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PREFACE 

This  text-book  is  shorter  than  my  former  text-book, 

entitled  "Plane  Trigonometry./'  by  the  omission  of  many 
of  the  notes  and  several  of  the  topics  in  that  book  and  by 

the  more  condensed  treatment  of  other  topics.  There  is 

also  a  marked  difference  in  arrangement.  Thus,  radian 

measure,  the  periodicity  of  the  trigonometric  functions, 

their  general  values,  and  their  graphs,  and  the  inverse  trigo- 
nometric functions,  which  are  discussed  in  the  later  chapters 

of  the  "Plane  Trigonometry/ '  are  treated  in  the  earlier 

chapters  of  the  "Elements  of  Plane  Trigonometry."  The 
line  definitions  of  the  functions  are  explained  more  fully, 

and  the  unit  circle  is  used  to  a  greater  extent,  in  this  book 
than  in  the  former  one. 

D.  A.  Murray. 
May  1,  1911. 
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CHAPTER  'I 

TRIGONOMETRIC  FUNCTIONS  OF  ACUTE  ANGLES 

1.  Angle    defined.     An   angle   XOP   is    the    amount    of 
turning  which  a  line  makes  when  it  revolves  about  0  from 

Fig.  1. 

the  position  OX  into  the  position  OP  (Figs.  1,  2).     Accord- 
ingly (Fig.  2), 

one-fourth  of  a  revolution  =  a  right  angle ; 
a  complete  revolution        =four  right  angles. 
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vVTien  the  amount  of  turning  is  less  than  one-fourth  a  revo- 
lution (i.e.;  less  than  right  angle  XOY),  the  angle  is  called 

an  acute  angle. 

2.  Degree  (or  sexagesimal)  measure  of  angles.  Since  all 

right  angles  are  equal,  a  right  angle  may  be  chosen  as  the 

unit  of  measurement.  A  right  angle,  however,  is  incon- 
veniently large  as  a  unit.  Accordingly  a  ninetieth  part  of  a 

right  angle,  called  a  degree,  is  taken  for  unit.  Degrees  are 

divided  into  minutes,  and  minutes  into  seconds,  according 
to  the  following  table  of  angular  measure : 

60  seconds  =  1  minute, 
60  minutes  =  1  degree, 

90  degrees  =  1  right  angle. 

Degrees,  minutes,  and  seconds  are  denoted  by  symbols : 

thus,  23  degrees  17  minutes  20  seconds  is  written  23°  17'  20". 

3.  Trigonometric    functions    (defined    for    acute    angles). 

From  any  point  P  in  one  of  the  lines  bounding  an  angle  A 

(Figs.  3,  4,  5)  draw  a  perpendicular  PM  to  the  other  bound- 
ing line.     (The  angles  A  in  Figs.  3,  4,  5  are  equal.) 

Fig.  3. Fig.   5. 

In  any  of  these  triangles  AMP  there  can  be  formed  six 
ratios  with  the  lines  AM,  MP,  AP,  viz. : 

MP     AM     MP     AM      AP      AP 

AP'     AP'    AM'    MP'    AM'    MP' 
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Since  all  the  triangles  AMP  above  are  similar,  each  of 

these  ratios  has  the  same  value  whatever  be  the  position 
of  P  on  a  bounding  line  of  the  angle.  These  six  ratios  are 
called  trigonometric  functions  of  the  angle  A,  and  are  given 
names  as  follows: 

MP.       „   , 
Tp  is  called  the      sine       of  the  angle  A; 

AM. 

AP is  called  the     cosine     of  the  angle  A ; 

(1) 

MP  .       „   ,   , 
-j-tt  is  called  the   tangent    of  the  angle  A ; 

AM.       n  ,   , 
TTp  is  called  the  cotangent  of  the  angle  A ; 

AP  .       „  „   , 
-r^T  is  called  the    secant     of  the  angle  il ; 

AP 
Yfp  is  called  the  cosecant  of  the  angle  A. 

Short  symbols  for  these  functions  and  definitions  appli- 

cable for  any  right-angled  ti  iangle  are  given  in  (2) : 
MP\     opposite  side 

"AP/ 

sin  A 

cos  A 

tan  A 

cot  A  (  = 

hypotenuse  ' 
_AM\  _  adjacent  side 

AP )       hypotenuse  J 

_MP\  _  opposite  side 

AMI     adjacent  side' 

_AM\  _ adjacent  side 

MP)     opposite  side ' 

sec  A  (  = 

cosec  A  (  = 

AP\  _    hypotenuse 

AM)     adjacent  side' 

AP\  _    hypotenuse 

MP/     opposite  side ' 

(2) 
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The  symbol  esc  A  is  also  used  for  cosecant  A. 

From  the  definitions  of  these  functions  and  the  proper- 
ties of  similar  triangles  the  following  properties  are  easily 

deduced : 

(1)  To  each  value  of  an  angle  there  corresponds  but  one 
value  of  each  trigonometric  function. 

(2)  To  each  value  of  a  trigonometric  function  there  corre- 
sponds but  one  value  of  an  acute  angle. 

(3)  Two  unequal  acute  angles  have  different  values  for  each 
trigonometric  function. 

The  values  of  the  trigonometric  functions  for  angles 

from  0°  to  90°  are  arranged  in  tables.  These  values,  which 
may  be  given  to  four,  five,  six  or  seven  places  of  decimals, 
are  called  the  Natural  sines,  Natural  cosines,  etc.  The 

logarithms  of  these  values  of  sines  and  cosines  (with  10  added) 
are  called  Logarithmic  sines,  Logarithmic  cosines,  etc. 

In  addition  to  functions  (1),  (2),  the  following  are  occa- 
sionally used: 

versed  sine  of  A  =     vers  A  =  l  —  cos  A; 
coversed  sine  of  A  =  covers  ^4  =  1— sin  A. 

EXAMPLES 

1.  Suppose  that  the  line  OP  (Fig.  2)  revolves  about  0  in 
a  counter-clockwise  direction,  starting  from  the  position  OX; 
show  that,  as  the  angle  XOP  increases,  its  sine,  tangent,  and 
secant  increase,  and  its  cosine,  cotangent,  and  cosecant 
decrease.  Test  this  conclusion  by  an  inspection  of  a  table  of 
Natural  functions. 

2.  Find  by  tables,  sin  17°  40',  sin  76°  43',  cos  18°  10', 
cos61°37/,  tan  79°  37'  30",  cot  72°  25'  30".  Log  sin  37°  20', 

log  cos  71°  25',  log  tan  79°  30'  20". 
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3.  Find  the  angles  corresponding  to  the  following  Natural 
and  Logarithmic  functions: 

sine=  .15327,  sine= .62175, 
cosine  =  .85970,  cosine  =  .61497, 

tangent  =  .42482,       tangent  =  .60980, 

Log  sine =9.79230, 
Log  cosine=  9.96611, 

Log  tangent  =  9.82120. 

4.  Problems.    The  student   is   recommended  to  try  to 
solve  Exs.  1,  2,  3,  4  without  help  from  the  book. 

EXAMPLES 

1.  Construct  the  acute  angle  whose  cosine  is  f 
its    other    trigonometric    functions?     Find 
the  number  of  degrees  in  the  angle. 

The  required  angle  is  equal  to  an  angle 

in  a  right-angled  triangle,  in  which  "the 
side  adjacent  to  the  angle  is  to  the  hypot- 

enuse in  the  ratio  2:3."  Construct  a 
right-angled  triangle  AST  which  has  side 
AS=2,  and  hypotenuse  AT  =  3=  The  angle 
A  is  the  angle  required,  for  cos  A  =  § . 

What  are 

Fig.  6. 

Now ST=  \/32-22=  \/5  =  2.2361. 

Hence,  the  other  functions  are 

V5  V5 
sin  A  =  — — =. 7454,    tan  A  =  -77- 1.1180,  cot  A  =  -7==  .8944, o  V5 

3  3 
sec  A  =  -=  1.5000,     cosec  ̂   =  -7==  1.3416. 2  V5 

The  measure  of  the  angle  can  be  found  in  either  one  of  two 

ways,  viz.:  (a)  by  measuring  the  angle  with  the  protractor; 
(6)  by  finding  in  the  table  the  angle  whose  cosine  is  #  or  .6667. 

The  latter  method  shows  that  ̂ 4  =  48°  11.4'.  [Compare  the 
result  obtained  by  method  (a)  with  the  value  given  by  method 
(&)J 
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2.  A  right-angled  triangle  has  an  angle  whose  cosine  is  f, 
and  the  length  of  the  hypotenuse  is  50  ft. 
Find  the  angles  and  the  lengths  of  the  two 
sides. 

By  method  shown  in  Ex.  1,  construct 
an  angle  A  whose  cosine  is  f.  On  one 
boundary  line  of  the  angle  take  a  length 

AG  to  represent  50  ft.  Draw  GK  perpen- 
dicular to  the  other  boundary  line. 

Fig.  7. 
cos  A  =  \  =.6666  .  .  . , 

.\    A  =  48°  11.4', 

£=  90  -A  =  41°  48.6'. 

AK 
cos  A  =  ——-=.6666  .  .  . , AG 

.*.     AK=50X.6666.  .  ., 

sin  A  = 

Vb 

(Ex.  1) 

—  dO.OOO  •   •   •  , 

3  ■
 

KG    VE 

AG~    3  ' 

KG=  —  X 50 =37.27..  . 

The  problem  may  also  be  solved  graphically  as  follows: 
Measure  angles  A,  G  with  the  protractor.  Measure  AK,  KG 
directly  in  the  figure. 

3.  A  ladder  24  ft.  long  is  leaning  against 
the  side  of  a  building,  and  the  foot  of  the 
ladder  is  distant  8  ft.  from  the  building  in  a 
horizontal  direction.  What  angle  does  the 
ladder  make  with  the  wall?  How  far  is  the 
end  of  the  ladder  from  the  ground? 

Graphical    method.     Let    AC   represent    the 
ladder,  and  BC  the  wall.     Draw  AC,   AB,   to 
scale,  to  represent  24  ft.  and  8  ft.  respectively. 
Measure     angle     A  CB     with     the    protractor. 

Fig.  8.         Measure  BC  directly  in  the  figure. 
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Method  of  computation. 

BC=  ̂~A(?  -AB2  =  \/576-64  =  V512  =  22.63  ft. 
AB      8 

6mACB=2g  =  —  =.33333, 

/.     A (75=19°  28.2'. 

>      4.  Find  tan  40°  by  construction  and  measurement.     With 
the  protractor  lay  off  an  angle  SAT  equal 

to  40°.     From  any  point  P  in  AT  draw  PR 
perpendicularly  to  AS.     Then  measure  ARt 
RP,  and  substitute  the  values  in  the  ratio, 

RP 
tan  40° =-7-5-     Compare  the  result  thus  ob- 

tained   with    the  value  given   for   tan  40° 
in   the   tables. 

5.  Construct  the  angle  whose  tangent  is  £ .  Find  its  other 
functions.  Measure  the  angle  approximately,  and  compare 
the  result  with  that  given  in  the  tables.  Draw  a  number  of 

right-angled,  obtuse-angled,  and  acute-angled  triangles,  each 
of  which  has  an  angle  equal  to  this  angle. 

6.  Similarly  for  the  angle  whose  sine  is  f ;  and  for  the 
angle  whose  cotangent  is  3. 

7.  Similarly  for  the  angle  whose  secant  is  2£;  and  for  the 
angle  whose  cosecant  is  3  J. 

8.  Find  by  measurement  of  lines  the  approximate  values 

of  the  trigonometric  functions  of  30°,  40°,  45°,  50°,  55°,  60°, 
70°;   compare  the  results  with  the  values  given  in  the  tables. 

//  any  of  the  following  constructions  asked  for  is  impossible, 
explain  why  it  is  so. 

9.  Construct  the  acute  angles  in  the  following  cases:  (a) 
when  the  sines  are  \,  2,  f;  (6)  when  the  cosines  are  \,  \ ,  3; 
(c)  when  the  tangents  are  3,  4,  § ;  (d)  when  the  cotangents  are 
4>  I;  (e)  when  the  secants  are  2,  3,  £;  (/)  when  the  cosecants 
are  3,  4, 
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10.  Find  the  other  trigonometric  functions  of  the  angles  in 

Ex.  9.  Find  the  measures  of  these  angles,  (a)  with  the  pro- 
tractor, (b)  by  means  of  the  tables. 

11.  What   are  the   other  trigonometric   functions   of  the 
a a 

angles:    (1)  whose  sine  is  — ;    (2)  whose  cosine  is  — ;  (3)  whose 

.a  .a  .a 
tangent  is  r-,'   (4)  whose  cotangent  is  — ;  (5)  whose  secant  is  -r; 

.a (6)  whose  cosecant  isr? 

12.  A  ladder  32  ft.  long  is  leaning  against  a  house,  and 
reaches  to  a  point  24  ft.  from  the  ground.  Find  the  angle 
between  the  ladder  and  the  wall. 

13.  A  man  whose  eye  is  5  ft.  8  in.  from  the  ground  is  on 

a  level  with,  and  120  ft.  distant  from  the  foot  of  *a  flag  pole 
45  ft.  8  in.  high.  What  angle  does  the  direction  of  his  gaze, 
when  he  is  looking  at  the  top  of  the  pole,  make  with  a  hori- 

zontal line  from  his  eye  to  the  pole? 

14.  Find  the  functions  of  45°,  60°,  30°,  0°,  90°,  before 
reading  the  next  article. 

5.  Trigonometric  functions  of  45°,  60°,  30°,  0°,  90°.  Varia- 
tion of  functions. 

A.  Functions  of  45°.  Let 

AMP  be  an  isosceles  right- 
angled  triangle,  and  let  each 
of  the  sides  about  the  right 

angle  be  equal  to  a.  Then 

angle  A  =  45°,  and  AP  =  a\/2. 

a        M 
Fig.  10. Fig.  11. 

sin 45°=sinA  = 
MP 

a 
AP     aV2 

Thus,  by  definitions  Art.  3  and  Fig.  10, 
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sin  45°=-^=,       tan  45°  =  1,  sec  45°=  V2, 

cos  45°  =  --?=.   cot  45°  =  1 ,   cosec  45°  =  V2. 
V2 

The  sides  of  triangle  AMP  are  proportional  to  1,  1,  V2. 

Hence,  in  order  to  produce  the  ratios  of  45°  quickly,  it  is 
merely  necessary  to  draw 
Fig.  11;  from  this  figure 

the  ratios  of  45°  can  be 
read  off  at  once. 

B.  Functions  of  30°  and 

60°.     Let  ABC  be  an  equi-     /» 
lateral  triangle.    From  any 

vertex  B  draw  a  perpen- 

dicular BD  to  the  opposite  side  AC.    Then  angle  DAB  =  60°, 

angle  ABD  =  S0°.    
If  AB  =  2a,  then  AD  =  a,  and  DB  =  \/4a2-a2  =  a\/S. 

Fig.  13. 

/.    sin60°=sinZ)^B 
DB    aVs     V3 

AB~    2a      ~2' Thus,  from  Fig.  12, 
Vs 

2 

1 
sin  60c ,    tan60°  =  \/3,        sec  60°  =  2, 

cot  60°  =  -7r,    cosec  60° = -7=. 

Also, 

Thus, 

sin  30°  =  sin  ABD  = AD__a      I 

AB~2a~  2' 

sin  30°=  i        tan  30°=^, 2'  Vs 
sec  30°  = 

VS' 

cos  30°  =  — ,     cot  30°  =  V3,    cosec  30°  =  2. 
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In  ADB  the  sides  opposite  to  the  angles  30°,  60°,  90°,  are 
respectively  proportional  to  1,  V3,  2.  Hence,  in  order  to 

produce  the  functions  of  30°,  60°,  at  a  moment's  notice,  it 
is  merely  necessary  to  draw  Fig.  13,  from  which  these  func- 

tions can  be  immediately  read  off. 

C.  Functions  of  0°  and  90°.      Let 

the  hypotenuse  in  each  of  the  right- 
angled  triangles  in  Fig.  14  be  equal 
to  a. 

MP 

IF' 
AM 

sin  MAP= 

cos  MAP  = 

AP'
 

It  is  apparent  from  this  figure  that  if  the  angle  MAP 

approaches  zero,  then  the  perpendicular  MP  approaches 
zero,  and  the  hypotenuse  AP  approaches  to  an  equality  with 

AM;  so  that,  finally,  if  MAP  =  0,  then  MP  =  0,  and  AP=AM. 
Therefore,  when  MAP=Q}  it  follows  that 

sin0°=-=0,      tan0°=-=0, a  a 

cos0°=-  =  l,      sec0°=-  =  l. a  a 

a  i         ,  ̂ n    (AM  approaching  a\ 
Also  cot  0  —  I  -TTn   T7-   7, )  =  unlimited  number  =  oo \Mr  approachmg  0 

cosec  0 /     AP  equal  to  a 
=  unlimited  number  *=  oo  . 

\MP  approaching  0/ 

As  MAP  approaches  90°,  AM  approaches  zero,  and  MP 
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approaches    to    an    equality    with    AP.    Therefore,    when 

MAP  =  90°,  it  follows  that 

sin90°=-  =  l,    tan90°  =  oo,  sec90°  =  oo, 

cos90°=-  =  0,    cot  90°=-  =  0,    coscc90°=-  =  l. a  a       '  a 

Thus  as  the  angle  increases  from  0°  to  90°,  its  sine 
increases  from  0  to  1;  its  cosine  decreases  from  1  to  0;  its 

tangent  increases  from  0  to  oo ;  its  cotangent  decreases  from 

oo  to  0;  its  secant  increases  from  1  to  oo  ;  its  cosecant  de- 
creases from  oo  to  1. 

EXAMPLES 

N.B.  Exponents.  In  trigonometry  (sin  x) n  is  usually  written 
sinn  x,  and  similarly  for  the  other  functions.  This  is  not  done 
when  n=  —  1.  The  reason  for  this  exception  is  given  in  Art.  29. 
Find  the  numerical  value  of 

1.  sin  60° +  2  cos  45°.  2.  sec2  30°+ tan3  45°. 

3.  sin3  60°  +  cot3  30°.  4.  cos  0°  sin  45°  +  sin  90°  sec2  30°. 

6.  4  cos2  30°  sin2  60°  cos2  0°. 

6.  3  tan3  30°  sec3  60°  sin2  90°  tan2  45°.    7.  10  cos4  45°  sec6  30°. 

8.  2  sin5  30°  tan3  60°  cos3  0°. 

9.  x  cot3  45°  sec2  60°=  11  sin2  90°;  find  x. 

10.  a:(cos30o  +  2sm90o+3cos45o-sin260o)=2sec0o-5sin90o; find  x. 
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6.  Relations  between  the  trigonometric  functions  of  an 

acute  angle  and  those  of  its  comple- 
ment. When  two  angles  added  to- 

gether make  a  right  angle,  the  two 
angles  are  said  to  be  complementary, 

and  each  angle  is  called  the  comple- 
ment of  the  other. 

Thus,  in  Fig.  15,  P  =  90°-4  and  P 
is  the  complement  of  A.    Now  Fig.  15. 

sin  A  = 
MP 

AP 

AM 

cosP  =     cos  (90°-  A) 

cos  A  =  ̂ 3  =  sin  P  =  sin  (90°-  A) 

MP 

tan  A  =  -jjj.  =  cot  P  =  cot  (90°-  A) 

cot  A = j^p  =  tan  P  =  tan  (90°-  A) 

AP 

sec  A=-7-^  =  cosec  P=  cosec  (90°—  A) 

AP 
cosec  i=T7p=  secP  =  sec  (90°— A) 

These  six  relations  can  be  expressed  briefly : 

Each  trigonometric  function  of  an  angle  is  equal  to  the 

corresponding  co-function  of  its  complement. 

EXAMPLES 

1.  Compare  the  functions  of  30°  and  60°;   of  0°  and  90°. 

2.  Express  the  following  as  functions  of  angles  less  than  45°: 
sin  78°  20',  cos  80°  30',  tan  50°,  cot  65°,  sec  71°,  cosec  80°, 
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3.  If  sin  z=cos  (2z  +  40°),  find  a  value  of  x. 

4.  If  cot  2x = tan  (z— 30°),  find  a  value  of  x. 

5.  Show  that  in  a  triangle  ABC,  sin  J2?=cos  $(A  +  C). 

7.  Relations  between  the  trigonometric  functions  of  an 

acute  angle. 

A.  Reciprocal  relations  between  the  functions. 

Inspection  of  the  definitions  (2),  Art.  3,  shows  that: 

1  1 
(a)  smA=   7,  cosec^l=:— — r.  or,  sin^lcosec^l  =  l: v  '  cosec  A  sin  A  ' 

(b)  cos  A=   t,  sec  A=^   7,  or,  cos  A  sec  A=\\  \    (1) v  '  sec  A  cos  A  ' 

1  1 

(c)  tan  A= — —j,         cot  A=-   j,  or,  tan  A  cot  -4=1. cot  ̂ 1  tan  Jx 

B.  The  tangent  and  cotangent  in  terms  of  the  sine  and 
cosine. 

In  the  triangle  AMP  (Fig.  3), 

MP 

(2) 

MP AP sin  A 
tanA-AM~ 

' AM' 
AP 
AM 

cos  A 

AM 
cotA-MP  = AP MP 

cos  A 

sin  A' 

(3) 

C.  Relations  between  the  squares  of  certain  functions. 

In  the  triangle  AMP  (Fig.  3),  indicating  by  MP    the 

square  of  the  length  of  MP, 

MP  +AM  =AP  . 

On  dividing  each  member  of  this  equation  by  AP  ,  AM  , 
r^2 

MP  t  in  turn,  there  is  obtained 
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(MPy    (AMy    (Apy 
\APj  +\APJ  ~\AP)  > 
(MP\2  (AMy  (Apy 
[am/  +\am)  ~\AM)  ' 
(Mpy   /AMy  (Apy 

\MP/   +\MP)  ~\MP)  ' 

In  reference  to  the  angle  A,  these  equations  can  be 
written : 

sin2  A  +  cos2  -4  =  1, 

tan2 .4  +  1        =sec2^,  (4) 

1  +  cot2  A  =  cosec2  A,  . 

Note.  An  equation  involving  trigonometric  functions  is  a 

trigonometric  equation.  Thus,  for  example,  tanA  =  l.  One 

angle  which  satisfies  this  equation  is  the  acute  angle  A—  45°. 
Other  solutions  can  be  found  after  Art.  28  has  been  taken  up. 

EXAMPLES 

In  the  following  examples,  the  positive  values  of  the 
radicals  are  to  be  taken.  The  meaning  of  the  negative  values 
is  shown  in  Art.  20. 

1.  Given  that  sin  A  =  $,  find  the  other  trigonometric  ratios 
of  A  by  means  of  the  relations  shown  in  this  article. 

1  z   ;       VS 
cosecA  =  -: — 7  =  2:     cos  A  =  V 1  —  sin2  A  =  — r—  : 

'    sini  2 

12  sin  A        1 
secA=   r= — t=:     tanA  = 

cos  A     y/§'  cos  A     V3 

cot  A  =  - — r  =  V3, tan  A 
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These   results   may   be   verified   by   the   method   used   in 

solving  Exs.  1,  5-7,  Art.  4. 

2.  Express  all  the  ratios  of  angle  A  in  terms  of  sin  A. 

sin  A  =  sin  A ;  cos  A  =  Vl  —  sin2  A; 

.     sin  A  sin  A  1         Vl  —sin2  A 
tanA  =   7=     , —   :  cotA  =  -   7  =   : — ;   

cos  A     Vl  —sin2  A  tan  A  sin  A 

a         l  1  A         1 secA  =   7—    / —  .         :  cosecA  =  — — - cos  A     Vl  —sin2  A  sin  4 

1  1 
3.  Prove  that   ; — 7+7-1 — 7=2  sec2  A. 1-sini     1  +  sini 

11  2  2     -S«#i. 1  —sin  A     1  +  sin  A     1  —sin2  A      cos2  A 

4.  Prove  that      sec4  A— 1  =  2  tan2  A  + 1  an4  A . 

sec4A-l=(sec2A)2-l=(l+tan2A)2-l  =  2tan2A+tan4A. 

5.  Solve  the  equation  4  sin  0—3  cosec  0=0. 

,    .    „        3 4sin0 — r— x=0. sin  0 

/.     4  sin2  0-3  =  0. 

3                             V3~                                V3* 
.'.     sin20=-,     .*.     sin0=+-^-,     and     sin  0=   — . 

On  taking  the  plus  sign,  one  solution  is  the  acute  angle 

0=60°;  other  solutions  will  be  found  later.  For  the  minus 
sign  there  is  also  a  set  of  solutions;  these  wjlj  be  found  later. 
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6.  Solve      2  sin2  0  cosec  0  —  5  +  2  cosec  0=0, 

2sin2-0  2 
sin  0  sin  0 

2  sin2  0-5  sin  0  +  2  =  0, 

(2sin0-l)(sin0-2)=O. 

.*.     sin0=J,     and     sin  0=2. 

The  acute  angle  whose  sine  is  i  is  30°;  hence  0=30°  is 
one  solution.  The  sine  cannot  exceed  unity;  hence  sin  0=2 
does  not  afford  any  solution. 

7.  Given  cos  A  =  f,  sin  5=f,  tan  C=2,  cot  D=$,  sec  E=3, 
cosec  F=2.5;  find  the  other  trigonometric  ratios  of  A,  B,  C, 
D,  E,  F,  by  the  algebraic  method.  Verify  the  results  by  the 
method  used  in  Art.  4. 

8.  Find  by  the  algebraic  method  the  ratios  required  in 

Exs.  1,  5-7,  10,  11,  Art.  4. 

9.  Express  all  the  trigonometric  ratios  of  an  angle  A  in 
terms  of :  (a)  cos  A ;  (b)  tan  A ;  (c)  cot  A ;  (d)  sec  A ;  (e) 
cosec  A.  Arrange  the  results  and  those  of  Ex.  2  neatly  in 
tabular  form. 

Prove  the  following  identities: 

10.  (sec2  A—l)  cot2  A  =  1 ;  cos  A  tan  A  =  sin  A ; 
(1  —  sin2  ̂ 4)  sec2  4=1. 

11.  sin2  0  sec2  0= sec2  0—1;  tan2  0— cot2  0= sec2  0— cosec2  0. 

1  1  sin  A       cos  A 

sec2  A     cosec2  A       '     cosec  A     sec  <A 

^o     l  +  sin0 
(tan0+sec0)2=-   r-^. 
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13.  sec2  A  +  cosec2  A  =  tan2  A  +  cot2  A  +  2; 

1+tan2  A     sin2  A  cosec  A 

1  +  cot2  A     cos2  A '     cot  A  +  tan  A 

=  cos  A. 

cos  A  sin  A 
14.  -: — 7   r+,   -T=smi  +  cosA; 1  —tan  J.     1  —cot  A 

  -=  sec  A  +tan  A ;    sec4  A  —sec2  A  =  tan4 A  +tan2A. 
sec  A  —tan  A 

Solve  the  following  equations: 

15.  2  sin  0= 2—  cos  0.  16.  tan  (9  +  cot  0=2. 

17.  tan  0+3  cot  0=4.  18.  6  sec2  0-13  sec  0+5  =  0. 

19.  8  sin2  0-10  sin  0+3=0.      20.  sin  0  +  2  cos  0=2.2. 



CHAPTER  II 

SOLUTION   OF  RIGHT-ANGLED  TRIANGLES 

Applications 

8.  Solution  of  a  triangle.  There  are  two  methods  for 

finding  the  unknown  parts  of  triangle  (sides  and  angles) 
when  a  sufficient  number  of  parts  are  given,  viz. : 

(a)  The  graphical  method; 

(b)  The  method  of  computation. 

The  graphical  method  consists  in  drawing  a  triangle  which 

has  angles  equal  to  the  given  angles,  and  sides  proportional 

to  the  given  sides,  and  then  measuring  the  remaining  parts 
directly  from  the  drawing. 

The  method  of  computation  consists  in  writing  the  formulas 

by  which  the  unknown  parts  can  be  found  and  doing  the 
arithmetical  work. 

The  latter  method  is  the  more  exact.  The  graphical 

method  affords  a  rough  check  on  the  results  obtained  by 

computation  and  leads  to  the  detection  of  large  errors. 

General  suggestions  for  solving  problems. 

(1)  Make  an  off-hand  estimate  as  to  what  the  magnitude 
required  may  be,  and  write  this  estimate  down; 

(2)  Solve  the  problem  by  the  graphical  method; 
(3)  Solve  the  problem  by  the  method  of  computation  ; 
(4)  Check  the  accuracy  of  the  results  arithmetically, 

using  formulas  not  used  in  process  (3). 

19 
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9.  Cases  in  the  solution  of  right-angled  triangles.  All  the 
possible  sets  of  two  elements  that  can  be  made  from  the 

three  sides  and  the  two  acute  angles  of  a  right-angled  triangle 
are  the  following : 

(1)  The  two  sides  about  the  right  angle. 

(2)  The  hypotenuse  and  one  of  the  sides  about  the  right 
angle. 

(3)  The  hypotenuse  and  an  acute  angle. 
(4)  One  of  the  sides  about  the  right  angle,  and  an  acute 

angle. 
(5)  The  two  acute  angles.  (An  unlimited  number  of 

triangles  can  have  two  given  acute  angles.) 
Relations  (2),  Art.  3,  for  the  triangle  AMR  (Fig.  3)  show 

that  if  any  two  sides  of  a  right-angled  triangle  be  given,  or 
any  side  and  an  acute  angle  be  given,  the  remaining  parts  of 
the  triangle  can  be  found. 

In  solving  a  triangle,  the  general  method  of  procedure, 

after  making  an  off-hand  estimate  and  finding  an  approxi- 
mate solution  by  the  graphical  method,  is  as  follows: 

First :  Write  all  the  relations  (or  formulas)  which  are  to  be 

used  in  solving  the  problem. 
Second :  Write  the  check  formulas. 

Third:  In  making  the  computations  arrange  the  work  as 
neatly  as  possible. 

This  last  is  important,  because,  by  attention  to  this  rule, 
the  work  is  presented  clearly,  and  mistakes  are  less  likely  to 

occur.  The  computations  may  be  made  either  with  or  with- 
out the  help  of  logarithms.  The  calculations  can  generally 

be  made  more  easily  and  quickly  by  using  logarithms. 
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EXAMPLES 

1.  In   the    triangle    ABC,    right-angled    at    C,    a =42  ft., 
6=56  ft.     Find  the  hypotenuse  and  the 
acute  angles. 

I.  Computation     without      logarithms. 

[Four-place  tables.] 
a     42 

tanA  =  r  =  —  =  .7500.    .'.  A  =  36°  52'.2. b      56 

B= 90 -A.  .-.  £=53°7'.8. 

c=v/a2  +  62  =  Vl764  +  3136.  .*.    c=70  ft. 

Check:       a=c  cos  £=70Xcos  53°  7'.8=70X.6000  =  42  ft. 

II.  Computation  with  logarithms. 

Given:  a=42  ft.  To  find:*    A  = 
6=56  ft.  B= 
a  c= 

Formulas:  tan  A  =  —  (1) 

B=90°-A:     (2)    Che
cks:  Un  B=~. 

a  a2=c2—b2 

C=KT         (3)  =  (c+6)(c-6). 

Logarithmic  formulas :  log  tan  A  =  log  a  —log  6. 
log  c=log  a— log  sin  A. 

log  a  =  1 .62325  log  a  =  1 .62325 
log  6=1.74819  log  sin  .4  =  9.77815-10 

/.     log  tan  A  =  9.87506 -10  .*.     log  c=  1.84510 
.'.     A  =  36°  52'  12"  .*.     c=70 
.*.     5=53°  7'  48" 

*  This  is  to  be  filled  after  the  values  of  the  unknown  quantities  have 
been  found.  It  is  advisable  to  indicate  the  given  parts  and  the  unknown 

parts  clearly. 
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The  work  can  be  more  compactly  arranged,  as  follows: 

Checks: 

log  a=  1.62325  log  tan  B=  10.12494-10 

log  6=1.74819  .*.     B    =  53°  7' 48' 

.*.     log  tan  A  =  9.87506  -10  c+6=126 
,\     A  =  36°52'  12"  c-b=   14 

.-.     £=53°  7' 48"  log  (c+6)  =2.10037 
log  sin  A  =  9.77815  -10  log  (c  -6)  =  1.14613 

.*.    log  c=  1.84510 
.-.     c=70 loga2=3.24650 

log  a  =1.62325 

Note.  In  every  example  it  is  advisable  to  make  a  complete 
skeleton  scheme  of  the  solution,  before  using  the  tables  and 
proceeding  with  the  actual  computation.  In  this  exercise,  for 
instance,  such  a  skeleton  scheme  can  be  seen  on  erasing  all 
the  numerical  quantities  in  the  equations  that  follow  the 
logarithmic  formulas. 

2.  In  a  triangle  ABC  right  angled  at  C,  c=60  ft.,  6=50  ft.; 
find  side  a  and  the  acute  angles. 

I.  Computation  without  logarithms. 
b     50 

cos  A  =  -=— =.8333.     .*.     A  =  33°  33775. c     60 

B=90°-A.  .'.     £  =  56°26r.25.     A        b  =  u>Ft.  0 

a=c  sin  A  =  60X.5528       =33.17  ft.  FlG-  17' 
Check:    a=b  tan  A  =  50 X. 6635  =  33. 17. 

II.  Computation  with  logarithms. 

Given:  c=60  ft.        To  find:  A  = 

6  =  50  ft.  B= 

6  a  = 
Formulas:  cos  A  =  — .  ^7     7        _      „     70     , c  Checks:  a2  =  c2-b2=(c  +  b)(c-b). 

B=90°-A.  a  =  6tanA. 
a  =  c  sin  .4. 
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Logarithmic  formulas :    log  cos  A  =  log  b  —log  c. 

(If  necessary.)  log  a  =  log  c  +  log  sin  A . 

log  b=  1.69897 
log  c=  1.77815 

(1) 
(2) 

log  cos  A  =  9.92082 -10  (3) 

.     =(D-(2) 
.-.     A  =  33°  33'  27" 
.-.     5=56°  26'  33" 

log  sin  A  =  9.74255  -10  (4) 

.'.     log  a=  1.52070  (5) 
=  (2) +  (4) 

.*.     a=33.16 

log  tan  A  =  9.82173 - 
.".  log  a=  1.52070 -  (1)  +  (6) 

c+&=110 c-b=   10 

log  (c+ b)  =  2.04139 

log  (c— 6)  =  1 
.'.     loga2=3.04139 
.*.     log  a  =1.52070 

10  (6) 

(7) 

Note.  There  is  a  slight  difference  between  the  results 
obtained  by  the  two  methods.  This  is  due  to  the  fact  that 

the  calculations  have  been  made  with  a  four-place  table  in 
one  case,  and  with  a  five-place  table  in  the  other.  A  four- 
place  table  will  give  an  angle  correctly  to  within  one  minute; 

a  five-place  table  will  give  it  correctly  to  within  six  seconds, 
and  sometimes  to  within  a  second. 

3.  In  a  triangle  right  angled  at  C,  the  hypotenuse  is  250  ft., 

and  angle  A  is  67°  30'.     Solve  the  triangle. 
I.  Computation  without  logarithms. 

B  =  90°  -A  =  90°  -67°  30' =22°  30'. 

a  =  c  sinA  =  250Xsin 67° 30r  =  250X. 9239=230.98. 

6=ccosA  =  250Xcos67°30,  =  250X.3827=  95.68. 

'Checks:  a2=c2—b2,    or    a=6tanA. 
II.  Computation  with  logarithms. 

Given  c=250  ft.  '  To  find:  B= 
A  =  67°  30'.  a= 

b= 

A       b      G 

Fig.  18. 

Formulas : B=  90°  -A. 
a  =  c  sin  A. 
b=c  cos  A. 

Checks :    a2  =  c2—b2 =  (c+6)(c-&). 
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Logarithmic  formulas :    log  a = log  c + log  sin  A . 
log  6  =  log  c+log  cos  A. 

.'.     5=22°  30' 
log  c= 2.39794 

log  sin  A  =  9.96562 -10 
log  cos  A  =  9.58284 -10 

.-.     log  a  =  2.36356 
.-.     log  6=  1.98078 

\     a=230.97 

.'.     6=   95.67 

c  +  6=345.67 c -6=  154.33 

log  (c  +  6)  =  2.53866 
log  (c  -b)  =  2.18845 
.'.    loga2=4.72711 
.*.     log  a  =2.36356 

4.  In  a  triangle  ABC  right  angled  at  C,  6  =  300  ft.   and 

A  =  37°  20'.     So'lve  the  triangle. 
I.  Computation  without  logarithms. 

B=  90°  -A  =  90°  -37°  30' =  52°  40'. 
6  300 

c= 

=377.3. 
cos  A     .7951 

a=6  tan  A =300 X. 7627 =228.8. 

Checks :  a2  =  c2—b2,     a  =  c  sin  A . 
II.  Computation  with  logarithms. 

b  -  800  .FY. 

Fig.  19. 

Given 
A  =  37°  20'. 
6  =  300  ft. 

Formulas: 5=  90°  -A. 
6 

cos  A 
a=b  tan  A. 

.•:  B= =  52°  40' 
log6  = 

=  2.47712 log 
cos  A  = =  9.90043-10 

log  tan  A  = =  9.88236-10 

.*. log  c= 
=  2.57669 

• 

log  a  = 
=  2.35948 

.*.     c= 
=377.3 

.'.     a= =  228.8 

To  find:    B= 

c  = 

a— 

Chec
ks: 

    

a2  =  c2-b
2 

-(c+6)(c-6) 

c+6  =  677.3 c-6=   77.3 

log  (c  +  6)  =2.83078 

log  (c  -6)  =  1.88818 
.*.    loga2  =  4.71896 
,*.     log  a  =2.35948 
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N.B.  Check  all  results  in  the  following  examples.  The 
given  elements  belong  to  a  triangle  ABC  which  is  right  angled 
at  C. 

From  the  given  elements  solve  the  following  triangles: 

5.   c=18.7,  a=  16.98. 

7.   c=2934,  ̂ 4  =  31°  14'  12". 
9.  a=58.5,  6=100.5. 

11.   c=324,  A  =  48°17'. 

13.   c=1716,  ,4  =  37°  20' 30". 

15.  6=3741,  A  =  27°45'20". 

6.  a=  194.5,    6=233.5. 

8.  a  =  36.5,     5  =  68°  52'. 
10.  c=45.96,    a=  1.095. 

12.  6  =  250,      A  =  51°19'. 
14.  a=2314,     6=1768. 

16.  c  =  50.13,    «  =  24.62. 

Solve  Exs.  17-24  by  two  methods,  viz. :  (1)  with  logarithms; 
(2)  without  logarithms. 

17. a =40, 
5=62°  40'. 

18. 

c=9, 

a  =5. 

19. a  =  4.5, 6=7.5. 20. 
c=15, 

^4=39°  40' 21. c=12, 
i?=71°20'. 

22. 
c=12, a=8. 

23. 6=15, 
J3=42°30'. 

24. 

a=8, 
6=12. 

10.  Projection  of  a  straight  line  upon  another  straight  line, 

Let  AB,  of  length  I,  be  inclined 

at  an  angle  a  to  LR.  If  per- 
pendiculars AM,  BN,  are  drawn 

to  LR,  MN  is  called  the  (orthog- 

onal) projection  of  AB  on  LR. 

Through  A  draw  AD  parallel 
to  LR.    Then 

Projection  =  MN  =  AD  =  AB  cos  DAB  =  I  cos   a. 

That  is,  the  projection  of  one  straight  line  upon  another 

straight  line  is  equal  to  the  product  of  the  length  of  the  first 

line  and  the  cosine  of  the  angle  of  inclination  of  the  two  lines. 
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EXAMPLES 

In  working  these  examples  use  logarithms  or  not,  as  appears 
most  convenient.     Check  the  results. 

1.  A  ladder  28  ft.  long  is  leaning  against  the  side  of  a  house, 

and  makes  an  angle  27°  with  the  wall.  Find  its  projections 
upon  the  wall  and  upon  the  ground. 

2.  What  is  the  projection  of  a  line  87  in.  long  upon  a  line 

inclined  to  it  at  an  angle  47°  30'? 

3.  What  are  the  projections:  (a)  of  a  line  10  in.  long  upon 

a  line  inclined  22°  30'  to  it?  (b)  of  a  line  27  ft.  6  in.  long  upon 
a  line  inclined  37°  to  it?  (c)  of  a  line  43  ft.  7  in.  long  upon  a 

line  inclined  67°  20'  to  it?  (d)  of  a  line  34  ft.  4  in.  long  upon  a 
line  inclined  55°  47'  to  it? 

11.  Measurement  of  heights  and  distances.  When  an 

object  is  above  the  observer's  eye,  the  angle  between  the  line 
from  the  eye  to  the  object,  and  the  horizontal  line  through 

Tig.  21. 

the  eye  and  in  the  same  vertical  plane  as  the  first  line,  is 

called  the  angle  of  elevation  of  the  object,  or  simply  the 

elevation  of  the  object.  When  the  object  is  below  the 

observer's  eye,  this  angle  is  called  the  angle  of  depression 
of  the  object,  or  simply  the  depression  of  the  object. 
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EXAMPLES 

1.  At  a  point  150  ft.  from,  and  on  a 
level  with,  the  base  of  a  tower,  the  angle 
of  elevation  of ,  the  top  of  the  tower  is 

observed  to  be  60°.  Find  the  height  of 
the  tower. 

Let  A B  be  the  tower,  and  P  the  point  of 
observation. 

By  the  observations, 

AP=  150  ft.,       APB=W°.  . 

A£=4P  tan  60°=  150X^3  =  150X1.7321  =  259.82  ft. 

2.  In  order  to  find  the  height  of  a  hill,  a  line  was  measured 
equal  to  100  ft.,  in  the  same  level  with  the  base  of  the  hill, 
and  in  the  same  vertical  plane  with  its  top.  At  the  ends  of 
this  line  the  angles  of  elevation  of  the  top  of  the  hill  were 

30°  and  45°.     Find  the  height  of  the  hill. 
Let  P  be  the  top  of  the  hill,  and  AB  the  base  line.'  The 

vertical  line  through  P  will  meet,  AB  produced  in  C.  AB=  100  ft. 

CAP=30°,  CPP=45°;  the  height 
CP  is  required.  Let  BC=x,  and 
CP=y. 

In  triangle  CAP, 

CP 

100  Ftr-%*   ■&- 

Fig.  23. 

-*p 

in  CBP, 
j^=tan30°;

 CP 

-ftP  =  tan  45°. 
Hence, 

and 

V 

x  + 100 

y 

= tan  30°  =.57735, 

-=tan45°=l. 
x 

a) 

(2) 

From  (2),  x=y.     Substitution  in  (1)  gives 

--(2/+ 100)  X. 57735. 
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'.'.     2/(1 -.57735)  =  57.735. 
57  735 

•'•     CP=^  =  52265=136-6ft' 

3.  A  flagstaff  30  ft.  high  stands  on  the  top  of  a  cliff,  and 
from  a  point  on  a  level  with  the  base  of  the  cliff  the  angles  of 
elevation  of  the  top  and  bottom  of  the  flagstaff  are  observed 

to  be  40°  20'  and  38°  20',  respectively.  Find  the  height  of 
the  cliff. 

Let  BP  be  the  flagstaff  on  the  top  of  the  cliff  BL,  and  let 

C  be  the  place  of  observation.  BP=30  ft.,  LCB=3S°  20', 
LCP=40°  20'.     Let  CL  =  x,  LB=y. 

In  LCB, 

i.e. 

In  LCP, 

Fig.  24. 

Hence,  on  division, 

i.e., 

y 

LB 

LC~ 

=  tan  38° 

20'; 

X 

=  .7907. 

LP 

LC~ 

=  tan  40° 

20'; 

2/+30 

=  .8491. 
X 

7907 

y  +  30     8491* On  solving  for  y,         LB=?/=406.18  ft. 

4.  At  a  point  180  ft.  from  a  tower,  and  on  a  level  with  its 
base,  the  elevation  of  the  top  of  the  tower  is  found  to  be 

65°  40/5.     What  is  the  height  of  the  tower? 

5.  From  the  top  of  a  tower  120  ft.  high  the  angle  of 

depression  of  an  object  on  a  level  with  the  base  of  the  tower 

is  27°  43'.  What  is  the  distance  of  the  object  from  the  top 
and  bottom  of  the  tower? 
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6.  From  the  foot  of  a  post  the  elevation  of  the  top  of  a 

column  is  45°,  and  from  the  top  of  the  post,  which  is  27  ft. 
high,  the  elevation  is  30°.  Find  the  height  and  distance  of 
the  column. 

7.  From  the  top  of  a  cliff  120  ft.  high  the  angles  of  depres- 
sion of  two  boats,  which  are  due  south  of  the  observer,  are 

20°  20'  and  68°  40'.     Find  the  distance  between  the  boats. 

8.  From  the  top  of  a  hill  450  ft.  high,  the  angle  of  depres- 
sion of  the  top  of  a  tower,  which  is  known  to  be  200  ft.  high, 

is  63°  20'.  What  is  the  distance  from  the  foot  of  the  tower 
to  the  top  of  the  hill? 

9.  From  the  top  of  a  hill  the  angles  of  depression  of  two 

consecutive  mile-stones,  which  are  in  a  direction  due  east,  are 

21°  30'  and  47°  40'.     How  high  is  the  hill? 

10.  For  an  observer  standing  on  the  bank  of  a  river,  the 
angular  elevation  of  the  top  of  a  tree  on  the  opposite  bank  is 

60°;  when  he  retires  100  ft.  from  the  edge  of  the  river  the 
angle  of  elevation  is  30°.  Find  the  height  of  the  tree  and  the 
breadth  of  the  river. 

11.  Find  the  distance  in  space  travelled  in  an  hour,  in  con- 

sequence of  the  earth's  rotation,  by  an  object  in  latitude 
44°  20'.     [Take  earth's  diameter  equal  to  8000  mi.] 

12.  At  a  point  straight  in  front  of  one  corner  of  a  house, 

its  height  subtends  an  angle  34°  45',  and  its  length  subtends 
an  angle  72°  30';  the  height  of  the  house  is  48  ft.  Find  its 
length. 

12.  Solution  of  isosceles  triangles.  An  isosceles  triangle 

can  often  be  solved  on  dividing  it  into  two  equal  right- 
angled  triangles. 
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EXAMPLES 

1.  The  base  of  an  isosceles  triangle  is  24  in.  long,  and  the 

vertical  angle  is  48°;    find  the  other  angles  n 
and  sides,  the  perpendicular  from  the  vertex 

and  the  area.     Only  the  steps  in  the  solution              j 
will  be  indicated.     Let  ABC  be  an  isosceles            / 

triangle  having  base  AB=24  in.,  angle  (7=48°.          / 
Draw  CD  at  right  angles  to  base;    then  CD        I 
bisects  the  angle  ACB  and  base  AB.     Hence,   Afz^p: 

in    the    right-angled    triangle    ADC,    AD=           Fiq  25 
%AB=12,  ACD=\ACB=2\°.     Hence,  angle 
A,    sides   AC,    DC,    and   the   area,    can  be  found. 

2.  In  an  isosceles  triangle  each  of  the  equal  sides  is  363  ft., 

and  each  of  the  equal  angles  is  75°.  Find  the  base,  per- 
pendicular on  base,  and  the  area. 

3.  In  an  isosceles  triangle  each  of  the  equal  sides  is  241  ft., 

and  their  included  angle  is  96°.  Find  the  base,  angles  at  the 
base,  height,  and  area. 

4.  In  an  isosceles  triangle  the  base  is  65  ft.,  and  each  of  the 
other  sides  is  90  ft.     Find  the  angles,  height,  and  area. 

5.  In  an  isosceles  triangle  the  base  is  40  ft.,  height  is  30  it. 
Find  sides,  angles,  area. 

6.  In  an  isosceles  triangle  the  height  is  60  ft.,  one  of  equal 
sides  is  80  ft.     Find  base,  angles,  area. 

7.  In  an  isosceles  triangle  the  height  is  40  ft.,  each  of  equal 

angles  is  63°.     Find  sides  and  area. 

8.  In  an  isosceles  triangle  the  height  it  63  ft.,  vertical  angle 

is  75°.     Find  sides  and  area. 

13.  Related    regular   polygons   and    circles.     Among  the 
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problems  on  regular  polygons  which  can  be  solved  with  the 

help  of  right-angled  triangles  are  the  following: 
(a)  Given  the  length  of  the  side  of  a  regular  polygon  of 

a  given  number  of  sides,  to  find  its  area;  also,  to  find  the 
radii  of  the  inscribed  and  circumscribing  circles  of  the 

polygon; 
(b)  To  find  the  length  of  the  sides  of  regular  polygons  of 

a  given  number  of  sides  which  are  inscribed  in,  and  circum- 
scribed about,  a  circle  of  given  radius. 

For  example,  in  Fig.  26,  let  AB  be  a  side,  equal  to  2a,  of 

a  regular  polygon  of  n  sides,  and  let  C  be  the  centre  of  the 
inscribed  circle.  Draw  CA,  CB,  and  draw  CD  at  right  angles 
to  AB.    Tnen  D  is  the  middle  point  of  AB. 

By  geometry,  angle  A  CD  =  \ACB  =  \ n n 

Also,  angle  D AC  =  90° -ACD. 

Thus,  in  the  triangle  ADC,  the  side  AD  and  the  angles  are 
known;  therefore  CD,  the  radius  of  the  circle  inscribed  in  the 

polygon,  can  be  found.  On  making  similar  constructions,  the 

solution  of  the  other  problems  referred  to  above  will  be 

Fig.  26. 

apparent.  The  perpendicular  from  the  centre  of  the  circle 
to  a  side  of  the  inscribed  polygon  is  called  the  apothem  of 

the  polygon. 
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EXAMPLES 

1.  The  side  of  a  regular  heptagon  is  14  ft. :  find  the  radii 
of  the  inscribed  and  circumscribing  circles;  also,  find  the 
difference  between  the  areas  of  the  heptagon  and  the  inscribed 
circle,  and  the  difference  between  the  area  of  the  heptagon 
and  the  area  of  the  circumscribing  circle. 

2.  The  radius  of  a  circle  is  24  ft.  Find  the  lengths  of  the 

sides  and  apothems  of  the  inscribed  regular  triangle,  quadri- 
lateral, pentagon,  hexagon,  heptagon,  and  octagon.  Compare 

the  area  of  the  circle  and  the  areas  of  these  regular  polygons; 

also  compare  the  perimeters  of  the  polygons  and  the  circum- 
ference of  the  circle. 

3.  For  the  same  circle  as  in  Ex.  2,  find  the  lengths  of  the 
sides  of  the  circumscribing  regular  figures  named  in  Ex.  2. 

Compare  their  areas  and  perimeters  with  the  area  and  cir- 
cumference of  the  circle. 

4.  If  a  be  the  side  of  a  regular  polygon  of  n  sides,  show 
that  R,  the  radius  of  the  circumscribing  circle,  is  equal  to 

180° 
ha  cosec  ■   :    and  that  r,  the  radius  of  the  circle  inscribed, n 

±  180° 
is  equal 

 to  %a  cot   •. 

5.  If  r  be  the  radius  of  a  circle,  show  that  the  side  of  the 

180° 

regular
  
inscrib

ed  
polygo

n  
of  n  sides  is  2r  sin   ;    and  that n 

180° 

the  side  of  the  regular  circumscribing  polygon  is  2r  tan   . n 

6.  If  a  be  the  side  of  a  regular  polygon  of  n  sides.  R  the 
radius  of  the  circumscribing  circle,  and  r  the  radius  of  the 

180° 

circle  
  
inscrib

ed,    
show  

 
that    area    of    polygo

n 
=\na2 

 
cot   

=  i^2sin360!=nr2tan^! ft  ft 
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14.  Problems  requiring  a  knowledge  of  the  points  of  the 

Mariner's  Compass.  The  circle  in  the  Mariner's  Compass  is 
divided  into  32  equal  parts,  each  part  being  thus  equal  to 

360° *■  32,  i.e.,  l±i°.    The  points  of  division  are  named  as 
indicated  on  the  figure. 

Fig.  27. 

It  will  be  observed  that  the  points  are  named  with  refer- 
ence to  the  points  North,  South,  East,  and  West,  which  are 

called  the  cardinal  points.  Direction  is  indicated  in  a  variety 
of  ways.  For  instance,  suppose  C  were  the  centre  of  the 
circle;  then  the  point  P  in  the  figure  is  said  to  bear  E.N.E. 
from  C,  or,  from  C  the  bearing  of  P  is  E.N.E.  Similarly, 
C  bears  W.S.W.  from  P,  or,  the  bearing  of  C  from  P  is 
W.S.W.  The  point  E.N.E.  is  2  points  North  of  East,  and 

6  points  East  of  North.  Accordingly,  the  phrases  E.  22 J°  N., 
N.  67i°  E.,  are  sometimes  used  instead  of  E.N.E. 
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EXAMPLES 

1.  Two  ships  leave  the  same  dock  at  8  a.m.  in  directions 
S.W.  by  S.,  and  S.E.  by  E.  at  rates 
of  9  and  9^  mi.  an  hour  respectively. 
Find  their  distance  apart,  and  the 
bearing  of  one  from  the  other  at  10 
a.m.  and  at  noon. 

IDirectlonTl.
t.^a. Fig.  28. 

2.  From  a  lighthouse  L  two  ships    *•  £ 
A  and  B  are  observed  in  a  direction 

N.E..  and    N.    20°  W.    respectively. 
.  At  the  same  time  A  bears  S.E.  from  B.     If  LA  is  6  mi., 
what  is  LB1 

15.  Examples  in  the  measurement  of  land.  In  order  to 

find  the  area  of  a  piece  of  ground,  a  surveyor  measures 

distances  and  angles  sufficient  to  provide  data,  for  the  com- 

putation. An  account  of  his  method  of  doing  this  belongs 

to  works  on  surveying.  This  article  merely  gives  some 

examples  which  can  be  solved  without  any  knowledge  of 

professional  details.  In  solving  these  problems,  the  student 

should  make  the  plotting  or  mapping  an  important  feature 
of  his  work. 

The  Gunter's  chain  is  generally  used  in  measuring  land. 
It  is  4  rods  or  66  feet  in  length,  and  is  divided  into  100  links. 

An  acre  =  10  square  chains  =  4  roods  ==160  square  rods  or 

poles. 
EXAMPLES 

1.  A  surveyor  starting  from  a  point  A  runs  S.  70°  E.  20 

chains,  thence  N.  10°  W.  20  chains,  thence  N.  70°  W.  10  chains, 
thence  S.  20°  W.  17.32  chains  to  the  place  of  beginning. 
What  is  the  area  of  the  field  which'  he  has  gone  around?    . 
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Fig.  29. 

Make  a  plot  or  map  of  the  field,  namely,  ABCD.  Here 
AB  represents  20  chains,  and  the  bearing  of  B  from  A  is  S. 

70°  E.  BC  represents  20  chains,  and 

the  bearing  C  from  B  is  N.  10°  W., 
and  so  on.  Through  the  most  west- 

erly point  of  the  field  draw  a  north- 
and-south  line.  This  line  is  called 
the  meridian.  In  the  case  of  each  line 

measured,  find  the  distance  that  one 
end  of  the  line  is  east  or  west  from  the 

other  end.  This  easting  or  westing 
is  called  the  departure  of  the  line.  Also 
find  the  distance  that  one  end  of  the 
line  is  north  or  south  of  the  other  end. 

This  northing  or  southing  is  called  the 

latitude  of  the  line.  •  For  example,  in 
Fig.  29,  the  departures  of  AB,  BC,  CD,  DA,  are  BXB,  BL, 
CH,  DDi,  respectively;  the  latitudes  of  the  boundary  lines 

are  ABX,  B\C\,  C\Di,  D\A,  respectively.  The  following 
formulas  are  easily  deduced: 

Departure  of  a  line = length  of  line X sine  of  the  bearing; 
Latitude  of  a  line = length  of  line  X  cosine  of  the  bearing. 

By  means  of  the  *  departures,  the  meridian  distance  of  a 
point  (i.e.,  its  distance  from  the  north-and-south  line)  can  be 
found.  Thus  the  meridian  distance  of  C  is  C\C,  and  C\C= 
DiD  +  HC.  Hence  in  Fig.  2.9,  ABh  BXB,  BxCi,  CtC,  CxDly 
D\D  can  be  computed.     Now 

area  ABCD= trapezoid  DiDCCi -{-trapezoid  C\CBB\ 
—triangle  ADDi        —triangle  ABBX. 

The  areas  in  the  second  member  can  be  computed;  it  will 
be  found  that  area  ABCD  =  2Q  acres. 

Note.  Sometimes  the  bearing  and  length  of  one  of  the 

lines  enclosing  the  area  is  also  required.  These  can  be  com- 
puted by  means  of  the  latitudes  and  departures  of  the  given 

lines. 
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2.  In  Ex.  1,  deduce  the  length  and  bearing  of  DA  from  the 
lengths  and  bearings  of  AB,  BC,  CD. 

3.  A  surveyor  starts  from  A  and  runs  4  chains  S.  45°  E. 
to  B,  thence  5  chains  E.  to  C,  thence  6  chains  N.  40°  E.  to  D. 
Find  the  distance  and  bearing  of  A  from  D;  also,  the  area  of 
the  field  ABCD.  Verify  the  results  by  going  around  the  field 

in  the  reverse  direction,  and  calculating  the  length  and  bear- 
ing of  BA  from  the  lengths  and  directions  of  AD,  DC,  CB. 

4.  A  surveyor  starts  from  one  corner  of  a  pentagonal  field, 

and  runs  N.  25°  E.  433  ft.,  thence  N.  76°  55'  E.  191  ft.,  thence 
S.  6°  41'  W.  539  ft.,  thence  S.  25°  W.  40  ft.,  thence  N.  65°  W. 
320  ft.  Find  the  area  of  the  field.  Deduce  the  length  and 
direction  of  one  of  the  sides  from  the  lengths  and  directions  of 
the  other  four. 

6.  From  a  station  within  a  hexagonal  field  the  distances  of 
each  of  its  corners  were  measured,  and  also  their  bearings; 

required  its  plan  and  area,  the  distances  in  chains  and  the 
bearings  of  the  corners  being  as  follows:  7.08  N.E.,  9.57  N. 

}  E.,  7.83  N.W.  by  W.,  8.25  S.W.  by  S.,  4.06  S.S.E.  7°  E., 
5.89  E.  by  S.  3i°  E. 



CHAPTER  III 

ANGLES  IN  GENERAL  AND  THEIR  TRIGONOMETRIC 
FUNCTIONS 

16.  General  definition  of  an  angle.  The  amount  of  rota- 
tion that  a  line  OP  makes  in  turning  about  a  point  0  from 

an  initial  position  OX  until  it  comes  to  rest  in  a  terminal 

position  OQ  is  said  to  be  the  angle  described  (or  generated) 
by  the  line  OP. 

Angles  unlimited  in  magnitude.  Since  the  revolving  line 
may  make  any  number  of  complete  revolutions  before  com- 

Fig.  30. Fig.  31. Fig.  32. 

ing  to  rest,  angles  can  be  of  any  magnitude  and  can  be 
unlimited  in  magnitude. 

When  necessary  the  number  of  revolutions  can  be  indi- 

cated as  in  Fig.  32,  which  represents  the  angle  60°  and  the 36 
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a 

angle  3.360° +  60°.    The  lines  in  this  figure  may  represent 

any  angle  n- 360° +  60°,  n  denoting  any  whole  number. 

Ex.  Taking  the  initial  line  in  the  same  position  as  OX  in 

Fig.  30  draw  the  terminal  lines  of  the  angles  40°,  160°,  220°, 
325°,  437°,  860°,  1020°,  180°,  360°,  720°. 

Positive  and  negative  angles.  When  the  turning  line 
revolves  in  the  counterclockwise  direction  (as  in  Fig.  30), 
the  angle  described  is  called  positive  and  is  given  the  plus 

sign;  when  the  turning  line  revolves  in  the  clockwise  direc- 
tion (as  in  Fig.  31),  the  angle  described  is  called  negative 

and  is  given  the  minus  sign. 

Ex.  Taking  the  initial  line  in  the  same  position  as  OX  in 

Fig.  30  draw  the  terminal  lines  of  the  angles  140°,  —200°, 
-430°,  335°,  -850°,  820°. 

Coterminal  angles.  Angles  having  the  same  initial  and 
terminal  lines  respectively  are  called  coterminal  angles. 

Ex.  Show  that,  if  the  same  initial  line  be  taken,  the  angles 

40°,  -320°,  400°,  760°,  -1040°  are  coterminal. 

Congruent  angles.  Angles  differing  by  multiples  of  360° 
are  called  congruent  angles. 

Ex.  Show  that  the  angles  in  the  preceding  exercise  are 

congruent. 

Complementary  angles.  Supplementary  angles.  Angles 

whose  sum  is  90°  are  called  complementary  angles;  angles 
whose  sum  is  180°  are  called  supplementary.     In  other  words, 

the  complement  of  angle  A  =  90°— A) 

the  supplement  of  angle  ̂ 4  =  180°— A. 

Angles  in  the  various  quadrants.     In  Fig.  33,  XX'  and 
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YY'  are  at  right  angles  and  OX  is  the  initial  line.     In  this 
figure  XOY,  YOX',  X'OY',  Y'OX, 
are  called  the  first,  second,  third, 
and  fourth  quadrants,  respectively. 
When  the  turning  line  ceases  its 

revolution  at   some   position   be- 
tween   OX   and    OY,    the    angle 

described  is  said  to   be  an  angle 
in  the  first   guadrant;    when  the 
final  position  of  the  turning  line  is 

between  OY  and  OX'  the  angle  described  is  said  to  be  in 
the  second  quadrant)    and  so  on  for  the  third  and  fourth 
quadrants. 

EXAMPLES 

1.  Lay  off  the  following  angles:  In  the  case  of  each  angle 
name  the  least  positive  angle  that  has  the  same  terminal  line. 
Name  the  quadrants  in  which  the  angles  are  situated.  In  the 
case  of  each  angle  name  the  four  smallest  positive  angles  that 
have  the  same  terminal  line. 

(a)   137°,  785°,  321°,  930°,  840°,  1060°,  1720°,  543°,  3657°. 

(6)    -240°,  -337°,  -967°,  -830°,  -750°,  -1050°,  -7283°. 

2.  What  are  the  complements  and  supplements  of  40°, 
227°,  -40°? 

complement  of    40°=   90°-  40°=         50°; 

supplement  of    40°=  180°-  40°=      140°. 

complement  of  227°=   90°-227°=  -137°; 

supplement  of  227°=  180° -227°=  -  47°. 

complement  of  -  40°  =   90°  -  ( -  40°)  =  130° ; 

supplement  of  -40°=  180°- (-40°)  =  220°. 

3.  What  are  the  complements  of  -230°,  150°,  -40°,  340°, 
75°,  83°,  12°,  -295°,  -324°,  200°,  240°,  -110°,  -167°? 

4.  What  are  the  supplements  of  the  angles  in  Ex.  3? 
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17.  Measurement  of  angles.  There  are  three  systems  of 

angular  measure,  the  sexagesimal,  the  centesimal,  and  the 
circular. 

In  the  sexagesimal  system  the  unit  angle  is  one-ninetieth 
of  a  right  angle,  called  a  degree,  and  the  subdivisions  are 
minutes  and  seconds,  as  described  in  Art.  2.  This  measure 

is  used  in  the  solution  of  triangles  and  in  elementary  mathe- 
matics generally. 

In  the  centesimal  system  the  unit  angle  is  one-hundredth 
of  a  right  angle,  called  a  grade.    The  table  of  centesimal 
measure  is 

1  right  angle  =  100  grades. 

1  grade  =  100  minutes. 

1  minute  =  100  seconds. 

This  system,  which  is  used  in  France,  has  not  come  into 
general  use. 

In  the  circular  system  the  unit  angle  is  the  angle  which 

is  subtended  at  the  centre  of  a  circle  by  an  arc  equal  in  length 
to  the  radius.     This  angle  is  called  a  radian.     The  radian 

Fig.  34.  Fig.  35. 

measure  (often  called  the  circular  measure)  of  an  angle  is  the 
number  of  radians  it  contains.  Radian  measure  is  the 

measure  used  in  higher  mathematics.  It  is  also  used  in 

various  problems  and  discussions  in  elementary  mathematics. 
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18.  Value  of  a  radian.  Relation  between  radian  measure 

and  degree  measure.  In  Fig.  35  arc  AB  =  radius,  and  thus 

angle  AOB  =  a  radian.     By  geometry, 

angle  AOB  arc  AB 

complete  angle  about  0     length  of  circle' 

a  radian        radius         1 

ie''  360°    =  2?rX  radius  =  2^* 

180° 

.-.     a  radian 
 
=   =57°  17'  44"

.8.
  

(1) IT 

Thus  a  radian  has  a  constant  value,  and  accordingly  can 
be  used  as  a  unit.      From  (1) 

it  radians  =  180°.  (2) 

Also,  from  (1)  or  (2), 

1  =To7^  radians. 

By  means  of  relation  (2)  an  angle  expressed  in  the  one 
measure  can  be  expressed  in  the  other. 

Notation.  An  angle  2  radians  is  expressed  2r  or  2C  (r 
from  radian,  c  from-  circular).  The  symbol  r,  or  c,  is  often 
omitted.     For  instance,  angle  %  denotes  the  angle  n  radians 

TZ  7Z 

i.e.,  180°;  angle  ~   denotes  the    angle  ~   radians,  i.e.,  90°; 

angle  #  denotes  an  angle  containing  6  radians. 
Radian  measure  as  ratio  of  subtended  arc  to  radius.  Length 

of  arc.  Since  the  arc  of  a  circle  equal  to  the  radius  subtends 

at  the  centre  an  angle  equal  to  a  radian,  the  number  of  times 
an  arc  contains  the  radius  is  the  radian  measure  of  its  subtended 

angle;  i.e., 
length  of  subtended  arc       ._* 

Number  of  radians  in  angle  —   -.   tt — t — -r.   .     (3) 
length  of  radius  v 
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If  a  =  length  of  arc,  r  =  length  of  radius,  and  0  =  radian 
measure  of  the  angle,  (3)  may  be  written 

e  = From  this  a=rQ. 

In  words,     arc  =  radius  X  radian  measure  of  angle. 

(4) 

(5) 

Formula   (4)   derived  otherwise.    In  Fig.   36  AOB  is  a 

radian.     Let  r  =  length   of  radius,    a  =  length   of   arc   AP, 
0  =  radian  measure  of  angle  AOP. 

By  geometry, 

angle  A  OP    arc  AP 

i.e., angle  AOB    arc  AB' 
angle  AOP    a 

1  radian    ~ir° Fig.  36. 
.*.    number  of  radians  in  AOP,  9  =-. 

EXAMPLES 

1.  How  many  degrees  are  there  in  2.5  radians? 

2.  How  many  radians  are  there  in  231°? 

3.  Express  §r,  4r,  ̂   in  degrees. 
^T         7T         *7T         ̂ T  s  /L 

4.  Express  the  angles  — ,  — ,  —,  — ,  ~tt,  37r,  —  — 7r,  —  107t,  in 

degrees. 

5.  Express  in  radians  83°  20',  142°  30'. 

6.  Express  in  radians  (in  terms  of  tz)  45°,  210°,  300°,  120°, 
225°. 

7.  What  is  the  radian  measure  of  the  angle  which  at  the 
centre  of  a  circle  of  radius  1J  yds.  subtends  an  arc  of  8  in.? 
Also  express  the  angle  in  degrees.  « 
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8.  Find  the  radius  of  the  circle  in  which  an  arc  12  in. 

subtends  an  angle  2  radians  at  the  centre. 

9.  The  radius  of  a  circle  is  10  in.  How  long  is  the  arc  sub- 
tended by  an  angle  of  4  radians  at  the  centre? 

10.  How  long  does  it  take  the  minute  hand  of  a  clock  to 

turn  through  —  If  radians? 

18a.  Motion  of  a  particle  in  a  circle. 

Let  r  ft.*  =  radius  of  the  circle  on  which  the  particle  is moving; 

s  ft.  =  length  of  arc  traversed;  and 
6  radians  =  angle  swept  over  by  the  radius  joining  the 

moving  point  to  the  centre  of  the  circle. 

Then,  by  Art.  18,  Eq.  (5), 

It  should  be  noted  that  this  equation  is  not  true  unless 
the  radius  and  the  arc  are  measured  in  the  same  unit  of 

length  and  the  angle  is  measured  in  radians. 

Again,  suppose  the  particle  is  moving  at  a  uniform  rate 
on  a  circle  of  radius  r  ft.* 

Let      v  ft.  per  sec.  =  the  linear  velocity  of  the  particle  in 
its  path, 

and  co  radians  per  sec.  =  its  angular  velocity. f 

Then  v=r<a; 

and  thus  <•>  =  «• 

*  Or  whatever  may  be  the  unit  of  length. 
f  The  angular  velocity  of  the  particle  is  the  number  of  radians  swept 

over  in  a  unit  of  time — in  this  instance  a  second — by  the  radius  joining 
the  moving  point  to  the  centre  of  the  circle. 
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Suppose  the  angular  velocity  =  N  revolutions  per  minute. 

Since  1  revolution  =  2n  radians, 

^revolutions  per  minute  =  2ir^T radians  per  min. 

=  -^r  radians  per  sec. 

EXAMPLES 

1.  A  wheel  of  a  carriage  which  is  travelling  at  the  rate 

of  8  miles  per  hour  is  3  ft.  in  diameter.  Find  the  angular 
velocity  of  any  point  of  the  wheel  about  the  axle,  in  radians 

per  second. 

2.  Compare  the  angular  velocities  of  the  hour,  minute,  and 
second  hands  of  a  watch. 

3.  Express  in  terms  of  radians  per  minute  an  angular 

velocity  of  25°  per  second. 

4.  A  wheel  makes  300  revolutions  per  hour.  Express  its 

angular  velocity  (a)  in  radians  per  sec;   (b)  in  degrees  per  min. 

6.  An  automobile  having  a  28-in.  wheel  travels  at  a  speed 
of  15  miles  an  hour.  What  is  the  angular  speed  of  the  wheel 
about  the  axle  (a)  in  revolutions  per  minute?  (b)  in  radians  per 
second? 

6.  A  belt  travels  over  a  30-in.  pulley  which  is  carried  on  a 
shaft  making  300  revolutions  per  minute.  Find  the  linear 

speed  of  the  belt  in  feet  per  second. 

19.  Convention  for  signs  of  lines  in  a  plane.  In  Fig.  37 

X'OX  is  af horizontal  line  to  which  YOYr  is  drawn  at  right 
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angles.  Lines  measured  horizontally  towards  the  right  are 
taken  as  positive,  and  accordingly  lines 
measured  horizontally  towards  the  left 

are  negative.  Thus  OM1}  OM4,  M20 

are  positive,  OM2,  OM3,  MxO  are 
negative.  Lines  measured  vertically 

upward,  as  MiP\,  M2P2,  are  taken  as 

positive,  and  lines  measured  verti- 
cally downward,  as  M3P3,  M±P4,  are 

negative. 

M* 

X    M2 

O  MY 
MiX 

Fig.  37. 

P* 

20.  Trigonometric  functions  defined  for  angles  in  general. 

In  Figs.  38-41  the  horizontal  line  OX  is  taken  as  the  initial 
line,  and  angles  in  the  first,  second,  third,  and  fourth  quad- 

Fig.  38.  Fig.  39. 

X'  M 0 

M  X 

Fig.  40.  Fig.  41. 

rants  respectively  are  described.  In  each  angle  any  point 
P  in  the  terminal  line  OQ  is  taken,  and  MP  is  drawn  at 

right  angles  to  OX.    Thus  (Art.  10)  in  each  figure 

OM  is  the  horizontal  projection  of  OP, 

MP  is  the  vertical  projection  of  OP. 

The  lines  OM,  MP  receive  signs  in  accordance  with  the 

convention  in  Art.  19  and  OP  is  taken  as  positive^  For  each 
figure,  the  angle  XOQ  fieing  denoted  as  A,  the  six  ratios 
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formed  by  means  of  the  lines  Oikf,  MP,  OP  are  called  trigo- 
nometric functions  of  A,  as  follows : 

the  sine  of  angle  A  =  sin  A  =  qjT> 

the  cosine       of  angle  A=cos  A  =  ~qp* 

MP 

the  tangent     of  angle  A  =  tan  A  —  ̂ ^j 

the  cotangent  of  angle  A  =  cot  ̂ 4.  =  j^p> 

the  secant       of  angle  A  =  sec  A  —  q^i 

the  cosecant    of  angle  .A=csc  ̂ 1  = mp 

Two  other  trigonometric  functions  are  occasionally  used, 
viz.: 

the  versed  sine  of  angle  A  =  vers   A  =  l  —  cos  A, 

the  cover sed  sine  of  angle  A  =  covers  A  =  l  —  sin  A. 

Inspection  of  Figs.  38-41,  in  connection  with  the  defini- 
tions, shows  that  the  trigonometric  functions  of  angles  in 

the  various  quadrants  have  the  signs  stated  in  the  following 
table : 

Quadrant. sin  A cos  A tan  A cot  A sec  A cosec  A 

I. + + + + + + 

II. + - - - - + 

III. - - 

+. 

+ - - 

IV. - + — - 
l 

- 
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EXAMPLES 

1.  Tell  the  signs  of  the  following  functions: 

(a)  sin  100°;         (6)  cos  220°;  (c)  tan  230°; 

(d)  sec  340°;         (e)  cot  (-130°);         (/)   esc  560°. 

2.  Describe  the  angle  480°,  and  find  the  values  of  its  sine, 
cosine,  and  tangent. 

3.  Describe  the  angle  945°,  and  find  the  values  of  its  sine, 
cosine,  and  tangent. 

4.  In  which  quadrants  may  an  angle  lie,  if : 

(a)  its  sine  is  positive;  (b)  its  cosine  is  negative; 
(c)   its  tangnet  is  positive;     (d)  its  tangent  is  negative. 

5.  In  what  quadrant  must  an  angle  lie,  if: 

(a)  its  sine  and  cosine  are  negative; 
(b)  its  sine  is  positive  and  tangent  negative; 
(c)  its  sine  is  negative  and  tangent  positive; 
(d)  its  cosine  is  positive  and  tangent  negative. 

6.  Construct  angle  A,  when  sin  A  =  f .  Find  the  remaining 
functions  of  A.  The  definition  of  the  sine,  Art.  20,  shows  that 
for  this  angle 

MP=+3,        OP=4. 

The  construction  then  is  as  indi- 
cated in  Fig.  42.  There  are  thus 

two  sets  of  angles  whose  sines  are  f , 
viz.,  the  angles  whose  terminal  line 
is  OP,  and  the  angles  whose  terminal 
line  is  OPi. 

Each  set  of  angles  is  unlimited  in 

number,  and  the  angles  in  it  differ  from  one  another  by  mul- 

tiples of  300°, 



ANGLES  AND  THEIR  TRIGONOMETRIC  FUNCTIONS       47 

For  an  angle  having  OP  for  terminal  line, 

A        ̂   *  A  3  *    A        ̂  

cosA  =  ̂ — ,       tanA=— y=,      cotA=-^-, 

sec  A  = 

Vf' 

esc  A  =  — . 

For  an  angle  having  OPi  for  terminal  line, 

cos  A  = 

Vf 

4  ' sec 
 
A  = 

tan  A=  — 
vr 

cot  ̂ i  = 

V7 

3  ' V7'
 

A     4 

esc  A  =  — . o 

Xx   Jf         -4 

3      T  3    —3     3   1 
7.  Gonstruct  angle  A,  given  tan  A =-  j.      Note  —  j=  -7-=— r- 

The  definition  of  the  tangent,  Art.  20,  shows  that  for  this  angle, 

MP=-S     and     OM=     4, 
or 

MP=3       and       OM=-4. 

-  The  construction  then  is  as 

indicated  in  Fig.  43.  There 
are  thus  two  sets  of  angles 

whose  tangents  are  —  £,  viz., 
the  angles  whose  terminal  line  is  OP  and  the  angles  whose 
terminal  line  is  OP\.     The  angles  in  each  set  are  congruent. 

8.  Calculate  the  remaining  functions  of  the  angles  in  Ex.  7. 

9.  Construct  the  angles  which  have  the  following  functions, 
and  calculate  the  remaining  functions: 

(a)  cos  $——«-;    (o)  sin  a?—  —  ̂ -;    (c)  cosz=^; 

Fig.  43 
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(d)  sec  x=p 

[Note.  i=-
t 

3     +3 

=4 

10.  Construct  the  angles  and  find  their  remaining  functions 
in  the  following  cases: 
3  2 

(a)  sin  x = ■=  and  cos  x  negative ;  (b)  cos  x = ^  and  sin  x  negative ; 
3 

(c)  tan  x—^r  and  sin  x  negative ;  (d)  sec  x = 2  and  tan  x  negative. 

21.  Line  definitions  of  the  trigonometric  functions.  Geo- 
metrical representation  of  the  functions.  In  Fig.  44  XOP 

is  an  angle  of  x  radians.  A  circle, 
whose  radius  is  a  unit  in  length, 
is  described  about  0.  This  circle 

is  called  a  unit  circle.  Angle 

X0Y  =  90°.  From  A  and  B  tan- 
gents AT,  BS  are  drawn  to  meet 

the  terminal  line  OP.  From  P, 
the  intersection  of  the  terminal 

line  with  the  circle,  PM  is  drawn 

at  right-  angles  to  OX.    Then 

MP 

secX 

IAX 

Angle  in  First  Quadrant. 

Fig.  44. 

77— v  =MF, =  OM, 

sm 

a?  = 

=  OP(  =  l) 

cos 

QC- 

Oil/ 
~OP(=l) 

tan 

05  = 

-~OA(=i) 

OM       BS* 

=AT, 

MP    0B{  =  1)    BSi *  Since  the  triangles  OMP,  OBS,  are  similar, 

t  Thus  also,        vers  z  =  l  —  cos  x  =  OA  —  OM  =  MA; 
covers  x  =  l  —  sin  x  =  0B—MP  =  NB. 
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OT 

sec  *-0A(s=1)  OT, 

_OP_       OS* csc  v-Mp-QB^-^-OS
*. 

. .  arc  AP 

Also  a?  =  ̂ Yjr— pr  =  arc  ̂ P. 

Since  the  radius  is  of  unit  length  the  lengths  of  these 
lines  are  expressed  in  the  same  numbers  as  the  ratios  which 

are  the  trigonometric  functions.  Accordingly  the  lines  can 
represent  the  functions. 

Also,  on  the  same  scale,  the  arc  represents  the  radian 

measure  of  the  angle.     (Compare  definition  (3),  Art.  18.) 
The  line  definitions  of  the  trigonometric  functions  of  an 

angle  may  be  thus  expressed,  the  angle  being  at  the  centre 
of  a  unit  circle : 

The  sine  is  the  length  of  the  perpendicular  drawn  from  the 
extremity  of  the  terminal  radius  to  the  initial  radius. 

The  cosine  is  the  length  of  the  line  from  the  centre  of  the 
circle  to  the  foot  of  this  perpendicular. 

The  tangent  is  the  length  of  the  tangent  drawn  at  the  extrem- 
ity of  the  initial  radius  from  this  extremity  to  where  the  tangent 

meets  the  terminal  radius  produced. 
The  secant  is  the  length  from  the  centre  along  the  terminal 

line  to  where  it  meets  the  tangent  drawn  at  the  extremity  of  the 
initial  radius. 

The  cotangent  is  the  length  of  the  tangent  drawn  at  the 

extremity  of  the  radius  which  makes  an  angle  4-  90°  with  the 
initial  radius,  from  this  extremity  to  where  this  tangent  meets 
the  terminal  radius  produced. 

The  cosecant  is  the  length  from  the  centre  along  the  terminal 
line  to  where  it  meets  the  tangent  drawn  at  the  extremity  of  the 

radius  which  makes  an  angle  +90°  with  the  initial  radius. 
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Figs.  45,  46,  47  show  the  lines  which  represent  the  trigo- 
nometric functions  of  angles  in  the  second,  third,  and  fourth 

quadrants  respectively.  The  lines  are  named  as  in  Fig.  44. 
The  line  representing  the  tangent  is  always  drawn  from  A, 

Angle  in  Second  Quadrant. 
Fig.  45. 

B Y               A cot  X     S/j 

'T 

XjT         i?= 

=1(*X 

\W\ 
H 

ss 

1   M       (T 

\C08  2tW 

o          \ax \A/ 
p^A^S 

Angle  in  Third  Quadrant. 
Fig -.46. 

and  the  line  representing  the  cotangent  is  always  drawn 
from  B,  to  the  terminal  line  of  the  angle.  The  signs  of  OM, 
MP,  AT,  BS  follow  the  convention  in  Art.  19,   and  the 

Angle  in  Fourth  Quadrant 
Fig.  47. Fig.  48. 

direction  from  0  towards  P  is  taken  as  positive.  Inspection 

of  Figs.  44-47  shows  that  the  functions  of  angles  in  the, 
various  quadrants  have  the  signs  set  down  in  the  table  in 

Art.  20*   '■ 
*  The  line  definitions  of  the  trigonometric  functions  were  employed 

before  the  ratio  definitions  were  suggested. 
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22.  Changes  in  the  values  of  the  functions  when  the  angle 
varies.  Limiting  values  of  the  functions.  In  Fig.  48  AOP 
is  a  variable  angle  x,  and  a  unit  circle  is  described  about  0. 

MP 
The  sine.     Now      sin  x^Typr^^  =  MP. 

When  angle  x  approaches  0°  as  a  limit,  MP  passes  through 
the  values  M2P2,  M1P1  to  zero  as  a  limit.     Thus 

sin  0°  =  0. 

When  OP  revolves  positively  from  OA  toward  OB  as  a 

limit,  x  increases  from  0°  to  90°  as  a  limit,  and  MP  increases 
from  zero  through  MXPU  M2P2,  M4P4  to  OB(  =  l)  as  a  limit. 
Thus 

sin  90°  =  1. 

When  OP  revolves  from  OB  to  OA1}  x  increases  from  90° 

to  180°,  and  MP  decreases  from  OB(  =  l)  through  M5P5, 
MQP6  to  zero.     Thus 

sin  180°  =  0. 

When  OP  revolves  from  OAx  to  OBi}  x  increases . from 

180°  to  270°  and  MP  changes  from  zero  through  M7P7, 
M8P8  to  0#i(=  -1),  and  thus 

sin  270°=  -1. 

When  OP  revolves  from  OBx  to  OA,  x  varies  from  270° 

to  360°,  and  MP  changes  from  0#i(=-l)  through  M9P9, 
M10P10  to  zero.     Thus 

sin  360°  =  0. 
The  cosine.     Now 

cos  x  =  f\p(_-i\ =  OM. 
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When  angle  x  approaches  0°  as  a  limit,  OM  passes  through 
the  values  OM2,  OMl  to  OA  (  =  1)  as  a  limit.     Thus 

cos  0°  =  1. 

When  OP  revolves  positively  from  OA  to  OB,  x  increases 

from  0°  to  90°  and  OM  decreases  from  OA(  =  l)  through 
■OMi,  OM2,  OM3,  0M4,  to  zero.     Thus 

cos  90°  =-0. 

When  OP  revolves  from  OB  to  OA  i,  x  increases  from  90° 

to  180°  and  OM  changes  from  zero  through  OM5,  OM6  to 
OAi(=-l).    Thus 

cos  180°-  -1. 

When  OP  revolves  from  OA i  to  OBi,  x  increases  from 

180°  to  270°  and  OM  changes  from  OA1(=~l)  through 
OM7,  OMH  to  zero.     Thus 

cos  270°  =  0. 

When  OP  revolves  from  OBx  to  OA,  x  increases  from  270° 
to  360°  and  OM  changes  from  zero  through  OM9,  OM10, 
toOA  =  l.    Thus 

cos  360°  =  1. 

The  tangent.  First  method,  using  the  ratio  definitions. 
Now 

MP 
tanz-^. 

When  angle  x  approaches  0°  as  a  limit,  MP  approaches 
zero  and  OM  approaches  OA(  =  l).    Thus 

tan0°=0. 
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When  x  increases  from  0°  to  90°,  MP  is  approaching 
•  MP 

OB=(l)  and  OM  is  approaching  zero.    Thus  j^,  which  is 

positive  during  this  change,   is  constantly  increasing  and 
becomes  unlimited  in  value.    Thus 

tan  90°  =  oo. 

When  x  is  increasing  from  90°  to  180°,  MP  is  changing 
from  OB(  =  l)  to  zero  and  OM  is  changing  from  zero  to 

MP 
OA  i  ( =  —  1 ) .    Thus  yjTj,  which  is  negative  during  this  change, 

changes  from  —  oo  to  0.    Thus 

tan  180°  =  0. 

N.B.  When  x  is  increasing  from  0°  to  180°,  tanz=  +oo 
when  x  reaches  90°,  and  tan  x=  —  oo  when  x  leaves  90°. 
Thus  tan  x  changes  sign  when  x  is  passing  through  the  value 

90°.  If  x  is  decreasing  from  180°  to  0°,  tan  x  =  — '  oo  when 
x  reaches  90°,  and  tan  x  =  +  oo  when  x  leaves  90°.  Thus 

the  sign  of  tan  x  when  x  =  90°,  depends  on  the  way  in  which 
x  has  approached  the  value  90°. 

When  x  is  increasing  from  180°  to  270°,  MP  is  changing 
from  zero  to  OBi  and  OM  is  changing  from  OA\  to  zero. 

MP 
Thus  jyjrj,  which  is  positive  during  this  change,  changes  from 

0  to  an  unlimited  value.     So 

tan  270°  =  oo . 

When  x  is  increasing  from  270°  to  360°,  MP  is  changing 
from  OB i  to  zero,  and  OM  is  changing  from  zero  to  OA. 
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MP 
Thus  TCT?,  which  is  negative  during  this  change,  changes  from 

—  oo  to  0.     So 

tan  360° =0. 

Tan  270°,  like  tan  90°,  has  an  unlimited  value  whose  sign 
is  positive  or  negative,  according 
to  the  way  in  which  the  angle 

has  approached  the  value  270°. 
The  tangent.  Second  method, 

using  the  line  definitions.  In  Fig. 

49,  the  variable  angle  AOP=x. 
A  unit  circle  is  drawn  and  the 

tangent  drawn  at  A.    Now [AX 

tanx  = 

AT 

Fig.  49. OA(-l) 
AT. 

When    x    approaches   0°,   AT 
passes  through  AT2,  AT\  to  zero;  and  thus 

tan0°=0. 

When  x  changes  from  0°  to  90°,  AT  passes  through  ATi, 
AT 2 ,  AT%,  AT 4,  AT s  to  an  unlimited  value;  and  thus 

tan  90°  =  oo. 

The  student  can  trace  by  means  of  Figs.  45,  46,  47  the 

further  changes  in  tan  x  when  x  increases  from  90°  to  360°. 
The  tracing  of  the  changes  in  cot  x,  sec  x,  esc  x,  as  x 

changes  from  0°  to  360°,  is  left  as  an  exercise  to  the  student. 
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The  changes  for  the  above  six  functions  when  the  angle  is 

increasing  from  0°  to  360°  are  indicated  in  the  following  table: 

In  the  second  quadrant  the 

] 

In  the  first  quadrant  the 
sine           decreases  from 

lto 0 sine           increases  from Oto 1 
cosine        decreases  from 

Oto- 

-  1 

cosine        decreases  from lto 0 

tangent     increases  from- 

-  oo  to 
0 tangent     increases  from Oto 

CO 
cotangent  decreases  from 

Oto- 

-00 

cotangent  decreases  from 

oo  to 

0 

secant       increases  from- -  co  to- 

-1 

secant        increases  from lto 

oo 

cosecant   increases  from il  to 

co 

cosecant    decreases  from 

oo  to 

1 

•^1 

0 
A 

In  the  third  quadrant the In  the  fourth  quadrant  the 
sine            decreases  from 

Oto- 

-  1 

sine            increases  from- 

-  lto 

0 

cosine        increases  from- 
-  lto 

0 cosine        increases  from Oto 1 
tangent     increases  from Oto 

CO 

tangent     increases  from- 

-  oo  to 

0 
cotangent  decreases  from 

oo  to 

0 cotangent  decreases  from 

Oto  - 

-00 

secant       decreases  from  - -  lto- 

-  00 

secant        decreases  from 

oo  to 

1 

cosecant   increases  from- ■  ooto- 

-  1 

cosecant    decreases  from  - -  lto  - 

-00 
?x 

23.  Periodicity  of  the  trigonometric  functions.  When 

the  angles  360°  to  720°  are  described  the  sine  goes  through 
all  its  changes  in  the  same  order  as  when  the  angles  0°  to 
360°  are  described.  Also  the  sine  repeats  the  same  value 
every  time  the  angle  changes 

by  360°,  i.e.,  2n.  That  is,  n 
denoting  a  whole  number 

sin  (ft  •  360° + x)  =  sin  x, 
i.e., 

sin  (2ft7r + x)      =  sin  x. 

Accordingly  the  sine  is  said 
Fig.  50. 

to  be  a   'periodic  function,  and  its  period  is  27r. 
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Similarly,  the  cosine,  secant,  cosecant  have  the  period  2n. 

When  the  angles  180°  to  360°  are  described  the  tangent 
goes  through  all  its  changes  in  the  same  order  as  when  the 

angles  0°  to  180°  are  described.  Also  the  tangent  repeats 
the  same  values  every  time  the  angle  changes  by  180°,  i.e., 
7r.    That  is,  n  denoting  any  whole  number, 

tan  (n  •  180° +x)  =  tan  x, 

i.e., tan  (rwr + x)       =  tan  x. 

Accordingly  the  tangent  is  a  periodic  function,  and  is 
period  is  n.     Similarly,  the  cotangent  has  the  period  n. 

24.  Graphs  of  the  functions. 

Graph  of  sin  x.     From  the  equation, 

y  =  sin  x 
form  corresponding  pairs  of  x  and  y.    Convenient  values  to 

takeforzare30o,45o,G0°,90o,120o, . . .  ,i.e.,|,  j,  ̂,  |,  -j   , 
Thus: 

X 0 

"6 

Tt 

T Tt 

"3 

TT 
2iz 

3 

3tt 

4 

5* 

6 

Tt 

7 

6* 

3 

2* 

7 
2tt 

9» 

4 
it 

~4 

y 0 .5 .71 .87 1 .87 .71 
.5 

0 

-.5 

-1 

-.71 

0 
71 

-.71 

Choose  any  convenient  length  to  represent  the  angle 

(360°) ;  *    mark  the  points  corresponding  to    angles  ̂ ,  jt 

^,  .  .  .  ;    at  these  points  erect  ordinates  representing  the o 

*  E.g.,  one  such  length  that  may  be   taken  is  the  length  of  a  unit 
circle. 
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corresponding  values  of  y;  draw  a  smooth  curve  through  the 
ends  of  these  ordinates. 

This  curve,  Fig.  -51,  is  called  "The  curve  of  sines"  or 
"the  sine  curve." 

A  very  convenient  way  to  draw  the  ordinates  corre- 

sponding to  values  of  x  is  to  take  the  sines  from  the*  unit 
circle  (Art.  21),  as  indicated  in  Fig.  52. 

Graph  of  cos  x.     From  the  equation 

2/  =  cos  x 
form  corresponding  values  of  x  and  y,  and  proceed  as  in  the 
case  of  the  sine.     The  ordinates  can  also  be  obtained  readily 

by  using  a  unit  circle.    The  cosine  curve  is  in  Fig.  53. 

IF 

Fig.  51. — Graph  of  sin  x. 

Fig.  53. — Graph  of  cos  x. 

Graph  of  tan  a*.     From  the  equation 
t/«=tan  x 
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form  corresponding  values  of  x  and  y;  thus 

X 0 

30° 
it 

~6 

45° 

It 

T 

60° 

n 

~~3 

90° 
~2 

120° 

2 

3* 

135° 

3 

V1 

180° 

it 

210° 

7 

6* 

270° 

3x 

2 

300° 

5 

360° 

2it 

y 0 .58 l 1.73 

oo -1.73 

-1 

0 .58 

GO 
-1.73 

0 

Then,  on  proceeding  as  in  the  case  of  the  sine  the  graph 
in  Fig.  54  is  obtained. 

-I37T/ 

Fig.  54. — Graph  of  tan  x. 

By  using  a  unit  circle,  see  Fig.  49,  the  ordinates  can  be 
drawn  quickly. 

Graphs  of  cot  oc,  sec  oc,  cosec  oc.  These  can  be  obtained 

by  proceeding  as  in  the  case  of  the  preceding  graphs.  They 
are  shown  in  Figs.  55,  56,  57. 

Fig.  55. — Graph  of  cot  x. 
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Fig.  56. — Graph  of  sec  x. 

Fig.  57. — Graph  of  esc  x. 

EXAMPLES 

1.  Draw  various  graphs  for  sin  6,  cos  0,  tan  6,  by  varying 

the  scales  used  in  representing  radians  and  trigonometric 
functions. 

2.  Draw  graphs  of  the  following: 

(a)  sin#  +  cos#;      (b)  sin  6— cos  d\      (c)  sin  20; 

(e)  sin-;     (/)  tan-. 

(d)  cos  30; 
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3.  Draw,  with  the  same  axes  of  reference,  graphs  of  sin  6 

and  cos  6;  and  from  your  figure  obtain  values  of  0  between  0° 
and  360°  for  which  (1)  sin  0=cos  0;  (2)  sin  0  +  cos  0=0. 

Also  with  the  help  of  this  figure  draw  the  graph  of 
sin  0+cos  0. 

25.  Relations  between  the  trigonometric  functions  of  an 

angle.  The  relations  between  the  trigonometric  functions  of 

an  acute  angle  were  set  forth  in  Art.  7.  These  relations  hold 
for  the  ratios  of  any  angle. 

A.  Inspection  of  the  definitions,  Art.  20,  shows  the 

reciprocal  relations,  namely: 

tan  A  cot  A  =  1 ;     cos  A  sec  A  =  1 ;     sin  A  esc  A  =  1,     (1) 

*  a         1                a         *  a         1 i.e.,  cot  A  =  T   t;  sec^l=   j\  csc^.=-; — *r. 
tan  A  cos  A '  sin  A 

B.  In  each  of  the  figures  in  Art.  20, 
MP  OM 

MP     OP     sin  A  OM     OP     cos  A 

tanA~OM~OM_~ cos  A>  cotA~MP~MP~ sin  A'      (2) OP  OP 

C.  In  each  of  the  figures  in  Art.  20, 

MP  +OM  =OP  . 

On  dividing  both  members  of  this  equation  by,   OP  , 
■   2   2 

OM  ,  MP  ,  in  turn,  and  following  the  same  process  as  that 

adopted  in  Art.  7,  it  results  that 

sin2  A  +  cos2  A  =  1 ; 

sec2  -4  =  1  + tan2  A; 

cosec2  A  =  l  +  cot2  A. 
(3) 

Relations  C  also  follow  directly  from  the  line  definitions, 

Art.  21,  as  shown  in  Fig.  44  or  Figs.  45-47. 
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EXAMPLES 

1.  Given  that  sinA  =  f;  find  the  other  functions  of  A  by 
means  of  the  relations  shown  in  this  article. 

[In  Ex.  6,  Art.  20,  this  problem  is  solved   geometrically; 

here  it  is  solved  algebraically.'] 
±Vf  1  4 

cos A=  ±vl- sin2  ̂ 4  =  — -. — ;     sec  A  = 
4     '  cos  A      ±Vf 

.         1        4  sin  A         3 
cosecA=— — t  =  tt',     iSLiiA  = 

sin  A     3'  cos  A      ±Vf' 

cot  A  =  -   j= — 5—. tan  A  6 

Since  the  given  sine  is  positive,  the  corresponding  angles 
are  in  the  first  and  second  quadrants.  Hence  the  double 
values  of  the  calculated  ratios  may  be  paired  as  follows : 

sin  A        cos  A         tan  A       cot  A        sec  A     cosec  A 

3 
4 

+Vf 
4 

3 V7 
3 

4 
Vf 

4 

3 

3 
4 

-Vf 

4 
3 

V7 

-Vf 

3 

4 

Vf 
4 
3 

Find  the  other  ratios  algebraically,  and  verify  the  results 

geometrically,  when: 

2.  cos  A     =— f.  3.  tanA=-f. 

4.  cosec  A  =—5.  5.  cot  A  =—3. 

Find  the  other  ratios  algebraically,  and  verify  the  results 

geometrically,  when  angle  A  satisfies  the  following  pairs  of 
conditions : 

6.  sin  A  =  J      and    tan  A  negative. 

7.  tan  A  =  Vs     and  sec  A  negative. 

8.  cos  A  =  —  f     and  sin  A  positive. 

9.  sin  A  =  —  §     and     tan  A  positive. 
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10.  If  sin  0= 
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m2  +  2mn 

m2  +  2mn-\-2h2 r-o,  prove  that 

tan  0=  ± 
m2  +  2mn 

2mn-\-2n2' a2—b2 
11.  If  cos  6=  0  ,  ,a,  find  sin  0  and  tan  0. 

a2  +  o2 

Verify  each  of  the  following  relations  by  reducing  the  first 
member  to  the  second: 

12.  cos  x  tan  x= sin  x. 

13.  sec  x— tan  a>sin  x=cos  x. 

cot2  A 14 =  cos2  A. 
1  +  cot2^ 

15.  (1  +  tan2  z)  cos2  2=1. 

16.  cos4  0-sin4  0+1  =  2  cos2  0. 
1  1 17. 

1. 

tan2  £+1  '  cot2J5+l 

18.  sec4  0-tan4  0=2  sec2  0-1. 

26.  Functions  of  -A,  90°  =F^,  180°  +  ̂   in  terms  of  func- 
tions of  A,  A  being  any  angle. 

Functions  of  —  A.     Describe  the  angles  A,  —  A,  OP  being 

Fig.  58. Fig.  59. Fig.  60. Fig.  61. 

the  terminal  line  of  A,  and  OP\  the  terminal  line  of  —A. 
In  Figs.  58,  59,  60,  61,  A  is  in  the  first,  second,  third,  fourth 
quadrants  respectively. 
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Take  OPi  =  OP,  and  draw  PM,  PXMX  at  right  angles  to 
OX.    Then  in  each  figure 

OM i  =  OM ,  M1Pl  =  -  MP. 

Thus,  for  an  angle  A  in  any  quadrant, 

MlPl         MP 
sin  (— A)  = 

0P1 

(        A\         0M
l 

OP 

OM^ 

OP 

—  sin  A; 

cos  A. 

So  also    tan  (—A)  =  —tan  A;    cot  (—A)  =  —cot  A; 

sec  (—A)=sec  A;         esc  (—A)  =  —esc  A. 

Functions  of  90°  —  A.  Describe  the  angles  A,  90°—  A, 
OP  being  the  terminal  line  of  A,  and  0P\  the  terminal  line 

of  90°- A  In  Figs.  62,  63,  64,  65,  A  is  in  the  first,  second, 
third,  fourth  quadrants  respectively. 

o   Mx  m  X 
Fig.  62.  Fig.  63.  Fig.  64.  Fig.  65. 

Take  OPx  =  OP,  and  draw  PM,  PxMt  at  right  angles  to 
OX.    Then  in  each  figure 

0Mx=MP,  MxP^OM. 

Thus,  for  A  in  any  quadrant,  and  so  for  all  angles  A, 

•     /one      a\     M*Pi     0M  A 
sin  (90°—  A)  =  ̂ p    =^rp=  cos  ̂ 4; 

cos  (90°-A)=-^p-=^p  =sin  A) 
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tan  (90°-  A)  =  -^  =  ̂   =  cot  A ; 

fMt%      -     OMj     MP 

cot(90°-^)=]j^pi=^¥  =  tan^;     , 

,™«      ^      OA       OP 
sec  (90°-A)=-^=-^p=csc  A; 

*w*     as     Oipi      OP 

esc  (90  -a)  =  mjT  =  qm  =  sm  A. 
Hence,  the  function  of  any  angle  is  the  same  as  the  co- 

function  of  its  complement. 

Functions  of  90° +  ̂ 1.  Describe  the  angles  A,  90°  + A, 
OP  being  the  terminal  line  of  A  and  OPi  the  terminal  line 

of  90° +4.  In  Figs.  66,  67,  68,  69,  A  is  in  the  first,  second, 
third,  fourth  quadrants  respectively. 

A 

M          O   Mx /          M 

u>M  x 
O^Mi     \    X 

P     \ 

^\P 

Fig.  68. Fig.  69. 

Mx    O  M        \  M^L 

Fig.  66.  Fig.  67. 

Take  OPx  =  OP,  and  draw  PM,  PiMx  at  right  angles  to 
OX.    Then  in  each  figure 

OMx  =  -MP, 

Hence,  for  any  angle  A, 

M^-OM. 

.    ,™«     is    MXPX        OM 
sm  (90° +A)  =  0p   =     ̂ p  -     cos  A) 

„     A,     OMx         MP         .     . 

cos  (90°+^l)=-^p—  =  —  Qp=—  sin -A. 

So  also,  tan  (90° + A)  =  -  cot  A ;    cot  (90° + A)  =  -  tan  A ; 

sec  (90°  +  A)  =  -  esc  A ;    esc  (90°  +  A)  =     sec  A. 
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Functions  of  180°  — X  Describe  the  angles  A,  180°—  A, 
OP  being  the  terminal  line  of  A,  and  OPi  the  terminal  line 

of  180° -A.  In  Figs.  70,  71,  72,  73,  A  is  an  angle  in  the 
first,  second,  third,  fourth  quadrants  respectively. 

Fig.  70. Fig.  71 Fig.  73. 

Take  OPi=OP,  and  draw  PM,  PiMx  at  right  angles  to 
OX.    Then  in  each  figure 

OMx  -  -  OM,  MiPi  =  MP. 
Hence,  for  any  angle  A, 

sin  (180°- A)  = 
MXPX        MP OP1 

OP 

=     sin  A; 

,1Qft0     A,     OM,      -OM cos  (180°-  A)  =  -~p-  =  ~gp—  =  -  cos  A. 
So  also, 

tan  (180°-  A)  =  -  tan  A;    cot  (180°  -A)  =  -  cot  A; 

sec  (180°-A)  =  -sec  A;     esc  (180°-  A)  =     esc  A. 

Thus,  a  function  of  the  supplement  of  an  angle  and  the 
same  function  of  the  angle  itself  are  numerically  equal;  the 

sines  and  cosecants  respectively  of  supplementary  angles  have 
the  same  sign,  but  the  cosines  and  the  remaining  functions 

respectively  have  opposite  signs. 

Functions  of  180°+^.  On  proceeding  as  in  the  pre- 
ceding cases  it  will  be  found  that 

sin  (180°  +  A)  =  -  sin  A,  cos  (180° + A)  -  -  cos  A, 

tan  (180°  +  A)=  tan  A,  cot  (180°  +  A)  =  cot  A, 

sec  (180°  +  A)  =  -sec  A,     esc  (180°  +  A)  =  -esc  A. 
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Since,  OX  being  the  initial  line,  all  angles  having  the  same 
terminal  line  have  the  same  value  for  a  function,  it  follows 
that 

any  function  of  360° +  4,  and  of  71-360°  +  A  (n  =  any 
whole  number)  is  equal  to  the  same  function  of  A. 

Also, 

any  function  of  360°-^4,  and  of  n-360°-^.  (n  =  any 
whole  number)  is  equal  to  the  same  function  of  —A. 

EXAMPLES 

1.  Express  the  functions  of  270°— A  in  terms  of  functions 
oiA. 

2.  Express  the  functions  of  270° -{-A  in  terms  of  functions 
of  A. 

27.  Reduction  of  trigonometric  functions  of  any  angle 

to  functions  of  acute  angles.  By  means  of  the  relations  in 
Art.  26  the  functions  of  any  angle  can  be  expressed  in  terms 

of  the  functions  of  an  angle  between  0°  and  90°,  and  in  terms 
of  the  functions  of  an  angle  between  0°  and  45°. 

EXAMPLES 

1.  sin  700°  =  sin  (360°  +  340°)  =  sin  340°  =  sin  ( -  20°) 
= -sin  20°= -.3420. 

2.  tan  975°  =  tan  (2- 360° +  255°)  =  tan 255°  =  tan  (180° +  75°) 
=  tan  75°=cot  15°  =  3.7321. 

3.  esc  (-1160°)  = -esc  (1160°)  = -esc  (3-360°  +  80°) 
=  - esc  80°= -sec  10°. 

Hence 

esc  (-1160°)  = -sec  10°=   L— =_zi^=  -1.015. cos  10°      .9848 
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4.  Express  the  following  as  functions  of  acute  angles : 

(a)    sin  287°.  (d)  sec  925°  10'.        (g)   tan  (-1055°). 
(6)  cos  332°.  (e)   sin  2150°.  (h)  cos  (-2055°). 

(c)  tan  218°  30'.       (/)  cot  (-487°).       (i)    esc  310°  30'. 

5.  Find  the  values  of  the  following: 

(a)  sin  346°  10'.        (d)  sec  (-310°)         (g)  esc  876°. 
(b)  cos231°30/.        (e)   cot  950°.  (h)  cos  (-1131°). 
(c)  tan  174°  15'.       (/)  sin  (-2830°)      (i)  tan  (-1487°). 

6.  Prove  the  following: 

(a)  cos  240°  cos  120°-sin  120°  cos  150°=  1. 
(6)  tan  675°  sec  540°  + cot  495°  esc  450° =0. 



CHAPTER  IV 

GENERAL  VALUES.    INVERSE  TRIGONOMETRIC 

FUNCTIONS.    TRIGONOMETRIC  EQUATIONS 

28.  General  values.  All  angles  having  the  same  initial 

and  terminal  lines  have  the  same  values  for  each  trigono- 
metric function.  The  general  value  of  an  angle  having  a 

given  trigonometric  function  is  an  expression,  or  formula, 
which  includes  all  the  angles  that  have  that  function. 

General  expression  for  all  angles  having  the  same  sine 
and  cosecant.  Let  a  be  an  acute  angle  having  a  given  sine, 
a,  say.     Let  its  terminal  line  be  OP.    All  angles  having  OP 

o 

Fig.  74. 

for  terminal  line  have  the  same  sine  a.    These  angles  are 
the  angles  in  the  expression, 

m-360°  +  a,    i.e.,   2m -180°  +  a,    (ra  =  any   integer),     (i) 

Also  sin  (180°  —  a)  =  sin  a  =  a. 

In  Fig.  74,  OPi  is  the  terminal  line  of  180°-  a.  All 
angles  having  OPi  for  terminal  line  have  the  same  sine  a. 
They  are  the  angles  n  the  expression, 

m-360°  +  (180°-a),  i.e.,  (2m +1)180°- a,  (m  an  integer),  (ii) 68 
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Expressions  (i)  and  (ii)  are  both  included  in  the  expres- 
sion, 

n  •  180°+  ( —  l)na,        i.e.,    rnr+  ( — l)na,      n  an  integer. 

For,  if  n  is  even,  a  has  the  sign  +,  as  in  (i);  if  n  is  odd, 

a  has  the  sign  — ,  as  in  (w). 

Since  esc  a  =  ̂  — ,  this  expression  includes  all  angles  that 

have  the  same  cosecant  as  a. 

Otherwise  expressed: 

sin  a  =  sin  [n •  180°  +  (—  l)na]  =  sin  [nn  +  (—  l)na]; 

esc  a  =  esc  [n  •  180°  +  ( —  1  )nd\  =  esc  [nrc  +  ( —  1  )na\. 

The  proof  is  similar  for  a.  in  any  quadrant. 

.     .         Vs 
Ex.  1.  Give  the  general  expression  for  a  if  sin  a  =  -^-. 

The  least  positive  value  of  a  is  60°. 
.*.  The   general    value    of   a    is    n-180°+(— l)n  60°,    i.e., 

7l7T+(-l)|. 

On  giving  n  the  values  0,  1,  2,  3,  ...  ,  particular  values  of 

a  are  obtained,  viz.,  60°,  120°,  420°,  480°,  .  .  . 

General  expression  for  all  angles  having  the  same  cosine 

and  secant.  Let  a  be  an  acute  angle  having  a  given  cosine, 
a,  say.  Let  its  terminal  line  be  OP.  All  angles  having  OP 
for  terminal  line  have  the  same  cosine  a.  These  angles 
are  the  angles  in  the  expression, 

n  •  360°  +  a,         (n  =  an  integer.)  (iii) 

Also  cos  (— a)  =  cos  a  =  a. 
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In  Fig.  75,  OP i  is  the  terminal  line  of  —a.  All  angles 
having  OPi  for  terminal  line  have  the  same  cosine  a.  They 
are  the  angles  in  the  expression, 

n  •  360°  —  a,         (n = an  integer.) 
(iv) 

Expressions  (Hi)  and  (iv)  are  both  included  in  the  expres- 
sion, 

n  -360°  ±  a,         i.e.,  2nir  ±  a,         (n  an  integer.) 

Since  seca  =   ,   this  expression   includes  all  angles 
cos  or  r  ° 

that  have  the  same  secant  as  a. 

Otherwise  expressed: 

cos  a  =  cos  (n  •  360°  ±  a)  =  cos  (2m:  ±  a) ; 

sec  a  =  sec  (n-360°±a)=sec  (2n^±a). 

The  proof  is  similar  for  a  in  any  quadrant. 

Fig.  75. 

Ex.  2.    Give  the  general  expression  for  a  when  cos  a=\. 

The  least  positive  value  of  a  is  60°. 

/.  The  general  value  of  a  is  n- 360°  ±60°,  i.e.,  2ri7r±^. o 

On  giving  n  the  values  0,  1,  2,  3,  ...  ,  particular  values  of 

a  are  obtained,  viz.,  ±60°,  420°,  300°,  780°,  660°,  .  .  . 
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General  expression  for  all  angles  having  the  same  tangent 

and  cotangent.  Let  a  (Fig.  76)  be  an  acute  angle  having  a 

given  tangent,  a,  sa}^.  Let  its  terminal  line  be  OP.  All  angles 
having  OP  for  terminal  line  have  the  same  tangent  a. 
These  angles  are  the  angles  in  the  expression, 

ra-360°  +  o:,     i.e.,  2m- 180°  +  a,     (m     an     integer.)       (v) 

Also  tan  (180°  +  a)  =  tan  a. 

In  Fig.  76,  OPx  is  the  terminal  line  of  180°  +  a.  All 
angles  having  OP\  for  terminal  line  have  the  same  tangent  a. 
They  are  the  angles,  in  the  expression 

m- 360° +  (180°  + a)  i.e.,  (2m  +  1)180°  +  a,  (m  an  integer)  (vi) 

180°+  a 

\a 

ar, 

-i 

yx 

1 
i L-t> M 

-aj 

i 

^  Fig.  76. 

Expressions  (v)  and  (vi)  are  both  included  in  the  expres- 
sion, 

™180°  +  *,         i.e.,    mr  +  a, n  an  integer. 

Since  cot  a  =-   ,   this  expression  includes  all   angles Lan  ol 

that  have  the  same  cotangent  as  a. 
Otherwise  expressed: 

tan  a  =  tan  (n  •  180°  +  a)  =  tan  (nn  +  a) ; 

cot  a  =  cot  (n •  180°  +  a)  =  cot  (n7r+a). 

The  proof  is  similar  for  a  in  any  quadrant. 



72  ELEMENTS  OF  PLANE  TRIGONOMETRY 

Ex.  3.   Give  the  general  expression  for  a  when  tan  a  =  V3. 

The  least  positive  value  of  a  is  60°. 

;.  The  general  value  of  a  is  n-180°  +  60°,  i.e.,  rm+—. o 

On  giving  n  the  values  0,  1,  2,  3,  .  .  .  ,  particular  values  of 

a  are  obtained,  viz.,  60°,  240°,  420°,  600°,  .  .  . 

EXAMPLES 

4.  Given  sin  A  =  \,  find  the  general  value  of  A.     Also  find 
the  four  least  positive  values  of  A. 

5.  Given  cos  A  =  —  £,  find  the  general  value  of  A  and  the 
three  least  positive  values  of  A. 

6.  Find  the  general  value  of  6  which  satisfies  each  of  the 
following  equations: 

(a)    sin  6  =  0. 

(g) 

(b)    cos  0=0. (h) COS  0=   t=. \/2 

(c)   tan  6  =  0. CO tan  0=1. 

(d)   cot  6-    * 
(/) Cot0=-1. 

(e)    sec  0=1.' (*) 

/j       2 

sec  6=—=. 

(/)  csc0=\/2. 
w tan  0=   ^=. 

29.  Inverse  trigonometric  functions.  It  has  been  seen 

that  the  sine  is  a  function  of  the  angle.  On  the  other  hand, 
the  value  of  the  angle  depends  on  the  value  of  the  sine, 

and  thus  the  angle  is  a  function  of  the  sine.    This  function  of 
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the  sine  is  called  the  inverse  sine  or  the  anti-sine.  Similarly, 

the  angle  is  a  function  of  each  of  the  other  trigonometric 
functions.  Thus  there  arise  other  inverse  trigonometric 

functions  or  anti-trigonometric  functions,  as  they  are  some- 

times called,  viz.,  the  inverse  cosine  or  the  anti-cosine,  the 

inverse  tangent  or  the  anti-tangent,  etc. 

E.g.,  since  sin  30°  =  J, 

30°  is  an  angle  whose  sine  is  J. 

This  line  is  also  expressed  thus : 

30°  is  an  inverse  sine  of  J  (or  an  anti-sine  of  J), 

and  more  briefly,  on  using  a  symbol  invented  for  the  inverse 
sine, 

30°  =  sin-1 

In  general :  the  two  statements, 

"  the  sine  of  an  angle  6  "  is  m, 

6  is  "  an  angle  whose  sine  is  m" 

are  briefly  expressed, 

sin  d  =  m, 

0  =  sin-1  m  =  arc  sin  m* 

The  expressions, 

sin-1  m,  cos-1  m,  tan-1  m,  etc.,  .  .  .  , 

are  the  symbols  for  the  inverse  trigonometric  functions. 

The  expression  tan-1  2,  for  instance,  is  read  "  the  inverse 

*  This  notation  is  the  one  used  on  the  Continent. 
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tangent  of  2,"  "the  anti-tangent  of  2,"  and  may  also  be 
read  "  an  angle  (or  the  set  of  angles)  whose  tangent  is  2." 

N.B.  The  trigonometric  functions  are  ratios,  and  thus  are 

pure  numbers;  the  inverse  trigonometric  functions  are  angles. 

For  instance  (see  Art.  28,  Exs.  1,  2,  3), 

Vs 
sin-1  — - -=n- 180°+  (-  l)w  60°,  n  an  integer; 

cos-1  —  =  n-360° ±60°,  n  an  integer; 

tan"1  Vs  =n- 180° +60°,  n  an  integer. 

Thus,  while  each  of  the  trigonometric  functions  has  a 
single  definite  value,  each  inverse  trigonometric  function  has 

an  infinite  number  of  values.  The  angle  having  the  smallest 

numerical  value  in  an  inverse  function  is  called  the  principal 
value  of  the  inverse  function. 

E.g.  The  principal  value  of  tan-1  V3  is  60°; 

The  principal  value  of  sin_1(   ^=\  is  —45°. 

When  the  smallest  numerical  value  has  both  positive  and 
negative  signs  the  positive  sign  is  taken;  thus 

The  principal  value  of  cos-1  J  is  60°. 

N.B.  It  should  be  noted  that  the  "  —  1 v  in  the  symbol 
for  an  inverse  trigonometric  function  is  not  an  algebraic 

exponent.    See  Art.  5,  N.B.  in  Examples. 

Thus:  sin-1  m  does  not  denote  (sin  m)~l,  i.e.,  -   ; v  '       '  sinm' 

(tan  x)~l,    i.e.,    t   ,   should  not  be  written  tan-1  x. tan  x 
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EXAMPLES 

1.  Prove  that  sin-1  z  =  cos-1  Vl  —  x2. 

Let  0  =  sin-1£. 
Then     sin#  =  a\ 

Hence  cos  d  =  Vl  —  sin2  0  =  Vl  —  x2. 

Thus  0=cos-1  Vl  —  x2;     i.e.,     sin-1  z=cos-1  Vl  —  x2, 

2.  Construct  the  following: 

(a)  sin"1!.  (c)   tan"1  (-2).         (e)  sec"1 2. 

(6)  cos-i(-|).  (d)  cot-iQ.    (/)  cscV-iy 

Read  the  following  identities,  and  prove  them: 

I.  sin  (tan  J .  5\       ,5  ,,  ,63  ,/  ,  65N 
.  Bin!  tan  1^)=±W         7.  cos  i-  =  csc       ±^.. 

12\         12  5/5 
4.  tan  (sin-1  —  )=  ±— .         8.  sin-1—  =  tan-1(  ±  — 

5.   COt    X  1  =  U7Z*  +  j. 9.  sin(cos-1-)=tan(  sin-1— ==) \  5/  \  V34/ 

6.  cos  x (— ?rl=  2n7r* ± — .    10.  tan-1  m= cos-1 
2/  "3*  Vl  +  w2' 

30.  Trigonometric    equations.      Trigonometric    identities. 

Trigonometric  equations  are  equations  in  which  one  or  more 
trigonometric  functions  or  inverse  trigonometric  functions 
are  involved.  These  equations  are  true  only  under  certain 
conditions,  viz.,  for  certain  values  of  the  angles.  To  solve 

these  equations  is  to 'find  these  values. 

*  n  a  whole  number. 
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E.g.  The  equation 

tan  x=l. 

Here  x  =  tan"1  1  =  45,°  225,°  etc. 

The  general,  or  complete,  solution  of  this  equation  is 

x=tt-180°  +  45°,     i.e.,     ror+j. 

Trigonometric  identities  are  in  the  form  of  equations  and  are 

unconditionally  true,  i.e.,  are  true  for  all  values  of  the  angles 
involved. 

E.g.  sin2  x  +  cos2  x  =1, 

and  the  other  relations  in  Art.  25,  (1),  (2),  (3),  are  identities. 

EXAMPLES 

1.  Solve  the  equation 

sin2  x  —  2  cos  x  +  J  =  0. 

Here  1  —  cos2  x  —  2  cos  z  +  J  =  0. 

.*.  4  cos2  x  +  8  cos  x— 5  =  0; 

i.e.,  (2  cos  x  +  5)   (2  cos  a:  — 1)=0. 

/.  2  cosz  +  5  =  0,  or       2  cos  z— 1  =  0. 

.*.  cos  z=  —  f,       or  cos  x  =J. 

"  There  is  no  solution  for  cos  x=  —  -f,  since  the  cosine  of  an 
angle  lies  between  —  1   and    +1.*     From  cos  x = J  comes  the 
solution, 

z=n-360o±60°. 

In  solving  an  equation  containing  several  functions  the 
general  method  is  to  reduce  the  equation  to  a  form  in  which 

only  one  function  appears. 

*  In  other  words:  The  solution  is  impossible. 
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2.  Prove  the  identity 

cos4  J.  —  sin4^.  =  l  —  2  sin2  A. 

cos4  A  —  sin4  A  =  (cos2  A  +  sin2  A)  (cos2  A  —  sin2  A) 

- 1  •  (1  -sin2  ̂ 4  -sin2  4)  =  1-2  sin2  4. 

Solve  each  of  the  following  equations: 

3.  2  cos2z  +  5  sinz— 4  =  0.      8.  sin#  =  tan2  x. 

4.  sin  z  +  csc  x  =  2.  9.  2  sin2  z  +  V3  cos  x  +1  =  0. 

5.  sin?/  +  cos2/=v/2.  10.  4  sec2  5-7  tan2  5=3. 

6.  sin2£=l.  11.  4  tan  z  — cot  z  =  3. 

7.  2  cos  A  +  sec  ̂ .=3.  12.  sec2  y  —  5  tan  ?/  +  5  =  0. 

13.  Given   4  sin2  0=3,    find    the   values   of   6   which   are 
between  0°  and  500°. 

14.  Given  sin  x  +  cos  x  cot  x  =  2,  find  the  values  of  x  which 

are  between  0°  and  360°. 
Prove  the  following  identities: 

15.  sin3  0  +  cos3  0  =  (sin  0  +  cos  0)(1  —  sin  6  cos  6). 

16.  sin  x  (cot  x  +  2)  (2  cot  a;  + 1)  =  2  cosec  a;  +  5  cos  #. 

17.  cos6  A  +  sin6  A  =  1  —  3  cos2  A  sin2  ̂ 4 . 

18.  cos6  x  +  2  cos4  z  sin2  a:  +  gos2  x  sin4  a;  +  sin2  x=*l. 

sec0  +  csp0     l  +  cot0     tan  0+1 19. 

sec  6  —  esc  0  1  —  cot  0  tan  0—1* 

sec2  0  +  csc2  0 20.  tan  0  + cot  0 sec  0  esc  0 



CHAPTER  V 

TRIGONOMETRIC   FUNCTIONS   OF   THE   SUM   AND 
DIFFERENCE  OF  TWO  ANGLES 

General    Formulas 

31.  To  deduce  sin  (A  +  J5),  cos  (A  +  B).  N.B.  In  Arts.  31, 

32  the  conventions  (Arts.  16,  19,  20)  regarding  the  signs  of 
angles  and  lines  are  followed.  The  formulas  can  be  derived, 

however,  for  Figs.  77-79  by  using  the  definitions  in  Art.  3. 
Case  I.    A  and  B  both  acute. 

In  Figs.  77,  78, 

O      M  N 
Fig.  77. 

M       0     N 

Fig.  78. 

XOL  =  A,    LOT=B,    XOT  =  A+B. 

(In  Fig.  77,  A  +B  is  acute;  in  Fig.  78,  A  +B  is  obtuse.) 
From  any  point  P  in  OT,  PM,  PQ  are  drawn  at  right 

angles  to  OX,  OL  respectively;   QN  is  drawn  at  right  angles 
to  OX ;  VQR  is  drawn  parallel  to  OX.    Now 

VQL  =  XOQ  =  A. 

VQP  =  VQL+LQP  =  V0°+A, 

78 
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.    ™™    MP    NQ+RP    NQ    RP 
sin  (A+B)  =  smXOP  =  -Qp= — gp   =  OP     OP' 

NQ 

Now,  

j^-  =  sinA;  
.*.  NQ  =  OQ  sin  A. 

RP 
Also  ~  =  sin  7QP  =  sin  (90°  +  A)=cos  A. 

.'.  RP  =  QP  cos  A. 

.    / ,      ™     OQ  sin  A     QP  cos  A 

:.  sm(A+B)= — op~+ — op — '• 

OQ  QP 
But    -Typ  =  cos  QOP  =  cos  B >     op  =  sin  QOP  =  sin  J5. 

,\  sin  (A  +  J5)  =  sin  A  cos  ̂   +  cos  A  sin  J5.  (1) 

-         r>x  rrrm       OM       ON +  QR*       ON       QR 
cos  (A  +B)=  cos  XOP=-Qp= — Qp —  =  op+op- 

ON 

Now    -j^.  =  co8  A;  •'•  ON  =  OQcos  A 

Also,     |p  =  cos  7QP  =  cos  (90°  +  A)  =  -smA. 
.'.  QR=-QP  sin  A. 

.-.  cos  (A +5)= — ^p — -gpSini; 

,\  cos  (-4.  +  B)  =cos  vl  cos  i*  —sin  A  sin  ̂ .  (2) 

Case  II.    A  and  B  any  angles.    First  suppose  B  acute 

and  A  obtuse,  viz.,  90°  +  A',  A'  thus  being  acute.     Since 

A =90°+ A', 
A'=-(90°-A). 

*  Note  that  O^V,  QR,  are  in  opposite  directions^ 
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.•;  sin  A'  =  -  sin  (90°-  A)  *  -  -  cos  A) 

cos  A'  =  cos  (90°-A)*  =  sin  A. 

Then  sin  (A+£)=sin  (90°+ A' +£)  =  cos  (A'+£)* 

=  cos  A'  cos  B—  sin  A'  sin  5 

=sin  A  cos  5 +cos  A.  sin  B. 

Also, cos  (A  +5)  =cos  (90°  +  A'  +B)  =  -sin  ( A'  +B)* 

=  —sin  Af  cos  J5— cos  A'  sin  B. 

=     cos  A  cos  B— sin  A  sin  B. 

The  above  procedure  shows  that  formulas  (1),  (2)  still 
hold  true  when  one  of  the  angles  A,  B,  in  Case  II,  is  increased 

by  90°,  and  that  these  formulas  will  continue  to  hold  true 

as  the  angles  continue  to  be  increased  by  90°.  Hence  these 
formulas  are  true  for  angles  in  any  quadrants,  and  thus  for  all 

angles. 

Note.  Formulas  (1),  (2)  can  also  be  derived  from  a  figure, 
as  in  Case  I,  for  A  and  B  in  any  quadrants. 

EXAMPLES 

1.  Derive  sin  75°  =  sin  (30° +  45°)=     ft-1. 

2.  Derive  cos  75° 

2V^2 
 ' 

3.  Given  sin  x = J,  siny=|,  and  x  and  y  both  acute,  find 
sin  (x+y),  cos  (x+y). 

4.  If  tan  x=  J  and  tan  y=&,  find  sin  (x+y)  and  cos  (x+y) 
when  x  and  y  are  acute  angles. 

5.  Prove  sin  (60°+ x)  —  cos  (30°+x)=sin  x. 

*  See  Art,  26. 
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6.  Prove  cos  (60°  +  B)  +  sin  (30°+£)  =  cos  B. 

7.  Prove  cos  (x+y)  cos  x+sin  (x+y)  sin  x=cos  y. 

8.  Find  sin  (sin-1  £  +  sin-1  J)  when  the  angles  are  between 
0°  and  90°. 

9.  Prove  sin  (sin-1  m+ sin-1  n)  =  mv7!  —  n2  ±  n\/\  —  m2. 

10.  Prove  cos  (sin-1  w  +  sin  x  w)  =  v/l-m2v/l-w2± 
mn. 

32.  To  deduce  sin  (A—B)f  cos  (A—B).  First  method. 
Formulas  (1),  (2),  Art.  31 ,  are  true  for  all  angles.  On 

taking  —  B  instead  of  B,  there  results : 

sin  (A— i?-)=sin^4.  cos  (— B)+cos  A  sin  (— B); 

.".  sin  (A  —B)  =  sin  A  cos  B  —cos  A  sin  B.  (1) 

Also,   cos  (A  —  5)=  cos  A  cos  (-B)  —  sin  J.  sin  (-B). 

.*.  cos  (^1  — -B)  =cos  ^1  cos  -B  +  sin  A  sin  JS.    .         (2) 

Second  method.     Case  I.     A  and  B,  both  acute,  ̂ L>5. 
In  Fig.  79, 

XOL  =  A,    LOT=-B, 

X0T  =  A-B. 

From  any  point  P  in  OT, 
PM,  PQ  are  drawn  at  right  angles 
to  OX,  OL,  respectively;  QN  is 
at  right  angles  to  OX;  VPR  is 
drawn  parallel  to  OX.    Now 

o     N    M 
Fig.  79. 

RQP  =  90°-OQN  =  A; 

:.  QPR=  90°-RQP  =  90°- A; 



But 
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...  VPQ  =  180°-  QPR  =  90° + A. 

sm  (A - B)  =  sin  XOP  =  -^p-  = — ^p   ^QP'-OP' 
NO 

But    ̂   =  sinA;  .*.  NQ  =  OQ  sin  A. 

Also   H  -  sin  7PQ = sin  (90° + A)  =  cos  A. 
.'.  RQ=PQ  cos  A. 

.    /  j      ™     OQ  sin  A     PQ  cos  A 
.-.  sin(A-£)= — gp-   g|p — . • OQ 

jyp  =  cos  QOP= cos  (— B)  =  cosB; 

PQ    QP 
— 7yp  =  7Tp  =  sin  QOP  =  sin  (— B)  =  —  sinP; 

.*.  sin  (A  — 5)  =sin  A  cos  P— cos  A  sin  P. 

cos(A-JB)  =  cosZOP=^p= — gp — =oP~~OP' 
ON 

Now     -^~=cosA;  ,\  ON  =  OQ  cos  A. 

PP 

Also      -pQ  =  cos  7PQ  =  cos  (90° + A)  =  -  sin  A . 
.-.  PR=-PQ  sin  A. 

™     OQ  cos  A     PQ  sin  A 
.*.  cos  (A-P)  = — ^p — + — qp — . 

.*.  cos  (A  —  B)=  cos  A  cos  5+ sin  A  sin  B. 

*  Since  flP=-Pfl. 
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Case  II.    A  and  B  any  angles.    The  methods  of  proof  are 

similar  to  those  shown  in  Art.  31,  Case  II,  and  Note. 

EXAMPLES 

V3-1 
1.  Derive  sin  15°= sin  (45°  -30°) 

2.  Derive  cos  15°=cos  (60°-45°)  = 

2\/2  *
 

V3  +  1 

2V2  
' 

3.  If  cos  A  =  ff  and  cos  B = f ,  find  sin  (A  —  B)  and  cos  (A  —  B) 
when  A  and  B  are  acute  angles. 

4.  If  tan  x  =  f  and  tan  y^^,  find  sin  (x  —  y)  and  cos  (x—y) 
when  x  and  y  are  acute  angles. 

6.  Find  sin  (sin-1  £  —  sin-1  J)  when  the  angles  are  acute. 

Verify  the  following  identities: 

6.  cos  (4+45°)+  sin  (A—  45°)=  0. 

7.  cos  (30°  +  x)  —  cos  (30°  -  x)  =  -  sin  z. 

8.  cos  (x+2/)  cos  (#  —  ?/)  =  cos2  #  — sin2  y. 

9.  sin  (#  +  ?/)  sin  (x  —  y)  =  cos2  y—  cos2  x. 

mg%    sin  (4  ± B)  .     ±       n 
10.   -;   ^  =  tan  A±ttmB. COS  A  COS  Z5 

33.  Fundamental  formulas.  Formulas  (1),  (2),  Art.  31, 

are  called  the  addition  formulas  or  theorems  in  trigonometry; 

formulas  (1),  (2),  Art.  32,  are  called  the  subtraction  formulas 

or  theorems.  These  four  formulas  are  also  called  the  funda- 
mental formulas  of  trigonometry.  For  convenience  they  are 

brought  together: 
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sin  (A  +  B)  =sin  A  cos  B  +  cos  Asia  B.  (1) 

sin  (A  —  B)  =sin  A  cos  B  —cos  A  sin  B.  (2) 

cos  (A  +  B)  =  cos  ̂ 4  cos  B  —sin  ̂ t  sin  B.  (3) 

cos  (4  —  B)  =cos  ^1  cos  JS  +  sin  Asm  B.  (4) 

/n  words :  Of  any  two  angles, 

sine  sum =sine  first  -  cosine  second     + cosine  first  •  sine  second 

sine  difference = sine  first  -  cosine  second     —  cosine  first  -  sine  second 

cosine  sum = cosine  first  -cosine  second— sine  first-  sine  second 

cosine  difference = cosine  first-  cosine  second -\- sine  first- sine  second 

34.  To  deduce  tan  (A  +  B),  ta.n(A-B),  cot  (A  +  B),  cot 
(A-B). 

,.      _     sin(^L+j5)     sin  AcosJ9+cos  Asini? 
ta,n(A+B)  =   ,  A  ,  px  =   1   ^   = — t— -. — n- 
v  cos(yl+i5)     cos  A  cos  #— sin  A  sin  5 

On  dividing  each  term  of  the  numerator  and  the  denom- 
inator of  the  second  member  by  cos  A  cos  B  there  is  obtained 

tan  A  +  tan  B 
tan  (A  +  B)  =  -—   —   -.  (1) v  1  —  tan  ̂ 1  tan  JS  v  ' 

In  a  similar  way  it  can  be  shown  that 

tan  A  —tan  B 
tan  (^  -2?)  =  r—   —   -.  (2) 

1  +  tan  A  tan  B  v  7 

x/i      ™     cos(A+J5)     cos  A  cos  B  —  sin  ̂ 4  sin  5 
cot  (A+B)  =  -. — ;  .  ,  ni=— — -A   ^   t—. — „. sin  (A  +B)     sin  ̂ 4  cos  B+cos  A  sin  5 

On  dividing  each  term  of  the  numerator  and  the  denom- 
inator of  the  second  member  by  sin  A  sin  B  there  is  obtained 

L/.      _.     cot  ̂ 4  cot  5—  1 
cot(A+SHcotj?+cotA.  (3) 

In  a  similar  way  it  can  be  shown  that 
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cot^4cotB  +  l 

™t(A-B)=  cotB_cQtA.  (4) 

EXAMPLES 

1.  If    tanP=2,     tanQ  =  £,     show     that     tan  (P+Q)  =  7, 

tan(P-Q)  =  l. 

2.  Derive  tan  75°  from  tan  45°  and  tan  30°. 

3.  Derive  tan  15°  from  tan  60°  and  tan  45°. 

-r.  /.„,    x     1  +  tanz  1  — tana: 
4.  Prove:  tan  (45°  +  x)  =  - —   ;  tan  (45°— x)  =  -—-   . 1  —  tan.ar  1  +  tanz 

5.  Prove:  cot  (45°  +  z)  = — - — — -;  cot  (45°— x)= —   - cotz+1  cotx— 1 

6.  If  tan  A  =  %,  tan  B= J,  find  tan  (A  +  B)  and  tan  (A-B)„ 

7.  Show  that  tan-1  m+tan-1  n  =  tan~1    . 1  —  tnn 

Let  z  =  tan-1  m,     and     y  =  tsai~1n. 

Then  tanz  =  ra,  tan  y  =  n. 

tan  a:  +  tan  y       m-\-n 
Now     tan  (x  +  y)  = 

1  —  tan  x  tan  ?/     1  —  mn" 
,  m-rn       .  ,  _    m-f  n 

.*.  rr  +  ?/=tan  x-   :     i.e.,     tan  xm  +  tan  xn=tan  x-   . 1  —  mn  1  —  ran 

8.  Show  that     tan-1  m  —  tan-1  n  =  tan-1 
1  +  mn 

9.  Find  tan-1  7  + tan-1  3,  and  tan-1  7  — tan-1  3. 

10.  Find  tan-1  2  + tan"1 -5,  and  cot-1  2  + cot-1 -5. 

35.  To  deduce  sin  2A,  cos  2A,  tan  2A.     On  putting  B  =  A 
in  formulas  (1),  (3),  Art.  33,  there  results: 



86  ELEMENTS  OF   PLANE  TRIGONOMETRY 

sin  2A  =  2  sin  A  cos  A ;  (1) 

cos  2A  =  cos2  A  —  sin2  A ;  (2) 

i.e.,                                       =  1-2  sin2  A*;  (3) 

i.e.,                                     =2  cos2  ̂ 1-1*  (4) 

On  putting  B  =  A  in  formula  (1),  Art.  34: 

2  tan  A 

On  putting    2^1  =  x,     then    A  =  \x\  and  these  formulas 
are  expressed : 

sin  z  =  2  sin  Jz-cos  Jx, 

cos  a:  =  cos2  \x — sin2  Jx, 
etc. 

In  words:    . 

sine  any  angle  =  2  sine  half-angle  •  cosine  half-angle, 

cosine  any  angle  =  (cosine  half-angle)2—  (sine  half-angle)2, 

=  1  —  2  (sine  half-angle)2, 

=  2  (cosine  half-angle)2  —  1 . 

_  2  tangent  half-anqle 

tangent  any  0^-I-^-___j-_. 
EXAMPLES 

1.  Find  cos  22£°  from  cos  45°. 

2cos222i°=l  +  cos45°. 

•    cos»22">-Vll      M-1  +  X/?1  +  U142      S536- 
..  cos   22*  -2V1  +  V^/       2V2    "2X1.4142-*8536' 

/.  cos  22i°=.9239. 

*Sinoecos2   J.  +  sin2A  =  l. 
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2.  (a)  Deduce  sin  22^°  from  cos  45°. 

(b)  Deduce  tan  22£°  from  tan  45°. 

(c)  From  functions  of  180°  derive  sin  90°,  cos  90°,  tan  90°. 

cot2  A-l    . 
3.  Derive  cot  2  A  = 

2  cot  A  ' 3 
4.  Express  cos  3x  and  sin  Sx  in  terms  of  functions  of  —  x. 

ii 

5.  Express  cos  Sx  and  sin  Sx  in  terms  of  functions  of  Qx. 

6.  Express  cos  6x  and  sin  6x  in  terms  of  functions  of  Sx. 

7.  Derive  the  following: 

.      .           .  /l  —cos  OC                                /l  +COS  00 
sm^=\   ;       cos  %ac=yj   ; 2 

-4 

COS  3? tan  hm 
+cos  oc 

8.  Derive  the  following: 

sin  3A  =3  sin  A  —  4  sin3  A\ 

cos  3A  =4  cos3  A  —3  cos  A\ 

n  A     3tan^i-tan3^ tan  3  A  =  — - — —  — . 
1— 3tan2^ 

[Suggestion :  sin  3 A  =  sin  (2 A  +A) 

=  sin  2 A  cos  A  +  cos  2 A  sin  A  =  etc] 

9.  Verify  the  following  identities: 

(1)  cot  A  —  cot2A  =  cosec  2A.    (2)  1  +tan2A  tanA  =  sec  2A. 

,os  I  .    A  ,        A\2     i  ,    .     .    ...      sin2A  . 

v3)  (mn-icos^)  -l±8mi.  (4)  1  +  cos2A  =  tan  A. 



88  ELEMENTS  OF  PLANE  TRIGONOMETRY 

.  .  1  — cos2A  .„  1  +  cosA         J 
(5)  — ■    o^     =tanJ..  (6)  -A — ^ — =cot— . 

sin  2  A  w     sin  4  2 

_     2  tan  4         .  2  —  sec2  A 

(7)  T+t^A=sm2A-    •  (8)-^X-=cos2^' 

(9)  cos4  0 -sin  40  =  cos  20.         (10)  cot  0-tan  0  =2  cot  20. 

/11Nsin20     cos  20  sin  3a:     cos  3a;     _ 
(11)     .    a   -5-=sec  0.  (12)  — -.   =  2. sin  0      cos  0  sin  a;      cos  x 

1-tan*! 
/io\         /i  ^  /1yls,      a;        sin  x        1  —  cos  a: 
(13)  cos^i  =   -r.  (14)  tan— = 

(15)  tan  4a; = 

2A'  2     1  +  cos  x       sin  a; 
1  +  tan2- 

4  tan  a;— 4  tan3  a; 

1  —  6  tan2  x-\- tan4 a; ' 

(16)  sin  4a;=4sina;cosa;— 8  sin3  a;  cos  a; 
=  8  cos3  x  sin  a;— 4  cos  x  sin  a;. 

(17)  cos  4a;=l  —  8  sin2a;  +  8sin4a;=l  —  8  cos2  a; +8  cos4  a;. 

4 
10.   (a)  If  sin  A  =  — ,  calculate  cos  A,  sin  2,4,  cos2A,  tan  2A. o 

2  1 
(6)  If  cos  2A=— ,  prove  tan  ̂ 4=— \/5.    ■ o  o 

1  4 
(c)   If  tan  A  =— ,  prove  cos  2^4  =  +  -. o  o 

36.  Transformation  formulas.  From  formulas  (l)-(4), 
Art.  33,  there  follow,  on  making  the  add  tions  and  sub- 

tractions indicated : 

sin  (A  +  B)  +sin  (A  —B)  =     2  sin  A  cos  B.  (1) 

sin  (A  +  B)  -sin  (A  -B)  =     2  cos  A  sin  JS.  (2) 

cos  (A  +  B)  +  cos  (A-B)=     2  cos  -4  cos  J3.  (3) 

cos  (A  +  jB)  -cos  (A  -B)  =  -2  sin  A  sin  ̂ .  (4) 
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By  this  set  of  formulas  products  of  sines  and  cosines  can 
be  transformed  into  sums  and  differences.    Thus : 

In  words  (reading  the  second  members  first):  Of  any 
two  angles, 

2  sin  one  •  cos  the  other  =  sin  sum  +  sin  difference,*    (1') 

2  cos  one  •  sin  the  other  =  sin  sum — sin  difference,      (2') 

2  cos  one  •  cos  the  other  =  cos  difference  +  cos  sum,       (3') 

2  sin  one  •  sin  the  other  =  cos  difference — cos  sum.      (4') 

On  putting  A+B  =  P, 
A-B  =  Q, 

and  solving  for  A  and  B, 

A  =  h(P  +  Q),      B  =  i(P-Q). 

Formulas  (l)-(4)  then  take  the  forms: 

sin  .P+sin  Q=     2  sin  — ~  cos     9    .  (5) 

sin  JP  -sin  0=     2  cos  —^  sin  -  ̂ .  (6) 

cos  P+cos  #=     2  cos  ̂ —^  cos  — jp*.  (7) 

cos  P  -cos  0=  -2  sin  ̂ ^  sin  ̂ zfi  (8) 

By  this  set  of  formulas  sums  and  differences  of  sines  and 
cosines  can  be  transformed  into  products. 

In  words:    Of  any  two  angles, 

the  sum  of  the  sines=2  sin  half  sum  -cos  half  difference,*      (5') 

the  difference  of  the  sines =2  cos  half  sum-sin  half  difference,         (6') 

*  The  difference  is  taken:  first  angle  — the  second. 
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the  sum  of  the  cosines =2  cos  half  sum  -cos  half  difference,         (70 

the  difference  of  the  cosines  =  —  2  sin  half  sum  •  sin  half  difference.     (8') 

EXAMPLES 

1.  Show  that   ;   -=  —tan  J  (x+y)  tan  h(x— y). 
cos  z  +  cos  y  ■      #        x      f 

cos  z  — cos  y _  —2  sin  4(^  +  2/)  sin  i(x—y) 
cosx+cos?/      2  cos  i(x  +  2/)  cos  ̂  (a?— ?/) 

=  —tan  i(x+y)  tan  K^- 2/)- 

2.  Show  that  2  sin  (A +  45°)  sin  (A -45°)=  sin2  A  -cos2  A. 

2  sin  (A +  45°)  sin  (A  -45°) 

=  cos  (A  +  45°  -  A  -r-  45°)  -cos  (A+45°  +  A-45°), 

=  cos  90° — cos  2 A  =  sin2  A  —  cos2  A . 

a    en.       ̂ i.   ,  sinA  +  sin3A  .-: 
3.  Show  that   r—   _-;  =tan  2A. cos  A  +  cos  34 

sin  A  +  sin  3A     2  sin  £(34+4)  cos  £(34 -A) 

cos  A  +  cos3A_2cos£(3A+A)  cds|(34— 4)' 
sin  2A =   z-r^tan  2A. 
cos2A 

4.  Solve  the  equation    sin  50+ sin  0  =  sin  30. 

.*.  2  sin  3/9  cos  20  =  sin  30.       .'.  sin  30(2  cos  20-1)=  0. 

.'.   (a)  sin  30  =  0;       (b)  2  cos  20-1=0. 

From  (a),  30=0°,  180°,  etc.;   the  general  value  of  30  is  nn 
{n  being  any  integer) . 

717T 

.'.  0  =  0°,  60°,  etc.;  the  general  value  of  0  is  — . o 

From  (6),  cos  20  =  £. 

.-,  20=  ±60°,  etc.;  its  general  value  is  2nn±— . o 

.*.     0=  ±30°,  etc.;  its  general  value  is    ft7r±— . b 
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6.  Transform  each  of  the  following  sums  and  differences 

into  a  product : 

(1)  sin  3z  +  sin  5x.  (2)  sin  74-sin  5A. 
(3)  cos  2x—  cos  6z.  (4)  cos  5x  +  cos  9x. 

(5)  sin  mA  +  sin  nB.  (6)  cos  mx  —  cos  ny. 

(7)  sin  Sx  +  cos  bx.  (8)  cos  4z— sin  2x. 

6.  Transform  each  of  the  following  products  into  a  sum  or 
a  difference : 

(1)  sin  bx  cos  Sx.  (2)  cos  7z  sin  5x. 
(3)  sin  2;c  sin  6x.  (4)  cos  5#  cos  9x. 

(5)  sin  mA  sin  nB.  (6)  cos  nz  cos  my. 
(7)  sin  4z  sin  2x.  (8)  cos  7x  cos  Sx. 

7.  Show  that  the  value  of 

sin  (w+  1)5  sin  (71—1)5+ cos  (n+ 1)5  cos  (n— 1)5 

is  independent  of  n. 
Verify  the  following  identities: 

8.  (a)  sin  (n+ 1)A  +  sin  (n—  1)A  =  2  sin  nA  cos  A. 

(b)  cos  (n+ 1) A  +  cos  (n— 1) A  =  2  cos  nA  cos  A. 

9.  cos  (A  +  5)  cos  A  +  sin  (A  +  5)  sin  A  =  cos  5. 

10.  esc  2A  +  cot  2A  =  cot  A. 

11.  sin  5  A  sin  A  =  sin2  3  A  —  sin2  2  A . 

sin  3z  —  sin  x  sin  A  +  sin  5_tan  i(A  +  B) 

cos3z  +  cosa;  '  sin  A  —  sin  B~ tan  J(A  —  5)' 

sin  (s  +  y)  _  tan  a;  -f  tan  y  cos  (x  +  y)  _  1  —  tan  x  tan  ?/ 

sin  (x— y)     tanz— tan?/'  '  cos  (s— y)~  1  +  tanz tan?/' 
16.  sin  3#+sin  5^=8  sin  x  cos2  x  cos  2x. 

17.  cos  20°  cos  40°  cos  80°=  .125  (without  use  of  tables). 
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18.  Given  tan  A=~,  tan  B=—,  tan  C=-~,  find  tan  (A  +  B+C). Zi  O  o 

Prove  the  following: 

,.     .     /0+     _!  9\      720 

[1  /     24\1         3  
4 

2sin_ll_25/J  =  ±5     and     *fr 

21.  3  sin-1  x=sin_1  (3z— 4x3). 

22.  3  cos-1  x=cos_1  (4z3-3x).  23.  sec"1  3  =  2  cot"1  \/2. 

24.  tan_1a;'  +  tan-1  ?/ + tan_12 =tan_1  % — y -rz—xyz  ̂ 1  —  xy—yz—zx 

26.  sin  1-  +  sin  1— +  sin  1^r=o- 5  13  bo     2 

26.  tan  *  — — r  +  tan  1T-rr-+tan  x  — - — =0. 1  +  ab  1  +  be  1  +  ca 

27.  If  tan  —  =  r,  show  that  sin  A  =  9  ,  ,  9,  sin 2 A  =  — .  9  ,  ,9X9     . 
2  6  a2+o2  (a2  +  62)2 

Solve  the  following  equations: 

28.  cos  0— cos  70  =  sin  4(9.  29.  sin  20+ sin  40=  V2  cos  0. 

30.  sin  2a  +  cos  2a  =1.  31.  sin  2a +  2  cos  2a  =1. 

32.  sin  20 +  2  sin  40  + sin  60  =  0.    33.  4  sin  0  cos  20=1. 

34.  tan-1  2z + tan-1  Sx = -r-.      35.  cos-1  x — sin-1  x = cos-1  xv3. 4 

8 
36.  tan"1  (z+lHtan"1  (z-lHtan"1  — . 

o  i. 

37.  Find  tan  (A  +B+C)  in  terms  of  tan  A,  tan  B,  tan  C 

Thence  show: 

(a)  If  A  +  J5  +  C=   90°, 
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tan  A  tan  5+tan  B  tan  C+tan  C  tan  -4  =  1; 

(6)  If  A  +  B+ C=  180°; 
tan  A  +  tan  B+ tan  C=tan  A  tan  B  tan  C 

38.  Prove  the  following,  given  that  A+B+C =180°: 

(a)  cos  A  +  cos  B+ cos  C=l+4  sin—  sin  —  sin—; Zi  Zi  & 

ABC 

(6)  sin  A  f  sin  £  f  sin  C=4  cos  5-  cos  5"  cos  ~-. 23  «  0 



CHAPTER  VI 

RELATIONS   BETWEEN   THE   SIDES   AND   ANGLES   OF   A 

TRIANGLE 

37.  Notation.    Simple  geometrical  relations. 
Notation: 

In  stating  and  deriving  the  relations  in  Arts.  37^1  the 

triangle  is  denoted  as  ABC,  and  the  sides  opposite  the  angles 

A,  B,  C,  as  a,  b,  c,  rsepectively. 
Simple  geometrical  relations: 

(a)  A  +B +<7= 180°. 
(6)  The  greater  side  is  opposite  the  greater  angle, 

and  conversely. 

38.  The  law  of  sines.  From  C  in  the  triangle  ABC 

draw  CD  at  right  angles  to  opposite  side  AB,  and  meeting  AB 

or  AB  produced  in  D.     (In  Fig.  80  B  is  acute,  in  Fig.  81 

AG    ° 

AD  BV 

Fig.  80. 

A     c    B     D  V 
Fig.  81. 

A     c    BD  V        A^Z^LL/j 
Fig.  82.  Fig.  83. 

B  is  obtuse,  and  in  Fig.  82  B  is  a  right  angle.)     Produce  AB 

to  V.     In  what  follows,  AB  is  taken  as  the  positive  direction. 

94 
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In  CD A,  DC =  b  sin  A. 

In  CDB  (Figs.  80,  81), 

DC  =  a  sin  VBC 

=  a  sin  B. 

In  Fig.  82,  DC=BC=a=a  sin  B  * 

Therefore,  in  all  three  triangles, 

a  sin  5  =  6  sin  A. 

TT  a  b  ,     a     sini 
Hence,  - — r=~ — 5>    and     r  =  ~ — d-  (1) sin  A     sin  £  o     sin  ij 

Similarly,  on  drawing  a  line  from  B  at  right  angles  to 
AC,  it  can  be  shown  that 

a  c  ,     a     sini 
— — t=- — ~,     and     -=- — 79.  (2) sin  A     sin  C '  c     sin  0 

Hence,  in  any  triangle  ABC, 

sin  A     sin  B     sin  (7*  ^ 

In  words:  77ie  sides  of  any  triangle  are  proportional  to 
the  sines  of  the  opposite  angles. 

The  circle  described  about  ABC.  Each  fraction  in  (3) 
gives  the  diameter  of  this  circle.  Let  0  (Fig.  83)  be  its  centre 
and  R  its  radius.  Draw  OD  at  right  angles  to  any  side, 
say  AB.    Then 

AD  =  \c,  AOD  =  C, 

and  AD  =  AO  sin  AOD;    i.e.,     ic  =  R  sin  (7. 

Hence  2R  =  -^—.  (4) 
sin  C  v 

*V     5  =  90°,  and  sin  90°  =  1. 
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39.  The  law  of  cosines.  The  angle  A  is  acute  in  Fig. 
84,  obtuse  in  Fig.  85,  right  in  Fig.  86.  From  C  draw  CD 
at  right  angles  to  AB.     The  direction  AB  is  taken  as  positive. 

In  Figs.  84,  85, 

BC2  =  DC2+DB2. 

In  Fig.  84,    DB  =  AB-AD; 

in  Fig.  85,  DB  =  DA  +AB  =  -  AD+AB. 

Hence,  in  both  figures, 

7lC2  =  DC2  +  (AB-AD)2 

=DC2+AD2+AB2-2AB>AD. 

In  Fig.  84,    AD  =  AC  cos  BAC; 

in  Fig.  85,  AD  =  AC  cos  BAC  (Art.  20). 
Also, 

DC2  +  AD2=1C2. 

D     B 
Fig.  84. 

Hence,  in  both  figures, 

0  B 

Fig.  86. 

BC  =AC  +AB  -2AC-AB  cos  A; 

that  is,  a2  =  b2  +  c2  —  2bc  cos  A.  (1) 

This  formula  also  holds  for  Fig.  86;  for  there, 

cos  .A  =  cos  90° =0. 
Similar  formulas  for  b,  c,  can  be  derived  in  like   manner, 

or  can  be  obtained  from  (1)  by  symmetry,  viz.: 

b2  =  c2  +  a2 — 2ca  cos  B}     c2  =  a2-\-  b2—2ab  cos  C. 
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In  words:  In  any  triangle,  the  square  of  any  side  is  equal 
to  the  sum  of  the  squares  of  the  other  two  sides  minus  twice 
the  product  of  these  two  sides  multiplied  by  the  cosine  of  their 
included  angle. 

Relation  (1)  may  be  expressed  as  follows: 

b2  +  c2  —  a2 
COsA  =  —toc   •  © 

Similarly : 

'    c2+a2-b2  „    a2  +  b2-c2 
cos  B  =   ^   ,  cos  C  ■■ 

2ca      '  2ab      ' 
40.  The  law  of  tangents.  In  any  triangle  ABC,  for 

any  two  sides,  say  a,  b, 
a     sin  A 

b     sin  B' From  this,  on  composition  and  division, 

a— b    sin  A  —  sin  B 
a+b    sin^.+sini? 

2  cos  UA+B)  sin  j(A-B) 

=2smh(A+B)<Msi(A-By      [Art.  36,  (5),  (6).] 
a_j,    tan UA-B) 

A=+h=ib+5£  [Art.  25,  A,  B.]        (1) 

In  words :  The  difference  of  two  sides  of  a  triangle  is  to 
their  sum  as  the  tangent  of  half  the  difference  of  the  opposite 
angles  is  to  the  tangent  of  half  their  sum. 

Now    A+£  =  180°-(7.  /.    i(A+B)=90°~j. 
I         C\  C 

.'.    tan  i(A  +B)  =  tan  ( 90° -^ )  =cot  -. 

Hence,  relation  (1)  may  be  expressed: 
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tan  1(^-2*)  =  ̂   cot  |C. 

41.  Functions  of  the  half -angles  of  a  triangle  in  terms  of 
its  sides.  Let  s  denote  half  the  sum  of  the  sides  of  the  triangte. 
Then 

2s  =  a  +  6+c, 

and  2s— 2a  =  2(s— a)  =  —  a+b+c. 

Similarly,  2(s— b)  =a—  b+c, 

2(s— c)=a+6— c. 

Jj2  4-  q2  —  q2 

By  kit.  39  (2),  cos  A  =  — ^T — . 

By  krt.  35,  2  sin2  £^  =  1 -cos  A, 

2  cos2  JA  =  l+cos  A 

.\     2sin2|A  .'.     2cos2JA 

b2+c2  —  a2  b2+c2—a2 

=  1  26c"  =1+~~2bc 

26c-62-c2+a2  26c  +  62+c2-a2 
26c  26c 

a2-(6-c)2  (6+c)2-a2 
26c  26c 

(a-6+c)(a  +  6-c)  (6+c  +  a)(6+c-a) 
26c  26c 

2(s-6) -20-c)  2s-2(s-a) 

26c  26c       ' 

,.    sin2^=^p*;  (1) 

cos2^^).  (2) 

Since  tan2  JA.  =  sm2  JA-^cos2  J  A,  it  follows  that 
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tan2i^.»-»K«-e),  &) 3  s(s-a)  \°' 

•••    -to^-V^^;     COS^-^S;  (4) 

Similar  formulas  hold  for  J.B,  JC,  viz. : 

•2  id    Q-a)(s-c)  s(s-6) sm2  iB .   _   .  cos2  jS  =  ___. 

tan^a-(87)('7c); 2  s(s-6)      ' 

(s—  a)(s— b) 
tan2  K7  = 

s(s  —  c) 

Formula  (5)  can  be  given  a  more  symmetrical  form. 
For,  on  multiplying  the  numerator  and  denominator  in  the 

second  member  of  (3)  by  (s—a), 

whence  tanM°— \/-"a)"~*)('"'')-  (6) 

then  tanj^  =  -^.  (8) 

r 
Similarly,        tan  \B  =  — r,  tan  JC  =  — - . o       0  S       C 
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The  circle  .nscribed  in  ABC.  The  r  in  the  formulas  above 
is  equal  to  the  radius  of  this  circle.  In  Fig.  87  0  is  the 
centre  of  the  circle,  and  L,  M,  N, 
its  points  of  contact  with  the  sides. 
Let  r  denote  the  radius. 

By  geometry, 

AN  =  MA,    BL  =  NB,     CM  =  LC. 

;.  AN+BL+LG=s,  i.e.,  AN+a  =  s. 

.-.    AN  =  s— a. 

Now 
NO 

tan  \A  =  tan  NAO  =  -Try  =   1  AN    s—a (9) 

Comparison  of  (8)  and  (9)  shows  that  the  r  in  (8)  must 

*  have  the  same  value  as  the  r  in  (9).     Accordingly, 

radius 
ius  r  =  yl- 

&  —  a)(s  —  b)(s  —  c) 
s 

EXAMPLES 

1.  Prove:    (a)  with  a  figure,  (b)  without  a  figure,  that  in 
any  triangle  ABC, 

a=6  cosC+c  cosB; 

and  write  corresponding  formulas  for  b  and  c. 

[Suggestion:    Draw  the  perpendicular  to  BC  or  BC  pro- 
duced.] 

2.  If  the  sines  of  the  angles  of  a  triangle  are  in  the  ratios 
of  13:14:15,  prove  that  the  cosines  are  in  the  ratios  39:33:25. 

3.  In  ABC,  if  a :  b :  c = 8 : 7 : 5,  find  the  angles.- 

4.  The  sides  of  a  triangle  are  proportional  to  the  numbers 
4,  5,  6;  find  the  least  angle. 

a2— b2 5.  Prove  that  a  cos  B—b  cosA=   . 



CHAPTER    VII 

SOLUTION  OF  OBLIQUE  TRIANGLES 

42.  Cases  for  solution.  General  remarks  on  methods  of 

solution.  In  order  that  a  triangle  may  be  constructed, 

three-  elements,  one  of  which  must  be  a  side,  are  required. 
Hence,  there  are  four  cases  for  construction  and  solution, 
namely,  when  the  given  parts  are  as  follows : 

I.  One  side  and  two  angles. 

II.  Two  sides  and  the  angle  opposite  to  one  of  them. 

III.  Two  sides  and  their  included  angle. 

IV.  Three  sides. 

Careful  attention  should  now  be  paid  to  the  remarks 
in  Art.  8  on  the  methods  of  solution  of  triangles  and  to  the 

general  suggestions  made  there  for  solving  problems  and 
checking  results.  These  remarks  and  suggestions  apply 
also  to  the  problems  in  this  chapter. 

Oblique  triangles  can  be  solved  (by  computation)  in 
the  following  ways : 

(a)  By  dividing  them  conveniently  into  right-angled 
triangles,  solving  these  triangles,  and  combining  the  results. 

This  method  is  not  discussed  here,  but  is  left  as  an 
exercise  for  the  student.  Full  details  are  in  Murray,  Plane 

Trigonometry,  Art.  34. 

(&)  By  means  of  certain  relations  in  Chap.  VT,  logarithms 
not  being  used. 

101 
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(c)  By  means  of  certain  relations  in  Chap.  VT,  logarithms 
being  used. 

Cases  I-IV  are  solved  in  manner  (6)  in  Arts.  43-46; 
these  cases  are  solved  in  manner  (c)  in  Arts.  48-50. 

43.  Case  I.  Given  one  side  and  two  angles.  In  triangle 
ABC,  suppose  that  A,  B,  a  are  known;  it  is  required  to 
find  C,  b,  c.    In  this  case  (see  Fig.  80,  Art.  38), 

(7=180°-  (A+B); 

b  a  a       .    _ 
- — 5  =  — — j,    whence     b  =  - — r-'SinB: 
smB    sin  A'  sin  A  ' 

whence     c  =  - — T  •  sin  C. 
sin  C    sin  A'  sin  A 

b  c 
Checks:    a2  =  b2+c2— 2  be  cos  A:    - — „  =  - — r\    or  other 

1    sin  B    sin  A ' 
results  in  Chap.  VI  which  have  not  been  used  in  the  solution. 

EXAMPLES 

1.  Solve  the  triangle  PQR,  given: 

PQ=  12  in.,  Solution:  *  R= 

Q=40°,  PR= 

P=75°.  RQ= 

R=  180°-  (P+Q)  =  180°-  (40° +75°)  =  65°. 

PR     _PQ_  RQ       PQ 

sin  Q    sin  R'  sin  P    sin  R' 

.\  P#=-£%.sinQ,  #Q=-^%.sinP, sin  R  '  sin  R  ' 

sin  40°,  =  .    .go •  sin  75°, sin  65°  '  sin  65° 

*  Results  to  be  written  here. 
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19  12 

^X'6428'  =:9063X-9659< 

=  13.24  X. 6428,  =  13.24 X  9659, 

=  8.51  in.  =12.8  in. 

Check:  Take  some  relation  of  Chap.  VI  not  involving  PQ, 

P,  Q,  as  above;  e.g.: 

PR     sin  Q 

RQ~ sin  P' 
According  to  this, 

8.51_sin40°_.6428> 

12.8  ~  sin  75°  ~~. 9659' 

which  gives,  on  multiplying  up, 

8.2198  .  .  .  =8.2281. 

This   shows   that   the   results    are    very   nearly    accurate. 

They  are  as  accurate  as  can  be  obtained  with  four-place  tables. 
Another  check:  Ex.  Use  relation  (1),  Art.  40,  as  a  check. 

2.  In  ABC,  A  =  50°,  5=75°,  c  =  60  in.     Solve  the  triangle. 

3.  In  ABC,  ,4  =  131°  35',  B=30°,  6  =  5J  ft.     Find  a. 

4.  In  ABC,  B  =  70°  30',  0  =  78°  10',  a=  102.  Solve  the  tri- 
angle. 

5.  In  ABC,  B=98°  22',  C=41°  1',  a  =  5.42.  Solve  the  tri- 
angle. 

44.  Case  II.  Given  two  sides  and  an  angle  opposite  to  one 

of  them.  In  the  triangle  ABC  let  a,  b,  A  be  known,  and 

C,  B,  c  be  required.     The  triangle  will  first  be  constructed 
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with  the  given  elements.  At  any  point  A  of  a  straight 
line  LM,  unlimited  in  length,  make  angle  MAC  equal  to 
angle  A,  and  cut  off  AC  equal  to  b.  About  C  as  a  centre, 
and  with  a  radius  equal  to  a,  describe  a  circle.  This  circle 
will  either: 

(1)  Not  reach  to  LM,  as  in  Fig.  88. 
(2)  Just  reach  to  LM,  thus  having  LM  for  a  tangent, 

as  in  Fig.  89. 
(3)  Intersect  LM  in  two  points,  as  in  Figs.  90,  91. 

h 0 
a                      / 

A V a 

f       c   

A  B 
Fig.  89. 

M 

L     J3,\  A        D 

Fig.  90. 

B  M By — B-   B     M 
Fig.  91. 

Each  of  these  possible  cases  must  be  considered.  In 
each  figure,  from  C  draw  CD  at  right  angles  to  AM;  then 
CD  =  b  sin  A. 

In  case  (1),  Fig.  88,  CB<CD,  and  there  is  no  triangle 
which  can  have  the  given  elements.  Hence  the  triangle  is 
impossible  when  a<b  sin  A. 

In  case  (2),  Fig.  89,  CB  =  CD.  Hence,  the  triangle  which 
has  elements  equal  to  the  given  elements  is  right-angled  when 
a  =  b  sin  A. 
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In  case  (3),  Figs.  90,  91,  CB>CD;  that  is,  a>b  sin  A. 

If  a>b,  then  the  points  B,  B%,  in  which  the  circle  inter- 
sects LM,  are  on  opposite  sides  of  A,  as  in  Fig.  90,  and 

there  is  one  triangle  which  has  three  elements  equal  to  the 

given  elements,  namely,  ABC.  If  a<b,  then  the  points 
of  intersection  B,  Bi}  are  on  the  same  side  of  A,  as  in  Fig. 
91,  and  there  are  two  triangles  which  have  elements  equal  to 
the  given  elements,  namely,  ABC,  ABXC.  For,  in  ABC, 

angle  BAC  =  A,  AC  =  b,  BC=a;  in  ABXC,  angle  B1AC=A, 
AC  =  b,  BiC  =  a.  Both  triangles  must  be  solved.  In  this 
case,  Fig.  91,  the  given  angle  is  opposite  to  the  smaller  of 
the  two  given  sides.  Hence,  there  may  be  two  solutions  when 

the  given  angle  is  opposite  to  the  smaller  of  the  two  given 

sides.*  Accordingly  case  II  is  sometimes  called  the  ambigu- 
ous case  in  the  solution  of  triangles. 
Checks:    As  in  Case  I. 

EXAMPLES 

1.  Solve  the  triangle  STV,  given:  ST=15,  VT=\2,  £=52°. 

sin  F_sin  S 

sin  V_ sin  52°_. 7880  , 

15  12     ~    12   * 
V.  sin  V=. 9850. «         v\       v 

.•.  7=80°  4',    or    180°-80°4',    i.e.,     99°  56'.  Fig.  92. 

Both  values  of  V  must  be  taken,  since  the  given  angle  is 
opposite  to  the  smaller  of  the  given  sides.     The  two    triangles 

*  Summary.  When  the  given  angle  is  opposite  to  the  smaller  of  the 
two  given  sides  there  may  be  no  solution  as  in  Fig.  88,  or  one  solution 
as  in  Fig.  89,  or  two  solutions,  as  in  Fig.  91. 

When  the  given  angle  is  opposite  to  the  greater  of  the  two  given  sides 
there  is  one  solution,  as  in  Fig.  90. 
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corresponding  to  the  two  values  of  V  are  STV,  STVi,   Fig.  92, 
in  which 

SVT =80°  4';      SViT=99°  56'. 

In  STV i\  In  STV: 

angle  STVi  =  180°-  (S+aSFiT1)    angle  aSTF=  180°-  (S-f  SF77) 

=   28°  4'. 
=  47°  ! 

56'. 

S\\        VXT\ 

emSTVi    am  8' 

SV          VT 

sin  STV    sinS' 
SVi        12 

.4705     .7880' 
SV  t      12 

.7423". 7880' 
.-.  £Fi  =  7.165. /.  £7=11.3. 

The  solutions  are: 

7i  =  99°56' 
7=80°    4'  ' STV1  =  2S°    4' aS77F=47°56' 

. 

SVi  =  7.165     J £7=11.3       J 

Check:  Of  several  possible  checks  use  relations  (1),  Art.  40. 

InSTVi:  In  STV: 

ViT-SVi^fmHS-STVj)  VT-SV  _txn  j(S-STV) 

Vrf+SV^taxLHS+STVi)'  VT+SV~ tan  l(S+ STV)' 
On  substituting  the  values  above  there  comes, 

4.835      tan  11°  58'  .7       tan    2°    2' 

19.165     tan  40°    2r 

4.835      .2100 23.3     tan  49°  58'* .7 .0355 

19.165     .8401'  23.3     1.1904* 

From  these,  on  clearing  fractions, 

4.0619=4.0246,  .83328=  .82715. 

N.B.  Had  five-place  or  six-place  tables  been  used,  the  cal- 
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culated  values  would  have  approximated  still  more  closely  to 
absolute  correctness. 

This  shows  that  the  values  found   very  nearly  satisfy  the 

check,  and  accordingly  closely  approximate  to  correctness. 

2.  Solve  ABC,  given:  a  =  29  ft.,  6  =  34  ft.,  ,4  =  30°  20'. 

3.  Solve  ABC  when  a  =  30  ft.,  6  =  24  ft.,  £  =  65°. 

4.  Solve  ABC  when  a  =  30  in.,  6  =  24  in.,  A  =  65°. 

5.  Solve  ABC  when  a=15  ft.,  6=   8  ft.,  5  =  23°  25'. 

45.  Case  III.     Given  two  sides  and  their  included  angle. 

In  the  triangle  ABC,  a,  6,  C,  say,  are  known,  and  it  is  required 

to  find  A,  B,  c.     In  this  case,  c  can  be  deter- 
p  mined  from  the  relation 

c2  =  a2+b2  —  2ab  cos  C; 

angle  A  can  be  determined  from  the  relation 

b  sin  A     sin  C 

a  c    ' 

angle  B  can  be  determined  from  the  relation 

^     ̂      .  ™  «       ,        sin  1?    sin  C 
,4+£  +  C  =  180,°  or  from  — ,—  =   . 6  c 

Checks:   Any  relations  in  Chap.  VI  which  have  not  been 
used  in  the  above  solution. 

EXAMPLES 

1.  In  triangle  PQR,  p  =  8ft.,   r=10ft.,   Q  =  47°.     Find  q, 
P,  R-  n 

q2  =  p2  +  r2  —  2pr  cos  Q 

=  64  + 100  -  2  X  8  X 10  X  ,6820  =  54.88. 

•••  3=7-408.  *  F;-;4.  « 
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sin  p_£*S_*K|M*_  p=520 
5  7.408 

sin  B  =  r  ™_«  =10Xf7|14  =  .9873.  .-.  iJ=80o  50'. q  7.408 

Cftec/b:  Of  the  available  checks  use  P+Q  +  #=180°. 

Here  52°  10'  +47° + 80°  50'  =  180° ; 

and  the  test  is  thus  satisfied. 

2.  Solve  ABC,  given:  a  =  34  ft.,  6  =  24  ft.,  C=59°  17'. 

3.  Solve  ABC,  given:  a=33  ft.,  c=30  ft.,  5=35°  25'. 

4.  Solve  RST,  given:  r=30  ft.,  s=54  ft.,  77=46°. 

5.  Solve  PQ#,  given:  p=  10  in.,  g=  16  in.,  #=97°  54'. 

46.  Case  IV.  Three  sides  given.  If  the  sides  a,  b,  c  are 

known  in  the  triangle  ABC,  then  the  angles  A,  B,  C  can 

be  found  by  means  of  the  relations  (2),  Art.  39,  or  the 
relations  in  Art.  41. 

Checks:  Any  relations  in  Chap.  VI  which  have  not  been 
used  in  the  solution. 

EXAMPLES 

1.  In  ABC,  a=4,  6  =  7,  c=10;  find  A,  B,  C. 

fr2  +  c2_a2    49+100-16      133       Q_nn     .     ,      1R019, 

CQS^  =  ̂ 6^-=    2X7X10    =-14Q-=-950a   '•  ̂  =  18°12' 

c2+a2_52     lop -f- 16-49       67        QQ(__ 
C0Sjg=— 2^— =    2X10X4    =^0"=-8375- 

.-.  rB=33°    7'.5 

a2  +  62-c2     16  +  49-100     -35         cocn 
C0SC=— 2^~=     2X4X7     =^^=-6250- 

.'.  C=128°40'.8 
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Angle  C  is  in  the  second  quadrant  since  its  cosine  is  negative. 

Check:   18°  12'+33°  7'.5  + 128°  40'.8=180° 

^ii«N     0'.3.     The  discrepancy  is  due  to  the  fact  that 
*^*^      ̂ s   four-place  tables  were  used  in  the  computation. A  C  i  10  R 

F      gr  Had    five-place    tables    been    used,    the    dis- 
crepancy would  have  been  less. 

2.  In  PQR,  p=  9,  ̂  =  24,  r  =  27.  Find  P,  Q,  R. 

3.  In  RST,  r=21,  s  =  24,  t  =  27.  Find  R,  S.  T. 

4.  In  ABC,  a  =12,  6  =  20,  c  =  28.  Find  A,  5,  C. 

6.  In  4£<7,  a  =  80,  6  =  26,  c  =  74.  Find,  A,  £,  C. 

6.  Solve  Ex.  1,  using  five-place  tables. 

7.  Solve  several  of  Exs.  1-5,  using  relations  in  Art.  41. 

47.  Use  of  logarithms  in  the  solution  of  triangles.    If 

logarithms  are  not  employed  all  the  relations  in  Arts.  38-41 
are  available  for  the  solution  of  triangles.  If  logarithms 

are  employed,  only  those  relations  which  are  adapted  to 
logarithmic  computation  can  be  used,  viz.,  the  relations  in 

Arts.  38,  40,  41.  The  relations  in  Art.  39  are  not  adapted 
for  logarithmic  computation. 

The  examples  worked  in  Arts.  48-50  will  give  sufficient 
explanation  of  how  logarithms  are  used  in  the  solution  of 
triangles. 

48.  Cases,  I,  II,  logarithms  used. 

EXAMPLES 

1.  In  ABC,  given:  a =447,     To  find:  £=  (Write the  results 

6=576,  C=        here.) 

.4  =  47°  35'.  c= 
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Since  a<b,  there  may  be  two   solutions. 
Construction  shows  there  are  two  solutions. 

Formulas:    sin  ABC=  —  sin  A  =  sin  AB\C.  , a 

ACB  =  180°-  (A  +  ABC). 

ACBX  =  180°-  (A  i-ABiC). 

AB=-J—r  sin  ACB.  AB^-^-j  sin  ACB^ sin  A  smA 

/.  log  sin  ABC=\og  b  +  log  sin  A  —  log  a  =  log  sin  ABiC; 

log  A  B  =  log  a  +  log  sin  A  CB — log  sin  A ; 

log  ABi  —  log  a  +  log  sin  ACB\  —  log  sin  A. 

loga  =  2.65031 

log  6=2.76042 

log  sin  A  =  9.86821  -10 

.*.  log  sin  5=9.97832-10 

/.  ABC =72°  2'  45"  and  A#iC=  107°  57'  15" 

.;.  ,408  =  60°  22'  15"  .'.  ACB1  =  24°  27'  45" 

log  sin  ACB=  9.93914- 10         log  sin  ACBX  =  9.61710-10 

/.  log  ̂ £=2.72124  .'.  log  ̂ ^  =  2.39920 

/.  ,45  =  526.3  /.  AB1  =  250.7 

In  obtaining  log  AB}  for  instance,  log  sin  ACB  may  be 
written  on  the  margin  of  a  slip  of  paper,  placed  under  log  a,  the 
addition  made,  log  sin  A  placed  beneath,  and  the  subtraction 
made. 

Solve  the  triangle  ABC  when  the  following  elements  are 

given,  and  check  the  results: 

2,  4  =  63°  48',  £=49°  25',  a=825ft, 
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3.  B=  128°  3'  49",  C=33°34'47",  a=240ft. 

4.  4  =  78°  30',  6  =137  ft.,  a =  65  ft. 

6.    a=275.48,  6=350.55,  5=60°  0' 32". 

6.  c=690,  a=464,  A  =  37°20'. 

7.  a=690,  6=1390,  A  =  21°  14'  25". 

49.  Case  III,  logarithms  used. 

EXAMPLES 

1.  In  triangle  ABC,  given:  6  =  472, 
c=324, 

A  =  78°  40'. 
6 

Formulas: tani(£-C)=-r—  cot  \A. b  +  c 

i(5+C)  =  90°-J^. 

B=%(B+C)+i(B-C). 

C=i(B+C)-i(B-C). 

A     C-  324    B 
Fig.  97. 

a 6  sin  A c  sin  ̂ 4 

or   = 
sin  B  '  sin  C  ' 

logtan£(£-CO=log(&-c)+logcot£A-log(&  +  c), 

log  a  =  log  6  +  log  sin  A—  log  sin  B;    or 

=  log  c  +  log  sin  A  —  log  sin  C. 

log  (b-c)  -  2.17026  log  6=2.67394 

log  (6+c)  =  2.90091  log  sin  A  =9.99145-10 

log  cot  \A  =10.08647-10  log  sin  5=9.95160-10 

6=472 

c=324 

A  =78°  40' 

6-c=148     .* 

6+c=796 

*A=39°20' 

logtan  £(£-<?)  =  9.35582-10 

.*.  £(£-(7)  =12°  47'  1" 

£(£+<?)  =50°  40' 

/.  5=63°  27' 1" 

,\  C=37°  52'  59" 

log  a =2.71379 .'.  a =51 7,30 
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Check:  a  =  c  sin  A-r-sin  C. 

Solve  the  following  triangles  and  check  the  results: 

2.  ABC,  given  6  =  352,  a  =  266,  C=73°. 

3.  PQR,  given  p=91.7,  g=31.2,  #=33°  7'  9". 

4.  A£C,  given  a=960,  6  =  720,  C=25°  40'. 

5.  ABC,  given  6=9.081,  c  =  3.6545,  4  =  68°  14'  24". 

50.  Case  IV,  logarithms  used. 

EXAMPLES 

1.  In   triangle   ABC,    a=25.17,    6  =  34.06, 
c=22.17.     Find  A,  B,  C. 

Formulas:        r=  >-*>(«
-&>(«-*). 

1  s 

r  r  
r  A    C-22.17^ 

tan  iA  =   ;     tan  J5  =   r ;     tan  \C = — -  Fig.  98. s— a  s— o  s  —  c 

.'.  logr=i[log  (s—a)  +log  (s-6)+log  (s—c) -logs], 

log  t  an  £  A  =  log  r — log  (s — a) ;       log  tan  i# = log  r — log  (s — 6)  ; 

log  tan  ̂ C=log  r— log  (s—c). 

Check:  A  +5+0=180°. 

a=25.17  log  s=  1.60959     logtaniA=   9.64465-10 

6  =  34.06      log  (s-a)  =  1.19117  JA  =  23°  48'  28" 

c  =  22.17      log  (s-6)=0.82217      log  tan  %B=  10.01365- 10 

2s=81.40      log  (s-c)  =  1.26788  £5=45°  54' 

s=40.70  logtaniC=   9.56794-10 
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s-a=15.53        .*.  logr2=1.67163  iC=20°  17'  35" 

s-6  =   6.64         .\  logr=0.83582 

s-c=  18.53         .'.  A  =  47°  36'  56",  5=91°  48',  C=40°35'  10" 

Check:  A  +  B+C=180°  0'  6". 

Solve  the  following  triangles  and  check  the  results: 

2.  ABC,  given  a  =  260,  6  =  280,  c  =  300. 

3.  ABC,  when  a  =  26. 19,  6  =  28.31,  c  =  46.92. 

4.  PQR,  given  p  =  650,  ?=736,  r=914. 

5.  RST,  given  r=1152,  s=2016,  Z  =  2592. 

51.  Problems  in  heights  and  distances.  Some  problems  in 

heights  and  distances  have  been  solved  in  Art.  11  by  the 

aid  of  right-angled  triangles.  Additional  problems  of  the 

same  kind  will  now  be  given,  in  the  solution  of  which  oblique- 
angled  triangles  may  be  used.  It  is  advisable  to  draw  the 

figures  neatly  and  accurately.  The  graphical  method  should 

also  be  employed. 

EXAMPLES 

1.  Another  solution  of  Ex.  2,  Art.  11. 

In  the  triangle  ABP  (Fig.  23),  AB=  100  it,  BAP=Z0°, 
P£A  =  180°-45o=135°.  Hence  the  triangle  can  be  solved, 
and  BP  can  be  found.  When  BP  shall  have  been  found,  then 

in  the  triangle  CBP,  BP  is  known  and  CBP= 45°;  hence  CP 
can  be  found.     The  computation  is  left  to  the  student. 

2.  Another  solution  of  Ex.  3,  Art.  11.  In  the  triangle 

CBP  (Fig.  24),  £P=30ft.,  BCP=40°  20,-38°  20r=2°, 
PBC  =  90°  +  LCB=  128°  20'.  Hence  CBP  can  be  solved  and 
the  length  of  CB  can  be  found.  When  CB  shall  have  been 

found,   then,   in   the  triangle  LCB,  angle  C=38°  20',    CB   is 
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known,  and  hence  LB  can  be  found.    The  computation  is  left 
to  the  student. 

3.  Find  the  distance  between  two  objects  that  are  invisible 
from  each  ̂ ther  on  account  of  a  wood,  their  distances  from  a 

station  at  which  they  are  visible  being  441  and  504  yd.,  and  the 

angle  at  the  station  subtended  by  the  distance  of  the  objects 

being  55°  40'. 

4.  The  distance  of  a  station  from  two  objects  situated  at 

opposite  sides  of  a  hill  is  1128  and  936  yd.,  and  the  angle 

subtended  at  the  station  by  their  distance,  is  64°  28'.  What 
is  their  distance? 

6.  Find  the  distance  between  a  tree  and  a  house  on  oppo- 
site sides  of  a  river,  a  base  of  330  yd.  being  measured  from 

the  tree  to  another  station,  and  the  angles  at  the  tree  and 

the  station  formed  by  the  base  line  and  lines  in  the  direction 

of  the  house  being  73°  15'  and  68°  2',  respectively.  Also  find 
the  distance  between  the  station  and  the  house. 

6.  Find  the  height  of  a  tower  on  the  opposite  side  of  a 
river,  when  a  horizontal  line  in  the  same  level  with  the  base 
and  in  the  same  vertical  plane  with  the  top  is  measured  and 

found  to  be  170  ft.,  and  the  angles  of  elevation  of  the  top  of 

the  tower  at  the  extremities  of  the  line  are  32°  and  58°,  the 

height  of  the  observer's  eye  being  5  ft. 

7.  Find  the  height  of  a  tower  on  top  of  a  hill,  when  a  hori- 
zontal base  line  on  a  level  with  the  foot  of  the  hill  and  in 

the  same  vertical  plane  with  the  top  of  the  tower  is  measured 

and  found  to  be  460  ft. ;  and  at  the  end  of  the  line  nearer 
the  hill  the  angles  of  elevation  of  the  top  and  foot  of  the 

tower  are  36°  24',  24°  36',  and  at  the  other  end  the  angle  of 

elevation  of  the  top  of  the  tower  is  16°  40'. 

8.  A  church  is  at  the  top  of  a  straight  street  having  an 

inclination  of  14°  10'  to  the  horizon;  a  straight  line  100  ft. 
in  length  is  measured  along  the  street  in  the  direction  of  the 
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church;  at  the  extremities  of  this  line  the  angles  of  elevation 

of  the  top  of  the  steeple  are  40°  30',  58°  20'.  Find  the  height 
of  the  steeple. 

9.  The  distance  between  the  houses  C,  D,  on  the  right 
bank  of  a  river  and  invisible  from  each  other,  is  required. 
A  straight  line  A B,  300  yd.  long,  is  measured  on  the  left  bank 
of  the  river,  and  angular  measurements  are  taken  as  follows: 

ABC=53°  30',  CBD  =  45°  15',  CAD  =  37°,  DAB=58°  20'. 
What  is  the  length  CDT 

10.  A  tower  CD,  C  being  the  base,  stands  in  a  horizontal 

plane;  a  horizontal  line  AB  on  the  same  level  with  the  base 
is  measured  and  found  to  be  468  ft.;  the  horizontal  angles 

BAC,  ABC,  are  equal  to  125°  40',  12°  35',  respectively,  and 
the  vertical  angles  CAD,  CBD,  are  equal  to  38°  20',  11°  50', 
respectively.  Find  the  height  of  the  tower  and  its  distances 
from  A  and  B. 

11.  A  base  line  AB  850  ft.  long  is  measured  along  the 
straight  bank  of  a  river;  C  is  an  object  on  the  opposite  bank; 

the  angles  BAC,  ABC,  are  observed  to  be  63°  40',  37°  15', 
respectively.     Find  the  breadth  of  the  river. 

12.  A  tower  subtends  an  angle  a  at  a  point  on  the  same 
level  as  the  foot  of  the  tower  and,  at  a  second  point,  h  feet 
above  the  first,  the  depression  of  the  foot  of  the  tower  is  /?. 
Show  that  the  height  of  the  tower  is  h  tan  a  cot  /?. 

13.  The  elevation  of  a  steeple  at  a  place  due  south  of  it 

is  45°;  at  another  place  due  west  of  the  steeple  the  elevation 
is  15°.  If  the  distance  between  the  two  places  be  a,  prove 
that  the  height  of  the  steeple  is 

a(V3-l)--2\/2. 

14.  The  elevation  of  a  steeple  at  a  place  due  south  of  it 

is  45°;     at  another  place  due  west    of    the    first    place    the 
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elevation  is    15°.     If  the   distance   between   the   two  places 
be  a,  prove  that  the  height  of  the  steeple  is 

a(\/3~-l)-f-2>/3. 

15.  The  elevation  of  the  summit  of  a  hill  from  a  station  A 

is  a ;  after  walking  c  feet  toward  the  summit  up  a  slope  inclined 
at  an  angle  fi  to  the  horizon  the  elevation  is  y.  Show  that 

the  height  of  the  hill  above  A  is  c  sin  a:  sin  (y— /?)  cosec  (y— a)  ft. 



CHAPTER  VIII 

MISCELLANEOUS   THEOREMS 

52.  Area  of  a  triangle.     The  area  of  ABC  is  required. 

Let  the  length  of  the  perpendicular  DC  from  C  to  AB,  or 

A  D      B 
Fig.  99. A         o Fig.  100. 

AB  produced,  be  denoted  by  p,  the  semi-perimeter  by  s, 
and  the  area  by  S.    The  following  cases  may  occur: 

I.  One  side  and  the  perpendicular  on  it  from  the  opposite 
angle  known,  say  (c,  p). 

S=fap.  (1) 

II.  Two  sides  and  their  included  angle  known,  say,  b,  c,  A. 

S  =  icp  =  ic- AC  sin  BAC. 

(2) 

Similarly,        S  =  \ca  sin  B  =  \ab  sin  C. 

Problems  which  do  not  fall  under  Cases   I  or  II  or  III 

directly  may  be  solved  on  finding  a  perpendicular  or  a  side 
or  an  angle. 117 

S  =  ±bc  sin  A. 
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Eg.  Let  a,  A,  B,  C,  be  known. 

a  sin  B 
Now  S=iab  sin  C.     But  6  = sin  A 

0     ,   «,  sin  C  sin  B 
smi 

III.  Three  sides  known. 

S  =  \bc  sin  A  =  \bc  ■  2  sin  %A  cos  \A 

=  oc    /O-&)Q-<0    Ms -a) \         6c  \     6c     ' 

.-.    >S=  V»(s-  a){8-  b){s-c).  (3) 

EXAMPLES 

1.  Find  the  area  of  the  following  triangles : 

(a)  ABC  in  which  a=30  ft.,  6=36  ft.,  c=44  ft. 

(6)  PQR  in  which  p=22  ft.,  g=31  ft.,  r=43  ft. 

2.  Find  the  area  of  the  following  triangles : 

(a)  ABC  in  which  a=37  ft.,  6  =  53  ft.,  C=43°. 

(6)  PQR  in  which  ?=23  ft.,  r=48ft.,  P=65°. 

3.  An  isosceles  triangle  whose  vertical  angle  is  78°  contains 
400  sq.yd.;  find  the  lengths  of  the  sides. 

4.  Find  two  triangles  each  of  which  has  sides  63  and  55  ft. 

long,  and  an  area  of  874  sq.ft. 

6.  Two  roads  form  an  angle  of  27°  10'.  At  what  distance 
from  their  intersection  must  a  fence  at  right  angles  to  one 

of  them  be  placed  so  as  to  inclose  an  acre  of  land? 

6.  The  angles  at  the  base  of  a  triangle  are  22°  30'  and  112° 
30',  respectively:  show  that  the  area  of  the  triangle  is  equal 
to  the  square  of  half  the  base. 

63.  Area  of  a  circular  sector.     Let  r  be  the  radius  of  the 
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circle  and  0  the  number  of  radians  in  the  angle  of  the  sector 
B       AOB.    Now 

area  of  sector       angle  AOB        0  radians 

area  of  circle     4  right  angles  ~2n  radians' 
area  of  sector     6 i.e., 

nr2  2n 

area  of  sector  =ir20. 

This  formula  is  not  true  unless  the  angle  is  measured  in 
radians. 

* 

Otherwise:     Area  sector  =  \r  •  arc  AB. 

Now  arc  AB  =  rd.  [Art.  18  (5).] 

.*.  area  sector =\r2d. 

EXAMPLES 

1.  Draw  the  following  sectors  and  calculate  their  arcs  and 
areas: 

(a)  Radius  =10  in .,  angle =§  radian. 
(6)   Radius =24  in.,  angle  =1J  radians. 
(c)  Radius  =18  in.,  angle  =  2  radians. 
(d)  Radius  =  20  in.,  angle  =  4^  radians. 

2.  The  arc  of  a  sector =24  in.  and  its  angle  =  |  radian: 
find  the  radius  and  the  area  of  the  sector. 

3.  The  area  of  a  sector  is  124  sq.in.  and  its  angle  is  2  radians: 
find  the  lengths  of  its  radius  and  arc. 

4.  The  area  of  a  sector  is  236  sq.in.  and  its  arc  =  32  in.: 
find  the  radius  and  the  angle  of  the  sector  in  radians  and  in 

degrees. 

54.  Circles  connected  with  a  triangle.  A.  The  circum- 
scribing circle.     Let  S  denote  the  area  of  the  triangle  ABC 
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and   R   the  radius  of  its   circumscribing  circle.     Then  by 
Art.  38  (3),  (4), 

n= 

a 

2sinA     2sinlT  2  sin  C 

2S 

(1) 

From  (2),  Art.  52,  sin  A  =  j—.     Substitution  of  this  in  the 
first  of  equations  (1),  gives 

abc 

K  = 

&T 
(2) 

B.  The  inscribed  circle.      Let  the 

radius  of  the  circle  inscribed  in  a  tri- 

angle ABC  be  denoted  by  r.  Join 
the  centre  0  and  the  points  of  contact 

L,  M,  N.  By  geometry,  the  angles 

at  L,  M,  N  are  right  angles.  Draw  A 
OA,  OB,  OC. 

Area  BOC  +  area  CO  A 

+ area  AOB  =  area  ABC. 

N 
Fig.  102. 

i.e., 

.'.  %ar  +  %br  +  \cr  =  y/s{s— a)(s— b)(s— c),  or  S. 

.'.  %(a  +  b+c)r  =  S,      ' 

r 
VS~U   l«  —  b   :-S  — 

 C>   s   

(3) 

This  was  shown  in  another  way  in  Art.  41. 

C.  The  escribed  circle.     An  escribed  circle  of  a  triangle  is 
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a  circle  that  touches  one  of  the  sides  of  the  triangle  and 

the  other  two  sides  produced. 
Let  ra  denote  the  radius  of  the 

escribed  circle  touching  the  side  BC 

opposite  to  the  angle  A.  Join  the 

centre  Q  and  the  points  of  contact 

L,  M,  N.  By  geometry,  the  angles 

at  L,  M,  N  are  right  angles.  Draw 

QA,  QB,  QC. 

B   N 
Fig.  103. 

Area  ABQ  +  area  CAQ— area  BCQ  =  area,  ABC, 

.'•  hrac  +  irab  —  iraa  =  S, 

.'.  %(c  +  b— a)ra  =  S; 

(s—a)ra=S. 

S 

i; 

a 

Similarly, 

rb 

S S 

s-b' 

s—c 

EXAMPLES 

1.  Find    the    radii    of   the    inscribed,    circumscribed,    and 
escribed  circles  of  the  following  triangles: 

(a)  ABC  in  which  a  — 22  in.,  6  =  35  in.,  c=43  in. 

(b)  PQR  in  which  p=  10  in.,  q=  13  in.,  r=   8  in. 

(c)  RST  in  which  r=32  in.,  s  =  40  in.,  t  =  o0  in. 

2.  Prove  that  in  an  equilateral  triangle  the  radii  of  the 
inscribed,  circumscribed,  and  escribed  circles  are  as  1:2:3. 

3.  The  sides  of  a  triangle  are  17  in.,  25  in.,  36  in.;    show 
that  the  radii  of  the  escribed  circles  are  as  21:33:154. 
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4.  Prober  (a)  ra  +  rb  +  rc— r=4R;       (b)  Vr-ra-rh-~r^=S. 

5   Prove-  (a)  1+1+1  =  1;  (b)  Rr- 
rb     rc     r'  4(aH-6  +  c)' 

(c)  r=4/c  sin  —  sin  —  sin  — . Z  Z  Z 

6.  Prove  ra  cot  —  =  rb  cot  —  =  rc  cot  -  =  r  cot  —  cot  —  cot  - 

=  4/c  cos  —  cos  —  cos  — . 
Zd  Zi  Zi 

a  A  A 
7.  Prove  R  =  k~ -• — j,  r=(s— a)  tan  — ,  ra  =  stan— .     Writ© —  sin .  i  Zi  z      ■ 

two  other  similar  formulas  for  R  and  r.     Write  similar  formulas 

for  rb  and  rc. 

B   .    C 
■  SI] 

~A 

a  sin  —  sin  — 
8.  Prove    r=   -.   .     Write    two    similar  formulas 

involving  b,  c. 

cos  2 

9.  (a)  Show  that  the  area  of  a  regular  polygon  inscribed 
in  a  circle  is  a  mean  proportional  between  the  areas  of  an 

inscribed  and  circumscribing  polygon  of  half  the  number  of 

sides,  (b)  The  sides  of# a  triangle  are  as  2:3:4;  show  that  the 
radii  of  the  escribed  circles  are  as  £:J:1. 

10.  If  the  altitude  of  an  isosceles  triangle  is  equal  to  its 
base,  the  radius  of  the  circumscribing  circle  is  f  of  the  base. 

11.  An  equilateral  triangle  and  a  regular  hexagon  have  the 

Same  perimeter.  Show  that  the  areas  of  their  inscribed 
circles  are  as  4 : 9. 

12.  If  the  sides  of  a  triangle  are  61,  68,  and  85  ft.,  show 

that  the  shortest  side  is  divided  by  the  point  of  contact  of  the 
inscribed  circle  into  two  segments,  one  of  which  is  double  the 
other. 
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55.  Relations  between  the  radian  measure,  the  sine,  and 
the  tangent  of  certain  angles. 

A.  If  0  be  the  radian  measure  of  an  acute  angle, 

sin  6<0<tan  0. 

B.  When  an  angle  0  radians  approaches  the  limit  zero, 

sin  0  tan  0 
—   and    — 

each  approaches  unity  as  a  limit. 

Proof  of  A.     Let  Angle  AOP  =  0  radians. 

Make   angle   AOR  =  AOP.    With   radius  r  describe  the 

p  arc     QBR    about    0    as    centre. 
Draw  the  chord  QR  intersecting 
OA  at  M .  Draw  the  tangents  QT, 

RT,  intersecting  OA  at  T.  Draw 

the  chord  QB*    Then 

lB/T  A  area  triangle  OQB  <  area  sec  tor  OQB 
<  area  triangle  OQT. 

*{r  That  is; 

Fig.  im.  ̂   \0B  •  MQ  <  £0Q  •  arc  BQ  <  %0Q  •  QT; 
or,  §r  •  r  sin  0  <  Jr  •  rO  <  Jr  •  r  tan  0. 

Hence,  sin0<0<tan0.  (1) 

Otherwise:  It  can  be  proved  that 

QMR<sltc  QBR<QTR. 

From  this,  on  dividing  by  2, 

*  Or  suppose  it  is  drawn. 
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MQ<sltqQB<QT. 

That  is;  r  sin  6  <      rd     <  r  tan  6. 

.'.  sin  #<       6      <tan  #. 

Proof  of  B.     Division  of  each  member  of  (1)  by  sin  0  gives 
6  1 

Krrr-s< 
sin  6    cos  0* 

Thus,  for  6  between  0°  and  90°,  - — ~  lies  between  1  and '  '  sin  0 

■   -q.    Now  when  0  approaches  zero,  cos  0  approaches  1  as 

a  limit  and/  thus   ^  approaches  1  as  a  limit.    Accordingly 
n 

the  limit  of  - — -m  which  must  lie  between  1  and  the  limit 

sin  d' 
of   -n,  viz.,  1,  is  itself  1.     Hence  the  limit  of  the  reciprocal 

cos  0  r 
sin  6  . 

-risl. 

Division  of  each  member  of  (1)  by  tan  6  gives 

e 
cos  d<-   -a<l. tan  6 

a 

Thus,  for  0  between  0°  and  90°,  t — -5  lies  between  cos  0 

and  1.    Now  when  6  approaches  zero,  cos  0  approaches  1  as 
a  limit.    It  follows,  on  reasoning  as  in  the  preceding  case, 

6  .  .    tan  0  .  . 
that  - — a,  and  consequently  — 7 — ,  approaches  1  as  a  limit. 

These  results  may  be  briefly  expressed : 

Limit /sin  9\  Limit /tan  0\      . 

i_»(-r)-i;     e=o(-e-)=1-  '2) 
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These  are  two  of  the  most  important  theorems  in  ele- 
mentary trigonometry;  they  are  frequently  employed  both 

in  practical  work  and  in  pure  mathematics. 

A  very  important  corollary  to  (2)  is  the  following : 

If  6  be  the  radian  measure  of  a  very  small  angle,  then  0  can 

be  used  for  sin  6  and  tan  0  in  calculations. 

For  instance,  sin  10"  to  12  places  of  decimals  is 
.000048481368.  This  is  also  the  radian  measure  of  10" 
to  12  places  of  decimals.  The  radian  measures,  sines,  and 

tangents,  of  angles  from  0°  to  6°,  agree  in  the  first  three 
places  of  decimals.     For 

radian  measure  6°=  (.10472)  =  .105;     sin  6°=  (.10453)  =  .105; 

tan  6°=  (.10510)  =  .105. 

EXAMPLES 

1.  Find  the  angle  subtended  by  a  man  6  ft.  high  at  a  dis- 
tance of  half  a  mile. 

-H^   I***       Here>   ̂ tan^  =  2-io  =  4iO- 
Fig.  105.  Now 

V  _    1    wl80°_  7X108° 440     440        tz       22X440 

2.  What  must  be  the  height  of  a  tower,  in  order  that  it 

subtend  an  angle  1°  at  a  distance  of  4000  ft.? 

■=tan  1°  =  radian  measure  1°  = 4000  180 

22 4000 

7X180'         Fig.  106. 
22X4000     ftOQ,  ,. 

••^=TxT8cT=69-84ft- 
3.  Verify  the  following  statements; 
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An  angle  1°  is  subtended  by  1  in.  at  a  distance  4  ft.  9.3  in., 
and  by  1  ft.  at  a  distance  57.3  ft.  An  angle  1'  is  subtended 
by  1  in.  at  a  distance  2S6.5  ft.,  and  by  1  ft.  at  a  distance 

3437.6  ft.,  about  two-thirds  of  a  mile.  An  angle  1"  is  sub- 
tended by  1  in.  at  a  distance  of  nearly  3 J  mi.,  by  1  ft.  at  a 

distance  a  little  greater  than  39  mi.,  by  a  horizontal  line  200  ft. 
long  on  the  other  side  of  the  world,  nearly  8000  mi.  away. 

4.  The  moon's  mean  angular  diameter  as  observed  at  the 
earth  is  31'  5",  and  its  actual  diameter  is  about  2160  miles. 
Find  the  mean  distance  of  the  moon.  How  many  full  moons 
would  make  a  chaplet  across  the  sky? 

6.  Taking  the  earth's  equatorial  radius  as  3963  mi.,  find  the 
angular  semi-diameter  of  the  earth  as  it  would  appear  if 
observed  from  the  moon.  Compare  the  relative  apparent  sizes 
of  the  moon  as  seen  from  the  earth,  and  the  earth  as  seen 
from  the  moon. 

6.  The  semi-diameter  of  the  earth  as  seen  from  the  sun  is 

very  nearly  8".8.  What  is  the  sun's  distance  from  the  earth, 
the  radius  of  the  earth  being  assumed  as  4000  miles? 

7.  At  least  how  many  times  farther  away  than  the  sun 
is  the  nearest  fixed  star  a  Centauri,  at  which  the  mean  distance 

between  the  earth  and  the  sun  (about  92,897,000  miles)  sub- 

tends an  angle  something  less  than  1"?  How  long,  at  least, 
will  it  take  light  to  come  from  this  star  to  the  earth? 

8.  Find  approximately  the  distance  at  which  a  coin  an  inch 
in  diameter  must  be  placed  so  as  just  to  hide  the  moon,  the 

latter's  angular  diameter  being  taken  31'  5". 

9.  The  inclination  of  a  railway  to  a  horizontal  plane  is  50'. 
Find  how  many  feet  it  rises  in  a  mile. 
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10.  Find  the  angle  subtended  by  a  circular  target  4  ft.  in 
diameter  at  a  distance  of  1000  yd. 

i 

11.  Find  the  height  of  an  object  whose  angle  of  elevation 

at  a  distance  of  900  yd.  is  1°. 

12.  Find  the  angle  subtended  by  a  pole  20  ft.  high  at  a 
distance  of  a  mile. 



ANSWERS 

Art  3,  Pages  4,  5 

2.  .3025,  .9732,  .9502,  .4754,  5.4623,  .3167,  9.78280,  9.50336,  10.73227. 

3.  8°  48'.8,  38°  26'.7, 
30°  43'  ,  52°  3'.2, 
23°    0'.9,              31°22'.5, 

28°  18'  22".5, 
22°  20'  30", 
33°  31'  31".l. 

Art  4,  Pages  7,  8 

In  the  following  examples  the  functions  are  given  in  the  order  on 

page  3. 

5.  .8575,  .5145,  1.6667,  .6,  1.9437,  1.1662,  59°  2'.2. 
6.  .4,  .9165,  .4364,  2.2913,  1.0911,  2.5,  23°  35';    .3162,  .9487,  .3333,  3, 

1.0541,3.1623,  18°25/.9. 
7.  9035,  .4286,  2.1082,  .4743,  2.3333,  1.1068,  64°  37'.3. 

11.  (1)  a:b,     Vb2-a2:b,     a:Vb2-a2,     Vb2-a2:a,     b:Vb2-a2,  6:a; 

(2)  Vb2-a2:b,  a:b,    v^-a^a,  a:Vb2-a2,    b:a,  b:Vb2-a2; 

(3)  a:Va2Tb2~,  b:Va2  +  b2,  a.b,  b:a,  Va2  +  b2;b,  Va?  +  b2:a; 
(4)6:Va2  +  62,  a:W  +  62,  b:a,  a:b,  VaY+br:a,  Va2  +  b2:b; 

(5)Va2-b2:a,  b:a,  Va2-b2:b,  b:Va2-b2,  a.b,  a:Va2-b2; 

(6)  b:a,  Va2-b2:a,  b:Va2-b2,  Va2-b2:b,  a:\/a2^b2'f  a:b. 
12.  41°  24'  35". 

13.  19°  28'  16". 

Art.  5,  Page  11 

1.  2.28025.  4.  2.0404.  7.  5.9259. 
2.  2.3333.  5.  2.25.  8.  .3248. 
3.  5.846.  6.  4.619.  9.  2.75. 

10.   -.708. 
128 
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Art.  6,  Pages  12,  13 

2.  cos  11°  40',  sin  9°  30',  cot  40°,  tan  25°,  cosec  19°,  sec  10°. 
3.  16°  40'. 

9. 
4.  40°. 

Art.  7,  Pages  16,  17 

sin  A cos  A tan  A cot  A sec  A cosec  A 

sin  A tan  A 1 VSec2  A-l 1 
V  l  -  cos2  A 

V i  +  tan2  A Vl+cot2A sec  A 
cosec  A 

•     cos  A 
1 cot  A 1 

"v  cosec2  /I  —  1 
Vi-sin2A 

Vi+tan2A Vi+cot2A sec  A cosec  A 

sin  A 
tan  A 

1 V  i  -  cos2  A 1 
^sec2  A  —  1 

Vi-shrM cos  A cot  A v  cosec2  A  —  1 

cos  A 1 

cot  A 

1 Vi-sin2A 
V  cosec2  A  —  1 sin  A Vl-Cos2A tan  A VSec2  A  —  1 

1 1 
sec  A 

V  i  +  cot2  A cosec  A 
V 1  +  tan2  A 

V  l  -  sin2  A cos  A cot  A V  cosec2  A  —  1 

1 1 sec  ̂ 4 V i  +  tan2  A Vi+cot2  A cosec  A sin  A Vi-cos2A tan  A Vsec2A-l 

15.  90°,  36°  52'  12". 
19.  30°,  48°  35'  25". 

16.-45°.  17.  45°,  71°  34'.      18.  53°  V  48". 
20.  36°  52'  12",  16°  15'  36". 

Art.  9,  Page  24 

5.  A  =  65°  14',  £  =  24°  46',  6  =  7.834. 
6.  303.9,  39°  47'.6,  50°  12'.4. 
7.  58°  45'  48",  a  =  1521.5,  6  =  2508.6. 

8.  4=21°  8',  6  =  94.43,  c  =  101.24.       " 
9.  A=30°  12'.2,  £  =  59°  47'.8,  c  =  116.25. 

10.  ̂ 1  =  1°  21'.$,  £  =  88°  38M,  6=45.95. 
11.  £=41°  43',  a  =  241.85,  6  =  215.6. 
12.  £  =  38°  41',  a  =  312.2,  c=400. 
13.  5  =  52°  39'  30",  a  =  1040.9,  6  =  1364.3. 
14.  A  =  52°  37M,  £  =  37°  22'.9,  c  =  2912.1. 
15.  £=62°  14'  40",  a  =  1968.7,  c= 4227.4. 
16.  A  =  29°  24'.9,  £  =  60°  35'.1,  6=43.67. 
17.  ̂ 1=27°  20',  6  =  77.4,  c  =  87.1.         18.  6  =  7.4833,  A  =33°  44'.6. 
19.  c  =  8.75,  A  =  30°  57'.8.  20.  a  =  9.57,  6  =  11.54. 
21.  a  =  3.84,  6  =  11.37.  22.  6  =  8.9433,  A  =41°  48'.6. 
23.  a  - 16.4,  c  =  22.2.  24.  c  =  14.42,  A  -  33°  41'.4. 
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Art.  10,  Page  25 

1.  24.  95  ft.,  12.71  ft.  2.  58.78  in. 
3.  (a)  9.239  in.     (6)  21.96  ft.     (c)  16.8  ft.     (d)  19.3  ft. 

Art.  11,  Pages  27,  28 

4.  398.2  ft.  7.  276.95  ft.  10.  86.6  ft.,  50  ft. 
5.  228  4  ft.,  258  ft.       8.  463.7  ft.  11.  749  mi. 
6.  63.9  ft.,  63.9  ft.        9.  3243.8  ft.  12.  219.45  ft. 

Art.  12,  Page  29 

2.  Base  =  187.9  ft.;  height  =  350.63  ft.;  area  =  32,943  sq.ft. 
3.  Base  =  358.21  ft.;  height  =  161.26  ft.;  area  =  28,881  sq.ft. 

4.  68°    50'    5".4,    68°    50'    5" .4,    42°    19'    49".2;      height  =  83.93    ft.; 
area  =  2727.7  sq.ft. 

5.  56°  18'.6,  56°  18'.6,  67°  22'.8;  36.06  ft.;  600  sq.ft. 
6.  105.83  ft.;  48°  35',  48°  35',  82°  50',  3175  sq.ft. 
7.  40.76  ft.,  44.9  ft.,  44.9  ft.;  area  =  81 5.2  sq.ft. 
8.  96.68  ft.,  79.4  ft.,  79.4  ft.;  area  =  3045.4  sq.ft. 

Art.  13,  Page  31 

1.  14.54  ft.,  16.13  ft.,  48.45  sq.ft.,  105.2  sq.ft. 

Art.  14,  Page  33 

1.  26.172,  52.345  miles;   second  ship  bears  E.  19°  42'.1  N.  from  first. 
2.  LB  =  14.197  miles. 

Art.  15,  Page  35 

4.  2.852  acres.       .  5.  12  acres,  3  roods,  6.45  poles. 

Art.  16,  Page  38 

1.  a.  For  137°:  second;  137°,  497°,  857°,  1217°. 
For  785°:  first;         65°,  425°,  785°,  1145°. 
For  3657°:  first;       57°,  417°,  777°,  1137°. 

6.  For  -240°;  second;  120°,  480°,  840°,  1200°. 
For  -337°:  first;         23°,  383°,  743°,  1103°. 
For  -7283°;  fourth;   277°,  637°,  997°,  1357°. 

3.  320°,    -60°,   130°,    -250°,   15°,  7°,  78°,  385°,  414°,    -110°,  -150°, 
200°,  257°. 

4.  410°,  30°,  220°,  -160°,  105°,  97°,  168°,  475°,  504°,  -20°,  -60° 
290°,  347°. 
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Art.  18,  Pages  41,  42 

1.  143°  14'  22".  2.  4.03. 

3.  28°  38'  52".4,  229°  10'  59".2,  19°  5'  54".9. 

4.  90°,  60°,  45°,  30°,  120°,  540°,  -240°,  -1800°. 
n     n    In    5n   2%   hit 

5.  1.454,  2.487.  6.  — ,  — ,  -j,  y,  -^. 

7.  %;  8°  29'.  8.  6  in. 

™    50     . 9.  40  in.  10.  —  mins. 

Art.  18a,  Page  43 

1.  Tff  radians  per  sec.  2.  1:12:720.   . 

3.  -sr  radians  per  sec. o 

4.  (a)  —  radians  per  sec;  (b)  1800°  per  minute. 

5.  (a)  -i=—  revolutions  per  min.;  (6)  -=-  radians  per  sec. 

6.  39.27  ft.  per  sec. 

Art.  20,  Pages  46,  47,  48 

1.  (a)  +;  (6)  -;  (c)  +;  (d)  +;  (e)  +;  (/)  -. 

V3        1         >s-  1  1 

4.  (a)  First  and  second*;  (6)  second  and  third; 
(c)   first  and  third;       (d)  second  and  fourth. 

5.  (a)  Third;  (6)  second;  (c)  third;  (d)  fourth. 
In  the  following  examples  the  functions  are  given  in  the  order  on 

page  40. 

A        jL      _JL      _A      .11      _i    4       __3      _4_    5^         5^ 
5 '         5'        4 '        3'        4 '    3  '         5  '    5  '        4  '        3  '   4 '        3' 

o    /  i    j.^1      _!    _^[        _2_     _A       JL 
*f+8'        3'         2    '       vT        2'      V5' 

vlT    _j^      vT      j2_      _3       js_ 
3    '       3'  +   2    '    +  vT        2'       vT" 

(  '        5  '        5  '    4  '    3  '        4  '        3  '        5  '    5  '        4  '        3  '  4  '       3"' 
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M    j.^1    A    _u^?T        _2_    £ 
5    '     5'  2    '    V2l'     2'    Vfl' 

V21      -2         v7^  2        5  5 

(d) 

(6) 

5    '     5'  2    '        V2l'   2 
4    3^    4    ||  j;,      ±  A 
5 '    5  '  ̂  '*  4  '   b '   4  ' 

I  I  4  AAA- 
5'    5'    3'    4'    3'    4  ' 

1n            3         2VlO 
10.  (a)  y,   7— 

\/21 

5 

3 

(C)    ~W      VH* 
H  -~,  i,  -vT,  -  4=.  2, vr  '    vt 

Art.  25,  Page  62 

*i      •    0  2a6  .  ,     2a6 
11.  sinfl=  d:    ,  ,  -,,  tan  =-=0±- 

a2  +  62'  a2-62* 

Art.  26,  Page  66 

1.  sin  (270°- A)  =  -cos  A,  cos  (270°- A)  =  -sin  A, 
tan  (270°-A)=cot  A,  cot  (270°-A)=tan  A, 
sec  (270° -A)  =  -esc  .4,  esc  (270° -A)  =  -sec  A. 

2.  sin  (270°  +  A)  =  -  cos  A,  cos  (270°  +  A)  =  sin  A, 
tan  (270°  +  A)  =  -cot  A,  cot  (270°  +  A)  =  -tan  A, 
sec  (270°  +  A)=csc  A,  esc  (270°  +  A)  =  -sec  A. 

Art.  27,  Page  67 

4.  (a)   -sin  73°,  -cos  17°.  (e)   -sin  10°,  -cos  80°. 
(6)  cos  28°,  sin  62°.                         (/)  cot  53°,  tan  37°. 
(c)  tan  38°  30',  cot  51°  30'.  (g)  tan  25°,  cot  65°. 
(d)  -sec  25°  10',  -esc  64°  50'.    (h)  -sin  15°,  -cos  75°. 

(0   -esc  49°  30',  -sec  40°  30'. 
5.  (a)  -.2391.  (d)  1.555.  (gr)  2.458. 

(6)  -.6225.  (e)  .8391.  (A)  .6293. 
(c)    -.1007.              (/)    .7660.  00    -1.0724 
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Art.  28,  Page  72 

4.  n  •  180°  +  ( -  l)n  30°,  nx + ( -  l)n|- ;  30°,  150°,  390°,  510°. 

5.  w- 360° ±120°,  2w^±-|-7r;  120°,  240°,  480°. 

6.  (a)  n-180°,  wtt.  (g)  n-180°-(-l)n  60°,  fw-(-l)*j-. 

*(&)  w- 360° ±90°,  2rm±^.         (h)  n- 360°  ±135°,  2nn±^. 

(c)  n.l80°,  wtt.  (i)   n.l80°+45°;n^  +  ̂-. 

(d)  n.l80°  +  60,  rwr+|-.  (?)    n.l80°  +  135°,  rwr+^. 

(e)  n-180°±90°,  mz±^-.  (k)  n-360°±30°,  2ut:±~. A  D 

(/)   n.l80°  +  (-l)n45°,  n7z  +  (-l)nj.         (I)  n.l80°  +  150°,  mz  +  ̂. 

Art.  30,  Page  77 

3.  a;  =  mt  +  ( —  l)71-^ ;  x = sin-1  2,  impossible. 

4.  z  =  2n7r+— .  5.  y  =  2n7c+j-. 

6.  x  =  n7r±— .  7.  A  =  2n^±o",  A=2mt. 

8.  z=n;r,  z=n-360°  +  (-l)»  38°  10'.3;  x  =  sin~1(- 1.618),  impossible. 

9.  x  =  2n7t±  —  ;  a;  =  cos-1v/3^  impossible. o 

10.  B  =  n7r±|-.  11.  x  =  wtt+^,  x  =  n.l80o  +  165o47'.7. o       .  4 

12.  ?/  =  n.l80o  +  71o33'.8,  y  =  n-180o  +  63°  26'. 
13.  60°,  120°,  240°,  300°,  420°,  480°.  14.  x  =  30°,  z  =  150°. 

Art.  31,  Pages  80,  81 

„    +\/21+2\/15     +\/315-V/2"  4     3  fi    2^2"+ V3" 
20  '  '  20  "  5  '  5 '  6 

Art.  32,  Page  83 

2     __84  .   187  44  .   117  2\/2~-\/3~ 205'  205*  125'   125'  6 

*  In  this  instance  the  general  value  may  be  expressed;  ra«  180°±90°,  mi±- 
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Art.  34,  Page  85 

6.   1;  y.  9.  tan-i(-|)  ;  tan-^j. 

10.  tan-1  oo,     i.e.,     (2n+l)^;    cot"1 0,     i.e.,  (2n  +  l)-£-. 

Art.  35,  Pages  87,  88 

4.  cos2  —  x  — sin2  --x,  2  cos2  —x  —  \,  1—2  sin2  —  x;  2  sin  —x  cos  -^x 

/l+cos6x  \\ 
'•V   2   ;     \- 

—  cos  6x 

2 

6.  cos2  3a;  —  sin2  3x,  2  cos2  3a;  —  1,  1—2  sin2  3a;;  2  sin  3x  cos  3a;. 

in    M    L3.     ,24  7  24 
10.  (a)   ±T;    ±jg;    -^;    Ty. 

Art.  36,  Pages  91,  92,  93 

5.  (1)  2  sin  4a;  cos  x.  (2)  2  cos  6A  sin  A. 
(3)  2  sin  4a;  sin  2a;.  (4)  2  cos  7a;  cos  2a;. 

,_.        .    mA+nB        mA—nB        .            .    mx  +  ny    .     mx  —  ny 
(5)  2  sin   ^   cos   2   '    ̂    —2  sin   o~^  sm   k~ -• 

(7)  2  sin  (45° -a;)  cos  (45° -4s).    (8)  2  cos  (45° -a;)  sin  (45° -3a;). 
6.  (1)  Ksm8x  +  sin2x).  (2)  Ksin  12x-sin  2x). 

(3)  £(cos4a;  — cos  8a;).                     (4)  \ (cos  14a; + cos  4a;). 
(5)  ${cos  (m A  — nB)— cos  (m A +  nB)\. 
(6)  £{cos  (nx  +  my)+  cos  (nx— my)\. 
(7)  \ (cos  2x  —  cos  6a;).  (8)  £(cos  10a;+cos4a;). 

18.  1. 

28.  e=^,  *-5?+(-i)»J|. 

29.  0  =  (2n  +  l)9O°,  0  =  {4n  +  (-l)n}15°. 

30.  «  =  ~,  a=n- 90°+(-l)n  45°. 

31.  a=n-90o  +  (-l)n45°,  a=4  sin~1(-f)='n.90o  +  (-l)n(-18o  26'-l) 

32.  0=n^,  0=n.l8O°±9O°. 4 

33.  0  =  {6n  +  (-l)n}3O°,^  =  {lOn  +  (-l)n}18°,^  =  {lOn-3(-l)n}180. 
34.  x=-\,  x  =  \.  35.  x  =  0,  x=±£.  36.  x  =  \,  a;=-8. 
„_  ...  ,  B  .  ̂       tan  A  +tan  Z?+tan  C  —  tan  A  tan  B  tan  C 
37.  tan  (A  +  2? +  (?)  =  :; —   -j—   6 —   ^- — -^ — : — jrz   j. 1  —tan  A  tan  B  —  tan  B  tan  C— tan  C  tan  A 

Art.  41,  Page  100 

3.  38°  12'.8,  60°,  81°  47'.4.       4.  41°  24'.7. 
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Art.  43,  Page  10S 

2.  6  =  70.8,  a  =  56.1  4.  6  =  185,  c  =  192. 
3.7.98  ft  5.  6  =  8.237,  c  =  5.464. 

Art.  44,  Page  107 

2.  £  =  36°  18'.4    or    143°  41'.6,    c  =  52.71    or    5.98. 
3.  Triangle  impossible. 

4.5=46°  28',     C  =  68°32',      c  =  30.8  in. 

5.  4=48°  10',     C  =  108°25',    c- 19.1  ft.  J     or 
A  =  131°50',  C=24°45',      e- 8.4  ft. 

Art.  45,  Page  108 

2.  4=77°  12'.9,  5=43°  30'.1,  c  =  29.97. 
3.  A  =80°  46'.4,  C  =  63°48'.6,  6  =  19.4. 
4.  #  =  33°    3'.3,  £  =  100°56'.7,  t  =  39.6  ft. 
5.  P=29°41'.2,  Q  =  52°24'.4,  r  =  20in. 

Art.  46,  Page  109 

2.  P  =  19°  12',  Q  =  61°  13',  #  =  99°  35'. 
3.  48°  11'.4,  58°  24'.7,  73°  23'.9. 
4.  28°  22',  49°  43',  101°  56',  nearly. 

5.  93°  41',  67°  23',  18°  56'. 

Art.  48,  Pages  110,  111 

2.  C=66°47',  6  =  698.3,  c  =  845. 
3.  600,  421.5.  4.  Triangle  impossible. 

5.  A  =42°  53'  34",  C  =  77°  5'  54",  c- 394.53. 

6.  C  =  64°24',  5  =  78°  16',  6  =  749.1. 
7.  B= 46°  52'  10",     C  =  lll°53'  25",     c  =  1767.3;     or 

5  =  133°  7'  50",     C  =  25°  37'  45","      c  =  823.8. 

Art.  49,  Page  112 

2.  B = 64°  9'  3",  A  =  42°  50'  57",  c  =  374. 
3.  P  =  132°  18'  27",  Q  =  14°  34'  24",  r  =  67.75. 
4.  4  =  109°  15'.5,  5=45°  4'.5,  c =440.5. 
5.  5=88°  2'.6,  C  =  23°  43',  a  =  8.439. 

Art.  50,  Page  113 

2.  53°  7'.8,  59°  29'.4,  67°  22'.8.  3.  A  =29°  17'  16",  5  =  31°  55'  31". 
4.  44°  48'  15",  52°  55'  56",  82°  15'  49". 
5.  #  =  25°  12'  32",  5=48°  11'  22." 
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Art.  51,  Pages  114,  115 

3.  444.72  yd.  6.  179.28  ft. 
4.  1112.8  yd.  7.  87.88  ft. 
5.  489.29  yd.;  505.3  yd.  8.  104.08  ft. 

9.  479.3  yd.  10.  Height  =  119.6  ft.,  AC  =  153.1  ft.;  £C  =  571  ft. 
11.  469.6  ft. 

Art.  52,  Page  118 

1.  (a)  536.06  sq.ft.  2.  (a)  668.7  sq.ft. 
(6)  325.7  sq.ft.  (6)  500.3  sq.ft. 

3.  Each  of  the  equal  sides  =  28.6  yd. 
4.  The  triangles  in  which  the  angles  between  the  given  sides  are  re- 

spectively 30°  17'.8  and  149°  42'.2. 
5.  154.37  yd.  on  the  road  opposite  the  right  angle. 

Art.  53,  Page  119 

1.  (a)  6§  in.,  33 £  sq.in.  (c)  36  in.;  324  sq.in. 
(6)  30  in.;  360  sq.in.  (d)   90  in.;  900  sq.in. 

2.  27f  in.;  329^  sq.in.  3.  11.1  in.;  22.2  in. 

4.  Radius  =  14f  in.:  angle  =  2£§  radians  =  124°.3. 

Art.  54,  Page  121 

1.  (a)  7.67;  21.6;  13.7,  25.5,  54.8  in.  respectively. 
(b)  2.6;  6.5,  7.3,  16,  5.3  in.  respectively. 
(c)  10.48;  25.03;  22.04,  30.44,  58.11  in.  respectively. 

Art.  55,  Pages  126, 127 

4.  238,890  mi.  (approx).,  347.5.         5.  About  57'  2";  about  1:13.5. 
6.  About  93,757,000  mi. 

7.  206,265  times  the  distance  of  the  earth  from  the  sun;  3.26  ya*« 
8.  9  ft.  2.6  in.  9.  76  ft.  9.5  in.  10.  4'  35". 

11.  15.708  yd.               12.  13'  1"  3. 
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PREFACE. 

This  book  contains  little  more  than  what  is  required  for 

the  solution  of  spherical  triangles  and  related  simple  practical 

problems.  The  articles  on  spherical  geometry  are  necessary  for 

those  who  have  not  already  studied  that  subject;  for  others, 

they  provide  a  useful  review.  More  than  usual  attention  has 

been  given  to  the  measurement  of  solid  angles.  The  explana- 
tions in  connection  with  the  astronomical  problems  are  somewhat 

fuller  than  is  customary  in  elementary  text-books  on  spherical 
trigonometry. 

I  am  indebted  to  Mr.  W.  B.  Fite,  Ph.B.,  Fellow  in  Mathe- 

matics at  Cornell  University,  for  his  kind  assistance  in  reading 

the  proof-sheets ;  and  to  Mr.  A.  T.  Bruegel,  M.M.E.,  of  the 

Pratt  Institute,  Brooklyn,  N.Y.,  for  the  pleasing  character  of 

the  diagrams. 

D.  A.  MURRAY. 

Cornell  Univbrsity, 

May,  1900. 
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SPHERICAL  TRIGONOMETRY. 
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CHAPTER   I. 

REVIEW  OF   SOLID  AND   SPHERICAL  GEOMETRY. 

On  beginning  the  study  of  spherical  trigonometry  it  is  advisable 
to  recall  to  mind  or  learn  some  of  the  definitions  and  propositions 
of  solid  geometry.  A  clear  and  vivid  conception  of  the  principal 
properties  of  the  sphere  is  especially  necessary.  The  definitions 
and  theorems  which  will  be  used  frequently  in  the  following  pages, 

are  quoted  in  this  chapter.* 

Planes  and  Lines  in  Space.    Diedral  Angles.    Solid  Angles. 

1.  a.  Two  planes  which  are  not  parallel  intersect  in  a  straight 
line.     (Euc.  XI.  3.) 

b.  The  angle  which  one  of  two  planes  makes  with  the  other 
is  called  a  diedral  angle.     Thus,  in  Fig.  1,  the  two  planes  BD  and 
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*  As  far  as  possible,  references  are  made  to  the  text  of  Euclid  ;  since,  of 
the  numerous  geometrical  text-hooks  in  English-speaking  countries,  his  work 
is  the  one  which  is  most  largely  used.  Those  who  use  a  text-book  other  than 

Euclid's  can  substitute  the  appropriate  references. 
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AE  intersect  in  the  straight  line  AB,  and  form  the  diedral  angle 
FABC. 

c.  The  planes  AE  and  AC  are  called  the  faces,  and  the  line 

AB  is  called  the  edge,  of  the  diedral  angle.  The  faces  are  unlim- 
ited in  extent.  The  magnitude  of  the  diedral  angle  depends,  not 

upon  the  extent  of  its  faces,  but  only  upon  their  relative  position. 
(Just  as  the  magnitude  of  a  plane  angle  depends,  not  upon  the 
lengths  of  its  boundary  lines,  but  upon  their  relative  position.) 

d.  If  PR  be  drawn  perpendicular  to  AB  in  the  plane  AE,  and 
PS  be  drawn  perpendicular  to  AB  in  the  plane  AC,  the  angle 
EPS  is  called  the  plane  angle  of  the  diedral  angle. 

e.  If  a  plane  is  drawn  perpendicular  to  the  edge  of  a  diedral 
angle,  the  intersections  of  this  plane  with  the  faces  of  the  diedral 
angle  form  the  plane  angle  of  the  diedral  angle.  (See  Euc.  XI.  4.) 
Thus,  if  the  plane  M  be  passed  through  p  perpendicular  to  AB, 
the  intersections,  pr,  ps,  of  the  plane  M  and  the  planes  AE,  AC, 
form  the  angle  rps  which  is  the  plane  angle  of  FABC. 

f.  All  plane  angles  of  the  same  diedral  angle  are  equal.  (See 

Euc.  XI.  10.)  Hence,  the  plane  angle  can  be  taken  as  the  measure 
of  the  diedral  angle. 

2.  a.  If  a  straight  line  be  at  right  angles  to  a  plane,  every 

plane  which  passes  through  the  line  is  at  right  angles  to  that 
plane.     (Euc.  XI.  18.) 

b.  If  two  planes  which  cut  one  another  be  each  of  them  per- 
pendicular to  a  third  plane,  their  common  section  is  perpendicular 

to  the  same  plane.     (Euc.  XI.  19.) 

3.  a.  When  three  or  more  planes  meet  in  a  common  point, 
they  are  said  to  form  a  solid  angle,  or  a  polyedral  angle,  at  that 

point. 
The  point  in  which  the  planes  meet  is  called  the  vertex  of 

the  solid  angle;  the  intersections  of  the  planes  are  called  its 

edges;  the  portions  of  the  planes  between  the  edges  are  called 
its  faces;  the  plane  angles  formed  by  the  edges  are  called  its 
face  angles;  and  the  diedral  angles  formed  at  the  edges  by  the 
planes  are  called  the  diedral  angles  (or  the  edge  angles)  of  the 
solid  angle. 

V 
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Thus,  in  Fig.  2,  for  the  solid  angle  formed  at  S :  the  vertex  is 
S;  SB,  SG,  SD,  SE,  are  the  edges;  BSE,  ESD,  etc.,  are  the 
faces ;  the  face  angles  are  the  angles  BSE,  ESD,  DSC,  GSB ; 
the  diedral  (or  edge)  angles  are  BESD,  EDSC,  etc. 

aS  d) 

Fig.  2  Fig.  3 

b,  A  solid  angle  with  three  faces  is  called  a  triedral  angle. 

Thus,  the  solid  angle  at  0  (Fig.  3)  is  a  triedral  angle. 
(The  measurement  of  solid  angles  is  discussed  in  Art.  61.  The 

magnitude  of  the  solid  angle  in  nowise  depends  upon  the  lengths 
of  its  edges.) 

4.  a.  The  sum  of  any  two  face  angles  of  a  triedral  angle  is 
greater  than  the  third.     (See  Euc.  XI.  20.) 

b.  The  sum  of  the  face  angles  of  any  solid  angle  is  less  than 
four  right  angles  (Euc.  XI.  21).  (This  is  true,  in  general,  only 

when  the  polygon,  say  BEDG  (Fig.  2),  formed  by  the  intersec- 
tions of  the  faces  with  a  cutting  plane  M,  does  not  have  a  re- 

entrant angle ;  in  other  words,  when  the  polygon  BEDG  is 
convex. 

Geometry  of  the  Sphere. 

For  the  benefit  of  those  who  have  not  studied  the  geometry  of 

the  sphere,  proofs  of  a  few  of  its  propositions  are  either  out- 
lined, or  given  in  detail.  Some  propositions  can  be  proved  very 

easily ;  hence,  only  their  enunciations  are  given.  Other  proper- 
ties of  the  sphere  will  be  proved  when  they  are  required.  (See 

Arts.  53,  54,  57,  62,  65.)  The  use  of  a  globe  on  which  figures  can 
be  drawn,  will  be  of  great  assistance  to  the  student.  If  such  a 
globe  is  not  at  hand,  a  terrestrial  or  celestial  globe  can  afford 
some  service. 
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5.  The  sphere  and  its  plane  sections. 

a.  Definitions.  A  spherical  surface  is  a  surface  all  points  of 
which  are  equidistant  from  a  point  called  the  centre.  A  sphere  is 
a  solid  bounded  by  a  spherical  surface.  The  surface  of  a  sphere 
can  be  generated  by  the  revolution  of  a  semicircle  about  its 

diameter.  A  radius  of  a  sphere  is  a  straight  line  joining  the 
centre  to  any  point  on  the  surface.  According  to  the  definition 
of  a  sphere,  all  the  radii  of  a  sphere  are  equal.  A  diameter  of 
a  sphere  is  a  straight  line  passing  through  the  centre  and 
terminated  at  both  ends  by  the  surface.  A  plane  section  of  a 
sphere  is  a  figure  whose  boundary  is  the  intersection  of  a  plane 
and  the  surface  of  the  sphere. 

b.  Proposition.  TJie  boundary  of  every  plane  section  of  a  sphere 
is  a  circle. 

Let  the  sphere  whose  centre  is  at  0  be  cut  by  a  plane  in  the 

section  ABD ;  then  ABD  is  a  circle.  Through  O  draw  OC  per- 
pendicular to  the  plane  ABD.  Let  A  and  B  be  any  two  points 

in  the  boundary  of  the  section  ABD.  Draw 
OA,  OB,  CA,  and  CB.  In  the  two  triangles 

^D  OCA  and  OCB,  the  angles  at  C  are  equal 

(both  being  right  angles),  the  side  OC  is  com- 
mon, and  the  side  OA  is  equal  to  the  side  OB, 

since  both  are  radii  of  the  sphere.  Hence  the 

triangles  are  equal  in  every  respect,  and  CA 
is  equal  to  CB.  But  A  and  B  are  any  two 
points  on  the  boundary  of  the  section ;  hence 

all  points  on  the  boundary  are  equidistant  from  C.  Therefore 
ABD  is  a  circle  whose  centre  is  at  C,  the  foot  of  the  perpen 
dicular  let  fall  from  the  centre  0  to  the  cutting  plane  ABD. 

6.  Great  and  small  circles  on  a  sphere. 

a.  Definitions.  The  section  in  which  a  sphere  is  cut  by  a  plane 

is  called  a  Great  Circle  when  the  plane  passes  through  the  centre 

of  the  sphere ;  the  section  is  called  a  Small  Circle  when  the  cut- 

ting plane  does  not  pass  through  the  centre  of  the  sphere.  Thus, 
on  a  terrestrial  globe  the  meridians  and  equator  are  great  circles ; 

the  parallels  of  latitude  are  small  circles.     The  Axis  of  a  circle  of 
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a  sphere  is  the  diameter  of  the  sphere  perpendicular  to  the  plane 
of  the  circle ;  the  extremities  of  the  axis  are  called  the  Poles  of 

the  circle  and  any  of  its  arcs.  Thus,  in  Fig.  4,  Art.  5,  JV  and  $ 
are  the  poles  of  the  circle  ABD  and  of  the  arcs  AB  and  BD.  It 
is  obvious  that  all  circles  made  by  the  intersections  of  parallel 
planes  with  a  sphere  have  the  same  axis  and  poles.  For  instance, 
all  parallels  of  latitude  have  the  same  axis  and  poles,  namely, 
the  polar  axis  of  the  earth  and  the  North  and  South  Poles. 

b.  Propositions  relating  to  great  circles. 

Every  great  circle  bisects  the  surface  of  the  sphere;  e.g.  the 
equator  bisects  the  surface  of  a  terrestrial  globe. 
Any  two  great  circles  bisect  each  other;  e.g.  the  meridians 

bisect  one  another  at  the  poles.  All  great  circles  of  a  sphere  are 
equal ;  since  their  radii  are  radii  of  the  sphere. 
A  great  circle  can  be  passed  through  any  two  points  on  a 

sphere  ;  since  a  plane  can  be  made  to  pass  through  these  two 
points  and  the  centre  of  the  sphere,  and  this  plane  intersects  the 
surface  of  a  sphere  in  a  great  circle.  In  general,  only  one  great 
circle  can  be  drawn  through  two  points  on  a  sphere,  since  these 
points  and  the  centre  determine  a  plane ;  but,  when  the  two  given 
points  are  at  the  ends  of  a  diameter  an  infinite  number  of  great 
circles  can  be  drawn  through  them;  e.g.  the  meridians  passing 
through  the  North  and  South  Poles. 

c.  Definitions.     By  distance  between  two  points  on  a  sphere  is 

meant  the  shorter  arc  of  the  great  -  circle  passing  through  them. 
It  is  shown  in  Art.  20  that  this  arc  is  the  shortest  line  that  can  be 

drawn  on  the  surface  of  the  sphere  from  the  one  point  to  the 
other.  For  example,  the  arc  NA  in  Fig.  4  measures  the  distance 

between  the  points  N  and  A.     [Ex.  Distance  between  N  and  S  ?] 
Note.  The  theorem  in  Art.  20  can  be  shown  mechanically  by  taking  two 

points  on  a  parallel  of  latitude  on  a  globe  and  letting  a  string  be  stretched 
taut  from  one  point  to  the  other.  The  string  will  not  lie  on  the  parallel,  but 

will  evidently  be  in  a  plane  which  passes  through  the  centre  of  the  sphere.  If 
the  two  points  be  on  a  meridian,  the  stretched  string  will  lie  on  the  meridian. 

By  angular  distance  between  two  points  on  a  sphere  is  meant 
the  angle  subtended  at  the  centre  of  the  sphere  by  the  arc  joining 
the  given  points.  Thus  in  Fig.  4  the  angle  NOA  is  the  angular 
distance  of  A  from  JV 
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d.  Propositions  and  definitions  relating  to  small  and  great  circles. 
In  Fig.  4  all  the  arcs  of  great  circles,  as  NA,  NB,  ND,  drawn 
from  points  on  the  circle  ABD  to  the  pole  N,  are  equal.  Thus 
the  arcs  of  meridians  on  a  terrestrial  globe  drawn  from  a  paralleZ 
of  latitude  to  the  North  Pole  are  equal.  The  chords  NA,  NB, 
ND,  are  all  equal;  the  angles  AON,  BON,  DON,  are  likewise 
equal.  It  thus  appears  that  all  points  in  the  circumference  of  a 
circle  on  a  sphere  are  equally  distant  from  a  pole  of  the  circle, 
whether  the  distance  be  measured  by  the  arc  of  a  great  circle 
joining  one  of  the  points  and  the  pole,  or  by  the  straight  line 
joining  the  point  and.  the  pole,  or  by  the  angle  which  such  an  arc 
or  chord  subtends  at  the  centre  of  the  sphere. 

Definitions.  The  last  mentioned  angle  is  called  the  angular 
radius  of  the  circle.  The  angular  radius  of  a  great  circle  is  evi- 

dently a  right  angle.  The  polar  distance  of  a  circle  on  a  sphere 
is  its  distance  from  its  pole,  the  distance  being  measured  along 
an  arc  of  a  great  circle  passing  through  the  pole.  Thus  the  north 
polar  distance  of  a  parallel  of  latitude  is  its  distance  from  the 
North  Pole  measured  along  a  meridian.  The  term  quadrant, 
when  used  in  connection  with  a  sphere,  usually  means  an  arc 

equal  in  length  to  one-foUrth  of  a  great  circle.  The  polar  dis- 
tance of  each  point  on  a  great  circle  is  evidently  a  quadrant; 

e.g.  a  point  on  the  equator  is  at  a  quadrant's  distance  from  the 
North  or  South  Pole.  Points  on  a  great  circle  are  equidistant 
from  both  its  poles.  The  polar  distance  of  a  circle  may  be  called 
the  radius  of  the  circle. 

7.  To  draw  circles  upon  the  surface  of  a  sphere  about  a  given  point 
as  pole. 

(a)  With  a  pair  of  compasses.  Open  the  compasses  until  the  dis- 
tance between  the  points  of  the  compasses  is  equal  to  the  chord 

of  the  polar  distance  (or,  what  is  the  same  thing,  the  chord  sub- 
tended by  the  angular  radius)  of  the  required  circle.  Then,  one 

point  being  placed  and  kept  fixed  at  the  pole,  the  other  can  describe 
the  circle. 

(6)  With  a  string.  Take  a  string  equal  in  length  to  the  polar 
distance  of  the  required  circle.     If  the  string  be  kept  stretched 
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taut,  and  one  end  be  fixed  at  the  pole  while  the  other  end  moves 
on  the  sphere,  the  required  circle  will  be  described. 

In  order  to  describe  a  great  circle  the  polar  distance  must  be 
taken  equal  to  a  quadrant  of  the  sphere. 

8.  Proposition.  If  a  point  on  the  surface  of  a  sphere  lies  at  a 

quadrant's  distance  from  each  of  two  points,  it  is  the  pole  of  the  great 
circle  passing  through  these  points. 

If  the  point  P  be  at  a  quadrant's  distance 
from  each  of  the  points  A  and  B,  then  P  is  the 
pole  of  the  great  circle  passing  through  A  and 
B.  Let  0  be  the  centre  of  the  sphere,  and  draw 

OA,  OB,  OP.  Since  PA  and  PB  are  quad- 
rants, the  angles  POA  and  POB  are  right 

angles.  Hence  PO  is  perpendicular  to  the 
plane  AOB  (Euc.  XI.  4)  ;  therefore  P  is  the 
pole  of  the  great  circle  ABL. 

9.  Problem.  TJirough  two  given  points  to  draw  an  arc  of  a  great 

circle.  About  each  point  as  a  pole'  draw  a  great  circle  (Art.  7). 
The  two  points  of  intersection  of  the  great  circles  thus  drawn  are 

each  at  a  quadrant's  distance  from  the  two  given  points;  and 
hence,  by  Art.  8,  are  the  poles  of  the  great  circle  through  the  two 

given  points.  Accordingly,  the  required  arc  will  be  obtained  by 
describing  a  great  circle  about  either  of  these  poles. 

Note.  If  the  two  given  points  are  diametrically  opposite,  an  infinite  num- 
ber of  great  circles  can  be  drawn  through  them.     (Art.  6.  &.) 

10.  Lines  and  planes  which  are  tangent  to  a  sphere. 

a.  Definitions.  A  straight  line  or  a  plane  is  said  to  be  tangent 
to  a  sphere  when  it  has  but  one  point  in  common  with  the  surface 
of  the  sphere.  The  common  point  is  called  the  point  of  contact  or 
point  oftangency. 

Fig.  6 
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[Ch.  L b.  Propositions.     (See  Fig.  6.) 

A  plane  or  a  line  perpendicular  to  a  radius  at  its  extremity  is 
tangent  to  the  sphere.  [Suggestion  for  proof :  The  perpendicular 

is  the  shortest  line  that  can  be  drawn  from  a  point  to  a  plane.] 
A  tangent  to  an  arc  of  a  great  circle  at  any  point  of  the  arc  is 

perpendicular  to  the  radius  (of  the  sphere)  drawn  to  the  point. 

11.   On  spherical  angles. 

a.  Definitions.  The  angle  made  by  any  two  curves  meeting  in 
a  common  point  is  the  angle  formed  by  the  two  tangents  to  the 

curves  at  that  point.  Thus  in  Fig.  7, 
the  angle  made  by  the  curves  Cx  and  C2 

at  the  point  P,  is  the  angle  TXPT2  be- 
-y  tween  the  tangents  to  Ci  and  C2  at  P. 

(This  definition  applies  to  all  curves, 
whether  they  are  in  the  same  plane  or 
not.) 

A  spherical  angle  is  the  angle  formed 
.  by  two  intersecting  arcs  of  great  circles 

on  the  surface  of  a  sphere.  Thus  the  angle  formed  by  the 

arcs  CA  and  CB  (Fig.  8)  is  a  spherical  angle.  This  angle  is 
the  angle  ECD  between  the  tangents  CE  and  CD.  But  ECD  is 
the  plane  angle  of  the  diedral  angle  between  the  planes  CO  A  and 
COB  which  are  the  planes  of  the  arcs  CA  and  CB.  Thus  the 
spherical  angle  is  equal  to  the  diedral  angle  of  the  planes  of  the  arcs 

forming  the  angle. 

Fig.  7 

>->\ff 

Pig.  9 

Fig.  8 

b.  Propositions.  (1)  If  two  arcs  of  great  circles  intersect,  the 
opposite  vertical  angles  thus  formed  are  equal.  Thus  in  Fig.  49, 

Art.  57,  the  angles  BAC  and  B'AC  are  equal. 
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(2)  If  one  arc  of  a  great  circle  meets  another  arc  of  a  great 
circle,  the  sum  of  the  adjacent  spherical  angles  is  equal  to  two 

right  angles.     Thus  in  Fig.  49,  CAB  +  GAB'  =  2  right  angles. 

Note.  It  is  shown  in  plane  geometry  that  angles  at  the  centre  of  a 
circle  are  proportional  to  their  intercepted  arcs  ;  hence,  the  angles  can  be 
measured  by  the  arcs.  Accordingly,  if  each  right  angle  at  the  centre  of  a 
circle  (Fig.  9)  be  divided  into  90  equal  parts  called  degrees,  and  the  circle  be 
divided  into  360  equal  parts,  also  called  degrees,  then  the  number  of  degrees 

(of  angle)  in  any  angle  A  OB  is  equal  to  the  number  of  degrees  (of  arc)  in  AB, 
the  arc  subtended  by  AOB.  [When  it  is  necessary  to  distinguish  between 

degrees  of  angle  and  degrees  of  arc,  the  former  may  be  called  angular 
degrees;  and  the  latter  arcual  degrees.] 

c.  Proposition.  A  spherical  angle  is  measured  by  the  arc  of  a 
great  circle  described  with  its  vertex  as  a  pole  and  included  between 
its  boundary  arcs,  produced  if  necessary : 

Let  ABC  and  AB'C  be  two  intersecting  arcs  of  great  circles 
on  the  sphere  S  whose  centre  is  at  0.  Pass  the  plane  BOB' 
through  0  perpendicular  to  AC,  and  let  this 

plane  intersect  the  planes  ABC  and  AB'C 
in  the  radii  OB  and  OB',  and  intersect  the 
sphere  in  the  great  circle  B'BL.  From  the 
construction,  A  is  the  pole  of  the  great 

circle  B'BL.  By  Art.  1.  e.  BOB'  is  the 
plane  angle  of  the  diedral  angle  BACB', 
and,  accordingly  (Art.  11.  a),  is  equal  to  the 

spherical  angle  BAB'.  Now,  by  the  pre- 
ceding note,  the  number  of  degrees  in  the 

arc  BB'  is  equal  to  the  number  of  degrees  in  the  angle  BOB'. 
Hence,  the  number  of  degrees  in  the  arc  BB1  is  equal  to  the  num- 

ber of  degrees  in  the  angle  BAB'.  In  other  words,  the  spherical 
angle  BAB'  is  measured  by  the  arc  BB'  of  which  A  is  the  pole. 

This  can  be  illustrated  on  a  terrestrial  globe.  For  instance,  the  angle  at 

the  North  Pole  between  the  meridians  of  Paris  and  New  York  is  76°  2'  25.5" ; 
and  this  is  the  number  of  degrees  of  arc  intercepted  by  these  meridians  on 
the  equator. 

d.  The  great  circles  drawn  through  any  point  on  a  sphere  are 
perpendicular  to  the  great  circle  of  which  the  point  is  the  pole. 

Fia.  10 



10 SPHERICAL   TRIGONOMETRY. 

[Cel  1 For  instance,  the  meridians  of  longitude  cross  the  equator  at 
right  angles. 

e.  The  distance  of  any  point  on  the  surface  of  a  sphere,  from  a 
circle  traced  thereon,  is  measured  by  the  shorter  arc  of  a  great 
circle  passing  through  the  point  and  perpendicular  to  the  given 
circle ;  that  is,  by  the  shorter  arc  of  the  great  circle  passing 
through  the  given  point  and  the  pole  of  the  given  circle.  For 
example,  on  a  globe  the  latitude  of  any  place  (i.e.  its  distance  in 

degrees  from  the  equator)  is  measured  by  the  arc  of  the  meridian 
intercepted  between  the  place  and  the  equator. 

N.B.  When  an  arc  on  a  sphere  is  referred  to,  an  arc  of  a  great  circle  is 
meant,  unless  expressly  stated  otherwise. 

ON  SPHERICAL  TRIANGLES. 

12.   Definitions.  A  spherical  polygon  is  a  portion  of  the  surface 
of  a  sphere  bounded  by  three  or  more  arcs  of  great  circles.     The 

bounding  arcs  are  the  sides  of  the  polygon ; 

the  points  of  intersection  of  the  sides  are 
the  vertices  of  the  polygon,  and  the  angles 
which  the  sides  make  with  one  another  are 

the  angles  of  the  polygon.  A  diagonal  of 
a  spherical  polygon  is  an  arc  of  a  great 
circle  joining  any  two  vertices  which  are 
not  consecutive. 

A  spherical  triangle  is  a  spherical  poly- 
gon of  three  sides. 

Thus,  in  Fig.  11,  ABCD  is  a  spherical 

polygon;  its  sides  are  AB,  BC,  CD,  DA;  its  angles  are  ABO, 

BCD,  CD  A,  DAB-,  its  diagonals  are  BD  and  AC',  ADC  and 
ABC  are  spherical  triangles.  Since  the  sides  of  a  spherical 

polygon  are  arcs  of  great  circles,  their  magnitudes  are  expressed 

in  degrees.*  The  lengths  of  the  sides  can  be  calculated  in  terms 
of  linear  units  when  the  radius  of  the  sphere  is  known. 

A  spherical  triangle  is  right-angled,  oblique,  scalene,  isosceles,  or 
equilateral,  in  the  same  cases  as  a  plane  triangle.     The  notation 

*  The  reason  for  expressing  the  sides  of  spherical  polygons  in  degrees  is 
considered  more  fully  in  Art.  14. 

Fig.  11 
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adopted  in  discussing  the  plane  triangle  will  be  used  for  the 
spherical  triangle ;  namely,  the  triangle  will  be  denoted  by  ABC, 
and  the  sides  opposite  the  angles  A,  B,  C,  will  be  denoted  by 
a,  b,  c,  respectively. 

Two  spherical  polygons  are  equal  if  they  can  be  applied  one  to 
the  other  so  as  \o  coincide.  They  are  said  to  be  symmetrical  when 
the  sides  and  angles  of  the  one  are  respectively  equal  to  the  sides 
and  angles  of  the  other,  but  arranged  in  the  reverse  order. 

Thus,  the  spherical  triangles  ABC  and  A&Ci  (Fig.  12)  are 
equal  if  they  can  be  brought  into  coincidence,  say,  by  sliding  one 
of  them,  as  ABC,  over  the  surface  of  the  sphere  until  it  exactly 
covers  the  surface  A^B^C^  Accordingly,  it  is  evident  that  if 
these  triangles  are  equal,  the  angles  A,  B,  C,  are  respectively 
equal  to  the  angles  Ax,  Blf  Cx,  and  the  sides  a,  b,  c,  are  respectively 

equal  to  the  sides  %,  blf  c^*  On  the  other  hand,  the  triangles 
ABC  and  A2B2C2  are  symmetrical  if  the  angles  A,  B,  C,  are  re- 

spectively equal  to  the  angles  A2,  B2,  C2,  and  the  sides  a,  b,  c,  to 
the  sides  a2,  b2,  c2.  In  this  case,  the  triangle  ABC  cannot  be 

brought  into  coincidence  with  A2B2C2  by  a  sliding  motion  over 
the  surface  of  the  sphere. 

Note  1.  Two  symmetrical  spherical  triangles  can  be  brought  into  coinci- 
dence if  the  surface  be  covered  very  thinly  with  some  flexible  material.  For 

then  ABC  can  be  lifted  up,  turned  over,  and  the  surface  bent  (or  made  to 

'spring  back')  in  the  opposite  direction  ;  after  this  treatment,  ABC  can.  be 
made  to  coincide  with  A2B2C2. 

Note  2.  The  meaning  of  the  phrase  reverse  order  can  be  seen  clearly 
on  considering  the  triangles  A\B\C\  and  A2B2C2  above.     In  A1B1C1,  on 

*  Some  of  the  sets  of  minimum  conditions  necessary  for  equality  of  spheri- 
cal triangles  are  stated  in  Art.  13. 
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going  from  A\  to  Bi,  thence  to  Ci,  and  thence  to  A\,  one  goes  around  any 
point  within  the  triangle  in  a  counter-clockwise  direction.  In  A2B2C2,  on 
the  other  hand,  on  taking  the  respective  equal  angles  in  the  same  order  as 
before,  that  is,  on  going  from  A2  to  B2,  thence  to  <72,  and  thence  to  A2,  one 
goes  round  any  point  within  the  triangle  AZB2C2  in  a  clockwise  direction. 
The  directions  are  indicated  by  the  arrows. 

13.  Propositions.  (1)  Two  spherical  triangles  w*hich  are  on  the 
same  sphere,  or  on  equal  spheres,  and  whose  parts  are  in  the  same 

order  (as  ABO  and  A^C^  Fig.  12)  are  equal  under  the  same  con- 
ditions as  plane  triangles,  viz. : 

(a)  When  two  sides  and  their  included  angle  in  the  one  triangle 

are  respectively  equal  to  two  sides  and  their  included  angle  in 
the  other; 

(b)  When  a  side  and  its  two  adjacent  angles  in  the  one  triangle 

are  respectively  equal  to  a  side  and  its  two  adjacent  angles  in  the 
other ; 

(c)  When  the  three  sides  of  the  one  triangle  are  respectively 
equal  to  the  three  sides  of  the  other. 

[Suggestion  for  Proofs.  Equality  can  be  shown  by  the  same  methods 
as  in  plane  geometry.  ] 

(2)  Two  spherical  triangles  which  are  on  the  same  sphere,  or  on 

equal  spheres,  and  whose  parts  are  in  the  reverse  order  (as  ABC  and 

A2B2C2,  Fig.  12),  are  symmetrical  under  the  conditions  (a),  (b),  (c), 
above. 

[Suggestions  for  Proof.  Construct*  a  triangle  A\B\Ci  which  is  sym- 
metrical to  A2B2C2.  Under  the  given  conditions,  according  to  the  preceding 

proposition,  ABO  and  A1B1C1  have  all  their  parts  respectively  equal,  and 
hence  ABC  and  A2B2C2  have  all  their  parts  respectively  equal,  and  are 
accordingly  symmetrical.  ] 

On  a  plane  two  triangles  may  have  three  angles  of  the  one 

respectively  equal  to  three  angles  of  the  other  and  yet  not  be 

equal.  On  the  other  hand,  as  will  be  made  apparent  in  Arts. 

16,24: 

(3)  On  the  same  sphere,  or  on  equal  spheres,  two  triangles  which 

have  three  angles  of  the  one  respectively  equal  to  three  angles  of  the 
other,  are  either  equal  or  symmetrical. 

*  For  the  construction  of  spherical  triangles  under  various  conditions,  see 
Art.  24. 
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14.  Correspondence  between  the  face  angles  and  the  diedral  angles 
of  a  triedral  angle  on  the  one  hand,  and  the  sides  and  angles  of  a 
spherical  triangle  on  the  other. 

B'
 

Fia.  13 

Take  any  triedral  angle  O-A'B'C;  let  a  sphere  of  any  radius, 
OA  say,  be  described  about  0  as  centre ;  and  let  the  intersections 

of  this  sphere  with  the  faces  OA'B',  OB'C,  and  OCA',  be  the 
arcs  AB,  BC,  and  CA  respectively.  The  sides  of  the  spherical 
triangle  ABO,  namely,  AB,  BO,  OA,  measure  the  face  angles, 

AOB,  BOO,  GOA,  of  the  solid  angle  O-A'B'C  (Art.  11.  b,  Note). 
By  Art.  11  the  angles  CAB,  ABO,  BOA,  of  the  spherical  triangle 
ABO  are  the  diedral  angles  between  the  planes  of  the  sides,  that 

is,  the  diedral  angles  of  the  solid  angle  O-A'B'C 
Hence,  to  find  the  relations  existing  between  the  face  angles 

and  the  edge  angles  of  a  triedral  angle,  is  the  same  thing  as  to 
find  the  relations  between  the  sides  and  angles  of  the  spherieal 
triangle,  intercepted  by  the  faces,  upon  the  surface  of  any  sphere 
whose  centre  is  at  the  vertex  of  the  triedral  angle. 

Note  1.  The  number  of  degrees  in  the  intercepted  arcs  does  not  depend 
upon  the  radius  of  the  sphere.  Thus,  in  Fig.  13,  if  a  sphere  is  described 

with  a  radius  OA\,  about  0  as  a  centre,  the  number  of  degrees  in  the  inter- 
cepted arc  A\B\  is  the  same  as  the  number  of  degrees  in  the  intercepted  arc 

AB,  for  each  number  is  the  same  as  the  number  of  degrees  in  the  angle 
A'OBf. 

Since  the  face  angles  and  diedral  angles  of  a  triedral  angle  are  not  altered 
by  varying  the  radius  of  the  sphere,  the  relations  between  the  sides  and 
angles  of  the  corresponding  spherical  triangle  are  independent  of  the  length 
of  the  radius. 



14  SPHERICAL   TRIGONOMETRY.  [Ch.  1 

Note  2.  Since  the  side  of  a  spherical  triangle  measures  the  angle  sub- 
tended by  it  at  the  centre,  the  side  is  measured  in  degrees  or  radians.  (See 

Art.  12.)  By  "sin  AB"  for  example,  is  meant  the  sine  of  the  angle  AOB, 
subtended  by  AB  at  the  centre  O. 

Note  3.  A  three-sided  spherical  figure,  one  or  more  of  whose  sides  is  not 
an  arc  of  a  great  circle,  is  not  regarded  as  a  spherical  triangle.  For  exam- 

ple, the  figure  bounded  by  an  arc  of  a  parallel  of  latitude  and  the  arcs  of  two 
meridians  does  not  correspond  to  a  triedral  angle  at  the  centre  of  the  sphere, 
and  is  not  a  spherical  triangle  as  defined  in  Art.  12. 

Note  4.  A  triedral  angle,  and  its  corresponding  spherical  triangle,  can  be 
easily  constructed.  From  stiff  cardboard  cut  out  a  circular  sector  having 

any  arc  between  0°  and  360°.  On  this  sector  draw  any  two  radii,  taking 
care,  however,  that  no  one  of  the  three  sectors  thus  formed  shall  be  greater 
than  the  sum  of  the  other  two.  Along  these  radii  cut  the  cardboard  partly 
through.  Bend  the  two  outer  sectors  over  until  their  edges  meet ;  a  figure 

like  O-ABG  (Fig.  13)  will  be  obtained.  (Find  what  happens  if  the  above 
precaution  in  drawing  the  radii  is  not  taken.) 

This  perfect  correspondence  between  the  sides  and  angles  of  a 

spherical  triangle  on  the  one  hand,  and  the  face  angles  and  die- 
dral  angles  of  the  solid  angle  subtended  at  the  centre  of  the 

sphere  by  the  triangle  on  the  other  hand,  is  very  important,  both 

for  the  deduction  of  the  relations  between  these  sides  and  angles 

and  for  the  solution  of  practical  problems.  This  correspondence 

holds  in  the  case  of  any  spherical  polygon  and  the  solid  angle 

subtended  by  it  at  the  centre  of  the  sphere.  (The  student  may 

inspect  Fig.  11.)  Hence,  from  any  property  of  polyedral  angles  an 

analogous  property  of  spherical  polygons  can  be  inferred,  and  vice 
versa. 

15.  Propositions.  (1)  Any  side  of  a  spherical  triangle  is  less 
than  the  sum  of  the  other  tivo  sides.  This  follows  from  Arts.  14 
and  4.  a. 

Cor.  Any  side  of  a  spherical  polygon  is  less  than  the  sum  of 
the  remaining  sides. 

(2)  The  sum  of  the  sides  of  a  spherical  polygon  (not  re-entrant) 

is  less  than  360°.  In  other  words :  The  perimeter  of  any  (non-re- 
entrant) spherical  polygon  is  less  than  the  length  of  a  great  circle. 

This  important  proposition  follows  from  Arts.  14  and  4.  b. 
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(3)  In  an  isosceles  spherical  triangle  the  angles  opposite  the 
equal  sides  are  equal. 

(4)  The  arc  of  a  great  circle  drawn  from  the  vertex  of  an 

isosceles  spherical  triangle  to  the  middle  of  the  base  is  perpen- 
dicular to  the  base,  and  bisects  the  vertical  angle. 

(5)  If  two  angles  of  a  spherical  triangle  are  unequal,  the  oppo- 
site sides  are  unequal,  and  the  greater  side  is  opposite  the  greater 

angle. 

Cor.  If  two  edge  angles  of  a  triedral  angle  are  unequal,  the 
opposite  face  angles  are  unequal,  and  the  greater  face  angle  is 
opposite  the  greater  diedral  angle. 

(6)  If  two  sides  of  a  spherical  triangle  are  unequal,  the  oppo- 
site angles  are  unequal,  and  the  greater  angle  is  opposite  the 

greater  side. 

Ex.     Give  the  corresponding  proposition  for  a  triedral  angle. 

Propositions  (3)-(6)  can  be  proved  in  the  same  way  as  the  cor- 
responding propositions  in  plane  geometry. 

ON    POLAR    TRIANGLES. 

16.  a.  Note.  Three  straight  lines  on  a  plane,  no  two  of  which  are 
parallel,  intersect  in  three  points,  and  form  one  triangle.  Three  great  circles 
on  a  sphere  have  six  points  of  intersection,  and  form  eight  spherical  triangles. 
Thus,  on  a  globe,  the  equator  and  any  two  great  circles  through  the  poles 
have  as  intersections  the  two  poles  and  the  four  points  where  the  two  great 

circles  cross  the  equator ;  and  there  are  eight  triangles  formed,  namely,  four 
in  the  northern  hemisphere  and  four  in  the  southern. 

6.  Definitions.  If  great  circles  be  described  with  the  vertices 

of  a  spherical  triangle,  say  ABC  (Fig.  14),  as  poles ;  and  if  there 
be  taken  that  intersection  of  the  circles  described  with  B  and  0 

as  poles  which  lies  on  the  same  side  of  BC  as  does  A,  namely  Atf 
and  similarly  for  the  other  intersections ;  then  a  spherical  triangle 

is  formed,  which  is  called  the  polar  triangle  of  the  first  tri- 
angle ABC. 

Two  spherical  polygons  are  mutually  equilateral  when  the  sides 
of  the  one  are  respectively  equal  to  the  sides  of  the  other, 
whether  taken  in  the  same  or  in  the  reverse  order;  the  polygons 



16 SPHERICAL   TRIG  ONOMETR  Y. 

[Ch.  I 
are  mutually  equiangular  when  the  angles  of  the  one  are  respec- 

tively equal  to  the  angles  of  the  other,  whether  taken  in  the  same 
or  in  the  reverse  order. 

Fio.  u 

c.  Proposition.  If  the  first  of  two  spherical  triangles  is  the  polar 
triangle  of  the  second,  then  the  second  is  the  polar  triangle  of  the  first. 

If  A'B'C  (Fig.  14)  is  the  polar  triangle  of  ABC,  then  ABC  is 
the  polar  triangle  of  A'B'C.  Since  A  is  the  pole  of  the  arc 
B'C,  the  point  A  is  a  quadrant's  distance  from  B'.  Also,  since  C 
is  the  pole  of  B'A',  the  point  C  is  a  quadrant's  distance  from  B'. 
Since  B'  is  thus  a  quadrant's  distance  from  both  A  and  C,  it  is 
the  pole  of  the  arc  AC  (Art.  8).  Similarly  it  can  be  shown  that 

A'  is  the  pole  of  the  arc  BC,  and  that  C  is  the  pole  of  the  arc 
AB.     Hence  ABC  is  the  polar  triangle  of  A'B'C 

d.  Proposition.  In  two  polar  triangles,  each  angle  of  the  one  is 
the  supplement  of  the  side  opposite  to  it  in  the  other. 

Let  ABC  and  A'B'C  (Fig.  15) 'be  a 
pair  of  polar  triangles,  in  which  A,  B,  C, 

A',  B',  C,  are  the  angles,  and  a,  b,  c, 
a',  b',  c',  are  the  sides.     Then 

A  =  180  -  a', 

5  =  180-6', 

<7=180-c', 

Produce  the  arcs  AB  and  AC  to  meet 

B'C  in  L  and  M  respectively. 

A'  =  180  -  a, 

B'  =  180  -  b, 

C  =  180  -  c 
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Since  B'  is  the  pole  of  ACM,  B'M  =  90°;  and 

since  C  is  the  pole  of  ABL,  LO  ==  90°. 

Hence  B'M  +  LC  =  180°; 

that  is,  B'M  +  MO  +LM  =  180°, 

or  B'O  +  LM=  180°.  (1) 

Since  A  is  the  pole  of  the  arc  B'O,  the  arc  LM  measures  the 
angle  A  (Art.  11.  c). 

Hence,  (1)  becomes  A  +  a'  =  180°,  or  A  =  180°  -a'. 
The  other  relations  can  be  proved  in  a  similar  manner. 

Cor.  If  two  spherical  triangles  are  mutually  equiangular, 
their  polar  triangles  are  mutually  equilateral.  If  two  spherical 
triangles  are  mutually  equilateral,  their  polar  triangles  are 
mutually  equiangular. 

Note.  On  account  of  the  properties  in  (d),  a  triangle  and  its  polar  are 
sometimes  called  supplemental  triangles. 

e.  The  use  of  the  polar  triangle.  Because  of  the  fact  that  the  sides  and 
angles  of  a  triangle  are  respectively  supplementary  to  the  angles  and  sides  of 
its  polar  triangle,  many  relations  can  be  easily  derived  by  reference  to  the 
polar  triangle.  For,  if  a  relation  is  true  for  spherical  triangles  in  general, 
then  it  is  true  for  the  polar  of  any  triangle.  Let  the  relation  be  stated  for  the 

polar  triangle  ;  ill  this  statement  express  the  values  of  the  sides  and  angles  of 
the  polar  triangle  in  terms  of  the  angles  and  sides  of  the  original  triangle  ;  the 
statement  thus  derived  expresses  a  new  relation  between  the  parts  of  the 
original  triangle.     This  will  be  exemplified  in  later  articles. 

17.  Proposition.  The  sum  of  the  angles  of  a  spherical  triangle  is 
greater  than  two,  and  less  than  six,  right  angles. 

Let  ABC  be  any  spherical  triangle ;  it  is  required  to  show  that 

180°  <  A  +  B  +  C  <5W°. 

Construct  the  polar  triangle  A'B'C.     Then,  by  Art.  16.  d, 

A  +  a'  =  180°,  B  +  b'  =  180°,  C  +  c'  =  180°. 
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Hence,  on  adding,  A  +  B  +  C+a'  +  b'  +c'  =  540°, 

or,  A  +  B  +  0=  540°  -  (a'  +  6'  +  c'). 

Now  [Art.  15  (2)]  «'  +  &'  +  c'  is  less  than  360°,  and  greater 
than  0°. 

.-.  (i  +  5  +  C)  =  540°  —  (something  less  than  360°  and  greater 
than  0°). 

. •.  A  +  B  +  O >  540° -  360°,  i.e.  A+B+C>  180° ; 

and  A  +  B+C<  540°  -  0°,  i.e.  A  +  B+C<  540°. 

18.  Definitions,  a.  The  amount  by  which  the  sum  of  the 

three  angles  of  a  spherical  triangle  is  greater  than  180°  is  called 
its  spherical  excess.  It  is  shown  in  Art.  57  that  the  area  of  a 
triangle  depends  upon  its  spherical  excess. 

6.  A  spherical  triangle  may  have  two  right  angles,  three  right 
angles,  two  obtuse  angles,  or  three  obtuse  angles.  For  example, 

on  a  globe  the  spherical  triangle  bounded  by  any  arc  (not  90°)  on 
the  equator  and  the  arcs  of  the  meridians  joining  the  extremities 
of  the  former  arc  to  the  North  Pole,  has  two  right  angles ;  if  the 
arc  on  the  equator  is  a  quadrant,  the  triangle  has  three  right 

angles.  The  polar  of  the  triangle  whose  sides  are  35°,  25°,  15°, 
has  three  obtuse  angles.  A  spherical  triangle  having  two  right 

angles  is  called  a  bi-rectangular  triangle,  and  a  spherical  triangle 
having  three  right  angles  is  called  a  tri-rectangular  triangle.  A 
triangle  having  one  side  equal  to  a  quadrant  is  called  a  quadrantal 
triangle;  one  having  two  sides  each  a  quadrant  is  said  to  be 

bi-quadrantal,  and  one  having  each  of  its  three  sides  equal  to  a 
quadrant  is  said  to  be  tri-quadrantal. 

c,  A.  lime  is  a  spherical  surface  bounded  by  the  halves  of  two 
great  circles.  The  angle  of  the  lune  is  the  angle  made  by  the  two 
great  circles.  For  instance,  on  a  globe  the  surface  between  the 

meridians  10°  W.  and  40°  W.  is  a  lune ;  the  angle  of  this  lune  is 

equal  to  30°.  On  the  same  circle  or  on  equal  circles  lunes  having 
equal  angles  are  equal.  (For  they  can  evidently  be  made  to 
coincide.) 
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Fig.  16 

19.  On  the  convention  that  each  side  of  a  spherical  triangle  be  less 

than  180°»     In  spherical  geometry  and  trigonometry  it  is  found  convenient 
to  restrict  attention  to  triangles  the  sides  of  which 

are  each  less  than  a  semicircle  or  180°.  (This  con- 
vention can  be  set  aside  when  it  is  necessary  to  con- 

sider what  is  called  the  general  spherical  triangle, 

in  which  an  element  may  have  any  value  from  0° 
to  360°.)  A  triangle  such  as  ADBC  (Fig.  16)  which 
has  a  side  ADB  greater  than  180°,  need  not  be  con- 

sidered ;  for  its  parts  can  be  immediately  deduced 
from  the  parts  of  ACB,  each  of  whose  sides  is  less 

than  180°.  It  is  easily  proved  that  if  an  angle  of  a 

spherical  triangle  is  greater  than  180°,  the  opposite 
side  is  also  greater  than  180°,  and  vice  versa.  Thus, 

in  the  triangle  ADBC,  if  the  angle  ACB  is  greater  than  180°,  so  is  the  side 

ADB  ;  and  if  ADB  is  greater  than  180°,  so  is  the  opposite  angle.  [Sugges- 

tion for  proof :  Produce  the  arc  AC  to  meet  the  arc  ADB.'] 

20.  Proposition.  The  shortest  line  that  can  be  drawn  on  the  sur- 
face  of  a  sphere  between  two  given  points  is  the  arc  of  a  great  circle, 
not  greater  than  a  semicircle,  which  joins  the  points. 

Let  A  and  B  be  any  two  points  on  a  sphere,  and  let  ACB  be  a 

great-circle  arc  not  greater  than  a  semicircle;  then  ACB  is  the 
shortest  line  that  can  be  drawn  from  A  to  B  on  the  sphere. 

About  iasa  pole  describe  a  circle  DCE 
with  radius  AC,  and  about  B  as  a  pole 
describe  a  circle  FCG  with  radius  BC.  It 

will  be  shown  (1)  that  C  is  the  only  point 
which  is  common  to  both  these  circles; 

(2)  that  the  shortest  line  that  can  be  drawn 
from  A  to  B  on  the  surface  must  pass 
through  C. 

(1)  Take  any  point  G,  other  than  C,  on 
the  circle  FCG.  Draw  the  great-circle  arcs 
AEG  and  BG.    By  Art.  15  (1), 

AG  +  GB >  AB-,  i.e.  AG  +  GB>AC  +  CB. 

Now  AE  =  AC,  and  GB  =  CB. 

Hence  AE+GB  =  AC+CBi 

and,  accordingly,  AG  >  AE. 

Fia.  17 
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Therefore  G  is  outside  of  the  circle  DGE.  But  G  is  any  point 

(other  than  C)  on  the  circle  FGG.  Hence  G  is  the  only  point 
common  to  the  circles  DGE  and  FGG. 

(2)  Let  ADFB  be  any  line  drawn  on  the  surface  from  A  to 
B,  but  not  passing  through  G.  Whatever  the  character  of  the 

line  AD  may  be,  a  line  exactly  like  it  can  be  drawn  from  A  to  G\ 
and  a  line  like  BF  can  be  drawn  from  B  to  G. 

[This  can  be  seen  by  regarding  A-DCE  as  a  cap  fitting  closely  to  the 
sphere,  and  supposing  that  this  cap  revolves  about  A  until  D  is  at  G.  Then 
a  line  exactly  like  AD  is  drawn  from  A  to  G.  ] 

These  lines  being  drawn,  there  will  be  a  line  from  A  to  B 

which  is  less  than  ADFB  by  the  part  DF.  It  has  thus  been 

proved  that  a  line  can  be  drawn  from  A  to  B  through  G  which  is 

shorter  than  any  other  line  from  A  to  B  which  does  not  pass 

through  G.  But  G  is  any  point  on  the  great-circle  arc  from  A  to 
B.  Hence  the  shortest  line  from  A  to  B  must  pass  through  every 

point  in  AGB,  and,  accordingly,  must  be  the  arc  ACB  itself. 

Note.  This  proposition  can  also  be  proved  by  the  method  of  limits.  It  is 
shown  that  the  length  of  any  arc  on  a  sphere  is  equal  to  the  limit  of  the 
sum  of  the  lengths  of  an  infinite  number  of  infinitesimal  great-circle  arcs 

inscribed  in  the  given  arc.  (See  Rouche"  et  De  Comberousse,  Traite  de 
Geometric)     See  Art.  6.  c. 

PROBLEMS  OF  CONSTRUCTION. 

21.  The  actual  making  of  the  following  constructions  will  add 

much  to  the  clearness  and  vividness  of  the' notions  of  most  stu- 
dents about  the  surface  of  a  sphere.  An  easy  familiarity  with 

the  problems  of  Arts.  23,  24,  which  discuss  the  construction  of 

triangles,  will  place  the  student  in  an  advantageous  position  with 

respect  to  spherical  trigonometry.  This  position  is  similar  to 

that  occupied  by  him,  through  his  knowledge  of  the  construction 

of  plane  triangles,  when  he  entered  upon  the  study  of  plane 

trigonometry.  (See  Plane  Trigonometry,  p.  20,  Note,  Art.  21, 

Art.  34  (to  Case  I.),  Art.  53.) 

N.B.  The  student  should  try  to  make  these  constructions  for  himself, 
and  should  fall  back  upon  the  book  only  as  a  last  resort. 
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22.  Problems  on  great  circles. 

(1)  To  find  the  poles  of  a  given  great  circle.  About  any  two 
points  of  the  given  circle  as  poles,  describe  great  circles ;  their 
intersections  will  be  the  poles  required  (Art.  8). 

(2)  To  draw  a  great  circle  through  two  given  points.  About  the 
two  given  points  as  poles,  describe  great  circles ;  about  either  of 
the  intersections  of  these  circles  as  a  pole,  describe  a  great  circle ; 
this  will  be  the  circle  required.     (See  Arts.  8,  9.) 

(3)  To  cut  from  a  great  circle  an  arc  n°  long.  Separate  the 
points  of  the  compasses  by  a  distance  equal  to  a  chord  which 

subtends  a  central  angle  of  n°  in  a  circle  whose  radius  is  equal  to 
the  radius  of  the  sphere ;  place  the  points  of  the  compass  on  the 
great  circle ;  the  intercepted  arc  will  be  the  one  required. 

(4)  To  draw  a  great  circle  through  a  given  point  perpendicular  to 
a  given  great  circle.  Find  a  pole  of  the  given  circle  by  (1) ;  draw 
a  great  circle  through  this  pole  and  the  given  point  by  (2)  ;  this 
circle  will  be  the  one  required  (Art.  11.  d). 

(5)  To  construct  a  great  circle  making  a  given  angle  with  a  given 
great  circle,  the  point  of  intersection  being  given.  About  the  given 
point  of  intersection  as  pole,  describe  a  great  circle ;  on  this  circle 
lay  off  an  arc,  measured  from  the  given  circle,  having  as  many 

(arcual)  degrees  as  there  are  (angular)  degrees  in  the  given  angle ; 
draw  a  great  circle  through  the  extremity  of  this  arc  and  the  given 

point  of  intersection;  this  will  be  the  circle  required  (Art.  11.  c). 
(6)  To  construct  a  great  circle  passing  through  a  given  point  and 

making  a  given  angle  with  a  given  great  circle.  [When  the  given 

point  is  on  the  given  circle  this  problem  reduces  to  problem  (5).] 
It  is  easily  shown  that  the  angle  between  two  great  circles  is 
equal  to  the  angular  distance  (Art.  6.  c)  between  their  poles. 
Hence,  find  a  pole  of  the  given  circle  by  (1)  ;  about  this  point  a$ 
pole  describe  a  second  circle  whose  angular  radius  (Art.  6.  d)  is 
equal  to  the  given  angle ;  the  pole  of  the  required  circle  must  be 
on  this  second  circle.  About  the  given  point  as  pole  describe  a 
great  circle ;  if  the  required  problem  is  possible,  this  circle  will 
either  touch  or  intersect  the  second  circle.  The  points  of  contact 
or  intersection  are  the  poles  of  two  great  circles,  each  of  which 
will  satisfy  the  given  conditions. 

Ex.    Discuss  the  case  in  which  the  given  point  is  the  pole  of  the  given  circle 
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23.  Construction  of  triangles.  The  three  sides  and  the  three 

angles  of  a  spherical  triangle  constitute  its  six  parts  or  elements. 

If  any  three  of  these  six  parts  be  known,  the  triangle  can  be  con- 
structed. The  construction  belongs  to  geometry ;  the  computation 

of  the  three  remaining  parts,  when  three  parts  are  given,  is  an 

important  part  of  spherical  trigonometry.  The  sets  of  three 

parts  that  can  be  taken  from  the  six  parts  of  a  spherical  triangle 
are  as  follows : 

I.  Three  sides. 

II.  Three  angles. 

III.  Two  sides  and  their  included  angle. 

IV.  One  side  and  the  two  adjacent  angles. 

V.    Two  sides  and  the  angle  opposite  one  of  them. 

VI.   Two  angles  and  the  side  opposite  one  of  them. 

Note.  There  are  four  construction  problems  in  the  case  of  plane  triangles 
(Plane  Trig.,  Art.  53).  When  three  angles  of  a  spherical  triangle  are  given, 
there  is  only  one  spherical  triangle  (with  the  triangle  symmetrical  to  it),  as 
will  presently  appear,  which  satisfies  the  given  conditions.  When  three 
angles  of  a  plane  triangle  are  given,  there  is  an  infinite  number  of  triangles, 
of  the  same  shape,  but  of  different  magnitudes,  which  have  angles  equal  to 
the  three  given  angles.  Cases  IV.  and  VI.  above,  in  which  two  angles  are 
given,  reduce  to  a  single  case  in  plane  trigonometry,  namely,  the  case  in 
which  one  side  and  two  angles  are  given  ;  since  the  sum  of  the  three  angles 

of  any  plane  triangle  is  180°. 

24.  To  construct  a  spherical  triangle. 

I.   Given  the  three  sides.     On  any  great  circle  lay   off  an   arc 

equal  to  one  of  the  given  sides  [Art.  22  (3)].  About  one  extrem- 
ity of  this  arc  as  pole,  describe  a  circle  with  a  radius  (arcual) 

equal  to  the  second  of  the  given  sides ;  about  the  other  extremity 

of  the  arc  as  pole,  describe  a  circle  with  a  radius  equal  to  the 

third  of  the  given  sides.  By  arcs  of  great  circles  join  either  of 

the  points  of  intersection  of  the  last  two  circles  to  the  extremities 

of  the  arc  first  laid  off;  the  triangle  thus  formed  satisfies  the 

given  conditions. 

Ex.  1.  Compare  the  construction  in  the  corresponding  case  in  plane 
triangles. 
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Ex.  2.  How  many  triangles  are  possible  when  the  first  arc  is  laid  off  ? 
Are  these  triangles  equal  or  symmetrical  ? 

Ex.  3.  Construct  ABC:  (a)  Given  a  =  70°,  b  =  65°,  c  =  40°;  (6)  Given 
a  =  120°,  b  =  115°,  c  =  80°. 

Ex.  4.  Determine  approximately  the  angles  of  these  triangles.  (See 
Arts.  11.  c,  34.) 

II.  Given  the  three  angles.  Calculate  the  sides  of  the  polar 

triangle  (Art.  16.  d);  construct  it  by  I.  above;  construct  its 

polar  (Art.  16.  b) ;  the  latter  triangle  is  the  one  required. 

Ex.  1.  How  many  triangles  can  be  drawn  when  one  side  of  the  polar 
triangle  is  fixed  ?    Are  these  triangles  equal  or  symmetrical  ? 

Ex.  2.   Discuss  the  corresponding  case  in  plane  triangles. 

Ex.  3.  Construct  ABC:  (a)  Given  A  =  85°,  B  =  75°,  C  =  55°;  (6)  Given 
A  =  75°,  B  =  105°,  C  =  100°. 

Ex.  4.   Determine  approximately  the  sides  of  these  triangles. 

III.  Given  two  sides  and  their  included  angle.  Take  any  point 

on  any  great  circle;  through  this  point  draw  a  circle  making 

with  the  first  circle  an  angle  equal  to  the  given  included  angle 

[Art.  22  (5)] ;  from  the  chosen  point  and  on  the  first  circle 

bounding  this  angle,  lay  off  an  arc  equal  to  one  of  the  given  sides ; 

from  the  same  point  and  on  the  second  circle  bounding  the  angle, 

lay  off  an  arc  equal  to  the  other  given  side.  Join  the  extremities 

of  these  arcs  by  the  arc  of  a  great  circle;  the  triangle  thus 

formed  is  the  one  required. 

Ex.  1.  How  many  triangles  can  be  made  when  the  first  circle  and  the 
point  are  chosen  ?    Are  these  possible  triangles  equal  or  symmetrical  ? 

Ex.  2.    Discuss  the  corresponding  case  in  plane  triangles. 

Ex.  3.  Construct  ABC:  (a)  Given  a  =  75°,  b  =  120°,  C  =  65°  ;  (6)  Given 
b  =  35°,  c  =  70°,  A  =  110°. 

Ex.  4.    Determine  approximately  the  remaining  parts  of  these  triangles. 

IV.  Given  a  side  and  its  two  adjacent  angles. 

Either:  a.  On  any  arc  of  a  great  circle  lay  off  an  arc  equal  to 
the  given  side ;  its  extremities  will  be  taken  as  two  vertices  of 

the  required  triangle.  Through  one  extremity  of  this  arc  draw  a 

great  circle  making  with  the  arc  an  angle  equal  to  one  of  the 

given  angles;   through  the  other  extremity  of  the  arc  draw  a 
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great  circle  making  with  the  arc  (and  on  the  same  side  as  the 
angle  first  constructed)  an  angle  equal  to  the  other  of  the  given 
angles.  The  point  of  intersection  of  these  two  circles  which  is  on 
the  same  side  of  the  arc  as  the  two  angles,  is  the  third  vertex  of 
the  required  triangle. 

Or:  b.  Calculate  the  corresponding  parts  of  the  polar  tri- 
angle ;  construct  it  by  III. ;  construct  its  polar ;  this  will  be  the 

triangle  required. 

Ex.  1.  How  many  triangles  are  possible  when  the  first  arc  is  chosen  ? 
Are  these  triangles  equal  or  symmetrical  ? 

Ex.  2.   Discuss  the  corresponding  case  in  plane  triangles. 

Ex.  3.    Solve  Problem  III.  by  means  of  IV.  a,  and  the  polar  triangle. 

Ex.  4.   Construct  ABC:  (a)  Given  a  =  75°,  B  =  65°,  0=  110°  ;  (6)  Given 
b  =  110°,  A  =  40°,  C  =  63°. 

Ex.  5.   Determine  approximately  the  remaining  parts  of  these  triangles. 

V.  Given  two  sides  and  the  angle  opposite  to  one  of  them.  [First, 
review  the  corresponding  case  in  plane  geometry.] 

To  construct  a  triangle  ABC  when  a,  b,  A,  are  known :  Through 

any  point  A  of  a  great  circle  ALA1  A  draw  the  semicircle,  ACA\ 
making  an  angle  A  LAC  equal  to  the  given  angle  A.  From  this 
semicircle  cut  off  an  arc  AC  equal  to  b.  About  C  as  a  pole,  with 
an  arc  equal  (in  degrees)  to  the  side  a,  describe  a  circle.  The 

intersection  B  of  this  circle  with  ALA'  will  be  the  third  vertex  of 
the  required  triangle,  A  and  C  being  the  other  two  vertices. 

Four  cases  arise,  viz. :  — 

(1)  When  the  circle  described  about  C  fails  to  intersect  ALA' ; 

(2)  When  it  just  reaches  to  ALA* ; 

(3)  When  it  intersects  the  semicircle  ALA'  in  but  one  point ; 

(4)  When  it  intersects  the  semicircle  ALA'  in  two  points. 

Case  (1)  is  represented  in  Figs.  18,  22  ;  case  (2),  in  Figs.  19,  23 ;  case  (3), 
in  Figs.  20,  24  ;  and  case  (4),  in  Figs.  21,  25.  In  Figs.  18  and  22  the  angle 
A  is  respectively  acute  and  obtuse ;  and  similarly  for  each  of  the  other  pairs 
of  figures. 

Note.  In  Figs.  18-25  AKA'  is  a  great  circle  in  the  plane  of  the  paper, 
and  ALA1  A  is  a  great  circle  at  right  angles  to  that  plane,  ALA'  being  above 
the  surface  of  the  paper,  and  the  dotted  AA'  being  below.     In  Figs.  18-21, 
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Fig.  18 Fig.  19 

FiG.^2 

Fig.  31 

EiG.  21 Fig.  35 



26  SPHERICAL   TRIGONOMETRY.  [Ch.  I 

angle  A  is  acute  [equal  to  PAK(90°)—  KAC],  and  the  arc  A 0  is  in  front 
of  the  paper.  In  Pigs.  22-25,  angle  A  is  obtuse  [equal  to  PAK  (90°)  + 
KAC),  and  the  arc  AC  is  behind  the  paper. 

In  Fig.  21  there  are  two  triangles  (not  equal  or  symmetrical)  that  satisfy 
the  given  conditions ;  and  likewise  in  Fig.  25.  Hence  V.  is  an  ambiguous 

case  in  spherical  geometry. 

In  each  figure  let  the  perpendicular  arc  CP  be  drawn  from  C  to  the  semi- 

circle ALA',  and  let  its  length  be  called  p.     [See  Ex.  1,  p.  101.] 

A,    When  angle  A  is  acute : 

Fig.  18  shows  that  the  triangle  required  is  impossible,  if  02?  <  CP,  i.e.  if 
a<p. 

Fig.  19  shows  that  the  triangle  required  is  right  angled  if  CB  =  CPt  i.e. 

if  a— p. 
Fig.  20  shows  that  there  is  but  one  triangle  which  satisfies  the  given  con 

ditions,  if 

CB  >  CP,  CB  >  CA,  and  CB  <  CA' ; 

i.e.  if  a  >p,  a  >  b,  and  a  <  180°  —  b. 

Similarly,  there  is  only  one  triangle  if  a  >p,  a  <  b,  and  a  >  180°  —  b. 
Fig.  21  shows  that  there  are  two  triangles  which  satisfy  the  given  condi- 

tions, if 

CB>  CP,  CB<  CA,  and  CB <  CA' ; 

i.e.  if  a  >p,  a  <  b,  and  a  <  180°  —  b. 

B.    When  angle  A  is  obtuse : 

Fig.  22  shows  that  the  triangle  required  is  impossible,  if  CGB  >  CGP,  i.e. 
if  a  >p. 

Fig.  23  shows  that  the  triangle  required  is  right  angled,  if  CGB  =  CGP, 
i.e.  if  a  =p. 

Fig.  24  shows  that  there  is  but  one  triangle  which  satisfies  the  given  con- 
ditions, if 

CLB  <  CGP,  CLB<  CA  and  CLB  >  CA' ; 

i.e.  if  a  <  p,  a<b,  and  a  >  180°  —  b. 

Similarly,  there  is  only  one  triangle  if  a  <p,  a>b,  and  a  <  180°  —  b. 
Fig.  25  shows  that  there  are  two  triangles  which  satisfy  the  given  condi- 

tions, if 

CLB<  CGP,  CLB  >  CA,  and  CLB>  CA' ; 

i.e.  if  a  <p,  a>b,  and  a >  180°  —  b. 

In  Fig.  25  produce  PGC  to  meet  the  great  circle  ALA' A  in  P'.  Then 

CP'  ~  180°  -p.  Since  AC  and  CA '  are  each  greater  than  CP',  it  follows 

that  a>  180° -p. 
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It  is  also  apparent  from  Figs.  20  and  21  that  the  triangle  is  impossible, 

if  A  is  acute,  a  >  b,  and  a  >  180°  —  b  ; 

and  it  is  apparent  from  Figs.  24  and  25  that  the  triangle  is  impossible, 

if  A  is  obtuse,  a  <  &,  and  a  <  180°  —  6. 

Some  special  cases  which  may  be  investigated  by  the  student, 

are  indicated  in  the  exercises  on  this  chapter  at  page  101. 

VI.  Given  two  angles  and  the  side  opposite  one  of  them.  Calculate 

the  corresponding  parts  of  the  polar  triangle ;  construct  it  by  V. ; 

construct  its  polar ;  this  is  the  required  triangle.  There  may  be 

two  solutions,  since  the  triangle  first  constructed  may  have  two 
solutions. 

Ex.  1.  Construct  ABC:  (a)  Given  a  =  52°,  b  =  71°,  A  =  46°;  (6)  Given 
a  =  99°,  b  =  64°,  A  =  95°. 

Ex.  2.  Construct  ABC  :  (a)  Given  A  =  46°,  B  =  36°,  a  =  42°  ;  (5)  Given 
A  =  36°,  B  =  46°,  a  =  42°. 

Ex.  3.   Determine  approximately  the  remaining  parts  of  these  triangles. 

N.B.  Questions  and  exercises  on  Chapter  I.  will  be  found  at  page* 
101-102. 



CHAPTER   II. 

RIGHT-ANGLED    SPHERICAL  TRIANGLES. 

25.  Spherical  trigonometry.  Spherical  trigonometry  treats  of 
the  relations  between  the  six  parts  of  a  triedral  angle,  or,  what  is 

the  same  thing  (Art.  14),  the  relations  between  the  six  parts  of  the 
corresponding  spherical  triangle  intercepted  on  the  surface  of  the 
sphere.  In  Art.  24  it  has  been  seen  how  a  triangle  can  be  con- 

structed when  any  three  parts  are  given;  Chapters  II.  and  III. 
are  concerned  with  showing  how  the  remaining  parts  can  be 
computed  when  any  three  parts  are  known.  In  this  chapter  the 

relations  between  the  sides  and  angles  of  a  right-angled  spherical 

triangle  are  deduced.*  Throughout  the  book  the  relations  between 
trigonometric  ratios,  discussed  in  plane  trigonometry,  will  be 
employed. 

26.  Relations  between  the  sides  and  angles  of  a  right-angled  spheri- 
cal triangle. 

Case  I.     The  sides  about  the  right  angle  both  less  than  90°. 
Let  ABC  be  a  spherical  triangle  which  is  right  angled  at  C  and 

on  a  sphere  whose  centre  is  at  0.     First  suppose  that  a  and  b  are 
B 

*  These  relations  can  also  be   obtained   from  the  relations,  derived  in 
Chapter  III.,  between  the  parts  of  any  spherical  triangle  or  triedral  angle. 

28 
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each  less  than  90°.  (It  is  easily  shown,  geometrically,  that  c  is 
then  less  than  90°.)  Draw  OA,  OB,  OC.  Take  any  point  P  on 
OA ;  in  .the  plane  OAC  draw  PL  at  right  angles  to  OA,  and  let 
it  meet  00  in  L ;  in  the  plane  OAB  draw  PM  at  right  angles  to 
OA,  and  let  it  meet  OB  in  M;  and  draw  JtfZ.  Since  PL  and 

PJf  are  perpendicular  to  the  line  OA,  the  line  OA  is  perpendicu- 
lar to  the  plane  LPM  (Euc.  XI.  4) ;  and,  therefore,  the  plane 

LPM  is  perpendicular  to  the  plane  OAC  (Euc.  XI.  18).  Also, 
the  plane  OCB  is  perpendicular  to  the  plane  OAC,  since  C  is  a 
right  angle.  Hence,  LM,  the  intersection  of  the  planes  LPM 

and  OCB,  is  perpendicular  to  the  plane  OAC  (Euc.  XI.  19)  ;  and 
hence,  MLP  and  MLO  are  right  angles. 

In  the  triangle  OPM,  the  angle  OPM  being  right, 

^P0M=2P.=  0P.0L. OM     OL     OM 

OP 
Now,  angle  POM  =  c,    =  cos  POL  =  cos  6, 

and  — —  =  cos  L  OM  =  cos  a. 
OM 

.-.  cos  c  =  cos  a  cos  &.  (1) 

In  the  triangle  LPM,  angle  PLM=  90°,  and  angle  LPM=  A\ 
LM 

sin J,PJtf ~  PM~  PM~  sin POJf ' 

.-.sin  ̂ 4  =  ̂ ™  (2) '  sine  v  } 
PL 

-r^r     PL       OP      tan  POL 
AlSO,  COS  LPM  =  "t^tp  =  -7777  =  7   HTTlTr  J 1  PJf     PM     tan  POM1 

OP 

whence,  cos^=^^.  (3) tanc 
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LM 

rv%iiM     LM      OL      ttmLOM 
Also,  tan  LPM  =  -^  =  -r—  =  -^ — 75777-; PL       PL       sm  POL 

OL 
whence,  tan  ,4  =  —    .     (4) sin  6 

On  remarking  that  A,  a,  denote  an  angle  and  its  opposite  side, 

and  that  b  denotes  the  other  side,  the  relations  for  angle  B  cor- 
responding to  (2),  (3),  (4),  can  be  written  immediately ;  viz. : 

sin£  =  ̂     (2');     cos£=^^     (3');     tan£  =  ̂     (4'). sm  c  tan  c  sin  a 

These  relations  for  B  can  also  be  deduced  directly,  by  taking 
any  point  on  OB  and  making  a  construction  similar  to  that  shown 
in  Fig.  26. 

Moreover, 
a      x.       a         a      tana    tan b     tana       1        rT>    /o\   /a\  -\ 

sm  A  bb  tan  A  cos  A  =  —   •   =   •   •    [By  (3),  (4).] 
sm  0     tan  c     tan  c  (   cos  b 

Similarly,  sin  B  =   —  (5') COS  Oj 

Also,  cos  c  =  cos  a  cos  b  =  -4^4r  •  •     [By  (1),  (5),  (5').] 
'  sm  B     sin  A      L   J  w   w'  v   J  J 

.-.  cos  c  =  cot  ̂ 4  cot  5.  (6) 

For  convenience  of  reference,  relations  (l)-(6)  may  be  grouped 
together : 

cos  c  =  cos  a  cos  b,  (1) 

(2),  (2') 

(3),  (3') (*)»  (*> 

(5),  (5') 
(6) 

sin  J 
sin  a 

~   • 

sine sin  B sin  // 

~   — • 

sine 

cos  A 
tan  6 =  — _ — # 
tanc cosB 

tana 

~   • 

tanc 

tan  ̂ 4 _tana 

sin  b' 
tan  />* 

tan  6 

sin  a 

sin  A cosJ5 ^   • 
COS& 

sin  II cos  A 
cos  a 

cosc  = 
-  cot  A  cot  B. 
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Case  II.     The  sides  about  the  right  angle  both  greater  than  90°. 
In  Fig.  27,  C  denotes  the  right  angle,  and  the  sides  a,  6,  are 

each  greater  than  a  quadrant. 

b 

a 
Fig.  37 

Form  the  lune  CO  by  producing  the  sides  a  and  b  to  meet  in 
O.  Then  ABO  is  a  right  triangle  in  which  the  sides  about  the 

right  angle  are  each  less  than  90°. 

.*.  cos  c  =  cos  BO  cos  AO  =  cos  (180  —  a)  cos  (180  —  6). 
Hence  cos  c  =  cos  a  cos  b. 
Also, 

cos  BAO  -  ̂ 4^;  U.  cos  (180°  -  BAG)  =  ̂ aW-AC) tan  AB'  K  }  tanAB 

whence,  cos  A  =  -^ — tan  c 

In  a  similar  manner  the  other  relations  in  (l)-(6)  can  be  shown 
to  be  true  for  ABC  (Fig.  27). 

Note.  ABC  is  said  to  be  co-lunar  with  ABG.  Every  triangle  has  three 

co-lunar  triangles,  one  corresponding  to  each  angle. 

Case  III.  One  of  the  sides  about  the  right  angle  less  than  90°, 
and  the  other  side  greater  than  90°. 

Fig.  38 

In  ACB  let  0=  90°,  a  >  90°,  and  b  <  90°.  Complete  the  lune 
BB'.  Then  ACBf  is  a  right-angled  triangle,  in  which  the  sides 

about  the  right  angle  are  each  less  than  90°., 
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In  ACB\  cos  AB'  =  cos  AC  cos  CB' ; 

i.e.  cos  (180°  -  c)  =  cos  b  cos  (180°  —  a); 

whence  cos  c  =  cos  a  cos  6. 

Again, 

cos  CAB'  =  tan^°:  i.e.  cos  (180°  -  5^1(7)  i  tan  A0 
tan  AS'7  v  J     tan  (180° -5^)' 

whence,  cos  A  =  an   • tanc 

In  a  similar  way  the  other  relations  in  (l)-(6)  can  be  shown 
to  be  true  for  ABC  (Fig.  28). 

27.  On  species.  Two  parts  of  a  spherical  triangle  are  said  to 

be  of  the  same  species  (or  of  the  same  affection)  when  both  are  less 

than  90°,  both  greater  than  90°,  or  both  equal  to  90°.  Formula 
(1),  Art.  26,  shows  that  the  hypotenuse  of  a  right-angled  spherical 

triangle  is  less  than  90°  when  the  sides  about  the  right  angle  are 

both  greater  or  both  less  than  90°;  and  it  shows  that  the  hypotenuse 

is  greater  than  90°  when  the  sides  are  of  different  species.  Formulas 

(4)  and  (4')  show  that  in  a  right-angled  spherical  triangle  (since 
the  sines  of  the  sides  are  positive)  an  angle  and  its  opposite  side 

are  of  the  same  species.  These  important  properties  can  also  be 

deduced  geometrically. 

EXAMPLES. 

N.B.     It  is  advisable  to  remember  the  result  of  Ex.  1. 

1.  State  relations  (l)-(6),  Art.  26,  in  words. 

(1).  cos  hyp.    =3  product  of  cosines  of  sides. 

(6).  cos  hyp.    =  product  of  cotangents  of  angles. 

(2),  (2').  sin  angle  =  sin  opposite  side  -=-  sin  hyp. 

(3),  (8').  cos  angle  =  tan  adjacent  side  -=-  tan  hyp. 

(4),  (4').  tan  angle  =  tan  opposite  side  -j-  sin  adjacent  side. 

(5),  (5').  cos  angle  =  cos  opposite  side  x  sin  other  angle. 

[Compare  (2),  (3),  (4),  with  the  corresponding  formulas  in  plane  tri- 
angles.] 

2.  Deduce  formulas  (l)-(4)  by  means  of  a  figure  in  which  P  is  anywhere 
on  OB  (see  Fig.  26). 
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3.  Deduce  formulas  (l)-(4)  by  means  of  a  figure  in  which  P  (see  Fig.  26) 
is :  (a)  in  OA  produced ;  (6)  in  OB  produced ;  (c)  at  the  point  A ;  (d)  at 
the  point  B. 

4.  The  two  sides  about  the  right  angle  of  a  spherical  triangle  are  60°  and 
75° ;  find  the  hypotenuse  and  the  other  angles  by  means  of  relations  (1),  (4), 
(4') ,  Art.  26.     Check  (or  test)  the  result  by  means  of  other  formulas. 

5.  In  ABC,  given  A  =  47°  30',  B  =  53°  40',  0  =  90°;  find  the  remaining 
parts,  and  check  the  results. 

6.  Solve  some  of  the  examples  in  Art.  31,  and  check  the  results. 

28.   Solution  of  a  right-angled  triangle. 

N.B.  The  student  is  advised  to  investigate  this  subject  independently  ; 
and,  before  reading  this  article,  to  put  in  writing  in  an  orderly  manner  his 
ideas  about  the  solution  of  right  triangles.  These  ideas  will  thus  be  made 
clearer  in  his  mind,  and  his  subsequent  reading  will  be  easier. 

In  a  right  triangle  there  are  five  elements  beside  the  right 
angle.  These  five  elements  can  be  taken  in  groups  of  three  in 
ten  different  ways.  Each  of  these  ten  groups  is  involved  in  the 
ten  relations  derived  in  Art.  26;  the  three  elements  of  each 

group  are,  accordingly,  connected  by  one  relation. 

Ex.  (a)  Write  all  the  groups  of  three  that  can  be  formed  from  a,  6,  c, 
A,  B,  such  as  a,  b,  c ;  a,  b,  A;  etc. 

(&)  Write  the  relation  connecting  the  elements  of  each  group. 

It  follows  that  if  any  two  elements  of  a  right-angled  spherical 
triangle  besides  the  right  angle  be  given,  then  the  remaining  three 
elements  can  be  determined.  The  method  of  finding  a  third 
element  is  as  follows : 

Write  the  relation  involving  the  two  given  elements  and  the  re- 
quired element;  solve  this  equation  for  the  required  element. 

Check  (or  test).  When  the  required  elements  are  obtained,  the 

results  can  be  checked  by  examining  whether  they  satisfy  rela- 
tions which  have  not  been  employed  in  the  solution,  and,  pref- 

erably, the  relation  involving  the  newly  found  elements. 

E.g.,  suppose  that  A,  b,  are  known,  C  being  90° ;  then  a,  c,  B, 
are  required.  Side  a  can  be  found  by  (4) ;  side  c,  by  (3) ;  and 
angle  B,  by  (5).     The  values  found  for  a,  c,  B,  can  be  checked 

by  (31). 
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Note  1.  The  cosine,  tangent,  and  co-tangent  of  sides  and  angles  greater 

than  90°,  are  negative.  Careful  attention  must  be  paid  to  the  algebraic  signs 
of  the  trigonometric  functions  appearing  in  the  work. 

Note  2.     The  properties  stated  in  Art.  27  are  very  useful. 

Note  3.  Determine  each  element  from  the  given  elements  alone.  If  an 
element  is  found  erroneously  and  then  used  in  finding  a  second  element,  the 
second  element  will  also  be  wrong. 

The  ten  possible  groups  of  three  elements  correspond  to  the 

following  six  cases  for  solution,  in  which  the  given  elements  are 

respectively : 

(1)  Two  sides.  (4)  Two  angles. 

(2)  Hypotenuse  and  a  side.  (5)  Side  and  opposite  angle. 

(3)  Hypotenuse  and  an  angle.  (6)  Side  and  adjacent  angle. 

Before  proceeding  to  the  solution  of  numerical  examples,  it  is 

necessary  to  refer  more  particularly  to  one  of  these  cases ;  and 

also  to  call  attention  to  the  fact  that  the  ten  formulas  for  right 

triangles  (Art.  26)  may  be  grouped  in  two  very  simple  and  con- 
venient rules. 

29.  The  ambiguous  case.  When  the  given  parts  are  a  side  and 

its  opposite  angle,  there  are  two  triangles  which  satisfy  the  given 

conditions.  For,  in  ABC  (Fig.  29),  let  0=  90°,  and  let  A  and  CB 
(equal  to  a)  be  the  given  parts.  Then,  on  completing  the  lune 

AA\  it  is  evident  that  the  triangle  A'BC  also  satisfies  the  given 

conditions,  since  BOA'  =  90°,  A'  —  A,  and  CB  =  a.     The  remain- 

ing parts  in  A'BC  are  respectively  supplementary  to  the  remain- 

ing parts  in  ABC',  thus  A'B  =  lS0°-c,  A'C  =  180°  -6,  A'BC 
=  180°  -  ABC. 

This  ambiguity  is  also   apparent  from  the  relations  (l)-(6), 
A.rt.  26.     For,  if  a,  A,  are  given,  then  the  remaining  parts,  namely, 
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c,  b,  B}  are  all  determined  from  their  sines  [see  (2),  (4),  (5%] ; 

and,  accordingly,  c,  b,  B,  may  each  be  less  or  greater  than  90°. 
On  the  other  hand,  if,  for  instance,  a  and  c  are  given,  then  b  is 
determined  from  its  cosine  by  (1) ;  and  there  is  no  ambiguity, 

because  b  is  less  or  greater  than  90°  according  as  cos  b  is  respec- 
tively positive  or  negative. 

N.B.  Both  solutions  should  be  given  in  the  ambiguous  case,  unless  some 
information  is  given  which  serves  to  indicate  the  particular  solution  that  is 
suitable. 

30.  Napier's  rules  of  circular  parts.  The  ten  relations  derived  in 
Art.  26  are  all  included  in  two  statements,  which  are  called  Napier's  rules  of 
circular  parts,  after  the  man  who  first  announced  them,  Napier,  the  inventor 
of  logarithms. 

Let  ABC  be  a  triangle  right-angled  at  C.  Either  draw  a  right-angled 
triangle,  and  mark  the  sides  and  angles  as  in  Fig.  81,  or  draw  a  circle  and 

mark  successive  arcs  as  in  Fig.  32,  in  which  b,  a,  Co-B,  Co-c,  Co-A,  are 

Cog  <*£--^        * 
/      \  *'  "a 

1         \  '  \  '     \ 
I  \  I         \        /  \a 
'  *a  r<,Jn         x«    /  » 

co-cf  \  Cof       ;*:_ 
/  \  *  S      \  ^J '  \  »  s     \        • 

Co-A  b  C°^  "A 
Fia.  31  Fio.  32 

arranged  in  the  same  order  as  6,  a,  B,  c,A,  in  Fig.  30.  (Here  Co-B,  Co-c, 

Co-A,  denote  the  complements  of  B,  c,  and  A,  respectively.)  The  five 
quantities,  a,  &,  Co-B,  Co-c,  Co-A,  are  known  as  circular  parts.  That  is,  the 
right  angle  being  omitted,  the  two  sides  and  the  complements  of  the  hypote- 

nuse and  the  other  angles  are  called  the  circular  parts  of  the  triangle. 
In  Figs.  31  and  32  each  part  has  two  circular  parts  adjacent  to  it,  and  two 

circular  parts  opposite  to  it.  Thus,  on  taking  a,  for  instance,  the  adjacent 

parts  are  b,  Co-B,  and  the  opposite  parts  are  Co-c,  Co-A.  If  any  three  parts 
be  taken,  one  of  them  is  midway  between  the  other  two,  and  the  latter  are 

either  its  two  adjacent  parts  or  its  two  opposite  parts.  Thus,  if  a,  b,  Co-A, 
be  taken,  then  b  is  the  middle  part,  and  a,  Co-A,  are  the  adjacent  parts  ;  if  a, 

b,  Co-c,  be  taken,  then  Co-c  is  the  middle  part,  and  a,  b,  are  opposite  parts. 

Ex.  Take  each  of  the  circular  parts  in  turn,  write  its  opposite  parts  and 
adjacent  parts,  thus  getting  ten  sets  in  all. 
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Napier"1 s  rules  of  circular  parts  are  as  follows  : 

I.  The  sine  of  the  middle  part  is  equal  to  the  product  of  the  tangents  oj 
the  adjacent  parts. 

II.  The  sine  of  the  middle  part  is  equal  to  the  product  of  the  cosines  of 
the  opposite  parts. 

(The  £'s,  a's,  and  o's  are  lettered  thus,  in  order  to  aid  the  memory.) 
These  rules  are  easily  verified.  For  example,  on  taking  a  for  the  middle 

part, 

sin  a  =  tan  b  tan  (90°  —  B)  =  tan  b  cot  B.  [See  Art.  26  (4').] 

sin  a  =  cos  (90°  —  A)  cos  (90°  —  c)  =  sin  A  sin  c.     [See  Art.  26  (2).] 

Again,  on  taking  Co- A  for  the  middle  part, 

sin  (90°  —  A)  =  tan  b  tan  (90°  —  c),  i.e.  cos  A  =  tan  6  cot  c. [See  Art.  26  (3).] 

sin  (90°  —  A)  =  cos  a  cos  (90°  —  B),  i.e.  cos  A  =  cos  a  sin  B. 
[See  Art.  26  (5')-] 

In  a  similar  way  each  of  the  remaining  three  parts  can  be  taken  in  turn 
for  the  middle  part,  and  the  remaining  six  relations  of  Art.  26  shown  to 

agree  with  Napier's  rules.* 

Note.  One  may  either  memorize  the  relations  in  Art.  26  (or  Ex.  1, 

Art.  27),  or  use  Napier's  rules.  Opinions  differ  as  to  which  is  the  better 
thing  to  do. 

Ex.  1.  Verify  Napier's  rules  by  showing  that  they  include  the  10  relations 
in  Art.  26. 

Ex.  2.   Prove  Napier's  rules. 

31.  Numerical  problems.  In  solving  right  triangles  the  pro- 
cedure is  as  follows: 

(1)  Indicate  the  two  given  parts  and  the  three  required  parts. 

*  This  is  only  a  verification  of  Napier's  rules.  One  proof  of  the  rules 
would  consist  of  the  derivation  of  the  relations  in  Art.  26  plus  this  verifica- 

tion. These  rules  were  first  published  by  Napier  in  his  work  Mirifici 

Logarithmorum  Canonis  Descriptio  in  1614.  Napier  indicated  a  geometrical 
method  of  proof,  and  deduced  the  rules  as  special  applications  of  a  more 

general  proposition.  They  are  something  more  than  mere  technical  aids  to 
the  memory.  For  an  explanation  of  this  and  of  their  wider  geometrical 

interpretation,  see  Charles  Hutton,  Course  in  Mathematics  (edited  by  T.  S. 

Davies,  London,  1843),  Vol.  II.  pp.  24-26  ;  Todhunter,  Spherical  Trigo- 

nometry, Art.  68  ;  E.  O.  Lovett,  Note  on  Napier's  Rules  of  Circular  Parts 
(Bulletin  Amer.  Math.  Soc,  2d  Series,  Vol.  IV.  No,  10,  July,  1898). 
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(2)  Write  the  relations  that  will  be  employed  in  the  solution, 

and  note  carefully  the  algebraic  signs  of  the  functions  involved 

The  noting  of  these  signs  will  serve  to  show  (unless  a  part  is 

determined  from  its  sine)  whether  a  required  part  is  less  or  greater 

than  90°. 
(3)  For  use  as  a  check,  write  the  relation  involving  the  three 

required  parts. 

(4)  Arrange  the  work  as  neatly  and  clearly  as  possible. 

N.B.  Attention  may  be  directed  to  the  notes  in  Art.  28.  Also  see  Plane 

Trigonometry,  Art.  27  (particularly  p.  45,  notes  2,  4-6),  and  Art.  59,  p.  107. 

Note.  The  trigonometric  function  of  any  angle  can  be  expressed  in 

terms  of  some  trigonometric  function  of  an  angle  less  than  90°.  See  Plane 
Trigonometry,  Art.  45. 

EXAMPLES. 

1.    Solve  the  triangle  ABC,  given  : 

0  =  90°,  Solution*:    c  = 

a  =  44°  30',  A  = 

b  =  71°  40'  B  = 

Formulas :  cos  c  =  cos  a  cos  6,  Check :    cos  c  =  cot  A  cot  B. 

tan  A  =  tan  a  -4-  sin  &, 

tan  B  =  tan  b  -r-  sin  a. 

Logarithmic  formulas :        log  cos  c  =  log  cos  a  +  log  cos  &, 

[If  necessary ;  see  PL         log  tan  A  =  log  tan  a  —  log  sin  6, 

Trig. ,  Art.  27,  Note  6.]  log  tan  B  =  log  tan  b  —  log  sin  a, 

log  cos  c  =  log  cot  A  +  log  cot  B  (check}. 

log  sin  a  =  9.84566  -  10  .♦.  log  cos  c  =  9.35092  -  10 

log  cos  a  =  9.85324  -  10  log  tan  A  =  0.01504 

log  tan  a  =  9.99242  -  10  log  tan  B  =  0.63403 

log  sin  b  =  9.97738  -  10  .'.  c  =  77°   2'.1. 

log  cos  b  =  9. 49768  -  10  A-  45°  59'.  5. 

log  tan  6  =  0.47969  B  =  76°  55'.5. 

Check :    .:  log  cot  A  -  9.98497  -  10 

logcoti?  =  9.36595 -10 

,\  log  cos  c  =  9.35092  -  10 

*  To  be  filled  in. 



38 SPHERICAL    TRIGONOMETRY. 

[Ch.  II Note.  Spherical  triangles,  like  plane  triangles,  can  also  be  solved 

without  the  use  of  logarithms.  (See  Plane  Trigonometry,  examples  in 

Arts.  27,  55-62.) 

2.    Solve  the  triangle  ABC,  given : 

G  =  90°, 
Solution  :    c  = 

A  =  57°  40', 

6  = a  =  48°  30'. 
jB  = 

Formulas : 
sin  a 

sin  c  =   » 

Cfcecjfc:    sin5  =  sin6. 
sin  A sin  c 

.    ,       tan  a 
sm  b  =   » tan  .4 

sinI?  =  cosA 
cos  a 

log  sin  a  =  9.87446  -  10 

log  cos  a  =  9.82126  -  10 

log  tan  a  =  0.05319 

log  sin  J.  =  9.92683 -10 

log  cos  ̂ 4  =  9.72823  -10 

log  sin  c  =9.94763-10 

log  sin  b  =9.85459-10 

log  sin  B  =  9.90697  -10 

.-.  c  =  62°25'.4,  orll7°34\6. 

b  =  45°  40'.  9,  or  134°  19M. 

.B  =  53°49'.3,  or  126°  10'. 7. log  tan  ̂ 1  =  0.19860 

The  check  gives  log  sin  B  =  9.90696. 

On  combining  the  results  according  to  the  principles  of  Art.  27,  the 
solutions  are: 

(1)  c=    62°25'.4,   b=    45°40'.9,    B  =    53°49'.3; 

(2)  c  =  117°34'.6,   b  =  134°  19'.  1,   B  =  126°  10'. 7. 

3.  Solve  Ex.  1  without  using  logarithms. 

4.  Given  c  =  90°,  A  =  57°  40',  a  =  108°  30'.     Show  both  by  geometry  and 
trigonometry  why  the  solution  is  impossible. 

5.  Solve  the  triangle  ABC,  in  which  C  =  90°,  and  check  the  results,  given  : 

(1)  a  =  36°  25'  30",  b  =  85°  40' ;  (2)  c  =  120°  20'  30",  a  =  47°  30'  40"  ; 

(3)    c  =    78°  25',  A  =  36°  42'  30"  ;     (4)  A  =    63°  18',         B  =  37°  47' ; 

(5)    a  =    76°  48',  A  =  82°  36' ; 

(7)    a  =    47°  40',  A  =  30°  43' ; 

(9)  a  =  108°  45',  B  =  37°  42' ; 

(11)  A  =  110°  27',  B  =  74°  36' ; 

(13)  A  =  124°  30',  b  =  25°  40'  j 

(6)  b  =  39°  50'  20",  A  =  47°  50' ; 

(8)  b  =  70°  30'  30",  B  =  80°  40'  20"  j 

(10)  c=  78°  20',    JS=47°50'; 

(12)  a  =  108°  42',     b  =  63°  26' ; 

(14)  c=  84°  47',    b  =  39°  43'. 
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32.   Solution  of  isosceles  triangles  and  quadrantal  triangles. 

Isosceles  Triangles.  Plane  isosceles  triangles  can  be  solved  by 

means  of  right  triangles,  as  shown  in  Plane  Trigonometry,  Art.  32. 

A  spherical  isosceles  triangle  can  be  solved  in  a  similar  way, 

namely,  by  dividing  it  into  two  right  triangles  by  an  arc  drawn 
from  the  vertex  at  right  angles  to  the  base.  This  arc  bisects  the 

base  and  the  vertical  angle. 

Quadrantal  Triangles.  The  polar  triangle  of  a  quadrantal  tri- 

angle (Art.  18)  is  right-angled  (Art.  16.  d).  Hence,  a  quadrantal 
triangle  may  be  solved  by  solving  its  polar  triangle  by  Arts.  28, 

31,  and  then  computing  the  required  parts  of  the  quadrantal 

triangle  by  Art.  16.  d. 
EXAMPLES. 

1.  Solve  the  triangle  ABC,  in  which  A  and  B  are  equal,  and  check  the 
results,  given : 

(1)  a  -  54°  20',  c  =  72°  54' ;        (2)  a  =    66°  29',  A  =    50°  17' ; 

(3)  a  =  54°  30',  C  =  71°  ;  (4)  c  =  156°  40',  G  =  187°  46'. 

2.    Solve  the  triangle  ABC,  given  : 

(1)  c  =  90°,   G-   67°  12',    a  =  123°  48'  4"; 

(2)  c  =  90°,  A  =  136°  40',  B  =  105°  47'. 

33*  Solution  of  oblique  spherical  triangles.  It  has  been  seen 
(Plane  Trigonometry,  Art.  34)  that  oblique  plane  triangles  can  be 
solved  by  means  of  right  triangles.  Oblique  spherical  triangles 

can  also  be  solved  by  means  of  right  spherical  triangles.  Relat- 
ing to  spherical  triangles  there  are  six  problems  of  computation; 

these  correspond  to  the  six  problems  of  construction  discussed  in 

Arts.  23,  24.  If  any  three  parts  of  a  triangle  are  given,  the  tri- 

angle can  be  constructed  and  the  remaining  parts  can  be  com- 
puted. The  several  cases  for  computation  will  now  be  solved 

with  the  help  of  right-angled  triangles. t 

(In  the  figures  in  this  article  the  given  parts  are  indicated  by  crosses. ) 

N.B.  The  student  is  advised  to  try  to  solve  Cases  II. -VI.  before  reading 
the  text. 

*  When  time  is  limited  this  article  may  be  omitted,  or  merely  glanced  over 
t  Other  methods  of  solving  triangles  are  shown  in  Chap.  IV. 
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[Ch.  n. 
Case  I.    Given  the  three  sides.     In  ABC  (Figs.  33,  34)  let  a,  b,  c, 

be  given,  and  A,  B,  C,  be  required.  From  C  draw  CD  at  right 

angles  to  AB,  or  AB  produced.  Let  the  segments  AD  and  DB  be 

denoted  by  m  and  n,  respectively.  If  the  direction  from  A  to  B 

is  taken  as  the  positive  direction  along  the  arc  AB,  then  m  is 

positive  in  Fig.  33  and  negative  in  Fig.  34,  while  n  is  positive  in 
both  figures- 

Special  formula.     In  each  figure, 

cos  a  =  cos  n  cosp,  and  cos  6  =■  cos  m  cos  p. 

.   «™  »,      cos  «      cos  b ,\  cosp  =   =   • cos  n     cos  m 

,    cos  n  _  cos  a 
cos  m     cos  b 

.   cosn  —  coswi     cos  a  — cost      r/v—»~«i*i  .*  -a-  •        i •\   =   [Composition  and  division.  1 
cos  n  +  cos  m     cos  a  +  cos  6  J 

From  this,  on  applying  Plane  Trigonometry,  Art.  52,  formulas  (7),  (8), 

tan  -  (n  +  m)  tan  \(n  —  m)  =  tan  J  (a  +  b)  tan  1  (a  —  6).        (1) 

Now  n  +  wi  =  c ;  hence,  n  —  m  can  be  found  by  (1).  Then  the 
segments  m  and  n  can  each  be  determined.  The  triangles  ADC 

and  _BZ)(7  can  then  be  solved  by  Arts.  28,  31 ;  and  the  solution  of 
ABC  can  be  obtained  therefrom. 

Ex.  1.    Solve  Exs.  1,  2,  Art.  42,  by  the  method  outlined  above. 

Ex.  2.    Show  how  to  solve  this  case  when  the  perpendicular  is  drawn 
from  A  to  BO* 
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Case  II.  Given  the  three  angles.  Solve  the  polar  triangle  by 

the  method  used  in  Case  I. ;  and  therefrom  (Art.  16.  d)  compute 

the  parts  of  the  original  triangle. 

Ex.    Solve  Exs.  1,  2,  Art.  43,  by  this  method. 

Case  III.    Given  two  sides  and  their  included  angle.      In   ABO 

(Fig.  35)  let  a,  c,  B,  be  given.     Draw  AD  at  right  angles  to  BC, 
or  BC  produced. 

In  ABD,  c  and  B  are  known ;  hence, 

BAD,  AD,  and  BD  can  be  found.  In 

ADC,  AD  and  DC  (equal  to  a  -  BD) 
are  now  known ;  hence  DAC,  ACD,  and 

AC  can  be  found.  Also,  CAB  =  CAD 
+  DAB.  The  student  can  examine  the 
case  in  which  AD  falls  outside  ABC. 

Ex.  1.  Show  how  to  solve  the  triangle  by- 
drawing  a  perpendicular  arc  from  C  to  AB. 

Ex.  2.  Solve  Exs.  1,  2,  Art.  44,  by  means 
of  right  triangles. 

Case  IT.  Given  a  side  and  the  two  adjacent  angles.  Two  meth- 
ods of  solution  may  be  employed. 

Either:  (1)  Solve  the  polar  triangle  by  the  method  used  in 

Case  III.;  and  therefrom  compute  the  parts  of  the  original 
triangle. 

Or:  (2)  In  ABC  (Fig.  36)  let  A,  B,  c,  be  given.  Draw  the  arc 
BD  at  right  angles  to  AC.  In  ADB, 

AD,  DB,  and  ABD  can  be  found,  since 
A  and  AB  are  known.  Now  DBC  = 

ABC -ABD.  In  DBC,  DB  and  DBC 
are  now  known;  hence  BC,  CD,  and  C 

can  be  found.     Then  AC  =  AD  +  DC. 
The  student  can  examine  the  case  in 

which  BD  falls  outside  ABC. 

Ex.  1.    Solve  the  triangle  by  drawing  a  dif- 
ferent perpendicular. 

Ex.  2.   How  may  solution  (2)  aid  in  the  solution  of  Case  III.  ? 

Ex.  3.  Solve  Exs.  1,  2,  Art.  45,  by  means  of  right  triangles. 
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[Ch.  IL 
Case  V.  Given  two  sides  and  the  angle  opposite  one  of  them.  (This 

may  be  an  ambiguous  case;  see  Art.  24,  V.) 

In  ABC  (Fig.  37)  let  a,  c,  A,  be  given.  From  B  draw  the  arc 
BD  at  right  angles  to  AC  to  meet  AC  or 

AC  produced.  In  ABD,  c  and  A  are 

known;  hence  AD,  DB,  and  ABB  can  be 

found.  In  DBC,  DB  and  a  are  now 

known;  hence  DBC,  C,  and  DC  can  be 

found.  Then  AC  =  AD  +  DC,  and  ABO 
=  ABD  +  2)^0. 

Ex.  1.  Examine  the  cases  in  which  BD  falls 
outside  ABC. 

Ex.  2.  Examine  the  case  in  which  two  triangles  satisfy  the  given  con- 
ditions. 

Ex.  3.   Solve  Exs.  1,  2,  Art.  46,  by  means  of  right  triangles. 

Case  VI.     Given  two  angles  and  the  side  opposite  one  of  them. 

Like   Case  V.  this   may  be  ambiguous;   see  Art.  24,  VI.     Two 

methods  of  solution  may  be  employed. 

Either:   (1)   Solve  the  polar  triangle  by  the  method  used  in 

Case  V. ;  and  therefrom  compute  the  parts  of  the  original  triangle. 

Or:   (2)  In  ABC  (Fig.  38)  let  A,  C,  c,  be  known.    From  B 

draw  BD  at  right   angles   to  AC  to   meet  AC,   or   AC  pro- 

duced.    Solve  the  triangle  ABD',  then 
solve  the  triangle  DBO.     The  parts  of 

ABC  can  be  computed  from  these  solu- 
tions. 

Ex.  1.  How  may  (2)  aid  in  the  solution  of 
Case  V.  ? 

Ex.  2.   Solve  Exs.  1,  2,  Art.  47,  by  means  of 
right  triangles. 

Ex.  3.   Solve    the    numerical    examples   in 
Art.  24. 

34.  Graphical  solution  of  (oblique  and  right)  spherical  triangles. 

A  plane  triangle  can  be  solved  graphically  by  drawing  to  scale 

a  triangle  that  satisfies  the  given  conditions,  and  then  measuring 

the  required  parts  directly  from  the  figure  (Plane  Trigonometry, 
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Arts.  10,  21).  A  spherical  triangle  can  be  solved  graphically  by- 
drawing  (Art.  24)  upon  any  sphere  a  triangle  that  satisfies  the 
given  conditions,  and  then  measuring  the  required  parts  of  the 

triangle.  The  sides  and  angles  (see  Art.  11.  c)  can  be  measured 
with  a  thin,  flexible,  brass  ruler,  on  which  a  length  equal  to  a 

quadrant  or  a  semicircle  of  the  sphere  is  graduated  from  0°  to 
90°  or  180°  respectively. 

Small  slated  globes  can  be  obtained  fitting  into  hemispherical  cups,  whose 

rims  are  graduated  from  0°  to  180°  in  both  directions.  With  such  a  globe, 
cup,  and  a  pair  of  compasses,  the  constructions  discussed  in  Art.  24  and  the 
measurements  referred  to  in  this  article  are  easily  made. 

If  the  student  has  the  means  at  hand,  it  is  advisable  for  him  to 

solve  some  of  the  numerical  problems  graphically. 

NVB.     Questions  and  exercises  on  Chapter  II.  will  be  found  at  p.  102. 



CHAPTER    III. 

RELATIONS    BETWEEN  THE    SIDES  AND  ANGLES   OF 
SPHERICAL    TRIANGLES. 

35.  In  this  chapter  some  relations  between  the  sides  and 

angles  of  any  spherical  triangle  (whether  right-angled  or  oblique) 
will  be  derived.  In  the  next  chapter  these  relations  will  be  used 
in  the  solution  of  practical  numerical  problems.  The  first  two 

general  relations  (namely,  the  Law  of  Sines  and  the  Law  of 
Cosines),  which  are  by  far  the  most  important,  can  be  derived  in 
various  ways.  In  a  short  course  it  may  be  best  to  deduce  these 

laws  by  means  of  the  properties  of  right-angled  triangles  as  set 
forth  in  Art.  26;  and,  accordingly,  this  method  is  adopted  here. 
These  laws  are  also  derived  directly  from  geometry  in  Note  A  at 
the  end  of  the  book.  It  may  be  stated  here  that  the  geometrical 

derivation  will  strengthen  the  student's  understanding  of  the 
subject,  and  will  show  more  clearly  the  correspondence  (Art.  14) 
between  the  parts  of  a  spherical  triangle  and  the  parts  of  a 
triedral  angle. 

36.  The  Law  of  Sines  and  the  Law  of  Cosines  deduced  by  means 

of  the  relations  of  right-angled  triangles. 
A,   Derivation  of  the  Law  of  Sines. 

Let  ABC  (Figs.  39,  40)  be  any  spherical  triangle.  From  B 
draw  the  arc  BD  at  right  angles  to  AC  to  meet  AC,  or  AC  pro- 

duced, in  D. 

In  ABB,  sin  BD  =  sin  c  sin  A ; 

in  CBD,  sin  BD  =  sin  a  sin  C  (Fig.  39) 

=  sin  a  sin  BCD  (Fig.  40)  =  sin  a  sin  BCA 

Hence,  in  both  figures,    sin  a  sin  C  =  sin  c  sin  A. 

sin  a  __  sin  c 
sin  A     sin  C 

44 
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Similarly,  by  drawing  an  arc  from  C  at  right  angles  to  AB,  it 
sin  a      sin  b can  be  shown  that 
sin  A     sin  B 

sina      sin  6      sine 
sin  ̂ 1     sin  B     sin  C 

(i) 

In  words :  In  a  spherical  triangle  the  sines  oj  the  sides  are  pro- 
portional to  the  sines  of  the  opposite  angles.  (Compare  Plane 

Trigonometry j  Art.  54,  I.) 

and 

  b-" 
Fig.  39 

B.  Derivation  of  the  Law  of  Cosines. 

cos  BC  =  cos  CD  cos  DB 

=  cos  (b  —  AD)  cos  DB,  or  cos  (AD  —  b)  cos  DB 
=  cos  b  cos  AD  cos  J9.B  +  sin  b  sin  AD  cos  DB. 

But  cos  .AD  cos  DB  =  cos  c ; 
cos  c  sin  AD 

(a) 

sin  AD  cos  Z>JB  = cos  c  tan  ̂ 1Z> 
cos  AD 

=s  cos  c  tan  c  cos  A  =  sin  c  cos  A 

Hence,  on  substituting  in  (a), 

cos  a  =  cos  b  cose  +  sin  b  sine  cos  A  (2) 

Similarly,  or  by  taking  the  sides  in  turn, 

cos  b  =  cos  c  cos  a  4-  sin  c  sin  a  cos  B, 

cos  c  =  cos  a  cos  b  -f-  sin  a  sin  b  cos  C. 

In  words :  In  a  spherical  triangle  the  cosine  of  any  side  is  equal 
to  the  product  of  the  cosines  of  the  other  two  sides  plus  the  product  oj 
the  sines  of  these  two  sides  and  the  cosine  of  their  included  angle. 

(Compare  Plane  Trigonometry,  Art.  54?  II.) 
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Note  l.  The  law  of  cosines,  (2),  is  the  fundamental  and  the  most 
important  relation  in  spherical  trigonometry.  For,  as  shown  in  Note  A, 
it  can  be  deduced  directly  ;  the  law  of  sines,  (1),  can  be  deduced  from  it; 
all  other  relations  follow  from  these  ;  and  the  relations  for  right  triangles, 
Art.  26,  can  be  deduced  from  the  relations  for  triangles  in  general,  on  letting 
C  be  a  right  angle.  The  formulas  for  cos  a,  cos  6,  cos  c,  were  known  to  the 
Arabian  astronomer  Al  Battani  in  the  ninth  century.  (See  Plane  Trigo- 

nometry, p.  166.) 

C  The  Law  of  Cosines  for  the  angles.  Eelation  (2)  holds  for 

all  triangles,  and,  accordingly,  for  A'B'C,  the  polar  triangle  of 
ABC.    (See  Fig.  14,  Art.  16.)     That  is, 

cos  a'  =  cos  bf  cos  c'  -f  sin  6f  sin  cr  cos  A'. 

.-.  cos  (180°  -  A)  =  cos  (180°  -  B)  cos  (180°  -  C) 

+  sin  (180°  -  B)  sin  (180°  -  (J)  cos  (180°  -  a).     [Art.  16.  d.] 

.-.  —  cos  A  =  (—  cos  B)  (—  cos  C)  -f  sin  B  sin  C(—  cos  a). 

.'.  cosA=  —  cos  B  cos  C  4-  sin  B  sin  C  cos  a.  (3) 

Similarly,  cos  B  =  —  cos  C  cos  A  -f-  sin  C  sin  A  cos  b, 

cos  C  =  —  cos  A  cos  B  -f  sin  A  sin  J5  cos  c. 

Relation  (3)  can  also  be  derived  by  means  of  right-angled  tri- 
angles. 

Note  2.     From  (2),      cos  A  =  cos  a  -  cos  5  cos  C< sin  b  sin  c 

The  denominator  in  the  second  member  is  always  positive.  If  a  differs 

more  from  90°  than  does  b,  then  cos  a  is  numerically  greater  than  cos  6,  and, 
accordingly,  greater  than  cos  b  cos  c  ;  hence  cos  A  and  cos  a  have  the  same 
sign,  and  thus,  a  and  A  are  in  the  same  quadrant. 

Similarly,  a  and  A  are  in  the  same  quadrant  when  a  differs  more  from 
90°  than  does  c. 

From  (3),  in  which      cos  a  =  cos  A  +  cos  B  cos  G, sin  B  sin  G 

it  can  be  shown  in  a  similar  way  that  if  A  differs  more  from  90°  than  does 
B  or  O,  then  a  and  A  are  in  the  same  quadrant. 

Ex.  1.   Derive  cos  b  and  cos  c  by  means  of  right  triangles. 

Ex.  2.   Derive  cos  A  and  cos  B  by  means  of  right  triangles. 

Ex.  3.    Derive  cos  G  from  cos  c  by  means  of  the  polar  triangle. 
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37.  Formulas  for  the  half-angles  and  the  half-sides. 

[Compare  the  method  and  results  of  this  article  with  those  of 

Art.  62,  Plane  Trigonometry']. 

I.  The  half-angles. 

•w  A  oa    /o\  A        COS  a  —  COS  b  COS  C  /-!N 
From  Art.  36,  (2),  cos  A  =   ; — - — :   •  (1) sin  b  sm  c 

^              A      a      cos  a  —  cos  b  cos  c .'.  1  —  cos  A  =  l   : — - — :   sm  b  sin  c 

_  cos  b  cos  c  +  sin  b  sin  c  —  cos  a 
sin  6  sin  c 

_  cos  (b  —  c)  —  cos  a 
sin  6  sin  c 

>•  2cin2 1  A  =  2  sin^(a  -  6  +  c) sin^(q  +  5  -  c) sin  b  sin  c 

[Pfae  Trigonometry,  Art.  52,  (8).] 

On  putting  a+b-\-c  =  2s,  then  —  a  -f  b  +  c  =  2  (s  —  a), 

a  —  b  +  c  =  2  (s  —  6),  and  a  +  6  —  c  =  2  (s  —  c). 

...  sin2 1  j[  =  8in(«-6)8in(»-c).  (2) sm  6  sm  c 

Similarly,  from  (1), 

i   ,          ,      -.   ,  cos  a  —  cos  b  cos  c 1  -+-  cos  ̂ d  =  1  -\   :   :   sm  b  sm  c 

_  cos  a  +  sin  b  sin  c  —  cos  b  cos  c 
sin  6  sin  c 

_cos  a  —  cos  (b  +  c) 
sin  6  sin  c 

A  2cos2Kl^2sin^(-a  +  6  +  C-)sin^(-&  +  C""CT^ sin  &  sin  c 

•■  Cos^^  =  sin83in^-aX  (3) sm  b  sm  o 
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.  8inl^=V8in(8T6)sin(*-c); 2  sin  T\  civi  s> sin  b  sin  c 

-  >         sin  /*  urn  •> sin  &  sin  c 

and  hence,  tan  1  ̂L  =>»"(«- yrin(g-c). 2  >      sin  s  sin  (.«*  —  a,}        t sin  s  sin  (s  —  a) 

(4) 

Therefore,     timlA^-r-4   Jsin(s-a)sin(s-6)sm(g-c). sin(s— a)   *  sins 

tan  r  =  a/s!i1  C*  ~  CT)  sin  ̂  ~  6)  sin  ̂   ~  c> , '  cin  e hence,  if 

then 

sins 

UaklA  =      tanr     , 2         sin  (s  -  a) 

(5) 

Like  formulas  can  be  similarly  derived  for  £  B  and  J  C ;  or  they  may  be 
written  immediately  on  observing  the  symmetry  in  formulas  (4)  and  (5); 
namely, 

sin 
in  i  B  =Jsin(g-a)sin(S-c)> *         sin  a  sin  c 

cos  £  2?  =J^sin  («-&), .  ■      sin  a  sin  c 

tan  i  B  =Jsip(s-«)sin(g-c)i ™     sin  s  sin  (s— 6) 

tan*JB  =      tanr     > 
2         sin(s-6) 

sin  $  O  =Jsin(g-q)sin(g-6)) 
^         sin  a  sin  6 

cos 
1  C  —A/Sm  s  sm  (s  —  c) 

*      sin  a  sin  b 

tan  J  C  =Jsm(s-a)Sm(s-b)^ 
*     sin  s  sin  O  —  c) 

K6) 

2         sm  (8  —  c) 

(7) 

It  is  shown  in  Art.  50  that  r  is  the  radius  of  the  circle  inscribed 

in  the  triangle  ABC.     Article  50  may  be  read  at  this  time. 

Note.  By  geometry,  2  s  <  360°  and  b  +  c  >  a.  Hence,  s  —  a  is  positive 
and  less  than  180°.  Similarly,  s  —  b,  s  —  c,  are  positive.  Therefore,  the 
quantities  under  the  radical  signs  are  positive.  The  positive  signs  must  be 

given  to  each  radical,  for  J.,  B,  C,  are  each  less  than  180°,  and,  consequently, 

£  A,  £  B,  %  C,  are  each  between  0°  and  90°. 

EXAMPLES. 

1.  Derive  each  of  the  above  formulas. 

2.  Given  a  =  58°,  6  =  80°,  c  =  96°.     Find  A,  B,  C. 

3.  Given  a  =  46°  30',  6  =  62°  40',  c  =  83°  20-.     Find  A,  B,  C. 

The  results  in  Exs.  2,  3,  may  be  checked  by  Art.  36,  (1). 
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II.  The  half-sides.     From  Art.  36,  (3), 

cos  A  ■+■  cos  B  cos  G 
cos  a  =   ~   ; — —   • sin  B  sin  C 

On  finding  1  —  cos  a  and  1  4-  cos  a,  combining  and  simplifying 
in  the  manner  followed  for  the  half-angles,  and  putting 

A  +  B  +  C  =  2S, 

the  following  formulas  are  obtained : 

sinla=AiEco^cos(5-^)
 2         *        sin  U  sm  C 

cosi«=A/c09C5T^c?8(i'~C); 2         '  sm  -B  sin  C 

tan 1  a  =J    -  cosScosQS-  A)    . 2  \* 'eo»(/S-B)©08(S-C) 

(8) 

Let 

then 

tan  R 

-4, 
-cos# 

cos  {S  -  A)  cos  (5  -  B)  cos  (S-C)9 
tan  Ja  =  tan U  cos (£  —  A), 

(9) 

Similarly,  or  from  (8)  and  (9)  by  symmetry, 

«in  J  &  =J-™s  S  cos  (S-B), sin  ̂ 4  sin  C 

sin  Jc _    /-cos  £  cos  (£-0^ 
*        sin  A  sin  JB 

oos  J  b  =J^(S-A)cos'(S~
C)^ '  sin  J.  sin  C co  B.c=J5oSi»=4Joo5£S=5i, *  sin  J.  sin  5 

tan^^J^^8^00^^-^)   ,    tan$c=A^^^C0S^-°> 1  cos  (S  -  A)  cos  (S-C) 

tan  J  6  =  tan  B  cos  (£  —  B), m 

cos(S-A)cos(S-B) 

tan | c  =  tan U  cos (#  - C). 

(10) 

(11) 

It  is  shown  in  Art.  49  that  i2  is  the  radius  of  the  circumscribing 
circle  of  the  triangle  ABC.     Article  49  may  be  read  at  this  time. 

Note  1.  Formulas  (8)-(ll)  can  also  be  derived  from  formulas  (4)-(7) 
by  making  use  of  the  polar  triangle,  as  done  in  Art.  36.  C. 

Note  2.  Since  A  +  B+C  lies  between  180°  and  540°  (Art.  17),  S  lies 
between  90°  and  270° ;  hence,  cos  S  is  negative,  and,  accordingly,  —  cos  S 
is  positive.  Since  all  the  other  functions  under  the  radical  signs  are  positive, 
the  whole  expression  under  each  radical  sign  is  positive. 

Note  3.  The  positive  value  of  the  radical  is  taken,  since  each  side 

(Art.  19)  is  less  than  180° 
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EXAMPLES. 

1.  Derive  formulas  (10)  from  the  values  of  cos  b  and  cos  c. 

2.  Derive  formulas  (10)  from  formulas  (6)  by  means  of  the  polar  triangle. 

3.  In  ABC,  given  A  =  78°  40',  B  =  63°  50',  C  =  46°  20'.     Find  a,  b,  c. 

[Suggestion.     Either  use  formulas  (8)-(10);  or,  solve  the  polar  triangle, 
and  thence  obtain  the  parts  of  the  original  triangle.     [The  results  may  be 

checked  by  using  both  these  methods,  or  by  Art.  36,  (1).] 

4.  In  ABC,  given  A  =  121°,  B  =  102°,  C  =  68°.     Find  a,  b,  c. 
5.  Show  that  cos  (S  —  A)  is  positive. 

38.  Napier's  Analogies.    On  dividing  tan  -J-  A  by  tan  ±  B  (Art.  37), 
there  is  obtained,  , '  .       .    , 

tan }^_sm(s-  b) 

tan  i  B  ~  sin  (s  —  a) 
From  this,  by  composition  and  division, 

tan  \A  +  tan  \  B  __  sin  (s  —  b)  +  sin  (s  —  a) 

tan  \A  —  tan  \B~  sin  (s  —  b)  —  sin  (s  —  a) 
This,  by  Plane  Trigonometry,  Arts.  44.  5,  52  (also,  see  Art.  61), 

reduces  to 

sin  |  J.  cos  1  -B  4-  cos  -^  ̂4  sin  £  5  _  2  sin  i  (2  s  —  a  —  6)  cos  \  (a  —  b)  _ 

sin  £  ̂4  cos  £  5  —  cos  |  J.  sin  £  2?  ~~  2  cos  £  (2  s  —  a  —  b)  sin  ̂   (a  —  b) ' 
sin|(^  +  B)          tanjc 

and  thence,  to         — J   =   — 3   .  (1) 
sini(^-B)     tan±(a-6) -  - 

On  multiplying  tan  ̂   ̂1  by  tan  -J-  J5,  there  is  obtained 

teal  A  tan  4-  £  =  sin(s~c)
, sins 

sin -|- ̂4  sin \B _  sin  (s  —  c) 

cos  -J-  J.  cos  ̂   2?  sin  s 
From  this,  by  composition  and  division, 

cos  \  A  cos  \  B  —  sin  \  A  sin  i  5  _  sin  s  —  sin  (s  —  c) 

cos  ̂   A  cos  -J-  5  -f-  sin  \  A  sin  ̂   B  ~  sin  s  -+-  sin  (s  —  c) 
_  2  cos  ̂   (2  s  —  c)  sin  i  c 
"  2  sin  \  (2  s  —  c)  cos  ̂   c 

cos^(^4  +  .B)  tan^c 
Whence,  — \   -=   — M    (2) 

cosl(A-B)     tan±(«  +  &) 

1.6. 
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Either,  on  proceeding  in  a  similar  way  with  tan  J  a  and  tan  \  b 

[Art.  37,  (8),  (10)],  or,  on  applying  (1)  and  (2)  to  the  polar  tri- 
angle, there  is  obtained, 

sinl(a  +  6)  cot^C 

sin  |  (a  -  6)  ~  ten  1 01  -  B) 

(3) 

cos  1  (a  +  b)  cot  |  O 

and  —f   -  =  — _*    (4) cosl(a-fc)     tanl(^  +  ̂ ) 

Relations  (l)-(4)  are  known  as  Napier's  Analogies.* 
Note  1.     Compare  (3)  with  formula  (2)   Art.  61,  Plane  Trigonometry. 

Note  2.  The  numerators  in  (3)  are  always  positive,  since  a+6  +  c<  360° 
and  C<  180°.  It  follows,  accordingly,  that  a  —  b  and  A  —  B  must  have  the 
same  sign.  This  also  follows  from  the  geometrical  fact  [Art.  15,  (5)]  that 
the  greater  angle  is  opposite  the  greater  side. 

Note  3.  In  relation  (4),  cot  £  C  and  cos£(a  —  b)  are  positive  quantities  ; 
hence  cos£(a  +  &)  and  ta,n$(A  +  B)  have  the  same  sign  ;  and,  accordingly, 

£(a  +  b)  and  %(A  -f  B)  are  of  the  same  species  (Art.  27). 

Note  4.  Derivation  of  (3)  by  applying  (1)  to  the  polar  triangle.  On 

applying  (1)  to  the  polar  triangle  A'B'C  (Fig.  14,  Art.  16), 

sinh(Ar  +  B')  _        tan  \  c' 

sin$(A'  -  B')  ~~tan£(a'  -  V) 

sin  £(180°  -  a  +  180°  -  b)  =  tan  £(180°  -  <?) 

sin£(180°-a-180°-&)      tan £(180°  -  J.  -  180°  -  .B)  '   *~    **"     '  .'* 

u  sin(180°-£a  +  5)  =  tan(90°-£C)r 
sin  \{b  —  a)  tan  %(B  —  A) 

Whence,  8m$(a  +  b)=   cotfrO   
sin  £(a  —  b)      tan|(J.  —  B) 

Note  5.  For  a  geometrical  deduction  of  Napier's  Analogies  and  the  for- 
mulas in  Art.  39,  see  M'Clelland  and  Preston,  Treatise  on  Spherical  Trig- 

onometry,  Part  I.,  Art.  56,  and  the  article  Trigonometry  in  the  Encyclopedia 
Britannica  (9th  edition). 

*  That  is,  Napier's  proportions.  For  a  long  time  the  word  analogy  was 
used  in  English  in  one  of  its  original  Greek  meanings,  namely,  a  proportion 
(i.e.  an  equality  of  ratios).  This  use  of  the  word  is  now  obsolete,  and  is 
only  retained  in  a  few  phrases  such  as  the  above.  Napier  (see  Art.  30,  and 
Plane  Trigonometry,  Art.  1)  discovered  these  proportions  and  gave  them 
in  his  work,  Mirifici  logarithmorum  canonis  description  in  1614 
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EXAMPLES. 

1.  Express  Napier's  Analogies  in  words. 
2.  Write  the  analogies  involving  B  and  C,  A  and  C,  b  and  c,  a  and  c 

3.  Derive  some  of  the  analogies  in  Ex.  2. 

39.   Delambre's  Analogies  or  Gauss's  Formulas. 
By  Plane  Trigonometry,  Art.  46,  (1), 

sin  ̂ {A  +  B)=  am  %  A  co&  %  B  +  cos  J  ̂4  sin  J  2?. 

By  Art.  37,  (4),  (6),    

sin^cos^  =  sin^-6)-N/sinssin(s-c)  =  sin(s-&)Cos^fi sin  c        "      sin  a  sin  6  sin  c 

and        cos^sin^  =  sin(s-q)  J^gsin(s-c)=sin(g-q)cos^a sin  c        *      sin  a  sin  b  sin  c 

.-.  sinK^  +  ̂ )  =  Sin(s~q)  +  Sin^"^cos^(7 sine 

_  2  sin  fr  (2  s  -  a  -  6)  cos  }  (<*  -  &)  C03  ,  c 

2  sin  $  c  cos  J  c  *    ' 

••• sm  k* + *>-   cosjc   cos  * a  «> 
In  a  similar  way  it  may  be  shown  that 

...       _»      sin  A  (a  —  b)        .  _ 
■mi(wdt-J)=      ̂         ycos}(7,  (2) 

cos K^  +  ̂ )=-°SKg1+6)  singer,  (3) 2  v  y  cos  i  c  3  v  ' 
...      _.      sin*(a  +  6)    .    ,  „ 

eqsit* "  *)  =       Jin^c    'an}a  (4) 
Formulas  (l)-(4)  are  known  as  Delambre's  Analogies,  and  also  as  Gauss's 

Formulas  or  Equations.* 

*  These  formulas  were  discovered  by  Karl  Friedrich  Gauss  (1777-1855), 
one  of  the  greatest  of  German  mathematicians  and  astronomers,  and  pub- 

lished without  proof  in  his  Theoria  Motus  Corporum  Cozlestium  in  1809 ; 
thus  they  bear  his  name.  They  were,  however,  published  earlier  by  Karl 

Brandon  Mollweide  of  Leipzig  (1774-1825)  in  Zach's  Monatliche  Correspon- 
ded for  November,  1808.  They  were  earliest  discovered  by  Jean  Baptiste 

Joseph  Delambre  (1749-1822),  a  great  French  astronomer,  in  1807,  and  pub- 
lished in  the  Connaissance  des  Temps  in  1808.  The  geometrical  proof  (see 

Note  5,  Art.  38)  was  the  one  originally  given  by  Delambre.  This  proof  was 
rediscovered  and  announced  by  M.  W.  Crofton  in  1869,  and  published  in  the 

Proceedings  of  the  London  Math.  Soc,  Vol.  III.  (1869-1871),  p.  13. 
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Note  1.  Equations  (3)  and  (4)  can  also  be  derived  by  applying  (1)  and 

(2)  to  the  polar  triangle. 

Note  2.  Delambre's  Analogies  can  also  be  deduced  by  help  of  Napier's 
Analogies.  (See  Todhunter,  Spherical  Trigonometry,  Art.  54  ;  Nature,  Vol. 

XL.  (1889,  Oct.  31),  p.  644.) 

Note  3.  On  the  other  hand,  Napier's  Analogies  can  be  easily  derived 
from  Delambre's  Analogies ;  namely,  on  dividing  corresponding  members, 
one  by  the  other,  in  (1)  and  (3),  (2)  and  (4),  (4)  and  (3),  (2)  and  (1). 

EXAMPLES. 

1.  Write  Delambre's  Analogies  involving  B  and  C,  and  C  and  A. 
2.  Derive  (3)  and  (4)  from  (1)  and  (2),  using  the  polar  triangle. 

3.  Derive  Delambre's  Analogies  from  Napier's  Analogies. 
4.  Derive  some  of  the  analogies  in  Ex.  1  directly. 

40.  Other  relations  between  the  parts  of  a  spherical  triangle.     The 
preceding  articles  of  this  chapter  present  few  more  relations  than 
are  required  for  the  solution  of  spherical  triangles.  Between  the 
parts  of  a  spherical  triangle  there  are  many  other  relations  which 
are  interesting  and  useful  for  many  purposes,  and  which  either 

set  forth,  or  lead  to  the  discovery  of,  important  geometrical  prop- 
erties *  of  spherical  triangles. 

For  example,  if  in  equation  (2)  Art.  36,  the  value  of  cos  c  in  the  second 
equation  that  follows,  be  substituted,  then 

cos  a  =  cos  a  cos2  6  +  sin  a  sin  b  cos  6  cos  C  +  sin  b  sin  c  cos  A ; 

whence,  on  putting  for  cos2  b   its  value  1  —  sin2  &,  dividing  by  sin  6,  and 
transposing,  it  follows  that 

cos  a  sin  b  —  sin  a  cos  b  cos  C  =  sin  c  cos  A. 

Five  similar  relations  can  be  derived. by  permuting  the  letters;  and  on 

applying  these  six  relations  to  the  polar  triangle,  six  others  can  be  derived. 

To  pursue  this  topic  further  is  beyond  the  scope  of  this  book, 
which  aims  to  give  little  more  than  the  simplest  elements  of 
spherical  trigonometry  and  what  is  absolutely  required  for  the 
solution  of  spherical  triangles.  Those  who  are  interested  can 

refer  to  the  works  on  spherical  trigonometry  by  M'Clelland  and 
Preston  (Macmillan  &  Co.),  Casey  (Longmans,  Green,  &  Co.), 
Bowser  (D.  C.  Heath  &  Co.),  and  others. 

N.B.     Questions  and  exercises  on  Chapter  III.  will  be  found  on  page  104. 

♦Instances  in  which  geometrical  properties  are  deduced  by  means  oi 
trigonometry,  are  given  in  Art.  27,  Art.  36,  (Note  2),  Art.  38,  (Notes  2,  3). 



CHAPTER   IV. 

SOLUTION   OF  TRIANGLES. 

N.B.  The  student  is  recommended  to  work  one  or  two  examples  in  each 
set  in  this  chapter  before  reading  any  of  the  text. 

41.  Cases  for  solution.  This  chapter  is  concerned  with  the 
numerical  solution  of  spherical  triangles.  In  all  there  are  six 
cases  for  solution ;  these  correspond  respectively  to  the  six  cases 
for  construction  which  were  discussed  in  Arts.  23,  24.  In  these 
cases  the  given  parts  are  as  follows : 

I.  Three  sides. 

II.  Three  angles. 

III.  Two  sides  and  their  included  angle. 

IV.  One  side  and  its  two  adjacent  angles. 

V.   Two  sides  and  the  angle  opposite  one  of  them. 

VI.   Two  angles  and  the  side  opposite  one  of  them. 

With  slight  changes  the  procedure  described  in  Art.  31  is  rec- 
ommended. Figures  may  be  helpful.  Of  formulas  adapted  for 

logarithmic  computation,  the  necessary  ones  are  (1)  Art.  36,  (4)- 

(11)  Art.  37,  and  (l)-(4)  Art.  38.  If  the  polar  triangle  is  used 
in  finding  the  solution,  then  I.  and  II.  constitute  one  case,  like- 

wise III.  and  IV,  and  likewise  V.  and  VI. ;  and  the  necessary 

formulas  are  (1)  Art.  36  (4)-(7)  or  (8)-(ll)  Art.  37,  and  (1),  (2), 
or  (3),  (4)  Art.  38.  Cases  V.  and  VI.  must  be  examined  as  to 
ambiguity;  and  accordingly,  they  give  more  trouble  than  the 
others.  Unless  the  triangle  satisfies  the  conditions  specified  in  Arts 
15,  17,  24  V.,  its  solution  is  impossible. 

Checks.  The  results  obtained  should  always  be  checked.  Delam- 

bre's  Analogies  and  formulas  which  have  not  been  used  in  the 
course  of  the  solution,  may  be  used  as  check  formulas. 

N.B.  Before  doing  any  of  the  numerical  work  the  student  should  try  to 
get  a  clear  idea  of  the  figure  of  the  triangle  upon  a  sphere.    This  geometrical 
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conception  will  enable  him  to  make  a  reasonable  estimate  of  what  the  results 
will  be ;  this  estimate  will  help  him  to  detect  wild  results  that  may  be 

obtained  by  making  numerical  errors.  For  example,  in  ABC  let  a  =  110°, 
b  =  114°,  C=  10° ;  and  suppose  that  the  result  c=76°  presents  itself.  A  person 
who  has  drawn  a  figure  of  the  triangle  on  a  sphere,  or  one  who  has  geometri- 

cal imagination  sufficient  to  give  him  an  idea  of  the  look  of  the  given  triangle, 

will  at  once  see  that  the  result,  c  =  76°,  must  be  wrong.  In  working  spherical 
triangles  it  is  much  better  not  to  proceed  blindly. • 

42.     Case  I.     Given  the  three  sides. 

EXAMPLES. 

1.   In  ABC,  given  a  =  47°  30',  b  =  55°  40',  c  =  60°  10'.     Find  A,  B,  C. 

™         7  .  /sin  (s  —  a)  sin  (s  —  6)  sin  (s  —  c) 
Formulas :         tan  r  =-v/   ^   .   ' *  sin  s 

.      ,   A  tan  r        «.'     ,  „  tan  r         .  „  ,  n  tanr tan £.4=-—   -,  tan £_B  =  _—   -  ,  tanJC7=-^-   -• 
sin  (s  —  a)  sin  (s  —  6)  sin  (s  —  c) 

Check :  Law  of  Sines,  or  Napier's  Analogies,  or  Delambre's  Analogies. 
Logarithmic  formulas : 

log  tan2  r  =  log  sin  (s  —  a)  +  log  sin  (s  —  &)  +  log  sin  (s  —  c)  —  log  sin  s,  etc. 

CTiecA; :  log  sin  a  —  log  sin  A  =  log  sin  &  —  log  sin  B  =  log  sin  c  —  log  sin  C. 

a  =    47°  30'                  log  sins  =  9.99539  -  10  ,\  |  A  =  28°  16'  2" 
6=    55°  40'  log  sin  (s  -  a)  =  9.74943-10  \B  =  34°  33'  41.5" 
c  =    60°  10'  log  sin  (s-b)=  9.64184  -  10  J  C  =  39°  29'  12" 

.-.  2  s  =  163°  20'  log  sin  (s  -  c)=  9. 56408  -  10  .-.  A  =  56°  32'  4" 
s  =    81°  40'            .-.  log  tan2  r  =  18.95996  -  20  B  =  69°    V  23" 

s-a=    34°  10'             .-.  log  tan  r  =  9.47998  -  10  C  =  78°  58'  24" 
s  -  b  =    26°  .'.  log  tan  |.4  =  9.73055  -  10 
s-  c=   21°  30'              log  tan  \b  =  9.83814  -  10 

log  tan  $C=  9.91590-10 

Check:  log  sin  a  =  9.86763  log  sin  b  =  9.91686         log  sin  c  =  9.93826 
log  sin  ̂ 4  =  9.92128         log  sin  B  =  9.97051        log  sin  C  =  9.99191 

9.94635  9.94635  9.94635 

Note  1.  Directions  for  the  numerical  work:  Fill  in  the  first  column; 
turn  up  the  first  four  logarithms  in  the  second  column  (since  these  logarithms 
are  required  by  the  formulas) ;  compute  the  last  five  logarithms  in  the  second 

column  according  to  the  formulas  (these  computations  may  be  made  on 
another  paper,  if  necessary) ;  find  the  first  three  angles  of  the  third  column 
by  the  tables  ;  thence  compute  A,  B,  C. 

Note  2.  If  only  one  angle  is  required,  say  A,  it  can  be  found  by  one  of 

formulas  (4)  Art.  37  ;  preferably,  the  second.  Angle  A  can  also  be  found 
(without  logarithms)  by  formula  (1)  Art.  37. 



66  SPHERICAL   TRIGONOMETRY.  [Ch.  IV 

2.  Solve  ABC,  given  that  a  =  43°  30',  b  =  72°  24',  c  =  87°  50'. 

3.  Solve  ABC,  given  that  a  =  110°  40',  b  =  45°  10',  c  =  73°  307. 

4.  Solve  AB<7,  given  that  a  =  120°  50',  b  =  98°  40',  c  =  74°  60*. 

5.  Solve  PQR,  given  that  p  =  67°  40',  q  =  47°  20',  r  =  83°  50'. 

43.  Case  II.     Given  the  three  angles. 

Either:  Solve  the  polar  triangle  by  the  method  used  in  Case  L, 
and  therefrom  obtain  the  parts  of  the  original  triangle. 

O :  Solve  by  means  of  formulas  (8)-(ll)  Art.  37. 

EXAMPLES. 

Solve  ABC,  and  check  the  results. 

1.  Given  A  =  74°  40',  B  =  67°  30',  C  =  49°  50  . 

2.  Given  A  =  112°  30',  B  =  83°  40',  C  =  70°  10'. 

3.  Given  A  =  130°,  B  =  98°,  C  =  64°. 

4.  Given  P  =  33°  40',  Q  =  26°  10',  B  =  20°  30'.     Find  p,  q,  r. 

Note.     The  results  may  also  he  checked  hy  solving  the  examples  hy  both 
the  methods  above. 

44.  Case  III.     Given  two  sides  and  their  included  angle. 

EXAMPLES. 

1.   In  ABC,  a  =  64°  24',  b  =  42°  30',   C  =  58°  40' ;  find  A,  B,  c. 

Formulas  '  tan A (A  +  B)  =  g°gi(q-6) cot  *  C ; cos£(a  +  b) 

5V  ;     sin|(a  +  6) 

Sinc  =  ̂ sinc. 
sin  A 

Checks :  Law  of  Sines,  etc. 

C  =  58°  40'  log  cot  \  C=0.25031        .-.  log  tan  %(A+ B)  =0.4674S 

a-  64°24'  log  sin  |(a  + 6)  =9.90490-10     log  tan  £(>i--B)  =9.62405 

6  =  42°30'  log  cos  K«+&)  =9.77490-10  .-.  \{A+B)=1\°  10'41" 

.  a+&=106°54'  log  sin  !(«-&)  =9. 27864 -10  £(^— B)=22°49' 12" 

a-6  =  21°54'  log  cos  |(a-&)  =9.99202-10  .-.  ̂ L=93°59'53" 

f  C  =  29°  20'  log  sin  a  =  9. 95513 -10  5=48°  21' 29" 

J(a+&)=  53°27'  logsinC=9.93154-10  .\  log  sin  ̂ 4=9.99894-10 

|(a-6)=  10°67'  .'.  log  sin  c= 9. 88773 -10 

/.  c=50°33'6'' 
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Note  1.     Since  C<A,  then  c<a  ;  and  hence,  the  acute  value  of  c  is  taken. 

Note  2.  Directions  for  the  numerical  work :  Fill  in  the  first  column ; 
then  turn  up  all  the  logarithms  for  the  second  column,  these  logarithms  being 
required  by  the  formulas  ;  then  compute  the  first  two  logarithms  in  the  third 

column,  according  to  the  formulas  ;  thence  find  the  corresponding  angles,  and 
calculate  A  and  B ;  turn  up  log  sin  A ;  compute  log  sin  c  according  to  the 
formula ;  then  find  c  in  the  Tables. 

Note  3.  In  using  formulas  involving  the  difference  of  two  sides  or  two 
angles,  place  the  larger  side  or  angle  first. 

2.  Solve  ABC,  given  a  =  93°  20',  b  =    56°  30',   (7=74°  40'. 

3.  Solve  ABC,  given  b  =  76°  30',  c=    47°  20',  .4  =  92°  30'. 

4.  Solve  ABC,  given  c  =  40°  20',  a  =  100°  30',  B  =  46°  40'. 

5.  Solve  PQB,  given  q  =  76°  30',  r  =  110°  20',  P  =  46°  50'. 

45.  Case  IV.     Given  one  side  and  its  two  adjacent  angles. 

Either :   Solve  the  polar  triangle  by  the  method  used  in  Case  III.  ;  and 
therefrom  obtain  the  parts  of  the  original  triangle. 

Or  :   Solve  by  using  formulas  (1),  (2),  Art.  38. 

EXAMPLES. 

1.  Solve  ABC,  given  A  =  67°  30',  B  =  45°  50',   c  =  74°  20'. 

2.  Solve  ABC,  given  B  =  98°  30',   C  =  67°  20',  a  =  60°  40'. 

3.  Solve  ABC,  given  C  =  110°,      A  =  94°,        b  =  44°. 

4.  Solve  PQB,  given  B  =  70°  20',  Q  =  43°  50',  p  =  50°  46'. 

46.  Case  V.     Given  two  sides  and  the  angle  opposite  one  of  them. 

This  is  an  ambiguous  case,*  since  (Art.  24,  V.)  there  may  be  two 
solutions.  It  may  be  well  to  examine  this  case  (1)  geometrically, 
that  is,  by  an  inspection  of  the  figure ;  (2)  analytically,  that  is, 
by  an  inspection  of  the  formulas  involved  in  its  solution. 

(1)  Geometrically.  In  Art.  24,  V.  (Figs.  21,  25)  it  has  been 
seen  that,  when  two  sides  and  an  angle  opposite  one  of  them 
(say,  a,  b,  A)  of  a  triangle  ABC  are  given,  there  are  two  triangles 
possible  if  either  of  the  following  sets  of  conditions  holds,  viz. : 

A  <  90°,  a  >p,  a<b,  and  a  <  180°  —  b ;  (a) 

A  >  90°,  a  <p,  a>b,  and  a  >  180°  -  b.  (b) 

*For  a  detailed  discussion  of  the  ambiguous  case,  see  Todhunter,  Spher- 

ical Trigonometry,  pp.  53-58;  M'Clelland  and  Preston,  Spherical  Trigo- 
nometry, pp.  137-143. 
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In  order  that  the  triangle  be  possible,  it  is  apparent  that :  either 

CB=CP-,  or,  in  Fig.  21,  CB>CP,  i.e.  sin  CB>  sin  CP,  i.e. 
sin  a  >  sin  AC  sin  CAP, 

t.e.  sin  a  >  sm  6  sin  A ; 

and,  in  Fig.  25,  CLJ5  <  OP,  and  CLB  >  OP',  *\e.  sin  a  >  <7P',  i.e. 
sin  a  >  sin  A  (7  sin  CAP1, 

i.e.  sin  a  >  sin  b  sin  (180°  —  CAP),  i.e.  sin  a  >  sin  b  sin  A. 

Art.  24  also  shows  that,  when  the  triangle  is  possible,  there  is 
one  solution  if  either  of  the  following  sets  of  conditions  holds,  viz. : 

A  <  90°,  a  >p,  a  between  b  and  180°  -  b ;  (c) 

A>90°,  a<p,  a  between  b  and  180°  -  b.  (d) 

If  CB  =  CP,  i.e.  if  a  =p,  then  there  is  one  solution. 
Art.  24  also  shows  that  the  triangle  is  impossible  if  either  one 

of  the  following  sets  of  conditions  holds,  viz. : 

A  <  90°,  a  greater  than  both  b  and  180°  -  b ;  (e) 

A  >  90°,  a  less  than  both  b  and  180°  -  b. 

Since  the  greater  angle  is  opposite  the  greater  side,  B  must  be 

such  that  A  —  B  shall  have  the  same  sign  as  a  —  b. 
(2)  Analytically.  The  formulas  used  in  solving  this  case  are  as 

follows : 

.     -r,      sin  b  sin  A  /-,>. 
sin  B  sa   :   ,  (1) sin  a 

conC  =  "|°|^  +  gtanK^-.B),     [or,  (4)  Art.  38]     (2) 

to*C  =  ri"t(l-i?)tanKa-6)-     [°r'  (2)  Art  38]     (3) 
Since  B  is  determined  from  its  sine,  it  may  be  in  either  the  first 

or  the  second  quadrant.  If  sin  a  =  sin  b  sin  A,  then  B  =  90°.  If 
sin  a  <  sin  b  sin  A,  then  sin  B  >  1,  and  i?  has  an  impossible  value, 

and,  accordingly,  the  triangle  is  impossible.  [Compare  above.] 

Equation  (2)  shows  that  A  —  B  and  a  —  b  have  the  same  sign. 
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Hence,  from  the  analytical  inspection  comes  the  following  rule : 

If  sin  a<  sin  b  sin  A9  there  is  no  solution;  if  sin  a  =  sin  b  sin  A , 

tfAere  is  one  solution;  if  sin  a  >  sin  6  sin  ̂ 4,  awe?  (/*  both  values  of  B 
obtained  from  (1)  6e  swcft  £/ia£ 

A  —  B  and  a  —  b  have  like  signs, 

there  are  two  solutions;  if  only  one  o/  £/ie  values  of  B  satisfies  this 

condition,  there  is  only  one  solution;  if  neither  of  the  values  of  B 

satisfies  this  condition,  the  solution  is  impossible. 

From  the  geometrical  inspection  comes  the  following  rnle : 

If  sin  a  <  sin  b  sin  A,  there  is  no  solution;  if  sin  a  =  sin  b  sin  A, 
there  is  one  solution  ;  if  sin  a  >  sin  b  sin  A,  then : 

When  A  is  less  than  90°: 

there  are  two  solutions  if  a  is  less  ̂ an  both  b  and  180°  —  b; 

there  is  one  solution  if  a  lies  between  b  and  180°  —  b  ; 

there  is  no  solution  if  a  is  greater  than  both  b  and  180°  —  b. 

When  A  is  greater  than  90°: 

there  are  two  solutions  if  a  is  greater  than  both  b  and  180°  —  b; 

there  is  one  solution  if  a  lies  between  b  and  180°  —  b; 

there  is  no  solution  if  a  is  less  than  both  b  and  180°  —  b. 

Note  1.  The  second  rule  has  one  advantage  over  the  first,  in  that  it 
enables  one  to  say,  merely  on  calculating  sin  B,  but  without  finding  B, 
whether  the  triangle  is  ambiguous  or  not. 

Note  2.  The  property  observed  in  Art.  36,  Note  2,  is  frequently  used  in 
investigating  the  ambiguous  case. 

EXAMPLES. 

1.   In  ABC,  a  =  43°  20',  b  =  48°  30',  A  =  58°  40' ;  find  B,  C,  c. 

Formulas:  sin  B  =  sin  b  sin  A sin  a  # 

COt  *  °  =  slnK5-a)  tEn  KJ5  -  A)'  [Art  38'  (3^ 

tan  *  C  =  sinK^-l)  tan  W  ~  a)'  ̂ Art  38'  (1) ] 

Checks :  Formulas  (2),  (4),  Art.  38  ;  or,  formulas,  Art.  37  ;  or,  Delambre's 
Analogies. 
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A  =  58°  40' 

a  =  43°  20' 

b  =  48°  30' 

.-.  b  +  a  =  91°  50' 

b  -  a  =    5°  10' 

£(6  +  a)=45°55' 

£(&_a)=    2°  35' 

log  sin^L  =  9.93154  -10 

log  sin  a  =  9.83648  -  10 

log  sin  b  =  9.87446  -10 

.-.  log  sin  J5  =  9.96952  -  10 

.-.  B=    68°  47' 

Bf  =  1110  13' 

[According  to  the  test  for 
ambiguity.] 

In  ABC.  {See  Fig.  21,  Art.  24.) 

log  sin  | (b  +  a)  =  9. 85632  -  10 

logsin£(6  -  a)  =  8.65391  -  10 

log  tan  i(b  -  a)  =  8.65435  -  10 

log  sin  %{B  +  A)=  9.95264  -  10 

log  sin  £  (B  -  A)=  8.94532  -  10 

log  tan  %{B-A)  =  8.94702  -  10 

.-.  log  cot  £O  =  0. 14943 

logtan£c  =  9.66167  -10 

,\  \  0=35°  19'  55".4,  £  c=24°  38'  53". 

.-.     O=70°  39' 51",        c=49°17'46". 

.-.  5  + ^1  =  127°  27' 

B-A=    10°    7' 

%{B  +  A)  =   63°  43' 30" 

%{B-A)  =      5°   3' 30*" .-.  B'  +  A  =  169°  53' 
Bf-A=    52°  33' 

$(B'  +  A)=    84°  56' 30" 

\{B'-A)  =    26°  16' 30" 

In  AB'C. 

As  in  ABC. 

log  sin  %(B'  +  A)=  9.99830  -  10 

log  sin  %{Bf  -A)=  9.64609  -  10 

log  tan  \{B'  -A)-  9.69345  -  10 

.-.  log  cot£  C  =  0.89586 

log  tan  \  c  =  9.00656  -  10 

.-.  %C=  7°  14' 36",    $c=  5° 47' 49". 

.-.     0  = 14°  29'  12",       c= 11°  35' 38". 

Hence,  the  solutions  are  : 

ABC=   68°  47',    ACB  =  10°  39'  51",   AB  =  49°17'46" ; 

AB  0=111°  13',  ACB1  =  14°  29'  12",  AB'  =  11°  35'  38". 

Note  3.  Directions  for  the  numerical  work :  Fill  in  the  first  of  the  three 

columns ;  turn  up  the  first  three  logarithms  in  the  second  column,  these 

being  required  by  the  first  formula ;  compute  log  sin  B  according  to  the  first 

formula  ;  find  B  in  the  tables  ;  decide  the  question  of  ambiguity  ;  fill  in  the 
third  column  (only  four  lines  when  the  triangle  is  not  ambiguous).  Turn  up 
the  first  six  logarithms  in  the  first  of  the  next  two  columns  ;  compute  the 

next  two  logarithms  according  to  the  formulas  ;  find  the  corresponding  values 
in  the  Tables  ;  thence  compute  O  and  c.  If  the  case  is  ambiguous,  do  the 
same  work  for  the  second  triangle. 

2.  Solve  ABC  when  a  =  56°  40',  b  =    30°  50',  A  =  103°  40'. 

3.  Solve  .4.BO  when  a  =  30°  20',  b  =    46°  30',  A  =    36°  40'. 

4.  Solve  ABC  when  c  =  74°  20',  a  =  119°  40',  O  =    88°  30  . 

5.  Solve  ABC  when  b  =  30°  10',  c  =    44°  30',  B  =    86°  50'. 

6.  Solve  PQB  when  q  =  42°  30',  r  =    46°  50',  Q  =    56°  30'. 
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47.  Case  VI.  Given  two  angles  and  the  side  opposite  one  of  them. 
This  is  also  an  ambiguous  case. 

Either:  Solve  the  polar  triangle  by  the  method  used  in  Case  V.; 
and  therefrom  obtain  the  parts  of  the  original  triangle,. 

Or :  Solve  by  using  formula  (1)  Art.  36,  and  Napier's  Analogies. 
The  first  rule  (Art.  46)  for  determining  ambiguity  suits  the 

case,  if  a,  b,  be  substituted  for  A,  B,  therein.  On  making  use  of 
the  polar  triangle,  it  is  found  that  the  second  rule  can  be  adapted 
by  substituting  a,  A,  B,  for  A,  a,  b,  respectively. 

EXAMPLES. 

1.  Solve  ABC  when  A  =  108°  40',  B  =  134°  20',  a  =  145°  36'. 

2.  Solve  ABC  when  B  =  36°  20',     C  =  46°  30',  b  =  42°  12'. 

3.  Solve  ABC  when  C  =  62°  10',     A  =  23°  46',  c  =  33°  50'. 

4.  Solve  STV  when  T  =  102°  50',   Vr=  81°  20',  t  =  124°  30'. 

48.  Subsidiary  angles.  Formulas  can  sometimes  be  adapted  for  loga- 
rithmic computation  and  the  triangle  solved,  by  the  use  of  subsidiary  angles. 

For  example,  in  ABC  let  a,  c,  B  be  known,  and  b  required.  (See  Fig.  35, 
Art.  33.) 

cos  6  =  cos  a  cos  c  4-  sin  a  sin  c  cos  B  (Art.  36,  B) 

=  cos  c  (cos  a  +  sin  a  tan  c  cos  B). 

On  putting  tan  c  cos  B  =  tan  <f>,  this  becomes 

cos  b  =  cos  c  (cos  a  +  sin  a  tan  0) 

_  cos  c  (cos  a  cos  <f>  +  sin  a  sin  <f>*j 

COS0 

_  cos  c  cos  (a  —  <fr) 
COS0 

On  referring  to  Fig.  35  it  is  seen  that  BD  =  0,  that  DC=  a  —  <f>,  and 
POS  c 

cos  J.D  =   ;  so  that  solving  as  above  is  equivalent  to  solving  the  triangle COS0 

by  dividing  it  into  right-angled  triangles. 

N.B.    Questions  and  exercises  on  Chapter  IV.  will  be  found  on  page  105. 



CHAPTER   V. 

CIRCLES  CONNECTED  WITH  SPHERICAL  TRIANGLES. 

49.  The  circumscribing  circle.  The  circle  passing  through  the 
vertices  of  a  spherical  triangle  is  called  the  circumscribing  circle, 

or '  circum-circle,  of  the  triangle.  This  circle  can  be  constructed 
in  somewhat  the  same  manner  as  the  circumscribing  circle  of  a 

plane  triangle. 
Let  ABC  (Fig.  41)  be  a  spherical  triangle,  and  let  R  denote 

the  radius  (i.e.  the  polar  distance,  Art.  6) 
of  its  circumscribing  circle.  Bisect  the 

arcs  BC,  CA,  in  L,  M,  respectively;  and 
at  L,  M,  draw  arcs  at  right  angles  to  BC, 

CA,  respectively.  The  point  0,  at  which 

these  arcs  meet,  is  the  pole  of  the  circum- 
scribing circle. 

For,  draw  OA,  OB,  OC,  arcs  of  great 

FlQ41  circles.     In  the  triangles  OLB  and  OLC, 
BL  =  LC,  LO  is  common,  and  the  angles  at  L  are  right  angles. 
Hence,    OB  —  OC.      In    a   similar   way   it   can   be   shown   that 
OC=  OA.     Hence  0  is  the  pole  of  the  circumscribing  circle. 

Join  0  and  JV,  the  middle  point  of  AB ;  then  it  is  easily  shown 
that  ON  is  at  right  angles  to  AB. 

In  ABC,  A  +  B+C=2S. 

Now  (since  OA=OB=  OC), 

OAB=OBA,  OBC=OCB,  OCA=OAC. 

Hence,  OAB+ OBC  +  OAC=S. 

.-.  OBC=S-  (OAB  +  OAC)  =  S-A. 

In  the  right-angled  triangle  OBL, 

tan  OB  =  tan^>         [Art.  26,  Eq.  (3)] cos  OBL 
62 
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Ian  j,  a 

i.e.  tsmR  = 
cos  (S  -  A) 

(1) 

Similarly,  tan  M  =      -^       >    tan  B  =   ^c     • cos  (#—2?)  cos  (#—(7) 

On  substituting  in  (1)  the  value  of  tan  J-  a  in  relation  (8)  Art. 
37,  equation  (1)  becomes 

tan  B 

■
v
 

—  cos  # 

cos  (£  -  -4)  cos  (S  -  B)  cos  (S  -  (7) 

(2) 

Note  1.     Compare   (1)  with  the  corresponding  case  in  plane  triangles 

(Plane    Trig.,    Art.    68).      (In    plane    triangles,    S  =  90°,    and,    hence, 
cos  (S  —  A)  =  sin  A.) 

Note  2.     On  putting    N=  V—  cos  Scos(S  —  A)cos(S  —  B)cos(S  —  C), 
cosS 

tan  R  =  — 
2V 

50.  The  inscribed  circle.  The  circle  which  touches  each  of  the 

sides  of  a  spherical  triangle  is  called  the  inscribed  circle,  or  in- 
circle,  of  the  triangle.  This  circle  can  be  constructed  in  some- 

what the  same  manner  as  the  inscribed  circle  of  a  plane  triangle. 
Let  ABC  be  a  spherical  triangle,  and  let 

r  denote  the  radius  (i.e.  the  polar  distance) 
of  its  inscribed  circle.  Bisect  angles  A,  B, 

by  arcs  of  great  circles,  and  let  these  arcs 
meet  at  0.  Draw  OL,  OM,  ON,  at  right 

angles  to  BC,  CA,  AB,  respectively. 
In  the  triangles  OAM  and  OAN,  the 

angles  at  A  are  equal,  the  angles  at  N  and 
M  are  right  angles,  and  the  side  OA  is 

common.  Hence  these  triangles  are  symmetrical,  and  OM=  ON. 
Similarly  it  can  be  shown  that  ON=  OL.  Hence  0  is  the  pole 
of  the  circle  inscribed  in  ABC. 

Since  the   triangles   OAM  and   OAN  are   equal,   AM—  AN. 
Similarly,  BN=  BL,  and  CL  =  CM. 

Now 

hence 
AB  +  BC+  CA  =  2s: 

AN+BL+CL  =  s. 

AN=  s-(BL  +  LC)  =  s-a. 
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In  the  right-angled  triangle  AON, 

tan  0N  =  tan  OAN  sin  AN.  [Art.  26,  (4)] 

.*.  tanr  =  tan^  ̂ .sin(s  —  a).  (1) 

Similarly,  tan  r  =  tan  \  B  sin  (s  —  6)  ;   tan  r  =  tan  \  C  sin  (&•  —  c). 

On  substituting  in  (1)  the  value  of   tan-J-^1  in  (4)  Art.  37, 
equation  (1)  becomes 

toll  r  =  J  sin  (s  -  a)  sin  (g  -  5)  sin  Q  -  c) ,  ^ 
'  sins  v  / 

On  putting     n  =  Vsin  s  sin  (s  -  a)  sin  («  -  ft)  sin  (*  -  c) ,  (3) 

tanr  =  -?*-.  (4) 
sins  w 

Note  1.    Compare  (1)  with  Plane  Trigonometry,  Art.  69,  Note  ;  (2)  with 
Art.  69,  (3);  n  with  S,  Art.  66,  (3);  (4)  with  (3)  Art.  69. 

51.  Escribed  circles.  A  circle  which  touches  a  side  of  a  spher- 
ical triangle,  and  the  other  two  sides  produced  (that  is,  which 

is  inscribed  in  a  co-lunar  triangle),  is  an  escribed  circle,  or  an  ex- 
circle,  of  the  triangle.  There  are  three  ex-circles,  one  correspond- 

ing to  each  side  of  the  triangle. 

Let  ABC  be  a  spherical  tri- 
angle;  and  let  the  radii  of  the 

^     escribed  circles,  touching  a,  b,  c, 

respectively,  be  denoted  by  ra,  rb, 

rc,    respectively.     Complete    the 
lune   whose    angle    is   A.     The 

escribed  circle  which  touches  a  is   the  inscribed   circle  of  the 

co-lunar  triangle  A'BC.     Hence  [Art.  50,  (1)], 

tan  ra  =  tan  }  A'  sin  J  [(a  +  180°  -  b  +  180°  -  c)  -  2  a] ; 

i.e.  tan  ra  =  tan  |  A  sin  s,  (1) 

Similarly,  tan  rb  =  tan  £  B  sin  s ;  tan  re  =  tan  £  C  sin  s. 
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On  substituting  for  tsm^A  its  value  in  (4)  Art.  37,  equatioD 

(1)  becomes 

,                 /  sin  s  sin  (s  —  b)  sin  (s  —  c)  /0v 

^--V — iL'c-U — *•  -  (2) 

"■"■^itacFr^-           [Art.  50,  (3)]  (3) 

Similarly,     tan  r6  =  — —   ;  tan  re  = 
sin  (s  —  b)  sin  (s  —  c) 

Note.  Compare  (3)  with  the  corresponding  result  in  Plane  Trigonome- 
try, Art.  70. 

Some  other  relations  between  the  sides  and  angles  of  a  spherical 

triangle  and  the  radii  of  the  circles  connected  with  it,  are  indicated 

in  the  exercises  at  the  end  of  the  book. 

Ex.  Find  the  radii  of  the  circumscribing,  inscribed,  and  escribed  circles  of 
some  of  the  triangles  in  Chapters  II.,  IV. 

N.B.    For  questions  and  exercises  on  Chapter  F.,  see  page  107. 



CHAPTER  VI. 

AREAS  AND  VOLUMES  CONNECTED  WITH  SPHERES. 

52.   Preliminary  propositions. 

«.  The  lateral  area  of  a  frustum  of  a  regular  pyramid  is  equal 
to  the  product  of  the  slant  height  of  the  frustum  and  half  the 
sum  of  the  perimeters  of  its  bases. 

Fig.  45 FlQ.  46 

The  student  can  easily  prove  this  (Fig.  44).  It  should  be 
noted  that  the  half  sum  of  the  perimeters  of  the  bases  of  the 
frustum  is  equal  to  the  perimeter  of  the  section  which  is  parallel 
to  the  bases  and  midway  between  them. 

In  symbols:  If  p1}  p2,  P,  are  the  perimeters  of  the  bases  and 
the  middle  section  of  the  frustum,  and  MN  is  its  slant  height, 
then 

lateral  area  of  frustum  =  -J  MN  (pi  +p2)  =MN»  P. 

b.  The  lateral  area  of  a  frustum  of  a  cone  of  revolution  is 

equal  to  the  product  of  the  slant  height  of  the  frustum  and  half 
the  sum  of  the  circumferences  of  its  bases. 

[Suggestion  for  proof:  If  the  number  of  the  lateral  faces  of  a 
frustum  of  a  regular  pyramid  be  indefinitely  increased  and  each 
face  be  indefinitely  decreased,  then  this  frustum  approaches  the 

frustum  of  a  cone  of  revolution  as  a  limit  (see  Pig.  46).  Accord- 
ingly, Proposition  (6)  follows  at  once  from  (a)].     It  should  be 

66 
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noted  that  half  the  sum  of  the  circumferences  of  the  bases  of 

the  frustum  is  equal  to  the  circumference  of  the  section  which 
is  parallel  to  the  bases  and  midway  between  them. 

In  symbols:  If  Cx,  02,  0  (Fig.  45)  are  the  circumferences  of  the 
bases  and  the  middle  section  of  the  frustum,  and  MN  is  its  slant 
height,  then  lateral  area  of  frustum 

=  \  MN  {Ox  +  Oj)  =  MN-  0=2  ttLG  •  MN. 

Note.  The  lateral  surface  of  the  frustum  of  the  cone  (Fig.  45)  can  be 

generated  by  the  revolution  of  the  line  MN  about  the  line  AB  which  is  in 
the  same  plane  with  MN. 

53.   To  find  the  area  of  a  sphere.     The  surface  of  a  sphere  can 
be  generated  by  the  revolution  of  a  semicircle  about  its  diameter. 
For  example,  the  semicircle  AT  KB  of  radius  R 

on  revolving  about  its  diameter  AB,  will  describe        -^^ 
the  surface  of  a  sphere  of  radius  OA.  £k~~~ 

Let  a  polygon  ALTGKB  be  inscribed  in  this     /    Q  \ 
semicircle.    At  M,  the  middle  point  of  one  of  the 

chords  LT,  draw  MO  at  right  angles  to  LT.     By     V~ geometry,  MO  will   meet  AB  at  0,  the  middle       ̂ w 

point  of  AB.     Project  LT  on  AB,  the  projection  b 
being  It ;  draw  LQ  at  right  angles  to  Tt. 

By  Art.  52.  b,  the  area  generated  by  LT  in  its  revolution 
about  AB 

=  2  izMm-LT.  (1) 

Since  the  angles  of  the  triangle  LTQ  are  respectively  equal  to 
the  angles  of  OMm,  these  triangles  are  similar ;  accordingly, 

LT:LQ=0M:Mm. 

.\  Mm.LT=LQ.  0M=  It .  OM. 

Hence,  from  (1),  area  generated  by  LT=  2  ttOM >  It.  (2) 

In  words:  When  a  chord  of  a  semicircle  revolves  about  the 

diameter,  the  area  generated  is  equal  to  2  tt  times  the  product  of 
the  length  of  the  perpendicular  from  the  centre  to  the  chord, 
and  the  projection  of  the  chord  upon  the  diameter. 
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.\  The  area  of  the  surface  generated  by  the  revolution  of  the 

polygon  ALTGKB 

=      2  7r  x  (perpendicular  on  AL  from  0)  X  AL 

+  2  7T  x  (perpendicular  on  LT  from  0)  x  It 

-f  2  7r  X  (perpendicular  on  TG  from  0)  X  tg 

-f-  2  7r  x  (perpendicular  on  GK  from  0)  x  gJc 

+  2  7T  x  (perpendicular  on  KB  from  0)  x  kB. 

If  the  number  of  sides  in  the  polygon  inscribed  in  the  semi- 
circle is  indefinitely  increased  and  each  side  is  indefinitely  de- 

creased, then  the  broken  line  ALTGKB  approaches  the  semicircle 
as  a  limit,  and  each  of  the  perpendiculars  drawn  from  0  to  the 
middle  points  of  the  chords  approaches  R  as  a  limit;  while 
the  sum  of  the  projections  of  the  chords  remains  equal  to  AB, 
the  diameter  of  the  circle.  Hence,  area  of  surface  generated  by 

revolution  of  semicircle  AGB  =  2  tr  •  R  •  2  R ; 

i.e.  area  of  surface  of  sphere  of  radius  R  —  4  ttR2. 

In  words :  The  area  of  the  surface  of  a  sphere  is  four  times  the 
area  of  a  great  circle  of  the  sphere. 

Definition.  A  zone  of  a  sphere  is  a  portion  of  the  surface  in- 
cluded between  two  parallel  planes,  or,  what  comes  to  the  same 

thing,  is  the  portion  of  the  surface  included  between  two  circles 
which  have  common  poles ;  for  example,  the  surface  between  the 

parallels  of  30°  K  latitude  and  50°  K  latitude. 
The  area  of  a  zone.  An  infinite  number  of  chords  can  be  in- 

scribed in  the  arc  LT  (Fig.  47).  By  reasoning  similar  to  that 
employed  above,  it  can  be  shown  that 

area  of  surface  generated  by  arc  LT=2  irR  •  It. 

.'.  The  area  of  a  spherical  zone  is  equal  to  the  product  of  the  length 
of  a  great  circle  of  the  sphere  and  the  height  of  the  zone. 

It  follows  that  on  a  sphere  or  on  equal  spheres  the  areas  of 
zones  of  equal  heights  are  equal. 
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EXAMPLES. 

1.  Find  the  area  of  a  sphere  of  radius  15  inches. 

2.  Find  the  surface  of  a  spherical  zone  of  height  2.5  inches  on  a  sphere  of 
diameter  50  inches. 

3.  Find  the  convex  surface  of  a  spherical  segment  of  height  4.5  inches  on 
a  sphere  of  diameter  7  feet.     [See  definition,  Art.  63.] 

4.  Suppose  that  the  earth  is  a  sphere  whose  radius  is  3960  miles  ;  find  the 

area  of  the  surface  included  between  the  North  Pole  and  the  parallel  of  80° 
N.  latitude ;  between  the  parallels  of  49°  N.  and  50°  N.  ;  between  5°  N. 
and  5°  S. 

54.  Lunes.  Definition.  The  spherical  surface  bounded  by  two 

halves  of  great-circles  is  called  a  lune;  e.g.  the  surface  between 

two  meridians.  The  angle  of  the  lune  is  the  angle  between  the 
two    semicircles ;    thus    the   angle   of    the 

lune    between   the   meridians    70°  W.   and 

80°  W.  is  10°. 
Proposition.  On  the  same  circle  or  on 

equal  circles  the  areas  of  lunes  are  propor- 
tional to  their  angles.  This  can  be  proved 

by  a  method  similar  to  that  which  is  used 

in  proving  that  the  angles  at  the  centre  of 

a  circle  are   proportional  to  the  arcs  sub-  fio.  48 
tended  by  them. 

55.  A  spherical  degree  defined.  From  the  proposition  in  Art.  54 
it  follows  that  the  area  of  a  lune  is  to  the  area  of  the  surface 

of  the  sphere  as  the  angle  of  the  lune  is  to  four  right  angles. 
That  is, 

area  of  lune  of  angle  A°  :  area  of  sphere  =  A°  :  360°. 
tt                                  »  t           n        i    h  o      area  of  sphere 
Hence,  area  of  lune  ot  angle  1  =   oaK   ' 

Let  a  great  circle  be  drawn  about  one  of  the  vertices  of  a  lune 

of  angle  1°  as  a  pole.  The  lune  is  then  divided  into  two  equal  bi- 
rectangular  triangles ;  accordingly,  each  triangle  contains  (T£7)th 

of  the  surface  of  the  sphere,  or  (-g-^th  of  the  surface  of  the 
hemisphere.  The  surface  of  each  such  triangle  is  called  a  spherical 
degree. 
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For  example,  the  part  of  the  surface  of  a  globe  bounded  by  the 

meridians  43°  W.  and  63°  W.  longitude  and  the  equator,  contains 
20  spherical  degrees ;  the  lune  bounded  by  these  meridians  con- 

tains 40  spherical  degrees. 

A  lune  of  angle  A°  contains  2  A  spherical  degrees. 

The  passage  from  spherical  degrees  of  surface  to  the  ordinary 

measure  (of  the  area)  of  the  surface  is  easily  effected  when  the 

radius  of  the  sphere  is  given. 

A  spherical  degree  =  (-j^f)th part  of  the  surface  of  a  sphere; 

hence,  on  a  sphere  of  radius  r9 

a  spherical  degree  contains  >      i.e.  ̂ ~  square  units  of  area. 
Thus, 

40  71-r2 

area  of  a  lune  of  angle  20°  on  a  sphere  of  radius  r  =  =  f  irr2. 

EXAMPLES. 

1.  Find  the  area  of  a  lune  of  angle  10°  on  a  sphere  of  radius  2  feet. 

2.  Find  the  area  of  a  lune  of  angle  37°  30'  on  a  sphere  of  radius  7  feet. 

3.  Find  the  area  between  the  meridians  77°  W.  and  83°  20'  W. ;  and  the 
area  between  the  meridians  174°  20'  W.  and  158°  35'  E.  (Radius  of  earth 
=  3960  miles.)     [Express  areas  in  spherical  degrees  and  in  square  miles.] 

56.  Spherical  excess  of  a  triangle.  The  sum  of  the  angles  of  a 

plane  triangle  is  always  equal  to  180° ;  the  sum  of  the  angles  of 

a  spherical  triangle  is  always  greater  than  180°  (Art.  17).  The 

difference  between  the  latter  sum  and  180°  is  called  the  spherical 
excess  of  the  triangle.  (This  excess  is  due  to  the  fact  that  the 

triangle  is  spherical  and  not  plane;  hence  the  excess  is  called 

spherical.')  For  example,  in  the  triangle  bounded  by  the  meridi- 
ans 47°  W.  and  48°  W.  longitude  and  the  equator,  the  sum  of  the 

angles  is  181° ;  and,  accordingly,  the  spherical  excess  is  1°.  In 

the  triangle  bounded  by  the  meridians  43°  W.  and  63°  W.  and 

the  equator  the  sum  of  the  angles  is  200°,  and  the  spherical  ex- 

cess is  20° ;  in  the  spherical  triangle  having  angles  50°,  65°,  125°, 

the  spherical  excess  is  (50°  -f-  65°  +  125°  -  180°),  i.e.  60°. 
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If  E  denote  the  number  of  degrees  in  the  spherical  excess,  and 
Er  denote  the  number  of  radians  therein,  then 

in  a  triangle  ABC,    E°  =  A°  +  B°  +  C°  -  180° ; 

and  [Plane  Trigonometry,  Art.  73,  (7)], 
E. 

_[A  +  B  +  C-im\ 

=
(
 

180 ; 

a) 

(2) 

Ex.  Find  the  spherical  excess  (in  degrees  and  in  radians)  of  the  tri- 
angles described  in  Art.  42,  Exs.  1,  2,  3 ;  Art.  43,  Exs.  1,  2  ;  Art.  44,  Exs. 

1,  2,  3  ;  Art.  45,  Exs.  1,  2;  Art.  46,  Exs.  1,  2,  3 ;  Art.  47,  Exs.  1,  2. 

57.   The  area  of  a  spherical  triangle. 

Proposition :  The  number  of  spherical  degrees  (of  surface)  in  a 
spherical  triangle  is  equal  to  the  number  of  (angular)  degrees  in 

its  spherical  excess* 
Let  ABC  be  a  spherical  triangle  whose 

spherical  excess  is  E°;  then  area  ABC 
is  equal  to  E  spherical  degrees.  Com- 

plete the  great  circle  BCB'C,  and  pro- 
duce the  arcs  BA,  CA  to  meet  this  circle 

in  B',  C,  respectively.  Complete  the 
great  circles  BAB'B  and  ACA'C.  The 

triangle  AB'C  is  equal  to  the  triangle 
A'BC.     For, 

B'A  =  180°  -AB  =  BA\ 

C'A  =  1$0°-AC=CA', 

C'B'  =  180°  -B'C=CB. 

Hence,  in  area,  ABC  +  AB'C'  =  lune  ACA!BAX 

also  ABC  +  AB'C  =  lune  BCB'AB; 

and  ABC  +  ABC  =  lune  CBC'AC. 

PlO.  49 

*  This  proposition  is  sometimes  stated  thus :   The  area  of  a  triangle  is 
equal  to  Us  spherical  excess  ;  but  this  enunciation  is  rather  slipshod. 
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Hence,  on  addition, 

2  ABC  +  (ABC  +  AB'C'  +  AB'C  +  ABC) 

=  lune  A  -f-  lune  B  +  lune  G\ 

2  ABC  =  lune  J.  +  lune  B  +  lune  C  —  hemisphere. 

.-.  (by  Art.  55)  2  ABC=  (2  A+2  B+2  O-360)  spherical  degrees. 

ABC=(A  +  B+C- 180)  spherical  degrees 

=  E  spherical  degrees. 

Since  (Art.  55)  a  spherical  degree  on  a  sphere  of  radius  r  con- 

tains jj-g-  71-r2  square  units  of  area,  then,  on  this  sphere, 

areaABC  =  A  +  B+sC-1S0^*=JjL«r*,  (1) 
=  Err*,  [Art.  56  (2)]     (2) 

in  which  E  denotes  the  number  of  degrees,  and  Er  denotes  the 
number  of  radians  in  the  spherical  excess. 

Hence,  in  order  to  find  the  area  of  a  triangle,  find  the  angles, 
calculate  the  spherical  excess  in  degrees  or  radians,  and  use  one 
of  formulas  (1),  (2). 

Note.  It  should  be  observed  that  [from  Art.  14,  Art.  56  (1),  and  the 
proposition  above],  the  number  of  spherical  degrees  contained  in  the  area 
subtended  on  a  spherical  surface  by  a  solid  angle  at  the  centre  of  the  sphere, 

remains  the  same,  however  the  radius  may  vary.  On  the  other  hand,  by  (1) 

and  (2),  the  number  of  square  units  in  the  subtended  area  varies  as  the 
square  of  the  radius. 

*  This  expression  for  the  area  of  a  spherical  triangle  was  first  given  in 

1629  by  Albert  Girard  (1590-1634)  (see  Plane  Trigonometry,  pp.  22,  167); 

and  it  is  often  called  Guard's  Theorem. '  The  method  of  proof  used  above 
was  invented  by  John  Wallis  (1616-1703)  professor  of  geometry  at  Oxford. 
(See  Wallis,  Works,  Vol.  II.,  p.  875.) 

It  follows  from  (1)  that 

area  ABC:  2  ttR2  =  E°  :  360°. 

Hence,  the  above  proposition  may  be  expressed  thus :  The  area  of  a 

spherical  triangle  is  to  the  surface  of  the  hemisphere  as  the  excess  of  its  three 

angles  above  two  right  angles  is  to  four  right  angles. 
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EXAMPLES. 

Find  the  areas  of  the  following  triangles  (see  examples,  Art.  56)  : 

1.  Those  described  in  Art.  42,  Exs.  1,  2,  3,  when  on  a  sphere  of  radins 
10  feet. 

2.  Those  described  in  Art.  43,  Exs.  1,  2,  when  on  a  sphere  of  radius 
25  inches. 

3.  Those  described  in  Art.  44,  Exs.  1,  2,  3,  when  on  a  sphere  of  radius 
30  yards. 

4.  Those  described  in  Art.  45,  Exs.  1,  2,  when  on  a  sphere  of  radius 
4  feet. 

5.  Those  described  in  Art.  46,  Exs.  1,  2,  3,  when  on  a  sphere  of  radius 
18  inches. 

6.  Those  described  in  Art.  47,  Exs.  1,  2,  when  on  a  sphere  of  radius 
3960  miles. 

58.  Formulas  for  the  spherical  excess  (£°)  of  a  triangle.  Since,  in 
a  spherical  triangle  ABC,  E°  =  A°  +  B°  +  C°  -  180°,  and  since  there  are 
many  relations  between  the  sides  and  angles  of  a  triangle,  it  may  be  expected 
that  there  can  be  many  formulas  for  the  spherical  excess  ;  and,  accordingly, 
for  the  area  of  a  spherical  triangle.  [It  will  be  remembered  that  there 

are  several  formulas  for  the  area  of  a  plane  triangle  (Plane  Trigonometry, 

Art.  66).]  Following  are  some  of  the  most  important  of  these  (the  deduc- 
tion of  some  of  them  is  given  in  Note  J5)  : 

A.    The  spherical  excess  in  terms  of  the  three  sides. 

(a)  U  Huillier'1  s  formula : 

tan  \ E°  =  Vtan  \ s  tan \(s  —  a)  tan \{s  —  6)  tan \{s  —  c). 

(b)  CagnoWs  formula :  sin  \  E°  =   -   > 
2  cos  \  a  cos  \  b  cos  \  c 

in  which  n  =  Vsin  s  sin  (s  —  a)  sin  (s  —  &)  sin  (s  —  c). 

(c)  DeQua's formula*:  cot  jE°  =  X  +  cosa  +  cos  b  +  cosc-t 
2  n 

*  Simon  VHuillier  (1750-1810),  a  Swiss  mathematician  and  philosopher  ; 
Antoine  Cagnoli  (1743-1816),  an  Italian  astronomer;  Vabbe  Jean  Paul 
de  Qua  (1712-1786),  a  French  philosopher. 

t  For  the  deduction  of  this  formula  see  Chauvenet,  Trigonometry,  p.  230, 
and  Crawley,  Trigonometry,  p.  166. 
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B.    The  spherical  excess  in  terms  of  two  sides  and  their  included  angle. 

(d)  tan  i  E°  =  _Jggi<*  tan  1 6  sinC     . 1  +  tan  A  a  tan  I  b  cos  C 
^  **  "*"•  2 

(e)  cot  1  j£°  =  cot  j  a  cot  ̂   &  +  cos 
 O 

Ex.  By  these  formulas  find  the  spherical  excess  of  some  of  the  triangles 
referred  to  in  Ex.  1,  Art.  56. 

59.  a.  The  number  of  spherical  degrees  in  any  figure  on  a  sphere, 
whatever  may  be  its  boundary,  is  the  ratio  of  the  area  of  the 

figure  to  the  area  of  a  spherical  degree,  that  is,  to  (3-i-¥)th  part  of 
the  area  of  the  hemisphere  (Art.  55).  Thus,  on  a  sphere  of  radius 
r,  if  A  denotes  the  area  of  the  figure,  and  E  the  number  of  spheri- 

cal degrees  therein,  then,  since  -area  of  a  hemisphere  =  2  irr2, 

£  =  i:?lof27rr2  =  ̂ i.  (1) 
360  irr2  v  J 

[Compare  Art.  57  (1),  Art.  59  (2).] 

The  plane  angle  E°  may  be  called  the  spilierical  excess  of  the 

figure.  For  example,  the  spherical  excess  of  a  lune  of  angle  A° 

is  2A°. 

b.  The  spherical  excess  of  a  {non-re-entrant)  spherical  polygon. 
On  drawing  diagonals  from  any  vertex  of  a  polygon  of  n  sides  to 
the  other  vertices,  it  will  be  seen  that  the  polygon  is  divided  into 

n  —  2  triangles.  The  sum  of  the  angles  of  all  these  triangles  is  the 
same  as  the  sum  of  the  angles  of  the  polygon.     Hence, 

spherical  excess  (E°)  of  polygon  ofn  sides 

=  sum  of  angles  —  (n  —  2)  180°. 

If  the  radius  of  the  sphere  is  r,  then  (Art.  57) 

E 
area  of  the  polygon  ==  — -  irr2.  (2) 180 

60.  Given  the  area  of  a  figure :  to  find  its  spherical  excess.  More 
fully :  To  find  the  spherical  excess  of  a  figure  on  a  sphere  when  the 
area  of  the  figure  is  given  in  square  units. 
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Let  r  denote  the  radius  of  the  sphere,  A  the  area  of  the  figure, 
E  the  number  of  degrees,  n  the  number  of  seconds,  and  Er  the 
number  of  radians,  in  its  spherical  excess.     Then,  by  (1)  Art.  59, 

V.  n  =  3600  E  =  206265^-  (2) 

Now  1°  =  7?A  ra(lians; 180 

hence  E°  =  t^E  radians loO 

=  -j  radians.  [by  (1)] 

•••  *,=  £  (3) 
A  particular  application  of  (2)  can  be  made  to  the  following 

problem,  viz. :  The  area  of  a  spherical  triangle  on  the  earth's  sur- 
face being  known,  to  derive  a  formula  for  computing  the  spherical 

excess. 

The  length  of  a  degree  on  the  earth's  surface  is  found  to  be 
365155  feet.     Accordingly, 

R  (the  radius  of  the  earth)  =    feet.  (4) 
7T 

From  (2),     log  n  =  log  A  +  log  206265  -  2  log  R.  (5) 

On  expressing  A  in  square  feet,  and  substituting  in  (5)  the 

value  of  R  in  (4),  there  is  obtained,  " 
log  n  =  log  A  -  9.3267737.  (6) 

Formula  (6)  is  called  Roy's  Rule,  as  it  was  used  by  General 
William  Roy  (1726-1790)  in  the  Trigonometrical  Survey  of  the 
British  Isles.*  The  area  of  the  spherical  triangle  can  be  approxi- 

mately determined  to  a  sufficient  degree  of  accuracy. 

*The  rule  should  probably  be  credited  to  Isaac  Dalby  (1744-1824),  who 
was  mathematical  assistant  to  General  Roy  from  1787  to  1790,  and  later 

became  professor  of  mathematics  at  the  Royal  Military  College.  [See  Phil. 

Trans.,  vol.  80  (1790).]  This  was  the  first  practieal  application  of  Gerard's 
theorem  (Art.  57). 



76 SPHERICAL   TRIG  ONOMETR  Y. 
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61.  The  measure  of  a  solid  angle.  A  plane  angle  can  be  measured 
by  any  circular  arc  which  it  subtends;  and  the  measure  can  be 

expressed  in  radians  and  in  degrees.  The  radian  (or  circular) 
measure  of  an  angle  is  the  number  of  times  any  circular  arc  sub- 

tended by  it  contains  the  radius  {Plane  Trig.,  Art.  73) ;  and  the' 
number  of  degrees  in  the  angle  is  equal  to  the  number  of  degrees  in 
the  subtended  circular  arc.  Thus,  the  radian  measure  of  an  angle 
of  an  equiangular  triangle  is  £w,  and  its  degree  measure  is  60. 

A  solid  angle  can  be  measured  in  a  somewhat  similar  manner, 
namely,  by  means  of  any  spherical  surface  which  it  subtends. 
What  may  be  called  the  spherical  measure  of  a  solid  angle  is  the 

number  of  times  any  spherical  sur- 
face subtended  by  it  contains  an 

area  equal  to  the  square  On  the  radius. 
For  example,  since  the  surface  of  a 

sphere  is  equal  to  A-n-r2,  the  sum  of 
all  the  solid  angles  about  any  point 

is  4-7T.  The  angle  at  the  corner  of 
a  cube  subtends  one-eighth  of  the 
surface  of  the  sphere ;  accordingly,  its 

spherical  measure  is  -*-  -*-  r2,  i.e.  ̂   tr. 
A  solid  angle  may  also  be  measured  in  spherical  degrees,  a  term 
that  will  be  explained  presently.  What  may  be  called  the 
spherical  degree  measure  of  a  solid  angle  (or,  the  number  of 

spherical  degrees  in  the  angle)  is  a  number  equal  to  the  number 
of  spherical  degrees  of  area  in  any  spherical  surface  subtended 
by  the  angle.  An  angle  that  subtends  a  spherical  degree  of 
surface,  contains  what  may  be  called  a  solid  spherical  degree. 
For  example,  the  sum  of  all  the  solid  angles  about  any  point 
is  720  spherical  degrees  (of  angle);  the  angle  at  the  corner  of 
a  cube  contains  90  spherical  degrees  (of  angle).  Thus  the 
spherical  measure  of  the  angle  at  the  corner  of  a  cube  is  \  tt,  and 

its  spherical  degree  measure  is  90.  On  comparing  these  defini- 
tions of  solid  angular  measures  with  Art.  55  and  equations  (3)  and 

(1)  Art.  60,  it  is  seen  that  these  measures  of  solid  angles  are  equal 
to  the  measures,  in  radians  and  degrees  respectively,  of  the  spherical 

excess  of  the  figures  subtended  on  any  sphere  by  the  angle,  when 
the  vertex  of  the  angle  is  at  the  centre  of  the  sphere. 

FlO.  50 
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Note  1.  The  term  degree.  In  geometry  and  trigonometry  the  word 
degree  is  used  in  connection  with  four  very  different  kinds  of  quantities ; 
namely,  circular  arcs,  plane  angles,  spherical  surfaces,  and  solid  angles. 

A  degree  of  arc,  or  an  arcual  degree,  is  (y^)th  part  of  any  circle  ; 
A  degree  of  angle,  or  an  angular  degree,  is  (y^)th  part  of  four  right 

angles ; 

A  degree  of  surface  on  a  sphere,  or  a  spherical  degree  of  surface,  is  (y^tD 
part  of  the  surface  of  any  sphere  ; 

A  degree  of  solid  angle,  or  a  solid  spherical  degree,  is  (^^th  part  of  the 
solid  angles  about  any  point. 

Note  2.  If  two  plane  angles  are  equal,  they  can  be  superposed,  the  one 
on  the  other.  On  the  other  hand,  just  as  two  figures  on  a  sphere  may  be 
equal  in  area  and  differ  in  every  other  respect,  so  two  solid  angles  can  be 
equal  in  measure  and  differ  in  every  other  respect. 

Note  3.  The  following  remarks  relating  to  the  measurement  of  solid 

angles  are  from  Hutton's  Course  in  Mathematics,  Vol.  II.,  p.  64  : 
"  Solid  angles:  If  about  the  angular  point  of  a  solid  angle  as  centre,  a 

sphere  be  described  to  radius  unity,  the  portion  of  its  surface  intercepted 
between  the  planes  which  contain  the  solid  angle  is  the  measure  of  the 

solid  angle.  (This  method  of  estimating  the  magnitude  of  solid  angles 
appears  to  have  been  first  given  by  Albert  Girard  in  his  Invention  Nouvelle 
en  Algebre,  1629 ;  and  it  would  very  naturally  suggest  itself  as  one  of  the 

simplest  applications  of  his  theorem  for  the  spherical  excess.)"  [Compare 
Plane  Trigonometry,  p.  126,  Note  2.] 

Ex.  1.  The  edge  angles  of  a  triedral  angle  are  74°  40',  67°  30',  49°  50' ; 
calculate  its  spherical  degree  measure,  and  its  spherical  measure.  (See  Ex. 
1,  Art.  43.) 

Ex.  2.  The  face  angles  of  a  triedral  angle  are  47°  30',  55°  40',  60°  10' ; 
calculate  its  spherical  degree  measure,  and  its  spherical  measure.  (See  Ex. 
1,  Art.  42.) 

Ex.  3.    Two  face  angles  of  a  triedral  angle  are  64°  24  ,  42°  30',  and  the 
edge   angle  between  their  planes  is  58°  40' ;  calculate  its  spherical  degree 
measure,  and  its  spherical  measure.     (See  Ex.  1,  Art.  44.) 

Ex.  4.  A  face  angle  of  a  triedral  angle  is  74°  20',  and  the  two  adjacent 
edge  angles  are  67°  SO'  and  45°  50' ;  calculate  its  measure.  (See  Ex.  1,  Art. 45.) 

Ex.  5.  Calculate  the  spherical  degree  measure,  and  the  spherical  measure, 
of  the  solid  angles  corresponding  to  the  spherical  triangles  described  in 
Art.  42,  Exs.  2,  3 ;  Art.  43,  Ex.  2 ;  Art.  44.  Exs.  2,  3  j  Art.  45,  Ex.  2  j  Art 

46,  Exs.  2,  3 ;  Art.  47,  Ex.  2.     (See  Ex.,  Art.  56.) 
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62.  The  volume  of  a  sphere.  In  some  works  on  solid  geometry 
and  in  books  on  mensuration  it  is  shown  that  the  volume  of  a 

pyramid  is  equal  to  one  third  the  product  of  its  base  and  altitude. 

Now  suppose  that  a  polyedron  {i.e.  a  solid  bounded  by  plane  faces) 

is  circumscribed  about  a  sphere,  each  of  the  faces  of  the  polye- 
dron, accordingly,  touching  the  sphere.  This  polyedron  may  be 

regarded  as  made  up  of  pyramids  which  have  a  common  vertex 

(namely,  the  centre  of  the  sphere),  and  a  common  altitude  (namely, 

the  radius  of  the  sphere),  and  which  have  the  faces  of  the  poly- 
edron as  bases.     Then,  R  being  the  radius  of  the  sphere, 

Vol.  of  polyedron  =  \  E  x  (sum  of  faces  of  polyedron).     (1) 

If  the  number  of  faces  of  the  polyedron  be  increased  and  the 
area  of  each  face  be  decreased,  then  the  sum  of  the  faces  becomes 

more  nearly  equal  to  the  area  of  the  surface  of  the  sphere,  and 
the  volume  of  the  polyedron  becomes  more  nearly  equal  to  the 
volume  of  the  sphere.  By  increasing  the  number  of  faces  and 
decreasing  the  area  of  each  face,  the  difference  between  the  sum 

of  the  faces  of  the  polyedron  and  the  area  of  the  sphere  can  be 
made  as  small  as  one  please ;  and,  likewise,  the  difference  between 
the  volume  of  the  polyedron  and  the  volume  of  the  sphere  can  be 
made  as  small  as  one  please.     In  other  words : 

The  area  of  the  surface  of  the  sphere  is  the  limit  of  the  area  of 
the  surface  of  the  polyedron,  and  the  volume  of  the  sphere  is  the 
limit  of  the  volume  of  the  polyedron,  when  the  faces  of  the  latter 
are  increased  without  limit,  and  each  face  is  made  to  approach 
zero  in  area. 

Hence,  from  (1),  Vol.  of  sphere  =  J  B  x  surface  of  sphere 

=  *»*■.•  •  (2) 

63.  Definitions.  A  spherical  pyramid  is  a  portion  of  a  sphere 
bounded  by  a  spherical  polygon  and  the  planes  of  the  sides  of  the 
polygon.     The  polygon  is  called  the  base  of  the  pyramid. 

*  For  a  note  concerning  the  measurement  of  the  circle  and  the  sphere  see 
Plane  Trigonometry,  Art.  72,  and  Note  C,  p.  171.  For  the  proofs  of  Archi- 

medes, see  T.  L.  Heath,  The  Works  of  Archimedes  edited  in  modern  notation, 
with  introductory  chapters  (Cambridge,  University  Press),  pp.  39,  41»  93. 
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For  example,  in  Fig.  11,  Art.  12,  O-ABGD,  O-ABC,  O-ABD, 
are  spherical  pyramids ;  their  bases  are  ABCD,  ABC,  ABD. 

A  spherical  sector  is  the  portion  of  a  sphere  generated  by  the 
revolution  of  a  sector  of  a  circle  about  any  diameter  of  the  circle 
as  axis.  For  example,  in  Fig.  47,  Art.  53,  when  the  semicircle 
ATB  revolves  about  AB,  each  of  the  circular  sectors  AOL,  LOT, 
LOK,  etc.,  describes  a  spherical  sector. 

A  spherical  segment  is  the  portion  of  a  sphere  bounded  by  two 
parallel  planes  and  the  zone  intercepted  between  them.  (One  of 
the  planes  may  be  tangent  to  the  sphere.) 

64.  Volume  of  a  spherical  pyramid;  of  a  spherical  sector.  By 
reasoning  analogous  to  that  in  Art.  62,  it  can  be  shown  that,  in  a 
sphere  of  radius  R, 

vol.  of  a  spherical  pyramid  =  \  R  x  area  of  its  base ; 

vol.  of  a  spherical  sector  =  \  R  x  area  of  its  zone. 

Since  the  area  of  a  zone  of  height  h  =  2  -kRIi  (Art.  53), 

then  vol.  of  spherical  sector  =  \  irR2h. 

Thus  in  Fig.  11,  Art.  12, 

vol.  O-ABCD  =  \OAx  area  ABCD) 

in  Fig.  47,  Art.  53, 

vol.  of  sector  described  by  AOL  =  i  OA  x  area  of  zone  described 

by  arc  AL  =  §  irR2  •  Al,  and 

vol.  of  sector  described  by  LOT  =  ̂   OA  x  area  of  zone  described 

by  McLT  =  %TrR2-lt. 

EXAMPLES. 

1.  Find  the  volumes  of  the  spherical  pyramids  whose  bases  are  the  trl- 
Rngles  described  in  Art.  57,  Exs.  1-6. 

2.  Find  the  volumes  of  the  following  spherical  sectors  : 

(a)  The  sector  whose  base  is  a  zone  of  height  2  inches  on  a  sphere  of 
radius  18  inches. 

(6)  The  sector  whose  base  is  a  zone  of  height.  3,  f,ee.t  on  a  sphere  of  radius 
12  feet. 
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65.   Volume  of  a  spherical  segment.     Let  AB  be  an  arc  of  a  semi- 

circle of  radius  B  having  the  diameter  DD'.     From  A,  B,  draw 

Aa,  Bb,  at  right  angles  to  DD'.     It  is  required  to  find  the  volume 
of  the  spherical  segment  generated  by  the  revo- 

lution of  ABba  about  DD'. 
Let  h  denote  the  height  of  the  segment,  and 

ph  p2,  the  lengths  of  the  perpendiculars  from 
the  centre  0  to  the  parallel  bases  of  the  seg- 

ment. On  making  the  revolution  of  the  semi- 

circle DAD' j  it  is  seen  that 

segment   generated  by  ABba  =  cone   generated 

by  BOb  -f-  spherical  sector  generated 

by  AOB  —  cone  generated  by  AOa. 

Now,  vol.  cone  generated  by  BOb  =  \  7rr2p2; 

vol.  sector  generated  by  AOB  =  §  irfiPh ;       (Art.  64) 

vol.  cone  generated  by  AOa  =  \ttTiPi. 

.\  vol  segment  =  \  tt  (r2p2  +  2  B2h  —  r2p^).  (1) 

Note.     The  result  (1)  can  be  reduced  to  various  forms.    For  example, 
since 

pi2  =  R2-  n2,  p22  =  R2-  r22,  p2-pi  =  A, 

then    vol.  segment  =  £  ttR2 (p2  -  p{)  +  \  irp2 (R2  -  p22)  -  \  irpx  {R2  -  px2) 

=  G>2-.Pi>-E2-£tQ)23-1>i8)  (2) 

Pi-P\ 
Trl3R2-(P22+P2Pl+Pl2)~\. 

(3) 

Since h—p2—pi,  then  h2  =  p22  —  2 p2p\  +  pi2. 

...  pip2  =  P22+Pl2~h\    and  p22  +  pm  +Pl2=l  (Pl2  +  p22)  _  *L. 

On  substituting  the  last  result  in  (3),  expressing  pi2  and  p22  in  terms  of 

•R)  »*i>  »*2»  and  reducing,  the  following  formula  is  obtained,  viz.  : 

vol.  segment  =  —  I  rx2  +  ra2  +  —  \  > 
(4) 
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EXAMPLES. 

1.  Show  that  if  (in  Fig.  51)  angle  AOD  =  a,  then  the  volume  of  the 

spherical  sector  generated  by  AOD  is  §  irB'6(l  —  cos  a). 

2.  Show  that  if  angle  AOD  =  a,  then  the  volume  of  the  segment  generated 

by  the  revolution  of  ADa  is  f  ttB3  sin4  £  a(l  +  2  cos2  \  a). 

Suggestion.     Segment  generated  by  ADa  =  sector  generated  by  AOD  — 
cone  generated  by  AOa. 

3.  Find  the  volume  of  a  spherical  segment,  the  diameters  of  its  ends  being 
10  and  12  inches,  and  its  height  2  inches. 

4.  The  diameters  of  the  ends  of  a  spherical  segment  are  8  and  12  inches, 
and  its  height  is  10  inches.    Find  its  volume. 

N.B.    For  questions  and  exercises  on  Chapter  VI. ,  seepage  108. 



CHAPTER   VII. 

PRACTICAL  APPLICATIONS. 

66.  Geographical  problem.  To  find  the  distance  between  two  places 

and  the  bearing  (i.e.  the  direction)  of  each  from  the  other,  when  their 

latitudes  and  longitudes  are  known.  An  interesting  application  of 

spherical  trigonometry  can  be  made  in  solving  this  problem.  In 

the  following  examples  the  earth  is  regarded  as  spherical,  and  its 
radius  is  taken  to  be  3960  miles. 

EXAMPLES. 

1.  Find  the  shortest  distance  along  the  earth's  surface  between  Baltimore 

Gat.  39°  17'  N.,  long.  76°  37'  W.)  and  Cape  Town  (lat.  33°  56'  S.,  long. 
18°26'E.). 

In  Fig.  52  B  and  C  represent  Baltimore  and  Cape  Town  ;  EQ  is  the  earth's 
equator ;  NGS,  NBS,  NGS  are  the  meridians  of 
Greenwich,  Baltimore,  and  Cape  Town  respec- 

tively ;  BG  is  the  great  circle  arc  whose  length  is 
required. 

In  the  spherical  triangle  BNC,  NB,  JVC,  and 
BNG  are  known.     For 

NB  =  90°  -BL-  90°  -  39°  17'  =  50°  43' 

NC  =  90°  +  TG  =  90°  +  33°  56'  =  123°  56' 

BNG  =  BNG  +  GNG  =  76°  37'  +  18°  26'  =  95°  3' 

Hence,  BG  can  be  determined  in  degrees  by  Art.  44 ;  then,  the  radius 
of  the  sphere  being  given,  BG  can  be  determined  in  miles.  The  angles  NBG, 
NCB,  can  also  be  found.   \ 

Answers :  BC  =  (65°  47'  48")  =  4685.8  miles ;  NBG  =  115°  1'  35'  ;  NCB 
=  57°  42'  23". 

Note  1.  The  bearing  of  one  place  from  a  second  place  is  the  angle  which 
the  great  circle  arc  joining  the  two  places  makes  with  the  meridian  of  the 
second  place.  Thus,  in  Fig.  52  the  bearing  of  Cape  Town  from  Baltimore  is 
the  angle  NBG,  and  the  bearing  of  Baltimore  from  Cape  Town  is  NGB. 

82 
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Since  NBC  =  115°  1'  35"  the  ship  sets  out  from  Baltimore  on  a  course 

S.  64°  58'  25"  E. ;  since  NCB  =  57°  42'  23"  the  ship  approaches  Cape  Town 
on  a  course  S.  57°  42'  23"  E. 

N,ote  2.  A  ship  that  sails  on  a  great  circle  (excepting  the  equator  or  a 

meridian)  must  be  continually  changing  her  course. 

2.  Find  the  latitude  of  the  place  where  BC  crosses  the  meridian  15°  W.  -t 
also  find  the  bearing  of  Cape  Town  from  this  place. 

3.  If  a  vessel  sails  from  Baltimore  and  keeps  constantly  on  the  course 

(see  Ex.  1)  S.  64°  58'  25"  E.  (i.e.  crosses  every  meridian  at  the  angle  64°  58' 
25"),  will  she  arrive  at  Cape  Town?     [Answer.     No.] 

4.  What  path  will  the  vessel  in  Ex.  3  make  on  the  sea  ?  Answer.  A 

path  which  is  a  spiral  going  round  and  round  the  earth  and  gradually 
approaching  the  south  pole.  This  path  is  called  the  loxodrome,  or  rhumb 
line. 

5.  If  a  person  leaves  Boston,  Mass.  (lat.  42°  21'  N.,  long.  71°  4'  W.),  start- 
ing due  east,  and  keeps  on  a  great  circle  :  (a)  Where  will  he  be  after  he  has 

passed  over  an  arc  of  90°,  and  in  what  direction  will  he  be  going  ?  (6)  Where 
will  he  be  after  he  has  passed  over  an  arc  of  180°,  and  in  what  direction  will 
he  be  going  ?  (c)  Where  will  he  be  after  he  has  passed  over  an  arc  of  270°, 
and  in  what  direction  will  he  be  going  ?  [Solve  this  example :  (1)  by 
spherical  geometry  ;    (2)  by  spherical  trigonometry.] 

6.  What  is  the  distance  from  New  York  (40°  43'  N. ,  74°  0'  W. )  to  Liverpool 

(53°  24'  N.,  3°  4'  W.)?  Find  the  bearing  of  each  place  from  the  other.  In 
what  latitude  will  a  steamer  sailing  on  a  great  circle  from  New  York  to  Liver- 

pool cross  the  meridian  of  50°  W. ;  and  what  will  be  her  course  at  that  point? 

N.B.     Check  the  results  in  the  following  exercises  : 

7.  Find  the  distance  and  bearing  of  Liverpool  from  Montreal  (45°  30'  N., 
73°  33'  W.). 

8.  Find  the  distance  and  bearing  of  Liverpool  from  Halifax,  N.  S.  (44° 
40' N.,  63°  35' W.). 

9.  Find  the  distance  and  bearing  of  Santiago  de  Cuba  (20°  N.,  75°  50'  W.) 
from  Rio  de  Janeiro  (22°  54'  S.,  43°  8'  W.). 

10.  Find  the  distance  and  bearing  of  San  Francisco  (37°  47'  55"  N., 
122°  24'  32"  W.)  from  New  York. 

11.  Find  the  distance  of  Victoria,  B.  C.  (48°  25'  N.,  123°  23'  W.)  from 

Sydney,  N.  S.  W.  (33°  52'  S.,  151°  13'  E.)  ;  and  the  bearing  of  each  place 
from  the  other. 
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12.  Find  the  distances  between  the  following  places :  (a)  San  Francisco 
and  Honolulu ;  (6)  Cape  Town  and  Cairo ;  (c)  Honolulu  and  Manila ; 
(d)  Victoria,  B.  C,  and  Tokio. 

13.  Find  the  distances  between  other  places,  and  their  bearings  from  each 
other. 

APPLICATIONS  TO  ASTRONOMY. 

N.B.  In  connection  with  his  study  of  the  following  articles  the 

student  should  consult  some  elementary  text-book  on  astronomy.  The 
numerical  examples  given  here  will  supplement  his  outside  reading  on 
spherical  astronomy. 

67.  One  of  the  most  important  applications  of  spherical  trigo- 
nometry is  to  astronomy.  Trigonometry  was  invented  to  aid 

astronomy,  and  for  centuries  was  studied  as  an  adjunct  of  the 
latter  subject.  (See  Plane  Trigonometry,  pp.  165,  166.)  A  few  of 
the  simplest  problems  of  spherical  astronomy  are  introduced  in 

Arts.  73,  74.  In  order  to  understand  these  problems  a  clear  con- 
ception of  a  few  astronomical  terms  and  principles  is  necessary. 

These  terms  are  explained  in  Arts.  68-72. 

68.  The  celestial  sphere.  To  a  person  on  the  surface  of  the 

earth,  the  sky  above  is  like  a  great  hemispherical  bowl  with  him- 
self at  the  centre.  The  stars  seem  to  move  from  east  to  west 

across  the  spherical  sky  in  parallel  circles  whose  axis  is  the  earth's 
polar  axis  prolonged.  Each  star  makes  a  complete  revolution 
about  this  axis  in  23  hours  56  minutes  ordinary  clock  time.  The 
stars  appear  never  to  change  their  positions  with  reference  to  one 

another,  being  in  this  respect  like  places  on  the  earth's  surface.* 
Another  way  of  describing  the  relations  of  the  earth  and  the 
enveloping  sky,  is  to  say  that  the  whole  sky  is  turning,  like  an 

immense  crystal  sphere,  about  an  axis  which  is  the  earth's  polar 
axis  prolonged,  the  motion  being  from  east  to  west.  The  stars 

keep  the  same  positions  with  respect  to  one  another,  and,  accord- 
ingly, appear  to  be  attached  to  the  surface  of  the  sphere.  As  the 

sphere  turns,  the  stars  fixed  in  it  appear  to  trace  parallel  circles 

*  The  positions  of  some  of  the  stars  suffer  a  very  slight  change  which  is  per 
ceptible  in  the  course  of  centuries. 
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about  the  axis.  The  sphere  turns  completely  in  23  hours  56 

minutes  ordinary  clock  time.*  The  stars  all  seem  to  be  at  the 
same  distance  from  the  observer  because  his  eyes  can  judge  their 
directions  only,  and  not  their  distances. 

The  following  considerations  will  show  that  it  is  natural  enough  for  an 
observer  on  the  earth  to  think  that  he  is  always  at  the  centre  of  the  sphere  on 

which  the  stars  appear  to  be.  When  a  person  changes  his  position,  the  direc- 
tion of  an  object  at  which  he  is  looking  changes  also,  unless  he  mov6s  directly 

towards  or  away  from  the  object.  For  instance,  from  a  certain  point  a  tree 
may  be  in  an  easterly  direction,  and  when  the  observer  moves  a  little  way 
the  tree  may  be  in  a  southeasterly  direction.  Moreover,  the  further  away  an 
object  is,  the  less  will  be  the  change  in  its  direction  caused  by  any  particular 

change  in  the  observer's  position.  Thus,  if  a  person  is  near  a  tree,  a  few  steps 
on  his  part  may  change  the  direction  of  the  tree  from  east  to  southeast,  but  if  he 
is  five  miles  from  the  tree,  an  equal  number  of  steps  taktn  by  him  will  make 

very  little  difference  in  the  direction  of  the  tree.  Now  the  earth's  mean  distance 
from  the  sun  is  about  93,000,000  miles.  Hence,  an  observer  who  now  looks  at 
the  stars  from  a  certain  position,  in  about  six  months  from  now  will  look  at 

them  from  a  point  186,000,000  miles  distant  from  his  present  position,  t  As- 
tronomers have  succeeded  in  a  few  instances  in  determining  the  distances  of 

the  stars  from  the  earth.  J  It  has  been  found  that  the  nearest  star  yet  known, 
Alpha  Centauri,  is  so  far  away  that  the  change  in  its  direction  from  the  centre 
of  the  earth,  due  to  the  change  of  position  of  186,000,000  miles  on  the  part  of 

the  earth,  is  less  than  the  change  in  the  direction  of  an  object  3^  miles  away 
when  the  observer  moves  his  head  a  couple  of  inches  at  right  angles  to  the 

line  of  sight.  This  being  so  in  the  case  of  the  sun's  nearest  stellar  neighbour,  it 
is  natural  for  an  observer  on  the  earth  to  think  that  he  is  always  at  the  centre 

of  the  great  sphere  on  which  the  stars  appear  to  be  ;  and  it  is  perfectly  proper 

*  The  student  probably  knows  that  the"  apparent  turning  of  the  spherical 
sky  from  east  to  west  about  an  axis  which  is  the  earth's  polar  axis  prolonged, 
is  really  due  to  the  rotation  of  the  earth  in  an  opposite  direction.  The 

observer  is  not  conscious  of  any  motion  of  the  earth,  and  thinks  that  the  sky 
with  its  bright  points  is  revolving  about  the  earth  from  east  to  west,  while  all 
the  time  the  sky  is  motionless,  and  the  earth  is  turning  under  it  from  west  to 
east.  Just  as  to  a  person  in  a  swiftly  moving  train  the  objects  outside  seem 
to  be  rushing  by  him  while  the  train  appears  to  be  at  rest. 

t  This,  moreover,  does  not  take  any  account  of  the  motion  of  the  sun  with 
his  system  through  space. 

1  The  first  stellar  distance  determined  was  that  of  61  Cygni  by  Friedrich 

Wilhelm  Bessel  (1784-1846),  one  of  the  greatest  of  German  astronomers,  in 
1838.  Since  then  the  distances  of  about  100  stars  have  been  measured ;  about 
50  of  these  distances  are  regarded  as  reliably  determined. 
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for  him  to  act  in  accordance  with  this  notion  when  he  makes  astronomical 
observations  and  deductions.* 

The  sphere  on  which  the  stars  appear  to  move  in  parallel  cir- 
cles, or,  what  comes  to  the  same  thing,  the  sphere  which  appears 

to  have  the  stars  attached  to  it  and  to  revolve  about  the  earth's 

polar  axis  prolonged,  is  called  the  celestial  sphere. 

69.  Points  and  lines  of  reference  on  the  celestial  sphere.  There 

will  now  be  showTn  some  methods  for  indicating  the  positions  of 
the  heavenly  bodies  on  the  celestial  sphere  —  their  positions  with 
respect  to  the  observer  and  their  positions  with  respect  to  one  another. 

The  positions  of  places  on  the  terrestrial  sphere  are  described 

by  means  of  certain  points  and  great  circles  on  the  sphere.  There 

are  various  pairs  of  circles  which  are  used  for  reference;  for 

example,  the  equator  (whose  poles  are  the  north  and  south  poles 

of  the  earth)  and  the  meridian  passing  through  the  Royal  Observa- 
tory at  Greenwich,  the  equator  and  the  meridian  passing  through 

the  observatory  at  Washington,  etc.  It  will  be  observed  that  in 

each  case  the  reference  circles  are  at  right  angles  to  each  other,  and, 

accordingly,  each  of  them  passes  through  the  poles  of  the  other. 

In  an  analogous  manner  the  positions  of  bodies  on  the  celestial 

sphere  are  described  by  means  of,  or  by  reference  to,  certain  points 

and  great  circles  on  that  sphere.  There  are  four  different  systems 

of  circles  of  reference.  As  in  the  case  of  the  terrestrial  sphere, 

each  system  consists  of  two  circles,  each  of  which  passes  through 

the  pole  of  the  other,  and,  accordingly,  is  at  right  angles  to  the 

other.  Two  of  these  systems  are  described  in  Arts.  70, 71,  a  third 

in  Art.  76,  and  the  fourth  in  Art.  77.  A  point  which  will  be  referred 

to  in  these  systems  is  the  north  celestial  pole.  This  is  the  point 

where  the  earth's  axis,  if  prolonged,  would  pierce  the  celestial 

sphere.     It  is  near  the  pole  star,  being  about  1J°  from  it. 

*  " .  .  .  imagine  the  entire  solar  system  as  represented  by  a  tiny  circle  the 
size  of  the  dot  over  this  letter  V  (Neptune  the  outermost  planet  known  of 
the  solar  system  is  2790  millions  of  miles  from  the  sun  ;  i.e.  30  times  as  far 

as  the  earth.)  "  Even  the  sun  itself,  on  this  exceedingly  reduced  scale,  could 
not  be  detected  with  the  most  powerful  microscope  ever  made.  But  on  the 
same  scale  the  vast  circle  centred  at  the  sun  and  reaching  to  Alpha  Centauri 
would  be  represented  by  the  largest  circle  which  could  be  drawn  on  the  floor 

of  a  room  10  feet  square."     (Todd,  New  Astronomy,  p.  438.) 



89-70.]  CIRCLES   ON  THE  CELESTIAL   SPHERE.  87 

70.  The  horizon  system :  Positions  described  by  altitude  and  azi- 

muth. For  any  place  on  the  earth's  surface,  the  point  at  which 
the  plumb  line  extended  upwards  meets  the  celestial  sphere  is 
called  the  zenith ;  the  diametrically  opposite  point  is  called  the 
nadir.  If  a  plane  perpendicular  to  the  plumb  line  be  passed  either 

immediately  beneath  the  observer's  feet,  or  through  the  centre  of 
the  earth,  about  4000  miles  below  him,  then  the  intersection  of  this 

plane  with  the  celestial  sphere  is  called  the  horizon.  (Since  the 
earth  is  so  small  and  so  far  away  from  even  the  nearest  star,  two 
parallel  planes  4000  miles  apart  and  passing  through  the  earth 
will  appear,  to  a  terrestrial  observer,  to  intersect  the  celestial 
sphere  in  the  same  great  circle.) 

Great  circles  passing  through  the  zenith  are  perpendicular  to  the 

horizon ;    they    are    called    vertical  z  (ZeniU) 
circles.    The  north  point  of  the  horizon  ^^--pC^v 

is  the  point  which  is  directly  north  /  f~^\M\sPole) 
from  the  observer.      It  is  where  the  /  „-   f~^2*>*    \ 
vertical  circle  passing  through  the   5ow^£-   *'_ — l__Njvbr«i 
north  pole  intersects   the   horizon.  ^fe>^i  ■       ^""^ 
Tliis  circle  which  passes  through  the  To  $ 
zenith  and  the  pole  is  called  the  me-  FlQ  ̂  
ridian  of  the  observer.      TJie  horizon 

and  the  meridian  are  the  reference  circles  in  the  horizon  system- 
The  altitude  (denoted  by  h)  of  a  heavenly  body  is  its  angular 

distance  above  the  horizon.  Thus  the  altitude  of  M  (Fig.  53,  in 
which  E  is  the  earth  and  Z  the  zenith  of  the  place  of  observation) 

is  Mm.  The  altitude  of  the  zenith  is  90°.  The  distance  of  a  star 
from  the  zenith  is  called  its  zenith  distance  ;  this  is  obviously  the 
complement  of  the  altitude. 

The  azimuth  (denoted  by  ̂4)  of  a  heavenly  body  is  the  angle 
between  its  vertical  circle  and  the  meridian.  This  angle  is 
measured  usually  along  the  horizon  from  the  south  point  in  the 

direction  of  the  west  point,  to  the  foot  of  the  star's  vertical  circle. 
Thus  in  Fig.  53  the  azimuth  of  Mis  180°  -j-  NZm,  which  is  measured 
by  the  arc  180°  -f  Nm  on  the  horizon. 

Note.  Any  two  points  on  the  earth's  surface  have  different  zeniths. 
Hence,  the  above  system  of  describing  positions  on  the  celestial  sphere  is 
peculiarly  local.    Moreover,  a  star  rises  in  the  eastern  part  of  the  horizon 
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(altitude  zero),  mounts  higher  in  the  sky  until  it  reaches  the  observer's  merid- 
ian, then  sinks  towards,  and  sets  in,  the  west ;  it  is,  accordingly,  continually 

changing  its  altitude  and  azimuth. 

71.  The  equator  system:  Positions  described  by  declination  and 
hour  angle.  The  north  celestial  pole  is  the  principal  point  of  this 
system.  The  celestial  equator  is  the  great  circle  of  which  that  point 

is  the  pole ;  it  is  evidently  the  projection  of  the  earth's  equator 
upon  the  celestial  sphere.     The  celestial  equator  and  the  meridian  of 

the  observer  are  the  reference  circles  in 

Sj^J^^  the   system   now  being   described.      In 
^P(Poie)  Yig.  54,  P  is  the  north  celestial  pole,  S 

the  south  celestial  pole,  EQ  the  celestial 
equator ;  also,  HR  is  the  horizon  and  Z 
the  zenith  for  some  particular  place  on 

the  earth's  surface.  As  said  in  Art. 
68,  the  stars  move  in  parallel  circles 
whose  axis  is  PS ;  these  circles  are,  accord- FiQ.  54 

mgly,  parallel  to  the  equator  EQ.  The 
angular  distance  of  a  star  from  the  equator  is  called  the  declination 

(denoted  by  D  or  8)  of  the  star;  north  (or  +)  declination  when  the 

star  is  north  of  the  equator,  and  south  (or  — )  declination  when  the 
star  is  south.  Thus  the  declination  of  S3  is  S3s3.  The  angular  dis- 

tance of  a  star  from  the  north  pole  is  called  its  north  polar  distance  ; 

this  is  evidently  the  complement  of  the  star's  declination.* 
In  24  (sidereal)  hours  a  star  appears  to  make  a  complete  revolu- 

tion (i.e.  to  pass  over  360°)  about  the  celestial  polar  axis ;  hence, 
the  star  passes  over  15°  in  1  hour.^  The  great  circles  passing 
through  the  poles  are  called  hour  circles.  Thus  PS3S  is  the  hour 

circle  of  Ss.  The  hour  angle  (denoted  by  H.  A.)  of  a  star  is  the  angle 
between  the  meridian  of  the  observer  and  the  hour  circle  of  the 

*  The  declination  of  the  stars  change  by  an  exceedingly  small  amount  in 
the  course  of  a  year. 

t  The  interval  of  time  between  two  successive  passages  of  the  observer's 
meridian  by  the  sun  (i.e.  from  noon  to  noon)  is  about  4  minutes  longer  than 
the  interval  of  time  between  two  successive  passages  of  the  meridian  by  any 
particular  star.  (This  difference  is  due  to  the  yearly  revolution  of  the  earth 
about  the  sun.  See  text-books  on  astronomy.)  The  second  interval  is 
called  a  sidereal  day ;  it  is  divided  into  24  sidereal  hours. 
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star,  This  angle  is  measured  towards  the  west.  Thus,  suppose 
that  a  star  is  on  the  meridian  at  >S4 ;  its  hour  angle  is  then  zero. 
Twelve  hours  later  the  star  will  be  at  SQ,  and  will  have  an  hour 

angle  180°.  After  a  while  it  will  be  at  S1}  just  rising  above  the 
horizon,  and  its  hour  angle  will  be  180°  -f  S0PS1 ;  later  it  will  be 
at  S3,  having  the  hour  angle  180°  +  S0P/S3 ;  later  still  it  will  be  on 
the  meridian  at  #4,  and  its  hour  angle  will  be  zero  again.  The  hour 
angle  is  usually  reckoned  in  hours  from  1  to  24,  1  hour  being  equal 
to  15  degrees.  Thus,  when  the  star  is  at  S0  its  hour  angle  is  12  h. 
The  hour  angle  of  a  star  is  partly  local;  for  only  places  on  the  same 
meridian  of  longitude  have  the  same  celestial  meridian.  More- 

over, the  hour  angle  of  a  star  is  continually  changing,  and  its 
magnitude  depends  upon  the  time  of  observation.  In  Arts.  76, 
77,  the  positions  of  stars  are  described  in  terms  which  are  inde- 

pendent of  the  time  and  place  of  observation. 
In  Arts.  73,  74,  75,  the  astronomical  ideas  so  far  obtained,  are 

used  in  the  solution  of  two  simple  problems. 

72.  The  altitude  of  the  pole  is  equal  to  the  latitude  of  the  place  of 
observation.  This  theorem,  which  is  necessary  in  Arts.  73, 74,  is  the 
fundamental  and  most  important  theorem  of  spherical  astronomy. 

In  Fig.  55,  C  represents  the 
centre  of  the  earth,  P  its  north 

pole,  and  EQ  its  equator ;  0  is  the 
place  of  observation,  say  some  place 
in  the  northern  hemisphere,  Z  is  its 
zenith  and  HR  its  horizon ;  CPP1  is 
the  celestial  polar  axis,  Px  being  the 
north  celestial  pole.  Draw  OP2 
parallel  to  CP1}  P2  being  on  the 

celestial  sphere.     The  angle  ROP2  F     ~ 
is  the   altitude   of  the  pole  at  0, 
since  (see  Arts.  68,  70)  Px  and  P2  are  in  the  same  direction  from  0. 

The  latitude  of  a  place  is  equal  to  the  angle  between  the  plumb 
line  and  the  plane  of  the  equator.  Thus,  the  latitude  of  0  is  equal 
to  OCE.  Since  OR  and  OP2  are  respectively  perpendicular  to 
CZ  and  CE,  the  angle  ROP2  =  OCE;  that  is,  the  altitude  of  the 
pole  as  observed  at  0  is  equal  to  the  latitude  of  0. 
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73.  The  time  of  day  can  be  determined  at  any  place  whose  latitude 

is  known,  if  the  declination  and  the  altitude  of  the  sun  at  that  time 
and  place  are  also  known. 

Note  1.  The  sun,  unlike  the  stars,  changes  in  declination  from  23|°  south 
(about  Dec.  22)  to  23|°  north  (about  June  21),  and  then  returns  south.  Its 
declination  is  zero,  that  is,  it  is  on  the  celestial  equator,  about  March  20  and 
Sept.  22.  This  change  in  declination  is  due  to  the  revolution  of  the  earth 

about  the  sun,  and  to  the  fact  that  the  plane  of  the  earth's  equator  is  inclined 
about  23|°  to  the  plane  of  its  orbit  about  the  sun.  The  latter  plane  is  called 
the  plane  of  the  ecliptic.  The  declination  of  the  sun  is  given  for  each  day 
of  the  year  in  the  Nautical  Almanac.  The  altitude  of  the  sun  can  be  observed 
with  a  sextant. 

Note  2.  The  student  should  consult  a  text-book  on  astronomy  for  an 
account  of  the  special  precautions  and  corrections  necessary  in  connection 
with  this  and  similar  astronomical  problems. 

{zenith)  In  Fig.  56,  P  is  the  north  celestial 

pole,  EQ  the  celestial  equator,  S  the 

sun,  and  S0SSn  is  the  small  circle  on 

which  the  sun  is  moving  at  the  given 

time ;  Z  is  the  zenith,  and  HR  the 

horizon,  of  the  place  of  observation; 

ZSM  is  the  sun's  vertical  circle,  and 
PSN  is  its  hour  circle. 

It  is  midnight  when  the  sun  is  at  S0, 

and  noon  when  the  sun  is  at  Sn.  From 

noon  to  noon  is  24  hours.  Hence,  to  find  the  time  when  the  sun  is 

at  S,  determine  the  angle  ZPS  in  hours  (15°  =  1  h.) ;  subtract  the 
number  of  hours  from  12,  if  it  is  forenoon;  and  add,  if  it  is 
afternoon. 

Let  I,  h,  D,  respectively,  denote  the  latitude  of  the  place,  and 
the  altitude  and  declination  of  the  sun. 

Then  PR  =  I  (Art.  72),  SM=  h,  SW=  D. 

In  ZPS,  whose  vertices  are  the  sun,  zenith,  and  pole, 

ZP  =  90°  -I,  ZS  =  90°  -  h,  SP=90°  -  D. 

Hence,  the  angle  ZPS  can  be  found. 

Fia.  56 
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EXAMPLES. 

1.  In  New  York  (lat.  40°  43'  N.)  the  sun's  altitude  is  observed  to  be 
30°  40'.  What  is  the  time  of  day,  given  that  the  sun's  declination  is  10°  N., 
and  the  observation  is  made  in  the  forenoon  ? 

2.  In  Montreal  (lat.  45°  30'  N.)  at  an  afternoon  observation  the  sun's 
altitude  is  26°  30'.  Find  the  time  of  day,  given  that  the  sun's  declination 
is  8°  S. 

3.  In  London  (lat.  51°  30'  48"  N. )  at  an  afternoon  observation  the  sun's 
altitude  is  15°  40'.  Find  the  time  of  day,  given  that  the  sun's  declination 
is  12°  S. 

4.  As  in  Ex.  2,  given  that  the  sun's  declination  is  18°  N. 

5.  As  in  Ex.  3,  given  that  the  sun's  declination  is  22°  N. 

6.  As  in  Ex.  1,  given  that  the  sun's  declination  is  10°  S. 

74.  To  find  the  time  of  sunrise  at  any  place  wJwse  latitude  is 

Jcnoivn,  when  the  sun's  declination  is  also  known.  This  is  a  special 
case  of  the  preceding  problem ;  for  at  sunrise  the  sun  is  on  the 

horizon  and  its  altitude  is  zero.  The  problem  can  also  be  solved 

by  means  of  the  triangle  RPSX  (instead 

of  ZPjS1}  which  is  employed  in  Art  73).  ^^_Zj&ntth) 

For,  mRP^  ^X^  N£c**» 

S±P  m  90°  -D,  PE  =  I,  PESt.  =  90°. 
tan  PR      tan  I 

cos  RPSX 
tanP/SV      cot  2) 

=  tan  I  tan  D. 

Fig.  57 
The  angle  RPSX  (i.e.  8QPSX)  reduced 

to  hours,  gives  the  time  of  sunrise  (after 

midnight).  If  ZP8X  is  found,  then  ZP8X  reduced  to  hours  and 

subtracted  from  12  (noon),  gives  the  time  of  sunrise.  The  time  of 
sunset  is  about  as  many  hours  after  noon  as  the  time  of  sunrise 
is  before  it. 

In  Fig.  57  the  sun  is  north  of  the  equator.  When  the  sun  is 

south  of  the  equator,  P8X  =  90°  -f-  D,  and  RPS1  >  90°  for  places 
in  the  northern  hemisphere.  The  student  can  make  the  figure 

and  investigate  this  case,  and  also  the  case  in  which  the  place  is 
in  the  southern  hemisphere. 
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[Ch.  VII 

EXAMPLES. 

Find  the  approximate  time  of  sunrise  at  a  place  in  latitude  J,  when  the 

sun's  declination  is  D,  in  the  following  cases : 

1.  I  =  40°  43'  N.  (latitude  of  New  York),  D  equal  to  ;  (a)  4°  30r  N.  (about 
April  1);  (6)  15°10'N.  (about  May  1);  (c)  23°  N.  (about  June  10);  (<Z)  5°N. 
(about  Sept.  10);  (e)  6°S.  (about  Oct.  8);  (/)  15°  S.  (about  Nov.  3);  (g)  23°  S. 

2.  I  =  51°  30'  48"  N.  (latitude  of  London),  D  as  in  Ex.  1. 

3.  I  =  60°  N.  (latitude  of  St.  Petersburg),  D  as  in  Ex.  1. 

4.  I  =  70°  40'  7"  N.  (latitude  of  Hammerfest,  Norway,  D  as  in  Ex.  1. 

5.  I  =  29°  58'  N.  (latitude  of  New  Orleans),  D  as  in  Ex.  1. 

6.  I  =  33°  52'  S.  (latitude  of  Sydney,  N.  S.  W.),  D  as  in  Ex.  1. 
7.  Find  the  approximate  time  of  sunrise  for  other  days  and  places. 

75.  Theorem.  If  tJie  latitude  of  the  place  of  observation  is  7mown, 
then  the  declination  and  hour  angle  of  a  star  can  be  determined  from 
its  altitude  and  azimuth,  and  vice  versa.  For,  in  the  triangle  ZPS 

(Fig.  56),  ZP  =  90°  -I,  SP=90°-D,  SZ  =  90°  -h,  SPZ  = 
360°  -  H.  A.,  PZS  =  A-  180°.  Hence,  if  the  latitude  and  any 
two  of  the  four  quantities,  viz.,  altitude,  azimuth,  declination, 

hour  angle,  be  known,  then  the  remaining  two  can  be  found  by 
solving  the  triangle  SPZ. 

76.  The  equator  system:  Positions  described  by  declination  and 
right  ascension.  In  the  system  in  Art.  71  the  circles  of  reference 
were  the  equator  and  the  meridian  of  the  observer.  In  the  system 
in  this  article  the  circles  of  reference  are  the  equator  and  the  circle 

passing  through  the  celestial  poles  and  the 
vernal  equinox.  The  vernal  equinox  is  one 
of  the  points  where  the  ecliptic  intersects 

the  equator ;  namely,  the  point  where  the 
sun,  in  its  (apparent)  yearly  path  among 
the  stars,  crosses  the  equator  in  spring. 

(See  text-book  on  astronomy.)  This  point 
may  be  called  the  Greenwich  of  the  celestial 
sphere.  (  The  ecliptic  is  the  proj  ection  of  the 

plane  of  the  earth's  orbit  on  the  celestial 
sphere.  The  plane  of  the  equator  and  the  plane  of  the  ecliptic  are 

inclined  to  each  other  at  an  angle  of  23|°.     See  Art,  73,  Note  1.) 

P  (.Pole) 

Fig.  58 
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The  right  ascension  (denoted  by  R.A.)  of  a  heavenly  body  is 
the  angle  at  the  north  celestial  pole  between  the  hour  circle  of 
the  body  and  the  hour  circle  of  the  vernal  equinox.  This  angle 

is  measured  from  the  latter  circle  towards  the  east,  from  0°  to  360° 
or  1  h.  to  24  h. ;  it  may  be  measured  by  the  arc  intercepted  on  the 
equator.     Declination  has  been  defined  in  Art.  71 

In  Fig.  58,  P  is  the  north  celestial  pole,  E2Q  the  equator,  EXC 
the  ecliptic,  and  V  the  vernal  equinox.  If  8  is  any  star,  then 

for  S         D  =  SM}  and  E  A  m  angle  yPM  =  arc  yM 

11.  The  ecliptic  system :  Positions  described  by  latitude  and  longi- 
tude. In  this  system  the  point  and  circles  of  reference  are  the 

pole  of  the  ecliptic,  the  ecliptic,  and  the  great  circle  passing  through 
the  pole  of  the  ecliptic  and  the  vernal  equinox.  The  latitude  of  a 
star  is  its  angular  (or  arcual)  distance 
from  the  ecliptic;  its  longitude  is  the 
angle  at  the  pole  of  the  ecliptic  between 
the  circle  passing  through  this  pole  and 
the  vernal  equinox  and  the  circle  passing 
through  this  pole  and  the  star.  This 

angle  may  be  measured  by  the  arc  inter- 
cepted on  the  ecliptic.  It  is  always 

measured  towards  the  east  from  the  vernal 

equinox. 
In  Fig.  59,  iTis  the  pole  of  the  ecliptic,  EXC  the  ecliptic,  Pthe 

pole  of  the  equator,  E2Q  the  equator,  and  V  the  vernal  equinox. 
If  JS  is  any  star,  then 

latitude  of  S  =  8M9  longitude  of  8  =  VKM  =  VM. 

When  the  latitude  and  longitude  of  a  star  are  known,  its  declination 

and  right  ascension  can  be  found,  and  vice  versa.  For,  in  the  tri- 
angle KPS  (the  triangle  whose  vertices  are  the  star  and  the  poles 

of  the  equator  and  the  ecliptic),  KP=2(6\°  (since  Q  VC  =  23-i-°), 
^#  =  90°-^.,  £iTP=90o--long.,  SP=90°-D;  SPK=VPK 

-VPS  =  90°-  (360°-  R.A.),  if  8  is  west  of  VP;  SPK  =  90°  + 
R.A.,  if  S  is  east  of  VP.  If  any  two  of  these  be  known  besides 
KP,  the  remaining  two  can  be  found  by  solving  K^PS. 

N.B,    Questions  and  exercises  on  Chapter  VII.  will  be  found  at  page  109. 





APPENDIX. 

NOTE  A. 

ON  THE  FUNDAMENTAL  FORMULAS  OF  SPHERICAL' 
TRIGONOMETRY. 

1.  The  relations  between  the  sides  and  angles  of  a  right-angled  spherical 
triangle  were  obtained  in  Art.  26.  The  law  of  sines  and  the  law  of  cosines 

(Art.  36)  for  any  spherical  triangle  have  been  derived  by  means  of  these 
relations.  (See  Note  1,  Art.  36„)  These  two  laws  can  also  be  derived  directly 
by  geometry  j  this  is  done  in  Arts.  2,  3,  below.  Moreover,  the  law  of  sines 
can  be  derived  analytically  from  the  law  of  cosines,  as  shown  in  Art.  4.  In 

Art.  5  it  is  shown  how  the  relations  for  right-angled  triangles  can  be  derived 
from  these  two  laws.  Other  relations  between  the  parts  of  a  spherical  tri- 

angle have  been  referred  to  in  Art.  40 ;  these  relations  can  also  be  deduced 

by  means  of  the  law  of  cosines  and  the  law  of  sines.  The  law  of  cosines  is, 

accordingly,  the  fundamental  and  most  important  formula  in  spherical  trigo- 
nometry. 

2.  Direct  geometrical  derivation  of  the  law  of  cosines.  Let  O-ABO 
be  a  triedral  angle,  and  ABC  be  the  corresponding  spherical  triangle  on 
a  sphere  of  radius  OA.  It  is  required  to 

find  the  cosine  of  the  face  angle  COB,  or, 
what  is  the  same  thing,  the  cosine  of  the 
side  GB. 

In  OA  take  any  point  P,  and  through 

P  pass  a  plane  MPN  at  right  angles  to 
the  line  OA.  Then  OPN  and  OPM  are 

right  angles,  and  angle  MPN  =  angle  A. 
Also,  the  measures  (in  degrees)  of  the 
sides  AB,  BC,  CA,  are  the  same  as  the 

measures  of  the  face  angles  COB,  BOA,  AOC,  respectively. 

In  MPN,        MN*  =  MP'  +  PNZ  -2MP-PN  cos  MPN;  (1 ) 

In  MON,  MN2  =  MO2  +  ON2  -2 MO-  ON cos MON.  (2 
95 
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Hence,  on  equating  these  values  of  MN2  and  transposing, 

2  MO  •  OiVcos  MON  =  MO2  -  MP2  +  ON2  -  PN2  +  2  MP  .  PiVcos  MPN. 

Now  0MA  -  MP*  =  0P\  and  ON2  -  PN2  =  OP2,  since  OPM  and 
OPN  are  right  angles. 

.*.  2  MO  •  OiVcos  MON=  2  OP2  +  2  JfP  •  PiVcos  MPN. 

...  cos  MON=  OP   OP     MP  PN MO  ON     MO  ON 

i>e.  cos  a  =  cos  b  cos  c  +  sin  6  sin  c  cos  A,  (3) 

Like  formulas  for  cos  6,  cos  c,  can  be  derived  in  a  similar  manner ;  they 
can  also  be  written  immediately,  on  paying  regard  to  the  symmetry  in  (3). 
The  formulas  for  cos  A,  cos  B,  and  cos  C,  can  be  derived  by  means  of  the 
polar  triangle,  as  done  in  Art.  36,  G. 

EXERCISES. 

1.  Make  the  figure  and  derive  the  law  of  cosines :  (a)  when  P  is  taken 
at  A  ;  (b)  when  P  is  taken  in  OA  produced  towards  A 

2.  Derive  the  formula  for  cos  b  geometrically.     (Take  any  point  in  OP, 
and  through  this  point  pass  a  plane  at  right  angles  to  OB.) 

3.  Derive  the  formula  for  cose  geometrically 

3.   Direct  geometrical  derivation  of  the  law  of  sines.      Let  0-ABO 
be  a  triedral  angle,  and  ABO  be  the  corresponding  spherical  triangle  on 

a  sphere  of  radius  OA. 
In  OG  take  any  point  P,  and  draw  PM 

at  right  angles  to  the  plane  A  OB,  and  in- 
tersecting this  plane  in  M.  Through  M 

draw  MG  and  MH,  at  right  angles  to  OA 
and  OB  respectively.  Pass  a  plane  through 
the  lines  PM  and  MG. 

Since  PM  is  perpendicular  to  OAB,  the 
plane  PMG  is  perpendicular  to  OAB  (Euc. 
XL    18).      Hence,  since  AGM  is  a  right 
angle,  AGP  is  also  a  right  angle.     There- 

Fio.61  fore  angle  PGM  =  angle  A.     Similarly  it 
can  be  shown  that  angle  PHM  =  angle  B. 

..  sn^l  =   =   =   •      .*.  sin  .4  sin  o=   .     CI) 
PG      OP&inAOC      OPsino  OP      KJ 
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Also,sini?  =  ™  =         PM^=     FM    •     .-.sini?Sina=^.     (2) '  PH     OPsinBOG      OPsina  OP       K  ' 

:.  by  (1),  (2),  sin  A  sin  b  =  sin  B  sin  a. 

sin  ̂ 4  _  sin  B 
sin  a      sin  b 

sin  vl      sin  vi 
In  a  similar  way  it  can  be  shown  that  — =  =  .    Hence sin  a      sin  c 

sin  A     sin  B     sin  C 
sin  a     sin  6      sin  c 

Ex.  1.   Show  geometrically : 

(a)  that  §!lL^  =  sm^;  (6)  that  sin_B  =  sinC. sin  a      sine  sin&      sine 

Ex.  2.   Make  the  derivation  when  M  is  not  in  the  sector  AOB. 

4.  Analytical  derivation  of  the  law  of  sines  from  the  law  of  cosines. 

„™  a       cos  a  —  cos 6  cos c  n7~~™  /q\    *-f    on cos  A  =   —  [h  rom  (6)  Art.  2  J sin  b  sin  c 

.-.  l-cos^  =  l-fcosa- 
cos  b  cos  c\2 

\        sin  6  sin  c        / 

_  sin2  b  sin2  c  —  cos2  a  —  cos2  b  cos2  c  -J-  2  cos  a  cos  5  cos  c . 
sin2  6  sin2  c 

_  (1 —cos2  5X1 —cos2  c)  —  cos2  a— cos2  6  cos2c+2  cos  a  cos  &  cose . 
sin2  b  sin2  c 

<  «         sin2  A  —  1  —  cos2  a  —  cos2  &  —  cos2  c  +  2  cos  a  cos  5  cos  c sin2  5  sin2  c 

.   sin2  A  _  1  —  cos2  a  —  cos2  b  —  cos2  c  +  2  cos  a  cos  5  cos  c<  ,«* 
sin2  a  sin2  a  sin2  b  sin2  c 

sin2  7?  sin2  C* 
Similarly,     and   —  can  each  be  shown  to  be  equal  to  the  second 

sin2  6  sin2  c 

member  of  (1).     Hence, 

sin  A     sin  B     sin  C              2n  ,n —   =  —   =   =   : —  i  v^> sin  a      sin  b       sin  c      sin  a  sin  b  sin  c 

in  which  2  n  denotes  the  positive  square  root  of  the  numerator  of  the  second 
member  of  (1). 

Ex.  1.    Show  the  truth  of  the  statement  made  above. 

Ex.  2.    Show  that  the  numerator  in  the  second  member  of  (1)  is  equal  to 

4  sin  s  sin  (s  —  a)  sin  (s  —  b)  sin  (s  —  c) . 
A        A 

Suggestion,     sin  A  =  2  sin  —  cos  — ,  and  Art.  37,  (4). 2  2 
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5.   Formulas  for  right-angled  triangles  derived  from  the  general  formulas. 

In  the  triangle  ABC  let  angle  (7=90°.  Then  sin  (7=1,  and  relations 
(1),  p.  45,  become  (2)  and  (2'),  p.  30.  Also,  cos  (7  =  0,  and  the  third 
formula  in  Art.  36,  B  becomes  (1),  p.  30.  The  three  formulas  in  Art.  36,  C 

reduce  to  (5),  (5'),  and  (6),  p.  30,  respectively.  Formulas  (3),  (3'),  (4) 
and  (4') ,  p.  30,  can  be  derived  from  the  others  on  that  page.     For 

cos  .4  =  sin  J5  cos  a  [by  (5')]=^-  2°£*  [by  (2'),  (1)]  =tan6 

similarly,  cos  B  = 

sin  c    cos  b  tan  c 
tana 

tan  c 
Also, 

tan^  =  ̂ ^  =  _sin_4_  [by  (5/)]  =      sin  a       [by  ,     =  tana cos  A     sin  B  cos  a  sin  b  cos  a  sin  b 

similarly,  tan  B  =  ̂^. sin  a 

Other  relations  in  triangles  (see  Art.  40)  can  also  be  used  in  the  derivation 

of  the  formulas  for  right-angled  triangles. 

EXERCISES. 

1.  Deduce  the  law  of  cosines  :  (1)  directly,  by  geometry  ;  (2)  by  means 

of  the  relations  in  a  right-angled  triangle. 
2.  Deduce  the  law  of  sines  :  (1)  analytically,  from  the  law  of  cosines 

(2)  directly,  by  geometry ;  (3)  by  means  of  the  relations  in  a  right-angled 
triangle. 

3.  Deduce  the  ten  relations  between  the  sides  and  angles  of  a  right-angled 
spherical  triangle  :  (1)  by  means  of  the  relations  between  the  sides  and  angles 
of  the  general  spherical  triangle  ;  (2)  directly,  by  geometry. 

NOTE   B. 

[Supplementary  to  Art.  5S.] 

DERIVATION    OF    FORMULAS    FOR    THE    SPHERICAL    EXCESS 

OF    A    TRIANGLE. 

I,  CagnolPs  Formula.     (In  terms  of  the  sides. ) 

sin ft  j£  =  sin ft(J.  +  B+  C-  180°)  =  -  cos \(A  +  B  +  C) 
=  sin  ft(  J.  +  B)  sin  ftO  —  cos  £04  +  B)  cos  ft C 

=  sin  £(7 cos  £C  j-cog  .ft,  _  ft\     cos  ̂ a  +  6)-j     |-Art  39j  ̂   ̂ j cos  ft  c 

__  sin  ft  q  sin  ft  6  sin  (7     j-Arts.  50  ̂   52  (g)j  piane  Tri~      ,^ cos  ft  c 

_  sinftasinftft  §        2n  [Note  A>  Aft<  ̂   Eq#  (2)] 
cos  ft  c  sin  a  sin  b 

n 

2  cos  ft  a  cos  ft  b  cos  ft  c 
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II,  Lhuillier's  Formula.     (In  terms  of  the  sides.) 

tzn\E=s[nKA  +  B  +  0  ~  1S0O) *         cos^A  +  B  +  (7-180°) 

=  SmUA+B)-SmWSO°-C)  { 
cosJ(^  +  -B)+cosJ(180°-C)  '  y  >  f       j 

sin  fr(J.  +  jB)  -  cos  £0 

~  cos  K^.  +  B)  +  sin  £C 
=  cosK«-&)-cos$c  §  cos^C  [Art  39   (1)    (8)1 

cosJ(o  +  6)+cosJc    sin£C  L  w    WJ 

__  sin  ̂ (s  —  &)  sin  %(s  —  q)    J      sin  g  sin  (s  —  c) 
cos  £s  cos  £(s  —  c)        'sin  (s  —  a)  sin  (s  —  &) 

[Art.  37,  (6);  Pfawe  ZWflr.,  p.  94] 

=  Vtan  £  s  tan  £(s  —  a)  tan  £(s  —  6)  tan  £(s  —  c). 

TJJ.  Formula  in  terms  of  two  sides  and  their  included  angle. 

cos  \E  =  cos £0*  +  B  +  C  -  180°)  =  sin  %(A  +  B  +  C) 

=  cos  l(A  +  B)  sin  $C  +  sin  £(^4  +  B)  cos  £C 

=  [cos£(a  +  6)  sin2  %C  +  cos  J(a  —  &)  cos2£<7]  sec  $c [Art.  39,  (1),  (3)] 

=  (cos  £  a  cos  J  &  +  sin  £  a  sin  J  b  cos  C)  sec  £  c.  (2) 

Hence,  from  (1)  and  (2),  on  division  and  reduction, 

tan  IE1-     tan  |  a  tan  ̂   5  sin  C 
1  +  tan  A  a  tan  A  &  cos  C 

On  taking  the  reciprocals  and  reducing,  this  takes  the  form 

cot  if-  cot  ̂   a  cot  ̂   &  +  cos  C *  sinO 





QUESTIONS  AND    EXERCISES   FOR    PRACTICE 
AND   REVIEW. 

&K°~ 
CHAPTER  I. 

1.  On  a  sphere  let  N  be  the  pole  of  a  great  circle  ABC,  and  P  be  any 
point  on  the  surface  between  N  and  ABC ;  also  let  DPNQ  be  a  semicircle 
drawn  through  P  at  right  angles  to  ABC,  and  let  it  intersect  ABC  in  D 

and  6r :  prove  (a)  that  PD  is  the  shortest  great-circle  arc  that  can  be  drawn 
from  P  to  ABC ;  (ft)  that  PNG  is  the  longest  great-circle  arc  that  can  be 
drawn  from  P  to  ABC. 

2.  Show  that  the  greater  the  distance  of  the  plane  of  a  small  circle  from 
the  centre  of  the  sphere,  the  less  is  the  circle. 

3.  The  radius  of  a  sphere  is  10  inches,  and  the  radius  of  a  small  circle 

upon  it  is  6  inches.  Find :  (a)  the  distance  between  the  centre  of  the  sphere 

and  the  centre  of  the  small  circle  ;  (6)  the  angular  radius  of  the  small  circle  ; 

(c)  the  polar  distance  (or  arcual  radius)  of  the  small  circle ;  (d)  the  dis- 
tance on  the  sphere  from  the  small  circle  to  the  great  circle  having  the 

same  axis. 

4.  Prove  that  if  a  spherical  triangle  has  two  right  angles,  the  sides  oppo- 
site them  are  quadrants,  and  the  third  angle  has  the  same  measure  as  its 

opposite  side. 

5.  Prove  that  in  any  spherical  right  triangle  an  angle  and  its  opposite 
side  are  always  in  the  same  quadrant. 

6.  Prove  that  any  side  of  a  spherical  triangle  is  greater  than  the  difference 
between  the  other  two  sides. 

7.  Prove  that  each  angle  of  a  spherical  triangle  is  greater  than  the  differ- 

ence between  180°  and  the  sum  of  the  other  two  angles. 
8.  Show  that  the  surface  of  a  sphere  is  eight  times  the  surface  oi  a  trirec 

tangular  triangle. 

9.  (a)  Show  that  a  trirectangular  triangle  is  its  own  polar;  (&)  show 
that  a  triquadrantal  triangle  is  its  own  polar. 

10.    Show  that  if  two  great  circles  are  equally  inclined  to  a  third,  their 
poles  are  equidistant  from  the  pole  of  the  third. 
%.  101 



102  SPHERICAL    TRIGONOMETRY. 

11.  Show  that  the  arc  through  the  poles  of  two  great  circles  cuts  both 
circles  at  right  angles. 

12.  A  ship  sails  along  the  parallel  of  45°  N.  a  distance  of  600  nautical 
miles.     Find  the  difference  of  longitude  that  she  has  made. 

13.  Two  places  in  latitude  60°  N.  are  150  statute  miles  apart.  Find  their 
difference  of  longitude.     [Take  the  radius  of  the  earth  as  3960  miles.  ] 

14.  Compare  the  lengths  of  the  parallels  of  30°  N.,  45°  N.,  and  60°  N., 
with  the  length  of  the  equator. 

15.  Prove  that  if  the  first  of  two  spherical  triangles  is  the  polar  triangle 
of  the  second,  then  the  second  is  the  polar  triangle  of  the  first. 

16.  Show  that  in  two  polar  triangles  each  angle  of  the  one  is  the  supple- 
ment of  the  side  opposite  to  it  in  the  other. 

17.  Show  that  the  sum  of  the  angles  of  a  spherical  triangle  is  greater  than 

two,  and  less  than  six,  right  angles. 

18.  Discuss  the  following  cases,  in  which  A,  a,  and  b  are  given  in  a  spheri- 
cal triangle  ABC: 

I.  .4  =  90°:  (1)  &  =  90°:  (2)  6<90°(a<6,  a  =  b,  a>b  and  <w-b, 

a  =  ir  —  b,  a>7r  —  &);  (3)  6>90°(a<7r  —  6,  a  =  ir  —  b,  a>ir  —  b  and 
<&,  a  =  b,  a>b). 

II.  ̂ <90°:  (1)  6  =  90°(a<^,  a  =  A,  a>  A  and  <b,  a  =  b  =  90°, 

a>b);  (2)  &<90°(a<p,  a=p,  a>p  and  <  6,  a  =  b,  a>b  and  <tt  —  b, 
a  =  ir  —  b,  a>ir  —  b);  (3)  6>90°(a<jp,  a=p,  a>p  and  <7r  — 6, 
a  =  w  —  &,  a>7r  —  b  and  <  6,  a  =  b,  a  >  &).    [For  definition  of  p,  see  p.  26.] 

III.  A  >  90° :  (1)  b  =  90°  (a  =  b,  a  between  b  and  ir  -b,  a  between 

ir  —  b  and  p)  ;  (2)  6<90°(a>jp,  a=p,  a<p  and  >6,  a  =  6,  a  between  b 

and  7T  — 6);  (3)  &>90°(a<6,  a>b  and  <p,  a<p  and  >7r  —  b, 
a  between  b  and  ir  —  6,  a  =  6). 

CHAPTER  II. 

1.  Define  spherical  angle,  spherical  triangle,  Napier's  circular  parts, 
polar  triangle,  quadrantal  triangle,  oblique  spherical  triangle,  pole  of  an 
arc,  spherical  excess,  spherical  polygon. 

2.  In  a  right-angled  spherical  triangle  show  that :  (a)  It  is  impossible 

for  only  one  of  the  three  sides  to  be  greater  than  90°  j  (6)  The  hypote- 
nuse is  less  than  90°  only  when  both  the  other  sides  are  in  the  same 

quadrant ;  (c)  If  another  part  besides  the  right  angle  be  right,  the  triangle 
is  biquadrantal. 

3.  Prove,  by  geometry  and  by  trigonometry,  that  in  a  right  spherical 
triangle  an  angle  and  its  opposite  side  are  always  in  the  same  quadrant,  that 

is,  either  both  are  less  or  both  are  greater  than  90°. 
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4.  Prove  that  in  a  right  spherical  triangle  ABC,  (C  =  90°)  .  (a)  sin  J.  = 
cos  B  h-  cos  b  ;  (6)  cos  c  =  cot  A  cot  If ;  (c)  cose  =  cos  a  cos  b. 

5.  (a)  Mention  in  order  Napier's  circular  parts,  and  state  the  two  prin- 
cipal rules  for  their  use.  (&)  State  Napier's  Rules  and  write  the  ten  for- 

mulas for  the  right  spherical  triangle  by  means  of  them,  (c)  Prove  three 
of  these  formulas. 

6.  What  formulas  should  be  used  to  find  B,  a,  and  &  of  a  right  spherical 

triangle  ABC  (C  =  90°)  when  A  and  c  are  given  ?  What  formula  includes 
all  the  required  parts  ? 

7.  Show  how  to  obtain  the  formulas  for  finding  a,  B,  and  0  of  a  qua- 

drantal  triangle,  when  A  and  b  are  given  and  c  =  90°. 
8.  Given  one  side  and  the  hypotenuse  of  a  right  spherical  triangle,  write 

all  the  formulas  for  the  solution  and  check,  and  state  how  the  species  of  each 

part  will  be  determined. 

9.  How  many  solutions  are  there  for  a  right  spherical  triangle  ABC, 

given  side  b  and  angle  B  ?    Discuss  fully. 

10.  Given  A  and  6  of  a  right  spherical  triangle  ABC  {C  =  90°)  :  write 
and  derive  formulas  for  computing  each  of  the  parts  B,  a,  and  c  in  terms  of 

A  and  b  only  ;  also  the  check  formula. 

11.  Show  how  to  solve  a  right  spherical  triangle,  having  given  (a)  the 
sides  about  the  right  angle  ;  (&)  the  two  oblique  angles. 

12.  (a)  Show  how  the  solution  of  a  quadrantal  triangle  may  be  reduced 
to  that  of  a  right  triangle.  (&)  Write  the  relations  between  the  sides  and 

angles  of  a  quadrantal  triangle  ABC,  in  which  c  =  90°. 

13.  In  a  spherical  triangle  ABC,  A  =  B:  write  the  relations  between  the 
sides  and  angles  of  ABC. 

14.  If  A  be  one  of  the  base  angles  of  an  isosceles  spherical  triangle  whose 

vertical  angle  is  90°  and  a  the  opposite  side,  prove  that  cos  a  =  cot  A ;  and 
determine  the  limits  within  which  it  is  necessary  that  A  must  lie. 

15.  Show  how  oblique  spherical  triangles  can  be  solved  by  means  of  right 

spherical  triangles.     (Six  cases.) 

16.  In  a  right  spherical  triangle  ABC  {C  —  90°)  prove  that:  (a)  sin2I? 
—  cos2  A  =  sin2  b  sin2  A;  (&)  sin  A  sin  2  b  =  sin  c  sin  2  B ;  (c)  sin  2  A  sin  c  = 
sin  2  a  sin  B;  (d)  sin  2  a  sin  2&  =  4  cos.4  cos  jBsin2c;  (e)  cos2  A  sin2  c  — 
sin2  c  —  sin2  a ;  (/)  sin2  A  cos2  c  =  sin2  A  —  sin2  a. 

17.  (a)  In  ABC,  if  C  =  90°,  and  a  =  b  =  c,  prove  that  sec  A  =  1  +  sec  a.. 

(&)  In  ABC  (  C  =  90°)  show  that  if  b  =  c  =  -,  then  cos  a  =  cos  A. 

18.  In  a  right  spherical  triangle  whose  oblique  angles  are  72°  34'  and 

59°  42',  find  the  length  of  the  perpendicular  from  the  right  angle  upon  the 
base,  and  the  angles  which  it  forms  with  the  sides. 
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19.  Two  planes  intersecting  at  right  angles  are  intersected  by  a  third 

plane  making  with  them  angles  of  60°  and  75°  respectively.  Find  the  angles 
which  the  three  lines  of  intersection  make  with  each  other. 

20.  Two  planes  intersect  at  right  angles ;  from  any  point  of  their  line  of 

Intersection  one  line  is  drawn  in  each  plane  making  the  respective  angles  60° 

and  73°  with  the  line  of  intersection.  Find  the  angle  between  the  two  lines 
thus  drawn. 

21.  A  triangle  whose  sides  are  40°,  90°,  and  125°  respectively,  is  drawn  on 
the  surface  of  a  sphere  whose  radius  is  8  feet.  Find  in  feet  the  length  of 
each  side  of  this  triangle,  and  also  the  angles  of  the  polar  triangle.  Write 
the  formula  for  finding  either  angle  in  terms  of  functions  of  the  sides. 

22.  Solve  the  following  spherical  triangles  given :  (1)  Right  triangle, 

hypotenuse  =  140°,  one  side  =  20°.  (2)  Sides  90°,  50°,  50°.  (3)  Sides  100°, 

60°,  60°.  (4)  Sides  each  30°  in  length.  (5)  A  =  100°,  C=  90°,  a  =  112°. 
(6)  .4  =  80°,  a  =  90°,  6  =  37°.  (7)  a  =  b  =  119°,  C=85°.  (8)  Triangle 
PQR,  22  =  90°,  P=63°42',  Q  =  123°  18'.  (9)  Right  triangle,  one  angle  = 
110°  30'  20",  hypotenuse  =  75°  45'.  (10)  A  =  90°,  b  =  21°  30',  c  =  122°  18'. 
(11)  5  =  90°,  C=79°4(y,  b  =137°  52'.  (12)  .4=90°,  a=108°23,  c=37°42'. 
(13)  .5=90°,  ̂ 4=43°10',  a=78°35'.  (14)  5=90°,  (7=33° 57',  ̂ 4=43°  18'. 

(16)  A  =  87°  40'  20",  b  =  33°  42'  40",  5  =  90°.  (16)  A  =  33°  42'  40",  b  = 
87°  40'  20",  B  =  90°. 

CHAPTER  III. 

1.  In  a  spherical  triangle  ABC  prove  that :  (a)  sin  a  :  sin  A— sin  b  :  sin  B 

=  sin  c  :  sin  C ;  (&)  cos  a  =  cos  b  cos  c  +  sin  b  sin  c  cos  A  ;  (c)  cos  A  = 

— cos  2?  cos  0+ sin  1?  sin  Ocosa  ;  (d)  cos  \A=  Vsinssin(s— a)-j-sin&sinc, 

where  s  =  \(a  +  b  +  c) ;  (e)  tan  \  A  cot  \  B  =  sin  (s  —  b)  cosec  (s  —  a). 

2.  Give  the  equations  (or  proportions)  known  as  Napier's  Analogies. 
Derive  them. 

3.  Derive  formulas  giving  the  values  of  sin  A,  cos  A,  tan .4,  and  cose,  in 
terms  of  functions  of  a,  b,  and  c. 

4.  In  a  spherical  triangle  ABC  show  that :  (a)  If  a  =  b  =  c,  then  sec  A 

=  1  +  sec  a.     (6)  If  b  +  c  -  180°,  then  sin  2  B  +  sin  2  C  =  0.     (c)  If  C=  90°, 

then  tan  \(c  +  a)  tan  \(c  —  a)  =  tan2  — 
A       a 

5.  In  an  equilateral  spherical  triangle  show  that :  (a)  2  sin  —  cos  -  =  1, 
A  li 

and  hence,  that  such  a  triangle  can  never  have  its  angle  less  than  60°,  nor  its 

side  greater  than  120°  ;  (6)  2  cos  A  =  1  -  tan2  -• 

6.  Show  that :  (a)  If  the  three  angles  of  spherical  triangle  ABC  are 

together  equal  to  four  right  angles,  then  cos2  -  =  cot  A  cot  B.     (6)  If  x  is 
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the  side  of  a  spherical  triangle  formed  by  joining  the  middle  points  of  the 

equilateral  triangle  of  side  a,  then  2  sin  -  =  tan  ̂ « — ■  — 

7.  («)  In  a  spherical  triangle  ABC  show  that,  if  b  +  c  =  90°,  then 

cos  a  —  sin  2  c  cos2  — .     (&)  If  a  be  the  side  of  an  equilateral  triangle  and  a' A 

that  of  its  polar  triangle,  prove  cos  a  cos  a'  =  \. 

8.  (a)  If,  in  a  triangle  ABC,  I  be  the  length  of  the  arc  joining  the  middle 
point  of  the  side  c  to  the  opposite  vertex  (7,  show  that  cos  I  =  (cos  a  +  cos  6) 

-*■  2  cos-.  (&)  In  a  right  spherical  triangle  ABC  {C  =  90°),  rf  a,  0  be  the 

arcs  drawn  from  C  respectively  perpendicular  to  and  bisecting  the  hypote- 

nuse c,  show  that  sin2  -  (1  +  sin2  a)  =  sin2  /3. 

9.  (a)  Prove  that  the  half  sum  of  two  sides  of  any  spherical  triangle  is  in 
the  same  quadrant  as  the  half  sum  of  the  opposite  angles.  (6)  Two  sides  of 
a  spherical  triangle  are  given :  prove  that  the  angle  opposite  the  smaller  of 
them  will  be  greatest  when  that  opposite  the  larger  is  a  right  angle. 

10.  ABC  is  a  spherical  triangle  of  which  each  side  is  a  quadrant,  and  Pis 

a  point  within  it.    Prove  that  cos2  PA  +  cos2  PB  +  cos2  PC  =  1. 

11.  In  a  spherical  triangle,  if  A  =  36°,  B  =  60°,  and  C  =  90°,  show  that 
a  -f  &  +  c  =  90°. 

CHAPTER  IV. 

1.  (a)  Name  the  six  cases  for  solution  of  spherical  triangles.  (6)  Dis- 
cuss each  case  in  detail,  writing  the  formulas  used  in  the  solution,  and  deriv- 

ing these  formulas,  (c)  Solve  an  example  under  each  case.  Test  the  result 

by  (1)  solving  by  right  triangles,  (2)  solving  without  logarithms,  (3)  using  a 
check  formula. 

2.  How  many  solutions  are  possible  for  the  oblique  spherical  triangle 
ABC,  given  A,  B,  and  a  ?  Discuss  in  full  the  question  of  one  solution,  two 
solutions,  or  no  solution.     Plan  the  solution. 

3.  In  a  spherical  triangle  ABC,  two  sides  a  and  &  and  the  included  angle 
C  are  given.  Write  all  the  formulas  used  in  the  solution  and  check ;  describe 
fully  the  process  of  solution.     Derive  the  formulas  used. 

4.  Write  and  deduce  the  formulas  for  finding  A,  B,  and  C  of  any  spheri- 
cal triangle  when  «,  6,  and  c  are  given. 

5.  Given  A,  B,  and  C.  Show  how  to  find  the  remaining  parts,  writing 
the  formulas  to  be  used. 

6.  In  an  equilateral  spherical  triangle  the  side  a  is  given.  Find  the 
angle  A. 
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7.  Solve  the  spherical  triangle  whose  sides  are  70°,  60°,  and  50°.  Solve 
the  plane  triangle  obtained  by  connecting  by  straight  lines  the  vertices  of 

this  spherical  triangle,  the  sphere  on  -which  it  is  drawn  being  2  feet  in 
diameter. 

8.  In  a  triangle  ABC  on  the  earth's  surface  (supposed  spherical)  a  =  483 
miles,  6  =  321  miles,  0=  38°  21'.  Find  the  length  of  the  side  c.  [Earth's 
radius  =  3960  miles.] 

9.  Two  planes  intersect  at  an  angle  of  75°.  From  any  point  of  their  line 
of  intersection  one  line  is  drawn  in  each  plane,  making  the  respective  angles 

55°  and  80°  with  the  line  of  intersection.  Find  the  angle  between  the  lines 
thus  drawn. 

10.  Two  planes  intersecting  at  an  angle  of  65°  are  intersected  by  a  third 
plane,  making  with  them  the  respective  angles  55°  and  82°.  Find  the  angles 
which  the  three  lines  of  intersection  make  with  one  another. 

11.  A  solid  angle  is  contained  by  three  plane  angles  62°,  83°,  38°.  Find 

the  angle  between  the  planes  of  the  angles  62°  and  38°. 

12.  Two  of  the  three  angles  which  contain  a  solid  angle  are  42°  and  65°  30', 
and  their  planes  are  inclined  at  an  angle  of  50°.  Find  the  angle  of  the  third 
plane  face  and  the  angles  at  which  this  third  plane  is  inclined  to  the  other 
two  planes. 

13.  A  pyramid  has  each  of  its  slant  sides  and  base  an  equilateral  triangle. 
Find  the  angle  between  any  two  faces. 

14.  A  pyramid  each  of  whose  slant  faces  is  an  equilateral  triangle  has  a 

square  base.  Find  the  angle  between  any  two  slant  faces,  also  the  angle 
between  any  slant  face  and  the  base. 

15.  In  the  following  cases  ABC  is  a  three-sided  spherical  figure  each  of 

whose  sides  is  an  arc  of  a  great  circle.  Select  those  which  are  spherical  tri- 

angles, and  give  reasons  for  so  doing.  Explain  why  the  other  figures  can- 
not be  triangles.  Solve  the  triangles  and  check  the  results.  (Solve  some 

without  using  logarithms.) 

(1)  a  =  76°,  6  =  54°,  c  =  36°.  (2)  A  =  54°  35'  20",  b  =  104°  25'  45", 
c  =  92°10'.  (3)  A  =  107°  47'  7",   B  =  38°  68'  27",   c=  51°  41' 14". 

(4)  A  =  60°,  B  =  80°,   C  =  100°.  (5)  A  =  120°,  B  =  130°,   C  =  80°. 
(6)  J.=54°35',  6  =  104°  24',  c=95°10'.  (7)  .4=61°  37' 53",  5=139° 54'34", 
6  =  150°  17' 26".  (8)  a=72°18',  b  =  146°  35',  c=98°ll'.  (9)  .4=125°  15', 
tf=85°  12',  6  =  100°.  r  10)  .4=50°,  5=114°  5'  8",  6=50°.  (11)  .4  =  83°  40', 

6  =  73°  45',   a  =  30°  24'.  (12)  A  =  83°  40',   6  =  30°  24',   a  =  73°  45'. 
(13)  A  =  97°  20',  a  =  94°  37',  6  =  36°  17'.  (14)  a  =  127°  40',  6  =  143°  50', 
c  =  139°  39'.  (15)  A  =  40°,  B  =  30°,   C  =  20°.  (16)  A  =  40°  35', 
B  =  36°  42',  c  =  47°18'. 
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CHAPTER  V. 

[In  the  following  exercises, 

n  =  Vsin  s  sin  (s  —  a)  sin  (s  —  b)  sin  (s  —  c), 

and  N  =  V-  cos  fl  cos  (tf  -  .4)  cos  (#-  .B)  cos  (#  -  C) ; 

also,  r,  ra,  r&  rc,  denote  the  radii  of  the  circles  inscribed  in  the  spherical  tri- 
angle ABC  and  its  three  colunar  triangles,  and  B,  Ba,  i?a,  Bc  denote  the 

radii  of  the  circumscribing  circles  of  these  triangles.] 

1.  Given  a  spherical  triangle  ABC,  find  (1)  the  radius  of  the  inscribed 
circle  ;  (2)  the  radius  of  the  circumscribing  circle  ;  (3)  the  radii  of  the 
inscribed  circles  of  the  colunar  triangles  j  (4)  the  radii  of  the  circumscribing 
circles  of  the  colunar  triangles,, 

Show  that : 

2.  Tanr  =  -^-. 

3.   Tani?  = 

sins 
N 

cos  {S  -  A)  cos  (#  -  B)  cos  (#  -  C) 

4.  (a)  Cot  B  cot  Ba  cot  Bb  cot  Bc  =  N2  ; 

(6)  Tan  B  cot  Ba  cot  Bb  cot  Bc  =  cos2  S. 

5.  TanJR  =  4tanr  -cosSsins sin  a  sin  b  sin  c  sin  .4  sin  B  sin  C 

6.  Tan  ra  tan  r6  tan  rc  =  tan  r  sin2  s. 

7.  Tan  i2  +  cot  r  =  tan  i?a  +  cot  ra  —  tan  Bb  4-  cot  r& 

=  tan  Bc  +  cot  rc  =  \  (cot  r  +  cot  ra  +  cot  r&  +  cot  rc). 

8.  Tan  B  tanr  =  -  cos  ̂ sin  a  =  -  cos  Ssin  b  =  etc.    Write  the  other  for- 

mulaofthisset.  sins  sin  ̂         sins  sin  
B 

9.  Tan2  B + tan2  Ba + tan2  i?6  +  tan2  Bc = cot2  r + cot2  ra + cot2  n + cot2  r«. 

10.  Tan  r  tan  ra  tan  r&  tan  rc  =  w2 ;   cot  r  tan  ra  tan  r&  tan  rc  =  sin2  s. 

11.  In  any  equilateral  triangle,  tan  B  =  2  tan  r. 

12    Tan  7?  =  — tan  ia  —  cos  (S  —  ̂ 4)   sin^q   
cos  S  N  sin  A  sin  £  &  sin  \  c 

2  sin  i  a  cos  i&  cos  Ac       1   r  .  .    ,  N  .     .    ,        ,N  .     •„/-       „m 
=   ■   z   -2-  =  —  [sm  s  —  sin  (s  —  a)+  sin  (s  —  b)  -f  sm(s  —  c)j. 

Write  the  corresponding  formulas  for  Bb  and  22c. 

13.  Cot  ra  +  cot  rb  +  cot  rc  —  cot  r  =  2  tan  B. 

14.  Find  the  radii  of  the  circles  connected  with  some  of  the  triangles  in 
Ex.  15  of  the  preceding  set. 
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CHAPTER   VI. 

1.  Define  the  following  terms  :  zone  of  a  sphere,  lune,  spherical  degree^ 

spherical  excess  of  a  triangle,  spherical  excess  of  a  (non-re-entrant)  polygon, 
spherical  excess  of  any  figure  on  a  sphere,  spherical  measure  and  spherical 
degree  measure  of  a  solid  angle,  spherical  pyramid,  spherical  sector,  spherical 
segment. 

2.  Derive  the  area  of  the  surface  of  a  sphere. 

3.  Derive  the  area  of  a  spherical  triangle. 

4.  Discuss  fully  the  measurement  of  solid  angles. 

5.  Show  how  to  find  the  spherical  excess  of  a  figure  on  a  sphere  when 
the  area  of  the  figure  is  given  (in  square  units). 

6.  State  and  deduce  Roy^s  Rule  for  computing  the  spherical  excess  of  a 
triangle  of  known  area  on  the  earth's  surface. 

7.  Derive  the  volumes  of  a  sphere,  a  spherical  pyramid,  a  spherical 
sector,  and  a  spherical  segment. 

8.  The  area  of  an  equilateral  triangle  is  one-fourth  the  area  of  the 
sphere :  find  its  sides  and  angles. 

9.  If  the  three  sides  of  a  spherical  triangle  measured  on  the  earth's 
surface  be  12,  16,  and  18  miles,  find  the  spherical  excess. 

10.  If  a-  b  and  C  =  -,  show  that  tanff°=  sin2  a  .    (in  ABC.) 2'  2  cos  a 

11.  If  a  =  6  =  60°  and  c  =  90°,  show  that  E  =  cos"1  $.    (In  ABC.) 

12.  If  C  =  90°  in  ABC,  then  E  =  2  tan"1  (tan  \  a  tan  £  6). 

13.  In  a  triangle  on  the  earth's  surface  (assumed  spherical),  two  sides 
are  483  and  321  miles,  and  the  angle  between  them  is  38°  21'.  Find  the  area 
of  the  triangle  in  square  miles.     [Radius  of  earth  =  3960  miles.] 

14.  The  sides  of  a  triangle  on  the  earth's  surface  (supposed  spherical) 
are  321,  287,  and  412  miles ;  find  the  area. 

15.  Prove  that  in  a  right  triangle  ABC  (C=  90°), 

cos|J?  =  cos*acosH  and  sinjl?  =  sin*qsin*6. cos  £  c  cos  \  c 

16.  The  spherical  excess  of  a  triangle  on  the  earth's  surface  is  2". 5. 
Find  its  area,  the  radius  of  the  earth  being  taken  as  3960  miles. 

17.  Find  the  fraction  of  the  earth's  surface  (supposed  spherical)  con- 
tained by  great-circle  arcs  joining  London,  New  York,  and  Paris.  Find  the 

spherical  degree  measure,  and  the  spherical  measure  of  the  angle  subtended 

at  the  centre  of  the  earth  by  this  part  of  the  earth's  surface. 
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18.  Find  the  spherical  excess  of  some  of  the  triangles  in  Ex.  15,  p.  104. 
Also  find  their  areas  in  square  inches  on  spheres  of  radii,  say,  4  inches, 
10  inches,  12  inches,  20  inches,  a  inches. 

19.  Find  the  spherical  measures  and  the  spherical  degree  measures  of  the 

solid  angles  corresponding  to  the  triangles  taken  in  Ex.  18. 

CHAPTER   VII. 

1.  Given  the  latitude  and  longitude  of  each  of  two  places :  show  how  to 
find  the  shortest  distance  between  these  places,  and  the  direction  of  one  place 
from  the  other. 

2.  Given  the  latitudes  and  longitudes  of  three  places  on  the  earth's  sur- 
face, and  also  the  radius  of  the  earth :  show  how  to  find  the  area  of  the 

spherical  triangle  formed  by  arcs  of  great  circles  passing  through  them. 

3.  Given  the  sun's  altitude  and  declination  and  the  latitude  of  a  place : 
show  clearly  how  the  time  of  day  may  be  determined. 

4.  If  d  represents  the  sun's  declination,  what  formulas  will  be  required  in 
order  to  determine  the  time  of  sunrise  for  a  place  whose  latitude  is  I  ? 

5.  Show  what  formulas  must  be  used  to  find  the  length  of  a  degree  of 

longitude  on  the  earth's  surface  for  a  place  whose  latitude  is  I,  r  representing 
the  radius  of  the  earth. 

6.  The  shortest  distance  d  between  two  places  and  their  latitudes  I  and  V 
are  known  j  find  their  difference  of  longitude. 

7.  Given  the  obliquity  of  the  ecliptic  w,  and  the  sun's  longitude  X,  show 
that  if  a  and  5  denote  his  right  ascension  and  declination  respectively,  then 
tan  a  =  cos  w  tan  X,  and  sin  5  =  sin  w  sin  X. 

8.  The  faces  of  a  regular  dodecaedron  are  regular  pentagons,  three  faces 
meeting  at  each  vertex.     Find  the  diedral  angle  at  the  edge  of  the  solid. 

9.  The  ridges  of  two  gable  roofs  meet  at  right  angles ;  each  roof  is 

inclined  to  the  horizontal  at  an  angle  of  65°.  Find  the  diedral  angle  between 
the  planes  of  the  two  roofs,  and  the  angle  their  line  of  intersection  makes 
with  the  ridge  of  either  roof. 

10.  What  is  the  direction  of  a  wall  in  latitude  52°  30'  N.  which  casts  no 
shadow  at  6  a.m.  on  the  longest  day  of  the  year  ? 

11.  Two  ports  are  in  the  same  parallel  of  latitude,  their  common  latitude 

being  Z,  and  their  difference  of  longitude  2  X.  Show  that  the  saving  of  dis- 
tance in  sailing  from  one  to  the  other  on  the  great  circle  instead  of  sailing 

due  east  or  west,  is 

2  r  {X  cos  I  —  sin-1  (sin  X  cos  Z)}, 

\  being  expressed  in  radian  measure,  and  r  being,  the  radius  of  the  earth. 
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12.  If  a  ship  sails  from  New  York  (40°  28'  N. ,  74°  8'  W.)  starting  due  east, 
and  continues  her  course  on  an  arc  of  a  great  circle,  what  will  be  her  lati- 

tude when  she  reaches  the  meridian  of  Greenwich,  and  in  what  direction  will 

she  then  be  sailing  ? 

13.  Find  the  distance  between  New  York  (40°  28'  N.,  74°  8'  W.)  and  Cape 
Clear  (51°  26'  N.,  9°  29'  W.),  and  the  bearing  of  each  from  the  other.  [Radius 
of  earth  =  3960  miles.] 

14.  From  Victoria,  B.C.  (48°25'N.,  123°  23'  W.),  a  ship  sails  on  an  arc 
of  a  great  circle  for  1250  miles,  starting  in  the  direction  S.  47°  35'  W.  Find 

its  latitude  and  longitude,  taking  the  length  of  1°  as  69£  miles. 

15.  Two  places  are  both  in  latitude  50°  N.,  and  the  difference  of  their 

longitudes  is  60°.  Find  the  distance  between  them  (a)  along  the  parallel  of 
latitude,  (6)  along  a  straight  line,  (c)  along  a  great  circle.  [Earth's  radius 
=  3960  miles.] 

16.  What  will  be  the  first  course  and  the  shortest  (great  circle)  distance 

passed  over  in  sailing  from  a  place  in  latitude  43°  N.  to  another  place  80° 
east  of  it  and  in  the  same  latitude  ?  What  is  the  distance  between  the  two 

places  along  the  parallel  ?     What  is  the  straight-line  distance  between  them  ? 

17.  At  what  hours  will  the  sun  rise  in  London  (51°  30' 48"  N.)  and  New 

York  (40°  43'  N.)  when  its  declination  is  respectively  23°  N.,  20°  N.,  15°  N., 
10°  N.,  5°  N.,  5°  S.,  10°  S.,  15°  S.,  20°  S.,  23°  S.  ? 

18.  When  the  sun's  declination  is  18°,  find  his  right  ascension  and 
longitude. 

19.  What  is  the  altitude  of  the  sun  above  the  horizon  when  its  angular 

distance  from  the  south  point  is  75°  and  from  the  west  point  is  60°  ? 

20.  The  right  ascension  of  Sirius  is  6h  38m  37B.6,  and  his  declination  is 

16°  31'  2"  S. ;  the  right  ascension  of  Aldebaran  is  4h  27m  258.9,  and  his  decli- 
nation is  16°  12'  27"  N.    Find  the  angular  distance  between  these  stars. 

21.  If  the  sun's  declination  be  20°  45'  N.  and  his  altitude  be  41°  10'  at 

3  p.m.,  find  the  observer's  latitude. 

22.  What  will  be  the  altitude  of  the  sun  at  3.30  p.m.  in  San  Francisco 

(37°  48'  N.),  its  declination  being  15°  S.  ? 

23.  In  Bombay  (18°  54'  N.)  the  altitude  of  the  sun  is  observed  to  be 
27°  40'.  If  the  sun's  declination  is  7°  S.  and  the  observation  is  made  in  the 
morning,  find  the  hour  of  the  day. 

24.  Find  the  latitude  and  longitude  of  a  star  whose  right  ascension  ia 

4h  40m,  and  declination  57°. 

25.  Find  the  distance  in  degrees  between  the  sun  and  moon  when  theii 

right  ascensions  are  respectively  15h  12;,  4h  45',  and  their  declinations  are 
2P30'S.,  5°30'N. 
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26.  Find  the  length  of  the  longest  day  in  the  year  at  the  following  places 

(the  sun's  greatest  declination  being  23°27'N.):  London  (51°  30' 48"  N.), 

New  York  (40°  43'  N.),  Montreal  (45°30'/N.),  St.  Petersburg  (60°  N.),  Hong 
Kong  (22°17'N.). 

27.  Find  the  length  of  the  shortest  day  in  the  year  at  the  places  mentioned 

in  Ex.  26.     (The  sun's  declination  is  then  23°  27'  S.) 

28.  At  Copenhagen  (55°  40'  N.),  at  an  afternoon  observation,  the  sun's 
altitude  is  44°  20' ;  find  the  time  of  day,  the  sun's  declination  being  18°  25'  N. 

29.  At  what  time  of  day  will  the  sun  have  an  altitude  of  53°  40'  for  a 

place  in  latitude  40°  35'  N.,  his  declination  being  13°  48'  N.  ? 

30.  What  will  be  the  sun's  altitude  at  3.30  p.m.  at  a  place  in  latitude 

44°  40'  N.,  his  declination  being  18°  N.  ? 

31.  What  will  be  the  sun's  altitude  at  10  a.m.  at  a  place  in  latitude 

44°  40'  N.,  his  declination  being  18°  S.  ? 

32.  What  is  the  sun's  declination  when  his  altitude  at  a  place  in  latitude 
37°  48' N.  is  25°  at  4  p.m.  ? 

Note.  The  Spherical  Trigonometries  of  M'Clelland  and  Preston,  Casey, 
and  Bowser,  contain  especially  good  collections  of  exercises.    See  Art.  40. 
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ANSWERS   TO   THE   EXAMPLES. 

CHAPTER  I. 

Art.  24.  I.  4.  A  =  88°  12.2',  5  =  74°  34.7',  C  =  43°  8' ;  A  =  118°  33.2', 
5=113°  11.2',  0  =  92°  45'.  II.  4.  a=72°  40.6',  6=67°  45.8',  c=51°  43.1'; 
a=71°22.7',  6  =  108° 37.3',  c= 104° 56.7'.  III.  4.  ̂ 4=63° 56',  5= 126° 21.2', 
c  =  77°3';  5  =  32°  47.1',  0  =  62°  30.7',  a  =  84°  29.5'.  IV.  5.  6  =  70°  5.7', 
c=102°  51.3',  u4  =  68°  35.8' ;  a  =  46°  1.5',  c  =  86°  0.7',  B  =  122°  55.8'. 
VI.  3.  B  =  59°  40.1',  0=114°  55',  c  =  96°  31.1',  and  B  =  120°  19.9', 
(7  =  27°  49.6',  c  =  30°  45.4';  5  =  65°  1.8',  O  =  97°  16.9',  c  =  100°  26'; 
O  =  110°  43.1',  6  =  33°  8.6',  c  =  60°  28.8';  O  =  165°  3.3',  ft  =  125°  1.7', 
6  =  162°  55.7',  and  O  =  119°  47',  c  =  81°  7',  &  =  54°  58.3'. 

CHAPTER   II. 

Art.  27.    4.  c  =  82°  33.9',  A  =  60°  51.2',  B  =  76°  56.1'.      5.   a =33°  0.25', 
b  =  36°  29.4',  c  =  47°  37.8'. 

Art.  31.  5.  (1)  C=86°30.9',  ̂ 4=36°  30.2',  5=87°  25.4'.  (2)  b  =  138°  24.4', 
^1  ss  58°  41.9',  B  =  129°  43.1'.  (3)  a  =  35°  50.6',  b  =-  75°  39.5',  B  =  81°  29.1'. 
(4)  a  =  42°  49.8',  b  =  27°  47.3',  c  =  49°  33'.  (5)  b  =  33°  37.4',  c  =  79°  2', 
5=34°  20.1';  and  6  =  146°  22.6',  c=100°58',  5=145°  39.9'.  (6)  a=35°16.4', 
c  =  51°  10.8',   5  =  55°  18.6'. 

Art.  32.  1.  (1)  ft  =  54°  20',  A  =  32°  0.75',  5=57°  59.25',  C=  93°  59.3'; 
(2)  6=66°  29',  c=lll°29.4',  5=50°  17',  (7=128°  41.2'.  2.  (1)  ft=59°56.2'. 
^1  =  130°,  5  =  52°  55.5'.     (2)  a  =  135°  33',  ft  =  100°  58.6',  C  =  101°  24.7r. 

CHAPTER   III. 

Art.  37.  I.  2.  ̂ 1=55°  58.4',  5=74°  14.6',  C=103°  36.6'.  3.  ̂ 4=43°  58', 

5  =  58°  14.4',  O  =  108°  4.8'.  II.  3.  a  =  39°  29.6',  6  =  35°  36.2',  c  =  27°  59'. 
4.   a  =  130°  49.6',  6  =  120°  17.5',  c  =  54°  56.1'. 

CHAPTER   IV. 

Art.  42.    2.  A  =  41°  27',  5  =  66°  26.4',  O  =  106°  3.2'.    3.  A  =  144°  26.6'. 
5  =  26°  9.1',    0=36°  34.7'. 

Art.  43.     1.  a  =  43°  36',  ft  =  41°  20.9',  c  =  33°  7.4'.     2.  a  =  111°  40.2', 
6  =  91°  17.2',  c  =  71°  7.4'. 
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Art.  44.  2.  A  =  101°  24.2',  B  =  54°  57.9',  c  =  79°  9.5'.  3.  B  =  78°  20.6', 
0  =  47°  47',  a  =  82°  42'. 

Art.  45.  I.  a  =  63°  15.1',  &  =  43°  53.7',  C=  95°  1'.    2.  &  =  86°  39.5', 
c  =  68°  39.5',  .4  =  59°  44'. 

Art.  46.  2.  B  =  36°  35.5',  (7  =  51°  59.7',  c  =  42°  38.9'.  3.  B  =  59°  3.5', 
C  =  97°  38.8',  c  =  56°  56.9' ;  B  =  120°  56.5',  C  =  28°  5.2',  c  =  23°  27.8'. 

Art.  47.  1.  b  =  154°  45.1',  c  =  34°  9.1',  O  =  70°  17.5'.  2.  ̂ 4  =  164°  43.7', 

a  =  162°  37.5',  c  =  124°  40.6' ;  A  =  119°  18.7',  a  =  81°  18.7',  c  =  55°  19.4'. 

CHAPTER  VI. 

Art.  53.     1.   2827.44  sq.  in.        2.    392.7  sq.  in.        3.    8.25  sq.  ft. 

Art.  55.     1.    1.396  sq.  ft.        2.    64.14  sq.  ft. 

Art.  56.  24°  37' 47"  (.42986),  33°  56.6'  (.59213),  27°  10.4'  (.47426), 
12°  (.20944),  86°  20'  (1.5068),  etc. 

Art.  57.  1.  42.986  sq.  ft.,  59.213  sq.  ft.,  4J.426  sq.  ft.  2.  130.9  sq.  in., 
941.75  sq.  in. 

Art.  61.  1.  Spherical  degree  measure  =  12,  spherical  measure  =  .20944, 
2.    Spherical  degree  measure  =  24.63,  spherical  measure  =  .42986. 

Art.  64.  1.  143.29  cu.  ft.,  197.38  cu.  ft.,  158.09  cu.  ft.,  1090.8  cu.  in., 

7847.9  cu.  in.,  etc.        2.    (a)    1357.17  cu.  in.        (&)   904.78  cu.  ft. 

CHAPTER   VII. 

Art.  66.  2.  8°  4.3'  S. ;  course,  S.  45°  6  E.  5.  (a)  On  the  equator  in 
long.  18°  56'  E. ;  course,  S.  47°  39'  E.  (&)  Lat.  42°  21'  S.,  long.  108°  56'  E. ; 

course,  E.  (c)  On  the  equator  in  long.  161°  4'  W. ;  course,  N.  47°  39'  E. 
6.  Distance  =(51°  19.8')=  3547.675  mi. ;  bearing  of  New  York  from  Liver- 

pool is  N.  71°  6.8'  W.,  and  bearing  of  Liverpool  from  New  York  is  N.  48°  5.8'  E. ; 
lat.  51°  44.1'  N. ;  course,  N.  65°  38'  E. 

Art.  73.  1.  8.08  a.m.  2.  2.33  p.m.  3.  2.59  p.m.  4.  4.09  p.m. 
5.    6.09  p.m.        6.    9.46  a.m. 

Art.  74.     1.    (a)   5.44 ;      (6)  5.06  ;      (<;)  4.34 ;  (d)  5.43  ;  (e)  6.21 ; 

(/)   6.53;     (0)    7.26.       2.  (a)    5.37;     (6)   4.40;  (c)    3.51;  (d)    5.35; 
(e)   6.30;     (/)    7.19;     (g)  8.09.          3.    (a)    5.29;  (6)   4.08;  (c)   2.51; 
{d)    5.25;     (e)   6.42;     (/)  7.51.     (g)    9.09. 
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