining parts deduced from them by arithmetical or

logarithmic calculation^ it is manifest that the effect of any

error however small in the observed part or parts, will be

entailed upon the results as determined by computation. If

then we suppose the instrumental or original error to be of

given magnitude, we may by means of the Calculus of Finite

Differences or by Taylor's Theorem be enabled to determine

what relation the resulting error bears to it, when these errors

are of considerable magnitude, and the operation of Differentia-

tion will be sufficient for the same purpose when they are

very small. Thus, since in every spherical triangle there are

six distinct parts, any three of which would be sufficient for

the determination of all the rest^ we may suppose two of

them to remain constant, and then find the ratios of the

simultaneous changes of all the rest. We will illustrate these

principles by an example of each method, and then proceed

to the consideration of such particular cases as are most

commonly met with in practice.

. cos a — cos h cos c
84. Assume the equation cos A = ——-:—;—: -, and

sm sm c

suppose that in consequence of a becoming a + A a, il becomes

il + A il, whilst bf c remain constant, then we have

,. . ,^ cos (a + A ft) — cos ^ cos c
cos (J.-I- A A)= ^ r—.—:

:

sm b sm c
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cos (a-f A a)— cos a

sin b sin c

A a
sin ( a -i ) sin —A^\.aA V 2/ 2

or sm f A H I sin

. / Aa\ ,

sin
I a H I SI

. / . AJ\ , aA V 2/
r sm

I
A 4 ) sin -'— = :

—

-—:

—

V 2 / 2 sin 6 sm c

and if one of the quantities A a, A A were given, the other

might be determined by the solution of this equation ; but it

may be observed that it would be no easy matter to disentangle

either A A or A a from the other quantities with which they are

combined.

Again, since Taylor s Thebrein gives

cos {A-\- A A) — cos A = — sin il A A — cos iL -— -f &c.
1 .

2

and cos (a + A a) — cos a = — sin a A « — cos a -— + &c.,
1 . 2

{AAf ^ « Aa + cos a -j^ -&c.

sin -^AA+COS J. — &c. = -- :—;

—

: ?

1 . 2 sm o sm c

in each side of which the number of terms is indefinite, and

consequently in this form the difficulty of determining the ratio

A A
' is in no degree diminished, and recourse must finally be
Aa
had to some such method as approximation.

If however any dependance can be placed upon the accuracy

of instrumental observations, it will follow that the errors above

alluded to are very small quantities, so small indeed, that they

may be neglected when connected with finite quantities by the

operations of addition or subtraction, or at most, that one

or two terms of such expressions as those above given will

ensure a sufficient degree of correctness.
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Thus, on the first hypothesis, we obtain

. Aa . aA
^ sni a sin sin

. ..AA 2 J 2 sma
sin A sin = —:—;

—

: , ana .'.

2 sm 6 sin c . A a sm b sin c sm A
sm

2

A ^ sin «
or

A a sin 6 sin c sin J.
^

since the arc and sine are ultimately equal ; and this is the same

result as would be obtained by retaining on each side only the

first terms of the expansions given by Tai/Ior's Theorem.

A greater degree of accuracy will however be ensured on

the second hypothesis by retaining two terms of the expansions,

and rejecting all the powers of the increments above the second,

so that

sin a Aa 4- cos a
' A A . A (^^) 1 •

^
sm A A A-i- cos A ~

1.2 sin 6 sin c

A A
from which the value of may manifestly be obtained by the

solution of a quadratic; and if three or more terms were retained

aA
on each side_, the ratio—— might be still more accurately found

A a

by the solution of an equation of three or more dimensions.

. A A sin a
Reverting to the equation = -:—;—:

:

—-, we° A a sin 6 sm c sm A
observe that it is immediately derived from the proposed one by

the operation of differentiation ; that is, replacing A by d we have

dA sin a

da sin h sin c sin A

and for the reasons above assigned, the ratio of the differentials

may in all practical cases be substituted for the ratio of the

errors introduced.

85. Let ABC be a right-angled triangle whose sides and

angles are a, by c, A, B, C respectively ; then if any one of
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these quantities remain constant, we may find the ratios of the

small contemporaneous increments of the rest.

We shall divide this into the three following cases :

(1) When a is constant:

(2) When c is constant :

(3) When A is constant.

86. Let one of the legs a remain constant*

Since cos A = cos a sin B, we get

— sin AdA = cos a cos BdB;

dA cos a cos B cos A cos B cot B
dB sin A sin B sin ^ tan A

Since sin 6 = tan a cot ^j we shall have

cos hdh — — tan a cosec^ AJA
;

JjI cos b

db tan a cosec^ A

cos 6 sin 2 A

...(1).

sin 6 tan A cosec ^ 2 tan b

Since sin « = sin c sin A, .*. sin c = sin a cosec A^

whence cos cdc— — sin a cosec A cot AdA;
dA cos c _ cos c tan A
dc sin « cosec A cot tI sin c cot -4. tan c

Since sin a = tan b cot Bj .'. tan /; = sin a tan B,

whence sec^ bdb = s'm a sec^ BdB;

dB sec" b sec^ b sin2jB

db sin a sec" B tan 6 cot B sec^ J5 sin 26

Since cos c = cos a cos b, .'. we have

sin cdc = cos a sin bdb
;

6?c cos a sin 6 cos c sin b tan Z>

(2).

..(3)

.(4).

db sine cos b sin r tan c

Go

.(5).



290

87- Let the h^/pothenuse c be considered cojistaut.

Since cos c = cot A cot B, .*. cot A = cos c tan B,

whence— cosec^ AdA = cose sec^ BdB;

dA_ coscsec^B_ cot A cot _B sec^ -B _ sin 2 A
dB cosec^ J. cosec^ ^ sin 2 B

Since sin a = sin c sin A, we obtain

cos «c?a = sine cos AdA;

dA cos a cos a sin A tan A
da sin c cos A sin a cos A tan a

Since cos il = tan 6 cot c, we have

— sin A dA = cot c sec" 6 J/^

;

dA sec^hcotc sec^ b cos A _ Qcot^l

dh sin A sin J. tan 6 sin 26

Since cos c = cos a cos b, we have cos a = cos c sec b,

whence — sin ada=: cos c sec b tan bdb,

da cos c sec b tan 6 cos a sin 6 tan 6

.(1).

.(2).

.(3).

db sin a sin a cos b tana

88. Let one of the angles A remain constant.

Since cos A = cos a sin B, we have sin B = cos A sec a,

whence cos BdB = cos y^ sec a tan aJfl ;

^B cos A sec a tan « cos a sin B sec a tan a tan B
da cos B cos B cot a

.(4).

(1).

Since cos B = cos b sin il^ we get sin BdB = sin A sin 6(^6
;

dB _^ sin 6 sin A _ sin b cos B _ tan Z»

c?6 sin B sin B cos 6 tan B
"

Since cos c = cot A cot B, we have sin cf/c = cot A cosec^ BdB ',

dB ^ sine _ sin e cot B _sin2B
dc cot A cosec" B cos c cosec^ B 2 cote
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Since sin b = tan a cot A, we have

Qosbdb = cot -^ sec ada\

da cos h cos /; tan a sinSa

db cot J. sec^a sin ^ sec^ a Stan 6

Since sin rt = sin c sin tI, we have cos a Ja = sin ^ cos c Jc ;

da sin A cos c sin a cos c tan a ^ .

.-. _- = = ;— = (5).
d c cos a cos a sni c tan c

89. Thus the ratio of the evanescent increments has been

determined on each of the suppositions above made, and the

last three articles include all the ditferent cases that can occur

in right-angled spherical triangles^ the right angle not being sup-

posed to undeigo any change ; and it may be observed that the

two parts for which this ratio has been found increase or

decrease at the same time when the differential coefficient is

positive, and the contrary when it is negative.

Moreover, if the small change in any one of the parts be

considered given and constant, the greatest or least values of the

contemporaneous small changes in any of the rest may be deter-

mined by putting the corresponding differential coefficient equal

to zero, according to the principles of Maxima and Mhtima.

90. Let ABC be any spherical triangle whatever whose

sides and angles are a, &, c, A, B, C respectively : then the

consideration of the corresponding small changes in the parts

may be comprehended in the four following cases :

(1) When A and a are constant:

(2) When A and b are constant

:

(3) When a and b are constant

:

(4) When A and B are constant.

91 . Let the angle A and its opposite side a remain constant.

cos J. 4- cos 5 cos C
bmce cos a = :

—

——:—

—

, w'e have
sin B sm C

cos a sin jB sin C = cos A -f cos B cos C ;
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dB sin B cos C cos a + cos B sin C

c/C cos B sin C cos a+ sin 5 cos C

cos A + cos B cos C
but sin B cos C cos a =

and cos B sin C cos a =

tan C

cos J. -j- COS B cos C
tan jB

therefore by substitution we obtain

dB sin B fcos J3+ cos A cos C|{COS J3+ C0S A cos C) cos 6

cos C+ cos il cos B f cos cdC sin C

sin B sin J. , . „ sin J. . ,

Since —.—— = -;
, we have sin B = -;—- sin 6

;
sin b sin a sin a

.*. cos BdB = -^ cos hdbj whence
sin a

dB sin A cos 6 sin B cos 6 tan B

(1).

c?6 sin rt cos B cos B sin b tan 6

cos a — cos h cos c

(2).

:os A =
sin 6 sin c

we have sin h sin c cos tI = cos a— cos b cos c ; whence

db sm 6 cos c cos A — cos 6 sin c

dc cos 6 sin c cos A — sin b cos c
^

from which by substituting for cos A, its value, and reducing, we

get

db cos B
^ ^

dc cos C

dB tan i^ J6 cos B
Since -77- = , and —- = —

, we have
db tan dc cos C

<?B tan jB cos B sin B

92. Let the angle A and its adjacent side b remain constant*

cos B -\- cos A cos C
Since cos b =

sin A sin C
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we have sin A cos 6 sin C = cos B + cos A cos C ;

dB _ sin j1 cos 6 cos C + cos A sin C
d C sin B

(cos B + cos ^ COS C) cos C+ cos A sin^ C
sin B sin C

by substitution, whence

dB cos A + cos B cos C
d C sin B sin C

— cosa (1),

sm jB sin^l . ^ • a .

Since —:—~ = —. , we have sma sui ^ = sin A sni b ;

sin 6 sm a

dB sin B cos a tan B
whence -r— = ——:— = (2).

da cos B sm a tan a

^. . cosa — cos 6 cos c
bmce cos A = :

—

-—
: ,

sin o sm c

.'. cos A sin 6 sin c = cos a — cos b cos c
;

6^a cos A sin 6 cos c — cos 6 sin c
whence -r- = : —

dc sin a

(cos a — cos b cos c) cos c — cos 6 sin^ c

sin a sin c

by substitution,

da cos 6— cos a cos c

f?c sin a sin c
cos B (3).

dC I dB tanB da
Since -r-r: = , ~r~ — > ^^^" ~T~ ~ c<^s i), we have

dB cos a oa tan a dc

dC tan B cos ii sin i^

-T- = =
(4).

dc tan a cos a sin a

93. Xe^ the two sides a a?ii/ b remain constant,

sin A sin a
,

. ^ sin a . ^
Since -^—=: = -.—r, we have sin A = -:

—

- sm B:
sm B sin 6 sm b
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dA sin a cos B sin A cos JB tan A
dB sin 6 cos A sin 5 cos A tan jB

(1).

^. „ cos c — cos a cos 6 . • ^i 7/-1 sincere
bnice cos C = :

-.—

;

, we have sm LdL = —
:—r

;

sin a sni sin a sm 6

. dC sin c 1 1 . .

whence =: —
^
" •

; = -7- ;;—— = —

^

^ . •(2),
t?c sin « sin b sin C sin b sin A sin a sin B

_. . cos « — cos 6 cos c
Since cos A = :

—-—

:

,

sm b sm c

.'. cos A sin b sin c = cos a — cos b cos c

;

c?^! cos J. sin 6 cos c — cos Z> sin c
whence -—r- = :—;—

:

:—7—
dc sm b sin c sin J.

cos a cos c— (cos b cos^ c 4- cos 6 sin c)

sin 6 sin^ c sin A

6? J. cos B sin fl cos B cot B
dc sin 6 sin c sin J. sin ^ sin c sin c

or

(3).

^. c?J. cot 5 ^c . ,

Since ——
-
= : , and —7; = sm a sin B,

dc sin c aC

, J^ cot 5 sin a sin B cos B sin a
we have —— = : = : .... (4).

dL sin c sm c

94. Let the two angles A and B remain constant.

cos A -f cos B cos C
Since cos a = :

—

r——.—~
_,

sin B sin C

we shall have as before

dC sin a sin B sin C sin a sin B sin^ C
rfa cos a sin ^ cos C + cos B sin C cos J5 + cos A cos C

'

c?C sin a sin 5 sin C sin 6 sin C sin C
or-— = :

—

= —— = (1).
da sin A cos cos cot b
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^. cos C+ cos A cos i? . _ sin CdC
bince cos c= -.

—-—:——-—— j .'. sin cac=^
sin A sin 5 ' '

'

sin A sin 5

'

dC sin A sin JB sin c . . . .

whence —r~ = :

—

— =sina sin jB=sin b sm A,,, (2),
dc sm C

^. sin a sin A
,

. sin A . ^

bnice -;—r = . , we have sin a = -:

—

- sm 6 ;

sin o sm JD sin B

da sin ^ cos b sin « cos b tan a
whence -— = -r—- = -7—^ = r (3).

do sin Jd cos a sin o cos a tan 6

6?a cot b dC
oC sin C dc

Since 3-^ = -:

—

~ , and -7— = sin b sin J., we shall have

da __ cot b sin J. sin b cos 6 sin A
dc sin C sin C

95. Cor. The ratios which have been deduced in the

same manner as the last in the preceding article^ might like the

rest have been found by an independent process,, and all the

ratios determined in the last three articles may be expressed

in different terms according to the nature of the case in which

they are employed : thus in (93), we have seen that

dA cot B
dc sin c

35) cot B =
cot b sin c cose

sin A tan A

dA cot

dc tan

c cot b

A sin A
*

This instance has been selected because it includes the

solution of an important astronomical problem^ but it is clear

that in every one of the other cases similar substitutions might

have been made.
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The principles explained in this chapter may with great

facility be applied to compare the corresponding small changes

in the parts of plane triangles ; and indeed the observations

made towards the ends of articles (239), (240), (241) and (244)

in the Plane Trigonometry, are merely examples of the same
principles without introducing the notation of the Differential

Calculus.

This subject was first treated of by Roger Cotes, in his

tract entitled Estimatio Errorum in mixta Mathesi, &c. which

is the first of his Opera Miscellanea^ and may be found at the

end of the Harmonia Mensurarum,
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CHAP. VII.

Containing some miscellaneous Propositions.

96. To expi^ess the sum of the angles of a spherical triangle

in terms of the sides.

_. , / ^ E 1 f cos a-fcos 64-cos c
Since by (58), cot —

2 o ^sin »S sin (S—a) sin (S—h) sin {S—c)
'

/A + J5+C\ /E o\ ^
we have tan ( \ ~ tan (

~ + 9^ ) = ~ cot—

l 4- cos « + cos ^ -{- cos c

2 yy/ sin S sin {S — a) sin (S— b) sin (6' — c)

97- To express the perimeter of a spherical triangle in terms

of the angles.

Resumin"^ the notation of (15) we shall have

sni
/a + b-^c\ _ . ^TT-A' + ^~ B'-\-7r-C

)

= «'" 1"^ o / = - '^'
{ o )

_ ^ - cos S' cos (S' - A) cos (S'-B) cos jS' - C)

. A . B . C
2 sni — SHI — sm —

2 2 2

by substitution and reduction,, as in (59).

Pp
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98. To express the excess of the sum of tivo angles of

a spherical triangle above the third in terms of the sides.

Retaining the notation hitherto used, we have

A + B\ C a b

,.„ (i±^)
/Ai-^\ c a . ^

tan( ) —tan ~ tan - tan - +cos C
\ 2 / 2 _ 2 2

A^B\ C
~

sin C
l+tanl — Jtan —

V 2 / 2

1 4- cos c — cos a — cos b

Ay/ sin »S sin (5 — «) sin {S — b) sin («S — c)
'

by substitution and reduction as in (58).

Similarly, tan ( ) may be expressed in terms of the

angles.

99* ^0 express the perpendicular from an angle of a

spherical triangle upon its opposite side, in terms of the sides

and angles respectively^

By Napier's Rules, sin CD = sin BC sin B

2 /—. :
:

:

= sin a ~ :— /s/ sin S sin (S — a) sin {S — b) sin (S — c)
sm a sin c

^ 2 ^smS sin (S-a) sm(S—b) sm (S - c)

sin c

Alsoj sin CD — sin B sin BC

2
=sin B V -cos .S' cos {S'-A) cos {S'- B) cos (S'- C)

SHI 15 sin C \ / \ / \ /

__^
2 x/ - cos y cos (Y - .A) cos (^^ - B) cos (8^ -- C)

sin C
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100. To Jijid the position of the pole of the small circle

of the sphere, Ziihich may he inscribed in a given spherical

triangle.

Referring to the figure of (185) PL Trig, and supposing

all the lines employed to be arcs of great circles instead of

straight lines, we have by means of the same construction,

Ah = Ac, Ba = Bc, and Ca = Cbj

whence Ab + Ba-\-Ca = Ac+ Bc-{- Cb, oiAb-ha = c + Cb,

.'. Q.Ab-{-a = c + Ab+Cb = b+ c, and A5=
^^~^

^S-a:
2

similarly_, Bc = S— b, and Ca = S - c.

Now by Napier s Rules, we have sin Ab = tan ob cot oAb,
from which if r be the circular radius required, we get

tan r = sin A b tan o ^ 6 = sin {S — a) tan —
2

. _, , . /sin(^- 6)sin(^^-c)
= sin (S-a) y —. c • /c—^;

—

sm o sm (o — a)

sin {S — a) sin (S — b) sin {S — c)

sin <S

_ />/ sin iS sin {S — a) sin {S — b) sin (S—c)

sin S

w
Hence also the segments of the sides are found, and thus the

position of the pole is determined.

101. Tofnd the position of the pole of the small circle of
the sphere, which may be circumscribed about a given spherical

triangle.

Referring back to (188), PI. Trig., and making the same

supposition as in the last article, we have

/.BAo=zABo, aBCo=lCBo, zACo=/.CAo,

.'.by addition, Z BA o-\- C = B-\- Z CA o, whence

2zJBlo + C = J5+ zClo4- zBAo = A + B,
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and .*. zBAo= =6— C:
2

similarly, zCBo= S'-A, and ^ACo=:S'-B.

Now by Napier's Rules, we obtain

c
cos BAo = cot Ao tan - , whence if Ao = R,

2

we have tan jR = sec {S* — C) tan - :

2

but sec' (S'- C) = 1 + tan^ (.S' - C)!1 + cos c — COS a — cos h \^

^ l~cos a — COS o~cos c -|- 2 cos a cos 6 cos c)

( 1 + cos (0 ( 1 — cos «) ( 1 — cos h)

J by reduction.
2 sin »S sin (8 — «) sin («S'— ^) sin (-8 — c)

4 cos - sm - sin -

2 2 2
^

sin S sin (^ - «) sin {S - b) sin {S - c)'

c . a . b
2 cos -- sin - sin -

,o' r\
2 2 2

. . sec (o — C)
V sin 5 sin (6'— a) sin (^ — b) sin (-S— c)

^

. a . b , c
2 sm - sin -- sin -<

2 2 2
and tan it = —

^ . ^ . .

— •

^sin aS sin (»S -- c) sin (S—b) sin (<S— c)

The segments of the angles have been found above,

and thus the pole is determined.

The articles of the Plane Trigonometry just alluded to,

readily show how great is the similarity of the formulas found

in this and the preceding articles to those investigated there

:

and it is manifest that the methods here pursued would lead

immediately to the results before obtained.
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102. Given tivo sides and the included angle of a spherical

triangle, to find the angle contained between the chords of these

sides.

Let the two given sides and included angle be a, h^ C, and

let a, /3, y be the chords of the sides a, b, c respectively, then

from (21) we have

cos c = sin a sin b cos C + cos a cos b, that is,

. o c .a a . b b
1 — 2 snr - = 4 su) -' cos - sni - cos - cos C

2 2 2 2 2

+ (l^2sin^g(l-2sin=^),

or 1 = ai3 cos - cos - cos C + 1 ^~-
-\ ~

,

2 '^ 2 2 2 2 4

. a'+t^'-^Y n a b a^0'

2 2 2 4

but if C be the angle contained between the chords a, (3, we have

,
«°-+/3°-7^ a h ad

COS C = —

r

= COS - COS - COS L -j

2a/3 2 2 4

a h , a . b= COS - COS -« COS C + sni - sm ~ .

2 2 2 2

From this it is not difficult to shew that C is greater than C
when it is an acute angle_, but less when it is either an obtuse or

a right angle.

103. Cor. If D be the pole of the circle circumscribed

about the triangle ABC, then the angle ADB will be measured

by the arc of the circle included between A and B: also the



302

angle between the chords of JC, BC stands upon the same

circumference, and therefore by Euclid in. QO, C'= i / ADB:
and hence it also follows that the angle ADB at the centre is

greater or less than twice the angle at the circumference

according as that angle is acute or obtuse.

104. Given the chords of two sides of a spherical triangle

and the included angle, to find the angle contained between

the sides.

r.. -n/ a b . a . b
Smce cos C = cos - cos - cos C -\- sni - sin -

, we have
2 2 2 2'

^/ . a . b
cos u — sm - sui -

r 2 2
cos C =

a b
cos - cos "*

2 2

^^^ ^ ~ "I" A r> a4 _ 4 cos L —ap

in which the radius of the sphere is supposed to be ]

.

Ex. If a = ^5 and .*. a = /3_, we shall have

, 2« /^, -2^ J /^ 4cosC'— a*

cos L = cos - cos C + sm -^ , and co-s C = ;; .

2 2 4 — a"

105. Given the oblique angle contained between two given

objects above the horizon, to find the horizontal angle.

Let a and n be the objects whose angular distance an
is observed from the point O in the horizon : then if straight

lines were drawn from a and n to O, the angle aOn would

be the oblique angle^ and AON is the corresponding horizontal
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angle, which is the same as the spherical angle APN \

let aw = c, Aa =^ H, Nn = h, then by (2o) we have

APN
sin

cos H cos h

from which the horizontal angle may be found.

106. Given two sides of a spherical triangle very nearly

equal to quadrants, to find the difference between the remaining

side and the measure of the included angle.

Retaining the notation of the last article,

let c + ^ = AN= Z AON to the radius ]

,

TT TT

then a = - — H. and 6 = - — h:
2 2 '

whence, H and h being very small, we have

cos c — sin H sin h cos c — Hh
cos (c 4- 0) = H

cos c -^Hh

' (-4)(-f)
(cose— iy/0{ 1 + 1-

(^- + /i')} very nearly:
l-^{H' + h') '

^' ^

that is, cos c — sin c = cos c— Hh -J-
i- (i/'+ AO cos c

since is very small,

Hh~-i(H' + lr)cosc
.-. =

sm c
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__ <2.Hh - (H' + U') cose -

2 sin c

QHh(cos'^ + sin' I) - (H'+ h') (cos^l - shrj)

. c c
4 sm — cos —

2 2

{H^ + 2 JT//, + h') sin^ - - {H' -2Hh + h') cos' -
2 2

. c c
4sin — cos —

2 2

/J/4-A\' c /H-h\' c
= (

I
tan ( ) cot—.

V 2 / 2 V 2 / 2

This expression is called the approximate reduction to the

horizon, and was first given by M. Legendrc in 1787.

107. The sides of a spherical triangle being small with

respect to the radius of the sphere, it is required to find the angles

of a plane triangle whose sides are of the same magnitudes.

If a, b, c be the sides of the proposed triangle to the radius r,

the sides of a similar triangle to the radius i , will manifestly be

r r r

now cos A

a be
cos -- ~ cos - cos -

r r r

. b . e
sHi - sm -

r r

a a' a^
but cos- = 1 ~ -\ X nearly,

b e
and similarly of cos - and cos -

;

r r

,
. b b //

. . . c
also sm- = ^nearly, and similarly of sin

-

r r l,2.Sr' "^ ^
r
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therefore by substitution and reduction we get

, // + c' - a' a'-\-b'-\- c" - 2 (a' b^ + «^c'^ + b'' c")
cos il = j

;;

-„

%bc Q4bcr'

= COS A — ~5 sni J
,

if A' be the corresponding angle of the plane triangle whose

sides are a, h, c :

but if il = ^1 -f- 0, we have cos A = cos A' -—O sin //, nearly

;

_ be . , be sin A' 1

•'• t7 = —-s sin A = —-J— = —- area,
6r 2.3;- 3r^

whence A' = A'-'0 = A ——^ area :

similarly B'= B — =B :; area, and 0=C — 9=C ——j area :^
Sr- 3r'

also since 7r = A' -^ B' -{ C' = A •\- B-jr C ^ -^ area, we have
r

— area = ^+2^fC — 7r=£, the spherical excess,
r-

.\A'=A-~, £r = B --, and C' = C - -:
3 3 3

that is, a spherical triangle under the above-mentioned circum-

stances may be treated as a plane triangle having the same sides,

and each of its angles less by one-third of the spherical excess,

than the corresponding angle of the proposed triangle.

The discovery of this beautiful Theorem is also due to

M, Legendre, and is alike remarkable for the simplicity and

conciseness of its application, and the accuracy of its results.

108. Cor. If we suppose the radius r of the sphere to be

indefinitely increased so that any finite portion of its surface

may be considered as a plane, we shall have for a plane triangle

Qq
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cos A =
, as in (l65), PL Trio;.

Also since the arc^ sine and tangent are all ultimately equal,

it may be observed generally that all formulae for spherical tri-

angles involving the sines and tangents of the sides, will be true

for plane triangles, when for the sines and tangents are substi-

tuted the sides themselves.

Since the sides and angles of spherical triangles are measured

by arcs of great circles on the surface of the sphere, if the ra-

dius be indefinitely increased, the measures of both sides and

angles will become right lines, whereas we have always supposed

angular magnitude to be measured by a circular arc. On this

account when we suppose the radius of the sphere infinite, the

angles must still be measured by arcs of a circle of finite radius

which may remain the same whatever be the magnitude of the

sphere on which the sides are described. This circumstance

will therefore render the magnitudes of the sides indeterminate

when only the angles are given : and, in fact, whenever the magni-

tude of the side of a spherical triangle has been expressed in

terms of its angles, the radius of the sphere has been supposed

finite and determinate. This additional element constitutes the

whole difference between plane and spherical triangles; for if the

radius of the inscribed or circumscribed circle of a plane tri-

angle, or any other line given in species, be known, the sides of

a plane triangle may be determined by means of the angles.



APPENDIX I.

CONTAINING MISCELLANEOUS THEOREMS AND PROBLEMS

IN PLANE TRIGONOMETRY.

On chap. I.

I. Theorems.

1. Ir-the radii of two circles be R and r, and the arcs A
and «3 the corresponding angles will be as Ar : aRo

2. The sum of the angles of any polygon of « sides

= (;i- 2) 180° English, or (?2— 2) 200° foreign.

3. Each of the angles of a regular polygon of 2w sides

= C!—\ 180° English, or (^^) 200° foreign.

4. The greater the number of sides of a regular polygon,

the greater is the magnitude of each of its angles.

5. The ratios of the lengths of a foreign and English

degree, minute and second are expressed by the fractions

3.33.3^ 3.3^
, r and 5 respectively.

6. The difference of an arc and its complement is equal

to the complement of twice the arc.

m — 71 71

7. The complement of—— 90° English = 180°.
m + /^ 771 -{ 71

8. The supplement of ^^-^ 200° foreign = —7— 400°.

9. Sin ( b Aj = cos^, and cos ( - -f Aj= —sin A.

10. Sin(7r+ ii)= — siutI, and cos (tt 4-^)= —cos ^.

11. Sin (— ± ^) = — cos^, and cos (~r~± -^ ) = ± sin^.
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12. Sin^(4Ai + ]) ^ ± J\= cos A,

and cos M 4« H-
1 ) - ±Aj— + sin ^.

13. Tan({4n+S) | ± ^^ = + cot .1,

and cot f (4/?H-3) - ± ^ j= =Ftan A.

J-

14. S'm (^(3n+ I) '^±a\ = ± cos il,

and cos K3 /< 4- 1 ) - ±^)= T sin il.

15. Tan(^(3^^-l)^±^^= Tcotil,

and cot nSw— 1) ^+ ^ j= + tan il,

^n o- A COS A tsin A cos ^ sec J. tan il cot ^
16. hmA= -= - = — = -—

,

cot A sec A cosec A cosec A

sin A cot A sin jl cosec A tan A cot J.
17. Cos^ =

18. Vers A

tan A cosec ^ sec A sec j4

tan^l— sin^ cosec Jl — cot j1 sec A — 1

tan A cosec A sec A

_ sec ^ sin A cosec A cos A sec A
19. Tan A = r = = z

cosec A cot A cot A
cos A

20. CotA =

sin A cot~ ^

cosec A sin A cosec A cos il sec A
sec A tan A tan A

sin y4

cos A tan' A



21. SecA =

309

tan A cosec A sin A cosec A
sin i4 cot J. cos A

tan A cot A

'22. Cosec yI =

cos A

cot A sec A cos A sec Yi/ tan yl cotA
cos A tan A sin A sin J.

23. Vers {(-^^^tt- a\ +vers (f—^V + ^ [ =vers7r.
(\77i + /// ^ {\m-\-n/ )

24. Chd A chd (7r-A) =

{c.,d| + chd(|-A)|{cM|-chdg-.)}.

25. ChdM = 1 +sin'^lcotM - 2sinyl cotl +cos^il tan^il.

26. 1-2 sin^ 30° = 2 cos"" 30° - 1 = sin 60°,

and (sin 30° + cos 30°) (sin 60° — cos 60°) = sin 30°.

27. 2 sin 30° cos 30° = sin 60°, tan 60° = 2 sin 60° = 3 tan 30°

= chd 120°, and cosec 60^= 2 tan 30^.

28. Sin 45° + cos 45° = chd 90°,

and 2 sin 45° cos 45° = sin 90°.

29.
sin 45° - sin 30° _ sec 45°- tan 45

°

sin 45° + sin 30°
""

sec 45° + tan 45°

'

sin 60° - sin 30° tan 60°- tan 45°
and

sin 60° 4- sin 30° tan 60°
-f- tan 45°

30. If «S and s be the sines of two arcs, C and c their

cosines : then
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31. If *S and s be the secants of two arcs, T and t their

tangents, then

32. If S and 5 be the sines or secants of two arcs,

T ST and t their tangents, then is — greater or less than -
,

t s

according as T is greater or less than f.

33. If C and c be the cosines or cosecants of two arcs,

T
nd t their cotangents, then — will be

according as T is greater or less than t.

T CT and t their cotangents, then — will be less or s^reater than -

,

t c

II. Problems.

1. Compare the magnitudes of two angles, when the

arcs which subtend them are inversely as the radii.

2. If to the radius r an angle be measured by an arc whose

length is a, required the length of the arc which will measure an

r
angle m times as great to the radius --

.^ n

3. One regular tigure has twice as many sides as another,

and each of its angles greater than each of the angles of the

other in the ratio of 4 : 3 : find the number of sides of each.

4. The number of sides of one regular polygon exceeds

the number of those of another by 1, and an angle of one

exceeds an angle of the other by 4^
: find the number of sides

of each.

5. The interior angles of a rectilinear figure are in arith-

metical progression, the least angle being 120 , and the common

difference 5^
: find the number of sides.

6. Represent in the foreign scale, the English arcs :

if 15', 22' so', 30', 45", 60', 75^ and 78' 45^
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7. Express in the English scale, the foreign arcs: 10°,

20', 33|-^ 40^ 50^ 66f, 70^ and 95'.

8. Find the complements of the following arcs in the

English and foreign scales : 15^ 18^ 2£° 30', 36°, 54^ 72^ 75^
95^ and 120^

9. What are the supplements of the following arcs in the

English and foreign divisions of the circle : 33^ 45^, 78^ 30',

150^ 180^ 2]0^ and 270^?

10. Point out where the sine increases or decreases, and

shew that it changes its algebraical sign only when it passes

through 0.

11. Trace the increase or decrease of the tangent in each

of the four quadrants, and prove that this line changes its sign

either by passing through or 00 .

12. Trace the changes of algebraical sign in the secant

of an arc, and find whether sec A and sec (tt + A) have the

same or different signs.

13. Given the algebraical signs of the sine and cosine of

A in each of the four quadrants, to determine the sign of the

tangent, co-tangent, secant, and co-secant.

14. Transform from the radius 1 to the radius /-, the

formulae,

A
^

A
^

A
^

tan A = 7 , sec ii = , cosec A =
cot A '

cos A '
sin A '

chd A=- ^2—2 cos A^ sin^ A = vers A vers (-/r— /I),

chd- -I- ^^chd'^'^ ~ a\ =4 vers (^ 4- a\ vers (^ - a\

15. Deduce the sine, cosine, &c. of loO^, 22o°, 270°

and 315^

16. Given any one of the trigonometrical lines defined

in this chapter, to deduce all the rest, and adapt them to

the radius r.
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17. Given 2 siii A = tan ^, to find the sine, cosine,

&c. of A,

18. Given vers (- — A\ = v, to find all the rest, and

adapt the results to the radius r,

19. Given chd (7r—A) = k, to find all the rest in forms

adapted to the radius r.

20. If sin A cos u4 = m, find the values of sin A
and cos A.

21. Given m sin A = n cos'"^ A, to find tan A and cosec A.

22. Given m sin A + ?i cos A = p, to find tan A
and sec -4.

23. If m chd il + w cos A = p, what is the value of

chd A ?

24. If sin A (sin J. — cos A) = m, find the value of

sin A.

25. If m vers A±_n vers (tt — ^) =/>_, what is the value

of vers A ?

26. Given tan ^-|-cot ^ = 4, to find the value of tan A.

27. Given m tan A + ^i cot A =p sec ^1, to find cosec A.

28. If sin A + sin JB— m, and sin ^ sin .B = jt, required

the values of sin A and sin jB.

29. Given sin A sec B^m, and cos A cosec B = )/, to

find the value of sec A and sec B.

30. Given sin A + cosi> = y/z and sin L^-f ccs it = ??, to

find sin A and cos B.

31. Given tan A + tan B = ??2, and sec tI — sec B = //,

to find tan A and sec B.

32. If in a right-angled triangle the sine of one of the

acute angles be given, it is required to find the versed sine

and chord of the other.
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33. Give two general formula?, one including all the arcs

whose sines are positive, and the other all the arcs whose

cosines are negative.

34. Express the radius of a circle in which the length

of 45 = L, in terms of the radius of a circle in which the

length of 60^ = /.

35. Given chdA = m and vers A = n, find vers B when

chd B=2j, the radius being unknown.

On chap. II. AND III,

I. Theorems

Involving the Trigonomet viced Functions of one Arc and of some

of its Multiples and Submultip/es.

/
. Sin A =

2 sin —
2

2cos ~ 2
2

sin"
2

2cos^ —
2

A A
cosec —

2
tan

2

A
cot-

^ A
2 tan -

2

A
2 tan ~

2

A
2cot —

2

A
2 cot—

2

.A ^A .wi .A
sec— l + tair— cosec— 1 + cof

o o. o o

1 1 1

A A A
^

. A cosec A
tan l-col— tan r^ot /i cot — - cot yl

2 2 2 2

,1 tI • 4 -'^ sin 2 ^ cosec ^
V 2. Cos yl = cos sin

—
2 2 sin J 2 cosec 2 J.
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A J A . A A A
2 cos sec ~ cosec 2 sin — cot — — tan —•

2 2 2 2 2 2

A
sec —

2

.A
1 - tan^ —

2

2

=

cosec

.A
cor - -^

A
2

• 1

=

~ A A
cot- +tan^

sin A

I

cor- +

1

1

3.

1 +

2 sin

Tan A =
1-

A
2tan —

2

tan

A
2

2s

c

il tan —
2

J
cos —

2

in^ —
2

2cot —
2

sec .1*

2 sin —
2

sec
' 2

. it A— 2 sin — tan —
2 2

2

2^
2 — sec —

o

.^1
osec- — -

o
2

A A
cot - — tan —

2 ^

2 + 2 tan A tan — .

2 .V ^ 1

= ( 1 + sec vl) tan — =
tan hcot —

Q Q

4. 2 tan A =(sin A 4- tan A) sec^ — = sec^ A sin 2^.^2
6. Tan 21 -tan A

2 cot il

A
2

sin J. 2 sin A

^ 6. Tanil=cot^— 2cot2l:=

2cos''7l— cos A cos 4-+ cos 3 A

sin 2 A 1 —cos 2 A
1 + cos 2A sin 2 A

_ . /] —cos 2

A

I -f cos 2 A
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,„ A sin Q.A
laii — =

2 '
'

—'
cos A

I -^ cos 2 A 1 4- cos A

V 8.

^ 9.

10.

v^ 11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

2 sill
o Â1 ^ • 2 ^— silvers A = sin ^.
2

(2 sin ^ + sin ^J) tan" — = 2 sin A — sin 2yi.
i2

/ A\ . ^ ,
A

I 1 — tan —
J tan A = 1 — sec A + tan -

V 2/ 2
(1 -i-secyl).

Sin 3 A sin tI = sin^ Q.A — sin" yl.

Sin 5 A sin J = sin* 3A - sii/ 2 A.

did — did ~ = chd"- A - clid^- -

.

2 2 2

_ J. 3 A cos^ — cos2il
1 an — tan—- = —

—

~ —7 .

2 2 cos tI +COS 2A

_
, , tan^ 2^ - tan^yi

Tan 3 A tan A = 77—. 9—
1 - tan" A tan 2tan" A tan^2A

„ , , COS A + sin A
Tan 2A +sec2A= --

—

:—7.
COS A ~ sm A

1 — 2 sin^ A— 2 sin^ A _ 1 - tan A _ 1

1 + sin 2A ""
1 + tan A tan2J + sec2A*

Cos~ 2A — sin^A =cos A cos 3 A.

r^ o . o ^ sin 3A sin A
Tan' 2A ~ tan- A = ^-- ^ .

cos 2A COS"

A

sin' 2^ — 4 sin' A cos^2A--4 cos" A+3
rp 4 J 3^ .

"~
sin* 2 A + 4 sin" A - 4 cos" 2 yl + 4 cos' A— 1

Cos^ (1— tan 2A tan ^) = cos 3 A (1 + tan 2 A tan A).
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22. Sin A = cos^— {^l + tan - + sec -
j

/ .4 yJ\
I 1 + tan — — sec — )

.

23 . 2 sin ^=4/ --sin SA + >/sin^'31--1

- sin3i4 -
- Js\v^ 3A-- L

. 2 cos :os3l + ^y cos^31- 124,

4- V cos 31 — ^ycos"37l — 1.

11. Theorems

Juvolvhig the Trigoiwjnetrical Functions of two Arcs and of

some of their Multiples and Submultiples,

1 . Sin A = cos (30' - 1) - cos (30^+ A )

= J^ ^sin(30^+l)-sin(S0'-l)^

= -^ ^sin(45Vl)-sin(45'-l)^ =2sin-(^45'+ -A- 1

l^tan-(45--^)
^

l-cot-(45"+^)

l + tan^(45'-^) 1 + cot'^ (43« +
^)

tan (45V I)
-tan (45' -

I)

tan (45'+ ~\ + tan Ud^ - -\

= sin (60" 4- 1 ) - sin ((JO" - 1) =
cosec



317

2. Cos A = sin (30^ + ^) + sin (30^ - A)

= —^ {cos(45^ + ^) + cos(45°-J){

= Csin(45M-|)sin(45«-^) =
tan /^45*^+ -') -f cot ^45*^+—^

3. Tanl

'l/S sec A

1 sin (30^+ A)- sin (30^ - A)

sin (45"+ ^) -cos (45

l/3 sin (30^-1- .4) + sin (30" -A)

sin (45^ + A) + COS (45^.1)

,,„(45« + |) + cot(45»-4)

A , A
tan h cot —

2 2

sin (60^ + A) - sin (60^ - A) 1

cos (60^+ A) + cos (60^ — 1) cot it

4. Sin(30^± A) = cos(60^ + il) =
cos tI 4- V^3 sin yl

5. Sin {45' ±J) = cos (45^ T A) = \/i±^!ili
.

6. Tan (30"± A) = 1 (cot ^30" + ^) - tan (3(f + ^\\

7. Tan (30" + -
) tan (30" - -) = r .
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,,. , n .V COS ^ . /l 4- sin 2^
Tail (45^ + A) = —_ . , = V - - ^ A

•

^ - 1+ sin it ^ l+sm2^

1 4- sin Jr,. / n ^\ 1 + sin /J . .

Q. Tan (
45^ + - ) = -=^ = sec A + tan A.^

\ - 2/ COS A -

10. Sin A = 4 sin — sin ^(iO'' \ sin ^60" + -^ .

11. Cos A = 4 cos - sin (sO^ \ sin / 30^ + ~\ .

1 2. Tan A = tan ^ tan (60*' - ^^ tan (go' -\- ~\

13. 3 cot il = cot- - cot (go'' ^ + cot ^60° +-V

14. Tan ^45*^ + -) - tan (45° - ~\=z<2 tan A.

1 5. Sec (45'' + -~\ sec Ud"" - -\=2secA,

16. Sec iL=tan(45^+-)-tani = cot ^45^ - -j-tauA.

,>. ^ /TT-f A\ /ir — Ax
^

..

17. 2 vers
(

j vers ( I = vers (tt — A),

1 8. Sin B = sin (tI + B) cos 1 — cos {A + i^) sin ^1.

2cos 1
j
cos(A^-5).

20. Sin(A + jB)sin3(yl-jB)=sin-(2A-L')-siir(2jB--4).

2 1 . Sin {A±B) = cos A cos J5 (tan 1 + tan B),

22. Cos {A ± L') = cos /I cos L' (I T tan A tan jB).
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Vers (A - B) vers {tt - (.4 + R)} =(sin A - sin B)".

Sin^ (1 4- B) - sill' (^ - i^) = sin 2 A sin 2 jB.

Cos' (i + £;) - sin' A=cosB cos (2 A + jB).

Sin-(il+ B)=sin~7l+sin^i^+ 2sin A sin Bcos{A + B).

Cot A + tan B = -—^
.

sni A cos B

Tan ^ + tan B
Cot it + tan B

Sin2(A+ E)

= tan A tan (^ + _B).

cos {A + Jj) cot B — tan A
Sin 2 J. + sin 2 jB cos (tI — U) cotii+tanA'

sin (A + B) sin (A - .B
)

1 an~ A — tan- B = 3—; ;7—

r

.

cos A COS" B

TanU + -B) + tan(J~i^) __ tan A (l+tan-.B)

Tan (.4 -f- i*) - tan {A- B)~ tan ^' (1 + tan" A)
*

1 4- COS 2 A COS 2 B = 2 (sin^ A cos^ i? + cos' A sin" jB).

If
m tan (A ~ J5) n tan B

cos^ B cos'U-B)
, then will

34.

tan {A-2B) = tan A,
n \- m

If cos B {m 4- cos A)=\ + m cos ^_, then will

/A B\
H { tan tan — I

.

V 2 2/

A
,

i>^

tan — + tan —
2 2

i^ 1-tan^A .

35. If tan — = —; ^—
- , then will

2 1 + tan^ A

2coi2A = A^tan B + sec B + ^U\\\ B— sec B.
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III. Theorems

Involving the Trigonometrical Functions of three or more Arcs

and of some of their Multiples and Suhmultiples.

1. QhdnA chd(7r- J) = chd(;i+1) J + chdO/- 1)J.

2. Sin-4 + cos J5=2sin(^45M ~—) cos ^45^ V

3. Cos^l+sin J5=2cos(45^ +—^^^ cos
/^ 45*^ ^V

Cos 7)-sin A / A-^ B\ / . A- B\
4. 7\ 7^

:—: = tan
(
45" — j tan (

45'
)Cosi3+ sniy4 V 2 / V - 2 /

5. If ^ -f- /^ + C = TT, then

sin A + sin j5 + sin C = 4 cos — cos ~ cos — .

2 2 2

6. On the same supposition,,

sin 2^1 + sin 2 i3 + sin 2 C = 4 sin A sin B sin C.

7. The same hypothesis remaining,

_^ , . ,B , . ,C ^ . A . B , C
sm" h sm h sm f- 2 sm — sm ~ sm — = 1

.

2 2 2 2 2 2

8. If iH-B-f C = 45°, then

tan A + tan B + tan C— tan A tan 7i tan C

= 1 — tan A tan i? — tan A tan C — tan B tan C.

9. If ^ -f- B f C = (2?« + l)^, then

cos 2^+ cos 2 B+ cos2C = 4cos A cos /> cos C.
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10. If^-fi^+C=^, then

tan A + tail B -{• tail C = tan A tan B tan C -f sec A sec B sec C.

11. If the arcs Ay B, C be in arithmetical progression, tlien

sin A — sin C = 2 sin (J — B) cos 73.

cos^ — cos C sin ^ — sin C
12. Again, tan (J— 23) =

sin yi + sin C cos ^4+ cos C

tan 73 sin A + sin C
13. Also,

tan ( 73 — C) sin yi — sin C /A - O
tan '(^)

14. And sin /i sin C

= {sin J5 + sin(yi-13)} {sin B-sin(^-B)}.

15. lfA + B + C=-, and A, B, C be in arithmetical
4

progression, then

VS — tan A=i\ + VS tan A) tan C.

16. If J. +73 + C==7r, and the sines of A, 73, C be in

arithmetical progression, then

. A . /B-C\ . C . /A-Bx
sin — sin ( I

= sm — sm ( i

.

2 \ 2 / 2 \ 2 /

17. On the same snpposition, if the cosines of yl, B, C
be in arithmetical progression, then

A . B C ^B
2 cos — sm — cos — = cos — .022 2

18. Co.s-(\/?)-cos-'(J^ +^J = 30«.

19. 2tan-^ ('-,') + tan-'
G)=^'^''
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21. If tan ^ = —— , and tan B — —y— , then

sin {A'\-B):= sin 60° cos 36^

22. Sin(^-jB)sinC-sin(A-C)sini5+ sin(JB-C)sini4=0.

23. If cos ^ = cos B cos C, then

/^+^\ /A.-B\ eC
tan

{
) tan (

J
= tan — .

V 2 / \ 2 / 2

24. If sin {A + i^) cos C = 2 cos (B — C) sin ^, then

cot ^ — cot B = 2 tan C.

25. Sin(^+B) sin(B-f-C+ D) = sinl sin (C+ D)

+ sin 5 sin (A + JB + C + D).

26. Sin 2(^ -C) + sin 2(B - C)-- sin 2(^-5)

= 4 cos {A - C) sin (i? - C) cos (yl— B).

27. Cos(^-B-C) + cosU-.B+ C)H-cos(^+ B^C)
+ cos (J + -0 + C) = 4 cos ^ cos jB cos C.

28. If yi, B, C, D, &c. L, be any arcs, then

sin (A + B) sin U - B) + sin(B+ C) sin (B-C)+ &c.

+ sin {L+A) sin (L - il) = 0, and cos {A + B) sin (A - B)

+COS ( B+ C) sin (B - C) + &c. + cos (L + J.) sin (L - .1) = 0.

cos A — sin B sin C cos JD — sin E sin P
29. If ^ 7^ = Ti T. ^

cos B cos C cos i^ cos ±

cos B cos C vers A — vers (B— C)

cos £ cos F vers D— vers (-E— F)
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IV. Theorems

Involving the Numerical Values of the Trigonometrical Functions

of certain given Arcs to the Radius 1

.

1 . Sill 7^ 30n,J

2 V^2

V^3+ 1/5 - Jo - Vb
2. Sin 9°

4

3. Cos 11° !>- ^ ^^^"+^.

2

21/2— t/3~ 1

5. Vers 15^ =

6. Vers 78^ 45' =

21/2

, _ 2 — x/2 - x/"2+1/2

7. Chd 30°
1/3—1 ^2
1/2 1 4- 1/3

8. Chd 67" 30' = J2 - JT'~ V'2.

9. Tan 18"*

10. Tan 37° 30'

11. Cot 78° 45'

2 V" 2~+ t/3"
""'

4 H- 1/6 - t/2
*

2 + ^2+^/2
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V3+ V5 + Vo -\/5

,3. S.c2f ^ -^y^V-5-273-V-5
1 + V 5

14. Sec 5fr 15

15. Cosec 22^30' =

l6. Cosec52''S0'

.,/ _ 2n/2 4- J%- V'2

V^-l- V^S

^2- 1/2'

17. Sin ^'=.-^'^{V5^-\)^~j5-V5,

Vs , . 1

18. Sin 12^=-- — (1/5-1)+^^yM^^5.

19. Sin2f=-'^(i/5+l)+^x/I^V^.

20. Sin39^^=-^^(V^5 + 1)-^V^::75'.

21. Sin 4£' = - i (•5- l)+ j^ >/^'+"v^-

22. Sin57^ = - :^$^(V^5-l)+^^^7?+1^
8 K 2 o

1 V^S
23 . Sin m' = ^ (1/5 + 1 )+ -—r-^ Jo-\/5.

8
^

4\/2

1/3-1 /-—

;

(V/5- +
8t/2 ^ 8

24. Sm 87"= -—7--(v/5-l) + -— ^5+t/5.
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V. Problems

Involving the Trigonometrical Functions of one or more Arcs.

1. Express each of the Trigonometrical Functions of A

in terms of sin 2 A and sin ~ , and adapt the results to radius r.
2

2. In terms of cos Q.A and cos — .

2

3. In terms of vers 2 A and vers — .

2

A
4. In terms of chd 2 A and chd ~ .

2

5. In terms of tan 2 A and tan —

.

2

6. In terms of cot 2 J. and cot —.
2

7. In terms of sec 2 J. and sec —

.

8. In terms of cosec 2 J. and cosec — .

2

9. Given tan 2 A = 3 tan J, to fmd A.

_ . 1 + tan A . , ....
10. Given = ^ sec2A, to hnd tI.

1 — tan A ^

11. From the equation_, tan — = cosec vl — sin Ay find the

value of A
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12. Find the value of A which satieties the equation,

1 + tan A tan — ) .

13. If sin 3^-2 sin2A + sin''il +4sin^l = 0, find the

value of sin A,

14. Given sin 4A-\- 4 sin 3 A cos A =0, to find tan A,

15. Given sin 2 A cos 2^4 + 3 sin A cos S A = 0, to find

cos A,

16. Find general formulae including all the values of A
which fulfil the conditions of the equation,

2 sin' SA + sin^ 6A = Q.

17. If sin{A-B) = cos{A+B) = ^, find the values of

A and B.

18. Given sin {A + B) + sin (A - B) = cos (A -f B)

-f- cos {A — B\ to find the value of A.

19. Given sin (A + B) - sin {A ~ B) == tan 60" sin jB, to

find the value of A.

20. If sin {9.J -r B) - sin (2.1 - B) = sin (J. + ^)
— sin (A — jB) — sin B, find the value of sin A,

21. Given tan A + tan B = sec A, find the relation

between the values of A and B.

22. Given tan C + 2 tan (1 - C) = tan (A + jB — Q, to

find tan C.

23. Given 2 tan C + tan (A - C) = tan (C - B), to find

ttin C.

24. Divide a given angle into two parts A aud B so that

sin A cosec B m
sin B cosec A ?i

*
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cos A sec B m
25. So that

cos i> sec A n

26. So that

27. So that

28. So that
™" " ""

,

tan h cot A n

sec A m

cos B sec A
'

vers A m
vers B 11

chd A m
chd B n

tan A cot_B

29. So that
tan B n

30. If tan A ^ tan i^ + tan C = tan A tan B tan C, it is

required to lind the general value of (7I + i^ 4- C).

31. If sin A — 2 sin jB + sin C = 2 sin jB vers (A— B), find

the relation between A, B and C

32. Given cos A -{-COS JB = w, and cos 5 A + cos 5 B = ?/,

to find A and B.

33. If ^ -f 5 + C = 180°, and tan A tan 5 = m, tan .4

tan C = )t, find the values of tan A, tan B and tan C.

On chap. IV.

I. Theorems.

1. In a right-angled triangle, if A, B, C, r/, ^, f be the

angles and sides, and C the right angle, then

in — = V . cos — = V , tan — = V .sin

2ab , h^-cr ^ 2nb
2. Sm 2 A = -2-7TT . cos 2^1=

^ , tan2^=^,
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3. Sin (45' ± A) 4 ~ (^)' '''' (4^°± ^)

= -4-(-^^). tan (45^ ± J) =7^.

4. Sin (A -73) = r— , cos (1-jB)= -x" .

tan ( J[ - JB) = -—— .

2ab

5. The area = — = '' Jc-a^ = - Jc'-lr=^ ^ sin Svl

2 2 7.2
^ . nr^

« ^ b— — s\n2B = — tan jB = — tan ^4.

4 2 2

6. If «', 6' be the segments of the h^pothenuse made by

a line bisecting the right angle, then

' jf 2,72

ah {a + hf

7. If the lines drawn from the acute angles to bisect the

opposite sides be a, /3, the tangents of these angles are

8. The radius of the insciibed circle is

(a + b-c)
, (a -f c - 6) (Z> + c - fl) ah

^(a-\-h — c) = -k :

a -\- b + c a + b + c'

9. The radius of the cirumscribed circle is

a be a be

(a + b + c) (a + b— c) (b + c— a) (a -{- e - b)
5'

10. The sum of the diameters of the inscribed ami ciicum

scribed circles is a ^- b.
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11. l( A, Dj C be the angles of a triangle, and 2 cos B
sin A
sin C

, the triangle is isosceles.

12. If
^^" ^ = ^"\ -

, then will the triangle be either
tan B sni" x>

isosceles^ or right-angled at C.

13. In any oblique-angled triangle, if A, B, C, a^ h, c be

the angles and sides respectively, then

C ^
. ^

cot — tan — + tan—
a+h 2 c 22

,
and

a-b r^-JW CL-b A H
tan I I tan tan—(^')

Vers A _ a(S-b) vers(^+B) _ (S—a){S-b)
^^'

Vers B~biS- a)'
"""'

vers C 6'OS-c)

15. 1 an — tan — = —-— , and — = —
.

2 2 S B ^ - a
tan —

o

16. Sn. (-^) =(—)-«i ' -^ (-^)=(~) ""i'

2 ;2

and sin r.4 - B) = (^-7-) «i" (^-^ "h B).

/^-f JB-C>
tan

_ ^h'-c^ __ tan B
^'^"^ A + C- B\ "

,r + c'^-/r
~

tan C
tan (^^^)

Tt
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18. The perpendicular from the angle C upon the opposite

side

_ a + b -\-c __ c cos (A — B) — cos {A + B)
"" I B ~i sinC

*

cot h cot —
2 2

19. The distance of the perpendicular from the middle of

the base

c sm(A—B) c tan^ — tanB
~ 2 sin C "" 2 tan A + tan B

*

c" sin J. sin B
20. The area of the tnanole = -

i sin C

c" cos(A- B)~cos(A+B) 2a he ABC
:

— — = ~_ cos — cos — cos —

.

4 sm{A-^B) aH-/; + c 2 2 2

21. Four times the area of the triar.gle

- (« + ^+ g)^ {cos A -(-cos ^4- cos C~l}
sin A+sin i^+ sin C

= n/
4(a^+ //4-cV(«' + ^'' -f c"T a2 + Z^- + c"

cot" A + cot- i^+cot" C cot J. 4- cot i? + C0I C

22. The sum of the perpendiculars from the angles upon

the opposite sides = 2 area (
j,

23. If R and r be the radii of the circumscribed and

inscribed circles, then

abc 1 111
QRr =

,
.

, , or-— = _+— + _-.
a-f-o-^c 2Hr ab ac be

24c. The diameter of the inscribed circle

. / X
A S C= (« -f 6 + 6) tan — tan — tan —
2 2 2
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__ 2^ctV'c^ sin A sin B sin C _ rtftc (sin A + sin B 4- sin C)

25. The diameter of the circumscribed circle

a+ 6 +(; 4 / a^c.v/I
sin ^ -f sin B + sin C sin A sin B sin C

a 4- 6 + c" T B C'
4 cos — cos ~ cos —

2 2 2

26. The sum of the squares of the distances of the centre

of the inscribed circle from the angular points

Qahc= ab + ac-\-bc
a-{-b + c

27. If d be the line drawn to bisect the angle C, and

meeting the opposite side in E, then

. ,,^ a-rb C
tan ALL = tan —

.

fl-6 2'

cos ACE = ;— , and ^ =-
ttt {(a + o) — c }.

2a b {a-Vby

28. If P and p be the perpendiculars from the extremities

of the base of a triangle upon the line bisecting the vertical

angle at distances D and d from it, then

4 Pp = (a - /> + c) (6+ c - a\ and 4 D c?= (« + ^ + c) (« + 6 - c),

and the nre3. = Pd = pD.

29. The perpendiculars drawn from the angles of a triangle

upon the opposite sides meet in one point, and the rectangles

of the segments of the perpendiculars are equal in each.

30. If three straight lines be drawn from the angles of a

triangle to bisect the opposite sides^ they meet in the same point

:

and the sum of the squares of the sides of the triangle is equal

to three times the sum of the squares of the distances of the

point of intersection from die angles.
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31. If lines be drawn from the angles of a triangle to any

point, the products of the sines of the angles thus formed taken

alternately are equal, as are also the products of the alternate

segments of the sides.

32. If two angles of a triangle be bisected bylines meeting

in a point, the remaining angle will be bisected by the line

joining it with this point.

33. The perpendiculars to the three sides of a triangle at

their middle points, meet in one point.

34. If a J bj c be the sides of a triangle, and a, b, c

the perpendiculars drawn from a point within the triangle, to

bisect the sides, then

fa
b c) abc

a b c ) abc

35. The side of an equilateral triangle inscribed in a circle :

the side of a square inscribed in the same circle '.: s/ 3 : /^ 2 ;

and the area of the triangle : the area of the square :: 3^3 :

36. The square of the side of a pentagon inscribed in a

circle is equal to the sum of the squares of the sides of a regular

hexagon and decagon inscribed in the same circle.

37. If a point be assumed in a regular polygon of n sides,

from which perpendiculars are drawn to each of the sides or

sides produced ; the sum of these perpendiculars : the radius of

the inscribed circle :: ii : 1.

38. If the external angles of a quadrilateral figure be

denoted by a, /3, y, S, and the sides by a, b, c, d, then

a sin a-\-b sin (a + /3) + c sin (a + /3 + 7) + J sin (a + i3 + 7 + S)=0,

a cos a+ b cos (a+ jS) 4- c cos (a -f- /3 + 7) + ^Z cos (a + /3 + 7 + ^)=0.

39. The area of a regular polygon inscribed in a circle is

a mean proportional between the areas of an inscribed, and of a

circumscribed regular polygon of half the luimber of sides.
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40. The area of a regular polygon circumscribed about

a circle is an harmouical mean between the areas of an inscribed

regular polygon of the same number of sides, and of a circum-

scribed regular polygon of half that number.

41. If an equilateral polygon of ^ sides be inscribed in a

circle whose radius is 1, the side=V 2 — v 2-}-^2 + 8tc. the

radical sign being repeated v times.

42. If the diagonals of a quadrilateral whose opposite

angles are supplemental to each other, intersect at right angles,

their segments are proportional to the rectangles of the sides

which are terminated at their extremities.

43. Jn every polygon, any one side is equal to the sum of

the products of each of the other sides and the cosine of the

angle made by it with the aforesaid side.

44. In every polygon, the perpendicular upon a side from

any of the angular points is equal to the sum of the products of

the sides comprised between that point and side, and the sines of

their respective inclinations to that side.

45. The square of a side of any polygon is equal to the

sum of the squares of all the other sides, diminished by twice

the sum of the products of all those sides, taken two and two

together, and the cosines of the included angles.

46. Twice the area of any polygon is equal to the sum of

the products of its sides except one taken two and two together,

and the sines of the sums of the exterior angles contained by

those sides produced.

47» A circle is inscribed in an equilateral triangle, an equi-

lateral triangle in the circle, a circle in the last triangle, and so

on, in infinitum: then the radius of any one of these circles is

equal to the sum of the radii of all those within it.

48. If lines be drawn from all the angles of a polygon

to any point, the products of the sines of the angles so formed

taken alternately are equal.
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49. In a right-angled triangle, a perpendicular is drawn

from the right angle to the opposite side : then the areas of the

circles inscribed in the triangles made by it^ are proportional to

the corresponding segments of the side.

50. In a plane triangle, the differences of the segments of

a side made by a perpendicular from the opposite angle, by the

contact of the inscribed circle, and by the line bisecting the

opposite angle, are in geometrical progression.

51. If through any point O within a triangle, straight lines

be drawn from the angles A, B, C to meet the opposite sides

in «_, b, c respectively, then

Oa m Oc _

52. In any triangle, the rectangle contained by the excess

of the semi-perimeter above each of the sides including any

angle, is equal to the rectangle of the radius of the inscribed

circle and the radius of the circle which touches the base and

the two sides produced.

53. If 7' be the radius of a circle inscribed in a triangle,

7'j, To, ?3 the radii of three other circles touching the sides and1111
sides produced, of the same triangle, then — = — + h —

,

7' r, /'g r-g

and the area of the triangle = v ^'^'i^s^s*

54. If R be the radius of the circle circumscribed about

a triangle, r the radius of the circle inscribed in it, the distance

between the centres of these circles is ->/ J^^~ 2Rr.

55. If r^, To, ry be the radii of the circles touching one side

of a triangle and the two others produced, the distances of their

centres from that of the circumscribed circle whose radius is R are

jR:'-\-^lRr,, jR''-^%Rr., and V-^' + ^-Krg.
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II. Problems.

1. Given the three sides of a triangle, to find the per-

pendicular upon one side from the opposite angle, and the

segments into which that side is divided.

2. Given the perimeter and area of a right-angled triangle,

to find the sides.

3. Given the perimeter of a triangle, to find the sides,

when a perpendicular from one of the angles to the opposite

side divides that side in a given ratio.

4. Given one angle of -a triangle, and the straight lines

drawn from each of the other angles to bisect the opposite sides,

to find the sides of the triangle.

5. Express the perimeter of a triangle in terms of two

of the angles, and the perpendicular from the remaining angle

upon the opposite side.

6. Given the lines bisecting the acute angles of a right-

angled triangle and terminated by the opposite sides, to find the

area of the triangle.

7. Given the perimeter of a triangle and the ratios of its

angles, to find the sides.

8. In a right-angled triangle, given one of the sides con-

taining the right angle and the radius of the inscribed circle, to

find the sides.

9. Given the hypothenuse of a right-angled triangle and

the radius of the inscribed circle, to find the sides.

10. Given the perimeter of a right-angled triangle and the

radius of the inscribed circle, to find the sides.



136

11. Given the area of a right-angled triangle and the

radius of the circle inscribed in it, to find the sides.

12. Given the three angles of a triangle and the radius of

the inscribed circle, to find the sides.

13. Express the area of a triangle in terms of the radius

of the inscribed circle and the three angles.

14. Given the three angles of a triangle and the radius of

the circumscribed circle, to find the sides.

15. Express the area of a triangle as a function of the

radius of the circumscribed circle and the three angles.

16. Investigate an expression for the area of a triangle

involving all the sides, and the tangents of all the semi-angles.

17. In a right-angled triangle, given the radii of the

inscribed and circumscribed circles, to find the sides and

area.

18. In any triangle, given the vertical angle, the radius of

the inscribed circle, and the sum of the lines drawn from its

centre to the angles at the base, to find the sides.

19* Given the perimeter, the area and one angle of a

triangle, to find the side opposite to it.

20. Given the area, the vertical angle and the sum of the

including sides, to find the sides of the triangle.

21. Given the radius of the circumscribed circle, the

vertical angle and the ratio of the sides containing it, to find

the sides of the triangle.

22. If a circle be described about a triangle, find the

distances of the bisections of the sides from the circumference.
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23. Given the three straight lines drawn from the angles of

a triangle to bisect the opposite sides, to find the sides of the

triangle.

24. Express the area of a triangle in terms of two of its

sides and an angle opposite one of them : also, in terms of two

of its angles and a side opposite one of them.

25. Determine the triangle whose sides are three con-

secntive natural numbers, and whose greatest angle is double

of the least.

26. Find the angles of a triangle, when the base_, the

sides, and the perpendicular are in continued geometrical

progression,

27. Given three straight lines, to find the radius of the

circle so that they shall be the chords of three contiguous arcs

which together make a semi-circle.

28. In a given scalene triangle, it is required to draw from

one side to another produced, a straight line which shall be

bisected by the third side.

29. Given the perpendiculars from the angles upon the

opposite sides of a triangle, to find the angles and sides.

30. Given the area, the base and the sum of the angles at

the base of a triangle, to find the angles.

31. Given the angles of a triangle and the perpendiculars

upon the sides from a given point within it, to find the sides.

32. Given the angles of a triangle and the perpendiculars

upon the sides from a given point without it, to find the sides.

33. Compare the sides and areas of the squares and regular

octagons described in, and about, the same circle,

Uu
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34. Given the ratio of the side of a regular polygon

inscribed in a circle to the radius, to find the number of sides

and the magnitude of each angle.

35. The alternate angles of a regular pentagon being

joined, it is required to compare the sum of the isosceles

triangles so formed with the pentagon.

36. Find the side and area of a regular decagon inscribed

in a given circle.

37. Determine the sides of a regular hexagon and dode-

cagon inscribed in the same circle, and compare their perimeters

and areas.

38. The area of a regular polygon of n sides in a circle :

the area of another regular polygon of 3 n sides in the same circle

:: p : (j : find the values of the angles subtended by a side

of each at tlie centre.

39. The area of a regular polygon inscribed in a circle ; the

area of a similar figure circumscribed about it :: 3 : 4; find the

number of sides.

40. Find the side of a regular quindecagon inscribed

in a circle of given radius.

41. The area of a regular polygon inscribed in a circle

being given, and the area of one circumscribed with the same

number of sides^ it is required to find the areas of the inscribed

and circumscribed polygons of half the number of sides.

42. Find the area included between two regular polygons

of the same number of sides,, one being inscribed in, and

the other circumscribed about, a circle of given radius ; and

determine the number of sides when this area has a given ratio

to either.
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43. Given two sides and tlie included angle of a quadri-

lateral, to find the sides and diagonals, when two opposite

angles are right angles.

44. Express the area of any quadrilateral in terms of all

the sides, and two of the opposite angles.

45. Given one side of a polygon and the angles made by

it with the lines drawn from its extremities to all the other

angles, to find the area of the polygon.

46. A circle has an equilateral triangle inscribed in it;

a circle is inscribed in the triangle which also has an equilateral

triangle inscribed in it, and so on : find the sums of the

perimeters and the areas of all the circles and triangles.

On chap. V. VI. VII.

Theorems and Problems.

c = y {a - bf-\-4ab sin" - = V {a + bf-4ab cos~ ~

^—^^ —

^

V ('^ + ^)" si"'— + (« - ^f <^«s'
—

= b (cos A + sin A cot jB).

2

a

2. Sin C

cos B + sin B cot C

c sin A

s/ b' + c'^ - 9.bc cos A

_ sin B {a cos B± sj b"^
- a" sin^ B~

h

= ~ sin G J5 ± sin ii \/ 1 - C^\ sin' B.^/-(-:y
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340

a — c cos -B

x/ a^ -^ c'^ — 2 rt c cos B

2 sin' B + cos 7i V 1 - (yj'si"' B.

c sin yl _ c sin A
'' '^"" '^' == 7«'-cSinM ~

6 - c cos I

Z> COS ^4" \/ ci^ — b' sm

6 COS ^ — cot il ^ a - h^ sin^ A

1 + sec yl V /^^'^ - sin^ A

1 — cosec J. v/(=y - .i„.

5. If /> be the perpendicular upon the side c frooi tlie

opposite angle C, then are the other two sides respectively

equal to

^J c^'\-pc cot C+ sj c^-^pc tan C,

and s/c^-\-pc cot C — n/c^ 4-pc tan C.

6. Given the angle B, the side c and the sum ot the

remaining sides, to solve the triangle.

7. Given the angle B, the side c and the ratio of the

remaining sides, to solve the triangle.

8. Given the angle B, the side a and the area, to solve the

triangle.

9. Given the area, the base and the sum of the angles

at the base^ to solve the triangle.

10. Giveji the logarithms of the three sides of a phuic

triangle, to determine the logarithms of the segments of one of

them made bv a line bisecting the opposite angle.
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11. If the base of an isosceles triangle be c and the per-

pendicular from one of the equal angles upon the opposite

side py then

log area = log p-{-2 log c ~ 2 log 2 — i- log {{c -\- p) (c — p)].

sin ^ a
12. if tan A tan IS = 3, and -:^—— = -

, and we assume
sni B h

%ab
tan 20 = ——5 -jT , then will

3(a^— o^)

tan
A /3a cot (b

, ,^ A /3b tan d>
^ = V —-X.

^ and tan B= S/ ^

13. In finding the sine of half an arc, shew that when is

small, a large error may be expected in applying the formula

. . / 1 - cos e
sm - = V ,

2 ^ 2

and a small one in using tlie formula

n
sin - = ^ ^y \ -\- sin - ^^ \ - sin 0.

14. The Sun's altitude being oO", lind the position of

a stick of given length that the shadow may be the longest

possible, and determine the shadow's length.

15. The aspect of a wall is due south and the Sun is in

the south east at an altitude of 30^ : lind the breadth of the

wall's shadow.

16. A person attempts to swim directly across a stream of

given breadth, where will he reach the opposite side, if he

swim n times as far as he would have done, had there been no

current, and what angle does his course make with it ?

17. Three objects A, B^ C form an isosceles triangle

whose vertex is B and whose angles are as the numbers 4, 1, 1:

a person walking from .1 towards C measures a base AD=a feet

and observes the angle BDC : he then advances to E, h feet



342

lailher, and linds the angle EEC the supplement of BDC :

lind the sides of the triangle.

18. Coasting along shore observed two headlands, the

iirst bore N. N. W., and the second N. E. by E. : then steering

12 miles E. N. E., the first bore N. W. and the second N. E.

:

shew how the distance and bearing of the two headlands from

each other may be found.

19. A person on a tower can see the top of a pillar

of known altitude from which he wishes to know his distance

and the height of the tower : he can see also an object on

the horizontal plane from which he has formerly observed

the angular distance of the tops of the tower and pillar : shew

how he may find the required distances.

20. For determining the distance between two inaccessible

objects A and Bj two positions C and D are taken such that the

triangles ACT), BCD are not in the same plane: state the

requisite observations for determining their distance, and the

bearing and elevation of one as seen from the other, and

give the solutions of the triangles in logarithms.

21. A person wishing to ascertain the horizontal distance

of two inaccessible objects from each other, can find no point

from which they are visible together : he finds however two

stations the distance between which he can determine, from

which the objects may be separately seen: explain what obser-

vations and measurements it will be necessary for him to make,

and how they must be applied to effect his purpose.

22. The top of a tower is visible from three stations

A, Bj C in the same horizontal plane: at each of the stations

the angular distance of the top of the tow^er from each of the

other two stations is observed : given the distance between

A and B, and the height of the tower, to find the distance of C
from each of the other stations and from the tower.

23. A hill rises due north at an angle of 45^_, and a shaft

was discovered in it making an angle of G(f with the horizon,

and extending 100 feet in a north cast direction which led

into a cavern stretchini!; horizonlaliv to the north east. At the
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foot of the hill, 300 feet in a south west direction from the

mouth of the shaft, another opening was found extending-

horizontally 120 feet due north: find the length and direction

of the least shaft that can be cut from tlie extremity of this

opening to reach the line of the cavern.

24. Prove that— = f 2^ - ^\ seconds = 52'' 44"'
S'"' 45\

12 V 2V

25. If the sides of a triangle be a, b, c,

and X + - = 2 cos A, y -\— =2 cos 7?, then -- -\- bx = c,

26. If Cq = cos a cos B cos C &c., c„ = the sum of the

products of all the cosines but n, multiplied by the sines of

those Hj then

cos (^ + 5+ C+ &C.) = fo-C2 + C4 — &C.

sin {A + i3 + C + &C.) = Ci -C3 +(^5 - &c.

27. Prove that

^aJ - \ sin 71A = (cos A +^ -\ sin A)" -(cos .4- ^~sin^)^

and 2 cos ?iA=^(cosA + />/ — 1 sin A)" + (cosil'— ^/ — Isin^d)";

and adapt them to the radius r.

28. Shew that

2 smm\A= s/ysin^nA— 1 +sin tiA

V ^sin'- n yl — 1 + sin ?i A.

and

2 cosA~ \J V^cos'nA—\ -\- cos « A + -r
V Vcos^nA—\ + cos n

A

and adapt them to the radius r.

29. Find the sum of the 7?^'^ powers of the tangent and

cotangent of an arc.

30. Solve the equation a"" — 62— 4 = 0, by means of

a table of natural sines and cosines.
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31. Solve .T^ — 49i "- 120=0, by means of trigonometrical

iormuKe.

32. Solve the equation x^ — ^ x^ — ^x •{- ^ = 0, by the

trisection of an arc,

33. Solve .r^ — Sax" — Sx -{- a = 0, by means of an arc

whose tangent is a.

34. Solve 2* -j~ 4.r^— 6:c'^--

4

j:-|- 1 =0, by means of an

arc of 45^

35. Determine the roots of x"^ + 9,x^ — x^ — 2x -{- I =0,
by Trigonometry.

36. If cos 0= , then uill

{a'\-hj'^\r ^{a-^bj - D" = <^{d''\-bT cos- a

37. If the quadrant of a circle be divided into an odd

TV
number of equal parts so that 6 = , then to the

radius /%

sinO sin 30 sm 5^ &c. sm (2//— 3)^= ( -
j

-
)

38. If the semi-circumference of a circle be divided into

TT

an odd number of equal parts so that = . then

(r \ " "^ ^

and cos cos 20 cos 3^ &c. (/i ~ 1) ===
(
-

j

39. If the semi-circumference of a circle be divided into

an even number of equal parts so that = — , then
* * 2ff

chdO chd30 chd50 8cc. did (£« -- \)0 =^/2/^
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40. If the circumference of a circle be divided into any

number of equal parts as ii of which is one, then

chd e chd 2 e chd 3 &c. chd (m - 1 ) = // r"
'

'.

41. Prove that sin + sin (0 + ^) + sin (^ + 2^) + &c. is

a recurring series, find the scale of relation, and by means of it

the sum of 7i terms.

42. Prove that

sin (}-f sin 2^4-sin 304-&C. to 7Merms
^

.0= tan ill + 1) -
,

cos6^ + cos£^+ cos 30-1-&C. to n terms 2

sin 6 -{- sin 3^ + sin 50-j-&c. to n terms ^
and 7— -^^—— = tan ni),

cos y+ COS 36^ -J- cos ou -\- cvc. to n terms

43. Find the sum of vers + vers Q.0 + vers 30 + &c.

to 11 terms.

44. If the circumference of a circle be divided into any odd

number of equal parts so that =
, then to the raduis r,

^
(2 « — 1

)

chd'0 + chd'20 + chd"30-[-&c.+chd'(2?/-2)0 = (4?i-2)r^

45. If the circumference of a circle be divided into an

even number of equal parts as 2w, then the sums of the squares

of the alternate chords are equal to each other and to S/^r*.

AQ. On the same supposition, the product of the squares

of the odd chords together with the product of the squares of

the even chords = 4r'''',

47. If the circumference of a circle whose radius is r,

be divided into 2// equal parts and from one of the points

straight lines be drawn to all the rest, the sum of all these lines

45^
2r cot

48. If Ay B, C, Df Sec. be the angular points of nn

equilateral polygon of ?n sides inscribed in a circle whose

radius is r, and P be any point in the circumference, then

PA'"-\-PB^" + PC-"+&c. = m times the middle term of

(1 +r)-"\, if ?/ be less than m.

X X
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49. Find the sum of all the natural suies to every minute

in the quadrant.

50. Sum the series

cos -\- 2 ^^s 2O -\- ^ cos SO + &c. to 71 terms.

51. Sum the series

cos^O + 2cob^20 + 3 coa'^ 30 + See. to 71 terms.

52. Sum the series

sin^ COS0 + sin2^ cos30+ sin 30 cos^c^+ ^c. to n terms.

53. Sum the series

tan^sec^^ + ^tan- (^sec- j + ^ tan - (^ sec --j + 8cc,

to n terms.

54. Sum the series

• n / . ^V ' ^ / ^V ' ^ / - ^V
smtf I sm -

I +2sm ~ I sm - ) +4sm -( sm- I +&c.

to n terms and to infinity.

55. Sum the series

tan^l tan- ) +2tan-( tan- | +4tan-( tan- ) +&c.
V 2/ 2V 4/ 4V 8/

to n terms and to infinity.

56. Sum sec^'^-f 4sec^20+l6sec'40 + 64sec^80+ &c.

to it terms.

57. Prove that a: sin 4- — sin 20 H sin 30 + &c. in inf.

2 3

if a sin )
= tan-M ^\U — TCOS0J

58. Sum the series

e^ sin sin 20 4 sin 3 — &c. to infinity.
2 3

-^

59. Resolve {a"—9,ah cos + 6^)*^"* into a series of cosines

of and its multiples, by means of the equation

2COSW0 = x"" -\ ,

and the binomial theorem.



APPENDIX II

CONTAINING MISCELLANEOUS THEOREMS AND PROBLEMS
IN SPHERICAL TRIGONOMETRY.

Theorems and Problems.

1. In a right-angled spherical triangle wherein C is the

right angle,

sin {a-b) A -{^ B A — B sin (c - 6) ^A
-7-~—~ri = tan -— tan—-— , and -:—; — = tan ~ .

sni (a+ b) 2 2 sm (c + b) 2

B + A
tan ( ...

^ ^ ,« \ 2 ) /c + 6\ fc-b^
2, Ian - =

(£±£_45»)
— = tan ( ) tan (

—--
).

2 /B-A
, _n\ \ 2 / \ 2 J

.„(£^+«-)

3. Tan^- =-2 c cos (A + B) tan A tan B - 1

2
~"

cos {A - B) tan A tan 5 + 1
'

and 2 cos c = cos (fl + />)+ cos (a — b).

c +a'/c + a\

4. Ta„(4a» + f)=-^,
tan

A^

tan —
2

tan (^^ ^\

cot(45« + -) =
tan —

2

, ... .. A'
and cot* («• * I)

tan ('-?)
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2/0 ^\ 1 + s^" ^ sin A sin (C -f b)

%/ 1 - sin c sin A sin (i> — 6)

'

6. In any spherical triangle whose angles and sides are

A, B, C, a, b, c,

-b\ /a -I- b

. /A-hB\ ^^A 2 ; C /A + jB\
sin I I

= —- cos— , cos I I
=

\ 2 / c 2 ' V 2 /

. ,A+B^ ^"%-V; C M+Bx '"'{-^J. C
.Sin —

:

c 2
cos - cos ^

2 2

sin -- sin --

7* ^^'^ t^^^ sanie hypothesis,

/A-B\ /^+A
cos ( I

,
COS I I

. /^/-f-^\ V 2 / . c /a-^-bx V 2 / c
sni I I = sni -

, cos ( |
= ' cos -\2/ . C 2' \2/ .C 2

sm -
, sni —

2 2

. /a— b\_ \ 2 / . c /«~<^\ ^" \ 2 / c

^'"V"l~;~' c~^"^i' '"<^= c
— ""^5'

COS - COS -

(a + b\ /a — b\

». :5m ^A-±W^ ^^-^ \-±JL sin C,

COS —



sm
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sin (A ^ B) = sin C
sm —

2

£). Sin (rt + 6) =
^

sin c,

sin^ -

14- B\ . /A- B>
sin (^") " (^)

sin (a " b)= --, sin c.

2
^

cos''—

10. Sin'Csin(« + ^)sin(fl-6)=sin®csin(74 + B)sin(l-i?).

1 1 . Sin a sin c + cos a cos c cos B = sin A sin C — cos A
cos C cos b.

^. . cos C /</ s'm^ B—s'in^ C s'ln^ b+ s'm C cos B cos b
1 2. Sin A= -^^^

r-Yi—^T7^
1 — sin b SUV C

13. Cos C = - cos (A - 5) sin^ - - cos (1 + B) cos* - .

^ 2 2

14. Sin^— = cos^ I
—

I sin - + cos^ I ) cos
2 \2/2 \2/

15. Cos — = sin I I sin —hsin ( ) cos
2 \2/2 \2/

c c
16. Cos c = cos (a — 6) cos^ — -f- cos (a+ ^) sin'

—
".

2 2

sin —
2

17. Sm' - = sm^ (-^) cos= - + sm' (^-
)

18. Cos- - = cos' [-^j cos- -+COS (^-^j



19. Sin' 6^=
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(sin^ a siii^ b sin^^ c siii A sin B sin C)l

1 B C ^^

2 tan — tan — tan —
2 £ 2

^ g ^, (sni a SHI />» sm c sin A sm J5 sin C)»
20. Cos «S = ; .

a b c
2 cot •" cot - cot '-

£ 2 2

21. If a , b' be the segments of the base contiguous to the

angles A and B respectively^ made by a perpendicular arc from

the angle C, then

, cos a — cos 6 cos c , cos 6 — cos « cose
tan a = —

:

, tan b = -. ,

cos b sin c cos a sin c

(a-^-bx (a — b\

a'-h\ '^" (-?-)'''" ("T-j sinU-iJ)
'a-i-b\ /a — b

tan I

/a—()\ V - , . ~ , _...,__ _,
tan I 1 = = -—

, , . „, tan
V 2 /

c

c sin {A-\-B) 2
tan -

2

22. If A\ B' be the corresponding segments of the vertical

angle, then

cos jB -|- cos ^ cos C , cos A + cos JB cos C
cot A = —:—7^ 5 cot ii = . ,

cos A sm C cos B sm C

{A + B\ /A-B\
. I w ia" I ) tan I I , , , ^
A''-B\ V 2 / _ V 2 / sin (« - ^>) C

c
2

tan
\ 2 /

C ~sin(« + Z>)
^""2

cot

23. In an isosceles triangle, wherein b = c, prove that

. a A
sin — cos —

2 . 2
sin 6 = 7 , and sin B =

.

. A a
sm — cos -

2 2

24. If the two sides a, b of a spherical triangle be supple-

mental to each other, then sin 2^ + sin 2 J3 = 0.
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26. In a right-angled splierical triangle whose right angle

is C,

A sin (c— b) sin(c— 6)

2 sin a cos 6 tan a cos c

26. On the same hypothesis

Sin - = sni - cos - 4- cos - sni - .

2 2 2 2 2

27. The sines of the arcs drawn from the angles of a

spherical triangle perpendicular to the opposite sides, are to

each other inversely as the sines of the sides upon which they

fall_, or of the angles from which they are drawn.

28. If d be the length of an arc bisecting the angle C
and terminated by the opposite side, then

2 sin a sin 6 C
tan a = —.— r- cos — .

sm (a^r b) 2

29. If -D be the length of the arc drawn from the angle C
to bisect the opposite side, then

^ sin {A + B) c
cos D = :

—

— COS - .

sm C 2

30. Draw through a given point in the side of a spherical

triangle, an arc of a great circle which shall cut off a given

portion of it.

31. Find the whole number of equal and regular figures

which may be described upon the surface of a sphere so as

exactly to cover it.

32. If the sides of a spherical triangle AB, AC be pro-

duced to by c so that Bb, Cc shall be the semi-supplements of

AB and AC respectively: prove that the arc be subtends an

angle at the centre of the sphere equal to the angle between the

chords of AjB and AC.
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33. If each of the sides of a spherical triangle be produced

till they meet, three triangles will be formed ; and if ri, r^, rg

be the circular radii of their inscribed circles, then

tan r tan r^ tan r2 tan rs

= sin 5 sin (S - a) sin (S— b) sin {S — c),

34. On the same hypothesis, if Ri, Bof ^8 be the circular

radii of their circumscribed circles, then

cot R cot Ri cot R2 cot i?3

= —co3S'cos(S'-A) cos{S'- B) COS {S''-C).

35. If a spherical triangle be inscribed in a circle whose

pole is in its base, the angle at the vertex of the triangle will be

equal to the sum of the angles at the base.

3o. If two arcs of great circles terminated by a circle on

the surface of the sphere cut one another, the rectangle of the

tangents of the semi-segments of one of them is equal to the

rectangle of the tangents of the semi-segments of the other.

37. The sums of the opposite angles of a spherical quadri-

lateral inscribed in a circle are equal to one another.

38. If a spherical quadrilateral be inscribed in a circle, the

rectangles of the sines of the semi-diagonals is equal to the sum

of the rectangles of the sines of half the opposite sides.

39. Ih a spherical quadrilateral inscribed in a circle, whose

sides are a, b, c, d^ if T> be the diagonal joining A and C,

snr—
(. a . d . b . c\ / . a . c , b . d\
sm -^ sin -^ + sni -' siu --

I I sin - sm -- + sm -- sin -- 122 2 2/\222 2/

. a . b . c . d
sin - sm - 4" sin -< sm -

2 2 2 2
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