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ADVERTISEMENT TO THE SECOND EDITION.

I HAVE reserved for the Appendix to this Volume the longer additional and

illustrative notes which I have written for the new edition of the ** Elements."

Some of those notes would have been inconveniently long as footnotes ; others

would have been inconveniently placed. For example, although the Note on

Screws relates naturally to Art. 416 and that on the Kinematical Treatment

of Curves to Art. 396, I have placed the Note on Screws before the Note on

Curves because Hamilton's remarks on screw motion in the earlier Article required

some development in order to make the Note on Curves easily intelligible.

Accordingly the order of the notes has been arranged with reference to the

notes themselves rather than with reference to the text. The selection and

treatment of the subjects of these notes have been subordinated to the illustration

of quaternion methods. I have not hesitated to sacrifice brevity for suggestive-

ness, and above all I have tried to render the notation as explicit as possible.

An analysis of the Appendix will be found on pages xlv-xlix.

For greater convenience I have provided an Index to the whole work referring

to the pages, the volumes being distinguished by the numbers i and ii.

I take this opportunity of testifying to the extraordinary accuracy both of

matter and of printing in the first edition of the " Elements." Every portion

of the work bears evidence of Hamilton's unsparing pains. I cannot recall a

single sentence ambiguous in its meaning, or a single case in which a difficulty

is not honestly faced. I see no sign of diminished vigour or of relaxed care

in those portions of the work written in his failing health. My task as editor

has convinced me of the extreme caution with wliich any endeavour should be

made to improve or modify the calculus of Quaternions.

In conclusion, I desire to express my thanks to the College Printer, Mr.

George Weldrick, for the great care he has taken in printing this edition for

the Board of Trinity College, and for his unvarying courtesy to myself.

CHABLE8 JASPER JOLY.

The Obseevatokt, Dunsink,

l&th December, 1900.
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ON QUATERNIONS, CONSIDERED AS PRODUCTS OR POWERS
OF VECTORS ; AND ON SOME APPLICATIONS OF QUATER-
NIONS {continued), 1-368

CHAPTER III.

On some Additional Applications of Quatkbnions, with somk

CoNCLimiNo Remarks.

Section 1.—Remarks Introductory to this Concluding CLupter, . . 1-4

Skction 2.—On Tangents and Normal Planes to Curves in Space, 4-10

Section 3.—On Normals and Tangent Planes to Surfaces 11-23

Section 4.—On Osculating Planes, and Absolute Normals to Curves of

Double Curvature, 24-29

Section 5.—On Geodetic Lines, and Families of Surfaces, . . 29-49

In these Sections, dp usually denotes a tangent to a curve, and y a normal to a surface.

Some of the theorems or constructions may perhaps be new ; for instance, those connected

with the «»M ofparallels (pp. 6, 26, &c.) to the tangents to a curve of double curvature
;

and possibly the theorem (p. 42), respecting reciprocal curves in space : at least, the

deductions here given of these results may serve as exemplifications of the Calculus

employed. In treating of Families of Surfaces by quaternions, a sort of analogue

(pp. 47, 48) to the formation and integration of Partial Differential Equations presents

itself ; as indeed it had done, on a similar occasion, in the Lectures (574).

Section 6.—On Osculating Circles and Spheres, to Curves in Space ; with

some connected Constructions, . 50-179

The analysis, however condensed, of this long Section (III. iii. 6), cannot conveniently

be performed otherwise than under the heads of the respective Articles (389-401) which

compose it : each Article being followed by several sub-articles, which form with it a

sort of Series.*

* A T(^le of itiitial Pages of all the Articles will be elsewhere given, which will much facilitate

reference.
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Article 389.

—

Otculating Circle defined, as the limit of a circle, which touches a given

curve (plane or of double curvature) at a given point r, and cuts the curve at a near point

Q (see fig. 77, p. 24). Deduction and interpretation of general expressions for the vector

K of the centre k of the centre so defined. The reciprocal of the radius kp being called the

vector of curvature, we have generally,

Vector of Curvature = (/) - k)"^ - y~- = r: V ^j^ = &o.

;

(8)
lap fxp dp

and if the are (<) of the curve be made the independent variable, then

Vector of Curvature = p" = D,*p = -r-; • (SO
d**

Examples : curvatures of helix, ellipse, hyperbola, logarithmic spiral ; locus of centres of

curvature of helix, plane evolute of plane ellipse, 50-66

Aeticle 390.—Abridged general calculations ; return from (S') to (S), . . . 56-66

Article 391.—Centre determined by three scalar equations ; Folar Axis, Polar

Levelopable, 57-58

Article 392.— F«?<or ^jt/a<to« of osculating circle, 58-60

Article 393.

—

Intersection (or intersections) of a circle with a platie curve to which it

osculates ; example, hyperbola, 60-63

Article 394.—Intersection (or intersections) of a spherical curve with a small circle

osculating thereto ; example, spherical conic ; constructions for the spherical centre (or pole)

of the circle osculating to such a curve, and for the point of intersection above mentioned, 63-74

Article 395.

—

Osculating Sphere, to a curve of double curvature, defined as the limit

of a sphere, which contains the osculating circle to the curve at a given point p, and cuts

the same curve at a ttear point q (comp. Art. 389). The centre s, of the sphere so found,

is (as usual) the point in which the polar axis (Art. 391) touches the cusp-edge of the polar

developable. Other general constniction for the same centre (p. 77, comp. 106). General

expressions for the vector, a = os, and for the radius, iJ = sp ; -K"* is the spherical curvature

(comp. Art. 397). Condition of Sphericity {S= 1), and Coefficient of Non-sphericity {S— 1),

for a curve in space. When this last coefficient is positive (as it is for the helix), the

curve lies outside the sphere, at least in the neighbourhood of the point of osculation, . 74-80

Article 396.—Notations t, t', . . for D,p, D,*p, &c. ;
properties of a curve depending

on the square («') of its arc, measured from a given point p ; t = unit-tangent, r' = vector

of curvature, »-• = Tt' = curvature (ox first curvature, comp. Art. 397), v = rr = binormal ;

the three planes, respectively perpendicular to t, t', v, are the normal plane, the rectifying

plane, and the osculating plane ; general theory of emanant lines and planes, vector of

rotation, axis of displacement, osculating screw surface ; condition of developability of

surface of emanants 81-88

Article 397.—Properties depending on the cube («*) of the arc ; Radius r (denoted

here, for distinction, by a rowan letter), and Vector r-'r, oi Second Curvature ; this radius

r may be either positive or negative (whereas the radius r of first curvature is always

inaled as positive), and its reciprocal r-' may be thus expressed (pp. 92, 88),

8e»nd Curvature* = r» = S ^r^, (T), or, r' = S --„ (T')
Vdpd'p TT

the independent variable being the are in (T), while it is arbitrary in (T) : but quaternions

* In this Article, or Series, 397, and indeed abo in 396 and 398, several references are given to a

very interesting Memoir by M. de Saint-Venant, " Sur let lignes oourbrs non planes^' : in which,

however, that able writer objects to such known phrases as leeond curvature, torsion, &c., and proposes

in their stead a new name " eambrure," which it has not been thought necessary here to adopt.

[Journal de f Boole Folytechnique , Cahier xxx.)
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supply a vast variety of other expressions for this important scalar (see, for instance, the

Tabu in p. 108). We have also (by p. 89, comp. Arts. 389, 395, 396),

Vector of Spherical Curvature = sp-^ = (p - c)'' = &c., (U)

= projection of vector (t) of {simple or Jirst) curvature, on radius {R) of osculating sphere:

and if p and P denote the linear and angular elevations, of the centre (s) of this sphere

above the osculating />/«?»*, then (by same page 89),

p = r tan P = i? sin P = /r = rD.r. (F)

Again (pp. 89, 90), if we write (comp. Art. 396),

A. = V — = r-'r + tt' = Vector of Second Curvature plus Binormal, (V)
T

this line \ may be called the Eeetifying Vector ; and if J? denote the inelinatioi (considered

first by Lancret), of this rectifying line (A.) to the tangent (t) to the curve, then

tan fi" = r"-! tan P = rh. (V)

Known right cone with rectifying line for its axis, and witli JTfor its semiangle, whidi

osculates at p to the developable locus of tangents to the curve (or by p. 99 to the cone of

parallels already mentioned) ; new right cone, with a new semiangle, C, connected with H
by the relation (p. 91),

3
tan C = tan H, (V")

4

which osculates to the cone of chords, drawn from the given point p to other points Q of

the given cuitc. Other osculating cones, cylinders, helix, and parabola ; this last being

(pp. 91, 96) the parabola which osculates to the projection of the curve, on its own osculating

plane. Deviation of curve, at any near point q, from the osculating circle at p, decomposed

(p. 96) into two rectangular deviations, from osculating helix and parabola. Additional

formulae (p. 109), for the general theory of emanants (Art. 396) ; case of normally emanant

lines, or of tangentially emanant planes. General auxiliary spherical curve (pp. 110-112,

comp. p. 28) ; new proof of the second expression (V) for tan H, and of the theorem that if

this ratio of cxtrvatures be constant, the proposed curve is a geodetic on a cylinder : new
proof that if each curvature (»-', r-i) be constant, the cylinder is right, and therefore the

c\\x\e& helix, 88, 112

Article 398.—Properties of a curve in space, depending on the fourth and fifth

powers {s*, s'>) oiita arc {s), 112-156

This Series 398 is so much longer than any other in the Volume, and is supposed to

contain so much original matter, that it seems necessary here to subdivide the analysis

under several separate heads, lettered as {a), {b), {e), &c.

(a). Neglecting **, we may write (p. 112, comp. Art. 396),

or (comp. p. 125),

op, = p, = p + «T + \sW + isV" + -^iS^r" ; (W)

ps = p + XiT + y>,rT' + z^rv, (W)

with expressions (p. 126) for the coefficients (or coordinates) Xs, </„ z,, in terms of r, »•', /',

r, r", and s. If «^ be taken into account, it becomes necessary to add to the expression

(W) the term, t2o«^tiv ; with corresponding additions to the scalar coefficients in (W'),

introducing r'" and r" : the laws for forming wliich additional terms, and for extending

them to higher powers of the arc, are assigned in a subsequent Series (399, pp. 156, 163).

{h). Analogous expressions for t'", v", k", \', a, and^, E, P', E.', to serve in questions

in which «* is neglected, are assigned (in p. 113) ; t", v, k', \, <r, &ndp, R, P, H, having

been previously expressed (in Series 397) ; while tiv, v'", tt", \", </', &c. enter into

investigations which take account of s* : the arc s being treated as the independent

variable in all t/iese derivations.

Hamilton's Elements of Quaternions, Vol. II..
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(e). Ono of the chief results of the present Series (398), is the introduction (p. 116, &c.)

of a fietc auxxliary angle, J, analogous in seveml respects to the httown angle H (397), but

belonging to a higher order of theorems, respecting curves in space : because the new angle

/depends on ihe fourth (and lower) powers of the arc «, while Lancret's angle J depends

only on »' (including «* and «'). In fact, while tan H is represented by the expressions

(V), whereof one is »•'-' tan P, tan / admits (with many transformations) of the following

analogous expression (p. 116),
tan/ = i?'->tanP; (X)

where i? depends* by (A) on s*, while »•' and P depend (397) on no higher power than «•''.

(d). To give a more distinct geometrical meaning to this new angle /, than can be

easily gathered from such a formula as (X), respecting which it may be observed, in

passing, that / is in general more simply defined by expressions for its cotangent

(pp. 116, 126), than for its tangent, we are to conceive that, at each point v of any

proposed curve of double curvature, there is drawn a tangent plant to the sphere, which

osculates (395) to the curve at that point ; and that then the envelope of all these planes is

determined, which envelope (for reasons afterwards more fully explained) is called here

(p. 116) the " Circumscribed Developable "
: being a surface analogous to the ^^ Rectifying

Developable'*'' of Lancret, but belonging (c) to a higher order of questions. And then, as

the known angle JBT denotes (397) the inclination, suitably measured, of the rectifying line

(X), which is a generatrix of the rectifying developable, to the tangent (t) to the curve ; so

the new angle / represents the inclination of a, generating line {<p), of what has just been

called the circumscribed developable, to the same tangent (t), measured likewise in a

defined direction (p. 117), but in the tangent plane to the sphere. It may be noted as

another analogy (p. 117), that while J? is a right angle for a plane curve, so / is right

when the curve is spherical. For the helix (p. 122), the angles ^and J are equal ; and

the rectifying and circumscribed developables coincide, with each other and with the right

cylinder, on which the helix is a geodetic line.

(ff). If the recent line <p be measured from the given point p, in a suitable direction

(as contrasted with the opposite), and with a suitable length, it becomes what may be

called (comp. 396) the Vector of Rotation of the Tangent Plane (rf) to the Oscidating Sphere
;

and then it satisfies, among others, the equations (pp. 114, 116, comp. (V)),

^ = V ^, T* = i?-i cosec /

;

(^O
p

this last being an expression for the velocity of rotation of the plane just mentioned, or of

its normal, namely the spherical radius R, if the given curve be conceived to be described

by a point moving with a constant vekcity, assumed = 1. And if we denote by v the

point in which the given radius R or ps is nearest to a consecutive radius of the same kind,

or to the radius of a consecutive osculating sphere, then this point v divides the Hue ps

intei-nally, into segments which may (ultimately) be thus expressed (pp. 116, 116),

pv = n sin* /, -v^ = R cos* J. (X")

But these and other connected results, depending on «*, have their known analogues (with

// for /, and r for R) , in that earlier theory (c) which introduces only «* (besides «' and «*)

:

and they are all included in the general theory of emanant lines and planes (396, 397), of

which some new geometrical illustrations (pp. 117, 120) are here given.

• In other words, the calculation of / and P introduces no differentials higher than the third

order ; but that of R requires the fourth order of differentials. In the language of modem geometiy,

the fortnei- can be determined by the consideration of four consecutive points of the curve, or by that

of two eorueeutive osculating circles ; but the Intler requires the consideration of tiro consecutive

oseuUUing spheres, and therefore of five consecutive points of the curve (supposed to be one of double

curvature). Other investigations, in the present and immediat«ly following Series (398, 399),

especially those connected with what wo shall shortly call the Osculating Twisted Cubic, will be found

to involve the consideration of six cunsecutive point* ot" a curve.
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(/). New auxiliary scalar n{ = p'^RK = cot J &ec F = &c.), = velocity of centre s of

osculating sphere, if the velocity of the point p of the given curve be taken as unity [e) ; m

vanishes mth R', cot /, and (corap. 395) the coefficient S - l{= wjt-i) of non- sphericity,

for the case of a spherical curve (p. 120). Arcs, fiist and second curvatures, and

rectifying planes and lines, of the cusp-edges of the polar and rectifying* developables
;

these can all be expressed without going beyond s^, and some without using any higher

power than s*, or differentials of the orders corresponding ; ri = wr, and ri = «r, are the

scalar radii of first and second curvature of the former cusp-edge, ri being positive when
that curve turns its concavity at s towards the given curve at p : determination of the

point R, in which the latter cusp-edge is touched by the rectifying line A to the original

curve (pp. 120, 125).

[g). Equation with one arbitrary constant (p. 125), of a cone of the second order y which

has its vertex at the given point p, and has contact of the third order {or four-side contact)

with the cone of chords (397) from that point; equation (p. 128) of a cylinder of the

second order, which has an arbitrary line pe from p as one side, and has contact of the

fourth order {ox five-point contact) with the curve at p ; the constant above mentioned can

be 80 determined, that the right line pe shall be a side of the cone also, and therefore a

part of the intersection of cone and cylinder ; and then the remaining or curvilinear part,

of the complete intersection of those two surfaces of the second order, is (by known
principles) a. gauche curve of the third order, or what is briefly calledf a Twisted Cubic : and
this last curve, in virtue of its construction above described, and whatever the assumed

direction of the auxiliary line pe may be, has contact of the fourth order (or five-point

contact) with the given curve of double curvature at p (pp. 125, 129, comp. pp. 92, 104).

(A). Determination (p. 129) of the constant in the equation of the cone (g), so that this

cone may have contact of the fourth order {or five-side contact) with the cone of chords from

T ; the cone thus found may be called the Osculating Oblique Gone (comp. 397), of the

second order, to that cone of chords ; and the coefficients of its equation involve only r, r,

r', r', »•", r", but not r'", although this last derivative is of no higher order than r", since

each depends only on «* (and lower powers), or introduces only^/i!A differentials. Again,

the cylinder (g) will have contact of the ffth order (or six-point contact) with the given

curve at p, if the line pe, which is by construction a side of that cylinder, and has hitherto

had an arbitrary direction, be now obliged to be a side of a certain cwJic cone, of which the

equation (p. 128) involves as constants not only rr>-'r'»-"r", like that of the osculating cone

just determined, but alsor'". The two cones last mentioned have the tangent (t) to the

given curve for a common side,X but they have also three othei- common sides, whereof one

* The rectifying plane, of the cusp-edge of the rectifying developable, is the plane of A and t', of

which the formula LIV. in p. 124 is the equation ; and the rectifying line kh, of the same cusp-

edge, intersects the absolute normal pk to the given curve, or the radius (r) of first curvature, in the

point H in which that radius is nearest {e) to a consecutive radius of the same kind. But this last

theorem, which is here deduced by quaternions, had been previously arrived at by M. de Saint-Venant
(comp. the Note to p. viii), through an entirely different analysis, confirmed by geometrical

considerations.

t By Dr. Salmon, in his excellent Treatise on Analytic Geometry of Three Dimensions (Dublin,

1862), which is several times cited in the Notes to this final Chapter (III. iii.) of these Elements.

The gauche curves, above mentioned, have been studied with much success, of late years, by M.
Chasles, Sig. Cremona, and other geometers : but their existence, and some of their leading properties,

appear to have been first perceived and published by Prof. Mobius (see his Barycentrio Calculus.

Leipzig, 1827, pp. 114-122, especially p. 117).

X This side, however, counts as three (p. 159), in the system of the six lines of intersection (real or

imaginary) of these two cones, which have a common vertex v, and are respectively of the second and
third orders (or degrees). Additional light will be thrown on this whole subject, in the following

Series (399) ; in which also it will be shown that there is only one osculating twisted cubic, at a given

point, to a given curve of double curvature ; and that this cubie curve can be determined, without

resolving any cubic or other equation.

b2
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at least is real, since they are assigned by a cubic equation (p. 129) ; and by taking this

side for the line pe in (^), there results a new cylinder of the second order, which cuts the

osculating oblique cone, partly in that right line pe itself, and partly in a gauche curve of

the third order, which it is proposed to call an Osculatitig Twisted Cubic (comp. again (g)),

because it has contact of the fifth order (or six-point contact) with the given curve at p

(p. 129).

(i). In general, and independently of any question of osculation, a Twisted Cttbic (g),

if passing through the origin o, may be represented by any one of the vector equations

(pp. 131, 132),

yap + \p<pp = 0, (Y); or
{<l>
+ c)p = a, (T)

or p = {it> + c)-\ (Y"); or Vap + f>V7p + VpVAp/* = 0, (Y'")

in which a, y, \, ix are real and constant vectors, but c is a variable scalar ; while ipp

denotes (comp. the Section III. ii. 6, or p. xxxii, vol. i., a linear and vector function, which

is here generally not self-conjugate, of the variable vector p of the cubic curve. The number

of the scalar constants, in the form (Y'"), or in any other form of the equation, is found

to be ten (p. 132), with the foregoing supposition that the curve passes through the origin,

a restriction which it is easy to remove. The curve (Y) is cut, as it ought to be, in three

points (real or imaginary), by an arbitrary secant plane ; and its three asymptotes (real or

imaginary) have the directions of the three vector roots /8 (see again the last cited Section)

of the equation (same p. 131),

V)8<^j3 = : (Z)

so that by (P), p. xxxii, vol. i., these three asymptotes compose a real and rectangular system,

for the case of self-conjugation of the function <p in (Y).

(y). Deviation of a near point p» of the given curve, from the sphere (395) which

osculates at the given point p ; this deviation (by p. 132, comp. pp. 79, 120) is

_ _ n»* -B'** ««* c /A \
8Pi — sp = = = = &c.

;

K^U
24rr*2? 24ny 24rri?

it is ultimately equal (p. 134) to the quarter of the deviation (397) of the same near point

p, from the osculating circle at p, multiplied by the sine of the small angle 8P6„ which the

small arc ss, of the locus of the spheric centre s (or of the cusp-edge of the polar developable)

subtends at the same point p ; and it has an outward or an inward direction, according as

this last arc is concave or convex (/) at s, towards the given curve at p (pp. 122, 134). It

is also ultimately equal (p. 136) to the deviation v&, - p^„ of the given point p from the

near sphere, which osculates at the near point t, ; and likewise (p. 137) to the component,

in the direction of 6P, of |the deviation of that ucai" point from the osculating circle at p,

measured in a direction parallel to the normal plane at that point, if this last deviation be

now expressed to the accuracy of ihe fourth order : whereas it has hitherto been considered

suf&ciunt to develope this deviation from the osculatitig circle (397) as far as the third order

(or third dimension of «) ; and therefore to treat it as having a direction, tangential to the

osculating sphere (comp. pp. 97, 133).

(A). The deviation (Ai) is also equal to the third part (p. 138) of the deviation of the

near point p, from the given circle (which osculates at p), if measured in the near normal

plane (at p.), and decomposed in the direction of the radius R, of the mar spfiere ; or to the

third part (with direction preserved) of the deviation of the new near point in which the

given circle is cut by the near plane, from the near sphere : or finally to the third pari (as

before, and still with an unchanged direction) of the deviation from the given sphere, of

that other new point c, in which the mar circle (osculating at p.) is cut by the given normal

plane (at v), and which is found to satisfy the equation,

8C = 38P, -28P. (Bi)

Oeometrieal conmxions (p. 140) between these various results {J) (A), illustrated by a

diagram (fig. 83).
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(l) . The Surface, which is the .Loctis of the Osculating Circle to a given curve in space,

may be represented rigorously by the vector expression (p. 141),

««» « = p« + »'«T( sin u + r.V,' vers w

;

(Ci)

in which s and u are two independent scalar variables, whereof s is (as before) the arc

pp« of the given curve, but is not now treated as small : and u is the (small or large) angle

subtended at the centre k, of the circle, by the arc of that circle, measured from its point of

osculation v,. But the same superficial locus (comp. 392) may be represented also by the

vector equation {t^. 156) involving apparently only one scalar variable (s),

v«;r^/ "' = «'. (Dx)

in which Vg = t,t'„ and a = u,, „ = the vector of an arbitrary point of the surface. The

general method (p. 11) of the Section III. iii. 3, shows that the normal to this surface (Ci),

at any proposed point thereof, has the direction of w», u - o", ; that is (p. 141), the

direction of the radius of the sphere, which contains the circle through that point, and

has the same point of osculation Pj to the given curve. The locus of the osculating circle is

therefore found, by this little calculation witli quaternions, to be at the same time the

Envelope of the Osculating Sphere, as was to be expected from geometrical considerations

(comp. the Note to p. 141).

(ot). The curvilinear locus of the point c in (A) is one branch of the section of the

surface {J), made by the normal plane to the given curve at r ; and if n be the projection

of c on the tangent at p to this new curve, which tangent pu has a direction perpen-

dicular to the radius PS or R of the osculating sphere at p (see again fig. 83, in p. 140),

while the ordinate uc is parallel to that radius, then (attending only to principal terms),

pp. 139, 140) we have the expressions,

and therefore ultimately (p. 141),

Dc^ 81 nh-^x ((T - p)

i^ ^ 32
*

1l^
= const. (Pi)

from which it follows that p is a singular point of the section here considered, but not a

cusp of that section, although the curvature at p is infinite : the ordinate dc varying

ultimately as the poxver with exponent | of the abscissa pd. Contrast (pp. 141, 142), of

this section, with that of the developable Locus of Tangents, made by the same normal

plane at p to the given curve ; the vectors analogous to pd and dc are in this case

nearly equal to - ^«V and - \sh'^v ; so that the latter varies ultimately as the

power f of the former, and the point p is (as it is known to be) a eusp of this last

section.

(w). A given Curve of double curvature is therefore generally a Singular Line (p. 143),

although not a cusp-edge, upon that Surface [1), which is at once the Locus of its oscu-

lating Circle, and the Envelope of its osculating Sphere : and the new developable

surface {d), as being circumscribed to this superficial locus (or envelope), so as to touch

it along this singular line (p. 156), may naturally be called, as above, the Circumscribed

Developable (p. IIC).

(o). Additional light may be thrown on this whole theory of the singular line {n), by

considering (pp. 143-155) a problem which was discussed by Monge, in two distinct

Sections (xxii. xxvi.) of his well-known Analyse (comp. the Notes to pp. 144, 145, 153,

154, 155 of these Elements) ; namely, to determine the envelope of a sphere with varying

radius R, whereof the centre s traverses a given curve in space ; or briefly, to find the
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Envelope of a Sphere with One varying Paratneter (comp. p. 171) : especially for the Case

of Coincidence (p. 146, &c.), of what are usually two distinct branches (p. 144) of a certain

Characteristic Curve (or arite de rebronssement), namely the curvilinear envelope (real or

imaginary) of all the circles, along which the superficial envelope of the spJteres is

touched by those spheres themselves.

{p). Quaternion forms (pp. 145, 146) of the condition of coincidence (o) ; one of these

can be at once translated into Monge's equation of condition (p. 145), or into an equation

slightly more general, as leaving the independent variable arbitrary ; but a simpler and

more easily interpretable form is the following (p. 146),

ridr = ± J2dJ?, (Gi)

in which r is the radius of the circle of contact, of a sphere with its envelope (o), while ri

is the radius of (first) curvature of the curve (s), which is the locm of the centre s of the

sphere.

{q). The singular line into which the two branches of the curvilinear envelope are

fused, when this condition is satisfied, is in general an orthogonal trajectory (p. 151) to

the osculating planes of the curve (s) ; that curve, which is now the given one, is therefore

(comp. 391, 395) the cusp-edge (p. 151) of the polar developable, corresponding to the

singular line just mentioned, or to what may be called the curve (p), which was

formerly the given curve. In this way there arise many verifications of formulae

(pp. 151, 152) ; for example, the equation (Gi) is easily shown to be consistent with the

results of (/).

(>•). With the geometrical hints thus gained from interpretation of quaternion

results, there is now no difficulty in assigning the Complete and General Integral of the

Equation of Condition (j»), which was presented by Monge under the form (comp. p. 145)

of a non-linear differential equation of the second order, involving three variables {<p, ^, ir)

considered aa functions of a fourth [a], namely the coordinates of the centre of the sphere,

regarded as varying with the radius, but which does not appear to have been either

integrated or interpreted by that illustrious analyst. The general integral here found

presents itself at first in a quaternion form (p. 153), but is easily translated (p. 154) into

the usual language of analysis. A less general integral is also assigned, and its geo-

metrical signification exhibited, as answering to a case for which the singular line lately

considered reduces itself to a singular point (p. 155).

(»). Among the verifcations (q) of this whole theory, it is shown (pp. 152, 153) that

although, when the two brandies (o) of the general curvilinear envelope of the circles of the

system are real and distinct, each branch is a cusp-edge (or arete de rebroussement, as

Monge perceived it to be), upon the superfcial envelope of the spheres, j'et in the case of

fusion {p) this cuspidal character is lost (as was lil^ewise seen by Monge*) : and that then

a section of the surface, made by a normal plane to the singular line, has precisely the

form (m), expressed by the equation (Fi). In short, the result is in many ways con-

firmed, by calculation and by geometry, that when the condition of coincidence (p) is

satisfied, the Surface is, as in (n), at once the Envelope of the osculating Sphere and the

Zocus of the osculating Circle, to that Singular Line on itself, into which by {q) the ttoo

branches (o) of its general cusp-edge are fused.

{t). Other applications of preceding formulae might be given ; for instance, the formula

for It" enables us to assign general expressions (p. 155) for the centre and radius of the

circle, which osculates at k to the locus of the centre of the osculating circle, to a given

curve in space : with an elementary veiification, for the case of the plane evolute of the

plane evolute of a plane curve. But it is time to conclude this long analysis, which how-
ever could scarcely have been much abridged, of the results of Series 398, and to pass to

a more brief account of the investigations in the following Series.

* Compare the first Note to p. 153 of these Elements.
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Akticle 399.—Additional general investigations, respecting that gauche curve of the

third order (or degree), which has been above called an Osculating Twisted Cubic

(398, (A)), to any proposed curve of double curvature ; with applications to the case,

where the given curve is a helix, . . . . . . . . . . 156, 167

(a). In general (p. 159) the tangent pt to the given curve is a nodal side of the cubic

cone (398, (h)) ; one tangent plane to that cone (C3), along that side, being the osculating

plane (P) to the curve, and therefore touching also, along the same side, the osculating

oblique cone (C2) of the second order, to the cone of ehoi'ds (397) from p ; while the other

tangent plane to the cubic cone (C3) crosses that first plane (P), or the quadric cone [0%),

at an angle of which the trigonometric cotangent {\r') is equal to half the differential of

the radius (r) of second curvature, divided by the differential of the arc (s). And the three

common sides, pe, pe', pe", of these two cones, which remain when the tangent pt is

excluded, and of which one at least must be real, are the parallels through the given point

p to the three asymptotes (398, (»)) to the gauche curve sought ; being also sides of three

quadric cylinders, say [L-i), (Z'2), (i"2), which contain those asymptotes as othei' sides (or

generating lines) : and of which each contains the twisted cubic sought, and is cut in it by

the quadric cone (C2).

{b). On applying this First Method ta the case of a given helix, it^ia found (p. 159)

that the general cubic cone {C3) breaks up into the system of a new quadric cone, (6V), and

a new plane (P') ; which latter is the rectifying plane (396) of the helix, or the tangent

plane at p to the right cylinder, whereon that given curve is traced. The two quadric

cones, (C2) and {Cz) touch each other and the plane (P) along the tangent pt, and have

no other real common side : whence two of the sought asymptotes, and tu'o of the

corresponding cylinders (a), are in this case imaginary, although they can still be used

in calculation (pp. 159, 160, 162). But the plane (F) cuts the cone (C2), not only in the

tangent pt, but also in a second real side pe, to which the real asymptote is parallel {a)

;

and which is at the same time a side of a real quadric cylinder {Li) which has that

asymptote for another side (p. 162), and contains the twisted cubic: this gauche curve

being thus the curvilinear part (p. 161) of the intersection of the real cone (C2), with the

real cylinder {L-i).

(e). Transformations and verifications of this result; fractional expi'eiaions (p. 162), for

the coordinates of the twisted cubic ; expression (p. 161) for the deviation of the helix

from that osculating curve, which deviation is directed inwards, and is of the sixth order :

the least distance, between the tangent pt and the real asymptote, is a right line pb,

which is cut internally (p. 162) by the axis of the right cylinder (i), in a point a such that

PA is to AB as three to seven.

{d). The First Method (a), which has been established in the preceding Series (398),

succeeds then for the case of the helix, with a facility which arises chiefly from the

circumstance (i), that for this case the general cubic cone (C3) breaks up into two separate

loci, whereof one is a plane (F"). But usually the foregoing method requires, as in

(398, (A)), the solution of a cubic equation: an inconvenience which is completely avoided,

by the employment of a Second General Method, as follows.

{e). This Second Method consists in taking, for a second locus of the gauche osculatrix

sought, a certain Cubic Surface {S3), of which every point is the vertex^ of a quadric eotie,

* It is known that the locus of the vertex of a quadric cone, which passes through six given points

of space. A, B, c, d, e, f, whereof no four are in one plane, is generally a Surface, say (Si), of the

Fourth Degree : in fact, it is cut by the plane of the triangle abo in a system of four right lines,

whereof three are the sides of that triangle, and the fourth is the intersection of the two planes, abc
and def. If then we investigate the intersection of this surface (64) with the quadric cone,

(a . bcdef), or say (C>), which has a for vertex, and passes through the five other given points, we
might expect to find (in some sense) a curve of the eighth degree. But when we set aside the five right

lines, AB, AC, ad, ae, af, which are common to the two surfaces here considered, we find that the

(remaining or) curvilinear part of the complete intersection is reduced to a curve of the third degree,
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having six-point eontaet with the given curve at r : so that this new turfaee is cut hy the

plane at infinity, in the same cubic curve as the cubic cone (Cj). It is found (p. 166) to be

a Ruled Surface, with the tangent pt for a Singular Line ; and when this right line is

set aside, the remaining (that is, the curvilinear) part of the intersection of the two loci,

(Ci) and (53), is the Osculating Twisted Cubic sought : which gauche osculatrix is thus

completely and generally determined, without any such difficulty or apparent variety, as

might he supposed to attend the solution of a cubic equation (d), and with new

verifications for the case of the helix (p. 167).

Article 400.—On Involutes and Evolutes in spaco, 167, 173

(a). The usual points of Monge's theory are deduced from the two fundamental

quaternion equations (p. 168),

S ((T - p)
p' = 0, V ((T - p) ff' = 0, (Hi)

in which p and <r are coiresponding vectors of involute and evolute ; together with a

theorem of Prof. De Morgan (p. 169), respecting the case when the evolute is a spherical

curve.

[b). An involute in space is generally the only real part (p. 171) of the envelope of a

certain variable sphere (comp. 398), which has its centre on the evolute, while its radius R
is the variable intercept between the two curves : but because we have here the relation

(p. 169, comp. p. 143),
R'i + a'^ = 0, (Hi')

the circles of contact (398, (0)) reduce themselves each to a point (or rather to a pair of

imaginary right lines, intersecting in a real point), and the preceding theory (398), of

envelopes of spheres with one varying parameter, undergoes important modifications in its

results, the conditions of the applications being different. In particular, the involute is

indeed, as the equation (Hi) express, an orthogonal trajectory to the tangents of the evolute;

but tiot to the osculating planes of that curve, as the singular line (398, (q)) of the former

envelope teas, to those of the curve which was the locus of the centres of the spheres before

considered, when a certain condition of coincidence or otfusion, 398, {p)) was satisfied.

(c). Curvature of hodograph of evolute (p. 173); if p, Pi, P2, . . and s, si, 82, . . be

corresponding points of involute and evolute, and if we draw right lines STi, 8T2, • • in the

directions of siPi, saPj, . . and with a common length = sp, the sphencal curve PT1T2 . .

will have contact of the second order at p, with the involute ppiP2 . . (p. 173).

Article 401.—Calculations abridged, by the treatment of quatei-nion differentials

(which have hitherto heen finite, comp. p. xxix, vol. i.) as infinitesvnals ;* new deductions

of osculating plane, circle, and sphere, with the vector equation (392) of the circle ; and of

the Sxet and aecond curvature oi & curve in space, 173,179

which is precisely the twisted cubic through the six given points. In applying this general (and

perhaps new) method, to the problem of the osculating twisted cubic to a curve, the osculating

plane to that curve may be excluded, as foreign to the question : and then the quartic surface

{Si) is reduced to the cubic surface {S3), above described.

* Although, for the sake of brevity, and even of clearness, some phrases have been used in

the foregoing analysis of the Series 398 and 399, such as four-side or five-side contact between

cones, and five-point or six-point contact between curves, or between a curve and a surface,

which are borrowed from the doctrine of consecutive points and lines, and therefore from that of

infinitesimals ; with a few other expressions of modem geometry, such as the plane at infinity, &c.

;

yet the reasonings in the text of these Rlements have all been rigorously reduced, so far, or are all

obviously reducible, to the fundamental conception of Limits ; compare the definitions of the osculating

circle and sphere, assigned in Articles 389, 395. The object of Art. 401 is to make it visible how,
without abandoning such ultimate reference to limits, it is possible to abridge calculation, in several

cases, by treating (at this stage) the differential symbols, dp, d'p, &c., as if they represented infinitely

ttnall differettces, Ap, A*p, &c. ; without taking the trouble to write these latter symbols ^r«/, as

denoting finite differences, in the rigorous statement of a problem, of which statement it is not always
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Section 7.—On Surfaces of the Second Order ; and on Curvatures of

Surfaces, . . . , 179-283

Article 402.—References to some equations of Surfaces, in earlier parts of the

volume, 179, 180

Articles 403.—Quaternion equations of the Sphere (p- = - 1, &c.), .... 180, 182

In some of these equations, the Notation N for norm is employed (comp. the Section

II. i. 6.)

Article 404.—Quaternion equations of the Ellipsoid, 183, 185

One of the simplest of these forms is (pp. 325, vol. i., 185) the equation,

T (i/) + pk) = »t2 - «2, (Ii)

in which i and k are real and constant vectors, in the directions of the cyclic normals.

This form (Ii) is intimately connected with, and indeed served to suggest, that

Comtriiction of the Ellipsoid (II. i. 13), by means of a Diacetitric Sp/tere and a Foini

(p. 234, vol. i., comp. fig. 53, pp. 234, vol. i., and 184), which was among the earliest

geometrical results of the Quaternions. The three semiaxes, a, b, c, are expressed (comp.

p. 238) interms of i, k as follows

:

rt = Ti + Tic; b = ,f,
~ *'

; e = Ti - T/( ;
(Ii')

r (i - <t)

whence aA-'c = T(« - ic). (Ii")

Article 406.

—

General Central Surface of the Second Order (or central quadric),

Sp«/>p=/p = l, 186-189

Article 406.

—

General Cone of the Second Order (or quadric cone), 8p<pp =//» = 0, . 189-196

Article 407.

—

Bifocal Form of the equation of a central but non-conical surface of the

second order : with some quaternion formule, relating to Confoeal Surfaces, . . . 196-208

{a). The bifocalform here adopted (comp. the Section III. ii. 6) is the equation,

Cfp = (Sop)2 - 2eSapSa> + (Sa»* + (1 - e^)p'i = C, (Ji)

in which, C= («« - 1) (e + Sao')P. (Ji')

o, a are two (real) focal unit-lines, common to the whole system of confocals ; the (real

and positive) scalar I is also constant for that system : but the scalar e varies, in passing

from surface to surface, and may be regarded as a parameter, of which the value serves to

distinguish one confoeal, say {e), from another (pp. 196, 197).

(b). The squares (p. 197) of the three scalar semiaxes (real or imaginary), arranged in

algebraically descending order, are

«2 = (e + I) p, b-i = {e + SoaO P, c^ = (e - 1) P ; (K,)

ti^ — c^ <fi •{ (^
whence p = ___, « = __; (Li)

and the three vector semiaxes corresponding are,

aU(a + o'), iUVoa', cU(o-a'). (Mi)

(c). Rectangular, unifocal, and cyclic forms (pp. 197, 203, 205) of the scalar function

fp, to each of which corresponds a form of the vector function <pp ; deduction, by a new

easy to assign the proper form, for the case of points, &c., aX finite distances : and then having the

additional trouble of reducing the complex expressions so found to simpler forms, in which differentials

shall finally appear. In short, it is shown that in Quaternions, as in other parts of Analysis, the

rigour of limits can be combined with i\iQ facility of infinitesimals.

Hamilton's Elbments of Quatkrniqns, Vol. II. c
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analysis, of several known theorems* (pp. 197, 198, 202, 208) respecting eonfocal

surfaces and their /ocaZ conies; the lines «, a are asymptotes to the foeal hyperbola

(p. 202), whatever the species of the surface may he : references (in Notes to pp. 203,

204) to the ZectureSff for the focal ellipse of the Ellipsoid, and for several different

generations of this last surface.

(rf). Central Exponential Transformation (p. 206) of the equation of any central

quadrie

;

p^xa + ,<yVa«/5, (Ni), with x^fa + J/«/UVoo' = 1, (Ni')

(«'- e«)UVaa' ,„ „,

and /3 = ^ ^' . ;
(N,")

e + oao

this auxiliary vector fi is constant, for any one eonfocal («) ; the exponent^ <, in (Nj), is an

arbitrary or variable scalar ; and the coefficients, x and y, are iwo o^Aw- scalar variables,

which are however connected with each other by the relation (Ni').

(«). If any fixed valtie be assigned to t, the equation (Ni) then represents the section

made by a plane through o (p. 207) which section is an ellipse if the surface be an

ellipsoid, but an hyperbola for either hyperboloid ; and the cutting plane makes with tha

focal plane of o, o', or with the plane of the focal hyperbola, an angle = \t-K.

(/). If, on the other hand, we allow t to vary, but assign to a; and y any constant

values consistent with (Ni'), the equation (Ni) then represents an ellipse (p. 206) whatever

the species of the surface may be; x represents the distance of its centre o of the surface,

measured along the focal line a; y ia the radius of a right cylinder, with a for its axis, of

which the ellipse is a section, or the radius of a circle in a plane perpendicular to a, into

which that ellipse can be orthogonally projected : and the angle itv is now the excentric

anomaly. Such elliptic sections of a central quadrie may be otherwise obtained from the

unifocal form (c) of the equation of the surface ; they are, in some points of view,

almost as interesting as the known circular sections : and it is proposed (p. 204) to call

them Centro-Focal Ellipses.

(g). And it is obvious that, by interchanging the two foeal lines a, a in {d) a Second

Exponential Transformation is obtained, with a Second System of centro-focal ellipses,

whereof the proposed surface is the locus, as well as of the first system (/), but which

have their centres on the line o', and are projected into circles, on a,' plane perpendicular

to this latUr line (p. 203).

(A). Equation of Confocals (p. 207).

Nv/pv, = Vi'1^,1'. (Oi)

Abticxe 408.—On Cireumscribed Quadrie Cones; and on the Umbilics of a central

quadrie, 209-224

(a). Equations (p. 209) of Conjugate Points, and of Conjugate Directions, with respect to

the surface//* = 1,

/(p,p') = l, (P,), and /(p, p') = 0; (P,')

Condition of Contact, of the same surface with the right line pp',

(/(P,p')-i)^ = (/p-i) (//>'-!); (Q.)

this latter is also a form of the equation of the Cone, with vertex at f', which is

eireumterihed to the same quadrie (//» =1).

• For example, it is proved by quaternions (p. 208), that the focal lines of the foeal eotie, which

has any proposed point v for vertex, and rests on the focal hyperbola, are generating lines of the

tinffk'sheeted hyperboloid (of the given eonfocal system), which passes through that point: and an

extettsion of this result, to the foeal lines of any cone eircuniscribed to a eonfocal, is deduced by a

similar analysis, in a subsequent Series (408, p. 213). But such known theorems respecting

confocals can only be alluded to, in those Contents.

t Lectures on Quaternions (by the present author), Dublin, Hodges and Smith, 1853.
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[b). The condition (Qi) may also be thus transformed (p. 211),

F being a scalar function, connected with / by certain relations of reciprocity (comp.

p. 547, vol. i.) ; and a simple geometrical interpretation may be assigned, for this last

equation.

[c). The Reciprocal Gone, or Cone of Kormals a at p'l to the circumscribed cone (Qi) or

(Qi'), may be represented (p. 212) by the very simple equation,

F{<r:&pa) = l; (Qi")

which likewise admits of an extremely simple interpretation.

(d). A given right line (p. 214) ia totwhedhj two eonfocah, and other known results

are easy consequences of the present analysis ; for example (pp. 216, 217), the cone

circumscribed to any surface of the system, from any point of either of the two real focal

curves, is a cone of revolution (real or imaginary) : but a similar conclusion holds good,

when the vertex is on the third (or imaginary) focal, and even more generally (p. 223),

when that vertex is any point of the (known and imaginary) developable envelope of the

confocal system.

(e). A central quadric has in general Twelve Umbilics (p. 218), whereof only four (at

most) can be real, and which are its intersections with the three focal curves : and these

twelve points are ranged, three by three, on eight imaginary right lines (p. '^22), which

intersect the circle at infinity, and which it is proposed to call the Eight Utnbilicar

Generatrices of the siuface.

(/). These (imaginary) umbiliear generatrices of a quadric are found to possess several

interesting properties, especially in relation to the lines of curvature : and their locus, for

a confocal system, is a developable surface (p. 222), namely the known envelope (d) of that

system.

Akticle 409.—Geodetic Lines on Central Surfaces of the Second Order, . . . 225-229

(rt). One form of the general difi'erential equation of geodetics on an arbitrary surface

being, by III. iii. 5 (p. 29),

V»/dV = 0, (Ri), if Tdp = const., (Ri')

this is shown (p. 226) to conduct, for central quadrics, to the first integral,

p-iD-i = Ty^/Udp = A = const.

;

(Si)

where P is the perpendicular from the centre o on the tangent plane, and J) is the

(real or imaginary) semidiameter of the surface, which is parallel to the tangent (dp) to the

curve. The known equation of Joachimstal, P. 2) = const., is therefore proved anew
;

this last constant, however, being by no means necessarily real, if the surface be not an

ellipsoid.

(b). Deduction (p. 227) of a theorem of M. Chasles), that the tangents to a geodetic,

on any one central quadric («) touch also a common confocal («,) ; and of an integral

(p. 228) of the form,

ei sin- n + e^ cos^ vi =e, = const., (Si')

which agrees with one of M. LiouviUe.

(c). Without the restriction (Ri'), the differential of the scalar h in (Si) may be thus

decomposed into factors (p. 229).

d/* = d . P-^D-^ = 2Svdvdp-i . Sydp-'d^

;

(Si")

but, by the lately cited Section (III. iii. 5, p. 29), the differential equation of the second

order,

Svdpd'^p = 0, (Ri")

with an arbitrary scalar variable, represents the geodetic lines on any surface: the

theorem («) is therefore in this way reproduced.

2
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{d). But we see, at the same time, by (Si"), that the quantity h, or P.D =^ A"*, is

eomtant, not only for the geodetics on a central quadric, but also for a certain other set of

curves, determined by the differential equation of the Jirst order, ^vAvip = 0, which

will be seen, in the next Series, to represent the lines of curvature.

Ahticlk 410.—On Lines of Curvature generally ; and in particular on such lines, for

the case of a Central Quadric, 230-239

(a). The differential equation (comp. 409, {d)),

Sydvdp = 0, (Ti)

represents (p. 229) the Lines of Curvature upon an arbitrary turface ; because it is a

limiting form of this other equation,

SvAMp = 0, (ir)

which is the condition of intersection (or of parallelism), of the normals drawn at the

extremities of the two vectors p and p + Ap.

{b). The normal vector v, in the equation (Ti) may be multiplied (pp. 237, 275) by

any constant or variable scalar n, without any real change in that equation ; but in

this whole theory, of the treatment of Curvatures of Surfaces by Quaternions, it is

advantageous to consider the expression S»'dp as denoting the exact differential of smie

scalar function of p ; for then (by p. 553, vol. i.) we shall have an equation of the form,

dv = ^dp = a self-conjugate function of dp, (Ui)

which usually involves p also. For instance, we may write generally (p. 233, comp. (R),

p. xxxii, vol. i.),

^v = ^dp + V\dp/u ; (Ui')

the scalar g, and the vectors \, /u being real, and being generally* functions of p, but not

involving dp.

(c). This being understood, the ttvof directions of the tangent dp, which satisfy at

once the general equation (Ti) of the lines of curvature, and the differential equation

Svdp = of the surface, are easily found to be represented by the two vector

expressions (p. 233),

TTVvK ± UVv/i

;

(Ti")

they are therefore generally rectangular to each other, as they have long been known
to be.

(rf). The surface itself remaining still quite arbitrary, it is found useful to introduce

the conception of an Auxiliary Surface of the Secotid Order (p. 234), of which the

variable vector is p + p, and the equation is,

Sp>p' = yp'2 + SapV = 1, (Ui")

or more genei-ally = const. ; and it is proposed to call this surface, of which the emtre is

at the given point f, the Index Surface, partly because its diametral section, made by the

tangent plane to the^if^M surface at p, is a certain Index Curve (p. 231), which may be

considered to coincide with the known *^ indicatrice^^ of Dupin.

(«) The expressions (Ti") show (p. 234), that whatever the giveti surface may be,

the tangents to the lines of curvature bisect the angles formed by the traees of the two

* For the ca«e of a central quadrie, g, A, m are eonttants.

t Ocnerally two ; but in some cases more. It will soon be seen, that three lines of curvature

pass through an umbilic of a quadric.
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cyclic planes of the Index Surface [d), on the tangent plane to the given surface ; these

two tangents have also (as was seen by Dupin) the directions of the axes of the Index

Curve (p. 231) ; and they are distinguished (as he likewise saw) from all other tangents

to the given surface, at the given point p, by the condition that each is perpendicular to

its own conjugate, with respect to that indicating curve : the equation of such conjugation,

of two tangents t and t', being in the present notation (see again p. 232),

St(|)t' = 0, or St>t = 0. (Ui'")

(/). New proof (p. 232) of another theorem of Dupin, namely that if a developable be

circumscribed to any surface, along any curve thereon, its generating lines are everywhere

conjugate, as tangents to the surface, to the corresponding tangents to the curve.

(g). Case of a central quadric ; new proof (p. 235) of stiU another theorem of Dupin,

namely that the curve of orthogonal intersection (p. 198) of two confocal surfaces, is a line

of curvature on each.

(A). The system of the eight utnbilicar generatrices (408, («)), of a centi-al quadric, is

the imaginary envelope of the lines of curvature on that surface (p. 235) ; and each such

generatrix is itself an imaginary line of curvature thereon : so that through each of the

twelve umbilics (see again 408, (c)) there pass three lines of curvature (comp. p. 242)

whereof however only one, at most, can be real : namely two generatrices, and a principal

section of the surface. These last results, which are perhaps new, will be illustrated,

and otherwise proved, in the following Series (411).

Akticle 411.—Additional illustrations and confirmations of the foregoing thcoiy, for

the case of a Central* Quadric ; and especially of the theorem respecting the Three Lines

of Curvature through an Umbilic, whereof two are always imaginary and rectilinear, . 239-245

(a). The general equation of condition (Ti') or SfAfAp = 0, for the intersection of

two finitely distant normals, may be easily transformed for the case of a quadric, so as to

express (p. 240) that when the normals at F and p' intersect (or are parallel) the chord pp'

is perpendicular to its own polar.

(ft). Under the same conditions, if the point p be given, the locus of the chord pp' is

usually (p. 241) a quadric cone, say (C) ; and therefore the locus of the point p' is usually

a quartic curve, with p for a double point, whereat two branches of the curve cut each other

at right angles, and touch the two lines of curvature.

(c). If the point v be one of a principal section of the given surface, but not an

wnbilic, the cone {C) breaks up into a pair of planes, whereof one, say (P), is the plane

of the section, and the other, (P"), is pei-pendicular thereto, and is not tangential to the

siu-face ; and thus the quartic {b) breaks up into a pair of conies through p, whereof one

is the principal section itself, and the other is perpendicular to it.

{d). But if the given point p be an umbilic, the second plane {P') becomes a

tangent plane to the surface ; and the second conic (c) breaks up, at the same time,

into a pair of imaginaryf right lines, namely the two umbilicar generatrices through p

(pp. 242, 245).

(«). It follows that the normal pn at a real umbilic v (of an ellipsoid, or a double-

sheeted hyperboloid) is not intersected by any other real normal, except those which are in

the same principal section ; but that this real normal pn is intersected, in an imaginary

sense, by all the normals p'n', which are diawn at points p' of either of the two

* Many, indeed most, of the results apply, without modification, to the case of the Paraboloids ;

and the rest can easily be adapted to this latter case, by the consideration of infinitely distant points.

"We shall therefore often, for conciseness, omit the term central, and simply speak of quadrics, or

surfaces of the second order.

t It is well known that the single-sheeted hyperboloid, which (alone of central quadrics) has real

generating lines, has at the same timp no real umbilics (comp. p. 221).
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imaginary generatrices through the real umbilic v ; so that each of these imaginary

right lines is seen anew to he a line* of curvature, on the surface (comp. 410, (A)),

hecause all the normals p'n', at points of this line, are situated in one common

(imaginary) normal plane (p. 242) : and as hefore, there are thus three lines of ciirvature

through an umbilic.

(/). These geometrical results are in various ways deducible from calculation with

quaternions ; for example, a form of the equation of the lines of curvature on a quadric

is seen (p. 242) to become an identity at an umbilic (v
|| A) : while the differential of that

equation breaks up into two factors, whereof one represents the tangent to the principal

section, while the other (SAd'p = 0) assigns the directions of the two generatrices.

{g). The equation of the cone ((7), which has already presented itself as a certain locus

of chords (b), admits of many quaternion transformations ; for instance (see p. 240), it

may be written thus,

SopAp Sa'pAp _

p being the vector of the vertex p, and p + Ap that of any other point i»' of the cone

;

while o, a' are still, as in 407, (a), two real focal lines, of which the lengths are here

arbitrary, but of which the directions are constant, as before, for a whole confocal system.

(/«). This cone (C), or (Vi), is also the locus (p. 244) of a system of three rectangular

lines ; and if it be cut by any plane perpendicular to a side, and not passing through the

vertex, the section is an equilateral hyperbola.

(»). The same cone (C) has, for three of its sidea pp', the normals (p. 243) to the three

confocals (p. 197) of a given system which pass through its vertex i* ; and therefore also,

by 410, [g), the tangents to the three lines of curvature through that point, which are the

intersections of those three confocals.

(J). And because its equation (Vi) does not involve the constant I, of 407, {a), (b), we

arrive at the following theorem (p. 243) :

—

If indefinitely many quadrics, with a common

centre o, have their asymptotic cones biconfocal, and pass through a common point p. their

normals at that point have a quadric cone (C) for their locus.

Article 412,—On Centres of Curvature of Surfaces 246-261

(a). If (T be the vector of the centre s of curvature of a normal section of an arbitrary

• It might be natural to suppose, from the known general theory (410, [e)) of the ttco

rectangular directions, that each such generatrix pp' is crossed perpendicularly, at every one of its

non-umbilicar points p', by a second (and distinct, although imaginary) line of curvature. But it

is an almost equally well known and received result of modem geometry, paradoxical as it must

at first appear, that wften a right line is directed to the circle at infinity, as (by 408, («)) the

generatrices in question are, then this imaginary line is everywhere perpendicular to itself. Compare

the Notes to pages 616 vol. i., 236. Quaternions are not at all responsible for the introduction of

this principle into geometry, but they recognise and employ it, under the following very simple

form : that if a non-evanescent vector be directed to the circle at infinity, it is an imaginary value

of the symbol Oa (comp. pp. 316, 516 vol. i., 222, 236) ; and conversely, that when this last symbol

represents a vector which is not null, the vector thus denoted is an imaginary line, which cuts that

circle. It may be noted here, that such is the case with the reciprocal polar of every chord of a

quadric, connecting any two umbilics which are not in one pi-incipal plane ; and that thus the

quadratic equation (XXI., in p. 233) from which the two directions (410, (c)) can usually be

derived, becomes an ide^nlity for every umbilic, real or imaginary : as it ought to do, for consistency

with the foregoing theory of the three lines through that umbilic. And as an additional illustration

of the coincidence of directions of the lines of curvature at any non-umbilicar point v' of an umbilicar

generatrix, it may be added that the com of chords {C), in 411, (6), is found to touch the quadrie

along (hat generatrix, when its vertex is at any such point p'.
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surface, which touches one of the two lines of curvature thereon, at any given point p,

we have the two fundamental equations (p. 247),

(r = p + i2Uy, (Wi), and i^^dp + dUi/ = ; (Wi')

whence

Vdf>dUi' = 0, (Wi"), and ^ + S f^ = ; (Wr)R dp

the equation (Wi") being a new form of the general differential equation of the lines of

curvature,

(i). Deduction (pp. 248, 249, &c.) of some known theorems from these equations

;

and of some which introduce the new and general conception of the Index Surfac

(410, («?)), as well as that of the known Index Curve.

(e). Introducing the auxiliary scalar (p. 251),

in which t (|| dp) is a tangent to a line of curvature, while di/ = <^dp, as in (Ui), the two
values of r, which answer to the two rectangular directions (Ti") in 410, (c), are given

(p. 248) by the expression,

r = -ff-T\^,.COBU''-:f l"), (Xl')

in which g, \, n are, for any given point p, the constants in the equation (Ui") of the
ind4x surface

; the diffei-enee of the two curvatures Br^ therefore vanishes at an umhilic of
the given surface, whatever the form of that surface may be : that is, at a point, where
v

II
A or

II n, and where consequently the index curve is a circle.

(d). At any other p of the given surface, which is as yet entirely arbitrary, the values
of r may be thus expressed (p. 249),

ri = ai'\ r2 = a3-«, (Xi")

ai, &2 being the scalar lemiaxes (real or imaginary) of the index curve {^defined, comp.
410, (<f), by the equations Sp'^p' = 1, Svp' = 0).

[e). The quadratic equation, of which n and n, or the inverse squares of the two last
semiaxes, are the roott, may be written (p. 252) under the symbolicalform,

Sj/-'
{<f> + r)-^v = ; (Yi)

which may be developed (same page) into this other form,

»•« + rSjri x" + Sv-i ^v = 0, (Yi')

the linear and vector functions, ^ and x, being devived from the function <p, on the plan
of the Section III. ii. 6 (pp. 489, 494, vol. i).

(/). Hence, generaUy the product of the two curvatures of a surface is expressed
(p. 253) by the formula

ifr>7?2-i = n n Tv-^ = - S- <f
^

;

(Zi)
V V

which will be found useful in the following series (413), in connexion with the theory of
the Measure of Curvature.
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d/ = T Sr'dr, (Bz), or that Vrdr' = ; (B2')

this general parallelism of dr' to t being geometrically explained, by obverving that a line

of curvature on any surface is, at the same time, a line of curvature on the developable

normal surface, which rests upon that line, and to which t' or vr is normal, if t be tangential

to the line.

(A). If the vector of curvature (389) of a line of curvature be projected on the normal v

to the given surface, the projection (p. 257) is the vector of curvature of the normal section

of that surface, which has the same tangent t ; but this result, and an analogous one (same

page) for the developable normal surface (g), are virtually included in Meusnier's theorem,

which will be proved by quaternions in Series 414.

(»). The vector o- of a centre of curvature of the given surface, answering to a given

point p thereon, may (by (Wi) and (Xi)) be expressed by the equation.

p + r- (Cj

which may be regarded also as a general form of the Vector Equation of the Surface of

Centres, or of the locus of the centre s : the variable vector p of the point p of the given

surface being supposed (p. 11) to be expressed as a vector function of two independent and

scalar vaiiables, whereof therefore v, r, and o- become also functions, although the two

last involve an ambiguous sign, on account of the Two Sheets of the surface of centres.

[j). The normal at s, to which may be called the First Sheet, has the direction of the

tangent r to what may (on the same plan) be called the First Line of Curvature at p ; and

the vector v of tlie point corresponding to s, on the corresponding sheet of the Reciprocal

(comp. pp. 19, 20) of the Surfaces of Centres, has (by p. 254) the expression,

u = T (SpT)-i

;

(D2)

which may also be considered (comp. (i)) to be a form of the Vector Squation of that

Reciprocal Surface.

(*). The vector v satisfies generally (p. 254) the equations of reciprocity,

Svff = Sffv = 1, Si;5<r = 0, SaSu = 0, (Da')

9a; iv denoting any infinitesimal variations of the vectors <r and v, consistent with the

equations of the surface of centres and its reciprocal, or any hticar and vector elements of

those two surfaces, at two corresponding points ; we have also the relations (p. 265),

Spv = 1, Svv = 0, Svv<pv = 0.

(I). The equation Sv (« - p) = , or more simply,

Svai = 1,

(Dj")

(E2)

in which w is a variable vector, re^sents (p. 254) the nortnal platie to the first line {j)

of curvature at p ; or the tangent plane at 8 to the first sheet of the surface of centres : or

finally, the tangent plane to that developable normal surface {g), which rests upon the

the second line of curvature, and touches the first sheet along a certain curve, whereof we
shall shortly meet with an example. And if w be regarded, comp. (»), as a vector

function of two scalar variables, the envelope of the variable plane (Ei) is a sheet of the
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surface of centres; or rather, on account of the ambiguous sign {%), it is that surface of

centres itself; while, in like manner, the reciprocal surface [j) is the envelope of this

other plane,

Boat = 1. (E2')

(»t). The equations ("Wi), ("Wi') give (comp. the Note to p. 254),

dff = dR. U^: (Fa)

combining which with {C2), we see that the equations (Hi) of p. xvi are satisfied, when
the derived vectors p and a' are changed to the coiresponding differentials, dp and d<r.

The known theorem (of Monge), that each Line of Curvature is generally aainvolute, with

the corresponding Curve of Centres for one of its evolutes (400), is therefore in this way
reproduced : and the connected theorem (also of Monge), that this evolute is a geodetic on

its own sheet of the surface of centres, follows easily from what precedes.

(«) . In the foregoing paragraphs of this analysis, the given surface has throughout been

arbitrary, or general, as stated in [d) and {g). But if we now consider specially the case

of a central quadric, several less general but interesting results arise, whereof many, but

perhaps not all, are known ; and of which some may be mentioned here.

(0). Supposing, then, that not only Av = <t>dp, but also v = fp, and Spy =fp = 1, the

Index Surface (410, (d)) becomes simply (p. 233) the given surface, with its centre

transported from to p ; whence many simplications follow.

(p). For example, the semiaxes &i, &2 of the ituiez curve are now equal (p. 249) to the

semiaxes of the diametral section of the given surface, made by a plane parallel to the

tangent plane ; and Ty is, as in 409, the reciprocal P~^ of the perpendicular, from the centre

on this latter plane ; whence (by (Xi) and Xi")) these known expressions for the two*

curvatures result

:

J2r' = Psii-^ ; Rr' = F&2-^. (G,)

(q) . Hence, by (e), if a new surface be derived from a given central quadric (of any

species), as the locus of the extremities of normals erected at the centre, to the planes of

diametral sections of the given surface, each such normal (when real) having the length ot

one of the semiaxes of that section, the equation of this new surfaced admits (p. 253) of

being written thus

:

Sp(^ - p-2)-v = 0. (H2)

(r). Under the conditions (0), the expression (Cj) for <r gives (p. 264) the two converse

forms,

9 = r-^{(f,Jrr)p, (I2), p = r {<p -^ r)-^a ; (I's)

whence (pp. 254, 260),

,/ = f (4. + ry^^a, (Jj), a = (<^-' + >-') v ; {Jt')

and therefore (p. 260), by {d), (p), and by the theory (407) of confocal surfaces,

ffl = <I>2'^V = <l>2'^<pp, (K2)

• Throughout the present series 412, we attend only (comp. (a)) to the curvatures of the two

normal sections of a surface, which have the directions of the two lines of curvature : these being in

fact what are always regarded as the two principal curvatures (or simply as the two curvatures) of the

surface. But, in a shortly subsequent Series (414), the more general case will be considered, of the

curvature of any section, normal or oblique.

t When the given surface is an ellipsoid the derived surface is the celebrated Wave Surface of

Fresnel : which thus has (H2) for a symbolical form of its equation. When the given surface is an

hyperboloid, and a semiaxis of a section is imaginary, the (scalar and now positive) square, of the

(imaginary) normal erected, is still to be made equal to the square of that semiaxis.

Hamilton's Elembnis op Quaternions, Vol. II. d
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if ^2 be formed from <p by changing the semiaxes abe lo a2b2C2 ; it being understood that

the given quadric (abe) is cut by the two confocala (aiiici) and (azbzCi), in the^r«< and

second lines of curvature through the given point p : and that <ri is here the vector of that

first centre 8 of curvature, which answers to the^rst line (comp. (/)). Of course, on the

same plan, we have the analogous expression,

for the vector of the second centre.

(«). These expressions for tn, ai include (p. 260) a theorem of Dr. Salmon, namely that

the centres of curvature ofa given quadric at a given point are the poles of the tangent plane,

with respect to the two confocals through that point ; and either of them may be regarded,

by an admission of an ambiguous sign (comp. (i)), as a new Vector Form* of the Equation

of the Surface of Centres, for the case (o) of a given central quadric.

(<). In connexion with the same expressions for a\, az, it maybe observed that if n, r^

be the corresponding values of the auxiliary scalar r in (c), and if t, t' still denote the

unit tangents {g) to the first and second lines of curvature, while abe, ai^ici, and a2b2e2

retain their recent significations (r), then (comp. pp. 267, 258, see also p. 208),

yi=/T=/Ud^=(a2-fl2V = &c., (La)

and »-2 =/t' =/XJ>'dp= (a' - ai^)"' = &c.

;

(La*)

this association of ri and <ri with oz, &c., and of rz and az with aj, &c., arising from the

circumstance that the tangents r and t' have respectively the directions of the normals vj

and VI, to the two confocal surfaces, (azb^cz) and (aiJitfi).

(m). By the properties of such surfaces, the scalar here called rz is therefore co}istant,

in the whole extent of a ^rst line of curvature ; and the same constancy of rz, or the

equation,

d/Urdp = 0, (Mg)

may in various ways be proved by quaternions (p. 258).

(f). Writing simply r and r' for »i and r-i, so that »•' is constant, but r variable, for a

first line of curvature, while conversely r is constant and r' variable for a second line, it is

found (pp. 254, 255, 256), that the scalar equation of the surface of centres («) may be

regarded as the restdt of the elimination of »•"' between the two equations,

1 = S.ff (1 + r-i<^)-V(r, (Nj), and = S.<r (1 + r-><^)->V

;

(Nj*)

whereof the latter is the derivative of the former with respect to the scalar r-'. It follows

(comp. p. 269), that the First Sheet of the Surface of Centres is touched by an Auxiliary

Quadric (Nj), along a Quartic Curve (N2) (N2'), which curve is the Locus of the Centres of

First Curvature, for all the points of a Line of Second Curvature ; the same sheet being also

touched (see again p. 259), along the same curve, by the developable normal surface {I),

which rests on the sa}ne second line : with permission to interchange the words, first and
second, throughout the whole of this enunciation.

(w). The given surface being still a central quadric (0), the vectors p, <r, v can be

expressed as functions of v (comp. (J) {k) (/)), and conversely the latter can be expressed

as a function of any one of the former ; we have, for example, the reciprocal equations

(p. 256),

(T = (1 + r '«^)2 ,p-^v, (O2), and u = (1 f r'^)^ <pff ; (0,')

Dr. Salnjon's result, that this surface of centres is of the twelfth degree, m&j be easily deduced

from this form.
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p = ((^-1 + r-') t; = ^i~^ V, (Pj), and v = <p2p = y^; (P2')

and in fact it is easy to see otherwise (comp. p. 198), that vz || t || v, and Spv^ = 1 = Spv,
whence n = v as before.

(«). More fiilly, the two sheets of the reciprocal (J) of the surface of centres may have
their separate vector equations written thus,

VI = <t>2p = V2, 1/2 = (/>if» = vi

;

(P2")

and the scalar equationf of this reciprocal surface itself, considered as including both

sheets, may (by page 255) be thus written, the functions / and F being related as in

408, (*),

v* = (Fv-\)fv, (Q2)

with several equivalent forms ; one way of obtaining this equation being the elimination

of r between the two following (same p. 256)

:

i^u + r-> «« = 1, (Qj') ; fv + ri;» = 0. (Qa")

{y). The two last equations may also be written thus, for the first sheet of the

reciprocal surface,

Fwi = 1, (R2), and fVvi = r, (Ra')

in which (comp. pp. 255, 260),

Fiv = S«;^-» w = Su (4.-1 + r-i)i;

;

(Rj")

and accordingly (comp. pp. 548, vol. i, 199), we have l^ava = Fy= I, and /U1/2 =/t = r.

(«). For a line of second curvature on the given surface, the scalar r is constant, as

before ; and then the two equations (Qz'), (Qa"), or (R2), (R2'), represent jointly (comp.

the slightly different enunciation in p. 259) a certain quartic curve, in which the quadric

reciprocal (£2), of the seeotid confocal («2 ^2 "2), intersects the first sheet (y) of the Reciprocal

Surface (Q2) ; this quartic curve, being at the same time the intersection of the quadric

surface [Q.-i) or (R2), with the qttadric cone (Q2") or (R3'), which is biconcyclic with the

given quadric, fp = \.

Akticle 413.—On the Measure of Curvature of a Surface, 261-266

The object of this short Series 413 is the deduction by quaternions, somewhat more

briefly and perhaps more clearly than in the Lectures, of the principal results of Gauss

(comp. Note to p. 261), respecting the Measure of Curvature of a Sttrface, and questions

therewith connected.

(a). Let p, Pi, P2 be any three near points on a given but arbitrary surface, and

R, Ri, R2 the three corresponding points (near to each other) on the unit sphere, which are

determined by the parallelism of the radii or, ori, 0R2 to the normals pn, piNj, P2N2
;

then the areas of the two small triangles thus formed will bear to each other the ultimate

ratio (p. 262),

,. ARR1R2 V.dUi'SUi' q1 ,
1 ,a^hm. = —^.y- = -S-ip -; (Ss)

APP1P2 yapop V V

* The equation u = »/2, = the normal to the confocal (a%hic-i) at v, is not actually given in the

text of Series 412 ; but it is easily deduced, as above, from the formulaj and methods of that Series.

t The equation (Q2) is one of the fourth degree ; and, when expanded by coordinates, it agrees

perfectly with that which was first assigned by Dr. Booth (see a Note to p. 255), for the Tangential

Equation of the Surface of Centres of a quadric, or for the Cartesian equation of the Reciprocal

Surface.

d2
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whence, with Gauss's definition of the nteasure of curvature, as the ultimate ratio of

corresponding areas on surface and sphere, we have, by the formula (Zi) in 412, (/), his

futidatnental theorem,

Measure of Curvature = JRr^ Sz-^, (Sj')

= Product of the two Principal Curvatures of Sections.

{b). If the vector p of the surface be considered as a function of two scalar variables,

t and «, and if derivations with respect to these be denoted by upper and lower accents,

this general transformation results (p. 263],

Measure of Curvature = S^S^- (S^'J (T2)
V V \ V I

in which v = \p'p,

;

(Ts*)

with a verification for the notation pqrst of Monge,

(c). The square of a linear element d», of the given but arbitrary surface, may be

expressed (p. 263) as follows

:

d«* = (Tdp« = ) edt^ + 2fdtdu + gdu"^
;

(U2)

and with the recent use {b) of accents, the measure (Tj) is proved (same page) to be an

explicit function of the ten scalars,

e,f,ff> «"» /i ff' i «„ /,. ff. ; and e„ - 2// + g"
; (W)

the form of this function (p. 264) agreeing, in all its details, with the corresponding

expression assigned by Gauss. *

(d). Hence follow at once (p. 264) two of the most important results of that great

mathematician on this subject ; namely, that everg Deformation of a Surface, consistent

with the conception of it as an infinitely thin and flexible but inextensible solid, leaves

unaltered, 1st, the Measure of Curvature at any Point, and Ilnd, the Total Curvature of

any Area : this last being the area of the corresponding portion (a) of the unit'Sphere.

{e). By a suitable choice of t and u, as certain geodetic co-ordinates, the expression

(Uj) may be reduced (p. 264) to the following,

d«2 = dt^ + M^dM^

;

(U2")

where t is the length of a geodetic arc ap, from a fixed point a to a variable point p of

the surface, and u is the angle rap which this variable arc makes with a fixed geodetic

AB : so that in the immediate neighbourhood of a, we have n = t, and n = D«/» = 1

.

(/). The general expression (c) for the measure of curvature takes thus the very

simple form (p. 264),

R\-^Rr^ = - H-'7»" = - »r>D«»«

;

(Vs)

and we have (comp. (rf)) the equation (p. 266),

Total Curvature of Area APa = Af< -
J «'d«

;

(Vz')

this area being bounded by two geodetics, af and aq, which make with each other an

angle = Au, and by an arc pq of an arbitrary curve on the given surface, for which

t, and therefore n', may be conceived to be a given function of «.

* References are given, in Notes to pp. 261, &c. of the present Series 413, to the pages of

Gauss's beautiful Memoir, '* Disquisitioncs generales circa Superficies Curvas,'^ as reprinted in the

Additions to Liouville's Monge.
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(ff). If this arc pq be itself a geodetic, and if we denote by v the variable angle

which it makes at p with ap prolonged, so that tan v = wdw : d<, it is found that

dv = - «'dM ; and thus the equation (V2') conducts (p. 266) to another very remarkable

and general theorem of Gauss, for an arbitrary surface, which may be thus expressed,

Total Curvature of a Geodetic Triangle abc = A + B + c-ir, (V2")

= what may be called the Spheroidal Excess of that triangle, the total area (4t) of the

unit-sphere being represented by eight right angles : with extensions to Geodetic Polygons,

and modifications for the case of what may on the same plan be called the Spheroidal

Defect, when the two curvatures of the surface are oppositely directed.

Article 414.—On Curvature of Sections (Normal and Oblique) of Surfaces ; and on

Geodetic Curvatures, 266-272

(a). The curvatures considered in the two preceding Series having been those of the

principal normal sections of a surface, the present Series 414 treats briefly the more

general case, where the section is made by an arbitrary plane, such as the osculating

plane at p to an arbitrary curve upon the surface.

(J). The vector of curvature (389) of any such curve or section being (p-K)-' = D,V>
its normal and tangential components are found to be (p. 267),

dv
(p - o-)-i = iriS V- = (p - «ri)'' cos* t) + (p - ffj)-! sm^ V, (W2)

dp

and (p - {)-» = y-^ip-^Sydp-^i^p ; (Wa)

the former component being the Vector of Normal Curvature of the Surface, for the

direction of the tangent to the curve : and the latter being the Vector of Oeodttie

Curvature of the same Curve (or section)

.

(c). In the foregoing expressions, a and ( are the vectors of the points s and x, in

which the axis of the osculating circle to the curve intersects respectively the normal and

the tangent plane to the surface (p. 267) ; s is also the centre of the sphere, which

osculates to the surface in the direction dp of the tangent ; ai, ff^ are the vectors of the

two centres si, S2, of curvature of the surface, considered in Series 412, which are at

the same time the centres of the two osculating spheres, of which the curvatures are

(algebraically) the greatest and least: and v is the atigle at which the curve here con-

sidered crosses the first line of curvature.

(d). The equation (W:) contains a theorem of Euler, under the form (p. 268),

iJ-i = i?i-i cos^ V + J?2-' sin* V ;
(W2")

it contains also Meusnier's theorem (same page), under the form (comp. 412, (A)) that the

vector of normal curvature (b) of a surface, for any given direction, is the projection on the

normal v, of the vector of oblique curvature, whatever the inclination of the plane of the

section to the tangent plane may be.

(e). The expression (W2') for the vector of geodetic curvature, admits (p. 271) of

various transformations, with corresponding expressions for the radius T(p - 1) of

geodetic curvature, which is also the radius of plane curvature of the developed curve,

when the developable circumscribed to the given surface along the given curve is

unfolded into a plane : and when this radius is constant, so that the developed curve

is a circle, or part of one, it is proposed (p. 271), to call the given curve a Didonia

(as in the Lectures), from its possession of a certain isoperimetrical property, which was

first considered by M. Delaunay, and is represented in quaternions by the formula (p. 271),

JS(Ui/ . dpip) + cSjTdp = ; (X2)

or c-Jdp = V(Uv . dUdp), (X'a)

by the rules of what may be called the Calculus of Variations in Quaternions : c being a

constant, which represents generally (p. 272) the radius of the developed circle, and

becomes injinite for geodetic lines, which are thus included as a case of Didonias.
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Ahticle 415.—Supplementary Remarks, 272-283

(a). Simplified proof (referred to in a Note to p. xxxii, vol. i.), of the general existence

of a system of three real and rectangular direetiofis, which satisfy the vector equation

Yp<pp = 0, (P), when 4> is a linear, vector, and self-eonjttgate function ; and of a

system of three real roots of the cuhic equation M=0 (p. xxxii, vol. i.), under the same

condition (pp. 272-274).

{b). It may happen (p. 276) that the differential equation,

^vAp = 0, (Y2)

is iutegrable, or represents a tystein of surfaces, without the expression Svdp being an exact

differential, as it was in 410, (b). In this case, there exists some scalar factor, n, such

that Sn/'dp is the exact differential of a scalar function of p, without the assumption that

this vector p is itself a function of a scalar variable, t ; and then if we write (p. 276,

comp. p. xx),

Av = <pA.p, d . nv = d/>, (Yj')

this new vector function will be telf-eoiyugate, although the function <p is not such

now, as it was in the equation (Ui).

(c). In this manner it is found (p. 277), that the Condition* of Integrability of the

equation (Y2) is expressed by the very simple formula,

Syi' = ; (Yj")

in which 7 is a vfetor function of p, not generally linear, and deduced from <\> on the

plan of the Section III. ii. 6 (p. 492, vol. i), by the relation,

fdp - 41'dp = 2Vyd/>

;

(Y2"')

<p' being the conjugate of <p, but not here equal to it.

(rf). Connexions (pp. 278, 279) of the Mixed Transformations in the last cited Section,

with the known Modular and Untbilicar Generations of a surface of the second order.

(<?). The equation (p. 279),

T(p - V . 0\ya) = T(« - V . yY$p), (Z2)

in which o, )8, 7 are any three vector constants, represents a central quadric, and appears

to offer a new mode of generation^ oi such a surface, on which there is not room to enter,

at this last stage of the work.

(/). The vector of the centre of the quadric, represented by the equation

fp - 2S«/> = const., with fp = Spfp, is generally k = ^"^e = wj-'ij/e (p. 280) ; case

of paraboloids, and of cylinders.

{g). The equation (p. 281),

Sqpq'pq"p + Sp(pp + 87^ +(7=0, (Zj')

represents the general surface of the third degree, or briefly the General Cubit Surface

;

C being a constant scalar, 7 a constant vector, and q, q', q" three constjint quaternions,

while ^p is here again a linear, vector, and self-conjugate function of p.

• It is shown, in a Note to p. 278, that this monomial equation (Ya") becomes, when expanded,

the known equation of six terms, which expresses the condition of integrability of the differential

equation pdx + qdy + rd* = 0.

t In a Note to p. 204 (already mentioned in p. xviii), the reader will find references to the

Lectures, for several different generations of the ellipsoid, derived from quaternion forms of its

equation.
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(A). The General Cubic Cone, -with its vertex at the origin, is thus represented in

quaternions by the monomial equation (same page),

Sqpg^pg"p = 0. (Z/)

(i). Screw Surface, Screw Sections (p. 281) ; Skew Centre of Skew Arch, with

illustration by a diagram (fig. 85, p. 283).

Section 8.—On a few Specimens of Physical Applications of Quaternions,

with some Concluding Remarks, 283 to the end.

Article 416.—On the Statics of a Rigid Body, 283-287

(a). Equation of Equilibrium

,

V7SJ8 = tVa$ ; (A,)

each a is a vecto)- of application ; ^3 the coiTesponding vector of applied force ; 7 an

arbitrary vector ; and this one quaternion formula (A3) is equivalent to the system of

the «ia; usual scalar equations (X = 0, F=0, Z = 0, X = 0, M=0, iV=0).

{b.) When

S(Sj8 . 2VajB) = 0, (Bs), but not 2j8 = 0, (C3)

the applied forces have an unique resultant = X$, which acts along the line whereof (As)

is then the equation, with 7 for its variable vector.

(c). When the condition (Cs) is satisfied, the forces compound themselves generally

into one couple, of which the axis = l,Ya$, whatever may be the position of the

assumed origin o of vectors.

(d). When
2V0/3 = 0, (Ds), with or without (C3),

the forces have no tendency to turn the body round that point ; and when the equation

(A3) holds good, as in (a), for an arbitrary vector 7, the forces do not tend to produce a

rotation* round any point c, so that they completely balance each other, as before, and

both the conditions (C3) and (D3) are satisfied.

(c). In the general case, when neither (Cs) nor (D3) is satisfied, if 9 be an auxiliary

quaternion, such that

qXfi = SYap, (Es)

then V^ is the vector perpendicular from the origin, on the central axis of the system

;

and if e = S^, then c'Z0 represents, both in quantity and in direction, the axis of

the central couple.

(/). If Q be another auxiliary quaternion, such that

Q2j8 = 5a/5, (F3)

with T2/3>0, then ^Q = c = central moment divided by total force; and VQ is the

vector 7 of a point c upon the central axis which does not vary with the origin o, and

which there are reasons for considering as the Central Point of the system, or as the

genei-al centre of applied forces ; in fact, for the ease ofparallelism, this point c coincides

with what is usually called the centre of parallel forces.

(g). Conceptions of the Total Moment 2a)8, vegaxAe^tiAhemf^ generally & quaternion',

and of the Total Tension, — Sa/3, considered as a scalar to which that quaternion with its

sign changed reduces itself for the case of equilibrium («), and of which the value is in

that case independent of the origin of vectors.

* It is easy to prove that the moment of the force fi, acting at the end of the vector a from <>,

and estimated with respect to any imit-line i from the same origin, or the energy with which the

force so acting tends to cause the body to turn round that line i, regarded as a fixed axis, is

represented by the scalar, — Sja/3, or Si-^o)8 ; so that when the condition (D3) is satisfied, the

applied forces have no tendency to produce rotation round any axis through the origin : which origin

becomes an arbitrary point c, when the equation of equilibrium (A3) holds good.
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(A). Principle of Virtual Veloeitie$,

2S/38a = 0, (Gs)

Akticlb 417.—On the Dynamics of a rigid body, 287-292

(a). General Equation of Dynamics,

2mS(D,2«- {) 5a = 0; (Ha)

the vector f representing the accelerating force, or >»| the moving force, acting on a

particle m of which the vector at the time < is a ; and 5a being any infinitesimal variation

of this last vector, geometrically compatible with the connexions between the parts of the

system, which need not he^-e be a rigid one.

[b). For the case of a free system^ we may change each 5o to e + Vm, « and « being

any two infinitesimal vectors, which do not change in passing from one particle m to

another ; and thus the general equation (Ha) furnishes two general vector equations,

namely,

2m (Di^a - = 0, (Is), and 2>mVo (Dt^a - |) = ; (Js)

which contain respectively the law of the motion of the centre of gravity, and the law of

description of areas.

(c) If a body be supposed to be rigid, and to have a fixed point o, then only the

equation (Js) need be retained ; and we may write,

D,a = V.«, (Ks)

i being here a^nite vector, namely the Vector Axis of Instantaneous Rotation : its versor

U» denoting the direction of that axis, and its tensor Ti representing the angular velocity

of that bod
J'
about it, at the time t.

(d) When the forces vanish, or balance each other, or compound themselves into a

single force acting at the fixed point, as for the case of a heavy body turning freely about

its centre of gravity, then

2»»Va( = 0, (Ls) ; and if we write, <pt = SwoVo*, (Ms)

so that <p again denotes a linear, vector, and self-conjugate function, M-e shall have the

equations,

<pT>ii+Yt<i>i = 0, (Ns); (j)i + 'y = 0, (O3)

;

Si<pi = h'^; (Ps)

whence
S.7 + A2 = 0, (Q3), and ^D,i = V»7; (R3)

the vector y being what we may call the Constant of Areas, and the scalar A* being the

Constant of Living Force.

(e). One of I'oinsot's representations of the motion of a body, under the circumstances

last supposed, is thus reproduced under the form, that the Ellipsoid of Living Force (P3),

with its centre at the fixed point o, rolls without gliding on the fixed plane (Qa), which is

parallel to the Plane of Areas (847 = 0) ; the variable semidiameter of contact, i, being the

reetor-axi* (e) of instantaneous rotation of the body.

(/) "r^® Moment of Inertia, with respect to any axis i through o, is equal to the

living force (A») divided by the square (Tr) of the semidiatneter of the ellipsoid {V3), which
has the direction of that axis ; and hence may be derived, with the help of the first general

cotutruetion of an ellipsoid, suggested by quaternions, a simple geometrical representation

(p. 290) of the square root of the moment of inertia of a body, with respect to any axis ad
passing through a given point a, as a certain right line ho, if cd = ca, with the help of

two other points h and c, which are likewise fixed in the body, but may be chosen in more
ways than ouf.
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(jf) A cone of the second degree,

Siv = 0, (S3), with i/ = 7>i-AV«. (Ts)

ia fixed in the body, but rolls in space on that other eone, which is the locus of the instan-

taneous axis I ; and thus a second representation, proposed by Poinsot, is found for the

motion of the body, as the rolling of one cone on another.

(/«) Some of Mac Cullagh's results, respecting the motion here considered, are obtained

with equal ease by the same quaternion analysis ; for example, the line y, although fixed

in space, describes in the body an easily assigned cone of the second degree (p. 291), which

cuts the reciprocal ellipsoid,

^ytp-'y = h\ (U:,)

in a certain sphero-eonie : and the cone of normals to the last mentioned cone (or the locus

of the line t + h'^y'^) rolls on the plane of areas {S>iy = 0).

(i). The Three (Principal) Axes of Inertia of the body, for the given point o, have the

directions (p. 291) of the three rectangular and vector roots (comp. (P), p. xxzii, vol. i., and

the paragraph 415, (a), p. xxx) of the equation

V«<^« = 0, (V3), because, for each, D<i = ; (V3')

and a A, B, C denote the three Principal Moments of inertia corresponding, then the

Symbolical Cubic in <p (comp. the formula (N) in page xxxi, vol. i.) may be thus written,

(<^ + A) {<p + B) (4) + C) = 0. (Wa)

(J). Passage (p. 292), from moments referred to axes passing through a given point o,

to those which correspond to respectively parallel axes, through any other point XI of the

body.

Article 418.—On the motions of a System of Bodies, considered as free particles

m, in', . . which attract each other according to the law of the Inverse Square,

(a). Equation of motion of the system,

XtnSWaSa + 5P = 0, (X3), if P = 2mm'T(a - a')"'

;

(Ys)

a is the vector, at the time t, of the mass or particle m ; P is the potential (or foree-

function) ; and the infinitesimal variations 8a are arbitrary.

{b). Extension of the notation of derivatives,

5P=2S(D^P.aa). (Z3)

{c). The differential equations of motion of the separate masses m, . . become thus,

,«D»2a + D„P=0, . .; (A«)

and the laws of the centre of gravity, of areas, and of living force, are obtained under

the forms,

2»iD«a = j8, (B^) ; 2»»VaD«o = y :

and

XXXUl
Pages

(C4)

(F4)

293-298

r = -^2»«(D<a)2 = P+fl";

/3, y being two vector constants, and S a scalar constant.

{d). Writing,

F={ {P+T)dt, (E4), and V = [' 2Tdt = F+ tS,
Jo Jo

F may be called the Principal* Function, and V the Characteristic Function, of the

*Beference8 are given to two Essays by the present writer, " Ow a General Method in

Dynamics,'''' in the Philosophical Transactions for 1834 and 1835, in which the Action (V), and

a certain other function (S), which is here denoted by F, were called, as above, the Characteristic

and Principal Functions. But the analysis here used, as being founded on the Calculus of

Quaternions, is altogether unlike the analysis which was employed in those former Essays.

Hamilton's Elements of Quateknions, Vol. II. e
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motion of the system ; each depending on the fitwl vectors of position, a, a, . . and on

the initial vectors, ao, do, . . ; but F depending also (explicitly) on the time, t, while

V(= the Action) depends instead on the constant H of living force, in addition to those

final and initial vectors : the masses m, m', . . being supposed to be known, or constant.

(»). "We are led thus to equations of the forms,

«D«x+D„i?=0, . . (Gi); -mD„« + D^F=0, . . (H4) ; {TitF) = - H, (I4)

whereof the system (G4) contains what may be called the Intermediate Integrals, while

the system (H4) contains the Final Integrals, of the differential Equations of Motion {A4).

(/). In like manner we find equations of the forms,

Dar= - »»D,a, . . (J4) ; D^r = mD^a, . . (K4) ; B„r = t

;

(L4)

the intermediate integrals {e) being here the result of the elimination of H, between the

system (J4) and the equation (L4) ; and the ^nal integrals, of the same system of

differential equations (A4). being now (theoretically) obtained, by eliminating the same

constant JST between (K4) and (L4).

(ff). The ftinctions F and V are obliged to satisfy certain Partial Differential

Equations in Quaternions, of which those relative to the final vectors a, o', . . are

the following,

(D,^ - i2m-i(D„2?)2 = P, (M4)
; i5m-'(D„ F)» + P + B" = ; (N4)

and they are subject to certain geometrical conditions, from which can be deduced, in a

new way, and as new verifications, the law of motion of the centre of gravity, and the

law of description of areas.

(A). General approximate expressions (p. 298) for the functions F and V, and for

their derivatives H and t, for the case of a short motion of the system.

Article 419.—On the Relative Motion of a Binary System ; and on the Law of the

Circular Hodograph, 298-320

(a). The vector of one body from the other being a, and the distance being r (= Ta),

while the sum of the masses is M, the differential equation of the relative motion is,

with the law of the inverse square,

D»o = Ma-^r-^ ;
(O4)

D being here used as a characteristic of derivation, with respect to the time t.

(b). As a first integral, which holds good also for any other law of eetitral force, we
have

VaDo = )3 = a constant vector

;

(P4)

which includes the two usual laws, of the constant plane (1/3), and of the constant

ureal vekeity („ = JT/8).

(c). Writing T = Da = vector of relative velocity, and conceiving this new vector t
to be drawn from that one of the two bodies which is here selected for the origin 0, the

locus of the extremities of the vector t is (by earlier definitions) the Hodograph of the

Relative Motion; and this hodograph is proved to be, for the Latv of the Inverse

Square, a Circle.

(rf). In fact, it is shown (p. 302), that for any law of centril force, the radius of
curvature of the hodograph is equal to the force, multiplied into the square of the
distance, and divided by the doubled areal velocity; or by the romtant parallelogram c,

under the vectors (o and t) of position and velocity, or of the orbit and the hodograph.
{e). It follows then, conversely, that the law of the inverse square is the only law

which renders the hodograph generally a circle; so that the law of nature may be
charactertEed, as the Law of the Circular Hodograph ; from which latter law, however,
it \a ewy to deduce the form of the Orbit, as a conic section with a focus at o.
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(/). If the semiparameter of this orbit be denoted, as usual, hy p, and if h be the

radius of the hodograph, then (p. 301),

A = Me-^ = cp-i = {Mp-^)K (Q4)

(^). The orbital excentricity e is also the hodographic excentricity, in the sense that eh

is the distance of the centre h of the hodograph, from the point which is here treated as

the centre of force.

[h) . The orbit is an ellipse, when the point o is interior to the hodographic circle (« < 1)

;

it is a parabola, when is on the circumference of that circle (e = 1 ) ; and it is an hyperbola,

when o is an exterior point {e > 1). And in a]l these cases, if we write

a^p{\- c2)-i = ch-^l - e»)-i, (lU)

the constant a will have ita usual signification, relatively to the orbit.

(i). The quantity Mr"^ being here called the Potential, and denoted by P, geometrical

constructions for this quantity P are assigned, with the help of the hodograph (p. 307)

;

and for the harmonic mean, 2M{r + r')-^, between the two potentials, P and P', which

answer to the extremities t, t' of any proposed chord of that circle : all which constructions

are illustrated by a new diagram (fig. 86).

[j). If u be the pole of the chord tt'; m, m' the points in which the line ou cuts the

circle ; l the middle point, and n the pole, of the new chord mm', one secant from which

last pole is thus the line ntt' ; u' the intersection of this secant with the chord mm', or

the harmonic conjugate of the point u, with respect to the same chord ; and nt,t,' any near

secant from n, while u, (on the line ou) is the pole of the near cJwrd t,t,': then the two

small arcs, t,t and t't/, of the hodograph, intercepted between these two secants, are proved

to be ultimately proportional to the ttvo potentials, P and P" ; or to the two ordinates

TV, t'v', namely the perpendiculars let fall from t and if, on what may here be called the

hodographic axis in. Also, the harmonic mean between these two ordinates is obviously

(by the construction) the line u'l ; while vt, vt', and u,t,, uj/ are four tangents to the

hodograph, so that this circle is cttt orthogonally, in the two pairs ofpoints, t, t' and t,, t/,

by two other circles, which have the two near points u, u, for their centres (pp. 308, 309).

(A-). In general, for any motion of a point (absolute or relative, in one plane or in space,

for example, in the motion of the centre of the moon about that of the earth, under the

perlurbations produced by the attractions of the sun and planets), with a for the variable

vector (418) oi position of the point, the time it which coiTCsponds to any vector-element

dDa of the hodograph, or what may be called the time of hodographically describing that

element, is the quotient obtained by dividing the same element of the hodograph, by the

vector of acceleration D'^o in the orbit ; because we may write generally (p. 308),

it =— .or ^t^--, If dOO. (S4)

{I). For the law of the inverse square (comp. (a) and (t)), the measure of ihb force, is,

1W-a = if»-2 = M-^P^

;

(Ti)

the times it, it', of hodographically describing the small circular arcs t,t and t't/ of the

hodograph, being found by multiplying the lengths {j) of those two arcs by the mass,

and dividing each product by the square of the potential corresponding, are therefore

inversely as those two potentials, P, P' , or directly as the distances, r, /, in the orbit : so

that we have the proportion,

it : it' I it + it' = r : r' : »• + /. (U4)

(w). If we suppose that the mass, M, and \\i% five points o, l, m, u, u, upon the chord

mm' are given, or constant, but that the radius, h, of the hodograph, or the position of the

centre h on the hodographic axis ln, is altered, it is found in this way (p. 309) that

e 2
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although the two elements of time, dt, if, separately vary, yet their sum remains un-

changed: from which it follows, that even if the two circular arcs, t,t, t't/, he not stnall,

but still intercepted (J) between two secants from the pole n of the ^xed chord mu', the

sum (say, A< + A^') of the two times is independent of the raiius, h.

(n). And hence may be deduced (p. 310), by supposing one secant to become a tangent,

this Theorem ofHodographic Isochronism, which was communicated without demonstration,

several years ago, to the Royal Irish Academy,* and has since been treated as a subject

of investigation by several able writers

:

If two circular hodographs, having a common chord, which passes through, or toidi

towards, a common centre of force, be cut perpendicularly by a third circle, the times of

hodographically describing the intercepted arcs will be equal.

(o). This common time can easily be expressed (p. 310), under the form of the definite

integral,

TtmeofTUi' = -^ -—-; -; (V*)

ff Jo (1 —e COBW)^

1g being the length of the fixed chord mm' ; e' the quotient lo : lm, which reduces itself

to — 1 when o is at m', that is for the case of a parabolic orbit ; c' lying between i 1 for an

ellipse, and outside those limits for an hyperbola, but being, in all these cases, constant
;

while u) is a certain auxiliary angle, of which the sine = ur : tjl (p. 312), or = «(• + »')-•,

if « denote the length pp ' of the chord of the orbit, corresponding to the chord tt' of the

hodograph ; and w varies from to ir, when the whole periodic time 2irM"' for a closed orbit

is to be computed : with the verification, that the integral (V4) gives, in this last case,

M = aV, as usual. (^4)

(p). By examining the general composition of the definite integral (V4), or by more

purely geometrical considerations, which are illustrated by fig. 87, it is found that, with

the law of the inverse square, the time t of describing an arc pp' of the orbit (closed or

unclosed) is a function (p. 314) of the three ratios,

Ju. a r -t r

and therefore simply a function of the chord (s, or pp') of the orbit, and of the sum of

the distances (r + r', or op + op') when M and a are given : which is a form of the

Theorem of Lambert.

(q). The same important theorem may be otherwise deduced, through a quite

different analysis, by an employment of partial derivatives, and of partial differential

equations in quaternions, which is analogous to that used in a recent investigation

(418), respecting the motions of an attracting system of any number of bodies, m, m', &c.

(r). Writing now (comp. p. xxxiii) the following expression for the relative living force,

or for the mass (i/ = »» + >»'), multiplied into the square of the relative velocity (TDa),

2r=-^Do» = 2(P+J5r) = if(2r-'-fl-'); (Y4)

introducing the two new integraU (p. 314),

J" = (' (P + T)dt, (Z4), and F = (* 22Vi« = P + <^,
Jo Jo

(A

which have thus (comp. (E4) and (F4)) the satne forms as before, but with different

(although analogotu) significations, and may still be called the Frincipal and Characteristic

Functions of the motion ; and denoting by a, a' (instead of ao, a) the initial and final

veetori of petition, or of the orbit, while r, »•' are the two distances, and t, t' the

• See the Proeeec^ngt of the 16th of March, 1847. It is understood that the common centre o of

force is occupied by a common mass, M.
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two corresponding vectors of velocity, or of the hodograph : it is found tliat when M
is given, J^ may be treated as a function of «, o', t, or of r, i-*, s, t, and F as a

function of a, a, a, or of r, r', s, and H; and that their partial derivatives, in the

first view of these two functions, are (p. 314),

BaF=J)aV=T, (Bs); Da-F=Da'V=-T'; (Ce)

(I)t)F =-E, (Ds) ; and D/,r = — DaF = <

;

(Ej)

while, in the second view of the same functions, they satisfy the two partial differential

equations (p. 315),

I)rF=Dr'F, (Fs), and D^r=Dr'F; (G5)

along with two other equations of the same kind, but of the second degree, for each of the

functions here considered, which are analogous to those mentioned in p. xxxiv.

(«). The equations (F5) (65) express, that the two distances, r and r', enter into each

of the two functions only by their sum ; so that, if M be still treated as given, F may be

regarded as a function of the three quantities, r + r', «, and t ; while V, and therefore

also t by (E5), is found in like manner to be a function of the three scalars, r + r, s,

and a : which last result respecting the time agrees with {p}, and furnishes a new proof

of LamberVs Tlieorem.

(<). The three partial differential equations (r) in V conduct, by merely algebraical

combinations, to expressions for the three partial derivatives, D,F, Dr'r(= DrF), and
D^F; and thus, with the help of (Ej), to tico new definite integrals* (p. 317), which
express respectively the Action and the Time, in the relative motion of a binary tystem

here considered, namely, the two following

:

whereof the latter is not to be extended, without modification, beyond the limits within

which the radical is finite.

Article 420.—On the determination of the Distance of a Comet, or new Planet,

from the Earth, 320
[a). The masses of earth and comet being neglected, and the mass of the sun being

denoted by M, let r and w denote the distances of earth and comet from sun, and z

their distance from each other, while o is the heliocentric vector of the earth (Ta = r),

known by the theory of the sun, and p is the unit-vector, determined by observation,

which is directed from the earth to the comet. Then it is easily proved by quaternions,

that we have the equation (p. 320),

SpDpD«p

-:(f-5).; SpDpUa

with w-^ = r2 + z2 - 2zSa/)

;

(Kg)

* References are given to the First Essay, &c., by the present writer (comp. the Note to

p. xxxiii), in which were assigned integrals, substantially equivalent to (H5) and (Is), but deduced by
a quite different analysis. It has recently been remarked to him, by his friend Professor Tait of

Edinburgh, that while the area described, with Newton's Law, about the full focus of an orbit, has
long been known to be proportional to the time corresponding, so the area about the empty focus
represents (or is proportional to) the action.
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eliminating w between these two formulse, clearing of fractions, and dividing by z, we
are therefore conducted in this way to an algebraical equation of the seventh degree,

whereof one root is the sought distance, z.

{b). The final equation, thus obtained, differs only by its notation, and by the facility

of its deduction, from that assigned for the same purpose in the Meeanique Celeste ; and

the ruk of Laplace there given, for determining, by inspection of a celestial globe, which

of the two bodies (earth and comet) is the nearer to the sun, resiilts at sight from the

formula (Js).

Article 421.—On the Development of the Disturbing Force of the Sun on the Moon;
or of one Planet on another, which is nearer than itself to the Sun, .... 320-323

(a) Let o, <r be the geocentric vectors of moon and sun ; r(= To), and »(= T<r), their

geocentric distances ; M the sum of the masses of earth and moon ; 5 the mass of the

sun ; and D (as in recent Series) the mark of derivation with respect to the time : then

the differential eqttation of the disturbed motion of the moon about the earth is,

D^a = M<pa + V, (La) if <pa = <p{a) = a-'To-i, (Ms)

and r> = Vector of Disturbing Force = S{^(r - <p{ff — a) ; (Ne)

<p denoting here a vector function , but not a linear one.

(*). If we neglect ij, the equation (L5) reduces itself to the form D-'a = J/(^a; which

contains (comp. (O4)) the laws of undisturbed elliptic motion.

(c). If we develop the disturbing vector 77, according [to ascending powers of the

quotient r : s, of the distances of moon and sun from the earth, we obtain an infinite series

of terms, each representing a finite group of partial disturbing forces, which may be thus

denoted

7j = 7;i + 1J2 + TJ3+ &c. ;
(Os)

7?1 = nij 1 + ^l>2, 172 = 1J2)1 + »?2, 2 + nUi *°- ! (^*)

these partial forces increasing in number, but diminishing in intensity, in the passage from

any one group to the following ; and being connected with each other, within any such

group, by simple numerical ratios and angular relations.

{d). For example, the two forces n\, 1, 111, 2 of the first group are, rigorously,

propoilional to the numbers 1 and 3 ; the three forces 7/2,1, t?2,2, ^2,3 of the second group

are as the numbers 1, 2, 6 ; and the four forces of the third group are proportional to

6, 9, 15, 35 : where the separate intensities of the first forces, in these three first group,

have the expressions,

Sr Z8r\ 5Sr3
Tm, 1 = —3 , Tr,2, 1 = -g^r ; T,3, 1 = jg^. (Q»)

(«). All these partialforces are conceived to act at the moon ; but their directions may
be represented by the respectively parallel unit-lines ITtji, 1, &c., drawn from the earth,

and terminating on a great circle of the celestial sphere (supposed here to have its radius

equal to unity), which passes through the geocentric (or apparent) places, O and ), of the

sun and moon in the heavens.

(/). Denoting then the geocentric elongation O^ of moon from sun (in the plane of the

three bodies) by + 0; and by Oi, O2, and )i, )2, h what may be called two fictitious

tuns, and three fictitious moons, of which the corresponding elongations from O, in the

same great circle are + 2*, - 26, and - fl, + 3fl, - 3fl, as illustrated by fig. 88 (p. 322)

;

it is found that the directiotis of the two forces of the first group are represented by the

two radii of this unit-circle, which terminate in J and Ji ; those of the three forces of the

second group, by the three radii to Oi, O, and O2 ; and those of the four forces of the

third group, by the radii to Js, >, ) 1, and )3 ; with facilities for extending all those results

(with the requisite modifications), to the fourth and subsequetU groups, by the same

guaterfiion atialytis.
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( g) . And it is important to observe, that no supposition is here made respecting any

smallness of excentricities or inclinations (p. 323) ; so that all the formula apply, with the

necessary changes of geocentric to heliocentric vectors, &c., to the perturbations of the

motion of a comet about the sun, produced by the attraction of a planet, which is (at the

time) more distant than the comet from the sun.

AuTicLE 422.—On Fresnel's "Wave, 323-352

(rt) If p and fjL be two corresponding vectors of ray-velocity and wave slowness^ or

briefly Ray and Index, in a biaxal crystal, the velocity of light in a vacuum being unity

;

and if 5p and 5^ be any infinitesimal variations of these two vectors, consistent with the

equations (supposed to be as yet unknown), of the Wave (or wave-surface), and its

reciprocal, the Index- Surface (or surface of wave-slowness) : we have then first the

fundamental Equations of Reciprocity (comp. p. 461, vol. i.),

Smp = -1, (Rs); Sm«p = 0, (Sj); Sp5M = 0, (Tj)

which are independent of any hypothesis respecting the vibrations of the ether.

(b). If Sp be next regarded as & displacement (or vibration), tangential to theM^af^, and

if Sf denote the elastic force TeBxiliing, there exists then, on Fresnel's principles, a relation

between these two small vectors ; which relation may (with our notations) be expressed

by either of the two following equations,

5€ = <t>-^Sp, (Us), or ip = <^5e

;

(Vj)

the function <p being of that linear, vector, and self-cot>jugate kind, which has been

frequently employed in these Elements.

{c). The fundamental connexion, between the functional symbol <^, and the optical

constants abc of the crystal, is expressed (p. 330, comp. the formula (Ws) in p. xxxiii) by
the symbolic and cubic equation,

(^ + «-»)(.^ + 4-2)(^+^2) = 0; (Ws)

of which an extensive use is made in the present Series.

{(Tj. The normal component, ^-'S/iSe, of the elastic force S«, is t«(?/«rfit)e in Fresnel's

theory, on account of the supposed incompressibility of the ether ; and the tangential

component, <p~^Sp - ju"'Sju5«, is (in the same theory, and with present notations) to be

equated to fi'^Sp, for the propagation of a rectilinear vibration (p. 324) ; we obtain

then thus, for such a vibration or tangential displacement, Up, the expression,

8/> = ir' - /x-*)-V-'Sm«6 ; (Xs)

and therefore by (Sj) the equation,

= S/x-'(r' - M-'^)-VS (Ts)

which is a Symbolical Form of the scalar Equation of the Index-Surface, and may be thus
transformed,

1 = Sm(m'-«^)-V- (Z»)

(e). The Wave-Surface, as being the reciprocal [a) of the index-surface (rf), is easily

found (p. 326), to be represented by this other Symbolical Equation,

= S/,-'(^ - p-2)-V-'

;

(A.)

or 1 = Sp(p2 - <^-')-V- (B,)

(/). In such transitions, from one of these reciprocal surfaces to the other, it is found
convenient to introduce two auxiliary vectm-s, v and w (= <pv), namely the lines ou and
ow of fig. 89 ; both drawn from the common centre o of the two surfaces ; but v

terminating (p. 326) on the tangent plane to the wave, and being parallel to the direction

of the elastic force 5e ; whereas w terminates (p. 328) on the tangent plane to the index-

surface, and is parallel to the displacement Sp,
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{(f). Besides the relation,

u = <pv, or i; = ^"'«, (Ce)

connecting the two new vectors (/) with each other, they are connected with p and /a by

the equations (pp. 325, 328),

Sm« = -1, (De); Spi, = 0; (Ee)

Sp« = - 1, (Fj) ; S/i« = ; (G,)

and generally (p. 328), the following Rule of the Interchanges holds good : In any formula

involving p, n, v, w, and f, or some of them, it is permitted to exchange p with n,

V with <D, and «p with <^-^
;
provided that we at the same time interchange Sp with 5«, but

twt generally* Sn with Sp, when these variations, or any of them occur.

(A). We have also the relations (pp. 328, 329),

- p-i = u-iVi/M = /x + w-»

;

(He)

— fjL'' = co'^Ywp = p + «"*

;

(Is)

with others easily deduced, which may all be illustrated by the above-cited fig. 89.

(i). Among such deductions, the following equations (p. 330) may be mentioned,

(Vu<^u)2 + Sv(t>u = 0, (Je) ; (V«0-'«)2 + Suf-^u = ; (K«)

which show that the Loetu of each of the two Auxiliary Points, v and w, wherein the

two vectors v and a< terminate (/), is a Surface of the Fourth Degree, or briefly, a Quartic

Surface ; of which Two loci the constructions may be connected (as stated in p. 330) with

those of the two reciprocal ellipsoids,

^p<pp = \, (Ls), and ^p<p-^p=l; (Me)

p denoting, for each, an arbitrary semidiameter.

(j). It is, however, a much more interesting use of these two ellipsoids, of which (by

(Wj), &c.) the scalar semiaxes are a, b, c for the first, and a"', b'^, c' for the secotid,

to observe that they may be employed (p. 327) for the Constructions of the Wave and the

Index- Surface, respectively, by a very simple rule, which (at least for the ^first of these

two reciprocal surfaces (a)) was assigned by Fresnel himself.

(k). In fact, on comparing the symbolical form (Ae) of the equation of the Wave, with

the form (Hj) in p. xxv, or with the equation 412, XLI., in p. 253, we derive at once

FresneVs Construction : namely, that if the ellipsoid [abc) be cut, by an arbitrary plane

through its centre, and if perpendiculars to that plane be erected at that central point,

which shall have the lengths of the semiaxes of the section, then the locus of the extremities,

of the perpendiculars so erected, will be the sought Wave- Surface.

(/). A precisely similar construction applies, to the derivation of the Index- Surface

from the ellipsoid (a-'4"V) : and thus the two auxiliary surfaces, (Le) and (Me), may be

briefly called the Generating Ellipsoid, and the Reciprocal Ellipsoid.

(»»). The cubic (We) in ip enables us easily to express (p. 331) the inverse function

(^ + «)-', where e is any scalar ; and thus, by changing e to - p-', &c., new forms of

the equation (Ae) of the wave are obtained, whereof one is,

= (^-»p)» + (pa + o2 + «2 + flJ) Sp^-'p - a2*«<;»

;

(Ne)

with an analogous equation in /i (comp. the rule in {g)), to represent the index-surface :

so that each of these two surfaces is of the fourth degree, as indeed is otherwise known.

* This apparent exception arises (pp. 328, 329) from the circumstance, that ip and Sc have their

directions generally fixed, in this whole investigation (although subject to a commofi reversal by ±),

when p and ^ are given ; whereas 8^ continues to be used, as in (a), to denote any infinitesimal

vector, tangential to the index-surface at the end of fi.
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(w). If either Spcp'^p or p- be treated as constant in (Ns), the degree of that equation

is depressed from the fourth to the second ; and therefore the Wave is cut, by each of the

two concentric qtcadrics,

Sp<p-^p = h\ (Oe), p-' + r^- = 0, (Pe)

in a (real or imaginaiy) curve of the fourth degree: of which two quartic curves, answering

to all scalar values of the constants h and r, tbe wave is the common locus.

(o). The neiv ellipsoid (Og) is similar to the ellipsoid (Me), and similarly placed, while

the sphere (Pe) has r for radius . and every quartic of the second system {n) is a sphero-conic,

because it is, by the equcation (Ae) of the wave, the intersection of that sphere (Pe) with the

concentric and quadric cone,

= Sp(.^ + »-2)-V

;

(Qe)

or, by (Be), with this other concentric quadric,*

- 1 = Spir' + ^Y'P, (He)

whereof the eonjuyate (obtained by changing - 1 to + 1 in the last equation) has [p. 346]

a2 _ r2, 42 - y2, c^ - r\ (Se)

for the squares of its scalar semiaxes, and is therefore eonfocal with the generating

ellipsoid (Ls).

{p). For any point p of the wave, or at the end of any ray p, the tangents to the two

curves {n) have the directions of to and juw ; so that these two quartics cross each other at

right angles, and each is a common orthogonal in all the curves of the other system [p. 345].

(q). But the vibration Sp is easily proved to be parallel to w ; hence the curves of the

first system («) are Lines of Vibration of the Wave : and the curves of the second system

are the Ch-thogonal Trajectories^ to those Lines.

(r). In general, the vibration Sp has (on Fresnel's principles) the direction of the

projection of the ray p on the tangent plane to the wave ; and the elastic force Se has in like

manner the direction of the proJicHon of the index-vector fi on the tangent plane to the

index-surface : so that the ray is thus perpendicular to the elasticforce corresponding.

9 August 25, 1865.

(«). When a given or first ray, p, prolonged or shortened, becomes a second ray, pi, at

the same side of the centre o, so that Upi = Up, we can easily derive from LXIII. the

expression [p. 349]

n = Tpi = abch--, (Te)

or

ri2 = fl«iV(Sp^-'p); (Ue)

so that the two quantities, h and r, are constant together or variable togetlier : similarly

for the two other quantities, h and r, which are obtained from these by interchanging sheets,

{t). It follows, then, that ono sheet of the cone (Qe), which has its surface at the centre

of the wave, and rests on a sphero-conic (ri) traced on the wave-sheet, contains also,

or may be considered as likewise resting upon, a line of vibration (h) on the other sheet,

and reciprocally ; so that each of these two curves is projected into the other, by rays

from 0, and one would appear as superposed on the other, if we imagine them to be seen

by an eye placed at that point. As a limiting case, when the projecting cone reduces

itself to one of the two principal planes—for example, to the plane (a)—then the ellipse

(a) in that plane may be represented by the equation h'^ = be, and the circle («) has for

equation n = a ; so that the condition (Te) is satisfied [p. 350].

* For real curves of the second system («), this new quadric (Ke) is an hyperboloid, with otie sheet

or with two, according as the constant r lies between a and b, or between b and e ; and, of course,

the conjugate hyperboloid (o) has two sheets or one, in the same two cases respectively.

t In a different theory of light (comp. the next Series, 423), these sphero-conics on the wave are

themselves the lines of vibration.

Hamilton's Elements of Quaternions, Vol. II. £
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(m). In fact the quadric cone (Q«) must cut the quarlie wave in an octie curve, or else in

a system of curves, of which the product of the dimensions is eiffht ; and accordingly we

find, as above, that the complete intersection, here considered, of the two surfaces, consists

of a system of two gttartic curves, namely, a sphero-conic (ri) on one nheet, and a line of

vibration (A) on the other [p. 349].

(i').* [The section of the wave by a principal plane of the generating ellipsoid (L«)

breaks up into a circle and an ellipse (p. 332)

p-2 + a-2 = 0, (Vb) ;
1 - J-V«Sp^-V = 0, (Ws)

which we may refer to as the circle (a) and the ellipse (a). The intersections of a circle

and the corresponding ellipse are nodal points on the wave. Those on the circle {b) and

the ellipse {b) alone are real, and may be called by pre-eminence the Wave-Cusps. And

the vectors (+ po, ± pi) drawn from the centre o to these four cusps may be termed Lines

of Single Ray- Velocity, or briefly Cusp-Rays (p. 332). At a wave-cusp the vector /* is

indeterminate (p. 334) but it is an edge of the cone (p. 336)

p? + S^poS/i/to = (X«)

where /uo corresponds to po as terminating on the ellipse {b) (p. 334). Analogo?is cusps lie

on the Index Surface at the ends of the vectors (+ vo, ± vi) of Single Normal Slowness

(p. 335). The tangent cone to a wave-cusp (p. 335) may be thus briefly written (p. 341)

(Sjttopop)'^ = 4SpopS/t(,p (Ye)

with various other transformations (pp. 342-4).]

[(w). There are four real Circular Ridj;es on the wave along which it is touched by

the four planes

Spvo = ± 1 > Sppi = + 1 (Zb)

+ vo and + VI being the vectors thus designated in the last paragraph. The common

length of the diameters of these circles is b-^{a'^ — J^)' ({« _ c'-)^ and each diameter in the

principal plane subtends at the wave centre the angle tan-'J-2(a2 — J^)' {b"- — c^)^ (p. 337).

In virtue of the law of reciprocity these ridges correspond to the conical points on the

Index Surface. New detennination of a circular ridge by means of its vector equation

and without assuming any knowledge of the existence of a wave-tusp. The relation

(.^-p-2)(M + p-»)-» = p-i (A,)

* [The paragraphs («), (<) and («), accidentally omitted in the First Edition, were first printed by

the Rev. E. P. Graves in the Appendix to the Third Volume of his Life of Hamilton p. 640. They

are of peculiar interest as they show that in spite of severe illness Hamilton was occupied in his work

until a few days before his death which took place on the 2nd of September. In the manuscript-book

nothing follows after (v). The Rev. Charles Graves in his Presidential eloge delivered to the lloyal

Irish Academy referred to Hamilton's labours in the following terms :
—" It will be a satisfaction to

the members of this Academy to be told that his Elements of Quatrmions—the work upon which he

was engaged with most unceasing activity for the last two years—is all but complete. I have reason

to know that at no period of his life—not even when he was in the prime of health and youthful

vigour—did he apply himself to his mathematical labours with more devoted diligence. Those who
did not actually knosv how he was employed, or who had formed a false estimate of his character,

might imagine him indolently reposing upon his laurels, or pursuing his studies in a desultory way.

Such a conception of them would be the very opposite to the true one. His diligence of late was

even excessive—interfering with his sleep, his meals, his exercise, his social enjoyments. It was, I

believe, fatally injurious to his health."

—

Proceedings, Royal Irish Academy, vol. ix., p. 315, and

Graves's Life qf Sir W. R. Hamilton, vol. iti., p. 224.]
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generally determines the index-vector /x when the ray-vector p is given, but when <p — p-^

is a binomial the vector fi becomes indeterminate provided p is perpendicular to the

direction j8 satisfying {<p - p"^)3 = 0. The vector equation of the Index-Eidge is then

(p. 338)

V/9 (^i + po-')-' - V/3 (/io + po-')-' = (B,)

and the vector equation of the "Wave-Ridge is (p. 339)

Vj8(p + ^0-^)-^ - V)8 (ffo + vo-»)-i = (C)

where o-q = - a^c'^fvo (CXIII., p. 337). The existence of the circular ridges may also be

manifested (p. 344) by reducing the equation of the wave-surface to

(2/)2 - (a2 - c2) Svop^yip + a' + e")^ = (a^ - e^
{
1 - (Svop)^} { 1 - (S.'ip)^} (D7).]

[(a:). The laws of the two sets of vibrations, at a cusp and on a ridge, are illustrated

by fig. 89 and are intimately connected with the two Conical Refractions, external and

internal, in a biaxial crystal (p. 341). In the first case the vibration is in the tangent

plane at the cusp p to the ellipsoid (A) (compare We) and has the direction of a chord pb
of the cone resting upon the index-ridge. In the second case the vibration at r has the

direction of the chord kq' of the wave-ridge through the point on the circle {b) (p. 340).]

[(y). In addition to the symbolic forms of the equation of the wave (Ae) and (Bg)

(paragraph e) and (Ns) (paragraph »») the cyclic transformation is employed to derive this

new equation (p. 332)

irp2 = 1 + Sa/)Sa'p ± TVApTVA'p (E7)

(the upper sign belonging to one sheet, and the lower to the other sheet) with several other

expressions. The bifocal transformation aflFords the equation (p. 344)

(2p« - (a2 - e^) SvopSyjp + a^ + e^y = (a' - c'f (l - (Si-op)'} {1 - {^npf\ (F7)

already referred to («), and the equation T (ip { pK^ = (k- - r)' has been selected by
Professor Tait as the basis of his paper on "Quaternion Investigations connected with

Fresnel's Wave-Surface " (p. 350). Some leading expressions are written down showing

the Cartesian equivalents of quaternion forms (p. 352).]

[(2) . Although the italic letters i, J, k are not now much used having been superseded

by general signs of operation such as S, V, T, U, K, they may be supposed to be still

familiar to the student as links between quaternions and coordinates, p. 351.]

Article 423.—MacCullagh's Theorem of the Polar Plane, 352-368

[(a). The vectors p, p and p" representing respectively the ray -velocities of light

incident on, and refracted and reflected by, a biaxial crystal, and /*' being the index-vector

for the refracted light, by all wave theories of light (p. 353)

p2 = S/i'p' = p"'^ = - 1, (G7)

;

p" = -vpv-^, (H7)

;

v = ii-p, (J7)

where «/ is a normal to the face. The corresponding vectors of vibration being t, t', t",

by all theories of tangential vibration

SpT = 0, (K,); SmV = 0, (L7); Sp"t" = (M7).]

[(J). To these Mac Cullagh adds I. that the vibration in the crystal is perpendicular

to p', or

SpV = O
;

(N7)

he also assumes II. the Principle of Equivalent Vibrations expressed by

T - t' + t" = 0, (O7)

III. the Principle of Vis Viva and IV. the Principle of constant Density of the Ether,

jointly expressed by
Si/(pt'^ - pV'^ + p'V"'*) = O (P7).]

f 2
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[(e). Eliminating p" and r" and solving for t it is found (p. 354) that

2t8pv = Vp«/t' (Qt) if v' = fi'- p (R7)

which includes one form of the enunciation of the Theorem of the Polar Plane as ex-

pressed by the equation (p. 366)

SAt' = 0. (87)]

[(<i). If w is an arbitrary vector (p. 356) the equations had to

VvVf {p - ce)r - [p - (e)r' + (p" - «)t"} = (T7)

and this equation combined vrith the principle of Rectangular Vibrations contained in

equations (K7), (M7) and (^7) is sufficient to give the same direction of r and the same

dependencies of t and t" thereon as those expressed by (O7), (P7), (Q7) and (S7). Equation

(T7) expresses that three forces t, - r, r" applied at the extremities of p, p', p" would be

equivalent to a couple having its axis parallel to y.]
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CHAPTER III.

ON SOME ADDITIONAL APPLICATIONS OF QUATERNIONS,

WITH SOME CONCLUDING REMARKS.

SECTION 1.

Remarks Introductory to this €oncladinf( Chapter.

366. When the Third Book of the present Elements was begun, it was

hoped (277) that this Book might be made a much shorter one, than either

of the two preceding. That purpose it was found impossible to accomplish,

without injustice to the subject ; but at least an intention was expressed

(317), at the commencement of the Second Chapter^ of rendering that Chapter

the last : while some new Examples of Geometrical Applications, and some few

Specimens of Physical ones, were promised.

367. The promise, thus referred to, has been perhaps already in part

redeemed; for instance, by the investigations (315) respecting certain tan-

gents, normals, areas, volumes, and pressures, which have served to illustrate

certain portions of the theory of differentials and integrals of quaternions.

But it may be admitted, that the six preceding Sections have treated chiefly

of that Theory of Quaternion Differentials, including of course its Principles

and Rules ; and of the connected and scarcely less important theory of Linear

or Distributive Functions, of Yectors and Quaternions : Examples and Appli-

cations having thus played hitherto a merely subordinate or illustrative part,

iu the progress of the present Volume.

368. Such was, indeed, designed from the outset to be, upon the whole, the

result of tlie present undertaking : which was rather to teach, than to apply,

the Calculus of Quaternions. Yet it still appears to be possible, without quite

exceeding suitable limits, and accordingly we shall now endeavour, to con-

dense into a short Third Chapter some Additional Examples, geometrical and

B2
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physical, of the application of the principles and rules of that Calculus, sup-

posed to be already knonm, and even to have become by this time familiar*

to the reader. And then, with a few general remarks, the work may be

brought to its close.

SECTION 2.

On Tangents and IVormal Planes to CnrYes In Space.

3C9. It was shown (100) towards the close of the First Book, that if the

equation of a curve in space, whether plane or of double curvature, be (/ivcn

under the form,

I. . .p = ^{t) = <j>t,

where t is & scalar variable, and ^ is a functional sign, then the derived vector,

II. . .'Dp = J)<f>t = <p't = / = d|0 : d^

represents a line which is, or is parallel to, the tangent to the curve, drawn

at the extremity of the variable vector p. If then we suppose that t is a

point situated upon the tangent thus drawn to a curve pq at p and that u is

a point in the corresponding normal plane, so that the angle tpu is right,

and if we denote the vectors op, ot, ou by p, r, v, the equations of the tangent

line and normal plane at p may now be thus expressed ;

III.. .YiT-p)p'=0; IV. ..S>{v-p)p'=0;

the vector t being treated as the only variable in III., and in like manner v as

the only variable in lY., when once the curve pq is given^ and the point p is

selected.

(1.) It is permitted, however, to express these last equations under other

forms ; for example, we may replace p' by dp, and thus write, for the same

tangent line and normal plane,

V. ..Y{r-p)dp = 0', VI. ..S(u-/o)dp = 0,•

where the vector differential dp may represent any line, jmrallel to the tangent

to the curve at p, and is not necessarily small (compare again 100).

(2.) We may also write, as the equation of the tangent,

VII. . . T = p + xp, where a; is a scalar variable

;

• Accordingly, eren referenoea to former Aiiicles will now be supplied more sparingly than before.
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and as the equation of the normal plane,

YIII...dT{v-p) = 0, or Ylir. ..dT(u-p} = 0, if dy = 0;

because thia partial differential of T(u - />), or of ru, is (by 334, XII., &c.),

IX. . . dT (u - /o) = S (U(u - p) . dp).*

(3.) For the circular locus 314, (1.), or 337, (1.), of which the equation is,

X. . . p = a'jS, with Ta = 1, and SajS = 0,

the equation of the tangent is, by YII., and by the value 337, YI. of p\

XI. . . T = |0 + yapf where y is a new scalar variable
;

the perpendicularity of the tangent to the radius being thus put in evidence.

(4.) For ihQ plane but elliptic locus, 314, (2.), or 337, (2.), for which,

Xll. . . /o = Y. a'/3, with Ta = 1, but not Sa/3 = 0,

the value 337, YIII. of p shows that the tangent, at the extremity of any

one semidiameter /o, is parallel to the conjugate semidiameter of the curve

;

that is, to the one obtained by altering the excenfric anomaly (314, (2.)), by

a quadrant: or to the value of p which results, when we change ^ to ^ + 1.

(5.) For the helij, 314, (10.), of which the equation is,

XIII. . .p = cta + a% with Ta = 1, and Sa/3 = 0,

c being a scalar constant, we have the derived vector,

XIY. . .p' = ca + ry a'*>i3 ; whence XY. . . Sa'p' = c,

lit

'^Yl. . . TYaV' =
r, TjS, and XYII. . . (TY : S)a->' =^

;

li lie

the tangent line (/>') to the helix is therefore inclined to the axis (a) of the

* [Again we may write, as the equation of the normal plane,

(VII.) «; = /> + Ip', where { is a variable vector at right angles to p ;

and as the equation of the tangent,

(VIII.) dpU(T - p) = 0, or (Vlir.) dU(T -p) = 0, if dr = 0.

Geometrically, VIII. expresses that the length of the line joining a point in the normal plane to the

corresponding point on the curve does not vary when we pass to a consecutive point on the curve,

and (VIII.) expresses that the direction of the line joining a point on the tangent to the corresponding

point on the curve does not change when we pass to a consecutive point on the curve.]
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cylinder whereon tliat curve is traced, at a constant angle (a), whereof the

trigonometrical tangent (tan a) is given by this formula XVII. ; and accord-

ingly, the numerator ttTjS of that formula represents the semicircumference of

the cylindric base ; while the denominator 2c is an expression for half the

interval between two successive spires, measured in a direction parallel to the

axis. We may then write,

XYIII. . . ttTjS = 2c tan ^ = 2c cot J,

if a thus denote the constant inclination of the helix to the axis, while b

denotes the constant and complementary inclination of that curve to the

base, or to the circles which it crosses on the cylinder.

(6.) In general, the 2^(^i'allels p to the tangents to a curve of double curva-

ture, which are drawn from a fixed origin o, have a certain cone for their

locus ; and for the case of the lielix, the equation of this codo is given by the

formula XVII., or by any legitimate transformation thereof, such as the

following,

XIX. . . SUa-'p' = ± cos a = ± sin i

;

it is therefore, in this case, a cone of revolution, with its semiangle = a.

(7.) As an example of the determination of a normal j^lane to a curve of

double curvature, we may observe that the equation XIII. of the helix gives,

XX. . . p' = (5^- cH\ and therefore XXI. . . Sp/ = - cH ;

tlie equation IV. becomes therefore, for the case of this curve,

XXII. . . = S/o'u + cV, with the value XIV. of p\

(8.) If then it be required to assign the point u in which the normal

plane to the helix meets the axis of the cylinder, we have only to combine

this equation XXII. with the condition v \\ a, and we find, by XIII.

and XIV.,

XXIII. . . ou = u = - c'ta : Sap' = ctci, XXIV. . . Sa (y - p) = ;

the line pu is therefore perpendicular to the axis, being in fact a normal to

the cylinder.

370. Another view of tangents and normalplanes may be proposed, which

shall connect them in calculation with Taylor^s Series adapted to quaternions

(342), as follows.
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(1.) Writing

I. . . pt = po + Uttp'o, or briefly, V. . . pt = p + ufp%

the coefficient tit or u will generally be a quaternion, but its limiting value will

be positive unity^ when t tends to zei'o as its limit ; or in symbols,

II. . . Mo = lim. « = 1.

(2.) Admitting this, which follows either from Taylor's Series, or (in so

simple a ease) from the mere definition of the denved vector p\ we may con-

ceive that vector p to be constructed by some given line pt, without yet

supposing it to be known that this line is tangential at p to the curve pq,

of which the variable vector is oq = p^, while op = po = p, so that tlie line

PQ = ufp' is a vector chord from p, which diminishes indefinitely with the

scalar variable, f, and is small, if t be small.

(3.) Conceiving next that w = or = the vector of some new and arbitrary

point R, we may let fall a perpendicular qm on the liue pr, and so decompose

the chord pq into the two rectangular lines, pm and mq ; which, when divided

by the same chord, give rigorously the two (generally) quaternion quotients,

TTT
PM _ Swp^((0--p) j^ MQ Yup'jtJ - p)

PQ up [U) - p) PQ Up [u) - p)

the variable t thus disappearing through the divisions, except so far as it

enters into u, which tends as above to 1.*

(4.) Passing then to the limits, we have these other rigorous equations,

Y. . . lim.— = -".- \-, YI. . . lim.— = —r? r 5

PQ p[w-p) PQ p[u)-p)

[Here PQ = PM + MQ = PQ . ra . pa-', and separately (vol. I. p. 194) pm = 8(pq . pa) . pu-*

and MQ = V(PQ . pa) . pa"'. So we have

PM
N 1 ,

S(pQ.pa) , MQ ,^, , , ,
V(pq.pk)— = S(PQ . pr) . pa-' pQ-i = -' and — = Vipq . pa) . pa-' . pq-' = —^ -.

PQ PQ . PB PQ PQ . PU

The formulae of these sub-articles may be easily deduced from the consideration of the versor

yjPQ _ V'tp'

ptt \]{p-(i>y

or in the limit

Um.U~ = ± U-^.
pa p — w

This reduces to a scalar when a is on the tangent, and to a right versor when it is in the normal

plane. Observe that Utup' = ± Uwp'.]
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by comparing which with 369, III. and IV., we see that those two equations

represent respectively, as before stated, the tangent and the normal plane to

the proposed curve at p; because, if V/u'(w - p) = 0, the chord pq tendSy by

V. or VI., to coincide^ both in length and in direction, with its projection pm

on the line pr ; while on the other hand, if Sp'(w - p) =0, that projection

tends to vanish, even as compared with the chord pq ; which chord tends note

to coincide with its other projection mq, or with the perpendicular to the

line PR, erected so as to reach the point q: whence pr must, in this last

case, be a normal to the curve at p.

(5.) We may also investigate an equation for the normal plane, by con-

sidering it as the limiting position of the plane which perpendicularly bisects the

chord. If R be supposed to be a point of this last plane, then, with the

recent notations, the vector w = or must satisfy tlie condition,

VII. . .T(a>-/t>0 = T(a)-p«), or Nlll. . . {^ - p -utp'T' = {io - p)\

or IX. . .2SV(w-/o) = ^ («/»?>

in which it may be noted that np is a vector (in the direction of the chord, pq),

although w itself is generally a quaternion, as before : such then is the

equation of the bisecting plane, with oj for its variable vector, and its limit is,

X. . . S|o'((u - p) =0, as before.

(6.) The last process may also be presented under the form,

XI. . . = lim. t-' {T((u - pt) - T(w - /oo) } = D/r(w -
pt), when t = 0;

and thus the equation 369, VIII. may be obtained anew.

(7.) Geometrically, if we set off on rq a portion rs equal in length

to RP, as in the annexed fig. 76, we shall have the limiting equation,

•!
XII. . . ± sQ : PQ = (rq - Kp) : pq = (ultimately) - cos rpt ; j^t—

which agrees with 369, IX.* / /\ •

(8.) If then the point r be taken out of the normal plane // \j

at p, this limit of the quotient, rq - kp divided by pq, has a
IC.^-'''''''^^

finite value, positive or negative ; and if tlie chord pq be ^

called small of the first order, the difference of distances of its
^*

extremities from r may then be said to be small of the same (first) order.

But if R be taken in the normal plane at p (and not coincident with that

* [sQ denotes the length of the vector sq.]
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point T itself), this difference of distances may then be said to be stnaH, of

an order higher than the first : which answers to the evanescence of the first

differential of the tensor, T(w - p) in XI., or T (u - p) in 369, VIII'.

371. A curve may occasionally be represented in quaternions, by an

equation which is not of the form, 369, I., although it must always be con-

ceived capable of reduction to that form : for instance, this new equation,

I. . .\ap. Npa' = {Naay, with TYaa' > 0,

is not immediately of the form p = <pf, but it is reducible to that form as

follows,
II. . . p = ta + t-'a'.

An equation such as I. may therefore have its differential or its derivative

taken, with respect to the scalar variable t on which p is thus concciced to

depend, even if the exact laic of such dependence be unknown : and dp, or

p', may then be changed to the tangential vector to- p io which it is parallel,

in order to form an equation of the tangent, or a condition which the vector

6> of a point on that sought line must satisfy.

(1.) To pass from I. to II., we may first operate with the sign V, which

gives,
III. . . pSaa> = 0, or simply, IIF. . . Saa> =

;

whence, t and t' being scalars, we may write,

IV. . . p = ta + t'a. Yap = t'Yaa, Ypa' = tYaa\ it' = 1,

and the required reduction is effected : while the return from II. to I., or

the elimination of the scalar t, is an even easier operation.

(2). Under the form II., it is at once seen that p is the vector of a

2)lane hi/2)erbola, with the origin for centre, and the lines a, a for afiymptotes
;

and accordingly all the properties of such a curve may be deduced from

the expression II., by the rules of the present Calculus.

(3.) For example, since the derivative of that expression is,

V. . . p' = a - t-'a\

the tangent may (comp. 369, VII.) have its equation thus written :

VI. . . tu = (^ + ir) a + t-^ {t -a^)a;

it intersects therefore the lines a, a in the points of which the vectors are

2ta, 2t~^a; so that (as is well known) the intercept, upon the tangent,

Hamilton's Elements of Quaternions, Vol. II, q
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between the asymptotes, is bisected at the point of contact : and the intercepted

area is constant, because Y{ta . T' a) = Yaa, &o.

(4.) But we may also operate immediateh/, as above remarked, on the

form I. ; and thus arrive (by substitution oi (o - p for dp, &c.) at the

equation of conjugafion,

VII. . .Yaio. Ypa' + Yap . Ytoa' = 2 (YaaJ,

which expresses (comp. 215, (13.), &o.) that if p = op, and to = on, as

before, then either r is on the tangent to the curve, at the point p, or at

least each of these two points is situated on the polar of the other, with

respect to the same hyperbola.

(5.) Again, it is frequently convenient to consider a curve as the inter-

section of two surfaces ; and, in connexion with this conception, to represent

it by a system of two scalar equations, not explicitly involving any scalar

variable : in whicli case, both equations are to be differentiated, or derivated,

with reference to such a variable understood, and dp or p' deduced, or

replaced by w - p as before.

(6.) Thus we may substitute, for the equation I., the system of the

two following (whereof the first had occurred as III'.)

:

VIII. . . Saa'p = 0, p'^Saa' - SapSa'p = (Vaa')'

;

and the derivated equations corresponding are,

IX. . . ^aap =0, 2 Saa'Spp' - Sap'Sa'p — SapSa'p' = ;

or, with the substitution of to - p for p', &c.,

X. . . Saato = 0, 2SaaSp(i) - SawSa'p - SapSa'o) = 2 (Yaa'Y ;

the last of which might also have been deduced from VII., by operating

with S.

(7.) And it may be remarked that the two equations VIII. represent re-

spectively in general a plane and an hi/perboloid, of which the intersection (5.)

is the hyperbola I. or II. ; or a plane and an hyperbolic cylinder, if Saa' = 0.*

• [If /) = -~ where ^{t) is a rational and integral vector function of degree m in t, and

f{t) a rational and integral scalar function of degree n, the degree of the curve is equal to the

greater of the two integers m and n. This is evident when we substitute for p in the equation of an

arbitrary plane, Sa./> = 1, for we obtain a scalar equation in t whose roots determine the points

in which the curve cuts the plane. Curves of this kind are unicureal. In geneJ-al there is some
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SECTION 3.

On Urormals and Tangent Planes to Surfaces.

372. It was early shown (100, (9.)), that when a curved surface is repre-

sented by an equation of the form,

I. . . p = 0(^,2/),

in which is a functional sign, and a?, y are two independent and scalar

variables, then either the two partial differentials, or the two partial derivatives,

of the first order,

IT. . . da:|t>, diyp, or, III. . . Dxp, Dyp,

represent tico tangential vectors, or at least vectors parallel to tico tangents

to the surface, drawn at the extremity or term p of p ; so that tlie plane

of these two differential vectors, or of lines parallel to them, is (or is

parallel to) the tangent plane at that point : and the principle has been

since exemplified, in 100, (11.) and (12.), and in the sub-articles to 345, &c.

It follows that any vector v, which is perpendicular to both of two such

non-parallel differentials, or derivatives, must (comp. 345, (11.)) be a normal

rector at p, or at least one having the direction of the normal to the surface

at that point ; so that each of the two vectors,

IV... Y.d.pdyp, V. ..V.D.pDyp,

if actual, represents such a normal.

(1.) As an additional example, let us take the case of the ruled paraboloid,

on which a given gauche quadrilateral abcd is superscribed. The expression

for the vector p of a variable point p of this surface, considered as a

function of two independent and scalar variables, x and y, may be thus

written (comp. 99, (9.))

:

YI. . . p = xya^{l-x)y^ + {l-x){i-y)y + x{i- y)l',

where the supposition y = X places the point p on the line ab ; x = places

it on BC ; y = 0, on cd ; and a; = 1, on da.

irrationality in the functions of t, and the result of substitution in the equation of the plane must
be rationalized before the degree of the curve can be determined.

As examples of the equations of curves :

—

a<2 + 2/3< + 7 . .

P ~
i" . nL^ '8 a conic provided there is no common factor in the numerator or denominator

;

at- + 2ot + c
*^

p = {<p-\- t)<»a, in M-hich ^ is a linear vector function and m a constant scalar, represents a right line

when ?« = 1, a twisted cubic when >« = -!, and a twisted quartic when m = J.]

C2
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(2.) We have here, hy partial derivations,

VIL..D.p = y(a-/3) + (l-2/)(^-7); D,^p =. x{a-d) + {I -x){fi -y);

these then represent the directions of two distinct tangents to the paraboloid

VI., at what may be called the point [x, y) ; whence it is easy to deduce the

tangent plane and the normal at that point, by constructions on which we

cannot here delay, except to remark that if (comp. fig. 31, Art, 98) we draw

two right lines, qs and kt, through p, so as to cut tlie sides ab, bc, cd, da.

of the quadrilateral in points q, u, s, t, we shall have by YI. the vectors,

j«(i = ^« + (l-^)/3, 0R = y/3 + (l-y)7,

(os = x'B + (1 - x)j, OT = pa + (1 - y)8,

and therefore, by YII.,

IX. . . D^p = RT, Dy/o = SQ

;

so that these two tangents are simply the (wo generating lines of the surface,

which pass through tlie proposed point p.*

(3.) For example, at the point (1, 1), or a, the tangents thus found are

the sides ba, da, and the tangent plane is that of the angle bad, as indeed

is evident from geometry.

(4.) Again, the equation of the screw surface (comp. 314, XYI.),

X. . . p = cxa + pa'ld, with Ta = 1, and Saj3 = 0,

gives the two tangents,

Xr. ..D,p = ca + |ya-^^i3, Dyp = a^i3,

whereof tlie latter is perpendicular to the former, and to the axis a of the

cylinder; so that the corresponding normal to the surface X. at the point

{x, y) is represented by the product,

XII. . .v^'D.p. T>yp = ca'+'i3 + ^yjS^a.

373. Whenever a variable vector p is thus expressed or even conceived to

be expressed, as o. function of two scalar variables, x and y (or « and ^, &c.),

* [In VIII, Q and 8 are two variable points dividing homograph ically ab and dc, and u and t

divide bo and ad liomographically. The ruled paraboloid is the locus of lines joining corresponding

points of the^homographic divisions on ab and DC, or on bc and ad, for VI. may be written in either

of the forms

p = yoQ + (1 - y) 08, or p = a;oT + (I - j:) or.]
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if we assume any three diplanar vectors, such as a, /3, 7 (or i, k, A, &c.), tlie

three scalar expressions, Sap, SjS/j, Syp (or Sip, Sup, SXp, &g.), will then be

functions of the same two scalar variables ; and will therefore be connected

with each other by some o}ie scalar equation, of the form,

I.. .F{Sap,S[3p,Syp)=0,
or briefly,

U...fp = C;

where C is a scalar constant, introduced (instead of zero) for greater

generality of expression ; and F, f are used as functional but scalar signs.

If then (comp. 361, XIV.) we express the first differential of this scalar

function fp under the form,

III. . . d. /jb = 2Svdp,

in which v is a certain derived vector, and is here considered as being (at least

implicitly) a vector function (like/o) of the two scalar variables above mentioned,

we shall have the two equations,

IV. . . Svdi^p = 0, SvAyp = 0,

or these two other and corresponding ones,

V. . . SvD,p = 0, SvDyp = ;

from which it follows (by 372) that v has the direction of the normal to the

surface I. or II., at the point p in which the vector p terminates. Hence

the equation of that normal (with w for its variable vector) may, under these

conditions, be thus written :

VI.. . Vi;(w-|o) =0;

and the corresponding equation of the tangent plane at the same point p is,

VII. . . Sv{u> -p) = 0.

(1.) For example, if we take the expression 308, XVIII., or 345, XII.,

namely
VIII. .. p = rk'/kflf^ in which hf =fk, &c.,

treating the scalar r as constant, but s and t as variable, we have then (com]).

345, XIV.), the equations, a denoting any unit-vector,

IX. . . Sip = rS . a«S . a^"S Sjp = rS . a''''S . a">*\ Skp = rS . a""' ;
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between which s and t can be eliminated, by simply adding their squares,

because (So')'' + (Sa'~^)* = 1, by 315, V., if To = 1. In this manner then we

arrive at equations of the forms I. and II., namely (comp. 357, YII., and

308, (10.) and (13.)),

X. . . {SipY + {SjpY + {SkpY - r' = 0,

and
XI. . . /p = p^ = - r' = const., or XY. . . Tp = r

;

which last results had indeed been otherwise obtained before.*

(2.) With this form XI. of fp, we have the differential expression of the

first order,

XII. . . Afp = 2Svd/o = 28pdp, whence XIII. . . v = p ;

and if we sti/l conceive that p is, as above, some rector function of ttco scalar

variables, s and f, altliough the particular law YIII, of its dependence on

them may now be supposed to be unknoivn (or to be forgotten), we may

write also,

XIY. . . Idfp = SvSp = ^pdp = S|t)(d, + dt)p = SpD.p . ds + BpDtp . d^

;

if then the function fp have (as above) a value, = - r", which is constant, or

is inchpendent of both the variables, s and t, while their differentials are

arbitrary, and are independent of each other, we shall thus have separately

(comp. v., and 337, XIII., XVII.),

XY. . . SpD.s|0 = 0, ^pDtp = 0.

The radius p of the s^phere XI. is therefore in this way seen to have the

direction of the normal at its own extremity, because it is perpendicular to

tico distinct tangents, D^p and D/p, at that point ; which are indeed, in the

present case, perpendicular to each other also (337, (8.)).

(3.) Instead of treating the ttco scalar variables, x and y, or s and t, &c.,

as both entirely arbitrary and independent, we may conceive that one is an

arbitrary (but scalar) function of the otiicr ; and then the vector v, determined

by the equation III., will be seen anew to be the normal at the extremity

p of p, because it is perp>endicular to the tangent at p to an arbitrary curve

upon the surface, which passes through that point : or (otherwise stated)

[Of course p* - r^kyicj-'k-t • k'^kj-^-' = »•='** = - »'.]
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because it is a line in an arbitrary normal plane at p, if a normal plane to a

curve on a surface be called (as usual) a normal plane to that surface also.

(4.) For example, if we conceive that s in YIII. is thus an arbitrary

function of f, the last expression XIV. will take the form,

XVI. . . = Wp = S . p{sDsp + 'Dtp)df, if ds = s'dt
;

whence, d^ being still arbitrary, we have the one scalar equation,

XVII. . . S . p{s'D,p + Dtp) = 0, or XVIII. . . pLs'Dsp + D,p,

and although, on account of the arbitrary coefficient s', this one equation

XVII. is equivalent to the system of the two equations XV., yet it immediatehj

signifies, as in XVIII., that the directed radius p, of the sphere XI., is

perpendicular to the arbitrary tangent, s'D^p + Dtp ', or to the tangent to an

arbitrary spherical curve through p, the centre o and tensor T|0 (or undirected

radius, r) remaining as before.

(5.) As regards the logic of the subject, it may be worth while to read

again the^;roo/(331), of the validity of the rule for differentiating a function

of a function ;' because this rule is virtually employed, when after thus

reducing, or conceiving as reduced, the scalar function fp of a vector p, to

another scalar function such as Ft of a scalar t, by treating p as equal to

some vector function ^^ of this last scalar, we infer that

XIX. . .dFt = df<pt = 2S . vd(l>t, if dfp = 2Svdp, as before.

(6.) And as regards the applications of the formulae VI. and VII., or

of the equations given by them for the normal and tangent plane to a surface

generally, the difficulty is only to select, out of a multitude of examples

whicli might be given : yet it may not be useless to add a few such here,

the case of the sphere having of course been only taken to illustrate the

theory, because tlie normal property of its radii was manifest, independently

of any calculation.

(7.) Taking then the equation of the ellipsoid, under the form,

XX. . . '\l{ip + pk) = k' - i\ 282, XIX.,

of which tlie first differential may (see the sub-articles to 336) be thus written,

XXI. . . = S.{(t - Kfp + 2(iSk|0 + K'&ip)]dp = ^vdp,
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and introducing an auxiliary vector, on or ^, such that

XXII. . . ON = ^ = - 2 (t - k)-" {iSkp + kS//j),

we have v \\ p - K> and may write, as the equation of the normal at the

extremity p of p, the following,

XXIII. . .Y.(^-|o)(w-p) = 0, or XXIY. . .(o = p + x{^-p),

in which a; is a scalar variable (comp. 369, YII.) ; making then x = 1,

we see that ^ is the vector of the point n in which the normal intersects

the plane of the two fixed lines <, ic, supposed to be drawn from the origin,

which is here the ce)itre of the ellipsoid.

(8.) If we look back on the sub-articles to 216 and 217, we shall see

that these lines i, k have the directions of the tico real cyclic normals, or

of the normals to the tico (real) cyclic planes ; which planes are now repre-

sented by the two equations,

XXV. . . S/jo = 0, Skp = 0.

Accordingly the equation XX. of the ellipsoid may be put (comp. 336,

357, 359) under the cyclic forms,

XXVI. . . ^p<j>p - (t' + k')p' + 2StpKp

= (i- K)y + ^SipSicp = {k' - i'Y = const.

;

hence each of the two diametral planes XXV. cuts the surface in a circle,

the common radius of these two circular sections being

XXVII. ,.Tp = ±^^ = b,
i (t - k)

where b denotes, as in 219, (1.), the length of the mean semiaxis of the

ellipsoid ; and in fact, this value of Tp can be at once obtained from tlie

equation XX., by making either ip = - pi, or pa = - Kp, in virtue of XXV.
(9.) By the sub-article last cited, the greatest and least semiaxes have

for their lengths^

XXVni. . . a = Tt + T,c, c = Tt-TK;

and the construction in 219, (2.) shows (by fig. 53, annexed to 217, (4.))

that these three semiaxes a, b, c have the respective directions of the lines,

XXIX. . . iT,c - a\, WiK, ,TK + icTt;
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all which agrees with the rectangular tramformation,

XXX. ^ Sp(pp ^ /T((p + pK)V

(S

.

pV{tTK

-

icTOY^ /T{i-K]S . pVYtKV^ f8.pV{iTK + kTi)

Ti + Tk y V Tt*-TK» / V Tt-lV

in deducing wliicli (comp. 359, (1.)) from 357, VIII., by means of tlie

formulae 357, XX. and XXT., we employ the values (comp. XXYI.),

XXXI. . . g = i'' + K\ \ = 2t, K,

(10.) The fxed plane (7.), of the ci/clic normals i and k (8.), is therefore

also tlie plane of the extreme semiaxes, a and e (9.), or tliat which may be

called perhaps the pnncipal plane* of the ellipsoid : namely, the plane of

the generating triangle (218, (!.))> in that construction of the surface (217,

(6.) or (7.)) which is illustrated by fig. 53, and was deduced as an inter-

pretation of the quaternion equation XX., or of the somewhat less simple

form 217, XYI., with the value Tt' - Tie' of f.

(11.) Let n denote the length of that portion of the normal, which is

intercepted between the surface and the principal plane (10.), so that, by (7.),

XXXII. . . « = NP = T(p - ^), >r = -{p- K)\

with the value XXII. of ^. Let or = os be the vector of a point s on the

surface of a new or auxiliary sphere, described about the point n as centre,

with a radius = n, and therefore tangential to the ellipsoid at p ; and let us

inquire in what curve or curves, real or imaginary, does this sphere cut the

ellipsoid.

(12.) The equations (comp. 371, (5.)) of the sought intersection are the

two following,

XXXIII. .. {a-^Y + n' = 0, and XXXIV. . . T (kt + ^k) = k' - i'

;

whereof the first expresses that s is a point of the sphere, and the second

that it is a point of the ellipsoid ; while p or op enters virtually into

XXXIII., through ^ and n, but is here treated as a constant, the point p

being now supposed to be a given one.

* This plane may also be said to be the plane of the principal elliptic section (219, (9.) ) ; or it

may be distinguished (comp. the Note to page 240, vol. i.) as the plane of iha focal hyperbola, of

wliich important curve we shall soon assign the equation in quaternions.

Hamilton's Elbmknts of Quatkknions, Vol. IL D
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(13.) We shall remove (18.) the origin to this point p of the ellipsoid,

if we write,

XXXY. . . <T = /« + (t', or XXXV. .. (t'=(t-p = ps;

and thus we ohtain the new or transformed equations,

XXXVI. ..0 = <t'' + 2S{p - 1)<t\ XXXVII. . . = N(((t' + o'k) + 2Sv(t'
;

in which (as in (7.), comp. also 210, XX.),

XXXVIII. .,v = {i- ic)V + 2((Sk'p + K^ip) = {i- kY ip - K),

and
XXXIX. . . N(((t'+ (t'k-) = {i- KYa' + 4Si(r'Sif(T'.

(14.) Eliminating then a^, we obtain from the two equations XXXVI.

and XXXVII. this other,

XL. . . St<T . Sk(7 = ;

which like them is of the second degree in or', but breaks up, as we see, into

hoo linear and scalar factors, representing two distinct planes, parallel hy X^Y

.

to the two diametral and ct/clic planes of the ellipsoid. The sought intersection

consists then of a pair of (real) circles, upon that given surface ; namely,

two circular (but not diametral) sections, which pass throtigh the given point p.

(15.) Conversely, because the equations XXXVII. XXXVIII. XXXIX.
XL. give XXXVI. and XXXIII., with the foregoing values of ^ and n,

it follows that these two plane sections of the ellipsoid at p are on one

common sphere, namely that which has n for centre, and n for radius, as

above ; and thus we might have found, without differentials, that the line pn

is the normal at p ; or that this normal crosses the principal plane (10.), in

the point determined by the formula XXII.

(16.) In general, tlie ct/clic form of the equation of ant/ central surface of

the second order, namely the form (comp. 357, II.),

XLI. . . Sp(f>p = g'p' + 2SXpSfjp = C= const.,

shows that the two circles (real or imaginary) in which that surface is cut by

any two jjlancs,

XLII. . . SXp = /, ^fip = m,

drawn parallel respectively to the two real cyclic planes, which are jointly

represented (comp. XL., and 216, (7.)) by the one equation,

XLII I. . . SXpSfxp = 0,
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are homospherical, being both on that one sphere of which the equation is,

XLIY. . . c/p' + 2{lSfip + mSAp) = 2lm + C.

(17.) But the centre (say n) of this new sphere^ has for its vector (say ^),

XLV. . . ON = ? = - g-\Iii + mX)
;

it is therefore situated in the plane of the two real cyclic normals, X and fx ;

and if / and m in XLV. receive the values XLIL, then this new ^ is the

vector of intersection of thnt plane, with the normal to the surface at p : because

it is (comp. (15.)) the vector of the centre of a sphere wliich touches (though

also cutting, in the two circular sections) the surface at tliat point.

(18.) "We can therefore thus infer (comp. again (15.)), without the differen-

tial calculus, that the line,

XLYI. . . g'{p -l)= g'p + X^ixp + /.xSAp « ^p,

as having the direction of np, is the normal at p to the surface XLI. ; which

agrees with, and may be considered as confirming (if confirmation were

required), the conclusion otherwise obtained through the differential ex-

pression (361),

XLYII. . . dS^^p = 2Svd/o = 2S0|r>d((,

;

the linear function ^p being here supposed (comp. 361, (3.)) to be self-

conjugate.

(19.) Hence, with the notation 362, I., the equation of the tangent plane to

a central sm-face of the second order, at the same point p, may by Yll. be

thus written,

XLYIII. . . f{w, p) = C, if Sp^/o = C = const.

;

in which it is to be remembered, that

XLIX. . . /(w, p) = f{p, u)) = ^w(f>p = Sp^cii.

(20.) And if we choose to interpret this equation XLYIII., which is only

of the frst degree (362) with respect to each separately of the two vectors,

p and (I), or op and or, and involves them symmetrically, without requiring

that p shall be a point on the surface, we may then say (comp. 215, (13.), and

316, (31.)), that the formula in question is an equation of conjugation, which

expresses that each of the two points p and r, is situated in the polar plane of

the other.

u 2
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(21.) In general, if we suppose that the length and direction of a lino v

are so adjusted as to satisfy the two equations (comp. 336, XII. XIII. XIV.),

L. . . Sv|o = 1, Svdp = 0, and therefore also LI. . . Spdv = ;

then, because the equation YII. of the tangent plane to any curved surface may

now be thus written,

LII. . . Sv(a> - V-') = 0,

it follows that v"^ represents, in length and direction, the perpendicularfrom

o on that tangent plane at v ', so that v itself represents the reciprocal of that

perpendicular, or what may be called (comp. 336, (8.)) the vector ofproximity,

of the tangent plane to the origin. And we see, by LI., that the two vectors,

p and V, if drawn from a common origin, terminate on tico surfaces which are,

in a known and important sense (comp. the sub-arts, to 361), reciprocals* of

one another : the line p'^, for instance, being the perpendicular from o on the

tangent plane to the second surface, at the extremity of the vector v.

374. In the two preceding Articles, we have treated the symbol dp as

representing (rigorously) a tangent to a curve on a given surface, and therefore

also to that surface itself', and thus tlie formula Si/dp = has been considered

as expressing that v has the direction of the normal to that surface, because

it is perpendicular to two tangents (372), and therefore generally to every

tangent (373), which can be drawn at a given point p. But without at

present introducing any other \ signification for this symbol dp, we may

interpret in another way, and witli a reference to chords rather than to

curves, the differential equation,

L . . d/p = 2Si/d/t>,

• Compare the Note to page 549, vol. i.

t It is perviilted, for example, by general principles above explained, to treat the differential dp

as denoting a chordal vector, or to substitute it for Ap, and so to represent the differenced equation of

the surface under the form (comp. 342),

= A/p = («) - \)fp = d/p + ^dVp + &c.

;

but with this meaning of the tymbol dp, the equation d/p = 0, or Svdp = 0, is no longer rigorous, and
must (for rigour) be replaced by such an equation as the following,

= 2SvAp + Sdvdp + li, if d/p = 2Sydp, as before

;

the remainder Ji vanishing, when the surface is only of the second order (comp. 362, (3.) ). Accord-
ingly this la&t form is useful in some investigations, especially in those which relate to the curvatures

of normal sections
: but for the present it seems to be clearer to adhere to the recent signification of

dp, and therefore fo treat it as still denoting a tangent, which may or may not be small.
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supposed still to be a rigorous one (in virtue of our definitions of differentials,

wliicH do not require that dp should, be small) ; and may still deduce from it

the normal property of the vector v, but now with the help of Taylor^ Series

adapted to quaternions (comp. 342, 370). In fact, that series gives here a

differenced equation, of the form,

II. . . A/p = 2SvA|0 + R
;

where 72 is a scalar remainder (comp. again 342), having the property that

III. . . lim. {R : TAp) = 0, if lim. TAp = ;

whence

IV. . . lim. (A/p : TAp) = 2 lim. SyUAp,

whatever the ultimate direction of Ap may he. If then we conceive that Ap

represents a small and indefinitely decreasing chord pq of the surface, drawn

from the extremity p of p, so that

V. . . A/p =/(p + Ap) -fp = 0, and lim. TAp = 0,

the equation lY. becomes simply,

YI. . . lim. SyUAp = ;

and thus proves, in a new way, that v is normal to the surface at the proposed

point p, by proving that it is ultimately perpendicular to all the chords vq from

that point, when those chords become indefinitely small, or tend indefinitely

to vanish.

(1.) For example, if

YII. . .fp = p\ v = p, then YIII. . . R = Ap^ and R : TAp = - TAp

;

thus, for every point of space, we have rigorously, with this form of fp,

IX. . . A/p : TAp = 2SpUAp - TAp
;

and for every point q of the spheric surface, fp = const., we have tvith equal

rigour,

X. . . 2SpUA,o = TAp, or XI. . . pq = 2op . cosopq
;

in fact, either of these two last formulas expresses simply, that the projection

of a diameter of a sphere, on a conterminous chord, is equal to that chord itself,

and of course diminishes with it.
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(2.) Passing then to the limit, or conceiving the point q of the surface

to approach indefinitely to p, we derive the limiting equations,

XII. . . lim. SpUAp = ; XIII. . . lim. cosorQ =
;

either of which shows, in a new way, that the radii of a sphere are its

normals', with the analogous result for other surfaces^ tliat the vector v in

I. has a normal direction, as before : because its projection on a chord pq tends

indefinitely to diminish with that chord.

(3.) We may also interpret the differential equation I. as expressing,

through II. and III., that the plane 373, YII., which is drawn through

the point p in a direction perpendicular to v, is the tangent plane to the

surface : because the projection of the chord Ap on the normal v to that plane,

or the perpendicular distance,

XIY. . . - S (Uv . A/>) = iiJ . Tv-\

of a near point Qfrom the plane thus drawn through p, is small of an order

higher than the first (comp. 370, (8.)), if the chord pq itself be considered

as small of the first order.

375. This occasion may be taken (comp. 374, I. II. III.) to give a

new Enunciation of Taylor^s Theorem, in a form adapted to Quaternions, which

has some advantages over that given (342) in the preceding Chapter. We
shall therefore now express that important Theorem as follows :

—

" If none of the m + 1 functions,

I. . .fq, d/y, dV? . . . d""/?, in which d'^ = 0,

become infinite in the immediate vicinity of a given quaternion q, then the

quotient,

IL..Q=|/(g + d?)-/(?-dA-^-|^-&c.

d'^/y
)

dy"*

2 . 3 . . mj * 2 . 3 . . m'

can be made to tend indefinitely to zero, for any ultimate value of the rersor

JJdq, by iiidtfiiiitely diminisliing the tensor Td</."

(1.) Tlie proof oi the theorem, as thus enunciated, can easily be supplied

by an attentive reader of Articles 341, 342, and their sub- articles ; a few

hints may however here be given.
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(2.) We do not noio suppose, as in 342, that d."\fq must be differentfrom

zero ; we only assume that it is not infinite : and we add, to the expression

342, YI. for Fx, the term,

" 2.S...?n

(3.) Hence each of the expressions 342, YII., for the successive derivatives

of Fx, receives an additional term ; the last of them thus becoming,

lY. . . D"»jPa: = F^'^)x = d'»/((? + xdix) - d'"/^'

;

so that we have now (comp. 342, X.) the values

Y. . . i^O = 0, F'Q = 0, F"Q = 0, . . .
F(''»-i)0 = 0, F<^m = 0.

(4.) Assuming therefore now (comp. 342, XII.) the new auxiliary function,

TL...yLx = ^T~^, with Td<? > 0,
Z .6 . . .m

which gives,

YII. . . 1//0 = 0, yp'Q = 0, ^"0 = 0, . . i/.('»-00 = 0, ;//('»)0 = d;/"',

wo find (by 341, (8.), (9.), comp. again 342, XII.) that

YIII. . . lim. {Fx : xpx) = 0.

(5.) But these two new functions, Fx and xpx, are formed from the

dividend and the divisor of the quotient Q in II., by changing dq to xdq
;

and (comp. 342, (3.)) instead of thus multipli/ing a given quaterition differential

dq, by a stnnll and indefinitely decreasing scalar, x, we may indefinitely

diminiah the tensor, Tdq, icithout changing the versor, JJdq.

(6.) And even if "Udq be changed, while the differential dq is thus made

to tend to zero, we can always conceive that it tends to some limit ; which

limiting or ultitnate value of that versor Ud^' may then be treated as if it

were a constant one, without affecting the limit of the quotient Q.

(7.) The theorem, as above enunciated, is therefore fully proved; and

we are at liberty to choose, in any application, between the two forms of

statement, 342 and 375, of which one is more convenient at one time, and

the other at another.
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SECTION 4,

On Osculating Planes, and Absolute UTormals, to Curves of
Double Curvature.

376. The variable vector pt of a curve in space may in general be thus

expressed, with the help of Taylor's Series (comp. 370, (1.))

:

1. . . pt = p ^ tp ->r \fup'\ with Wo = 1

;

p, p\ p\ u being here abridged symbols for po, /o'o, p\, ih ', and the product

ifp" being a vector, although the factor u is generally a quaternion (comp.

370, (5.)). And the different terms of this expression I. may be thus con-

structed (compare the annexed fig. 77) :

II. . . /o = OP ; tp = PT
; Ithip" = TQ

;

while

III. . . pt = OQ, and tp' + ^f^up" = pq
;

the line tq, or the term ii^up'\ being thus what may be

called tlie deflexion of the curve pqu, at q, from its tangent

PT at p, measured in a direction which depends on the law

according to which pt varies with t^ and on the distance

of Q from p. The equation of the plane of the triangle ptq is rigorously

(by II.) the following, with w for its variable vector,

lY. . .0 = Sif/t>V(w-|o);

this plane IV. then touches the curve at p, and (generally) cuts it at q ; so

that if the point q be conceived to approach indefinitely to p, the resulting

formula,
' V. .. = 8/7 (6;-,o), or v. ..0 = S/>V'(a>-p),

is the equation of the plane ptq in that limiting position, in which it is called

the osculating plane, or is said to osculate to the curve pqu, at tlie point p.

(1.) If the variable vector p be inimediateli/ given as a function p, of a

variable scalar. «, which is itself a function of the former scalar variable t,

we shall then have (comp. 331) the expressions,

VI. . . p't = «'D,p„ p"t = s"D,/>, + s'Ds'psy with 6-' = J)ts, s" = Dth ;

thus the vector p" may change, even in direction, wlien we change the

independent scalar variable ; but /o" will altvays be a line, either in or parallel
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io the osculating plane ; while p will always represent a tangent, whatever

scalar variable may be selected.

(2.) As an example, let us take the equation 314, XY., or 369, XIII.,

of the helix. With the independent variable t of that equation, we have

(comp. 369, XIY.) the derived expressions,

VII. . . p' = ca + |a'^^/3, p" = - (0'a'^ = {^{cia - p) ;

p' has therefore here (comp. 369, (8.)) the direction of the normal to the

cylinder ; and consequently, the osculating plane to the helix is a normal

plane to the cijUnder of revolution, on which that curve is traced : a result

well known, and which will soon be greatly extended.

(3.) When a curve of double curvature degenerates into a ^;/a»e curve, its

osculating \AQ.\iQ becomes constant, and reciprocally. The condition of plananti/

of a curve in space may therefore be expressed by the equation,

VIII. . . UVjo'/o" = ± a constant unit line

;

or, by 335, II., and 338, VIII.,

IJ^. . . u - V ^^,^„
- V

^^,^„ ,

or finally,

X. . . S/,VV- = 0, or :Kl...p"'\\\p\p\

(4.) Accordingly, for a plane curve, if X be a given normal to its plane,

we have tlie three equations,

XII. . . SAp' = 0, SAp" = 0, SA/" = ;

which conduct, by 294, (II.), to X.

(5.) For example, if we had not otherwise known that the equation

337 (2.) represented a plane ellipse, we might have perceived that it was the

equation of some plane curve, because it gives the three successive derivatives,

XIII. . . p' = |Va'-/3, p" = - (^^\aUi, p" = - (^)V«'-^,

which are complanar lines, the third having a direction opposite to the first.

(6.) And generally, the formula X. enables us to assign, on ani/ curve of

double curvature, for which jo is expressed as a function of t, the points* at

* Namely, in a modern phraseology, the places oi four-point contact with a plane. The equation,

Vp'p" = 0, indicates in like manner the places, if any, at which a curve has three-point contact with a

riffht line. For curves of double curvature, these are also called points of simple and double injlexion.

Hamilton's Elkmknts of Quaternions, Vol. II E
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which it most resembles a plane curve, or approaches m>OBt closely to its own

osculating plane.

377. An important and characteristic property of the osculating plane

to a curve of double curvature, is that the p)erpendiculars let fall on it,

from points of the curve near to the point of osculation, are small of an

order higher than the second, if their distances from that point be considered

as small of the first order.

(1.) To exhibit this by quaternions, let us begin by considering an

arbitrary plane,

I. . . SX(ai - /t>) = 0, with TX = 1,

drawn through a point p of the curve. Using the expression 376, I., for

the vector oq, or pt, of another point q of the same curve, we have, for the

perpendicular distance of q from the plane I., this other rigorous expression,

II. . . mpt -p)= tSXp' + ^t'SXup''
;

whicli represents, in general, a small quantity of the first order, if t be

assumed to be such.

(2.) The expression II. represents however, generally, a small quantity

of the second order, if the direction of X satisfy the condition,

III. . . SA/ = ;

that is, if the plane I. touch the curve.

(3.) And if the condition,

IV. . .SX/'=0,

be also satisfied by X, then, but not otherwise, the expression II. tends to bear

an evanescent ratio to i^, or is small of an order higher than tlie second.

(4.) But the combination of the tu:o conditions, III. and IV., conducts

to the expression,

V. . . X = ± UV|t>>"

;

comparing which with 376, V., we see that the property above stated is one

which belongs to the osculating plane, and to no other.

378. Another remarkable property* of tlie osculating plane to a curve is,

that it is the tangent plane to the cone of parallels to tangents (369, (6.)),

which has its vertex at the point of osculation.

• The M'liter does not remember seeing this property in print ; but of course it is an easy conse-

quwjce from Iho doctrine of iiifniitesmals, which doctrine however it has not been thought convenient

to adopt, as the basis of the present exposition.
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(1.) In general, ii p = (jix be (comp. 369, I.) the equation of a curve in

space, the equation of the cone which has its vertex at the origin, and passes

through this curve, is of the form,

1. . . p = i/(px

;

in which x and y are tico independent and scalar variables.

(2.) We have thus the two partial derivatives,

II. . . D^p = y^'.r, Dyp = ^.r

;

and the tangent plane along the side (x) has for equation,

III. . . = S(fu . 0x . (f^'x) ; or briefly, IIF. . . = Sw^0'.

(3.) Changing then x, <j>, <ft', <u to t, p\ p'\ tD - /o, we see that the equation

376, v., of the osculating plane to the curve 376, I., is also that of the tangent

plane to the cone of j)arallels, &c., as asserted.

379. Among all the normals to a currcy at any one point, there are tn-o

which deserve special attention ; namely the one which is in tlie osculating

plane, and is called the absolute {or principal) normal \ and the one which is

perpendicular to that plane, and which it has been lately proposed to name

the hinormiil.* It is easy to assign expressions, by quaternions, for these two

normals, as follows.

(1.) The nhnolute normal^ as being perpendicular to p, but complanar

witli p and p'\ has a direction expressed by any one of the following

formula) (comp. 203, 334):

I. . . YpV- p-'
; or II. . . dUp'; or III. . . dUd|t>.

(2.) There is an extensive class f of cases, for which the following

equations hold good :

IV. . . Tp' = const. ; Y. . .
p"* = const. ; YI. . . ^pp" = ;

and in all such cases, the expression I. reduces itself to p\ which is therefore

then a representative of the absolute normal.

* By M. de Saint-Venant, as being perpendicular at once to two consecutive elements of the curve,

in the infinitesimal treatment of this subject. See page 261 of the very valuable Treatise on Annhjtie

Geometry of Three Dimensious (Hodges and Smith, Dublin), by the Kev. George Salmon, D.D.,

which has been published in the present year (1862), but not till after the printing of these Elements

of Quaternions (begun in 1860) had been too far advanced, to allow the writer of them to profit by the

study of it, so much as he would otherwise liave sought to do.

t Namely, those in which the arc of the curve, or that arc multiplied by a scalar constant, is

token aa the independent variable.

E2



28 ELEMENTS OF QUATERNIONS. [FII. in. §§ 4, 5.

(3.) For example, in the case of the helix^ with the equation several times

before employed, the conditions (2.) are satisfied; and accordingly the abso-

lute normal to that curve coincides with the normal p" to the cylinder, on

which it is traced : tlie locus of the absolute normal being here that screw

surface or Helicoid, which has been already partially considered (comp. 314,

(U.j, and 372, (4.)).

(4.) And as regards the hinormal, it may be sufficient here to remark,

that because it is perpendicular to the osculating plane, it has the direction

expressed by one or other of the two symbols (comp. 377, Y.),

YII. ..Y/p", or Yir. ..Yd/>dV.

(5.) Tliere exists, of course, a system of three rectangular planesy the

osculating plane being one, which are connected with the system of the three

rectangular lines, the tangent, the absolute normal, and the binormal, and

of which any one who has studied the Quaternions so far can easily form

the expressions.

(6.) And a construction* for the absolute normal may be assigned, ana-

logous to and including tliat lately given (378) for the osculating plane, as

an interpretation of the expression II. or III., or of the symbol diUp or dUdp.

From any origin o conceive a system of unit lines (\5p or Ud|o) to be

drawn, in the directions of the successive tangents . to the given curve of

double curvature ; these lines will terminate on a certain spherical curve
;

and the tangent, say ss', to this new curve, at the point s which corresponds

to the point p of the old one, will have the direction of the absolute normal

at that old point.

(7.) At the same time, the plane oss' of the great circle, which touches

the new curve upon the unit sphere, being the tangent plane to the cone of

parallels (378), has the direction of the osculating plane to the old curve

;

and the radius drawn to its pole is parallel to the binomial.

(8.) As an example of the auxiliary (or spherical) curve, constructed as

in (6.), we may take again the helix (369), XIII., &c.) as the given curve

of double curvature, and observe that the expression 369, XIY., namely,

YIII. . . p' = fa + |a'+'/3, gives IX. . .
p''' = - c' +^ = const, (comp. (3.))

;

• Thit construction also has not been met with by the writer in print, so far as he remembers
;

but it may easily have escaped his notice, even in the books which he has seen.
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whence Tp' is constant (as in lY.), and we Lave the equation (comp. 369,

XY. XIX.),

X. . . SalJjO = - c I c^ —'
j
= - COS a = const.,

a being again the inclination of the lielix to the axis of its cylinder ; which

shows that the neto curve is in this case a plane one, namely a certain small

circle of the unit sphere,

(9.) In general, if the given curve be conceived to be an orbit described

by a point, which moves with a constant velocity taken for unity, the auxiliary

or spherical curve becomes what we have proposed (100, (5.)) to call the

hodograph of that motion.

(10.) And if the given curve be supposed to be described with a variable

velocity, the hodograph is still some curve upon the coiie ofparallels to tangents.

SECTION 5.

On Creodetic I<ines, and Families of Surfaces.

380. Adopting as the definition of a geodetic line, on any proposed curved

surface, tlie property that is one of which the osculating plane is always a

normal plane to that surface, or that the absolute normal to the curve is also

the normal to the surface, we have two principal modes of expressing by

quaternions this general and characteristic property. For we may either

write,

I. . . Si^pV = 0, or II. . . Si/dpdV = 0,

to express that the normal v to the surface (comp. 373) is perpendicular to

the binomial Yp'p" or Yd/od'/o to the curve (comp. 379, YII. YIF.) ; or

else, at pleasure,

III. . . Yv(Upy = 0, or lY. . . YvdUdp = 0,

to express that the same normal v has the direction of the absolute normal

(Up'Y or dUd/) (comp. 379, II. III.), to the same geodetic line. And thus it

becomes easy to deduce the known relations of sucli lines (or curves) to some

important families of surfaces, on which they can be traced. Accordingly,

after beginning for simplicity with the sphere, we shall proceed in the

following sub-articles to determine the geodetic lines on cylindrical and

conical surfaces, with arbitrary bases ; intending afterwards to show how
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the corresponding lines can be investigated, upon developable sw/aces, and

surfaces of revolution.

(1.) On a sphere^ with centre at the origin, we have v
1| />, and the

diferential equation IV. admits of an immediate integration ;* for it here

becomes,

V. . . = Y/>dUdp = dV|oUd/a,

whence
VI. . . V/>Ud|0 = (u, and VII Sa>/> = 0,

(X) being some constant vector ; the curve is therefore in this case a great

circle, as being wliolly contained in one diametrical plane.

(2.) Or we may observe that the equation,

VIII. . . ^ppf/' = 0, or IX. . . Syodpd> = 0,

obtained by changing v to p in I. or II., has generally for a first integral

(comp. 335, (I.))} whether Tp be constant or variable,

X. . . UV/o/o' = UVpdio = w = const.

;

it expresses therefore that p is the vector of some curve (or line] in a jjkine

through the origin ; which curve must consequently be here a great circle,

as before.

(3.) Accordingly, as a verification of X., if we write

XI. . . /o = ar + /3^, X and y being scalar functions of t,

where t is still some independent scalar variable, and a, /3 are two vector

constants, we shall have the derivatives,

XII. . . p' = a^' + /3/, p'' = ax'' + ^y"
III p, p'

;

80 that the equation VIII. is satisfied.

(4.) For an arbitrary cylinder, with generating lines parallel to a fixed

line o, we may write,

XIII. . . Sav = 0, XIV. . . SadVdp = 0, XV. . . S«Ud^ = const.

;

a geodetic on a cylinder crosses therefore the generating lines at a constant

angle, and consequently becomes a right line when the cylinder is unfolded

* We here assume ns evident, that the differential of a variable cannot be constantly zero (comp.

835, (7.)) ; and we employ the principle (comp. 338, (6.)), that V . d^Udp = - VTd/> = 0.
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into a plane : both which known properties are accordingly verified (comp

369, (5.), and 376, (2.)) for the ease of a cylinder of revolution, in which

case the geodetic is a helix.

(5.) For an aihitrary cone, witli vertex at the origin, we have tlie equations,

XVI. . . ^rp = 0, XVII. . . S^odUd/t, = 0,

XVIII. . . dS/>Ud^ = ^{Ap. Udp) = - Td|o;

multiplying the last of which equations by 2S/oUdjO, and observing that

- 2S/)tl/o = - d . /o'^, we obtain the transformations,

XIX. . . = d{(S^U(1/>)'- + /o'J = d . (V/>UcV)-, XX. . . TVpUdp = const.

;

the perpendicularfrom the vertex, on a tangent to any one geodetic upon a cone,

has therefore a constant length ; and all such tangents touch also a concentric

sphere * or one which lias its centre at the vertex of the cone.

(6.) Conceive then that at each point p or p' of the geodetic a tangent

PT or p't' is drawn, and that the angles otp, ot'p' are right ; we shall have,

by what has just been shown,

XXI. . . or = ot' = const. = radius of concentric sphere
;

and if the cone be developed (or unfolded) into a plane, this constant or

common length, of the perpendiculars from o on the tangents, will remain

unchanged, because the length op and the angle

OPT are unaltered by such development ; the

geodetic becomes therefore some jjlane line, with the

sanie property as before ; and although this property

would belong, not only to a right line, but also to

a circle with o for centre (compare the second part

of tlie annexed figure 78), yet we have in this

result merely an effect of ihe foreign factor SpUd/o,

wldch was introduced in (5.), in order to facilitate

the integration of the differential equation XVllI.,

and which (by tliat very equation) cannot be con-

stantly equal to zero. We are therefore to exclude the curves in whicli the

co)ie is cut by spheres concentric witli it : and there remain, as the sought

geodetic lines, only those of which the developments are rectilinear, as in (4.).

FiK. 78.

* When the cone is of the second order, this becomes a case of a known theorem respecting geodetic

lines OH a surfnce of the same second order, the tangents to any one of which curves touch also a

confocal surface.
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(7.) Another mode of interpreting, and at the same time of integrating, the

equation XVIII., is connected with the interpretation of the symbol Td/o

;

which can be proved, on the principles of the present Calculus, to represent

rigoroudi/ the differential ds of the arc [s] of that curve, whatever it may be,

of which p is the variable vector ; so that we have the general and rigorous

equation,

XXII. . . Td|0 = ds, if s thus denote the arc :

whether that arc itself, or some other scalar, t, be taken as the independent variable;

and whether its differential ds be small or large, provided that it he positive.

(8.) In fact if we suppose, for the sake of greater generality, that the

vector p and the scalar s are thus both functions, pt and .s<, of some one

independent and scalar variable, t, our principles direct us first to take, or

to conceive as taken, a submultiple, n'^dt, of ih.e finite differential dt, considered

as an assumed and arbitrary increment of tliat independent variable, t ; to

determine next the vector pt^-n'hti and the scalar St+n-hti which correspond to

the 2^oiiit Tt+n-^dt of the curve on which pt terminates in p<, and of wliich St is

the arc, PoP^ measured to p< from some fixed point Po on the same curve ; to

take the differences,

pt+n-^dt - pt, and St+n^dt - St}

which represent respectively the directed chord, and the length, of the arc

PtPt+n-'df> which arc will generally be sniall, if the number n be large, and will

indejinitely diminish when that number tends to vtfinitij ; to multiply these two

decreasing differences, of pt and St, by n ; and finally to seek the liiniis to

which the products tend, when n thus tends to oc : such limits being, by our

definitions, the values of the two sought and simultaneous diferentials, dp and

ds, which answer to the assumed values of t and dt. And because the small

arc, As, and the length, TAp, of its small chord, in the foregoing construction,

tend indefinitely to a ratio of equality, such must be the rigorous ratio of ds

and Td/3, which are (comp. 320) the limits of their equifnultiples.

(9.) Admitting then the exact equality XXII. of Tdp and ds, at least

when the latter like the former is taken positively, we have only to substitute

- ds for - Tdp in the equation XVIII., which then becomes immediately

iutegrable, and gives,

XXIII. . . s + BpJJdp = s - S(/) : Vdp) = const.

;

where S(p : Vdp) denotes the projection fp, of the vector p or op, on the

tangent to the geodetic at p, considered as a positive scalar when p makes au
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acute angle with dp, that is, when the distance Tp or op from tlie vertex is

increasing ; while .s denotes, as above, the length of the arc p^p of the same

curve, measured from some fixed point Po thereon, and considered as a scalar

which changes sign, when the variable point p passes through the position Po.

(10.) But the length of tp does not change (comp. (6.)), when the cone is

developed, as before ; we have therefore tlie equations (comp. again fig. 78),

XXIY. . . PoP - TP = const. = PoP' - T'p', XXV. . . pp' = x'F' - tp,

which must liold good both before and after the supposed development of the

conical surface ; and it is easy to see that this can only be, by the geodetic on

the cone becoming a right line, as before. In fact, if ot' in the plane be

supposed to intersect the tangent tp in a point t\ and if p' be conceived to

approach to p, the second member of XXV. bears a limiting ratio of equality

to the first member, increased or diminished by tF; which latter line, and

therefore also tlie angle tot' between the perpendiculars on tlie two near

tangents, or the angle between those tangents thejnselves, if existing, must

bear an indefinitely decreasing ratio to the arc pp' ; so tliat tlie radius of

curvature of the supposed curve is infinite, or t' coincides with t, and the

development is rectilinear as before.

(11.) The important and general equation, Tdp = ds (XXII.), conducts

to many other consequences, and may be put under several other forms.

For example, we may write generally,

XXVI. . . TD,p = 1, XXVir. . . {BspY +1 = 0;
also

XXVIII. . . {BtpY + {n^y = 0, or XXIX. ..p'' + s'' = 0,

if p' and s' be the first derivatives of p and s, taken with respect to any

independent scalar variable, such as t', whence, by continued derivation,

XXX. . . Spy + s's" = 0, XXXI. . . Sp>'" + p'^' + sV' + «"^ = 0, &c.

(12.) And if the arc s be itself taken as the independent variable, then

(comp. 379, (2.) ) the equations XXIX., &c., become,

XXXII. . .
p'^ + 1 = 0, Sp'p" = 0, SpV" + p"' = 0, &c.

381. In general, if we conceive (comp. 372, I.) that the vector p of a given

surface is expressed as a given function of two scalar variables, x and y, whereof

Hamilxon's Elkmknts of Quaternions, Vol. II. F
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one, suppose y, is regarded at first as an unknown function of the other, so

that we have again,

I. . . p = <^{xy y), but now with 11. . . y =fx,

where the form of ^ is knou:^, but that of / is sought ; we may then regard

p as being implicitly a function of the single (or independent) scalar variable, x,

and may consider the equation,

III. . . p = <p{x,fx),

as being that of sotne curve on the given surface, to be determined by

assigned conditions. Denoting then the unknown total derivative D(p{x, fx)

by p% but the known partial derivatives of tlie same first order by Dx(f> and Dy^,

with analogous notations for orders higher than the first, we have (comp.

376, YI.) the expressions,

IT. . . p' =
\)x(t> + y'ny^, p" = n/^ + 2y'j):cny<^ + y"^W't> + //'Dj,^, &c. ;

in which y = n^y =f'x, y" = DxV = f"x, &c. Hence, writing for the normal

V to the surface the expression,

V. . . V = V(d^0 . T)y^) = V. Dx^By^ (comp. 372, Y.),

or this vector multiplied by any scalar, the equation 380, I. of a geodetic line

takes this newform,

YI. . . = Si/pV = S(Y. D,.^Dy^ Np'p")
;

or, by a general transformation which has been often employed already

(comp. 352, XXXI., &c.),

YII. . . = S|t>'Dy0 . S/o''D;,0 - S|o'd^0 . S/o"Dy^
;

and thus, by substituting the expressions lY. for p' and p\ we obtain an

ordinary (or scalar) differential equation^ of the second order, in x and y, which

is satisfied by all the geodetics on the given surface, and of which the complete

integral (when found) expresses, with two arbitrary and scalar constants, the

form of the scalar function f in II., or the law of the dependence of y on x,

for the geodetic curves in question.

(1.) As an example, let us take the equation,

YII I. • . p = <^{x, y) = y\px (comp. 378, I.),

of a cone witli its vertex at the origin ; which cone becomes a known one,

when the form of the vector function \p is given, that is, when we know a



Aet. 381.] GEODETICS ON SPHEEES, PLANES AND CONES. 35

guiding curve p = ^Xy through which the sides of the cone all pass. We have

here the partial derivatives,

IX. . . i)x0 = yJix-^x = yyp\ -Dy(j) = \px = xp (comp. 378, II.)

;

and
X. . . d/^ = pj)/xp.v = 1/xP'\ Bj^Bycp = ^p\ B,f(l> = ;

the expressions lY. become, then,

XL . . p' = yf + t/% p" = W'" + 2/f + /'^p
;

and since only the direction of the normal is important, we may divide V. by

- y, and write,

XII. . . v^YU'-

(2.) The expressions XI. and XII. give (comp. YI. and YII.) for the

geodetics on the cone YIII., the differential equation of the second order,

XIII. . . = S(Y^;/.'.Y|t>V') = ^p'xl^^p^P'-^p'fSp'xf,

in which \p- and xp''^ are abridged symbols for {rpxY and (i/''^)' ; but this

equation in x and i/ may be greatly simplified, by some permitted sup-

positions.

(3.) Thus, we are allowed to suppose that the guiding curve (1.) is the

intersection of the cone with the concentric unit sphere, so that

XIY. . .Txpx = l, t//'- = -l, Sxp^' = 0, 8xp-^'' + ^P'^
= ;

and if we further assume that the arc of this spherical curve is taken as the

independent variable, x, we have then, by 380, (12.), combined with the last

equation XIY.,

XY. . . T^p'x = 1, xp'^ = - 1, Sf;//" = 0, Sxpxp'' = - f2 = 1.

(4.) With these simplifications, the differential equation XIII. becomes,

XYI. . . = (y - y") (- y) - (- %/) (- 2/0 = yy" - 2./^ -
,r ;

and its complete integral is found hy ordinary methods to be,

XYII. . . J/
= 6 sec (a.- + c),

in which b and c are two arbitrary but scalar constants.

F2
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(5.) To interpret now this integrated and scalar equation in x and y, of the

geodetic8 on an arbitrary cone, we may observe that, by the suppositions (3.),

y represents tlie distance, T/o or op, from the vertex o, and x -\- c represents

the angle aop, in the developed state of cone and curve, from some fixed line oa

in the plane, to the variable line op ,• the projection of this new op on that

fixed line oa is therefore constant (being = h, by XYII.), and the developed

geodetic is again found to be a right line, as before.

382. Let ABODE . . . (see the annexed figure 79) be any given series of

points in space. Draw the successive right lines, ab, bc, cd, de, . . and

prolong them to points b', c', d', e', . . . the lengths

of these prolongations being arbitrary
;

join also „.-—\jc'
b'c', cV, d'e', .... We shall thus have a series of ^^-^g^' c "j^^::;-— -\d'

plane triangles, b'bc', c'oi/, d'de', . . . all generally j,. -q
^

in difi'erent planes ; so that bcd'c'b', cde'd'c', . . . are

generally gauche pentagons, while bcde'd'c'b' is a gauche heptagon, &c. But

we can conceive the first triangle b'bc' to turn round its side bcc', till it comes

into the plane of the second triangle c'cd' ; which will transform the first

gauche pentagon into a jylane one, denoted still by bcd'c'b'. We can then

conceive this plane figure to turn round its side odd', till it comes into the

plane of the third triangle, p'de' ; whereby the first gauche heptagon will have

become a plane one, denoted as before by bcde'd'c'b' : and so we can proceed

indefinitely. Passing then to the limit, at which the points abode . . . are

conceived to be each indefinitely near to the one which precedes or follows it in

the series, we conclude as usual (comp. 98, (12.)) that the locus of the tangents

to a curve of double curvature is a dei-elopable surface : or that it admits of being

unfolded (like a cone or cylinder) into a plane, without any breach of continuity.

It is now proposed to translate these conceptions into the language of quater-

nions, and to draw from them some of their consequences : especially as

regards the determination of the geodetic lines, on such a developable surface.

(1.) Let xpx, or simply i//, denote the variable vector of a point upon the

curve, or cusp-edge, or edge of regression of the developable, to wliich curve the

generating lines of that surface are thus tangents, considered as a function \p of

its arc, x, measured from some fixed point a upon it ; so that while the

equation of the surface will be of the form (comp. 100, (8.)),

1. . . p = <p{x,y) = -4,^ + yy^'.;, = ;// + yi/.',

y being a second scalar variable, we shall have the relations (comp. 381, XV.),

IL..T;/.'=1, i//''=-l, Sf;/-"=0, S;/.'f"=-f'==3S if « = Tf

.
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(2.) Hence III. . . D^,^ = ^'^vV^ Dy^ = ^';

ly. ../»'=(!+ y') ^' + yf^ p" = y"^' + (1 + 2y') ^'^ + y^' ;

and
Y. . . V = Yxp'xp'' =

^'V'''>
multiplied by any scalar.

(3.) The differential equation of the geodetics may therefore be thus

written (corap. 381, XIII.),

vi. . . = s(Yf^".Vpy') = S|oY'VT-Sf>'TVf;

in which, by (1.) and (2.),

rSpY'= -yz\ Sp'V'= -y"+y«S
VII..

iSp'T = - (1 + 2/)s^ - yss', Sp';/.' = - (1 + 3^0

;

the equation becomes therefore, after division by - «,

Vin. . . = s
{
(1 + yy + {yzY} + (1 + /) (yzy - y"y%,

or simply,

IX. ..s + «7'= 0, or IX'..Tdf + dj; = 0, if X. . . tan t? = :^-, = ^-il,.

(4.) To interpret now this very simple equation IX. or IX'., we may

observe that s, or ^y\f\ or Tdi/*' : d.r, expresses the limitiny raliOy which the

angle between two near tangents \p' and \p'+ A\p', to the cusp-edge (1.), bears

to the small arc Ax of that curve which is intercepted between their points

of contact; while v is, by IV., that other angle, at which such a variable

tangent, or generating line of the developable, crosses the geodetic on that

surface ; and therefore its derivative, v' or dt? : d.r, represents the limiting

ratio, which the change Av of this last angle, in passing from one generating

line to another, bears to the same small arc Ax of the curve which those

lines touch.

(5.) Referring then to fig. 79, in which, instead of two continuous curves,

there were two gauche polygons, or at least two systems of successive right lines,

connected by prolongatiois of the lines of the first system, we see that the

recent formula IX. or IX'. is equivalent to this limiting equation,

^T T cdV- bc'b'
,XI. . . lim. -,

—
-, = - i

;

CCD

but these three angles remain unaltered, in the development of the surface:

the bent line b'c'd' for space becomes therefore ultimately a straight line in
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the plane, and similarly for all other portions of the original polygon, or

twisted line, b'c'd'e' . . ., of which b'c'd' was a part.

(6.) Returning then to curves and surfaces in space, the quaternion

analysis (3.) is found, by tliis simple reasoning,* to conduct to an expression

for the known and characteristic property of the geodetics on a developable :

namely that they become right lines, as those on cylinders (380, (4.)), and on

cones (380, (6.) and (10.), or 381, (5.)), were lately seen to do, when the

surface on which they are thus traced is unfolded into a plane.

383. This known result, respecting geodetics on developables, may be very

simply verified, by means of a new determination of the absolutef normal

(379) to a curve in space, as follows.

(1.) The arc s of any curve being taken for the independent variable, we

may write (comp.376,I.),by Taylor's Series, the following rigorous expressions,

I. . . p.s = p- sp' + Ishi-sp", po = p, ps = p + sp' + Ishisp", with Uo = 1,

for the vectors of three near points, p_s Po, p^, on the curve, whereof the

second bisects the arc, 2s, intercepted between the first and third.

(2.) If then we conceive the parallelogram p_«PoP«r« to be completed, we
shall have, for the two diagonals of this new figure these other rigorous

expressions,
II. . . p_aP, = pg-p_, = 2sp + |.s' [us - iu)p" ;

III. . . PoR« = /Os + /o^ - 2,00 = h'^[us + uj)p'
;

which give the limiting equations,

ly. . . lim. s-^p_sP, = 2p ] V. . . lim. s~'^PoRfi = p".

(3.) But the length p_7p» of what may be called the long diagonal, or the

chord of the double arc, 2s, is ultimately equal to that double arc; we have

therefore by IV., the equation,

VI. . . Tp' = 1, If p = Dsp, and if s denotes the arc,

considered as the scalar variable on which the vector p depends: a result

agreeing with what was otherwise found in 380, (12.).

* In the Lectures (page 681), nearly the same analysis was employed, for geodetics on a

developahle ; but the interpretation of the result was made to depend on an equation which, with

the recent significations of y\i and r, may be thus written, as the integral of IX'., v + JTd(|/' = const.

;

where JTdij/' represents the finite angle between the extreme tangents to the finite arc /Tdi^, or Ax,
of the cusp-edge, when that curve is developed into a plane one.

t Called also, and perhaps more usually, the principal normal.
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(4.) At the same time, since the ultimate direction of the same long

diagonal is evidently that of the tangent at Po, we see anew that the same

first derived vector p represents what may be called the tinit tangent* to

the curve at that point.

(5.) And because tlie lengths of the two sides p_,Po and PoP«, considered

as chords of the two successive and equal arcs, s and s, are ultimateli/ equal

to them and to each other, it follows that the parallelogram (2.) is ultimateli/

equilateral, and therefore that its diagonals Eire ultimately rectangular', but

these diagonals, by lY. and V., have ultimately the directions of p' and
p"

',
we find therefore anew the equation,

VII. . . ^p'p' = 0, if the arc be the independent variable,

which had been otherwise deduced before, in 380, (12.).t

(6.) But under the same condition, we saw (379, (2.)) that the second

derived vector p' has the direction of the absolute normal to the curve ; such

then is by V. the ultimate direction of what we may call tlie short diagonal

PoR„ constructed as in (2.) ; or, ultimately, the direction of the bisector of

the (obtuse) angle p_,PoP„ between the two near and nearly equal chords

from the point Po : while the plane of the parallelogram becomes ultimately

the osculating plane.

(7.) All this is quite independent of the consideration of any surface,

on which the curve may be conceived to be traced. But if we now conceive

that this curve is formed from a right line bVd' . . . (comp. fig. 79), by

nrapjnng round a developable surface a plaice on which the line had been

drawn, and if the successive portions bV, cV, . . of that line be supposed

to have been equal, then because the two right lines c'b' and cV originally

made supplementary angles witli any other line c'c in the plane, the two chords

c'b' and c'd' of the curve on the developable tend to make supplementary

angles with the generatrix c'c of that surface ; on which account the bisector

(6.) of their angle b'c'd' tends to \iQ perpendicular to that generating line c'c, as

icell as to the chord bV, or ultimately to the tangent to the curve at c', when

chords and arcs diminish together. The absolute normal (6.) to the curve

thus formed is therefore perpendiailar to two distinct tangents to the surface

at c', and is consequently (comp. 372) the normal to that surface at that

point; whence, by the definition (380), the curve is, as before, a geodetic

on the developable.

* Compare the first Note to page 152, Vol. I. t [See note to 396 (19.), p, 88.]
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(8.) As regards the asserted reefangularity (7.), of the bisector of the

angle b'cV to the line c'c, when the angles cc'b' and cc'd' are supposed

to be supplementary, but not in one plane, a simple proof may be given by

conceiving that the right line bV is prolonged to c", in such a manner

that cV' = cV ; for tlien these two equally long lines from c' make equal

angles with the line c'c, so that the one may be formed from the other

by a rotation round that line as an axis ; whence c'^d', which is evidently

parallel to the bisector of b'cV, is also perpendicular to c'c.

(9.) In quaternions, if a and p be any two vectors, and if i be any

scalar, we have the equation,

YIIL . . S.a(aV'-/o) = 0,

which is, by 308, (8.), an expression for the geometrical principle as stated.

384. The recent analysis (382) enables us to deduce with ease, by

quaternions, other known and important properties of developable surfaces

:

for instance, the property that each such surface may be considered as the

envelope of a series of planes, involving only one scalar and arbitrary constant

(or parameter) in their common equation ; and that each plane of tliis series

osculates to the cusp-edge of the developable.

(1.) The equation of the developable surface being still,

I. . . p = <p{x,y) = \P:c+ y^'x = ^ + y\P' (as in 382, I.),

its normal v is easily found to have, as in 382, Y., the direction of Y\p'\p",

whether the scalar variable x be, or be not, the are of the cusp-edge, of

which curve the equation is,

II. . . p = Tpa;.

(2.) Hence, by 373, VII., the equation of the tangent plane takes the

form,

III. . . Sw;//'^" = St//;//'t/'",

from which the second scalar variable y thus disappears : this common equation,

of all the tangent planes to the developable, involves therefore, as above

stated, only one variable and scalar parameter, namely x ; and the envelope

of all these planes is the developable surface itself.

(3.) The plane III., for any given value of this parameter x, that is,

for any given point of the cusp-edge, touches the surface along the whole

extent of the generating line, which is the tangent to this last curve.
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(4.) And by comparing its equation III. with the formula 376, Y., we

see at once that this plane osculates to the same cusp-edge, at the point

of contact of that curve with the same generatrix of the developable.

385. If the reciprocals of the perpendiculars^ let fall from a given origin,

on the tangent planes to a developable surface, be considered as being

themselves vectors from that origin, tliey terminate on a curre, which is

connected with the cusp-edge of the developable by some interesting relations

of reciprocity (comp. 373, (21.)) : in suoh a manner that if this netc curve

be made the cusp-edge of a new developable, we can return from it to the

former surface, and to its cusp-edge, by a sitnilar process of construction.

(1.) In general, if \px and xxt or briefly \p and x> be two vector functions

of a scalar variable x, such that x ^^Y ^^ deduced from \p by the three

scalar equations,

I. ..s^x = '^, s^'x = o, ^rx = o,

in which Sxpx is written briefly for 8{4'x-X'i)> ^^^ ^ ^^ ^^7 scalar constant,

we have then this reciprocal system of three suoh equations,

11. ..Sx^ = c, Sx'^ = 0, Sx"^ = 0;

an intermediate step being the equation,

III. . . SxP\' = SxT = 0.

(2.) Hence, generally,

lT...if, = |l^^, thou V...^-^^^'^-'-
SH'i'" '^ Sxx'x"

(3.) But if p be the variable vector of a curve in space, and p\ p" its

first and second derivatives with respect to any scalar variable, then, by the

equation 376, Y. of the osculating plane to the curve, we have the general

expression,

Yl. . . -^',-77 = perpendicularfrom origin on osculating plane
\

\pp

so that if \p and x be considered as the vectors of two curves, each vector is

c X the reciprocal of the perpendicular, thus let fall from a common point, on

the osculating plane to the other.

Hamilton's Elements of Quaternions, Vol. II, Q
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(4.) We have therefore this Theorem :

—

Iff from any assumed pointy o, thete he drawn lines equal to the reciprocals of

the perpendicularsfrom tJiat point, on the osculating planes to a given curve of double

curvature, or to those perpendiculars multiplied by any given and constant scalar
;

then the locus of the extremities of the lines so drawn icill be a second* curve,

from which we can return to the first curve by a precisely similar process.

386. The theory of developable surfaces, considered as envelopes of planes

with one scalar and variable parameter (384), may be additionally illustrated

by connecting it with Taylor^s Series, as follows.

(1.) Let at denote any vector function of a scalar variable t, so that

1. . . at = Qq + tuta'o = a + tua, with u^ = 1 ;

or, by another step in the expansion,

II. . . at = Oq + ta\ + ifViii^Q = a + ta' + ^t-fu", V^ = 1 ;

where u and v are generally quaternions, but ua and va" are vectors.

(2.) Then, as the rigorous equation of the variable plane, the reciprocal

of the perpendicular on which from the origin is - at, we have either,

III. . . — 1 = Sutp = Sa/> + tSua'p,

or

lY. . . ~ 1 = Sojo + ^Sa'jO + ^t'Sva^p,

according as we adopt the expression I., or the equally but not more rigorous

expression II., for the variable vector at.

(3.) Hence, by the form III., the line of intersection of the two planes,

which answer to the ttco values and t of the scalar variable, or parameter, t,

is rigorously represented by the system of the two scalar equations,

V. . . Sa/o + 1 = 0, S«a> = 0.

(4.) And the limiting position of this right line V., which answers to the

conceived indefinite approach of the second plane to the first, is given with

equal rigour by the equations,

VI. . . Sap + 1 = 0, Sa> = ;

• Tho two curves may be said to be polar reciprocals, with respect to the (real or imaginary)

sphere, p- = c ; and un analogous relation of reciprociti/ exists gemrally, when tlie points of one curve

are the poles of the osculating planes of the other, with respect to any surface of the second order :

corresponding tangents being then reciprocal polars. Compare t]xQ iXieoiY ol develop dies reciprocal to

curves, given in Salmon's Analytical Geometry of Three Dimensions, page 89 ; see also Chapter XI.

(page 224, Ac), of the same excellent work.



Arts. 385, 386.] DEVELOPABLE AS ENVELOPE OF PLANES. 43

whereof it is seen that the second may be formed from i\\Q first, by derivafing

with respect to t, and treating p as constant : although no such rule of

calculation had been previously laid douii, for the comparatively geometrical

process which is here supposed to be adopted.

(5.) The locus of all the lines VI. is evidently some ruled surface ; to

determine the normal v to which, at the extremity of the vector p, we may
consider that vector to be a function (372) of two independent and scalar

variables, whereof one is t, and the other may be called for the moment w
;

and thus we shall have the two partial derivatives,

YII. . . SaD/p = 0, SaDMijO = 0, giving v \\ a.

(6.) Hence the line a has the direction of the required normal v ; the

plane Sap + 1 = touches the surface (comp. 384, (3.) ) along the whole extent

of tlie limiting line YI. ; and the locus of all such lines is the envelope of all

the planes, of the system recently considered.

(7.) The line YI. cuts generally the plane lY., in a point which is rigor-

ously determined by the three equations,

YIII. . . Sop + 1 = 0, Sa> = 0, SiVp = ;

and the limiting position of this intersection is, with equal rigour, the point

determined by this other system of equations,

IX. . . Sap +1 = 0, Sa'p = 0, So"p = ;

in which it may be remarked (comp. (4.) ), that the third is the derivative of

the second, if p be treated as constant.

(8.) The locus of all these points IX. is generally some curve upon the

surface (5.), which is the locus of the lines YI., and has been seen to be the

envelope (6.) of the planes III. or lY. ; and to find the tangent to this curve,

at the point answering to a given value of t, or to a given line YI., we have

by IX. the derived equations,

X. . . Sap' = 0, Sa'p' = 0, whence p'
|| Yaa'

;

comparing which with tlie equations YI. we see that the lines YI. touch the

curve, which is thus their common envelope.

(9.) We see then, in a new way, that the envelope of the planes III.,

which have one scalar parameter (t) in theii* common equation, and may repre-

sent any system of planes subject to this condition, is a developable surface

:

G2
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because it is in general (comp. 382) the locus of the tangents to a curve in space,

although tliis curve may reduce itself to di. point, as we shall shortly see.

(10.) We may add that if at in III. be considered as the vector of a given

curve, this curve is the locus of the poles* of the tangent planes to the developable,

taken with respect to the unit sphere ; and conversely, that the developable

surface is the envelope of the polar planes of the points of the same given curve,

with respect to the same sphere.

(11.) If then it happen that this given curve, with at for vector, is a. plane

one, so that we have this new condition,

XI. . . S/Sa< +1 = 0, /3 being any constant vector,

namely the vector of the pole of the supposed plane of the given curve, the

variable plane III., or Spat + 1 = 0, of which the surface (5.) is the envelope,

passes constantly through this Jixed pole ; so tliat the developable becomes in

this case a cone, with [5 for the vector of its vertex : tlie equations IX. giving

now /o = j3.

(12.) The same degeneration, of a developable into a conical surface, may

also be conceived to take place in another way, by the cusp-edge (or at least

some finite portion thereof) tending to become indefinitely small, while yet the

direction of its tangents does not tend to become constant. For example, with

recent notations, the developable wliich is the locus of the tangents to the helix

may have its equation written thus :

2
XII. . . p = (l>{x,y) =c{xa + - tan a . a^Uj3} + ya[l + tan a . a^U/3)

;

TT

which when the quarter interval, c, between the spires, tends to zero, without

their inclination a to the axis a being changed, tends to become a cone of

revolution round that axis, with its semiangle = a.

387. So far, then, we may be said to have considered, in the present

section, and in connexion with geodetic lines, the four following families of

surfaces (if the first of them may be so called). First, spherical surfaces, of

which the characteristic property is expressed by the equation,

I. . . Vv(p - a) = 0, if a be vector of centre
;

second, cylindrical surfaces, with the property,

II. . . Sva = 0, if a be parallel to the generating lines
;

• Compare the Note to page 42.



Aets. 386, 387.] FAMILIES OF SURFACES. 45

third, conical surfaces, with the property,

III. . . ^v{p - a) = 0, if a be vector of vertex
;

and fourth, developable surfaces, with the distinguishing property expressed

by the more general equation,

lY. . . Yvdi/ = 0, if dp have the direction of a generatrix
;

V being in each the normal vector to the surface, so that

V. . . Svd/o = 0, for all tangential directions of dp
;

and the fourth family including the third, which in its turn includes the

second. A few additional remarks on these equations may be here made.

(1.) The geometrical signification of the equation I. (as regards the radii)

is obvious; but on the side of calculation it may be useful to remark, that

elimination of v between I. and Y. gives, for spheres,

YI. . .S(p-a)dp = 0, or YII. . . T(p - a) = const.

(2.) The equations II. and Y. sliow that dp, and therefore Ap, may have

the given direction of a ; for an arbitrary cylinder, then, we have the vector

equation (372),

YIII. . . p = ^(ir, ^) = t//^ + yu,

where ypx is an arbitrary vector function of x*

(3.) From YIII. we can at once infer, that

IX. . . S/3p = S/3i/.., Syp^S-y;/.,, if a = Y/3y

;

the scalar equation (373) of a cylindrical surface is therefore generally of the

form (comp. 371, (6.), (7.) ),

X. . . = i^(S/3p, S7p)

;

|3 and 7 being two constant vectors, and the generating lines being perpen-

dicular to both.

(4.) The equation III. may be thus written,

XI. . . SvUa = Ta-^Svp ; whence XII. . . ^vVa = 0, if Ta = oo

;

* [In general dp = Dj-p . Hix + Dyp . dy, and as one direction of dp is parallel to o, we may write

without loss of generality, dp = D,p d* + ady. Moreover, since a is constant, D^p must be a function

of X, 60 on integration p-=^^f^ ya.]
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the equation for cones includes therefore that for cylinders, as was to he

expected, and reduces itself thereto, when the vertex hecomes infinitel}'

distant.

(6.) The same equation III., when compared with V., shows that dp may

have the direction of p - a, and therefore that p - a may be multiplied by

any scalar ; the rector equation of a conical surface is therefore of the form,

XIII. . . p = a + y\px, i^x being an arbitrary vector function.*

(6.) The scalar equation of a cone may be said to be the result of the

elimination of a scalar variable t, between two equations of the forms,

XIY. ..S(p-a)x*=0, S{p-a)x% = 0,

which express that the cone is the envelope (comp. 38^, (II.)) of a variable

plane, which passes througli a fixed point, and involves only one scalar

2')arameter in its equation : with a new reduction to a cylinder, in a case on

which we need not here delay.

(7.) The equation IV. implies, that for each point of the surface there

is a direction along which we may move, icithout changing the tangent plane
;

and therefore that the surface is an envelope of planes, &c., as in 386, and

consequently that it is developable, in the sense of Art. 382.

f

(8.) The vector equation of a general developable surface may be written

under the form,

XV. . . p = <i>{x, y) =4jx + y^^'x ;

the sign of a versor being here introduced, for the sake of facilitating the

passage, at a certain limit, to a cone (comp. 386, (12.) ).

(9.) And the scalar equation of the same arbitrary developable may be

represented as the result of the elimination of t, between the two equations,

XVI. . . Spxe + 1 = 0, S|«x't = 0;

in which x< is an arbitrary vector function of t.

* [As in the last note, because one direction of dp is parallel io p - a, we may take

dp = (p- a)y-idy + D,/j.da:, or d .
y-i(p - o) = jr'D^p . da: = d. i^,.

Hence, p = a + yt^,.]

t [The normal at any point of the ruled surface p = ^,-{- y<pt is parallel to V(i|/'x + y<p'x)<px. If

the direction of the normal does not change as we pass along a generator, either "K^'iipz = 0, or

y<p'*<l>* = 0. The first of these conditions requires the surface to be a developable. The second

requires all the generators to be parallel, so that the suiiucc is a cylinder. See Tail's Quaternions,

Art. 311.]
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(10.) The envelope of a plane with two arbitrary and scalar parameters,

t and u, is generally a curved but undevelopable surface, which may be repre-

sented by the system of the three scalar equations,

XVII. . . Spx^, „ + 1 = 0, SpD.x = 0, SpD„x = ;

where - x denotes the reciprocal of the perpendicular from the origin on the

tangent plane to the surface, at what may be called the point {t, u).

388. It remains, on the plan lately stated (380), to consider briefly

surfaces of revolution, and to investigate tlie geodetic lines, on this additional

fain ill/ of surfaces ; of which the equation, analogous to those marked I. II.

III. IV. in 387, for spheres, cylinders, cones, and developables, is of the form,

I. . . Sapv = 0,

if a be a given line in the direction of the aaris of revolution, supposed for

simplicity to pass through the origin ; but which may also be represented by

either of these two other equations, not involving the normal v,

II. . . T/, =/(Sa/>), or III. . . TYap = F[Sup),

where/ and Fare used as characteristics of two arbitrary but scalarfunctions :

between which Sap may be conceived to be eliminated, and so a thirdform of

the same sort obtained.

(1.) In fact, the equation I. expresses that v
||| a, /o, or that the normal to

the surface intersects the axis ; while II. expresses that the distance from a

fixed point upon that axis is a function of its own projection on the same fixed

line, or that the sections made by planes perpendicular to the axis are circles
;

and the same circularity of these sections is otherwise expressed by III.,

since that equation signifies that the distance from the axis depends on the

position of the cutting plane, and is constant or vanable with it : while the two

last forms are connected with each other in calculation, by means of the

general relation (comp. 204, XXI.),

IV. . . (Tap)^ = {QapY + (TVa/>)^

(2.) The equation I. is analogous, in quaternions, to a partial differential

equation of the//s^ order, and either of the two other equations, 11. and III.,

is analogous to the integral of that equation, in the usual differential calculus

of scalars.
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(3.) To accomplish the corresponding integration in quaternions, or to pass

from the form I. to II., whence III. can be deduced by IV., we may observe

that the equation I. allows us to write (because Si-d/o = 0),

Y. , . V = cca + ijf}, VI. . . arSod/u + j/Spdp = 0,

so that the two scalars Sap and Tp are together constant, or together variable,

and must therefore he functions of each other.

(4.) Conversely, to eliminate the arbitrary function from the form II.,

quaternion differentiation gives,

VII. . . = S(U|0 . (ip) +f{Sap) . Sadp = S.(Up + afSap)dp ;

henco

VIII. . • V
li
JJp + af'Sap, and IX. . . v

|||
a, p, as before

;

so tliat we can return in this way to the equation I., the functional sign f
disappearing.

(5.) We have thus the germs of a Calculus of Partial Differentials in

Quaternions,* amilogous to that employed by Monge, in his researches re-

specting families of surfaces : but we cannot attempt to pursue the subject

farther here.

(6.) But as regards the geodetic lines upon a surface of revolution, we

have only to substitute for v, in the recent formula I., by 380, IV., the

expression dUdp, which gives at once the differential equation,

X. . . = Sa^odUdp = d . SapVdp (because S{adp .JJdp) = - SaTdp = 0)

;

whence, by a first integration, c being a scalar constant,

XL . . C = SapVdp = TYap . ^JJ(Vap . dp).

• The same remark was made in page 574 of the Zeehires, in which also was given the

elimination of the arbitrary function from an equation of the recent form III. It was also observed,

in page 578, that geodetics furnish a very simple example of what may be called the Calculus of

Variations in Quaternions ; since we may write,

«Jd« = 8 JTd/> = j8Td/) = -
J S (Udp . 8dp)

= - J S (Udp . ihp) = - AS (Udp . 8/.) + / S (dUdp . 8/>),

and therefore dUdp
|| v, or VydUd/j = 0, as in 380, IV., in order that the expression under the last

integral sign may vanish for all variations 8/> consistent with the equation of the surface : while the

evanescence of the part which is outside that sign f supplies the equations of limits, or shows that the

shortest line between two curves on a given surface ia perj)endicular to both, as usual.
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(7.) The characteristic property of the sought curves is, therefore, that

for each of them the perpendieular distance from the axis of revolution varies

inversely as the cosine* of the angle, at ickieh the geodetic crosses a parallel, or

circular section of the surface : because, if Ta = 1, the line Yap has the length

of the perpendicular let fall from a point of the curve on the axis, and has the

direction of a tangent to the parallel.

(8.) The equation XI. may also be thus written,

XII. . . cTp = ^app'y where p = Htp ;

and if the independent variable t be supposed to denote the time, while the

geodetic is conceived to be a curve described by a moving point, then while Tp'

evidently represents the linear velocity of that point, as being = ds : d^, if

s denote the arc (comp. 100, (5.), and 380, (7.), (11.) ), it is easy to prove that

Sa/op' represents the double areal velocity, projected on a plane perpendicular to

the axis ; the one of these two velocities varies therefore directly as the other :

and in fact, it is known from mechanics, that each velocity would be constant,^

if i\iQ point were to describe the curve, subject only to the normal reaction of

the surface, and undisturbed by any other force.

(9.) As regards the analysis, it is to be observed that the differential

equation X. is satisfied, not only by the geodetics on the surface of revolution,

but also by the parallels on that surface : wliich fact of calculation is connected

with the obvious geometrical property, that every normal plane to such a

parallel contains the axis of revolution.

(10.) In fact if we draw the normal plane to any curve on the surface, at

a point where it crosses a parallel, this plane will intersect the axis, in the point

where that axis is met by the normal to the surface, drawn at the same point

of crossing ; but this construction fails to determine that normal, if the curve

coincide with, or even touch a parallel, at the point where its normal plane

is drawn.

* Unless it happen that this cosine is constantly zero, in which case c = 0, and the geodetic is a

meridian of the surface.

t This lemavk is virtually made in page 443 of Professor De Morgan's Differential and Integral

Calculus (London, 1842), which was alluded to in page 578 of the Lectures on Quaternions. \li p is

the normal reaction of the surface, the differential equation of motion of the particle is />"= joU;/.

From this equation the mechanical properties may be at once deduced.]

Hamilton's Elkments of QuAiiikNioNS, Vol. II. H
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SECTION 6.

On Oscnlatlng Circles and Spheres, to Curves in ISpace ;

Mfith some connected Constructions.

389. Resuming the expression 376, I. for pt, and referring again to

fig. 77 [p. 24], we see that if a circle pqd be described, so as to touch a

given curve pqr, or its tangent pt, at a given point p, and to cut the curve

at a near point q, and if pn be the projection of the chord pq on the diameter

PD, or on the radius cp, tlien because we have, rigorously,

I. . . PQ = fp + it'Np'% with u = l for t = 0,

we have also

II. . . PN = ieNup"p' : p\
and

jjj J_ _ A _ ?^ _ yiip'p

' ' ' PC PD pq' (p + U'lp'Yp

Conceiving then that the near point q approaches indefinitely to the given

point p, in whicli case the ultimate state or limiting position of the circle pqd

is said to be that of the osculating circle to the curve at that point p, we see

that while the plane of this last circle is the osculating plane (376), the vector

K of its centre k, or of the limiting position of the point c, is rigorously

expressed by the formula :

Vp p

which may however be in many ways transformed, by the rules of the

present Calculus.

(1.) Thus, we may write, as transformations of the expression IV.,

the following :

y ^ p Tp' _ Tp^
'"" ^^ Yp"p'-^

~ P Yp"p"KVp' P {Vpj '

or introducing differentials instead of derivatives^ but leaving still the inde-

pendent variable arbitran/y

Yj ^
dp» _ ^P _ '^^^P _ _ _J^'""-f W/,lv~^"'Vd>cV'~^"dIV"^ dUd/>'

if 8 be the arc of the curve ; so that the last expression gives this very simple
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formula, for the reciprocal of the radius of curvature, or for the ultimate value

of 1 : cp,

VII. . .{p- k)-' = DsVp, where Vp = Vdp, as before.

(2.) To interpret this result, we may employ again tliat auxiliary and

spherical curve, upon the cone ofpyaralleJs to tangents, which has already served

us to construct, in 379, (6.) and (7.), the osculating jjlane, the absolute normal,

and the binomial, to the given curve in space. And thus we see, that while

the semidiam,eter pc has ultimately the direction of dUjo', and therefore that of

the absolute normal (379, II.) at p, the length of the same radius is ultimately

equal to the arc pq (or As) of the given curve, divided by the corresponding arc

of the auxiliary curve', or that the radius of curvature, ox radius of the osculating

circle at p, is equal to the ultimate quotient of the arc pq, divided by the angle

between the tangents, pt and (say) qu, to that arc pq itself at p, and to its

prolongation qr at q, although these two tangents are generally in different

planes, and have no common point, so long as pq remains Jinite : because we

suppose that the given curve is in genei'al one of double curvature, although the

formnlw, and the construction, above given, are applicable to plane curves ako.

(3.) For the helix, the formula IV. gives, by values already assigned for

p, p\ p" , and a, the expression,

VIII. . . K^ cfa -- a'/3 cot^ a, whence IX. . . p - k = a'(i coseo' a,

a being the inclination of the given helix to the axis ; the locus of the centre

of the osculating circle is therefore in this case a second helix, on the satne

cylinder, if a =-, but otherwise on a co-axal cylinder, of which the radius = the

given radius Tj3, multiplied by the square of the cotangent of a
; and the

radius of curvature = T(p - k) = Tj3 x cosec^ a, so that this radius alwavs

exceeds the radius of the cylinder, and is cut perpendicularly (without being

prolonged) by the axis.

(4.) In general, if Tp' = const., and therefore Sp>" = (comp. 379, (2.) ),

the expression IV. becomes^*

'2

X. . . K = /o + ^ ; whence, XI. . . k = p - p"'\ if Tp' ^- 1,

9

* The expressions X. XI. may also be easily deduced by limits, from the construction iu 383, (2.).

H3
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that is, if the arc be taken as the independent variable (380, (12.) ). Under

this last condition, then, the formula VII. reduces itself to the following,

XII. . . (p - k)~^ = p" - d//o « ultimate reciprocal of radius cp;

80 that p" (for T/o' = 1) may be called the Vector of Curvature, because its

tensor T/o" is a numerical measure for what is usually called the curvature* at

the point p, and its versor JJp" represents the ultimate direction of the semi-

diameter PC, of the circle constructed as above.

(5.) As an example of the application (2.) of the formula IV. for k, to a

plane curve, let us take the ellipse,

XIII. . . p = Ya% Ta = 1, SajSjo, 337, (2.),

considered as an oblique section (314, (4.)) of a right cylinder. The expressions

376, (5.) for the derivatives of p, combined with the expression XIII. for

that vector itself, give here the relations,

XIV. . . V/o/>" = 0, VpV" = ;

and therefore comp. (338, (5.)),

XV. . . V/o// = const.t = ^/3y, VpV" = const. = (^JiSy, if 7 = VajS

;

hence for the present curve we have by IV.,

XVI. . . . = p - ^1, = Va^^ - (Va'-/3)' {^)-\

(6.) To interpret this result, we may write it as follows,

XVII. . .K = p- ^)—r,, where XVIII. ..p, = -p'= Va'*'/3

;

\pp . p V

so tliat pi is the conjugate semidiameter of the ellipse (comp. 369, (4.)), and

V/op' : p is the perpendicular from the centre of that curve on the tangent. We
recover then, by this simple analysis, the known result, that the radius of

curvature of an ellipse is equal to the square of the conjugate semidiameter,

divided by the perpendicular.

* It may be remarked that the quantity r, or T\l/", in the investigation (382) respecting geodeties

on a developable, represents thus the curvature of the cusp-edge, for any proposed value of the arc, x,

of that cur>'e.

t These values XV. might have been obtained without integrations, but this seemed to be the

readiest way. [The constants may be determined by putting < = 0.]
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(7.) We may also write the equation XYI. under the form,

3

XIX. . . K = p - -^i

^

, where XX. . . Vpoi = 137 = const.

;

\ppi

and may interpret it as expressing, that the radius of curvature is equal to

tlie cube of the conjugate semidiaraeter, divided by the constant parallelogram

under any two such conjugates ; or by the rectangle under the major and

minor semiaxes, which are here the vectors /3 and y (comp. 314, (2.) ).

(8.) The expression XVI. or XIX. for k is easily seen to vanish, as it

ought to do, at the limit where tha ellipse becomes a circle, by the cylinder

being cut perpendicularly, or by the condition Saj3 = being satisfied ; and

accordingly if we write,

XXI. . . e = SUa/3 = excentricity of ellipse, or XXII. . . 7" = (1 - e^)(6^y

we easily find the expressions,

XXIII. . .|0 = /3S.a' + 7S.a'-', pi = -/3S.a'-' + 7S.a';

60 that the formula XEX. becomes,

XXV. . . . = e^(/3(S . «')^ -
'^^I'f/)

= ^'1)3(8 . a? - ff (S . «'-)3),

thus containing e"^ as a factor.

(9.) And it may be remarked in passing, that the expression XVI., or its

recent transformation XXV., for k as a function of t, may be considered as

being in quaternions the vector equation (comp. 99, I., or 369, I.) 0/ the

evolute* of the ellipse, or the equation of the locus of centres of curvature of

that plane curve ; and that the last form gives, by elimination of t (comp.

315, (1.), and 371, (5.) ), the following system of two scalar equations for the

same evolute,

XXVI. . . (S^Y+ (s^)'= e, S^7K = ;

* That is to saj , of the plane evolute ; for we shall soon have occasion to consider hriefly t'nose

evolutes of double curvature, which have been shown by Monge to exist, even when the ffiven curve

is plane.
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or XXYI'. . . (S/3.c)^ + (Syic)' = (^/3)% &c.

;

whicli will be found to agree with known results.*

(10.) As another example of application to a plam curve, we may con-

sider the hi/perbola^

XXYII. . . p = tn-v t-'(5, (comp. 371, II.),

with a and |3 for asymptotes, and with its centre at the origin. In this case

the derived vectors are,

XXVIII. ..p=a- t-% p" = 2^-'/3,

whence
XXIX. . . Vp'V = 2^-=»Vi3a = ^^V/>p',

and the formula IV. becomes,

^XX (V)' FT'-
^VAA.. . . K — p = :^ 7 > = ,

\ pp : p ov

where ov is the perpendicular from the centre o on the tangent to the curve

at p, and pt is the portion of that tangent, intercepted between the same

point p and an asymptote (comp. (6.) and 371, (3.) ).

(11.) We may also interpret the denominator in XXX. as denoting the

projection of the semidiameier op on the normal, or as the line np where n is

the foot of the perpendicular from the centre on that normal line ; if then k

be the sought centre of the osculating circle, we have the geometrical equations,

XXXI. . . NP . PK = PtS XXXII. . . L NTK = g ;

whereof the last furnishes evidently an extremely simple construction for the

centre of curvature of an hyperbola, which we shall soon find to admit of being

extended, with little modification, to a spherical conicf and its ci/clic arcs.

(12.) The logarithmic spiral with its pole at the origin,

XXXIII. ..p = a% Sa/B = 0, Ta^l, (comp. 314, (5.)

)

• [The expression (fjB)^ is perhaps a little inaccurate. The cube-root of {efi)^ is meant.]

t It was in fact for the spherical curve that the geometrical construction alluded to was ^rst

perceived by the Mo-iter, soon after tlie invention of the quaternions, and as a consequence of calcu-

lation with them : but it has been thought that a sub -article or two might be devoted, as above, to

the plane eatCf or hyperbolic limit, which may servo at least as a verification.
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may be taken as a third example of a j5/««e curve, for the application of the

foregoing fornmlse. A first derivation gives, by 333, YII.,

XXXIV. . , p' = (c + 7)p = p[c -
y),

p'p-' = c + 7, if c = ITa, and y = ^Ua ;

the constant quaternion quotient, p' : p, here showing that the prolonged vector

OP makes with the tangent pt a constant angle, n, which is given by the formula,

XXXV. . . tan n = (TV : S) (p : p) = c-'Ty, or cot n - -ITa ;*

TT

and a second derivation gives next,

XXXVI. ..p"={c + jYp, Yp'p = {C^ - r)p'y = p'^y.

The formula IV. becomes therefore, in this case,

XXXVII. ..K = p + py-' = pcy-' = - cy-'p = ?^ . a'^'ii ;

the evolute is therefore a second spiral, of the same kind as the first, and the

radius of curvature kp subtends a right angle at the common pole. But we

cannot longer here delay on applications within the plane, and must resume the

treatment by quaternions of curves of double curvature.f

390. When the logic b}' which the expression 389, IV. was obtained, for

the vector k of the centre of the osculating circle, has once been fully under-

stood, the process may be conveniently and safely abridged, as follows.

Eeferring still to fig. 77 [p. 24], we may write briefly, as equations which

are all ultimatehj true, or true at the limit, in a sense which is supposed to be

now distinctly seen :

I. . . p r = dp, TQ = |d'/a, PN = (part of pq J. pt =) —« ,—

»

by 203, &c. ; whence, ultimately,

PQ^ PT* d/o'
li. . . K - p = PC =^ = — = Yd^'

as before : this last expression, in which Vd*/odp denotes briefly V(dV . dip),

* If r be radius vector, and e polar angle, and if we suppose for simplicity that T/3 = I, the

ordinary polar equation of the spiral becomes r = a , with a = Tow, and cot n = la, as usual.

+ [The differential equations p" = cp, compare (5.) ; \fip" = (10.) ;
p' = qp and p" = qp (12.)

will afford useful exercises in integration and in geometrical and dynamical interpretation.]
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being rigorous, and permitting the choice of any scalar, to be used as the

independent variable. And then, by writing,

III. . . d/o = /d/, dH = 0, d> = p"df,

the factor d^^ disappears, and we pass at once to the expression,

IV. . . K - P = =4-„ (389, IV.),
Y^ p

which had been otherwise found before.

(1.) When the arc of the curve is taken for the independent variable,

then (comp. 380, (12.) &c.) the expression II. reduces itself to the following,

V. . . K - p = -,v- 5 because Sd-pd/o = ;

dp

and accordingly the angle ptq in fig. 77 is then ultimately right (comp. 383,

(5.) ), so that we may at once write, with this choice of the scalar variable,

PT^ dp'
VI. . . K - p = Uilt.) PC = (tilt.) -— = -Y^, as above.

' ' ^ 2tq d'p

(2.) Suppose then that we have thus geometrically (and very simply) deduced

the expression V. for k - p, for this particular choice of the scalar variable
;

and let us consider how we might thence pass, in calculation, to the more

general formula II., in which that variable is left arbitrary. For this purpose,

we may write, by principles already stated,

VTT ( - V^= -^P- = J_ ,1 ^ = ^2^ = VdVdp-'.Udp
vii. . . ^p K)

^^^^^, ^^^ a
,^^^ ^^^^ ,j,j^

Vd'pdp-' ^ Vdpdy
dp " dp=* '

and the required transformation is accomplished.

(3.) And generally, if s denote the arc of any ciurve of which p is the

variable vector, we may establish the symbolical equations,

VIII. . . D, =^d
i „,',,jl-d^d=(,pLaJ;&c.

(4.) For example (comp. 389, XII.), the Vector of Curvature, D/p, admits

of being expressed generally under any one of the five last forms VII.
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391. Instead of determining the vector k of tlie centre of the osculating

circle by one vector expression, such as 389, IV., or any of its transformations,

we may determine it by a system of three scalar equations^ such as the following,

I. . . S(k - p)p' = ; IL . . S(»c - p)p'' -p'^O;

III. . . S(^ - p)p'p'' = 0,

of which it may be observed that the second is the derivative of the first, if k:

be treated as constant (comp, 386, (4.) ) ; and of which the first expresses

(369, lY.) that the sought centre is in the normal plane to the curve, while the

third expresses (376, Y.) that it is in the osculating plane ; and the second

serves to fix its position on the absolute normal (379), in which those two

planes intersect.

(1.) Using differentials instead of derivatives, but leaving still the inde-

pendent variable arbitrary, we may establish this equivalent system of three

equations,

lY. . . S(k - p)d/> = ; Y. . . 8(ic -p)dV - d/«» = ;

YL . . S(ic-/:>)d^dV = 0;

of which the second is the differential of the first, if k be again treated as

constant.

(2.) It is also permitted (comp. 369, (2.), 376, (3.), and 380, (2.) ), with the

same supposition respecting ic, to write these equations under the forms,

YII. . . dT(ic - /o) = ; YIII. . . d^T(K - /o) = ;

IX. . . dUYf« - /o)d/o = ;

and to connect them with geometrical interpretations.

(3.) For instance, we may say that the centre of the osculating circle is

the point, in which the osculating plane, III. or YI. or IX., is intersected by

the axis of that circle ; namely, by the right line which is drawn through its

centre, at right angles to its plane : and which is represented by the two

scalar equations,

I. and II., or lY. and Y., or YII. and YIII.

(4.) And we may observe (comp. 370, (8.)), that whereas for a point ii

taken arbitrarily in the normal plane to a curve at a gi^en point p, we can

Hamilton's Elements of Quaternions, Vol. II. I
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only say in general, that if a chord pq be called small of the first order, then

the difference of distances, ^^ - kp, is small of an order higher than the first ;

yet, if the point u be taken on the axis (3.) of the osculating circle, then this

difference of distance is small, of an order higher than the second, in virtue of

the equations VII. and VIII.

(5.) The right line I. II., or IV. V., or VII. VIII., as being the locus of

points which may be called poles of the osculating circle, on all possible spheres

passing through it, is also called the Polar Axis of the curve itself, corre-

sponding to the given point of osculation.

(6.) And because the equation II. is (as above remarked) the derivative

of I., the known theorem follows (comp. 386), that the locus of all such, jjolar

axes is a developable surface, namely that which is called the Polar Developable,

or the envelope of the normal planes to the given curve ; of which surface we

shall soon have occasion to consider briefly the cusp-edge.

392. The following is an entirely different method of investigating, by

quaternions, not merely the radius or the centre of the osculating circle to a

curve in space, but the vector equation of that circle itself : and in a way which

is applicable alike, to plane curves, and to curves of double curvature.

(1.) In general, conceive that ot = r is a given tangent to a circle, at a

given point which is for the moment taken as the origin ; and let pp' = /o'

represent a variable tangent, drawn at the extremity of the variable chord

OP = /o : also let u be the intersection, ot • pp', of these two tangents. Then

the isosceles triangle oup, combined with the formula 324, XI. for the

differential of a reciprocal, gives easily the equations,

I. . . /o'
II
pr-^p

; 11. . . Yrp-yp-^ = - [Yrp-^y = ;

III. . . Yrp-' = const. = Yra-', as in 296, IX.",

if a be the vector oa of any second given point a of the circumference.

(2.) The vector equation of the circle pqd (389) is therefore,

IV- .
.
V^ =V -?^ = I V. (1 + itup"p'-y = - V. w-'(i + \t^'p'p-T ;

whence, passing to the limit {t = 0, u = 1), the analogous equation of the

osculating circle is at once found to be,

V...V-5el = .Te;, or vi...vf^^- + ^Vo,w-p p \w - p Up J
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with the verification (comp. 296, (9.) ), that when we suppose,

VII. , .(o-p = 2{k-p) ± p\

the vector k of the centre is seen to satisfy the equation,

VIIL..-^=-vC or IX. ..-^+¥^'-^ = 0;
K-jO p K - p dp

which agrees with recent results (389, IV., &o.).

(3.) Instead of conceiving that a circle is described (389), so as to iouch a

given curve (fig. 77) at p, and to ait it at one near point q, we may conceive

that a circle cuts the curve in the (/iven point p, and also in tico near points,

Q and R, unconnected by any given law, but both tending together to coinci-

dence with p : and may inquire what is the limiting position (if any) of the

circle pqk, which thus intersects the curve in three near pointSy whereof one

(p) is given.

(4.) In general, if a, j3, p be three co-initial chords, oa, ob, op, of any one

circle, their reciprocals a~S j3"^ p~^, if still co-initial, are termino-coUinear (260)

;

applying which principle, we are led to investigate the condition for the three

co-iiiitial vectors,

X. . . (w - p)-\ {sp' + \s'u,py\ {tp' + it^p'V,

with Uq = 1, tlius ultimately terminating on one right line ; or for our having

ultimately a relation of the form,

^j xs + pt X
^ y

0- p /o + 5S/0 P + ¥p
or

[xs + yt)p' X y
XII.

u) - p 1 + isp"p'~^ 1 + \tp"p''^

= X -\- y - \[xs + yt)p"p'~^ + &o.

:

in which last equation, both members are generally quaternions*

(5.) The comparison of the scalar parts gives here no useful information,

on account of the arbitrary character of the coefficients x and y, but thes^

[Observe that • = ; — = - . r if a and /3 are any two vectors.]
•-

a+i8 (l4/3a-i)a a 1 + /Ba'!
'

I 2
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disappear, with the two other soalars, « and ^, in the comparison of the vector

parts, whence follows the determinate and limiting equation,

XIII. . . 2Yp'{io - p)-' = - VpV"S

which evidently agrees with Y.

(6.) It is then found, by this little quaternion calculation, as was of course

to be expected,* that the circle (3.), through any three near points of a curve

in space, coincides ultimately with the osculating circle, if the latter be still

defined (389) with reference to a given tangent, and a near point, which tends to

coincide with the given point of contact.

393. An osculating circle to a curve of double curvature does not generally

meet that curve again ; but it intersects generally a plane curve, of the

degree n, to which it osculates, in 2n - 3 points, distinct from the point p of

osculation, whereof one at least must be real, although it may happen to

coincide with that point p : and such a circle intersects also generally a

spherical curve of double curvature, and of the degree n, in n - 3 other

points, namely in those where the osculating plane to the curve meets it

again. An example of each of these two last cases, as treated by quaternions,

may be useful.

(1.) In general, if we clear the recent equation, 392, V. or XIII., of

fractions, it becomes,

I. . . = 2p'^Yp'(a> -p) + {uy- pYYp'^p ;

in which /o = op = the vector of the given point of osculation, and p\ p" are

its first and second derivatives, taken with respect to any scalar variable t,

and for the particular value (whether zero or not) of that variable, which

answers to the particular point p ; while w denotes generally the vector of

any point upon the circle, which osculates to the given curve at that point p.

(2.) Writing then (comp. 389, (10.) ),

ll...p = ta + tr% p'=a- t-% p" = 2^»/3,

and

III. . . w = OQ = a;a 4 a;~'/3,

to express that we are seeking for the remaining intersection q of a platie

• This conclusion is indeed so well-known, and follows so obviously from the doctrine of iufnile-

timala, that it is only deduced here as a verification of previous formulae, and for the sake oipractice

in the present Calculus.
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hyperbola with its osculating circle at p, the equation I. becomes, after a few

easy reductions, including a division by YajS, the following biquadratic in x^

lY. . . = (a? - tY [tWx -
i3^)

;

in which the cubic factor is to be set aside, as answering only to the point

p itself.

(3.) Substituting then, in III., the remaining value IV. of «, we find the

expression,

V. ..<«-0Q--^ + ^---ij2^.,^+
2,„ j.

comparing which witli 371, (3.), we see that if the tangent to the hyperbola

at the given point p intersects the asymptotes in the points a, b, then the

tangent at the sought point q meets the same lines oa, ob in points a', b',

such that

VI. . . OA . oa' = ob', ob . ob' = OA*
;

whence q is at once found, as the bisecting point of the line a'b'.

(4.) A still more simple construction, and one more obviously agreeing

with known results, may be derived from the following expression for the

chord PQ

:

VII. . . PQ = w - p = {e^-^ - f^a^) {ta^^ - t-'afi')

whence it follows (comp. 226) that if this chord pq, both ways prolonged,

meets the two asymptotes ob and oa in the points r and s, we have then the

inverse similitude of triangles (118),

VIII. . . A ROS a'AOB.

(5.) As regards the equality of the intercepts, rp and qs, it can be verified

without specifying the second point q on the hyperbola, or the second scalar, x,

by observing that the formula III., combined with the first equation II.,

conducts to the expressions,

IX. . . oR = ':^—^={x^ + ^^)/3, os = %^^ = {x + t)ai
X - t

^ '^
t - X

which give, generally,

X. . . RP = QS = /a - iC~'/3.
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(6.) And as regards the general reduction, of the determination of the

osculating circle to a spherical curve of double curvature, to the determination

of the osculating plane, it is sufficient to observe that when we take the centre

of the sphere for the origin, and therefore write (comp. 381, XIY.),

XI. ' . p^ = const., S|0(o' = 0, Spp" = - p *,

then if we operate on the vector equation I. with the symbol V. p, and divide

by - /o'% there results the scalar equation,

XII. . . = 2Sp{io - p) + {io- pY = io'- p\

which expresses tliat the circle is entirely contained on the same spheric*

surface as the curve ; while the other scalar equation,

XIII. . . = S|oV((u - p),

obtained by operating on I. with S . p\ expresses (comp. 376, Y.) that the

same circle is in the osculating plane :t so that its centre k is the/oo/ of the

perpendicular let fall on that plane from the origin, and we may therefore

write (comp. 385, VI.),

XIV. . . OK = K = Jj „ , , with the relations, XV. . . S - = S - = 1 ;

y P p K K

and with the verification that the expression XIV. agrees with the general

formula, 389, IV., because

XVI. . . pYp"p' + p'' = S/,»,

when the conditions XI. are satisfied.

(7.) And even if the given curve be not a spherical one, yet if we retain

the general expression for k,

XVII. . . .c = p + .^„ (389, IV.),
yp p

and operate on I. with S . p" and S . p"p', we find again the equation XIII.

• This conclusion is geometrically evident, but is here diawn as above, for the sake of practice

in the quaternions.

t Compare the Note immediately preceding.
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of the osculating plane, combined with a new scalar equation, which may

after a few reductions be written thus,

XVIII. . . (to - kY = (p- kY ;

and which represents a new sphere, whereon the osculating circle to the curve

is a great circle.

394. To give now an example of a splien'cal curve of double curvature, with

its osculating circle and 7;/^;*^ for any proposed point p, and with a deter-

mination of the point q in which these meet the curve again (393), we may

consider that spherical conic, or sphero-conic, of which the equations are

(eomp. 357, II.),

I. . . p^ + r- = 0, II. . .gp^ + BXpup = ;

namely the intersection of the sphere, which has its centre at tlie origin, and

its radius = /•, with a cone of the second order, which has the same origin for

vertex, and has the given lines X and p. for its two (real) cyclic normals.

And thus we shall be led to some sufficiently simple spherical constructions,

which include, as tlieir plane limits, the analogous constructions recently

assigned for tlie case of the common hyperbola.

(1.) Since ^\ppp = 2S\pSpp - p^SXp (comp. 357, II'.), the equations I.

and II. allow us to write, as their first derivatives, or at least as equations

consistent therewith,

III. . . S/op' = 0, SX/o' + SX/) = 0, S/w/o' — Spp = 0,

because the independent variable is here arbitrary, so that we may conceive

the first derived vector p' to be multiplied by any convenient scalar ; in fact,

it is only the direction of this tangential vector />' which is here important,

although we must continue the derivations consistently, and so must write, as

consequences of III., the equations,

IV. . . Spp'' + p'' = 0, SX/o" + SXp' = 0, Spp" - 8fip' = 0.

(2.) Introducing then the auxiliary vectors,

V. . . »j = YXp, a = XSjUjO + /uSX/3, T = p + p\ V - p - p',

whence
VI. . . = S»j(T = SXt = S//U, S/aor = 2SA/t>S/x/o, Sjur = 2S^jO,

SXu = 2SX,o, r»= o^ = />» + p'%
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and by new derivations,

Yll. . . <r' = V»]/o, / = /o' + p)'\ V = // - p\ SX/ = S/nu' = 0,

S/ir' = S/[tr, SXm' = — SAw,

we see first that r and v are the vectors or and ou of the points in which the

rectilinear tangent to the curve at p meets the two cyclic planesy perpendicular

respectively to X and ju ; and because the radius op is seen to be the perpen-

dicttlar bisector of the linear intercept tu between those two planes, so that

VITI. . . /o' = PT = UP ± OP, we have IX. . . uop = pot,

or

X. . . n AP = r> PB,

if the tangent arc on the sphere, to the same conic at the same point p, meet

the two ci/clic arcs ca and cb in the points a and b : the intercepted arc ab

being thus bisected at its point of contact p, which is a well-known property

of such a cm*ve.

(3.) Another known property of a sphero-conic is, that for any one such

curve the sutn of the two spherical angles cab and abc, and therefore also the

area of the spherical triangle abc, is constant. We can only here remark, in

passing, tliat quaternions recognise this property, under the form (comp. II.),

XI. . . cos (a + b) = - SUX/o/ijO = - g : TX/u = const.

(4.) The scalar equations III. and IV. give immediately the vector

expressions,

YTT ' YpiXSfXp + flSXp) „^„ „ {p^ + py^Xfi
^^^- "p ^

—
mr^Tp
—

'

^^"'
•

• ^ = ^—sx;:;^—

or by (2.),

XIV. ../=^, and XV. . .o" = /o-^, if XVI. . . ^ =^
Ot]p b»J/0

= T - T = V + V
,

the new auxiliary vector ^ being thus that of the point x, in which tlio

osculating plane to the conic at p meets the line »} of intersection of the cyclic

planes : so that we have the geometrical expressions,

XVII. . . /o" = xp, / = XT, -v' = xu, if K = ox,

and the lines* / and v are the traces of the osculating plane on those two

• We may also conaider the derived vectoi-s r' and v, or the lines xt and xu, as corrfspondivg

tangents, at the points t and u (2.), to the two sections, made by the eycHc planes, of that developable

surface which is the loeus of the tangents tfu to the spherical conie in question.
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cyclic planes, or of the latter on the former ; while a- and a\ as being

perpendicular respectively to p and p, while each ± ij, are the traces on the

plane X^ of the two cyclic normals, of the normal plane to the conic at the

point p, and of the tangent plane to the sphere at that point : or at least

these lines liave the directions of those traces.

(5.) Already, from the expression XYI. for the portion ox of the radius

oc (2.), or of that radius prolonged, which is cut off by the osculating plane

at p, we can derive a simple construction for the position of the spherical centre^

or pole, say e, of the small circle which osculates at that point p, to the

proposed sphero-conic. For if we take the radius r for unity, we have the

trigonometric expressions,

XVIII. . . sec CE cos EP = (T| = Tr* : SU»j"'|o =) sec^ pb sec cp

;

or letting fall (comp. fig. 80) the perpendicular cd on the normal arc pe,

XIX. . . cos DK = cos DP cos PB . COS PB COS PE = COS DB COS BK
;

IT

or finally, XX. . . dbe (or dae) = -

(6.) But although it is a perfectly legitimate process to mix thus spherical

trigonometry with quaternions (since in fact the latter include the former), yet

it may be satisfactory to deduce tliis last result by a move purelt/ quaternionic

method, which can easily be done as follows. The values (4.) of p' and p" give,

XXI. . . Y|o'|o'"S»jp = joSo-p" — o-S/)/)" = pSpa + p''a

= (r - |o')S<rT + (tS/oV = rSffr + Vrp^a
|||

r, Yrp'a,

in which p'o- denotes a vector JLp' (because Sp'o- = 0), and
|||

rj, p' (because

Brip'p^a = 0) ; this line p'a has therefore the direction of the jjrojection of the

line rj on a plane perpendicular to p\ and we are thus led to draw, through

Hamilton's Elements of Quaibrnions, Vol. II. K
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the line oc of intersection of the cyolio planes, a plane cod perpendicular to

the nonnal plane to the conic at p, or to let fail (as in fig. 80) a perpendicular

arc CD on the normal arc pd ; after which the normal to the sought osculating

plane, or the axis oe of the osculating circle sought, as being \\ Yp'p'\ will be

contained in the plane through the trace t, or ot, or ob, which is perpendicular

to the plane of t and pV, or to the plane dob ; and therefore the spherical angle

DBK (or dae) will be a right angle, as before.

(7.) "We may also observe that if k be tlie centre of the osculating circle,

considered in its own plane, or the foot of the perpendicular on that plane

from o, then by XXI.,

XXII. . . OK = K = ^-Vtt = -Q——r» KP = p - K = J^ _[ ,
~,

ypp popa + p <T piipa + p *a

and therefore

XXIII. . . — = ^^^ = ^lpry, XXIV. . . tan ep = sin^ pb cot pd,
OK K T^ S

which gives again the angular relation XX. ; the quotient XXIII. being

thus a vector, as it ought by 393, XV. to be ; aud the trigonometric formula

XXIV. being obtained from its expression, by observing that

XXV. . . T/o't"^ = pt : ot = sin pot = sin pb, and (V : ^)pa = Up', cot pd,

because a ± p'a, but ||{ p, pV, or p'a ± a, but
\\\ p, a.

(8.) The rectangularity of the planes of r, k and r, pa is also expressed

by the equation,

XXVI. . . = S(Vicr .VpVr) = S^rSpVr - r-'^p <tk
;

in proving which we may employ the values,

XXVII. . . Stk-^ = 1, Sp'cTK-' = (- r-V'=S.,p =) Sp'(Tr-\

(9.) We may also interpret these equations XXVII., as expressing the

system of the two relations,

XXVIII. . ,k' - r-» ± r, k' - r-' ± p <j
;

from whicli it follows that k-^ and therefore also that tc, is a line in the plane

80 drawn througli r, as to be perpendicular to the plane through t aud p<s,

as before.
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(10.) And the two relations XXVIII. are both included in the following

expression,

XXIX. . .K-'- T-' = Vr-V'<T : S/xT.

(11.) We may also easily deduce, from the foregoing spherical construction,

the following trigunometric expressions, for the nrcuol radius r = ep of the

osculating small circle (5.), and for the angle a = pae = ebp which it subtends

at A or at B :

XXX. . . tan r = sin ^ tan a ; XXXI. . . tan a = ^(cot a + cot b) ;

A and B here denoting, as in XI., the base angles of the triangle abc with o for

vertex, and c denoting as usual the base ab, namely the portion of the arcual

tangent (2.) to the conic, which is intercepted between the cyclic arcs.

(12.) The osculating plane and circle at p being thus fully and in various

ways determined, we may next inquire (393) in what point q do they meet the

conic again. In symbols, denoting by to the vector of this point, we have the

three scalar equations,

XXXII. . . 8)C(i> = S)c/u, SXtuSjuw = SXpSjitp, lo' = p*,

which are all evidently satisfied by the value w = p, but can in general be

satisfied also by one other vector value, which it is the object of the problem

to assign.

(13.) We satisfy the two first of tliese three equations XXXII., by

assuming the expression,

XXXIII. . . o> = ^ + \{x-W' - xv'),

in which x is any scalar ; in fact we have the relations,

XXXIV. . . Sk^ = Skp, SXu' = - 2SXp, S^r' = 2S^p,

= SX^ = S/x^ = SXt' = S^u' = Stcr' = Sicu',

whence XXXIII. gives,

XXXV. . . SXoj = a-SX/u, S/«u = x'^Bfxp, &c.
And because

XXXVI. ..p = ^ + i(r' - u'),

we shall satisfy also the third equation XXXII., if we adopt for x any root

of that new scalar equation, which is obtained by equating the square of

K 2
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the expression XXXIII. for m, to what that square becomes when x is

changed to 1.

(14.) To facilitate the formation of this new equation, we may observe

that the relations,

K = p - p , T = p + p ^ V = p - p , Upp = U, iipp = - p ,

which have all occurred before, give

XXXVII. . . 4S^/ = 3/* + v'\ 4SW = t' + dv'' ;

the resulting equation is therefore, after a few slight reductions, the following

biquadratic in iP,

XXXVIII. ..0={x-iy {v''x - /^)

;

of which the cubic factor is to be rejected (comp. 393, (2.)), as answering only

to the point p itself.

(15.) We have then the values,

XXXIX. . .x = t'V-^, and XL. . . oq = w = ^ + i

comparing which last expression with the formulae XVII., we see that the

required point of intersection q, of the sphero-conic with its osculating circle,

can be constructed by the following rule. On the traces (4.), of the osculating

plane on the two cyclic planes, determine two points n and Ui, by the

conditions,

XLI. . . XT . XTi = xu^, xu . xui = XT^ ; then XLII. . . TiQ = qUi,

or in words, the right line TiUi is bisected by the sought point q.

(16.) But a still more simple or more graphic construction may be obtained,

by investigating (comp. 393, (4.) ) the direction of the chord pq. The vector

value of this rectilinear chord is, by XXXVI. and XL.,

XLIII. . . PQ = w - p = ^{v'' - t") {v'-' + /"O = i (r'-* - V-') t' (/ + u>'

= (^'-^)rV-V, because p' = W^v')',

the chord pq has therefore the direction (or its opposite) of the fourth propor-

tional (226) to the three vectors^ p\ /, and - u', or pt, xt, and xu ; if then we
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conceive this chord or its prolongations to meet the traces xt, xu in two new

points T2, U2, we shall have (comp. 393, YIII.) the two inversely similar

triangles (118),

XLIV. . . A TjXUz a' uxT.

(17.) To deduce hence a spherical construction for q, we may conceive /o//r

planes, through the axis oke, perpendicular respectively to the/owr following

right lines in the osculating plane

:

XLV. . . r', - V, p, (o - p, or XT, xu, PT, PQ

;

which planes will cut the sphere in four great circles^ whereof the four arcs,

XLVI. . . EF, EG, EP, EH,

are parts, if f, g, h (see again fig. 80) be the feet of the three arcual perpen-

diculars from the pole e of the osculating circle on the two cyclic arcs cb, ca,

and on the arcual chord pq.

(18.) These four arcs XLVI. are therefore connected by the same angular

relation as the four lines XLV. ; and we have thus the very simple formula,

XLVII. . . GKH = PEF,

expressing an equality between two spherical angles at the pole e, which serves

to determine the direction of the arc eh, and therefore also the positions of the

points H and q, by means of the relations,

XLVIII. . . PHE =
75,

A PH = '^ HQ.

(19.) If the arcual chord pq, both ways prolonged, or any chord of the

conic, cut the cyclic arcs cb and ca in the points r and s (fig. 80), it is

well-known that there exists the equality of intercepts (comp. 270, (2.)),

XTiTX. . . n RP = n QS
;

and conversely this equation, combined with the formulae (11.), or with the

trigonometric expression,

L. . . tan PE = tan r = \ sin - (cot a + cot b),

for the tangent of the arcual radius of the osculating circle, enables us to
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determine what may be called perliaps the arcual chord of osculation po,' by

determining the spherical angle rpb, or simply p, from principles of spherical

trigonometry alone, in a way which may serve as a verification of the results

above deduced from quaternions.

(20.) Denoting by t the semitransversal rh = hs, and by s the semiohord

PH = HQ, the oblique-angled triangles rpb, spa give the equations,

/ c c
cot {t - s) sin - = cos p cos jr + sin p cot b,

LI. ..-(
^ ^

I cot {f + s) sin ^ = cos p cos - - sin p cot a
;

while the right-angled triangle phe gives,

LII. . . tan s = sin p tan r.

Equating then the values of cot 2s, deduced from LI. and LII., we eliminate

s and t, and obtain a quadratic in tan p, of which one root is zero, when tan r

has the value L. ; such then might in this new way be inferred to be the

tangent of the arcual radius of curvature of the conic, and the remaining

root of the equation is then,

cos ^ (cot B - cot a)

LIII. . . tan p =
C

cot A cot B + cos'^ jr - tan* r
At

a formula which ought to determine the inclination p, or rpb, or qpa, of the

chord PQ to the tangent pa, but which does not appear at first sight to admit

of any simple interpretation.*

(21.) On the other hand, the constiniction (17.) (18.), to which the quater-

nion analysis led us, gives

LIV. . . HEP = GEP - GEH = GEP - PEF = FEB + GEA,

• "We might however at once see from this formula, that p = a - b at the phne limit ; which

agrees with the known constructiou 393, (4.), for the corresponding chord pa in the case of the

plane hyperbola.
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and therefore, by tlie four right-angled triangles, phe, bfe, age, and bpe

or EPA, conducts to this other formula,

LY. . . cot"^ (cos r cot p) = cot"^ ( cos r cos - tan (b + «)
j

- cot"^ f cos r cos - tan (a + «) j,

in which a is the same auxiliary angle as in XXXI. ; we ought therefore to

find, as the proposed verification (19.), that this last equation LV. expresses

virtually ^the mme relation between a, b, c, and p, as the formula LIII.,

although there seems at first to be no connexion between them ; and

such agreement can accordingly be proved to exist, by a chain of ordi-

nary trigonometric transformations, which it may be left to the reader to

investigate.

(22.) A geometrical proof of the validity of the construction (17.) (18.)

may be derived in the following way. The liroduct of the sines of the arcual

perpendiculars, from a point of a given sphero-conic on its two cyclic arcs, is

well-known to be constant ; hence also the rectangle under the distances of the

same variable point from the two ci/clic planes is constant, and the curve is

therefore the intersection of the spthere with an hyperbolic cylinder, to which

those planes are asymptotic. It may then be considered to be thus geometri-

cally evident, that the circle which osculates to the spherical curve, at any

given point p, osculates also to the hyperbola, which is the section of that

cylinder, made by the osculating plane at this point ; and that the point q, of

recent investigations, is the point in which this hyperbola is met again, by its

own osculating circle at p. But the determination 393, (4.) of such a point of

intersection, although above deduced (for practice) by quaternions, is a plane

problem of which the solution was known ; we may then be considered to have

reduced, to this known and plane problem, the corresponding spherical 2)roblem

(12.) ; and thus the inverse similarity of the two plane triangles XLIV.,

although found by the quaternion analysis, may be said to be geometrically

explained, or accounted for : the traces xt and xu, or t and - v, of the

osculating plane to the conic on the two cyclic planes (4.), being evidently

the asymptotes of the hyperbola in question.

(23.) In quaternions, the constant product of sines, &g., is expressed by

this form of the equation II. of the cone,

LYI. . . SUX/o . S\J,xp = {g - SAiu) : 2TX/i = const.

;
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and the scalar equation of the hyperbolic cijlindei\ obtained by eliminating /o'

between I. and II., after the first substitution (1.), is

LVII. . . SX/oS/xp = lr\g - SX/u) = const.

;

while the expression XXXIII. for a» may be considered as the vector equation

of the hyperbola, of which the intersection q with the circle, or with tlie sphere,

is determined by combining that equation with the condition w' = ja^(=- r^).

(24.) In the foregoing investigation, we have treated a sphero-conic in

connexion with its cyclic arcs (2.) ; but it would have been about equally easy

to have treated the same curve, with reference to its/oca^pom^s : or to the

focal lines of the cone, of which it is the intersection with a concentric sphere.

(Compare what has been called the bifocal transformation, in 360, (2.).)

(25.) We can however only state generally here the result of such an

application of quaternions, as regards the construction of the osculating small

circle to a spherical conic, considered relatively to its foci : which construction*

can indeed be also geometrically deduced, as a certain polar reciprocal of the

one given above. Two focal points (not mutually opposite) being called

F and G, let pn be the normal arc at p, which is thus equally inclined, by a

well-known principle, to the two vector arcs, fp, gp ; so that if the focus g

be suitably distinguished from its own opposite, the spherical angle fpg is

bisected by the arc pn, which is here supposed to terminate on the given arc fg.

At N erect an arc qnr, perpendicular to pn, and terminating in q and r on the

two vector arcs. Perpendiculars, qe, re, to these last arcs, tcill meet on the

normal arc pn, in the sought pole (or spherical centre) e, of the sought small

circle, which osculates to the conic at the given point p.

(26.) The two focal and arcual chords of curvature from p, which pass

through f and g, and terminate on the osculating circle, are evidently bisected

at Q and r, in virtue of the foregoing construction, which may therefore be

thus enunciated :

—

The great circle or, which is the common bisector of the two focal and arcual

chords of curvaturefrom a given point p, intersects the normal arc pn on the fixed

arc fg, connecting the ttcofoci; that is, on the arcual major axis of the conic.

* The reader can easily draw the figure for himself. As regards the known rule, lately alluded to

(in 393, (4.), and 394, (22.)), for determining the chord of intersecHon of a plane conic with its

otculalinff circle, it will be found (for instance) in page 194 of Hatnilton's Conic Sections (in Latin,

London, 1758). The two spherical constructions, for the small circle osculating to a spherical conic,

were early deduced and published by the present writer, as consequences of quaternion calculations.

Compare the second Note to page 54.
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(27.) The construction (5.) fails to determine the position of the auxiliary

point D in fig. 80, for the case when the given point p is on the minor axis of

the conic ; and in fact the expressions (4.) for p' and p'' become infinite,

when the denominator SA/i^o is zero. But it is easy to see that the auxiliary

vector a, which represents generally the trace of the normalplane to the curve

on the plane of the two ci/clic normals, becomes at the limit here considered

the required axis of the osculating circle ; and accordingly, if we assume

simply (comp. (1.) and (2.) ),

LYIII. . .p= Yp(T, and therefore p' = Ypa + Ypa',

we have

LIX. . . (t' = 0, and Yp'p"
\\

a, when SA/zp = 0.

(28.) In general, if we determine three points l, m, s in the plane of A/u,

by the formulae (comp. again (2.) ),

V2
2 2

jLLa.. . . uj, =
^Y"»

OM = ——, OS = ^^— = ^(OL + cm),

then L and m will be the intersections of the cyclic normals A, fi with the

tangent plane to the sphere at p, and the normal plane to the curve at the

same point will bisect the right line lm in the point s ; we shall also have

this proportion of sines,

LXI. . . sin LOS : sin som = SUA/!) : SU/up

- cos LOP : cos POM = sin pPj : sin ppg, (comp. (23.) ),

if pPi, pPa be the arcual perpendiculars from the point p of the conic on the

two cyclic arcs ; and this general rule for determining the position of the

line OS, or a, applies even to the limiting case (27.), when that variable line

becomes the axis of the osculating circle, at a minor summit of the curve.

(29.) As an examplcy let us suppose that the constants </, A, fi in the

equation II. are connected by the relation,

LXII. . .g = - 8Xfx, whence LXIII. . . S (VA^o .Yfip) = 0; .

the ci/clic normals are therefore in this case sides of the cone, and the ttoo

planes which connect them with ani/ third side are mutually rectangular ; so

that the coiic is now the locus of the vertex of a right-angled spherical triangle^

of which the hypotenuse is given. And by applying either the formula LXI.,

Hamilton's Elemknts of Quaternions, Vol. II, L
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or the construction (28.) which it represents, we find that the trigonometric

tangent of the arciial radius of the osculating small circle to such a conic, at

either end of the given hypotenuse, is equal to half* the tangent of that

hypotenuse itself,

(30.) It is obvious that every determination, of an osculating circle to a

spherical curve, is at the same time the determination of what may be (and is)

called an oscillating right cone (or cone of revolution), to the cone which rests

upon that curve, and has its vertex at the centre of the sphere. Applying

this remark to the last example (29.), we arrive at the following theorem,

whicb can however be otherwise deduced :

—

If a cone he cut in a circle by a plane perpendicular to a side, the axis of the

right cone which osculates to it along that side passes through the centre of the

section.

395. When a given curve of double curvature is not a spherical curve, we

may propose to investigate the spheric surface which approaches to it most

closely, at any assigned point. An osculating circle has been defined (389) to

be the limit of a circle, which touches a given curve, or its tangent pt, at a

given point p, and cuts the same curve at a near point q ; while the tangent pt

itself had been regarded (100) as the limit of a rectilinear secant, or as the

ultimate position of the small chord pq. It is natural then to define the

osculating sphere, as being the limit of a spheric surface, which passes through

the osculating circle, at a given point p of a curve, and also cuts that curve in

a point Q, which is supposed to approach indefinitely to p, and ullimately to

coincide with it. Accordingly we shall find that this definition conducts by

quaternions to formulce sufficiently simple ; and that their geometrical inter-

pretations are consistent with known results : for example, the centre ofspherical

curvature, or the centre of the osculating sphere, will thus be shown to be, as

usual, the point in which the polar axis (391, (5.) ) touches the cusp-edge of the

polar developable (391, (6.)). It will also be seen, that whereas in general,

if R be a point in the normal plane (370, (8.)) to a given curve at p, we can

only say that the difference of distances, rq - irt, is small of an order higher

than the first, if the chord pr be small of the first order ; and whereas, even

if R be on the polar axis (391, (4.)), we can only say generally that this

difference of distances is small, of an order higher than the second
;

yet, if r

be placed at the centre s of spherical curvature, the difference sq - sp is small,

• This may also bo inferred by limits from the formulsB (11.) ; in which r and a Mere used,

provisionally, to denote a certain spherical arc and angle.
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of an order higher than the third : so that the distance of a near point q, fro?n

the osculating sphere at the given point p, is generally small of the fourth order,

the chord being still small of the first.

(1.) Operating with S . X, where X is an arbitrary line, on the vector

equation 392, Y. of the osculating circle, we obtain the scalar equation of a

sphere through that circle under the form,

I. . . = 2S^ + S^ ;

which may however, by 393, (7.), be brought to this other form, better suited

to our present purpose,

II. . . (w - k)' = [p - kY + 2cS/>V(^ - p) ;

c being any scalar constant, while k is still the vector of the centre k of the

circle : and the vector <t of the centre s of the sphere is given by the formula,

III. . . (T = K + cYp''p\

which evidently expresses that this last centre is on the polar axis.

(2.) To express now that this sphere cuts the curve in a near point q, we

are to substitute for w the expression,

TV. . . tj = pt = p-^ fp + it'p" + ifU(p''\ with //o = 1

;

but K has been seen (in 391) to satisfy the three equations,

V. . . = S/t)'(ic - p), = S/o"(ic - p) - p'S = S/o'y(ic -
p) ;

reducing then, dividing by ^^, and passing to the limit, we find for the

osculating sphere the condition,

VI. . . 8p'''{p — k) + fiSp'p" = cSp"'p''p'

;

so that finally the vector a satisfies the three scalar equations,

YII. . . = Sp'(<r - p), = Sp"((T -p)- p'\ = Sp''\<y -p)- SSpY,

by which it is completely determined, and of which the two last are seen to

be the successive derivatives uf the first, while that first is the equation of the

noi-mal plane : whence the centre s of this sphere is (by the sub-arts, to 386,

L2
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comp- 391, (6.)) the point where the polar axis ks touches the cusp-edge of the

polar developable.*

(3.) Differentials may be substituted for derivatives in the equations VII.,

which may also be thus written (comp. 391, (4.)),

YIII. . . = dT(/t> - <t), = d'T(p - a), = d^T(/o - a\ if da = ;

the distance of a near point q of the given curve from the osculating sphere is

therefore small (as above said), of an order higher than the thirds if the eJiord

PQ be small of the first order.

(4.) The two first equations VII., combined with V., give also

IX. . . = ^p\a -k), = Sp'\a -k), = S(ic -p){<t-k);

which express that the line ks is perpendicular to the osculating plane and

absolute normal at p, as it ought to be, because it is part of the polar axis.

(5.) Conceiving the three points p, k, s, or their vectors p, k, o-, to vari/

together, the equations V. and VII., combined with their own derivatives,

give among other results the following :

X. . . = 8k p' = Sa'p' = Sff'jo'' = S«t'(»c — p) = StT '/o'

;

of which the geometrical interpretations are easily perceived.

(6.) Another easy combination is the following,

XI. . . = Sk'((t + p- 2k),

as appears by derivating the last equation IX., with attention to other

relations ; but 2k - p ib the vector of the extremity, say m, of the diameter of

* [The equation of the osculating sphere may be obtained in a manner analogous to the instructive

method of 392, (3.), p. 59. Let p, pi, pi, and pz be the vectors to any four points on the curve, and

let b) be the vector to a variable point on the sphere which passes through these four points, then for

certain scalars x, y, and z,

x + V + z _ X y B

CD — p P\ - P p-i- P P3- p'

because the coinitial vectors reciprocal to four coinitial chords of a sphere are termino-complanar.

Let pi = P + <ip' + i'lV" + i<i'w<ip"'> &c.,

and the relation becomes

(. , y -^ ,)
-Z- ,

^ _^ ^,.,..,J!:"l,,»,,„->y-i
+ &"•
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the osculating circle^ drawn from the given point f : we have therefore this

construction :

—

On the tangent kk' to the locus of the centre of the osculating circle^ let fall a

perpendicularfrom the extremity m of the diameter draicnfrom the given point p;

this jierpendicular prolonged will intersect the polar axis, in the centre s of the

osculating sphere to the given curve at p.

(7.) In general, the three scalar equations VII. conduct to the vector

expression,

xn ff - « + 3Vf>VSpV' + p^Yp'p'
^

^pp p
or with differentials,

^TTT SYdodVSdodV + dp'Vd'pdp™^- "'-'^ SdpdW '

the scalar variable being still left arbitrary.

(8.) And if, as an example, we iutroduce the values for the helix,

XIT. . . p = rfa + a'A p' = <^<. +
I

a'*'/3, f - - (^\'a%

whereof the three first occurred before, we find after some sliglit reductions

the expression, in which a denotes again the constant inclination of the curve

to the axis of the cylinder,

XV. . . <r = /»
- a'/3 coseo' a = eta - a'/3 cot^ a

;

but this is precisely what we found for k, in 389, VIII. ; for the helix, then,

the two centres, k and s, of absolute and spherical curvature, coincide.

Ultimately, when the foiir points on the curve approach indefinitely, this reduces to

{x + y + z) -^— = „
^.i' ,; ,., ,

1
+ &c.

u-p l + ^hpp ^ + it\^p p-i

= xh-^{\ - itip"p'-^ + W(p"p'-^f - hhY'p''^ + &c.) + &c.

= {xti-^ + yti-^ + 2<3-') -
i(:» + y + 2)p'V-*

+ \{xh + yh + zh) {W'p'''^? - "p"'/'^) + &c.

Taking the vector part,

and hence

{x + y + z)Y(^ - y"p'-A = iixh + yh + zh) (Yp"p'-'Sp"p'-^ - 3Vp">'-»)

;

which is the equation required.]
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(9.) This known result is a consequence, and may serve as an illustration,

of the general construction (6.) ; because it is easy to infer, from what was

shown in 389, (3.), respecting the locus of the centre k of the osculating circle

to the helix, as being another helix on a co-axal cylinder, that the tangent kk'

to this locus is perpendicular to the radius of curvature kp, while the same

tangent (kk' or k) is always perpendicular (X.) to the tangent (pp' or p) to

the curve ; kk' is therefore here at right angles to the osculating plane of the

given helix, or coincides with its polar axis : so that the perpendicular on it

from the extremity m of the diameter of curvature falls at the point k itself

with which consequently the point s in the present case coincides^ as found by

calculation in (8.).

(10.) In general, if we introduce the expressions 376, YI., or the following,

XVI. ../>' = sB,p, p" = sWp + s'%p, p" = s"Wp + 3s'.s"d,V + s'"B,p,

in which s denotes the arc of the curve, but the accents still indicate deriva-

tions with respect to an arbitrary scalar t ; and if we observe (comp. 380, (12.)

)

that the relations,

XYII. . . -Dsp^ = - 1, S . DspDs^p = 0, S . BspWp + DsV = 0,

in which d,^' and d/^'^ denote the squares of T>sp and d//o, and S . i>spWp

denotes S(d«/o -Bg^p), &c., exist independently of the form of the curve; we

find that s" and s'" disappear from the numerator and denominator of the

expression XII. for or - p, and that they have s'' for a common factor

:

setting aside which, we have thus the simpler formulae,

XVIII. . . a - p = /'^-P°-'P = "-°-^°->
.

And accordingly the three scalar equations VII., which determine the centre

of the osculating sphere, may now be written thus,

XIX. . . S(a - p)t)sp = 0, S(<7 - p)d/|o + 1 = 0, S((r - p)Ds'p = 0.

(11.) Conversely, when we have any formula involving thus the successive

derivatives of the vector p taken with respect to the arc, s, we can always and

easily generalize the expression, and introduce an arbitrary variable t, by

inverting the equations XVI. ; or by writing (comp. 390, VIII.),

XX. . . D.p = «'-'p', D,> = s'-'(s'-VT = «'>" - s'-'s'p\ &c.
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(12.) It maj' happen (comp. 379, (2.)) that the independent variable

t is oily proportional to s, without being equal thereto ; but as we have the

general relation,

XXI. . . Dt> = /"D.V, if 8' = BiS = Tp' = const.,

it is nearly or quite as easy to effect the transformations (10.) and (11.) in

the case here supposed, or to pass from i^ to s and reciprocally, as if we

had / = 1.

(13.) If the vector a be treated as constant in the derivations, or if we

consider for a moment the centre s of the sphere as &Jhed pointy and attend

only to the variations of distance of a point on the curve from it^ then

(remembering that T{p - (tY = - {p - aY) we not only easily put (comp.

VIII.) tlie three equations XIX. under the forms,

XXII. . . = d/IX/o - <t) = D/T(/) - a) = D,'T(|t> - <t),

but also obtain by XYII. this fourth equation,

XXIII. . . T(p - a) D/T(/> -<t)=8.{<t-p) Wp + D,y.

(14.) If then we write, for abridgment,

XXIV. . . r = T{k - p) = Td//o"* = radius of osculating circle ;

XXV. . . R = T{(r - p) = radius of osculating sphere
;

and

WT7T e S((T-/o)d/|0 S.BspWpWp
-A.^ V i. . . o = -—i = 3 —-——

,

- D/|0- b . BspWpWp

we see that this sca/ar, S, must be constantly equal to unity^ for every spherical

curve ; but that for a curve which is non-spherical^ the distance sq of a near

point Q, from the centre s of the osculating sphere at p, is generally given by

an expression of the form,

XXVII. ..^ = 72 + ^"r^*, with Wo = 1

;

so that, at least for near points q, on each side of the given point p, the curve

lies without or within the sphere which osculates at that given point, according

as the scalar, S, determined as above, is greater or less than unity.
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(15.) In the case (12.), the formula XXYI. may be thus written,

XXVIII. . . S = '

, „ ,„ ;

whence, by carrying the derivations one step farther than in (8.), we find for

the helix,

XXIX. . . S = cosec' « > 1, or XXIX'. . . *Sf - 1 = cot' a > ;

and accordingly it is easy to prove that this curve lies wholly tcithout its

osculating sphere, except at the point of osculation.

(16.) In general, the scalar 8-\, which vanishes (14.) for all spherical

curves, and whicli enters as a coefficient into the expression XXVII. for the

deviation sq - sp of a near point of any other curve from its own osculating

sphere, may be called the Coefficient of Non- Sphericity ; and if qt be the

perpendicular from that near point q on the tangent pt to the curve at the

given point p, we have then this limiting equation, by which the value of that

coefficient may be expressed,

XXX. ..;S-l=lim. sf^i:^'''
\ QT-

(17.) Besides the forms XVIII., other transformations of the expressions

XII. XIII. for the vector a of the centre of an osculating sphere might be

assigned; but it seems sufficient here to suggest that some useful practice

may be had, in proving that those expressions for a reduce themselves

generally to zero, when the condition,

XXXT. . . T/> = const,

is satisfied.

(18.) It may just be remarked, that as r'^ is often called (comp. 389,

(4.)) the absolute curvature, or simply the curvature, of the curve in space

which is considered, so JRr^ is sometimes called the spherical curvature of

that curve : while r and R are called the radii* of those two curvatures

respectively.

• We shall soon have occasion to consider another scalar radius, which we propose to denote hy

the small roman letter r, of what is not uncommonly called the torsion, or the second curvature, of the

same curve in space.
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396. When the arc (s) of the curve is made the independent variable,

the calculations (as we have seen) become considerably simplified, while no
essential generality/ is lost, because the transformations requisite for the

introduction of an arbitrary scalar variable [t] follow a simple and uniform
law (395, (11.), &c.). Adopting then the expression (comp. 395, IV.),

in which

and therefore

I. • • /o« = /o + sr + IsV + ^«'«,r", with Uq = 1,

II. . . r = D,/0, T = D//0, t" = D//0,

III. . . r^ + 1 = 0, Srr' = 0, Srr" + r" = 0,

we shall proceed to deduce some ot/ier agectiona of the curve^ besides its

spherical curvature (395, (18.)), which do not involve the consideration of

the fourth power of the arc (or chord). In particular, we shall determine

expressions for that known Second Curvature (or torsion)^ which depends on
the change of the osculating plane^ and is measured by the ultimate ratio of

that change, expressed as an angle, to the arc of the curve itself ; and shall

assign the quaternion equations of the known Rectifying Plane, and Rectifying

Line, which are respectively the tangent plane, and the generating line, of

that known liectifying Developable, whereon the proposed curve is a geodetic

(382) :
so that it would become a right line, by the unfolding of this last

surface into a plane. But first it may be well to express, in this new
notation, the principal afi'ections or properties of the curve, which depend
only on the three first terms of the expansion I., or on the three initial vectors

p, T, T, or rather on the two last of these ; and whicli include, as we shall

see, the rectifying plane, but not the rectifying line : nor what has been
called above the second* curvature.

(1.) Using then first, instead of I., this less expanded but still rigorous
expression (comp. 376, I.),

IV. . . pg = p + ST + ^s^UfT, with Uo = 1,

and with the relations II. and III,, we have at once the following system of

* In ft Note to r, very able and interesting Memoir, " Sur les lignes comben non pla'tea'' (referred
to by Dr. Salmon in the Note to page 277 of his already cited Treatise, and published in Cahier XXX
of the Journal de VEcole Folytechnique), M. de Saint-Yenant brings forward several objections to
the use of this appellation, and also to the phrases torsion, flexion, &c., instead of which he proposes
to introduce the new name, " cambrure " : but the expression " second curvature " may sei-ve us for
the present, as being at least not unusual, and appearing to be sufficiently suggestive.

Hamilton's Ei.kmbnts of Quathrnions, Vol. II. jj
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three rectangular lines, which are conceived to be all drawn from the given

point p of the curve :

V. . . T = unit tangent ; VI. . . t = vector of curvature (389, (4) )

;

and
VII. . . V = t/ = - rV = tV^ = hinormal (comp. 379, (4.) ) ;

r being a line drawn in the direction of a conceived motion along the curve,

in virtue of which tlie arc (s) increases ; while / is directed toicards the centre

of curvature, or of the osculating circle, of which centre k the vector is now,

VIII. . . OK = K = jo - t'-^ = p + r\' = p + rVr,
if

IX. . . r"* = T/ = curvature at p, or IX'. . . r = Tr'-^ = radius of curvature
;

and the third line v (which is normal at p to the surface of tangents to the

curve) has the same length (Tv = r~^) as r', and is directed so that the rotation

round it from r to / is positive.

(2.) At the same time, we have evidently a system of three rectangular

vector units from the same point p, which may be called respectively the

tangent unit, the normal unit, and the hinormal unit, namely the three lines,

X. . . Ur = T, Ur' = rr, Uv = rrr
;

the normal unit being thus directed (like t) toicards the centre of curvature.

(3.) The vector equation (comp. 392, (2.) ) of the circle of curvature takes

now the form,

XL..V;-^ = -.;
It) — p

with the verification that it is satisfied by the value,

XII. ..(i) = fx = 2k -p = p — 2t~^,

in which /x (comp. 395, (6.)) is the vector cm of the extremity of the diameter

of curvature pm.

(4.) The normal plane, the rectifying plane, and the osculating plane, to the

curve at the given point, form a rectangular system ofplanes (comp. 379, (5.)),

perpendicular respectively to the three lines (I.) ; so that their scalar equations

are, in the present notation,

XIII. . . Sr(a; - p) = ; XIY. . . &r\u, - p) = ; XV. . . Sv((u - p) = ;
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by pairing which we can represent the tamjent, normal, and binormal to the

curve, regarded as indefinite right lines ; or bj the three vector equations,

XYL..Yr((o-|o) =0; XYII. ..Y/(a;-|o) = 0; XYIIL . . Yv(a> -p) =0.

(6.) In general, if the two vector equations,

XIX. . . Y»,(w - p) = 0, and XIX'. . . Vr,,(a>, - p,) = 0,

represent two right lines, ph and p,h„ which are conceived to emanate

according to any given laic from any given curve in space, the identical

formula,*

xx...,.-,.y(y,..Y^^^) = «H^,

shows that the common perpendicular to these two etnanants, which as a vector

is represented by either member of this formula XX., intersects the two lines

in the two points of which the vectors are,

wT ^ Q iP' - p)v»
. "VYT' J. oip*~pyn

(6.) In general also, the passage of a right line from any one given position

in space to any other may be conceived to be accomplished by a sort of screw

motion, with the common perpendicular for the axis of the screw, and with two

proportional velocities, of translation along, and of rotation round that axis : the

locus of the two given and of all the intermediate positions of the line (when thus

interpolated) being a Scr'etc Surface, such as that of which the vector equation

was assigned in 314, (11.), and was used in 372, (4.).

(7.) Again, for any quaternion, q, we have (by 316, XX. and XXIlI.f)

the two equations,

XXII. ..\Uq = L q.VYq, XXII'. . . YVq == sin Z q .VYq ;

comparing which we see that

XXIII. . . YVq : lU^ = sin L q : L q = (very nearly) 1,

* It is obyious that we have thus an easy quaternion solution of the problem, to draw a common

perpendicular to any two right lines in space.

t Although the expression XXII'. for YJJq is here deduced from 316, XXIII., yet it might have

been introduced at a much earlier stage of these Elements ; for instance, in connexion with the

formula 204, XIX., namely TVUj = sin L q.

M 2
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if the angle of the quaternion be small ; so that the logarithm and the

r^c^or of the versor of a small-angled qn-aternion are very nearly eg'Ma/ to

each other, and we may write the following general approximate formula

for such a versor

:

XXIV. . . U<? = (e""* =) e"^*, nearly, iiLqhe small
;

the error of this last formula being in fact small of the third order, if the

angle be small of the Jirst.

(8.) And thus or otherwise (comp. 334, XIII. and XV.), we may

perceive that if the quaternion q have the form (comp. (5.)),

XXV. . . ? = rjsn'\ with XXVI. ..»,, = u + sr,' +..

,

and if we write for abridgment,

XXVII. . . = V^, and XXVIII. . . /* = S
^',

we shall then have nearly, if s be small, the expressions,

XXIX. ..U^ = U- = t*«, and XXX. . . T? = T^ = 1 + «A;
n r}

or, neglecting s^,

XXXI. . . u, = (1 + sh) £*"», = £»«,, + shti,

in which last binomial, the Jirst (or exponential) term alone influences the

direction of the near emanant line (5.).

(9.) At the same time, by supposing s to tend to 0, the formula XXI.

gives, as a limit,

XXXIT. . . OH = <Uo = p + »jS -^f
—> = p - ijS Tp-,

for the vector of the point, say h, on the given emanant ph, in which that

given line is ultimately intersected by the common perpendicular (5.), or by the

axis of the screw rotation (6.) ; but the direction of that axis is represented by

the versor U0, and the angular velocity of that rotation is represented by the

tensor T0, if the velocity of motion (1.) along the given curve be taken as

unity : we may therefore say that the vector B itself, or the factor which

multiplies the arc, s, in the exponential term XXXI., if set off /row the point
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H determined by XXXII., is the Vector of Rotation of the Emnnant, whatever

the law (5.) of the emanation may be.

(10.) And as regards the screw translation (6.), its linear velocity is in like

manner represented, in length and in direction, by the following expression

(obtained by limits from XX.),

XXXIII. . . t = 0S ^ (set off from h) = Vector of Translation of JSmanant,

= projection of unit-tangent on screw-ax^is (or of t on B).

And the indefinite right line through the point h, of which this line i is a part^

may be called the Axis of Displacement of the Emanant.

(11.) It is easy in this manner to assign what may be called the

Osculating Screw Surface to the {generally gauche) Surface of Emanants, or

indeed to any proposed skew surface ; namely, the screw surface which has

the given emanant (or other) line for one of its generatrices^ and touches the

skew surface in the tchole extent of that right line.

(12.) It is however more important here to observe, that in the case when

the surface of emanants is developable^ the vector i of translation vanishes ; and

that conversely this vector i cannot be constantly zero, if that surface be

undevelopable. The Condition of Developability of the Surface of Emanants is

therefore expressed by the equation,

XXXIV. . . t = 0, or Sr0 = 0, or XXXIV. . . S,,r,V = ;

and accordingly this condition is satisfied (as was to be expected) when »? = t,

that is, for the surface of tangents.

(13.) In the same case, of rj = or |1 r, the vector B of rotation becomes

equal (by XXVII. and VII.) to the binoi'mal v ; and the expression XXXII.,
for the vector wo of the foot h of the axis reduces itself to p ; and thus we

might be led to see (what indeed is otherwise evident), that the passage from

a given tangent to a near one may be approximately made, by a rotation round

the binomial, through the small angle, sTv = sr'^ = arc divided by radius of

curvature.

(14.) Instead of emanating lines, we may consider a system of emanating

planes, which are respectively popendicular to those lines, and pass through

the same points of the given curve. It may be sufficient here to remark, that

the passage from one to another of two such near emanant planes, represented

by the equations,

XXXV. . . S,,(a> - /o) = 0, XXXV. . . S»,,(<o - p) = 0,
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may be conceived to be made by a rotation through an angle = sTO, round the

right line^

XXXVI. . . S»,((u - p) = 0, Sfl'(a) - p) - S»,r = 0,

or

XXXVr. . . Y0((u - p) + rf'^nr = 0,

in which the plane XXXY. touches its developable envelope^ and which is

parallel to the recent vector 0, or to the vector of rotation (9.) of the emanant

line ; so that if an equal vector be set off on this new line XXXVI., it may be

said to be the Vector Axis of Rotation of the Emanant Plane.

(15.) For example, if we again make jj = r, so that the equation XXXV.
represents now the normal plane to the curve, we are led to combine the

equation XIII. of that plane with its derived equation, and so to form the

system of the ttco scalar equations,

XXXVII. . . Sr(a> - p) = 0, S/((u - p) + 1 = 0,

whereof the second represents a plane parallel to the rectifying plane XIV.,

and drawn through the centre of curvature VIII. ; and which jointly represent

the polar axis (391, (5.)), considered as an indefinite right line, which is

represented otherwise by the one vector equation,

XXXVIII. . . Vv(a; - k) = 0, or XXXVIir. . . Vi;(a, -p)--T.

(16.) And if, on this indefinite line, we set off a portion equal to the binormal

V, such portion (which may conveniently be measured ./row the centre k) may

be said, by (14.), to be the Vector Axis of Rotation of the Normal Plane \ or

briefly, the Polar Axis, considered as representing not only the direction but

also the velocity of that rotation, which velocity = Tv = r"^ = the curvature

(IX.) of the given curve : while another portion = Uv = the binormal unit (2.),

set off on the same axis from the same centre of curvature, may be called the

Polar Unit.

(17.) This suggests a new wag of representing the osculating circle by a

vector equation (comp. (3.), and 316), as follows :

XXXIX. ..w, = K + a'^{p -k)=p+ {e'" - !)/-»

= p + ST+ (€*" - 1 - Sv)t''

= p + 6T + i«V' + (£*" - 1 - «v - |«V';/-'

;
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which agrees, as we see, with the expression I. or IV., if s^ be neglected

;

and of which, when the expansion is continued, the next term is,

(18.) The complete expansion of the exponential form XXXIX., for the

variable vector of the osculating circle, may be briefly summed up in the

following trigonometric (but vector) expression :

XLI. . . CO, = K + ( COS - + Uv. sin -
J
{p - k),

in which,

XLII. . . /o - K = - ;*^r', and Uv .{p - k) = rvT~^ = vt
;

so that we may also write, neglecting no power of a,

8 8
XLIII. . . (o, = p + rr Bin - + ^V vers -

;I y y

and if this be subtracted from the full expression for the vector /o,, the

remainder may be called the deviation of the given curve in space, from its

own circle of curvature : which deviation, as we already see, is small of the

third order, and will soon be decomposed into its two principal parts, or

terms, of that order, in the directions of the normal and the binormal

respectively.

(19.) Meantime we may remark, that if we only neglect terms of the

fourth order, the expansion I. gives, by lU. and IX., for the length of a

small chord pp„ the formula :

XLIY. . . pp. - T(p, - p) = T(«r + i»V + is»0

^ /{-(sr + isV + isVT)

-i-
__£l\ = 2r sin
12rV 24r^ 2r

'

this length then is the same (to this degree of approximation), as that of the

chord of an equally long arc of the osculating circle : and although the chord of

even a small arc of a curve is always shorter than that arc itself, yet we see
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that the difference is generally a small quantity of the third* order, if the arc

be small of i\iQ first.

397. Resuming now tlie expression 396, I., but suppressing here the

coefficient w«, of which the limit is unity, and therefore writing simply,

I. . . /t>s = /o + sr + |sV' + -^sV",

with the relations,

II. . . T^ = - 1, Srr' = 0, Srr" = - /^ = r-\ SrV = rV,

if s = arCy and r~^ = Tr" = curmture,i as before, or r = radius of curvature

(> 0), while r' = D^r ; and introducing the new scalar,

// /

III. . . r"' = S—; = t"^Y— = SecondX Curvature,
TT V

with V = TT = binormal, or the new vector,

IV. . . r"V = tS—-,
= Y- = Vector of Second Curvature,

TT V

supposed to be set off tangentially from the given point p of the curve, or

finally this other new scalar (> or < 0),

V. . - r =
[
S —; ]

= Radius of Second Curvature,

which gives the expression,

VI. ../' = - r-V - r-VV + r-V/ = - r'^Ur + (r-^)'Ur' + {rv)-'Vv
;

we proceed to deduce some of the chief affections of a curve in space, which

depend on the third power of the arc or chord. In doing this, although

everything new can be ultimately reduced to a dependence on the two new

scalars, r and r, or on the one new vector t", or even on v = Vrr", yet some

• This ought to have been expressly stated in the reasoning of 383, (5.)» for which it was not

sufficient to observe that the arc and chord tend to bear to each other a ratio of equality, without

showing (or at least mentioning) that their difference tends to vanish, even as compared with a line

which is ultimately of the same order as the square of either.

t Whenever this word curvature is thus used, without any qualifying adjective, it is always to be

understood as denoting the absolute {ox first) curvature of the curve in space.

X Compare the Note to page 81.
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auxiliary symbols will be found useful, and almost necessary. Retaining then

the symbols v, k, a, i?, as well as r, /, r, and therefore writing as before

(comp. 396, YIII.),

VII. . . OK = K = p - r'-^ =p + rVr' = p + /V,

VIII. . . (p - k)-' = r-'V{K -f»)=T' = D/p = Vector of Curvature,

we may now write also, by 395, XVIII.,

IX. . . 08 = <T = p - Q-?—, = K + r/rv = K + r'rUv,
or V

and

X. . . (p - (t)"* = i2"*U(<r - p) = v'"^Sr'v' = Vector of Spherical Curvature,

= projection of vector (/) of curvature on radius [R] of osculating sphere
;

because we have now, by VI.,

XI. . . v' = {Tty = Vr/' = - T-V - r-Vv,

or

Xr. . . (Uv)' = {rvY = - rrV = - r->U/,

and
XII. . . ^t'v' = - Sr/r" = - X-V = r-'T-\

If then we denote by p and P the /z/j^ff/* and angular elevations, of the centre s

of the osculating sphere above the osculating plane, we shall have these ^jfo

new auxiliary scalars, which are positive or negative together, according as

the linear height ks has the direction of + y or of - v :

XIII. . . i>
=^ = r'r ; XIV. . . P = kps = tan"^^ = 8in-»| = cos-'-^

;

while

XV. . . ie = T(^ - p) = v/(r' + p') = y (r^ + /' r')

;

the awgrfe P being treated as generally acute. Another important line, and

an accompanying angle of elevation, are given by the formulee,

XVI. . . A = V^ = r^VrV = rV + rr' = r'Ur + r'^Vv
T

= Yv'v'^ + V = Rectifying Vector (set off from given point p),

= Vector of Second Curvature plus Binomial

;

X r
XVII. . . R = L- = tan"* - = Elevation of Rectifying Line (> 0, < tt),

r r

= the angle (acute or obtuse, but here regarded as positive),

Hamilton's Elbubnts of Quatbrnions, Vol. II. N
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which that known and important line (396) makes with the tangent to the

curve ; so that (by XIII., XIY.) these two aumliari/ angles* H and P, from

which (instead of deducing them from r and r) all the affections of the curve

depending on s^ can be deduced, are connected with each other and with /
by the relation,

XVIII. . . tan P = r' tan ff.

Many other combinations of the symbols offer themselves easily, by the rules

of the present calculus ; for instance, the vector a may be determined by the

three scalar equations (comp. 395, XIX.),

XIX. . . St{(t -p) = 0, S/(<r - p) = - I, S/'((T - p) = 0,

wlienee, by XVI.,

XX. . . rV" = r^V(VrV'. {rr - p)) = YX{a -
p),

a result which also follows from the expressions,

XXI. . . r" = (v^' + S^\' = (X - rvy,

and
XXII. . . a - p = r\' 1 rpv = rXJ/ + pTJv,

because

XXIII. . . rpYXv = - rpx-V = - rvT'
;

we may therefore replace the formula I. for the vector of the curve by the

following, which is true to the same order of approximation,!

XXIV. ..ps^p-^ST + -^,{K- p) +
g^2

VA((T -
p) :

and may thus exhibit, even to the eye, the dependence of all affections

connected with s', on the two new lines, X and <r - /o, which were not required

when s* was neglected, but can now be determined by the two scalars r and p

• The angle H appears to have heen first considered by Lancret, in connexion with his theory of

rectifying lines, planes, and surfaces: but the angle here called P was virtually included in the

earlier results of Monge.

t As regards the homogeneity of such expressions, if we treat the four vectors p,, p, k, and ff, and

the five scalars », r, S, p, and r, as being each of the frsl dimensimi, we are then to regard the

dimensions of t, r', k', H, and P as being each zero ; those of t', v, and A as each equal to - 1 ; and

that of either r" or v as being = - 2.
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(or r and /', or S and P as before). The geometrical signification of the scalar

2) is evident from what precedes, namely, the height (ks) of the centre of the

osculating sphere above that of the osculating circle, divided by the binormal

unit (Uv) ; and as regards what has been called the radius r of second

curvature (V.), we shall see that this is in fact the geometrical radius of a

second circle, which osculates, at the extremity of the tangential vector rr,

to the principal normal section of the developable Surface of Tangents ; and

thereby determines an osculating oblique cone to that important surface, and

also an osculating right cone* thereto, of which latter cone the semiangle is

H, and the rectifying line X is the axis of revolution : being also a side of an

osculating right cylinder^ on which is traced what is called the osculating helix.

We shall assign the quaternion equations of these two cones, and of this

cylinder, and helix ; and shall show that although the helix has not generally

complete contact of the third order with the given curve, yet it approaches

more nearly to that curve (supposed to be of double curvature), than does

the osculating circle. But an osculating paraboh will also be assigned,

namely, the parabola whicli osculates to the projection of the curve, on its

own osculating plane : and it will be sliown that this parabola represents or

constructs one of the two principal and rectangular components (396, (18.)),

of the deviation of the curve from its osculating circle, in a direction wliich

is (ultimately) tangential to the osculating sphere, while the helix constructs the

ot/ier component. An osculating right cone to the cone of chords, drawn /ro/n a

given point of the curve, will also be assigned by quaternions : and will be

shown to liave in general a smaller acute semiangle C (or tt - C), than the

acute semiangle H [or ir - H), of the osculating right cone (above mentioned)

to the surface of tangents, or (as will be seen) to the cone ofparallels to tangents

(369, (6.), &o.) : the relation between these tico semiangles, of two osculating

right cones, being rigorously expressed by the formula,

XXY. . . tan C = f tan H.

A new oblique cone of the second order will be assigned, which has contact

of the same order with the cone of chords, as the second right cone (C), while

the latter osculates to both of them ; and also an osculating parabolic cylinder,

which rests upon the osculating parabola, and is cut perpendicularly in that

* These (wo osculating cones, oblique and right, to the surface of tangents, appear to have been
first assigned, in the Memoir already cited, by M. de Saint Tenant : the osculating (circular) helix,

and the osculating (circular) cylinder, having been previously considered by M. Olivier.

N2
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auxiliary curve by the osculating plane to the given curve. And the inter-

section of these two last surfaces of the second order (oblique cone and

parabolic cylinder) will be found to consist partly of the hinormal at the

given point, and partly of a certain tmsted cubic* (or gauche curve of the

third degree)^ which latter curve has complete contact of the third order with

the given curve in space. Constructions (comp. 395, (6.)) will be assigned,

which will connect, more closely than before, the tangent to the locus of centres

of curvature^ with other properties or affections of that given curve. And
finally we shall prove, by a very simple quaternion analysis, as a consequence

of the formula XF., the known theorem,! that when the ratio of the two

ctirvatures is constant, the curve is a geodetic on a cylinder.

(1.) The scalar expression III., for the second curvature of a curve in space,

as defined in 396, may be deduced from the formulae (396, (5.), &o.) of the

recent theory of emanants, which give,

XXVI. . . d = Yv'v~^ = r"V, (Oo = p, I = T, if »? = V,

while the line of contact (396, (14.)), of the emsina.nt plane with its envelope,

coincides in position with the tangent to the curve ; in passing, then, from the

given point p to the near point Pg, the binomial (v) and the osculating plane

(± v) have (nearly) revolved together, round that tangent (r) as a common axis,

through a small angle = I'h, and therefore with a relociti/ = r"^ if this symbol

have the value assigned by III., or by the following extended expression, in

which the scalar variable (t) is arbitrary (comp. 395, (11.), &o.),

//f

XXVII. . . r-^ = S:~-r-r, = S„ ,„ = Second Curvature :

\pp ydpd'p

while the hinormal has at the same time been translated (nearly), in a

direction perpendicular to the tangent r, through the small interval is = sr,

which (in the present order of approximation) represents the small chord pp,.

(2.) As an example, if we take this new form of the equation of the helix,

XXVIII. . . p, = 6(a2f cot a + £a</3), with Ta = Tj3 = l, and Sa/3 = 0,

* This convenient appellation (of twisted cubic) has been proposed by Dr. Salmon, for a curve of
the kind here considered : see pages 241, &c., of his already cited Treatise. The osculating twisted

cubic will be considered somewhat later.

t This theorem was established, on sufficient grounds, in the cited Memoir of M. de Saint Venant
(page 26) ;

but it has also been otherwise deduced by M. Senet, in the Additions to M. Liouville's

Edition of Monge (Paris, 185C, page 661, &c.).
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which gives the derived vectors,

XXIX. . .pt = ba{cot a + £»*^), p/' = - be''% pi" = api\

and this expression for the arc s (supposed to begin with t),

XXX. . . s = s't, where s' = Tp' = b cosec a = const.,

we easily find (after a few reductions) the following values for the tico

curvatures

:

XXXI. . . r* = b~^ sin'' a, r'* = b-^ sin a Gosa;

while tlie common centre (395), of the osculating circle and sphere^ has now

for its vector (comp. 389, (3.)),

XXXII. . . K = a •= pt - 66*'/3 ooseo' a = 6 cot a{at - £»'/3 cot a)
;

b being here the radius of the cylinder, but a denoting still the constant

inclination of the tangent {p') to the axis (a).

(3.) The rectifying line (396), considered merely as to its position, being

the line of contact of the rectifying plane (396, XIV.) with its own envelope,

is represented by the equations,

XXXIII. ..0 = S/((u-|o) = Sr"(a>-/>), or XXXIIF. . . = YA((u -
p),

with the signification XVI. of A ; and accordingly, if we treat the rectifying

planes as emanants, or change tj to r', we find the value 6 = V/V'^ = A, which

shows also that in the passage from p to p, the rectifying plane turns (nearly)

round the rectifying line, through a small angle = sTA, or with a velocity of

rotation represented by the tensor,

XXXIV. . . TA = y (/-^ + r-') = r' cosec H = r'^ sec H ;

so that what we have called the rectifying vector, A, coincides in fact (by the

general theory of emanants) with the vector axis (396, (14.)) of this rotation

of the rectifying plane : as the vector of second curvature (r"V) has been seen to

be, in the satne full sense (comp. (l.))> the vector axis of rotation of the

osculating plane, when velocity, direction, and position are all taken into account.

(4.) When the derivative s' of the arc is only constant, without being
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equal to unity (oomp. 395, (12.)), the expressiou XVI. may be put under

this slightly more general form,

'" /1

3

XXXV. . . X = V 4^, = V -f^ = Rectifying Vector ;

and accordingly for the helix (2.) we have thus the values,

XXXVI. . . X = a/"' = ab~^ sin a = ar^ coseo a, UX = a

;

the rectifying line is therefore, for this curve, parallel to the axis^ and coincides

with the generating line of the cylinder^ as is otherwise evident from geometry.

The value, TX = b~'^ sin a, of the velocity of rotation of the rectifying plane,

which is here the tangent plane to the cylinder, when compared with a

conceived velocity of motion along the curve^ is also easily interpreted

;

and the formulae XVII., XVIII. give, for the same helix (by XXXI.),

the values,

XXXVII. . . / = 0, b:= a, P = 0.

(5.) The normal (or the radius of curvature), as being perpendicular to

the rectifying plane, revolves with the same velocity, and round a parallel

line ; to determine the position of which new line, or the point h in which

it cuts the normal, we have only to change »j to / in the formula 396,

XXXII., which then becomes.

XXXVIII. . .oa = iVo = p-TS^, = p- X-V

= p +

Xr

r"V(»c-/o) r^p + r^K

r~* + T'* r* + r
= p cos* H + K sin* H ;

the vector of rotation (396, (9.) ) of the normal is therefore a line || and = X,

which divides (internally) the radius (r) of curvature into the two segments*

XXXIX. . . PH = r sin* H, iiK = r cos* H ;

namely, into segments which are proportional to the squares (r"* and r"*) of

the first and second curvatures.

lliia law of divition of a radiut of curvature into segments, by the common perpindienlar to

that radius and to its consecutive^ has been otherwise deduced by Jd. de Saint ^'enant, in the Memoir
already referred to.
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(6.) At the same time, what we have called generally the vector of

translation of an emanaut line becomes, for the normal (by 396, (10.),

changing to A), the line

XL. . . t = XS ^ = TJX cos JT = - r"'X~^ set off from the same point h
;

and the indefinite right line, or axis, tlirough that point h,

XLI. . . = VX(a> - w.,), or XLI'. . . = VX(a; - p oos" H - k sin' H),

along which axis the normal moves, through the small line si, while it turns

round the same axis (as before) through the small angle sTX, may be called

(comp. again 896, (10.)) the Axis of Displacement of the Normal (or of the

radius of curvature).

(7.) As a verificatioB, for the helix (2.) we have thus the values,

XLII. . . pii = 5, fa)„ = /Of - 6£"'/3 = hat cot a, i = a cos o

;

so that the axis of displacement (6.) coincides with the caeis (a) of the cylinder,

as was of course to be expected.

(8.) When the given curve is not a helix, the values VI., XYI.,

XXXVIII., and XL., of t\ X, Wq, and t, enable us to put the expression I.

for ps under the form,

XLIII. . . jOs = tuo + s/ + t^^{p - Wo) —^-7-
;

the curve therefore generally deviates, by this last small vector of the third

order, namely by that part of the term -b^sV" whicli has the direction of the

normal t, or of - t, and which depends on /, from the osculating helix,

XLIV. . . <t>s = <U(, + St + £**(p - Wo),

and from the osculating right cylinder,

XLV. . . TVX (w - Wo) = sin H,

whereon that helix is traced, and of which the rectifying line (XXXIII.) is a

Hide, while its axis of revolution (comp. (7.)) is the axis of displacement (XLI.)

of the normal.
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(9.) Another general transformation, of the expression I. for the vector of

the curve, is had by the substitution,

XLVI..., = *.|\^.

in which t ia a. new scalar variable ; for this gives the new form,

XLYII. . . pt = p + tT + ie (r' + ^) + i^'r-^v,

and therefore shows that the curve deviates, by this other small vector of the

third order,

XLVIII. . . ith-'v = is'T-W,

that is, by the part of the term ^V which has the direction of the hinormal v,

and which depends on r, from what we propose to call the Osculating Parabola,

namely that new auxiliary curve of which the equation is,

XLIX. . ,iOt= p-^tr+\f(r' +''^:

or from the parabola which osculates at the given point p, to the projection of
the given curve on its oicn osculating plane.

(10.) And because the small deviation XLVIII. of the cuire from the

parabola is also the deviation of the same curve from this last plane, if we

conceive that a near point q of the curve is projected into three new points

Qi> Q», Qaj on the tangent, normal, and binormal respectively, we shall have

the limiting equation,

L. . . lim. = r~^ = Second Curvature ;

PQi . PQ2

the sign of this scalar quotient being determined by the rules of quaternions.

(11.) But we may also (comp. 396, (17.), (18.)) employ this third general

transformation of I., analogous to the forms XLIII. and XLVII.,

LI. . . |0, = K + £*''(p - k) + gv'r,

with the value XI. of v ; in which the sum of the two first terms gives the
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vector of the point of the osculating circle, which is distant from the given

point pp, by an arc of that circle equal to the arc s of the given curve ; and

the t/m^d term,

LII. . . -^6'v'r = \s\t" + r-\) = - ^sh'-'rV + -^^^'r-'v,

which represents the deviation from the same circle, measured in a direction

(comp. IX. or X.) tangential to the osculating sphere, is (as we see) the vector

sum of two rectangular components, which represent respectively the deviations

of the curve, from the osculating helix (8.), and from tlie osculating

parabola (9.).

(12.) It follows, then, that although neither helix nor parabola has in

general complete contact of the third order with a given curve in space, since

the deviation from each is generally a small vector of that (third) oj'der, yet

each of these two auxiliary curves, one on a right cylinder XLV., and the

other on the osculating plane, approaches in general more closely to tlie given

curve, than does the osculating circle : while circle, helix, and parabola have,

all three, complete contact of the second* order with the curve, and with

each other.

(13.) As regards the geometrical signification of the new variable scalar, t^

in the equation XLIX. of the parabola, that equation gives.

LIII...aV, = TJ(l.gr../j = l4!.

and therefore (to the present order of approximation),

LIY. . . Arc of Osculating Parabola (from Wq to wt)

= j^Tcu^d^ = ^ + ^^ + ^^ = s (by XLYI.)

= Arc of Curve in Space (from p^ to ps) ;

if then an arc = s be thus set off upon the parabola, with the same initial point

p, and the same initial direction, and if thia parabolic arc, or its chord wt - a»o,

be obliquely projected on the initial tangent r, by drawing a diameter of the

* It appears then that we may say that the helix and parabola have each a contact with the curve

in space, which is intermediate between the second and third orders : or that the exponent of the order

of each contact is the fractional index, 2 A. But it must be left to mathematicians to judge, whether

this phraseology can properly he adopted.

Hamilton's Elkmknis of Quaternions, Vol. II. O
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parabola through its final point, the oblique tangential projection so obtained

will be = tr by XLIX. ; and its length, or the ordinate to that diameter, will

be the scalar t.

(14.) And as regards the direction of the diameter of the osculating

parabola, drawn as we may suppose from p, if we denote for a moment by

D its inclination to the normal + /, regarded as positive when towards the

tangent + r, we have (by XLIX. and XVIII.) tlie formula,

LY. . . tan Z> = J = ^ tan P cot i7:
o

which is an instance of the reducibility, above mentioned, of all affections of

the curve depending on s^ to a dependence on the two angles, H and P.

(15.) Some of these affections, besides the direction of the rectifying line A,

can be deduced from the angle H alone. As an example, we may observe

that the vector equation of the surface of tangents is of the form,

LVI. . . Ws,t- pa + ^p's = ps + tf$i

in which « and t are two independent and scalar variables, and

LVII.

+ terms depending on s* in pg. If then we cut this developable LVI. by

the plane,

LVIII. . . St(<ij - |o) = - c = any given scalar constant,

which is, relatively to the surface, a normal plane at the extremity of the

tangential vector ct from p, while this tangent is also a generating line, we

get thus a principal* normal section, of which the variable vector has for its

approximate expression,

LIX. . . w, = (p + cr) + {cs + . .) t' + [\cs^r-^ + ' ')v',

the terms suppressed being of higher orders than tlie terms retained, and

having no influence on the curvature of the section. We find then thus.

• Borne general acquaintance with the known tlieory of sections of surfaces is here supposed,

although that subject will soon be briefly treated by quaternions.
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that the vector of the centre of the osculating circle to this normal section of the

surface of tangents to the given curve is, rigorously^

(cstY
LX. . . p -V CT ^- ^-rf = /o + c(r + rv) = /o + crX

;

^ csh ^v

so that the locals of all such centres is the rectifying line XXXTII'. And if,

in particular, we make c = r, or cut the developable at the extremity of the

tangential vector rr, the expression LX. becomes then p + rr + rUi; ; which

expresses that the radius of the circle of curvature of this normal section

of the surface is precisely what has been called the Radius (r) of Second

Curvature, of the given curve in space. But this radius (r = r tan IT)

depends only on the angle H, when the radius (r) of (absolute) curvature

is given, or has been previously determined.

(16.) The cone of the second order^ represented by the quaternion equation,

LXI. . . = 2rSr(ai - p) Si;(w - /o) + (Vr(a) - p))\

has its vertex at the given point p, and rests upon the circle last determined
;

it is then the locus of all the circles lately mentioned (15.), and is therefore

(in a known sense) an osculating oblique cone to the developable surface of

tangents : its cyclic normals (comp. 357, &c.) being r and r + 2rv, or

T and rr + 2rUv. But, by 394, (30.), the osculating right cone to this cone

LXI., and therefore also (in a sense likewise known) to the surface of

tangents itself is one which has the recent locus of centres (.15.), namely

the rectifying line (A), for its axis of revolution, while the tangent (r) to the

curve is one of its sides : its semiangle is therefore = H, and a form of the

quaternion equation of this osculating right cone is the following (comp. XLV.),

LXIL . . TVUX(«u -p)= sin H.

(17.) The right cone LXII., which thus osculates to the developable

surface of tangents LYL, along the given tangent t, osculates also along that

tangential line to the cone ofparallels to tangents, which has its vertex at the

given point p ; as is at once seen (comp. 394, (30.)), by chaugiug p and p'^

to / and t", in the general expression Np'p" (393, (6.), or 394, (6.)), for a

line in the direction of the axis of the osculating circle to a curve upon a

sphere. And the axis of the right cone thus determined, namely (again) the

rectifying line (A), intersects the plane of the great circle of the osculating

02
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sphere, which is paralUl to the osculating plane, in a point l of which the
vector is,

LXIII. . . OL = p + rp\ = p + v/t + rpv.

(18.) We have thus, in general, a gauche quadrilateral, pksl, right-angled
except at l, with the help of which one figure all affections of the curve, not
depending on s\ can be geometrically represented or constructed : although it

must be observed that when / = 0, which happens for the helix (XXXVII.),
the osculating circle is then itself a great circle of the osculating sphere, and
the points p and l, like the points k and s, coincide.

(19.) In the general case, it may assist the conceptions to suppose lines
set ofE, from the given point p, on the tangent and binormal, as follows :

LXIV. . . PT = BL = r/T
; PB = TL = KS = rpv

;

for thus we shall have a right triangular prism, with the two right-angled
triangles, tpk and lbs, in the osculating plane and in the parallel plane (17.),
for two of its faces, while the three others are the rectangles, pksb, pblt,
KSLT, whereof the two first are situated respectively in the normal and
rectifying planes.

(20.) All scalar properties of this auxiliary j^mw may be deduced, by our
general methods, from the three scalars, r, r, r', or r, H, P ; and all vector,

properties of the same prism can in like manner be deduced from the three
vectors, r, t, t"

, or from r, v, v, which (as we have seen) are not entirely
arbitrary, but are subject to certain conditions.

(21.) As an example of such deduction (compare the annexed figure 81),
the equation of the diagonal plane spl, which contains the ^
radius {E) of spherical curvature and the rectifying line (A),

and the equation of the trace, say pu, of that plane on the
osculating plane, which trace is evidently parallel (by the
construction) to tlie edges ls, tk of the prism are in the
recent notations (comp. XX.),

LXV.
. . = S/'(a, - p) ; LXVI. . . = Y{r-WY (<o - p)

;

with the verification that rSrV = r'Srr" = r'b-', by II.

(22.) In general, by 204, (22.), if a and (5 be any two vectors, we have
the expressions,

LXVII.
. . tan ^ S „ Un ^ ^ = - tan ^ /3a = - tan z a/3

Fig. 81.
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the angles of quaternions here considered being supposed as usual (comp. 130)

to be generally > 0, but < tt ; for example, we have thus,

LXYIIL . . tan ^ = tan z - = (TV : S) Xf^ = (TY : S) (r"' - /) = rT/ = rr'S
T

as in XVII. ; and in like manner we have generally, by principles already

explained (comp. 196, XVI.),

LXIX. . . cos Z @ = COS Z I = - cos Z ^a = - 008 Z a/3
a p

= S^:T2 = Su2 = -SUaj3.
a a a

(23.) Applying these principles to investigate the inclinations of the

vector t\ which is perpendicular to the diagonal plane LXV. of the prism,

to the three rectangular lines r, /, v, or the inclinations of that diagonal

plane itself to the normal, rectifying, and osculating planes, with the help of

the expressions deduced from VI. for the three products,* tt", tV, vr", we

arrive easily at the following results :

/' -r-' t" r-V t" r-'v-'

LXX. . . cos z - = 7p-77 ; cos z ", = - .pp-7, ; cos z - = -j^-jr ;

T Tt t It V XT

with the verification, that the sum of the squares of these three cosines is

unity, because

LXXI. . . r'Tr" = y(l + T-'R') = -/[l + /' + rV*)

;

or
LXXr. . . rT/' = y[r-'/' + TX^), Tt" = ^ (r"* + Tv'^).

(24.) Or we may write, on the same general plan,

t" -R t" -rTX ^ /' r ,,, ,,.

LXXII. ..tanz-=7r-; tanZ- =—t-\ tan z- = - v/(1 + r ^);

r Tr T r v r

or

LXXIII. . . tan z rr" = RTv' ; tan z tV = r/-'TX ; tan Lvt'' = - rr'^ ^/(l + /')
;

• A student, who should be inclined to pursue this subject, might find it useful to form for

himself a table of all the binary products of the nine vectors,

T, t', t", V, v', \, <T - p, <T - M'y 8'°<1 k'>

considered as so many quaternions, and reduced to the common quadrinomial form, a + ir + ct' 4 ev,

in which a, b, e, e are scalars, whereof some may vanish, but which are generally functions of

r, r, and r'.



102 ELEMENTS OF QUATERNIONS. [IlT.m.gfi.

and may modify the expressions, by introducing the auxiliary angles H
and P, with which may be combined, if we think fit, the following angle

of the prism,

LXXIV. . . PKT = BSL = tau'^ »•'.

(25.) Instead of thus comparing the plane spl with the three rectangular

planes (379, (5.)) of the construction, we may inquire what is the value of

the angle spl, which the radius [R] of spherical curvature makes with the

rectifying line (X) ; and we find, on the same plan, by quaternions, the

following very simple expression for the cosine of this angle, which may
however be deduced by spherical trigonometry also,

LXXV. . . cos SPL = - SUA((T - /o) = ^fy^ = sin P sin JT

;

or

LXXy. . . cos SPL = cos SPB cos BPL.

(26.) In general, it is easy to form, by methods already explained, the

quaternion equation of a cone which has a given vertex, and rests on a given

curve in space ; and also to determine the right cone which osculates (394,

(30.) ) to this general cone, along any given side of it.

(27.) But if we merely wish to assign the osculating right cone to the cone

of chords from p, or to the locus of the line pp,, we may imitate a recent

process : and may observe that if this neiv cone be cut by the normal plane

LYIII., the vector of the section has the following approximate expression,

analogous to LIX., and like it sufficient for our purpose,

LXXVI. . . (Os = p + cr + ^csr + -^sW
;

from which it may be inferred (comp. (15.) > (16-))> ^^^^ ^^^ ^^^ of revolution

of the new right cone has for equation,

LXXYII. . . = Y{t-W + fv) (w - />).

This aim is therefore situated in the rectifying planCf bettceen the rectifying line

(A or r"V + v), and the tangential vector (IV.) of second curvature (r"V) : while

the semiangle C of the same new cone (measured like H from + r towards + v)

has the value already assigned by anticipation in the formula XXV., and is

therefore less than the semiangle // if both be acute, but greater thau H if

both be obtuse ; so that, in each case, the new right cone (C) is shaiper than the

old right cone (If).



Aet. 397.] INTERSECTION OF OSCULATING SURFACES. 103

(28.) The same result may be otherwise obtained, by observing that an

unit-vector in the direction of the chord pp, has (by 396, XLIY., and 397, 1.j

the approximate expression,

LXXVTTI.
. . X. = ^(Ps - />) = (l + 2£^) (^ + '4 "*" T

'

whence the axis of the osculating right cone to the cone of chords (27.) has

rigorously the direction of the line Vx'x" (for s = 0), or of the vector,

LXXIX. . . I = YrirV + |r) = X - iv = r'V + |i/, as before.

(29.) This axis % makes (if we neglect 6-') the same angle C, with the chord

pp„ as with the tangent r ; whereas the former axis X makes unequal angles

with those two lines, within the same order (or degree) of approximation :

for our methods conduct to the expression,

Ps- P
"'

LXXX. . ./L^-^ = ff-
X 24rr'

from which the relation XXV., between the tico right cones, may easily be

deduced anew.

(30.) Neglecting only s\ and employing the substitution XLYI., the

expression XLVII. for the vector of the given curve becomes,

LXXXI. . .pt = p + tT + ^fv + ^t'l-'v, if LXXXII. . . u = / + ^ ;

where the variable scalar t denotes, by (13.), the ordinate of the osculating

parabola, and the constant vector v has the direction, by (14.), of the diameter

of that parabola.

(31.) In the present order of approximation, then, the proposed curve in

space may be considered to be the common intersection of the three following

surfaces of the second order, all passiug through the given point p .

LXXXIII. . . 2(S/(a> - p)y = 3rSi.(f.i - p)Svv{(o -
p) ;

LXXXIV. . . 2S/(a> -p)=- r\8vv{io - p)y ;

LXXXV. . . 3rS»;(a> - p) = - r'Sr'(ai - />)Si/v(a> - p) ;
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whereof the first represeuts a new osculating oblique cone, which has a contact

of the same {second) order with the cone of chords, as the osculating right cone

(27.) ; the second represents an osculating parabolic cylinder, which is cut

perpendicularI(/ in the osculating parabola (9.), by the osculating plane to the

curve ; and the third represents a certain oscukiting hyperbolic (or ruled)

paraboloid, whereof the tangent (r) is one of the generating lines, while the

diameter (u) of the osculating parabola is another.

(32.) Each of these three surfaces (31.) has in fact generally a contact of

the third order with the given curve ; or has its equation satisfied, not only (as

is obvious on inspection) by the point p itself, but also when we derivate

successively with respect to the scalar variable t, and then substitute the

values (comp. LXXXI.),

LiXXXVI. . . a> = |0o
= jO, w = Pq

= T, i%i" = jOo'' = 1*, (O = po = r"'v
;

r, r, p, T, I/, and u being treated as constants of the equation, or of the surface,

in each of these derivations.

(33.) The cone LXXXIII., and the cylinder LXXXIV., have a common

generatrix, namely the binormal* (v) ; and in like manner, another generating

line of the same cone, namely the tangent (r) to the curve, has just been seen

(31.) to be a line on the paraboloid LXXXV. : and although the cylinder and

paraboloid have no finitely distant right line common, yet each may be said to

contain the line at infinity, in the diametral plane of the cylinder, namely in

the plane of v and v, of which plane the quaternion equation is (comp. (14.)),

LXXXVII. . . = Si/u(a) - p), or LXXXVII'. . . = S(rrV - 3r) (a> - p)

;

or the line in which this diametral meets the parallel axial plane.

(34.) On the whole, then, it is clear, from the known theory of inter-

sections of surfaces of the second order having a common generating line,

that the given curve of double curvature (whatever it may be) has contact of the

third order with the twisted cubic,f or gauche curve of the third degree, which is

* The geometrical reason, for the osculating eone LXXXIII. to the cone of chords containing the

binormal [v), is that if the expression LXXXI. for pt were rigorous, and if the variable t were
supposed to increase indefinitely, the ultimate direction of the chord vvt would be peipendicular to the

osculating plane. And the same binormal is a generating line of the parabolic cylinder also, because

that cylinder passes through p, and all its generating lines are pei-pendicular to the last mentioned
plane. It is sufficient however to observe, on the side of calculation, that the equations LXXXIII.
and LXXXIV. are satisfied, when we suppose « — p || v.

t Compare again page 241, already cited, of Dr. Salmon's Treatise ; also Art. 285, in page 225
of the same work.
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represented without ambiguity by the system of the two scalar equations,

LXXXVIII. . .y = x\ z = x",

if we write for abridgment,

LXXXIX.

' X = {t =) - r^Svv{(t} - p),

, s = (^ =) - 6rh^v{uj - p).

(35.) As another geometrical connexion between the elements of the

present theory, it may be observed that while the osculating plane to the

curve, of which plane the equation is,

XC. . . Sv((u - p) = 0, as in 396, XY.,

touches the oblique cone LXXXIIL, along the tangent t to the same curve, the

diametral plane LXXXYII. touches the same cone along the binormal v, which

was lately seen (33.) to be, as well as r, a side of that oblique cone ; but

these two sides of contactj t and v, are both in the rectifying plane (396, XIV.),

and the two tangent planes corresponding intersect in the diameter v of the

parabola (9.) ; we have therefore this theorem :
—

The diameter of the osculating parabola to a curve of double curvature is

the polar of the rectifying plane, with respect to the osculating oblique cone

LXXXIII. ; that is, with respect to a certain cone of the second order,

which has been above deduced from the expression LXXXI. for the vector pt

of the curve, as one naturally suggested thereby, and as having a contact of

the third order with the curve at p, and therefore also a contact of the second

order with the cone of chords from that point.

(36.) Conversely, thin particular cone LXXXIII. is geometrically dis-

tinguished from all other* cones of the sa)ne {second) order, which have their

vertices at the given point p, and have each a contact of the same second order,

* The cone of this system (36.), which is touched along the linormal hy the normal plane, and

which therefore intersects ihe parabolic cylinder LXXXIV. in a new twisted cubic (comp. (34.)),

having also contact of the third order with the rtirve, is easily found to have, for its quaternion

equation, the following

:

2r2(ST'(« -p)f = 3rST(co - p)Sr(« - p) ;

and with respect to this cone (comp. (35.)), the polur of the rectifying plane is the {absolute) normal (t')

to the curve.

Hamilton's Elkmknts of Quaternions, Vol. II, P
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with the given cone of chords from that point, or of the third order with

the given curve, by the condition that it is touched (as above), along the

hinormal {v), by the diametral plane (vu) of the osculating parabolic cylinder

LXXXIY.
(37.) We have already considered, in 395, (5.), the simultaneous variations

of the points p and k, or of the vectors p and k. With recent notations,

including the expression fx
= 2k - p, we have the following among other

transformations, for the first derivative of the latter vector, and therefore

for the tangent kk' to the locus of centres of curvature, of a given curve

in space

:

XCI. . . kk' = D,K = k'={p- t'-'Y = r + /-»/'/-»

= {p + rVy = r + rV + 2rrV

= rrV + rh~^v = r/{/ + p~'^rv) = rr~^{pT + rv)

rr' rr rr'ia-u) ,, x

= = —7-'^ = r-^a - /x)r

p — K a — K [a — k) [K — p)

= cot ff{U/ tan P 4 Uy) = T-'Ii{VT sin P + Vv cos P)

.Iff iff -1 ' '-1 '-1 ' -1= t'*vv r = r*T vv = V V T = t v v

= r','{p - (t){k- p) ^ r-'(K - p)ip- (t)v

= v-U{V{v{p - (t) (k - p)) = &c.

;

if then we draw the diameter of curvature pm, and let fall a perpendicular

KN from the centre k of the osculating circle on the new

radius sm of the osculating sphere (as in the annexed

figiu-e 82), this perpendicular will touch* the locus of the

centre k, a result which agrees with the construction

in 395, (6.) ; and we see, at the same time, that the

length of the line kk', or the teuHor Tk', may be expressed

(comp. LXXIir.) as follows,

XCI I. . . kk' = Tk' - RTv-' = rTv' = tan L rr".
'' -"'

Fig. 82.

(38.) If we irroject the tangent kk', into its two

rectangular components, kk^ and kk', on the diameter of curvature and

" Geometrically, and by infinitesimals, if we conceive x' to be an infinitely near point of the

locua of K, and therefore in the normal plane at p, the angle pk's (like i-ks) will be right, and the

P' int k' will be on the semieirele pks ; but the radius of this semicircle drawn to k (comp. fig. 82) is

paralltl to the line sm, to which line the tangent kk' is therefore perpendicular, as above.
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the polar axis, we shall have by XOI. the expressions :

r

XCIII. . . KK = rr'r' = r'JSr' = -^^ = &c.
;p-K

XCIV. . . kk' = rh-'v = rr'Vv = ^^^ = &c.
;

<T — K

these two projections then, or the vector-tangent kk' itself, wpuld suffice to

determine r and r', or H and P, and thereby all the affections of the curve

which depend on s', but not on s*.

(39.) We have also the similar triangles (see again fig. 82),

XCV. . . A k^k'k a k'kk' a kms
;

and the vector equations

^

^Cyi. . . kk' : SM = KK^ : sk = kk' : km = kk' : pk

= r"*r = Vector of second curvature (IV.)

;

whence also result the scalar expressions,

XCyil. . . tan KSK^ = tan kpk' = r~' = Second* Curvature (III.) :

this last scalar being positive or negative, according as the rotation ksk^

(or kpk') appears to be positive or negative, when seen from that side of

the normal plane, towards which the conceived motion (396, (1.)) along the

given curve, or the unit tangent + r, is directed.f

(40.) Besides the seven expressions. III., XXVII., L., and XCVII.,

tliis important scalar r"' admits of many others, of wliich the following,

numbered for reference as 8, 9, &c., and deduced from formulae and principles

already laid down, are examples : and may serve as exercises in transformation,

according to the rules of the present Calculus, while some of them may also

be found useful, in future geometrical applications.

* In illustration it may be observed, that if ds be treated as infinitely smalt, and if the line kk' be

supposed to represent (not the derivative k, but) the differential vector d/c = /c'd«, then the projections

KK, and kk' become dr and jT"'ds (comp. XCIII. and XCIV.) ; while kpk' (in fig. 82) represents the

infinitesimal angle r-'d«, through which the osculating plane (comp. (1.)) revolves, round the tangent t

to the curve during the change d« of the arc.

t This direction of + t is to be conceived (comp. fig. 81, [p. 100]) to be towards the back of

fig. 82, as drawn, if the scalars / and r (and therefore also p) h^ positive.

P 2
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(41.) We have then (among others) the transformations :

XCVIII. . . Second Curvature = r~' (= seven preceding expressions)

= p-V = r-' cot JT = TA cos ^ = r'V cot P (8, 9, 10, 11)

= r^SvY = - SvV-' = - r^SrrV = Sr/"'/' (12, 13, 14, 15)

= - r*Sv/' = Sv-V = - Si/k' = SricV (16, 17, 18, 19)

= tk'{<t - n)-' = SAr-^ = {k- p)YXv = - t'-TAv (20, 21, 22, 23)

= r'/YXv = r^SAv/ = SA/,;-^ = SA/-^ (24, 25, 26, 27)

= r^Sv'Ar = r^Si;'vr = 8tv~V = r^Sv'vV (28, 29, 30, 31)

= r*SvvV" = r''-^Vv'A = r^r'-^Sv'A/ = rV'-»SvA/' (32, 33, 34, 35)

= Sv'A/'-^ = T/'-^SAvV" = '^^ =
~—

(36, 37, 38, 39)
rr a — p

= T^'" = ''^^\ = Br' tan /. rrr" = iJ"' tan z
^'

(40, 41, 42, 43)
rr + pv T[(T - p) ^ \ » » » /

rrV r// _ / t{k-p) rr'T

a — K [a — k)t r (t — k {a - k) {p - k)
(44, 45, 46, 47)

= S
7 fz : = Sf r-p r = S (48, 49, 50)
[a -Kjip-K) [<T-K)[p-K) KS . KP ^

, V
/a \/ - tl COS Z.

-

= 8-^- = m?^ = 2

;

(51, 52, 53)
PK.KS r(Sar) , r

^ '

^ ' rd cos Z.
-
a

PKSL, in the forms 50 and 51, being points of the same gauche quadrilateral

as in (18.) ; and a, in 52 and 53,* denoting ani/ constant vector : while

several other varieties of form may be deduced from the foregoing by very

simple processes, such as the substitution of \Jv for ri;, &c., which gives for

instance (comp. XF.), from the form 38, these others,

XCVIir. . . r- = liM =d^ = I^ . (54, 55, 56)
rr Vt rdr

We may also write, witli the significations (10.) of Qi and Qs, the following

expression analogous to L.,

XCVIir. . . r-> = 6kp . lim.^ , (57)
PQi'

* This last form 53 corresponds to and contains a theorem of M. Serret. alhided to in the second

Note to page 92.
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which contains the law of the inflexion of the plane curve, into which the

proposed curve of double curvature is projected, on its own rectifying plane
;

the sign of the scalar, to which this last expression ultimately reduces itself,

being determined hy the rules of quaternions.

(42.) And besides the various expressions for the positive scalar ^~^

which are immediately obtained by squaring the foregoing forms, the

following are a few others :

XCIX. . . Square of Second Curvature = r"' = Tr~'

= TX^ - r-' = r^S/V'A - r* = r'Tv'' - r'V (1, 2, 3)

= i^StvV - r-V = r'Tr"' - r"' - ;•"'/=• = R-'{r'T/'' - 1) (4, 5, 6)

= M-'r'Tv'' = St'Tk'' = R-^ tan' z r/' ; (7, 8, 9)

while tlie important vector t\ besides its two original forms VI., admits of

the following among other expressions (comp. XX. XXI.)

:

C. . . r" = D/p (= the two expressions VI.)

= r-^VA(«T -p)= X/ - r-'rV = vW - r-\ (3, 4, 5)

= rVi^'X = r'^-\{<j - p-t)= r-'p + r-'\{(T - p) (6, 7, 8)

=
( (p

- kY^Y = ry - ry = - rV -—^ ^- . (9, 10, II)
p — K <T — K

(43.) As regards the general theory (396, (5.), &c.) of emanant lines (»»)

from curves, it might have been observed that if we write,

CI. . . ^ = V^, with CII. . .Q = V-, as in 396, XXVII.,

the equation 396, XXXII. takes the simplified form,

cm. . . PH = (Do - /o = jjSrj"'^ = projection of vector ^ on emanant ij

;

for example, when ij = v, then = r"V, and ^ = 0, ph = 0, or too = p, as in

(1.) ; and when »j = r, then = v, Z, = '>^'r JL t\, so that the projection ph.

again vanishes, as in 396, (13.).

(44.) In an extensive class of applications, the emanant lines are perpen-

dicular to the given curve (ij ± r) ; and since we have, by (43.),

CIV...C=^^^ = .-'«-W = ^-^, if 8r. = 0,
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we may write, for tliis case of normal enumation, the formula,

p^ „ _ projection of vector of curvature (/) on emanant line (i?)

square of velocity (T^) of rotation of that emanant
'

for example, wlieu the emanant (r/) coincides with the absolute normal (/), we

have then = A, as in (3.), and the recent formula CV. becomes,

OVI. . . PH = Wo - p = ^ = /TX-2 = rV sin^ H ^ {k - p) 8in=^ E,

which agrees with the expression XXXYIII.

(45.) And in the corresponding case of tangential emanant planes, by

making Stjj = in the second equation 396, XXXYI., and passing to a

second derived equation, we find for the intercept between the point p of the

curve, and the point, say r, in which the line of contact of the plane with its

own envelope touches the cusp-edge of that developable surface, the expression,

CYII PR = " "^^^'^^^^
^ - Sr}T {or + Srn)

^

Stjjj'tj" projection of r{' on 6
'

which accordingly vanishes, as it ought to do, when rj = v, that is, when the

emanant plane S?j((i) - /o) =0 coincides with the osculating plane XC.

(46.) Some additional light may be thrown on this whole theory, of the

affections in a curve in space depending on the third power of the arc, and even

on those affections which depend on higher powers of s, by that conception of

an auxiliary spherical curve, which was employed in 379, (6.) and (7.), to

supply constructions (or geometrical representations) for the directiom, not

only of the tangent [p) to the given curve, to which indeed the unit-vector (r)

of the neiv curve is parallel, but also of the absolute normal, the binomial, and

the osculating plane ; while the same auxiliary curve served also, in 389, (2.),

to famish a measure of the curvature of the original curve, which is in fact

the velocity* of motion in the neio or spherical curve, if that in the old or given

one be supposed to be constant, and be taken for unity.

(47.) We might for instance have observed, that while the normal plane

to the curve in space is represeuted (in direction) by the tangent plane to the

sphere, the rectifying plane (as being perpendicular to the absolute normal) is

represented similarly by the normal plane to the spherical curve : and it is not

Accordingly the vector of velocity t', of this conceived motion in the auxiliary curve, is precisely

what we have called (389, (4.), comp. 396, VI.) the vector of curvature of the proposed curve in space :

and its tensor (Tt') is equal to the reciprocal of the radius (») of that curvature.
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difficult to prove that the rectifying line has the direction of that new radius

of the sphere, which is drawn to the point (say l) where the normal arc to

the auxiliary curve touches its own envelope.

(48.) The point l thus determined is the common spherical centre (comp.

394, (5.)) of curvature, of the auxiliary curve itself^ and of that reciprocal*

curve on the same sphere, of which the radii have the directions (comp. 379,

(7.)) of the binormah to the original curve ; the trigonometric tangent of the

arcual radius of curvature of the auxiliary curve is therefore ultimately equal

to a small arc of that curve, divided by the corresponding arc of the reciprocal

curve (or rather by the latter arc Avith its direction reversed, if the point l fall

between the two curves upon the sphere); and therefore to the first curvature

(r'*) of the given curve, divided by the second curvature (r"^) : and thus we have

not only a simple geometrical interpretation of the quaternion equation XF.,

but also a geometrical proof (which may be said to require no calculation), of

the important but known relation XVII., which connects the ratio (r : r)

of the two curvatures, with the angle {H) between the tangent (t) and the

rectifying line (X), for any curve in space.

(49.) In wliatever manner this known relation (tan H = t : r) has once

been establislied, it is geometrically evident, that if the ratio of the tivo

curvatures be constant, then, because the curve crosses the generating lines of its

own rectifying developable (396) under a constant angle (B), that developable

surface must be cylindrical : or in other words, tlie proposed curve of double

curvature must, in the case supposed, be a geodetic f on a cylinder (comp. 380,

(4.)). Accordingly the point l, in the two last sub-articles, becomes then a

fxed point upon the sphere, and is the common pole of two complementary small

circles, to which the auxiliary spherical curve (46.), and the reciprocal curve

(48.), in the case here considered, reduce themselves ; so that the tangent and

* The reciprocity here spoken of, between these two spherical curves, is of that known kind, in

which each point of one is a pole of the great-circle tangent, at the corresponding point of the other :

and accordingly, with our recent symbols, we have not only i'=Vtt', but also, ^w' = r-^Yv'v'^

m r-W
II

T.

t T)ie M'riter has not happened to meet with the geometrical proof of this known theorem, which

is attributed to M. Bertrand by M. Liouville, in page 558 of the already cited Additions to Monge
;

but the deduction of it as above, from the fundamental property (396) of the rectifying line, is

sufficiently obvious, and appears to have suggested the method employed by M. de Saint-Venant, in

the part (p. 26) of his Memoir sur les lignes conrbes non planes, &c., before refeiTed to, in which the

result is enunciated. Another, and perhaps even a simpler method, suggested by quaternions, of

geometrically establisliing the same theorem, will be sketched in the present sub-article (49.) ; and in

the following sub-article (50.), a proof by the quaternion analysis will be given, which seems to leave

nothing to be desired on the side of simplicity of calculation.
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the hinormal to the curve in space make (in the same case) constant angles,

with the jftxed radius drawn to that point : and the curve itself is therefore

(as before) a geodetic line, on some cylindrical surface.

(50.) By quaternions, when the two curvatures liave thus a constant ratio,

the equations XF. and XVI. give,

OVIII. . . {rXy = (Uv + rr-wy = (rr-^)V = 0,

or

CIX. . . rX = a constant vector
;

the tangent (r) makes therefore, in this case, a constant angle {H) with a

constant line {rX) : and the curve is thus seen again, by this very simple

analysis, to be a geodetic on a cylinder. And because it is easy to prove

(comp. XXXI.), that we have in the same case the expression,

ex. . . r sin'* H = radius of curvature of base,

or of the section of the cylinder made by a plane perpendicular to the

generating lines, this other known theorem results, with which we shall

conclude the present series of sub-articles : When both the curvatures are

constant, the curve is a geodetic on a right circular cylinder (or cylinder of

revolution) ; or it is what has been called above, for simplicity and by

eminence, a helix*

398. "When the fourth power (s*) of the arc is taken into account, the

expansion of the vector ps involves another term, and takes the form

(comp. 397, I.),

I. . . p, = p + sr + fsV + isV" + ^'t",
in which

II. . . t'" = D,V, and III. . . Srr'" = - 3SrV' = - ^r'V
;

so that the neio affections of the curve, thus introduced, depend only on ttoo

new scalars, such as / and r'\ or r' and R\ or H' and P', &o. We must be

• In general, the expression XLIV. for the vector u, of the osculating /lelix, in which

I = - r'\"^ = T — \"'t', and p — wo = A"'t', gives Ta>', = 1 ; so that the deviation (8.) may be

considered (comp. (13.)) to be measured from the extremity of an arc of the helix, which is eqiml in

length to the arc s of the curve, and is set off from the same initial point p, with the same initial

direction : while uq does not here denote the value of w, answering to s = 0, but has a special

signification assigned by the formula XXXVIII. It may also be noted that the conception, refeired

to in (46.), of an auxiliary spherical curve, corresponds to the ideal substitution of the motion of a

point with a varying velocity upon a sphere, for a motion with an uniform velocity in space, in the

investigation of the general properties of cttrves of double curvature : and that thus it is intimately

connected (comp. 379, (9.)) with the general theory of hodographs.
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content to offer here a very few remarks on the theory of such affections,

and on the manner in which it may be extended by the introduction of

derivatives of higher orders.

(1.) The new vector /", on which everything here depends, is easily

reduced to the following forms,* analogous to the expressions 397, VI. for t":

IV. . . r'" = ?^'+ (r-^/)-^- r-' _ (r-'r-Q^

T r V

= 3r-Vr + {r{r-')" + X^)r' + {r-^x-'yr'v.

(2.) The first derivatives of the four vectors, v\ k\ X, o-, taken in like

manner with respect to the arc s of the curve, are the following

:

V. . . v'' = (Vrr'O' = ^tt'" + r-'\

= r-VV + (;--VOV-i + (r (»-')" - r-')v ;

VI. . . ic" = - tVt + {rr" - r'v-'y + (rV>)'v
;

VII. . . y = (r-i)V + {r-')'rv, or VIF. . . (rX)' = (rr'^r (comp. 397, CVIII.)

;

VIII. . . (t' = {K+prvY = (/ + rr')rv = RKp-'w ;

in which last the scalar derivatives p' and H' are determined, in tei-ms of

/' and r', by the equations,

IX. . . p' = (/r)' = r"r + rV,
and

X. . . /2' = Br\i)p' + r/) = p' sin P + r cos P = (p' + cot IT) sin P.

We have also the derivatives,

XII. . . P' =
^'^^-^^ = (/T--/^)r + >rV

^

and the relations, ^ + i?

XIII. . . Srr'/" = S.//" = - (r-VO';

XIV. . . SrrV" = Si.V = - r-^-'{p' - rrX^)

;

XV. . . SrVV" = r^SXr"' = - r-»(rr-0';

In these new expressions, on the plan of the second Note to page 90, the scalars r, p', li', and

the vector <t', are to be regarded as of the dimension zero ; r", H', F, and k" of the dimension - 1 ;

A' of the dimension - 2 ; and v" and t'", as being each of the dimension - 3.

Hamilton's Elkmknts of Quatbrnions, Vol. II. Q
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which may be proved in various ways, and by the two first (or the two last)

of which, the derivatives r' and p\ and therefore also H.' and P', can be

separately calculated, as scalar functions of the four vectors t, /, /', t"", or of

some tliree of them, including the netc vector r''.

(3.) We may also deduce, from either V. or YIII., the following vector

expressionSy of which the geometrical signification is evident from the recent

theory (396, 397) of emanant lines and planes :

XVI. . . Vector of Rotation of Radius {R) of Spherical Curvature

= Vector of Rotation of Tangent Plane to Osculating Sphere

= (say) ^ = V ^' = V^^ = RMv-'^' + <^ - p) (^ 2, 3)
V a — p

whence follows tliis tensor value for the common angular velocity of these^two

connected rotations, compared still with the velocity of motion along the curvCy

XVII. . . Velocity of Rotation of Radius (R), or of Tangent Plane to Sphere,

= T^ = TV ^' = R-V (1 + ^'' cot'' P) = R-V {! + (/ + cot H)' cos' P) ^

with the verifications, for the case of the helix, for which p = 0, p' = 0, P = 0,

and R = r, that these expressions XVI. and XVII. become,

XVI'. . . ^ = A, and XVII'. . . 1> = TA = r' coseo ff,

which agree with those found before, for the vector and velocity of rotation

of the radius (;•) of absolute curvature.

(4.) As anotlier verification, we have R' = for every spherical curve, and

the general expressions take then the forms,

XVr. . .6 = ^^, and XVir. . . T^ = R-\
(T~p

of which the interpretation is easy.

(5.) In general, the formula XVII. may also be thus written,

XVIII. . . RY + 1 = - R'' cot' P = R" -2)-Ui'R'' = R" + a' = a' cos' P
;

or thus,

XIX. . . Pl> = y(l + 1V» cos' P) = y (1 + Ta' - R")
;
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or finally,

XX. . . R'T<^ = y (22' - rV^) = ^{JR? + r^TO ;

80 that the small angle^ sT^, between the two near radii of spherical curvaUtre,

R and Rg^ is ultimatelj equal to the square root of the sum of the squares of

the tico small angles, in ttco rectangular planes, sR'^ and rsR'^T<T\ or psp« and

sps„ which are subtended, respectively, at the centre s of the osculating sphere

by the sm^ll arc s of the given curve, and at the given point p by the small

corresjwnding arc slV of the locus of centre s of spherical cut^ature, or of the

cusp-edge (395, (2.)) of the polar decelopahle ; exactly* as the small angle sTA,

between two near radii (397, (5.)) of absolute curvature, r and r„ is ultimately

the square root of the sum of the squares of the tico other small angles, sr'^

and ST~\ or pkp, and khk^, which are likewise situated in two rectangular

planes, and are subtended at the centre k of the osculating circle by the small

arc s of the curve, and at the given point p by the corresponding arc sTk of

the locus of the centre k (comp. 397, XXXIY., XCIV.).

(6.) The point, say v, in which the radius JR of the osculating sphere at p

approaches most nearly to the near radius Rg from p„ is ultinwtelg determined

(comp. 397, CV. and X.j by the formula,

Ti^^T «. Vector of Spherical Curvature
XXI. . . pv = ^ =

J,-
Square of Angular Velocitt/ of Radius {R)

= {p - cr)-l>- =
1 + R'' oof P 1 + p-'r'R"

'

the vector of this point v (in its ultimate position) is therefore

^^r-r y f'^R'^p+p^a i^R:^p + Trr''a
XXll...oy = p.K = ^jj^-r = ~^j^--:^',

with the verification, that (by X., comp. XVII.) the scalar p'^rlt or R' cot P
reduces itself to cot H, or to rr"', for the case p = 0, pt' = 0, P = i) (comp.

(3.)) : and that thus the expression 397, XXIXVIII., for the vector oh of the

point of nearest approach, of a radius (/•) of absolute curvature to a consecutive f

radius of the same kind, is reproduced.

* It will soon be seen that these two results, and others connected with them, depend geometrically

on one common principle, which extends to all systems of noi-mal emanauts (397, (44.)).

t This usual expression, consecutive, is obviously borrowed here from the language of itifinitesimalt,

but is supposed to be interpreted, like those used in other parts of the present series of Articles, by a

reference to the conception of limits.

Q2
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(7.) In general, if we introduce a new auxiliary angUj «/, determined by

the formula,

XXIII. . . cot J^p-'rB' = H' cot P = (/ + cot H) cos P = E{r-' + P'),

the expression XXII. takes the simplified form (comp. again 397,

XXXVIII.),

XXIV. . . ov = |0 + ^ = JO cos'^ J + a sin'^ J ;

and the segments, into which the point v divides (internally) the radius B
of the sphere, have the values (comp. 397, XXXIX.),

XXV. . . pv = ^ sin'^ J, vs = jB cos^ J.

(8.) A geometrical signification may be assigned for this new angle J, which

is analogous to the known signification of the angle S (397, XVII.). In

fact, the tangent plane to the osculating sphere at p touches its own developable

envelope along a new right line, of which the scalar equations are,

XXVI. . . S((T - p) (w - /o) = 0, S(a' -t) iw-p) = 0;

and because the developable locus of all such lines can be shown to be

circumscribed, along the given curve, to the locus of the osculating circle,

which is at the same time the envelope of the osculating sphere, we shall

briefly call this locus of the line XXVI. tlie Circumscribed Developable. And

the inclination of the generatrix of this neio developable surface, to the tangent

to the given curve at p, if suitably measured in the tangent plane to the sphere,

is precisely the angle which has been above denoted by J.

(9.) To render this conception more completely clear, let us suppose that

a finite right line pj is set off from the given point p, on the indefinite line

XXVI., so as to represent, by its length and direction, the velocity of the

rotation of the tangent plane to the osculating sphere ; and so to be, in the

phraseology (396, (14.)) of the general theory of emanants, the vector-axis of

that rotation. We shall then have the values,

XXVII. . . PJ = 0(= the six expressions XVI.)

= ie-V(cot J+ U((T - p)) = /i-» ooseo J{t cos J + rU(<r - p) sin J)
; (7, 8)

the angle J being determined by the formula XXIII., and a new expression,

T^ = /^' oosec J, being thus obtained for the velocity XVII.
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(10.) Hence the new angle J", if conceived to be included (like H)

between the limits and tt, may be considered to be measured /rowi t to ^,

OT from the unit-tangent to the curve at p, to the generating line pj of the

circumscribed developable (8.), in the direction from r to r(<7 - p) : which last

tangent to tlie osculating sphere makes generally, like the tangent (p or pj

itself, an acute angle with the positive binormal v, as appears from the

common sign of the scalar coefficients of that vector, in their developed

expressions.

(11.) It may also be remarked, as an additional point of analogy, and

as serving to verify some formulae, that while the older angle H becomes

right, when the given curve is plane, so the new angle «^ = «' ^°' every

spherical curve.

(12.) As another geometrical illustration of the properties of the angle J,

and of some other results of recent sub-articles, which may serve to connect

them, still more closely, with the general theory of normal emanants from

curves (397, (44.)), let us conceive that ab, bc, cd are three successive right

lines, perpendicular each to each ; let us denote by a and b the angles bca

and CBD, and by c the inclination of the line ad to bc : and let us suppose

that these two lines are intersected by their common perpendicular in the

points G and h respectively.

(13.) Then, by completing tlie rectangle bcde, and letting fall the

perpendicular bf on the hypotenuse of the right-angled triangle abk, we

obtain the projections, ae and fb, of the two lines ad and gh, on the plane

through B perpendicular to bc ; and hence, by elementary reasonings, we

can infer the relations :

XXVIII. . . tan'* c = tan^ adk = tan* a + tan* b
;

and

XT'^rtsj- l^H AG AF AB . ,XXIX. .. — = — = — = —; = Sin' AEB,
BC AD AE AE""

or

XXIX'. . . BH = BC sin'y, if tan/ = tan « cot 6 ;

nothing here being supposed to be small. It may also be observed, that the

ttco rectilinear angles, bca and cbd, or a and b, represent respectively the

inclinations of the plane acd to the plane bcd, and of the plane abd to the

plane abc.

(14.) Conceive next that pq and p^q, are two near normal emanants,

touching the polar developable in the points q and q«, whereof Q is thus on
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the given polar axis ks, and q« is ou the near polar axis k,q, ; and let the

second emanant be cut, in the points p' and q', by planes through p and q,

perpendicular to the first emanant pq. The line pp' will then be very

nearly tangential to the given curve at p ; and the line qq' will be very

nearly situated in the corresponding normal plane to that curve : so that

these two new lines will be very nearly perpendicular to each other, and

the gauche quadrilateral p'pqq' will ultimately have the properties of the

recently considered quadrilateral abcd.

(15.) This being perceived, if we denote by e the length of the emanant

line PQ, the small angle a is very nearly = e~'^s ; and if the small angle b be

put under the form 6's, then the new coefficient V is ultimately equal (by

XX1X^) to e'^ooij: where y is an auxiliary angle, not generally small,

and is such that we have ultimately ph = pq . siu^ /, if h be the point in

which the given normal emanant pq approaches most closely to the con-

secutive emanant PgQg.

(16.) We have then the ultimate equation,

XXX. . . coty = eb' = vQ,x lim.(s"' . qpq,)

= length of emanant line (pq)

X angular velocity of the tangential plane (p'pq) containing it
;

this latter plane being here conceived as turning, for a moment, round the

tangent to the given curve at p, and the velocity of motion along that curve

being still taken for unity.

(17.) Accordingly, when we change e to r, b' to v~\ and j to if, we

recover in this way the fundamental value cot H = rr"^ (397, XVII.), for

the cotangent of the older angle H; and when, on the other hand, we treat

the radius of spherical curvature as the normal emanant, supposing q to

coincide with s, and therefore changing e to R, and b' to r"^ + P', we recover

the last of the expressions XXIII. for the cotangent of the new but analogous

angle J, namely cot J = R{v-^ + P'), together with an interpretation, which

may not have at first seemed obvious : although that expression itself was

deducible, in the following among otlier ways, from equations previously

established,

XXXI. . . i^' cot J^- r- =^ - !! = -^C-^Y= - i2?i^' = P'.
pR p p \RJ sm P

(18.) As regards the angular velocity, say v, of the emanant line pq, or

the ultimate quotient of the angle between two such near lines, divided by
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the sraall arc s of the given curve, we see by XXVIII. (comp. (5.)) that

this small angle vs is ultimately equal to the square root of the sum of the

squares of the two other small angles^ above denoted by a and 6, and found to

be equal, nearly, to e'^s and r's oot j respectively : we may then establish

the general formula,

XXXII. . . Angular Velocity of Normal Emanant = v = e'^ ooseoj;

which reproduces the values, r~^ cosec H^ and Br^ cosec /, already found for

the angular velocities of the two radii, r and M.

(19.) And if we observe that the projection of the vector of curvature, kp"\

on the emanant pq, is easily proved to be = qp"^ = c"* . pq, we see by XXXII.

that if this projection be divided hy the square of the angular velocity \v) of the

line PQ, the quotient is the line PQ.siu"/, or ph (15.) : which reproduces the

general result, 397, CV., for all systems of normal emanants, together with a

geometrical interpretation.

(20.) As still another geometrical illustration of the properties of the new

angle J, we may observe that in the construction (12.) and (13.) the corre-

sponding auxiliary angle j was equal to aeb, or to abf, and that the line bf

(= hg) was perpendicular to both bc and ad, although not intersecting the

latter. Substituting then, as in (14.), the quadrilateral p'pqq' for abcd, and

passing to the limit, we may say that if a new line pj be a common perpen-

dicular, at the given point p, to two consecutive* normal emanants, pq and pV,

the general auxiliary angle j is simply the itwlination p'pj, of that common

perpendicular pj, to the tangent pp' to the curve.

(21.) And if, instead of normally emanating lines pq, we consider a

system of tangential emanant planes (as in 397, (45.)), to which those lines

are perpendicular, we may then (comp. 396, (14.)) consider the recent line

PJ as being a generating line of the developable surface, which is the envelope of

all the planes of the system ; the auxiliary angle,'\ j, is therefore generally by

(20.) the inclination of this generatrix to the tangent : a result which agrees

with, and includes, the known and fundamental property (397, XVII.) of

the angle H, in connexion with the Rectifying Developable (396) ; and also

• Compare the second Note to page 115.

t In these geometrical illustralions, the angle j has been treated, for simplicity, as being both

positive and acute ; although the general formula, which involve the corresponding angles S'and /,

permit and require that we should occasionally attribute to them obtuse (but still positive) values :

while those angles may also become right, in some pai-ticular cases (comp. (11.)).
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the analogous property of the newer angle J, connected (8.) with what it has

been above proposed to call the Circumscribed Developable.

(22.) We shall soon return briefly on the theory of that new developable

surface (8.), and of the new locus (of the osculating circle, or envelope of the

osculating sphere) to wliich it has been said to be circumscribed : but may
here observe, that if we write for abridgment (comp. YIII. and XXIII.),

XXXIII. .. n = - = —=/+ cot ^= cot Jsec P,
rv p

then what has been called the coefficient of non-spheridty (comp. 395, (14.)

and (16.)) is easily seen to have by XIY. the values,

XXXIV. . . >S - 1 = ^/tt - 1 = - r*rSvV" - 1 (1, 2)

= - (/ - rrX') - 1 = - ^/ + ^^
= nrr' *(3, 4, 6)

= — = cot fi" cot tT sec P =
; (6, 7, 8)

rv pv

whence also the deviation of a near point Pj of the curve, from the osculating

sphere at p, is ultimately (by 395, XXYII.).

XXX V. . . sp« - sp =
24;-2i2 2^rvR 24:rrp

'

and accordingly, the square of the vector ps - <t is given now (comp. I.) by

the expression,

(p, - ay = ip - ay - j^ {r^S(a - p)/" - 1},

in which
r'^S{a - p)t" = 8 = I + nir'^ = &c., as above.

(23.) The same auxiliary scalar n enters into the following expressions

for the arCf and for the scalar radii of the frst and second curvatures, of the

locus of the centre s of the osculating sphere, or of the cusp-edge of the polar

developable (comp. 391, (6.), and 395, (2.))

:

XXXVI. . . ± J nds = Arc of that Cusp-Edge (or of locus of s)

;

RUf
XXXVI'. . . r, = «r = r+p'T=—;- = [Scalar] Radius of Curvature ofsame edge

;

r

XXXVi". . . ri = wr = <Tv~^ = [Scalar] Radius ofSecond Curvature ofsame curve
;
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these two latter being here called scalar radii, because the first as well as

the second (comp, 397, Y.) is conceived to have an algebraic sign. In fact,

if we denote by Ki the centre of the osculating civck to the cusp-edge in

question, its vector is (by the general formula 389, IV.),

XXXYII. . . OKi = (ci = (T + tt^t-, = <y - wrrr' = p -j/ttt ^prv = a - Virr,
Va <T

with the signification XXXYF. of r, ; because by XXXIII. (comp. 397, XF.),

XXXYIII. . . a' = nrv, a" = n'w + n{rvy = nWv - Mn-V,

and therefore

XXXIX. . .»' = -«% YaV' = «V'r.

We may also observe that the relation <t \\ v gives (by 397, lY.),

XL, ..Y-y = Y— = r"*r= Vector of Second Curvature of given curve
;

and that we have the equation,

XLI. . . — = ^^^^ = -, with /• > 0, but /'i > or < 0,
PK K - p r

according as the cusp-edge turns its concavity or its convexity towards the

given curve at p.

(24.) The radius of {first) curvature of that cusp-edge, when regarded

as a ponitive quantity, is therefore represented by the tensor,

XLII. ..yW' = ±r, = Tn = RT^ = ± ^(> Oj

;

r dr

and as regards the scalar radius XXXYI". of second curvature of the same

cusp-edge, its expression follows by XXXVIII. from the general formula

397, XXYII., which gives here,

XLIII. . . rr = S^-^, = — S ^, = n-h'-\ because XLIIF. . . S=^, = 1

;

yaa nr \vv yvv

tlie tico scalar derivatives, n' and ;/", which would have introduced the

derived vectors t'^ and r', or D«*/o and D^^p, of the fifth and sixth orders,

Hamilton's Elements of Quaternions, Vol. II, R
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thus disappearing from the exp)essions of the two curvatures of the locus of

the centre s of the osculating sphere, as was to be expected from geometrical*

considerations.

(25.) For the helir, the formula XXXYII. gives ki = p, or Ki = p ; we

have then thus, as a verification, the known result, that the given point p of

this curve is itself the centre of curvature Ki of that other helix (comp. 389,

(3.), and 395, (8.)), which is in this case the common locus of the ttco coincident

centres, k and s. It is scarcely necessary to observe that for the helix we

have also J = H.

(26.) In general, the rectifying plane of the locus of s is parallel to the

rectifying plane of the given curve, because the radii of their osculating circles

are parallel ; the rectifying lines for these two curves are therefore not only

parallel but equal ; and accordingly we have here the formula,
*

XLIV. . . Ai = V'^ = V^' = X (by 397, XVI.),

which will be found to agree with this other expression (comp. 397, XVII.),

XLV. . . tan ^, =^ = -Vr, = ± cot H,
Lri r

the upper or lower sign being taken, according as the new curve is concave (as

in figs. 81, 82 [pp. 100, 106]), or is convex at s (comp. (23.)), towards the

old (or given) curve at p : and the new angle H^ being measured in the new

rectifying plane, from the new tangent a or nrv, to the new rectifying line Ai,

and in the direction from that new tangent to tlie new hinormal vi, or

(comp. XL.) to a line from s which is equal to the vector of second

curvature r"V of the given curve, multiplied by a positive scalar^ namely

by Tw"S or by the coefficient n~^ taken positively.

(27.) The former rectifying line A touches the cusp-edge of the rectifying

developable (396) of the given curve, in a new point ii (comp. fig. 81), of which

by 397, (45.), and by XV., the vector. //-om the given point is, generally,

XT VT - _
^^''^"

_ ^"'^
_ _ ''^_ _ "^^ sin H

SrVV" " SA/" " {rv-'Y W '

• In fact, « reprt'senta here the velocity of motion of the point s along its own locus, while

r' and r-' represent respectively the velocities of rotation of the tangent and binomial to that curve

;

BO that Mr and nr must be, as above, the radii of its two curvatures.
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with the verification that this expression becomes infinite (comp. 397, (49.),

(50.)), when the curve is a geodetic on the cylinder.

(28.) In general, the vector or of the point of contact r, which vector we

shall here denote by v, may be thus expressed,

XLVIL..w = oii = p + /UX, if XLYIII. ../ = ^^=;^,;M (rr"')

and because (rX)' = (^T"^)'r, by VII'., its first derivative is,

XLIX. . .
y' = rX (^^) = nX ooseo H[l sin H)' = J5\{1' + cos H)

;

in which however the new derived scalar f involves ZZ"", and so depends on

T^^ : while the scalar coefficient I itself represents the portion (± pii) of the

rectifying line, intercepted beticeen the given curve, and the cusp-edge (27.)

of the rectifying developable, and considered as positive when the direction

of this intercept PR coincides with that of the line + X, but as negative in the

contrary case.

(29.) For abridgment of discourse, the cusp-edge last considered, namely

that of the rectifying developable, as being the locus of a point which we have

denoted by the letter r, may be called simply " the curve (r) " ; while the

former cusp-edge (23.), or that of the polar developable, may be called in

like manner " the curve (s) " ; the locus of the centre k of (absolute) curvature

may be called " the curve (k) "
; and the given curve itself (comp. again

figs. 81, 82) may be called, on the same plan, " the curve (?.)•"

(30.) The arc Rit„ of tlie curve (r), is (by XLIX., comp. XXXVI.),

L. . . ± f Tu'ds = ls-l +
Jo

cos Sds
;

this arc being treated as positive, when the direction of motion along it

coincides with that of + X.

(31.) The expression VII. for X', combined with the former expression

397, XVI. for X, gives easily by the general formula 389, IV.,

LI. . . Vector of Centre of Curvature of the Curve (r)

V

Yv'V-' " " ^ VX'X-^ ' M
V V ^^ TT '

B 2
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whence
r J

LII. . . Radius of Curvature of Curve (r) = T -=7 = T j^j^

the scalar variable being here arbitrary.

(32.) We see, at the same time, that the angular velocity of the rectifying

line X, or of the tangent to this curve (r), is represented by + J7' ; or that the

small angle* between two such near lines ^ X and Xs, is nearly equal to sff', or

to Hs - H : while the vector axis (YX'X"^) of rotation of the rectifying line, set

off from the point r, has - S^'Ut, or - J?'r/, for its expression.

(33.) As regards the second curvature of the same curve (r), we may

observe that the expression (comp. YII. and LI.),

LIII. ..y' = [r-'Yr + [r-'Y'rv + r-\ri-')V = (r'^V + [r^y'rv + VXX',

combined with the parallelism (XLIX.j of v to X, gives, by the general

formula 397, XXVII.,

LIV. . . Radius of Second Curvature of Curve (r)

\ YvVj XV VXX7 ~x~~ TX

with the verification, that while /' + cos H represents, by (30.), the velocity

of motion along this curve (r), TX represents, by 397, (3.), the velocity of

rotation of its osculating plane, namely the rectifying plane of the given curve

(p) : and it is wortli observing, that although each of these two radii of

curvature, LII. and LIV., depends on r''^ through /' (28.), yet neither of

them depends on r^ (comp. (24.)). As anotlier verification, it can be shown

that the plane of the two lines X and t from p, namely the plane,

LIV. . . S/X(w - p) = 0,

which is the normal plane to the rectifying developable along the rectifying

line, and contains the absolute normal to tlie given curve (p), touches its

own developable envelope along the line rh, if h be the point determined by

* A rt'sult substantially equivalent to this is deduced, by an entirely different analysis, in tbe

above cited Memoir of M. de Saint-Venant, and is illustrated by geometrical considerations : which

also lead to expressions for the two curvatures (or, as he calls them, the courbure and cambrure), of

the cusp- edge of the rectifying developable ; and to a determination of the rectifying line of that

etup-edge.
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the formula 397, XXXYIII., or the 2^oint of nearest approach of a radius of

curvature [r) of that given curve to its consecutive (comp. (6.)); this line rh

must therefore be the rectifying line of the curve (r) ; and accordingly (comp.

397, XVII.), the trigonometric tangent of its inclination to the tangent rp to

this last curve has for expression (abstracting from sign),

1AT\ . . tan PRH = PH : PR = ± Ir^r sin* H = ± rE' sin H = T\-^H'

_ Radius (LIV.) of Second Curvature of Curve (r)

Radius (LII.) of First Curvature of same Curve

(34.) Without even introducing t^'', we can assign as follows a twisted

cubic (comp. 397, (34.)), which shall have contact of the fourth order with the

given curve at p ; or rather an indefinite variety of such cubics, or gauche curves

of the third degree. Writing, for abridgment,

LV. . . X = - Sr(a> - p), y = - S/T'(a> - p), 2 = - Srv(w - p),

so that

LVI. . . (o = p \- XT + yrr + zrv,

the scalar equation,

in which e is an arbitrary but scalar constant, represents evidently, by its

form, a cone of the second order, with its vertex at the given point p ; and this

cone can be proved to have contact of the fourth order with the curve* at that

point : or of the third order with the cone of chords from it (comp. 397, (31.),

(32.)). In fact the coefficients will be found to have been so determined,

that the difference of thp two members of this equation LVII. contains s* as

a factor, when we change w to ps, as given by the formula I., or when we

substitute for xyz their approximate values for the curve, as functions of the

• In the language of infinitesimals, the cone LVII. contains /fe consecutive points of the curve,

or has Jive-point contact therewith : hut it contains only four consecutive sides of the cone of chords

from the given point, or has only four-side contact with that cone, except for one particular value of

the constant, e, which we shall presently assign. It may be observed that xyz form here a (scalar)

system of three rectangular coordinates, of the usual kind, with their origin at the point p of the

curve, and with their positive semuixes in the directions of the tangent r, the vector of curvature t',

and the binormal v.
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arc s ; namely, by the expressions IV. for /", and 397, YI. for /',

LVIII. . .

I

where the terms set down are more than sufficient for the purpose of the

- s* .

proof. It may be added that the coefficient of -^ in y,, which is the only

one at all complex here, may be transformed as follows :

LVIir. . . Sr//'' = - {r-Y - r-'\' = i-'S + pirh-'Y

;

S being that scalar for which (or more immediately for its excess over unity)

several expressions* have lately been assigned (22.), and which had occurred

in an earlier investigation (395, (14.), &c.).

(35.) With the same significations LV. of the three scalars xt/z, this

other equation,

or

LIX. . . ISri/ - {Sx - r'yf = (9 + r"" - Zrr" - 3;V)y»,

LIX^ . . 2ry -{x- \r'yY = (1 - i;-^(r^)" - \r\-yj\

will be found to be satisfied when we substitute for x and y the values LVIII.

of Xs and y«, and neglect or suppress s^ ; it therefore represents an elUptic (or

hyperbolic) cylinder y which is cut perpendicularly, by the osculating plane to the

given curve at p, in an ellipse (or hyperbola)^ having contact of the fourth order

with the projection (397, (9,)) of that given curve upon that osculating /;/rtwe

:

and the cylinder itself has contact of the same (fourth) order with the curve in

space, at the same given point p, so that we may call it (comp. 397, (31.)) the

Osculating Elliptic (or Hyperbolic) Cylinder, perpendicular to the osculating

plane.

(36.) As a verification, if we suppress the second member of either

LIX. or LIX'., we obtain, under a new form, the equation of what has

• It might have been observed, in addition to the eight forms XXXIV., that we have also,

XXXIT. . . 6: - 1 = i2r-i cot J = n cot M. (9, 10)
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been already called the Osculating Parabolic Cylinder (397, LXXXIY.) ; and

as another verification, the coefficient of y"' in that second member vanishes, as

it ought to do, when the given curve is supposed to be a. parabola : that plane

curve, in fact, satisfying the differential equation of the second order,

or

I.X. . . 3/t" - r"- = 9, or LX'. . . r*(rt)" = 2,

LX''. . .
r-t

((^Y+ l) = const. = p'K

if r be still the radius of cwvature, considered as a function of the arc, s, while

p is here the semiparameter.

(37.) The binomial v is, by the construction, a generating line of the

cylinder LIX. ; and althougli this line is not generally a side of the cone

LYII., yet we can make it such, by assigning the particular value zero to the

arbitrary constant, e, in its equation, or by suppressing the term, ez^. And

when this is done, the cone LV.II. will intersect the cylinder LIX., not only

in this common side v (oomp. 397, (33,)), but also in a certain twisted cubic,

which will have contact of the fourth order with the given curve at p, as stated

at the commencement of (34.).

(38.) But, as was also stated there, indefinitely many such cubics can be

described, wliich shall have contact of the same (fourth) order, with the same

curve, at the same jmint. For we may assume any point e of space, or any

vector (comp. LVI.)>

LXI. . . OE = £ = p + r/r + 6r/ + crv,

in which a, b, c are any three scalar constants ; and then the vector equation,

LXII. . . U) = ps + t[£ -
p),

in which t is & new scalar variable, will represent a eylindric surface, not

generally of the second order, but passing through the given curve, and having

the line pe for a generatrix. We can then cut (generally) this new cylinder

by the osculating plane to the curve at p, and so obtain (generally) a netv and

oblique projection of the curve upon that plane ; the x and y of which new

projected curve will depend on the arc s of the original curve by the relations,

LXIII. . . X = Xs - ac'^Zs, y = Vs - bc'^Zs ;

with the approximate expressions LYIII. for Xsy^Zg. And if we then



128 ELEMENTS OF QUATERNIONS. [I[Lin.§6.

determine two new scalar constants, B and C, by the condition that the

substitution of these last expressions LXIII. for x and y shall satisfy this

new equation,

LXrV. ..2ry = d' + 2Bxy + Cy\

if only s" be neglected (comp. (35.)), or by equating the coefficients of ^ and s*,

in the result of such substitution, then, on restoring the significations LY. of

cpyz, and writing for abridgment,

LXV. . . X = X - ac'^z, Y = y - bc^Zj

the equation of the second degree,

LXVI. . . 2rY=X' + 2BXY^ CY\

will represent generally an oblique osculating elliptic (or hyperbolic) cylinder,

which has contact of the fourth order with the given curve at p, and contains

the assumed line pe. If then we determine finally the constant e in LYII.,

by the result of the substitution of abc for xyz, or by the condition,

LXvn...(^)'=6(g'»« + (L:)'s....s

the cone LVII., and the cylinder LXVI., will have that line pe for a

common side ; and will intersect each other, not only in that line, but also

(as before) in a twisted cubic, althougli now a new one, which will have

the required {fourth) order of contact, with the given curve at the given

point.

(39.) If, after the substitution (38.) in LXIY., we equate the coefficients

of the three powers, s', s*, «% and then eliminate B and C, we are conducted to

an equation of condition, which is found to be of the/o;w,

LXYIII. . . aJ^ + Wc + obc^ + e<^ = ac{bg + ch)

;

in which the ratios of abc still serve to determine the direction of the

generating line pe, while the coefficients, a, b, o, e, g, h are assignable

functions of ;•, r, r, r', r", r", and r", depending on the vector t'^ : and

when this condition LXYIII. is satisfied, the cylinder LXYI. has contact

of \ihQ fifth order with the given curve at p.
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(40.) Again, if we improve the approximate expressions LYIII. for the

three scalars Xg, ijs, 2«. by taking account of s*, or by introducing the netv term

r^-^ (comp. I.) of Pa, and if we substitute the expressions so improved, instead

of X, y, s, in the equation of the cone LYII. and then equate to zero (comp.

(34.)) the coeflBcient of s' in the difference of the two members of that

equation, we obtain a definite expressioti for the constant, e, which had been

arbitrary before, but becomes now a given function of rvrT^r" and r" [not

involving r'"), namely the following,

^^^^ rV9 21 r" 3/' 3rV 27x" W
5 \r* y-V r* ?•' r^v 4r-r^ r*r

and when the constant e receives this value* the cone has contact of the fifih

order with the curve at the given point.

(41.) Finally, if we multiply the equation LXVII. by 6g + ch, we can at

once eliminate a by LXYIII., and so obtain a cubic equation in b : c, which

has at least one real root, answering to a real system of ratios a, b, c, and there-

fore to a real direction of the line pb in (38.). It is therefore possible to assign

at least one real cylinder of the second order (39.), which shall have contact of

the fifth order with the curve at p, and shall at the same time have one side pe

common with the cone of the second order (40.), which has contact of the same

{fifth) order with the curve (or of the fourth order with the cone of chords)

:

and consequently it is possible in this way to assign, as the intersection of this

cylinder with this cone, at least one real twisted cubic, which has contact of the

fifthf order with the given curve of double curvature, at the given point thereof.

And such a cubic curve may be called, by eminence, an OsculatingX Twisted

Cubic.

(42.) Not intending to return, in these Elements, on the subject of such

cubic curves, we may take this occasion to remark, that the very simple vector

equation,^

LXX. . .Yap = pY(5p,

represents a curve of this kind, if a and /3 be any two constant and non-parallel

* Compare the Note to page 125.

t Accordingly it is known (see page 242 of Dr. Salmon's Treatise, already cited), that a twisted

cubic can generally be described through any six given points ; and also (page 248), that three quadric

cylitiders (or cylinders of the second order or degree) can be described, containing a given cubic curve,

their edges being parallel to the three (real or imaginary) asymptotes.

I Compare the first Note to page 92.

§ This example was given in pages 679, &c., oii\ie Lectures, with some connected transformations,

the equation having been found as a cei-tain condition for the inscription of a gauche quadrilateral, or

Hamilton's Elements of Quatbrnions, Vol, II.
^
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vectors. In fact, if we operate on this equation by the symbol S . A, in which

X is an arbitrary but constant vector, the scalar equation so obtained, namely,

LXXI. . . SXo/o = SApS/3/o - /t)'Sj3A,

represents a surface of the second order^ on which the curve is wholly contained

;

making then successively A = o and A = j3, we get, in particular, the two

equations,

LXXII. . . S (Vap .N^p) = 0, and LXXIII. . . (Y^pf + Saj3/> = 0,

representing respectively a cone and cylinder of that order, with the vector /3

from the origin as a common side : and the remaining part of the intersection of

these two surfaces, is precisely the curve LXX., which therefore is a twisted

cubic, in the known sense already referred to,-

(43.) Other surfaces of the same order, containing the same curve, would

be obtained by assigning other values to A ; for example (comp. 397, (31.)),

we should get generally an hyperbolic paraboloid from the form LXX I., by

taking A JL j3. But it may be more important here to observe, that without

supposing any acquaintance with the theory of curved surfaces, the vector equation

LXX. can be shown, by quaternions, to represent a curve of the third degree, in

the sense that it is cut, by an arbitrary plane, in three points (real or

imaginary). In fact, we may write the equation as foUows,

LXXIV. . .Yqp = -a, if LXXV. . .q = g + ^,

q being here a quaternion, of which the vector part (5 is given, but the scnlw

part g is arbitrary
; and then, by resolving (comp. 347) this linear equation

LXXiy., we may still further transform it as follows,

LXXYI. ..g{g'-^')p = /3S/3a + gY^a - g'a,

which conducts to a cubic equation in g, when combined with the equation

LXXYII. . . Sep = e,

of any proposed secant plane.

other even- aided polygon^ in a given spheric surface (comp. the suh-articles to 296) : the 'In successive
sides of the figure being obliged to pass through the same even number of given points of space. It was
shown that the curve might be said to intersect the unit-sphere (p^ = - 1) in two imaginary points at

inanity, and also in two real and two imaginary points, situated on two real right lines, which were
reciprocal polars relatively to the sphere, and might be called chords of solution, with respect to the
proposed problem of inscription of the polygon ; and that analogous results existed for even-sided

polygons in ellipsoids, and other surfaces of the second order : wheruas the corresponding problem, of

the inscription of an odd-sided polygon in such a surface, conducted only to the assignment of a single

chord of solution, as happens in the known and analogous theory of polygons in conies, whether the
number of sides be (in that theory) even or odd. But we cannot here pursue the subject, which has
been treated at some length in the Leoturea, and in the Apptudices to them.



AitT. 398.] VECTOR EQUATION OF A TWISTED CUBIC. 131

(44.) The vector equation LXX., however, is not sufficiently general, to

represent an arbitrary twinted cubic, through an assumed point taken as origin
;

for which purpose, te)i scalar constants ought to be disposable, in order to allow

of the curve being made to pass through Jive* other arbitrary points : whereas

the equation referred to involves only five such constants, namely the four

included in Va and U/3, and the one quotient of tensors T/3 : Ta (comp. 358).

(45.) It is easy, however, to accomplish the generalization tlms required,

with the help of that theory of linear and vector functions {^p) of vectors^ which

was assigned in the Sixth Section of the preceding Chapter (Arts. 347, &o.).

We have only to write, instead of the equation LXX,, this other but

analogous form which includes it,

LXXYIII. . . Yap + Y/o^p = 0, or LXXYIII'. . . f^p + cp = a,

and which gives, by principles and methods already explained (comp. 354,

(1.)), the transformation

T -cr^T-o- / \ ,
yLa-\- Cva + c^a

LXXIX. . . p= U + c)-'a = ^
, ^ „.—;

;

a, ^a, and x« being here fixed vectors, and m, m\ m" being fixed scalars, but c

being an arbitrary and variable scalar, which may receive any value, without

the expression LXXIX. ceasing to satisfy the equation LXXYIII.

(46.) The curve LXXYIII. is therefore cut (comp. (43.)) by the plane

LXXYII. in three points (real or imaginary), answering to and determined

by the three roots of the cubic in c, which is formed by substituting the

expression LXXIX. for p in the equation of that secant plane ; and conse-

quently it is a curve of the third degree, the three (real or imaginary) asymptotes

to which have directions corresponding to the three values of c, obtained by

equating to zero the denominator of that expression LXXIX., or by making

ifef = 0, in a notation formerly employed : so that they have the directions of

the three lines j3, which satisfy this other vector equation (comp. 354, I.),

LXXX. . . Y/3^i3 = 0.

• Compare the second Note to page 129. In general, when a curve in space is supposed to be

represented (comp. 371, (5.)) hy tivo scalar equations, each new arbitrary point, through which it is

required to pass, introduces a necessity for two new disposable constants, of the scalar kind : and
accordingly each new order, say the m"», of contact with such a curve, has been seen to introduce a

new vector, D,»p, or t(»»-^), subject to a condition resulting from the general equation TD,/> = 1, or

r^ = -I (comp. 380, XXVI., and 396, III.), but involving virtually two new scalar constants. Thus,

besides the four such constants, which enter through r and t' into the determination of the directions

of the rectangular system of lines, tangent, normal, and binormal (comp. 379, (5.), or 396, (2.)), and of

the length of the radius of ijirst) curvature, r, the three successive derivatives, r, r", r'" , of iAa< radius,

and the radius r of second curvature, with its two first derivatives, r' and r", have been seen to enter,

through the three other vectors, r", r", tiv, into the determination (41.) of the osculating twisted

cubic.

S3
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(47.) Accordingly, if jS "be such a line, and if y be any vector in the ^^/fl^ne

of a and /3, the curve LXXYIII. is a part of the intersection of the two

surfaces of the second order,

LXXXI. . . Sn/>^|0 = 0, and LXXXII. . . Sya^ + S^p^p = 0,

whereof the first is a cone, and which have the line /3 from the origin for a

common side (comp. (42.)) : the curve is therefore found anew to be a twisted

cubic.

(48.) And as regards the number of the scalar constants, which are to be

conceived as entering into its vector equation LXXVIII., when we take for <^p

the form Yqop + YAp/x assigned in 357, I., in which q^ is an arbitrary but

constant quaternion, such a.s g + y, and A, fi are constant vectors, the term gp of

^p disappears under the symbol of operation Y . p, and the equation (45.) of

the curve becomes,

LXXXIII. . . Yap + pNyp + YpYXpfi = ;

in which the four versors, Uo, Uy, TJX, U^, introduce each two scalar con-

stants, while the two tensor quotients, T-y : Ta and TA/i : Ta, count as ttco others :

so that the required number of ten such constants (44.) is exactly made up,

the curve being still supposed to pass through an assumed origin, and therefore

to have one point given. It is scarcely worth observing, that we can at once

remove this last restriction, by merely adding a new constant vector to p, in the

last equation, LXXXIII.

(49.) Although, for the determination of the osculating tioisted cubic (41.)

to a given curve of double curvature, it was necessary (comp. (40)) to employ

the vector t'^ or D/p, or to take account of s* in the vector p„ or in the con-

nected scalars a?,ygZ, of (34.), and therefore to improve the expressions LYIII.,

by carrying in each of them (or at least in the two latter), the approximation

one step farther, yet there are many other problems relating to curves in space,

besides some that have been already considered, for whicli those scalar

expressions LYIII. are sufficiently approximate : or for which the vector

expression I. suffices.

(50.) Resuming, for instance, the questions considered in (22.) and (23.),

we may throw some additional light on the law of the deviation of a near point

p, of the curve, from tlie osculating sphere at p, as follows. Eliminating n by

XXXYl'. from XXXY., we find tliis new expression,

LXXXIY. . . sp, - sp =
r.s'

24rr'i2

'

the directum of this deviation from the sphere {R) depends therefore on the
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sign of the scalar radius Vi (23.) of curvature of the cusp-edije (s) of the polar

developable : and it is outward or inward (comp. 395, (14.)), according as that

cusp-edge turns its concavity (comp. XLI.) or its convexity, at the centre s of the

osculating sphere, towards the point p of the given ctirve^ that is, towards the

point of osculation.

(51.) Again, if we only take account of s', the deviation of Ttfrom the

osculating circle at p has been seen to be a vector tangential to the osculating

sphere, which may be thus expressed (comp. 397, IX., LII.),

LXXX V . . . c,p, = g V T =—
-^^j^
—

,

if c, be the point on the circle, which is distant from the given point p by an

arc of that circle = s, with the same initial direction of motion, or of departure

from p, represented by the common unit tangent t ; the quantity of this

s^R . . . s'

deviation is therefore expressed by the scalar—- : that is, by the deviation—

-

(comp. 397, (9.), (10.)) from the osculating plane* at p, multiplied by the

secant {r^R) of the inclination (P) of the radius [R) of spherical curvature, to

the radius (r) of absolute curvature, and positive when this last deviation has

the direction of the binormal v.

(52.) On the other hand (comp. (5.)) the stnall angle, which the sm^tl arc

sss of the cusp-edge (s) of the polar developable subtends at the point p, is

ultimately expressed by the scalar,

LXXXVI. . . sps, = (7s, - 7s) . R-' cot P =^ - ^* (by XXXIII.),

• Besides the nine expressions in 397, (42.) for the square r"' of the second curvature, the follow-

ing may be remarked, as containing the law of the regression of the projection of a curve of double

curvature on its own normal plane :

r-»=-^.lim.^^, 397, XCIX., (XO.)
2KP PQ2* * '

K being still the certre of the osculating circle, and qi, Q2, Qs being still (as in 397, (10.)) the

projections of a near point a (or p,), on the tangent, the absolute normal{QX inward radius of curvature

pk), and the binormal at p. In fact, the principal terms of the three vector projections conesponding,
of the small chord pq (or pp.), are (comp. LVIII.)

:

PQi = «T ; PQ2 = {\sW =) — Ut'; pq» = {\sh-^v =) r— Ui/

;

2r Qrt

whence, iiltimatelj.

9 Pds'
- • n = — r-VUr' = r'* . kp.
2 PQ2^
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tliis angle being treated as positive, wheu the corresponding rotation* round

+ T from PS to PS, is positive : and if we multiply this scalar, by that which has

just been assigned (ol.), as an expression for the deviation cp, from' the

osculating circle, we get, by XXXV., the product,

LXXXVIL .

. '^ .
^' = 1^ = 4 (s?, - .^).

br^T pJR orip ^
'

(53.) Combining then the recent results (50.), (51.), (52.), we arrive at

the following Theorem :

The deviation of a near point "P^of a curve in space, from the osculating sphere

at the given point p, is ultimately/ equal to the quarter of the deviation of the same

near pointfrom the osculating circle at p, multiplied by the sine of the small angle

which the arc ss«, of the locus of centres of spherical curvature (s), or of the cusp-

edge of the polar developable, subtends at the same point p ; and this deviation

(sPi - sp) from the sphere has an outward or an inward direction, according as the

same arc ss« is concave or convex towards the same given point.

(54.) The vector of the centre s„ of the near osculating sphere at p^, is (in

the same order of approximation, comp. I.),

LXXXVIII. . . OS, = (T, = (T + S(t' + i-s-V' + ^s'<j'" + i-^s'a'^ ;

and although <t - p is already a function (by 397, IX., &c.) of r, t, t" , so that

a is (as in (2.) or (22.)) a function of r, r", t"\ and a", a", d'^ introduce

respectively the new derived vectors t^", t^, t^', or D//o, D/p, D/p, which we

are not at present employing (49.), yet we have seen, in (23.) and (24.),

that some useful combinations of a\ and ct'" can be expressed unthout r^^, t^ :

and the following is another remarkable example of the same species of

reduction, involving not only o-" and a" but also a^'^, but still admitting, like

the former, of a simple geometrical interpretation.

(55.) Remembering (comp. (22.), and 397, XY.) that

LXXXIX {<T- py+li' = 0, and XC 8t'"{<t - p)=r-'S = r' + nr-h-\

and reducing the successive derivatives of IjXXXIX. with the help of the

equations 397, XIX., and of their derivatives, we are conducted easily to the

• Considered as a rotation, this small angle may be represented by the small vector, rp-^R'Rr^sr;

and if the vector deviation LXXXY. from the osculating circle be multiplied by this, the qmrteroi the

product it (comp. XXXV.) the vector deviation from the osculating sphere, under the form,

a*{p- ff) It'

24J? * rrp
*
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following system of equations, into which the derived vectors t, r', &c. do not

expressly enter, but which involve a\ a\ a"\ a^"', and E' K\ Ii"\ R^"' :

XCI. . . S,t'(«t -p) + ER' = 0; XCII. . . StrV (a - p) = ;

XCIII. . . S(7"(<T -p] + a'^ + [RR'Y = ;

XOIY. . . S(T'"((r -p) + 3S(t'(7" + {RRT = ;

XOY. . . S<T'^(r7 - p) + 4S(t'<t'" + ^a"^ h {RR'Y" = - — =---;
^ ^' rrp rr

auxiliary equations being,

XCVI. . . SdV = 0, S<tV = 0, S«t'V = 0, (oomp. 395, X.)

and XCVII. . . Sa'^r = - Sct'V = Sor'r" = Srr" - S (o- - p) t"

= - r\S - 1) = - nr-^f\

(56.) But, if Rt denote the radius of the near sphere, and if we still neglect

s', we have,

XCVIII. . . ^' = - (ff, - p,)» = R,^

whence follows, by LXXXVIII., and by tlie recent equations, this very simple

expression, from which (comp. (24.)) everything depending on r'', t^, r^' has

disappeared,

xcix...(,.-p)'+A'.-j5^i

and which gives (within the same order of approximation, attending to

XXXV.) the geometrical relation^

c. . . ps.-;:i; = T (a,-p) - /?, =
24;^

=^ =i?, --^j

or C. . . s,p - sp, = s,p, -QY = R,-R.

(57.) This result might have h^en foreseen, from the following very simple

consideration. When the coefficient S - I of non-sjihericity (395, (16.)), or

of the deviation of a curve from a sphere, is positive, so that a near point p, of

the curve is exterior to (what we may call) the given sphere, which osculates to

that curve at p, by an amount which is ultimately proportional to i\iQ fourth

poiver of the arc, s, of the curve, then the given point p must be, for the same

reason, exterior to the near sphere, which osculates at the point p« ; and the two
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deviations, ps, - p,s, and sp, - sp, which have been found by calculation to be

equal (C), if s' be neglected, must in fact bear to each other an ultimate ratio

of equality, because the two ares, + s and - s, from p to p,, and from p, hack to

p, are equally long, although oppositely directed', or because (+ s)* = (- s)*.

And precisely the same reasoning applies, when the coefficient jS - 1 is

negative, so that the deviations, equated in the formula C, are both inwards.

(58.) As regards the deviation (51.) of the near point p« of the curve /row

the osculating circle at p, we may generalize and render more exact the ex-

pression LXXXV., by considering a point c< of that circle, which is distant

hy a circular arc = t from the given point p ; and of which the vector is,

rigorouslyy by 396, (18.),

CI. . . oct = ut)t = p + rr sin - + r"^/ vers -
;

or if we only neglect t^,

OIL . . oc, = ., . p + . (^
-

I-.)
+ ,./

(I
-
^^,

(59.) In this way we shall have (comp. (34.)) the vector deviation,

cm. . . CtP« = |0« - a)< = Xr + Yrr + Zrv,

with the scalar coefficients,

CIV. . . X = ir, - r sin -, Y = y^ - r vers -, Z ^ z,-,

r r

or, neglecting s' and t\ and attending to the expressions LVIII. and LVIII'.,

^ , 6' - t^ rs*

s'-e p „ s*-t* ns'CY...^F=^li-^Z-
2r r 24r» 24>''r

'

in which r, / r, p, and n have the same significations as before.

(60.) Assuming then for the circular arc t the value,

CVI.,,^ = « + g,

which differs (as we see) by only a quantity of the fourth order from the arc s

of the curve, we shall have, to the same order of api)roximation, the

expressions,

CVIL..X = 0, Y=~-^2- ^, Z=s, = &c., as before,
r 24rr
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the deviation at Ps from the circle being here measured in a direction parallel

to the normal plane at p ; and if s* be neglected (although the expressions

enable us to take account of it), this deviation is also parallel (as before) to the

tangent r {a - p] to the osculating sphere in that plane : while it is represented

in quantity by Iir~%f which agrees with the result in (51).

(61.) The expressions CVII. give also, without neglecting s*,

rY+pZ ws* _ _
CTIII...—^ = -2-5^ = sP-sP.;

such then is the component of the deviation from the osculating circle, which is

parallel to the normal ps to the sphere at p ; and we see that it only differs in

sign (because it is positive when its direction is that of the inward normal, or

inward radius ps), from the expression XXXV. (oomp. C), for the outward

deviation 8P« - sp of the near point p«, from the same osculating sphere at the

given point p.

(62.) This latter component (61.) is small, even as compared with the

former small component (60.) ; and the small quotient, of the latter divided

by the former, is ultimately (by LXXXYI.),

nT\r rY + pZ - nrs
CIX. . . -^—^ = -r-jTT- = - isps,

;

rZ - pY 4/c^

where the small angle sps, is positive or negative, according to the rule stated

in (52.), and may be replaced by its sine, or by its tangent.

(63.) Instead of cutting the given osculating circle, as in (60.), by a

plane which is parallel to the given normal plane at p, we may propose to

cut that circle hy the near normal plane at p„ or to satisfy this neiv condition,

ex. . . = Sr,(p, - wt), or CX'. . . = XStt, + ZSn-V, + ZSrvr,

;

which is easily found to give by CY. the values [s and t being still supposed

to be small, and s® being still neglected) :

CXI. ..t = s-^„ and CXII. . . Z = ^, F= &c., Z= &c., as in CVII.;

so that in passing to this new near point Ct of the circle, we only change

X from zero to a small quantity of the fourth order, and make no change

in the values of Y and Z.

Hamilton's Elements of Quaternions, Vol. II. T
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(64.) The new deviation qp, from the given circle may be decomposed

into two partial deviations^ in the near normal plane, of which one has the

direction of the unit-tangent Ea'Ws{crs - pg) to the near sphere at p„ and the

other has that of the unit-normal R,~\<ts - p») to the same sphere at the

same point (or the opposites of these two directions) ; and the scalar

coefficients of these two vector units, if we attend only to principal terms,

are easily found to be,

GX.m...'±^^^, and CXIY... '-^^^r"''^'5^-E 6rr E SrrE

(65.) We may then write :

CXV. . . Deviation of near point Ts from given osculating circle, measured in the

near normal plane to the curve at p,,

= new CtTs =^ Ur,((T, - ps) + ^^^{<^s - ps) ;

in which it may be observed, that the second scalar coefficient is equal to

three times the scalar deviation sp, - sp (XXXV. or C), of the near point

Ts of the curve, from the given osculating sphere (at p).

(66.) But we may also interpret the new coefficient last mentioned, as

representing a new deviation ; namely, that of the point c< of the given circle,

from the near osculating sphere at p,, considered as positive when that new

point Ct is exterior to that near sphere ; or as denoting tlie difference of

distances 8,c< - s,p«. We have therefore (comp. (56.) ) this new geometrical

relation, of an extremely simple kind

:

CXVI. . . s,c< - s,p, = 3(sp« - spj = 3(s4P - s,p,)

;

or

CXVI'. . . s^t = 3si^ - 2s^.

(67.) Supposing, then, at first, that the coefficient of non-sphericity 8-1
is positive (comp. 395, (16.)), if we conceive a point to move bnchcards, upon

the curve, from p, to p, and then forwards, upon the circle which osculates

at p, to the new point Ct (63.), we see that it vi'xW first attain (at p) a position

exterior to the sphere which osculates at p„ or will have an amount, determined

in (56.), of outward deviation, with respect to that near osculating sphere ; and

that it will afterwards attain (at the new point c<) a deviation of the same
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character (namely outwards, if i8'> 1), from the same near sphere, but one of

which the amount will be threefold the former : this last rehtion holding

also when S <1, or when both deviations are inwards.

(68.) It is easy also to infer from (65.), (comp. (57.)), that if we go

hack from p,, on the near circle which osculates at that near point, through an

arc {t) of that circle, which will only differ by a small quantity of W\q fourth

order (oomp. (60.)) from the arc [s) of the curve, so as to arrive at a point,

which for the moment we shall simply denote by c, and in which (as well

as in another point of section, not necessary here to be considered) the near

osculating circle is cut by the given normal plane at p, the vector deviation of

this new point c of the new circle, fram the given point p of the curve, must

be, nearly :

CXVII...Po = ^Ur(.-p)-g^U(.-,);

the ooeflBcients being formed from those of the formula CXY., by first

changing s to - s, and then changing the signs of the results : while the

relation CXVI. or CXVI'. takes now the form,

CXVni. . . sc - i? = 3(ip, - §p), or CXVIII'. . . ic = 3i?. - 2ip.

(69.) Accordingly if, after going from p to p, along the curve, we go

forward or backward, through ani/ positive or negative arc, t, of the circle,

which osculates at that point p,, we shall arrive at a point which we may

here denote by c„< ; and the vector (comp. again 396, (18.)) of this near

point {tnore general than any of those hitherto considered) will be rigorously,

CXIX. . . (u„< = 0Cg,t = p» + TsTs sin - + r,Va vers - •

^
rs rg

And if we develop this new expression to the accuracy of the fourth order

inclusive, we find that we satisfy the new condition (comp. (63.)),

CXX. . . S7((u„t - p) = 0, when CXXI. . .t = -s-
^^4

and that then the expression CXIX. agrees with CXVII., within the order

of approximation here considered.

(70.) A geometrical connexion can be shown to exist, between the two

equivalents which have been found above, one for the quadruple (LXXXVII.,
T2
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comp. (53.)), and the other for the triple (CXYHI.), of the deviation sp, - sp

of a near point p, of the curve, from the sphere which osculates at the given

point p : in such a manner that if either of those two expressions be regarded

as known, the other can be inferred from it.

(71.) In fact if we draw, in the normal plane, perpendiculars pd and pe

to the lines ps and PSg, and determine points d and e upon them by drawing

a parallel to ps through the point c of (68.), letting fall also a perpendicular

CF on ps„ the two small lines pd and do will ultimately represent the ttco terms

or components CXVII. of pc ; and the small angle dpc will ultimately be

equal to three quarters of the small angle sps,, and will correspond to the

same direction of rotation round r, because

CXXII...!^=.i.^'.JT^-,
PD * jK* * (T-p

or

CXXTII. . . DPC = fSPSa = fDPE ;

80 that we shall have the ultimate ratios (comp. the

annexed fig. 83*) :

CXXIV. . . DC : DE : CE (or fp) = 3 : 4 : 1.

But the line cf is ultimately the trace, on the given normal plane, of the

tangent plane at c to the near osculating sphere ; the small line fp (or ce)

represents therefore the deviation s«p - s,Ps of the given point p from that

near sphere, or the equal deviation (57.), sp^ - sp ; its ultimate quadruple,

DE, represents the product mentioned in (52.) ; and the ultimate triple, dc,

of the same small line ce, is a geometrical representation of that other

deviation sc - sp, which has been more recently considered.

(72.) When the tico scalars, s and t, are supposed capable of receiviug

ani/ values, the point Cs,t in (69.) may be any point of the Locus (8.) of the

Osculating Circle to the given curve of double curvature ; and if we seek

the direction of the normal to this superficial locus, at this point, on the

plan of Art. 372, writing first the equation of the surface under the

• In figs. 81, 82, the little arc near s is to be conceived as terminating there, or as being a

preeeding are of the curve which is the locus of s, if >', r, n, and therefore also p and ri, be

potitive (comp. the second Note to page 107). In the new figure 83, the triangle pde is to be

conceived as being in fact much smaller than pkb, though magnified to exhibit angular and other

relationa.
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slightly simplified, but equally rigorous form,

CXXV. . . oJs>u = ps+ I'sTs sin u + r^Tt vers w,

with
CXXVI. . . M = r^H = P,K,c„ (,

80 that u is here a new scalar variable, representing the angle subtended at

the centre k„ of the osculating circle at p„ by the arc, t, of that circle, we

are led, after a few reductions, to the expression,

CXXVII. . . Y(D„w„ « . D,<u„ «) = r,r,"^(w„ « - «r,) vers u
;

which proves, by quaternions, what was to be expected from geometrical*

considerations, that the loctis of the osculating circle is also (as stated in (8.)

and (22.)) the Envelope of the Osculating Sphere.

(73.) The normal to this locns, at any proposed point c^, t of any one

osculating circle, is thus the radius of the sphere to which that circle belongs,

or which has the same point of osculation p, with the given curve, whether

the arc («) of that curve, and the arc {tj of the circle, be small or large. We
must therefore consider the tangent plane to the locus, at the given point p of

the curve, as coinciding with the tangent plane to the osculating sphere at that

point ; and in fact, while this latter plane (± ps) contains the tangent t to

the curve, which is at the same time a tangent to the locus, it contains also

the tangent r((r - p) to the sphere, which is by CXVII. another tangent to

the locus, as being the tangent at p to the section of that surface, which is

made by the normal plane to the curve.

(74.) But when we come to examine, with the help of the same equation

CXVII., what is the law of the deviation do (comp. fig. 83) of that normal

section of the locus, considered as a neio curve {c),from its own tangent pd, we

find that this law is ultimately expressed (comp. (71.)) by the formula,

CXXVIII. .—.'^. —j^ = const.

,

hence dc varies ultimately as the power of pd, which has t\\Q fraction \ for its

exponent ; the limit of pd' : dc is therefore null, and the curvature of the

section is infinite at p.

* In the language of infinitesimals, two consecutive osculating spheres, to any curve in space,

intersect each other in an osculating circle to that ciurve.
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(75.) It follows that this point p is a singular point of the curve (c), in

which the locus (8.) is cut (73.), by the normal plane to the given curve at

that point ; but it is not a cusp on that section^ because the tangential

component pd of the vector chord PC is ultimately proportional to an odd

power (namely to the cube, by CXVII., comp. (71.)) of the scalar variable^

s, and therefore has its direction reversed, when that variable changes sign

:

whereas the normal component do of the same chord PC is proportional to

an even power (namely the fourth, by the same equation CXYII.) of the

same arc, s, of the given curve, and therefore retains its direction unchanged,

when we pass from a near point p,, on one side of the given point p, to a

near point p^ on the other side of it.

(76.) To illustrate this by a contrasted case, let g be the point in

which the tangent to the given curve at p, is cut by the normal plane at

p ; or a point of the section, by that plane, of the developable surface of

tangents. We shall then have the sufficiently approximate expressions,

CXXIX. • • PG = /o* - /o - (« + g^j r, = -^ - g^ = - PQs - 2pqj,

with the significations 397, (10.) of Qj and Qs ; hence the point p of the curve

is (as is well known) a cusp of the section (g) of the developable surface of

tangents (comp. 397, (15.)), because the tangential component (-PQa) of the

vector chord (pg) has here 9. fixed direction, namely that of the outward radius

(kp prolonged) of the circle of curvature at p : while it is note the normal

component (- 2PQ3) which changes direction, when the arc 5 of the curve changes

sign. At the same time we see* that the equation of this last section (g) may
ultimately be thus expressed :

CXXX. . . ^ = -7—- = const.

;

(- PQ2)' 9r*

comparing which with the equation CXXVIII., we see that although, in

each case, the curvature of the section is infinite, at the point p of the curve,

yet the normal component (or coordinate) varies (ultimately) as the power

\ of the tangential component, for the section (g) of the Surface of Tangents

:

whereas the former component varies by (74.) as the power 4 of the latter,

for the corresponding section (c) of the Locus of the Osculating Circle.

* Compare the Note to page 133.
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(77.) It follows also that the curve (p) itself, although it is 7iot a cusp-edge

of the last-mentioned locus (8.), while it is such on the surface of tangents, is

yet a Singular Line upon that locus likewise : the nature and origin of which

line will perhaps be seen more clearly, by reverting to the view (8.), (22.),

(72.), according to which that Locus of a Circle is at the same time the

Envelope of a Sphere.

(78.) In general, if we suppose that a and R are ant/ two real functions,

of the vector and scalar kinds, of any one real and scalar variable, t, and that

a, R\ and a'\ R'\ &c. denote their successive derivatives, taken with respect

to it, then a may be conceived to be the variable vector of a point s of a curve

in space, and R to be the variable radius of a sphere, which has its centre at

that point s, but alters generally its magnitude, at the same time that it alters

its position, by the motion of its centre along the curve (s).

(79.) Passing from one such sphere, with centre s and radius R, con-

sidered as given, and represented by the scalar equation,*

{(t-pY + R' = 0, LXXXIX.,

in which p is now conoeived to be the vector of a variable point p upon its

surface, to a near sphere of the same si/stem, for which <t, s, and R are replaced

by (Tt, St, and Rt, where t is supposed to be small, we easily infer (comp. 386,

(4.)) that the equation,

S<t'((t -p) + RR = 0, XCI.,

which is formed from LXXXIX. by once derivating o- and R with respect

to t, but treating p as constant, represents the real plane (comp. 282, (12.))

of the (real or imaginary/) circle, which is the ultimate intersection of the near

sphere with the given one ; the radius of this circle^ which we shall call r,

being found by the following formula,

CXXXI. . . rV = Ri'iR'' + g''), or GXXXV . . . t'Ta'' = R%Ta" - R'%

and being therefore real when

CXXXII. ..R'' + a'' < 0, or CXXXir. . . iT^ < Ta''
;

* This equation, and a few others which we shall require, occurred before in this series, but in a
connexion so different, that it appears convenient to repeat them here.
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while the centre, say k, of the circle is always real, and its vector is,

CXXXr'. . . OK = K = a + RKa'-' ;

and the plane XCI. of the same circle is parallel to the normal plane of the

curve (s).

(80.) With the condition CXXXII., the two scalar equations, LXXXIX.
and XCI., represent ^qu jointly a real circle ; and the locus of all such circles

(oomp. 386, (6.)) is easily proved to be also tlie envelope of all the spheres,

of which one is represented by the equation LXXXIX. alone ; each such

sphere touching this locus, in the whole extent of the corresponding circle of

the system.

(81.) The plane XCI., considered as varying with t, has a developable

surface for its envelope ; and the real right line, or generatrix, along which

one touches the other, is represented (comp. again 386, (6.) ) by the system

of the two scalar equations, XCI. and

Sa'V -p) + a'' + [RRJ = 0, XCIII.
;

where p is now the variable vector of the line of contact, although it has been

treated as constant (comp. 386, (4.)), in the process by which we are here

conceived to pass, by a second derivation, from LXXXIX. through XCI.

to XCIII.

(82.) This real right line (81.) meets generally the sphere, and also the

circle (as being in its plane), in two (real or imaginary) points, say Pi, Pj

;

and the curvilinear locus of all such points forms generally a species of singular

line,* upon the superficial locus (or envelope) recently considered (80.) ; or

rather it forms in general two branches (real or imaginary) of such a line :

which generally two-branched line (or curve) is the (real or imaginary) envelope

(oomp. 386, (8.)), of all the circles of the system.

• Called by Monge an arete de rebroussement, except in the ease to which we shall next proceed,

when its two branches coincide. The envelope (80.) of a varying sphere has been considered in two
distinct Sections, \ XXII. and § XXVI., of the Application de rAnalyse d la Geometric ; but the

author of that great work does not appear to have perceived the interpretation which will soon be

pointed out, of the condition of such coincidence. Meantime it may be mentioned, in passing, that

quaternions are found to confirm the geometrical result, that when the two branches (ri) (P2) are

dittinot, then each is a cusp-edge of the surface ; but that when they are coincident, the singular line

(p) in which they merge has then a different character.
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(83.) The equation

S(rV'((7 - /«) = 0, xcn.,

which now represents (comp. 376, Y.) the osculating plane to the curve (s),

shows that this plane through the centre s of the sphere is perpendicular to the

right line (81.), and consequently contains the perpendicular let fall/row that

centre on that line : the foot p of this last perpendicular is therefore found by

combining the three linear and scalar equations, XCI., XCII., XCIII., and

its vector is,

CXXXIII. . . OP = p = ^ + ^-^^^,
Vff (T

if

CXXXrV. . .g = -a''-R''- RR" = T<t'» - {RRJ.

(84.) The condition of contact of the right line (81.) with the sphere (78.),

or with the circle (79.), or the condition of contact between two consecutive*

circles of the system (80.), or finally the condition of coincidence of the tioo

branches (82.) of that singular line upon the surface which is touched by all

those circles^ is at the same time the condition of coexistence of the/oMr scalar

equations, LXXXIX., XCI., XCII., XCIII. ; it is therefore expressed by

the equation (comp. CXXXIII.),

CXXXV. . . R'iYaVy = {gtr' + /J/JV')'

;

which may also be thus written,!

CXXXYI. . . (/i:S<t'(t" - R'gY = {R^' + <r") {B^a'"" + ^^),

or thus,

CXXXYII. . . R\R:^ + a'-") i^a'a'y = {go'-" + RR'^a'a'y^

the scalar variable t (78.), with respect to which the derivations are performed,

* Compare the second Note to page 115.

t In page 372 of Liouville's Edition already cited, or in page 325 of the Fourth Edition (Paris,

1809), of the Application de VAnalyse, Sec, it will he found that this condition is assigned by'Monge,

as that of the evanescence of a certain radical, under the form (an accidentally omitted exponent of

k" in the second part of the first member being here restored)

:

\a{<p'<p" + ff + ir'ir") - A^]^ + A2[a2(,^"2 + ^"2 + ,"2) - A*] = ;

in vhich he writes, for abridgment,

A2 = 1 - ^,'2 - f2 _ ^'2,

and if), y^, v are the three rectangular coordinates of the centre of a moying sphere, considered as

fiAMILTON'S £lBMBNTS OF QUATBRNIONS, VOL, II. U
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remaining still entirely arhitmry^ but the point p, which is determined by the

formula CXXXIII., being now situated on both the sphere and the circle :

and its curvilinear locus, which we may call the curve (p), being now the

singular line itself, in its reduced and one-branched state. And the last form

CXXXVII. shows, what was to be expected from geometry, that when this

condition of coincidence is satisfied, the earlier condition of reality CXXXII. is

satisfied also : together witli this other inequality,

OXXXVIII. . . R'a'' + g'<0,

which then results from the form CXXXVI.
(85.) The equations CXXXI., CXXXIV., and the general formula 389,

IV., give the expressions,

xtzt — (T <r

where r is still the radius of the circle of contact of the sphere with its

envelope, and ri is the radius of curvature of the locus of the centre s of

the same variable sphere ; whence it is easy to infer, that the condition

CXXXV. may be reduced to the following very simple form (comp.

XXXVr. and XLII.)

:

CXLI. . . {r'r.y = {RRf ; or CXLI'. . . rAr = ± RdiR
;

the independent variable being still arbitrary.

(86.) If the arc of the curve (s) be taken as that variable t, the form

CXXXVI. of the same condition is easily reduced to the following,

CXLII. . ,R' = [RRJ + g\,\ with CXLIII. . . ^ = I - {RRJ ;

derivating then, and dividing by 1g, we have this new differential equation^

functions of its radius a. Accordingly, if we change R to a, and a- to i<p +j\fi + kv, supposing also

that fi' = a' = 1, and Ji" = a" = 0, whereby g is changed to - //", and if- + ff'^ to h"^, in the condition

CXXXVI., that condition takes, by the rules of quaternions, the exact form of the equation cited in

this Note : which, for the sake of reference, we shall call, for the present, the Equation of Monge,

although it does not appear to haye been either interpreted or integrated by that illustrious author.

Indeed, if Monge had not hastened over this case of coincident branches, on which he seems to have

designed to return in a subsequent Memoir (unhappily not written, or not published), he would

scarcely have chosen such a symbol as A' (instead of - A'), to denote a quantity which is essentially

negative, whenever (as here) the envelope of the sphere is real.



Abt. 398.] CONDITION OF COINCIDENCE OF CUSP-EDGES. 147

which is of linear form loith respect to RR\ whereas the condition itself may be

considered as a differential equation of the second degree, as well as of the

second order*

CXLIV. ..RK = r,{gr,y ; or CXLY. . . r^V + r,r^'{u' - 1) + m = 0,

if

CXLVI. . .u = RR'= RBtR, and therefore CXLVII. . . u' = R' - r\

by CXXXl. or CXXXI'., because we have now,

CXLYIII. . . (t'^ = - 1, or T(r' = 1, or d^ = Td«T :

so that the new scalar variable, RR, or w, with respect to which the linear

equation CXLIV. or CXLY. is only of the second order, represents the

perpendicular height f of the centre s of the sphere, above the plane of the

circle, considered as a function of the arc {t) of the cm've (s), and as positive

when the radius R of the sphere increases, for positive motion along that curve,

or for an increasing value of its arc.

(87.) If the curve (s) be given, or even if we only know the law according

to which its radius of curvature (r,) depends on its arc (t), the coefficients of

the linear equation CXLV. are known ; and if we succeed in integrating that

equation, so as to find an expression for the perpendicular w as a function of

that arc t, we shall then be able to express also, as functions of the same arc,

the radii R and r of the sphere and circle, by the formulae,

CXLIX. . .±r = gr, = r, (I - u'), and CL. . . iJ' = 2 J udit = «* + r,\l - u'Y ;

the third scalar constant, which the integral 2/wd^ would otherwise introduce

into the expression for R^, being in this manner determined, by means of the

other two, which arise from the integration of the equation above mentioned.

(88.) For example, it may happen that the locus of the centre s of the

sphere has a constant curvature, or that ;-i
= const. ; and then the complete

integral of the linear equation CXLV. is at once seen to be of the form,

CLI. . . M = a sin [rf'^t + b),

* We shall soon assign the complete integral of the differential equation in quaternions (84.), and

also that of the corresponding Equation of Monge, cited in the preceding Note.

•f
It will be found that this new scalar m, if we abstract from sign, corresponds precisely to the p

of earlier sub-articles, although presenting itself in a differential connexion : for the sphere (78.), and

the circle (79.), under the condition (84.), will soon be shown to be the osculating sphere and circle to

the recent curve (p), or to the singular line (84.) upon the surface at present considered, that is, on

the locus or envelope (80.).

U 2
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a and b being two arbitrary (but scalar) constants ; after which we may write,

by (87.),

CLII. . . ± r = rj - a cos {rfH + b)
;

CLIII. . . W^ r,^ - 2ar, cos {rCH + b) + a"

;

so that, in this case, both the radii, r and R, of circle and sphere, are periodical

functions of the arc of the curve (s)

.

(89.) In general, if that curve (s) be completely given, so that the vector a

is a known function of a scalar variable, and if an expression have heen found

(or given) for the scalar JR. which satisfies any one of the forms of the condition

(84.), we can then determine also the vector p, by the formula CXXXIII., as

a function of the same variable ; and so can assign the point p of the singular

line (84.), which corresponds to any given position of the centre s of the sphere.

For this purpose we have, when the arc of the curve (s) is taken, as in (86.),

for the independent variable t, the formula,

CLIV. . . p = «T - M<7' - (1 - u'y-' = Ki- W(t' - r,'uW\

if ici be the vector of the centre, say Kj, of the osculating circle at s to that given

curve, so that (comp. 389, XI.) it has the value,

CLV. . . OKi = Ki = <7 - <r''-» = a + r,V', with CLT. . . <t"' + rf' = 0.

If then we denote by v the distance of the point p from this centre Ki, and

attend to the linear equation OXLV., we see that

CLVI. . . V = K:P = Tip - kO = y{u' + r.'O,
and

CLVr. . . vv' = ryTi'ui, with Tw' = 1
;

or more generally.

CLVn. . . vvsx = rxr(u'.

if

cLVir.

.

. u = RB:s^-\ and CLV 11". . . s,

while

CLVI". .. ,e = u^-v ry^u'X~- ;

s, =/Tda,

BO that «i denotes the arc of the curve (s), when the independent vai-iable t is

again left arbitrary. This distance, v, is therefore constant (= a) in the case

(88.) , namely when the radius of curvature rx of that curve is itself a constant

quantity.



Aet. 398.] DETERMINATION OF THE SINGULAR LINE. 149

(90.) When s/ = Ta = 1, as in CXLYIII., the part a - ua of the first

expression CLIY. for p becomes = k, by CXXXI". and CXLYI. ; attending

then to CLY., we have the scalar quotient^

CLYIII. ..l:i^ = l-w';
a — K\

whence generally,

the independent variable t being again arbitrary. Accordingly, if we

combine the general expression CXXXIII. for p, with the expression

CXXXI''. for Ky and with the following for ki (comp. 389, lY.),

a''
CLIX. . . ifi = a + ^ „ „ for an arbitrary scalar variable,

V<T er

we easily deduce this new form of the scalar quotient,

CLIX'. . .
''-^-^ = 1 + mRJ - BR'Sa'-^a'^W-'

;

<T

which agrees with CLYIir., because - <t'* = Si'', and S— =- -^ •

(7 8i

(91.) It has then been fully shown, how to determine the vector /o as a

function of the scalar t, when a and R are two known functions of that variable,

which satisfy any one of the forms of the condition (84.). It must then be

possible to determine also the derived vectors, p\ p\ &o., as functions of the

same variable ; and accordingly this can be done, by derivating any three of

the four scalar equations, LXXXIX. XCI. XCII. XCIII., of which that

condition (84.) expresses the coexistence. Now if we derivate a first time

the two first of these, and then reduce by the second and fourth, we get

the equations,

CLX. . . S/t>'(<T - p) = 0, Sp'a' = 0, whence CLX'. . . p' \\ Ya{a -
p) ;

and although this last formula only determines the direction of the tangent to

the singular line at p, namely that of the common tangent at that point to tt»o

consecutive circles (84.), yet it enables us to infer, by the remaining equation

XCII., that

CLXI. .. p'± a", p'
II
YaV'', and ClxXr. . . iSp'a" = ;
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reducing by which the derivative of XCIII., we find,

S(r'"((r -p) i- 3SaV' + {EBff = 0, XCIV.,

the scalar variable being still arbitrary. And conversely, the system* of the

four equations LXXXIX. XCI. XCIII. XCIV. gives the three equations

CLX. CLXI'., and so conducts to the equation XCII., and thence to the

condition (84.) ; unless we suppose that p is a constant vector a, or that the

variable sphere passes through a fixed point a, a case which we do not here

consider, because in it the singular line (p) would reduce itself to that

one point.

(92.) Derivating the two equations CLX., and reducing with the help

of CLXI'., we find these new equations,

CLXII. . . S|o''((r -p)- p" = 0, S/o''a' = ;

whence

CLXIII. . . ^p''\a -p)- dSpY = 0.

We are led then, by elimination of the derivatives of a, to the system of the

three equations 395, VII. ; and we conclude, that thepoint s is the centre, and

the radius R is the radius, of the osculating spheref to the singular line (p) :

whence it is easy to infer also, that the plane of contact (79.) of the sphere

with its envelope is the osculating plane, and that the circle of contact (80.) is

the osculating circle (comp. (72.)), to the same curve (p), at the point where

two consecutive circles touch one another (84.).

(93.) In general, and even without the condition (84.), the tangent to a

branch (82.) of the curvilinear envelope of the circles of the system, at any

point Pi of that branch, has the direction represented by the vector Y<r\<T - pi),

of the tangent to the circle at that point ; but when that condition is satisfied.

• In the language of infinitesimals, this system of equations expresses that/our consecutive spheres

intersect, in one common point p. When that point happens to he a Jixed one, the condition (84.)

requires that we should have the relation S<r'(r"(ff - a) = ; or geometrically, that the curve (s)

should be in a plane through a fixed point, which is then a singular point of the envelope.

t In the language of infinitesimals (comp. the preceding Note), ii eyery four consecutive spheres

of a system intersect in one point of a curve, then each sphere passes through four consecutive points of

that curve. Simple as this geometrical reasoning is, the writer is not aware that it has been

anticipated ; and indeed he is at present led to suppose that this whole theory, of the Locus of the

Osculating Circle, as the Envelope of the Osculating Sphere, is new. Monge had however considered,

but rejected (page 374 of Liouville's Edition), the case of a system of circles having each a simple

contact with a curve in space.
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so that the two branches of the singular Iidg coincide, the point p of that line is

in the osculating plane (83.) to the curve (s) : and then the equation XCII.

shows that the tangent p', or Y(t'{<t - p), to the line, is perpendicular to <t", or

parallel to VcrV" (comp. CLXI.), and therefore that the singular line crosses

that plane at right angles.

(94.) It follows that, with the condition (84.), the singular line (p) is an

orthogonal trajectory to the system of osculating planes to the curve (s) ; and

whereas, when this last curve is given, there ought to be one such trajectory

for every point of a given osculating plane, this circumstance is analytically

represented, in our recent calculations, by the hiordinalform of the differential

equation CXLY., of which the complete integral must be conceived (87.) to

involve generally, as in the case (88.), two arbitrary constants.

(95.) It follows also that, with the same condition of coincidence of

branches, the singular line (p) must have the curve (s) for the cusp-edge of

its p)olar developable ; or that the sphere, with s for centre, and with R for

radius, must be the osculating sphere to the curve (p), as otherwise found

by calculation in (92.) : while the circle (80.) must be, as before, the osculating

circle to that curve.

(96.) Accordingly, all equations, and inequalities, which have been stated

in the recent sub-articles (79.), &c., respecting the envelope of a moving

sphere with variable radius, under that condition (84.), and without any

special selection of the independent variable, admit of being verified, by

means of the earlier formulae for the osculating circle and sphere to a

curve (p) treated as a given one, when the arc (s) of that curve is taken

as such a variable.

(97.) For example, we had lately the two inequalities, K^ + a'^ < 0,

CXXXII., and R'a"- + g' < 0, CXXXVIII. And accordingly the earlier

sub-articles (22.), (23.) give, for those two combinations, the essentially

negative values,

CLXIY. . . Bf' + a" = -p-'r'R'' ; CLXV. . . R'a"' + g' = - {{nryy
;

in obtaining which last, the following transformations have been employed

CLXVI. . ._a"' = - n'' - nh-'
;

CLXVII. . •g = - n'p + nrfK

(98.) As regards the verification of the equations, it may be sufficient

to give one example ; and we shall take for it the last generalform CLVIl
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of the differential equation of condition (84.). For this purpose we may

now write, by (22.) and (23.),

CLXVIII. . . s/ = ± w, u = ± 1), u' = ± p\ r,M/s/-* = /riw-' = //r
;

and have only to observe that

OLXIX. . .\{f -^ P'r'Y = /r {r + /r)', because p = /r.

(99.) If we denote by Ci, Cz, C3 the first members of the equations XCI.,

XCIII., XCIY., then besides the equation LXXXIX., which may be

regarded as a mere definition of the radius B, we have Cj = for the whole

of the superficial locus or envelope (80.) ; but we have not also c^ = 0, except

for a point on one or other of the two (generally distinct) branches of the

singular line (82.) upon that locus. And if, at any other and ordinary point,

we cut the surface by a plane perpendicular to the circle at that point, we

find, by a process of the same kind as some which have been already

employed, expressions for the tangential and normal components of the vector

chord, whereof the principal terms involve the scalar C2 as & factor, while the

latter varies (ultimately) as the square of the former, so that the curvature

of the section is finite and known, but tends to become infinite when Cj tends

to zero.

(100.) If the condition of coincidence (84.) be not satisfied, so that the two

branches of the singular line (82.) remain distinct, and that thus c^ = 0, but

not Cj = (comp. (91.) ), for any ordinary point on one of those two branches,

then if we cut the surface at that point by a plane perpendicular to the branch,

or to the circle which touches it there, we find an ultimate expression for the

vector chord which involves the scalar Cz as a factor, and of which the normal

component varies as the sesquipUcate power of the tangential one : so that we

have here the case of a semicubical cusp, and each branch of the singular line is

a cusp-edge* of the surface, exactly in the same knoum sense (comp. (76.) ) as

that in which a curve of double curvature is generally such, on the developable

locus of its tangents.

(101.) But when the condition (84.) is satisfied, so that the two branches

coincide, and that thus (comp. again (91.)) we have at once the three equations,

CLXX. . . Ci = 0, C2 = 0, c, = 0,

then the terms, which were lately the principal ones (100.), disappear : and a

• Compare the Note to page 144.
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new expression arises, for the vector chord of a section of the surface, made

by a plane perpendicular to the singular line, which (when we take t = s, as

in (96.)) is found to admit of being identified with the formula CXYII.,

and of course conducts to precisely the same system of consequences ; the

tangential component now varying ultimately as the cube, and the normal

component as the fourth power of a small variable, so that the cuspidal

property of the point p of the section no longer exists, although the curvature

at that point is still infinite, as in (74.) : and the Singular Line, reduced now

to a single branch, to which all the circles of the system osculate, (92.), (95.),

is not a cusp-edge of the Surface, as had been otherwise found before (77.),

but a line of a different character,* which may thus be regarded, with

reference to a more general Envelope (80.j, as the result of a Fusion (84.)

of Two Cusp-Edges.

(102.) The condition of such fusion (or coincidence) lias been seen (84.)

to be expressible by the differential equation of the second order, and second

degree,

(i2S(T'a" - Rgf = (/i'» + a'') {EW + g% CXXXYI.
with

g = -<T''- {RRJ, CXXXIV.

and witli the independent variable arbitrary. And we are now prepared

to assign the complete general integralf of this differential equation ; namely

the system of the two following equations (comp. 395, (7.) and (14.)), of the

vector and scalar kinds,

CLXXI. . . a = p + ?yp>7^/J-±Ipy, and ChXXII. , . H = T{a - p)

;

in which p is an arbitrary vector function of any scalar variable, t, and which

express, when geometrically interpreted, that a is the variable vector of the

• Compare the Note to page 144. Monge (in page 372 of Liouville's Edition) has the remark,

that (when a certain radical vanishes) " les deux branches de la courhe touchee par toutes les

caracteristiques se confondent en une seule : et cette courhe, sans cesser d'etre une ligne

singuli^re de la surface, n'est plus une arete de rebroussement, elle est une ligne de striction."

The propriety of this last name, "line of striction," appears to the present writer question-

able : although he has confirmed, as above, by calculations with quaternions, the result that,

in the case refened to, the singular line is not a cusp-edge, Monge does not seem to have

perceived that, in the same case of fusion, the curved line in question is not merely touched, but

osculated, by all the circles of the system,

t Compare the first Note to page 147. We say here, general integral, because a less general

one, although involving one arbitrary function (of the scalar kind), will soon be pointed out.

Hamilton's Elkmknts of Quaternions, Vol. II. X
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centre s, and that li is the variable radius, of the osculating sphere, to an

arbitrary curve (p), of which the variable vector of a point p is p.

(103.) In fact, if we met the cited equation of condition CXXXVI., g

representing therein the expression CXXXIV., without any previous know-

ledge of its meaning or origin, we might first, by the rules of quaternions,

and as a mere affair of calculation, transform it to the equation CXXXV.

;

which would evidently allow the assumption of the formula CXXXIII.,

p being treated as an auxiliary vector, which satisfies (in virtue of the

supposed condition) tlie system of the four scalar equations, LXXXIX.,
XCI., XCII., XOIII. ; whence derivating and combining, as in (91.) and

(92.), we are led to a new system* of foiir scalar equations, whereof one

is again the equation LXXXIX., and may be written under the form

CLXXII. ; while the three others are those formerly numbered as 395,

VII., and conduct (except in a particular case which we shall presently

consider) to the vector expression CLXXI., which conversely is sufficient to

represent them, all derivatives of a and of R being thus eliminated.

* The Equation of Monge (comp. the second Note to page 145) may be considered as the

condition of coexistence of the four following equations, in which ^, 4', ir are supposed to be

functions of a, and to be differentiated or derivated as such

:

(1). ..{x-,pY+{y- ^)2 + (a _ ^)2 = «2
;

(2). . .{x- tp)<p' + (y - y^)^\,' + (z - •»r)ir' + a = ;

(3). . .{x- 0)f' + (y - ,;,);/," + (z - ^)t" + 1 - 4)'2 - f2 - 7r'2 = ;

(4). . . {x-ip) (<//'7r" - 7r'>|/") + {y-^) (7r>" - <p'iz") + (z - ir) (^'f - f^") = ;

whereof the first three have been employed by Monge himself, but iha fourth does not seem to have

been perceived by him, the condition of evanescence of a radical having been used in its stead. And

by a translation of quaternion results, above deduced, into the usual language of analysis, it is found

that the complete and general integral, of the non-linear differential equation of the second order, which

is obtained by the elimination of x, y, z between these four, is expressed by a new system of four

equations, the equation (1) being one of them ; and the three others, in which x,y,z are now treated

as arbitrary functions of a, and aie derivated as such, being the following

:

(6). ..{x- <l>)x' + {y- ,f>)y' + (e _ x)z' = ;

(6). . . {z- ^)x" + (y - }l>)y" + {z- ir)z" + x'^ + y'^ + a'' = ;

(7). . .{x- ^)a;"' + (y _ rf,)y'" + (a _ ,),'" + z(x'*" + y'y" + «V') = 0.

By treating a as a function of some other independent variable, t, the teims + a and + 1, in (2) and

(3), come to be replaced by + aa' and + aa" + a'^ ; and the slightly more genei-alform, which Monge's
Equation thus assumes, has still its complete general integral assigned by the system (1) (5) (6) (7),

if «• y. « (as well as a) be now regarded as arbitrary functions of the new variable t, in the place of

which it is permitted (for instance) to take x, and so to write x =1, x" = : only two arbitrary

functions thus entering, in the last analysis, into the general solution, as was to be expected from the

form of the equation.
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(104.) The case just now alluded to, in which the general integral (102.)

is replaced by a less general form, is the case (91.) when tlie variable sphere

passes through a fixed jmnt a, to which point, in that case, the singular line

reduces itself. And the integral equations,* which then replace CLXXI.

and CLXXII. may be thus written

:

CLXXIII. . .<T = a + f(i + uy, with w = F{t),

and
CLXXIV. . .ii = T(^/3 + W7);

the second scalar coefficient, u, being here an arbitrary/ function of the first

scalar coeflficient, or of the independent variable t, and a, j3, y being three

arbitrary but constant vectors : so that the curve (s) is now obliged to lie in

some one planef through the fixed point a, but remains in other respects

arbitrary. Accordingly it will be found that this last integral system,

although less general than the former system (102.), and not properly

included in it, satisfies the differential equation CXXXYI. ; whereof the

two members acquire, by the substitutions indicated, this common value,

CLXXV. . . (i2S(T'<T'' - R'gy = &o. = R--'f{tu' - uyu"'{YIByy.

(105.) Other problems might be proposed and resolved, with the help

of formulse+ already given, respecting the properties or affections of curves

• The particular integral corresponding, of the Equation of Monge, is expressed by the following

system

:

^ = a 'r et \ lu, if/
= b +ft + mu, w = c ^ gt + nu,

{et + luy ^ift + muY + {ffi + ««)' = «'^
5

abcefglmn being nine arbitrary constants, while t and ti are tivo functions of a, whereof one is arbitrary,

but the other is algebraically deduced from it, by means of the fourth eq^uation. The writer is not

aware that either of these integrals has been assigned before.

t Compare the first Note to page 150.

X We might for example employ the formula VI. for k", ia. conjunction with one of tlie

expressions 397, XCI. for «', to determine, by the general formula 389, IV., the vector (say {)

of the centre of curvature of the curve (k), and therefore also the radius of curvature oi \ha.i cuwQ,

which is the locits of the centres of curvature of the given curve (p), supposed to be in general one of

double curvature. After a few reductions, with the help of XII., we should thus find the equations,

CLXXVII. . . V '^ = ~^ + (r-' - P')r,
K rK

CLXXVIII. . . f = K +—- = K + ^
rdP »d»

V— 1 + ^—
k' is rdjc

X2
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in space which depend on the fourth power («*) of the arc, or on the fourth

derivative D//o or t" of the vector ps ; but it is time to conclude this series

of sub-articles, which has extended to a much greater length than was

designed, by observing that, in virtue of the vector form 396, XI, for the

equation of a circle of curvature, the Locus (8.) of the Osculating Circle may

be concisely but sufficiently represented by the Vector Equation,

CLXXVI. ..V-^ + v, = 0,
U) - ps

which apparently involves only one scalar variable, s, namely, the arc of the

curve (p), the other scalar variable, such as t, which corresponds (69.) to

the arc of the circle, disappearing under the sign Y : and that the surface,

which was called in (8.) the Circumscribed Developable, is now seen to be

in fact circumscribed to that Locus, or Envelope, in a certain singular (or

eminent) sense, as touching it along its Singular Line.

399. When we take account of the fifth power [s^] of the arc, the

expression for /o, receives a netv term, and becomes (comp. 398, I.),

I. . . ps = p + sr + |6V' + isV + -^^s't'' + jU^'^'^ ;

and although some of the consequences of such an expression have been

already considered, especially as regards the general determination of what

has been above called the Osculating Twisted Cubic to a curve of double

curvature, or the gauche curve of the third degree which has contact of the

fifth order with a given curve in space, yet, without repeating any calcu-

lations already made, some additional light may be thrown on the subject

as follows.

in which last the denominator is a quaternion, and the scalar variahle is arbitrary : whence also,

CLXXIX. . . Radius of curvature of curve (k),

or of locus of centres of osculating circles to a given curve (p) in space,

pds[\i ds) '^ [srj J
'

with tlie verification, that for the case of a plane curve (p), for which therefore — = 1 , and - = = ^-,
p T as

we have thus the elementary expression,

CLXXX. . . Radim of Curvature of Plane Evolute = -f -r-,
as

r being still the radius of curvature, and « the are, of the given curve.
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(1.) As regards the successive deduction of the derived vectors in the

formula I., it may be remarked that if we write (comp. 398, LYI., LXI.),

II. . . DVV = t(") = a„r + b^rr' + c„rv,

we shall have, generally,

III. . . a,+i = a'n - r'^hny bmi = h'n + r-'a„ - r*c„, c„+i = c'„ + r'6n,

with the initial values,

IV. ..^0=1, io = 0, Co = 0, or IV. ..ai = 0, 6, = rS Ci = ;

flz = - r', ftj = (>•"»)', Ci = r-^T-\

a, = SrVy b, = (rO" - r' - r-»^-^ c, = r (r-'^r^*)',

whence V. . .

as in the expressions 397, VI. for t", and 398, IV. for /" ; the corresponding

coefficients of t^"' being in like manner found to be,

(Ui = - 2 (r-»)" + ((r-»)0' + r-' (r"* + r"*)

;

VI. . .j^** = {r-T' - 2 (/-»)' - 3(r-»r-0V'

;

U = r»(r-»)" + 3((r')V»)' - r-»r->(r-' + r"^)

;

and being sufficient for the investigation of all affections or properties of a

curve in space, which depend only on i\\Q ffth jmwer of the arc 5.

(2.) For the helix the two curvatures are constant^ so that all the deriva-

tives of the two radii r and r vanish ; the expressions become therefore

greatly simplified, and a law is easily perceived, allowing us to sum the

infinite series for p^, and so to obtain the following rigorous expressions for

the coordinates* Xg, y,, z, of this particular curve, instead of those which were

* We have here, and in this whole investigation, an instance of the facility with which

quaternions can be combined with coordinates, whenever the geometrical nature of a question may
render it convenient so to combine them, by offering to our notice any obvious planes of reference.

If it be thought useful to pass to a system connected more immediately with the right cylinder than

with the helix, we may write,

ix,

= l[r-^x, - Trh,) = t^r-^ sin t,

y, = /2r-i -y, = pr-^ cos t,

z, = l{r-^x, + r-h.) = r-vH,

where Pr-^ - r sin* H is the radius of the cylinder, with converse formulae easily assigned.
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developed generally in 398, LYIII., but only as far as s* inclusive :

yil. . .Xs = P {tH + r-^ sin ^ ; y, = Pr'^ vers ^ ; s, = Ih^-^r^ [t - sin if)

;

where / and t are an auxiliary constant and variable, namely,

Vin. . . / = (r-« + r-^)^ = r sin Ji; t = l-%

I being thus what was denoted in earlier formulae by TX"^ and i being the

angle between two axial planes ; while the origin is still placed at the point

p of the curve, and the tangent, normal, and binormal are still made the

axes of xys.

(3.) The cone of the second order, 398, (40.), which has generally a contact

of the fifth order with a proposed curve in space, at a point p taken for vertex,

has in this case of the helix the equation (comp. 398, LYII. and LXIX.),

^^ . 3 r ( / 3 r 7 r\\
•^ 2r\ \lOr 10 r/ )

Accordingly it can be shown, by elementary methods, that if we write, for a

moment,

X. . .f{t) = 3{t- sin t) {3t + 7 sin i) - 20 vers' t,

we have the eight evanescent values,

XL . ./O =/'0 =/"0 =/"'0 =/i^0 =/^0 =/"0 =/^"0 = ;

whence it is easy to infer that this cone IX. has (in the present example,

although not generally) a contact as high as the sixth order* with the curve,

of which the coordinates have here the expressions YII. ; and consequently

that the cone in question must wholly contain the osculating twisted cubic to

that curve.

(4.) In general, to find a second locus for such a cubic curve, the method

of recent sub-articles (398, (38.) &c.) leads us to form the equation (398,

* Or in modem language, seven-point contact, in the sense that the cone passes, in this case,

through seven consecutive points of the curve. It may be remarked tliat the gauche curve of the

fourth degree, or the quartic curve, in which this cone cuts the cylinder of revolution whereon the

helix is traced (cutting also in it a certain other cylinder of the second order), and which has the

point p for a double point, crosses the helix by one of its two branches at that point, while it has

teven-poxnt contact with the same helix by its other branch : and that thus the fact of calculation,

expressed by the formula XI., is geometrically accounted for.
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LXVI.) of a cylinder of tlie second order, or briefly of a qiiadric* cylinder,

which like the quadric cone (3.) shall have contact of i\ie fifth order with the

proposed curve in space, at the given point p ; the ratios of ahc, which

determine the direction of a generating line pe, being obliged for this

purpose to satisfy a certain equation of condition (398, LXYIII.), of which

the form indicates that the locus of this line pe is generally a certain cubic

cone, having the tangent (say pt) to the curve for a nodal side : along which

side it is touched, not only (like the quadric cone) by the osculating plane

(s = 0) to that given curve, but also by a second plane, whereof the equation

(gy + hs = 0, or after reductions y - fr's = shows that the second branch of

the cubic cone crosses the first branch, or the quadric cone, or the osculating

plane to the curve, at an angle of which the trigonometric cotangent is equal

to half the difi'erential of the radius (r) of second curvature, divided by the

differential of the arc (s) ; so that this second tangent plane to the cone coincides

with the rectifying plane to the curve, when the second curvature happens to

be constant. The tangent pt therefore counts as three of the six common sides

of the two cones with p for vertex : and the three other common sides, for

the assigning of which it has been shown (in 398, (41.)) how to form a cubic

equation in b : c, are the parallels from that point p to the three real or

imaginary asymptotes f of the twisted cubic, and are generating lines pe of

three quadric cylinders, whereof one at least is necessarily real, and contains,

as a second locus, that sought osculating gauche curve of the third degree.

(5.) In applying this general method to the case of the helix, it is found

that the cubic cone breaks up, in this example, into a system of a new quadric

cone, which touches the former quadric cone IX. along the tangent pt to the

curve (the two other common sides of these two cones being imaginary), and of

a plane {y = 0), namely the rectifying plane (comp. (4.)) of the helix, or the

tangent plane to the cylinder of revolution on which that given curve is traced :

and that this last plane cuts the first quadric cone in two real right lines, the

tangent being again one of them, and the other having the sought direction of

a real asymptote to the sought osculating twisted cubic. Without entering here

into details of calculation, the resulting equation of the realt quadric cylinder,

* So called by Dr. Salmon, in his Treatise already cited. Compare the second Note to page 129

of these Elementg.

t Compare again the Note last referred to.

X As regards the hvo imaginartj quadric cylinders, their equations can be formed by the same

general method, employing as generating lines the two imaginary common sides (5.), of the cone IX.,



160 ELEMENTS OF QUATERNIONS. [III. in. § 6.

on whioh that sought gaiiohe curve is situated, may be at once stated to be

(with the present system of coordinates),

in such a manner that if we set aside the right line,

xm...p-o, . + gr-^'-). = o,

which is a common side of the cone IX. and of tlie cylinder XII., the curve,

which is the remaining part of their complete intersection, is the twisted cubic

sought. As an elementary verification of the fact, that this gauche curve of

intersection IX. XII. has contact of the fifth order with the helix at the point

p, it may be observed that if we change the coordinates xyz in XII. to the

expressions VII., and write for abridgment,

XIV. . . F{t) = (3i5 + 7t sin tf - 200 vers t + 60 vers' t,

we have then (oomp. X. XI.) the six evanescent values,

XV. . . i^O = i^^'O = F''0 = F'^'O = F'^'O = F^'O = 0.

(6.) As another verification, which is at the same time a sufficient j^roo/", of

the d posteriori kind, that the gauche curve IX. XII. has in fact contact of tlie

fifth order with the helix, it can be shown that while the coordinates i/s and s,

of the latter may (by VII., writing simply x for Xs, and neglecting x''] be

thus developed,

P*
" 2r

"*

24r \r' rV
"^

720/- \r' rV "^

rV'XVI
x" ar* /9 1

i
2, = TT- +

6rr 120yT W rV'

and of that other quadrie cone above referred to, which is here a separable part of the general eubie

locut, and has for equation,

It seems sufficient here to remark, that by taking the sum and difference of the equations of those

two imaginary cylinders, two new real quadrie surfaces are obtained, which also contain the osculatitig

twisted cubic, and intersect each other in that gauche cun'e : namely two hyperbolic paraboloids,

whicli have a common side at injinity, and of which the equations can be otherwise deduced (by way of

verification), without imaginaries, through easy algebraical'combinations of the two real equations

IX. and XII.
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the corresponding coordinates y and % of the former, that is, of the curvilinear

part of the intersection of the cone IX. with the cylinder XII., have (in the

same order of approximation) developments which may be thus abridged,

(7.) The deviation of the helix from the gauohe curve IX. XII. is

therefore of the sixth order (with respect to x, or s), and it has an inward

direction, or in other words, the osculating ticisted cubic deviates outwardly

from the helix, with respect to the right cylinder ; the ultimate (or initial)

amount of this deviation, or the laio according to which it tends to vary,

being represented by the formula,

XYII...y.-y =—3^^^ = ^;
where t denotes as in (2.) the angle, which a plane drawn through a near

point p„ and through the axis of the right cylinder,*

XVIII. . . 2ry = (a. -^J+ (^1
+

^;) y%

whereon the helix is traced, makes with the plane drawn through the same

axis of revolution, or through the right line,

XIX. . .x^-z, y = r'{r-' + r--)-' = Pr-\

and through the given point p : while y^ is still the (inward) distance of the

same near point Pg, from the tangent plane to the same cylinder at the same

given point p.

(8.) If we cut the cone IX., and the cylinder XII., by any plane,

drawn through their common side XIII., we obtain two other sides, one for

* With the coordinates VII'. of a recent Note (to page 157), the equation of this cylinder

would be,

XVIII'. . . x2 + y2 = ;*r-2.

Hamilton's Elements of Quatkrnions, Vol. II. Y
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each of these two quadric surfaces ; and these two new right lines, in this

plane XX., intersect each other in a new point,* of which the coordinates

xyz are given, as functions of the new variable w, by the three fractional

expressions,^

/7_3W
XXL... = !lIk^4^; 2.^ = -ifl~,; 6rr. = -i^

;

d ?r ^ 6 w^ ,3 rir
1+ 1h 1 +

20 P 20 P 20 P

while the twisted cubic, which osculates (as above) to the helix at p, is the

locus of all the points of intersection thus determined. Accordingly, if we

develop xt/z by XXI., in ascending powers of w, neglecting w'' (or x''), we are

conducted, by elimination of w;, to expressions for p and s in terms of x,

which agree with those found in (6.), and thereby establish in a new way

the existence of the required contact of the ffth order, between the two

curves of double curvature.

(9.) The real asymptote to the cubic curve is found by supposing the

auxiliary variable w to tend to infinity in the expressions XXI. ; it is

therefore the right line (comp. XX.),

XXIL..^ = --, a. + ^-------j. = 0,

namely the second side in which the elliptic cylinder XII. is cut by a normal

plane through the side XIII. ; and by comparing the value of its // with

the equation XIX., we see that tlie least distance between the real asymptote

to the osculating ticisted cubic, and the axis of revolution of the cylinder on

which the helix is traced, is equal to seven-thirds of the radius of that right

cylinder.

(10.) As regards the two imaginary asymptotes, they correspond to the two

imaginary values of w, which cause the common denominator of the expressions

The plane XX., as containing the line XIII., is parallel to an asymptote, and therefore meets
the cubic at infinity ; it also passes through the given point v : and therefore it can only cut the
twisted cubic in one other point, of which the position is expressed by the equations XXI.

t Quatei-nions suggest such fractional expressions, through the formula 398, LXXIX. for the
vector (^ + c)-'a; but it is proper to state that expressions oi fractional form, for the coordinates
of a curvt in space of the third order (or degree) were given by Mobius, who appears to have been
the first to discover the existence of such gauche curves, and who published several of their principal
properties in his Barycentric Calculus (der baiycentrische Calcul, Leipzig, 1827).
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XXI. to vanish ; but it may be sufficient here to observe, that because those

expressions give, generally,

XXIII. . . X + {-= - + -=-]z = IV,

\o r o tJ

the two imaginary lines in question are to be considered as being contained

in two imaginary/ planes, which are both, parallel to the real plane* through p,

\5 r 5 ry

namely to a certain common normal plane to the two real cylinders XII. and

XVIII., or to the elliptic and right cylinders already mentioned.

(11.) In general, instead of seeking to determine, as above, a cylinder of

the second order, which shall have contact of the fifth order with any given

curve of double curvature, at a given point p, we may propose to find a

second cone of the same (second) order, which shall have such contact with

that curve at that point, its vertex being at some other point of space {ahc).

Writing (comp. 398, LXYI.) the equation of such a cone under the form,

XXV. . . 2r{cy - b%) (c - 2) = (ca: - azf + 2B{cx - a&) [cy - bz) + C{cy - hzf ;

substituting for xyz the coordinates x^y^s of the curve, under the forms

(comp. 398, LVin.),

^* = « - 67^ + 24
""

I20'

YYT7T ^^ ^'«^ ^3«* ^4«*A-A.V1. . . J y, = 1 A ,

\ y" 2r 6r* 24 120'

S' C3S* C4S'

\
*' " 6^ "^

24 ^ I20'

in which the coefficients UzbaCs and aibid have the values assigned in (1.)

;

developing according to powers of s, neglecting s®, and comparing coefficients

of s^ sS ^^
j we find first the expressions,

4/, ar\ )'/, h \

• The right line at infinity, in this plane XXIV., is the common side of the two hyperbolic

paraboloids mentioned in the third Note to page 159, as each containing the whole twisted cubic.

Y 2
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which are the same for cone as for cylinder : and then are led to the new

equation of condition,

XXVIII. . . -r { 64 - - C4 ) = ^3— cs + —
V CI c en

^^^-^=-a-;^^2€^.-^A

which diners from the corresponding equation for the determination of a

cylinder having the same (fifth) order of contact with the curve, but only by

2
the one term — in the second member, which term vanishes when the

err

coordinate c of the vertex is infinite.

(12.) Eliminating B and 6\ and substituting for asbsC^ and aibiCi their

values V. and YI., we find that the condition XXYIII. may be thus

expressed (comp. 398, LXYIII.) :

XXIX. . . ac
(
6 - 1 c } - re- = ab^ + hb^c + Gbc" + ec'

;

in which we have written, for abridgment,

_ 4 r !._*'' t'
"""Qr' ^^3"r2'

XXX. . .

I
c = ^ (6/'r - Srr" - 2r-'/^T - 6/r' + 6rr-^r'* - ISr'^r + I2n-') ;

e = -^ (9/V - 9r-VW + 4tr-^/h' + SGrVV + 18/ - 27rr»r').

The locus of the vertex of the sought guadric cone XXY. is therefore that

cubic surface, or surface of the third order, which is represented by the

equation XXIX. in abc ; this surface, then, is a second locus (comp. (4.))

for the osculating twisted cubic, whatever the given curve in space may be : a

first locus for that cubic curve beiug still the guadric cone (comp. (3.)), of

which the equation in abc is (by 398, LXVII. and LXTX.),

XXXL . . 4 f-Yi» -= 6 (-\\c + (-\'bc
r \rj \r

t /' 9 ^ ^' 3/' 3rY _ 27y^ 9/
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and which has contact of the fifth order with the curve, while its vertex is

at the given point p of osculation.*

(13.) Instead of thus introducing, as data, the derivatives of the two radii

of curvature, r and r, taken with respect to the arc, s, it may be more

convenient in many applications to treat the two coordinates y and z of the

curve as functions of the third coordinate x, assumed as the independent

variable : and so to write (comp. (6.)) these new developments,

x^ y"'a? 2/^a;* y^Jif _ x^ s^V z'x"

and then the equation of the quadric cone XXXI. will be found to become

(in xyz).

XXXIII. . . y' = I - a;s + 2gyz + hz\

with the coefficients.

XXXIV. ..g = rvU' - | rs-), A = | rr^ [y^^ ~
W""')

while the cubic surface XXIX. will also come to be represented by an

equation of the same form as before, namely (in xyz) by the following,

XXXV. . . xz{y + hs) - rs* = a^' + b/z + cyz^ + es%

in which the coefficients are,

a = |-(asbefore); b = -| rV + ^-Js'^ h = - rr/" + ^rrV^

XXXVI. . .{ G = \ r^ry'"^ - \r'fy"z'^ - ^r'ry'^ + ^rh'z''
;

. e = - ^ rV/''^* + ^r^T^y'^Y- - i^r'vY-

(14.) Whichever set of expressions for the coefficients we may adopt, some

general consequences may be drawn from the mere forms of the equations,

* The quadric cone XXXI. may be said to h&yQ five-aide contact with the cone of chords of the

given curve (compare the Note to page 126).
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XXXI. and XXIX., or XXXIII. and XXXV., of the quadric cone and

cubic surface^ considered as two loci (12.) of the osculating twisted cubic to

a given curve of double curvature. Thus, if we eliminate ac (comp. 398,

(41.)) from XXIX. by XXXI., or xz by XXXIII. from XXXY., we get

an equation between h, c, or between y, z, which rises no higher than the

third degree, and is of the form,

XXXVII. . . 2rs' = a.f + hyz + o^yz' + e^z',

with the same value of a as before ; such then is the equation of the projection

of the tivisted cubic, on the normal plane to the curve ; and we see that, as was

to be expected, the plane cubic thus obtained has a cusp at the given point p,

which (when we neglect s"" or x') coincides with the corresponding cusj)* of

the projection of the given curve of double curvature itself, on the same

normal plane.

(15.) The equation XXXVII. may also be considered as representing a

cubic cylinder, which is a third locus of the twisted cubic ; and on which the

tangent pt to the curve is a cusp-edge, in such a manner that an arbitrary

plane through this line, suppose the plane

XXXVIII. . . 3rs = vy,

where v is any assumed constant, cuts the cylinder in that line twice, and a

third time in a real and parallel right line, which intersects the quadric cone in

a point at infinity (because the tangent pt is a side of that cone), and in

another real point, which is on the twisted cubic, and may be made to be

any point of that sought curve, by a suitable value of v : in fact, the plane

XXXVIII. touches both curves at p, and therefore intersects the cubic curve

in one other real point. And thus may fractional expressions (comp. (8.)) for

the coordinates of the osculating cubic be found generally, which we shall not

here delay to write down.

(16.) Without introducing the cubic cylinder XXXVII., it is easy to see

that any plane, such as XXXVIII., which is tangential to the given curve at

p, cuts the cubic surface XXXV. in a section which may be said to consist of

the tangent twice taken, and of a certain other right line, which varies with the

direction of this secant plane, so that the locus XXXV. or XXIX. is a Ituled

* Compare the first for-nula of the Note to page 133.
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Cubic Surface, with the given tangent pt for a singular* line, which is

intersected bj all the other right lines on that surface, determined as above

:

and if we set aside this line, the remaining part of the complete intersection of

that cubic surface with the quadric cone XXXIII. or XXXI. is the twisted

cubic sought. We may then consider ourselves to have completely and

generally/ determined the Osculating Twisted Cubic to a curve of double

curvature, without requiring (as in 398, (41.)), the solution of any cubic or

other equation.

f

(17.) As illustrations and verifications, it may be added that the general

ruled cubic surface, and cubic cylinder, lately considered, take for the case of

tlie helix (2.), the particular forms,^

4 r f2r 3 r\
XXXIX. .,xyz-rz' = --f + [^- -

^-J^/sS

and

VT 8 2r ^ 3 fr r\
,XL. . . rs* = t:

- y* + TTT - + - ys''

:

and that accordingly these two last equations are satisfied, independently of

w, when i\\e fractional expressions XXI. are substitued for xyz.

400. The general theory § of evolutes of curves in space may be briefly

treated by quaternions, as follows : a second curve (in space, or in one plane)

being defined to bear to a first curve the relation of evolute to involute, when

the first cuts the tangents to the second at right angles.

(1.) Let p and o- be corresponding vectors, op and os, of involute and

evolute, and let p, a
,
p" , a" denote their first and second derivatives, taken

* If the cubic surface be cut by a plane perpendicular to the tangent pt, at any point t distinct

from the point p itself, the section is a plane cubic, which has t for a double point ; and this point

counts for three of the six common points, or points of intersection, of the plane cubic just mentioned

with the plane conic in which the quadric cone is cut by the same secant plane, because one branch, or

o)ie tayigent, of the plane cubic at t touches the plane conic at that point, in the osculating plane to

the given cui-ve at p, while the other branch, or the other tangent, cuts that plane conic there.

t It may be remarked that, by equating the second member of XXXVII. to zero, and changing

y, z to b, c, we obtain generally the cubic equation, referred to in 398, (41.) ; and that by suppressing

the term - tc^ in XXIX., or the term - tz^ in XXXV., we pass, in like manner generally, from the

cubic surface of recent sub-articles, to the earlier cubic cone (4.).

X By suppressing the term - rz^, dividing by j-, and tmnsposing, we pass for the case of the

helix from the equation XXXIX. of the cubic locus, to the equation IX'. in the last Note to page 159
;

namely to the equation of that quadric cone which forms (in this example) a separable part of the

general cubic cone, the other part being here the tangent plane {y = 0) to the right cylinder.

§ Invented by Monge.
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with respect to a scalar variable t, on which they are both conceived to

depend. Then the two fundamental equations, which express the relation

between the two curves, as above defined, are the following :

I. . . S(<7 - p)p' = ; II. . . Y(rT - p)a' = ;

which express, respectively, that the point s is in the normal plane to the

involute at p, and that the latter point is on the tangent to the evohite

at s : so that the locus of p (the involute) is a rectangular trajectory to all such

tangents to the locus ofs (the evolute).

(2.) Eliminating <t - p between the two preceding equations, and taking

their derivatives, we find,

III. ..SpV=0, IV...S{a-p)p"-p'' = 0, V. . .V(a-p)«T"-VpV=0;

whence also, VI. . . Sp'aa" = 0.

(3.) Interpreting these results, we see Jirst, by IV. combined with I.

(comp. 391, (5.)), that the point s of the evolute is on the polar axis of the

involute at p, and therefore that the evolute itself is some curve on the polar

developable of the involute ; and second^ by VI. (comp. 380, I.), that this

curve is a geodetic line on that polar surface^ because the osculating plane to

the evolute at s contains the tangent to the involute at p, and therefore also

the (parallel) normal to the locus of evolutes.

(4.) The locus of centres of curvature (395, (6.)) of a curve in space is

not generally an evolute of that curve, because the tangents* kk' to that

locus do not generally intersect the curve at all ; but a given j^lnne involute

has always the locus just mentioned for one of its evolutes ; and has,

besides, indefinitely many others,f which are all geodetics on the cylinder

which rests perpendicularly on that one plane evolute as its base.

* It might have been remarked, in connexion with a recent series of sub-articles (397), that this

tangent kk' or k is inclined to the rectifying line A, at an angle of which the cosine is,

- SUk'\ = ± iJ-»TA.-i = ± sin JT cos P;

upper or lower signs being taken, according as the second curvature r"' is positive or negative,

because Sk'a = — r-^.

t Compare the Note to page 63 ; from the fonnulsB of which page it now appears, that if the

involute be an ellipse, with j3 = ob and 7 = oc for its major and minor semiaxes, and therefore

with the scalar equations,

(S)8-»p)» + (S7-V)' = 1. S/37P = 0,

the evolute* are geodetics on the cylinder of which the corresponding eqtiation is,

(Si8<r)l + (Syff)! = ()8» - 7»)i.
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(5.) An easy combination of the foregoing equations gives,

VII. . . (T((T - p))' = - S (U{<T - p) . (a' - /)) = + S<t'U(t' = ± Ttr',

or with differentials,

Vni. . . dT(«T - p) = ± Tda
;

whence by an immediate integration (comp. 380, XXII. and 397, LIV.),

IX. . . AT(o- - |o) = ± J Td(T = ± arc of the evolute :

this arc then, between two points such as s and Si of the latter curve, is equal

to the difference between the lengths of the two lines, ps and PiSi, intercepted

between the ttoo curves themselves.

(6.) Another quaternion combination of the same equations gives, after

a few steps of reduction, the differential formula (comp. 335, VI.),

X. . . d cos OPS = - dSU --^ = ,j,^3i^.S-
;

p l{a-p) p

if then tlie involute be a curve on a given sphere, with its centre at the

origin o, so that the evolute is a geodetic on a concentric cone, this differential

X. vanishes, and we have the integrated equation,

XI. . . COS OPS = const., or simply, XI'. . . ops = const.

;

the tangents ps to the evolute being thus inclined (in the case here considered)

at a constant angle,* to the radii op of the sphere.

(7.) lu general, if we denote by R the interval ps between two corre-

sponding points of involute and evolute, we shall have the equation,

XII. . .{a- pY^ If' = 0, or Xir. . .T{<T-p) = R;

and the formula VII. may be replaced by the following,

XIII. . . R" + <j'' = 0, or Xlir. . . Dtli = ± TDt<r,

in which the independent variable t is still left arbitrary.

* This property of the evolutes of a spherical curve was deduced by Professor De Morgan, in a

Paper On the Connexion of Involute and Evolute in Space (Cambiidge and Dublin Mathematical

Journal for November, 1851) ; in wliich also a definition of involute and evolute was proposed,

substantially the same as that above adopted.

Hamilton's Ei.kmbnts op Quatkrnions, Vol. II. Z
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(8.) But if we take for that variable the arc SoS^ of the evolute^ measured

from some fixed point of that curve, we may then write,

XIV. . . ^ =
J Td(T, XV. . . di^t = ± d^, XVI. . . DtRt = ± 1

;

whence

XVII. . . 'Dt{Rt + = 0, and XVIII. . . Rt + t = const. = i2o,

the integral IX. being thus under a new form reproduced.

(9.) In this last mode of obtaining the result,

XIX. . . Aps = J?<-^o = ±^ = ± *''C So8( of evolute^

no use is made of infinitesimals* or even of small differentials. We only

infer, as in XVIII. (comp. 380, (9.)), that the quantity Rt + ti^ constant,'^

because its derivative is null: it having been previously proved (380, (8.)),

as a consequence of our definition of differentials (320, 324) that if s be the

arc and p the vector of any curve, then the equation ds = Tdp (380, XXII.)

is rigorously satisfied, whatever the independent variable t may be, and whether

the two connected and simultaneous differentials be small or large.

(10.) But when we employ the notation of integrals, and introduce, as

above, the symbol / Td<T, we are then led to interpret that symbol as denoting

the limit of a sum (comp. 345, (12.)) ; or to write, generally,

XX. . . J Td/) = lim. STAp, if lim. A/o = 0,

with analogous formulae for other cases of integration in quaternions. Geo-

metrically, the equation,

XXI. . . J Tdp = As, or XXF. . . J Tdrr = A^,

if 8 and t denote arcs of curves of which p and a are rectors, comes thus to be

interpreted as an expression of the well-known principle, that the perimeter

of any curve (or of any part thereof) is the litnit of the perimeter of an inscribed

polygon (or of the corresponding portion of that polygon), when the number

* In general, it may have been observed that we have hitherto abstained, at least in the text of

this whole Chapter of Applications, from making any use of injinitesimah, although they have been

often referred to in these Notes, and employed therein to assist the geometrical investigation or

enunciation of results. But as regards the mechanism of calculation, it is at least as easy to use

infinitesimals in quaternions as in any other system : as will perhaps bo shown by a few examples,

farther on.

t Compare the Note to page 30.
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of the sides is indefinitely increased, and when their lengths are diminished

indefinitely.

(11.) The equations I. and XII. give,

XXII. . . ^a\a - p)+ RR = 0,

the independent variable t being again arbitrary ; but these equations XII.

and XXII. coincide with the formulse 398, LXXXIX. and XOI. ; we may

then, by 398, (79.) and (80.), consider the loms of the point p as the envelope

of a variable sphere, namely of the sphere which has s for centre and R for

radius, and is represented by the recent equation XII., if /o = op be the vector

of a variable point thereon.

(12.) But whereas such an envelope has been seen to be generally a surface,

which is real or imaginary (398, (79.)) according as R'^ + a^ < or > 0, we

have here by XIII. the intermediate or limiting case (comp. 398, CXXXI.),

for which the circles of the system become points, and the surface itself

degenerates into a curve, which is here the involute (p) above considered.

The involutes of a given curve (s) are therefore included, as a limit, in that

general system of envelopes which was considered in the lately cited sub-

articles, and in others immediately following.

(13.) The equation of condition, 398, CXXXVI., is in this case satisfied by

XIII., both members vanishing ; but we cannot now put it under the form

398, CXLI., because in the passage to that form, in 398, (85.), there was

tacitly effected a division by r^, which is not now allowed, the radius r of the

circle on the envelope being in the present case equal to zero. For a similar

reason, we cannot now divide by g, as was done in 398, (86.) ; and because,

in virtue of II., the two equations 398, CLX. reduce themselves to one, they

no longer conduct to the formulse 398, CLX'. CLXI. OLXF. OLXIII.

XCIY. ; nor to the second equation 398, CLXII.

,
(14.) The general geometrical relations of the curves (p) and (s), which

were investigated in the sub-articles to 398 for the case when the condition*

* If, without thinking of evolutes, we merely suppose that the condition 398, CXXXVI. ia

satisfied, as lately in (13.), by our having the relation E"^ + a'^ = 0, it will be found (comp. the

symbolical expression 274, XX. for 0*, and the imaginary solution in 353, (18.) of tho system

8yp = 0, p* = 0), that the envelope of the sphere (<r - p)^ + -ft- = 0, or the locus of the (null) circles in

which such spheres are (conceived to be) cut by the (tangent) planes, S<T'{a- — p) + MR' = 0, may be

said to be gemrally the system of all those imaginary points, of which the vectors (or the bivectors,

comp. 214, (6.)) are assigned by the formula,

p = <r - BR'-^a + (Uo-' + ^Z^) ^a'yL ;

Z2
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above referred to is satisfied, are therefore only very partially applicable to a

system of involute and evolule in space : at least if we still consider i]iQ former

curve (the involute) as being a rectangular trajectory to the tangents to the

latter (the evolute), instead of being, like the curve (p) previously considered,

a rectangular trajectory (398, (94.)) to the osculating planes* of the curve (s).

(15.) If the arc of the evolute be again taken for the independent

variable ^, and if the positive direetion of motion along that arc be always

towards the involute, we may write,

XXIII. . . p = (T + Ra\ M' = -l, a" = - 1, &C.

;

whence
XXIV. . .p' = Ra'\ p" = Ra'" - a\ Yp'p = R'Ya"a" ;

if then k = ok be the vector of the centre k of the circle which osculates to

the involute at p, the general formula 389, IV. gives, after a few reductions,!

the expression (comp. 397, XVI. XXXIV., and XOVIII. (15.)),

p'' ,, / . a'"
XXV. . . K = p + ^—, = cT + ie (t' +

Vp p

-RS(T (7 a Roa a ^a

V/// //-I

= a - RTi'^Xi'^ = a + UAi . R COS ^1,

if ri, ITi, and Xi be what r, J7, and A in 397 become, when we pass from

the curve (p) to the curve (s), with the present relations between those

two curves ; this centre of curvature k is therefore the foot of the perpen-

dicular let fall from the point p of the involute, on the rectifying line Ai of

where n is an arbitrary vector, nnd \/- 1 is the old imaginary of algebra. By making /x = we
reduce this expression for p to the real vectorform,

p=a- RR'-^a = <r + Ii£'ff''\

= the K of 398, CXXXI." ; and thus the curve (p), which is here the locus of the centres of the null

circles of contact, and coincides with the involute in the present series of suh-articles, may still be

called a Singular Line upon the Envelope of the Sphere (with One Variable Farameter), as being in the

present case the only realpart of that elsewhere imaginary surface.

* The curve to the osculating planes of which another curve is thus an orthogonal trajectory, and
which is therefore (398, (95.)) the cusp-edge of the polar developable of the latter curve, was called by
Lancret its evolule by the plane (developpee par le plan) ; whereas the curve (s) of the present series

(400) of sub-articles, to whose tangents the corresponding curve (p) is an orthogonal trajectory, has

been called by way of distinction the evolute by the thread (developpee par le iil) of this last curve.

It would be improper to delay here on subjects so well kiipwn to geometers : but the student may be

invited to read again, in connexion with them, the sub-ailicles (88.) and (89.) to Art. 398.

t Especially by observing that \a'Ya"'<r" - - a"^, because So-V" = 0, and Scr'tr'" = - <r"».
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the evolute: as indeed is evident from geometrical considerations, because

by (3.) this rectifying line of the curve (s) is i\iQ polar axis of the curve (p).

(16.) If we conceive (comp. 389, (2.)) an auxiliary spherical curve to be

described, of which the variable unit-vector shall be,

XXVI. . . OT = r = (t' = U(|0 - (t) = Br\p - a),

and suppose that v is the vector ou of the centre of curvature of this new

curve, at the point t which corresponds to the point s of the evolute, we shall

then have by XXV. the expression,

r' <T ' K-p
XXVII. . . TU = u - r = ^^-77-, = V ^" " = -» = PK : PS ;

we have therefore this theorem, that the inward radius of curvature of the

hodograph of the evolute (conceived to be an orbit described, as in 379, (9.),

with a constant velocity taken for unity) is equal to the inward radius of

curvature of the involute, divided by the interval R between the two curves

(p) and (s) : and that these two radii of curvature, tu and pk, have one

common direction, at least if the direction of motion on the evolute be supposed,

as in (15.), to be towards the involute,

(17.) The following is perhaps a simpler enunciation of the theorem*

just stated :

—

If p, Pi, p.^, . . and s, Si, 82, . . be corresponding points of involute

and evolute, and if tee draio lines sTj || SiPi, ST2 1| S2P2, . . with a common length = sp,

the spherical curve PT1T2 . . will then have contact of the second order with the

curve PP1P2 . . , that is with the involute at p.

401. The fundamental formula 389, IV., for the vector of the centre of

the osculating circle to a curve in space, namely the formula,

T P" TT
dp^

i. . . K = /» + ' „ „ or 11. . . K = p '

VpV "•••""^
Vd>dp'

which has been so extensively employed throughout the present Section,

has hitherto been established and used in connexion with derivatives and

* Some additional light may be thrown on this theorem, by comparing it with the construction in

397, (48.) ; and by observing that the equations 397, XVI. XXXIV. give generally, in the notations

of the Article referred to, for the vector of the centre of curvature of the hodograph of any curve, the

transformations,

T + -.r T , .
= T - — = - r-iA.-i = Ua . cos H.

Vt t'-i \
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differentials of vectors, rather than with differences, great or small. We
may however establish, in another way, an essentially equivalent formula,

into which differences enter by their limits (or rather by their limiting

relations)^ namely, the following,

III. . . K = p + lim. . V AV
\j . , . , if lim. Ap = 0, and lim. —-^ = 0,VA^Ap r

> Ap

the denominator VA^pAp being understood to signify the same thing as

Y(AV • Ap) ; and then may, if we think fit, interpret the differential expression

II. as if dp and d'^p in it denoted infinitesimals* of ih.Q first and second orders :

with similar interpretations

in other but analogous in-

vestigations.

(1.) If in the second

expression 316, L.,t for the

perpendicular from o on

the line ab, we change a

and /3 to their reciprocals

(compare figures 58, 64,

pp. 293, 349, vol. i.) and then take the reciprocal of the result, we obtain

this new expression [but with the letters c and d referring to points not

marked in fig. 58],

a"^-j3"^ a(|3-a)/3 OA . AB . OB

Fig. 58, bis. Fig. 64, bis.

IV. 0D = 8 =
y^-'a' Y(5a V(ob.oa)'

iu the denominator of which, ob may be replaced by ab, or by ao + ab, for

the diameter od of the circle gab ; so that if c be the centre of this circle, its

vector 7 = 00 = ^od = 58 = &c. Supposing then that p, q, b are ant/ three

points of ffwy given curve in space, while o is as usual an arbitrary origin,

and writing

V. . . OP = p, OQ = p + Ap, OH = p + 2Ap + A^p,

and therefore

YI. . . PQ = Ap, QR = Ap + A'^p, iPR = Ap + lA^'p,

* Compare 345, (17.), and the first Note to page 170.

Vfla
t [Namely p = on page 427, vol. i.]

a — p
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the centre c of tlie circle pqr has the following rigorous expression for

its vector

:

A/9(A|0 + AV) (A/0 + iAV)
^VII. . . oc = 7 = /o +

Y(AV . Ap)

whence passing to the limity we obtain successively the expressions III. and

II. for the vector k of the centre of curvature to the curve pqr at p ; the two

other points, q and r, being both supposed to approach indefinitely to the

given point p, according to any law (comp. 392, (6.)), which allows the two

successive vector chords, pq and qr, to bear to each other an ultimate ratio

of equality.

(2.) Instead of thus first forming a rigorous expression, such as VII.,

involving the differences Ap and A^p ; then simplifying the formula so found,

by the rejection of terTns, which become indefinitely small, with respect to the

terms retained ; and finally changing differences to differentials (comp. 344,

(2.)), namely A/o to dp, and A^/o to d^/o, in the homogeneous expression which

results, and of which the limit is to be taken : we may abridge the calculation,

by at once writing the differential symbols, in place of differences, and at once

suppressing any terms, of which we foresee that they must disappear from the

final result. Thus, in the recent example, when we have perceived, by

quaternions, that if k be the centre of the circle pqr, the equation

• VIII. . . PK = '«^''«-i(-<'^««)
V{(qr - pq)pq}

is rigorous, we may at once change each of the three factors of the numerator to

dp, while the factor qr - pq in the denominator is to be changed to d^p ; and

thus the differential expression II., for the inward vector-radius of curvature

K - p, i& at once obtained.

(3.) It is scarcely necessary to observe, that this expression for that

radius, as a vector, agrees with and includes the known expressions for the

same radius of curvature of a curve in space, considered as a (positive) scalar,

which has been denoted in the present Section by the italic letter r (because

the more usual symbol ^o would liave here caused confusion). Thus, while the

formula II. gives immediately (because Td/o = d«) the equation,

rS. . . r'd^ = TYdpd'p,

it gives also (because dp" = - ds\ and Sdpd^p = ~ dsdh) the transformed

equation,

X. . . r-'ds' = y(Uy - dV)

;
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and it conducts (by 389, YI.) to this still simpler formula (comp. the equation

r> = T/, 396, IX.),

XI. . . r-Ms = TdUdp.

(4.) Accordingly, if we employ the standard trinomialform (295, I.) for

a vector,

XTI. . . p = IT +JP + kz,

which gives, by the laws of the symbols ij'k (182, 183),

''d/o = ida- +Jdi/ + Mz, ds = Td/o = y{dx'^ + Ay^ + ds'),

dV = id^x +ydV + M'2, TdV = v/(dV + &hf + d'z%

Vdpd'^/o = i(d//d^s - dsdV) + j{dzd^x - d^d*z) + 7i;(da:d'^y - dyd^x).
XIII,

„- .diP Ay , ds ,TTj -1 d^
Udp = tT-+^T^ + ^T-> dUdo = id J- + . .

,

^ ds ds ds '^ ds

the recent equations IX. X. XI. take these known forms :

IX'. . . »-'ds» = -/((dyd'z - dsd^y)' + . .)

;

X'. . . r-^ds' = v^(dV + dy + d^z' - d^s^)
;

#xr.......,MtY.(a«-.(.r

(5.) The formula IV., which lately served us to determine a diameter of

a circle through three given points, may be more symmetrically written as

follows. Jf AD be a diameter of the circle abc, then

XIY. . . AD .V(aB . BC) = AB . EC . CA
;

an equation* in which Y(ab . bc) may be changed to Y(ab . ac), &c., and in

• A student might find it useful practice to verify, that if we write in like manner,

XIV. . . BB .V(BC . CA) = bc . CA . AB,

BO that BE is a second diameter, then ab = kd, or abdb is a parallelogram. Ho may employ the

principles, that ajSy = yfia, if Sa/Sy = 0, and that fiy - y& = 2Yfiy ; in virtue of which, after

suhtracting XIV'. from XIV., and dividing hy V(bc.ca), or by its equal V(An . bc), the equation

ad - BE = 2ab is obtained, and proves the relation mentioned. It is easy also to prove that

XIV". . . BD .V(bC . CA) = AH . S(bC . CA),

and therefore that abdb is a reetan/ie.
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which it may be remarked that each member is an expression (oomp. 296, V.)

for a vector at, which touches at a the segment abc : while its length is at once

a representation of the product of the lengths of the sides of the triangle abc,

and also of the double area of that triangle (comp. 281, XHI.), multiplied by

the diameter of the circumscribed circle.

(6.) In general, if pqrs be any four concircular points^ they satisfy (by

260, IX., comp. 296, (3.)) the condition of concircularity,

XV... V('^^ 55^ = 0,
\SQ RP/

which may be thus transformed :
*

\P8 PR / \PS

Writing then (comp. YI., and the remarks in (2.)),

XVII. . . PS = <u - (0, PQ = d/o, PR = 2d|t> + d'/j, QP + QR = d'/o,

the second member is seen to be, on the present plan, an infinitesimal of the

second order^ which is therefore to be suppressed, because the first member is

only of the first order ; and thus we obtain at once the following vector

equation of the osculating circle to the curve pqr at p,

xvra...vfi^ + ^Vo;

which agrees with the equation 392, VI., although deduced in a quite

different manner, and conducts anew to the expression II. for k - p, under

the form,

XIX. . .
-i^ + V?^, as in 392, VIII.
K - p up

* Without having recourse to this transformation XVI., we might treat the condition XV. hy
injinitesimah, as follows :

XVII'.

^=14-^=1 +—^ = H i^;

2qr ^ , QP + QR _ , ,
d^P _ . d-p

PK PR 2dp + d?p 2dp

equating then to zero the vector part of the product of these two expressions, and .suppressing tlie

infinitesimal of the second order, the equation XVIII. of the osculating circle is obtained anew.

Hamilton's Elements oi Quaternions, Vol. II. aA
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(7.) Again, if od = 8 be the diameter from the origin, of any sphere

through that point o, which passes also tlirough any three other given points

A, B, c, with OA = a, &c., we have by 296, XXVI. the formula,

XX. . . SSa/37 = Ya{(d - a) (7 - /3)7 ;

writing then (comp. XVII.), «.

XXI. . . a = dp, /3 - a = dp + dV, 7 - /3 = dp + 2dV + d%
and

XXII. . . ^ = 2ps = 2(a -
p),

where o- is (as in 895, &c.) the vector os (from an arbitrary origin o) of the

centre s of the osculating sphere to a curve of double curvature at p, we have

by infinitesimals, suppressing terms which are of the seventh and higher orders,

because the first member is only of the sixth order, and reducing* by the

rules of quaternions,

XXIII. . . (<T - p)SdpdVdV = iVdp(dp + dV) (dp + 2dV + d'p)

(3dp + 3dV + d» = SVdpd^SdpdV + dp^Vd='pdp
;

which agrees precisely with the formula 395, XIII., although obtained by a

process so different.

(8.) Finally as regards the osculating plane, and the second curvature, of a

curve in space, infinitesimals give at once for that plane the equation,

XXIV. . . S(w - p)dpd^p = 0, agreeing with 376, V. ;

and if three consecutive elements of the curve be represented (comp. XXI.) by

the differential expressions,

XXV. . . PQ = dp, QR = dp + d^p, Rs = dp + 2d-p + d^p,

the second curvature r~^ defined as in 396, is easily seen to be connected as

* Of the eighteen terms which would follow the sign of operation ^V, if the second member of

XXIII. were fully developed, one is of the fourth order, but is a scalar ; three are of the fifth order,

but have a scalar sum ; nine are of orders higher than the sixth ; and two terms of the sixth order are

tealars, so that there remain only three terms of that order to be considered. In this manner it is

found that the second member in question reduces itself to the sum of the two vector parts,

fV. {dpdy)^ = SYdpi'^p . Sdpd^,
and

|dp«V(dpdV + 3dVdp) = dp'-YA^pAp ;

and thus the third member of XXIII. is obtained.
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follows with the angle of a certain auxiliary quaternion q, which differs infinitely

little from unity :

XXYI. . . r-'ds = z g', if XXVII. . . ? = ^77 -^ = 1 + WV- 5^ Y(pq.qr) Vd|od-p

we have then the expression,

XXYiri. . . Second Curvature = r"' =^ = S —

^

2 'dp Yd|odV

which agrees with the formula 397, XXYII., and Las been illustrated, in

the sub-articles to 397 and 398, by numerous geometrical applications.

(9.) On the whole, then, it appears that although the logic of derived

vectors, and of differentiak of vectors considered as finite lines, proportional

to such derivatives, is perhaps a little clearer than that of infinitesimals,

because it shows more evidently (especially when combined with Taylor's

Series adapted to Quaternions, 342, 375) that nothing is neglected, yet it is

perfectly possible to cofnbine* quaternions, in practice, with methods founded

on the more usual notion of Differentials, as infinitely small differences : and

that when this combination is judiciously made, abridgments of calculation

arise, tvilhout any ultimate error.

SECTION 7.

On Surfaces of the Second Order ; and on Curvatures
of Surfaces.

402. As early as in the First Book of these Elements, some specimens

were given of the treatment or expression of Surfaces of the Second Order

by Vectors ; or by Anharmonic Equations which were derived from the

theory of vectors, without any introduction, at that stage, of Quaternions

properly so called. Thus it was shown, in the sub-articles to 98, that a

very simple anharmonic equation {xz = yw) might represent either a ruled

paraboloid, or a ruled hyperboloid, according as a certain condition {ac = bd)

was or was not satisfied, by the constants of the surface. Again, in the

* Compare the first Note to page 170. It will however he of course necessary, in any future
applications of quaternions, to specify in tvhich of these two senses, as a Jlnite differential, or as an
injinitesimal, such a symbol as dp is employed.

2 A 2
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sub-articles to 99, two examples were given, of vector expressions for cones

of the second order (and 07ie such expression for a cone of the t/iird order,

with a conjugate ray (99, (5.)) ; while an expression of the same sort,

namely,

I. . . /o = a;a + y|3 + sy, with a? { y"^ + z^ = \,

was assigned (99, (2.)) as representing generally an ellipsoid* with a, /3, 7,

or OA, OB, DC, for three conjugate semidiamefers. And finally, in the sub-

articles (11.) and (12.) to Art. 100, an instance was furnished of the

determination of a tangential plane to a cone, by means of partial derived

vectors.

403. In the Second Book, a much greater range of expression was

attained, in consequence of the introduction of the peculiar symbols, or

characteristics of operation, which belong to the present Calculus ; but still

with that limitation which was caused, by the conception and notation of a

Quaternion being confined, in that Book, to Quotients of Vectors (112, 116,

comp. 307, (5.)), without yet admitting Products or Powers of Directed

Lines in Space : although versors, tensors, and even norms f of such vectors

were already introduced (156, 185, 273).

(1.) The Sphere,X for instance, which has its centre at the origin, and

has the vector oa, or a, with a length Ta = a, for one of its radii, admitted

of being represented, not only (comp. 402, 1.) by the vector expression,

1. . . p = xa + y(5 + zy, x'' + y^ + z^ = 1,

with

r. ..Ta = T/3 = T'y = a, and I". . . S^ = S^ = S^ = 0,
a a p

* In like manner the expression,

II. . . /) = a;o + «/)8 + sy, with z- + y* — 2" = 1, or = - 1,

represents a general hyperboloid, of one sheet, or of two, with a/87 for conjugate semi -diameters

:

while, with the scalar equation x- + y^ — 2* = 0, the same vector expression represents their comnioti

asymptotic cone (not generally of revolution).

t The notation No, for (To)'', although not formally introduced before Art. 273, had been used by
anticipation in 200, (3.), page 191, vol. i.

X That is to say, the spheric surface thiough A, with for centre. Compare the Note to

page 199, vol. i.
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but also by any one of the following equations, in which it is permitted to

change a to - a

:

11... ^ = K^; III...eK^ = l;pa a a

IV. . . N ^ = 1 ; 145, (8.), (12.) Y. . . Tp = a
;

VI. ..Tp = Ta', VII. . . T ^ = 1 ; 186, (2.), 187, (1.)
a

VIII. . . S^^l^ = ; IX. . . N^ = N -
;

p + a EC
200,(11.), , y f y

X. . . Np = Nc ; 215, (10.), XL . . ( S^
)
- ( V^) = 1

;

273, (1.)

XII. . . NS ^ + NY ^ = 1 ; 204, (6.), XXV., XXVI.

XIII. . . N^S^ + V^] = 1
; XIV. • . t(s^ + V^Vl; 204,(9.)

or by the system of equations^

XV. . . S ^ = a;, ^V ^Y= «' - 1 (^ 0), 204, (4.)

%
representing a system of circles, with the spheric surface for their locus.

(2.) Other forms of equation, for the same spheric surface, may on the

same principles be assigned ; for example we may write,

XVI. . . ^ = Z "
; XVII. . . N - = 1 ; XVIII. . . T" = 1

;

a p p p

XIX.. .^^^^ = ^; XX.. .8-^ = 1; XXL. .8-^ = 1;
p + a ^ p + a p + a

or (comp. 186, (5.), and 200, (3.)),

XXlI...T(p-ca)=T{cp-a), c^^l;

under which last form^ the sphere may be considered to be generated by
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the revolution of the eircley which has been already spoken of as the

Apollonian* Locus.

(3.) And from any one to any other^ of all these various forim^ it is

possible, and easy to pa%8^ by general Rules of Transformation^-^ which

were established in the Second Book ; while each of them is capable of

receiving, on the principles of the same Book, a Geometrical Interpretation.

(4.) But we could not, on the principles of the Second Book alone^

advance to such subsequent equations of the same sphere^ as

XXIII. . . p2 = a^ or XXIY. . . p^ + a^ = 0, 282, YII. XIII.

whereof the latter includes (282, (9.)) the important equation p^ + I = 0,

or /o' = - 1, of what we have called the Unit-Sphere (128) ; nor to such

an exponential expression for the variable vector p of the same spheric surface^ as

XXY. . .p = ak'j'kj-'k-\ 308, XVIII.

in which / and k belong to the fundamental system ijk of three rectangular

unit-lines (295), connected by the fundamental Formula A of Art. 183,

namely,

t' =f = A;' = iJk = - 1, (A)

while s and t are ttco arbitrary and scalar variables, with simple geometricalX

significations : because we were nob then prepared to introduce any symbol,

such as p^, or k\ which should represent a square or other power of a vector.^

^And similar remarks apply to the representation, by quaternions, of other

surfaces of the second order.

* Compare the first Note to page 130, vol. i.

t This richness of transformation, of quaternion expressions or equations, has been noticed, by

some friendly critics, as a characteristic of the present Caleulus. In the preceding parts of this work,

the reader may compare pages 130, 141, 185, vol. i., and pages 106, 108, 109, vol. ii. ; in the two

last of which, the variety of the expressions for the second curvature (r"') of a curve in space may be

considered worthy of remark. On the other hand, it may be thought remarkable that, in this

Calculus, a single expression, such as that given by the first formula (389, IV.) of page 50, vol. ii.,

adapts itself with equal ease to the determination of the vector (k) of the centre of the osculating circle,

to a plane et(rve, and to a curve of double curvature, as lias been sufficiently exemplified in the

foregoing Section.

t Compare the second Note to page 398, vol. i.

§ It is true that the formiUa A was established in the course of the Second Book (page 160,

vol. i.) ; but it is to bo remembered that the symbols y/c were there treated as denoting a system of

three right versors, in three muttially rectangular planes (181) : although it has since been found

possible and useful, in this Third Book, to identify those right versors with their own indices or axes

(295), and so to treat them as a system of three rectangular lines, as above.
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404. A brief review, or recapitulation^ of some of the chief expressions

connected with the Ellipsoid, for example, which have been already established

in these Elements, with references to a few others, may not be useless here.

(1.) Besides the vector expression p = xa + pjd + zy, with the scalar relation

x^ + i/^ { z^ = 1, and with arbitrary/ vector values of tlie constants a, j3, 7,

which was lately cited (402) from the First Book, or the equations 403, I.,

without the conditions 403, F., IF. which are peculiar to the sphere, there

were given in the Second Book (204, (13.), (14.)) equations which differed

from those lately numbered as 403, XL XXL XIII. XIV. XV., only by

the substitution of V 3 for V -
; for instance, there was the equation,

P «

S^y-(V^J=1. 204,(14.)

analogous to 403, XL, and representing generally* an ellipsoid, regarded as

the locus of a certain system of ellipses, which were thus substituted for the

circles f (403, XV.) of the sphere, by a species of geometrical deformation,

which led to the establishment of certain homologies (developed in the sub-

articles to 274).

(2.) Employing still only quotients of vectors, but introducing txco other

pairs of vector-constants, y, 8 and i, k, instead of the pair a, /3 in the equation

L, which were however connected with that pair and with each other by

certain assigned relations, that equation was transformed successively to

XL ..T^^ + K^) = l, 216, X.

* In the case of parallelism of the two vector constants (/3 || o), the equation I. represents

generally a Spheroid of revolution, with its axis in the direction of a ; while in the contrary case of

perpendicidarity ()3 ± a), the same equation I. represents an elliptic Cylinder, with its generating lines

in the direction of fi. Compare 204, (10.), (11.), and the Note to page 231, vol. i.

t The equation I. might also have heen thus written, on the principles of the Second Book,

r.

.

(«^«^)K-«^)K^i)='^
whence it would have followed at once (comp. 216, (7.)), that the ellipsoid I. is cut in two circles,

with a common radius = T)8, by the two diametral planes,

I". ..S^ + S^ = 0, S^-S^ = 0.
a )8 a )8

In fact, this equation I', is what was called in 359 a cyclic form, while I. itself is what was there

called a focalform, of the equation of the sui-face ; the lines o.'^ + B'^ being, by the Third Book, the

two (real) cyclic normals, while jS is one of the two (real) focal lines of the (imagimiry) asymptotic cone.

Compare the Note to page 535, vol. i.
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and to a form which may be written thus (comp. 217, (5.) ),

III.
P

p]Tp = Ti'-Tk'

[III. in. § 7.

217, XVI.

and this last form was interpreted, so as to lead to a Rule of Construction*

(217, (6.), (7.)), which was illustrated by a Diagram (fig. 53), and from

which many geometrical j-^ro/jer^^es of that

surface were deduced (218, 219) in a very

simple manner, and were confirmed by calcu-

lation with quaternions : the equation and

construction being also modified afterwards,

by the introduction (220) of a neto pair of

vector-constants, i and /, which were shown

to admit of being substituted for i and k,

in the recent form III.

(3.) And although the Equation of Con-

higation

IY...S^S^-sfv^.V^) = l, 316,LXIII.
a a V /3 ^/

Fig. 53, bis.

which connects the vectors X, fx of any two points l, m, whereof one is on

the polar plane of the other, with respect to the ellipsoid I., was not assigned

till near the end of the First Chapter of the present Book, yet it was there

deduced by principles and processes of the Second Book alone : which thus

were adequate, although not in the most practically convenient way, to the

treatment of questions respecting tangent planes and normals to an ellipsoid,

and similarly for other surfacesf of the same second order.

* This Construction of the Ellipsoid, by means of a Generating Triangle and a Diaeeniric Sphere

(page 234, vol. i.), is believed to have been new, when it was deduced by the writer in 1846, and was

in that year stated to the Royal Irish Academy (see its Proceedings, vol. iii., pp. 288, 289), as a result

of the Method of Quaternions, which had been previously communicated by him to that Academy (in

the year 1843).

t The following are a few other references, on this subject, to the Second Book. Expressions for

a Bight Cone (or for a single sheet of such a cone) have been given in vol. i. in pages 121, 180, 226,

227. In page 181 the equation S- S - = 1, has been assigned, with a transformation in page 182,

to represent generally a Ci/clic Cone, or a cone of the second order, with its vertex at the origin ; and

to exhibit its cyclic planes, and stibcontrary sections (pp. 182, 184). Bight Cylinders have occurred in

pages 195, 199, 201, 202, 223. A case of an Elliptic Cylinder has been already mentioned (the case

when /3±a in I.) ; and a transformation of the equation III. of the Ellipsoid, by means of reciprocals

and norms of vectors, was assigned in page 314. And several expressions (comp. 403), for a Sphere

of which the origin was not the centre, occurred in pages 165, 180, 192, vol. i., and perhaps elsewhere,

without any employment of products o/vtctors.
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(4.) But in this Third Book we have been able to write the equation III.

under the simpler form,*

V. . . T{tp + pic) = k' - iS 282, XXIX.

which has again admitted of numerous transformations ; for instance, of all

those which are obtained by equating (k^ - i^Y to any one of the expressions

336, (5.), for the square of this last tensor in Y., or for the norm of tlie

quaternion ip + pK ; cyclic forms f of equation thus arising, which are easily

converted into focal forms (359) ; while a rectangular transformation (373,

XXX.) has subsequently been assigned, whereby the lengths (abc), and also

the directions^ of the three seniiaxes of the surface, are expressed in terms

of the two vector-constatits, t, k : the results thus obtained by calculation

being found to agree with those previously deduced, from the geometrical

construction (2.) in the Second Book.

(5.) The equation V. has also been differentiated (336), and a normal vector

V - ^p has thus been deduced, such that, for the ellipsoid in question,

VI. . . Svd/o = 0, and VII. . . Sv/o = 1

;

a process which has since been extended (361), and appears to furnish

one of the best general methods of treating surfaces t of the second order by

quaternions : especially when combined with that theory of linear and vector

functions {(f)p) of vectorsy which was developed in the Sixth Section § of the

Second Chapter of the present Book.

* Mentioned by anticipation in the Note to page 241, vol. i.

t Compare the second Note to page 183. The vectors » and k are here the ci/clic normals,

and J - K is one of the/oca^ lines ; the other being the line t' - k' of the page 241, vol. i.

X The following are a few additional references to preceding parts of this Third Book, which has

extended to a much greater length than M^as designed (page 322, vol. i.). In the First Chapter, the

reader may consult pages 325, 326, 327, 328, vol. i., for some other forms of equation of the ellipsoid and

tlie sphere. In the Second Chapter, pages 460, 461, vol. i., contain some useful practice, above alluded

to, in the differentiation and transformation of the equation r^ = T(jp + p/c). As regards the Sixth

Section of that Chapter, which we are about to use (405), as one supposed to be familiar to the reader,

it may be sufficient here to mention Arts. 357-362, and the Notes (or some of them) to pages 523,

525, 627, 635, 546, 549, vol. i. In this Third Chapter, the sub-articles (7.)-(21.) to 373 (pages 15,

&c.) might be re-perused ; and perhaps the investigations respecting cones and sphero-conies, in 394,

and its sub-articles (pages 63, &c.), including remarks on an hi/perl/olic cylinder, and its asymptotic

planes (in page 72). Finally, in a few longer and later seiius of sub-articles, to Arts. 397, &c., a

certain degree of familiariiy with some of the chief properties of surfaces of the second order has

been assumed ; as in pages 103, 126, 129, and generally in the recent investigations respecting the

osculating twisted cubic (pages 129, 166, &c.), to a helix, or other curve in space.

§ It appears that this Section may be conveniently referred to, as III. ii. 6 ; and similarly in

other cases.

Hamilton's ^lbments of Quaternions, Vol. II. * 2
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405. Dismissing then, at least for the present, the special consideration

of the ellipsoid, but still confining ourselves, for the nioment, to Central

Surfaces of the Second Order, and using freely the principles of this Third

Book, but especially those of the Section (III, ii. 6) last referred to, we may

denote any such central and non-conical surface by the scalar equation (comp.

361, [p. 547, vol. i.]),

I. . . //) = Sp<j>p = 1
;

the asymptotic cone (real or imaginary) being represented by the connected

equation,

II..../]« = S/>^p = 0;

and the equation of conjugation, between the vectors p, p of any two points

p, p', which are conjugate relatively to this surface I. (comp. 362, and 404, (3.),

see also 373, (20.)), being,

III. . ,f{p, p) =f{p, p) = Sptpp = Spipp = 1
;

while the differential equation of the surface is of the form (361),

IV. . . = dfp = 2Si;d/o, with V. . . v = 0/o ;

this vector-function ^p, which represents the normal v to the surface, being at

once linear and self-conjugate (361, (3.)) ; and the surface itself being the

locus of all the points v which are conjugate to themselves, so that its equation I.

may be thus written,

Y...f{p,p) = l, because f{p,p)=fp, by 362, lY.

(1.) Such being the /<?rm of <j)p, it has been seen that there are always

three real and rectangular unit-lines, ai, a?, 03, and three real scalars, C\, Co, c^,

such as to satisfy (comp. 357, III.) the three vector equations,

VI. . . ^Oi = — C\a\, (fittz = — CzUi, (ftaz = ~ ^^303 5

whence also these three scalar equations are satisfied,

VII. . . /oi = Ci, fa-i. = Cj, faz = Ci ;

and therefore (comp. 362, VII.),

VIII. . ./(r^.-ia.) =/(c,-ia,) ^fic^K) = 1.
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(2.) It follows then that the three (real or imagiuary) rectangular lines,

IX. . . /3i = c,"^ai, j32 = C{^ai, (is = Cf^as,

are the three (real or imaginary) vector semiaxes of the surface I. ; and that

the three (positive or negative) scalars, Ci, Ct, Ca, namely the three roots of the

scalar and cubic equation* M = (comp. 357, (!.))> are the (always real)

inverse squares of the three (real or imaginary) scalar semiaxes, of the same

central surface of the second order.

(3.) For the reality of that surface I., it is necessary and sufficient that

one at least of the three scalars Ci, Cz, Cz should be positive ; if all be such,

the surface is an ellipsoid ; if two, but not the third, it is a single-sheeted

hyperboloid ; and if only one, it is a double-sheeted hyperboloid : those scalars

being here supposed to be each finite, and different from zero.

(4.) We have abeady seen (357, (2.)) how to obtain the rectangular

transformation,

X. . .fp^ d^mpY + Cz{Sa2pY + Cs(Sa3/o)^

which may now, by IX., be thus written,

XL ..//> = (s/3fV)^ + (s^.-»' + im-'pY ;

but it is to be remembered that, by (2.) and (3.), one or even ttco of these

three vectors fiifizf^i niay become imaginary, without the surface ceasing to

be real.

(5.) We had also the cyclic transformation (357, II. II'.),

XII. . .fp = gp' + SXpup = p'{g - SXp.) + 2iiXpSpp,

in which the scalar g and the vector X, fx are real, and the latter have

the directions of the two (real) cyclic normals ; t in fact it is obvious on

inspection, that the surface is cut in circles, by planes perpendicular to these

two last lines.

* It is unnecessary here to M'lite Mo = 0, as in page 520, vol. i., &c., because the function (p is

here supposed to be self- conjut/ate ; its constants being also real.

t Compare the Note to page 527, vol. i., see also the proof by quaternions, in 373, (16.), &c., of

the known theorem, that any two subcontrary circular sections are homospherical, with the equation

(373, XLIV.) of their common sphere, which is found to have its centre in the diametral plane of the

two cyclic normals \, ft.

3B2
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(6.) It has been proved [that the four real scalars, CiCiCzg, and the five real

vectors, aiUiasX/jL, are connected by the relations* (357, XX. and XXI.),

Xin. . . Ci = -
fir
- TX/Lt, C2 = - g + SX/i, C3 = - g + TXfi ;

XIV. . . ai = U(XT/i - juTX), m = VYXfx, a^ = U(XT/i + ;uTX)
;

at least if the three roots CiC^ of the cubic Jf = be arranged in algebraically

ascending order (357, IX.), so that Ci < Cz< Cz.

(7.) It may happen (comp. (3.) ), that one of these three roots vanishes
;

and in that case (comp. (2.)), one of the three semiaxes becomes infinite, and

the surface I. becomes a cylinder.

(8.) Thus, in particular, if Ci = 0, or gr = - TXju, so that the ttoo other roots

are both positive, the equation takes (by XII., comp. 357, XXII.) a form

which may be thus written,

XV. . . {SXfxpf + {SXpTfi + SfxpTXf = TXfi - SX^ > ;

and it represents an elliptic cylinder.f

(9.) Again, if Ci = 0, or g = SX/u, the equation becomes,

XVI. . . 2SX/>S/x/> = 1,

and represents an hyperbolic cylinder ; the root Ci being in this case negative,

while the remaining root Cs is positive.

(10.) But if we suppose that Cs = 0, or g = TX/x, so that Ci and Co are both

negative, the equation may (by 357, XXIII.) be reduced to the form,

XVII. . . {^XupY + (SXpT^ - ^ppTXy = - TX^ - SX^ < ;

it represents therefore, in this case, nothing real, although it may be said to

be, in the same case, the equation of an imaginary^ elliptic cylinder.

* These relations and a few others mentioned are so useful that, although they occurred in an
earlier part of the work, it seems convenient to restate them here.

t [XV. and XVII. may he directly ohtained by means of the identity p = (Va^u)-' (SX/tp f WA/* . />).]

X In the Section (III. ii. 6) above referred to, many symbolical results have been established,

respecting imaginary cyclic normals, orfocal lines, &c., on which it is unnecessary to return. But it

it may be remarked that as, when the scalar function fp admits of changing sign, for a change of
direction of the real vector p, so as to be positive for some such directions, and negative for others,

although/(- p) =/(+ p), the two equations, /^ = + 1,/p = - 1, represent then ttco real and conjugate

hyperboloids, of different species : so, when the function fp is either essentially positive, or else

essentially negative, for real values of p, the equation /p = 1 and 'p = -l may t/icn be said to represent

two conjugate ellipsoids, one real, and the other imaginary.
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(11.) It is scarcely worth while to remark, that we have here supposed

each of the two vectors \ and fi to be not only real but actual (Art. 1) ; for

if either of them were to vanish, the equation of the surface would take by

XII. the form,

XYIII. ..p' = r\ or XVIir. . . Tp = (- f7)-i,

and would represent a real or imaginary sphere, according as the scalar

constant g was negative or positive : X and fi have also distinct directions,

except in the case of surfaces of revolution.

(12.) In general, it results from the relations (6.), that the plane of the

two (real) cyclic normals, X, fi, is perpendicular to the (real) direction of that

(real or imaginary) semiaxis, of which, when considered as a scalar (2.), the

inverse square Cz is algebraically intermediate between the inverse squares Ci, Cj

of the other two ; or that the ttco diametral and cyclic ])lanes (SX/o = 0, S/x/o = 0)

intersect in that real line (YX/x) which has the direction of the real unit-vector

02 (1.), corresponding to the mean root Cj of the cubic equation M = : all

which agrees with known results, respecting the circular sections of the (real)

ellipsoid, and of the two hyperholoids.

406. Some additional light may be thrown on the theory of the central

surface 405, 1., by the consideration of its asymptotic cone 405, II. ; of which

cone, by 405, XII., the equation may be thus written,

I. . .fp = gp^ + ^Xpfip = p'{g - SX/i) + 2SX|oSju/o = ;

and which is real or imaginary, according as we have the inequality,

II. . .g'< Xy, or III. . .g'> Xy ;

that is, by 405, (6.), according as the product CiC^ of the extreme roots of the

cubic if = is negative or positive ; or finally, according as the surface fp = l

is a (real) hyperboloid, or an ellipsoid (real or imaginary*).

(1.) As regards the asserted reality of the cone I., when the condition II.

is satisfied, it may suflQce to observe that if we cut the cone by the plane,

lV...SX{p-,x)=-g,

the section is a circle of the real and diacentric sphere,

Y...p' = 2Sf,p, or v. .. ip-p.y-p.';

* Compare the Note immediately preceding ; also tlie second Note to page 635, vol. i.
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and a real circle, because it is on the real cylinder of revolution,

YI. . . TV(p - fi)VX = (V - ^^TX-^)*,

so that its radius is equal to this last real radical.

(2.) For example, the cone

VII. . . S ^ S2 = I, or Vir. . . 2{SapS(3p - aY) = 0,
a p

which under the form YII. occurred as early as 196, (8.), and for which

X = a, iu = j3, g = Sa/3 - 2a% and therefore T\/x + g > 0, the condition II.

reduces itself to TXp. - g > ; or after division by 2Ta", &c., to the form

(comp. 199, Xir.),

VIII. . . i{T + S) 2 > 1, or Vlir. . . S /2 > 1

;

a \ a

and accordingly, when either of these two last inequalities exists, it will be

Q
foimd that the sphere S - = 1 ia cuthy the plane S - = 1 in a real circle, the

p a

base of a real cone VII.

(3.) As an example of the variety of processes by which problems in this

Calculus may be treated, we might propose to determine, by the general

formula 389, IV., the vector k of the centre of the osculating circle to the

curve IV. v., considered merely as an intersection of two surfaces. The

first derivatives of the equations would allow us to assume />' = VX(/o -
p),

and therefore p" = Xp' ; whence, by the formula, we have

T-^
p'^ p' SpX + VuX .

,

the section is therefore a circle, because its centre of curvature is constant ; and

its radius is,

X. . . r = Tip - k) = T{p-p + gX-^) = (V " i7"-TX-)i,

= the radius of the cylinder VI.

(4.) When the opposite inequality III. exists, the radius X., the cylinder

VI., the circle IV. V., and the cone I., become all four imaginary ; the plane

rV. being then wholly external to the sphere V., as happens, for instance,

with the plane and sphere in (2.), when the condition VIII. or VIII'.

is reversed.
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(5.) In the intermediate case, when

XI. .
.g'' = Xy, or XL\. .g = + TX/x,

the radius r in X. vanishes ; the right cylinder YI. reduces itself to its

axis ; and the circle lY. Y. becomes a pointy in which the sphere is touched

by the plane. In this case, then, the cone I. is reduced to a single {real*)

right line, which has (compare the equations of the elliptic cylinders, 405, XY.

XYII.) the direction of XTju - juTX, if ^r = - TX/i, but the perpendicular

direction of XT/u + ^uTX, ii g = + TX/u.

(6.) In general (comp. 405, X.), the equation of the cone I. admits of

the rectangular transformation

^

XII. ..//(> = Ci(Saj/o)» + C3(Sa2|o)' + c^{^a^py = ;

and the two sub-cases last considered (5.) correspond respectively (by 405, (6.)

)

to the evanescence of the roots Ci, Ca of the cubic M = 0, with the resulting

directions ai, as of the only real side of the cone. An analogous but

intermediate case (comp. 405, (9.)) is that when Cj = 0, or g = SXju ; in

which case, the cone I. reduces itself to the pair of {real) planes^

XIII. . . SXp . S/xp = 0,

namely to the asymptotic planes of the hyperbolic cylinder 405, XYI., or to

those which are usually the two cyclic-^ planes of the cone.

(7.) The case (comp. 394, (29.)),

XIY. . . <7 = - SX/i, or XIY'. . . cx - Ca + C3 = 0,

for which the equation I. of the cone becomes,

XY. . . = /p = 2(SX|oS/u|o - p^SX/i) = 2S(YXp .Y/ip),

may deserve a moment's attention. In this case, the two planes, of \p and

fip, which connect the two cyclic normals X and fi with an arbitrary side p of

the cone, are always rectangular to each other ; and these two normals to the

cyclic planes are at the same time sides of the cone, which thus is cut in

* It may however be said, that in this case the eone consists of apair of imaginary planes, which
intersect in a real right line.

t The cones and surfaces -which have a common centre, and common values of the vectors A and ix,

but different values of the scalar g, may thus be said, in a known phraseology, to be biconcyclic.
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circles, by planes perpendicular to those two sides. And because the equation

of the cone may (in the same case) be thus written,

XYI. . . TY(X + fi)p = TV(X - )u)/>,

while the lengths of X and n may vary, if their product TXju be left

unchanged, so that \ + fi and X - /u may represent any two lines from the

vertex, in the plane of the two cyclic normals, and harmonically conjugate

with respect to them, it follows that, for this cone XV., the sines of the

inclinations of an arbitrary side p, to these two new lines, have a constant

ratio to each other.

(8.) In general, the second form I. of fp shows (comp. 394, (23.) ), that

the constant product of the sines of the inclinations, of a side p of the cone

to the two cyclic planes, has for expression,

XYIL . . cos A^ ,Gos I ^ = i(j- + COS L^]
;A p. V-LX/i A/

while the first form I. of the same function fp reproduces the condition oj

reality II., by showing that g : TXju is (for a real cone) the cosine of a real

angle, namely, that of the quaternion product Xppp, since it gives the

relation,

XVIII. . .
~- = SVXppp = cos L Xppp = cos L ^—^ •

(9.) We may also observe that in the case of reality II., with exclusion

of the sub-case (6.), if as have the direction of the internal axis of the cone,

so that

XIX. . . ci < 0, c^ < 0, C3 > 0, or XIX'. ..g> SX/x, g < TXfx,

the two sides (of one sheet) in the plane of Xp. have the directions,

XX. . . pi = cf^a^ + (- Ci)\i, p. = C3%3 - (- Ci)~Ki ;

if then their mutual inclination, or the angle of the cone in the plane of the

cyclic normals, be denoted by 2b, we have the values,

XXI. . . tan^- b = -^, XXr. . . cos 2b = ^^^^^^ = J- ;
-

-Ci -C1 + C3 TXp

the angle of the quaternion Xppp is therefore (by XVIII.), equal to this

angle 2b, namely to the arcual minor axis of the sphero-conic, in which the

cone is cut by the concentric unit-sphere.
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(10.) The same condition of reality II. may be obtained in a quite

different way, as that of the reality of the reciprocal conCy which is the

locus of the normal vector,

XXII. . . V = fp = gp + YXpfM.

Inverting this linear function <p, by the method of the Section III. ii. 6, we

find first the expression (comp. 354, (12.), and 361, (6.)),

XXIII. . .mp^yljv = n'XSXv + XVSiUv - ^(XS/uv + nSXv) + {g' - Xy)i',

in which XXIY. . . m = {g - SXp) {g- - XV) = - ^^i^a^s

;

and next the reciprocal equation (comp. 361, XXYII.),

XXV. . . = Sv^Pv = iu»(SXi;)» + X'iSfivY - 2gBXvS^v + {g' - Xy)v\

which may be put under the form,

the quotient g : TA// thus presenting itself anew as a cosine, namely as that

of the supplement of the sum of the

inclinations of the normal v (to the d^^^^——J^'^ ""--^n.^

cone I.), to the two cyclic normals X, p. A>^^**^^ ^ ^^'^^

(of that cone) ; or as the cosine* of c%v.-:l'.'. /|p^ ) ) ^c*
TT - A - B, if A and b denote (comp. ^***s^-' xStXqy ^.^ ^.y^
fig. 80 [vol. ii., p. 65] the tico '•<-^\ -^—-"""^

spherical angles, which the tangent p- gQ ^^^

arc to the sphero-conic (9.) makes

with the two cyclic arcs : so that by comparison of XXI'. and XXYI. we

have the relation,

XXVII. ..A + B = Z^+Z- = 7r-2b.
X u

* This relation was mentioned by anticipation in 394, (3.) ; and the relation in XXVII. may
easily be verified, by conceiving the point of contact p in fig. 80 (vol. ii., page 65) to tend towards a

minor summit of the conic, or the tangent arc apb to tend to pass through the two points c, c', in

which the cyclic arcs intersect.

Hamilton's Elements of Quaternions, Vol. II. 9Q
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(11.) Comparing the expression XX F. for cos 2b, with the last expression

XVIII. for g : TX/x, we derive the following construction for a sphero-conic^

which may easily be verified by geometry :*

Having assumed two points (l, m) on a sphere^ and having described a small

circle round one of them (say l), bisect the arcs (mq) ichich are drawn to its

circumference from the other point ; the locus of the bisecting points (p) will

be a sphero-conic, with the two fixed points for its two cyclic poles (or for the

poles of its cyclic arcs), and with an arcual minor axis (2b) equal to the arcual

radius of the small circle,f

(12.) As regards the arcual major axis (say 2a) of the same sphero-conic,

it is (with the conditions XIX.) the angle between the two sides (comp. XX.),

XXVIII. . . /03 = cf^as + {- CiY^az, Pi = C3%3 - (- CiY^Ui ;

whence (comp. XXI.),

XXIX. . . tan'^ a = —^, or XX IX'. . . cos 2a = — -' = (say) e,

-Ci -Cz+ C3

and therefore, a few easy reductions being made,

from which we can at once infer, that if a focus of the conic be determined,

by drawing from a minor summit to the major axis an arc equal to the

major semiaxis a, the minor axis subtends at this focus (or at the other) a

spherical angle equal to the angle bcticeen the two cyclic arcs.

(13.) For the two real unifocal transformations of the equation of the cone,

or the/orws,

XXXI. . . a(Va|o)^+ 6(S/3|o)^ = 0, and XXXF. . . a (Va»' + 5 (Si3»' = 0,

with one common set of real values of the scalar coeffidents, a and 6, but with

two realfocal unit lines a, a\ and two real directive normals |3, |3' corresponding,

it may be sufficient here to refer to the sub-articles to 358 ; except that it

should be noticed, that if the cone be real, and if the line as have the direction

In fact, the bisecting radii op are parallel to the supplementary chords m'g, if mm' be a diameter
of the sphere

;
and the locus of all such chords is a cyclic cone, resting on the small circle as its base,

t [By quaternions, if oq = k, VKfi-^ = u(p/n-»)« or ck = - v()/xi>, &c.]
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of its internal axis, so that the inequalities XIX. are satisfied, and therefore

also (by 405, (6.)),

XXXII. . . cf' > > cc' > cf\

instead of the inequalities 358, III., or 359, XXXYII., we are now to

change, in the earlier formulae referred to, the symbols CiCzCaaiOjas to

CsCiCiasaia^, SO that we have now the values,

XXXIII. ..a = -cu b^c,-c, + c,, if T/3 = T^' = 1.

(14.) And as regards the interpretation of the unifocalform XXXI., with

these last values, it is evidently contained in this other equation,

XXXIV. . . sin ^ ^ . sec z g = —^ = —- = const.

;

a (5 -Sj3p \ -Ci J

the sines of the inclinations of an arbitrary side (p) of the cone, to a. focal line

(a), and to the corresponding director plane (-L|3), thus bearing to each other

(as is well known) a constant ratio, which remains unchanged when we pass

to the ot/ier (real) focal line (a), and at the same time to the other (real)

director plane (± /3') : and the focal plane of these two lines (a, a) being

perpendicular to that one of the three axes, which corresponds to the root

(here Ci by XXXII.) of the cubic, of which the reciprocal is algebraically

intermediate between the reciprocals of the other two.

(15.) It is, however, more symmetric to employ the bifocal transformation

(comp. 360, YI.*),

XXXY. . . = (Sap)'-' - 2eSapSa> + (Sa»'^ + (1 - e')p'
;

in which the scalar constant e has the value (comp. XXIX'.),

XXXYI. . . e = cos 2a

;

and a, a are the two-\ real and focal unit lines, recently considered (lo.).

* It is to be remembered that, in the formula here cited, the symbols a, o' did not denote unit-

vectors.

t When those two vectors a, a remain constant, but the scalar e changes, there arises a system of

biconfocal cones : or, by their intersections with a concentric sphere, a system of biconfocal sphero-

eonies. Compare the second Note to page 191.

2 C 2
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(16.) The equation XXXV., for the case of a real cone, may be thus

written (comp. XXVI. XXXVI.),

XXXVII. . . /I ^ + z ^, = 008-^ e = 2a

;

a a

the sum* of the inclinations of the side p to the two focal lines a, a being

thus constant, and equal (as is well known) to the major axis of the spherical

conic : and although, when e > 1, the cone becomes imaginary, yet it is then

asymptotic to a real ellipsoid, as we shall shortly see.

407. The bifocal form (406, XXXV.) of the equation of a cone may
suggest the corresponding form,

I...C=Cfp= (Sap)' - 2eSapSaV + (Sap)' + (1 - e')p\

in which o and a are given and generally non-parallel unit-lines, while e and

C are scalar constants, as capable of representing generally (comp. 360, (2.),

(3.)) a central but non-conical surface {fp = 1) of the second order. And we

shall find that if, in passing from one such surface to another, we suppose

a and a to remain unchanged, but e and C to vary together, so as to be always

connected by the relation,

lI...C={e'- l)(e + ^aa')l\

in which I is some real, positive, and given scakr, then all the surfaces

I. so deduced, or in other words the surfaces represented by the common
equation,

TTT n - rr (S°/»)' " 2eSapSa> + (Sa'p)' + (1 - e')p»
ill. ..I =ljp ^________

,

with e for the only variable parameter, compose a Confocal System.

(1.) The scalarform III. of ,;^ gives the connected vectorform,

IV Pv = PAn = "S(a - ea)p + (/S{a - ea)p + (1 - e*)p
^^

{e'- 1) {e + Saa')

• Or the difference, according to the choice between two opposite directions, for one of the two
fociil lines. The angular transformation XXXVII. may be accomplished, by resolving the equation
XXXV. as a quadratic in e, and then interpreting the result.
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whicli may also be thus written, with the value II. of C,

Y. . . Cv = C(j>p = (a - ea)Sap + {a - ea)Sap + (1 - e')/o,

so that the function ^ is self-conjugate, as it ought to be.

(2.) And because we have thus,

VI. . . {e^- 1) P<l>a = a- ea, (r - Ij />a' = a - ea,

if we write, for abridgment,

VII. . .a'=ie+l) l\ b'={e + Saa)P, c" = {e - \)l\

we shall have the values,'

10

(a + a) =-a-^(a + a),

ipYaa' = - b-'Yaa',

<P
(o - a) = — C~'{a — a) ;

comparing which with 405, (1.), (2.), we see that the three (real or imaginary)

lines,

IX. . . «U(a + aO, bVYaa', cU(a - a'),

of any one of which the direction may be reversed, are the three vector

semiaxes of the surfaces fp = 1\ and therefore, by VII., that the system III.

is one of confocak, as asserted.

(3.) The rectangular transformations, scalar and vector, are now (comp.

405, X., and 357, V. VIII.)

:

^ ;a /v (SpU(a + a)y
,

(SpUVaaQ' (SpU(a - aQ)'
.

'^

e + I e + iSaa e - 1

U(a - gQ . SpU(« - gQ
+ _-

;

which can both be established, by the rules of the present Calculus, in several

other ways, and from the first of which it follows that (as is well known)

through any proposed point p of space there can in general be drawn three

confocal surfaces, of a given system III. ; one an ellipsoid, for which e > 1,
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and therefore a' > J' > c** > ; another a single-sheeted ht/perholoid, for which

e < 1, e> - Saa', a? > ¥ > (i > c^ \ and the third a double-sheeted hyperboloid^

for which e < - Saa', e > - 1, a^ > d > V^ > c^.

(4.) From the other rectangular transformation XI. it follows, that if

we denote by vi =
<f>ip what the normal vector v = ^p becomes, when p

remains the same, but e is changed to a second root Ci of the equation III.

or X. of the surface, considered as a cubic in e, then

XII. . . ^^^-^ = P<j>vi = P<piv = P(pi<pp = l*(f)<pip ;

but
XIII. . . Spvi = 8pv = fip =fp = l,

f,p being formed from^, by the substitution of e^ for e ; therefore,

XIV. . . = SptjiVi = Svi^/o = Sviv,

and the known theorem results, that confocal surfaces cut each other

orthogonally.*

(5.) It follows, from V. and VI., that the inverse function <j)~^p can be

expressed as follows

:

XV. . . (}>-'p = P{aSap + a'Sap) - b'p
;

or that p may be deduced from v by the formula,

XVI. . . p = ip-'v = /'(aSa'v + aSav) - fi'i;,

which can easily be otherwise established. Hence (comp. 361, (4.)), tlie

equation of the surface reciprocal to the surface I. or III., or of that new

surface which has v (instead of p) for its variable vector, is

XVII. . . 1 = i?V = Sv^-^i; = 2/^SavSa'i/ - b'v'
;

the fzed focal lines a, a of the confocal system III., or of the corresponding

system of the asymptotic cones, becoming thus (in agreement with known
results) the fxed cyclic normals (or cyclic lines, comp. 361, (6,)) of the

recipi'ocal system XVII.

• We shall soon see that the same formula XII., by expressing that p, fi, and <f>yi or <f>iv are

eomplanar, contains this other pari of the known theorem referred to, that the intersection is a line of
curvature, on each of the two eot\focals. [Compare 410, (12.).]
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(6.) In thus deducing the equation XYII. from III., no use has been

made of the rectangular transformations X. XI., of the functions fp and 0p.

Without the transformations last referred to, we could therefore have

inferred, by a slight modification of the form XYII., that the reciprocal

surface {Fv = 1) with v for its variable vector, which has the same rectangular

system of directions for its three semiaxes as the original surface [fp = 1), but

with inverse squares (the roots of its cubic) equal to the direct squares of the

original semiaxes, has for equation (comp. 405, XII.),

XVIII. . .l = Fv = l\Savav - ev') = SXvfiv + gv\

if

XIX. . . X = /a, n = la, g = -el' = - eTXfi

;

the values VII. of «', b'', & being thus deduced anew^ but by a process quite

different from that employed in (2.), under the forms (comp. 405, XIII.),

XX. . . a* = C3 = - 5' + TX/u ; 6* = c^ = - ^r + SX/t ; c* = ^ = - ^r - TXjti

;

while the directions IX. of the corresponding semiaxes may be deduced as

those of as, oj, oi, from the formulae 405, XIV.

(7.) If the symbol w (v), or simply wv, be used to denote a new linear and

self-conjugate vector function of v, defined by the equation,

XXI. . . ti)v = pSpv — P{a^av + o'Sav),

with p here treated as a vector constant, then (because S/ov = 1) the equation

XVI. may be thus written (comp. 354, &c.),

XXII.. . (a> + J^)v = 0;

the three rectangular directions^ of the three normals v, vi, vz to the three

confocals through p, are therefore those which satisfy (comp. again 354) the

vector quadratic equation,

XXIII. . . Vvwi; = 0;

and they are the directions of the axes of this new surface of the second order

(comp. 357, &c.),

XXIV. . . Svtuv = {SpvY - 2PSav8a'v = 1,

in which p is still treated as a constant vector, but v as a variable one.

(8.) The inverse squares of the scalar semiaxes of this netc surface {SviDv = l)

are the direct squares 6% bi^, b-^ of what may be called the mean semiaxes of
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the three confocak ; these latter squares must therefore be the roots of this

new cubic,

XXV. . . = w + mT + m''{b'Y + (6')^

m which the coefficients m, m\ m'\ deduced here from the new function w,

as they were deduced from <p in tlie Section III. ii. 6, have the vahies,

(m =l'{Saa'py',

XXVI. . . Jm' = l\Yaay + 2rS(Vap .VaV) ;

W' = /o— 2PSaa\

Accordingly, if we observe that (because To = Ta = 1) we have among

others the transformation,

XXVII. . . {Saa'pY = p'iYaay - {SapY - 2Saa'BapSa'p - (Sa»^

we can express this last cubic equation XXV., with these values XXVI. of

its coefficients, under the form,

XXVIII. . . = (6^ + p') [{b' - PSaa'Y - I'}

+ 2l\¥ - PSaa')SapSa'p - I'dSapY + (Sa»»)
;

which, when we change b^ by VII. to its value P{e h- 8aa), and divide by /*,

becomes the cubic in e, or the equation III. under the form,

XXIX. . . = (e^ - 1) [P{e + SaaO + p'} + 2eSapSa'p - {SapY - (Sa»\

(9.) As an additional test of the consistenctj of this whole theory and

method, the directions of the three axes of the new surface XXIV., or those

of the three normals (7.) to the confocals, or the three vector roots (354) of

the equation XXIII., ought to admit of being assigned by three expressions

of the forms,

nv = t/zo- + b''~)(a + b*(T,

XXX . . . - WiVi = \p<Ti + bi^-)((Ti + Ji*<7i,

,«2V2 = \p(T2 + ^2^x<T2 + bi^Oi ;

in whicli i', 6,^ bi^ are the three scalar roots of the cubic XXV. or XXVIII.,

while <r, (Ti, aj are three arbitrary vectors ; «, Wj, n^ are three scalar coefficients,

which can be determined by the conditions Spv = ^pvi = Spvo = 1 (comp.

XIII.) ; and ;//, ^ are two new auxiliary linear and vector functions, to be

deduced here from the function w, in the same manner as they were deduced

from in the Section lately referred to.
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(10.) Accordingly, by the method of that Section, taking for convenience

the given* vector p (instead of tlie arbitrary vectors o-, ai, a^ as the subject

of the operations t// and x> we find the expressions,

XXXI. . . \pp = l*^YaaSaap, XP = ^'(aSo'/a + a Sap - 2|oSao') ;

whence, after a few reductions, with elimination of n by the relation Spv = 1,

and by the cubic in 6% the first equation XXX. becomes

:

XXXII. . . = {b\ + p) \{b' - I'SaaJ -I*]

+ r{b^ - rSaa) {aSap + a'Sap) - l*{aSap + aSa'p)
;

which is in fact a form of the relation between v and /o, for any one of the

confocals, as appears (for instance) by again changing b^ to P{e + Saa'), and

comparing with the equation IV.

(11.) Another and a more interesting auxiliary surface, of which the axes

have still the directions of the normals v, is found by inverting the new linear

function w, or by forniing from XXII. the inverse equation^

. , . , XXXIIl. . . (w-^ + 6-») v = ;

in which, ^ ' '

XXXIV. . . w~'v . {SaapY = Vaa'Saa'v + t^{YapSapv + YapSupv)
;

and from which it follows that the normah v to the confocals through p have

the directions of the axes of this new cone,

XXXV. . . Sva>-'v = 0, or XXXVI. . . = l^Saavf + 2SapvSa'pv,

with p treated as a constant, as before.

(12.) The vertex of this auxiliary cone being placed at the given point p,

of intersection of the three confocals, we may inquire in what curve is the

cone cut, by the jo/«we of the given /oca^ linesy a, a, drawn through the common

centre o of all the surfaces III. Denoting by a - ta + t'a the vector of a

point s of this sought section, and writing

XXXVII. ..v = <J-p = ta + t'a - p,

tlie equation XXXVI. gives the relation,

XXXVIII. . .tt' = ^-^^ "^-^ = const.

;

*• The general expressions for ipff and x***
include terms, which Tanish when <r - p.

Hamilton's Elements of Quaternions, Vol. II. 2 D
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the section is therefore an hyperbola, which is independent of the point p, and

has the focal lines of the system for its asymptotes. And because its vector

equation may be thus written (comp. 371, II.),

XXXIX. . . (T = ifa + hPtr'a'y

or what may be called its quaternion equation as follows (comp. 371, I.),

it satisfies the two scalar equations,

XLI. . .m = 0, m' = 0,

with the significations XXYI. of m and »/ ; it is therefore that important

curve, which is known by the name of the Focal Hyperbola :* namely the

limit to which the section of the confocal surface by the plane of its extreme^

axes tends, when the mean axis (26) tends to vanish. We are then led thus to

the known theorem, that if, tcifh any assumed point t for vertex, and with the

focal hyperbola% for base, a cone be constructed, the axes of this focal cone have

the directions of the normals to the confocals through p.

(13.) As regards the Focal Ellipse, its two scalar equations may be

deduced from the rectangular form X., by equating to zero both tlie

numerator and the denominator of its last term ; they are therefore,

XLII. . . S (a - «0p = 0, 21' = (SpU(a + a'))' + f^P^J^fY;
\ fe ^ aa J

the curve being thus given as a perpendicular section of an elliptic cylinder,

with ly^2 and I'/i). + Saa'), or («* - c^)^ and {b"^ - c^)^, for the semiaxes of

its base, or of the ellipse itself.

(14.) The same curve may also be represented by the equations,

XLIII. . . Sap = Sa>, TYap = (i^ - ^)\
or

XLIir. . . SaV = Sap, TYa> = (i' - c^)*

;

* Compare the Notes to pages 240, vol. i., and 17, vol. ii.

t Namely, those two of which the squares algebraically include between them that of the third

;

this latter being, for the same reason, considered here as the menu.

X "We shall soon see that quaternions give, with equal ease, a more general known theorem, in

which this ia included as a limit. [Compare 408, (13,), page 214.]
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which express that it is the common intersection of its own plane {A. a - a)

with two right cylinders* which have the two focal lines a, a of the system

for their axes of revolution, ^nd have equal radii, denoted each by the radical

last written.

(15.) In general, the unifocalform (oomp. 406, (13.)) of the equation III.,

namely,

XLIY. . . = (1 - e») {{YapY + b') + (S(a' - ea)p)\

in which a and a may be interchanged, shows that the two equal right

cylinders,

XLV. . . (Yap)' + 5' = 0, XLV. . . (Va'pY + 6' = 0,

or

XLVI. . . TYap « b, XLYI'. . . TVa> = b,

which are real if their common radius b be such, that is, if the confocal (e) be

either an ellipsoid (supposed to be real), or else a single-sheeted hyperboloid,

and which have the focal lines a, a of the system for their axes of revolution,

envelope^ that confocal surface ; the planes of the two ellipses of contact (which

again are real curves, if b be real) being given by the equations,

XLVII. . . S(a' - ea)p = 0, XLVir. . . S(a - ea')p = ;

80 that they pass through the centre o of the surface (or of the system), and

are the (real) director planes (comp. 406, (14.)) of the asymptotic cone (real or

imaginary), to the particular confocal (e).

(16.) Whether the mean semiaxis [b] be real or imaginary, the surface

III. (supposed to be itself real) is always, by the form XLIY. of its

equation, the locus of a system of real ellipses (oomp. 404, (1.)), in planes

parallel to the director plane XLYII., which have their centres on the focal

line a, and are orthogonally projected into circles on a plane perpendicular to

that line.

(17.) The same surface is also the locus of a second system of such ellipses,

related similarly to the second focal line a, and to the second director

* The reader may consult page 513 of the Lectures, for the case of this theorem which answers to

a given ellipsoid. The focal ellipse may also be represented generally by the expression (comp. page

417, Vol. i., of these Elementt^),

p=(a«-c«)iV.a'U(a+a');

or by the same expression, witli o and a interchanged,

t Compare pages 202, 236, 241, 315, vol. i.

2 13 2
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plane XLVII'. ; and it appears that ihese two systems of elliptic sections of

a surface of the second order, which from some points of view are nearly

as interesting as the circular sections^ may conveniently be called its Centro-

Focal Ellipses.

(18.) For example, when the first quaternion form (204, (14.), or 404, I.)

of the equation of the ellipsoid is employed, one system of such ellipses

coincides with the system (204, (13.)) of which, in Hclq first generation* of the

surface, the ellipsoid was treated as the locus ; and an analogous generation

of the two hyperholoids, by geometrical deformation of two corresponding

surfaces of revolution, with certain resulting homologies (comp. sub-arts, to

274), through substitution of {centro-focal) ellipses for circles, conducts to

equations of those hyperboloids of the same unifocalform ; namely, if a and j3

have significations analogous to those in the cited equation of the ellipsoid

(so that /3 and not a is here dt, focal line),

the upper or the lower sign being taken, according as the surface consists of

one sheet or of two.

(19.) It may also be remarked that as, by changing /3 to a in the

corresponding equation of the ellipsoid, we could return (comp. 404, (1.))

to a form (403, XI.) of the equation of the sphere, so the same change in

* Besides that first generation (I) of the Ellipsoid, which was a double one, in the sense that a

second system (17.) of generating ellipses might he employed, and which seiTed to connect the surface

with a concentric sphere, hy certain relations of homology (274) ; and the second doubU generation or

construction (II), by means of either of two diacentric spheres (217, (4.), (6.), (7.), and 220, (3.)),

which was illustrated hy fig. 53 (page 234, vol. i., and page 184, vol. ii.) : several other generations

of the same important surface were deduced from quaternions in the Lectures to which it is only

possible here to refer. A reader, then, who happens to have a copy of that earlier work, may consult

page 499 for a generation (III) of a system of two reciprocal ellipsoids, with a common mean axis {2b),

by means of a moving sphere, of which the radius (= b) is given, but of which the centre has tlie

original ellipsoid for its locus ; while the corresponding point on tlie reciprocal surface, and also the

normals at the two points, are easily deduced from the construction. In page 502, he will find

another and perhaps a simpler generation (IV), of the same pair of reciprocal ellipsoids, by means of

quadrilaterals inscribed in a fixed sphere (the common mean sphere, comp. 216, (10.)) ; the directions of

the four sides of such a quadrilateral being given, and one pair of opposite sides intersecting in a point

of one surface, while the other pair have for their intersection the corresponding point of the other (or

reciprocal) ellipsoid. In the page last cited, and in the following page, there is given a new double

generation (V) of any one ellipsoid ; its circular sections (of either system) being constructed as

intersections of two equal spheres (or spheric surfaces), of which the line of centres retains a. fixed
direction, while the splteres slide within ttco equal and right cylinders, whose axes intersect each other
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XLYIII. conducts to equations of the equilateral hyperholoids of revolution^

of one sheet and of two, under the very simple forms* (comp. 210, XI.),

XLIX. . . S f^Y= - 1, and L. . . S f^Y= + 1

;

in which it seems unnecessary to insert points after the signs S, and of which

the geometrical interpretations become obvious when then they are written

thus (comp. 199, V.),

LL . .T^ = v/6eo2f^-z^Y LII. . . T^ = ^sec 2 .i ^
;

where T - = op : oa, while z. - is the inclination aop of the semidiameter op
a a

If Q , ...
to the axis of revolution oa, and -- L- is the inclination of the same

z a

semidiameter to a plane perpendicular to that axis.

(20.) The real cyclic forms of the equation of the surface III. might be

deduced from the unifocal form XLIV., by the general method of the

sub-articles to 359 ; but since we have ready tlie rectangular form X., it is

simpler to obtain them from that form, with the help of the identity,

LIII. . . - p* = (S/>U(a + a')Y + {^pJJYaaJ + (S/»U(« - a'))»,

by eliminating the first of these three terms for the case of a single-sheeted

(in the centre of the generated surface), and of which the eotnmon raditu is the tnean semiaxia {b).

Finally, in page 699 of the same volume, there will bo found a netc generation (VI) of the original

ellipsoid (abc), analogous to the generation (IV) by the Jixed (mean) sphere, but with netv directions of

the sides of the quadrilaterals, which are also (in this last generation) inscribed in the circles of a

certain mean ellipsoid (or prolate spheroid) of revolution, which lias the mean axis (2A) for its major

axis, and has two medialfoci on that axis, whose common distatue from the centre is represented by
the expression,

\J{a^ - b^) V(«' - g")

V{a^-bi +c2)

the common tangent planes, to this mean (or medial) ellipsoid, and to the given (or generated) ellipsoid

[abc), which are parallel to their common axis (2J), being parallel also to the two umbilicar diameters

of the latter surface.

* The same forms, but with a- for p, and j3 for a, may be deduced from XLVIII. on the plan of

274, (2.), (4.), by assuming an auxiliary vector <r such that S - = ± S -, and V - = V -
; the

p a /3 j8

homologies, above alluded to, between the general hyperboloid of either species, and the equilateral

hyperboloid of revolution of the same species, admitting also thus ot being easily exhibited.
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hyperholoid (for which h~^ > a~^ > > c~^) ; the second for an ellipsoid

(c~' > b~^ > a"^ > 0) ; and the third for a double-sheeted hyperbohid

(a-* > > c"' > b-^).

(21.) Whatever the species of the surface III. may "be, we can always

derive from the unifocal form XLIY. of its equation what may be called

an Exponential Transformation ; namely the vector expression,

LIV. . .p = xa + yYa'(i, with LY. . . x'fa + f/TJYaa = 1
;

the scalar exponent, t, remaining arbitrary, but the two scalar coefficients,

X and y, being connected by this last equation of tlie second degree : provided

that the new constant vector /3 be derived from a, a, and e, by the formula,

(g^ - Ca)UYaa'
ijVi. . . p =

i. ,—

,

e + baa

which gives after a few reductions (comp. the expression 315, III. for a',

when Ta = 1),

LYII. . . Ya^ = UYaa', S (a' - ea)^ = 0, Saa'/S = ;

LYIII. . . Ya*/3 = j3S . a< + UYaa'. S . a'"^

;

LIX. . . Y. dYa^jS = a'UYaa' = TU ;

LX. . . S {a - ea)p = x{e + Sua), Yap = ya'TIYaa
;

LXI. . ./a = a-'b'c-\ and LXII. . .//3 =/UYaa = b-\

while

(22.) If we treat the exponent, t, as the only variable in the expression

LIY. for p, then (comp. 314, (2.)) that exponential expression represents

what we have called (17.) a centro-focal ellipse ; the distance of its centre

(or of its plane) from the centre of the surface, measured along the focal

line a, being represented by the coefficient x ; and the radius of the right

cylinder, of which tlie ellipse is a section, or the radius of the circle (16.)

into which that ellipse is projected, on a plane JL a, being represented by

the other coefficient, y : while ^trr is the excentric anomaly.

(23.) If, on the contrary, we treat the exptonent t as given, but the

coefficients r and y as varying together, so as to satisfy the equation LY.
of the second degree, the expression LIY. then represents a different section
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of the surface III., made by a plane through the line a, which makes with

t-K .

ihe focal plane (of a, a) an angle = -^ ; this latter section (like the former)

being always real, if the surface itself be such : but being an ellipse for an

ellipsoid, and an hyperbola for either hyperboloid, because

LXIII. . .fa ./UVaa' = fl-V by LXI. and LXII.'

(24.) And it is scarcely necessary to remark, that by interchanging

a and a we obtain a Second Exponential Transfonnation, connected with

the second system (17.) of centro-focal ellipses, as tlie first exponential trans-

formation LIV. is connected with the ^rs^ system (16.).

(25.) The asymptotic cone fp = has likewise its two systems of centro-

focal ellipses, and its equation admits in like manner of two exponential

transforniations, of the form LIV. ; the only difference being, tliat the

equation LV. is replaced by the following,

LXIV. . . x'fa + yyUVaa' = 0,

in which, for a real cone, the coeflBcieuts of a?* and y* have opposite signs

by (23.).

(26.) Finally, as regards the confocal relation of the surfaces III., which

may represent any confocal system of surfaces of the second order, it may
be perceived from (4.) that an essential character of sucli a relation is

expressed by the equation,

LXV. . .Vv,0i;, = Vv0,v;

which may perhaps be called, on that account, the Equation of Confocals.

(27.) It is understood that the tico confocal surfaces here considered, are

represented by the two scalar equations,

LXYI. . . Sp^p = 1, ^p<i>,p
= \, or LXVr. ../p = l, //o = 1

;

and that the two linear and vector functions, v and v^, of an arbitral^ vector p,

whicli represent normals to the two concentric and similar and similarly

posited surfaces,

LXVII. . . fp = const., f/> = const.,

passing through any proposed point p, are expressed as follows,

LXVIII. . . V = <(>p, Vj = (^^p.
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(28.) It is understood also, that the two surfaces LXYI. or LXVI'.

are not only concentric, as their equations show, but also coaxal, so far as

the directions of their axes are concerned : or that the two vector quadratics

(comp. 354),

LXIX. . . Ypcpp = 0, and LXX. . . Yp,^^p = 0,

are satisfied by one common system of three rectangular unit lines. And with

these understandings, it will be found that the equation LXV., which has

been called above the Equation of Confocals, is not only necessary but

sufficient, for the establishment of the relation required.

(29.) It is worth while however to observe, before closing the present

series of sub-articles, that the equations XII., and tliose formed from them

by introducing e^ and V2, give the following among other relations

:

LXXI. . ./Uv, = [b' - b,Y = -f,\Jv ; fJSv^ = {b,' - b,-)-' = - f.Vvy ; &c.

;

LXXII. . ./(vi, Va) =/i(i'2, v) =fi{v, Vi) = ;

and[therefore,

LXXIII. . .A{[b,' - h^)^J]v2 ± [by' - b'fVv] = ;

whence it is easy to see that the two vectors under the functional sign /i in

this last expression have the directions of generating lines of the single-

sheeted hyperboloid (ci) through p, if we suppose that b^ > bi^ > > ¥, so

that the confocal [e^] is here an ellipsoid, and (e) a double-sheeted hyperboloid.

(30.) But if a be taken to denote the variable vector of the auxiliary

surface XXIV., the equation of that surface may by (7.) and (8.) be

brought to the following rectangular form, with the meaning XXI. of to,

LXXIV. . . 1 = S<Ta»<T = {^paY - 2P^aa^a'a = b^^tyVvf

+ b,\^aJ]v,Y + b^\^<TJ]v,y
;

hence, with the inequalities (29.), its cyclic normals, or those of its asymptotic

cone So-too- = 0, or the focal lines of the reciprocal cone So-w'^o- = 0, that is of

the cone XXXVI., or finally the /<?ca^ lines of the focal* cone (12.), which

rests on the focal hyperbola, have the directions of the lines LXXIII. ; those

focal lines are therefore (by what has just been seen) the generating lines of the

hyperboloid [ei), which passes through the given point p.

(31.) And for an arbitrary a we have the transformation,

LXXV. . . l-\^pay - SaaaV = e(SaUv)' + e,{^a\5v,Y + ^^(SaUva)'.

A more general known theorem, including this, will soon be proved by quaternions [page 213],

'
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408. The general equation* of conjugation^

l...f{p,p') = l, 405,1X1.

connecting the vectors p, p' of any two points p, p' which are conjugate with

respect to the central but non-conical surface fp = 1, may be called for tliat

reason the Equation of Conjugate Points ; while the analogous equation,

II.../(/>,/)=0,

which replaces the former for the case of the asymptotic cone fp = 0, may be

called by contrast the Equation of Conjugate Directions : in fact, it is satisfied

by any two coujugate semidiameters, as may be at once inferred from the

differential equation f{p, Ap) = of the surface^ = const, (comp. 362). Each

of these two formulae admits of numerous applications, among which we

shall here consider the deduction, and some of the transformations, of the

Equation of a Circumscribed Cone,

III. ..(/fp,pO-l)' = (/p-l)(/p-l);

which may also be considered as the Condition of Contact, of the right line pp'

with the surface fp = 1,

(1.) In this last view, the equation III. may be at once deduced, as the

condition of equal roots in the scalar and quadratic equation (comp. 216, (2.),

and 316, (30.)),

or

IV. . . =f{xp + x'p') -{x + xy,

V. . . = x^fp - 1) + 2xx'ifip, pO - 1) -f x'^ifp' - 1)

;

which gives in general the two vectors of intersection, as the two values of the

xp + x'p'
expression f-

•

^ X + X

For the notation used, Art. 362 may be again referred to. [On page 650, vol. i., are printed

the formulae

f{p> P) =f{p\ p) = ^P<Pp' = Sp>/>,

and

/(/>. p) =fp,

which sufficiently explain the notation employed.]

Hamilton's Elkmbnts of Quaternions, Vol. II.
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(2.) If we treat the point p' as given^ and denote the two secants drawn

from it in any given direction t by ^fV and 4~V, then t^ and 4 are the roots

of this other quadratic, /(p' + ^V) = 1, or

VI. . . =f{tp' + r)-t^ = t\fp' - 1) + ^f{p\ r) +fr ;

denoting then by to'^r the harmonic mean of these two secants, so that

2^0 = ti + fz, and writing p = p' + to'W, we have

YIL . . t,{l -fp') =f{p\ r), f{p, p> 1
;

we are then led in this way to the formula I., as the Equation of the Polar

Plane of the point p', if that plane be here supposed to be defined by its

well-known harmonic property (comp. 215, (16.), and 316, (31.), (32.)).

(3.) At the same time we obtain this otherform of the condition of contact

III., as that of equal roots in VI.,

VIII... /(/,r)^=/r. (//-]),

the first member being an abridgment of [f[p, T)f : and because this last

equation VIII. is homogeneous with respect to r, it represents a cone, namely

the Cone of Tangents (r) to the given surface fp = \, from the given point p'.

Accordingly it is easy to prove that the equation III. may be thus written,

IK. . .f{p\ p
- p'Y == f{p - p') . {fp^ -I),

under wliich last form it is seen to be homogeneous with respect to p - p'.

(4.) Without expressly introducing r, the transformation IX. shows that

the equation III. represents some cone, with the given point p' for its vertex

;

and because the intersection of this cone with the given surface is expressed by

the square of the equation I. of the polar plane of that point, the cone must

be (as above stated) circumscribed to the surface fp = 1, touching it along the

curve (real or imaginary) in which that surface is cut by that plane I.

(5.) Another important transformation, or set of transformations, of the

equation III. may be obtained as follows. In general, for any two vectors

p and p\ if the scalar constant m, the vector function xp, and the scalar

function F, be derived from the linear and vector function (p, which is

here self-conjugate (405), by the method of the Section III. ii. 6, we have

successively,

X. . .f{p, py - fp . fp' = Spi,p\ Sp>p - Spcl>p . SpV = S {Ypp\Y<l>p<l>p')

= S . pp^xpYpp = mS . ppi^'^Ypp' = mFYpp ;
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and thus the equation III. of the circumscribed cone becomes,

XI. . . mFYpp +/{p - p) = 0, or XII. . . mFYrp +/r = 0,

if T = p - p' he a tangent from p'. Or because ^;// = m^ and m = - CiCjCs

= - a-^'h-^cr^, by 406, XXIV., we may write (with t = p - p) either

XIII. . . = Sn/z-V + Su0-^v, if V = Nrp = Yppy
or

XIY. . . FYpp = a'iV/(/o - p'),

as the condition of contact of the line pp' with the surfacefp = 1.*

(6.) A geometrical interpretation, of this last form XIV. of that condition^

can easily be assigned as follows. Supposing at first for simplicity that the

surface is an ellipsoid, let p be the point of contact, so that//o = 1, /(/(>> '") = ;

and let the tangent pp' be taken equal to the parallel semidiameter ot, so

that/r =f{p-p) = 1. Then, with the signification XIII! of u, the equation

XIV. becomes,

XV. . . ^/Fv = Tv . ^FVv = abc
;

in which the factor Tu represents the area of the parallelogram under the

conjugate semidiameters op, ot of the given surface fp = l; while the other

factor -v/i^Ui; represents the reciprocal of the semidiameter of the reciprocal

surface Fv = I, which is perpendicular to their plane pot ; or the perpen-

dicular distance between that plane, and a parallel plane which touches the

given ellipsoid: so that tlieir product '>/Fv is equal, by elementary principles,

to the product of the three semiaxes, as stated in the formula XV. And
the result may easily be extended by squaring, to other central surfaces.

(7.) It may be remarked in passing, that if p, <t, t be any three conjugate

semidimneters of any central surface //a = 1, so that

XVI. ../p = A=/r^I, and XVII. . ./(/c, cr) =/(<7, r) =/(r,p) = 0,

• [The constituents of these auxiliary vectors v and t correspond to Pliicker's six coordinates of a

right line. A scalar equation of the type f{y, t) = represents a complex of right lines provided the

relation is independent of the absolute magnitudes of the tensors of v and t. The lines of the complex

which pass tlirough the extremity of a given vector p lie on the cone/(VTp', t) = 0, t being variable.

Moreover, if SAp = 1, Sx'p = 1 are the equations of any pair of planes through the right line (u, t),

and if we take the new auxiliary vectors t\ = \ - \' and ui = Vaa', it is easy to prove that n = xv

and v\ = XT, X being a scalar. Thus we may replace i; and t by n and vi respectively in the equation

of the complex, and we have /(n, v\) = or f{r\, Vti\') = 0. The second of these equations \ihen
\' is regarded as known, and n as variable represents the r?ciprocal of the cone whose vertex is at

the origin and which is touched by the lines of the complex which lie in the arbitrary plane Sa'^ =1.]

2£2



212 ELEMENTS OF QUATERNION'S. [III. ra. § 7.

and if xp + ya + 2r be any other semidiameter of the same surface, we have

then the scalar equation,

XYIII. . .f{xp + y<T + st) = «' + 2/' + 2' = 1

;

a relation between the coeflS.cients, x, //, s, which has been already noticed

for the ellipsoid in 99, (2.), and in 402, I., and is indeed deducible for that

surface, from principles of real scalars and real vectors alone : but in extending

which to the hyperholoids, one at least of those three coefficients becomes

imaginary^ as well as one at least of the three vectors p, a, r,

(8.) Under the same conditions XYI. XYII., we have also,

XIX. . . V/o(T = ± abc^T = ± (- m)~^^T
;

XX. . . r = ± (- m)i(j)~^Yp(T = + (- m)~W<j>p(}KT
;

XXI. . . SptTT = ± abc = ± (- ni)~i
;

together with this very simple relation,

XXII. . . ^p<TT . ^(pp(j)(J(pT = - 1.

(9.) Under the same conditions, if xp + ya + zt and x'p + y'a + %t have

only conjugate directions, that is, if they have the directions of any two

conjugate semidiameters, the six scalar coefficients must satisfy (comp. II.)

the equation,

XXIII. , .xx' -^ yy + zz' = 0.

(10.) The equation VIII., with p for p\ may be written under the form,

XXIV. . . = S<TT = Sroir, if XXV. , . (7 = wr = ^pS/tx^r + 0r(l -/p),

= a new linear and vector function, which represents a normal to the cone of

tangents from p, to the surface //o = 1. Inverting this last function, we find

VWT -1
^"^ff - /oSpcr

JLAVi. . . T = (u '(T = —= 2^'^—
;I- fp

the equation in a of the reciprocal cone, or of the com of normals to the

circumscribed cone from p, is therefore,

XXVII. . . %aio-'a = 0, or XXVIII. . . F<t = {Spaf,
or finally

XXVIir. .,F{<t: Spa) = 1

;

a remarkably simple formy which admits also of a simple interpretation. In
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fact, the line a : S/oo- is the reciprocal of the perpendicular, from the centre o,

on a tangent plane to the cone, which is also a tangent plane to the surface ; it

is therefore one of the values of the vector v (comp. (6.), and 373, (21.)), and

consequently it is a semidiameter of the reciprocal surface Fv = 1.

(11.) As an application of the equation XXYIII., let the surface be

the confocal (e), represented bj the equation 407, III. or X., of which the

reciprocal is represented by 407, XYII. or XYIII. Substituting for Fa its

value thus deduced, the equation of the reciprocal cone (10.), with a for a side,

becomes,*
XXIX. . . 2rSaaSaV - (Spa)^ = 5V,

or

XXIX'. . . SaaaV - t^^paY = ea' ;

if then the vertex p be fixed, but the confocal vary, by a change of e, or of 6'

which varies with it, the cone XXIX. will also vary, but will belong to a

hiconcyclic system ; whence it follows that the {direct or) circumscribed cones

from a given point are all hiconfocal: and also, by 407, (30.), that their

common focal lines are the generating lines of the confocal hyperboloidf of one

sheet, which passes tlirough their common vertex.

(12.) Changing e to e^ in XXIX'., and using the transformation 407,

LXXV., with the identity (comp. 407, LIII.),

- <T* = (SdUv)^ + (SaUvi) + (SaUi;.)',

we find that if <t be a normal to the cone of tangents from p to (ej, it satisfies

the equation,

XXX. . . = (e - {SaVvY + {e, - ej (ScrUvO' + {e^ - (SaUv^)^

;

and therefore that if t be a tangent from the same point p, to the same

confocal (ej, it satisfies this other condition,

XXXI. . . = (e - ej-i (SrUv)^ + {e, - e^ {SrVv^f + {e, - e^ (SrUr^)',

which thus is a form of the equation of the circumscribed cone to (ej, with its

vertex at a given point p : the confocal character (11.) of all such cones being

hereby exhibited anew.

It may be observed that, when 6 = 0, this equation XXIX. represents the ymptotie cone

the auxiliary iurface 407, XXIV. ; and at the same time the reciprocal of that focal cone, 407,

XXXVI., which rests on \he focal hyperbola.

t This theorem (which includes that of 407, (30.)) is cited from Jacobi, and is proved, in page

143 of Dr. Sahnon's Treatise, referred to in several former Notes.
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(13.) It follows also from XXXI., that the axes of every cone thus

circumscribed have the directions of the normals v, vi, vj to the three confocah

through p; and this known theorem* may be otherwise deduced, from the

Equation of Confocah (407, LXV.), by our general method, as follows. That

equation gives

v^- v\\ ^,v (because 0v^ = ^^v), and therefore,

XXXII. . . (v, - v) ^vv, = 0,v {fp - 1), Nvv^^vv, + Nv^jv (1 -fp) = ;

changing then Y to S, and v to r, we see that v, vi, vj, as being the roots

(354) of this last vector quadratic XXXII., have the directions of the axes of

the cone, with r for side,

XXXIII. . .fXp, Tf -f/r
.
(1 -fp) = 0;

that is, by VIII., the directions of the axes of the cone of tangents^ from p

to (0.

(14.) As an application of the formula XIY., with the abridged symbols

T and V of (5.) for p - p' and V/t)/>', the condition of contact of the line pp' with

the confocal (e) becomes, by the expressions 407, III., XVIII., and VII. for

the functions/, F, and the squares a*, b^, c% the following quadratic in e :

XXXIV. . . {SarY - 2^SarSa'r + (SaV)' + (1 - e^y = ^^(Saua'u - ev')
;

there are therefore in general (as is known) two confocah^ say {e) and (ej, of

a given system^ which touch a given right line ; and their parameters,f e and e^,

are the two roots of the last equation : for instance, their sum is given by the

formula,

XXXV. . . {e + ey = l-'v' - 2SarSaV.

(15.) Conceive then that p is a given semidiameter of a given confocal [e],

and that dp is a tangent, given in direction, at its extremity ; the equation

XXXIV. will then of course be satisfiedjj if we change r to dp, and u to

Ypdp, retaining the given value of e ; but it will also be satisfied, for the same

* Compare the third Note to page 202

t This name of parameter is here given, as in 407, to the arbitrary constant e = -, of which

the value distinguishes one confocal («) of a system from another.

X In fact it follows easily from the transformations (5.), that

fp ./dp - a-H-^er'F\piip = /(p, d/>)-



Abt. 408.] CONFOCAL SYSTEM OF CONES. 215

p and djo (or for the same r and v), when we change e to this new parameter,

XXXYI. . .e^ = -e + 2SaUdp . Sa'Udp - r-(VpVdpy
;

that is to say, the new confocal {e^), with a parameter determined by this last

formula, will touch the given tangent to the given confocal {e).

(16.) If we at once make P = in the equation 407, III. of a Confocal

System of Central Surfaces, leaving the parameter e finite, we fall back on the

system 406, XXXY. of Biconfocal Cones ; but if we conceive that T only

tends to zero, and that e at the same time tends to positive infinity, in such a

manner that their product tends to ix. finite limit, r^, or that

XXXVII. . . lim . ^ = 0, lim . e = 00 , lim . el^ = r\

then the equation of the surface [e) tends to this limiting form,

XXXVIII. . . p^ + r* = 0, or XXXVIII'. . . Tp = r
;

a system, of biconfocal cones is therefore to be combined with a system of

concentric spheres, in order to make up a complete confocal si/stem.

(17.) Accordingly, any given right line pp' is in general touched hy only

one cone of the system just referred to, namely by that particular cone {e), for

which (comp. XXXIV.) we have the value,

XXXIX. . .e = 8ava'v-\ or XXXIX'. . .e + Saa' = 2SavSa'v-\

with V = Ypp\ as before, so that v is perpendicular to the given plane opp',

which contains the vertex and the line ; in fact, the reciprocals of the biconfocal

cones 406, XXXV., when a, a are treated as given unit lines, but e as a variable

parameter, compose the biconcyclic* system (comp. 407, XVIII.),

XTi. . . Sava'v = ev^.

But, besides the tangent cone thus found, there is a tangent sphere with the

same centre o ; of which, by passing to the limits XXXVII., the radius r

may be found from the same formula XXXIV. to be,

r p- p

and such is in fact an expression (comp. 316, L.) for the length of the

perpendicular from the origin on the given line pp'.

* The bifocaljorm o tne equation of this reciprocal system of cones XL. was given in 406, XXV.?

hut with other constants (\, fi, g), connected with the cyclic form (406, I.) of the equation of the

given system.
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(18.) In general, the equation XXXIV. is a form of the equation of the

cone, with p for its variable vector, which has a given vertex p', and is

circumscribed to a given confocal (e). Accordingly, by making e = - Saa in

that formula, we are led (after a few reductions, comp. 407, XXVII.) to an

equation which may be thus written,

XLII. . . = PiQaa'rY + 2Sa/rSaVT,

with the variable side r = p - p\ as before ; and which differs only by the

substitution of p' and r for p and v, from the equation 407, XXXVI. for

that focal cone, which rests on the focal hyperbola. The other (real) focal cone

which has the same arbitrary vertex p', but rests on Volq focal ellipse, has for

equation,

XLIII. . . /2(S(a - a')Ty = Saua'u - v\

as is found by changing <? to 1 in the same formula XXXIV.
(19.) It is however simpler, or at least it gives more symmetric results, to

change e^ in XXXI. to - Saa' for the focal hyperbola, and to + 1 for the

focal ellipse, in order to obtain the two real focal cones with p for vertex,

which rest on those two curves ; while that third and wholly imaginary focal

cone, which has the same vertex, but rests on the known imaginary focal

curve, in the plane of b and c, is found by changing ^^ to - 1. This imaginary

focal cone, and the two real ones which rest as above on the hyperbola and

ellipse respectively, may thus be represented by the"three equations,

XLIV. . . = «-^(SrUv)^ + flx-^(SrDr:)^ + ^^-^(SrTJva)* ;

XLV. . . = b-^^rVvY + ir'(SrUvO' + b,-\^T\5v,y
;

XLVI. . . = c-^(SrUv)^ + cr'(SrUvi)' + cr-(SrUv2)»

;

r being in each case a side of the cone, and v, vi, Vi having the same

significations as before.

(20.) On the other hand, if we place the vertex of a circumscribed cone at

a point p of o. focal curve, real or imaginary, the enveloped surface being the

confocal [e), we find first, by XXX., for the reciprocal cones, or cones of

normals a, with the same order of succession as in (19.)» ^^^ three equations,

XLVII. . . a\^^JvaY = «/ ;

XLVIII. . . J'(SUv«t)* = V;
XLIX. ..c'(SUv(r)'= c/;
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and next, for the circumscribed cones themselves, or cones of tangents r, the

connected equations

:

L. . . a'iYTJvrY + «/ = ;

LI. .. b'(VVvTy + b; = 0;

LII. . .c'{TUvTy + c/ = Oi

all which have the /onus of equations of cones of revolution, but on the

geometrical meanings of the three last of which it may be worth while to

say a few words.

(21.) The cone L. has an imaginary vertex, and is always «Vs^^ imaginary ;

but the two other cones, LI. and LII., have each a real vertex p, with 6" > for

the first, and c' < for the second ; b being the mean semiaxis of the ellipsoid,

which passes tlirough a given point of the focal hyperbola, and c^ being the

negative and algebraically least square of a scalar semiaxis of the double-

sheeted hyperboloid, which passes through a given point of the focal ellipse :

while, in each case, v has the direction of the normal to the surface, which is

also the tangent to the curve at that point, and is at tlie same time the axis of

revolution of the cone.

(22.) The semiangles of the two last cones, LI. and LII., have for their

respective sines the two quotients,

LIII. .,b^:b, and LIY. . . (- c/)i : (- c^*

;

each of those two cones is therefore real, if circumscribed to a single-sheeted

hyperboloid, because, for such an enveloped surface (ej, b^ is real, and less

than the b of any confocal ellipsoid, while c^ is imaginary, and its square is

algebraically greater (or nearer to zero) than tlie square of the imaginary

semiaxis c of every double-sheeted hyperboloid, of the same confocal system
;

but the cone LI. is imaginary, if the enveloped surface (ej be either an

hyperboloid of two sheets {b^ imaginary), or an exterior ellipsoid [b^ > b)
;

and the other cone LII. is imaginary, if the surface [e)) be either any

ellipsoid {c^ real), or else an exterior and f/owi/e-sheeted hyperboloid

{aj- < a% c/ < c^, -(?/>- c^). Accordingly it is known that the focal

hyperbola, which is the locus of the vertex of the cone LI., lies entirely

inside every rfo»6/e-sheeted hyperboloid of the system ; while the focal

ellipse, which is in like manuer the locus of the vertex of the cone LII., is

interior to every ellipsoid : and real tangents to a s?Vj<7/e-sheeted hyperboloid

can be drawn, from every real point of space.

Hamilton's Elements of Quaternions, Vol. II. 2 F
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(23.) The twelve points (whereof only four at most can be real), in which
a surface (e) or (abc) is cut by the three focal curves, are called the Umbilics
of that surface

; the vectors, say w, w„ w^^, of three sucli umbilics, in the
respective planes of ca, ab, be, are

:

LV. ..o) =|(a + a')+|(a-a');

LVI (U = «(«+_aO y^^Ygg^

" '
' 1 - Saa' 1 - Sao' '

LVII bj = ^^" ~ "'^
_ y/- l^Vag'

" 1 + Saa' 1 + Saa' '

and the others can be formed from these, by changing the signs of the terms,
or of some of them. The four real umbilics of an ellipsoid are given by the
formula LV., and those of a double-sheeted hyperboloid by LVI., with the
changes of sign just mentioned.

(24.) In transforming expressions of this sort, it is useful to observe that
the expressions for the squares of the semiaxes,

a' = P{e^l), b' = P{e + 8aa'), c' = l^{e - 1), 407, VIL
combined with Ta = Ta' = 1, give not only a^ ~ c' = 2/^ but also,

LVIII. . . T 1±-^' = ILzM - cos i /
^' - ^^' - ^'t

TJX T °~°' /I + ^''f^' • 1 a fb"" - c*\*

and _ _ f

LX.
. . TVaa' = y(l - [^aaj) = sin Z - = t-^a" - b^ {b'-(^]i,

with the verification, that because

LXI. . . (a - a') (a + a') = 2Yaa',
therefore

LXr. . . T(a - a') . T(a + a') = 2TVa«'.

We have also the relations,

LXII.
. . T(a + a')-' + T(a - a)"' = (TVaa')-'

;

LXIII.
. . T(a + a')-' - T(a - a')-' = -^aa'. (TVaa')"';

with others easily deduced.
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(25.) The expression LV. conducts to the following among other con-

sequences, which all admit of elementary verifications,* and may be

illustrated by the annexed fig. 84. Let u, u' be the two real points in

which an ellipsoid [abc) is cut by one branch

of the focal hyperbola, with h for summit,

and with r for its interior focus ; the adjacent

major summit of the surface being e, and r,

r' being (as in the figure) the adjacent points

of intersection of the same surface with the

focal lines o, o', that is, with the asymptotes

to the hyperbola. Let also v, t be the points

in which the same asymptotes a, d meet the

tangent to the hyperbola at u, or the normal

to the ellipsoid at that real umbilio, of which we may suppose that the vector

ou is the w of the formula LV. ; and let s be the foot of the perpendicular

on this normal to the surface, or tangent tv to the curve, let fall from the

centre o. Then, besides the obvious values,

LXIV. . . 8i = «, 8? = (a^ - c')i, 8i = (a^ - 6^)i,

and the obvious relations, that the intercept tv is bisected at u, and that the

point F is at once a summit of the focal ellipse, and a focus of that otlier

ellipse in which the surface is cut by the plane {ac) of the figure, we shall

have these vector expressions (comp. 371, (3.), and 407, VIII. LXI.) :

LXV. . . OV = (rt + c)a, OT = (a - c)a\ TV = a[a - a) + c[a. + a) ;

LXVI. . . su-^ = ^o; = - Y (a + a') - 2" (" ~ "')» su = - flfc : TU ;

LXVII. . . OR = —- = fli-'ro, or' = —-TT, = ab-^ca ;

whence follow by (24.) these other values,

LXVIII. . . ov - o + c, OT = a - c, tv = 26
;

LXIX. . . Tu = uv = 6, su = OR = or' = alr^c ;

LXX. . . ou = Ta> = (a^ - 6^ + e)^
;

LXXI. . . OS = (a* - 6^ + c^ - a^h-'^c'-f = b-'{a' - h'f {b' - c^)l

* Some such verifications were given in the lectures, pages 691, 692, in connexion with fig. 102

of that former volume, which answered in several respects to the present fig. 84.

2 F 2

.
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(26.) It follows that the lengths of the sides ov, ot, tv of the umhilicar

triangle tov are equal to the sum and difference (a ± c) of the extreme semiaxes,

and to the mean axis {2b) of the ellipsoid ; while the area of that triangle

= OS . TU = {a^ - b^)^ {b^ - c^)^ - the rectangle under the two semiaxes of the

hyperbola, if both be treated as real. The length (T^w)"S or su, or the

perpendicular from the centre o, on the tangent plane at an umbilic u, is ab'^c ;

and the sphere concentric with the ellipsoid, which touches the four umbilicar

tangent planes, passes through the points r, r' of intersection of that ellipsoid

with the focal lines a, a, that is, as before, with the asymptotes to the

hyperbola ; or, by (21.) (22.), with the axes of the two circumscribed right

cylinders.* And finally the length, say «, of the umbilicar semidiameter ou,

is given by the formula,

LXII. . .e^a'-b' + c';

all which agrees (25.) with known results.

(27.) An umbilic of a surface of the second order may be otherwise

defined (comp. (23.)), as a real or imaginary point at which the tangent

plane is parallel to a cyclic plane ; and accordingly it is easy to prove (comp.

407, (20.)) that the umbilicar normal (pu) in LXVI. has the direction of a

cyclic normal. To employ this known property in verification of the recent

expressions (25.), (26.), for the lengths of ou and su, it is only necessary to

observe that the common radius of the diametral and circular sections of the

ellipsoid is the mean semiaxis b (comp. 216, (7.) (9.), &c.) ; and that, by a

slight extension of the analysis in (7.), (8.), (9.), it can be shown that if p, a, r

and p\ <t', / be any two systems of three conjugate semidiameters of any central

surface, fp = 1, then

LXXIII. . . p'' + a'' + t'' = p^ + (7^ + t\

and
LXXIV. . . {^p'a'r'f = [^parf.

• Compare 218, (6.), and 220, (4.) ; in which the points b, b' (comp. also fig. 53, p. 234, vol. i.

[and p. 184, vol. ii.]) may now be conceived to coincide with the points r, r' of the new figure 84.

It is obvious that the theory of circumscribed cylinders is included in that of circumscribed cones; so

that the cylinder circumscribed to the confocal (e), with its generating lines parallel to a given (real

or imaginary) semidiameter 7 of that surface {fy = 1), may be represented (comp. III. XIV.) by the

equation,

III'. . ./{p, yY =fp-'^; or XIV'. . . F\yp = aU^c^
;

with interpretations easily deduced, from principles already established.
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(28.) A less elementary verification of the value LXXII. of u', but one

which is useful for other purposes, may be obtained from either the oubio

in 6', or that in e, assigned in 407, (8.). For if Jo% W, W be the roots of

the former oubio, and Cq, e^ Ci the roots of the latter, inspection of those

equations shows at once that we have generally,

LXXV. . . - |o' = V + Ji' + h^ - 2l'8aa' = P{eo + €: + €, + Saa') ;

or

LXXYI. . . OP* =V = ao' + ft»» + ca' = V + c.» + a^' = &c.,

where the semiaxes a„, bi, Cj belong to the three confooals through any

proposed point p. Making then,

LXXYII. . . flo' = a\ b,' = 0, c,» = c' - b\

we recover the expression assigned above, for the square of the length u of

an umhilicar semidiameter of an ellipsoid.

(29.) For any central surface, the principle (27.) shows that if X, ju be,

as in 405, (5.), &o., tlie tico real cyclic normals, and if g be the real scalar

associated with them as before, then the vectors of the four real umbilica

(if such exist) must admit of being thus expressed

:

liXXVlII. . . ± ip-'\ : ,/FX = ± abc {gVX + fxTX) ;

LXXIX. . . ± ^"V : yFn = ± abc {gV^i + XT^)

;

and thus we see anew, that an hyperboloid with one sheet has (as is well

known) no real umbilic, because for that surface the product abc of the

semiaxes is imaginary ; or because it has no real tangent plane parallel to

either of its two real planes of circular section.

(30.) Of whatever species the surface may be, the three umbilicar rectors

(23.), of which only one at most can be real, with the particular signs there

given, but which have the forms of lines in the three principal planes, must

be conceived, in virtue of their expressions LV. LVI. LYII., to terminate on

an imaginary right line, of which the vector equation is,

- a (/+ 1) y-. b{e' + 8aa') ^ c{e'-\)
IjAiLA.. . . /o = ;

—

', -/ - i ^T—7— + r ;

a + a Yao a ~ a

e being a scalar variable, which receives the three values, - Saa', + 1, and - 1,

when p comes to coincide with w, w^, and w^, respectively. And such an

imaginary right line, which is easily proved to satisfy, for all values of the
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variable e', both the rectangular and the bifocal forms of the equation of the

surface (e), or to be (in an imaginary sense) wholly contained upon that

surface, may be called an Umhilicar Generatrix.

(31.) There are in general eight such generatrices of any central surface

of the second order, whereof each connects three timbilics, in the three

principal planes, ttco passing through each of the twelve umbilicar points

(23.) ; and because e'"^ disappears from the square of the expression LXXX.
for p, which square reduces itself to the following,

LXXXI. . .p^ = -P (2/ + e + Saa') = - 5^ - 2/V,

they may be said to be the eight generating lines through the/owr imaginary

points, in which the surface meets the circle at infinity.

(32.) In general, from the cubics in e and in h"^, or from either of them,

it may be without difficulty inferred (comp. (28.)), that the eight intersections

(real or imaginary) of any three confocals (co) {ei) {e^ have their vectors p

represented by the formula :

T XXXII = - ^0^1^'
. v^- 1 ^o<^t^2 (^oC^Ci

/^(o + a')~ PYaa' "/'(a-a')'

comparing which with the vector expression LXXX., we see that the three

confocals, through the point determined by that former expression, for any

given value of e', are (e), (e'), and {e') again; and therefore that two of the

three confocal surfaces through any point of an umhilicar generatrix (30.)

coincide : a result which gives in a new way (comp. LXXV.) the expression

LXXXI. for p\

(33.) The locus of all such generatrices, for all the confocals [e] of the

system, is a certain ruled surface, of which the doubly variable vector may be

thus expressed, as a function of the two scalar variables, e and e' :

LXXXIII ' = ±^(^+l)^(^'+l) y^lie + ^aafie'-^^aa)

a + a
~

Yaa

l{e^ine-l)
,

a - a

and because we have thus, for any one set of signs, the diferential relation,

LXXXIV. . . Depey e = ^D,', p., .',

it follows that this ruled locus is a Developable Surface : its edge of regression
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being that wholly maginart/ curve, of whicli the rector is pe, e, and which is

therefore by [32.) the locus of all the imaginary points, through each of which

pass three coincident confoeals.

(34.) The onlij real part of this imaginary developable consists of the tico

realfocal curves, which are double lines upon it, as are also the imaginary focal,

and the circle at infinity (31.) ; and the scalar equation of the same imaginary

surface, obtained by elimination of the two arbitrary scalars e and e\ is found

to be of the eighth degree, namely the following

:

LXXXV.

'0 = SmV + 2Sw(w - n)x^y'^ + S(j3" - 6mn)x*y*

+ 2S(3m' - np)xYz' + 2l>m\n-p)x' + 2^m{mp - dn')xY

+ 2{m - u) {n -J)) (p - m)x^yh^ + '2.m^{m''' - 6n]))x*

+ 2 'S.mn{mn - 3p^)x^y^ + 2'2,m''np(j) - n)x'^ + m^n^p^
;

in which we have written, for abridgment,

LXXXVI. ..x = - SpV{a + a), y = - SpUVan', Z = - SpV{a - a'},

""^^ LXXXYII. . . wi = 6- - c\ n = c'- a\ p = a' - h\

so that

LXXXYIII. . .m + M+^ = 0;

while each sign S indicates a sum of three or of six terms, obtained by

cyclical or binary* interchanges.

(35.) From the manner in which the equation of this imaginary surface

(33.) or (34.) has been deduced, we easily see by (32.) that it has the double

property : I.st of being (comp. (20.)) the locus of the vertices of all the (real

or imaginary) right cones, which can be circumscribed to the confoeals of the

system ; and Il.nd of being at the same time the common envelope of all those

confoeals : which envelope accordingly is known to be a developable'^ surface.

* When xyz and abe are cyclicallij changed to yzx and bca, then mnp are similarly changed to

npm ; but when, for instance, retaining x and a unchanged, we make only binary interchanges of y, z,

and of b, c, we then change m, n, and^, to - >», —p, and — n respectively.

t This theorem is given, for instance, in page 157 [Art. 221] of the several times already cited

Treatise by Dr. Salmon, who also mentions the double lines &c. upon tlie surface ; but the present

writer does not yet know whether the theory above given, of the eight umbilicar generatrices, has

been anticipated : the locus (33.) of which imaginary right lines (30.) is here represented by the vector

equation LXXXIII., from which the scalar equation LXXXV. has been above deduced (34.), and
ought to be found to agree (notation excepted) with the known coordinate equation of the developable

envelope (35.) of a confocal system.
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(36.) The eight imaginanj lines (31.) will come to be mentioned again, in

connexion with the lines of curvature of a surface of the second order* ; and

before closing the present series of sub-articles, it may be remarked that the

equation in (15.), for the determination of the second confocal (ej which touches

a given tangent, dp or pp', to a given surface (e) of tlie same system, will soon

appear under a new form, in connexion with that theory of geodetic lines, on

Surfaces of the second order, to which we next proceed.

f

* [Compare the sub-articles to 410, page 235.]

t [Although repetition is unavoidable, it seems well to supplement Arts. 407 and 408 by a few

examples on the use of the general equation of confocals Sp(* + w)-'p = - 1, in which —(* + «)

replaces the ^"^ of 407, XV., so that u — b^ is constant. The vector zj to the pole of the plane

S\p = 1, with respect to the quadric u is given by (* + m)-'st = -\orCT=-{* + u)\. The locus

of poles of the plane is thus a right line normal to the plane, and the distance between any pair

of poles is T{zj - zj') = (?/ — u)T\ = {b"^ — b'^)p'^, p being the central perpendicular on the plane, and

b and b' the mean semiaxes of the quadrics. The plane touches one quadric of the system whose

parameter mo is given by Sa(* + uo)\ = - 1, this being the condition that the corresponding pole

should lie in the plane. The vector to the point of contact is sr = - A"^(S + V) ( + mo)A.> or, by the

condition, za = \-^ - \-^ Va*a..

If in this equation we replace \ by xK where a: is a variable scalar, we see at once that the locus

of points of contact of a system of parallel planes is a rectangular hyperboloid, and if we replace

A by (\ + xK') (1 4 x)-^, we find the locus of the points of contact of planes through a given line to

be a twisted cubic. In this case also the locus of poles of the planes is a hyperbolic paraboloid

p = — ( + m) (\ 4 x\') (1 4 x)'^, since the form of the equation shows that it is the locus of lines

dividing the line loci for any two of the planes in the same ratio.

If Ml, M2, and Ms are the parameters of the three confocals which pass through the extremity of a

given vector a, and vi, n, and ys the corresponding vectors of proximity, — a = (* + tti)vi = (* 4 ki)v2

= (* 4 ti3)i/3, and Savi = Sav2 = So;'3 = 1. Combining the three expressions for a, we deduce

UiSyivi 4 S»'2*>'i = Svi^vz 4 M2S»'ii'2, so Srivz = 0, since Mi is not equal to M2, or the surfaces cut at

right angles. Again (* 4 «<i) (I'l — V2) = (»<2 — ui)vi, and on inversion i/i — va = (m2 — mi) (* 4 mi)-'»'2.

Operating on this by Svs, we see that vz and V3 as well as being at right angles are conjugate

with respect to the quadric mi, and therefore parallel to the principal axes of the section of that

quadric made by Spvi = ; operating by Sn'^, we find — 1 = — (mi — M2)Sv3"'(* 4 mi)"'»'2 =

4 (mi — «2)SUi'2(* 4 ui)-^JJv2, 80 the lengths of these semiaxes are (?<i — M2)* and (mi - M3)*,

respectively.

Introducing a new linear vector function analogous to that of 407, (7.), and defined by the

equation ©p = *p 4 oSop, we see on refeiTing to the relations between a, vi, vi, and vs that

(e 4 Mi)»'l = (0 4 «2)»'2 =(0 4 U3)V3 = 0,

80 the Teeters of proximity at a are the solutions of this new function and the parameters of the

surfaces are the corresponding roots. This again proves the surfaces cut at right angles, for © is

self-conjugate, and its solutions are consequently mutually rectangular.

If S\p = 1 is any plane through the extremity of a, the equation sj = — ( 4 w)\ which

determines its pole with respect to the quadric m, may be replaced by x - a = - (© 4 «)A, because

8Aa =1. If the pole is in the plane, zj — a is at right angles to A, and we determine at once the

parameter of the touched quadric u and the point of contact by operating on A by — ©, and then

resolving the vector obtained in and normal to the given plane. Setting off from a the component

in the plane we get the point of contact, while the parameter of the quadric is the ratio which the

component normal to the plane bears to the vector A.

In this case also we have S (cr - a) (©4 «)"' (w - o) = for the equation of the tangent cone

from the point a to the surface m, and the form of the equation shows that the tangent cones are

confocal, so that the quadrics appear to cut at right angles as well as actually doing so. Also the
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409. A general theory of geodetic lines, as treated by quaternions,

was given in the Fifth Section (III. iii. 5) of the present Chapter ;

and was illustrated by applications to several different families of sur-

faces. We can only here spare room for applying the same theory

to the deduction, in a new way, of a few known but principal properties

of geodetics on central surfaces of the second order ; the differential

common principal axes of the system are along the normals at o for these are the solutions

of Yv0v = 0. Eeplacing cr - a by a given vector r, we have St(0 + m)-'t = to determine the two

quadrics which the line touches. If \ and \' are the vectors of proximity to the points of contact as

before, we have the vectors from a to the points of contact given by t = - (0 + tt)\, and

t' = - (e + u')\', u and m' being roots of the quadratics, and t being parallel to t'. But \ and \' are

normal to the corresponding cones, hence we see Sk&\' = as well as Sa\' = 0. We may also write

T = - a-'Va0A, and this, coupled with the condition S\a = 1, detennines the locus of the points of

contact, A being supposed to vary consistently with the condition.

Another method of treatment is often useful. Any quadric may be derived from a sphere by

operating on its vector radii by a self-conjugate linear vector fimction which is however real only

when the quadric is an ellipsoid (Tail's Quaternions, Third Edition, page 207.)

It is obvious that if we can determine a self-conjugate linear vector function d so that 6' = <p, we
may write Sp^p = - 1 in the form (dp)' = - I or Bp = ri, where Ttj = 1. Even in the more general

case when ^ is not self- conjugate but expressible in the form <pp = {aaSfiyp + bfiSyap + cySafip)

(Safiy)'^, any one of the eight functions given by dp = (+ yaaSfiyp ± \/b0Syap ± \/ cySa^p)

(Saj87)-', satisfies the condition B"^ = <p. It is evident that all functions of this type or of the type

{(p + ?<)2 are commutative in order of operation. More generally it can be shown that two functions

are commutative in order of operation when and only when their vector solutions are parallel, a

condition obviously tme for the functions to be considered. We may consequently use the vector

equation p = (* + u)in, where Ttj = 1 as the equation of a confoeal system, for tj' = ((* + «)"'/»)*

= Sp(* + m)-^ = - 1. Points on two confocals derived from the same point on a unit sphere are

called corresponding points, and it is easy to show in this notation if p and q on one confoeal

con-espond respectively to v' and o.' on another that pq' = qp'.

Now three confocals pass through a given point. We have thus three different expressions for a

vector p = (* -r ui)^ni = (* + Uij^rn = (* + M3)*tjs, »?nj2»>3 being certain unit vectors, and mi, mj,

and m being ihe parameters of the confocals through p. The form of these equations suggests the

new expression

p = [( + Ml) ( + Ui) ( + M3)]'«,

and substituting this for p in Sp(» + mi)-^ = - 1, the result is Se(* + Ms) (* + ws)* = - 1. This

must be satisfied for aU values of u> and M3, so we see e is one of eight imaginary vectors constant for

the whole system, and satisfying e- = 0, Se*« = 0, and Se*'^6 = - 1. For a value of e satisfying

these equations, and for suitable choice of the three parameters p may be made the vector to any

point in space ; if one parameter is given p describes the corresponding quadric, and if two of the

parameters are assigned, p describes the curve of intersection of the quadrics determined by lh( m.

This notation is suitable for investigating the properties of the umbilical generators. When
M3 = M2, we have p = (* + w^) (* + ui)K which represents a right line of a simply infinite system

when Ml is given and ?<2 variable. If for the moment t = (* + Mi)*e, we deduce from tlie properties

of e, t'* = St(* + uiY^r = 0, and St*t = - 1, and from these it appears that the line is a generator of

the quadric passing through one of the points in which the asymptotic cone intersects the circle at

infinity (408, (30.)). Again (33.) if t = f(M2-Mi) the equation of one of these lines becomes

P= (^ + 't~) (* + "i)'«» showing that they belong to a developable whose cuspidal edge ia

p = (4 4- u)ff, the locus of points through each of which pass three coincident confocals,]

Uamu.ton's JElbmbnts of Quaternions, Vol. II. * Gr
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equation employed being one of those formerly used, namely (comp.

380, IV.),

I. . . Yvd'p = 0, if II. . . Td/) = const.

;

that is, if the arc of the geodetic be made the independent variable.

(1.) In general, for any surface, of which v is a normal vector, so that

the first differential equation of the surface is Svd/o = 0, the second differential

equation dSi/d/o = gives, by I., for a geodetic on that surface, the expression,

III. . . dV = - v->Sdvd/>.

(2.) Again, the surface fp = const, being still quite general, if we write

(comp. 363, X'., 373, III., &c.),

IV. . . d//> = 2Si/dp = 2S^/od/o, we shall have V. . . d/dp = 2S(0dp . d^)

;

and therefore, by III., for a geodetic,

bdpa^p <pp

(3.) For a central surface of the second order, <pp is a linear function, and

we may write (comp. 361, IV.),

VII. . . ^d/o = d^p = dv, 8dpd<f>p = ^dp<pdp = fdp ;

the general differential equation VI. becomes therefore here,

VIIL..^ + 2S^ = 0;
fdp V

and gives, by a first integration, with the condition II.,

IX. . . v'fdp = hdp% or IX'. . . Tv'fVdp = A = const.

;

or

X. . . P-'D'' = h, or X'. . . P . i) = A~* = const.

;

where
P = Tv~* = perpendicular from centre on tangent plane,

and

D = (/Udp)"^ = semidiameter parallel to tangent
;

these two last quantities being treated as scalars, whereof the latter may be

real or imaginary,* together with the last scalar constant A"*.

• For the case of the elliptoid, for which the product P . 2) is necessarily real, the foregoing

deduction, by quaternions, of Joachimstal's celebrated first integral, P . D ^ const., was given

(in substance) in page 680 of the Lectures.
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(4.) The following is a quite different way of accomplishing a first

integration, which conducts to another known result of not less interest,

although rather of a graphic than of a metric kind. Operating on the

equation 407, XYI. by S . dp, and remembering that S/ov = 1, and Si;d/o = 0,

we obtain the differential equation,

XI. . . SpvS/od/o = /''(Sa'vSad/o + SavSa'djo)
;

that is, by I. and II.,

XII. . . S/)d|0 . SpdV - p'SdpdV = /M(Sad/> . Sa'dp),

in which the first member, like the second, is an exact differential, because

XIII. . . S(V/>dp .V/t>d» = id(V/)dp)'

;

hence, for the geodetic,

XIV. . . /"HV/od/o)^ - 2SadpSa'dp = h'^p\

or

XV. . . 2SaTJd|0 . Sa'Ud/o - /-^(V/oUdp)^ = h\

H being a new scalar constant.

(5.) Comparing this last equation with the formula 408, XXXVI., we

find that the new constant // is tlie sw;w, e + e^, of what have been above

called the parameters* of the given surface [e) on which the geodetic is traced,

and of the confocal [e) which touches a given tangent to that curve : whence

follows the knownf theorem, that the tangents to a geodetic^ on any central

surface of the second order, all touch one common confocal.X

(6.) The new constant e> h' - e) may, by 407, LXXV. and 408, LXXV.
(with e for Co), be thus transformed :

XVI. . .€, = €,[TYVv^Apf + e^{T^Vv2^pY

= ei(SUv2d/o)^ + ei{^'\JvApf = const.

;

where ei, Cz are the parameters of the two confocals through the point p of

the geodetic on (e), and ri, vz are as before the normals at that point, to

those two surfaces (ci), (^2).

* Compare the second Note to page 214.

t Discovered by M. Chasles.

X This touched confocal becomes a sphere, when the given confocal is a cone. Compare 380, (5.),

and 408, (16.), (17.) ; also the Note to page 31.

202
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(7.) In fact, the two equations last cited give the general transformation,

XVII. . . n(Vp(Ty - 2Sa(TSaV = e(V(TVvY + e,{YaJJv,y + €^(VcTUv^y
;

a being an arbitrary/ vector, which may for instance be replaced by dp.

Equating then this last expression to {e + eJa^ or to e{Y(T'\Jvy - ^^To-", since

Sva = 0, we obtain the first and therefore also the second transformation

XVI., because the three normals vviV2 compose a rectangular system (comp.

407, (4.), &c.).

(8.) It is, however, simpler to deduce the second expression XVI. from

the equation 408, XXXI. of the cone of tangents from p to (ej, by changing

T to Udp ; and then if we write

XVIII. . . e>i = Z ^
,

Vi

so that Vi denotes the angle at which the geodetic crosses the normal vi to (gj),

considered as a tangent to the given surface (e), the first integral XVI. takes

the form,*

XIX. . . e^ = Ci sin* Vi + e^ cos* Vi,

or

XX. . . «/ = «!* sin* Vi + a^ cos* Vi, &c.

;

in which the constant a^ is the primary semiaxis of the touched con-

focal (5.).

(9.) Without supposing that Td|0 is constant, we miay investigate as

follows the differential of th6 real scalar h in IX. or X., or of the product

P"* . 2)"*, for any cui-ve on a central surface of the second order. Leaving at

first the mrface arbitrary, as in (1.) and (2,), and resolving d*/o in the three

rectangular directions of v, d/o, and vd/o, we get the general expression,

XXI. . . d*,o = - ir'Sdi^d/o + d/o-^SdpdV + (vd/o)-'Si;dpd*p
;

of which, under the conditions I. and II., the two last terms vanish, as in

III. Without assuming those conditions, if we now introduce the relations

* Under thia form XX., the integral is easily seen to coincide with that of M. Liouville,

/i4* cos' » + v* sin'^ t = /n'^ = const.,

cit«d in page 290 of Dr. Salmon's Treatise.
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VII. which belong to a central surface of the second order, we have by V.

and IX. the expressioTi,*

XXII. ..^dh. dp' = v'Sdvd'p + SvdvMvdp

- //SdpdV = Svdvdp-' . Svdpd%
or

XXIil. . . d/i = d . v'Sdvdp-' = d . P-'ir = 2Svdvdp-^Si;d|o-'dV ;

or finally,

XXIY. . . dA . dp* = 2Svdi;d|t> . SvdpdV,

the scalar variable with respect to which the differentiations are performed

being here entirely arbitrary.

(10.) For a geodetic line on awy surface, referred thus to ant/ scalar variable^

we have by 380, II. the differential equation,

XXV. . . Svdpd'p = ;

and therefore by XXIV., for such a line on a central surface of the second

order, we have again, as in (3.),

XXVI. . . dA = 0, or XXVr. . . A = const.,

with h = p-'jy as in X.

(11.) But we now see, by XXIV., that for such a surface the condition

XXVI. is satisfied, not only by this diferential equation of the second order

XXV. but also by this other differential equation,

XXVII. . . Svdvd/o = ;

the product P-'^D'^ (or FD itself) is therefore constant, not only as in (3.) for

every geodetic on the surface, but also for every curve of another set,f represented

by this last equation XXVII., which is only of the Jirst order, and the

geometrical meaning of which we next propose to consider.

* In deducing this expression, it is to be remembered tbat

dSdvdp = d/dp = 2SdydV ;

in fact, the linear and self-conjugate form oiv = <pp gives,

Sdpd^i/ =/(dp, dV) = SdvdV-

[The second part of the transformation in XXII. may be effected by replacing d*p in the term

j/^SdydV by the value given in XXL]
t Namely, the lines of curvature, as is known, and as will presently be proved by qu&temion*.
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410. In general, if v and v + Av have the directions of the normals to

any surface, at the extremities of the vectors p and p + A/o, the condition of

intersection (or parallelism) of these two normals is, rigorously,

I. . . Si^AvAp = ;

the differential equation* of what are called the Lines of Curvature, on an

arbitrary surface, is therefore (comp. 409, XXYIL),

II. . . Svdvdp = ;

from which we are now to deduce a few general consequences, together with

some that are peculiar to surfaces of the second order.

(1.) The differential equation of the surface being, as usual,

III. . . Svd|a = 0,

the normal vector v is generally some function of p, although not generally

. linear, because the surface is as yet arbitrary : its differential dv is therefore

generally some function of p and Ap, whicli is linear relatively to the latter.

And if, attending only to the dependence of di/ on d|0, we write

IV. . . dv = ^dp,

it results from what has been already proved (363), that this linear and vector

function ^ is at the same time self-conjugate.

(2.) Denoting then by r « tangent f pt to a line of curvature, drawn at

the given extremity p of p, we see that the vector t must satisfy the two

following scalar equations, in which v is supposed to be given,

V. . .SvT = 0, and VI. . . Svr0r = j

this tangent r admits therefore (355) of ttvo real and rectangular directions,

but not in general of more : opposite directions being not here counted as

• In this equation II., dp and dv are two simultaneous differentials, -which may (according to the

theory of the present Chapter, and of the one preceding it) be at pleasure regarded, either as tu>o

finite right lines, whereof dp is (rigorously) tangential to the surface, and to the line of curvature ; or

else OS two infinitely small vectors, dp being, on this latter plan, an infinitesimal chord Ap. (Compare

pages 97, 431, vol. i., and pages 4, 174, and the Notes to pages 170, 179, vol. ii.) The treatment of

the equations is the satne, in these two views, whereof one may appear clearer to some readers, and

the other view to others.

t This symbol t is used here partly for abridgment, and partly that ihe reader may not be

obliged to interpret dp as denoting & finite tangent, although the principles of this work allow him so

to interpret it.
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dktinct. Hence, as is indeed well known, through each point of any surface

there pass generally two lines of curvature : and these two curves intersect each

other at right angles.

(3.) A construction for the two rectangular directions of r can easily be

assigned as follows. Assuming, as we may, that the length of the tangent r

varies with its direction, according to the law,

VII. . . Sr^r = 1,

which gives

YIII. . .S(0r.dr) = O,

or briefly

Ylir. . . S0rdr = 0,

by the properties above-mentioned of <j> ; and remembering that v is treated

as a constant in V., so that we may write,

IX. . . Si/dr = 0, and therefore (by YI.), X. . . Srdr = ;*

we see that, under the condition of the question, the above-mentioned length

Tr, of this tangential vector r, is a maximum or minimum : and therefore that

the two directions sought are those of the two axes of the plane conic Y. YII.,

which has its centre at the given point p of the surface, and is in the tangent

plane at that point.

(4.) This plane conic Y. YII. may be called the Index Curve, for the

given surface at the given point p ; in fact it is easily proved to coincide, if

we abstract from mere dimensions, with the known indicatrix (la courbe

indicatrice) of Dupin,t who first pointed out the coincidence (3.) of the

directions of its axes, with those of the lines of curvature ; and also

established a more general relation of conjugation between two tangents to

a surface at one point, which exists when they have the directions of any

two conjugate semidiameters of that curve : so that the lines of curvature

are distinguished by this characteristic property, that the tangent to each is

perpendicular to its conjugate.

(5.) In our notations, this relation of conjugation between two tangents

T, T, which satisfy as such the equations,

Y. . . Svr = 0, and Y'. . . Sv/ = 0,

* [Since dr
||
Ycprv by VIII. and IX.]

t Leveloppementa de Giometrie (Pans, 1813), pages 48, 145, &c.
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is expressed by the formula,

XI. . . Sr^/ = 0, or XI'. . . Sr>r = ;

we have therefore the parallelisms,*

XII. . . r
II
Yi;^/, Xir. . . /

II Yv^r ;

so that the equation YI. may be written under the very simple form,

XIII. . . Sr/ = 0,

which gives at once the rectanguhrity lately mentioned.

(6.) The parallelism XII^ may be otherwise expressed by saying

(oomp. (4.)) that

XIY. . . d/o and Yvdv

have the directions of conjugate tangents ; or that the two vectors,

XY. . . Ap and Yi/Ai/,

have ultimately such directions, when TAp diminislies indefinitely. But

whatever may be this length of the chord Ap, the vector YvAv has the

direction of the line of intersection of the two tangent planes to the surface,

drawn at its two extremities : another theorem of Dupinf is therefore

reproduced, namely, that if a developable be circumscribed to any stcrface,

along any proposed curve thereon, the generating lines of this developable are

everywhere conjugate, as tangents to the surface, to the corresponding tangents

to the curve, with the recent definition (4.) of such conjugation.

* The conjugate character of these two parallelisms, or the relatiiion,

V. y<ttYi'<f>T II
T, if Srr = 0,

may easily be deduced from the aelf-eotyugate property of <p, with the help of the formula 348, VII.,

in page 490, vol. i. [The equation cited becomes for present purposes <pYt><t>T = Yi/'in-.]

t Dupin proved^>-s< {Bev. de Geometrie, pp. 43, 44, &c.), that two such tangents as are described

in the text have a relation of reciprocity to each other, on which account he called them " tangente*

eonjugtties" : and afterwards he gave a sort of Imaye, or constrttctiort, of this relation and of others

onnected with it, by means of the curve which he named '^ I'iruiioatriee" (in liia already cited

page 48, &c.).



AuT. 41 O.J INDEX CURVE AND SURFACE, CONJUGATE TANGENTS. 238

(7.) The following is a very simple mode of proving by quaternions,

that if a tangent r satisfies the equation YI., then the rectangular tangent^

XVI. . . / = VT,

satisfies the same equation. For this purpose we have only to observe, that

the self-conjugate property of ^ gives, by VI. and XVI.,

XYII. . . = Sr>r = Src^/ = v^^vr'i^r'.

(8.) Anotlier way of exhibiting, by quaternions, tlie mutual rectangularity

of the lines of curvature, is by employing (comp. 307, I.) the self-conjugate

form,

XYIII. . .<j>r = gT + YXrfi ;

in which tlie vectors X, /n, and the scalar g, depend only on the surface and

the point, and are independent of the direction of the tangent. The equation

VI. then becomes by V.,

XIX. . . = SvtXt/li = SirXS/Ltr + Svr/iSXr
;

assuming then the expression,

XX. . . r = xYvX + t/Vvfi,

we easily find that

XXI. . . ifiYvnY^x'iYvXy,
or

XXI'. . . !/TYvfx = ± a^TVvX
;

the two directions of t are therefore those of the two lines,

XXII. . . UVvX ± UVv^,

which are evidently perpendicular* to each otlier.

(9.) An interpretation, of some interest, may be given to this last

expression XXII., by the introduction of a certain auxiliary surface of the

second order, which may be called the Index Surface, because the index curve

(4.) is the diametral section of this new surface, made by the tangent plane

to the given one. With the recent signification of ^, this index surface is

represented by tlie equation VII., if r be now supposed (comp. (2.)) to

* This mode, however, of determining generally the directions of the lines of curvature, gives

only an iUusory result, when the normal v has the direction of either \ or n, which happens at an

ttmbilic of the surface. Compare 408, (27.), (29.), and the first Note to page 525, vol. i.

Hamilton's £lembnts of Quatbknions, Vol. II. 2 H
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represent a line pt drawn in any direction from the given point p, and

therefore not now obliged to satisfy the condition V. of tangency. Or if, for

greater clearness, we denote by p + p' the vector from the origin o to a point

of the index surface, the equation to be satisfied is, by the form XYIII. of ^
(comp. 357, II.),

XXIII. . . 1 = Sjo'^jo' = gp'^ + SXp'fxp' ;

the centre of this auxiliary surface being thus at p, and its two (real) cyclic

normals being the lines X and /i : so that YvX and Yvp. have the directions

of the traces of its two cyclic planes, on that diametral plane (Svjo' = 0) which

touches the given surface. We have therefore, by XXII., this general theorem,

that the bisectors of the angle formed by those two traces are the tangents to the

two lines of curvature, whatever theform of the given surface may be.

(10.) Supposing note that the given surface is itself one of the second order,

and that its centre is at the origin o, so that it may be represented (comp. 405,

XII.) by the equation,

XXIV. . . 1 = Bpipp = gp"^ + SA/o/ip,

with constant values of X, /u, and g, which will reproduce with those values the

form XYIII. of ^, we see that the index surface (9.) becomes in this case

simply that given one, with its centre transported from o to p ; and therefore

with a tangent plane at the origin, which is parallel to the given tangent plane.

And thus the traces (9.), of the cyclic planes on the diametral plane of the

index surface, become here the tangents to the circular sections of the given

surface. We recover then, as a case of the general theorem in (9.), this

known but less general theorem : that the angles formed by the two circular

sections, at any point of a surface of the second order, are bisected by the lines of

curvature, which pass through the same point.

(II.) And because the tangents to these latter lines coincide generally,

by (3.) (4.) (9.), with the axes of the diametral section of the index surface,

made by the tangent plane to the given surface, they are parallel, in the case

(10.), as indeed is well known, to the axes of the parallel section of a given

surface of the second order.

(12.) And if we now look back to the Equation of Confocals in 407, (26.),

and to the earlier formulae of 407, (4.), we shall see that because the vector vi,

in the last cited sub-article, represents a tangent to the given surface Spt^/o = 1,

complanar* with tlie normal v and the derived vector <jivi, so that it satisfies

* Compare the Note to page 198.
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(comp. 407, XII. XIY., and the recent formulae V. YI.) the two scalar

equations,

XXY. . . Si/vi = 0, and XXYI. . . Swi^vi = 0,

which are likewise satisfied (comp. (7.)) when we change vi to the rectangular

tangent vz, it follows that these two vectors, vi and vz, which are the normals to

the two confocals to [e) through p, are also the tangents to the two lines of

curvature on that given surface of the second order at that point : whence

follows this other theorem* of Dupin, that the curve of orthogonalintersection

(407, (4.)), oftico confocal surfaces, is a line of curvature on each.

(13.) And by combining this known theorem, with what was lately

shown respecting the umbilicar generatrices (in 408, (30.), (32.), comp. also

(35.), (36.)), we may see that while, on the one hand, the lines of curvature on

a central surface of the second order have no real envelope, yet on the other

hand, in an imaginary sense, they have for their common envelopef the system

of the eight imaginary right lines (408, (31.)), which connect the ticelve (real or

imaginary) umhilics of the surface, three hy three, and are at once generating

lines of the surface itself, and also of the known developable envelope of the

confocal system.

(14.) It may be added, as another curious property of these eight

imaginary right lines, that each is, in an imaginary sense, itself a line of

curvature upon the surface : or rather, each represents two coincident lines of

that kind. In fact, if we denote the variable vector 408, LXXX. of such

a generatrix by the expression,

XXYII. ..p = e'cT + a'.

* Lev. de Oeometrie, page 271, &c.

t The writer is not aware that this theorem, to which he was conducted by quaternions, has been

enunciated before ; but it has evidently an intimate connexion with a result of Professor Michael

Roberts, cited in page 290 of Dr. Salmon's Treatise, respecting the imaginary geodetic tangents to a

line of curvature, drawn from an umbilicar point, which are analogous to the imaginary tangents to a

plane conic, drawn from a focus of that curve. An illustration, which is almost a visible representation,

of the theorem (13.) is supplied by Plate II. to Liouville's Monge (and by the corresponding plate in

an earlier edition), in which the prolonged and dotted parts of certain ellipses, answering to the real

projections of imaginary portions of the lines of curvature of the ellipsoid, are seen to touch a system of

four real right lines, namely the projections (on the same plane of the gi-eatest and least axes), of the

four real umbilicar tangent planes, and therefore also of what have been above called (408, (30.), (31.))

the eight {imaginary) umbilicar generatrices of the surface. Accordingly Monge observes (page 160

of Liouville's edition), that " toutes les ellipses, projections des lignes de courbure, seront inscrites

dans ce parallelogramme dont chacune d'elles touchera les quatre cotes " : with a similar remark in

his explanation of the coiTCsponding figure (page 160).

2 H 2
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in which e is a variable scalar, but <t, a are two given or constant but

imaginary vectors, such that

XXVIII. . . (T^ = 0, S<T(r' = - l\ fs'-" = - h\
and

XXIX. . . A = S(T^(T = 0, /(a, a') = S<T><r = 0, fa' = 1,

we have the imaginary normal v, with (for the case of a real umhilic) a

real tensor,

XXX. . . v = e> + 0(t'± (T, XXXI. . . Tv = ± ^—-^
;

and we find, after reductions, the imaginary expression,

XXXII. . . va = + -v/- 1 (tTv,

whence
XXXIII. . . Si;<T = 0, Sp(t0(7 = 0.

The dijferential equations Y. YI. of a line of curvature are therefore

symbolically satisfied, when we substitute, for the tangential vector t, either

the imaginary line o- itself, or the apparently perpendicular but in an

imaginary sense coincident* vector va ; and tlie recent assertions are justified.

(15.) A.S regards the real lines of curvature, on a central surface of the

second order, we see by comparing the general differential equation II. with

the expression 409, XXIII. for the differential of h, or of F~^It^, that this

latter product, or the product P . D itself, is constant f for a line of curvature,

as well as for a geodetic line, on such a surface, as indeed it is well known to

be : although this last constant (P . D) may become imaginary, for the case of

a siugle-sheetedX hyperboloid, and must be such for a line of curvature on an

hyperboloid of tiro sheets.

As regards the paradox, of the imaginary vector <r being thus apparently />«'/?<?«rficM/af to itself,

a similar one had occurred before, in the investigation 353, (17. )> (18.), (19.) ; and it is explained, on

the principles of modem geometry, by observing that this imaginary vector is directed to the circle at

infinity. Compare 408, (31.), and the Note to page 616, vol. i.

t Compare the second Note to page 229.

X Although the wiiter has been content to employ, in the present work, some of these usual but

rather long appellations, he feels the elegance of Dupin's phraseology, adopted also by Miibius, and

by some other authors, according to which the two central hyperboloids are distinguished, as elliptic

(for the case of two sheets), and hyperbolic (for tlie case of one). The phrase " guadric,^^ for the

general surface of the second order (or second degree) , employed by Dr. Salmon and Mr. Cayley, is also

very convenient. It may be here remarked, that Dupin was perfectly aware of, or rather appears to

have first discovered, the existence of what have since his time come to be called the focal conies;

wliich impoilant ciu-ves were considered by bim, as being at once limits of confocal surfaces, and also

loci of umbilics. Comp. Bev. de Geometric, pages 270, 277, 278, 279 ; see also page 390 of the

Ajjerfu Historiqtte, &c., by M. Chasles (Bnissels, 1837).
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(16.) And as regards the general theory of the index surface (9.), it is to be

observed that this auxiliary surface depends primarily on the scalar functionf
in the equation /p = 1, or generally fp = const., of the given surface ; and that

it is not entirely determined by means of that surface alone. For if we write,

for instance,

XXXIV. . . f/p = fl, with d/p = 2Svd/o as before,

we shall have, as the new first differential equation of the same given

surface, instead of III.,

XXXY. . . = df //> = 2S«vd|t),

with
XXXVI. . . n = f/p

;

and if we then write, by analogy to IV.,

XXXVII. . . d . nv = *dp = w^dp + w'vSvdp,

with
XXXVIII. .,n' = 2f7p,

the new index surface, constructed on tlie plan (9.), will have for its equation,

analogous to XXIIl., the following :

XXXIX. . . Sp'^/o' = n^p'i^p + «'(Svp')' = const.

(17.) But if we take this last constant = «, the two index surfaces, XXIII.

and XXXIX., will have a common diametral section, made by the given

tangent plane, namely the index airve (4.) ; and they will touch each other,

in the whole extent of that curve. And it will be found that the construction

(9.), for the directions of the lines of curvature, applies equally well to the one

as to the other, of these ttco auxiliary surfaces : in fact, it is evident that the

differential equation II., namely Si/dvdp = 0, receives no real alteration, when

V is multiplied by any scalar, n, even if that scalar should be variable.

(18.) And instead of supposing that the variable vector p is thus obliged,

as in 373, to satisfy a given scalar equation, of the form*

fp = const..

* If ^ = ix +yy + ki, and v = fp = F(ar, y, z), and if we write,

dr = pdiX + q^y + rd«, dj» = p'^ 4- r"iy + q"Az,

Aq =s q'Ay + p"da + r"SiX, d>- = f'da + q"^ + i»"dy,
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we may suppose, as in 372, that p is a given vector function of two scalar

variables, x and y, between which there will then arise, by the same

fundamental formula II., a differential equation of the first order and second

degrecy to be integrated (when possible) by known methods. For example,

if we write,

XL. . .p = ix-\-jy + kz, ds = pdix + g-dy,

we may then write also, on the present plan, which gives Afp = 2'QvA.p,

Ap = iix +jdi/ + Mz, p = - ^{ip +jq + kr),

iv = — ^{idp +jdq + Mr), Sdpdy = ^{dzdp + ii/iq + dzdr)
;

and the index surface, constructed as in (9.), and with p' changed to Ap = iAx +jAf/ + kAz, will thus

have the equation,

(a). . . ip'Ax'^ + 2?'Ay- + ^r'Az"^ f p"AyA« + q"AzAx + r"AxAy = 1,

or more generally = const. ; so that it may be made in this way to depend upon, and be entirely

determined by, the six partial differential coefficients of the second order, p'. . p". . , of the function v

or fp, taken with respect to the three rectangular coordinates, xyz. And by comparing this equation

(a) with the following equation of the same auxiliary surface, which results more directly from the

principles employed in the text (comp. XVIII. XXIII.),

(b). . . SAp<pAp = gAp^ + S\ApfiAp = 1,

we can easily deduce expressions for those six partial coefficients, in terms of g, A, ^. Thus, for

example,

i'Dx^v = ^p' = - g ^ S\ifti = SA/it - ^ + 2SiAS»/* ;

but StxSt/* + SyxSy/t + 8k\Sk/x = - Sa/x ; therefore,

(c). . . J(D«2v + Dy^v + Wv) = S\fi-Sg = ci + C2 + C3 = - m",

if ci, a, C3 be the roots and m" a coefficient of a certain cubic (354, III.), deduced from the linear and

vector function di* = <pdp, on a plan already explained. If then the function v satisfy, as in several

physical questions, the partial differential equation,

(d). . . D^i^e; + DyH + Wv = 0,

the turn of these three roots, a, a, a, will vanish : and consequently, the asymptotic cone to the

index surface, found by changing 1 to in the second member of (a), is real, and has (couip. 406,

XXI., XXIX.) the property that

(e). . . cot^ a + cot^ b = 1,

if a, b denote its two extreme semiangles. An entirely different method of transforming, by

quaternions, the well known equation (d), occuri-ed early to the present writer, and will be briefly

mentioned somewhat farther on. In tiie mean time it may be remarked, that because m" = by (c),

when the equation (d) is satisfied, we have then, by the general theory III. ii. 6 of linear and vector

functions, and esspecially by the sub-articles to 360, remembering that (p is here self-conjugate, the

formulsB,

(f). . . dy + xdp = 0, and (g). . . (|/<r - ip'^a = wV,

X, t^ being auxiliary functions, and wi' another coefficient of the cubic, while tr is an arbitrary vector.

For the same reason, and under the same condition (d;, the function <p itself has the properties

expressed by the equations,

(h). . . ipWiK = K(pi - i<pK, and (i). . . <p-\'M = \(tn<f>K — w'Viic

;

in which the two vectors », k are arbitrary, and /«' is the same scalar coefficient as before.
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we shall satisfy the equation III. by assuming (with a constant factor

understood),

XLT. . . V ==ip +jq-h, whence XLII. . . dv = tdjo + j^q ;

and thus the general equation II., for the lines of curvature on an arbitrary

surface, receives (by the laws of ijk) the form,

XLIII. . . djo (dy + qdiz) = diq {diX + pdiz)
;

which last form has accordingly been assigned, and in several important

questions employed by Monge* : but which is now seen to be included in

the still more concise (and more easily deduced and interpreted) quaternion

equation,

Svdvd/i = 0.

411. For a central surface of the second order, we have as usual v = (pp,

Av = (ftAp, and therefore (by 347, 348, and by the self-conjugate form of ^),

I. . . YvAv = V^/o^Ap = ipYpAp = m<l>~^YpAp

;

the general condition of intersection 410, I. of two normals, at the extremities

of Q. finite chord A/o, and the general differential equation 410, II. of the lines

of curvature, may therefore for such a surface receive theso new and special

forms :

II. . . SApr'YpAp = 0, or ir. . . SpAp<t>-^Ap = ;

III. . . Mp<j>-'Yp6p = 0, or irr. . . S|od|0^-'dp = ;

which admit of geometrical interpretations, and conduct to some new

theorems, especially when they are transformed as follows

:

IV. . . SAAp . S|oAp^-V + SfxAp . S|t>A|0(^"'A = 0,

V. . . SAd|0 . Spdpr'fi + Sjudp . Spdp<l>-'X = 0,

• See the enunciation of the formula here numbered as XLIII., in page 133 of Liouville's

Monge : compare also the applications of it, in pages 274, 303, 305, 357. (The corresponding pages

of the Fourth Edition are, 115, 240, 265, 267, 312.) The quaternion equation, Svii/dp = 0, was

published by the present writer, in a communication to the Philosophical Magazine, for the month of

October, 1847 (page 289). See also the Supplement to the same Volume xxxi. (Third Series) ; and

the Proceedings of the Royal Irish Academy for July, 1846.
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X and fi being (as in 405, (6.), &o.) the ttco real cyclic normals of the

surface : while the same equations may also be written under the still

more simple forms,

VI. . . SnAp . 8apAp + SaAp . BapAp = 0,

VII. . . Sad/a . Supdp + Sa'd|t) . Sapd/o = 0,

o, a being, as in several recent investigations, the tico real focal unit lines,

which are common to a whole confocal system.

(1.) The vector (f^YpAp in II. has by I. the direction of VvAv; whence,

by 410, (6.), the interpretation of the recent equation II., or (for the present

purpose) of the more general equation 410, I., is that t/ie chord pp' is perpen-

dicular to its own polar, if the normals at its extremities intersect. Accordingly,

if their point of intersection be called n, the polar of pp' is perpendicular at

once to PN and p'n, and therefore to pp' itself.

(2.) The equation IF. may be interpreted as expressing, that when the

normals at p and p' thus intersect in a point n, there exists a point p" in the

diametral plane opp', at which the normal p"n" is parallel to the chord pp' : a

result which may be otherwise deduced, from elementary principles of the

geometry of surfaces of the second order.

(3.) It is unnecessary to dwell on the converse propositions, that when

either of these conditions is satisfied, there is intersection (or parallelism) of

the ttco normals at p and p': or on the corresponding but limiting results,

expressed by the equations III. and IIF.

(4.) In order, however, to make any use in calculation of these new

forms II., III., we must select some suitable expression for the self-

conjugate function ^, and deduce a corresponding expression for the

inverse function 0"^ The./brw,*

VIII. . .<},p = gp+ YXpfx,

• The vector form VIII. occurred, for instance, in pages 620, 629, 635, 649, vol. i., and 193,

233, vol. ii. ; and the connected scalar form,

fp = ffp^ + SApMf, 367, II.

has likewise been frequently employed.
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which has abeady several times occurred, has also been more than once

inverted : but the following new inverse* form,

IX. . ' [9 - SAju) . <p'^p = p - ASjO^"'^ - juS|O0"^A,

has an advantage, for our present purpose, over those assigned before.

In fact, this form IX. gives at once the equation,

X. . . (i/
- SA/i) . (p-'YpAp = YpAp - AS,oA/o0-V - fJi^pAp<l>-'X ;

and so conducts immediately from II. to IV., or from III. to V. as a

limit.

(5.) The equation IV. expresses generally/, that the chord Ap, or pp', is a

side of a certain cone of the second order, which has its vertex at the point p

of the given surface, and passes through all the points p' for which the

normals to that surface intersect the given normal at p ; and the equation

V. expresses generally, that the ttco sides of this last cone, in which it is

cut by the given tangent plane at the same point p, are the tangents to the line

of curvature.

(6.) But if the surface be an ellipsoid, or a double-sheeted hyperboloid,

then (comp. 408, (29.)) the always real vectors,^ ^"'A and ^"'/z, have the

directions of semidiameters drawn to tico of the four real umhilics ; supposing

then that p is such a semidiameter, and that it has the direction of + 0"'A,

the second term of the first member of the equation IV. vanishes, and the

cone IV. breaks up into a j^atV ofplanes, of which the equations in p' are,

XI. . . SA {p - p)=0, and XII. . . S^y^A^'V = ;

whereof i\ie former represents the tangent plane at the umbilic p, and the latter

represents the plane of the four real umhilics.

(7.) It follows, then, that the normal at the real umbilic p is not intersected

by any real normal to the surface, except those tchich are drawn at points p' of

that principal section, on which all the real umbilics are situated : but that the

* Inverse fm-msy for <p-^p or m-^p, have occurred in pages 521, 549, vol. i., and 193, vol. ii. In
comparing these with the form IX., it will easily be seen (comp. page 221) that

t Compare the Note immediately preceding.

Hamilton's Elements of Quaternions, Vol. II. a I
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same real umhilicar normal pn is, in an imaginary sense, intersected hy all the

imaginary normals, tohich are drawn from the imaginary points p' of either of the

two imaginary generatrices through p.

(8.) In fact, the locus of the point p', under the condition o/ intersection

of its normal p'n' with a given normal pn, is generally a quartic curve,

namely the intersection of the given surface with the cone IV. ; but when

this cone breaks up, as in (6.), into two planes, whereof one is normal, and

the other tangential to the surface, the general quartic is likewise decomposed,

and becomes a system of a real conic, namely the principal section (7.) and

a pair of imaginary right lines, namely the two umhilicar generatrices at p.

(9.) We see, at the same time, in a new way (comp. 410, (14.)), that

each such generatrix is (in an imaginary sense) a line of curvature : because

the (imaginary) normals to the surface, at all the points of that generatrix,

are situated by (7.) in one common (imaginary) normal plane.

(10.) Hence through a real wnbilic, on a surface of the second order

there pass three lines of curvature : whereof one is a real conic (8.), and the

two others are imaginary right lines, namely, the umhilicar generatrices as

before.

(11.) If we prefer differentials to differences, and therefore use the equation

V. of the lines of curvature, we find that this equation takes the form = 0,

if the point p be an umbilic ; and that if the normal at that point be parallel

to X, the diferential of the equation Y. breaks up into ttvo factors, namely,

XIII. . . SAd> = 0, and XIV. . . Sdp0-^X^-V = ;

whereof the former gives to imaginary directions, and the latter gives one real

direction, coinciding precisely with the three directions (10).

(12.) And if p, instead of being the vector of an umbilic, be only the

vector of a point on a generatrix corresponding, we shall still satisfy the

differential equation V., by supposing that d/9 belongs to the same imaginary

right line : because we shall then have, as at the umbilic itself,

XV. . . SXdp = 0, Spd/o^-^X = 0.

An umhilicar generatrix is therefore proved anew (comp. (9.)) to be, in its

whole extent, a line of curvature.

(13.) The recent reasonings and calculations apply (6.), not only to an

ellipsoid, but also to a double-sheeted hyperboloid, four umbilics for each

of these two surfaces being real. But if for a moment we now consider
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specially the case of an ellipsoid^ and if we denote for abridgment the real

quotient ^-^ by h, we may then substitute in IV. and V. for A, ju, 0~'X,
^ a + c

(f^fx the expressions,

XVI. . . a-ha ^ ; ha - a' ^
;a+e a+c

XYII. . . a + W =—TT-T"' -/'"-« =—T—-f 5

fltc(a + c) ac(a + c)

and then, after division by A* - 1, there remain only the two vector constants

a, a', the equation IV. reducing itself to VI., and V. to VII.

(14.) The simplified equations thus obtained are not however peculiar to

ellipsoids^ but extend to a whole confocal system. To prove this, we have only

to combine the equations II. and III. with the inverse form^

XVIII. . . /"VV = "'^"V + «'Sa/t) - p{e + Saa'),

which follows from 407, XV., and gives at once the equations VI. and VII.,

whatever the species of the surface may be.

(15.) The differential equation VII. must then be satisfied by the three

rectangular directions of d/o, or of a tangent to a line of curvature, which answer

to the orthogonal intersections (410, (12.)) of the three confocals through a given

point p ; it ought therefore, as a verification, to be satisfied also, when we

substitute v for dp, v being a normal to a confocal through that point : that

is, we ought to have the equation,

XIX. . . SavSa'/ov + So'vSa/ov = 0.

And accordingly this is at once obtained from 407, XVI., by operating

with S . joi; ; so that the three normals v are all sides of this cone XIX., or

of the cone VII. with dp for a side, with which the cone V. is found to

coincide (13.).

(16.) And because this last equation XIX., like VI. and VII., involves

only the two focal lines a, a as its constants, we may infer from it this

theorem :
" If indefinitely many surfaces of the second order have only their

asymptotic cones hiconfocal,* and pass through a given point, their normals at

* That is, if the surfaces (supposed to have a common centre) be cut by the plane at infinity in

biconfocal conies, real or imaginary.

2 12
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that point have a cone of the second order for their locus " ; which latter cone

is also the locus of the tangents, at the same point, to all the lines of curvature

which pass through it, when different values are successively assigned to the

scalar constant a'^ - & (or 2P) : that is, when the asymptotes a, a to the

focal hyperbola remain unchanged in position, but the semiaxes {a^ - b^)^,

(b^ - c')* of that curve (here treated as both real) vary together.

(17.) The equation YI. of the cone of chords (5.) introduces the fxed

focal lines a, a by their directions only. But if we suppose that the lengths

of those two lines are equal, without being here obliged to assume that each

of those lengths is unity, we shall then have (comp. 407, (2.), (3.)), the

following rectangular system of unit lines, in the directions of the axes of

the system,

XX. . . U(a + a'), TJVao', U(n - a'),

which obey in all respects the laws of ijk, and may often be conveniently

denoted by those symbols, in investigations such as the present. And then,

by decomposing the semidiameter p, and the chord Ap, in these three

directions XX., we easily find the following rectangular transformation* of

the foregoing equation VI.,

S(a + a)~^p S(a - a)~^p S. {Yaaf^p
' ' S(a + a')Ap ^ S(a-aOA/o " S.Uaa'Ap '

in which it is permitted to change Ap to dp, in order to obtain a new form

of the differential equation of the lines of curvature ; or else at pleasure to v,

and so to find, in a new way, a condition satisfied by the three normals, to

the three confocals through p.

(18.) The cone, VI. or XXI., is generally the locus of a system of three

rectangular lines ; each plane through the vertex, which is perpendicular to any

real side, cutting it in a real pair of mutually rectangular sides : while, for the

• The corresponding form, in rectangular coordinates, of the eonditicn of interstction, of normals

at two points {xyz) and {x'y'z), to the surface,

is the equation (probably a known one, although the writer haa not happened to meet with it),

r- + -r- + ^ T— = ;

X - X y — y z — z

in which it is evident that xyz and x'y'z' may bo interchanged.
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same reason, the section of the same cone, by any plane which does not pass

through its vertex p, but cuts any side perpendicularly, is generally an

equilateral hyperbola,

(19.) If, however, the point p be situated in any one of the three principal

planes, perpendicular to the three lines XX., then the cone XXI. (as its

equation shows) breaks up (comp. (6.)) into a pair of planes, of which one

is that principal plane itself, while the other is perpendicular thereto. And
while the former plane cuts the surface in a principal section, which is

always a line of curvature through p, the latter plane usually cuts the surface

in another [conic, which crosses the former section at right angles, and gives

the direction of the second line of curvature.

(20.) But if we further purpose, as in (6.), that the point p is an umbilic,

then (as has been seen) the second plane is a tangent plane ; and the second

conic (19.) is itself decomposed, into a pair of imaginary right lines : namely,

as before, the two umbilicar generatrices through the point, which have been

shown to be, in an imaginary sense, both lines of curvature themselves, and

also a portion of the envelope of all the others.

(21.) We shall only here add, as another transformation of the general

equation YI. of the cone of chords, which does not even assume Ta = Ta',

the following

:

XXII. . . S(a + a') A/0 . S(a + a>A/t> = S(a - a')^p . S(a - a')p^p ;

where the directions of the two new lines, a + a and a - a, are only obliged

to be harmonically conjugate with respect to the directions of the fxed focal

lines of the system : or in other words, are those of any two conjugate

semidiameters of the focal hyperbola*

* [In order to obtaiu additional illustrations of the remark made at the beginning of this Article

that SpAp<p-^Ap = 0, and the equivalent equations lead to geometrical theorems relating to a system

of quadrics having the same pair of focal lines, we see in the first place if w and »' are any two

vectors terminating on the chord, that the equation may be written in the form Sww'(/)"'(a) — w') = 0.

This is equivalent to the vector equation (<^-i + A')w = ((^-' + h)a>' . Operating on this by (^-' + ^)"i,

we easily find CT = w 4 [h' - g) {p'^ ^ gy^ut = w' + {h - g) ((|)-' + ^)"'«'. It is obvious from the form

of these relations that the normal at o> to the quadric Sp(<^-i + g)'^p — So){(p-^ + ff)'^") intersects the

normal at w' to the similar quadric Sp{(t>-^ + gy^p = S«'(^-' + ^)"'w' ; and that 7S is the vector to the

point of intersection. In pai'ticular, if w and w' happen to lie on the same quadric, the normals still

intersect. Returning to the general case and allowing the arbitrarily assumed scalar g to vary, it is

obvious that the point of intersection of the normals desciibes a twisted cubic if we remember the

results of p. 131.

The relation between o), «', h, and h' suggests the use of an aiixiliary vector t in terms of which

we may write « = (</>-i + A)t and «' = (<^-' + A')t. Thus t is parallel to the chord, and the equation

of the chord is p = ^-'t + xt. In terms of this vector, the vector to the point of intersection of
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412. The subject of Lines of Curvature receives of course an additional

illustration, when it is combined with the known conception of the corre-

sponding Centres of Curvature. Without yet entering on the general theory

of the curvatures of sections of an arbitrary surface, we may at least consider

here the curvatures of those normal sections, which touch at any given point

the lines of curvature. Denoting then by a the vector of the centre s of

normals becomes et = (^-i + ^)-i (^-i + h) {^-^ + h')r. Eegarding u as fixed, we have zs = (^-' + y)'

{<l>-^ + h')u) as the vector equation of the locus of intersections of the normals at u with the corre-

sponding normals at the variable point a =
{<t>-^ + h')r. This surface locus which consists of light

lines and twisted cubics is easily seen to be the quadric SCTai^)"^',^ — w) = 0. But we obtain a second

interpretation for this locus since u - {<p-^ + g) {(p-^ + /t')-^^ = zs + (g — h') {<p-^ + h')-^zs expresses

that the normal at to to the quadric Sp{<p''^ + ^*')"V= Strr(«^-i + A')-% passes through the fixed point u>.

Ho we may say that the quadric is the locus of points whose normals with respect to the

doubly infinite system of quadrics Sp{<p-^ + fi')'^p = C pass through the extremity of the given

vector a>. Eeturning to the vector equation of the locus, we see that the locus of points whose

normals pass through a fixed point is a twisted cubic when A' is constant, or when we have to do

only with a system of similar and similarly placed quadrics. If, on the other hand, we confine

our attention to a system of confocal quadrics so that C is constant but h' variable, we have

Sx3{<p'^ + A')-1ot = C or Sw{(p'^ + ff)-^ ((/>-! + h')u = G, giving A' in terms of g. From tliis we deduce

(A' - g) ((</)-• + gy^u)'- = C— S»((^-i + g)'^(o, and the vector equation of the locus of points on the

system of confocals, whose normals pass through the extremity of w, becomes

w = « + (<7 - S«(^-i + ^)-»«) ((^-i + y)-'«)-',

or

TO = (C+ V«(f-i + gy^u) ((0-1 + gy^o>)-K

We cannot delay on this curve except to state that it is a twisted quintic and unicursal, and that,

being a quintic, it meets any quadric of the system in ten points, four of which must be foreign to

the present inquiry as only six normals can be drawn to a quadric from a point.

Returning to the equation zs = {(p-^ + gy^ {<t>-^ + h)
((f-' + A>, we shall express that the two

points to and «' lie on the same quadric S/>(<^-i + g)-^p = C. In terms of t and A, we see that w lies

on this quadric if St((^-i + A)* (^-^ + g)'^T = C, and if u likewise lies on it. A' must be the second

root of this quadratic in A. Expanding in terms oi h — g for convenience, we have

(A - ^)2St(0-i + g)-W + 2(A - y)T» + St(.|>-i + g)r = C,

and using this equation to eliminate A and A' from the expression for 'sr, we find

This may be reduced to simpler forms, one being

^ ^ Y(0-* + y)TVT(»-' -f g)-W - (»-' + y)VTVT(»-i + y)-'T - g(0-' + ^)-'t

St((^-i + ^)-'t

It is obviouB when C alone varies that the locus is a right line ; it is easily seen when g alone varies
that the locus is a conic section, and when both vary, it may be proved that the locus is a ruled quartic
having the line p = ip-^r + xr for a triple line.

Finally, it easily follows from the equations of this note, that every line of the triply infinite

system obtained by assigning all possible values to t in the equation p = <p-W + xr is at every point
normal to some one quadric, and at every point touches two quadrics of the doubly infinite system
Sp {<p-^ + gY^p = c along lines of curvature.]
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curvature of meh a section, and by R tlie radius ps, considered as a scalar

which is positive when it has the direction of + v, it is easy to see that we

have the two fundamental equations :

I. . . (T = |0 + jRXJv
;

II. . . R-'dip + dUv = ;

whence follows this new form of the general differential equation 410, II. of

the lines of curvature,

III. . . Vd/odUv = ;

with several other comhinations or transformations,* among which the

following may be noticed here :

I V . . . -5- + S 3- = 0.
IC dp

(1.) The equation I. requires no proof ; and from it the equation II. is

obtained by merely differentiating f as if a and R were constant : after

which the formula III. follows at once, and IV. is easily deduced.

(2.) To obtain from this last equation a more developed expression for R,

we may assume for dv, considered as a linear and self-conjugate function

of dp (410, (1.)), the general form (comp. 410, XVIII.),

V. . . di/ = gdp + VAdjo/i,

in which g, \, fx are independent of dp ; and then, while the tangent dp has

(by 410, XXII.) one or other of the ttco directions,

VI. . .dp\\ UVvX ± VYvfi,

the curvature R~^ receives one or other of the two values corresponding,

VII. ..R-' = - Tv-'{g + SAUv . S/zUv ± TVAUp . TVjuUv).

* [The expression JR'^dp + Tjr'di/ = xv is at times a useful transformation of II. The value of

the scalar x need not generally be considered, though it is - ATv ^]

t To students who are accustomed to infinitesimals, the easiest way is here to conceive the diffe-

rentials to be such. But it has already been abujidantly shown, that this view of the latter is by ao
means necetsary, in the treatment of them by quaternions. (Compare the first Note to page 230.)
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(3.) One mode of arriving at this last transformation, or of showing that

if (comp. again 410, XXII.) we assume,

VIII. . . T = (or IDUVXi; ± UY/iP,
then

IX. . . SAr/ur-i = SXU,. . S,.U.. ± TVXUr . TV/uUv,
or

X. . . 2SAr . SfiT-' = S(VXUi; . V/iU,.) ± TVXUi; . TYfiUv,
or finally,

XI. . . 2SUXr . SU/xr-i = S(VUXr . YU^v) ± TYUXv . TYU^.s

is to introduce the auxiliary quaternion,

XII. ..y = YUXv.YU/ui;;

and to prove that, with the value (or direction) YIII. of r, we have thus the

equation (in which Nq^y as usual, represents the square of Yj),

XIII. . . 2SUXr . SU/xr-i = S? ± T? = g-^!p- •

(4.) And this may be done, by simply observing that we have thus (with

the value YIII.) the expressions,

XIY. . . SrUX =
-^-yu^,

SrU^ = Tj^yu^ .

XY...S.UX.S.U,-
^(SUX..r___±Y,^

TYUXv.TYU;uv Tq
'

because

XYI. ..Y^ = -Uv.SUXiuv;
and

XVII. ...' = - 2 ± 2SU? . ± i(§£±??)

.

iq

(5.) Admitting then the expression YII., for the curvature R'^, we easily

see that it may be thus transformed :

XYIII. . . /e-» = - Tv-' (a + TX/u . cos (z ^ + z -\\
;

and that the dijference of the two (principal) curvatures^ of normal sections of

an arbitrary surface, answering generally to the two (rectangular) directions of

the lines of curvature through the particular point considered, vanishes when
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the normal v has the direction of either of the two cyclic normals, X, /i, of the

index surface (410, (9.)) ; that is, when the index curve (410, (4.)), considered

as a section of that index surface, is a circle : or finally, when the point in

question is, in a received sense, an umhilic* of the given surface.

(6.) That surface, although considered to be a given one, has hitherto (in

these last sub-articles) been treated as quite general. But if we now suppose

it to be a central surface of the second order^ and to be represented hj the

equation,

XIX. . . .//o = gp' + ^\pnp = 1,

which has already several times occurred, we see at once, from the formula

VII. or XYIII. (comp. 410, (10.)), that the difference of curvatures, of the

two principal normal sections of any such surface, varies proportionally to

the perpendicular (Tv"^ or P) from the centre on the tangent plane, multiplied

by the product of the sines of the inclinations of that plane, to the two ci/clie

planes of the surface.

(7.) In general (comp. 409, (3.)), it is easy to see that

XX. . .S^ = Sr-'d)r = -!)-%
dp

if D denote the (scalar) semidiameter of the index surface^ in the direction of

d/o or of T ; but for the two directions of the lines of curvature^ these semi-

diameters become (410, (3.), (4.)) the semiaxes of the index curve. Denoting

then by ai and o^ these last semiaxes, the two principal radii of curvature of

any surface come by IV. to be thus expressed

:

XXI. . . iJ, = ai^Tv ; R, = a^^Ti..

And if the surface be a central one, of the second order, then ai, aa are the

semiaxes of the diametral section, parallel to the tangent plane ; while Ti^ is

(comp. again 409, (3.)) the reciprocal P'^ of the perpendicular, let fall on that

plane from the centre. Accordingly (comp. (6.), and 219, (4.)), it is known

that the difference of the inverse squares of those semiaxes varies proportionally

to the product of the sines of the inclinations, of the plane of the section to

the two cyclic planes.

f

* Compare the Note to page 233.

t [The expressions of this sub-article enable us to deduce the equation of a system of quadrics

having at a given point on an arbitrary surface the same elements of lines of curvature as the

arbitrary surface, and the same values of the principal curvatures.

We know that the lines of curvature at a point on a quadric are parallel to the principal axes of

the central section parallel to the tangent plane. If n and t? are unit vectors touching the lines of

Hamilton's Elemknts of Quaternions, Vol. II, 2 K.
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(8.) And as regards the squares themselves, it follows from 407, LXXI.,

that they may be thus expressed, in terms of the principal semiaxes of the

confocal surfaces^ and in agreement with known results

:

XXII. . . a,^ = «' - a,"- ; a^^ = a^ - a^^
;

being thus both positive for the case of an ellipsoid ; both negative, for that of

a double'Sheeted hyperboloid ; and one positive, but the other negative, for the

case of an hyperboloid of one sheet (comp. 410, (15.)).

(9.) In all these cases, the normal + v is drawn towards the same side of

the tangent plane, as that on which tlie centre o of the surface is situated

(because ^vp = 1) ; hence (by I. and XXI.) both the radii of curvature ^i, Mz

are di-awn in this direction, or towards this side, for the ellipsoid ; but one such

radius for the single-sh.Qeted hyperboloid, and both radii for the hyperboloid of

two sheets, are directed towards the opposite side, as indeed is evident from

the forms of these surfaces.

curvature, and if p is the vector from the centre to the point, the vectors ain, tizr-z and p compose a

system of mutually conjugate radii of the quadric. It is easy to prove (see below) that

(Sa.j87)2 + (S«7a)2 + {Swafif- = {Safiyf

is the equation of a quadric of which o, $, and y are conjugate radii. In particular

a2''(SwT2p)' + &i^{S(iDTipY + ai'a22(S«TiT2)* = ai*a2'*(Sf>TiT2)''

is the equation of a quadric having its centre at the origin and arbitrarily assumed directions for the

lines of curvature at the extremity of p. Now the central perpendicular on the tangent plane at p

has its length equal to P = Sprin = SpJJv. So, by XXI., we have

liz{Sa,T2p)'^ + M^f^rtpY- 4- SiRiiSaiTJyy-SpJJv = HiM^P^")^

for the equation of a quadric with its centre at the origin, having at an assumed point arbitrarily

assumed directions for the lines of curvatures and arbitrarily assumed values for the curvatures. By
varying the position of the centre, we can thus determine a system of quadrics having contact of the

high order described with any surface at a given point.

Wf cannot delay discussing this system of quadrics except to state that when the centre lies on a

certain lino, the lines of curvature of the quadric have four point contact with those of the surface.

We can, moreover, only suggest as au exercise on the notation given in the Note to page 225, the

investigation of the locus of points on a quadric or on a confocal system at which one or both of the

principal curvatures are given. It seems, however, to be worth while to prove the expression for a

quadric in terms of the conjugate radii. If the equation of the quadric is Su^u = 1, and if a, 0, and

y are conjugate radii, among the conditions are Sa(pa = 1 and Sfi<pa = Sy<l>a = 0. Thus

(pa = \&y{Safiy)'^ and because wSa^y = aSfiyu + $SycM + ySojSw,

we have

<po»{iiafiyy = YPyS$yu f- V7aS'yo« + Va/3Sa/3«.

The forms of the invariants of this function afford proofs of certain well-known theorems. We see

also easily that ^"'« = oSow -I fiSfiw + ySyw from which known theorems may be derived, and this

function ^-' may be used with advantage in certain questions relating to confocals. Again to find a

set of directions \Ja, \]0, and IJy conjugate to two quadrics depending on two functions p and ^i, we

have to solve V^iwc^tw = or Vw^r'^ = 0.]
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(10.) The following is another method of deducing generally the two

principal curvatures of a surface, from the self-conjugate function*

XXIII. . . dv = ^d/o, 410, ly.

which affords some good practice in the processes of the present Calculus.

Writing, for abridgment,

XXIV. . .r= -^ = R-'Tv = - 8 ^ = - Sr->Ar,
<T - p Qp

where t is still a tangent to a line of curvature, the equation II. is easily-

brought to the form,

XXV. . . - rr = v-'Vv^r = ^r - v'^Sr^v = *r,

where ^ denotes a neto linear and vector function^ which however is not in

general self-conjugate^ because we have not generally <^v \\ v. Treating then

this new function on the plan of the Section III. ii. 6, we derive from it a

new cubic equation^ of the form,

XXVI. . . = if + JfV + M"r'' + r*,

and with the coefficients,

XXVII. . . J/ = 0, M'=%v-'xl^v, M'' = m" - Sv-'<pv
;

xp being a certain auxiliary function (= rn^~^), and m" being the coej^cientf

• [Compare the Note to p. 554, vol. i., by which it appears that this function is self-conjugate only

when M in the equation d/p = nSvdp is a constant or a function of fp (see also 410, (16.)). As an

example, if we take n = Tv and write dUv = 66p, equation II. of the present article becomes

Ji'^dp + 6dp = 0. Thus the principal curvatures are two roots of the cubic of 0, and the tangents to

the lines of ciuvature are two of the solutions of Ydpddp = 0. We can see that the third root is zero

because SUvSUj' = or for any value of bp, SSpd'TJv = 0. So e'Vv = 0, and therefore a root of the

conjugate is also zero. If then the symbolic cubic of Ib 0^ - N"0'^ + N'0 = 0, we have the

following expressions

:

iJi-i + iJ2-i = - iV" and Br^B2-^=:]Sr'.

We may also write dU»' = - Sdpv . Uv = 0dp where v is Hamilton's operator, and fiom the properties

of this operator it is not hard to see that

iii-i + B^-i = SvUv and Er^Jiz-^ = ^SVvv'VUvUv',

where the accents are to be omitted when the operations indicated have been performed. The
function * introduced in this sub-ailicle is closely analogous to the function of this Note.]

t Compare the Note to page 237, continued in page 238. The reason of the evanescence of the

coefficient M, or of the occurrence of a null root of the cubic, is that we have here ^(p'^i> = 0, so that

the symbol *"'0 may represent an actual vector (comp. 351). Geometrically, this corresponds to the

circumstance that when we pass, along a semidiameter prolonged, from a surface of the second order

to another surface of the same kind, concentric, similar, and similarly placed, the direction of the

noimal does not change.

2 K i!
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analogous to M'\ in the oubio derived from the function
<f>

itself. The root

r = is foreign to the present inquiry ; but the two curvatures, Ri~\ JRi'^, are

the two roots of the following quadratic in JR'\ obtained from the equation

XXVI. by the rejection of that foreign root

:

XXVIII. . . = {R-'TvY + M''E-'Tv + M'.

(11.) As a first application of this general equation XXVIII., let 0r

have again, as in V., the form gr + VAtju ; we shall then have the values,

XXIX. . . M" = 2{g + SAUv . SfiUv),

and
XXX. . .M' = ig + SXU,;. S/iUv)^ - (VXUv)^ (VfiUv)\

= a great variety of transformed expressions ; and the two resulting curva-

tures agree with those assigned by VII.

(12.) As a second application, let the surface be central of the second

order, with abc for its scalar semiaxes (real or imaginary) ; then the

symbolical cubic (350) in ^ becomes,

XXXI. . . = ^» - m''f + w> - m = (^ + a-') (^ + b'^) (^ + c"')

;

and the ooeflBoients of the quadratic XXVIII. in E~^ take the values, in

which N denotes the semidiameter of the surface in the direction of the

normal

;

XXXII. . . iJIfi + Mi' = - M''Tv-' = - {m" + fVv)P = {a" + b'^ + r' - N'')P ;

XXXIII. . . Rr'JRf' = M'Tv-^ = - mv' = «-^J-V'P*

;

both of which agree with known results, and admit of elementary

verifications.*

(13.) In general, if we observe that m" - ^ = x (^^0, XVI.), we shall see

that the quadratic XXVIII. in r (or in Br^^v) may be thus written :

XXXIV. . . = Si/-» {r-'v + rxv + ^v)
;

or thus more briefly (comp. 398, LXXIX.),

XXXV. . .O = Si.-'(0 + r)-'M.

• As an easy verification by quaternions of the expression XXXII., it may be remarked (comp.

408, (27.)), that if a, j3, y be any three rectangular unit lines, then

fa +/$ +/7 = const. = ci + cj + fj = «"'' + b-^ + c-'.
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(14.) Accordingly, the formula XXV. gives the expression,

XXXYI. ..v'T=i<p + r)-'v . Sr0v
;

from which, under the condition Svr = 0, the equation XXXV. follows at once.

(15.) We have therefore generally^ for the product of the two principal

curvatures of sections of any surface at any point, the expression

:

XXXVII. . . RC^Ri' = r.riTir^ = - y-^Si^y = - S i
i//
i

;

V V

which contains an important theorem of Gauss, whereto we shall presently

proceed.

(16.) Meanwhile we may remark that the recent analysis shows, that the

squares ai% aa'' (7.) of the semiaxes of the index-curve are generally the roots

of the following equation,

XXXVIII. . . = Si'(0 + a-»)-^;,

when developed as a quadratic in a^

(17.) And that the same quadratic assigns the squares of the semiaxes

of a diametral section, made by a plane ± v, of the central surface of the

second order which has ^pfp = 1 for its equation.

(18.) Accordingly, Yp(pp has the direction of a tangent to this surface,

which is perpendicular to p at its extremity ; and therefore the vector,

XXXIX. . . o- = p'^Yptpp = <pp - p'^ = (^ - p'^)pi

is perpendicular to the plane of the diametral section, which has the semi-

diameter p for a semiaxis : so that it is perpendicular also to p itself. The

equation,

XL. . .S(r(0-p-V<' = O,

assigns therefore the values of the squares (- p^) of the scalar semiaxes of the

central section ± a ; which agrees with the formula XXXVIII.

(19.) If then a surface be derived from a given central surface of the

second order, as the locus of the extremities of normals (erected at the centre)

to the diametral sections of the given surface, each such normal (when real)

having the length of one of the semiaxes of that section, the equation of this nev

surface* (or locus) will admit of being written thus :

XLI. . . S/o(^ - p-^)-V = 0.

* When the given surface is an ellipsoid, this derived surface XLI. is therefore the celebrated

Wave Surface of Fresnel, which will be briefly mentioned somewhat farther on.
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(20.) The first of the values XXIV., for the auxiliary scalar r, gives the

expression (if v = (ftp, as it is for a central surface of the second order),

XLII. . . ff = p + r-'i; = (1 + r~^<f>)p = r~^(^ + r)p
;

whence, by inversion, and operation with ^,

XLIII. . . /o = r(^ + r)-'<T ; XLIV. . . v = r(^ + r)->0<T

;

and therefore, because Spv = 1,

XLY. . . r-' = S((0 + r)-»<r . (0 + r)-'<l>(T) = S . <t(^ + r)-^<t><''

(21.) The following is a quite different way of arriving at this result,

which is also useful for other purposes. Considering a as the vector os of a

point s on the Surface of Centres, that is, on the locus of all the centres of

curvature of principal normal sections, the vector (say v) of the Reciprocal

Surface is connected with a (comp. 373, (21.)) by the equations of reciprocity
*

XLVI. . . S(Tu = Sua = 1 ; XLYII. . . Swda = ; XLYllI. . . Sadu = ;

which are all satisfied by the vector expression,

XLIX. . . u = ^—

,

OpT

where r is, as before, a tangent to the line of cm-Aature : so that, if a> denote

the variable vector of the normal plane to this last curve, the equation of that

plane (comp. 369, IV.) may be thus written,

L. . . Sw((u - jo) = 0.

This normal plane, to the line of curvature at p, is therefore at the same time

the tangent plane to the surface of centi-es at s, as indeed it is known to be,

from simple geometrical considerations, independently of the form of the

given surface, which remains here entirely arbitrary.

* It is understood that do- and dv, in the differential equations XLVIL, XLVIII., are in general

only ohliged to have directions tangential to the surface of centres, and to its reciprocal, at corre-

sponding points : so that the equations might he in some respects more clearly written thus,

SuSo- = 0, Sa-Sv = 0, the mark d being reserved to indicate changes which arise from motion along a

given line of curvature, while 5 should have a more general signification. Accordingly if, in

particular, we write Sp = pip, for a variation answering to motion along the other line, and denote

the two radii of curvature for the two directions dp and Sp by lii and JRt, we shall have by II.,

Jir^dp + AXJr = 0, iiVSp + S\Jy = 0, and therefore by I.,

d<r = dSi . \Jy, S<r = Sp + 5(i?iUi') = (1 - Jii2ii-^)vdp + SJii . TJv ;

80 that we have both Sdpda = 0, and SdpSo- = 0, and therefore the tangent d/j or t to the giveti line of

curvature has the direction of the normal v to the corresponding sheet of the surface of centres, as is

otherwise visible Irom geometry. And when we have thus found an equation of the form tv = t,

operation with S . <r gives by XLVI. the value t - Spr, as in XLIX., because c ~ p\\ » It.
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(22.) The expression XLIX. for v gives generally the relation,

LI. . . S|Ou = 1

;

giving also, by 410, V. and VI., these two other equations,

LII. . . Svw = 0, and LIII. . . Svu^u = 0,

which are still independent of the/orm of the given surface.

(23.) But if that surface be a central quadric* then the equation LI. may-

be thus written,

LIV. . . 1 = Suf/.-'v = Si/^-^u
;

combining which with LII. and LIII., we derive the expressions :

IjV. . . v = -—-;

—

—
; LVl. . . |0 = ^ 'v = -

—

-.—^ ,

wherein /u = Su^v, and Fv = Su0"*u, as usual.

(24.) Operating with S . v on this last expression for p, and attending to

LII. and LIV., we find the following quaternion forms of the Equation of the

Reciprocal of the Surface of Centres :

LVII. . . 1 = (Svo =) ,
~/"

^ or LVm. . .v' = [Fv- l)/u ;

or

LIX. . .l = iFv-\)f-\ or LX. . . Fu - -ir = 1 ; &c.,

/-
V

whereof the second, when translated into coordinates, is found to agree

perfectly with a knownf equation of the same reciprocal surface.

(25.) Differentiating the form LX., and observing that

LXI. . . {f^'= j^->
d . u* = 4Su^du, d/u = 2S<^udu, dFu = 2S^-'i.du,

we find, by comparison with XLVI. and XLVIIL, the expression :

LXII. . . (T = ^-»u - -X- + 7"^ ; or LXIII. . . <t = <ir'v + -j^y~ +
fv -

ifvY'
"' —-^

• • " ^ - fVv {fVvr

• Compare the last Note to page 236 ; see also the use made of this known name " quadric," for

a surface of the second order (or degree), in the suh-articles to 399 (pages 159, &c.).

t The equation alluded to, which is one of the fourth degree, appears to have been first assigned

by Dr. Booth, in a Tract on Tangential Coordinates (1840), cited in page 163 of Dr. Salmon's Treatise.

See also the Abstract of a Paper by Dr. Booth, in the Proceedings of the Royal Society for April, 1868.
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or finally by XLIX., with the recent signification XXIY. of r,

LXrV. . . <T = r-^{<t> + ry<i>-'vy because LXV. . . r =/Ur =/Uu :

and, for the same reason, the equation LX. of the reciprocal surface may be

thus briefly written,

LXVI. . .Fv + r-'v' = .1, while LXVI'. . . /u + ru' = 0.

(26.) Inverting the last form for ff, and using again the relation XLVI.,

we first find for v the expression,

LXVII. . . u = r^ (^ + r)-'<f>rT ;

and then are conducted anew to the equation XLV., or to the following,

LXVIII. . . I = S . (7(1 + r-»-^^,T.

(27.) This last equation may also be thus written,

LXIX. . . 1 = S . a(l + r-»-» (0 + r-'<f>')a ;

but by combining XLIII. LI. LXVII. we have,

LXX. . . 1 = {Spv =)S . (r(l + r-'(p)-^i^<f
;

hence
Lxxi. . . = s . <r(i + rv)-y<T,

a result which may be otherwise and more directly deduced, under the form

Svu = (LII.), from the expressions XLIV. LXVII. for v and v.

(28.) If we write,

LXXIL . . r = Ud/o, / = U(i.d/o), and therefore LXXIII. . . tt = Uv,

T and T being thus unit-tangents to the lines of curvature, the equation III.

gives, generally,

LXXIV. . . = Vrd(rr') = - d/ + rSr'dr, whence LXXIV. . . dr' || r ;

of which general parallelism of d/ to t, the geometrical reason is (comp. again

III.) that a line of curvature on an arbitrary surface is, at the same time, a

line of curvature on the developable normal surface which rests upon that line,

and to which the vectors t or vdp are norfnals.
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(29.) The same substitution LXXIII. for TJv gives by II., if we denote

by s the arc of a line of curvature, measured from any fixed point thereof, so

that (by 380, (7.), &c.),

LXXV. . . Tdp = ds, dp = rds, Bsp = r,

the following general expression for the curvature of the given surface, in the

direction r of the given line, which by LXXIV. is also that of dr'

:

LXXVI. . . JS-i = S . rD,(rr') = - S . Tr'D,r = S(U,.-> . D,V)

;

but Ds^p is (by 389, (4.) ) what we have called the vector of curvature of the

line of curvature, considered as a curve in space, and Br^JJv is the corresponding

vector of curvature of the normal section of the given surface, which has the

same tangent t at the given point : hence the latter vector of curvature is

(generally) the projection of the former^ on the normal v to the given surface.

(30.) In like manner, if we denote for a moment by R~^ the curvature of

the developable normal surface (28.), for the same direction t, the general

formula II. gives, by LXXIY.,

LXXYII. . . R;' = rDy = - 8r'D,r = S . r'-^D,V ;

the vector Mj'W of this new curvature is therefore the projection on the new

normal t\ of the vector of curvature Dg^p of the given line of curvature. But

we shall soon see that these two last results are included in one more general,*

respecting all plane sections of an arbitrary surface.

(31.) The general parallelism LXXIV. conducts easily, for the case of

a central quadrie, to a known and important theorem, which may be thus

investigated. Writing, for such a surface,

LXXVIII. . . r=:./f, r'=//,

so that r retains here its recent signification LXV., and r is the analogous

scalar for the other direction of curvature, we have by LXXIV. the

differential,

LXXIX. . . dr' = 2S0/d/ = 2Sr^^-'S/dr = 0,

because ^T<pT = 0, by 410, XI.

* Namely in Meusnier's Theorem, which can be proved generally by quaternions with about the

same ease as the two foregoing caies of it.

Hamilton's Elements ov Quaternions, Vol. II. ' ^
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(32.) We have then the relation,

LXXX. . .fV{vdp) =// = / = const.

;

that is to say, the square (/"^) of the scalar semidiameter {IX) of the surface,

which is parallel to the second tangent (t), is constant for any one line of

curvature (t) ; and accordingly (comp. XXII., and the expression 407,

LXXI. for fJJvi), tlie value of this square is,

LXXXI. . . ifVvdp)-' = r'- = a^ - «'* = b' - ¥' = c" - c'\

if a', h\ c be the scalar semiaxes of the confocal, which cuts the given

quadric {ahc) along the line of curvature, whereof the variable tangent is r.

(33.) This constancy of /Uvd/o may be proved in other ways; for

instance, the general equation Si/di/dp = gives, for a line of curvature

on an arbitrary surface,

LXXXII. . . dv = v^v-'Av + dpS ^; LXXXIII. . . Vdi;d,o = vd|oSv-»dv
;

and
LXXXIV. . . S . d/o^(vd/o) = 0, because di' = ^d/o ;

while for a central quadric (fp = 1, ^p = v) it is easy to show that we have

also,

LXXXY. . . <}>{vdp) = YpdpfivVdp) ;

hence, for such a surface, if we suppose for simplicity that ds or Tdp is

constant, which gives Yvd^p || d^, we have,

LXXXVI. . . d/(..d|o) = 2S{<p{vdp) . d{vdp: ) = 2Sv-'d.. ./(vdp),

a differential equation of the second order, of which ajirst integral is evidently,

LXXXVII. . .f{vdp) = Cv'dp\ or LXXXVir. . .fV{vdp) = C = const.

(34.) But we see that the lines of curvature on a central quadric are thus

included in a more general system of curves on the same surface, represented by

the differential equation LXIXXVI., of which the complete integral would

involve two constants : and which expresses that the semidiameters parallel to

those tangents to the surface, which cross any one such curve at right angles,

have a common square, and therefore (if real) a common length, so that (in

this case) they terminate on a sphero-conic*

• Compare the sub-articles (6.) (7.) (8.) to 219, in page 240, vol. i.
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(35.) Admitting however, as a case of this property, the constancy LXXX.
of the scalar lately called r\ namely the second root of the quadratic XXXIV.
or XXXY., of which the coefficients and the first root r vary, in passing

from one point to another of what we may call for the moment a line of first

curvature, we have only to conceive r and v to be accented in the equations

IjXVI. LXYI'., in order to perceive this theorem, which perhaps is new :

The Curve* on the Reciprocal (24) of the Surface of Centres of curvature of

a central quadric, which answers to the second curvature of that given surface

for all the points of a given line of first curvature, or which is itself in a

known sense the reciprocal (with respect to the given centre) of the develop-

able normal surface (28.) which rests upon that line, is the intersection of two

quadrics; whereof one (LXVr.) is a cone, concyclic with the given surface

(^fp
= 1) ; while the other (LXVI.) is a surface concyclic with the reciprocal of

that given quadric {Fv = 1).

(36.) Again, the scalar Equation of the Surface of Centres (21.) may be

said to be the result of the elimination of r'' between the equations LXYIII.

and LXXI., whereof the latter is the derivative f of the former with respect

to that scalar ; we have therefore this theorem :

An Auxiliary Quadric (LXVIII. or XLY.) touches the Second Sheet of the

Surface of Centres of a given quadric, along a Quartic Curve, which is tlie

locus of the centres of Second Curvature for all the points of a Line of First

Curvature (35.) ; and (for the same reason) the same auxiliary quadric is

circumscribed, along the same quartic, by the Developable Normal Surface (28),

which rests on that first line : with permission, of course, to interchange the

words ^;'s^ and second, in this enunciation.

* The variable vector of this curve is easily seen (comp. XLIX.) to be,

, t' vt

St'p Syrp

and the reciprocal surface (21.) or (24.) is by (25.) the locus of this quartic (35.).

t The analogous relation, between the coordinate forms of the equations, was perhaps thought too

obvious to be mentioned, in page 161 of Dr. Salmon's Treatise ; or possibly it may have escaped

notice, since the quartic curve (36.) is only mentioned there as an intersection of two quadrics, which

is on the surface of centres, and answers to points of a line of curvature upon the given surface. But

as regards the possible novelty, even in part, of any such geometrical deductions as those given in the

text from the quaternion analysis employed, the writer wishes to be understood as expressing himseM

with the utmost diffidence, and as most willing to be corrected, if necessary. The power of derivating

(or differentiating) any symbolical expression of the form LXVIII., or of any analogous /or»i, with

respect to any scalar which it involves explicitly, as if the expression were algebraical, is an important

but an easy consequence from the principles of the Section III. ii. 6, which has been so often

referred to.

2L2
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(37.) When the arbitrary constant r is thus allowed to take successively

all values, corresponding to both systems of lines of curvature, the Surface of

Centres is therefore at once the Envelope* of the Auxiliary Quadric LXVIII.,

and the Locus of the Quartic Curve (36), in which one or other of its two

sheets is touched, by that auxiliary quadric in one of its successive states, and

also by one of the developable surfaces of normals to the given surface.

(38.) To obtain the vector equation of that envelope or locus we may

proceed as follows, using a new expression for or, in terms of v or of p, which

may then be transformed into a function of two independent and scalar

variables. Denoting (comp. (32.)) by ai, hi, Ci the semiaxes of the confocal

which cuts the given surface in the given line of curvature, and by a», 6j, d

those of the other confocal, so that the normals vi, vz to these two confocals

have the directions of the tangents r , t lately considered, we have not only

the expressions LXXXI. for r""', with a'h'c' changed to a^, bi, Ci, but also the

analogous expressions (comp. 407, LXXI.j,

LXXXYIII. ..r-'^a^-a,' = b'- h^ = &- c^\

"We have therefore by XLII., combined with 407, XVI., this very simple

expression for a

:

LXXIX. . . (T = (^-' + r-')v =
(i>.-'x'

=
(l>r'<f>p ;

containing, in the present notation, and as a result of the present analysis, a

known and interesting theorem,! on which however we cannot liere delay.

(39.) It follows from this last value of <r, combined with the expression

408, LXXXII. for p, that we may write,

2lXj. . . cr = I I 7 + :|^p—

7

+ ;

\a + o Vaa a - a

as the sought Vector Equation of the Surface of Centres of curvature of a given

quadric {abc) ; ambiguous signs being virtually included in these three terms,

• Compare the Note immediately preceding.

+ Namely Dr. Salmon's theorem (page 161 of his Treatise), that the centres of curvature of a given

quadric at a given point are the poles of the tangent plane, with respect to the two confocals. The
connected theorem (page 136), respecting the rectilinear locus of the poles of a given plane, with

respect to the surfaces of a confocal system, is at once deducible from the quaternion expression 407,

XVI. for <p'^v, although the theorem did not happen to be known to the present writer, or at least

remembered by him, when he investigated i\i&t formula of inversion for other applications, of which

some have been already given.



Akts.412, 413.] VECTOR EQUATION OF SURFACE OF CENTRES. 261

because in the subsequent eliminations* the semiaxes enter only by their

squares : while /, a, a are constants, as in 407, &o., for the whole confocal

system, and abc are also constant here, but a^ - a^ and a^ - a^, or r'-^ and r"^

(38.), are variable, and may be considered to be the two independent scalars of

which <r is a vector function.f

413. Some brief remarks may here be made, on the connexion of the

general formula,

I. . . Sv-^^ + r)-'v = 0, 412, XXXY.

in which r = R-^Tv (412, XXIY.J, and which when developed by the rules of

the Section III. ii. 6 takes (comp. 398, LXXIX.) the form of the quadratic,

II. . . r' + r8v-\v + Sv-'xPv = 0, 412, XXXIV.

with Grau8s's+ theory of the Measure of Curvature of a Surface ; and especially

with his fundamental result, that this measure is equal to the jjroduct of the

two principal curvatures of sections of that surface : a relation which, in our

notations, may be thus expressed,

III. . . V. dVvWv = Itf'li,-'Ydp^p.

(1.) As regards the deduction, by quaternions, of the equation III., in

which d and B may be regarded as two§ distinct symbols of differentiation,

• The corresponding elimination in coordinates was first effected by Dr. Salmon, who thus deter-

mined the equation of the surface of centres of curvature of a quadric to be one of the twelfth degree.

(Compare pages 161, 162 of his already cited Treatise.)

t [In the notation of the Note to page 225, the vector to the centre of curvature of the quadric ui

along its intersection with M2 is <r = /» + x{* + «i)'V> the value of the scalar x being found by

expressing that <r does not change while M3 in the expression p = {(*+ n\) (* + mz) {* + «<3)}^€

receives a small increment. This gives at once ^(* + mi + x)p^uz + (* + u-i)pAx = 0, and therefore

a; = M3 - Ml. Hence (r = (* + mi)-i (* + Ui)p, or in terms of e the vector equation of the surface of

centres is when ui and to are variable

O- = (* + Mi)-i (* + «2)4 (* + M3)^6.

It may also be shown in various ways that the vector equation of the reciprocal of this surface is

U = - ( + Mi)i (* + M2)i (* + ?<3)'^6.]

X The reader is referred to the Additions to Liouville's Monge (pages 505, &c.), in which the

beautiful Memoir by Gauss, entitled : Disquisitioties generales circa mperjicies ctirvas, is with greal

good taste reprinted in the Latin, from the Commentationes recentiores of the Koyal Society of

Gottingen. He is also supposed to look back, if necessary, to the Section III. ii. 6 of these ElemenU

(pages 484, vol. i., &c.), and especially to the deduction in page 486, vol. i., of
»J/
from <p, remembering

that the latter function (and therefore also the former) is here self-conjugate.

§ Compare page 553, vol. i., and the Note to page 254.
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performed with respect to two independent scalar variables, we may observe

that, by principles and rules already established,

IV. . . dUv = V- .Uv, mv = Y-.Vv = - Uv .V- ;

V V V

and that therefore the first member of III. may be thus transformed

:

V. . . Y . dUvSUv = y(y^.Y-^) = - v-'Sv-'dvBv.

(2.) Again, since we have dv = (jtdp (410, IV., &o.), and in like manner

Sv = (fidp, the relations Svd/o = 0, Svdp = 0, and the self-conjugate property

of 0, allow us to write,

VI. . . Ydv^v = ^pYdpdp, and VII. . . Ydpdp = v'Svdpdp
;

whence follows at once by V. the formula III., if we remember the general

expression, deduced from the quadratic II.,

VIII. . . Er-'B2 ' = - v'r^r, = -S-^L-. 412, XXXVII.
V V

(3.) If then we suppose that p, Pi, P2 are any three near points on an

arbitrary surface^ and that r, Ri, Rj are three near and corresponding points

on the unit sphere, determined by the condition of parallelism of the radii

OR, ORi, 0R2 to the normals pn, PiNi, P2N2, the two small triangles thus formed

will bear to each other the ultimate ratio,

IX. . . lim. ^^5^ = Br-'B.-' ;

APP1P2

a result which justifies (althougli by an entirely new analysis) the adoption

by Gauss of tliis product* of curvatures of sections, as the measure of the

curvature of the surface, with his signification of the phrase.

(4.) As another form of this important product or measure, if we conceive

that the vector p of the surface is expressed as a function (372) of two

independent scalars, t and u, and if we write for abridgment,

X. . . Dtp = p\ D„/o = /o,, B^p = p", DtDup = pf, Dup =
p,,,

• If it be supposed to be in any manner known that a limit such as IX. exists, or that the

quotient of the two vector areas in III. is a scalar iudependent of the directions of ppj, rpj, or

of dp, 8p, we have only to assume that these are the directions of the lines of curvature, in order

to obtain at once, by 412, II. [page 247], the product lii-^li-i^ as the value of this quotient or limit.
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which will allow us (comp. 372, V.) to assume for the normal vector v the

expression,

XI. . . 1^ = Yp'p,,

it is easy to prove* that we have generally,

XII. . . B^-'Ef' = S ^' S ^' - fS
^^'

V V \ V

which takes as a verification the well-known fonn,

rt - s'
XIII. . . Bc'Bi' =

(1 + JO* + qY

when we write (comp. 410, (18.)),

XrV. . . p = ix +jy + kz, p = Bxp = i + kp, p^ = D^p =j + kg

;

XV. . . V = Ypp^ = k-ip -jq, p" = At, p' = ks, p^, = kt.

(6.) In general, the equation XII. may be thus transformed,

XYI. . . v'Ec'Bi^ = S(Vv/«".VvpJ - {YvpJ + v%Sp''p,^ - p;') ;

also

XVII. . . Tdp' = edt' + 2fdfdu + gdu',

if

xviii. . .
« = - pV, /=-Sp>,, .9 = -/>;,

whence
XIX. . . v^ =/2 - eg,

and if we still denote, as in X., derivations relatively to t and u by upper

and lower accents, we may substitute in the quadruple of the equation XVI.

the values,

XX. . . 2V./' = {e^ - 1f)p' + e'p, 2Vrp; = - g'p' + ep,

2Vv/>,;=-^/+(2/:-/)p„
and

XXI... 2(SpV, -p -) = .,,- 2/; + /^

hence the measure of curvature is an explicit function of the ten scalars,

XXI r. . . e,f,g', /,f, g'
; e^,f, g^ ; and e^^ - 2// + g" :

* The quadratic in R-^ may be formed by operating on 412, II. with S . p and S . p,, and then

eliminating d< : du.
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and therefore, as was otherwise proved by Gauss, this measure depends only*

on the expression (XVII.) of the square of a linear element^ in terms of two

independent scalars (^, w), and of their differentials (d^, dw).

(6.) Hence follow also these two other theorems! of Gauss :

—

If a surface be considered as an infinitely thin solid, and supposed to be

flexible but inextensible, then every deformation of it, as such, will leave

unaltered, 1st, the Measure of Curvature at any Point, and Ilnd, the Total

Curvature of any Area ; that is, the area of the corresponding portion of

the unit sphere, determined as in (3.) by radii parallel to normals.*

(7.) Supposing now that t and u are geodetic coordinates, whereof the

former represents the length of a geodetic ap from a fixed point a of the

surface, and the latter represents the angle bap which this variable geodetic

makes at a with a fixed geodetic ab, it is easy to see that the general

expression XVII. takes the shorter form,

XXIII. . . Tdp' = d^ + n'du\ in which XXIV. . . w = T/o, = Tv

;

so that we have now the values,

XXV. . . e = 1, /= 0, ^ = w^ g' = Inn', g" = 2nn" + %n'\

and the derivatives of e and/all vanish. And thus the general expression XII.

for the measure of curvature reduces itself by (5.) to the very simple form,

XXVI. . . Ey-^Ei^ = - n-'n" = - n-'Dt^n ;

in which n is generally a function of both t and u, although here twice

derivated with respect to the former only.

* The proof by quaternions, above given, of this exclusive dependence, is perhaps as simple as

the subject will allow, and is somewhat shorter than the corresponding proof in the Lectures ; in

page 605 of which is given however the equation,

^{'9 -PfRi-'Rz-^ = ey^ - Igf + <7a) +/(^>, - e,g' - %ej, - 2g'f + 4//,)

+ 9 [e? - 2^'/ + ef^) - ^eg -p) («„ - 2// + f),

which may now be deduced at sight from XVI., by the substitutions XIX. XX. XXI., and differs

only in notation from the equation of Gauss (Liouville's Monge, page 623, or Salmon, page 309).

t See page 624 of Liouville's Monge.

X [If 9 is a quaternion or versor function of the two scalars t and «, and if dzij = ?d/>j^' is the

dififerential of a vector function of t and u, the squares of the linear elements dw and dp are identical.

The surfaces desciibod by p and ts correspond point to point, and the measure of curvature at any

point on one surface is equal to that at the corresponding point on the other. Under these circum-

stances the surfaces are applicable. To find the condition to be satisfied by q, we express that dw is

a differential of a function of t and u by equating DtDn^ => D«D(Z3. This gives in the notation of

the text a partial differential equation for q
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(8.) The point p being denoted by tbe symbol {t, u), and any other point

p' of the surface by {t + At, u + Am), we may consider the two connected

points Pi, P2, of which the corresponding symbols are {t + Ai, u) and

{t, u + Am) ; and then the quadrilateral pPip'p2, bounded by two portions

pPi, PjP' of geodetic lines from a, and (as we may suppose) by two arcs

pPa, PiP' of geodetic circles round the same fixed point, will have its area

ultimately = uAtAu (by XXIII.), and therefore (by XXVI., comp. (3.), (6.))

its total curvature ultimately = - n'^AtAu, or = - Atn'. Ah, when At and Au

diminish together, by an approach of p' to p.

(9.) Again, in the immediate neighbourhood of a, we have n = t, n' = 1

;

changing then - A<?»' to - (\tn\ and integrating with respect to t from ^ = 0,

we obtain 1 - «' as the coefficient of Am in the result, and are thus conducted

to the expression

:

XXVII. . . Total Curvature of Triangle app' = (I - «')Am, ultimately,

if AP, Ap' be any two geodetic lines, making with each other a small angle = Aw,

and if pp' be any small arc (geodetic or not) on the same surface.

(10.) Conceive then that pq is a Jinite arc of ani/ curve upon the surface,

for which therefore t, and consequently w', may be conceived to be a function

of ic ; we shall have this other expression of the same kind,

XXVIII. . . Total Curvature of Area apq =
J (1 - n')d« = Am - / n'du

;

the area here considered being bounded by the two geodetic lines ap, aq,

which make with each other the finite angle Au, and by the arc pq of

the arbitrary curve.

(11.) If this curve be itself a. geodetic, and if we treat its coordinates t, u,

and its vector p, as functions of its arc, s, then the second differential of p,

namely,

XXIX. . . d> = p'dH + p^d'u + p"dP + 2p;dtdu + pju\

must be normal to the surface at p, and consequently perpendicular to

p' and p^. Operating* therefore with S . /o', and attending to the relations

XVIII. and XXV., which give

XXX. . . p'^ = - 1, S/>V, = Sp'p" = Sp'.o/ = 0, Sp'p,, = - Sp^p; = nn\

* To operate with S . p^ would give a result not quite so simple, but reducible to the form XXXI.,
with the help of d^a = 0.

Hamilton's Elkmknts of Quatkrnions, Vol. II, » M
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we obtain the differential equation,

XXXI. . . d^^ = nn'du\ or XXXII. . . dv = - n'du,

if we observe that we may write,

XXXIII. . . d^ = cos vds, ndu = sin vds^

because

XXXIV. . . df + n'du' = ds'
;

V being here the variable angle, whioli the geodetic pq makes at p with ap

prolonged.

(12.) Substituting then for - w'dw, in XXYIII., its value dv given by

XXXII., tlie integration becomes possible, and the result is Aw + Af ; where

Am is still the angle at a, and tt i- Av = {tt - v) + {v + Av) is the sum of the

angles at p and q, in the geodetic triangle apq.

(13.) Writing then b and c instead of p and q, we thus arrive at another

most remarkable Theorem* of Gauss, which may be expressed by the formula :

XXXV. . . Total Curvature of a Geodetic Triangle ABC=A + B + c-7r,

= what may be called the Spheroidal Excess ; a, b, c, in the second member,

being used to denote the three angles of the triangle : and the total surface of

the unit sphere (= 47r) being represented by 720°, when the part corresponding

to the geodetic triangle is thus represented by the angular excess, a + b + c - 1 80°.

(14.) And it is easy to perceive, on the one hand, how this theorem

admits of being extended, as it was by G-auss, to all geodetic polygons : and on

the other hand, how it may require to be modified, as it was by the same

eminent geometer, so as to give what would on the same plan be called a

spheroidal defect, when the measure of curvature is negative, as it is for surfaces

(or parts of surfaces) of which the principal sections have their curvatures

oppositely directed.

414. The only sections of a surface, of which the curvatures have been

above determined, are the two jmncipal normal sections at any proposed point

;

but the general expressions of III. iii. 6 may be applied to find the curvature

of any plane section, normal or oblique, and therefore also of any curve on a

• The enunciation of this theorem, respecting which its illustrious discoverer justly says, " Hoc
theorema, quod, ni fullimur, ad elegantissima in theoria superficierum curvarum referendum esse

videtur," ... is given in page 633 of the Additions to Liouville's Monge. A proof by quaternions

was published in the Lectures (pages 606-609, see also the few preceding pages), but the writer

conceives that the one given above will be found to be not only shorter, but more clear.
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given surface, when only its osculating plane is known. Denoting (as in

389, &c.) by p and k the vectors of the given point p, and of the centre k

of the osculating circle at that point, and by s the arc of the curve, we have

generally (by 389, XII. and VI.),

1 d^o
I. . . Vector of Curvature of Curve = kp"' = {p - k)"^ = D«V ^ T" ^ H

'

the independent variable in the last expression being arbitrary. And if we

denote by o- and ^ the vectors of the points s and x, in which the axis of the

osculating circle meets respectively the normal and the tangent plane to the

given surface, we shall have also, by the right-angled triangles, the general

decomposition, kp"* = sp"' + xp'^ (as vectors), or

II. . . D/p = {p- k)-' = (p- cx)-' + {p- Kr ;

where the two components admit of being transformed as follows :

III. . . Normal Component of Vector of Curvature of Curve {or Section)

= (p - <t)"' = i/"^S^ = ip - <ti)"* cos' V + ip - or,)-> sin' V
dp

= Vector of Normal Curvature of Surface for the direction

of the given tangent

;

ffi, <T2 being the vectors of the centres s„ Sj (comp. 412) of the two principal

curvatures, and v being the angle at which the curve (or its tangent dp)

crosses the frst line of curvature (or its tangent rj), while a is the vector of

the centre s of the sphere which is said to osculate to the surface, in the given

direction (of dp) ; and

IV. . . Tangential Component of Vector of Curvature

= {p- KY' = v-'dp-'8vdp-'d'p

« Vector of Geodetic Curvature of Curve (or Section}
;

this latter vector being here so called, because in fact its tensor represents

what is known by the name of the geodetic* curvature of a curve upon a

surface : the independent variable being still arbitrary.

* The name, " courbure geodesique,'''' was introduced by M. IJouville, and has been adopted by

several other mathematical writers. Compaie pages 608, 676, &c. of his Additions to Monge.

2 M 2
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.

(1.) As regards the decomposition II., if a, /3 be any two rectangular

vectors oa, ob, and if y = oc = the perpendicular from o on ab, then

(oomp. 316, L., and 408, XLI.),

^'"^
Va/3 VjSa ^

(2.) To prove the first transformation III., we have, by I. and II.,

observing that dSvdp = 0,

^j V Q '' Q '^ "v^P ~ Syd'^p Sdvdp Q dv

p - <j p - K dtp d/o d/o* dp* d/[>

(3.) Hence, by 412, (7.), if we denote the vector III. of normal curvature

by i2"^Ui;, we have the general expressions (comp. 412, I. XXI.),

VII. . . <T = /o + RVv, R = D\ Tv, with YIII. . .Tv = P-\

for the case of a central quadric ; D being generally the semidiameter of the

index surface (410, (9.), &c.), or for a quadric the semidiameter of that

surface itself, which has the direction of the tangent (or of dp) : and P being,

for the latter surface, the perpendicular from the centre on the tangent plane,

as in some earlier formulae.

(4.) To deduce the second transformation III., which contains a theorem

of Euler, let r, tj, tz denote unit tangents to the section and the two lines of

curvature, so that

IX. . . r = Ti cos f + T2 sin V, and r- = ri' = t2* = - 1
;

we may then write generally (comp. 412, IV.),

X. . . i^-^Tv = -^ = - S ^ = - Sr-'d,r = Sr^r,
<T - p Q.p

and shall have the values (comp. 410, XI.),

XI. . . Sri^Ti = i^r'Tv, Sr2^r2 = Ri'^^v, Sri^rj = Sr^^ri = ;

whence
XII. . . i^ = Rf^ cos' V + R^-^ sin' v,

and the required transformation is accomplished.

(6.) The theorem of Meusnier may be considered to be a result of the

elimination (2.) of d'p from the expressions for the normal component III. of
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what we may call the Vector D,-jo of Oblique Curvature ; and it may be

expressed by the equation,

XIIL..S^^^ = 1, or Xlir. . . S ^^^ = 0,
p — K p — K

which gives ^jjj„ ^^^ _^
n

if it be now understood that the point s, of which <t is the vector, is the

centre of the circle which osculates to the normal section ; or of the sphere

which osculates in the same direction to the surface, as will be more clearly

seen by what follows.

(6.) In general, if /o + A/o be the vector of any second point p' of the given

surface, the equation

XIV. . . S = S -— , with to for a variable vector,
u) — p Ap

represents rigorously the sphere which touches the surface at tlie given

point p, and passes through the second point p'; conceiving then that the

latter point apjiroaches to the former, and observing that the development*

by Taylor's Series of the equation fp = const, gives (if dfp = 2Svdp^ and

di' = 0djo),

XV. . . = A/t)~^A//3 = 28 -— + S ~-^ + terms which vanish generally with Ap,
Ap A/o

even if they be not always null, we are conducted in a new way, by the

known conception of the Osculating Sphere for a given direction to a surface,

to the same centre s, and radius R, as before: the equation of this sphere

being,

XVI...S-^ = Aim.S^=-lim.S^=Vs^^
(J) p \ A|0 Ap J dp

* Compare Art. 374, and the second Note to page 20. The occasional use, there mentioned, of

the differential symbol dp as signifying a finite and chordal vector, in the development of /(/> + ip),

has appeared obscure, in the Lectures, to some friends of the writer ; and he has therefore aimed, for

the sake of clearness, in at least the text of these Elements, and especially in the geometrical appli-

cations, to confine that symbol to its Jirst signification (100, 369, 373, &c.), as denoting a tangential

vector (finite or infinitely small, and to a curve or surface) : p itself being generally regarded as a

veeloi- function, and not as an independent variable (comp. 362, (3.)).
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(7.) Conversely, if we assume a radius R, such that i^' is algebraically

intermediate between JSr* and R^-^, the tangent sphere^

xYiL..s-^ = ^, or xvir...s-?^ = irs
(t) - p M hi — p

will cut the surface in two directions of osculation, assigned by the formula

XII. ; but if R~^ be outside those limits, there will be only contact, and not

any (real) intersection, at least in the vicinity of p.

(8.) If p' be again, as in (6.), any second point of the surface, and if

we denote for a moment by (fl) and (S) the normal plane pnp' and the

normal section corresponding, we may suppose that n is the point in which

the normals to the plane curve (S) at p and p' intersect ; and if we then

erect a perpendicular at n to the plane (11), it will be crossed by every

perpendicular at p' to the tangent pV to the section, and therefore in

particular by the normal at p' to the surface, in a point which we may
call n' : so that the line p'n is the projection, on the plane pp'n, of this

second normal p'n' to the surface. Conceiving then the plane (11) to be

fixed, but the point p' to approach indefinitely to p, we see that the centre

s of curvature of the normal section (S), which is also by (6.) the centre of

the osculating sphere to the surface for the same direction, is the limiting

position of the point n, in which the given normal at p is intersected by the

projection* of the near normal p'n', on the given normal plane.

(9.) The two components III. and IV are included in the binomial

expression,

XYIII. . . Vector of Oblique Curvature (or of Curvature of Oblique Section)

= {p- k)-' = v-'MvAp-' + v-'dip-'^vAp-'d?p,

which is obtained by substituting in I. the general equivalent 409, XXI. for

d^/o, and in which (as before) the independent variable is arbitrary ; and the

tangential component IV. may be otherwise found by observing that, by I.

and II.,

XIX. . .
-!:4p sJ^ = g!:^ = - s.dp-d>,
jO-5 p - K dp

and that

- (vd/o)'' = i/"'dp"S because Svd/o = 0.

• The reader may compare the calculations and constructions, in pages 600, 601 of the Lecture*.

In the language of infinitesimals, an v\finitely tiear normal p'n' intersects the axis of the oiculating

circle, to the given normal section.
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(10.) Another way of deducing the same component IV., is to resolve

the following system of three scalar equations, which by the geometrical

definition of the point x the vector ^ must satisfy :

XX. . . S(^ - p)v = 0; S(^ - p)dp = ; S(^ - p)d> = dp'
;

and which give,

XXI... K-p-""^^ '^'—

or {p - ^)"' = &c., as before. We have also the transformations,

XXII. . . Vector of Geodetic Curvature = (p - K)~^

= {vdpY' S{vVdp.dVdp) = - vdp S^^^ = &o.

(11.) The definition of the point x shows also easily, that if a developable

surface (d) be circumscribed to a given surface (s), along a given curve (c), and

if in the unfolding of the former surface, the point x be carried tvith the tangent

platie, original/^/ drawn to the latter surface at p, it will become the centre of

curvature^ at the new point (p), to the new or })lane curve (c') obtained by this

development : so that the radius (px) of geodetic curvature is equal, as indeed

it is known* to be, to the radius ofplane curvature of the developed curve.

(12.) This plane curve (c') is therefore a circlef (or part of one) if the

condition,

XXIII. . . ?^ = T (^ - p) = const.,

* Compare page 676 of the Additions to IJouville's Monge.

t The curves on any given surface, vhich thus become circles by development, have also the

itoperimetrical property expressed in quaternions (conip. the Note to page 48) by the formula,

XXVI. . . J S (Uv . dpSp) + c8 J Tip = 0,

vhich conducts to the differential equation,

XXVII. . . c-idp = V.UvdUd/j (comp. 380, IV. [page 29]),

and in which the scalar constant c can be shown to have the value,

XXVIII. . . c = (I
- p)U. j'dp = ± T ({-/>) = Badius of Geodetic Curvature,

= radius of developed circle ; and each such curve includes, by XXVI., on the given surface, a

maximum area with a ffiven perimeter : on which account, and in allusion to a Mell-known classical

story, the writer ventured to propose, in page 582 of the lectures, the name " Didonia " for a curve

of this kind, while acknowledging that the curves themselves had been discovered and discussed by

M. Delaunay.
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be satisfied ; but it degenerates into a right line, if this radius of geodetic

curvature be infinite, that is, if

XXIV. .."T(p-q-i = 0, or XXV. . . Svd^odV = 0,

or finally (by 380, II., comp. 409, XXV.), if the original curve (c) be a

geodetic line on the given surface (s), and therefore also on the developable (d) :

which agrees with the fundamental property (382, 383) of geodetics on a

developable surface.

(13.) Accordingly it may be here observed that the general formula IV.,

combined with the notations and calculations of 382, conducts to the

expression (s + v') T/o'"^, or —-r-— , for the geodetic curvature of any

curve on a developable surface, whereof the element ds crosses a generating

line at the variable angle v, while zdix is the angle between two such

consecutive lines : a result easily confirmed by geometrical considerations,

and agreeing with the differential equation s + / = (382, IX.) of geodetics

on a developable.

415. We shall conclude the present Section with a few supplementary

remarks, including a new and simplified proof of an important theorem (354),

which we have had frequent occasion to employ for purposes of geometry, and

which presents itself often in physical applications of quaternions also

:

namely, that if the linear and vector function
<f>

be self-conjugate, then the

Vector Quadratic,

I. . . V|o0/> = 0, 354, I.

represents generally a System of Three Real and Rectangular Directions ; and

that these (comp. 405, (1.), (2.), &c.) are tlie directions of the Axes of the

Central Surfaces of the Second Order, which are represented by the scalar

equation,

II. . . S/o^/o = const.

;

or more generally,

III. . . Sjo^/o = C/>* + C, where C and C are any two scalar constants.

(1.) It is an easy consequence of the theory (350) of the symbolic and

cubic equation in 0, that if c be a root of the derived algebraical cubic 2f =

(354), and if we write * = ^ + c (as in that Article), the new linear and vector

function 4>p must be reducible to the binomialform (351),

IV. . . «I>/o = ^p + cyu = /3Sa/o + ^'Sa>, with V. . . V/3a + V/3'a' = 0,
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as the condition (353, XXXVI.) of self-conjugation. With this condition we

may then write,

VI. . . /3 = Ja + Ba\ ^' = A'a' + Ba
;

and it is easy to see that no essential generality is lost, by supposing that

a and a are two rectangular vector units, which may be turned about in

their own plane, if /3 and /3' be suitably modified : so that we may assume,

VII. . . a' = a'^ = - 1, Saa = ; whence VIII. . . «I>a = - /3, $a' = - /3',

and IX. . . Vi3'a' = Baa' = - V/3«, V^a = Aaa', VjS'a = - A'aa\

(2.) The equation I., under the form,

X. . . V/o$/o = 0, is satisfied by XI. . .
(f)p

= 0, or XII. . . Yaa'p =
;

and it cannot be satisfied otherwise, unless we suppose,

XIII. . . p:=xa + x'a\ and XIV. . . V(ir/3 + x^^') {xa + /a) = ;

that is, by IX.,

XV. . . B{x'' - x") +{A- A')xx' = :

while conversely the expression XIII. will satisfy I., under this condition XV.
But this quadratic in x' : a?, of which the coefficients B and -4 - ^' do not

geney'aUy vanish, has necessarily tico real roots, with a product = - 1 ; hence

there ahcays exists, as asserted, a s^'^stem of three real and rectangular directions,

such as the following,

XVI. . . xa + x'a , x'a - xa\ and aa' (or Voa'),

which satisfy the equation I. ; and this system is generally definite ; which

proves the first part of the Theorem.

(3.) The lines a, a' may be made by (1) to turn in their own plane,

till they coincide with the two first directions XVI. ; which will give,

XVII. . . Z? = 0, ^ = Aa,
i3'

= A'a',

and therefore,

XVIII. .
.<l>p

= -cp + Aa^ap + A'a'^a'p

= [c + A) aSap + {c + A') a'Sa'jO + caa'Sau'p ;

and thus the scalar equation II. will take the form,

XIX. . . Spcpp = {c + A) (Sap)' + {c + A') (Sap)' + C {Saa'pY = const.,

Hamilton's Elbmbnts of Quaternions, Vol. II. 3 if
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which represents generally a central surface of the second order, with its three

axes in the three directions a, a, aa of p ; and does not cease to represent such

a surface, and with such axes, when for S/o^/o we substitute, as in III., this

new expression :

XX. . . 8p0p - Cp' = Spcl>p + C {{HapY + i&a'pY + (Saa»») = C" = const.;

the second surface being in fact coneydie (or having the same cyclic planes)

with the first, and the new term, - Cp, in tjip, disappearing under the sign

V. /o : so that the second part of the Theorem is proved anew.

(4.) It would be useless to dwell here on the cases, in which the surfaces

XIX., XX. come to be of revolution, or even to be spheres, and when

consequently the directions of their axes, or of p in 1., become partially or

even wholly indeterminate. But as an example of the reduction of an equation

in quaternions to the form I., without its at first presenting itself under that

form, we may take the very simple equation,

XXI. . . pipK = tpKp, with K not || t,

which may be reduced (comp. 354, (12.)) to

XKll...Y.pY,pK = 0;

and which is accordingly satisfied (comp. 373, XXIX.) by the three rect-

angular directions,

XXIII. . . Ut - Vk, YiK, Vi + Vk,

of the axes [abc] of the ellipsoid,

XXIV. . . T (tp + pk) = k* - i\ 282, XIX.

which is one of the surfaces of the coneydie system (comp. III.),

XXV. . . ^ipKp - Cp' + C,

as appears from the transformations 336, XI., &c.

(5.) In applying the theorem thus recently proved anew, we have on

several occasions used the expression,

XXVI. . . dv = ^d/o, 410, IV.

in which v is a vector normal to a surface whereof p is the variable vector,

and the fvinction ^ is treated as self-conjugate (363).
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(6.) It is, however, important to remark that, in order to justify the

assertion of this last property, the following expression of integralform^

XXVII. . . JSvdp,

must admit of being equated to some scalar function of p, such as ^fp + const.,

without its being assumed that p itself i^ a. function, of any determinate form,

of a scalar variable, t. The self-conjugation of the linear and vector function

^ in XXYI., is the condition of the existence of the integral ^X.Yll., considered

as representing such a scalar function (comp. again 363)

.

(7.) There are indeed several investigations, in which it is suflBcient to

regard v as denoting some normal vector, of which only the direction is

important, and which may therefore be multiplied by an arbitrary scalar

coefficient, constant or variable, without any change in the results (comp. the

calculations respecting geodetic lines, in the Section III. iii. 5, and many

others which have already occurred).

(8.) And there have been other general investigations, such as those

regarding the lines of curvature on an arbitrary surface, in whicli dv was

treated as a self-conjugate function of dp, while yet (comp. 410, (17.)) the

fundamental differential equation Svdvdp = was not affected by any such

multiplication of v by n.

(9.) But there are questions in which a factor of this sort may be

introduced, with advantage for sof)ie purposes, while yet it is inconsistent

with the self-conjugation above mentioned, unless the multiplier n be such as

to render the new expression Snvdp (comp. XXVII.) an exact differential of

some scalar function of p.

(10.) For example, in the theory oi Reciprocal Surfaces (comp. 412, (21.)),

it is convenient to employ the system of the three connected equations,

XXVIII. .. Si/p = 1, Svd/(> = 0, Spdv = 0; 373, L.LI.

but when the length of v is determined so as to satisfy the first of these

equations, v~^ being then the vectorperpendicular from the origin on the tangent

plane to the given but arbitrary surface of which p is the vector, while p-'^ is

the corresponding perpendicular for the reciprocal surface with v for vector, the

differential dv loses generally its self-conjugate character, as a linear and vector

function of dp : although it retains that character if the scalar function fp be

homogeneous, in the equation fp = const, of the original surface, as it is for the

2 N 2
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case of a central qmdric* for which i- = ^p, dv = -^idp, &c., as in former
Articles.

(11.) In fact, the introduction of the first equation XXVIII. is equivalent
to the multiplication of v by the factor n = {^vpY' ; and if we write (comp.
410, (16.)),

XXIX. . . d//) = 2Svdp, dv = 0dp, dw = Sadp,

we shall have this new pair of conjugate linear and vector functions,

XXX.
. . d .

«v = $dp = «^d^ + v^ad^p, XXXI. . . $'d/> = «0dp 4 aS,.dp

;

and these will not be equal generally, because we shall not in general have
a II V. But this last parallelism exists in the case of homogeneity (10.), because
we have then the relations,

XXXII. . . 2Si;/t) = rfp, d . W-' = d^vp = rSi;d/o,

if r be the number which represents the dimension of fp (supposed to
be whole).

(12.) On the other hand it may happen, that the differential equation
Svdp = represents a surface, or rather a set of surfaces, without the
expression Svdp being an exact differential, as in (6.) ; and then there necessarily
exists a scalar factor, or multiplier, «, which renders it such a differential.

(13.) For example the differential equation,

XXXIII... Sypdp = S.dp = 0, with XXXIV... I, = V7/,, dv = V7dp = 0dp,

represents an arbitraryplane (or a set ofplanes), drawn through a given line y ;

but the expression ^ypdp itself is not an exact differential, and the integral
XXVII. represents no scalar function of p, with the present form of v, of
which the differential dv is accordingly a Hnear function ^dip, which is \iot
conjugate to itself, hut to its opposite (comp. 349, (4.)), so that we have here
^'dp = - tf>6p,

(14.) But if we multiply i. by the factor,

XXXV. ..n = v-^ = {Yyp)-% which gives XXXVI. . . dn = Sadp, a = 2n-*yYyp,

* It was for this reason that the symhol Ty was not interpreted <7f«««% as denoting the

formX of ll"n' lU l.l'^'^K''^ ?' perpendicular from the origin on the tangent plane, in theformula of 410, 412, 414 : although, in several of those formula), as in an equation of 409, (3.),that symbol ica, so interpreted, for the case of a central surface of the second order.
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and therefore 870- = 0, Spo- = - 2«, then the neic normal vector nv, or v"*,

is found to have the self-conjugate differential^

XXXVII. . . d . Mv = d . v-^ = - v-'Ny^p . V-' = *dp = ^'dp
;

and accordingly the new expression^

XXXYIII. . . Snvd/o = Sv-M,o = S ;^, with 7 constant,

is easily seen to be an exact differential, namely (if T7 = 1), that of the angle

which the plane of 7 and p makes with a fixed plane through 7 : so that,

when V is thus changed to nv, the integral in XXYII. acquires a geometrical

signification, which is often useful in physical applications, since it then

represents the change of this angle, in passing from one position of p to

another ; or the angle through which the variable plane of 7/9 has revolved.

(15.) In fact, the general formula 335, XV. for the differential of the angle

ofa quaternion gives, if we write

XXXIX. . 7 = tT^' 7 = const., p, = const., T7 = 1,

V7P0

the two connected expressions :

XL. ..d£? = ±S=^; XLL../S^=±Az(V7/>:V7Po);

which contain the above-stated result, and can easily be otherwise established.

(16.) In general, if the linear and vector function dv = <j»^p be not self-

conjugate, and if the function d . «v = $dp be formed from it as in (11.), it

results from that sub-article, and from 349, (4.), that we may write,

XLII. . . (0 - f)d|o = 2V7dp, (O - <P')dp = 2YyAp,

with the relation,

XLIII. . . 27, = 2«7 + Yv<T ;

where 7, 7, are independent of dp, although they mag depend on p itself If

then the new Hnear function Odp is to be selfconjugate, so that 7, = 0, we

must have

XLIV. . . 2w7 + Vvff = 0, and therefore XLV. . . S7V = ;

which latter very simple equation, not involving either n or a, is thus a form,
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in quaternions, of the Condition of IntegrahiUty* of the differential equation

Si/djo = 0, if the vector y be deduced from v as above.

(17.) The Bifocal Transformation of S/o0p, in 360, (2.), has been suflBciently

considered in the present Section (III. iii. 7) ; but it may be useful to remark

here, that the Three Mixed Transformations of the same scalar function //o,

in the same series of sub-articles, include virtually the whole known theory

of the Modular and Umhilicar Oenerations of Surfaces of the Second Order,f

(18.) Thus, in the formulae of 360, (4), if we make e = 1, e is the vector

of an Umhilicar Focus of the surface.^ = 1, and Z, is the vector of a point on

the Tfmhilicar Directrix corresponding ; whence the umhilicar focal conic and

dirigent cylinder (real or imaginary) can be deduced, as the loci of this point

and line.

(19.) Again, by making Cy, and e^ each = 1, in the formulae of 360, (6.),

we obtain Ttco Modular Transformations of the equation of the same surface

;

£i, £3 being vectors of Modular Foci, in two distinct planes, and ^x, ^a being

vectors of points upon the Modular Directrices corresponding : whence the

modular focal conies, and dirigent cylinders (real or imaginary), are found by

easy eliminations.

(20.) Thus, by assuming that either

or

XLVI. . .SA(/t>-^,) = 0, SA(p-^s) = 0,

XLYII. . . ^ti{p - t,) = 0, ^tx[p - Q = 0,

* If the proposed equation be

Syip = pdx + qiff + rdz = 0, so that y = — {ip +jg + kr),

we easily find that 27 = iP+jQ + kS, where

P=J)^q- Dyr, Q - Dx>- - D^p, R = Dyp - D,?

;

the condition of integrability XLV. becomes therefore here,

pP + qQ + rli = 0, which agrees with known resxilts.

[In terms of the operator v, the condition is S»'V»' = 0. For if nSvdp = d/p = - Sdpv • fp is true

for all differentials dp, we must have vfy = - nv. Operating on this by v and remembering that

V' is scalar, v^P = - »Vv - ^n.v gives, on operating by Sv, the condition as stated above.]

t [The formula of the three mixed transformations are

8p<pp = <7 (p - ,)2 + 2Sa (p - Sm (p - + «. 360, VII.

Sp^p = ff,{p - cj)" + (SAi(p - Ci)y + (S/ii(p - CO)' + *'» '"^Vi-

and

Bp<t>p = ff3(fi
- «3)» - (SA3(p - Cs))' - (Sa*8(p - fs)' + *z,

XVII.

with obvious conditions for homogeneity in p. See pages 645, 546, vol. i.]
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the equations 360, XVI., XVII. may be brought to the forms,

XLVIII. . . Go - erY = Mr' {p - K^Y, XLIX. ..(/«- 63)^ = m^ [p - ^3)',

with the values,

L. . . nii^ = 1 - , and LI. . . ma'' = 1—

;

in which Ci, Cj, c^ are the three roots of a certain cubic {M = 0), or the inverse

squares of the three scalar semiaxes (real or imaginary) of the surface, arranged

in algebraically ascending order (357, IX., XX. ; 405, (6.), &c.) : and m„ tth

are the two (real or imaginary) Moduli, or represent the modular ratios, in the

two modes of Modular Generation* corresponding.

(21.) It is obvious that an equation of the form,

LII. . . T0|o=O= const.

represents a central quadric, if <pp be any linearf and vector function of p, of

the kind considered in the Section III. ii. 6, whether self-conjugate or not

;

but it requires a little more attention to perceive, that an equation of this

otherform,

LIII. . . T(p - V . ^Yya) = T(a - V . yY^p),

represent such a surface, whatever the three vector constants a, /3, 7 may be.

The discussion of this last form would present some circumstances of interest,

and might be considered to supply a new mode of generation, on which

however we cannot enter here.

* MacCullagh's rule of modular generation, which includes both those modes, was expressed in

page 437 of the Lectures by an equation of the form,

T{p-a) = T\.yYPp;

in which the origin is on a directrix, j8 is the vector of another point of that right line, a is the vector

of the corresponding focus, y is perpendicular to a directive (that is, generally, to a cyclic) plane,

p is the vector of any point p of the surface, and ± SySy is the constant modular ratio, of the

distance ap of p from the focus, to the distance of the same point p from the directrix ob, measured

parallel to the directive plane. The new forms (360), above referred to, are however much belter

adapted to the working out of the various consequences of the construction ; but it cannot be necessary,

at this stage, to enter into any details of the quaternion transfonnations : still less need we here

pause to give references on a subject so interesting, but by this time so well known to geometers, as

that of the modular and umbilicar generations of surfaces of the second order. But it may just be

noted, in order to facilitate the applications of the foimulse L. and LI., that if we write, as usual,

for all the central quadrics, a'^ > b^ > c"-, whether b'^ and c^ be positive or negative, then the roots

C[, C2, C3 coincide, for the ellipsoid, with cr^, b-^, c-^ ; for the st«^/e-sheeted htjperboloid, with

c-2, a-2, 6-2 ; and for the <foMJfe- sheeted hyperboloid with b-"^, c-^, a-^, (comp. page 206).

t In page 226 the notation,

d/p = 2Svdp = 2S^pd/>, 409, IV.

was employed for an arbitrary surjace ; but with the understanding that thisfunction <pp (comp. 363)
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(22.) The surfaces of the second order, considered hitherto in the present

Section, have all had the origin for centre. But if, retaining the significations

of ^,/, and F, we compare the two equations,

LIV. ../(p-k) = C, and LY . . . /p - 2Sfp = C",

we shall see (by 362, &c.) that the constants are connected by the two

relations,

LVI...£ = ^ic, a = C-fK=C-^,K = C-F,',

so that the equation,

LYII. . .fp - 28ep =f{p - 0-'£) -Fa,
is an identity.

(23.) If then we meet an equation of the form LV., in which (as has

been usual) we have still /p = S/o0/) = a scalar and homogeneous function of p,

of the second dimension, we shall know that it represents generally a surface of

that order, with the expression (comp. 347, IX., &c.),

LVIII. . . K = 0"^£ = w-^e = Vector of Centre.

(24.) It may happen, however, that the two relations,

LIX. ..m = 0, Ti^oO,

exist together ; and then the centre may be said to be at an infinite distance^

but in a definite direction : and the surface becomes a Paraboloid, elliptic or

hyperbolic, according to conditions which are easy consequences from what

has been already shown.

(25.) On the other hand it may happen that the two equations,

LX. . .m = 0, ;//£ = 0,

are satisfied together; and then the vector k of the centre acquires, by

LVIII., an indeterminate value, and the surface becomes a Cylinder, as has

been already suflEiciently exemplified.

was generally non-linear. It may be better, however, aa a general rule, to avoid writing v ='<t>p,

except for central quadrics ; and to confine ourselves to the notation dv = </)dp, as in some recent and
several earlier sub-articles, when we m ish, for the sake of association with other investigations and
results, to treat the function <p as linear (or distributive) ; because we shall thus be at liberty to treat

the surface as general, notwithstanding this property of ^. As regards the methods oi generating a
quadric, it may be worth while to look back at the Note to page 204, respecting the Six Generations

of the Ellipsoid, which were given by the writer in the Lectures, with suggestions of a few others, as

interpretations of quaternion equations.
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(26.) It would be tedious to dwell here on such details ; but it may be

worth while to observe, that the general equation of a Surface of the Third

Degree may be thus written ;

LXI. . . 8qpq'pq"f> + Sptjtp + Syp + C = ;

C and y being any scalar and vector constants
; 0p any linear, vector, and

self-conjugate function ; and q, q', q" any three constant quaternions : while

p is, as usual, the variable vector of the surface.

(27.) In fact, besides the one scalar constant, C, three are included in the

vector y, and six others in the function
<fi (comp. 358) ; and of the ten which

remain to be introduced, for the expression of a scalar and homogeneous

function of p, of the third degree, the three versors JJq, TJq', Vq" supply

nine (comp. 312), and the tensor ^.qq'<f' is the tenth.

(28.) And for the same reason the monomial equation,

LXII. . . Sqpq'pq"p = 0,

with the same significations of q, q'
,
q", represents the general Cone of

the Third Degree, or Cubic Cone, which has its vertex at the origin of

vectors.

(29.) If then we combine this last equation with tliat of a secant

plane, such as St/o + 1 = 0, we shall get a quaternion expression for a

Plane Cubic, or plane curve of the third degree : and if we combine it with

the equation p^ + 1 = of the unit-sphere, we shall obtain a corresponding

expression for a Spherical Cubic,* or for a curve upon a spheric surface,

which is cut by an arbitrary great circle in three pairs of opposite points,

real or imaginary.

(30.) Finally, as an example of sections of surfaces, represented by

transcendental equations, let us consider the Screw Surface, or Helicoid,f of

which the vector equation may be thus written (comp. the sub-arts, to 314) :

JJXllI. . . p = c{x + a)a + i/a'y, with Ta - 1, 7 = Vaj3, and y > ;

* Compare the Note to page 38, vol. i. ; see also the theorem in that page, which contains

perhaps a new mode of generation of cuhic curves in a given plane ; or, by an easy modification,

of the corresponding curves upon a sphere.

t Already mentioned in pages 419, vol. i., 12, 28, 85. The condition y>Q answers to the

supposition that, in the generation of the surface, the perpendiculars from a given helix on the axis

of the cylinder are not prolonged beyond that axis.

Hamilton's Elements op Quatbrnions, Vol. II. 2 O
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a being the unit axis, while /3, y are two other constant vectors, a, c two

scalar constants, and a?, y two variable scalars.

(31.) Cutting this surface by the plane of /3y, or supposing that

LXIV. . . = 87/3,0 = I^Sap - Sa^S/3p, and writing LXV. . .c = bSa(5,

we easily find that the scalar and vector equations of what we may call the

Scretv Section may be thus written :

LXVI. ..b{x + a) = i/S. a-' ; LXVII. . . p =
.y (yS . a' - /3S . a'-').

(32.) Derivating these with respect to x, and eliminating j3 and /, we

arrive at the equation,

I^YIIl. . . p= {x + a)p' + zy, if LXIX. . . 26s = Try^

but zy in LXVIII. is the vector of the point, say g, in which the

tangent to the section at the point {x, y), or p, intersects the given line y,

namely the line in the plane of that section which is perpendicular to the

axis a : we see then, by LXIX., that this point of intersection depends only

on the constant, b, and on the variable, y, being independent of the constant, a,

and of the variable, x.

(33.) To interpret this result of calculation, which might have been

otherwise found with the help of the expression 372, XII. (with /3 changed

to y) for the normal v to a screw-surface, we may observe, first, that the

equation liXVII., which may be written as follows,

LXX. . . /t> = 2/V. a^''(i, and gives LXXI. . . TYap = yTy,

would represent an ellipse, if the coefficient y were treated as constant

;

namely, the section of the right cylinder LXXI. by the plane LXIY.

;

the vector semiaxes (major and minor) of this ellipse being y/3 and yy
(comp. 314, (2.)).

(34.) By assigning a new value to the constant a, we pass to a new

screw surface (30.), which differs only in position from the former, and may
be conceived to be formed from it by sliding along the axis a ; while the

value of X, corresponding to a given y, will vary by LXYI., and thus we
shall have a new screw section (31.), which will cross the ellipse (33.) in a

new point q : but the tangent to the section at this point will intersect by

(32.) the minor axis of the ellipse in the iame point o as before.
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(35.) We shall thus have a Figure* such as the following (fig. 85.) ;

in which if r be a focus of the ellipse bc, and g (as above) the point of

convergence of the tangents to the screw sections

at the points p, q, &c., of that ellipse, it is easy

to prove, by pursuing the same analysis a little

farther, Ist, that the angle {g), subtended at

this focus F by the minor semiaxis oc, which

is also a radius (r) of the cylinder LXXI., is

equal to the inclination of the axis (a) of that

cylinder to the plane of the ellipse, as may indeed be inferred from

elementary principles ; and Ilnd, what is less obvious, that the other angle

(h)f subtended at the same focus (f) by the interval og, or by what may

be called (with reference to the present construction, in which it is supposed

that 6 < 0, or that the angles made by D^p and /3 with a are either both

acute, or both obtuse) the Depression (s) of the Skew Centre (g), is equal to

the inclination of the same axis (o) to the helix on the same cylinder,

which is obtained (comp. 314, (10.)) by treating y as constant, in the

equation LXIII. of the Screw Surface.

SECTION 8.

On a few Hipeclmens of Physical Application of Q,uaternions,

with some Concluding RemarliB.

416. It remains to give, according to promise (368), before concluding

this work, some examplesf of physical applications of the present Calculus:

and as a first specimen, we shall take the Statics of a Rigid Body.

(1.) Let oi, . . a„ be n Vectors of Application, and let j3i, . . /3„ be n

corresponding Vectors of Force, in the sense that n forces are applied at

the points a„ . . An of a free but rigid system, and are represented as usual

by so many right lines from those points, to which lines the vectors oBi, ,

.
ob„

are equal, though drawn from a common origin ; and let 7 (= oc) be the vector

• Those who are acquainted, even slightly, with the theory of Oblique Arches (or skew bridges),

will at once see that this tig. 85 may be taken as representing rudely such an arch : and it will be

found that the construction above deduced agrees with the celebrated Rule of the Focal Excentricity

,

discovered practically by the late Mr. Buck. This application of Quaternions was alluded to, in

page 620 of the Lectures.

t The reader may compare the remiuks on hydrostatic pressure, in pages 483, 484, vol. 1.

202
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of an arbitrary point c of space. Then the Equation* of Equilibrium of the

system or body, under the action of these n applied forces, may be thus

written :

I. . . SY(a - 7)/3 = ; or thus, T. . . VyS/S = SVa/3.

(2.) The supposed arbitrariness (1.) of 7 enables us to break up the

formula I. or I'., into the two vector equations

:

II. . . 2)3 = ; III. . . SVajS =
;

of each of which it is easy to assign, as follows, the physical signification.

(3.) The equation II. expresses that if the forces, which are applied at

the points Ai . . of the body, were all transported to the origin o, their

statical resultant, or vector sum, would be zero.

(4.) The equation III. expresses that the resultant of all the couples,

produced in the usual way by such a transference of the applied forces to

the assumed origin, is null.

(5.) And the equation I., which as above includes both II. and III.,

expresses that if all the given forces be transported to any cotnmon point c,

the couples hence arising will balance each other : which is a sufficient

condition of equilibrium of the system.

(6.) When we have only the relation,

IV. . . 8(2/3. SVo/3) = 0,

without S/3 vanishing, the applied forces have then an Unique Resultant = 2j3,

acting along the line of which I. or I', is the equation, with y for its variable

vector.

(7.) And the physical interpretation of this condition lY. is, that when

the forces are transported to o, as in (3.) and (4.) the resultant force is in

the plane of the resultant couple.

(8.) When the equation II., but not III., is satisfied, the applied forces

compound themselves into One CouplCf of which the Axis = SVa/3, whatever

may be the position of the origin.

(9.) When neither II. nor III. is satisfied, we may still propose so to

place the auxiliary point c, that when the given forces are transferred to it.

• We say here, "equation "
: because the single quaternion formula, I. or I'., contains virtually

the fix utual tealar equation*, or conditions, of the equilibrium at present considered.
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as in (5.), the resultant force 2/3 may have the direction of the axis SY(a -
7)/3

of the resultant couple, or else the opposite of that direction ; so that, in each

case, the condition,*

SY(a-7)^
V...V

^^

shall he satisfied by a suitable limitation of the auxiliary vector y.

(10.) This last equation Y. represents therefore the Central Axis of the

given system of applied forces, with 7 for the variable vector of that right

line : or the axis of the screw-motion which those forces tend to produce, when

they are not in balance, as in (1.), and neither tend to produce translation

alone, as in (6.), nor rotation alone^ as in (8.).t

(11.) In general, if q be an auxiliary quaternion, such that

YI. . . ?2i3 = 2Ya/3,

its vector part, Yq, is equal by (Y.) to the Vector-Perpendicular, let fall from

the origin on the central axif> ; while its seakr part, Sq, is easily proved to be

the quotient,% of what may be called the Central Moment, divided by the Total

Force : so that Yq = when the central axis passes through the origin, and

Sj' = when there exists an unique resultant.

(12.) When the total force 2)3 does not vanish, let Q be a new auxiliary

quaternion, such that

VII o - ^i? - ^ + ??f^

with

YIII. . . c = SQ = S?, and IX. . . 7 = oc = YQ,

for its scalar and vector parts ; then c5j3 represents, both in quantity and in

direction, the Axis of the Central Couple (9.), and 7 is the vector of a point c

which is on the central axis (10.), considered as a right line having situation in

space : while the position of this jmnt on this line depends only on the given

system of applied forces, and does not vary with the assumed origin o.

* The equation V. may also be obtained from the condition,

v. . . T2V{a - 7))3 = a tninimum,

when 7 is treated as the only variable vector ; which answers to a known property of the Central

Moment.

t [In the expressive language of Sir Robert S. Ball the forces constitute a wrench upon a screw.]

X [This scalar has been aptly termed by Sir Robeit Stawell Ball the pitch of the screw.]
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(13.) Under the same conditions, we have the transformations,

X. . . SajS = (c + 7)2^

;

XI. . . T5aj3 = {c' - 7')4T2i3

;

XII. . . SVa|3 = c2i3 + Vy^/B ; XIII. . . (SYa/3)* = c*(2i3)^ + (VyS/B)'

;

whereof XII. contains the known law^ according to which the axis of the

couple (4.), obtained by transferring all the forces to an assumed point o,

varies generally in quantity and in direction with the position of that point

:

while XIII. expresses the known corollary from that law, in virtue of which

the quantity alone, or the energy (TsYa/B) of the couple here considered, is the

same for all the points o of any one right cylinder, which has the central axis

of the system for its axis of revolution.

(14.) If we agree to call the quaternion product pa . aa' the quaternion

moment, or simply the Moment, of the appliedforce aa' at a, with respect to the

Point p, the quaternion sum %a^ in X. may then be said to be the Total

Moment of the given system of forces, with respect to the assumed origin o

;

and the formula XI. expresses that the tensor of this smyi, or what may be

called the quantity of this total moment, is constant for all points o which are

situated on any one spheric surface, with the point c determined in (12.) for its

centre : being also a minimum when o is placed at that point c itself, and

being then equal to what has been already called the central moment, or the

energy of the central couple.

(15.) For these and other reasons, it appears not improper to call generally

the point c, above determined, the Central Point, or simply the Centre, of

the given system of applied forces, when the total force does not vanish

;

and accordingly in the particular but important case, when all those forces

are parallel, without their sum being zero, so that we may write,

XIV. , . /3, =
6,i3, . . i3„ =

^.„i3, T2i3>0,

the scalar c in (12.) vanishes, and the vector 7 becomes (comp. Ai't. 97 on

bary-centres),

XY. . . DC = 7 = -^
1
— = —Y-

;

so that the point c, thus determined, is independent of the common direction

/3, and coincides with what is usually called the Centre of Parallel

Forces.
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(16.) The conditions of equilibrium (1.), which have been already-

expressed hy the formula I., may also be included in this other quaternion

equation,

XVI. . . Total Moment = 5a/3 = a scalar constant,

of which the value is independent of the origin ; and which, with its sign

changed represents what may perhaps be called the Total Tension of the

system.*

(17.) Ani/ infinitely small change, in the position of a rigid body, is

equivalent to the alteration of each of its vectors a to another of the form,

XVII. ..a\^^a = a^i^ Yia,

t and I being two arbitrary but infinitesimal vectors, which do not vary in

the passage from one point a of the body to another! : and thus the

conditions of equilibrium (1.) may be expressed by this other formula,

XVIII. . . SSf^^a = 0,

which contains, for the case here considered, the Principle of Virtual Velocities,

and admits of being extended easily to other cases of Statics.

417. The general Equation of Dynamics may be thus written,

I. . . 2mS(D^-|)ga = 0,

with significations of the symbols which will soon be stated ; but as we only

propose (416) to give here some specimens of physical application, we shall

aim chiefly, in the following sub-articles, at the deduction of a few formulae

and theorems, respecting Axes and Moments of Inertia, and subjects there-

with connected.

(1.) In the formula I., a is the vector of position, at the time t, of an

element m of the system ; 8a is any variation of that vector, geometrically

compatible with the mutual connexions between the parts of that system

;

* [This of course is what Clausius has since called the viriaL"]

t [Compare pages 83-85, and observe that the transformation

€ = «.-!
. t = (Ser» + Veri). = {p -V z:)i, {p = SerS OT = Ver')

shows that the displacement of the body may be accomplished by a rotation round the axis whose

equation is p = zci + xi, accompanied by a proportional translation along that axis. This screw

translation is called a twist by Sir Robert Ball. In the same way a moving body is said to liave a

twist-velocity on an instantaneous screw.]



288 ELEMENTS OF QUATERNIONS. [III. m. § 8.

the vector m^ represents a moving force, or ^ an accelerating force, wbioh

acts on the element m of mass ; D and S are marks, as usual, of derivating

and taking the scalar ; and the summation denoted by 2 extends to all the

elements, and is generally equivalent to a triple integration, or to an addition

of triple integrals in space. And the formula is obtained (comp. 416, (17.)),

by a combination of D'Alembert's principle with the principle of virtual

velocities, which is analogous to that employed in the Micanique Analytique

by Lagrange.

(2.) For the case of a free but rigid body, we may substitute for Sa the

expression t + Nia, assigned by 416, XVII. ; and then, on account of the

arbitrariness of the two infinitesimal vectors c and t, the formula I. breaks up

into the two following,

II. . . %m{T>t'a - ^) = ; III. . . 2mVa(D,'a - ^) =
;

which correspond to the two statical equations 416, II. and III., and contain

respectively the law of motion of the centre of gravity, and the law of

description of areas.

(3.) If the body have a fixed pointy which we may take for the origin o,

we eliminate the reaction at that point, by attending only to the equation

III. ; and may then express the connexions between i\\e elements m by the

formula,

IV. . . D,o = Vta, whence V. . . D,'a = lYia - VaD^t

;

( being the Vector-Axis of instantaneous Rotation of the body, in the sense

that its versor JJi represents the direction of the axis, and that its tensor Ti

represents the angular velocity, of such rotation at the time f.

(4.) By v., the equation III. becomes,

VI. . . ^maVaBtt = 2m(VmSta - Va^)
;

and other easy combinations give the laws of areas and living force, under

the forms,

VII. . . ^maDta - %mY J a^dt = 7 = a constant vector

;

VIII. . . ^^m{Dta)'' - 2mS / ta^dt = c = a constant scalar.

(5.) When the applied forces vanish, or balance each other, or more

generally when they compound themselves into a single force acting at

the fixed point, so that in each case the condition

IX. . . 2mVa^ =
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is satisfied, the equations (4.) are simplified ; and if we introduce a linear,

vector, and self-conjugate function <j), such that

X. . . ^i = %maNaL = i%ma^ - %maSai,

and write h^ for - 2c, they take the forms,

XI. . . <l>'Dti + Yi<pi = ; XII. . . 0t + 7 = ; XIII. . . Supi = h'
;

y and h being two real constants, of the vector and scalar kinds, connected

with each other and with i by the relation,

XIV. . .Siy + h' = 0; also XV. . . ^D^t = Vty.

It may be added that y is now the vector sum of the doubled areal velocities

of all the elements of the body, multiplied each by the mass m of that

element, and each represented by a 7'i(jht line oDta perpendicular to the plane

of the area described round tlie fixed point o in the time d^ ; and that h^ is

the living force, or vis viva of the body, namely the positive sum of all the

products obtained by multiplying each element m by the square of its linear

velocity/, regarded as a scalar (TD^a).*

• [The following elegant method of dealing with a body rotating about a fixed point is due to

Clifford [Bynamic, vol. ii., page 75). If p is the vector to any moving point, D«p its velocity, and

dtp its velocity relative to the body, it is geometrically evident that

Hip — dtp + Yip.

This may be regarded as a formula of differentiation connecting Dt and d(, as p may be any vector

whatever. In particular, replacing p by t,

D<* = dti,

or the rate of change of the angular velocity is the same whether referred to fixed axes or to axes

moving in the body. (Compare Routh's JRiffid Dynamics, Part I., Aits. 249, 250.)

Again, from fundamental principles the rate of change of angular momentum of the body about

the fixed point is equal to the impressed couple about that point. If then y) is the couple, and if

— <pi is the angular momentum (retaining Hamilton's notation) we have, on replacing p by — (pi, the

dynamical equation
- 9j = Hnpi = dt<pi + \i<pi. But At<pi = <piti,

because the function <(> does not change relatively to the body, so Euler's equations are contained in

4>d(i + Yi<pi = — v-

As another example, on replacing p by Dtp or by its equivalent itp + Yip, we deduce the formula of

acceleration

Dr«p = d«(d(p + Yip) + Vi(d«p + Yip)

= dtV + 2Yidtp + Ydtip + YiYip.

If p is the vector to a point fixed in the body, this becomes Bt^p = Ydup + YiYip, and on taking

moments and summing for the various elements of the body, the dynamical equations may be easily

derived anew.]

Hamilton's Elements of Quaternions, Vol. II. *^
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(6.) When i is regarded as a variable vector, the equation XIII. represents

an ellipsoid, which is Jixed in the body, but moveable with it ; and the equation

XIV. represents a tangent plane to this ellipsoid, which plane is fxed in space,

but changes in general its position relatively to the body. And thus the

motion of that body may generally be conceived, as was shown by Poinsot,

to be performed by the rolling {without gliding) of an ellipsoid upon a plane
;

the former carrying the body with it, while its centre o remains Jixed : and

the semidiameter (t) of contact being the vector-axis (3.) of instantaneous

rotation.

(7.) The ellipsoid XIII. may be called, perhaps, i\ie Ellipsoid of Living

Force, on account of the signification (5.) of the constant h^ in its equation
;

and the fixed plane XIV., on which it rolls, is parallel to what may be called

the Plane of Areas (Sty = 0) : no use whatever having hitherto been made,

in this investigation, of any axes or moments of inertia. But if we here admit

the usual definition of such a moment, we may say that the Moment of Inertia-

of the body, with respect to any axis i through the fixed point, is equal to the

living force h^ divided by the square* of the semidiameter Tt of the ellipsoid

XIII. ; because this moment is,

XVI. . . 2w(TVaUt)^ = r^Sm(Vm)* = - Sr^^t = h'Tr'.

(8.) The equations XII. and XIII. give,

XVII. . . = y'Si(f>t - h\i^iy = Stv, if XVIII. . . V = 7^0t - A>^

;

and this equation XVII. represents a cone of the second degree, fixed in the

body (comp. (6.)), but moveable with it, of which the axis l is always a side,

and to which the normal, at any point of that side, has the direction of the

line V. But it follows from XI., or from XII. XV., and from the properties

of the function ^, that D^t is perpendicular to both 0t and ^^, and therefore

also by XVIII. to v ; the cone XVII. is therefore touched, along the side i,

by that other cone, which is the locus in space of the instantaneous axis of

rotation. We are then led by this simple quaternion analysis, to a second

' * Hence it may easily be inferred, with the help of the general construction of an ellipsoid (217,

(6.)), illustrated by fig. 53 in page 234, vol. i., and page 184, that for any solid body, and any given

point A thereof, there can always be found (indeed in more ways than one) two other points, b and c,

which are YikevfisQ fixed in the body, and are such that the square-root of the moment of inertia, round

any axis ad, is geometrically constructed by the line bd, if the point d be determined on the axis, by

the condition that a and d shall bo equally distant from c. This theorem, with some others here

reproduced, was given in the Abstract of a Paper read before the Royal Irish Academy on the 10th

of January, 1848, and was published in the Proceedings of that date.
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representation of the motion of the body, which also was proposed by Poinsot

:

namely, as the rolling of one cone on another.

(9.) To treat briefly by quaternions some of MacCuUagh's results on this

subject, it may be noted that the line y, though fixed in space, describes in the

body a cone of the second degree, of which the equation is, by what precedes,

XIX. . . g'Sy(j>-'y + hy = 0, if XX. . .g = Ty, or XXI. . . y^ + / =
;

while, if we write y = oc, the point c is indeed fixed in space, but describes a

sphero-conic in the body, which is part of the common intersection of the cone

XIX., the sphere XXI., and the reciprocal ellipsoid (comp. XIII.),

XXII. . . S7^-»7 = h\

(10.) Also, the normal to the new cone (9.), at any point of the side y, has

the direction of g^^'^y + h'^y, or of i + h^y'^ (comp. XIV.j ; and if a line in

this direction be drawn through the fixed point o, it will be the side of contact

of the plane of areas {7.), with the cone of normals at o to the cone XIX.

;

which last (or reciprocal) cone rolls on that plane of areas.

(11.) As regards the Axes of Inertia, it may be sufficient here to observe

that if the body revolve round a permanent axis, and with a constant velocity,

the vector axis t is constant ; and must therefore satisfy the equation,

XXIII. . . Yi<j>t = 0, because XXIY. . . D<t = ;

it has therefore in general (comp. 415) one or other of Three Real and

Rectangular Directions, determined by the condition XXIII. : namely,

those of the Axes of Figure of either of the two Reciprocal Ellipsoids,

XIII. XXII.

(12.) And the Three Principal Moments, say A, B, C, corresponding to

those three princi2)a I axes, are by XVI. the three scalar values of - r'<l>t ;
so

that the symbolical cubic (350) in (j> may be thus written,

XXV. ..{<!> + A)
{<i>

+ B)
{<l»

+ C) = 0.

(13.) Forming then this symbolical cubic by the general method of the

Section III. ii. 6, we find that the three moments A, B, C, are the three roots

(always real, by this analysis) of the algebraic and cubic equation,

XXVI. . . A'- ^n'A^ + (w* + n'^)A - {n^n'"" - «"') = ;

2 P 2
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in which, w^ n'^^ n'"^ are three positive scalars, namely,

XXYII. . . w» = - 2ma' ; n'^ = - -S^mm'fJaaJ ; n"' = 2mm'»/'(Saa'a'y
;

and the combination li^n'"^ - «"* is another positive scalar, of which the value

may be thus expressed,

XXYIII. . . ABC = wV^* - n"^ = SmWa»(VaaO'

+ 2SwmV(Taa'TaVTa''a + Saa'SaV'Sa'^a),

if a, a, a\ &0. be the vectors of the mass-elements m, m', m'', &o.

(14.) And because the equation XXY. gives this other symbolical result,

XXIX. . . - A£C<p-' = (p' + {A + £ + C)ij> + BC + CA + AB,

it follows that XXX... ^0 = 0;

and therefore, by XV., &c., that if a body, with a fixed point, &o., begin to

revolve round one of its three principal axes of inertia, it will continue to

revolve round that axis, with an unchanged velocity of rotation.

(15.) It has hitherto been supposed, that all the moments of inertia are

referred to axes passing through one point o of the body ; but it is easy to

remove this restriction. For example, if we denote the moment XVI.,

by /o, and if /„ be the corresponding moment for an axis parallel to t, but

drawn through a new point Q, of which the vector is o>, then

XXXI. . . /„ = r^Sm(Vt(a - w))^ = /o + 2Sm . S(a>r^VtK) + /Sm,
if

XXXII. . .K%m = Swa, and XXXIII. . ,p = TVtuUt,

so that K is the vector of the centre of inertia (or of gravity) of the body, and

p is the distance between the two parallel axes.

(16.) If then we suppose that the condition

XXXIV. . . VtK =

is satisfied, that is, if the axis t pass through the centre of inertia, we shall

have the very simple relation,

XXXV. . . /„ = /o + />'Sm
;

which agrees with known results.*

[In like manner, if

ip^i = 2m{a - w) V(o - «)»,

we find

^u'
~

"fo*
- V(kVwi + «V»ti)2« + ei»V««2w.
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418. As a third specimen of physical applications of quaternions, we propose

to consider briefly the motions of a System of Bodies, m, m, m'\ . . . regarded

as free material points, of which the variable vectors are a, a', a", . . . and

which are supposed to attract each other according to the law of the inverse

square : the fundamental formula employed being the following,

I. . . SwSD«^a8a + gP = 0, if II. . . P = S
'^''''

T(a-a')
•

P thus denoting the Potential (or force-function) of the system, and the

variations Sa, Sa', . . . being infinitesimal, but otlierwise arbitrary.

(1.) To deduce the formula I., with the signification II. of P, from the

general equation 417, I. of dynamics, we have first, for the case of two

bodies, the following expressions for the accelerating forces,

m...5 = ^^, r = ^^, if r = T(a-aO;
[a-a)r [a — a]r

whence follows the transformation,*

IV. . . - S (ml^a + mi, do ) = S ^ -/- = 8 ;
^ '

r a-

a

r

a result easily extended, as above. If the law of attraction were supposed

different, there would be no difficulty in modifying the expression for the

potential accordingly.

(2.) In general, when a scalar, f (as here P), is a function of one or

more vectors, a, a,... its vanation (or differential) can be expressed as a

linear and scalar function of their variations (or differentials), of the form

Sj38a + Sj3'Sa' + . . (or SSjSda) ; in which /3, /3' ... are certain netc and

finite vectors, and are themselves generally functions of a, a, . . ., derived

When the point o is at the centre of inertia, so that k is zero, this takes the simple form

M being the mass of the body. It is evident that the linear functions ^„ and <^o
- -^"Sw have the

same principal directions, and comparing XXI., page 199, and the Note to page 224, it appears that

these directions are the noiinals to the three confocals

S«(Jf-Vo + A)'^«= 1

which pass through the point fl (Binet's theorem). The distribution of the assemblage of these

principal axes has virtually been considered in the Note to page 246.]

• It may not he useless here to compare the expression in page 461, vol. i., for the differential of

a proximity.
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from the given scalar function/. And we shall find it convenient to extend

the Notation* of Derivatives, so as to denote these derived vectors /3, j3', &c.,

by the symbols, Daf, Da'/, &c. In this manner we shall be able to write,

Y. . . gP = SS(DaP.8a);

and the differential equations of motion of the bodies m, m', m", . . will take

by I. the forms :

VI. . . mDt'a + BaP = 0, m'D(V + D^'P = 0, &o.

;

or more fully,

m m
(a - a') T(a - a')

"^

(a-a")T(a - a")
VII. . . Dt^a = -, TTTiT, 7T + 7 ^TT^T; 777 + . . ; &0.

(3.) The laws of the centre of gravity, of areas, and of living force, result

immediately from these equations, under the forms,

VIII. . . SmD,a = /3 ; IX. . . SwVaD.a = 7 ;

and
X. . . r = - i2m(D<a)'^ = P + H;

in which /3, 7 are constant vectors, 5" is a constant scalar, and 2T is the

living force of the system (comp. 417, (5.)).

(4.) One mode (comp. 417, (2.)) of deducing the three equations, of

which these are the first integrals, is the following. To obtain VIII.,

change every variation Sa in I. to one common but arbitrary infinitesimal

vector, £. For IX., change ^a to V/a, ^a to Yia, &c. ; i being another

arbitrary and infinitesimal vector. Finally, to arrive at X., change variations

to diferentials (Sa to da, &c,), and integrate once, as for the two former

equations, with respect to the time t.

(5.) The formula I. admits of being integrated by parts, without any

restriction on the variations ^a, by means of the general transformation,

XI. . . S {Dt'a . ga) = DS {Dta . Ba) - ^8 . (Dta)\

combined with the introduction of the following definite integral (comp. X.),

XII.. . F={\p + T)dt.

* In this extended notation, such a formuk as dfp = 2Si>dp would give,
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(6.) In fact, if we denote by oe, a'o, • . the initial values of the vectors

a, a, . . or their values when ^ = 0, and by Doa, Doo', . . the corresponding

values of Dta, Dta, . . , we shall thus have, as a first integral of the equation

I., the formula,

XIII. . . SwS(D<a . Ba - Doa . Sao) + SF = ;

in which no variation Bt is assigned to t, and which conducts to important

consequences.

(7.) To draw from it some of these, we may observe that if the masses

m, ni\ . . be treated as constant and known, the complete integrals of the

equations VI. or VII. must be conceived to give what may be called the

^nal vectors of position a, a, . . and of velocity/ Dta, Dta, . . in terms of the

initial vectors Qq, a\, . . DqO, D^a, . . and of the time, t : whence, conversely, we

may conceive the initial vectors of velocity to be expressible as functions of

the initial and final vectors of position, and of the time. In this way, then,

we are led to consider P, T, and F as being scalar functions (whether we are

or are not prepared to express them as such), of a, a, . . oo, a'o, . • and t ; and

thus, by (2.), the recent formula XIII. breaks up into the two following

systems of equations

:

XIV. . . niDia + Dai^= 0, m'Dta' + J)a'F= 0, &c.

;

and
XV. . . - wDoG + Jy^F = 0, - m'Doa + D^'^ F=0, &c.

;

whereof the former may be said to be intermediate integrals, and the latter to

be final integrals, of the differential equations of motion of the system, which

are included in the formula I.

(8.) In fact, the equations XIV. do not involve the final vectors of

acceleration T)ta, . . as the differential equations VI. or VII. had done ; and

the equations XV. express, at least theoretically, the dependence of the final

vectors of position a, . . on the time, t, and on the initial vectors of position

ao, . . and of velocity D^a, . . as by (7.) the complete integrals ought to do.

And on account of these and other important properties, the function

here denoted by F may be called the Principal* Function of Motion of the

System.

* This function was in fact so called", in two Essays by the present writer, " On a General

Method in Dynamics," published in the Philosophical Transactions (London), for the years 1834 and

1835 ; although of course coordinates, and not quaternions, were then employed, the latter not having

been discovered until 1843 : and the notation S, since adopted for scalar, was then used instead of F.
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(9.) If the initial vectors a^, . . and Doa, . . be given^ that is, if we

consider the actual progress in space of the mutually attracting system of

masses m, . . from one set of positions to another, then the function F depends

upon the time alone ; and by its definition XII., its rate or velocity of increase,

or its total derivative with respect to t^ is thus expressed,

XVI. . . D,F = P + r.

(10.) But we may inquire what is the partial derivative, say (D^F), of the

same definite integral F, when regarded (7.) as a function of the final and

initial vectors of position a, . . Oq, . . which involves also the time explicitly^

and is now to be derivated with respect only to that variable t, as (/the final

vectors a, . . were constant : whereas in fact those vectors alter with the time,

in the course of any actual motions of the system.

(11.) For this purpose, it is sufficient to observe that the part of the total

derivative T)tF, wliich arises from the last-meutioueJ changes of a, . . is (by

XIY. and X.],

XVII. . .SS(Da-P.D,a) = 2r;

and therefore (by XVI. and X.), that the remaining part must be,

XVIII. . . (D<F) = P-T=-H,

(12.) The complete variation of the function F is therefore (comp. XIII.),

when t as well as a, . . and Oq, . . is treated as varying,

XIX. ..SF=-MBt- ^mSBtada + ^mSBoaBao.

(13.) And hence, with the help of the equations X. XIV. XV., it is easy

to infer that the principal function F must satisfy the two following Parti<(l

Differential Equations in Quaternions :

XX. . . (D,F) - ^^m-\T>,FY = P

;

XXI. . . [DtF] - ^tm-\ld^FY = Po

;

in which P^ denotes the initial value of the potential P.

(14.) If we write

xxiL. .r=r2rdif,
Jo

BO that V represents what is called the Action, or the accumulated living
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force, of the system during the time t, then by X. and XII. the two definite

integrals F and V are connected by the very simple relation,

XXIII. ..F=i?'+^-H-;

whence by XIX. the complete variation of V, considered as a function of the

final and initial vectors of position, and of the constant H of living force,

which does not explicitly involve the time, may be thus expressed,

XXIV. . . 8F= ^85" - 2mSD^8a + %m%T),alQ^.

(15.) The partial derivatives of this new function F, which is for some

purposes more useful than F, and may be called, by way of distinction from

it, the Characteristic* Function of the motion of tlie system, are therefore,

XXY. . . D^F = - mD<a, &c.

;

XXVI. . . D^F= + wDofl, &o-

;

and
XXVII. . .D V=t.

(16.) The intermediate integrals (7.) of the differential equations of motion,

which were before expressed by the formulae XIV., may now, somewhat less

simply, be regarded as the result of the elimination ofH between the formulse

XXV. XXVII. ; and the final integrals of those equations VI. or VII., which

were expressed by XV., are now to be obtained by eliminating the same

constant H between the recent equations XXVI. XXVII.

(17.) The Characteristic Function^ IJ, is obliged (comp. (13.)) to satisfy

the two following partial differential equations,

XXVIII. . . ^%n-'{T>aVY + P + E = 0;

XXIX. . . Pm-HD-oF)^ + Po + £ = ;

it vanishes, like F, when ^ = 0, at which epoch a = «„, « = a\, &o
;
eachoi

these two functions, F and F, depends s,mmetricamj on the mitial and fina

vectors of position: and each does so, only by depending on the mutual

configuration of all those initial and ^ubX positions.

"I^e MUon, V, was in fact so called, in the two ^-^--^0^^^^^^^^^

properties of this Characteristic Function had been perceived by the wntei, betore

he came afterwards to call the Principal Function, as above.

Hamilton s> Elements of Quaternions, Vol. II.
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(18.) It follows (comp. (4.), see also 416, (17.), and 417, (2.)), that the

function F must satisfy the two conditions,

XXX. . . % (DaF + D„oF) = ; XXXI. . . SV(aDaF + a,J),a,F) = ;

which accordingly are forms, by XIY. XY., of the equations VIII. and IX.,

and therefore are expressions for the law of motion of the centre of gravity,

and the law of description of areas. And, in like manner, the function V is

obliged to satisfy these two analogous conditions,

XXXII. . . :S (Da F + Dao F) = ; XXXIII. . . irf[aD^ V + a^Dao F) = ;

which accordingly, by XXY. XXVI., are new forms of the same equations

VIII. IX., and consequently are new expressions of the same two laws.

(19.) All the foregoing conditions are satisfied when t is small, that is,

when the time of motion of the system is short, by the following approximate

expressions for the functions F and F, with the respectively derived and

mutually connected expressions for H and t

:

XXXIV. ..i^=|(P+Po) + |^^;

XXXV. . .V = s{P + P, + 2E)i;

XXXVI. ..R=- (D^F) = - Mi' + Po) + 1^ ;

XXXVII. . . i5 = DffF = s(P + Po + 2H)-i
;

in which « denotes a real and positive scalar, such that

XXXVIII. ..«* = - 2»^ (a- ao)% or XXXIX. . . s = ^/5wT(a - ao)^

419. As & fourth specimen, we shall take the case of a free point or particle,

attracted to a fixed centre* o, from which its variable vector is a, with an

accelerating force = Mr~^, if r = Ta = the distance of the point from the

* When two free tnasses, m and m , with variable vectors a and a, attract each other according to

the law of the inverse square, the differential equation of the relativ$ motion of m about m' is, by

418, VII.,

I'. . . D2(a - o') = (ot + m') (a - a')-h-\ if r = T(o - o') ;

and this equation I', reduces itself to I., when we write o for a — a, and Jf for tn + m'.
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centre, while M is the attracting mass : the differential equation of the

motion being,

I. . . D'a = JTo-V-S

if D (abridged from Dt) be the sign of derivation, with respect to the

time t.

(1.) Operating on I. with V. o, and integrating, we obtain immediately

the equation (comp. 338, (5.)),

II. . . VaDa = j3 = const.

;

which expresses at once that the orbit is plane, and also that the area

described in it is proportional to the time ; U/3 being the fixed unit-normal

to the plane, round which the point, in its angular motion, revolves posi-

tively ; and Tj3 representing in quantity the double areal velocity, which

is often denoted by c.

(2.) And it is important to remark, that these conclusions (1.) would have

been obtained by the same analysis, if r~^ in I. had been replaced by any

other scalar function, f{r), of the distance ; that is, for any other law of central

force, instead of the law of the inverse square.

(3.) In general, we have the transformation,

in. . . a-'Ta' = dUa : Vada,

because, by 334, XV., &o., we have,

IV. . . dUa = V(da . a-') .Ua = a'JJa .Vada = a'Ta-^ Vada ;

the equation I. may therefore by II. be transformed as follows,

V. . . D'a = yDVa, if VI. . . 7 = - Mfi'' ;

and thus it gives, by an immediate integration,

VII. . . Da = 7 (Ua - €), or Vir. . . Da = (6 - Ua)7,

c being a new constant vector, but one situated in the plane of the orbit, to

which plane /3 and 7 are perpendicular.

(4.) But a. Da, DV are here (comp. 100, (5.) (6.) (7.)) the vectors of

position, velocity, and acceleration of the moving point ;
and it has been

defined (100, (5.)) that if, for any motion of a point, the vectors of velocity

2 Q 2
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be set o£E from any common origin^ the curve on which they terminate is the

Hodograph* of that motion.

(5.) Hence a and Da, if the latter like the former be drawn from the

fixed point o, are the vectors of corresponding points of orbit and hodogragh
;

and because the formula YII. gives,

VIII. . . SyDa = 0, and IX. . . (Da + ytf = y\

it follows that the hodograph is, in the present question, a Circle, in the

plane of the orbit, with - -ye (or + ey) for the vector of its centre, and with

Ty = j5fTj3"^ for its radius, which radius we shall also denote by h.

(6.) The Law of the Circularf Hodograph is therefore a mathematical

consequence of the Law of the Liverse Square ; and conversely it will soon

be proved, that no other law of central force would allow generally the

hodograph to be a circle.

{7.) For the law of nature, tlie Radius (A) of the Hodograph is equal,

by (1.) and (5.), to the quotient of the attracting mass [M], divided by the

double areal velocity (T/3 or c) in the orbit ; and if we write

X. . . e = T6,

this positive scalar e may be called the Excentricity of the hodograph, regarded

as a circle excentrically situated, with respect to the fixed centre of foi'ce, o.

(8.) Thus, if e < 1, the fixed point o is interior to the hodograph circle

;

if e = 1, the point o is on the circumference ; and if e >1, the centre o of force

is then exterior to the hodograph, being however, in all these oases, situated

in its plane.

(9.) The equation VII. gives,

XI. . . £ - Ua = - y-^Da = Da . y"'

;

operating then on this with S . a, and writing for abridgment,

XII. . . i> = iiy-^ = M-'H^-" = c'M-\ and XIII. . . SUac = cos v,

• Compare fig. 32, p. 97, vol. i. [and p. 302] ; see also pages 99, vol. i., 29, 112, from the two
latter of whicJi it may be perceived, that the conception of the hodograph admits of some purely

geonulrical applications.

t This law of the circular hodograph was deduced geometrically, in a paper read before the Royal

Irish Academy, by the present author, on the Hth of December, 1846 ; but it was virtually contained

in a quaternion formula, equivalent to the recent equation VII., which had formed part of an earlier

commnnication, in July, 1846. (See the Proceedings for those dates; and especially pages 345, 347,

and xxxix, xlix, of vol. iii.)
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so that p is a constant and positive scalar, while v is the inclination of a to - c,

we find,

XIV. . .r + So£=i?; or XV. . . r = ^'

1 + e cos «7
'

the orbit is therefore a plane conic, with the centre of force o for a focus,

having e for its excentricity, and p for its semiparameter.

(10.) And we see, by XII., tlmt if this semiparameter p be multiplied by

the attracting mass M, the product is the square of the double areal velocity c
;

so that this constant c may be denoted by {Mp)^, which agrees with known

results.

(11.) If, on the other hand, we divide the mass {31) by the semiparameter

(p), the quotient is by XII. the square of the radius {MT(5'^ or h) of the

hodograph.

(12.) And if we multiply the same semiparameter j9 by this radius iI/Tj3"^

of the hodograph, the product is then, by the same formula XII., the constant

T/3 or c of double areal velocity in the oi'bit, so that h = Mc~^ = cp~K

(13.) If we had operated with V. a on VII'., we should have found,

XVI. . ./3 = V.a(£-Ua)y = (Sac + r)7;

which would have conducted to the same equations XiV. XV. as before.

(14.) If we operate on VII. with S . a, we find this other equation,

XVII. ,.-rI)r = SoDa = yYaa
;

but

XVIII. ..~Y = h' = -{hy VI. and XII., comp. (11.)),

and
XIX. . . - {YatY = e-'r^ - {p - rf = p{2r - p - r\-'),

if we write

XX. . . « = ^ •

1-e^'

hence squaring XVII., and dividing by r^, we obtain the equation,

\d^; \r a r

(15.) It is obvious that this last equation, XXI., connects the distance, r,

with the time, t, as the formula XV. connects tlie same distance r with the

true anomaly, v ; that is, with the angular elongation in the orbit, from the
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position of least distance. But it would be improper here to delay on any

of the elementary consequences of these two known equations : although it

seemed useful to show, as above, how the equations themselves might easily

be deduced by quaternions, and be connected with the theory of the hodograph.

(16.) The equation II. may be interpreted as expressing, that the

parallelogram (comp. fig. 32, p. 97, vol. i.) under

the vectors a and Da of position and velocity,

or under any two corresponding vectors (5.) of

the orbit and hodograph, has a constant plane

and area, represented by the constant vector /3,

which is perpendicular (1.) to that plane. But

it is to be observed that, by (2.), these constancies,

and this representation, are not peculiar to the
'

law of the inverse square, but exist for all other laws of central force.

(17.) In general, if any scalar function II (instead of Mr""^) represent

the accelerating force of attraction, at the distance r from the fixed centre o,

the differential equation of motion will be (instead of I.),

XXII. . . D^a = Bra' = - RJJa
;

and if we still write YdDa = /3, as in II., the formula IV. will give,

XXIII. . . D'a = - Dig . Uo - Rr-'(^JJa, and XXIY. • • V^^ = r-^/S ;

in which (5 = cU/3, if c = T/3, as before.

(18.) Applying then the general formula 414, I., we have, for ani/ law*

of force, the expressions,

XXV. . . Vector of Curvature of Hodograph = ^jt ^ jyT = If^ ^<^(^ >

XXVI. . . Radius (h) of Curvature of Hodograph = JK;-*c"'

Force x Square of Distance

Double Areal Velocity in Orbit
'

of which the last not only conducts, in a new way, for the law of nature, to

the constant value (7.), h = Mc'\ but also proves, as stated in (6.), that for

* The general vuiut XXVI., of the radius of curvature of the hodograph, was geometrically

deduced in the Paper of 1846, refeired to in a recent Note.
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miy other law of central force the hodogra/ph cannot he a circle^ unless indeed

the orbit happens to be such, and to have moreover the centre of force at

its centre.

(19.) Confining ourselves however at present to the law of the inverse

square, and writing for abridgment (comp. (5.)),

XXYII. . . K = OH = cy = Vector of Centre h of Hodograph,

which gives, bj (6.) and (7.),

XXYIII. . . Tk = eh,

the origin o of vectors being still the centre oi force, we see by the properties

of the circky that the product of any two opposite velocities in the orUt is

constant ; and that this constant product* may be expressed as follows,

XXIX. . . (e - 1) AUk . (« + 1) AUk = A^ (1 - e^) = Ma-\

by XVIII. and XX.
(20.) The expression XXIX. may be otherwise written as k^ - 7^ ; and

if V be the vector of any point u external to the circle, but in its plane, and

u the length of a tangent ut from that point, we have the analogous formula,

XXX. . . W^ = 7' - (y - ic)^ = T(i; - Kf - h\

(21.) Let T and / be the vectors ot, ot' of the two points of contact of

tangents thus drawn to the hodograph, from an external point u in its plane

;

then each must satisfy the system of the three following scalar equations,

XXXI. . . S-yr = ;

XXXII. ..{T-KY = f\

XXXIII. . .S(r-ic) (u-k) =7^

* In strictness, it is only for a closed orbit, that is, for the case (8.) of the centre of force being

interior to the hodograph {e < 1), that two velocities can be opposite ; their vectors having then, by the

fundamental rules of quaternions, a scalar and positive product, wliich is here found to he -^ Ma'^, by

XXIX., in consistency with the known theory of elliptic motion. The result however admits of an

interpretation, in other cases also. It is obvious that when the centre o of force is exterior to the

hodograph, the polar of that point divides the circle into two parts, whereof one is concave, and the

other convex, towards o ; and there is no difficulty in seeing, that the former part corresponds to the

branch of an hyperbolic orbit, which can be described under the influence of an attracting force : while

the latter part answers to that other branch of the same complete hyperbola, whereof the description

would require the force to be repulsive.
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whereof the first alone represents the plane ; the two first jointly represent

(comp. (5.)) the circle ; and the third expresses the condition of conjugation

of the points t and u, and may be regarded as the scalar equation of the polar

of the latter point. It is understood that Syu = 0, as well as S^k = 0, &o.,

because y is perpendicular (3.) to the plane.

(22.) Solving this system of equations (21.), we find the two expressions,

XXXIY. . . r = K + 7(7 + w) (u - k)-' ;

XXXIV. . . / = K + 7(7 - w) (v - k)-' ;

in which the scalar u has the same value as in (20.). As a verification, these

expressions give, by what precedes,

XXXV. . . S(r - k) (r - u) = ; XXXV. . . S(/ - k) (/ - u) = ;

^°^ XXXVI. ..{T-vy= {t' - u)^ = - u\

In fact it is found that

XXXVII. . . T - u = w (w + 7) (v - k)-' ;

XXXVIII. . . T(m + 7) = T(u - k) ;

and
XXXIX. . . (r - v) (r - k) = W7

;

w + 7 being here a quaternion.

(23.) If V be the vector ou' of any point u', on the polar of the point

TJ with respect to the circle, then changing t to v\ and u to z, in XXXIV.,
we find this vectorform (comp. (21.)) of the equation of that polar

^

XL. . . u' = K + 7 (7 + s) (u - «c)'S

or, by an easy transformation,

XLI. . . (A* + V?) u' = h\ + u\ + 27 (k - v),

in which z is an arbitrary scalar.

(24.) If then we suppose that u' is the intersection of the chord tt' with

the right line ou, the condition

XLII. . . Nv'v = will give XLIII. . . 27 - ^ ^ ;

V' - OKU

but
XLIV. . . Vku . (ic - u) = kS(ki; - v-") + v8(icv - k^) ;
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the coefficient then of k, in the expanded expression for v', disappears as it

ought to do : and we find, after a few reductions,

XLV. ..v' = v(i+
, ^ = ^

zj-,^—

,

\ V — OKUy V —V OKV

a result which might have been otherwise obtained, by eliminating a new

scalar y between the two equations,

XLVI. . . V = yvi S {yv - k) (u - k) = y^.

(25.) Introducing then two auxiliary vectors, X, ft, such that

XliVII. . . X = u'^Sku, or Sku = uX = Xu,

and therefore

XLVir. . . X - K = u-'V»cu, SkX = \\ (X - kY = tc' - \\

and

XLVIII. . .fi = \{l + (l + ^-^"iX whence )u || X, [fi - Kf = f,

we have the very simple relation,

XLIX. . . (y - X) (u' - X) = (/i - X)^ or L. . . Lu . lu' = lmS

if X = OL, and fx = cm. Accordingly, the point l is the foot of the perpen-

dicular let fall from the centre h on the right line ou, while m is one of the two

points M, m' of intersection of that line with the circle ; so that the equation L.

expresses, that the points u, u' are harmonically conjugate, with respect to the

chord mm', of which l is the middle point, as is otherwise evident from

geometry.

(26.) The vector a of the orbit (or of position), which corresponds to the

vector r(= Da) of the hodograph (or of velocity), and of which the length is

Ta = r = the distance, may be deduced from t by .the equations,

LI. . . a = r(K - T)y-\ and LII. . . Vra = - /3 = My-'
;

whence follow the expressions,

LIII. . . Potential = Mr' = (say) P = Sr(K: - t) = Su(»c - r)

;

Hamilton's Elements of Quaternions, Vol. II. ' ^
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the second expression for P being deduced from the first, by means of the

relation XXXV.
(27.) The first expression LIII. for P shows that the potential is equal,

Ist, to the rectangle under the radius of the hodograph, and the perpendicular

from the centre o of force, on the tangent at t to that circle ; and Ilnd, to

the square of the tangent from the same point t of the hodograph, to what

may be called the Circle of Excentricity, namely to that new circle which has

OH for a diameter. And the first of these values of the potential may be

otherwise deduced from the equality (7.) of the mass Jf, to the product he of

the radius h of the hodograph, multiplied by the constant c of double areal

velocity, or by the constant parallelogram (16.) under any two corresponding

vectors.

(28.) The second expression LIII. for the potential P, corresponding

to the point t of the hodograph, may (by XXXIV., &c.) be thus

transformed, with the help of a few reductions of the same kind as those

recently employed :

LIV. . . P = — = —^ ^—i, if LV. . . q = v{K- v),

q being thus an auxiliary quaternion ; and in like manner, for the other

point t' lately considered, we have the analogous value,

T VT T>' -^ - A'Sg - UyNq
.

r h^ + w*

whence

and therefore,

and finally,

LVIL..P.P' = :^^:^^-

Lviii - - P-' - ^y+^v"'^g .

;^nfv
^ TTF = S<7 + g^ = u (A - uO = ou

.
u L.

(29.) In fact, the same second expression LIII. shows, that if v and v' be
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the feet of perpendiculars from t and t' on hl, then the potentials are,

LXI. . . P = ou . TV, and P' = ou , t'v'
;

and it is easy to prove, geometrically, that the segment u'l is the harmonic

mean between what may be called the ordinateSf tv, tV, to the hodographic

aads HL.

(30.) If we suppose the point u to take any new but near position u^ in

the plane, the polar chord XT', and (in general) the length u of the tangent ut,

will change ; and we shall have the differential relations :

LXII. . . dr = (r - i;)->S(r - k)^v\

LXir. . . d/ = (/ - u)-^S(/ - .c) du

;

and

LXIII. ..dw =w-^S(K-v)d«.

(31.) Conceiving next that u moves along the line ou, or lu, so that we

may write,

LXIV. . . V = (x - e') {u-\)i if X =— = —>, and e' = -^,
' ^ ' LM LU LM

we shall have,

LXV. . . div = [p. - \)diX = v[x - e')"^da-, with x> 1 > e\

if u be on lm prolonged, and if o be on the concave side of the arc tmt' ; and

thus, by LIII., the differential expressions (30.) become,

LXYI. . . dr = (u - tY^P{x - e'Y'diX ; d/ = (u - r^Fix - eydix
;

and
LXVII. . . dw = u-'^q . {x - eY^, with 8^ = u (A - u)

;

so that

LXYIII. . . Tdr = --~^, Td/ = 7 ,, , if d^ > 0.
u{x - e) u{x - e)

Such then are the lengths of the two elementari/ arcs ti\ and t't/ of the

hodograph, intercepted between two near secants nit' and NT/r/ drawn

from the pole n of the chord mm', and having u and u^ for their own poles

;

and we see that these arcs are proportional to the potentials, P and P\ or by

LXI. to the ordinates, tv, t'v', or finally to the lines nt, nt' : and accordingly

2 K2
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we have the inverse similarity (comp. 118), of the two small triangles with n

for vertex,

LXIX. . . Antt, a' nt/t',

as appears on inspection of the annexed figure 86.

""**%

\y

V \^"*^\\\

Jv:;^

\ 1 y/
'

f
/ /

I/>^^w^K H /
T'lT^-' ^ ^

Fig. 86.

(32.) For any motion of a point, however complex, the element d^ of

time which corresponds to a given element dDa of the tiodograph, is found

by dividing the latter element hj the vector J)'^a of accelerating force ; if

tlien we denote by d^ and d^' the times corresponding to the elements dr

and d/ (31.), we have the expressions.

LXX. . .d^ = Jif.P-^Tdr =

LXX'. . .d^'= J/.P'-MM/ =

Jfda; rdix

Pu {x - e') u[x- e'f

Mdx r'Ar

because, for the motion here considered, the measure or quantity of the force

is, by I. and LIII.,

IxKXl. . . TD^a = Mr-' = M-'PK

(33.) The times of hodographically describing the two small circular area,
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T^T and t't/, are therefore inversely proportional to the potentials, or directly

proportional to the distances in the orbit ; and their sum is,

TWTT A* A*' (^ ^\ ^"'^-^ {r + r')Ax
LXXII. . . d^ + d^' =^ + -^, -, = ^—'-y-

;\P P J x-e u{x-e)

that is, by LX. and LXIY.,

LXXIII...d^ + d^ = ^^|^^, if LXXIV...^ = T(^-X) = LM.

(34.) We have also the relations,

LXXV. ..u = {x^- l)^g, and LXXVI. . . - = (1 - O/

;

(t

so that the sum of the two smaU times may be thus expressed,

Lxxvii. ..it.i^- ^MzOi' . (^-f)-^,M^ x{x^-iyi
'

or finally,

LXXVIIL . . d^ + d^ = 2 (^^^i^'y. 7T-4^^„
if

LXXIX. . . a; = see «?, or w = L mlw in fig. 86,

in which figure u'w is an ordinate of a semicircle, with the chord mm' of the

hodograph for its diameter.

(35.) The two near secants (31.), from the pole n of that chord, have been

here supposed to cut the half chord lm itself, as in the cited figure 86 ; but if

they were to cut the other half cliord lm", it is easy to prove that the formulae

LXXVril. LXXIX. would still hold good, the only difference being that

the angle w, or mlw, would be now obtuse, and its secant x < - 1

.

(36.) A circle, with u for centre, and u for radius, cuts the hodograph

orthogonally in the points t and t' ; and in like manner a near circle, with u^

for centre, and u + ^u for radius, is another orthogonal, cutting the same

hodograph in the near points t^ and t/ (31.). And by conceiving a series of

such orthogouals, and observing that the differential expression LXXVIII.
depends only on the four scalars, M~^a^, e', w, and diW, which are all known

when the mass M and the five points o, l, m, u, u^ are given, so that they do

not change when we retain that mass and those points, but alter the radius h

of the hodograph, or the perpendicular hl let fall from its centre h on the

fixed chord mm', we see that the sum of the times (comp. (33.)), of hodographically

describing any two circular arcs, such as t^t and t't/, even if they be not small,



310 ELEMENTS OF QUATERNIONS. [III. m. § 8.

but intercepted between any two secants from the pole n of the fixed chord, is

independent of the radius [h], or of the height hl of the centre h of the hodograph.

(37.) If then two circular hodographs, such as the two in fig. 86, having a

common chord mm', which passes through, or tends towards, a common centre

offorce o, with a common mass M there situated, be cut hy any two common

orfhogonalSf the sum of the two times of hodographically describing (33.) the two

intercepted arcs (small or large) will be the same for those two hodographs.

(38.) And as a case of this general result, we have the following Theorem*

of Hodographic Isochronism (or Synchronism) ;

" If two circular hodographs, having a common chord, which passes through,

or tends towards, a common centre of force, be cut perpendicularly by a third

circle, the times of hodographically describing the intercepted arcs mil be equal"

For example, in fig. 86, we have the equation,

LXXX. . . Time of tmt' = time of wmv/.

(39.) The time of thus describing the arc tmt' (fig. 86), if this arc be

throughout concave-f towards o (so that x > 1 > e\ a.8 in LXV.), is expressed

(comp. LXXVIII.) by the definite integral,

TTTTrvT T- ^ '
„/fl^(l-e'Wf" dit'

LXXXl. . . Time of tut = 2 I
—^-=

—

-
1M (1 - e' COS wY

and the time of describing the remainder of the hodographic circle, if this

remaining arc t'm't be throughout concave towards the centre o of force, is

expressed by this other integral,

LXXXII. . . Time ofr'u^. = 2f^^7 T n
'"

»
'

(40.) Hence, for the case of a closed orbit {e'^ < 1, e<l, a>0), if n denote

the mean angular velocity, we have the formula,

LXXXIII.
.

. Pen<„&r.>«. = ?= = 2('^Y(l-Osr.T—^.-2''(TfT:n \i// ^ J„ (1 - e cos ff;)* \^/

or LXXXIV. . . Jf = a'n\ as usual.

• This Theorem, in which it is understood that the common centre of force (o) is occupied by a

common mass (M), was communicated to the Royal Irish Academy on the 16th of March, 1847. (See

llie Proceedings of that date, vol. iii., page 417.) It has since been treated as a subject of investigation

by sereral able writers, to whom the author cannot hope to do justice on this subject, within the very

short space which now remains at his disposal.

t Compare the Note to page 303.
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The same result, for the same case of elliptic motion, may be more rapidly

obtained, by conceiving the chord mm' through o to be perpendicular to oh ;

for, in this position of that chord, its middle point l coincides with o, and

e' = by LXIV.

(41.) In general, by LXXVI., we are at liberty to make the substitution.

LXXXV. -—rr:—-
|
= — , wlth g = hcilf chot'd of the hodograph

;

supposing then that e' = - 1, or placing o at the extremity m' of the chord,

we have by LXXXI.,

LXXXVI. . . Parabolic time of tmt' =
2Jfp dtv

J. (1 + G0& to
l2 '

for, when the centre of force is thus situated on the circumference of the

hodographic circle, we have by (8.) the excentricity e = 1, and the orbit

becomes by XV. a parabola. For hyperbolic motion ie'"^ > 1, e > 1, a < 0),

the formula LXXXI. (witli or without the substitution LXXXV.) is to be

employed if e' < - 1, that is, if o be on lm' prolonged ; and the formula

LXXXII., if e' > 1, e' < sec w^ that is, if o be situated between m and u,

(42.) For any laic of centralforce, if p, p' be the points of the orbit which

correspond to the points t, t' of the hodograph, and if Q be the point of

meeting of the tangents to the orbit at p, p', as in the annexed figure 87,

while the tangents to the hodograph at t, t' meet as before in u, we shall

have the parallelisms,

Fig. 87.

LXXXVII. . . OP II
UT, op' II

t'u, pq II
OT, Qp'

II
ot'

;

writing then,

LXXXVIII* . . OP = o, op' = a, OT = Do = T, ot' = Da = t', ou = v, oq = w.
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most of which notations have occurred before, we have the equations,

LXXXIX. . . = Ya(r - v) = Yo'(u - /) = Yt{(o -a) = Y/(a' - lo) ',

thus
XO. . . Vau = Var = /3 = VaY = Va'v, a -a\\ u, PP' || OTJ,

and
XOI. . . Yro) = YTa = - (3 = VrV = V/(o^ r - / || a>, t't || OQ.

Qeometrically, the constant parallelogram (16.) under op, ot, or under op', ot',

is equal, by LXXXYII., to each of the four following parallelograms

:

I. under op, ou ; II. under op', ou ; III. under oq, ot ; and IV. under

OQ, ot' ; whence pp'
|| ou, and t't || oq, as before.

(43.) The parallelism XC. may be otherwise deduced for the law of the

inverse square, with recent notations, from the quaternion formulse,

XCII. . . >
= , in which, XCIi . . . v = r-,r+rX-v u r+r

and which may be obtained in various ways ; whence it may also be inferred,

that if 8 denote the length T(a' - a) of the chord pp' of the orbit, then (oomp.

fig. 86.),

^^^^^- ' • -^T^' = rp(X_v) = ^ : UL = &c. = sin «r

;

w being the same auxiliary angle as in (34.), &o.

(44.) It is easy to prove that

XOIV...X-r = fl-.^)^, X-/ = fl-^^^,
whence V 7/ " V 7/ "

XOV. ..T^ = ^ = -„ and XCVI. . . P'-V" A)u = K. P-'(r - A)u;

the lines lt, lt' are therefore in length proportional to the potentials, P, P'
;

and their directions are equally inclined to that of ou, but at opposite sides of it,

so that the line lu bisects the angle tlt'. Accordingly (see fig. 86), the three

points T, L, t' are on the circle (not drawn in the figure) which has hu for

diameter ; so that the angles ult', tlu are equal to each other, as being

respectively equal to the angles utt', tt'u, which the chord tt' of the hodo-

grapli makes with the tangents at its extremities : the triangles tlv, t'lv'

are therefore similar, and lt is to lt' as tv to t'v', that is, by LXI., as

P to P', or as r' to r.
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(45.) Again, calculation with quaternions gives,

XDVTT («^ - r) (X - r) _ (u - /) (A - /) u \\ f \-i

whence

XCYIIL . . T^ = T^' = T^ = ^ :^ = sin ..
;A-T A-r A-

V

such then is the common ratio, of the segments tu', uV of the base tt' of the

triangle tlt', to the adjacent sides lt, lt', wliioh are to each other as r' to r

(44.) ; and because this ratio is also that of s to r + /, by (43.), we have the

proportion,

XCIX. . . OP : op' : pp' = r : r' : .s* = lt' : lt : tt',

and the formula of inverse similarity (118),

C. . . A lt't a' opp'.

Accordingly (eomp. the two last figures), the base angles opp', op'p of the

second triangle are respectively equal, by tlie parallelisms (42.), to the angles

tul, t'ul, and therefore, by the circle (44.), to the base angles tt'l, t'tl, of

the first triangle : but the two rotations, round o from p to p', and round l

from t' to T, are oppositely directed.

(46.) The investigations of the three last sub-articles have not assumed

any knowledge of the form of the orhit (as elliptic, &c.), but only the laic of

attraction according to the inverse square, or by (6.) the Law of the Circular

Hodograph. And the same general principles give not only the expression

LXXYI. for the constant Ma-\ but also (by LX. LXIY. LXXIV. LXXIX.)
this other expression,

nr 2i!f ,
r + / 1 - e'^

Kji. . . ; = (\ -e cos w)g^ ; wtience (Jil. . . —p,— = :; 7-
,r+r ^

ly '

2a 1-e'cosw'

which last may be considered as a quadratic in /, assigning two values (real

or imaginary) for that scalar, when the first member of Oil. and the angle vj

are given ; the sine of this latter angle being already expressed by XOIII.

(47.) Abstracting, then, from any amhiguity* of solution, we see, by the

* That there ought to be some such amhiguity is evident from the consideration, that when a

focus o, and two points t, p' of an elliptic orbit are given, it is still permitted to conceive the motion

to be performed along either of the two elliptic arcs, pp', p'p, whi(;h together make up the whole

periphery. But into details of this kind we cannot enter here.

Hamilton's Elements of Ouaikrnions, Vol. II. s S
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definite integrals in (39.), that the time of d^soihing an arc pp' of an orbit,

with the law of the inverse square, is a. function (comp. (36.)) of the three ratios,

ciii...^:,
'^'' '

M' a ' r + /'

which is a form of Lambert's Theorem, but presents itself here as deduced

from the recently stated Theorem of Hodogmphic Isochronism (38.), vnthout

the employment of any property of conic sections.

(48.) The differential equation I. of the present relative motion may be

thus written (comp. 418, 1., and generally the preceding Series 418) :

CrV. . . 8 . D'a^a + 8P = 0, whence CY. . . T = P + H,

as in 418, X., if we now write,

CVI. ..^=-iDa^ = -|r^ and GYll.. .H = ^',

in fact (by LIII., comp. (20.) (21.)),

CVIII. . . - 2J? = 2(P - r) = 2P + r^ = K^ - 7* = - •

(49.) Integrating CIV. by parts, &c., and writing (as in 418, XII. XXII.),

CIX. . . F = {T + P)dt, and CX. . . F= f
Jo

2Tdt,

so that F may again be called the Principal Function and V the Characteristic

Function of the motion, we have the variations,

OXI. ..BF= SrSa - 8/8o' - mt ; CXII. . . BV = SrSa - S/go' + tSR

;

in which a, a (instead of Oq, a) denote now what may be called the initial and

final vectors (op, op') of the orbit ; whence follow the partial derivatives,

CXni. . . D„jP = D.r = r ; CXIII'. . . J)^F = D»'r= - /
;

CXIV. . . {J)tF) =-JI', and CXV. ..!>„¥= t;

F being here a scalar function of a, a, t, while F" is a scalar function

of a, a, II, if M be treated as given.
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(50.) The two vectors a, a can enter into these two scalar functions, only

through their dependent sealars r, /, s (comp. 418, (17.)) ; but

CXVI. . . 8r = - r-»Saga, g/ = - /"^Sa'Sa', gs = - s'^S (a' - a) (8a' - 8a) ;

confining ourselves then, for the moment, to the function V, and observing

that we have by OXII. the formula,

OXVII. . . S {r^a - r'Sa') = Dr F. Br + Dr' V. 8/ + D, V. 8s,

in which the variations Ba, Ba are arbitrary, we find the expressions,

CXVIII. . . T = - ar-''DrV+ {a - a)s-''DsV;

CXVIir. . . / = + aV-»D/r+ (a' - a)s-'D,F;

which give these others,

CXrX. ..DrV = rY{a -a)T: Yaa'
;

CXIX'. . . D/F = rT(a - a') / : Yaa'

;

and
CXX. . .D,F = s|3:Vaa',

because

Var = VaV = (5.

(51.) But, by XCir.,

OXXI. . . rr + rV = {r + /) v' \\ v || a' - a,

the chord tt' of the hodograph, in figs. 86, 87, being divided at u' into

segments tu', u't', which are inversely as the distances r, r, or as the lines

OP, op' in the orbit ; we have therefore the partial differential equation,

CXXII. . . D, F = D/ F, and similarly, CXXIII. . . DrF = D/F
;

so that eacn oi the two functions, F and V, depends on the distances r, r, only

by depending on their sum, r + r'

.

(52.) Hence, if for greater generality we now treat M as variable,

the Principal Function F, and therefore by CXIV. its partial derivative

i/ = - (DtF), are functions of the four sealars,

CXXrV. . . r + r', 8, t, and M.

2 S 2
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(53.) And in like manner, the Charactemfic Function (or Action-Function)

V, and its partial derivative (by CXV.) the Ti)ne, t = DgV^ may be considered

as functions of this other system of four scalars (oomp. (47.)),

CXXV. . . f + /, s, E, and M
;

no knowledge whatever being here assumed, of the form or properties of the

orhitf but only of the law of attraction.

(64.) But this dependence of the time, t, on the four scalars CXXY., is a

new form of Lambert's Theorem (47.) ; which celebrated theorem is thus

obtained in a new way, by the foregoing quaternion analysis.

(55.) Squaring the equations CXYIII. CXVIIF., attending to the

relation CXXII., and changing signs, we get these new partial differential

equations,

CXXVI. . . 2P + 25- = (D,F)' + P*n' +
'"'"'"'

DrF.D.F;
r'--/' + s^

rs

r"" -r' + s'
OXXVr. ,,2F^2H= {DrVy + CDsVy + 7-^ D,F. D,r;

rs

because

CXXYII. ..a^ = -r\ a'' = - /^ (a' - a)' = - s\

Hence, by merely algebraical combinations (because P = J/r~S and P' = Mr~%
we find

:

cxxviii. . . i ((D. vy + (D, vy) = ir+—^r— + ^

CXXIX. . . D, r. D, F =
^ ^

r + r + s r + r - s

CXXX. ..{l)rV+J),Vy^2H+—^ = M^ ^
^

^ '
r + r + s r + r + s a

CXKK\..(DrV-D,Vy = 2H +—^ = M^ ^
^

r + r - 8 \r + r - s a

(56.) But, by OXII. CXVII. CXXll., we have the variation,

CXXXl. . . BV-fm= i(I),.F+ D,F) B{r + r' + s)

+ i(D,F-D.F)S(r + r'-5j;
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and the function V vanishes with f, and therefore with .s, at least at the

commencement of the motion ; whence it is easy to infer the expressions,*

as;CXXXII...F=r(—̂ +fYd.=
J^V^ + r'+s 2 J

CXXXIII. ..t = l\' ( ^ + ?-Yds = i

r + / + s 4a

4M M\-i
,
as.

-sV" + r + s a

A.S a verification,t when t and s are small, and therefore / nearly = r, we

have thus the approximate values,

CXXXIV. . . F= (2P + 2ff)h = {2T)h = 2Ti
;

CXXXY. .,t = (2P + 2H)-^s = {2T)-^s
;

in which s may he considered to be a small arc of the orbit, and {2T)^ the

velocity with which that arc is described.

(57.) Some not inelegant constructions, deduced from the theory of the

hodograph, might be assigned for the case of a closed orbit, to represent the

excentric and mean anomalies ; but whether the orbit be closed or not, the arc

tmt' of the hodographic circle, in fig. 86, represents the arc of true anomaly

described : for it subtends at the hodographic centre h an angle tht', which

is equal to the angular motion pop' in the orbit.

(58.) We may add that, whatever the specialform of the orbit may be, the

equations CXVIII. CXVIir. give, by CXXII.,

CXXXVI. . . / - r = (U«' + Va)J)rV',

from which it follows that the chord tt' of the hodograph is parallel to the

bisector of the angle pop' in the orbit : and therefore, by XCI., that this angle

is bisected by oq in fig. 87, so that the segments pr, rp', in that figure, of the

chord pp' of the orbit, are inversely proportional to the segments tu', uV of the

chord rr' of the hodograph.

* Expressions by definite integrals equivalent to these, for the action and time in the relative

motion of a binary system, were deduced by the present writer, but by an entirely different analysis,

in the First Essay, &c., already cited, and will be found in the Phil. Trans, for 1834, Part ii., pages

285, 286. It is supposed that the radical in CXXXIII. does not become infinite within the extent of

the integration ; if it did so become, transformations would be required, on which we cannot enter here.

t An analogous verification may be applied to the definite integral LXXXI. ; in which however

it is to be obseiTed that both r + r' and s vary, along with the variable w : whereas, in the lecent

integrals CXXill. CXXXIII., r + »•' is treated as constant.
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(59.) We arrive then thus, in a new way, and as a new verification, at

this known theorem : that if two tangents (qp, qp') to a conic section he drawn

from any common point (q), they subtend equal angles at a focus (o), whatever

the special form of the conic may be.

(60.) And although, in several of the preceding sub-articles, geometrical

constructions have been used only to illustrate (and so to confrm, if confirmation

were needed) results derived through calculation with quaternions
;

yet the

eminently suggestive nature of the present Calculus enables us, in this as in

many other questions, to dispense with its own processes, when once they have

indicated a definite train of geometrical investigation, to serve as their substitute.

(61.) Thus, after having in any manner been led to perceive that, for the

motion above considered, the hodograph is a circle* (5.), of which the radius

HT is equal (7.) to the attracting mass M, divided by the constant parallelo-

gram (16.) under the vectors op, ot of position and velocity, in the recent

figures 86 and 87, which parallelogram is equal to the rectangle under the

distance op in the orbit, and the perpendicular oz let fall from the centre o

of force on the tangent ut to the hodograph, we see geometrically that the

2)otential P, or the mass divided by the distance, for the point p of the orbit

corresponding to the point t of the hodograph, is equal (as in (27.)) to the

rectangle under ht and oz, and therefore, by the similar triangles htv, uoz,

to the rectangle under ou and tv (as in (29.)).

(62.) In like manner, the three potentials corresponding to the second

point t' of the first hodograph, and to the points w and w' of the second

hodograph, in fig. 86, are respectively equal to the rectangles under the same

line ou, and the three other perpendiculars t'v', wx, Vx', on what we have

called (29.) the hodographic axis, hl ; so that, for these two pairs ofpoints, in

which the two circular hodographs, with a common chord mm', are cut by a

common orthogonal with u for centre, thefour potentials are directly proportional

to the four hodographic ordinates (29.).

(63.) And because the force {Mr~^) is equal to the square of the potential

{Mr~'^), divided by the mows {M), the four forces are directly as the squares of

the four ordinates corresponding ; each force, when divided by the square of

• This follows, among other ways, from the general value XXVI. for the radius of curvature of

the hodograph, with any law of central force ; which value was geometrically deduced, as stated in the

Note to page 302, compare the Note to page 300, by the present writer, in a Paper read before the

Royjil Irish Academy in 1846, and published in their Proceedings. In fact, that general expression

for the radius of hodographic curvature may be obtained with great facility, by dividing the element

/d< of the hodograph (in which / denotes tlio force), by tlio corresponding clement <T"*d< of angular

motion in the orbit.
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the corresponding hodographic ordinate, giving the constant or common

quotient^

CXXXYII. . . OT^ : JIf.

(64.) It has been already seen (31.) to be a geometrical consequence of

the two pairs of similar triangles, ntt^, nt/t', and ntv, ntV, that the two

small arcs of the first hodograph^ near t and t', intercepted between two near

secants from the pole n of the fijred chord mm', or between two near orthogonal

circles, with u and u_, for centres, are proportional to the ttvo ordinaies, tv, tV.

(65.) Accordingly, if we draw, as in fig. 86, the near radius (represented

by a dotted line from h) of the first hodograph, and also the small perpen-

dicular UY, erected at the centre u of tlie first orthogonal to the tangent ut,

and terminated in y by the tangent from the near centre u^, the two new

pairs of similar triangles, tht^, uty, and thv, uu^y, give the proportion,

CXXXYIII. . . TT^ : TV = uu^ : ut
;

which not merely confirms what has just been stated (64.), for the case of the

first hodograph, but proves that the four small arcs, of the two circular hodo-

graphs in fig. 86, intercepted between the two near orthogonals, are directly

proportional to the four ordinaies already mentioned.

(66.) But the time of describing any small hodographic arc is the quotient

(32.) of that arc divided by the force; and therefore, by (63.), (65.), the four

small times are incersely proportional to the four ordinaies. And the harmonic

mean u'l between the two ordinates tv, tV of the first hodograph, does not

vary when we pass to the second, or to any other hodograph, with tlie same

fixed chord mm', and the same orthogonal circles ; it follows then, geometrically/,

that the sum (33.) of the two small times is the same, in any one hodograph as

in any other, under the conditions above supposed : and that this sum is equal

to the expression,

OXXXIX ^^-uu' ^ 2itf.TJu'.uL

OU'^ . IJT . u'l OU^ . LM'^ . UT

whicli agrees with the formula LXXIII.

(67.) On the whole, tlien, it is found that the Theorem of Hodographic

Isochronism (38.) admits of being geometrically* j)^oved, although by processes

• It appears from an unprinted memorandum, to have been nearly thus that the author orally

deduced the theorem, in his comnmnication of March, 1847, to the Eoyal Irish Academy ; although,

as usually happens in cases of invention, his own previous processes of investigation had involved

principles and methods, of a much less simple character.
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suggested (60.) by quaternions : and sufficient hints have been already given,

in connexion with fig. 87, as regards the geometrical passage from that theorem

to the well-known Theorem of Lambert, without necessarily employing any

property of conic sections.

420. As a fifth specimen, we shall deduce by quaternions an equation,

which is adapted to assist in the determination of the didance of a comet, or

new planet, from the earth.

(1.) Let M be the mass of the sun, or (somewhat more exactly) the sum

of the masses of sun and earth ; and let a and w be the heliocentric vectors of

earth and comet. Write also,

L..Ta = r, Tio = w, T(«-a)=z, U((u - a) = p,

so that r and to are the distances of earth and comet from the sun, while s is

their distance from each other, and p is the unit-vector, directed from earth

to comet. Then (comp. 419, I.),

and

with

II. . . D^a = - Mr-'a, T>\> = - Mto-'w,

III. . . D\ 2|t> = D^ (w - a) = il/ (r-3 - w-') a - Mzw'p,

TV. . .u^ = - {a + zpY = r' + z^ - 2zSap.

(2.) The vector a, with its tensor r, and the mass M, are given by the

theory of the earth (or sun) ; and p. Dp, D^p are deduced from three (or more)

near observations of the comet ; operating then on III. with S . pT)p, we

arrive at the formula,

SpBpD'p ^r fM_M\^
' ' S/aDpUo ~

z \r^ w")'

which becomes by IV., when cleared of fractions and radicals, and divided

by z, an algebraical equation of the seventh degree, whereof one root is the

sought distance* z, of the comet, (or planet) from the earth.

421. As a sixth specimen, we shall indicate a method, suggested by

quaternions, of developing and geometrically decomposing the disturbing

force of the sun on the moon, or of a relatively superior on a relatively

inferior planet.

• Compare the equation in the Me'camque Celeste (Tom. I., p. 241, new edition, Paris, 1843).

Laplace's rule for determining, by inspection of a globe, which of the two bodies is the nearer to the

sui., results at once from the formula V.
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(1.) Let a, o- be the geooentrio vectors of moon and sun ; r, s their

geocentric distances {r = Ta, s = Tor) ; M the sum of the masses of earth and

moon ; and 8 the mass of the sun ; then the differential equation of motion

of the moon about the earth may be thus written (comp. 418, 419),

I. . . D'a = M . <l,a + 8 . {<p<T - <p{(T - a)),

if D be still the mark of derivation relatively to the time, and

11. . .^a = ^(a) = a-^Ta-^

80 that (pa is here a vector-fimction of a, but not a linear one.

(2.) If we confine ourselves to the term Mtjta, in the second member of I.,

we fall back on the equation 419, I., and so are conducted anew to the laws

of undisturbed relative elliptic motion.

(3.) If we denote the remainder of that second member by rj, then ij may

be called the Vector of Disturbing Force ; and we propose now to develope this

vector, according to descending powers of T(<T:a), or according to ascending

powers of the quotient r : s, of the distances of moon and sun from the earth.

(4.) The expression for that vector may be thus transformed :*

III. . . Vector of Disturbing Force = ij = D'^a -

= 8s-^a-'[l - (1 - a(T-0-'T(l - aa-')-']

= S8-'<T-'{1 - (1 - aa-')-^ (1 - <T-^a)-*j

3

that is,

if

'a-Ml-(l + 2aa-^ + |l| („.-T + .

.)
(l +Wa +1^ {o^af +..]!;

rv. . . 1? = *ji + »j2 + 13 + &c.,

8
V. . . ?>i = - 8s-^(T-^{^<y-^a + ^aa~^) = ^l (« + ^<Taa~^) = iJu i + »?i} 2

;

VI. . . tJ2 = -TTT- [aoa^ + 2(T + 6aaaa^a~^) = rjz, 1 + »/2» 2 + t?2, 3 ;
&c.

the general termf of this development being easily assigned.

* [Observe that (a - a)-^ = {(1 - a<r^)(r}-^ = (r»(l - a<ri)-i.]

t Such a general term was in fact assigned and interpreted in a communication of June 14, 1847,

to the Royal Irish Academy {Proceedings, vol. iii., p. 514) ; and in the Lectures, page 616. The

development may also be obtained, although less easily, by Taylor'' s Series adapted to quaternions.

Compare pages 473, 475, 477, 478, vol. i. of the present work ; and see page 358, vol. i., &c., for

the interpretation of such symbols as aaa'^, aaa'^.

JIamilton's Elemknts of Quaternions, Vol. II. * *
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(5.) We have thus a fird group of two component and disturbing forces,

which are of tlie same order as — ; a second group of three such forces, of the
B

Sr^
same order as —j-

; a third group oifour forces, and so on.
8

(6.) The ^rs^ component of ih& first group has the following tensor and

versor,

Sr
VII. . . T?ji, 1 = g-^, Ui7„ 1 = Ua ;

it is therefore a purely ahlatitious force

MN, acting along the moon's geocentric

vector EM prolonged, as in the annexed

figure 88.

(7.) The second component mn', of the same first group, has an exactly

triple intensity mn' = 3mn ; and its direction is such that the angle nmn',

between these two forces of the first group, is bisected by a line ms' from the

moon, which is parallel to the sun's geocentric vector es.

(8.) If then we conceive a line em' from the earth, having the same

direction as the last force mn', this new line will meet the heavens in what

may be called for the moment a fictitious moon %, such that the arc )i)i of

a great circle, connecting it with the true moon y in the heavens, shall be

bisected by the sun 0, as represented in fig. 88.

(9.) Proceeding to the second group (5.), we have by VI. for the first

component of this group,

3^^ „ _ _, aUd
8s*

VIII. . . T»j2, 1 = -5-J-,
U»j2, 1 = Uofftt"^ =

a line from the earth, parallel to this new force, meets therefore the heavens

in what may be called a first fictitious sun, Oi, such that the arc of a great

circle, OOi, connecting it with the true sun, is bisected by the moon S), as in

the same fig. 88.

(10.) The second component force, of the same second group, has an

intensity exactly double that of the first (Ttj2, 2 = 2T»)2, 1) ; and in direction

it is parallel to the sun's geocentric vector es, so that a line drawn in its

direction from the earth would meet the heavens in the place of the sun 0.

(11.) The third component of the present group has an intensity which

is precisely five-fold that of the first component (T1J2, s = STijj, 1) ; and a line
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drawn in its direction from the earth meets the heavens in a second fictitious

sun 02, such that the arc 0i 0j, connecting these two fictitious suns, is

bisected by the true sun 0.

(12.) There is no difficulty in extending this analysis, and this interpre-

tation, to subsequent groups of component disturbing forces, which forces

increase in number, and diminish in intensity, in passing from any one group

to the next ; their intensities, for each separate group, bearing numerical ratios

to each other, and their directions being connected by simple angular relations.

(13.) For example, the third group consists (5.) of four small forces,

Sr"
»j3, 1 • • *?3> 4> of which the intensities are represented by r-^^, multiplied

respectively by the four whole numbers, 5, 9, 15, and 35 ; and which have

directions respectively parallel to lines drawn from the earth, towards a second

fictitious moon X, the true moon, the first fictitious moon )i (8.), and a third

fictitious moon % ; these three fictitious moons, like the two fictitious suns

lately considered, being all situated in the momentary plane of the three

bodies e, m, s : and the three celestial arcs, %% 3)}ii, X%, being each equal to

double the arc 3)0 of apparent elongation of sun from moon in the heavens,

as indicated iu the above cited fig. 88.

(14.) An exactly similar method may be employed to develop or

decompose tlie disturbing force of one planet on another, which is nearer

than it to the sun ; and it is important to observe that no supposition is

here made, respecting any smallness of excentricities or inclinations.

422. As a seventh specimen of the physical application of quaternions,

we shall investigate briefly the construction and some of the properties of

FremeVs Wave Surface, as deductions from liis principles or hypotheses*

respecting light.

(1.) Let /o be a Vector of Ray -Velocity, and fi the corresponding Vector of

Wave-Slowness (or Index -Vector), for propagation of light from an origin o,

within a biaxal crystal ; so that

I. . . S/up = - 1 ; II. . . S/iSjO = ; and therefore III. . . SpS/^ = 0,

* The present writer desires to be understood as not expressing any opinion of his own, respecting

these or any rival hypotheses. In the next Series (423), as an eighth specimen of application, he

proposes to deduce, from a quite different set ofphysical principles respecting light, expressed however

still in the language of the present Calculus, Mac Cullagh's Theorem of the Folar Plane ; intending

then, as a ninth anijinal specimen, to give hriefly a quaternion transformation of a celebrated equation

in partial differential coefficients, of the first order and second degree, which occurs in the theory of

heat, and in that of the attraction of spheroids.

2 T 2
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if Sp and S/i be any infinitesimal variations of the vectors p and fi, consistent

with the scalar equations (supposed to be as yet unknown), of the Wave-

Surface and its Reciprocal (with respect to the unit-sphere round o), namely

the Surface of Wave- Slowness, or (as it has been otherwise called) the Index*

-

Surface : the velocity of light in a vacuum being here represented by unity.

(2.) The variation S/o being next conceived to represent a small displace-

ment, tangential to the wave, of a particle of ether in the crystal, it was

supposed by Fresnel that such a displacement ^p gave rise to an elastic force,

say Sf , not generally in a direction exactly opposite to that displacement, but

still a function thereof, which function is of the kind called by us (in the

Sections III. ii. 6, and III. iii. 7) linear, vector, and self-conjugate ; and which

there will be a convenience (on account of its connexion with certain optical

constants, a, h, c) in denoting here by (^~^^p (instead of ^8/o) : so that we shall

have the two converse formulae,

IV. . . ^/» = 0Se ; V. . . Sc = r'h-

(3.) The ether being treated as incompressible, in the theory liere considered,

so that the normal component fT^S/xdi of the elastic force may be neglected, or

rather suppressed, there remains only the tangential component,

VI. . . ^-'Yn^e = Be - ^"SfiBe,

as regulating the motion, tangential to the wave, of a disturbed and vibrating

particle.

(4.) If then it be admitted that, for the propagation of a rectilinear

vibration, tangential to a wave of which the velocity is T/i'\ the tangential

force (3.) must be exactly opposite in direction to the displacement dp, and equal

in quantity to that displacement multiplied by the square (T/i~') of the tcave-

velocity, we have, by V. and VI., the equation,

VII. . . <^-'Bp - iu'S/uSe = ^-'Bp,

or VIII. . . S/o = [<{,-' - fx-'rySfiBe ;

* Thifi brief and expressive name was proposed by the late Prof. MacCuUagh {Transactions

R. I. A., vol. xviii., part i., page 38), for that reciprocal of the wave-surface M'hich the present

writer had previously called the Surface of Components of Wave- Slowness, and had employed for

various purposes : for instance, to pass from the conical cusps to the circular ridges of the Wave, and

so to establish a geometrical connexion between the theories of the two conical refractions, internal

and external, to which his own mclhods had conducted him {Transactions R. I. A., vol. xvii., part i.,

pages 125-144). Ho afterwards found that the same Surface liad been otherwise employed by

M. Cauchy {Exercises de Matheniatigues, 1830, page 36), who did not seem however to have perceived

ita reciprocal relation to the Wave.



Art. 422.] INDEX SURFACE. 325

combining which with II., we obtain at once this Symbolical Form of the

scalar equation of the Index Surface,

IX. . . = ^fi'ir' - fiVf^'' ;

or by an easy transformation,

X. .
. 1 = S/ur'(0-' - iu-*)-V

;

or finally,

XL . . 1 = 8|u(iu'-0)-V;

while the direction of the vibration §p, for any given tangent plane to the

wave, is determined generally by the formula YIII.

(6.) That formula for the displacement, combined with the expression Y.

for the elastic force resulting, gives

XII. . . Sp = - ^uS/iSf, and XIII. ..§£ = - wSjuSa,

if

XIV. . .{(p-fi')v = fi, or XV. . . u = (^ - lu'yfx,

V being thus an auxiliary vector ; and because the equation XI. of the index

surface gives,

XVI. . .Sfiv = -l, while XVII. . . Vug£ = 0, by XIII.,

it follows that the vector u, if drawn like p and
fj.

from o, terminates on the

tangent plane to the wave, and is parallel to the direction of the elastic force.

(6.) The equations XIV. XVI. give,

XVIII. . . fi'o' - Sw^u = 1,

whence
XIX. . . i/*S;uS/i = S;uSu = - SvBfX,

because 8S/ttu = 0, by XVI., and 3Sv^u = 28 (^w . Bo), by the self-conjugate

property of ^; comparing then XIX. with III., we see that ±p (as being

± every dn) has the 'direction of ft + v~\ and therefore, by I. and XVI., that

we may write,

XX. ..p-' = -fi-v-'; XXI. ..p-' = fx' - V-' ; XXII. . . 8pv = ;

whicli last equation shows, by (5.), that the ray is perpendicular (on Fresuel's

principles) to the elasticforce Se, produced by the displacement Sp.
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(7.) The equations XX. and XXI. show by XIV. that

XXIII. . . (p-2 -(p)v = p-\ whence XXIV. . . u = {p-^ - <p)-'p-'
;

we have therefore, by XXII., the following Symbolical Form (comp. (4.)) of

the Equation of the Wave Surface,

XXV. . . = Sp-^(0 - p-«)-y^

;

or, by transformations analogous to X. and XI.,

XXVI. . . 1 = S|a^ (0 - p-'rp-' ; XXVII. . . 1 = S|0 (p^ - 0-o->

;

and we see that we can return from each equation of the wave, to the corre-

sponding equation of the index surface, by merely changing p to ^, and ^ to ^"^

:

but this result will soon be seen to be included in one more general, which

may be called the Rule of the Interchanges.*

(8.) The equation XXV. may also be thus written,

XXVIII. . . S^(0 - p-'Y'p = ;

* [Tait finds the envelope of the plane Syup = — 1 subject to the condition XI., 1 = S/i(/x2 — 4>)"V>

and thus obtains the equation of the wave surface. If we differentiate XI. and introduce the

auxiliary vector v of equation XIV., the result becomes Sd;u(u-i + d^) = 0. Also S/>d/i = 0, and as d/t

is otherwise arbitrary

xp = v~^ + /t.

Squaring this relation we find x^p^ = fj?
— v^, and operating by S/* we have a; = /t* - v* = z^p"^.

Thus X = p-'^ and we recover XX., whence the result follows as in the text.

The equation of the electro-magnetic wave surface has been obtained by Tait on the following

lines. [Proceedings JR. S. E. April 2, 1894, or Scientific Fapers, vol. ii., pages 390-1.)

A system of plane waves running with normal velocity va = - /x"', (Ta = 1) is defined by

«i = (f{vt + Sa/>), 92 = vf{vt + Sop). (i)

These equations satisfy

<pi9i = Vvfl2, <i>2h = - Vvfli, (ii)

the quaternion equivalents of Clerk Maxwell's electro-magnetic equations provided

tpii = V/[xrj, <p2i) = - Yjxf. (iii)

Assuming the linear functions ^i and <p2 to be both self-conjugate, we find on elimination of n,

^16 = - "V/t(^2''V/ti« = - »Ja-'V/tV^2/i^2e,

if ma is the third invariant of ip^. An easy step shows that

so tliat

e = (fn2^i + Bfi<p2fi . <p2)'^<f>2ixS/Ji<l>2t- (iv)

Operating on (iv) by ii^2f*, we have the equation of the index surface

1 = S/it^2(m2^i + S^(^2M • <t>i)'^<t>m- (^)
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but under tliis last form it coincides with the equation 412, XLI. ; hence, by

412, (19.) the Wave Siirface may be derived from the auxiliary or Generating

Ellijjsoid,

XXIX. . . SjO0jO = 1,

by the following Construction, which Wiis in fact assigned by Fresuel* himself,

but as the result of far more complex calculations :

—

Cut the ellipsoid (abc) by

an arbitrary plane through its centre, and at that centre erect perpendiculars to

that plane, which shall have the lengths of the semiaxes of the section ; the locus of

the extremities of the perpendiculars so erected will be the sought wave surface.

(9.) And we see, by IX., that the Index Surface may be derived, by an

exactly similar construction, from that Reciprocal Ellipsoid, of which the

equation is, on the same plan,

XXX. . . S|o^-> = 1.

(10.) If the scalar equations, XXVII. and XI., of the wave and index

surface, be denoted by the abridged forms,

XXXI. . . f/o = 1, and XXXII. . . F^ = 1,

Comparing this equation with XI., we are led to assume /*' = 02*/*, and substitution in (v) affords

the equation

The equation of the tangent plane to the wave surface is

S/tp = — 1, or S/*'^2~i/> = - 1, or 9>n'p' = -l, (vii)

a p' = tpT^P' Comparing these results with I. and XI., we see that p, n', and - OT2^2~*<^i</)2~^

correspond respectively to Hamilton's p, n, and (p, and we deduce the equation

analogous to XXVII. It only remains to replace p in terms of p by a transformation the converse of

that from (v) to (vi), and we obtain the equation of the wave surface

1 = 8p<p2-^{Sp<pi-^p . <t)2'^ + mr^<p\-^)-'^<pi-^p, (ix)

or by a transformation like that from XXVII. to XXVIII.

Sp(<^2 + »i2Sp«^2-V . ^i)-V = 0, (x)

It will be noticed that the electro-magnetic wave-surface (ix) is produced from the Fresnel surface

(viii) by the transformation or pure strain p = <p2^p', so that many of the theorems of these sub-articles

can be extended to this more general case.]

* See Sir John F. W. Herschel's Treatise on Light, in the Encyclopedia Metropolitana, page 545,

Art. 1017.
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then the relations I. II. III. enable us to infer the expressions (comp. the

notation in 418, (2.) [page 294]),

in which (comp. 412, (36.), and the Note that sub-article [page 259]),

XXXY. . . iBJp = {p' - 0-^)-V - pSpip' - <p-Yp = - to - (oV,
and

XXXVI. . . iB^Ffx = ifx' - 0)-V - fx^f^ifx' - 0)-V = - u - vV ;

V being the same auxiliary vector XV. as before, and oj being a new auxiliary

vector, such that (by XXIV. XXVII. and IX. XV.),

XXXVII. . . (u = {(}>-' - pYp = ^v ; XXXVIII. . . S/,a> = - 1
;

XXXIX. . . S/icu = ;

whence also w || ^p by XII., so that (comp. (5.) } if to be drawn (like p, p, and v)

from the point o, this new vector terminates on the tangent plane to the index

surface, and is parallel to the displacement on the wave ; also Bp : Be = (o : v.

(11.) Hence, by XXXIII. XXXV. XXXVIII.,

XL. . . p =
Y:--^,

= -:^-^, = -{a>-' + p)-\ or XLL . . -^- = p + o,"^
;

and similarly, by XXXIV. XXXVI. and XVI.,

XLII.
. . p = YI~T^ " ~^rr^ " ~ (""' "* ^)"'' ^^ ~ P"^ = i" + "'S as in XX.

;

so that, with the help of the expressions XV. and XXXVII. for v and w,

the ray-vector p and the index-vector p. are expressed q.s, functions of each other :

which functions are generally definite, although we shall soon see cases, in

which one or other becomes partially indeterminate.

(12.) It is easy now to enunciate the rule of the interchanges, alluded to in

(7.), as follows :

—

In any formula involving the vectors, p, p, v, w, and the

functional symbol <p, or some of them, it is permitted to exchange p with p
V with u), and <p with ^"^

;
provided that we at the same time interchange

Sp with Se (but not* generally with Bp), when either Sp or Be occurs.

* It is true that, in passing from II. to III. (instead of passing to XLIII.), we may be said to

have exchanged not only p with /j., but also Sp and d/x. But ngnalhj, in the present investigation,

8/> represents a small displacement (2.), which is conceived to have a definite direction, tangential to

the wave ; whereas 5/i continues, as in (1.) to represent any infimtaimal tangent to the index surface,

while if still denotes the elasticforce (2.), resulting from the displacement Zp.
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For example, we pass thus from XX. to XLI., and conversely from the

latter to the former ; from II. we pass by the same rule, to the formula,

XLIII. . . Spde = 0, which agrees by XYII. with XXII.

;

and, as other verifications, the following equations may be noticed,

XLIY. . . 8p = /xV^St ; XLY. . . Se = pYpBp ; XLVI. . . S/i§6 = SpSp.

(13.) The relations between the vectors may be illustrated by the annexed

figure 89 ; in which,

XLVn. . . 0T = p, OQ = ^, ou = u, ow = w,

and

XLYIII. . . op' = - p-\ oq' = - fi-\

ou' = - u"*, oV = - w'^

;

in fact it is evident on inspection, that
Fig. 89.

XLIX. . . op.op'=oq.oq'=ou.ou'=ow.ow';

and the common value of these four scalar products is here taken as negative

unity.

(14.) As examples of such illustration, the equation XX. becomes

p'o = Qu' ; XLI. becomes oq' = w'p ; XXIII. may be written as w + p'^ = p~%,

or as p'w : ou = p'o : op ; &c. And because the lines pq'u and qp'w are

sections of the tangent planes, to the wave at the extremity p of the ray, and

to the index surface at the extremity q of the index vector, made by the plane

of those two vectors p and p, while Bp and Se (as being parallel to oj and v)

have the directions of pq' and qp'
; we see that the displacement (or vibration)

has generally, in Fresnel's theory, the direction of the projection of the ray on

the tangent plane to the wave ; and that the elastic force resulting has the

direction of the projection of the index vector on the tangent plane to the index

surface : results which might however have been otherwise deduced, from the

formulsB alone.

(15.) It may be added, as regards the reciprocal deduction of the two

vectors p. and p from each other, that (by XLI. XXXYIII., and XX. XYI.)

we have the expressions,

L. . . - /Li"i = (o'^Yijjp, and LI. . . - p~' = v^Yvp ;

which answer in fig. 89 to the relations, that oq' is the part (or component)

of OP, perpendicular to ow ; and that op' is, in like manner, the part of

OQ ± ou.

Hamilton's Elements of Quatepnions, Vol. II. *^
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(16.) We have also the expressions,

LII. . .- fr' = w^Ywv, and LIU. . . - p-' = v'Tvw,

which may be similarly interpreted ; and which conduct to the relations,

LIY. . . - {YvwY = v'p~' = O^V'' = Svai.

Hence, the Locm of each of the two Auxiliary Points u and w, in fig. 89, is a

Surface of the Fourth Degree ; the scalar equations of these two loci being,

LV. . . (Yv(l,vy + Sy^y = 0, and LVI. . . {Yt^<f'u>y + S(o0-»w = ;

from which it would be easy to deduce constructions for those surfaces, with

the help of the two reciprocal ellipsoids, XXIX. and XXX.
(17.) The equations XII. XXII., combined witli the self-conjugate

property of ^, give

LYII. . . = S (0> . g/o), or LYIII. . . = SSp0->
;

hence (between suitable limits of the constant), every ellipsoid of the form,

LIX. . . Sptfr^p = h^ = const.,

which is thus concentric and coaxal with the reciprocal ellipsoid XXX., being

also similar to it, and similarly placed, contains upon its surface what may be

called a Li)ie of Vibration* on the Wave ; the intersection of this netc ellipsoid

LIX. with the wave surface being generally such, that the tangent at each

point of that line (or curve) has the direction of Fresnel's vibration.

(18.) The fundamental connexion (2.) of the function <p with the optical

constants, a, b, c, of the crystal, is expressed by the symbolical cubic (comp.

360, I., and 417, XXV.),

LX. . . (</> + a-') {<p + b-') {<p + c-') = ;

from which it is easy to infer, by methods already explained, that if e be any

scalar, and if we write,

LXI. ..E=={e- a-') {e - b'') {e - c'),

* Such lines of vibration were discussed by the present writer, but by means of a quite different

analysis, in his Memoir of 1832 {Third Supplement on Systems of Rays), which wa^ published in the

following year, in the Transactions of the Eoyal Irish Academy. See reference in the Note to p. 324.
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we have then this formula of inversion,

LXII. . .E{(l> + e)-' = e' - e{<l, + a-' + b-' + c"^) - a^h-^c-^tfK

(19.) Changing then e to - /o"^ the equation XXVIII. of the wave becomes,

LXIII. . . = |0-2 + rt-^ + ft-'' + c-"" + Sp-^jo - a-^b-^c-^Sp<j»-'p :

the Wave is therefore (as is otherwise known) a Surface of the Fourth Degree :

and (as is likewise well known) , the Index Surface is of the same degree, its

equation (found by changing p, 0, a, h, c to ^, (/>"S a"S 6"^, c"') being, on the

same plan,

LXIV. . . = |u-' + a^ + 6'' + c= + ^fT'ify - a^b'c'Sfjitpn.

(20.) These equations may be variously transformed, with the help of the

cubic LX. in ^, which gives the analogous cubic in 0~\

LXV. . . {<p-' + a') (0-^ + b') (^-^ + c^) = ;

for instance, another form of the equation of the wave is,

LXVI. . . = Sp^-V + (p' + a' + b' + c') Sp^-> - a'b'c''
;

in which it may be remarked that Sp(p-^p = {(f^pY < 0, whereas Sp0"'p > 0.

(21.) Substituting then, for Sp^'^p in LXYI., its value h^ from (17.), we

find that this second variable ellipsoid, with h for an arbitrary constant or

parameter,

LXVII. . . = {<!>-'pY + h'{p' + a' + b' + c') - a'b'c',

contains upon its surface the same line of vibration as the first variable ellipsoid

LIX., which involves the same arbitrary constant h ; and therefore that the

line in question is a qiiartic curve, or Curve of the Fourth Degree, as being the

intersection of these two variable but connected ellipsoids : and that the wave

itself is the locus of all such quartic curves.

(22.) The Generating Ellipsoid {Sptjip = I) has a, b, c for its semiaxes

{a> b> c> 0)', and for ani/ vector p, in the plane of be, we have the stjmbolical

quadratic (comp. 353, (9.)),

or

LXVIII. . . (0 + b-') (0 + c-') = 0,

LXIX. . . - b-'e-'i^-' =
<l>
+ b-' + C-'

;

making then this last substitution for <j> + b'^ + c' in LXIII., we find, for the

2U2
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section of the wave by this principal plane of the ellipsoid XXIX., an equation

which breaks up into the two factors,

LXX. . . p-2 + ar^ = 0, and LXXI. . . 1 - b-'c''Sp<l>-'p =
;

whereof the first represents (the plane being understood) a circle, with

radius = a, which we may call briefly the circle {a) ; while the' second

represents (with the same understanding) an ellipse, which may by analogy

be called here the ellipse {a) : its two semiaxes having the lengths of c and b,

but in the directions of b and c, for which directions (ft + b'^ = and ^ + c"* = 0,

respectively, so that this ellipse (a) is merely the elliptic section {be) of the

ellipsoid (abc), turned through a right angle in its own plane, as by the

construction (8.) it evidently ought to be. And an exactly similar analysis

shows, what indeed is otherwise known, that the plane of ca cuts the wave

in the system of a circle (b), and an ellipse {b) ; and that the plane of ab

cuts the same wave surface, in a circle (c), and an ellipse (c).

(23.) The circle (a) is entirely exterior to the ellipse («) ; and the circle

(c) is wholly interior to the ellipse (c) ; but the circle {b) cuts the ellipse [b],

in four real points, which are therefore (in a sense to be soon more fully

examined) cusps (or nodal points) on the wave surface, or briefly Wave- Cusps
;

and the vectors p, say ± po and ± pi, which are drawn from the centre o to

thesefour cusps, may be called Lines ofSingle Ray- Velocity, or briefly Cusp-Rays.

(24.) It is clear, from the construction (8.), that these lines or rays must

have the directions of the cyclic normals of the ellipsoid {abc) ; which suggests

our using here the cyclic forms,

LXXII. . .(l>p
= gp + YXpy,

and
LXXIII. . . Sp(pp = gp"^ + SX/oA'/o = 1,

for the function (jt, and the generating ellipsoid (8.) ; X' being written, to avoid

confusion, instead of the p. of 357, &c., to represent the second cyclic normal.

(25.) Changing then p to A', v to p, and g to g - p'^, in the expression

361, XXVII.* for Fv or Sr^"V ; equating the result to zero, and resolving

the equation so obtained, as a quadratic in ^ ; we find this newform of the

Equation XXVIII. of the Wave,

LXXIV. ..gp' = l+ SXpSX> ± TVXpTVX> ;

the upper sign belonging to one sheet, and the lower sign to the other sheet,

[This equation which occurs on page 649, Tol. i., is
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of that wave surface. The new equation may also be thus written, as an

expression for the inverse square of the ray-velocity Tp, or of the radius-vector,

say r, of the wave,

LXXV. . . r-2 = Tp-' = —2—' + —^— cosK ^ + ^ ^A

because, by 405, (2.), (6.), &c.,

LXXVI. ..a-' = -g- T\X, h'^ = - g + SXX', c-' = - g + TAX';

and we have the verification, for a cusp-ray (23.), that

LXXVII. ..r-' = b-\ or r = Tp = b, if p\\\ or X'.

(26.) If we write (comp. XXXI.),

LXXYIII. . . fp = - p-^l + Sp^/o) + a'b-'c-'&p<p-%

the equation LXIII. of the wave takes the form,

LXXIX. . .ip = a-' + h-' + c-^ = const.

;

and we have the partial derivative (comp. XXXY.),

LXXX. . . IDpip = p-' (1 + Sp^p) - p-'(j>p + a-^h-^c-'if^p

= p-» (1 - Vp^p) + a-^h-^c-^<f'p ;

which gives by XXXIII. the expression,

P~'{Yp(pp - 1) - a--&-V>>
M =

p-' + a-'b-^c-^Sp(p-'p

and therefore a generally definite value (comp. (11.)) for the index vector fi,

when the ray p is given.

(27.) If the ray be in the plane of ac, then (comp. LXIX.),

LXXXII. . . ^p + {a-' + c-') p + a-'cY'p = 0,

whence
Lxxxiii. . . Yp(pp = - a-^c-^Npr'p = «"'c"' {^p^~'p - pr'p) ;

and therefore by LXXXI.,

p-^ (Sp.^-V - a'c') - (p-^ + b-') <f'p ^

b-' (Sp^-> - a'c') + (p-^ + b-')a-'c
LXXXI V. . . p 1-2 /Q_^-i_ ^^,^^^^ j^ /„-2 L X-2W,2^2 '
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an expression which gives, definitely^

LXXXV. ..fi = -p-\ if LXXXVI. . . /o"' + b-' = 0,

but not

LXXXVII. . . Sp^'p = a^<?,

that is (comp. (22.)), if the ray terminate on the circle (6), at any point which

is not aho on the ellipse {b) ; and with equal definitenessy

LXXXVIII. ..n = - a'c-Y'p, if LXXXVII. but not LXXXVI. hold good,

that is, if the ray terminate on the ellipse (5), at any point which is not also on

the circle.

(28.) The worw«/ then to the wave, in each of the two cases last mentioned,

coincides with the normal to the section, made by the plane of ac ; and if we

abstract for a moment from the cusps (23.), we see that the wave is touched,

along the circle (b), by the concentric sphere LXXXVI. with radius = b,

which we may call the sphere {b) ; and along the ellipse (b) by the con-

centric ellipsoid LXXXVII. which may on the same plan be called the

ellipsoid (J).

(29.) An exactly similar analysis shows that the wave is touched along

the circles (a) and (c), by two other concentric spheres, with radii a and c,

which may be briefly called the spheres (a) and (c) ; and along the ellipses

(a) and {c) by two other concentric and similar ellipsoids, which may by

analogy be called the ellipsoids {a) and (c). And by comparing the equation

LXXXVII. of the ellipsoid {b) with the form LIX., we see that the three

elliptic sections [a] (b) [c] of the wave, made by the three principal planes of the

generating ellipsoid {abc), are lines of vibration (17.) ; the constant A* receiving

the three values, 6V, c'^a'^, d^b^, for these three ellipses respectively.

(30.) But at a cusp the two equations LXXXVI. and LXXXVII. coexist,

and the expression LXXXIV. for p. takes the indeterminate form -
; in fact,

there is in this case no reason for preferring either to the other of the tuo

values, within the plane of ac,

IjSXXIK. . . p = - p,-\ XC..,p = po, if XCL../uo = -a'^c-V/>o;

in which p^ is the cusp-ray (23.), and the first value of p corresponds to the

circle, but the second to the ellipse {b).
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(31.) The indetermination of /it, at a wave-cusp^ is however even greater

than this. For, if we observe that the equations LXXIX. and LXXX.
give, for this case, by LXXXIII. LXXXYI. LXXXYII.,

XCII. . .ipo=a^+b-^+ c-\ and XCIII. . . Dp fp = 0, for p = po,

we shall see that if p be changed to p^ + p in the expression LXXYIII. for

fp, and only terms which are of the second dimension in p" retained, the result

equated to zero will represent a cone of tangents p\ or a Tangent Cone to the

Wave at the Cusp : which cone is of the second degree, and every normal p. to

which, if limited by the condition I., is here to be considered as one value of

the vector p, corresponding to the value jOo of p.

(32.) And it is evident, by the law (12.) of transition from the wave to

the index surface, that if ± I'o, ± vi be the Lines of Single Normal Slowness,

or the four values of p which are analogous* to the four cusp-rai/s ± po, ±pi (23.),

then, at the end of each such new line, there must be a Conical Cusp on the

Index Surface, analogous to the Conical Cusp (31.) on the Wave, which is in

like manner one of four such cusps.

(33.) In forming and applying the equation above indicated (31.), of the

tangent cone to the wave at a cusp, the following transformations are useful

:

xciv. .
.

- (p + pv = - f>"(i + p-vr (1

+

PP'V
= -p-'+ 2p-*Sp>-» + p-*p" - 4p-« {Spp'y + &G.

the terms not written being of the third and higher dimensions in p\ and p, p

being any two vectors such that Tp < Tp (comp. 421, (4.)) ; also, without

neglecting any terms the self-conjugate property of </, gives (comp. 362),

XCV. . . S(p + p') ^ (p + jo') = Sp^p + 2Sp>p + Sp>p',

with an analogous transformation for the corresponding expression in ^"^

;

while the cubic LX. in <p, or LXV. in ^'S gives for an arbitrary p,

XCVI. . . (^ + «-') (<^ + c-^)p = - b-^ (0 + a-^) (^ + c-*)p,

XCVII. . . 0-'(0 + a-') (0 + Op = - 6^(0 + a-') (^ + Op ;

and therefore, among other transformations of the same kind,

XCVIII. . . (^ + a-J {<t>
+ c-Jp = {ar' - O (c"^ - b-') (0 + a'') (0 + b-')p.

* This word '* analogous" is here more proper than " corresponding" ; in fact, the cusps on each

of the two surfaces will soon be seen to correspond to circles on the other, in virtue of the law of

reciprodttf.
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We have also for a cusp, the values,

XOIX. . .<j>po = n,- (a-' + c-') po ; XOIX'. . . 1 + 8p,,f,p,
= {a-" + c-') b\

(34.) In this way the equation of the tangent cone is easily found to take

the form,

CI. . . = ¥^p'{4> + a-^) (0 + c-2) p' - iSp'pSpfio

and to give, by operating with Dp'(eomp. (10.) (26.) (31.)),

CII. . . ^-^ = 5* (^ + a-^) (^ + c-') p' - 2p,Spfxo - 2fi,8p'po,

the scalar coefficient x being determined, for each direction of the tangent p'

to the wave at the cusp, by the condition I., which here becomes (31.)),

cm. . . S/xpo = Sfiopo = - 1

;

also, by CII., &o., we have, after some slight reductions,

CIV. . . x^npo = 2 [b'Sp'fio + Sp'po) ;

CV. . . xSfifio = 2 (S|o'jUo - fXo^^p'po) ;

CVI. . . xy = 4 {b'fxo' + 1) S/poSpVo + 4 (poSpVo + i^o^PPoY

= - 4J* {Sp'fx^y + 4 {bw - 1) ^PpSp^o +W i^ppoY ;

but this last expression is equal, by CIV. CV., to - x^Sfipn^pno ; the equation

of the cone of perpendiciilarSy let fall from the wave-centre o on the tangent

planes at the cusp, takes then this very simple form,

CVEI. ../ti* + S/i|OoS/i/Uo = 0;

so that this cone of the second degree has the two vectors po and p^ at once

for sides and cyclic normals (comp. 406, (7.)) ; and it is cut^ by the plane CIII.,

in a circle, of which the diameter is,

CVIII. . . T f/uo + Pi') = (T/io^ - b-'f = b (6-» - a-*)* (c-« - Ir^f ;

and therefore subtends^ at the centre o, and in the plane of oc, the angle^

CIX. . . z ^ = tan-' . b' {b-^ - a^f (c"* - b-'f.
Po
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(35.) And by combining the equations GUI. CVII., we see that this

circle (34.) is a small circle of the sphere,

ex. . . /u^ = S;u/.o, or CX'. ..S|i-Vo = l,

which passes through the wave-centre, and has the vector fi^ for a diameter,

passing also through the extremity of the vector - p-^.

(36.) This circle is, by III., a curve of contact of i\iQ plane GUI. with the

surface of which n is the vector, because every vector fx of the curve corresponds,

by (31.), to the one vector p^ of the wave; it is therefore one of Four Circular

Ridges on the Index Surface, the three others having equal diameters, and
corresponding to the three remaining cusp-rays, -

p^, pi, - p^ (23.) ; and there

are, in like manner. Four Circular Ridges on the Wave, along which it is

touched hy the four planesy

CXI. . . Sjovo = - 1, S/ovo = + 1, Bpvi = - 1, S|ovi = + 1,

± Vo, ± vi being the four lines introduced in (32.) ; also the common length of

the diameters, of these four circles on the wave, is (comp. GVIII.),

GXII. . . T ((To + Vo->) = (TcTo'' - b')^ = i-' {a' - h')^ {b' - c')K

GXIII. . . (To = - aV^Vo. CXIV. . . Tvo = b-\ and GXV. . . ^v,<t, = - 1 ;

finally, -Vq"^ and a^ are the two values* of p, in the plane of ac, for the first

of the four new circles : and the angle between these two vectors, or the

angle which the diameter of the circle, in the same plane, subtends at the

wave-centre, is (comp. GIX.),

CXVI. . . z -° = tan-^ .
6-' (a« - 6»)* {¥ - c'f.

(37.) In the recent calculations (33.) (34.), the circle of contact (36.) on

the index surface was deduced from the tangent cone at a wave-cusp, as a

section of a certain cone of normals GVII. to that tangent cone GI., made by

the plane GUI. ; but the following is a simpler, and perhaps more elegant,

method of deducing and representing tlie same circle by means of its vector

equation (comp. 392, IX. &c.), and without assuming any previous knowledge of

the^ character, or even the existence, of that conical wave-cusp.

* It is not difficult to show that these are the vectors of two points, in which the circle and ellipse

(i), wherein the wave is cut by the plane of ac, are touched by a common tangent.

Hamilton's Elements of Quaternions, Vol. II. 2 X
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(38.) In general, by eliminating the auxiliary vector v between XX. and

XXIII., we arrive at the foUowiug equation,

which holds good for everi/ pair of corresponding vectors p and fi, of the wave

and index surface. And, in general, this relation is sufficient, to determine

the index-vector /u, when the ray-vector p is given : because (<jt + e)~^0 is

generally = 0.

(39.) But when 6 is a root of the equation JE = 0, with the signification

LXI. of E, then, by the formula of inversion LXII., the symbol (^ + c)-'0

takes the indeterminate form t- and therefore, for everi/ point of each of the

three circles («) {b) (c) of the wave, the formula CXVII. fails to determine p. :

although it is only at a cusp (23.), that the value of p becomes in fact indeter-

minate (comp. (27.) (28.) (29.) (30.) (31.)).

(40.) At such a cusp {p = p^\ the equation CXVII. takes the symbolical

form,

CXVIII. . . (^ + po-T' = (0 + ^''YW = (i"o + ppy + (0 + n-'O

;

fjUi retaining its recent signification XCI., and the symbol (0 + h~^')-^0 denoting

any vector of the form yjd, if /3 be the mean vector semiaxis of the generating

ellipsoid XXIX., so that,

CXIX. . . SjS^jS = 1, (0 + b-') i3
= 0, T|3 = i.

(41.) Writing then for abridgment (comp. XX.),

cxx. . . vo = - (pq + po'^Y\

the Vector Equation of the Index Ridge (36.) is obtained under the sufiBciently

simple form,

CXXI. . . V/3 Ou + p^-'Y' + ^^^0 = ;

and this equation does in fact represent a Circle (comp. 296, (7.)), which is

easily proved to be the same as the circular section (34.), of the cone CVII. by

the plane CIII. ; its diameter CVIII. being thus found anew under the form,

CXXII. . . Tvo-» = 6TVAX' = b {b-' - a-')* (c"* - 6"')*,
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with the significations (24.) (25.) of X, A' ; in fact we have now the expressions,

CXXIII. . . ^0 = bJJX, vo = po-' (V\X)-\

with the verification, that

CXXIV. . . (^ + 6-^) Vo = XSVuo + ySXvo = 6-'UA = - p,-K

(42.) And by a precisely similar analysis, we have first the new general

relation (comp. OXYII.), for any two corresponding vectors, p and p.,

GXXY. . . {r' - p-') {p ^ p-'Y' = p-';

and then in particular (comp. CXYIII.), for p = v^,

cxxvi. .
. (p + viT = {<p'' + bTvo'' = (<To + viT + (r + ^TO i

so that finally, if we write for abridgment (comp. XLI. OXX.),

CXXVIL . . a>o = - (cTo + viV,

the Vector Equation of a Wave-Ridge is found (comp. CXXI.) to be,

CXXYIII. . . Vi3 (p + v;')-' + V/3aio = 0,

/3 being still (as in OXIX.) the mean vector semiaxis of the generating ellipsoid

{Sp<pp = 1) : and the diameter CXII., of this circle of contact of the wave with

the first plane CXI., is thus found anew (comp. CXXII.) without any reference

to cusps (37.), as the value of Tw~\

(43.) Several of the foregoing results may be illustrated, by a new use of

the last diagram (13.). Thus if we suppose, in that fig. 89, that we have

the values,

CXXIX. . . OP = po> OQ = Mo) ou = Uo, whence OXXX. . . op' = - p^\ &c.,

then the index-ridge (36.), coiTesponding to the wave-cusp p (23.), will be the

circle which has p'q for diameter, in a plane perpendicular to the plane of the

figure, which is here the plane of ac ; the cone of normals p (34.), to the

tdngent cone to the wave at p, has the wave-centre o for its vertex, and rests on

the last-mentioned circle, having also for a subeontrary section that second

circle which has pq' for diameter, and has its plane in like manner at right

angles to the plane of poq ; also, if r and s be any two points ou the second

2X2
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and first circles, such that ORS is a right line, namely, a side fi of the cone

here considered, then the chord pr of the second circle is perpendicular to this

last line, and has the direction of the vibration Sp, which answers here to the

two vectors p{= Pq) and fi : because (comp. (14.)) this chord is perpendicular

to fi, but coraplanar with p and p..

(44.) Again, to illustrate the theory of the wave-ridge (36.), which cotTe-

sponds to a cusp (32.) on the index-surface, we may suppose that this cusp is at

the point q in fig. 89, writing now (instead of OXXIX. CXXX.),

CXXXI. . . OQ = Vo, OP = (Tq, ow = a>o, oq' = - vo~S &0.

;

for then the ridge (or circle of contact) on the wave will coincide with the

second circle (43.), and the cone of rays p from o, which rests upon this circle,

will have the/r«^ circle (43.) for a sub- contrary section : also the vibration, at

any point r of the wave-ridge, will have the direction of the chord rq', for

reasons of the same kind as before.

(45.) Let K and k' denote the bisecting points of the lines pq' and qp',

in the same fig. 89 ; then k' is the centre of the index-ridge, in the case (43.)

;

while, in the case (44.) , k is the centre of the wave-ridge.

(46.) In the first of these two cases, the point k is not the centre of any

ridge, on either wave or index-surface ; but it is the centre of a certain sub-

contrary and circular section (43.), of the cone with o for vertex which rests

upon an index-ridge ; and each of its chords pr has the direction (43.), of a

vibration Epo, at the wave-cusp p corresponding : so that this cusp-vibration

revolves, in the plane of the circle last mentioned, with exactly half the angular

velocity of the revolving radius kr.

(47.) And every one of those cusp-vibrations SjOq, which (as we have seen)

are all situated in one plane, namely, in the tangent plane at the mi^p p to the

ellipsoid (b) of (28.), has (as by (14.) it ought to have) the direction of the

projection of the cusp-ray p^, on some tangent 2>lane to the tangent cone to the

wave, at that point p : to the determination of which last cone, by some new

methods, we purpose shortly to return.

(48.) In the second of the two cases (45.), namely, in the case (44.), pq' is

a diameter of a wave-ridge, with k for the centre of that circle, and with a

plane (perpendicular to that of the figure) which touches the wave at every

point of the same circular ridge ; and the vibration, at any such point r, has

been seen to liave the direction of the chord rq', which is in fact the projection

(14.) of the ray or upon the tangent plane at r to the wave.
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(49.) And we see that, in passing from one point to another of this wave-

ridge, the vibration rq' revolves (comp. (46.)) round the fixed point q' of that

circle, namely, round the foot of the perpendicular from o on the ridge-plane,

with (again) half the angular velocity of the revolving radius kr.

(50.) These latcs of the two sets of vibrations, at a cusp and at a ridge upon

the wave, are intimately connected with the two conical polarizations, which

accompany the two conical refractions,* external and internal, in a biaxal crystal
;

because, on the one hand, the theoretical deduction of those two refractions is

associated with, and was in fact accomplished by, the consideration of those

cusps and ridges : while, on the other hand, in the theory of Fresnel, the

vibration is always perpendicular to the plane of polarization. But into the

details of such investigations, we cannot enter here.

(51.) It is not difficult to show, by decomposing p' into two other vectors,

p\ and p\, perpendicular and parallel to the plane of ac, that we have the

general transformation, for any vector p',

CXXXII. . . ¥8p' (^ + a-') {cf, + c-') p' -= (S^o/'oP?

;

the equation CI. of the tangent cone at a wave-cusp may therefore be thus

more briefly written,

cxxxiii. . . [SfiopopJ = ^^PoP^f^op ;

and under this form, the cone in question is easily proved to be the locus of

the normals from the cusp, to that other cone.CYll., wliich has fx for a side,

and the wave-centre o for its vertex : while the same cone CVII. is now seen,

more easily than iu (34.), to be reciprocally the locus of the perpendiculars

from o on the tangent planes to the wave at the cusp, in virtue of the new

equation CXXXIII., of the tangent cone at that point.

(52.) Another form of the equation of the cusp-cone may be obtained as

follows. The equation LXXIV. of the wave may be thus modified (comp.

The writer's anticipation, from theory, of the two Conical Eefractions, was announced at a

general meeting of the Royal Irish Academy, on the 22nd of October, 1832, in the course of a final

reading of that Third Supplement on Systems of Rays, which has been cited in a former Note (p. 324).

The very elegant experiments, by which his friend, the Key. Humphrey Lloyd, succeeded shortly

afterwards in exhibiting the expected results, are detailed in a Paper On the F/ienomena presented by

light, in its passage along the Axes of Biaxal Crystals, which was read before the same Academy on

the 28th of January, 1833, and is published in the same first part of vol. xvii. of their Transactions.

Dr. Lloyd has also given an account of the same phenomena, in a separate work since published,

under the title of an Elementary Treatise on the Wave Theory of Light (London, Longmans and Co.,

1857, Chapter XI.).
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T iXXYI.), by the introduction of the two non-opposite cusp-rays, p^ = bVX
(CXXIIL), and/oi = 6UX':

CXXXIV. . . 2a'b'c' + {a' + c') by + [a^ - e) Sp,p . Sp,p

= + {a'-c')TYp,p.TYp,p;

where it will be found that the first member vanishes, as well as the second,

at the cusp for which p = p^.

(53.) Changing then ^o to po + p\ ^-nd retaining only terms of ^rst

dimension in p' (oomp. (31.)), we find an equation of unifocal form (comp.

359, &c.),

CXXXV. ..S/3op' = + TVao/, or GXXXT. . . {Ya,pJ+ {S(3,py= 0;

with the two constant vectors,

CXXXYI. ..a,= {b-^- a-^)^ {c^ - b-'fp, ; CXXXYF. . . /3o = /Xo - Po"^

;

and this equation CXXXV. or CXXXV. represents the tangent cone, with p'

for side, S/3o|o' being positive for one sheet, but negative for the other.

(54.) As regards the calculations which conduct to the recent expressions

for Oo, /3o, it may be sufficient here to observe that those expressions are

found to give the equations,

OXXXVII. . . 2a'6^c^ao = {a^ - tr) po^Ypop, ;

CXXXVII'. . . 2aWc% =2{a'+ c') b'p, + {a' - c") {po^PoPi - b'p,)

;

and that, in deducing these, we employ the values,

nwYATTTT <a
A^SXA' rpTr PTYXX

together with the formula XCIX., and the following,

CXXXIX. . . ^ (po - px) = - a-' (p, - pO ; ^ (po + pd = - c^ [p, + p.).

(55.) It is not difficult to show that the equation CXXXV. or CXXXV'.,

of tlie tangent cone at a cusp, can be transformed into the equation

CXXXIII. ; but it may be more interesting to assign here a geometrical

interpretation, or comtruction, of the unifocalform last found (53.).
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(56.) Ketainiiig then, for a moment, the use made in (43.) of fig. 89, as

serving to illustrate the case of a wave-cusp at p, with the signification (45.)

of the new point k' as bisecting the line p'q, or as being the centre of the

index-ridge ; and conceiving a parallel cone, with o instead of p for vertex,

and with a variable side oi = p , then the cusp-ray op (= p^ \\ a^ is o. focal line

of the new cone, and the line ok' {= 5 [fi^ - p^-^) = ^j3o) is the directive normal,

or the normal to the director plane corresponding ; and the formula CXXXY,
is found to conduct to the following,

CXL. . . cos k'ot = sin pok' sin pot,

which may be called a Geometrical Equation of the Cusp- Cone : or (more

immediately) of that Parallel Cone, which has (as above) its vertex removed

to the wave-centre o.

(57.) Verifications of CXL. may be obtained, by supposing the side ot to

be one of tlie two right lines, p\, p\, in which the cone is cut by the plane of

the figure (or of ac) ; that is, by assuming either

OXLI. . . OT = p'l = /Uo + /»o'MI ou, or GXLY . . . OT = p\ = po + fi^-^ \\ ow;

and it is easy to show, not only that these two sides, ou, ow, make (as in

fig. 89) an obtuse angle with each other, but also that they belong to one

common sheet, of the cone here considered, because each makes an acute angle

with the directive normal ok'.

(58.) Another way of arriving at this result, is to observe that the

equation CXXXIII. takes easily the rectangular form,

CXLII. . . (S/ (U^o + Upo))^ = (8/ (Ua.0 - Vp,)y + T^,p, {^p'Vp,p,y
;

the internal axis of the cusp-cone has therefore the direction of UjUo + Upo, that

is, of the internal bisector of the angle poq, while the external bisector of the

same angle is one of the two external axes, and the third axis is perpendicular

to the plane of p^, //„ > ^^^ ^p' (U^o + ^Po) < 0, whether p' = p\, or = p\ : and

therefore these two sides, p\ and p\, belong (as above) to one sheet, because

each is inclined at an acute angle to the internal axis Ujuq + U/Oq*

(59.) It is easy to see that the secondfocal line of the parallel cone (56.) is

fig or OQ ; and that the second directive normal corresponding is the line ok

(45.), in the same fig. 89 ; whence may be derived (comp. CXL.) this

second geometrical equation of the cone at 0,

CXLIII. . . cos KOT = sin koq sin qot ; with koq = pok'.
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(60.) And finally, as a bifocal but still geometricalform of the equation of

the cusp-conCf with its vertex thus transferred to o, we may write,

CXLIV. . . L POT + z QOT = const. = z. wou.

(61.) Anp legitimate form of any one of the four functions
<f>p,

^~^p, Sp<pp,

Spijr^p, when treated by rules of the present Calculus which have been already

stated and exemplified, not only conducts to the connected forms of the

three other functions of the group, but also gives the corresponding forms of

equation, of the Ware and the Index- Surface.

(62.) For instance, with the significations (32.) of Vg and vi, the scalar

function Sp<j)~^p, which is = 1 in the equation XXX. of the Reciprocal

Ellipsoid (9.), may be expressed by the following cyclic form, with vo, vi

for the cyclic normals of that ellipsoid,

CXLV. . . ^pf'p = - by + (a^ - c»)6^Svo/oSv,|0 ;

reciprocating which (comp. 361), we are led to a bifocal form of the function

Sp^p, which function was made = 1 in the equation XXIX. of the Generating

Ellipsoid (8.), and is now expressed by this other equation (comp. 360, 407),

CXLVI. . . j^^, {^p^p + A-y) = (Svo/>)^ + (Sv.p)^ - 2^ S.;opSv.p

;

Vo, vi being here the two (real) focal lines of the same ellipsoid (8.), or of its

(imaginary) asymptotic cone.

(63.) Substituting then these forms (62.), of 8p^p and Sptfr^p, in the

equation LXIII., we find (after a few reductions) this new form of the

Equation of the Wave

:

CXLYII. . . {2p' - [a' - c')Svo/oSi.,p + a' + cj = {a' - c«)» { 1 - {^v^pf} {
1 - {Sv.pf} ;

whence it follows at once, that each of the four planes CXI. touches the wave,

along the circle in which it cuts the quadric, with Vq, vi for cyclic normals, which is

found by equating to zero the expression squared in the first member of

CXLVII. For example, the frst plane CXI. touches the wave along that

circle, or wave-ridge, of which on this plan the equations are,

CXLVIII. . . Sv,p + 1 = 0, 2p'+ {a' - c')Sv,p - {a' + c^)Bv,p = ;

and because

CXLIX. . . <i,{vo + V,) = - a-'(vo + vi), <p{vo - vi) = - c-'(vo - vi).
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and therefore, with the value OXIII. of ao,

CL. . . <7o
= - aV^Vo = i{{a^ + c^)vo - {a- - c'')vi),

the second equation CXLVIII. represents (comp. CX.) the diacentric sphere^

CLI. . . p^ = S<T„|t>, or OLr. . . Saop-^ = 1,

wliich passes through the wave-centre o, and of which the ridge here considered

is a section. The diameter of that ridge may thus be shown again to have

the value CXII. ; and it may he observed that the circle is a section also of

the cone,

CLII. . . Svo/oS<To/o = - p^y or CLII'. . . Svo/oSagp"' = - 1.

(64.) It was shown in (17.) that the vibration Bp, at anp point of the

wave-surface, or at the end of ant/ ray p, is perpendicular to tp'^p, as well

as to /Lt by II. ; and is therefore tangential to the variable ellipsoid LIX , as

well as to the wave itself. Hence it is easy to infer, that this vibration must

have generally the direction of the auxiliary vector (u, because not only

Sfiu) = 0, by XXXIX., but also Sw^'V = 8p<j>-'u, = Spv = 0, by XXII. and

XXXVII. Indeed, this parallelism of S/o to w results at once by XXXVII.
from XII.

(65.) If then we denote by ^p an infinitesimal vector, such as imSp, which

is tangential to the wave, but perpendicular to the vibration dp, the parallelism

Bp II
(o will give,

CLIII. . . B^p = pBp II
pto ± p, because CLIIF. . . Sppw = ;

whence

CLIV. . . SpB'p = 0, g'Tp = 0, or CLV. . .Tp = r = const.,

for this new direction S'p of motion upon the wave.

(66.) And thus (or otherwise) it may be shown, that the Orthogonal

Trajectories to the Lines of Vibration (17.) are the curves in which the Wave

is cut by Concentric Spheres, such as CLV. ; that is by the spheres p' + r' = 0,

in which the radius r is constant for any one, but varies in passing from one

to another.

(67.) The spherical curves (r), which are thus orthogonal to what we have

called the lines (h) of vibration, are sphero-conics on the wave ; either because

Hamilton's Elemunts of Quaternions, Vol. II. . 2 Y
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each such curve (r) is, by XXVIII., situated on a concentric and quadric

conCf namely,

CLVI. . .0 = S|o(^ + 0-V;

or because, by XXVII., it is on this other concentric quadric^

OLVII. . . - 1 = S/t)(0-^ + r'^p.

(68.) It is easy to prove (comp. LXXV.) that, for any real point of the

wave, r"^ cannot be less than c% nor greater than a^ ; and that the squares of

the scalar semiaxes of the new quadric CLVII. are, in algebraically ascending

order, r"^ - «\ r'^ - P, r"^ - c^ ; so that this surface is generally an hyperholoidy

with one sheet or with two, according as r > or < b.

(69.) And we see, at the same time, that the conjugate hyperboloid^

OLVIII. . . + l = Sp(^-> + r^)-V,

which has two sheets or one, in the same two cases, r > h, r < b, and has (in

descending order) the values,

CLIX. . .a"- r\ b' - r\ & - r\

for the squares of its scalar semiaxes, is confocal with the generating ellipsoid

XXIX. ; so that the quadric CLVII. itself is the conjugate of such a confocal.

(70.) To form a distinct conception (comp. (67.)) of the course of a curve

[r) upon the wave, it may be convenient to distinguish the five following cases :

CLX. . . (a) . . r = «
; (/3) . .r < a,> b

\ (7) . . ;• = 6
;

(S) . . r < 6, > c
;

(e) . . r = c.

(71.) In each of the three cases (a) (7) («), the conic (r) becomes a circle,

in one or other of the three principal planes : namely the circle (a), for the

case (a)
;

[b) for (7) ; and [c] for (s).

(72.) In the case (/3), the curve [r] is one of double curvature, and consists

of tico closed ovals, opposite to each other on the wave, and separated by the

plane [a), which plane is not (really^ met, in any point, by the complete sphero-

conic (r)
; and each separate oval crosses the plane (h) perpendicularly, in two

(real) points of the ellipse [b], which are external to the circle [b] : while tlie

iame oval crosses also the plane (c) at right angles, in some two real points of

the ellipse (c).
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(73.) Finally, in the remaining case (S), the ovals are separated by the

plane (c), and each crosses the plane (b) at right angles, in two points of the

ellipse (b), which are inferior to the circle (b) ; crossing also perpendicularly

the plane (a), in two points of the ellipse [a).

(74.) Analogous remarks apply to the lines of vibration (A) ; which are

either the ellipses (a) [b) (c), or else orthogonals to the circles [a) [b) (c), and

generally to the sphero-conics (r), as appears easily from foregoing results.

(75.) It may be here observed, that when we only know the direction (Ufi),

but not the length (T/z), of an index-vector fx, so that we have two parallel

tangent planes to the wave, at one common side of the centre, the directions

of the vibrations Sp differ generally for these two planes, according to a law

which it is easy to assign as follows.

(76.) The second values of fi and Sp being denoted by fi^ and dp^, we have,

by the equation IX. of the index-surface, these two other equations :

OLXI. . . = S/x {<p-' - fx'Yn ; CLXI'. . . = S/i {<!>-' - fi/')-'fi ;

of which the difference gives, suppressing the factor ju^"^ - fT',

CLXII. . . = S/z {<!>-' - n;^)-' {(!>-' - iC^'^ ;

or

CLXII'. . . = s (^-^ - ^-y' fi ir' - fin-%

because (^"' - /u/^)~S as a functional operator, is self-conjugate, so that /z may

be transferred from one side of it to the other
;
just as, ii v = <pp be such a

self-conjugate function of p, then v' = Sv<j>p = Sp^v = ^p<p^p, &o.

(77.) But, by VIII., we have the parallelisms,

CLXIII. ..BpW (0-' - fT'rp. ; CLXIII'. . . ^^o,
||

{<j>-' - fi;')-'fi ;

hence, by CLXII'., we have the very simple relation,

CLXIY. ..SSjoS/>,= 0;

that is, the two vibrations, in the two parallel planes, are mutually rectangular.

(78.) The following quite different method has however the advantage of

not only proving anew this known relation of rectangularity, but also of

assigning quaternion expressions for the two directions separately : and, at the

same time, that of leading easily to what appears to be a new and elegant

Geometrical Construction, simpler in some respects than the known one, which

can indeed be deduced from it.

2 Y2
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(79.) By the first principles of Fresnel's theory (comp. (3.)), the vibration

(S/o), on any one tangent plane to the wave, is situated in the normal plane

(through fx), which contains the direction (Se) of the elastic force; that is

to say, we have the Equation of Gomplanarity

,

CLXV. . . ^iilplt = 0.

(80.) We have then, by II. and V., the system of the two equations,

CLXVI. . . S/uSp = 0, ^ixlp<f'lp =
;

comparing which with the equations of the same form,

SvT = 0, Svr^T = 0, 410, V. VI.

we derive at once tlie following Construction, which may also be expressed as a

Theorem :

—

" At either of the two points q ofthe Reciprocal Ellipsoid XXX., the tangent

plane at which is parallel to that at the given point p of the Wave, the tangents to

the Lines of Curvature on the Ellipsoid are parallel to the tangents to the Lines

of Vibration on the Wave "
; namely, to one at that given point p itself, and to

another at the other point p', on the same side of the centre, at which the

tangent plane is parallel to each of the two others above mentioned.

(81.) Thus, for each of the two points p, p' the line of vibration is parallel

to one of the lines of curvature at cj ; and it is evident, from what precedes,

that the other of these last lines has the direction of the corresponding

Orthogonal (66.) at p or p'
: nor is there any danger of confusion.

(82.) As regards quaternion expressions, for the two vibrations on a given

wave-front, the sub-article, 410, (8.), with notations suitably modified, shows

by its formulae XIX. XXII. that we have here the equations,

CLXVII. . . = S/uSjOI/qS/OI/i = S/tiS/OVoSviSjO + S/uSpviSvoS/o,

and CXVIII. . . Sp
II UV/uvo ± UV/uvi,

if Vo, vi be, as in earlier formulae of the present Series 422, the cyclic normals

of the reciprocal ellipsoid, which are often called the Opttic Axes of the Crystal.

(83.) And hence may be deduced the known construction, namely, that

"for any given direction of wave-front, the two plmies of polarization, perpen-

dicular respectively to the two vibrations in Fresnel's theory, bisect the two

supplementary and diedral angles, which the two optic ojces subtend at the normal

to the front "
: or that these planes of polarization bisect, internally and

externally, the angle between the two planes, fiv^ and fivi.
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(84.) It may not be irrelevant here to remark, that if fi and fi^ be any two

index-vectors, which have (as in (76.)) the same direction, but not the same

length, the equation LXIY. enables us to establish tlie two converse relations

:

OLXIX. . . abcTfi^ = (S/x^m)"^ ; CLXIX^ . . abcTfx = {^,i,<PfxXK

(85.) Either by changing a, b, c, <p, fi to a"% 6"^, c"% 0"\ p, or by treating

the form LXIII., in (19.), of the Equation of the Wave, as we have just

treated the form LXIV., of the equation of Index- Surface, in the same

sub-article (19.), we see that if p and p^ be any two condirectional rays

(U/)^ = U/o), then,

CLXX. . . (aJc)-'T(O, = (S(0^-»-*, or, abcTp;' = {^pi^-'pf ;

and

OLXX'. . . {abcY'Tp = S(|o,^-'(o,)-*, or, abcTp-' = {^p,<f'p)K

(86.) A somewhat interesting geometrical consequence may be deduced

from these last formulae, when combined with the equation LIX. of that

variable ellipsoid, ^p^'^p = h*, which cuts the wave in a line of vibration {h).

For if we introduce this symbol h* for Sp<j)~^p, and write r^, instead of Tp^ to

denote the length of the second ray p^, the first equation OLXX. will take this

simple form,

CLXXI. . . r, = abch-^,

which shows at once that r^ and h are together constant, or together variable
;

and therefore, that " a Line of Vibration on one Sheet of the Wave is projected

into an Orthogonal Trajectory to all such Lines on the other Sheet, and conversely

the latter into the former, by the Vectors p of the Wave "
: so that one of these

two curves would appear to be superposed upon the other, to an eye placed at

the Wave- Centre o.

(87.) The visual cone, here conceived, is represented by the equation OLYI.,

with some constant value of r ; and as being a surface of the second degree, it

ought to cut the wave, which is one of the fourth, in some curve of the eighth

degree ; or in some system of curves, which have the product of their dimen-

sions equal to eight. Accordingly we now see that the complete intersection,

of the cone CLVI. with the wave, consists of ttco curves, each of the fourth

degree ; one of these being, as in (67.), a complete sphero-conic [r), and the

other a complete line of vibration [h) : a new geometrical connexion being

thus established between these two quartic curves.
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(88.) As additional verificatious, we may regard the three principal planes,

as limits of the cutting cones ; for then, in the plane {a) for instance, the circle

{a) and the ellipse [a], which are (in a sense) projections of each other, and

of which the latter has been seen to be a line of vibrationy are represented

respectively by the two equations,

CLXXII. . .r = a, and CLXXIF. . . be = h\

in agreement with CLXXI. ; and similarly for the two other planes.

(89.) It was an early result of the quaternions, that an ellipsoid with its

centre at the origin might be adequately represented by the equation (comp.

281, XXIX., or 282, XIX.),

CLXXIII. . . T {ip + pk) =k'- i\ if Tt > Tk ;

or, without any restriction on the tivo vector constants, t, ic, by this other

equation,*

CLXxiir. . . T(f/, + pkY = (k^ - 1^)^

(90.) Comparing this with S/o^p = 1, as the equation XXIX. of the

Generating Ellipsoid, we see that we are to satisfy, independently of p, or as

an identity, the relation (comp. 336) :

CLXXIV. . . (ic^ - iy^p<i>p = {ip + pk) ipi + Kp) = {,' + k')p' + 28ipKp ;

which is done by assuming (comp. again 336) this cyclicform for <p,

CLXXV. . . {k'- i'y<^p = (t^ + k')p + 2YKpi = {i- kYp + 2iSkp + 2kSip ;

or as in (24.) comp. 359, III. IV.,

il>p = gp + \XpX\ Sp({,p = gp' + SXpYp = 1 ; LXXII. LXXIII.

* Thia equation, CLXXIII'. or CLXXII., which had been assigned by the author as a form of

the equation of an ellipsoid, has been selected by his friend Professor Peter Guthrie Tait, now of

Edinburgh, as the basis of an admirable Paper, entitled :
" Quaternion Investigations connected with

Fresnel's Wave- Surface," which appeared in the May number for 1865, of the Quarterly Journal of
Pure and Applied Mathematics ; and which the present writer can strongly recommend to the careful

perusal of all quaternion students. Indeed, Professor Tait, who has already published tracts on

other applications of Quaternions, mathematical and physical, including some on Electro-Dynamics,

appears to the writer eminently fitted to carry on, happily and usefully, this new branch of mathe-

matical science : and likely to become in it, if the expression may be allowed, one of the chief

successors to itp inventor.
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with expressions for the constants g, X, X', which give, by LXXYI., the

following values for the scalar semiaxes,*

CLXXYL..a = Tt + TK; b = j^—-, c^Tl-Tk;
i(i-K:)

whence conversely,

CLXXYII. . . Te =^ ; T« =^ ; T^ - ,c) = | ; &c.

(91.) Knowing tlius the form CLXXY. of the function 0, which answers

in the present case to the given equation CLXXIII. of the generating

ellipsoid, there would be no difficulty in carrying on the calculations, so as

to reproduce, in connexion with the two constants t, k, all the preceding

theorems and formulae of the present Series, respecting the Wave and the

Index-Surface. But it may be more useful to show briefly, before we

conclude the Series, how we can joass- from Quaternions to Cartesian Co-

ordinates^ in any question or formula, of the kind lately considered.

(92.) The three italic letters^ ijk, conceived to be connected by the four

fundamental relations^

iz ^j2 ^k' = yk = - 1, (A), 183,

were originally the only peculiar symbols of the present Calculus ; and although

they are not noio so much used, as in the early practice of quaternions, because

certain general signs of operation^ such as S, Y, T, U, K, have since been

introduced, yet they (the symbols ijk) may be supposed to be still familiar

to a student, as links between quaternions and coordinates.

(93.) We shall therefore merely write down here some leading expressions,

of which the meaning and utility seem likely to be at once perceived, especially

after the Calculations above performed in this Series.

* The reader, at this stage, might perhaps usefully turn back to that Construction of the Ellipsoid,

illustrated by fig. 53 (page 234, vol. i., and page 184), with tho Remarks thereon, which were given

in the few last Series of the Section II. i. 13, pages 230, 242, vol. i. It will be seen there that the

three vectors, i, k, i - k, of which the lengths are expressed by CLXXVII., are the three sides

CB, CA, AB, of what may be called the Generating Triangle abc in the figure ; and that the deduction

CLXXVI., of the three setniaxes, abc, from the two vector constants, i, k, with many connected results,

can be very simply exhibited by Geometry. The whole subject, of the equation T((p + p/c) = /c'^ - 1- of

the ellipsoid, was very fully treated in the Lectures ; and the calculations may be made more general,

by the transfornjiilions assigned in the long but ini|;0rlant Section 111. ii. 6 of the present Elements,

80 that it seems unnecessary to dwell more on it in this place.
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(94.) The vector semiaxes of the generating ellipsoid being called a, /3, y
(comp. (40.) (42.)), we may write,

CLXXYIII. . . o = m, )3 = jh, y^kc)

CLXXIX. . . 0/0 = a'^a-'p + /3-^S/3-V + r^^Y'p = Sa-^Sa-^ = - "S^iaT^x
;

OLXXX. . . Sp^p = S(Sa-V)' = S«-V ; CLXXXI. . . Sp^-'p = SaV

;

OLXXXII. . . (0 + e)p = Sa(a-^ + e)Sa->
;

CLXXXIII. . . (^ + e)-V - 2a (a-^ + e)"' ^a'p
;

CLXXXIV. . . if r* =V = S»% then u = r"^ (<^ + r-^)-^

= ,.-22 «^«"'P = _ 2
^«'^

r * - a" r' - a

CLXXXV. . . for IFa..., = Spu =S-^ = -^ + ^^ + -^;
or

CLXXXVI. . . 1 = — Spa» = - Sp^u = — Svtpp

„ x^ x^ V^ z'

2»

r^ - a^ r" - a- r^ - b^ r" - c^'

and the Index- Surface may be treated similarly, or obtained from the Wave

by changing abc to their reciprocals.

423. As an eighth specimen of physical application we shall investigate,

by quaternions, Mao Cullagh's Theorem of the Polar Plane* and some things

therewith connected, for an important case of incidence of polarized light on

a biaxal crystal : namely, for what was called by him the case of uniradial

vibrations.

(1.) Let homogeneous light in air (or in a vacuum), with a velocityf

taken for unity, fall on a plane face of a doubly refracting crystal, witli such

a polarization that only one refracted ray shall result ; let /u, p, p" denote the

vectors ofray-velodty of the incident, refracted, and reflected lights respectively,

p having the direction of the incident ray^ prolonged icithin the crystal, but p"

* See pages 39, 40 of the Paper by that great mathematical ami physical philosopher, " On the

Laws of Crystalline Reflexion and Jte/raccion," already referred to in the Xote lo page 324 {Trans-

actioua R. I. A., vol. xviii., part i.).

t Of course, by a suitable choice of the units of time and space, the velocities and slownesses, here

spoken of, may be represented by lines as short as may be thought convenient.
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that of the reflected ray outside ; and let / be the vector of wave-slowness, or
the index-vector (comp. 422, (1.)), for the refracted light: these >«»• vectors

being all drawn from a given point of incidence o, and n\ like />', being
within the crystal.

(2.) Then, by al^ wave theories of light, translated into the present

notation, we have the equations,

I. . . p' = ^fip = p"^ = - 1

;

II. . . p" = - vpv'^, with II'. . . V = p -
p,

where i; is a normal to theface ; whence also,

m. ..p''=pS^-2ni'S-A-;
p -p p -p

and

JY...p"+p = 2i, if IT. . . * = v-'Yp'p = v-'Yvp
;

Y. . .p"-p = - 2vSpv-' = - 2v-'Spv ;

so that the three vectors, p, p, p'\ terminate on one right line, which is perpen-

dicular to the face of the crystal : and the bisector of the angle between the

first and third of them, or between the incident and reflected rays, is the

intersection i of the plane of incidence with the same plane face.

(3.) Let T, r, i" be the vectoi-s of vibration for the three rays p, p, p',

conceived to be drawn from their respective extremities ; then, by a/Zf theories

of tangential vibration, we have the equations,

VI. . . Spr = ; VII. . . S/z'r' = ; VIII. . . ^p'\" = ;

to which Mac CuUagh adds the supposition (a), that the vibration in the

crystal is pei'pendicular to the refracted ray : or, with the present symbols,

that

IX. . . SpV = ; whence X. . . / 1| Ypp,

the direction of the refracted vibration t being thus in general determined,

when those of the vectors p' and p are given

.

* These equations may be deduced, for example, from the principles of Huyghens, as stated in

his Traetatus de Lumine (Opera reliqua, Amst., 1728).

t The equations VI. VII. VIII. hold good, for instance, on Fresnel's principles ; but Fresnel's

tangential vibration in the crystal has a divQction perpendicular to that adopted by Mac CuUagh.

Hamilton's Elements of Quaternions, Vol. II. * ^
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(4.) To deduce from / the two other vibrations, t and /
', Mac Cullagh

assumes, {b), the Principle of Equivalent Vibrations, expressed here by the

formula,

XI. . . r - / + /' = 0,

in virtue of which the three vibrations are parallel to one common plane, and

the refracted vibration is the vector sum (or resultant) of the other two

;

(c), the Principle of the Vis Viva, by which the reflected and refracted lights are

together equal to the incident light, which is conceived to have caused them

;

and (d), the Principle of Constant Density of the Ether, whereby the masses of

ether, disturbed by the three lights, are simply proportional to their volumes :

the two last hypotheses* being here jointly expressed by the equation,

XII. . . Sv (pr* - pW^ + p'\"') = 0.

(5.) Eliminating p" and t' from XII. by V. and XI., t' goes off ; and

we find, with the help of I. and IF., the following linear equation in t,

xiii...2s;=i+|^ = |^', if xiir... /=/-!<>';
T OV/> Opv

a second such equation is obtained by eliminating p" and t' by III. and XI.

from VIII., and attending to I. VI. VII., namely,

XIV. . . 2^pv^fi'T = [p' - /^) Spr' = - S/i'/Sp/

;

and a third linear equation in r is given immediately by VI.

(6.) Solving then for r, by the rules of the present Calculus, this system

of the three linear and scalar equations VI. XIII. XIV., we find for the

incident vibration the following vector expression,^

XV. . . r = ^^g^' ; or XV'. . . 2r8pv = r'Spv' - v'Spr' ;

* In the concluding Note (page 74) to this Paper, Professor MacCixllagh refers to an elaborate

Memoir by Professor Neumann, published in 1837 (in the Berlin Transactions for 1835), as containing

precisely the satne system of hypothetical principles respecting Light. But there was evidently a

complete mutual independence, in the researches of those two eminent men. Some remarks on this

subject will be found in the Froceedings of the R. 1. A., vol. i., pages 232, 374, and vol. u., page 96.

t The expressions XV. XVI. enable us to determine, not only the directions Ut, Ut" of the

incident and rejlected vibrations, but also their amplitudes Tt, Tt", or the intensities Tt-, Tt"* of the

incident and reflected lights, for any given or assumed amplitude Tt' of the refracted vibration, or

intensity Tt' of the refracted light, after having determined the direction Ut' of the refracted

vibration by means of the formula X.
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and accordingly it may be verified by mere inspection, with the help of VII.

and IX., that this vector value of r satisfies the three scalar equations (5.).

And when the incident vibration has been thus deduced from the refracted

vibration t, the reflected vibration t' is at once given by the formula XI., or

by the expression,

XVI. ../'=/ -r;

7.) The relation XV'. gives at once the equation of complanarity^

XVII. . . SvVr' = 0, or the formula XVIII. . . / - p'
||1

r, /

;

if then a plane be anywhere so drawn, as to be parallel (4.) to the three

vibrations r, t, t\ it will be parallel also to the line n' - p, which connects tioo

corresponding points^ on the wave and index-surface in the crystal : but this is

one form of enunciation of Professor Mac Cullagh's Theorem of the Polar

Plancy which theorem is thus deduced with great simplicity by quaternions,

from the principles above supposed.

(8.) For example, if we suppose that op and oq, in fig. 89, represent the

refracted rap p', and the index vector p! corresponding, and if we draw through

the line pq a plane perpendicular to the plane of the figure, then the plane so

drawn will contain (on the principles here considered) the refracted vibration t,

and will hQ parallel to both the incident vibration t and the reelected vibration t";

whence the directions of the two latter vibrations may be in general deter-

mined, as being also perpendicular respectively to the incident and reflected

raysy p and p' : and then the relative intensities (TtS Tt^, Tt"^) of the three

lights may be deduced from the relative amplitudes (IV, T/, Tr") of the three

vibrations, which may themselves be found from the three complanar directions,

by a simple resolution of one line / into two others, of which it is the vector

sum, as if the vibrations were forces.

(9.) The equations II'. IV. V. and XIII'. enable us to express the four

vectors, p {= p+ v), i{= p - v~'Bvp), p"(= p - 2v~^Svp), and p'{= p + t - v),

in terms of the three vectors p, v, v , which are connected with each other by

the relation,

XIX. . . c (= ^ - v-^Sv/o), p" {=p- 2v-'Svp), and p'{=p + v-v'),

XIX. . . V* + 2S1//0 = Sv^{p + v), because XIX'. . . Sv/o' = S(v' - v)p,

as in XIII., or because /'' - ,0^ = S/v' by I. and XIII'. ; and with which r'

is connected (VII. and IX.), by tlie two equations,

XX. . .ii{p + v)T =0, and XXL . . Si^'/ = ;

2 z 2
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while T and t" are connected with the same three vectors, and with /, by the

relations VI. YIII. XI. XIII., which conduct, by elimination of r", to the

following system (comp. (5.)) of three linear and scalar equations in r,

XXII. . . S/or = ; 2Sv/oSvr = Sv'fp + v) Svr' ; 2Sv/i>S/'V = Sv'p ;

and therefore to the vector expression,

2rSv/o = YpvV, as in XV.

(10.) By these or other transformations, there is no diflficulty in deducing

this new equation, in which w may be any vector,

XXIII. . . VvV{(/o - w)t - {p'-io)T'+ [p"- w)r"}/ = ;

and conversely, when <u is thus treated as arbitrary^ the formula XXIII., with

the relations (9.) between the vectors p, p\ p\ v, v\ fi, but without any

restriction {except itself) on r, r', t", is sufficient to give the two vector

equations,

XI. . . T - / + /' = 0, and XXIV. . . pr - /oV + p"t" = xv' + y,

in which

XXV. ..x = Qv{pT - pV+ p'V) = Si;//, and XXVI. . . y = S(/t)r - pVv + pV)

;

and which conduct to the two scalar equations (among others),

XXVII. . . Sic (pr - pV + p"t") = 0, if XXVII'. . . Sicv = 0,

and
XXVIII. . . Si'|o(S|OT - Sp'V) = Svp'^h't ;

so that if we now suppose the equations VI. VIII. IX. to be given, the

equation VII. will follow, by XXVIII. ; while, as a case of XXVII., and

with the signification IV. or IV'. of i, we have the equation,

XXIX. . . St (pr — p'r + p"t") = 0.

(11.) And thus (or otherwise) it may be shown, that the three scalar

equations VI. VIII. IX., combined with the one vector formula XXIII.,

which (on account of the arbitrary w) is equivalent to iive scalar equations,

are sufficient to give the same direction of r', and the same dependencies of r

and t" thereon, as those expressed by the equations X. XV. XVI. ; and

therefore (among other consequences), to the formulfiB XII. and XVII.
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(12.) But the equations VI. VIII. IX. contain what may be called the

Principle of Rectangular Vibrations (or of vibrations rectangular to rays] ; and

the formula XXIII. is easily interpreted (416.), as expressing what may
be termed the Principle of the Resultant Couple : namely, the theorem, that

if the three vibrations (or displacements), r, t, t\ be regarded as three forces^

RT, rV, r''t'', acting at the ends of the three rays, p, p% p", or or, or', or"

(drawn in the directions (1.) from the point of incidence o), then this other

system of three forces, rt, - rV, r'V (conceived as applied to a solid body),

w equivalent to a single couple, of which the plane is parallel (or the axis

perpendicular) to the face of the crystal.

(13.) It follows then, by (10.) and (11.), that from these two principles,*

(I.) and (II.), we can infer all the following :

(III.) the Principle of Tangential Vibrations (or of vibrations tangential to

the waves)
;

(IV.) the Principle of Equivalent Vibrations (4.);

(V.) the Principle of the Vis Viva, as expressed (in conjunction with that

of the Constant Density of the Ether) by the equation XII.

;

(VI.) the Principle (or Theorem) of the Polar Plane,

And (VII.) what may be called the Principle of Equivalent Moments,'^

namely, theorem that the Moment of the Refracted Vibration (r't') is equal to

* The word " Principle " is here employed with the usual latitude, as representing either an

hypothesis assumed, or a theorem deduced, but made a ground of subsequent deduction. The principle

(I.) of rectangular vibrations coincides, for the case of an ordinary medium, with the principle (III.)

of tangential vibrations ; but, for an extraordinary medium, except for the case (not here considered)

of ordinary rays in an uniaxal crystal, these two principles are distinct, although both were assumed

by MacCullagh and Neumann. The present writer has already disclaimed (in the Note to page 323)

any responsibility for the physical hypotheses ; so that the results given above are offered merely as

instances of mathematical deduction and generalization attained through the Calculus of Quaternions.

t In a very clear and able Memoir, by Arthur Cayley, Esq. (now Professor Cayley), "On
Professor MacCullagh's Theorem of the Polar Plane," which was read before the Eoyal Irish

Academy on the 23rd of February, 1857, and has been printed in vol, vi. of the Froceedings of that

Academy (pages 481-491), this name "principle of equivalent moments," is given to a statement

(page 489), that "the moment of Kt' round the axis AE, is equal to the sum of the moments of Et

and S'f round the same axis " ; the line AE being (page 487) the intersection of the plane of

incidence with the plane of separation of the two media, that is, with the face of the crystal ; while

Rt, Rt', S't" are lines representing (page 488) the three vibrations (incident, refracted, and reflected),

at the ends of the three rays AH, A£f, AK', which are drawn from the point of incidence A, so as to

lie, all three (page 487), within the crystal. And in fact, if this statement be modified, either by

changing the sign of the moment of R't" (page 491), or by drawing the reflected ray AS', like the

line ok" of the present investigation in the air (or in vacuo), instead ofprolonging it backwards within

the biaxal crystal, it agrees with the case XXIX. of the more general formula XXVII., which is

itself included in what has been called above the Principle of the Resultant Couple. In venturing

thus to point out, as the subject obliged him to do, what seemed to him to be a slight inadvertence

in a Paper of such interest and value, the present writer hopes that he will not be supposed to
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the Sum of the Moments of the Incident and Reflected Vibrations (rt and r'V),

with respect to any line, ichich is on, or parallel to, the Face of the Crystal.

[It appears by the Table of Initial Pages (as printed in the First

Edition), that the Author had intended to complete the work by the

addition of Seven Articles.]

be deficient in the admii-ation (long since publicly expressed by him), which is due to the vast

attainments of a mathematician so eminent as Professor Cayley.

Since the preceding Series 423, including its Notes (so far), was copied and sent to the printers,

the writer's attention has been drawn to a later Paper by MacCullagh (read December 9th, 1839, and

published in vol. xxi., part i., of the Transactions of the Eoyal Irish Academy, pages 17-50), entitled

•' An Essay towards a Dynamical Theory of crystalline Rejlexion and Refraction " ; in which there is

given at page 43) a theorem essentially equivalent to the above- stated " Prraciple of the Resultant

Couple," but expressed so as to include the case where the vibrations are not uniradial, so that the

double refraction of the crystal is allowed to manifest itself. MacCullagh speaks, in his enunciation

of the theorem, of measuring each ray, in the direction of propagation: which agrees with, but of

course anticipates, the direction of the reflected ray, adopted in the preceding investigation. The

writer believes that subsequent experiments, by Jamin and others, are considered to diminish much

the physical value of the theory above discussed.
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NOTES.

I.—ON QUATERNION DETERMINANTS.

(1.) Quaternion determinants were first investigated by Cayley {Phil. Mag. xxvi.,

1845, pages 141-145). Because quaternion multiplication is not commutative, a

determinant whose constituents are quaternions is unmeaning until some additional

convention is adopted concerning its expansion. If it be agreed that the order of the

constituents in the expansion shall follow the order of the rows, all indefiniteness

is removed.

(2.) On this supposition

P 9

P' 9'

= pg' - qp', but not pg' -p'q; (i)

P 9
= pq - qp = 2Y .NpSfq, and

P P
= pq-pq = 0. (ii)

P 9 9 9

It is also obvious that if a; is any scalar

P 9 p xp + g
, but not =

P 9

(iii)

P 9 p' xp' A^9' xp + p' xq + g'

(3.) Thus the columns may be treated as in ordinary determinants with scalar

constituents ; but it is not lawfiil to treat the rows in this manner. The former of

these processes is consistent with the convention that the order of the constituents shall

follow the order of the rows ; the latter violates this convention.

The following example illustrates multiplication of a quaternion determinant by a

scalar determinant :

—

p q

P' q'

X y

^ y'

px + qy paf + qy*

p'x + 2''y p'x! + (^y'

px + qxf py + qy'

p'x 4 j-V p'y + ^y'

(iv)

if the X and y are scalars, and the p and q determinants. This method is applicable

for any order.

Hamilton's Elements op Quaternions, Vol. II. 3A
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(4.) Again, when we have equations of the type

PiX + qiy + ri% = 0, pipc + q^y + r^t = 0, ^93; + ^sy + r^ = 0, (v)

in which x, y, and 2 are scalars, every determinant obtained by interchanging the rows in

Pi ?i ^1

P2 q% ^2 (vi)

must vanish. There are six of these. Further every determinant deducible from

(vii)

by interchange of rows and by alteration of the suffixes must be zero. For by (3.)

the columns may be multiplied by ^, y, and % and added together, and thus one

column may be reduced to zero when equations (v) subsist.

These results may be extended to a system of linear equations of any order.

(5.) The determinants of the third order of the last section are not all independent.

If the determinant (vii) with identical rows vanishes, we have by (ii)

;?iV.VyiVri + jiV.VriV^i + riV.Vi?iV^i = 0. (viii)

Taking the scalar part, we see that the three vectors are coplanar, so that we may

write

Hence, it appears by operating on this by V.Y^, and "V.Vj'i, that (viii) may be

replaced by
xpx + y^i + zri = 0. (ix)

From this it immediately follows that the vanishing of the first determinant (vii) is

equivalent to

xpi + yqi + zr2 = 0.

If in this determinant the suffix 2 is replaced by 3, and Lf the new determinant

vanishes, equations (v) are reproduced and all the other deteiininants will vanish.

In a similar manner for determinants of the second order, if we suppose that the

four quaternions ^1, ^j, j?2, and q% are not all coplanar, three of the equations

Px ii

= 0,

Pi 9i

= *0,
Pi 92

= 0,

Pi q%

Pi ?i P% 92 i Pi 9i Pi q%

imply the fourth, and require

xvx + yqx xpi + yqi = 0.

= 0, (X)

(xi)
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(6.) The determinant of the fourth order, whose rows are identical, vanishes.

For if p, q, r, and s are any four quaternions, we can find scalars x, y, 2, and w so that

xp \ yq ¥ zr -h- W8 = V"^0 = a scalar.

One column can thus be reduced to the same scalar repeated iour times, and, when we
expand by the minors of the second order, every product of minors will involve a

vanishing minor. By means of this result many identities may be obtained.*

II.—MISCELLANEOUS PROPERTIES OF TWO LINEAR
VECTOR FUNCTIONS.

(1.) In general a pair of linear and vector functions may bo simultaneously

expressed in the form

<^p = A,Sap + /x^Pp + vSyp ; 6p = a\Sap + bfiSfip + cuSyp. (i)

Assiuning the possibility of the reduction, it is clear that

eYfiy = a<f>YPy, ^Vya = ^Vya, OYa^ = C^Yap, (ii)

and consequently V/3y, Vya, and Va^ are the axes, and a, A, and c the roots of the

function <fr^d. The vectors a, yS, and y having being found, \, p., and v are determined

by three equations of the type

\ = <^V)8y(Sa;8y)-'. (iii)

Otherwise a, )3, and y may be determined directly as the axes of the conjugate of

^"'^, that is of ffffi''^. Combining (iii) and (ii), we see that X, p., and v are the axes,

and a, b, and c the roots of the new function OffiT^.

(2.) Thus it is proved that (fr^O and 6<f>'^
have the same latent roots, and

consequently the same symbolic cubic. More generally, all functions expressed as

products of others and derivable from one another by cyclical transposition of the

factors have the same cubic ; for example, 6 and <fiO<j>~^.

The same thing is evident when the cubic

{<lidf - M"{<f>ey + M'<f>0 - if = (iv)

is multiplied by 6 and into &'\ for it becomes

(^<^>^ - M"{e<f>y + M'6^ -M= 0. (v)

* Applications and examples will be given in the Note on Invariants, and in the Note on Screws

(Note v., Section 14, p. 382, and Note VIII., Section 9, page 393).

3 A 2
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(3.) When both functions are self-conjugate V)8y, Vya, and Va/8 are mutually-

conjugate with respect to the quadrics, Sp^p = const., 8p<f>p
= const., at least if

a, h, and c are unequal ; for by (ii)

a8Yya<f>yfty = ^YyaOYfiy = SV/8y0Vya = ASV^y<^Yya,

so a = b, or 8Yya<f>Ypy = 0. (vi)

From (vi) and similar relations coupled with (iii), we find in this case where the roots

are unequal

Alia, f.\\/3, v\\y. (rii)

(4.) Hence we can see how to reduce an arbitrary fimction
<f>

to the product ^i$

of two self-conjugate functions. For the axes of
<f>
must be mutually conjugate to

$ and to <^i~^ and therefore if x, y, and % are arbitrary scalars

«I>p = xY(3y^ftyp + yVyaSyap + zYafiSaftp,

^ip = {ax-^aSap + bt/-^f3S/3p + cz'^ySyp) (Sa/?y)-', (viii)

are the necessary forms, a, ft, and y being the axes, and a, h, and c the roots of ^.

Even if <^ has a pair of imaginary roots {b, c), and axes {P, y), the functions $ and ^i

are real, provided y and % are conjugate imaginaries.*

(5.) If two functions ^ and 6 can be reduced simultaneously to the forms

$i<& and $2^, the axes of ^ and $ must be edges of a quadric cone. Let Sp0p = be

the cone through the axes a, ft, and y of <^ and two of the axes a' and )8' of 6. Then

because the axes of each function are mutually conjugate to $,

$a
II
V^y, &c., $a'

|| V^'yS &c.

;

and Sa0a = is equivalent to Sa®$~'V^y = 0. Hence the first invaiiant of the

function 0$"^ vanishes, or

Sa0«>-iVy8y + S;8®4>-'Vya + Sy©«I>-'Va;8 = 0. (ix)

Replacing a, y8, y in this invariant by a', fi', y', the first and second terms vanish and

the third must be zero likewise. Thus y is also an edge of the cone.

(6.) In the case of simple equality among the roots of 4^~^6, two of its axes coincide,

and the reduction (i) becomes impossible. When equality among the roots carries

with it indeterminateness of the axes of <^~^B, the reduction likewise becomes indeter-

minate instead of being unique as in the general case.

(7.) Two functions are commutative in order of operation if, and only if, their

axes coincide. The first part of the proposition is evident, and, to prove the second,

Tait shows that if the roots of <p are real and positive, so also are the roota of and *\. Froe.

R. S. E., May 18 and June 1, 1896, or Scientific Fapen, vol. ii., p. 407.
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when the reduction (i) is possible, it is sufficient to observe that if (hO = 6d> or

0<j>~^ =
<f>~^9,

the vectors X, /m, and v must be parallel, respectively, to V^y, Vya and
Va^. These vectors are, in this case, axes of both the functions ^ and 6. More
generally, and without postulating the possibility of the reduction, if

</»^ = ffi, then <f>e$ = e^^ = ffOl (x)

Thus, $ and 0$ are both axes of 0, and correspond to the same root, and this requires

6i II i (so that $ is also an axis of $) or else, <^ must have indeterminate axes. "When

the second alternative is admitted, if rj is any second vector in the plane of the inde-

terminate axes of <^, Orj lies also in this plane, and the four vectors ^, rj, 6$, Orj are

coplanar. It is always possible to find two other vectors i' and r/' in this plane, so

that 6i' II i' and drj'
\\

r[ and these vectors are axes of ^ as well as of 6.

III.—THE STRAIN FUNCTION.

(1.) The application of the linear vector function to the theory of strain has been

admirably developed by Professor Tait in the Tenth Chapter of Kelland and Tait's

Introduction to Quaternions. From this source a large portion of this Note has been

adapted.

When a linear vector function operates on every vector of a system, vectors

originally equal remain equal after the operation ; consequently, all equal similar

and similarly placed figures transform into figures equal similar and similarly placed.

There are two classes of this kind of transformation when the function </> is real. In

the first rotation from <f>a to <{i/3 to (j>y has the same sense as that from a to ^ to y,

whatever vectors a, /8, and y may be. In the second class the sense of rotation is

reversed. The first class of transformation is identical with a homogeneous strain

;

the second is equivalent to a homogeneous strain accompanied by a reflection as in a

plane mirror, or to a homogeneous strain accompanied by reversal of every vector.

In fact, reversal of every vector is equivalent to rotation through two right angles

about some axis through the origin and reflection with respect to the plane through

the origin at right angles to the axis.

(2.) Hamilton's third invariant of the fimction ^

m = S<^a<^;8^y (Sa^y)-i (i)

is the ratio which the volume of the parallelepiped, transformed from that whose

edges are a, ^, y, bears to the volume of the original. It is quite independent of any

particular set of vectors a, (3, y, and is, therefore, the ratio in which any volume is

altered.

(3.) The sign of m affords the criterion concerning the class of the transforma-

tion (1.). If m is positive, the sense of rotation from <f>a to ff>B to ^y remains the

same as that from a to /8 to y. The contrary is the case when m is negative.
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(4.) In the case of a pure strain, three mutually rectangular lines preserve their

directions. If unit vectors along these are i, j\ and k, and if the unit vectors are

strained into e^i, e^j^ and eji^ where ^i, e-i, and e% are three positive scalars, any other

vector is strained into

<J>p = - e^i^ip - e-ij^jp - e^Skp. (ii)

This is a particular case of the general theorem, that a linear vector function is

determinate when the results of operating by it, on three known vectors, are given.

In fact, given a, ^, y, ^a,
(f>fi, and ^y, we have, in general,

<f>p
= (<^aS/8yp + <f>/3Syap + <3!)ySa)8p) (Sa^Sy)"*.

The function $, defined by (ii), is self-conjugate, and its latent roots ei, e^, and ^'3 are

all positive. A function of this nature may be said to be ellipsoidal.

The sphere Tp = r is changed by the transformation w =
<t>p into the quadric

—

the strain ellipsoid—determined by the equation

T<fr'w = r, or Sir<^'-i</)-V = - r^ or S^{<f><l>')-'w = - r\ (iii)

since ^'"^^"^ = (^^')"^ It is, in general, an ellipsoid, for w cannot be infinite,

while p is finite. When the strain is pure, the equation of the strain ellipsoid is

more simply

T4>"V = r, or S'5r<E>'V = - r*,

or again, in terms of i,j\ and k, e^, Cj, and ^s>

{^ipy
^

(syp)'
^

{^kpY
_ ^^

e^ e^ e^

Thus, «', y, and k are unit vectors along its axes, and (?i, (?2, e^ are the ratios of the

semi-axes to the radius of the sphere. In general, the axes of the ellipsoid are

parallel to the axes of the self-conjugate function ^^'.

(5.) "We shall now prove that the transformation produced by any linear fimction

«/> is equivalent to a rotation followed by a pure strain, and accompanied in the case

where m is negative by a reversal of every vector.

Assuming generally for aU vectors p

«^p = ± <ifqp<f\ (iv)

whore * is an ellipsoidal function, the third invariant of (i)

M = ± ^^qaq-^ ^qPq-^ $yyj"' (Sa;8y)-'

if tf,, *a, and e^ are the positive roots of 4>. Hence, if m is positive, the plus sign is to

be taken ; and, if m is negative, the minus sign.
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(6.) Again, taking the conjugate of ^

i>'p = ± r'^pq, (vi)

and therefore

tfiffi'p = $2p or <f><li'
= ^\ (vii)

This equation requires
<f><f>

to be ellipsoidal, and it must be so if
<f>,

and therefore

^', is real for

T{<t>'py = - Sp<^<A'p (yiii)

cannot be finite for any infinite value of p.

The latent roots of the self-conjugate function <^<^' being all positive may be

denoted by ei^, e^^ and e^^ and if **, y, Ic are the axes

<^0'/3 = ^p = - eiHSip - e^j^jp - e^k'^kp. (ix)

(7.) We are now at liberty to define $ by the equation

{<fxf>')^p = <E>p = - eii8ip - ezjSj'p - e^kSkp, (x)

the roots ^i, «2, and e^ being all positive. In general a function has eight square roots,

and the eight square roots of ^<^' correspond to the various combinations of signs

attributable to the radicals in

- ye^i^ip - v/^ySyp - ye^^kSkp. (xi)

"We may speak of the function <I» as the principal square root as in this case positive

signs are chosen throughout.

(8.) In order to justify the assumption made in equation (iv), it is necessary to

prove that Vq is determinate. Writing equation (iv) in the form

where x is a linear vector function to be determined, the conjugate of x = ^"'<^ is

likewise its inverse for

X'
= <^'*~S and *-><^.0'$-' = $-i^»$-i = 1.

So X satisfies the equation

Xx' = I. (xiii)

Now this equation shows that whatever vector p may be its tensor is equal to that

of xp, and therefore aU figures remain equal after the transformation represented by x-

The transformation must therefore be equivalent to a rotation, or to a rotation accom-

panied by a reflection or the reversal of every vector. The assumption made in (iv)

is thus completely veiified.

Supposing m positive, and writing (vi) in the form

. gfl>'p - ^pq = 0,

the scalar and vector parts furnish the equations

8Yq
{<f>'

- *)p = 0, {<!>' - ^)p8q + V.Vy(i^' + *)p = 0,
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and the second of these virtually includes the first. In terms of two arhitrary vectors

p and p', we find, without difficulty,

Yq = xY{<l>' - $)p (</)' $)p' ; Sq = - xS{<t>' + ^)p {(f>'
- ^)p'. (xiv)

Also Yq satisfies the equation

(<^ - ^)Yq = 0,

because otherwise S (0 - ^)Yqp = could not be satisfied for every value of p.

The symbolic cubic of x must be of the form

(X? l)(x^ + «.x+l) = 0, (XV)

for the symbolic cubic of a function is also satisfied by its conjugate, and in this case

the conjugate is the inverse. The upper sign corresponds to the positive value of m.

(9.) Similarly if the rotation follows the pure strain, the assumption

<^p = i p^pp-\ or <l>p = ± ^j)-'/o^ (xvi)

may be justified by an analogous train of reasoning. Here ^'«^p = ^^p and * is the

ellipsoidal principal square root of the ellipsoidal function
^'<f>. The latent roots of

* and * are identical (compare Note II., (2.), p. 363).

(10.) In every homogeneous strain one direction at least remains unchanged.

When m is positive, one latent root of the function </> must be positive. This is

obvious when the roots are all real ; and when two of the roots are imaginary,

fl + J - 1 5 and a -J - lb, their product a^ + b^ is always positive, and therefore the

remaining and real root is positive. The axis of <^, cori'esponding to the real positive

root, retains its direction. It is evident by superposing a rotation upon a pure strain

that any selected direction may be preserved unaltered.

If two directions XJa and U^ remain unchanged, they are connected by the

relation

SU(^a<^/3 = SJJaft, or SU*a^)8 = SUa)8, (xvii)

where <f>p
= p'^pp'^ (^"^)- Either of these equations expresses that the cosine of the

angle of inclination of the strained lines is equal to that of the unstrained lines.

Rationalizing the second of equations (xvii), it appeal's if a is given that the locus of ^
is one sheet of the quartic cone

a^^(Su*2y8)» = (Say3)»Sa*'aS^»y3. (xviii)

If in this we substitute fi
= a + ta' where Saa' = 0, we find that a is a double edge

of the cone, and discarding the factor t^ we obtain a quadratic in ^ to determine the

edges of the cone in the plane of a and a'. One solution only is appropriate as (xviii)

includes both the conditions

SU*a*^ = ± SUa/8.

It is easy to see that the roots of the quadratic are always real since * is ellipsoidal.

If two directions are unaltered, a thii*d is likewise unaltered.
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(11.) The roots of the function
(f>, y,, g^, and ^3 may have any values (within

certain limits) subject to the single condition

ffiSfzffz = «i^2^3, (xix)

which expresses that no change of volume is produced by the rotation.

If we assume ffi, g^, and g^ subject to (xix), and try to satisfy the equations

<^a = p^ap-^ = gia, <f>P
= p^^p-^ = g^/S, (fyy

= p<ifyp-^ = g^y, (xx)

we see that that the axes a, jS, and y must be edges, respectively, of the cones

T^JJp = Tg„ T*Up = Tg„ T*Up = Tg„ (xxi)

where T^i is the positive value of the scalar gi irrespective of its sign. These cones

are the loci of vectors whose lengths are altered in a given ratio. Selecting, at

pleasure, any vector a on the first cone, /S is determined on the second cone by the aid

of the relation

S'^a^Sffi = ^i^jSa/S (xxii)

impHed in (xx) and equivalent to (xvii). Vp, and therefore the rotation, may be

found by combining the first and second of equations (xx). Hence, <^ is determined,

and the third vector y is the result of operating by (^ - gi) (^ - gz) on an arbitrary

vector.

Again, by (xxi), the magnitudes of gi, gz, and ^3 must lie between the greatest and

least values of T^Up, that is, between the greatest and least of the scalars e^, e^, e^.

In fact the magnitudes of the roots are inversely proportional to the radii of the

ellipsoid

T^p = 1 or Sp*V = - 1, (xxiii)

which are parallel to the corresponding axes. This ellipsoid is converted by the strain

into a sphere of unit radius.

(12.) It is possible to superpose a rotation upon a pure strain, so that the function

^ may have indeterminate axes. These axes evidently must lie in one or other of the

cyclic planes of the ellipsoid (xxiii). Expressing *^ in Hamilton's cyclic form

*2p = e/p + AS/ip + /tSAp (xxiv)

has one root equal to e^, and the other roots are

^i«
= e^^ + SV + TX/i, e^ = e^ + SX/x - TX/*. (xxv)

Assuming
<^p = e^p + vSXp

;

(xxvi)

this function has indeterminate axes in the plane SXp = 0, and it appears without

di£S,culty that «/)'0 = ^^ if ^ satisfies the equation

, Hamilton's Elements of Quaternions, Vol. II, ^
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Also the third invariant of being equal to that of *,

e^ (^2 + SvX) = e-^e^fiz. (xxviii)

When we operate on (xxvii) by SX and use (xxv) and (xxviii), we find,

v^X* = («i - e^^ and e^v ^ p.-^ (^, - ^^'^X"'. (xxix)

Thus V is completely determined, and the assumption made as to the form of ^ (xxvi)

is justified. Also we see, by the foim of the function ^, that the most general strain

may be effected in three stages, by displacing in one direction (Uv) a system of planes

perpendicular to another direction (UX) by amounts proportional to the distances of

the planes from the origin ; by uniformly altering the linear dimensions (in the ratio

^2 to unity) ; and by rotating the body as a whole.

(13.) When unity is included between the limits ^i > (?2 > (?3, that is, when elonga-

tion and contraction both occur, a rotation may be applied to a pure sti'ain, so that

one root of ^ is unity. In this case one root of ^ - 1 is zero, or this function is a

binomial reducing every vector to a fixed plane. But ^p - p or (^ - l)/3 is the

displacement due to the strain, and accordingly under the above conditions a rotation

may be superposed upon the strain so as to render the resultant displacement of every

point parallel to a plane.

Again, by (xxvi), if e^ is unity, a suitable rotation wiU render the displacement of

every point parallel to a line. In this case the pure part of the strain is plane, for

when one root of * is unity, the strain is completely specified by that in the plane at

right angles to the corresponding axis.

(14.) In the case of a plane strain when there is no dilatation the intennediate

root ^2 is evidently unity. The condition for no dilatation is now e^e^ = 1, and this,

coupled with ^2 = 1, shows that (xxvi) and (xxviii) are equivalent to

<f>p
= p + vSXp, Si/X = 0. (xxx)

The strain represented by (xxx) is a simple shear, the system of planes normal to X
being displaced parallel to themselves and proportionately to their distances from the

ongin. In general a plane strain without dilatation is equivalent to a shear and a

rotation.

It also appears from (xxviii) that

e^ = tfi^a = 1 (xxxi)

are the conditions that a strain should be equivalent to a rotation and a shear.

(15.) We shall investigate the reduction of the general strain to a dilatation, a

pair of shears and a rotation. If this is possible the general linear vector function

must be expressible in the form

4>P = m^p{\+ fa'Sft') (1 + taSfi)p .p-\ (xxxii)

where Sa^ = Sa'^' = 0. For convenience we take a, /3, o', /&' to be unit vectors.
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(1 - taSjS) (1 + ^aS^) = 1
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(xxxiii)

(xxxiv)

<^(1 - taSj3)p = m^p{l + t'a'&/S')pp-\

and taking conjugates

(1 - tl3Sa)cl>'p = w*(l + f^'Sa')p-^pp.

Hence eliminating p, we find

m-^{l - t^Sa) <^'«^ (1 - taSjS) = (1 + fjS'Sa') (1 + fa'S/S'). (xxxv)

We shall now calculate the roots of the function on the left. If we can arrange so

that one root is imity, the pure part of the strain m'^(f>{l - taSft) will bo plane, and

if it is plane it must be a shear for neither m'^<fi nor (1 - taS^) produces any

dilatation (14.). Obviously the function on the right has one root unity, the corre-

sponding axis being y' = a'yS'.

For brevity, replacing m'^<f>'<fi by 0, the roots s of the function on the right are

given by

S [(1 - tfi&a) 0a - «a] [(1 - tfiQa) © (^ + ^a) - 5^8] [(1 - tfiSa) ©y - sy] = 0,

if y = a^. This equation is equivalent to

S [0a - »(o - tl3)'] [©(/3 + ta) - »)8] (0y - sy) = 0,

deduced from it by operating on every vector by 1 + ^^So.

Observing that the third invariant of © is unity, so that

V©)8©y = ©-'a, V0y©a = ©-^/S, V©a©)8 = ©"'y,

the equation reduces to

Sa^y - «S [(a - tft)
®r' (a - tfi) + /3©-»)8 + y©-^]

+ s'S [a0a + {13 + ta) ()8 + ^a) + y©y] - S^SaySy = 0.

Finally, the equation of the cubic takes the form

1 - «N' + «2N" - 5' = 0,

where
N' - JT + So0r>a - S (a - tfi) &-\a - ffi),

and
N" = M" + S)8©i8 -8{l3 + ta)®{l3 + ta),

the first and second invariants of © being M" and M'.

The condition that one root should be unity is

jf'
_ j^" (xxxviii)

and observing that N' and W are quadratic in the scalar t which specifies the amount

of the shear, it appears that we may arbitrarily select the vectors a and ^ (that is the

plane and direction of the shear), and that its amount is then given by a root of the

3 B 2

(ixxvi)

(xxxvii)



372 APPENDIX—NOTES. [III.

quadratic (xxxviii) in t. The determination of the complementary shear 1 + t'a'SP',

and of the rotation presents no diflScuIty.

(16.) It is sometimes convenient, especially in dealing with small strains, to

replace ^ by 1 + ^. In this notation 6p is the displacement of the extremity of p, the

origin of vectors being supposed to be kept fixed.* Resolving the displacement along

and at right angles to p, we have

6p = $pp-^ , p = (e + ri)p, (xxxix)

if e = Sepp-\ and rj = YOpp-K (xl)

The scalar e is called the elongatmi. It is equal to the inverse square of the corre-

sponding radius of the elongation quadric

^p6p = - 1. (xli)

When the strain is pure so that 6 is self-conjugate, the vectors rj and p ai-c parallel to

the principal axes of a central section of this quadric. Thus T]p the component of the

displacement at right angles to p is normal to that plane section of (xli) of which p is

a principal axis. Also the magnitude of -q is equal to the area of the triangle formed

by lines along the corresponding radius and central perpendicular on the tangent

plane of the quadric equal in length to the reciprocals of the radius and the

perpendicular.

(17.) If the cubic of 6 is

^3 _ ^//^2 + ^^>0 -n = 0, (xlii)

the ratio of alteration of volume (i) is

m = 8{l + 0)a{l + e)l3{l+0)y {SajSyy = 1 + n" + n' + w. (xliii)

If the strain is so small that terms involving the square and cube of the small

function 6 may be neglected, m is approximately equal to 1 + n" ; n" is the dilatation.

The ratio of lines is T (1 + ^)TJa or approximately 1 + Sa-'^a (compare xl). The

ratio of areas is TV(1 + e)a (1 + 6)(i T{Ya/3y\ or Tm(l + O'^VX if UX = UVa^.

Now, for a small function 0,

{l + e){l-6) =1 or 1-6 = {1+ e)-\ (xliv)

so the ratio of areas is approximately

T ( 1 4 w" - 6') UA. or 1 + n" - S\-'eX.

(18.) The result of supei-posing the strain 1 + ^2 upon 1 + ^i is 1 + ^i + ^2 + O2O1, and

this is generally distinct from l + 6i + 61 + OA due to the strain 1 + ^1 following 1 + 6z.

However, when both strains are small, so that 6^62 and O^^i are negligible, the order

* Compare the Note oa Hamilton's Operator, Section (27.), where the case of non-homogeneous
small strain is considered, page 446.
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in which the strains are effected is indifferent, and the displacement, due to the

resultant strain, is the resultant of the displacement due to each strain separately.

In particular, a small rotation changes p into (1 + Ye) p. If this is followed by a

small pure strain 1 + 6o, after the double operation p becomes

p + 6op + Yep or p + 6p (xlv)

if 6 is the spin-vector of 9. Hence the origin of the name spin-vector. Again, for

small strains

{1 + e){i ¥ ff) = {I + e')ii + 0) = 1 + e + 0' = 1 + 260 = {1 + Oof,

and the functions * and * or (</)<^')* and
{<f>'<f>)^

are identical with i((fi + <f>').
Also,

the equation of the strain quadric (iii) becomes

T{l-$)p = r or p» - 2Sp^op + r'' = 0. (xlvi)

(19.) In (12) we have given an example of the application of one of Hamilton's

forms for the linear vector function. They all admit of simple interpretation. Take,

for instance, the focal form

Op = aaVap 4- h^S^p, (xlvii)

and we see that the most general pure strain may be compounded of a contraction

{oaYap) round one line (Ua), and of an elongation {bfiS^p) parallel to another (U)8).

(See Minchin, Treatise on Statics, Art. 379.)

The form

dp =
ffp + XS/if) + fiSXp (xlviii)

shows that the pure strain may be resolved into shifting planes normal to /* in a

direction parallel to X, and planes normal to X in a direction parallel to /x,, and by

superposing a general dilatation 3^.

(20.) Reference has been made in the Note to page 225 to the strain which

converts a quadric into a sphere. More generally if the strain ^ converts any quadric

Sp*/o = - 1 into Sp^p = - 1>

the function
<f>
must satisfy the equation

<^'*<^ = *. (xlix)

In order to simplify this, assume

^ = xlf\^\ or <!>' - $*x'*"*. 0-)

'and it appears that x must be a solution of the equation

x'x = 1.

This has been considered and solved in (8.) ; x must represent a rotation or a rotation

combined with a reflection. We are instructed therefore by the form of the function ^

(xlix) to strain the first quadric into a sphere ; to rotate the sphere with or without

reflection ; and to strain the sphere into the second quadric.
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IY._ON THE SPECIFICATION OF LINEAE VECTOE FUNCTIONS.

(1.) A linear function is determinate given the vectors derived by it from three

known vectors*. Given the directions! /8i, ^82, /Sa, into which three known directions

a, , 02, and as are changed, and the ratios a^, Ot, a^, in which the lengths of o^, 0^, and a<

are altered, we have

<f>p
= (aJ/SiSttjOap + y/Sz^OsCLip + zfiz^aiaip) (Saiaijas)"^ (i)

where the scalars x, y, 2 satisfy

TSaia2a3 = Taf^^xftiSotasai = Taf^'^x/SiSoiaias = Tflfs'^S^/JiSajaaOe. (ii)

Rationalizing and solving these equations for x, y, and z, eight systems of values are

obtained, and, corresponding to these, eight functions (j> may be found. Four of these

functions are simply the negatives of the remaining four, and, in general, the eight

functions correspond to the eight arrangements of sign attributable to the scalars a.

(2.) Given four directions derived from four others (compare Note V., Section (6.))

Sa2a3axSa3a3a4 basajajSasaiai Sax(Z2^Saxa2(X4

where A is an arbitrary scalar. Given the ratio in which a fifth line is altered, A is

determined.

(3.) This method of representing a linear vector function leads to some remarkable

expressions. For instance, if aj, 03, 03 and ai, a^, a^ are unit vectors along two sets of

mutually conjugate radii of a quadric Sp^p = 1, we have

A ^ Tr SdzOtpSaia^a^ SasaipSajasa^ SaiazpSosasOe
Ai^p = ¥0203 ^

^^
+ Vajai Q—^^-^ + VoiOj ^ ^ • (iv)

oojCisaiiSfZaasai 0030x020030104 00102030010204

Hence, if for brevity SoiOgOg is denoted by (123), and Soi^oi by ar-, we obtain

^ _ 2(1^6) _ 2(256)_ 2(356)_ 2(456)
(123)-'^^ ("234)"'^ ("314)"''^ (124)-''* (123)'

^^^

together with other relations, which can easily be supplied, connecting the signs of the

solid angles (o,, 02, oj) with the radii Oi, Oj, ... 0$ of the quadric. These relations

are due to Sir Robert Ball, and are of importance in the theory of co-reciprocal screws.

Again, by (iv), we see that the shape and orientation of a quadric are determined,

given the directions of three mutually conjugate diameters, and the direction of a

fourth line (04) conjugate to the plane normal to a given direction VojOe.

Compare Note III., Section (4.), p. 366.

t We suppose, for couvenience, that the vebtors are all of unit length.
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(4.) If we seek to determine as far as possible a linear vector function by express-

ing that the lengths of given vectors are to be altered in given ratios, we shall find

that we may assign six directions and six ratios, and that the function remains

indeterminate to the extent of an arbitrary rotation which may be superposed

upon it.* For, given the centre of a quadric, six conditions determine it, and if

tf>ai = Oi^Si, &c., the ratios (^i) are inversely proportional to the radii of the quadric

T<f>p = 1 parallel to the corresponding directions (ai). In this way we can find the

self-conjugate function <^'^. Taking its square root, and supei*posing an arbitrary

rotation, we have the general function satisfying the conditions. Or, given six ratios

and one direction which a seventh vector must assume, the function is determinate,

(5.) In terms of Hamilton's Aconie Function] we can write down the relation

between the seven ratios in which the lengths of seven vectors are altered by a strain.

The aconie function of six vectors is

[7] = SV.VaiaaVaiasV.VajasVaaOeV.VasaiVasai. (vi)

If it vanishes, the six vectors lie on a cone, and the form of the expression contains a

direct proof of Pascal's theorem, for it shows that the lines of intersection of the

planes Oi, a^ ; 04, a^, and oj, 03 ; 05, a« ; and O}, a^ ; ag, a^ are coplanar.

To fix the signs appropriate to the seven aconie functions formed by omitting one

of seven vectors, mark seven points 1, 2, 3, 4, 5, 6, 7 on a circle, and go round it in

this order, starting always from the point 1, and omitting one point.J Then the

relation between the seven unit vectors and the seven ratios is

[1 ] fli^ - [2] a^^ + [3] a^ - [4] a^ + [5] a,^ - [6J a^ + [7] a^" = 0. (vii)

In fact, allowing cv, and «7 to vary, this is the equation of a quadric concentric with

the origin whose radii are inversely proportional to Oq, and which passes through the

extremities of the six vectors ai«rS &c. To prove this, it is only necessary to show

that the sign of [7] is changed whenever any two vectors in it are transposed ;§

for, when a, = og, the function [6] becomes [7], and all the others vanish. When

07 = a^ all vanish except [5], which becomes - [7], with one interchange of vectors.

If the six vectors happen to lie on a quadric cone [7] is zero, and the ratio a^ is not

determined. The equation (vii) (omitting the last term) must then be satisfied for

every possible direction 07, and the six ratios cannot be arbitrarily chosen.

* Compare Note III., Section (9.), p. 368.

t Lectures on Quaternions, Art. 442.

X Thus, for example, we may also write

[3]= {124567}.

§ The most direct way of doing this seems to be, to express 04, 05, and 05 in terms of ai, 02,

and 03.
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The equation is then equivalent to that of the sphero-conic determined by the five

vectors aiai-^^ . . . a^af^, and expresses that a^ai^ terminates on this curve. More

fully draw any quadric Sp^p = 1 through the extremities of the five vectors and

having its centre at the origin. Let Spxp = he the cone containing the five vectors.

The sixth must terminate on the curve common to the system

Sp(^ + <X)P=1- (viii)

(6.) Hence we can see how to determine a linear vectoi; function given five ratios

and two directions. For let (viii) (compare (4.)) be the quadric whose corresponding

radii (a„ ... as) are inversely proportional to the ratios (oj . . . a^), and let P^

and p^ be the directions into which a^ and a^ are to be changed by the function ^.

Then, if we determine t from the relation

SU(^ + tx)<HV{d + tx)<n = SySeA, (ix)

we can superpose a rotation upon 9 + tx, so as to render the vectors derived from a«

and 07 parallel to p^ and P^.
'

' '

v.—INVARIANTS OF LINEAR VECTOR FUNCTIONS.

Before touching on the general theory of quaternion invariants of linear vector

functions, it seems to be desirable to point out a few consequences of relations

connecting the roots of a single function
<f>.

The signification of the geometrical

interpretations will, in due course, be greatly extended, and we shall come to regard

the invariants of the earlier sections of this note as invariants of two linear functions

«^ and unity (compare Section 9).

(1.) Writing the symboKc cubic of «^ in the form

<^='-mV + «»'<A-^ = 0, or i<f>-9i){<l>-ff2){<t>-ffz) = 0, (i)

we know that every triad of vectors a, P, and y satisfies the equation

SI3y<t>a + ^ya<f>l3 + Sa/3<^y = 0, (ii)

when • m" = 0, or ffi + ffi + ffa
= 0. (iii)

Thus assuming at pleasure two vectors a and /?, and determining a third vector y by

the equations S/?y^a = Sya<^)8 = 0, the third equation Sa;80y = must be true when
m" = 0. In other words, in this case it is possible to determine an infinite number of

triads of vectors a, /?, and y, so that each vector of the derived triad «^a,
<f>/3, <fiy is

coplanar with a pair of vectors of the original. Or we may say briefly the edges of

the derived lie on the corresponding faces of the original triad. Conversely, if this

arrangement is possible in any one case, it is possible in an infinite number of cases.

(2.) Similarly when m' = 0, triads may be determined so that the faces of the

derived triads contain the coiTcsponding edges of the original, and the converse is

also true.
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(3.) Further, if for any arrangement of signs

± J^i ± J^2 ± Jffs = 0, (iv)

the sum of the roots of the corresponding square root of <^ is zero (compare the Note

on Strain, Section 7, page 367).

We can then determine triads a, /3, y, whose faces contain the edges of the triads

J<f>a, J<t>fi, J<f>y, and we shall show that the faces of these derived triads contain the

edges of the triads (Jm, <^y8, ^y. For if SySyJ<^a = 0, we obtain, on multiplying by

the third invariant of J(f>, this other equation S J(f)fi J^fty </>a = ; this proves the

theorem. In other words when (iv) is satisfied, it is possible to determine in an

indefinite number of ways a triad a, )8, y so related to the derived triad ^a, <^/3, ^y
that, in every case, an intermediate triad can be inscribed to the first and circumscribed

to the second. On rationalizing (iv), the condition takes the form

(^i +ff2 + ffzY - 4 (Ms + Ml + 9iffi) = 0, or w"» = 4m'. (v)

(4.) The converse of this property is true, and the theorem admits of considerable

extension. If

"Jsii + 'Uifi + "Js's = 0, (vi)

n beiag an integer, triads a, )3, y and <^a, <f>p, <f>y
can be found connected by a series

of inscribed and circumscribed triads derived from the original by successive applica-

tions of the operator J0. Still more generally an interpretation can be assigned for

the case in which n is a fraction.

(5.) Otherwise we may deduce invariants by proposing suitable geometrical

conditions instead of interpreting geometrically the meaning of the vanishing of

assumed invariants. For instance, we may inquire into the conditions that a linear

vector ti'ansformation may leave a given quadric cone unaltered. The vectors ^p

derived from edges of the cone Sp$/3 = are edges of the new cone S^~^p$^"V = 0,

or Sp^'"'$<^"'p = 0. If these cones are identical, <^ must satisfy the equation

<fi''^^<fi-^ = w"^$, or
<f>'^<t>

= mt$, (vii)

the factor mi being introduced so as to render equal the third invariants of the

functions in each number of the equations. A similar equation has occurred in the

Note on Strain (Note III., Section (20.)), and, as in the place cited, the general

relation between <^ and ^ is of the form

<f>
= ± /w^$"^x^^, where xx' "= ^

'

("^ii)

and the function x produces a rotation or a rotation and a reflection. Now (Note II.,

Section 2) the symbolic cubics of ?w"^ and of x must be identical, but the cubic of x

is reciprocal, and so therefore must be that of m"^, or we must have the invariant

relation

mm"^ - m'^ = 0. (ix)

Hamilton's Elements of Quaternions, Vol. II. 3 C
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As a rotation leaves unchanged every right cone having its axis coincident with

that of the rotation, we are led to infer and can verify at once that the whole system

of cones

Sp$p + w(Skp)' = 0, where <f>'K = m^K, (x)

transforms into itself when p is changed to (ftp, provided the invariant (ix) vanishes,

and provided ^ is a solution of equation (viii).

(6.) It will be noticed that the foregoing interpretations depend simply on the

directions of the vectors involved. If a function changes the directions of a, /8, y
into the directions of A., p., v, it must be of the type

<f>p
= wXSySyp + vp.8yap + wv^a^p, (xi)

the scalars u, v, and w being arbitrary. If, in addition, the direction of 8 is changed

into that of ur,

^p = XS^v^ g^ + p.^vX^ ^-^ + vSX^^—g, (xu)

and in this there is nothing arbitrary except the tensor of the product X/xv-arS'^

(Compare Note IV., Section (2), p. 374.)

From this point of view we can see the connexion with the theory of anharmonic

coordinates in a plane (pp. 23-29, vol. i.). For if 8 = aa + bfi + ey, w = a'X + b'p. + <?V,

and p = xaa + yh^ + %cy, we can verify at once that <f>p
= {xa'k + yb'p. + acV) SA/u,v.

Also (compare p. 25, vol. i.),

(OA. . BDCP) = -, (oB . CDAP) = -, (OC . ADBP) = , (xiii)
z X y

where (oa . bdcp) is the anharmonic of the four planes (a, /3), (a, 8), (a, y), and

(a, p), respectively. The equations (xiii) remain true when a, b, c, d, p are

changed to a', b', c', d', p', where generally op'
||

<^op. Thus, op' can be found by

linear constructions when op is given as the tensors of the vectors a, ^, y, S, A, /*, v,

-ar, and p may be chosen so that the extremities of these nine vectors may lie in an

assumed plane.

(7.) As the axes of </> are the vector solutions of the equation

Np<\>p = 0, (xiv)

the cone

Sap<^p = (xv)

contains three fixed lines which are quite independent of the vector a. This quadric

cone is the locus of a line, so that it and its derived ai-e coplanar with a fixed line (a).

For various values of this vector, we obtain a doubly infinite system of cones having

three common edges. If two of the solutions of (xiv) coincide, the cones touch one

another ; if all three solutions coincide they osculate, and they break up into pairs of

planes, one fixed plane being common to every pair, if the solutions of (xiv) become

indeterminate in a certain plane. The conditions for contact and osculation can be
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expressed at once in terms of the invariants »», m', m", being merely the conditions

that the root cubic should have two roots equal or should be a perfect cube. The

condition for indeterminate axes is of a different kind. Here there must be a double

root g, and ff>
- g must destroy every vector in the plane of the indeterminate axes.

<fi
- g is, therefore, a monomial XS/^p ; its cubic is depressed to a quadratic, or, what is

equivalent, Hamilton's function

xf/g = 0, or <^2 - w"<^ + m' + g{(f>- m") + / = 0. (xvi)

This, then, is the condition for indeterminate axes, (Compare 352 (20.), p. 504, vol. i.,

and the remaining sub-articles.)

It is easy to show that the cone (xv) cannot degrade into a pair of planes unless a

is coplanar with a pair of axes of ^. If the cone is a pair of planes, and if -ar is the

vector of intersection, Sap^-ar + Satrap must vanish for every vector p. Hence

Vc^-ara + t^'^av = 0. (^"V'ii)

Now, as iiaw<f}w = 0, we may write cf>w = tiw + va; and substitution in (xvii)

shows that

<^'Vatr = ttVaflr, (xviii)

or u must be a root, and Vaw the corresponding axis of the conjugate <^'. But the

axes of <^' are the normals to the planes containing pairs of axes of <^ ; hence, a must

be coplanar with a pair of axes of
<f>,

as it is at right angles to an axis of
(f>'.

In the case of indeterminate axes, ^ must be of the form

<t>p
= gp + XSfip, (xix)

and the cones (xv) all break up into pairs of planes

SaApS/xp = 0. (xx)

(8.) We have seen (Note II. (2.) page 363) that the roots of 0<f>d-' and of cl>

are identical. Consequently, the theorems proved up to the present in this note are

also true for ^<^^' as well as for <^.

(9.) Again, if we write </> = <^2"^<^i, and

where nii and w, are the third invariants of c^i and ^j, respectively, and li and k are

two new invariants, we obviously have the relations

niiM = mi ; niim' = l^ ; ithrn" = h, (xxiij

since the left-hand side of (xxi) may be replaced by

mS (<^-'<^. -g)oi (<^a-'<^i -9)^ {.^f'<t>i -9)y= nh {m - gm' + g-'m" - g') Sa^y. (xxiii)

3 C 2
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Furthermore, the values of the ratios

nil : li : I2 : >fh

are unchanged when </>! and <^ are replaced by x<^i^ and xi^i^* respectively, x and 6

being two arbitrary vector functions, for

and the functions ^ and $~^<l>d have the same roots.

Thus, the invariants depending solely on the roots of ^2~^<;^i are invariantal in a

very wide sense. Not only may the vectors a, ft, y be changed in any way, but the

functions
<f>i

and ^2 Kiay also be transformed within veiy wide limits.

It is well to bear in mind that 08"'0i, <^i0a~^ and their conjugates <t>\4>-r^ and

<fi'2~^<l>'i have the same roots.

(10.) Hence, by (1),

4=0 (xxv)

is the condition that ^1 and «^2 (or, more generally, that x<f}id and x*^^) should be

capable of producing from a triad of vectors a, ft, y two new triads so related that the

faces of the second contain the edges of the first; also, by (2),

li = 0, (xxvi)

if the faces of the first can contain the edges of the second; and by (3) and (v)

4" = 4^2/1 or li^ = imJz (xxvii)

if an intermediate triad can be inscribed to the first (or second), and circumscribed to

the second (or first). Further, by (5),

Wi?a' = t/iili^ (xxviii)

if the transformation represented by ^2"^ can restore a system of cones transformed by

<^i into their original state.

It would be tedious, and cannot be necessary, to elaborate this subject any fmiher.

(11.) In the particular case in which ^i and
<f>2

are self-conjugate, we may fall

back on the invariants of a pair of cones or conies. For instance, if a triad of

vectors satisfies S02a^i)80i'y = 0, and two similar equations derived from this by cyclical

interchange, we may replace the equations by three of the type Bnf>2a<f>i~^Yfty = 0.

The form suggests (fti'^Yfty || a with the condition Sa<^a = 0, &c., and the invariant h

vanishes if a triad can be found upon the cone Sp^p = self-conjugate to the

cone Sp<fiip = 0.

In the general case also in which the functions are not self-conjugate, the invariants

of their self-conjugate parts (which are of course invariants of the functions them-

selves) may be regarded as invariants of cones. But there is an important distinction

between the two classes of invariants. We have seen (9) that the invariants
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expressible in terms of the roots of the quotient <^2"^<^i are merely multiplied by a

factor when <f}i
and <^2 are replaced by x^i^ ^^^ X^^^- '^^^^ transformation, on the

other hand, completely modifies the invariants of the self-conjugate parts ; in fact

they cease to be invariantal for this transformation. The self-conjugate parts $i and $2

cease to be self-conjugate where multiplied by x and into 6. When we restrict the

range of the transformation by supposing x and 6 to be conjugates or x- ^'> ^^^

ftinction 0,, its conjugate ^'j, and its self-conjugate part $1 all undergo the same

transformation ; and <f>2~^<f>u fl>'f^<f>'i, and <J>2"'$i transform into 6~^<fi2~^<f>i6, 0~^<t>'f^<f>'i6,

and O'^^-r^f^iO, so the roots of ^f^^i (upon which the cone invariants depend) are

unaltered as well as those of ^2"'<^i.

We can see a reason for this. The naturtd interpretation of the equation

8p<f)ip = 0, or Sp^ip = 0, or 8p^\p = 0, (xxix)

is that it is the locus of lines at rtffht angles to their derived lines. Here a non-

projective element is introduced, and the latitude of transformation consistent with

invariance is restricted.

(12.) The vanishing of invariants depending on the roots of </)2"^^i does not, in

general, imply any peculiarity in the pure parts of the strains repruaented by <^i and <^2-

For we have seen in Note III., Section (11.), that a rotation x can be determined

which shall render the roots of x^ equal to any values assignable within certain limits

subject to the single condition that their product shall be constant. The magnitudes

of the roots may be selected so as to render any function of them zero, and a corre-

sponding rotation x can be found which will annul any invariant of <fii and 02X"^'

It may be shown also that a rotation x can be foimd, so that within certain limits

one at least of the roots of x^a'^X'^'Ai ^^7 acquire a selected magnitude. This applies

to the invariants of self-conjugate functions (compare the last Section).

(13.) A function
<f>
compounded from two or more given functions may be said to

be covariant with them, provided <^ changes into x<^^ when each of the component

functions is multiplied by x and into 6. Thus ^i^2~^^i is covariant with ^1 and ^a,

but <fii<f>2 and <^i<^~' are not.

Again, if <^i, <j>2, «^3, &c. are covariant, and if

it appears that the functions iff' transform into X'-^ij/'6'-^ multiplied by the third

invariants of 6 and of x when the functions «^ are changed to x<^^- Thus the

functions i/^' are covariant among themselves, and of course their conjugates ij/ which

transform into ^Vx~^ ^^® likewise covariant among themselves. In like manner, from

the functions \]/' we obtain new functions ^12 by the equation

Y^tiil/^\%hxl/\fi = 22^i^2«^i2VX/>i, (xxxi)

which are covariant with the original functions ^ if we disregard a scalar factor

depending on the third invariants of x and 0.
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(14.) The principles explained in the Note on Quaternion Determinants (Note I.,

Sections (2.) and (3.)) enable us to write down the quaternion invariants of a system of

linear vector functions. By actual transformation of the vectors a, /3, y it may be

shown that the quotient

0ia ^i/3 <jiiy a /8 y

q{<t>i, «^2, <^3) = <^a <f>ofi ^y -^ a /8 y (xxxii)

^a ^^ cf>3y \ a /3 y

is quite independent of these vectors, and is therefore an invariant of the three
,

functions ^i, <}>2, <^. For if

a = zX + yfx + zv, /8 = x'\ + y'/x + z'v, y = x"\ + y"/x + z"v,

0ia ^1^ 0iy I

«/>2a ^^ «^y
I

=

03a 03^ 03y i

we find

«^iA, <f}iix (f>iv X y z

^X <^2/A 02V • a/ y' z' , (xxxiii)

03\ 03/A 03V ;r" y" s"

and in forming the quotient (xxxii) the scalar determinant {xy'z") cancels.

(15.) By direct expansion of the determinant, we find

6? (01, 02, 03)Sa^y = 20ia(0,?03y - 02y03^), (xxxiv)

where the sign % indicates summation for cyclical transposition of the vectors a, p, y.

The scalar part of the quaternion is

kn = Sg'(0i, 02, 03) = i2S0ia(02^03y + 03/802y) (Sa;3y)-i
;

(xxxv)

and the vector part reduces without difficulty to

^?(^l> ^> ^s) = i [20iaS (02^03y - 0s^02y)

- 202aS(03/?0iy - 0l/?03y)

+ 203aS (0i/802y - 02/8017)] (Sa)8y)-'. (xxxvi)

Now if 1732 is the spin vector of 0's02,

S (02i803y - 03)802y) = S (0'302 - 0'203)y3y = 2Si732/3y

;

(xxxvii)

and the quaternion invariant reduces to

?(<^l, <t>2) ^3) = A33 - 3 (0l'723 - 02'731 -t- 03^12)
' (XXXVlli)

for it must be observed that the spin vectors satisfy the equations

1/12 + rjji = 0, 7)n = 0. (xxxix)

It is evident that the scalar part /12s is unchanged when the fimctions are interchanged

in any way. "We see by (xxxviii) that briefly

?S2i = T^qm, nnd f0,r72, = 5^132
- q,iS' (^1)
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The effect of interchange of rows in determinants of the third order is thus exhibited,

and we see that the six quaternion invariants obtained by every possible interchange

of
<f}i, <^, and <^3 are equivalent to one scalar and three vector invariants, /123 and

<f>iVis, <hV3i> and (^37712.

(16.) For a single function «^ we obtain Hamilton's three invariants as particular

cases of (xxxviii) in the forms

q{<f>, 1,1) = ^{m" + 2€)', q(<f,,tf>,l) = h{m' + 2^€); q {<!,, <f>, <f>)
= m. (xli)

For the first of these c = 1721 = t/si.

(17.) Manifestly these vector invariants are totally different in character from the

scalar invariants of the earKer sections of this Note. It is easy to see, when we
multiply the three functions (xxxii) into 6, that the quaternion is merely multiplied

by the third invariant of ^ ; in fact, the determinant quotient is multiplied by the

quotient q {$, 6, 0). It may be proved, without difficulty directly, that 1723 becomes

n&-^r]23 in this case. But, when the functions are multiplied by a common function x,

although the scalar part is merely midtiplied by the third invariant, the vector part

is, in general, completely changed. <^'2<^3 becomes ^'2x'x<^3> and the spin vector of

the transformed function is quite distinct from that of the original, except in the case

in which ^X ^^ ^ scalar. (Compare also (11.).)

(18.) It would take too long to investigate the reduction of the number of

independent quaternion invariants of two or three functions. The functions may be

combined in any way, such as in products 0i^2) <f>2^i, &c., and the various invariants

may be obtained by substituting those combinations for the simpler functions in

(xxxii). It must suffice to remark that, in addition to obvious reductions obtainable by

means of symbolic cubics, a simple relation connects the spin vectors of <^i^2 and of

<f>\<f>2. For, if c,2 is the spin vector of <f>i<f>i,
and, as before, if 7712 is that of </)'i</»o,

2Vc,2p = (<^,<^ - <f>'2<f>\)p
= ((<^, -

<i>\) + ^\)<t>,p + <^'2((<^i - <^'i) - <l>i)p

= 2Vei<^2P + H'i^^iP + 2V7712/0.

This affords the relation

«i2 = Vn + {i^"i - <h)^u (xlii)

in virtue of the fundamental equation

Y<f>i\fi + VA<^/A + <)!»'2VA/A = mf'^Xpi.

From symmetry we may write down, in like manner,

€21 = •>72i + (»»"i - «^i)«2- (xliii)

In the same way t7',2, the spin vector of <jyi<j>2, can be expressed in terms of €12 and

simpler vector invariants. Thus the spin vectors of ^1^2, ^2^1) ^'\<f>i, <i>2.<f>u ^i0'2,

«^2<^'], <t>\<i>'-i, ^'%<t>i are all expressible in terms of 1712, ci, c^, and the results of

operating on cj and t^ hy the functions ^1, ^2 and their conjugates.
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By repeated application of these formulae the spin vectors of all functions

derived from a given product of functions, by cyclically transposing the functions and

altering them to their conjugates, can be reduced to the spin vector of one of the

products and the results of operating on simpler invariants.

19. We may also notice that the quotient

= fi2V«j8 - 2Siy,3Vaj8 ,^.
2Yal3 ^ ^

is unchanged when a and p are replaced by any other vectors in their plane

(compare (xxx)).

^itt <f>lft a /3

(fiiU <f>2fi
a ft

YI.—ON THE SYSTEM OF LINEAR VECTOR FUNCTIONS <^ + tO,

(1.) When t is eliminated from the equation

Vp(<^ + te)p = 0, (i)

the locus of axes of the system ^ + ^^ is found to be the cubic cone represented by

/ = SpcfypOp = 0. (ii)

This is also the locus of a vector coplanar with the vectors derived from it by any

two functions of the system.

(2.) The cone

/ = Spcf>'pO'p = (iii)

is the locus of axes of the conjugate system. Bearing in mind that the axes of a

function are perpendicular to the corresponding planes containing pairs of axes of its

conjugate, we see that every edge pi of the cone/ corresponding to the root ^i of the

function ^ + ^^ is perpendicular to p'2 and p'3 edges of the cone /' and axes of the

conjugate function. The third edge of the cone /' may, without difficulty, be shown

to be Ypi<fipi, or Yp^Opi.

(3.) In particular, when both functions are self-conjugate the cones /and/' coin-

cide, and every edge is at right angles to two others. Also since

Yi<f>i + Yj<f>J + Yktfik = 0, (iv)

when <fi is self-conjugate, i, j, and k being any mutually rectangular system of unit

vectors, it appears that in this case the planes containing pairs of axes of any function

cut the cone again in lines which lie in a plane.

(4.) In general the reciprocal of the cone/ is the envelope of the principal planes

of the system, and, as this is of the third class, thi-ee principal planes are parallel to

any line.
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(5.) The root cubic of the function <^ + t6 ia of the form

f - M,f + M^-M, = 0, (t)

and the coefficients contain t in the order indicated by their suffixes. On equating

the discriminant to zero, the result is a sextic in t whose roots determine six functions

having double roots and pairs of coincident axes.

(6.) No function of the system can have, in general, indeterminate axes; for if

({> + to were such a function, it could be reduced to the form ^p + \Sfip ; and the

ecjuation of the cone /might then be written in the form

Sp<^p\S/Ap = 0. (vi)

In this case, therefore, the cone breaks up into a quadric cone and a plane.

(7.) Moreover, if two functions have a common axis, it must be common to the

whole system, and the cubic cone must have a double edge. For if in (i) two values

of t correspond to a given vector p, we must have separately

Yp<l>p = 0, and YpOp = 0. (vii)

Hence p is on axis of every function, and also a double edge of the cone.

(8.) The quadi'ic cone
Sap(«^ + te)p = (viii)

contains the axes of the function defined by t. Or if we regard t as arbitrary and a

given, (viii) represents a singly infinite system, a particular cone being determined

by the condition that it shall contain any assumed b'ne. This singly infinite system

passes through four fixed lines which may be found by combining the equations

Sap<^p = 0, Sap^p = 0. (ix)

From these we obtain the equation

xa = Y\p<l>pypep = - pSp<^p^p, (x)

which must be satisfied by the four fixed vectors. One solution is obviously p ||
a,

and for the remaining lines we must have x = 0, and Sp«^p^p = 0. Thus three of the

lines are on the cubic cone / = 0. Hence the axes of all functions of the system

compose co-residual triads upon the cubic cone for a quadric cone can be drawn

through any set of axes to meet the cubic again in three fixed lines.

(9.) In the notation of elliptic functions, three edges of a cubic cone lie in a

plane if the sum of their elliptic parameters is zero. A quadric cone intersects a

cubic in six lines, and the sum of the correspoudiug elliptic parameters is zero.

Hence the sum of the parameters of the axes of any function of the system is

constant, and the value of this sum is a characteristic of the system.

n the sum is half a period, the axes of any pair of functions lie upon a quadric

cone. This is the case when the functions are seU-conjugate, and more generally

X D
Hamilton's Elements of Quaternions, Vol. II. '
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when the axes of one f\inction (<^) are in perspective with the vectors derived from

them by the operation of another function 6. This condition is expressed by the

equation

SYpreprVp^OfHypzOpz = ; (xi)

and this is also the condition that the axes of <^ and should lie upon a quadiic

cone. In fact, dropping the suffix 3, (xi) is the equation of a cone through the three

axes of 6 and two of the axes pi and p^ of ^, so, if (xi) is satisfied, it contains the

third axis ps likewise.

The co-residual property shows that, if the perspective property is true for any

pair of functions of the system, it is true for every pair.

The condition (xi) may be expressed by the vanishing of the invariant of the

functions

%Se<l>a(l>ei3<l>ey - ^iicl>eae4>/30<l>y = O, (xii)

in which a, /S, and y may be any three vectors.

This may be proved (compare Trans., It. I. A., vol. xxx., p. 723, andPro<;., K.I.A.,

3rd series, vol. iv., p. 13) by replacing a, p, and y by pi, p2, and ps, and by writing

6pi = aiipi + «i2p2 + flispa, 6p2 = a^ipx + O22P2 + «23P3, Opi = (hiRi + ^32/32 + «33P3, (xiii)

and substituting in (xi) and in (xii). The result in both cases is proportional to

ana^Uii - a2ia32«i3- (^^)

(10.) The results already obtained admit of veiy considerable extension. The

equation of the cone (ii) may be replaced by

SX1PX2PX3P = ^) where xi = '''i'^ + ^1^ + ^u &c. (xv)

or by

/i = Sp</)ip^ip = 0, where <^i = xr'Xa* ^1 = Xi~%- (^tvi)

Thus, the cone is the locus of axes of all functions of the type

(fli^ + hiO + Ci)~^ {a^<f> + b^O + Ci), (xvii)

a,, J„ <?i, «2, bi, Ci being arbitrary scalars. The cone of the axes of the conjugates

/, = Sp«^',p^',p = 0, where <^'. = xWi~\ ^'1 = x'sxT' (xviii)

is not the same as the cone/'. In fact, the equation (iii) of that cone may be

replaced by
/' = SpxV>xVx'i"xV = 0,

and this is not the same as (xviii), because the functions x'u x'^y ^^^ x'3
^^'^ ^^*

commutative.

(11.) It appears, from (6), that, in general, no function of the type (x\'ii) can have

indeteraiinatc axes; and, by (7), no pair of functions «/>, = xf^Xtf ^1 - xr^X» ^^^ ^Siye

a common axis.
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(12.) "We eliall now extend the theorem of section (8), and show that the axes

of all functions of the type (xvii) form co-residual triads. The equations (ix) are

equivalent to

SapXiP = 0, SapXaP = 0, (^x)

and these equations require

x'Yap = VxiPXaP (xx)

if p is a common edge. Hence, we obtain the new quadric cone

SaxiPX2p = 0, or SxrVxr'X2P = O (xxi)

which contains the three residual lines. But the second form of its equation shows

that it contains also the axes of xr'X2» ^^'^ these axes, therefore, are residual to the

three intersections of the cones (xix) or (ix), and consequently co-residual with the

axes of every function of the type (xvii).

VII.—ON THE GENERAL LINEAR TRANSFORMATION IN SPACE.

(1.) If w and p are the vectors from an assumed origin to a pair of corresponding

points, the relation between the vectors may be written in the form

"=^^ = S;8^TI'
^^

where a and /? are constant vectors, and <^ is a constant linear vector function.

There is no difficulty in verifying that

<l>-^vr{Sfi<tr'a - l )-<^-'a(S^«^-V-l) .

.

p=f-'-^ =
s^,^-v-i

^^

(2.) The united points of the transformation are the extremities of vectors

satisfying the equation .....

fp-P, ^"^^

or <fip + a = tp, if ^ = S/8p+l. (iv)

Eliminating p between these two equations, the result

t-l + S/3((^ - t)-'a = . (j)

is equivalent to a quartic equation, and the united points correspond to the roots of

this quartic and lie upon the twisted cubic

(vi)

3 D 2
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(3.) If the plane SAp +1=0 transfomiB into S/aw +1=0, and if we write

symbolically

8f.fp = Sp/>, (vii)

it appears that

It is needless to write down the equations corresponding to (ii), (iii), (iv), and (v).

They are obtained by replacing w, p, a,
ft, by A, /x, /5, a,

(f>,
respectively ; and it

will be noticed that the quartic (v) is unaltered by this interchange.

(4.) For a change of origin to the exti'emity of the vector c, the new symbols are

connected with the old by the relations

- <^-^Si^ _ a + </>€ - 6(S^e + 1)
''^ ~

SySc + 1 '

'"'

s^sTTi
'

and a root t^ of the quartic transformed from (v) is simply proportional to the

corresponding root t of the original, the connexion being

The ratios of the roots of (v) are therefore independent of the origin.

(5.) When we express an arbitrary vector p in terms of the vectors pi, pj, ps, and

Pi to the four united points abcd by the equation (compare Art. 79, page 55, vol. i)

Xypi + X2P2 + X3P3 + XiPi
OP = D = . / .x'^ Xi+ X2 + X3 + Xi

' (xi)

the derived vector /p can easily be seen to be expressible in the form*

f _ ^i^ipi + XjtiPi + ^s^iPs + Xjt^i
~JP~

Xiti + x^ti + «8^ + Xiti (xii)

Thus (compare Art. 83, page 58, vol. i),

(bC . APDd) = -±, (CA . BPDG) = /, (^ . CPDQ) =
^, ^^:^^^

where (bc . apdq) is the anharmonic of the four planes through the line bo and the

points A, p, D, and q. Or again, the ratio of the volumes of the pyramids, whose

bases are a face of the tetrahedron formed by the united points, and whose vertices

are a and p, respectively, is proportional to the con-esponding value of t.

* Compare Note V., Section (6.), p. 378.
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(6.) Iif=f' = F, so that the function/may be said to be self-conjugate,

where $ is a self-conjugate function. The general equation of a quadric, any point

being origin, may be expressed in the form,

SpFp +1=0. (xv)

The extremities of w and <o' are conjugate with respect to this quadric, if

8<aFo)' = Sw'i^o) = - 1. (xvi)

Hence Fw is the vector to the reciprocal of the polar plane of the extremity of w

with respect to the quadric, the centre of reciprocation being the origin of vectoi's,

and the radius of reciprocation being unity. The reciprocal quadric is

8vF-^v +1=0. (xvii)

To determine the tetradedron self-conjugate to a pair of quadrics,

SpFp +1=0 and 8pGp +1=0,
it is necessary to solve

JPo) = Goi, or G'^Fui = w, or F~^ G<t} = a; (xviii)

for the first equation expresses that the extremity of w has identical polar planes

with respect to the two quadrics.

The first equation may be solved directly. In fact, if * and ftiaG correspond to

* and a in F,

(4> - ^) w = - (a - t/3) if Saw + 1 = ^(S^o) + 1), (xix)

and, therefore,

0) = - ($ - ^*)-i (a - tfi), (xx)

where
t-l + S{a-t/3)i^- t^y (a - t/S) = 0. (xxi)

We cannot delay on this subject, except to remark that the twisted cubic (xx) is

the locus of the vertices of tetrahedra self-conjugate to any pair of quadrics of the

doubly infinite system

Sw ($ + w*) w + 2S (a + uP) ui { V = 0.

(7.) It appears, from (ix), that on change of origin a self-conjugate function will,

in general, cease to be seK-conjugate. Under what conditions can the origin be

selected so that a function may be self-conjugate ?

If rj is the spin-vector of
<f>,

change of origin to the extremity of c will, render
(f>^

self-conjugate, and a^ = /?^ (ix), if the equations

2r] = Ve/3, a + (^e - e (S^€ + 1) = ^ (xxii)
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can be satisfied. The second equation gives, by the process already employed,

c = (0 - ty ((B-a) if ^ = S^€ + 1, or l-t + 8ft{(f>- ty (/3 - a) = 0. (xxiii)

Thus, four points can be found for which a^ = ^,, and consequently rj must be equal

to one or other of four determinate vectors.

VIII.—ON THE THEORY OF SCREWS.*

(1.) If c is the translation and i the rotation, the origin being taken as base-point,

for any small displacement of a body, the transfoi-mationf

e = €1-1
. t = (Sci-i + Yet-') t = {p + w)i, {p = Sei-i, w = Ver^) (i)

shows that the displacement may be accomplished by a rotation round the axis whose

equation ia p = zs + xt, accompanied by a proportional translation along that axis.

This screw displacement is called a twist by Sir Robert Ball. In the same way a

moving body is said to have a tioist-velocity on an instantaneous screw. In the

following brief applications of quaternions to the admirable Theory of Screws of

Sir Robert Ball, what is said of wrenches will be seen to be equally true of twist-

velocities and of small twists.

(2.) If /u, represents the resultant couple at the origin of vectors arising from any

distribution of forces and couples, and if A, represents the resultant force, the equiva-

lent wrench may be represented by the symbol (/a, X). The intensity of a wrench

(or the amplitude of a twist) is measured by the tensor of the vector A, ; thus {tfju, tX)

or t {fx, A) is a wrench having the same axis and the same pitch as (/*, A), but ^-fold

its intensity. It is obvious that the . resultant of any number of wrenches ^i (/ai, Ai),

hifJ-it K)i &c., maybe represented by the wrench {tifi^ + tz/x^ + &c., ^lAj + ^Aj + &c.),

and by the principle of superposition of small motions this is equally ti'ue for twists

provided they are small. Every wrench compounded in this manner from n indepen-

dent wrenches is said to belong to an w-system, and any particular wrench of the

system is determined by the values of the scalars t.

(3.) When a body, acted on by a wrench {fi, A), receives a small twist (/*', A'),

the work done by the wrench is

-S(M' + A), (ii)

remembering that /x' represents a translation, and A' a rotation. The symmetry of

this expression shows that the same amount of work woidd have been done by (/*', A')

considered as a wrench, had the body received the twist represented by (ft, A). When
the work done is zero, the screws are said to be reciprocal. It is obvious from the

linear character of the condition of reciprocity that a screw reciprocal to n screws is

reciprocal to every screw that can be compounded from them.

• Sir Robert Stawell Ball. A Treatise on the Theory of Screws. Cambridge, 1900.

t Compare pages 83-85, and 285-287.
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Again, in terms of the vector perpendiculars w and the pitches p, the expression

for the work becomes

- {p + p') SXX' - S (•nr - IT-') AX' or {p + p') cos^ + <? sinA (iii)

into the product of the tensors of \ and X', if -4 is the angle and d the shortest

distance between the axes. Hence, if the axes of reciprocal screws intersect, they

cut at right angles, or else the sum of the pitches is zero ; the converse is also true.

(4.) Two screws of the two-system (/x + tix.', X 4 ^X') are reciprocal if

S (/i + V) (^ + ^'^') + S (/I + iffi') (X + ^X') = 0, (iv)

and the axes cut at right angles if S (X + ^X') (X + ^X') = 0. These equations lead to

a quadratic in t, whose roots determine the pair of screws. Their axes intersect, and,

if the origin is taken at the point of intersection, the screws may be represented by

{ai, i) and {hj,j), a and h being the pitches. Any screw of the system can be repre-

sented by {ai cos 9 ^^Ij sin $, i cos ^ +7 sin 0), and from the relation ai cos 6 + bj sin

= (^ + tsj) (« cos ^ +y sin 6), we find at once*

p = a cos* 6 + b sin* 6, and w = (b - a) k bib. 6 cos 6. (v)

Hence, the equation of the cylindroid, the locus of the axes, is seen to be

p = (ft - a) ^ sin ^ cos ^ + « {i cos 6 +j sin $) or z (a;* + y^) = {b - a) xy. (vi)

(5.) Let (fti, Xi), (/ig, Xj), and (^13, X3) be any three wrenches, and let 6 be the

linear vector function determined by the three equations

Ml = ^Xi, /X2 = OXi, and fiz = 0X3. (vii)

Every wrench that can be compounded from the given wrenches may be represented

by (^a, a), the vector a being an abbreviation for tiXi + ^2X2 + ^3X3. If p is the vector

to any point on the central axis of the wrench {6a, a),

6a = pa + Ypa, or {6^ - V(p - e)) a = pa, (viii)

where ^0 is self-conjugate, and 6 = 6^ + Vc. Thus ^ is a root, and a is an axis of the

linear function 6^, ~ Y {p - e). The cubic determining the roots of this function is

p' - m"p'' + {m' -{p- e)*)i» -{m~&{p-e)6o{p- e)) = 0, (ix)

if ^0' - 'm"6o^ + m'6o -m = is the symbolic cubic of 6q (Note, p. 520, vol. i.).

Hence, the locus of axes of screws of the system, having a given pitch p, is the

quadric (ix), one of a concentric system. It is also evident by (viii) and (ix) that

three axes pass through an assumed point, and that the sum of the corresponding

pitches is constant. Again, the pitch and the vector perpendicidar are, respectively,!

p = S^aa-\ and -nr = Y6aa-^. (x)

* Compare the Note on Systems of Rays, Section 11, p. 422.

t Compare Note III., (16.), p. 372.
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On comparison with (ix), it appears that the pitch of any screw is inversely pro-

portional to the square of the parallel radius of the zero pitch quadric

m = S(p-0^o(p-0- (xi)

We cannot delay upon the locus of the feet of the vector-perpendiculars except to

state that it is a Steiner's quartic with thi*ee double lines intersecting at the origin,

and that the form of the equation -nr = V^ (aj + ^oo) (aj + ta^~^ shows that the locus

for axes parallel to a plane is an ellipse, t alone being variable.

(6.) The wrenches (^aj, aj) and {da^, a^) are reciprocal if

S (tti^oj + a^Oai) = 0, or if 801^002 = ; (xii)

that is, if the directions of their axes are conjugate with respect to the zero-pitch

quadric (xi). Corresponding to three mutually conjugate directions uj, oj, and 03 are

three mutually reciprocal or co-reciprocal screws.

(7.) If (/*', V) is reciprocal to the whole system {6a, a), the equation S(/x,' + 6''K')a =

must be satisfied for every possible vector a. Hence fi + 6'X.' = 0, and fiirther, in

general, (- O'a, a') belongs to a three-system reciprocal to the given three-system.

From these considerations it is easy to refer any wrench to six co-reciprocals.

If we assume

//. = 6a- &a\ and A. = a + a', (siii)

where 6 is any vector function whatever, and (/tt, A) any given wrench, we see that

the auxiliary vectors a and a' are in general determinate, being in fact

a = (^ + &Y (/x + &\\ and a' = - (^ + 6')'^ {fi - 6\).

Selecting then any two triads a^a^ai and a4a5a« of mutually conjugate directions with

respect to the quadric (xi), and referring a and a' to these, so that

a = tiai + t^az + ^303, and a' = ^404 + ^Oj + ie^h, (^^)

it appears that the given wrench can be resolved into component wrenches on six

arbitrary co-reciprocals. The six scalars t are proportional to the intensities of the

components, and play the part of coordinates of the wrench.*

(8.) To refer a four-system to a set of co-reciprocals, determine the vector function

6 from three wrenches of the system as in (vii), and reduce any fourth wrench as in

(xiii). Thus 04 is found, and for eveiy wrench of the system t^ and t^ are zero.

The two-system (- ^'(^504 + hot), ho* + tt<^) is reciprocal to the four-system. In like

manner for a five-system we find a' to be of the form ^ai + ^oj, and the single screw

reciprocal to the system is (- 6'af, oj). Similarly any wi-ench can be resolved into

two components, one belonging to a screw-system, the other to the reciprocal system.

• Compare Note IV., Section 3, p. 374.
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(9.) The principles explained in the Note on Quaternion Detenninants furnish us

with a means of writing down a number of invariants for the various screw-systems.

For instance, the ratios

(XV)

are quite independent of any particular screw of the two-system (/xi + tfi^, Xj + ^2).

In terms of the vector (c) to the centre of the cylindroid and the screws of

reference (4.) these ratios reduce to

[ahk - fSek - {aiSii + bj^ej) . k'] : [{a + b) k -^ 2Sc>i; + Yek'] : k, (xvi)

so that if we wi-ite, for brevity, (xv) in the form p : q : r,

€ = Y . {Yq + ^8q)r-' ; a + b = 8 . qr'' ; ab = ^ . pr^ + Jr'^ {^q)\

On solution of the equations in a and b we can determine everything in terms of

jo, q, and r.

Again, for a two-system, every determinant composed of rows /xi, /xj, />ts, followed

by rows A.,, Aj, A3 vanishes.

(10.) It is more interesting, however, to consider the relations for systems of

higher orders. Write down a determinant, formed by three identical rows of six /x's,

followed by three identical rows of six A's. This is the sexiant of the six screws,

(/^i, Ai) . . . (/Xfi, A«). If it vanishes, the screws belong to a five-system. Write

down four identical rows of seven fi's, followed by three rows of seven A's. The

result vanishes identically, for a determinant with four identical vector rows vanishes

(Note I., (6.)), but we may expand it in the fonn

/>ti(l) + />i2(2) + />t3(3) + /A4(4) + ,^5(5) + />t8(6) + ti,{1) = 0, (xvii)

where (1) is the sexiant of the screws omitting the first.* Again, foui' identical

rows (A), followed by three identical rows (/>i), form a vanishing determinant expand-

ing into

X,(l) + X^{2) + A3(3) + K{A) + K{b) + A6(6) + \,{1) = 0, (xviii)

the same symbols denoting the sexiants as before. We see thus how to express an

arbitrary screw in terms of six given screws.

f

• It is simplest to expand a sexiant in terms of the minors of the third order when it is seen to be

t Indeed, from this point of view, the theory of screws is equivalent to the theory of vector

pairs Ou, \), every pair denoting an entity. There is a corresponding theory of vector triplets (v, /x, A.),

&c. Writing down four identical rows of ten v's, followed by three of /^'s and three of A's, we see

how to express an arbitrary triplet in terms of nine given triplets by means of functions of nine

which may he called noniants in analogy to the sexiants.

Hamilton's Elements of Quaternions, Vol. II, 3 E
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(11.) Again, write down the determinant* of three rows of five /x's, followed by

two of five X's, and call it /u,'. Similarly, if - X' is the determinant of two rows of /x's,

followed by three of X's (the same as before), the screw (fi'. A') may be easily seen to

be the reciprocal of the five given screws. If, however, the fifth screw (jUj, Xj) is

quite arbitrary, the variable screw (/*', X') obtained in this way generates the two-

system reciprocal to the given four-system.

f

(12.) If a free rigid body, acted on by any system of forces, receives a small twist

from a position of stable equilibrium the forces no longer equilibrate, and a certain

wrench corresponding to the twist acts on the body. We shall consider the important

case in which the wrench (/a, X) is linearly expressible in terms of the twist (o-, w),

that is, when the one-to-one relation between twist and wrench can be expressed by

equations of the type
/x. = (f>(ii + ;((r, X = $(o + ij/(r, (^^i^)

ff>, Xt ^1 ^^^
"A

l>6ing four linear and vector functions. As the twist changes fi'om

(<r, (I)) to (o- + dtr, o) + dw), the work done by the forces is

- S (/utdo) + Xdo-) = - S (</)a) + XO-) do) - S {Ow + \^<r) d<r. (xx.)

This is a perfect differential, or the forces are conservative, if, and only if, <^ and ^
are self-conjugate, and if x and $ are conjugate. The truth of this property is

apparent when we differentiate an expression such as - ^Sw^w - Scr0co - ^So-^o- and

compare results on assigning arbitrary values to the four vectors o-, w, do-, and do). In

what follows we shall limit ourselves to the case of conservative forces, so that we

may take ^ and i/^ to be self-conjugate, and

fx = 00) + xo", X =
x'<«> + ^o". (xxi)

This type of relation has been called CMastie by Sir Robert Ball because of the cross-

connexion expressed by the equations

S {/JLU}' + \cr') = S (<^o) 4- xo") w' + S (x'w + i{f<r)a' (xxii)

= S (<^o)' + xo-') 0) + S (x'w' + \)/a-')a- = S (/x'o) + XV),

which show that if (/a, X) is reciprocal to (o-', o)'), then is {/x', X') reciprocal to (o-, u>).

(13.) A free rigid body is acted on by an impulsive wrench, and begins, in con-

sequence, to twist about an instantaneous screw. Taking the centre of inertia as

base -point, it appears that the wrench and twist-velocity are chiastically related, for

the dynamical equations are

fx = 00), X = Mcr, (xxiii)

if ffxa is the linear vector function of the angular velocity <o which represents the

angular momentum, and if if is the mass of the body and o- the velocity of translation

of the centre of inertia. Here, as before, the chiastic conditions are satisfied, for

This determinant is u vector as appears on expansion by minors of /a's and minors of a's.

t A system of screws of the most general type is partially considered in Note XII., Sections 2G-31.
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is self-conjugate ; also x and are zero, and if/ is a. scalar Af. We proceed to consider

the general case of chiastic relation since from this the properties of impulsive and

instantaneous screws are at once deducihle. We suppose
<f>, x, and if/ to be known.

When the body is not perfectly free we resolve the wrench (/jl, A.) into two com-

ponents, one (t7, $) belonging to the screw system of the freedom, and the other

{r}', ^') belonging to the reciprocal screw-system. The wrench (>/, $) is the reduced

wrench. Thus

fi = 7] + Tj' = ffioi + ^o", and X. = $ + $' = x'w + if/a: (xxiv)

Obviously, when (o-, w) is given, (?/, $) and (tj', ^') are at once determinate. Again,

when {ri, i) is given, (rj', i') and (cr, w) are still detenninate. For if (o-i, (Oj), (0-2, 0)2),

&c., are n given twists determining the freedom, we may express the known wrench

(17, i) in the form (Saio-i, 2«i<«>i)> and the imknown twist (cr, w) in the form

(2^io-i, S^iWi), and remembering that (rj', $') is reciprocal to nil the twists of the

fi'cedom, we obtain n equations such as

8(170)1 + ia-i) = 8mi{<f>(x) + XO-) + So-i(x'« + «/'0"),

which afford the n unknown scalars Xi, x^, . , . x„.

(14.) Again, for freedom of the »'* order there exist n principal screws upon

which the reduced wrench and the corresponding twist are situated. For if we

replace 1; and i by to- and tu) respectively in the n equations we find on elimination

of the scalars x an equation of the n"* degree in t, and every root of this determines a

principal screw. These screws form a co-reciprocal system. Let (o-„ wi) and (0-2, wj)

be two principal twists corresponding to ^1 and t^ respectively. Thus if we write

[12] = S<i)i^o>2 + Swixo-a + Swjxo-, + Sa-iif/ar^ = [21], (xxv)

we see that

[12] = S{riiw<t + ^lO-j) = ti8{<riO)2 + o-gWi),

and also

[12] = S(i72Wi + ^20-1) = #38(0-10)2 + o-2<«i)

;

(xxvi)

hence, if #1 is not equal to 4, we must have 8 (0-10)2 + 0-20)1) = 0, and the screws are

reciprocal ; and also we have [12] = 0, and the screws are said to be conjugate screws

of the potential. We shall now examine the conditions of reality of the principal

screws. They are evidently real if all the roots t are real. If, however, U = t-¥ M,

and if #2 = # - ht', where h =J^, it appears that the corresponding twists must be

of the fonn

(o-,, o)i) = (o- + Ao-', 0) + Ao)'), and (0-2, 0)2) = (o- - her', o) - hm').

If these are conjugate we must have

[12] = (SoM^o) + 2So)xo- + S<7i/ro-) + (So)'<^o)' -f 2So)'xo-' + ^a'lf/a) = 0. (xxvii)

But this cannot be the case when the potential function - ^Som^o) - So)xo- - iSai/^o- is

essentially one-signed. Under this condition therefore the principal screws are real.

3 £ 2
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(15.) On Sir Eobert BaU's suggestion I append the quaternion treatment of two

important parts of the theory of screws. In general, the twist velocity of a body

acted on by constraints alone is constantly changing. Under certain conditions,

however, the twist velocity remains for a moment unchanged. The instantaneous

screw is then said to be permanent. Permanent and principal screws are in general

quite distinct, though they are identical in the case of a body ha>ing one point fixed.

We may write the dynamical equations in the form

%mp = I', "SmYpp = 7}', (xxviii)

m being the element of mass at the extremity of the vector p, and (77', $') being the

wrench arising from the constraints referred to the origin of vectors as base point.

K (o", ft)) is the twist velocity, we have

p = cr + VtoJp, and p = a + Ywp + Yoip = o- + Ywp + Yw{(r + Ytop). (xxix)

For a permanent screw o- and to vanish, and if the origin of vectors is taken at the

centre of mass, we find, on summation,

%mp = MYwar = $', %mYpp = Ywt^w = 17', (xxx)

where ^w = %mYpYwp is the angular momentum of the body (compare 417, X.).

In particular for three degrees of freedom if o- = 6ft), then »;' = " ^^'> because the

wrenches arising from the constraints are reciprocal to the twist velocities. Hence

Vftx^o) = ->7' = - 0'^' = - MO'Yoio- = - Jf6'Vft)6ft),

or, if n is the third invariant of 6,

Yo)tfi(o = Mn'^Ywd'^u)

:

(xxxi)

so the permanent screws have their axes parallel to the axes of the fiinction ^ - Mn~'d~^.

(16.) In the same case of freedom of the third order the principal screws are

given by
<ji<a = tcr + f)', Ma- = t<a + $', (xxxii)

and from these as »;' = - 0'$', and o- = Ou),

<^o) = t{e+ e')u)- MB'Biiy, (xxxiii)

so that the principal screws are parallel to the axes of the function (0+ ^)~' (0 + M&$).

(17.) The second point suggested by Sir Robert Ball is a proof of the theorem

that "two three-systems can in general be in one xoay correlated so that each screw

in one regarded as an impulsive screw, has a corresponding screw in the other

regarded as an instantaneous screw" (Theory of Screws, Art. 318). This theorem

arises from the determination of the dynamical constant* of a free body by administer-

ing three known impulsive wrenches, and by observing the twist velocities produced.

The dynamical equations are three pairs of the type

<^ft) = /on- VA/), if(or + Vwp) = X, (xxxiv)
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where (/x, \) is a known wrench, (o-, <a) a known twist velocity, and where <j>, p, and

M, the vector function, the vector to the centre of mass and the mass of the body are

unknown. The three wrenches produce a three-system fi = 6iX, the three twist

velocities another o- = ^20), and in terms of 61 and $2 the equations (xxxiv) hecome

<^a) = (Oi - Yp)\, Jf(^2 - Vp)o) = A. (xxxv)

Hence, for thi-ee and therefore for all vectors o>,

<f>o} = M{e, - Yp) {6. - Vp)ft). (xxxvi)

Now <^ is a self-conjugate, and therefore if n"i and n"^ are the first invariants of Bi

and Qi respectively, by a well-known property of Hamilton's function x,

{dA - e'.e\)ia = Vp^jo) + d'^Ypio + ^iVpo) + Vp^'io)

= Y{n\ - $,)p<o + Y{n'\ - ^'Opw = 2Vci2aj,

if C12 is the spin-vector of OA. Thus p is uniquely determined by the equation

(n"i + n"2 -O2- 0\)p = 2ei2, (xxxvii)

which is a necessary consequence of the self-conjugate property of ^. The vector p

being known, M~^^ is determined by (xxxvi), and Jfby the second equation (xxxiv).

Thus <^, p, and M are uniquely found. Also the unique correlation between the

three-systems is established by (xxxv). It is very instructive to investigate step by

step the amount of information afforded as to the dynamical nature of the body by

observing the twist velocities produced by known wrenches.*

IX.—ON FINITE DISPLACEMENTS.

(1.) It has been shown that the operator q{ )q~^ produces a conical rotation of

a system of vectors about their common origin, the axis of the rotation having the

direction of the quaternion or versor q, and the angle of the rotation being double the

angle q. Any displacement of a rigid body may be effected by rotating the body

about the origin of vectors until lines in the body are parallel to the positions they

will ultimately occupy, and by then translating the body until one point (and there-

fore all points) attains its final position. Thus if t is equal and parallel to the

translation, the vectors w and p to a point in the body, in its initial and final posi-

tions, are connected by the relation

p = T + q-wq'^. (i)

* Additional illustrations of the Theory of Screws will be found in the Notes of this Appendix

IX. to XII. inclusive.
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(2.) "We may write this equation in the form

p -- r' ¥ e + q{T!r - £)y"\ if t' = t + j'e^"' - €, (ii)

with the interpretations following. The same rotation about the extremity of e

changes -nr into e + ^'(ar - c)<?"*, and the translation t' completes the displacement.

Or a translation - c, followed by the rotation about the origin, and then by the

translation t' + e, is equivalent to the displacement. For example, writing (i) in the

form p = y ($'"^5' + -nr) §'"1, we see that the translation ^"'tj', followed by the rotation

about the origin, effects the displacement.

(3.) The relation (ii) connecting the translations t' and t, which must follow

rotations about different points in any given displacement, shows that the difference

of these translations (t' - t) is equal to the displacement one point would receive were

the body rotated about the other. The components of / and t along the axis of

rotation are consequently equal. Or multiplying the relation (ii) into j-, we have

(t - t) j- = yc - €3- = 2V . Vjc
;

(iii)

whence
c = - ^ (t' - t) y (

Vy)-i + x'S^q ; S (t' - t)Vy = 0. (iv)

Thus given t', the locus of the extremity of c is a right line parallel to the axis of

rotation.

(4). The equation of the central axis is found by expressing that the translation

t' = To is parallel to the axis of rotation. By (iv) the equation of the central axis, and

the value of Tq, are found to be

c = iVrj' i^qy + x-Sq
;

(v)

To = (Vj)-»STVy. (vi)

(5). The general decomposition of a displacement into a pair of displacements

results from comparison of (i) with

P = T2 + ^2(ti + 3'lWjyr')j2"S (Vii)

and the conditions evidently are

Ml = ? ; T = T2 + j2Ti?2 ^ (viii)

If these displacements are a pair of rotations effected about the points js and f

fixed in space, or the points e and f' fixed in the body,

T, = e - j-jcgT' ; T2 = « + r/ - ?j(e + r])qi^ ; 17 = Ji^jT' (ix)

if € = OE, 12 = EF, y]' = ef'. Thus (viii) becomes

T = € - qtq-^ + jy - q^-qq^-^ = « - q^q-^ + qif\q{^ - qir'- (»)
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"Writing for abridgment

et' = t' = T - 6 + q^q'^, (xi)

if E is arbitrarily selected tbe point t' is determined, and by (x) the second rotation

changes ef into a line equal and parallel to t'f. The locus of f is, therefore, the

plane bisecting kx' at right angles, and the second rotation may be made about any

line in this plane. The first rotation may be found by (viii) when ^2 is suitably

selected. In like manner if t"e = q~^¥.ifq^ we find by (x) q-i'^w^qz = t"f', and

the locus in the body is the plane bisecting et" at right angles.

Again by (x) if q^ or q-i is arbitrarily selected, e and f must lie respectively in

the planes determined by

S(t - € + q€q~^)yqi = and S(t - r; + q^nqi^T^^. = O. (xii)

Selecting any point e in the first of these planes, t' is determined by (xi) and the

axis of the second rotation is the intersection of the second plane with that bisecting

et' at right angles.

(6.) When the body is in the position (i) defined by t and q, a rotation about the

point e', followed by a translation, carries it to the position given by

p' = t' + e' + y'(T - e')?'-' + q'q^q-W\

while the same translation, followed by the same rotation about e", carries it to the

position

p" = e" + q'{T - €" + T')q'-' + q'q^q'W-

The difference in the positions is equivalent to a translation

p' - p" = t' + c' - 6" - ^'(t' + 6' - €")?'-' = 2V . (t' + c' - €")V?' . q'-\ (xiii)

which is small and of the second order if t' + c' - «" and Nq' .
q''^ are small and of the

first order. Under these conditions the order in which the additional translation and

rotation are effected is in the limit immaterial. If the additional rotation is made

about the origin of the vectors tr, which is a point fixed in the body and at the

extremity of t, the new position is given by

p' = t' + T + q'qvq'^q'"^- (xiv)

(7.) When q and t are functions of a single parameter, the equation (i) contains

full particulars of the path of the body, and if the parameter is a known function of

the time, the velocity of the displacement may be completely determined. If

p + dp = T + dr + (g- + ^q)T!r{q + dg')-^

the two following expressions for dp supposed infinitesimal,

dp = dr + YAwqwq-^ where dw = 2V . ^qq"^, (xv)

dp = dr + qYdivrq-^ where di = 2V . y-'dg',* (xvi)

* Evidently ^-'do.^ = 2V . q-\^qq-^)q = d*.
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easily follow from the consideration that if « is any small quaternion and $ any

vector

(1 + a)i{i + a)-' - $ = {I + a)${l - a) - i = a$ - $a = 2YYat

The first of these expressions shows that the additional displacement is due to the

translation dr and to the rotation dco ahout the hody origin applied after the rotation

q{ )q~K The second shows that had the hody originally received the rotation ahout

the body oiigin represented by dt, then the rotation q{ )q'\ and finally the

translation t + dr, the same position would have been attained.

(8.) If € is the vector from the fixed origin to any point on the axis of the

instantaneous screw, and if ^ is its pitch,

dr = {p + V(€ - T))d(i), (xvii)

because e - t is the vector from the body origin, the base point to which dr and dw

are referred, to a point on the axis. The pitch and the equation of the axis ai'e,

by (xv),

p = ^SdT(V . dqq-'y
;

€ = t + iV(dT + x){Y . Aqq-'T\ (xviii)

X being a variable scalar. Allowing the parameter in t and q, as well as x, to vary,

the vector equation represents the locus in space of the axes of the instantaneous screws.

The body locus of the axes may be obtained by substituting c - t = qrjq'^ in (xvii)

or (xviii), when we find

q'^drq = {p + Yr))di (xix)

and T] = r^iq-'drq + x)(Y . q-'dq)-\ (xx)

If we suppose these two surfaces to be constructed and fitted with guiding threads

or projections and depressions of suitable pitch, then when the body locus is suitably

placed on the space locus with corresponding generators in contact and rolled over it

subject to the constraint of the guides which will cause gliding along the line of

contact, the body will traverse the path prescribed.

(9.) When q and t are functions of two parameters, w and v, the body has two

degrees of fi-eedom. Given -nr, equation (i) represents a surface which would be

generated by a point fixed in the body were the body to describe every possible path.

The equation (xvii) is linear in the ratio d^ : dr, and represents a singly infinite

system of screws whose axes lie upon a cylindroid represented by the vector equation

(xviii), when the ratios x : du : dv vary arbitraiily. On account of the linearity of

(xvii) it appears that if two screws of the same pitch intersect, all the screws lie in a

plane, and pass through a common point. When the expression for p is rendered

integral by multiplying by T {Y'^dqq'^y, a quadratic in du : dv results which deter-

mines two, and, in general, only two instantaneous motions of given pitch. If three

screws have the same pitch, then all have the same pitch, and it is not hard to see, by

(x\-ii), without assuming any property of the cylindroid, that all the axes lie in a

plane, and pass through a common point.
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In general, for two degrees of freedom, every point of the body on one or other of

two lines, will describe an element of a line, not of a surface, as the body receives

every possible small displacement from a given position. The lines are the axes of

the two screws of zero pitch. For every small displacement may be compounded

from rotations about these lines, and a point on one line suffers displacement only on

account of the rotation about the other. The normal to the element of surface

described by any point in the body must intersect these two lines, for the normal is at

right angles to every possible displacement of the point, and, in particular, to that

due to a rotation about either of the lines.*

(10.) We anive at the particular case of which Darboux has made an extensive

use in his kinematical treatment of surfaces by expressing that a plane carried by

the body constantly touches the surface described by a point fixed in the plane.

Comparing (xv) and (xvi) the condition is simply

Sdpqyq'^ = 0, or S {drqyq'^ + dioquryq'^) = 0, or S (dtry + dctjry) = 0, (xxi)

if y is the direction fixed in the body of the normal to the plane, and if, for brevity,

do- = q'^drq. This condition must be satisfied for every possible displacement, so that

if we write

do- = o-idw + o-gdr, di = tjdtt + tadf, (xxii)

we must have separately

S(o-iy + ti'a^y) = 0, S(o-2y + i^vry) = 0. (xxiii)

And there is no difficulty in seeing that the same results would have followed had we

expressed that a line fixed in the body constantly intersects the two axes of zero

pitch (9.).

It is evident that dt may be regarded as representing the elementary angular

rotation dta referred to directions fixed in the body ; indeed, it has been shown that

di = q'^dcoq. In like manner, do- is the small displacement in space of the body

origin referred to fixed directions in the body. It must be carefully remembered that

do-, dw, and di are not like dr or dq differentials of vectors o-, w, and i. In fact,

ty (7),t

and

* Compare Darboux, Legons stir la Theorie Qinerale des Surfaces, Art. 58.

t Compare Darboux, loe. cit., Arts. 55 and 40.

Hamilton's Elkmknts of Quaternions, Vol. 11. 3 ^
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so that, on subtraction,

because

3^ _ 3^ = V(cr.^ - <r.c,) ; also ^ - ?^ = Y^.^
;

(^^^)
dv du dv du

dv ^ du du dv ^ dv^ du ^ du dv

^ at< ^ dv

Returning to equations (xxiii), if these are always satisfied for constant vectors

y and -ar, we can derive four new equations by differentiating each with respect to

« and V, and equating the results to zero. Thus, six equations are obtained which

lead to differential equations in t, q, u, and v, when y and ot are eliminated.

Observing that -ar occurs in the equations only in the combination Y-ary, it is evident

that every point on the line in the body through the extremity of -ar parallel to y will

describe a surface constantly touched by the plane through the point and at right

angles to y.

(11.) We have noticed in Section 9 the conditions under which a point is common

to the axes of all the screws corresponding to small motions with two degrees of

freedom. Eeplacing dr and dw by tj, wi and tj, odj successively in (xvii), we deduce,

from the resulting equations, the expression for the vectors to the 'point of inter-

section,

^^_^_
Y{r,-p<o,)(r,-p<o,)

^^^ 2^Sa„a„ = S(a,,T, + 0,3x0. (xxv)
b (Ti -p(0i)(t)2

If the pitches are everywhere equal and constant, the space and body loci of the

common intersection of the axes are

p = c, and w = y"' (c - t)^
;

(xxvi)

and corresponding elements of these surfaces are

dp = de, and d-ar = q'^ (de - pdo))q
;

(xxvii)

the second expression being reduced by (xvii) from

dw = q-' (de - dT)q + 2q-' (Y(€ - T)Ydqq-')q.

In the case in which p is zero, the lengths of corresponding elements are equal,

and we deduce the elegant theorem of M. Ribaucour,* the loci not only toiich, but roll

on one another without sliding. The surfaces are applicable.

• Darboux, loe. eit,, Art. 68; Ribaucour, Sur la diformatioti dei nirfaees {Comptes rendus, t. Ixx..

p. 330).



IX., X.] KINEMATICAL TREATMENT OF CtJEVES. 403

(12.) The usual formulae with respect to moving axes may be deduced from the

following equations, in which the quaternion and vector, q and o- are variable in any

manner. The vectors p and qurq-^ being regarded as terminating at a common point,

while the former originates at a point fixed in space, and the latter at the extremity

of the vector q<rq~^,

p = q{,<r + sr)q~\ and dp = q (do- + d-nr)^-' + ^Vdi (cr + ar)q~\ (xxviii)

Hence
Dp = q'^dpq = do- + dv + Vdt (o- + w), (xxix)

if we write simply as a matter of notation, Dp = q~^dpq. This formula includes the

usual formulae of small displacement, or velocity, with respect to moving axes.

Differentiating p a second time by the characteristic d, we may write

Wp = q-'d^pq = dV + dV + Vd«i (o- + tr) + 2Vdi (do- + d^-) + VdiVdt (o- + isr), (xxx)

which includes the formulae of acceleration. Of course if w is fixed with respect to

the moving axes, the terms in dw and dV disappeai-.

X.—ON THE KINEMATICAL TREATMENT OF CURVES.

(1.) To extend the kinematical method employed in Art. 396, imagine a point

travelling with unit velocity along the curve and carrying with it three mutually

rectangular \init vectors a, p, and y, so that a continually touches the cm've, while

the plane of a and /? preserves closest contact with it, or in other words, osculates it.

If we choose we may select (3, so that in its initial position it has the direction of the

principal normal. Having made a selection once for all, there will be no confusion,

provided the motion is continuous.

It is geometrically obvious that the angular velocity (w) of the system may be

resolved into two components round a and y ; thus we may write

oj = atti + yCi. (i)

We may regard «i and Ci as the deriveds with respect to the arc s of two angles a

and c. Of these a is the total angle through which the system has turned about

a, starting from any initial point on the curve ; in like manner c is the total angle

through which the system has turned about y ; and it is convenient to suppose that at

the initial point 8 = 0. We shall use a^, Cj, &c,, to denote the second and third

deriveds of a and c.

It is obvious that «i is the torsion, and Ci the curvature at the point considered.

3 F 2
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(2.) If, as in 396 (5.), -q is any emanant vector drawn from the mo\ing point,

we have by the general formula given in the note to p. 293 the relation

D.^ = ^+Vu,7;, (ii)

where in passing along the curve D,>; is the absolute rate of change of the vector

V, and~ its rate of change
as

the system, (ii) reduces to

Tj, and— its rate of change relative to the moving system. If rj is fixed relatively to

D,77 = V(i)T7, (iii)

and this equation by (i) gives, if a^ = + y,

D,a = pCi ; D,)8 = y«i - ac^ ; D,y = - ^fl!,. (iv)

(3.) Again, if p is the vector to the moving point

D«P = a, (v)

and we may differentiate successively and obtain by (iv)

D,'p = Pc2 + (ycfi - aci)ci,
j-

(vi)

D/p = /Scg + 2(ya, - aci)c2 + (y«2 - olC2)c^ - P{ay^ + Cy^)ci.]

In general, if D,"p = A^a + B,fi + C„y, (vii)

the coefficients ^„, B„, C„ are assignable functions of the scalars n^ and c, and of their

successive deriveds. It is evident by (vi) that the deriveds of highest order occur in

the term

Pe,^\ + y^n-aCi. (viii)

(4.) This method lends itself readily to the consideration of the contacts of curves.

"Writing down a few terms in the development in powers of «,

p = Po + «a + ^s^pCi + i«^(/8<?2 + (yrti - aCi)c^) + &c., (ix)

we see that the deviation from an osculating ciir^'e is k^^fiCi + y^iCi) for a circle

;

i«'yai(!, for a parabola or conic ; and ^(r^Pcz for a helix (p. 97) ; because Oy and c^ are

zero for the circle, ai for the conic and c^ for the helix. Generally by (viii) the

deviation between two curves is ultimately

— [^(tf„., - c'„-,) + y(rt„.2 - o'„.,)<?i]. (x)

Though the work is necessarily long, there is no difficulty in finding the equation

of Hamilton's twisted cubic by assuming us its equation V(p - p^^{p - Po) + ^^(p-po) = 0>
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and differentiating until a siifficient number of equations are obtained to determine X

and <^. Perhaps even more briefly the result may be obtained by assuming

p = Po + (0 - tpX. where t = 8~^ + to + <^i< + &c., (xi)

and determining A,
<f>

and the coefficients t^, ti, &c., so that A may equal (<^ -i){p- Po),

neglecting only powers of the sixth order in s.

(5.) To illustrate integration of equations (iv), assume that the ratio of curvature

to torsion is constant. If Ci = Ui tan JZ, the fii'st and third equations give immediately

D, (a cos -H"+ y sin H) = 0, or a cos ^3"+ y sin M = k, (xii)

k being a constant and unit vector of integration. The piincipal normal /3 is thus at

right angles to a fixed direction, and the curve is traced on a cylinder whose genera-

tors are parallel to k. It is a geodesic because /3 is normal to the cylinder or because

the curve cuts the generators at a constant angle -ff.

"We now assume /8 = e cos I +j sin I when the second equation (iv) shows that

D,)8 = AyS -3- = (y cos Ja - a sin J?) -j- = y«, - aci,

and requires

dl = cosec Sdc = sec Mda = >/ a^ + e^ d«.

Hence if a, or Cj is known in terms of », I is determined ; otherwise / is an arbitrary

fimction of «. Since y = a)8, we have by (xii)

D,p = a = A (cosH - {i cos I +y sin V) sin jET),

so that if Po is a new constant of integration

p = p„ + ad« = Po + ^« cos 5" - ^ sinH [i cos I +j sin I) dl.

Jo Jo

In particular for the helix I = J ai^ + <?i* «, and the integration can be effected.

(6.) The vectors a, /8, and y may be expressed in terms of the deriveds of p either

directly or by aid of (v) and (vi) in the forms

a = D^
; i8 = <?r^D,V ; y = «r'D. ('T'D.'V) + aC'cJ)^ ;

(xiii)

and by differentiating the expression for y we find a differential equation of the

fourth order

D. (af'B, (cf^D/p) + ar'c.B^) + (iref^B.^p = 0. (xiv)

This can be integrated in certain cases.
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(7.) If the curve lies upon the sphere

T(p-<r) = li, (xv)

successive differentiations with respect to s affoixi the equations

Hence

and these equations in general determine the osculating sphere. If the curve is

spherical so that a- and H are constant differentiation of either of the equations (xvii),

or of the third of (xvi) gives

„ d2 1 1 ^ 1

d^2-+- = 0; ^ence -=Ji cos {a- «„), (xviii)

«o heing a constant of integi'ation.

(8.) In the general case, instead of (xviii) differentiation of (xvii) shows that

d<r = yma; EdJR =M -, (xix)

60 if dotted letters refer to the locus of centres of spherical curvature, we may write

do- = a'ds' and a' = y if ds' = + JSda. (xx)

Having selected a sign (we must have a = ±y) we differentiate again by the formulae

(iv) and

fi'ci'da' = - /Soirfs. (xxi)

Here again there is a latitude in the choice of sign, but if we select

;8' = - /?, then c,' = JS~^ ; dc' = da, or c' = a; (xxii)

if the angles c' and a are measured from coiTesponding initial points.

Since a'/8' = - y^, it follows of necessity that

y' = a, whence - ft'a'ids' = ftcids and o'l = CiUi'^ E'^ and a' = c. (xxiii)

Finally we may remark that as the moving point travels with unit velocity along the

curve, the centre of spherical curvature tmvels with the velocity Eoi and at right

angles to the osculating plane ; moreover the angular velocities of the two systems

have the same direction but that of the derived system is (iiaj)"' times that of the

original.
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(9.) To determine the sign of E geometrically, we must calculate the deviation

from the osculating sphere. This may he readily done hy assuming it to he

— «*ar (p - 0-),

or hy expressing that the curve

p _ ,«a; (p - 0-)

passes through five consecutiva points on the sphere. The result is

X = a^hiBr'^E. (xxiv)

(10.) On the other hand, given the locus of centres, the relation hetween its arc

d«' and that of the sought curve ds afEords the differential equation

d«' 1 d^ 1 , ,

d^'
= ^ ^ d.^

.-;'
^"^"^

and the solution is

- = sin c' Ur-. cos c'dic' - cos c' —, sin </dc', (xxvi)
e^ ]a(f J a&

arhitrary constants of integration being understood. Hence if c{^ is any particular

integral and x and y constants of integration,

p = cr + ^( — + ircosc' + ysinc' ] - a' v-, (
— + ^cosc' + ysinc' j • (xxvii)

All these curves have of course corresponding elements parallel. The ratio of the

element of the arc of the curve ir, y to that for vrhich x and y are zero is

1 + Ci (a; cos c' + y sin (/). (xxviii)

(11.) "We may inquire under what conditions the unit vectors at corresponding

points on two curves can remain constantly inclined to one another. This condition,

of course, is satisfied hy the curves of the last Section.

Assuming
a' = /a + m/3 + ny, (xxix)

where I, m, and n are constant, we find on differentiation

jS'c'ids' = - amciis + ft {Ici - nui) ds + ymaAs. (xxx)

If this vector is constantly inclined to a, ^8, y we must have either the ratio «,
:

Ci

constant, or w = and In = 0. The conditions in (8.) are m = l=0. Yov m = n =

corresponding elements of the curves are parallel. In every other case both curves

must be geodesies on cylinders (5.).
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(12.) For the emanating lines and emanant surfaces generated by them, two

different notations suggest themselves. One is already given (ii), and the motion of

the line is referred to the moving system. In the second notation we may suppose

the line at any instant to be twisting about a certain screw (396, (10.)) of pitch p with

an angular velocity 0. This vector B is, of coiirse, at right angles to the unit vector ?;,

and we have (compare (ii))

d?7
D.t; = ^iy = — + Vwiy. (xxxi)

The shortest distance between neighbouring positions of the emanant is obviously

/>^d.«, and for neighbouring positions we have

p + ^oi? + i»^d« = p + Dp + (^0 + ^d«) [t] + D17), (xxxii)

in which w = p ^ t-q'x^ the equation of the emanant line in one position, i^ the value

of t for the point of closest approach to the next position, and x some scalar. Ke-

placing Dp by ad» and Dr; by ^jjds, and retaining only terms of the first order, (xxxii)

reduces to

pO = a^ todrj + ccrj. (xxxiii)

From this, p = QaO'^ ; t^ = Sa>;^» ; x = Sai/. (xxxiv)

The line of striction of the surface is the curve whose equation is

ar = p + ^qT; = p + lySaiy^^ = P - ''7Sa(D,i;)~*, (xxxv)

or it is the locus of points of closest approach of consecutive generators.

The scalar p is called the parameter of distribution, and is usually defined as the

ratio borne by the distance between two close generators to the angle between them.

It vanishes for a developable.

(13.) When « and t both vary in the equation

w = p + tt} (xxxvi)

the element of any arc on the surface is

D-ar = (a + tdrj) ds + r/df = {p6 +{t - tg) Orj - xrj) d« + Tjdt (xxxvii)

by (xxxiii); and the normal vector is, consequently,

V = Yari - to = $ {prj + t^ - t) = {t^ - t - prj) 6. (xxxviii)

The anharmonic of four normals at points on a common generator is

1lil\ !^Z^* = *llJl . ^IzJi
;

(xxxix)
1/3- Vs Vi-v^ tz- ts t^- ii

and in this equation, which expresses that the anharmonic of the vectors is the

anharmonic of the points on the generator, we may rdplace the vectors v by any lineai*

and distributive function of them, for instance, by Sv('ar - p). Thus, the ratio is also

the anharmonic of the four tangent planes.
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If we express that two of these nonnals are perpendicular, by (xxxviii) the

condition reduces to

^{pyi^h-t){t,-if-pr,) = 0^ or {t-t,){1f -t,)+p-' = 0. (xl)

The corresponding points form a system in involution having its centre on the line of

striction and having imaginary foci. Moreover, as

"o Opv PV \ P I

the tangent of the angle A between the tangent plane at t and that at t^ is

tan .4 = — • / i.-\

p (xlii)

It may be proved that the measure of curvature, or the product of the principal

curvatures K, and Kj, can be expressed by the very simple equation

K,K, = - , £ = - 2^^, (xliii)

(p' + (t-ion P' '
^

^

but we cannot delay on this.*

(14.) We can obtain a more explicit form of the condition

^ = 0, or So^ = 0, or SaiyD.iy = 0,

that the emanant surface should be a developable by assuming

rj = acos/ + /88in^ cos m + y sin / sin m, (xliv)

and substituting in the third foim of the condition. This gives

sin.1 d{a + m) - cos I sin m do = 0, or sin / = 0. (^Iv)

Hence, the only developables generated in the plane of a and y {m = ^) are the

tangent line developable {I = 0), and the rectifying developable (cotZ = tan^).

No line except a in the plane of a and ft can generate a developable. Any line

whatever in the plane of ft and y is capable of generating a developable provided

d (m + o) = 0, or m = a^- a, Uo being a constant.

We thus obtain the system of developables

w = p + t{fteo8 {a - «o) - y sin (« - ^'u)), (xlvi)

whose cuspidal edges are

IT = p + ^ - ^ tan (« - «o).
(xlvii)

* Compare the Note immediately following (section (12.)), p. 416.

Hamilton's Elements of Quaternions, Vol. II. 3 G
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These cui-ves all lie on the polar developable generated by the nonnal planes to the

curve, and they are the evolutes of the curve.

Again, by (xlv), except for a geodesic on a cylinder, no developable can be

generated by a line fixed relatively to a, P, y, except the tangent-line developable.

In general, it may be shown that the cuspidal edge of any developable is deter-

mined by

,^ _ji^J_. (xiviii)

A + <?! cos»»

Also, if the line of striction of any emanant surface coincides with the original curve,

SaD.iy = gives

d^ + cos w dc = 0, or sin ^ = 0, (xlix)

and, in this case, the pitch of the surface is

sin/
P = -

Ci cos / sin w - (ffi + vti) sin /
(1)

XI.—ON THE KINEMATICAL TREATMENT OF SURFACES.

(I.) For the kinematical treatment of surfaces we may conceive two systems of

curves, determined by two parameters u and v, to be traced upon any surface so that

the curves of one system are orthogonal to those of the other. At any point on the

surface, let a be a unit vector tangent to the curve u variahle, and yS tangent to the

curve V variable. Then a)8 = y is a unit vector normal to the surface. These three

vectors may be supposed connected with three fixed vectors /, j, and k by the

equations

a = qiq-\ ^ = qjr\ 7 = ik~\ W
where q is a. quaternion function of u and v.

Generally (compare Note IX., Sections 7 and 12, pages 399 and 403)

if $ = qvr\ t^en d^ = q{dri + Ydir))q-\ where di = 2Yq-^dq. (ii)

And, in particular, if -q is invariably connected with «, /, and k, the relation is

simplified into d^ = qYdirjq-^ because di; = 0. We shall use the notation

dt = tda +jdb + kdc = {iai +jbi + kci)du + {ta^ ^jb^ + kc2)dv, (iii)

but it must be observed that da is not the differential of a scalar- function («) of u and

r, because di is not the differential of a vector. In this notation we find at once, by

(i) and (iii),

da = pdc - ydb, dyS = ydfl - adf, dy = adb - fida. (iv)
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(2.) Now, if p is the vector to a point on the surface,

dp = aAdu + pjBdv, (v)

where A and £ are functions of u and v, and the square of the linear element is

d«2 = Tdp* = A^du^ + B'dv^ (vi)

and elements of the orthogonal curves are Adu and Bdv, respectively.

We shall also write generally

dp = (a cos ^ + /3 sin l)ds, (vii)

I being the angle any curve on the surface makes with the curve u variable.

(3.) We shall now show that the eight scalar functions of u and v, A, B, «i, Ji, Cj,

ffo, h, and fj are not all independent. Since p is a function of ?/ and i\ the condition

Z^^ di
(^") =

3^ ^^^) = ^^ (viii)

must he satisfied. By (iv") this hecomes

7k A T^Ji

-^ + {pCi - yh) A=P — + (y«i - aci)li,

so the scalars are connected by the equations

= - CiB; —= CiA; a^B +M = «• (ix)
dv du

Moreover, we can show that

^' -
I?

= Vc... (x)

For remembering that dq~^ - - q'^dqq'^, we have

and

remembering also that y is a function of m and e? (1.) so that the term involving

the second differential of q cancels on subtraction, and bearing in mind that

pq - qp = 2Y.YpYq, if p and q are any two quaternions, there is no difficulty

in establishing equation (x).

3 6 2
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Hence we obtain three additional equations equivalent to (x),

The same equations (xi) would have been found, though somewhat less simply,

had we employed this other vector dw = 2Ydqq'^ = qdiq'^.

The vectors coi and €i>8, analogous to ii and tj, satisfy

dltii 8(1)2 -rr

(4.) If JS is a principal radius of curvature the usual equation

dp + H dUv =
becomes in this notation

aAdu + l3Bdv + H {adb - (3da) = 0, (xii)

which affords the two scalar equations

{A + Ml) du + Rh^dv = 0, Raid:U - {B - Ra^) dv = 0. (xiii)

From these, on elimination of the ratio du : dv, we obtain the quadratic

i2* {aib^ - <hhy) + R {hB - a..A) + AB = 0, (xiv)

whose roots are the principal radii. This equation may be modified by (ix) and (xi)

so as to exhibit Gauss's remarkable theorem on the measure of curvature. In fact

Ri-'Ri' = A-'B-' {aA - <hh) = A-'B-'
{^^

- ^') by (xi)

;

and by (ix) this reduces to

The measure of curvature thus depends solely on the linear element (vi), and is

unaltered when the surface is bent or twisted in any manner without altering the

length of any arc.

(5.) Eliminating R from (xiii), the directions of the lines of curvature are

given by

^dwdrt + Bdvdb = or Aa^du^ + {Aa^ + Bhi)dud.v + Bbidv^ = 0. (xvi)

Hence, by (ix), we can see that the lines of curvature cut at right angles, and if we

take these lines for the orthogonal systems (1.), we must have

Oi = 0, bi = 0, (xvii)

whence by (xiii)

*i = - ARi\ (h = BRf\

or more conveniently, if K, and K2 are the principal curvatures by (vii)

da = BKidv = Kj sin Ids, db = - AK^ du = - K, cos I ds. (xviii)
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The relations (ix) and (xi) are equivalent to

__J_9^ _1^^. ??2_ ^^1-^2 9^ 8Ki _ K2 - Ki 8^
'^^~ B dv' '^~ A du' du ~ B du' "87 ~ AT" 'dv ' ^^^^^

together with (xv).

(6.) For any cm've on the surface by (v) and (vii) a unit tangent vector is

p' = TJ {oAdu + ^Bdv) = a cos I + (i sin I, (xx)

the accent denoting, as usual, that the vector p has been differentiated with respect to

the arc s.

Taking the differential of the second of these expressions by (iv)

dp' = p'ds = {fide - ydb) cos I + (yd« - adc) sin ^ + (- a sin ^ + /8 cos I) dl,

or more simply

p"d« = yp' (dc + d^) + y (sin Ida - cos Idb). (xxi)

From this equation may be deduced all the properties of a curve traced upon the

surface depending on differentials of the second order,

(7.) The projection of the vector of curvature (p") on the normal to the surface

(y), or the component of the curvature in the plane containing the normal to the

surface and the tangent to the curve is

sin Ida - cos Idh _ Bdvda - AdvAh
"

d« " IFdxfVm^

= sin / [ -^ cos ^ + -^ sin M - cos / ( ^ cos / + -^ sin n, (xxii)

these transformations being effected by the relations

cos Ids - Adu, sin Ids = Bdv.

As K does not involve the differential of I, or the second differentials of u or v,

it is the same for all curves having a common tangent and lying on the surface.

In fact, K is the curvature of the normal section of the surface, and Meusnier's

theorem is incidentally proved. Also Euler's theorem follows by (xviii) as we may

write

K = Ki cos* I n- K2 sin'^ I, (xxiii)

when we take the lines of curvatures as the curves of reference.

The curvatures of the normal sections through the curves of reference are

- A'^bi and B~^a2.
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(8.) The component of the curvature in the tangent plane is, in like manner,

K' = {dc + dl)d8-K (xxiv)

This is the geodesic curvature of the curve. It vanishes if the curve is a geodesic

;

and in this case the curve projects into a curve in the tangent plane inflexionally

touching the tangent. Hence

dc + d^ = 0, or —-—-___ d tan-i -r^ = (xxv)
ov B du A Adu

is the equation of a geodesic, the transfonnation being made by the aid of (ix). As

this equation involves only A and B, the coefficients of the line element (vi),

geodesies remain geodesies when the surface is deformed without stretching. This,

of course, is otherwise obvious.

The geodesic curvatures of the curves of reference are A'^Ci and B'^e^.

(9.) Instead of proceeding directly to a third differentiation, it is simpler to

modify the results already obtained by writing in accordance with the notation used

in the kinematical treatment of curves (Note X., page 404),

p' = a', p" = /3'c'u and dfi' = {y'a\ - a'c\) ds,

and also by introducing a new angle m suggested by (xxi), and defined by the

equations

(/i cos mds = dc + dl, c\ sin md% = sin / d« - cos I db. (xxvi)

In this notation, the relation (xxi) affords

/3' = ya' cos w + y sin m and y' = y cos w - ya' sin m
;

(xxvii)

whence,

y = /3' Binm + y' cos m, ya! = )8' cos w - y sin m. (xxviii)

We may observe that m is zero for an asymptotic curve and a right angle for a

geodesic. It is, in general, the angle between the normal to the surface, and the

binormal to the curve.

Thus prepared, when we differentiate y expressed in terms of w», ^, and y' by

(xxviii), we have

adb - ySda = (y8' cos m - y' sin ni) {dm - rt'jds) - a'c'i sin mds. (xxix)

From this we recover the second of (xxvi), as well as the new equation,

da' - dm = cos ^ d«p + sin ^ dh. (xxx)

This .equation may be reduced to

da' - dm = (Kj - Kj) sin I cos I d*, (x.xxi)

when, without loss of generality, we take the lines of curvature as the systems of

reference (xviii).



XL] KINEMATICAL TREATMENT OF SURFACES. 415

(10.) Thus the difference between the torsion of a curve traced upon a surface,

and the rate at which the angle between its osculating plane and the tangent plane

varies, is equal to half the difference of the principal curvatures multiplied by the

sine of double the angle between the curve and a line of curvature. This theorem has

many consequences. In the first place d«' - dm is the same for all curves having a

common tangent ; it vanishes for a line of cuiTature ; when a surface is cut by a

plane, the rate of the variation of the angle between the plane and the tangent plane

at any point of the section equals half the difference of the curvatures at the point

multiplied by the sine of twice the angle between the trace and a line of curvature

;

when a line of curvature is plane, the surface cuts the plane at a constant angle ; and

when a surface cuts a plane at a constant angle, the intersection is a line of curvature

or the surface is a sphere ; the torsion of a geodesic is

(Ka - Ki) sin / cos ^

;

and this has been called the geodesic torsion by M. 0. Bonnet, to whom the important

and elegant relation (xxxi) is due.*

Also for the intersection of two surfaces,

(Ka - Ki) sin / cos ; - (K'2 - K'l) sin /' cos ^' = y- (xxxii)

gives the rate of change of the angle at which the surfaces cut. Hence, if two

sui-faces cut at a constant angle along a line of curvature on one, the intersection is

also a line of curvature on the other.

It is well to remark that we have now exhausted all the relations which are not

obtainable by direct differentiation from those already found. "We have seen

(Note X.) that all the affections of a curve can be expressed in terms of the unit

vector a', ft',
y' of the curve, and in terms of the curvatm-e and torsion and their

deriveds. But we have found the curvature and the torsion, and have expressed

a', /S', y' in terms of a, /3, y, /, and m.

(11.) If we take the cm-ves u variable to be geodesies, we have by (xxv) c^ = 0.

Hence by (ix) ^4 is a function of u. Changing the variable u to jAdu, the new

variable is simply the arc of the geodesies. Then A becomes unity, equation (xv)

reduces to

„^ I d*£
r ^

K,Ka = -^g^, (xxxm)

and the geodesic curvature of any curve (xxiv) is

„. sin I dS dl , 9^ j sin Ids
r \

* Compare Darboux, loc. clt., Art. 505.
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Hence the total curvature of any portion of the surface is

the single integrals being taken over the bounding curve, using Stokes's theorem in

the transfonnation.

If the bounding curve is made up of geodesies, K' is zero ; and the integral is 27r

minus the sum of the angles through which the direction of a point travelling round

the boundary suddenly turns at the points of intersection of the bounding geodesies.

We may also notice the relation

KiK2 =-—i-KV, (xxxvi)

where K'z is the geodesic curvature of the orthogonal curve v variable.

(12.) For ruled surfaces, when we take the generators to be the curves u variable,

a is independent of u, and hi = Ci = 0. The conditions (ix) and (xi) reduce to

- = ..; a,B^h = 0; - --^ = 0', -^ = c^a,
; g- = - M. (xxxvn)

These give on combination if G = {- K1K2) (compare (xxxiii))

The last of these expresses that £^ is quadratic in u. Hence a^ h^, and c^ are

unchanged when the surface is deformed without stretching.

The second equation shows how to find the measure of curvature of a ruled surface

in an excessively simple manner. By (iv)

so if a is the direction of a generator, and v the normal vector at any point

G = Sav-' ^ = ( - KiK^)*. (xxxix)
ou

Or if p = ^ + ^a is the surface (compare Note X., (xxxiv), (xxxviii), and (xliii)),

G =
^°^''^'

=
-^

(xl)
Va(<^'+^a7 P^ + it-i^T

where /„ corresponds to the point on the line of striotion.
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(13.) We may also modify (xxxvii) of the ITote just cited by replacing 17, 6, »,

and -ar by a, aa', V, and p, respectively, when we obtain

Dp = {pa + {t- t^)) a' dt? + a (d^ - xdv). (xli)

If we now take as a new variable

dw = d^ - xdv, or u = t - /S<^'a dv, (xlii)

we find from (xli)

Dp = {pa+{u- Mo))a'dt? + adw ; TDp' = T ,{pa + u- n^Y a'M??^ + d^J. (xliii)

Thus for a ruled surface

B = Ta'T (pa + it - n^), (xliv)

and in particiilar for a developable B = Ta'(« - u^). Obviously Ta' is the angular

velocity of the generator if v is taken to be the time. It is also for the developable

the curvature of the cuspidal edge if v is the arc of that edge.

For a developable y does not vary with «, hence o, = and all the scalars

vanish except Ct and a^, the curvature and torsion of the cuspidal edge when v is

its arc.

(14.) In the last section the change of variable is introduced artificially. To

determine the orthogonal system directly for the surface

p =
(f>
+ ta, Ta = 1, (xlv)

assume t =/{v) + u where /is some function of v. The direction of the tangent to

the curve p =
ff> + of is dp =

(<f>'
+ a'/+ af) dv and this is at right angles to a if

Sa<^'-/ = so /=JSa«^'dv=JSad0. (xlvi)

Thus the orthogonal system is found.

In like nmnner to determine the system of curves orthogonal to the system v

constant on the surface

p = <i>{t, v), (xlvii)

assume t =/(w, v) and we see that/ must be a solution of the differential equation

of the first order

i-^*(ir=«- (^-")

XII.—SYSTEMS OF RAYS.

(1.) If the vector /8 is a given function of a variable vector o the equation

p = ^ + ta (i)

represents a regulus, a congruency or a complex of lines according as one, two or

three scalar variables are involved in the constitution of a, or in other words according

as the vectors a when coinitial terminate upon a curve or upon a surface or are

wholly arbitrary.

Hamilton's Elrmbnts of Quaternions, Vol. II. 3 H
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A regulus of lines composes a ruled surface. We shall not consider those

surfaces here as they have been dealt with in another note.*

For a congruency the simplest form of equation (i) appears to be that in which

the vectors a are of constant length. They may then be considered to involve two

angular parameters, and the most general congruency can be represented by an

equation of this kind.

(2.) In general we shall write

dft = <fiia = (^ + Yc) da, (ii)

<^ being a linear vector function having $ for its self-conjugate part and e for its

spin-vector. We shall also use the notation

, „da dUa /...v

do> = V— = -j=-, (ill)

a va

so that dci) is the rotation which applied to the ray represented by a renders it parallel

to the ray represented by a + da.

(3.) The simplest mode from a kinematical point of view in which a ray of the

complex can be displaced into the position of a neighbouring ray is to twist it about

a certain screw. We shall however find it more convenient to suppose the displace-

ment efEected by a translation combined with a twist about a screw. If dr is the

translation, and p the pitch of the screw, the resultant translation is dr + jpdw.

Expressing that this translation applied to the ray (a) makes it intersect the ray

(a + da) we have the equation

fi + ta + dr + pd(x) =
ft + <fida + {t + dx) (a + da), (iv)

where dx is some small scalaj', and where t detennines the point on the ray (a)

brought to intersection with the ray (a + da).

(4.) Now, we notice that dw depends only on the component of da at right angles

to a. This suggests that we should consider separately the two components of da ; so

we write in general

da = Vdaa"' . a + Sdaa"' . a = dw . a + dy . a, (v)

where dy is the scalar Sdaa-'. Hence neglecting the small term of the second

order dada the relation (iv) reduces to

dr + pdo) = «^ (dwa) + tdtaa + dy^a + (da; + tdy) a. (vi)

• Note X., sections (12.) and (13.), page 408.
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"We are at liberty to select cIt in any way we please. The simplest selection is

dr = a~^Ya(f)adi/, (viij

and then (vi) reduces to

{p + ta)d(a = a-^Va<^ (dwa), (viii)

because

6jX+ {t + Sa"*<^a) dy + Sar^ffi (dwa) = 0,

by (vi) when dr is at right angles to a (vii).

(5.) A slight knowledge of the properties of the cylindroid will now give us the

key to an extensive view of the arrangement of the rays of a complex or congruency in

the neighbourhood of a given ray. Equation (viii) may be regarded as determining

a two-system of screws, for dw (= Vdoa"') can be resolved into two components

having fixed directions normal to a and dy has completely disappeared from this

equation. We commence then by twisting the ray (a) about any screw of this

system. The position it occupies after an infinitesimal twist is that of a ray of the

congruency determined by the condition dy = or dTa = 0. In this way by

twisting the initial ray about all the screws of the cylindroid we obtain the whole

assemblage of rays of the congruency in the neighbourhood.

The ray through any point on the cylindi'oid near the axis may be constructed by

drawing a perpendicidar to the generator of the cylindroid through that point inclined

to the axis at a small angle whose circular measure is the quotient of the intercept

on the generator by the pitch appropriate to that generator.

Now two screws of the system have in general zero pitch. Any small twist

on any screw of the system may be resolved into rotations about the axes of these

screws of zero pitch. When the initial ray receives a small rotation about one of

these axes its point of intersection with the second describes a small arc of a circle

normal to TJa and to the axis of rotation, A small rotation about the second axis

will cause this point to deviate from the arc by a small distance of the second order of

magnitudes. So to the first order all the rays of the congruency intersect two fixed

lines both of which are at right angles to a and each intersects one axis of zero

pitch and is at right angles to the other. In particular two rays intersect the

initial ray. These have been rotated about -one axis only. The axes of zero pitch

are the focal lines and their points of intersection with the initial ray are the

principal foci of that ray.

Again the point at which the initial ray is closest to a neighbour is called by

Hamilton a virtual focus. We see that the closest points on the neighbours lie on

the cylindroid generated by the shortest distances. Hence as the cylindroid is

contained between two planes normal to the initial ray the virtual foci are limited

to a certain range on that ray.*

* Tram. Eoy. Ir. Acad. vol. xvi. p. 62.

3 H 2
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(6.) We now turn to equation (vii) which shows that all the rays of a complex

close to a given ray may be constructed by successively displacing the rays of a

certain congruency by translations in a fixed direction normal to the initial ray and

of varying but small amounts. Inasmuch as the rays of the congruency intersect two

elements of right lines, the rays of the complex pass through two small parallelograms

situated in parallel planes each having a pair of sides equal and parallel to the

translation. All the rays are parallel which intersect a line in the plane of one

parallelogram parallel to one of these sides.

(7.) To verify the conclusions of section (5.), and to calculate the positions of the

vaiious lines, we re-write equation (viii) in the form

{^ + t) . dwa = pdo) + adz (ix)

whence ^A.dwa , „<i.dwa , „<f>.da>a / x

do) dwa a

At a principal focus two rays intersect and p is zero ; therefore

dcoa = {<!> + ty^adz. (xi)

Operating on this equation by Sa we find

Sa (<^ + t)-'a = 0, (xii)

which is equivalent to a quadratic in t whose roots determine the foci.

The extreme points are given by the analogous equation*

Sa ($ + t)-'a = (xiii)

in which the self-conjugate part * replaces <fi. For we see by (x) that t is the

inverse square of a radius of the conicf

Sp^p = 1, Sap = 0, (xiv)

and its greatest and least values are the inverse squares of the axes of the conic.

If the line p = ft + sa-v yr {y variable) meets all the neighbouring rays

S (<^ . dwa - 8a) (a + dwa) t =

or Sdwa («^' + 8) Vra = (xv)

when terms of the second order arc rejected. If this is true for aU vectors dwa that

is for all vectors at right angles to a, it is equivalent to

(<^' + ») Vra II
a or Vra

||
(<^' + H)-'a. (xvi)

* This equation and the last are given hy Molenbroek, AnwendtHUf der Quaternionen an/ die

Geomelrie, pp. 236-238.

t Compare p. 263.
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Operating on this by Sa we see that s = «i one of the roots of (xii) and that the

line passes through a principal focus. If t = oT^ (^' + Si)"^a the conditions are

satisfied and it is very easy to show that a~^ (0 + S2)~^a, which (xi) is the axis of the

second screw of zero pitch, is at right angles to t.

(8.) "We shall now invert the functions in (xii) and (xiii) and exhibit the relations

connecting the roots of the two equations.

If for a moment we replace a by VA/a and
(f>

-^ t hj <j>t hj Hamilton's funda-

mental theorem of inversion (xii) is equivalent to

8Yk,jLY<f>/\<li/fi = SVX/iY ($, - Vc) X ($, - Yc) /x = 0. (xvii)

A slight expansion shows that the part linear in c disappears since $< is self-conjugate

(ii), while the part quadratic in c is - (ScYA/i)^

(9.) "We have therefore two forms for (xii)

^V + 2^Sa {m" - <^)a + Saif/a = ; Pa- + 2^Sa {m" - *)a + Sa*a - (Sea)- = ; (xviii)

and similarly two forms for (xiii)

^V 4 2^Sa (m" - *)o + Sa*a = ; t^a? + 2!5Sa (m" - <^)a + &aij/a + (Sea)^ = 0, ^(xix)

remembering that by Hamilton's formula of inversion

\f/t
= mt<f>(~^ = ij/ + t {m" -(!>) + P

and that the first invariants {m") of a function («^) and of its self-conjugate part ($)

are the same.

Hence, if «i and «2 are the roots of (xii) or (xviii), and ti and ti those of (xiii)

or (xix)

2#o = «i + «2 = ^i + ^2 = SUa {m" - $)Ua = SUa {m" - <f>)Va (xx)

and

«i»2 = tit^ + (SeUa)2 = - SUai/rUa ; tit^ = «i«2 - (SelJa)^ = - SUa*Ua. (xxi)

We may now write for the focal points and for the extreme points in accordance

with (xx)

«i = h -/> «8 = *o +/; ii = h- ^. 4 = ^0 + ^- (xxii)

Thus the four points are symmetrically situated with respect to the central point.

Again (xxi) affords the relation

e^-P = (S€Ua)^ (xxiii)

which shows that the focal points are real if t'^>(SeUa)^. The extreme points arc

always real for tx and t^ are the inverse squares of the axes of a conic (xiv) and

these are real whether the conic is real or not. The reality of these points is also

a geometrical consequence of section (5.).*

* The syimnetrical arrangement of the four points, principal and extreme virtual foci, with

respect to the central point is the only element in the arrangement of the rays which cannot he

deduced from the properties of the cylindroid. This arrangement depends upon the distiibiilion

of pitch.
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(10.) The directions * and j of the principal axes of the conic (xiv) afEord a first

natural system of lines of reference coupled with TJa = Tc. As we are now dealing

only with a congruency we may suppose Ta = 1 without loss of generality and we

may regard

a = XJa = Tc

unless the contrary is stated.

These vectors ohey the laws (compare again (xiv))

ti = S^^^ ; ti = ^/<f>j ; 8i^' = ; S«^" = - S/'0* = - ScA;. (xxiv)

If we introduce an angle u so that

Udo) = i cos u +j sin u (xxv)

and a new scalar w the relation (ix) becomes

(<f>
+ t) {i sin u -j cos u) = p{i cos u +j sin u) + lok. (xxW)

Solving this for p and t by operating by SUdw and SUdwA we find on reference to

(xxiv) and (xxii)

p = - SeA + {ti - ^i) sin u cos u - Pf, + e BVOi 2u (xxvii)

and
t = ti sin* u + t-i cos'* w = ^0 + (9 cos 2m (xxviii)

where po = - ScA is the pitch corresponding to the extreme points ti = 0, -.*

The focal points are given by

j»5 + <9 sin 2« = (xxix)

and are real if e^ > p^.

Again eliminating u from (xxvii) and (xxviii) we find t and p connected by

{t - g» + (^ - p^^ = e^ or {t - U) {t - h) + {p- p,y = 0, (xxx)

which includes as a particular case

/' + Po' = '>'-

(11.) A second natural system of lines of reference is formed by Ua and the

bisectors of the angles between i andy. Now the angle m = at the point ti and u =

- at ti SO if we take f = m - - so that t^ and ti correspond to v =- - and ^^ = + r > ^^

have p = Po + e cos 'Iv; ^ = ^^ - « sin 2v. (xxxi)

If we take these three lines as Cartesian axes and put

8 = (< - t„) and tan * = yz'^

the equation of the cylindroid follows from (xxxi) in its canonical form

z{x* + y») = - 2exi/. (xxxii)

• Compare Hamilton, " Supplement to an Essay on the Theory of Systems of Eays," Trant.

R.l.A. vol. xvi. p. 64, where (xxviii) is obtained in the form

r = n (cos M^)* + Ti (sin w)'.



XII.] SYSTEMS OF RAYS. 428

(12.) There is yet a third kind of focus which Hamilton calls* a "focus by-

projection." The vector drawn from the point t on the initial ray perpendicular to

it and terminating on a neighbouring ray is

d'SD- = aVa~' (^ + ^) . dwa (xxxiii)

as may be verified without any trouble. If the perpendicular dur' at the point t'

tei-minating on the same near ray is at right angles to this the projection of the ray

on the plane of a and dw cuts the initial ray at the point t'. This point is a focus by

projection.

(13.) To investigate the properties of this new class of foci we shall use the first

natural system of lines of reference, the vectors »',/, k of section (10.). "We shall also

replace a by Ua or by A, and we shall write

d-ar = (* COS w + y sin w) Td«r, (xxxiv)

retaining the previous notation (xxv) for Udo).

The angle w is the angle between the plane upon which the projection is made

(or briefly the plane of projection) and a plane of extreme virtual foci.

If then

PTda> = Tdir (xxxv)

equation (xxxiii) becomes

P{i cos m; +y sin w) = kWk {<f> + t) (J cos u - i sin «). (xxxvi)

Remembering the laws of the units (xxiv) and that Po = S^'^' = - S/'^«, we find

P COB tp =PqCOs u + {t - ti) sin u=PqCob u + (e + g) sin u^

P sin w = jOo sin M + (^2 - t) cos u = p^ sua. u + {e - g) cos u, (xxxvii)

the symbol e being given by (xxii), and the new symbol g being equal t - t^.

li g' = g + h determines the focus by projection, namely the point at which w has

increased by a right angle while u remains constant,

tan u = ^otant.-(.-.y) ^ _ p^^ie^^g-^^
Po~ {e + g) tan to p^ tan «« + (« + ^ + A)

and solving for h in terms of w, we obtain the equivalent of Hamilton's remarkable

formulaf containing the law of the focus by projection (compare (xxx.))

1 _ {e - 9) coB'jg -{e + g) Bin^
Uxxix)

h~ g-'-P ^ ^

* Hamilton, Tram. B.I.A. vol. xvi. p. 47.

+ Hamilton's equation printed on p. 50, loc. cit., is

~ = — (cos . n)2 + — (sin . n)2.

P Pi V-i
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From this we see that the foci by projection are excluded from a finite portion of

the line contained within the extreme points of projection determined by

while
«2 — ft 0i - fz «2 - f*

^« = ^7T7°^^« = ^ ,Tr^ «i^<l h-K = 2e 't^-^g.-g, (xli)

give the central point of the excluded portion and its length. The planes of extreme

projection are parallel to the planes of the extreme virtual foci no matter where the

point g may be.

"We cannot delay to consider the cubic ruled surface

—^ = 1- + T (xlu)

generated by the perpendiculars to the initial ray in the planes of projection and

through the corresponding foci (compare (xxxix)) except to state that the initial ray

is a double line ; that the surface consists of two sheets whoUy exterior to the planes

of extreme projection ; and that it may be derived from a cylindroid by drawing lines

parallel to the generators of the cylindroid from points on the axis whose distances

from a fixed point (also on the axis) are inversely proportional to the coiTesponding

distances of the generators of the cylindroid from the same point. Nor can we

consider the scalars P associated with the generators of this surface corresponding to

the pitch {p) associated with each generator of a cylindroid.

(14.) In order to study more closely the arrangement of the rays near a given

point {t) on the initial ray, we shall show how to find a function of the variable

vector a so that the surface

p = )8 + a/(a) (xHii)

may pass through the given point and that its element at the point may be normal to

all the contiguous rays. Differentiating (xliii)

d/) = <^ . dwa + dwa/ + ad/ (xliv)

and we see that the condition is satisfied neglecting the second order of small quantities

if when a = k,

f{k) = t and (d/) = S;fe<^ . dco/fc (xlv)

where (d/) denotes that k has been substituted for a in the differential of /(a).

We shall now find the principal radii of curvatiire of a surface satisfying this

condition at the point under consideration. Using the formula dp + i?dUv = 0, we

obtain at once

(<^ + < + R)dimk + /;(d/) = (xlvi)
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so that (compare (xii)) -K is given by the quadratic

S*(<^ + t + R)-^k = 0. (xlvii)

Hence the centres of curvature coincide with the principal foci and in the notations

of (xxiv) and (xxxvii) the quadratic determining the radii of curvature is

(i2 + i-Si) (^ + ^-«2) = 0, or {R + g ^f){R + g-f) = 0. (xlviii)

The measure of curvature of the orthogonal element of surface is the density* of

the congruency being the ratio which the area traced on a unit sphere by the rays

through a small normal circuit bears to the area of the circmt. This is equal to the

inverse of the product of the distances of the point from the foci. We may also

speak of the sum of the curvatures of the orthogonal element as the concentration of

the congi'uency.f

(15.) It is not possible in general to draw a surface through an arbitrary point

orthogonal to all the lines of the congruency. The condition (xlv) is equivalent to

d/= Sad^, (xlix)

and if this holds continuously over a surface and not merely at a point we can

differentiate again and write

d'd/= Sad'djS + Sd'odyS = M'f= Sadd'/3 + Sdad'^S

provided the differentiations are independent.

Hence the condition is

Sd'ad/3 = Sdad'/8 or Sd'a<^da = Sda<^d'a

or again (compare (ii))

Sedad'a = or Sea = (1)

because Ydad'a is parallel to a. Referring back to sections (9.) and (10.) we see

that in this case the focal and the extreme points coincide and that ^o = and e =f.

Also an infinite number of surfaces can be drawn orthogonal to the rays because

an arbitrary constant may be added to /(a). For rays of light these are the wave-

surfaces when the medium is isotropic.

(16.) From any congruency it is possible to select a singly infinite system of

rays on which the focal and extreme points coincide. The system may bo defined by

the equations

p = (3 + ta, Sea = (li)

but the second equation is not an identity as in the la?t section. These rays have

certain other peculiarities especially in connexion with the foci by projection

(compare (xli)).

* Hamilton loc. cit. used the word condensation in a similar sense.

t Royal Irish Academy Transactions, p. 377, vol. xxxi., 1900.

Hamilton's Elbmbnts of Quatkrnions, Vol. II. 3 I
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(17.) "We do not determine a singly infinite system by equating to zero the

discriminant of (xiii) or (xix) and thus expressing that the two extreme points

coincide. For if we consider the mode in which this equation was arrived at, we see

that for equal roots a must be normal to a cyclic plane of a certain quadric. Two

conditions must therefore be satisfied and only a limited number of rays can possess

the property in question.

Nor can the principal foci coincide except under special conditions. For the two

axes of zero pitch on the cylindroid would then intersect. From this it follows that

the cylindroid must reduce to a plane, and the extreme points must likewise coincide.*

(18.) Important surfaces connected with the congruency are the focal surface, the

locus of the extreme points and the locus of the centres ; of th:'s last the equation is

p = li- iaSa-i {m" -
<l>)

a. (lii)

We may moreover write down the differential equations of families of ruled surfaces

composed of rays. For instance (compare (x))

^ = S ^— = const., Sada = (liii)

ada

lead to a relation in a which coupled with p = ft + ta determines a family of ruled

surfaces for which the parameter of distribution, or the pitch p, is constant. In

particular for ^ = we have the developables of the congruency. Geometrically,

selecting any ray we can choose one of the rays into which it can be screwed with

pitch p and from that another and so on and thus construct a surface included in the

integral of (liii).

(19.) There is another and very useful method for the treatment of systems of

rays. If pi and pz are the vectors to any two points, and if

o- = Ypzpi and t = pi- p^ (liv)

the vectors o-, t or any equimultiples determine the line through the two points. Its

equation is

p = O-t"^ + XT, (Iv)

and the ratio of the tensors only is important. The constituents of these vectors are

equivalent to Pliicker's six coordinates of a line. Thus given any pair of vectors

0- and T satisfying

SorT = (M)
a definite line is determinate.

(20.) A scalar relation between or and t, homogeneous in the tensors, may be

regarded as the equation of a complex ; one restriction is imposed on the generality of

the lines. Two scalar equations of this kind represent a congruency, three a regulus

of lines constituting a ruled surface, and four a finite number of lines.

* Compare Sir Robert Bail, Theory of Screws, Chap. II., Cambridge 1900.
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(21.) Again a line may be determined by means of two planes intersecting in the

line. If these are

SAjp +1=0, SX2P + 1=0, (Ivii)

it is evident or may at once be verified that Xi, Aj are connected with a-, t by the

equations

T = arVXjXi, <r = y(Ai - Ag).

AIbo <r = VpiT = a^VpiVAjAi = - x{\i - Aa) by (Ivii)

BO pi -
P2 = T = a;VA2Ai, Vp2Pi = <r = - x{\i - A2) (Iviii)

and therefore any function homogeneous in the tensors may be exhibited in three

forms

/(o-, t) = 0; /(Vp:^!, p, - P2) = ; /(A^ - A^, - VA^AO = 0. (lix)

The third equation may also be regarded as that of the reciprocal complex formed by

reciprocation with respect to the unit sphere p'^ + 1 = 0.

It is important to observe that change of origin is without efEect on t, but alters

o- into <r + V€T.

(22.) The general linear and scalar relation

Syo- + S8t = (Ix)

reduces on change of origin to

Sy{<r+pT) = 0, (Ixi)

if jjy = Vye + 8 or € = VSy'^ + xy, p = 88y-\ (Ixii)

The equation (Ix) represents the general linear complex
;

(Ixi) is the reduced form of

this equation when the origin is taken on the central axis determined by the second

equation (Ixii) andj? is the parameter of the complex.

(23.) If p is the vector to any point on a ray through a given point, the extremity

of a, o- = VaT = Yap, and by (Ixi) the lines lie in the plane

Sy(a+i>)(p-a) = 0. (Ixiii)

Identifying this equation with SAp + 1 = we see that

y (a + jp) + {pk - 1) Sya = whence y^ + SyASya = 0,

or more symmetrically the equations

^li = - ^ = -^- (Ixiv)
a+ p Sya y

give A without ambiguity in terms of a and a in terms of A so that the lines in

a plane also pass through a point.

3 12
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These equations lead to an important transformation. The equations

represent respectively the locus of a point and the tangential equation of the trans-

formed locus. Eor instance a line transforms into the intersection of the planes

corresponding to two points on it ; a surface of degree n transforms into a surface of

class n.

(24.) If Pis the shortest distance between the central axis and a ray, on replacing

o- by V(a;y + PUVyT)T in the equation of the complex (Ixi) we find

P = -P ^^ =i? tan / (Ixvi)

if Hs the angle the ray makes with the plane normal to the axis. The rays therefore

envelope helices coaxial with the complex and having the tangent of their inclination

directly proportional to the radius (P) of the containing cylinder.

(25.) The theory of screws affords a vivid illustration of the arrangement of the

rays of a linear complex. If a body is attached to a nut fitting a screw of pitches and

axis y on which the origin of vectors is situated, the point in the body at the

extremity of the vector p can only move in the direction of the vector

py + Vyp. (Ixvii)

Applying a force t to this point no motion is produced if t is at right angles to this

direction or if (compare (Ixi))

^Syr + Syo- = 0, where o- = Vpr. (Ixviii)

Again, any point of the body is free to describe a helix whose tangent of inclination

is inversely proportional to the radius of its cylinder. The direction of any force

whose line of action touches this cylinder, and which does not disturb equilibriimi

must be at right angles to the helix of motion through its point of contact. The

tangent of inclination of the force is consequently directly proportional to the radius

of the cylinder.

We see thus that the linear complex is a very particular case of the general

relation*

S (o-ito) + 0-0),) = 0, (Ixix)

which expresses that the screw (o-, m) is reciprocal to the screw (o-i, wi) when we do

not suppose Scrw to be zero. This being so and as linear systems of screws are

* Compare the Note on Screws, section (3.), p. 390.
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discussed in the Note on Screws, we shall not here consider systems of linear

complexes. Moreover in the following sections we shall consider the general complex

as a particular case of the general system of screws satisfying a single condition.

(26.) The equation of such a system is of the form

/(o-, o,)=0 (Ixx)

homogeneous in the vectors (or, w) or in other words independent of the absolute

magnitude of their tensors. If we write the differential as

d/(cr, w) = S (uido- + o-idw) (Ixxi)

we may replace the equation of the system by

S (toio- + o-iO)) = (Ixxii)

because the function /is homogeneous.

(27.) In the language of the theory of screws* we may say that the screw (o-i, wi)

is reciprocal to (o-, «). Moreover by (Ixxi), o-i and wi are determinate functions

of o- and <i>, or

cTi = 0{a-, w), wi = x(o"> '^)- (Ixxiii)

Thus we may regard (Ixxiii) as establishing a correspondence between a pair of

screws (o-,, wi) and (tr, w), and (Ixx) or (Ixxii) as representing the assemblage of

screws reciprocal to their correspondents.

Further (Ixxiii) implies relations

<T = 0i (o-i, <oi), w = xi (<^i> *^i) (Ixxiv)

and the first and third of the equations

/(<r, oj) = 0, S (wi<r + o-iw) = 0, /((Ti, Wi) = (Ixxv)

represent the assemblage of screws and the assemblage of their reciprocal correspon-

dents while the condition of reciprocity is expressed by the second. Or again the

second equation may be regarded as determiniag either of the assemblages having

regard to (Ixxiii) or (Ixxiv).

(28.) lip IB the pitch and a the vector to a point on the axis of the screw (o-, w),

a- = {p + Va) 0). (Ixxvi)

Substitution in (Ixx) affords the equation

/{{p + Va) 0), <d) = (Ixxvii)

* Compare again the Note on Screws, section (3.) ; and for the correspondence (Ixxiii) compare

the particular case of linear correspondence of section (12.) of the note cit^r!, p. 394.
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which admits of the following interpretations :

—

I. Given f it is the equation of the complex of axes of screws of given pitch

belonging to the assemblage.

II. It represents a singly infinite system of complexes depending on the

parameter p.

III. It represents the cone of axes of screws of given pitch p which pass through

a given point (a).

IV. It is equivalent to a scalar equation determining the pitches of the screws of

the assemblage whose axes coincide with a given line (Vao) and w given).

V. By (lix) if we suppose

Yao) = Xi - A2 = /*, o> = - VXa^i = VfiXi (Ixxviii)

we see that the rays of the complex (^ given) which lie in the plane

SA-ip +1=0 envelope the curve in which the plane cuts the envelope

of the variable plane S/xp = where

/(V/i (i?Ai + 1 ), V/.\i) = 0. (Ixxix)

Evidently the order of the cone III., the degree of the equation IV. and the class

of the curve V. are all equal to the order in which the vectors (o-, w) jointly occur

in (Ixx).

(29.) If the cone III. (Ixxvii) has a double edge (cd) the di£Eerential vanishes no

matter what vector dw may be ; so in the notation of (Ixxi),

S (toi ( j5> + Va)dft) + oTidto) = or S (o-i - (- j3 + Va)<tfi)d(o = 0. (Ixxx)

Hence as dw is quite arbitrary

o-i = (-^ + Va)o)i. (Ixxxi)

Comparing (Ixx^i) we see that in this case the axes of the reciprocal correspondents

(cTi, o)i), (o-, w) intersect and their pitches are equal and opposite. These two con-

sequences are of course not independent ; the latter implies the former. The symmetry

of these relations shows that the locus of vertices of cones with double edges which are

composed of axes of screws of pitch p, is likewise the locus of vertices of nodal cones

composed of axes of the reciprocal correspondents of pitch - p.

The locus of the vertices of the nodal cones of a complex is the Kummer surface.

Consequently the Kummer surfaces of the two complexes just described are identical.

(30.) The double edges of the cones of the complex form a congruency specified

by the three equations

p = S<r(o"i ; S(<r(Di + wo-i) = ; p = - So-iwf^ (Ixxxii)

If n is the order of the original equation in o- and w, n - 1 is the order of <ri and cui
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in the same vectors and 2(n - 1 ) is that of pia^ = - So-iWi. The first and third equations

(Ixxxii) determine a complex of order 2(w- 1), and the rays common to this and to

the complex of order n determined by the first and second (Ixxxii) compose a

congruency whose order and class are both equal to 2(w - l)w. For the order is the

number of rays through a point or the number of common edges of two cones of

degree n and 2{n - 1 ) ; and the class is the number of rays in a plane, or the number

of common tangents of two curves of class n and 2(n - 1).

The congruency is likewise specified by the vector equations in which a is the

vector to a point on the Kummer surface

(r = {p + Va)o) ; o-, = (- j9 + Va)w,, (Ixxxiii)

it being understood that <ti and o)i are given functions of o- and w.

(31.) It is easy to see that the rays of the congruency touch the Kummer surface

of the complex and from this property it will follow that the Kummer surface is part

at least of the focal siu-face of the congruency.

Using the equations (Ixxxiii) we have

i<r = {p + Va)d« + Vdao) ; d<ri = (- ^ + Va)do), + Vdawi (Ixxxiv)

for the consecutive screws of pitches ± p whose axes intersect at a consecutive point

(a + da) on the Kummer surface. Operating on the first by Swj and attending to

(Ixxxiii) and (Ixxi) we find

d/((7, 0)) = S(a)ido- + o-ido)) = Sdaww, = (Ixxxv)

because the screw (o- + do-, w + dw) belongs to the assemblage /(o-, w) = 0. In like

manner exactly the same equation is found by operating on the second by Sw.

Hence Ywwi is at right angles to all tangential vectors (da) to the surface and in

particular the axes of the screws (o) and <di) touch the surface.

Now if the lines of a congruency touch a surface that surface is part at least of

the focal surface. For take any ray touching the surface at a and having the

direction 8a. The consecutive ray touching the surface at a + Sa intersects this ray

and the point of intersection is a principal focus on both. The surface therefore is

part of the focal surface. If da is the conjugate direction to 8a, the second ray

which intersects p = a + ^Sa touches the surface at a + da and the point of intersection

of these two rays lies on the other part of the focal surface. In fact if two rays

intersect at p,

da + d^Sa + ^8a = whence SdaSadSa = 0.
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XIII.—ON THE OPERATOR V.

(1.) If /p is any scalar function of a vector p, corresponding differentials are

connected by a relation of the form

d/p = - Svdp, (i)

in which v is a vector derived from^^ depending merely on the function / and on the

value of the variable vector p but not at all on the differential dp.

Regarding p as a vector of position, the rate of change of the function of position

fp along any direction TJdp is evidently - SvUdp, in other words it is equal to the

projection of the vector v upon that direction. This rate of change is greatest along

the direction Vv being then equal to Tv. In any other direction it is equal to Tv

multiplied by the cosine of the angle between the assumed direction and that of v.

(2.) It is convenient to use a special notation to suggest the dependence of the

vector V on the scalar function fp. Eor this purpose Hamilton* introduced the

symbol Nabla or V and connected v with fp by the symbolical equation

V = V/p, (ii)

in which v is conceived to be the result of a certain operation performed on fp.

(3.) We shall now illustrate by a few examples the effect of operating by V on

scalar functions. It must be observed however that these are merely translations

into the new notation of results already obtained in the course of this work Thus :

—

(a) VSXp = - X because dSXp = SXdp.

(J) Vp2 = -2p „ dp2 = 2Spdp.

(e) VSp^p = - 2f>p „ dSp^p = 2S$pdp.

(rf) VTp = + Up „ dTp = -SUpdp.

{e) VTVXp = + UVAp . X „ dTVXp = - SUVXp VXdp.

(/) V/T(p-X) = IJ(p-X)/T(p-X) „ d/T(p-X) = -/T(p-X)SU(p-X)dp,

{g) VT(p-X)-i = -U(p-X)T(p-Xr „ dT(p-Xr = -T(p-XrdT(p-X).

(A) VT<^p = <^'IT«^p „ dT<^p = - S<^'U<^p . dp.

All these expressions are consequences of the equations

V/p = V, d/p = - Svdp,

which may be regarded (compare (i) and (ii)) as a definition of V, the vector X and

the vector functions * and <^ being supposed constant in the examples.

* Proceedings Eoyal Irish Academy, vol. iii., p. 291. See note, p. 648, vol. i.
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Example
(ff)

is of fundamental importance in the theory of attractions for it shows

that VT(p - \)'^ represents in magnitude and direction the attraction at the extremity

of p due to a unit mass at the extremity of X.

(4.) Again if/and g are any two scalar functions of p

V(/+^) = V/+V^ and V{fg)=gVf +f^g (iii)

because

d(/+^) = <i/+d^ and d{fg) = ffdf + fAg.

Generally as a matter of convenience it is desirable if possible to place the operand

immediately to the right of the operator v- This can be effected in the second

equation (iii) because / and g are scalars and therefore commutative with vectors and

quaternions. We shall soon see however that we can assign a definite meaning to

the result of operating on a vector or quaternion by V. But since we must regard V

as a symbolical vector or at least as possessing certain characteristics of a vector (for

by definition it produces a vector from a scalar), we are not at liberty to write

p^^q = Vq.p when ^ is a quaternion, nor d fortiori when p and q are both quaternions.

Hence it is not in general possible to place the operand immediately to the right. We

are therefore obliged to have recourse to brackets or accents or some temporary mark

in order to distinguish the operand. For instance we may write V(/)y to denote

that /is excluded from the operation of V ; or we may accent V and g and V'fg' will

then sufficiently indicate that g and not /is the subject of operation.

(5.) Consider in the next place a scalar function of several independent variable

vectors p, pi, p^, &c. We may in an obvious notation write (compare Y, p. 294),

d . F{p, pi, Pa . . .
) = - Sdpv - Sdpivi - Sdpgva - &c. \

= - SdpVF - SdpiVii^ - SdpaVji^ - &c. i

where V, operates on i^ as if pi were the only variable. In fact - V, - Vj, &c.

correspond precisely to Hamilton's Dp, Dp' (or rather D„, D„') of the formula just

cited. It may sometimes be even clearer to distinguish the corresponding operator

by a sub-index of the vector operated on, thus (compare section (3.)) we have

(«') VpSAp = - X ; VaSXp = - p

{e^) VpTVXp = - UVXp . A ; VxTVXp = - TJVpX . p

(/) VpT(p - \r = -TJ(p - X) T(p - X)-^ = - VxT(p - X)-^

Also for any function of X and p

I. VXVp/ = 0, 11. SXVp/ = 0, III. Vp/+ Vx/ = (v)

if /is a function of I. SXp, II. VXp, III. p - X.

- V
Hamilton's Elements of Quaternions, Vol. II.
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Again (compare (3.) (^) and (4.) (iii)) if P is the potential at the extremity of

the vector w of a system of attracting particles wt,, W2, &c. whose position vectors are

pi, /32, &c., the law of attraction being the law of nature, the force on a unit mass

at 0) is

V„P = Va.2wT(w - p)-i = - 2wU(w - p) T(a) - p)-2 = - 2wVpT(<o - p)-\ {\i)

Or if we have to do with a continuous distribution of mattter the force is given by

"^"^
\|T(a,-p) J T(o,-p)^ J^'^^''T(a,-p) ^ ^

(6.) Again if a, /3, y are any constant vectors and X, Fand -^any scalar functions

of p (compare the first of (iii)),

d(aX+y8F+y^) = dX.a + dF.yS + d^.y
]

= - (SdpV . X)a - (SdpV . F)/3 - (SdpV . Z)y
j-

(viii)

= - SdpV . {Xa + FyS + Zy). )

Thus for any vector function of p we may write generally

do- = - SdpV . <r (ix)

for we may always resolve the two vectors o- and do- along three given and fixed

directions. In this equation (ix) we may suppose o- replaced by any quaternion

function of p for by the distributive property if o- = Yg' we may add to (ix) the

equation dSj = - SdpV . Sg- so that

Aq = - SdpV . q. (x)

It must be carefully observed that in these equations we regard o- and q as functions

of p alone. For instance if q involves the time t as well as p the total differential is*

diq = ldit- SdpV . q
(xi)

where the first tenn on the right refers to ^ as occurring in q but not in p.

(7.) "We have now shown that the general formula (x) is true whether q be

quaternion, vector, or scalar so that we may write generally and symbolically

d = - SdpV (xii)

or what is equivalent

_ Vd>d> . d + Vd^ydp . d' -f Ydpdy . d^^ ,^^x

Sdpd'pd"p

* We must particularly diBtinguish between

S(i/»v . q and S . d/)VV-
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where dp, d'p and d"p are any three non-coplanar differentials of p, and where d, d'

and d" are the corresponding symbols of differentiation. In fact this equation (xiii)

is equivalent to the three

d = - SdpV, d' = - Sd'pV, d" = - Sd"pV

as appears in various ways.*

(8.) As an independent method we have (compare (6.))

V(oX+ /8r+ y^) = VX. a + VF. /8 + ViT. y (xiv)

where we employ merely the distributive principle (iii) and the commutative property

of a scalar (X) with a vector (a). But we already know how to calculate the effect

of V on a scalar, so we can determine its effect on a quaternion or vector by referring

the vector part or vector to any three fixed directions.

To trace the relation between these two methods we have

dX = - SdpV . X, &c.,

whence without employing symbolical equations

yd'pd"p . dX + Yd"pd'p . d^X + Ydpd'p . d^^X
^

Sdpd'pd"p

Multiplying into a and forming similar expressions in VF and VZ we find on

addition if a = aX+ ^Y-\- yZ

Yi'pi"p . do- + Yd"pA'p . d'<r + Ydpd'p . d"a- ,.
^*^ ~

~
Sdpd'pd'V

which agrees with (xiii).

(9.) We give a few examples of operating on vectors with hints for verification

(«) Vp = - 3 ; Vd'pd"p . dp + Vd"pdp . d'p + Vdpd'p . d"p = 3Sdpd'pd"p.

{b) WAp = 2X = - V (pA - SpX) or = - XSVp + SA.V . p.

{c) V0P = 26 - m" ; V/3y . <^a + Yya . <}>fi + Va)8 . <f>y
= {m" - It) Sa^y.

{d) VUp = - 2Tp-i = V(pTpo-' + Tp-i
. po).

{e) Vp-i = -p-^ V(p-V) = 0.

(/) V*T (p - A.)-i = if p is not equal A.

(^r) vyTp = -/"Tp-2Tp-y'Tp.

(A) V'TVAp = -T(VA-V)-^

{i) V2 log TVAp = 0.

* Either by verification or by multiplying these three equations by

Vd'pd'V, Vd'Vdp, Vdpd'/i

and adding. See also the next section.

3 K i!
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For one unfamiliar with the subject it is however far better to employ no short

cuts except an intelligent selection of the differentials of p if he uses the formula

(xiii). For instance in (J) he may take these to be A, p and YXp. He must however

be careful if he employs variable differentials to operate on these in subsequent

operations* involving v- A-s explained in the last section the results may all be

obtained by resolving the vectors along fixed directions.

(10.) To the examples of the last article we may add the following :

—

(o) VXV.p = -2A.

{h) VAV.<^p = ((^'-w")X + 2S€\.

(c) «^V . p = - {m" + 2c).

{d) <}>V.Tp = <^TJp.

(e) <^V . Up = - (m" + 2e) Tp-i + <^Up .
p-i.

(/) <^V . VXp = (m" - <^') ^ + 2S€\.

And simpler examples may be obtained by selecting special forms of <^.

(11.) To anyone acquainted with the Calculus of Operationsf it is manifest

immediately the form (xiii) is obtained that V may be combined with vectore and

quaternions just as if it were an ordinary vector. In fact we may regard the

symbols of difEerentiation d, d', d" as mere scalars and manipulate our formulae in

any way until we see fit to operate. Of course when successive operators V occur

in the same equation they must in general be distinguished by suitable marks and

treated as independent vectors. This implies that the symbols d, d', d" of each

operator must also be ear-marked whenever necessary.

"We infer among other deductions that the operator V or V . V is a scalar because

the square of a vector is a scalar. In the next section we shall verify this result

from an elementary point of view.

(12.) It has been abundantly shown that V is totally independent of any

particular coordinates, parameters or differentials. We therefore take the case most

familiar and choose our differentials so that

and therefore

dp = idx, d'p = /dy, d"p = ^dz (xvi)

d = da;---, d' = dy^, d" = dz~ (^vii)

ox oy oz

writing p = ix +jy + kz, i,j and k being constant.

Compare section (74.).

t See Boole, '' Differential Equations, '' chap, xvii., or Forsyth, '' Differential Equations,'" chap.

iii., or indeed any work on this subject which treats of symbolical methods.
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The relation (xiii) reduces at once to the well-known form

_.d_ .d_ d_

dx dy 8z

437

(xviii)

which shows us that the operation performed by V is equivalent to taking the partial

differential coefficients of any function with respect to the three scalers ^, y and z and

multiplying these respectively by i, / and k and then adding the results.

Kow when we operate twice by V we have

\ dx dy dzj \ dx dy dz

^

y 9 ^ d d' d\ .fd'd B' 9 \

dx dx dy dy dz dz) \dy dz dz dy j

9' 9 9' 9\ /9' 9 _ 9' 9

i9z dx dx dzj Y'x dy dy dx

(xix)

because the vectors V, /, h are constant. Suppressing the ear-marking accents as no

longer necessary when we operate on a single function,

9- 92 92

dx^ dy^ 9z'

(XX)

because the order in which the partial differentiation is effected with respect to y and %

is indifferent. As we have stated at the beginning of this section V and therefore V*

is quite independent of any particular analytical representation, and tbus apart from

any d priori inferences arising from the form (xiii) we have proved that V is a scalar

operator ; it is in fact with sign changed Laplace's most important operator.

The fuller discussion of the analytical forms attributable to V is postponed to a

later section.*

(13.) It may be as well to print here the equation

^^~~^~ dy'Tz^'^dx ''dy~dz]^^\dy "^
9z dx]

idW 9J_9^\ (^j-i)

\_
9z dx dy

j

which is obtained by operating by v in the form (xviii) on q in the form

q= W+iX +jY+ hZ. (xxii)

* See section (73.).
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This gives at once expressions for SVg-, YVq, V8q, SvVg', and YVYq. We
observe that

SVq = 8VYq and VV^' = VSg- + YvYq (xxiii)

and we notice that the form of these equations is precisely the same as if V were an

ordinary vector—a verification of the d priori ioference drawn in (11.).

It may be instructive to the student to find expressions for

VJJq, VTq, T .Vq, VKq, KVq, KVXq, qV,

and other combinations of the symbols q, V and the characteristics S, V, T, II, and K.

(14.) We can at once assign an interpretation to

Yi'pd"p . dg + Vd>dp . d'q + Ydpd'p . d"q
^^ ~

"
Sdpd'pd"p ^ ^

(compare (xiii)) by considering the parallelepiped whose centre is at the extremity

of p and whose small* vector edges are dp, d'p and d"p. The vectors from the centre

to the centres of the faces are ± Jdp, ± ^d'p, ± ^"p and the outwardly directed

areas of these faces are ± Vd'pd"p, ± Vd"pdp, + Ydpd'p, the signs corresponding

if Sdpd'pd"p is negative.

Now the mean value of q over the face + Yd'pd"p may be taken as its value at

the centre of the face or ultimately slb q + ^q, q being the value at the centre of the

parallelepiped. But

Yd'pd"p . dg +Vd'pd"p
, ^, , -Vd'pd'V . , , , , ,

- sdpdvd> = -"sdpd'pd'v • ^^ ^ ^^^ ' :-sdKpd"p ^^ - *^^^
'

^"""^

that is it is equal to the sum of the mean value of q over each face multiplied by

the directed area of that face and divided by the volume (- Sdpd'pd'p) of the

parallelepiped.

Adding up we see that Vq equals the sum of the products of the directed elements

of the surface into the corresponding values of q divided by the volume included.

(15.) We shall extend this result so as to be able to write for any small closed

surface surrounding the extremity of p;

Vq = Urn. -
J dvq

(xxvi)

where v is the volume included by the surface and dv a directed element of area, the

normal being outwardly drawn. Conceive the region enclosed by the surface divided

arbitrarily into an infinite number of small parallelepipeds. For each of these

Vqdv =
J dvq

* It is uot necessary in (xiii) that the differentials should be small.
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where Vq on the left refers to the centre of the parallelepiped. On summation

%Vqdv = 2 J dvq.

But over a common interface dv regarded as referring to one parallelepiped is opposite

to dv refening to the other. Hence if there is no discontinuity in q the interfaces

contribute nothing and 2 | dvq is due simply to the bounding faces of the extreme

parallelepipeds, so that in the limit as these become indefinitely small

J
Vqdv =

J dvq (xxvii j

where the integral on the left is taken throughout the volume and that on the right

over the surface. Conceive now the surface to shrink indefinitely and we find in the

limit the required result (xxvi).

(16.) On account of the importance of this result and also as an exercise we shall

calculate dii'ectly the integral taken over any small closed surface including the

extremity of the vector p. Let t be the variable vector drawn from this point and

terminating on the surface.

Since t is small we may put for the value of q at its extremity

q^ = q - StV . q (xxviii)

q being the value at the extremity of p. Here we assume as in the last section that

the function q is continuous. If dv or VdrdV is an outwardly directed element of

the surface

/ ^^ir '^ i^^ii ~ S"^^ • ?) = - /<ii' • StV . q (xxix)

because the surface is closed so that
J
dv = or J dvq = 0.

In this if we choose we may regard

-Jdv.SrV (xxx)

as an operator acting on q since we have to deal with t only so far as integration is

concerned, or indeed we may take V outside the sign of integration and regard

-(JdvST)V (xxxi)

as a linear and vector fimction of V.

In any case we have for any vectors t, dr, and d'r

Vdrd'TSrV + Yd'rrSdTV + VrdrSd'TV = Brdrd'T . V (xxxii)

and also identically when d and d' operate on t and its differentials alone

d (Vd'TTSrV) = dYd'TT . StV + Vd'TT . SdTV \

and I

.

(xxxiii)

d'(VTdTSTV) = d'VTdT . StV + YTdT . SdVV J

But
dVd'TT + d'YTdT = 2Vd'TdT + Ydd'TT + YTd'dT (xxxiv)
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and the second and third term on the right cancel if we choose dr and dV to be

independent differentials bo that dd'r = d'dr. In this case by means of (xxxiii) and

(xxxiv) the equation (xxxii) reduces to

3VdTd'T.STV + d(Vd'TTSTV) +d'(VTdrSTV) = SrdTdV.V. (xxxv)

Integrating over the surface we find

3 J VdrdW . St . 3- =
J STdrdV . Vj- (xxxvi)

since Jd(Vd'TTSTV) . q vanishes* if we suppose as we may that dr (and also dV) is an

element of a closed curve drawn on the closed surface. Now iSrdrd'T is the negative

volume of the pyramid whose vertex is at the origin of vectors t and whose base is

the outwardly directed element of area YdrdV or dv. Hence if v is the volume of the

closed surface by (xxxvi) and (xxix) we find

Jdvg'y = vVq.

Or finally dropping the sub-index t as not now necessary we have rigorously

Vq = Urn. -
J
divq

;
(xxxvii)

or the value of Vy at any point is the limit of the integral of the outwardly directed

elements of any small closed surface surrounding the point multiplied into the

corresponding quaternion q and divided by the volume enclosed by the surface.

(17.) "We proceed at once to the interpretation of the results of the last two

sections.

The case of §- a scalar is aptly illustrated by a hydrostatic pressure p. As dv has

been supposed measured outwardly, - ^vp is the pressure in direction and magnitude

on the directed element, and -
J"
dv^ = - vVp is the resultant pressure over the

surface. This urges the element in the direction - UV^, that is in the direction in

which ^ diminishes most rapidly for we have seen (1.) that + UV^ is the dii'ection in

which p increases most rapidly.

(18.) In the case oi q o, vector (o-) unlike the former case, the integral consists of

a scalar as well as a vector part. We notice that the scalar part depends merely on

the components of the vectors or normal to the surface and the vector part on the

tangential components. For

Vo- = v-^ (S + V) J dvo-
= v-^ J Sdvo- + v"^ J Vdvo- (xxxviii)

because S and V are distributive, the scalar of a sum for instance being the sum of

the Bcalars.

* We repeat that q ia quite independent of t being in fact the value of q at the origin of the

vectors t.
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We shall consider the scalar and vector integrals separately, that is the integral of

the inwardly* directed normal components + Sdvo- ; and the integral of the tangential

components turned through a right angle in the tangent plane for

Vdvo- = di/(dv)-iVdv(r.

(19.) Taking the scalar part first we have to interpret

SVo- = -
f Sdvor. (xxxix)

In the first place let o- represent the displacement of a point in a hody—the extremity

of the vector p—deformable in any way. The integral then represents the sum of

the inward components of displacement of the elements of the small surface ; in other

words it is the diminution of volume. The ratio of this to the volume is the

condensation. To put this in a clearer light we resort to the suffix t (xxviii) and

(compare (xxix)) we write | Sdvo-^ =
J Sdi/(o-T - o-) so that we only have to consider

the displacement relative to the origin of vectors t.

Secondly let o- denote any distrihution of force. The integral represents the total

normal force over the surface.

Thirdly if o- represents the flux of a fluid the integral measures the rate at which

the inflow into the little region exceeds the outflow. The quotient of this by the

volume is the rate at which the fluid accumulates in unit volume or the rate of

increase of density at the point. Otherwise if o- is the velocity and c the density

SV(co-) is the rate of increase of density or

| = SV(co-). (xl)

For these reasons Clerk Maxwell called SVo- the convergence of the vector o-.f

(20.) Now we may choose the small surface to be any surface we please. We
shall take it to be a portion of a tube of flow according to the hydrodynamical

analogy, or we shall suppose that the vectors o- are tangential to its sides and normal

to its ends. The integral vanishes consequentiy except over the ends and

SV(r = --JTdvTcr (xli)

the integral being taken over the two ends.

The areas of the ends being small and the distance between them small we have

ultimately

,. ^dTo- + i4T(r ,. /dTo- To- d^\ 1 ,. d log ^To-

* i» being outwards. Sdyo- is - Tdi/To- cos e if fl is the angle between the normal dv and ff.

t Electricity and Magnetism, Art. 25.

Hamilton's Klemknts of Quaternions, Vol. II. 3 L
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A being the mean area of a normal section and d^ the length of the tube. SV<r is

thus equal to the rate of diminution of To- along a line of flow together with the

rate of contraction of the normal cross-section multiplied by To-. This is the inter-

pretation of the transformation

SVo- = SUo-oV . To- + To-oSvUo- (xHii)

in which the suffixes denote that the marked symbol is not to be operated on by V.

We notice moreover that if a is any constant vector

SVo- = STJ(o-o - a)V . T (o- - a) + T (o-g - a) SVU(o- - a). (xUv)

The property (xxxix) remains true if any constant velocity is added to the velocities

existing.

(21.) As regards the vector part of Vo- we have seen that

VVo- = /m. - fVdvo- (xlv)

depends only on the tangential components of o- turned through a right angle round

the normal. "We may indeed find interpretations of this surface integral taken over

an arbitrary surface, but none are satisfactory until we choose a surface presenting a

definite direction upon which to fix the attention. For instance for a sphere we find

Wo- = Urn. 4- J Vro-Tdv
(xlvi)

showing that the vector is the integrated moment of o- about the centre divided by

the product of radius and volume. But when we select a small portion of a cylinder

whose sides have a fixed direction a and whose ends are normal, we obtain results

easily interpretable. Let d-4 be an element of the small cross-section, d? an element

of a generator, dr a tangential vector on the curved boundary forming with a and dv

a mutually rectangular system so that dr, a, dv are in positive order.* Then over

the curved boundary dv = d^Vdra and over the plane faces di/ = ± ad^. Thus

Wo- = Um. -^ (JdrV.Vdra .(r-¥\ Va(o-2 - o-,)d^). (xlvii)

Taking I so small that it may be integrated by itself in the first integral, we may

replace o-j - o-, in the second by - ?SaV . o-.

The expression (xliv) reduces consequently to

Wo- = Um. \ (J V.Vdra . o" -
J Va . SaV . o-d^). (xlviii)

* That is rotation round dr from a to di' is positive.
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It may be further transformed since

Y.Vdra . tr = - aSdro" + drSao- = - aSdro" - VaYdro-

because a is at right angles to eyeiy dr
;
thus

VV<r = -Zm. ^(ajSdTO- + Va(JVdTcr + JSaV.ord^)) (^Hx)

which gives separately

SaVVo- = Urn, 4 I SdTO- ; YaYVo- = - Im. - aYa( J
Ydro- + J

SaV . crdA). (1)

As we give an independent and superior method of obtaining analogous results in the

next section we shall not consider the interpretation of these until section (23.).

(22.) The transformation of the last section suggests the investigation of Une

integrals J dp<?. Take a smaU parallelogram, centre at p and edges dp, d'p, and circuit

it in the order from dp to d'p. In this order the vector sides are + dp, + d'p, - dp, - d'p

and the corresponding vectors from the centre to their middle points are - id'p, + ^dp,

+ ^d'p, - idp, so the four sides contribute in order

+ dp (<? + ^Sd'pV . q), + d'p {q - ^SdpV . q),

- dp(? - iSd'pV . ^), - d'p(y + iSdpV . 2') (li)

(lii)

and the sum of these, which we may write

Jdpy = YdvV.g-;

where dv = Ydpd'p is the directed area of the pai-allelogram, because

dpSd'pV . - d'pSdpV . = Y.Ydpd'p . V.

Also rotation round dv in the direction of circuiting is positive, viz. from dp to d'p

We shaU prove that the same relation (lii) is true whatever be the shape of the

smaU plane circuit. Conceive the small area divided arbitrarily into smaU paxaHelo-

grams; and let each be circuited in the same direction and the sum taken Any side

comm;n to two is traversed twice in opposite directions. If there xs no ^^^^u^^

in a such a side contributes nothing for dp^ -. (- dp)^ = 0. Hence only the bounding

sides contribute and in the limit when these approach coincidence with the cui-ve

Jdpy = |YdvV.^

the first integral being taken over the bounding cui<ve and the second over the plane

area. From this in the limit we recover (lii).

3 li 2
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(23.) When q is a vector (lii) affords the two equations true for any small plane

circuit (compare (1))

J Sdpo- = Sdi/VVo- (liii)

and

JVdp(r= V.VdvV.o-. (liv)

The first shows that what we may call the circulation in any small circuit (- J Sdpo-)

is equal to the product of the area into the component of Wo- along the positive

normal.* We shall see in the case of fluid motion that VVo- is twice the angular

velocity of an element. Just as the rate of change of a scalar fimction in any

direction is the component of VP in that direction so the circulation in any unit

plane circuit is the component of Wo- along its positive normal. The circuit

normal to UVVo- may be called the principal circuit, the circulation therein being

a maximum.

(24.) If or represents a distribution of force, by carrying a small unit mass roimd

a circuit we gain from the forces an amount of work represented by -JSo-dp or

- SdvVVo-. Hence the condition that the forces shovdd be conservative, or that no

work could be gained in carrying a small mass round any complete small circuit,

is Wo- = ; or what is equivalent this is the condition that J Sdptr should be

integrable without a factor, the integral being taken between arbitrary limits. In

fact the integral must be a function of the vectors p at the limits. We may therefore

write

'"'

S(rdp = /(p, po).
(Iv)

f

Whence VP = o-, because as P is a function of p

dP=-SdpVP=-So-dp

for all vectors dp. Thus the equation

VVo- = implies a = VP (hi)

just as the latter implies the former (compare (xx)). A distribution of vectors

satisfying this condition is said to be irrotational.

(25.) Introducing the symbol x' to denote a linear and vector function, we write

equation (liv) in the form

- x'dv = V.VdvV .(T^l Vdpo-. (Ivu)

* For brevity let the normal to the circuit about which the positiTe rotation is the same as that

of the circuit be called the positive normal.
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This function x' and its conjugate may be expressed* by

X'a = - V.VaV . o- = - aSVo- + VSao-
; x« = " VVVtra = - aSVcr + o-SaV. (Iviii)

In fact X is Hamilton's auxiliary function for ^ or

Xa = {m" ~ ^)a where <fia = - SaV . o- (lix)

since m" = - SVo- (compare (27.)).

When a unit electric current flows in the small circuit - x'dv is the resultant

mechanical force acting on the circuit provided o- is the magnetic induction due to

extraneous causes.f We shall therefore in the most general case briefly term - x'a

the force on the circuit a.

The force on the circuit is normal or tangential to its plane according as a satisfies

Vax'a = or Sax'a = 0. (Ix)

The force on the circuit a has Sy^x'a for its component along /3 and this is generally

different from the component along a of the force on the circuit jS because x' is not

self-conjugate. The spin-vector of x is easily seen to be - ^VVo- and whenever this

vanishes the force on a has the same component along ft as the force on /8 has along a.

In a steady magnetic field

V<r = or o- = - Vfi (Ixi)

where 12 is the magnetic potential and (Iviii)

)^a = x<*
= VSao- = SoV . o"

*

(l^ii)

or the force is the rate of change of the induction (o-) along the normal.

(26.) As the last particular case we suppose g' to be a scalar -P, then for all small

circuits

JdpP = VdvV.P. (Ixiii)

The most direct illustration of this formula seems to be to suppose P the magnetic

potential of the field. The expression on the right with sign changed represents the

couple on a small magnet whose magnetic moment is dv. As this can be expressed as

a line integral round a circuit whose directed area is dv, the equation suggests the

equivalence of the magnetic action due to a unit current in the circuit and that due to

the magnet. It shows moreover that the couple acting on the circuit is the negative

of the integral of its elements multiplied by the corresponding potentials P.

• There can be no possible objection to placing v after the operand (r in an equation of this kind

(Iviii) as no confusion is likely to arise.

t Clerk Maxwell, Eleelrieity and Magtutism, Art. 490.
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(27.) We shall now consider the linear vector function and its conjugate

<fia = - SaV . o- and <fi'a = - VSao- (Ixiv)

of which an auxiliary function has occurred in (25.). It is only necessary to find

expressions for its invariants and for the second auxiliary function if/ in terms of V
for its meaning has heen fully investigated. In fact if a is the strain- displacement

of the extremity of p, the displacement of a near point (p + dp) is o- + (f>dp, so that

<f>dp is the displacement of this near point with respect to the point (p). The strain

heing supposed small we have seen* that the molecular rotation of the element at (p)

is e = iYVa- ; also the dilatation is given by the first invariant m" = - SVo-. The pure

part of the straiu is due to

<E>a = -iSaV.(r-^VSao- = i(<^ + <^')«- 0^)

Of course now, in contrast to the case treated in the Note cited, the strain is not

homogeneous.

On account of the great importance of this function we shall prove these expres-

sions for m" and e. For three arbitrary vectors

V^y . «^a + Vya . <^j8 + VayS . <^y = - (Y/3ySaV + VyaS^V + Va;8SyV)or.

Hence by (xiii) and the well-known expression for the invariant of
<f>

m" - 2€ = - Vo-. (Ixvi)

(28.) In forming the function ^ it is necessary to use temporary marks to

distinguish the corresponding operator and operand,

"We write therefore

«^Va)S = V<^'a«^'/3 = WSao- . V'S)8o-' = VVV'Sa(rS^(/.

Now we may write equally well

^Va)8 = lVi>>aa' . VSyScr = - VVV'Sao-'S/Scr.

So that treating V, V, o-, and <r' as four distinct vectors we obtain on addition of

these two forms

"Ay = - iVVV'SVo-o-'y {\-KN\\)

* Note on Strain, sections (16.) and (17.), p. 372.
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The accents may be removed when but not till wben tbe operations indicated have

been performed.* Just as in (Ixvi)

m' -2<f>€ = - JVW . Y(r(/ (Ixviii)

and this result stould be compared with the former and the expressions for the

vectors verified. It is also a useful exercise to verify that the third invariant is

m = iSVV'V"Scr<r'o-". (Ixix)

(29.) Instead of retaining only the first term in the expansion we may, for the

particular case in which y is a function of p, write Hamilton's expression for Taylor's

series in the formf

qa = e^q = ^-Savg- = y « SaV . q + ^(SaV)^^' - &c. (Ixx)

Here as there is no danger of confusion we need not accent or distinguish the several

operators there being but one operand.

If the quaternion q^ is associated with each element of mass dm of a body

J qjan = qM- SooV . qM - h{h{^ + ^ + C)^^ - SV<I>V) . ^ + &e. (Ixxi)

where oo is the vector to the centre of mass ; A, £, and C the principal moments and

4> the momentum function of the body with respect to the origin.^ To prove this it

is only necessary to observe that (SaV)* = a'^V^ + (VaV)* and to employ the notation

explained in the note on page 291.

In like manner

faq^dm = Ooj-JJf+ i{A + B + C)Vq - $V . $-. (Ixxii)

From (Ixxi) we obtain Clerk Maxwell's expression for the mean value of q throughout

a sphere when we put ^ = A = B = C and a^ = 0.

* A device precisely similar is used in Aronhold's symbolic method of denoting a quantic by

«»" = 0, Ax" = 0, &c. The Hessian of a quantic is represented by

A = «2(« - iyaib2(ab)a^»-^^«-^ = |«2(„ _ i)2(aJ)2ax.»-2J»«-2

where {ab) = aibz — a^i. (Compare Clebsch, Vorlesungen iiber Geometric, p. 191, Leipzig, 1876.)

t See p. 473, vol. i., and the second Note to p. 20 in the present volume. It is undoubtedly

strange that Hamilton has deliberately avoided the employment of the symbol v in the Elements.

"We have seen several times in the course of this Note that our results are merely translations into

this notation of investigations in which v was not explicitly employed (comp. sections (2.), (0.), (27.)).

He even introduces a new notation (see p. 294 and section (5.)) when v was ready to his hand. The

key to this neglect of v seems to be contained in Art. 422, (92.), p. 351.

t + *w is the angular momentum of the body (comp. p. 291) spinning with angular velocity «.

Hamilton uses a negative sign.
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If the body is subject to the attraction of matter having a potential P we find for

the force and couple at the centre of mass

\ = ifVP + iSV^V . VP, ^ = - V$V . VP. (Ixxiii)

Hence it is not hard to deduce, using the examples in section (10.), when

P = JT(a-a')-idw' that

X = - M^jSr-^dm' - 8j{{A + B + C)fi + 2<Pfi - 5;3S/»-'4»/8)r-*dm'

and
fi = -3j Y/3-'^^r^dm' (Ixxiv)

where for brevity /? = a - a' and r = T/3.

(30.) It is not necessary to examine in any detail the extension of the integrations

of sections (14.) and (15.) to finite regions because the method is almost precisely the

same as in the case of scalar integrals. If (I.) there is no discontinuity in the

quaternion q, if (11.) it is single-valued and (III.) does not become infinite at any

point of the region, if moreover (IV.) the region is simply-connected, we can fill it

with small parallelepipeds in any way we please and since over an interface the

aspects of the corresponding directed elements of the adjoining parallelepipeds are

opposed the interfaces contribute nothing. In the limit therefore when the conditions

I., II., III., and IV. are satisfied, the volume integral equals the surface integral or

J Vqdv =
J dvq. (Ixxv)

(31.) I. When there is a surface of discontinuity suppose the region divided into

two by that surface and apply the equation (Ixxv) separately to each region and add.

Then

J Vqdv =
J dvq + j dvi2{qi -

q^) (Ixxvi)

when over the surface of discontinuity an element affords the parts

dvizj-i and dv2\q2 or dvn{q\ - q-i)-

(32.) II. If q is not single-vajued by reasoning almost precisely similar to that of

Clerk Maxwell* we can see when infinite values of Vq are excluded from the region

that assuming the value of q at any one point its value at every other point is

determinate. In fact starting from a point a with a given value of q we can retiim

to it with a different value only if we thread some circuit along which q is indeter-

minate ; and if g^ is indeterminate anywhere in the region its corresponding deriveds

must be infinite. In the case in which a circuit locus of indeterminate values

of q exists in the region, we may enclose it in a tube but the region then becomes

multiply-connected (IV.).

Eleetrieity and Magnetiam, Art. 96 {b).
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(33.) III. If q becomes infinite at any point, we exclude that point by a small

sphere and include the surface integral over the sphere in the result. Taking for the

moment the origin at the point and writing Tp = r let

Then if dJ2 is an element of solid angle the integral over the sphere is

- jd.^ = jdn . upr^ [q, + ^5^ + -^e + &A .

This in general is ultimately infinite or indeterminate if fJJp, &c. are not zero.

Excluding these cases, in the limit

-Jdv2'=JdOU/)/2TJp.

We need only consider the case in which f^p is a linear function* of Up, and we
may take it to be

/^TJp = Sr^'Up + SXS/tUp = Sr^'Up + <^Up. (Ixxviii)

It is easy to see in various ways (compare for instance (29.)) that

J dOUpSaUp = - lira and J dflUp/sITp = - iTr{-q' + 2M).

Hence (Ixxv) becomes modified by the infinite point into

J Vydv = Idivq + |7r(V + m" - 2c) (Ixxix)

if a term r'yUp occurs in q, the part oifXJp linear in Up being Sr/'Up + «^Up

(34.) IV. If the region is multiply-connected we render it simply connected by

drawing diaphragms when we fall back on case I. if q is many valued. A diaphragm

corresponds to a surface of discontinuity and qi - q2 = np where p is the cyclic incre-

ment of q and n an integer.

(35.) In order to extend the integi-ations of section (22.) to any closed curve

directly we must be able to connect all points of the curve by a continuous net of

small parallelograms for each of which q must be (I.) continuous, (II.) single-valued

and (III.) without infinite differentials. Then because a common side is traversed in

opposite directions

/ Apq =
J VdvV . q (Ixxx)

where the line integral is over the curve and the surface with which the net

ultimately coincides. Under these conditions the surface integral extended to a

closed surface is always zero.

« By an application of a well-knowu theorem in spherical harmonics (72.).

Hamilton's Elements of Quaternions, Vol. II. 3 ^^
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(I.) In the case of discontinuity as in (31.) we take an arbitrary curve on the

surface of discontinuity and when this curve is specified we have on adding the

results for the two circuits

/ dpj' + J d|o,2(y, - ^2) = / VdvV . q (Ixxxi)

where the second integral on the left is taken over the specified curve on the surface

of discontinuity. Let this curve be acb terminating on the given circuit at a and b.

Draw any other curve abb, then letting the accented line integral refer to this curve

and the second sm-face integral to the portion dbca of the surface of discontinuity

J dpy + f d/[)i2($'i - ^2) =
J
VdvV .q+l VdvijCg-i - q^) (Ixxxii)

provided the portion of the surface of discontinuity can be covered with a continuous

net. Applying (Ixxx) to the surface of discontinuity it is evident we get the same

value for J dipq in both cases.

(II.) If q is not single-valued over the continuous net, its value is definite if a

definite value is chosen at some one point of the net, or else q is indeterminate at a

point of the net and as a consequence its differential may become infinite (III.)- This

point may be surrounded by a small curve joiued by a barrier to the given circuit,

and the barrier must then be treated as a line of discontinuity and the value of the

integral round the closed curve must be taken account of.

(36.) We shall not delay to prove the more general relations

J/dv = J/Vd«;; |i^dp = |i^Vdi/V (Ixxxiii)

where/ and F are linear functions and where V operates on them in situ in the two

expressions /V and i^VdvV. They may be proved exactly as in the simpler case

when we have to do only with a quaternion multiplier; in fact /Vd'pd"p at the

extremity of p becomes

(1 - iSdpV)/Vd'/od'> or /(I - ^SdpV) . Vd'pd"p

at the extremity of p + ^dp it being understood that V operates on the constituents

of / alone. "We may remark that the symbol of taking the conjugate K may be

applied to the integrals (Ixxx) or (Ixxv).

(37.) Let the quaternion^ ox p„ be the value of the integral

JO = I* T(p - u>)-^qdiV (Ixxxiv)

at the extremity of the vector w, p being now the vector variable in the integration

which is extended throughout all space or at least everywhere that q is not zero.

We suppose q is never infinite and has never infinite differentials corresponding to
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finite differentials of p. Considering separately the parts of the integral inside and

outside a small sphere, centre w, we have on operating by V^,*

^Jp = V„2 f T(p - oiy'qdLv (Ixxxv)

where the accent denotes that the integration is confined to the interior of the sphere

for hy 9(/), Vw^T(p - w)"^ = wherever w does not coincide with p. The sphere

may be taken so small that q is sensibly constant within it. q may thus be removed

outside the sign of integration and

Vjp = VJ^ fT (p - wy^dv . q^ = Airq^ (Ixxxvi)

because by Poisson's theorem (compare (xx)

)

VjJ'T(p-a))-id» = 47r.

(38.) From these results we infer conversely if two quaternions p and q are

connected by the equation

q = v'j? (Ixxxvii)

that

p=p^=: (47r)"^ J" T (p - taf^qdiV (Ixxxviii)

the integration being extended throughout all space or wherever q is not zero, and

we may regard this expression as the equivalent of the inverse operation in the

equation

p = v"^q. (Ixxxix)

On this supposition the operator V"'^ presents no ambiguity.

(39.) The difEerence between V"^^ or the integral (Ixxxviii) taken over an unlimited

field and the same integral taken thi'oughout a circumscribed region may by Green's

theorem be expressed as a surface integral over the boundaiy of the region. The

extremity of oj being within this region we have by (33.) when the volume integi'al

is taken in the limited region outside the small sphere, the first surface integral over

the boundary and the accented integral over the surface of the sphere,

J-
V . (T(p - ii>y-Vp)dv =

J
dvT(p - a))-i

. V^ + f dvT(p - o>)-'
.
Vp (xc)

and also by (36.)

J
VT(p - o))-^(V)i?di; = J

VT(p - 0))-! . dvp + f VT(p - 0))-^
.
Avp. (xci)

In the volume integral (xc) the first operator V operates on all that foUows it

(except dv) and in the second the bracketed (V) operates in situ upon p and also

upon VT(p - 0))-^

3 M 2
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The surface integral over the sphere in (xc) vanishes ; that in (xci) (comp. (3. (^))

and (33.)) becomes*

- r Ailp = - iirp because dv = - U(p - (oydn and VT(p - w)"! = - XJ(p - <o) T(p - o})-\

Also the term iu the first volume integral is

V . (T(p - <a)-'Vp) = VT(p - 0))-! . Vp + T(p - o))-' . V^p (xcii)

and that in the second is

VT(p - 0))-^ (V)^ = VT(p - «)-! . Vp + V2T(p - a))-> .i?, (xciii)

for it is easy to provef that VT(p - <a)~^V = V*T(p - <i})'K Moreover this part

vanishes since to is not included in the limited field.

By these considerations (xc) and (xci) reduce to

J {VT{p - 0))-' . Vp + T(p - (u)-! . V^i))dt; - J
dvT(p - w)-» . V^ (xciv)

J VT(p - o>)-» . Vi?dt; = J
VT(p - 0))-! . divp - ^irp (xcv)

so that on subtraction

J T(p - a))-> . V^pAv - 'Iwp = / dvT(p - 0))-' . Vj9 - J VT(p - o))-' . dvi?. (xcvi)

Or if we suppose p and q connected by the equation (Ixxxvii) or (Ixxxix)

--
J
T(p - (ti)-'qdv = V-2j + — J dvT(p - a>) -1

. V.V-2j -
J
VT(p - o))-» . dv . V^^. (xcvii)

Thus the difference of the integral over a limited and unlimited field (Ixxxviii) has

been expressed as a surface integral over the boundary of the former.

(40.) "We have seen (Ixxxv) that when we operate with V^^^ on a potential

function it is only necessary to take account of the element at which p and w

coincide. Provided therefore we introduce surface integrals wherever necessary

wc may limit the field of integration and write generally for all points within that

field

. = v4 --?-'!^—

.

(xcviii)
^ '^''j47rT(p-o,)

By the associative principle we deduce

4^5- = V„ . V„ J T(p - u))-'jd» = V„SV„ J T(p
- <o)-'qdv + V^VV„ J

T(p - w^qdv. (xcix)

Hence any quaternion may be expressed as the result of operating by V on another

• H«nce another proof of (IxxxtI). t In fact pv = Vp = — 3.



XLII.] THE OPERATOR V. 453

quaternion ( Q) or as the sum of the results of operating by V on a scalar and on a

vector ; or generally

? = VQ. (c)

(41.) We shall transform this new quaternion Q so as to exhibit more clearly its

relation to q. Integrating through the limited field and excluding the small sphere

round (w),

J VT(p - 0))-! .qdv-^j T(p - o>)-> . Vqdv =
J V . T(p - oi)-'qAv = J dvT(p - o>yq (ci)

the sm-face integral being taken over the boundary of the field (40.) and the surface

integi'al over the small sphere being omitted as it ultimately vanishes (33.). Now
(V + V„)T(p-a,)-i = 0,

BO 47rQ = V„ J T(p - o>)-'qdv = / T(p - o))-i
. Vqdv -

J T(p - o})-'dvq. (cii)

The siirfaco integral here disappears when the field of integration is unlimited.

(42.) This transformation is of importance in vortex motion for example.

Considering more particularly the vector part of the volume integral (cii), we

have by section (20.) (xlii),

,« o ^ 1 ,- dlog(d^.TVVff) , ...V

V'Sff = SVWj = -^^ . bm. 5A„_ U (cm)

dA being the small area of a cross-section of a tube formed by the vectors YVq and

d^ an element of the length of the tube. Using the relation

T^ .dA = dm where $ = VvVg- (civ)

and where dm is the strength* of the tube of vectors ^ we have

J T(p - 0))-! . ^t; =
J T(p - (o)-i

. WdMw =
J T(p - oi)-'dpdm (cv)

if dp = Uf . dHs a directed element along the tube because d^; = dAdl.

(43.) For the case in which the tubes (^) are re-entrant and included within the

limits of integration the integral on the right may be regarded as the sum of a

number of integrals taken round closed curves. If then we describe any surface

through one of these curves so that it does not pass through the extremity of w,

by (Ixxxiii)

J VT(p - o))-* . dp =
J VT(p - 0))-! . YdvV =

J
vSdvVT(p - u>)'^ (cvi)

* Lamb, Hydrodynamics, p. 223, Cambridge, 1895.
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because as V'»T(p - o))"^ = 0, the term involving V in the expansion V.VdvV

= VSdvV - dvV* disappears. Again we may replace the equation (cvi) by

V„ J T(p - o))-! . dp = -
J VSdvVT(p - 0))-! = - V„ J SdvU(p - <o) T(p - (o)-^ (cvii)

and if we suppose the surface built up of elementary cones through the extremity of

the vector w, it is evident that the cross-sections of these cones alone contribute so

that we may replace dv by U(p - w) T(p - (ofdil and finally*

V„ J T(p - 0))-! . dp = V„ J dfi = VJi (cviii)

where Q is the solid angle subtended by the re-entrant tube at the extremity of ci».

Thus if none of the circuits pass through the extremity of w

V„jT(ji- 0))-! .$dv = V^j ildm. (cix)

(44.) To illustrate the use of the operator we shall briefly consider the equations

of motion of a continuous distribution of matter. Directing the attention to any

selected portion its momentum is

Ma- =
J pdm (ex)

a- being the velocity of the centre of mass, dm an clement moving with velocity

p and M the mass of the portion. If A is the resultant force acting on the mass

it is equal to the rate of change of momentum, or

Dto- = M-'X. (cxi)

"We may evidently suppose the selected portion of such a size that the velocity of its

centre of mass approaches indefinitely the velocity of the matter about that point.

Again taking moments about the centre of mass we may write

I>« / V(p - po) (p - Po)dm = /A + J V(p - po)dA (cxii)

where /* is the resultant couple arising from other causes than the force-couple

/V(p-po)dA.

(45.) We shall now consider the transformations of the vector of acceleration

Dfi^ (cxi). If we regaidf o- as a function of p and t we have (xi) its total differential

expressed by

Dcr = r^d«- SdpV.o- (cxiii)

* Hence the result of operating by v on a vector of a certain kind is equivalent to the result of

operating on a scalar.

t Of course on the supposition made in the last section the vectors <r and p are identical.
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the partial derived with respect to the time being — , or in other words — being the
vt CZ

rate at which the vector a corresponding to a point fixed in space is changing. But

Hfir is the rate at which the vector a as corresponding to a definite portion of the

matter is changing. So when we follow the motion of the matter, dp = o-d^ and

Djo- = -^ - So-V . o- = M-^X (cxiv)
vt

in which V of course operates only on the o- to the right. In this case the appro-

priate form of the equation of continuity is (xl) if c is the density

4^ = SV(c<r). (cxv)

(46.) On the other hand if in Lagrange's method we suppose p to be a function

of t and of three parameters «, v, and w which individualize any element of matter

the velocity and acceleration of the centre of mass may be represented simply by

p and p, the partial deriveds of p with respect to the time, and the equation of

motion is

p = M'^X. (cxvi)

Also the appropriate form of the equation of continuity is

= const. = - C (cxvii)

which expresses that the mass ± cSpip2P3d?<dt>dM' of a small definite parallelepiped

of the matter does not vary, pi, p2, and ps being the deriveds of p with respect to

u, V, and w.

(47.) It is easy to derive (cxvii) from (cxv) for remembering the meaning of the

fluxional notation*

c = ;/ - So-V. e = cSVo- = cSVp. (cxviii)

ot

But exactly as in section (12.), when p is expressed in terms of three parameters

u, «7, and w, the appropriate form of V derived from (xiii) by taking

^-^ks-l'^'^aV^'"^-^^^'""^^)-
^"^^

dp = piiu, d'p = padv, and d"p = padw (cxix)

1

SpipzPa

Hence evidently /

— log c = SVp = - — log Spipaps (cxxi)

* As an exercise one may verify that Sv/> = - Sv^.
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where the differentiations have the same meaning as the fluxional notation which is

not here convenient for printing.

(48.) As regards the forces acting on the element, we have in the first place

bodily or external forces $ acting at each point and generally specified with respect

to unit of volume. These contribute the volume integral J c^dv.

In the second place there are the forces due to the interaction of the parts of the

substance. Their resultant is suitably represented by a surface integral j <E>dv where

$dv + $( - dv) = because the interaction across a directed element from one side is

balanced by that on the other, and where ^dv = <^TJdv . Tdv because the force is

ultimately proportional to the area. Thus (cxi) becomes

D,o- = Jf-» J e^dv + Jf-i
J ^dv = M'^ | c^v + M'^ J ^^dv - M-' j StV. ^odv (cxxii)

^0 being what the function $ becomes at the origin of the small vectors t (16.) which

may for convenience be taken centrally within the element. The integral J ^^dv must

vanish as it is only of the second order in the linear dimensions of the element while

the others are of the third order. Hence $ (or $o) must be a linear and distributive

function for S^o^^*' = ^ whenever %dv = 0.* And therefore by an application of the

integration theorem (Ixxxiii) because $ is distributive and linear-

/ ^v =
J $V. dv. (cxxiii)

From this (cxxii) gives when the element is very small

D,o- = ^ + c"* . $V (cxxiv)

(where V operates on ^ in situ) for ultimately M = cdv.

(49.) Again we may write the couple equation (cxii) in the form

J Vrrdw =
J YT$dm + J rjdm + J Yr^dv (cxxv)

where the origin of vectors t is at the centre of mass and where rj is the voluminal

distribution of impressed couple. By the principle of linear dimensions employed in

the last section we must have separately

J rjdm + J VT^odv = (cxxvi)

or ultimately if we take the element to be a small parallelepiped whose sides are

parallel to a, ^, y,

r]c8a/3y + Va<>oV/8y + Y^^^Yya + Vy^o^ayS = (cxxvii)

or simply

T/c = 2e (cxxviii)

if e is the spin-vector of O,,.

Thus if there is no impressed couple tj the function $ (or «^o) must be self-conjugate.

* For example take a small tetrahedron whose directed faces are a, /3, y, and 8. Then

o(o + /8 + y) = oa + *o$ + oy because a + /3 + y = -S.
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(50.) Neglecting small terms of the second order in (cxxiv) and elsewhere the

motion of the substance is completely given by

^ - So-V . o- = ^ + c-> . «I>V ; - = SV(ccr) (cxxix)
ot at

when we employ Euler's method (compare (cxiv), (cxv), (cxxiv)) ; or by

/ o y> js \

p = I + C-M - $ .Vp2p3 + - ^ . Vpapi +
3^^

^ .Vp,p2J
(cxxx)

when we employ Lagrange's (compare (cxvii), (cxx)), the function $ being linear,

vector and self-conjugate, and this function, not the vectors Ypzp^, &c., being differen-

tiated with respect to «, v, and w.

(51.) We shall now apply Lord Kelvin's great conception of the _^o?^ along a

finite cm*ve drawn in the medium and moving with it so that it always threads the

same elements. The flow is the integral of the component velocities of the various

points of the curve along the corresponding tangents and is given by

F = - j So-dp = -
J
Spdp. (cxxxi)

It is convenient to suppose p and a or its equal p expressed in terms of the time and

the necessary parameters as in Lagrange's method. The time rate of change is thus

F = -^J Spdp = -
J
Spdp -

J
Spdp. (cxxxii)

(Xt

The second integral on the right is simply half the difference of the squares of the

velocities of the extremities of the curve. The first integral depends generally on

the nature of the cxirve connecting these extremities. It is however quite indepen-

dent of the curve if (compare section (24.))

VVp or VvDjO- = (cxxxiii)

for then the expression under the sign of integration is integi-able without a factor.*

By (i-xxiv) we have in this case

VV^ + VV. <ri
. 4>V = (cxxxiv)

and when this is satisfied we may speak of the rate of change of flow from one point

to another without mentioning a connecting curve.

* The vectors p and Bttr are identical in as much as they represent the same acceleration.

Hamilton's Elements of Quaternions, Vol. II. i N
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(52.) For a perfect fluid $dv = - piv and 4>V = - pV = - Vp so (cxxxiv)

I'educes to

VV^ + V.V<r> ,Vp = (cxxxv)

and is satisfied if the density (c) is a function of the pressure {p) and if the forces {$)

have a force function (P).

Under these conditions we find without trouble

F = r^To-^ _ p _ f^1 (cxxxvi)

where the square brackets indicate that the difference is to be taken of the values of

the enclosed expression at the extremities of the curve.

In general when we integrate round a closed curve the flow or circulation changes

at the rate (Ixxx)

- —
J Spdp = - 1 Spdp = -

J Sdi/VVp. (cxxxvii)

This vanishes under the supposed conditions (cxxxiii) so whenever the density of a

perfect fluid is a function of the pressure conservative forces are powerless to alter

the circulation in any circuit moving with the fluid.

(53.) It appears from (cxxxvii) that the component of YVp or VvD,or normal to

any small unit circuit measures the rate of change of circulation in that circuit ; and

VvD<cr determines the aspect and the rate of change of circulation of the unit circuit

in which this rate of change is a maximum.

On the other hand VV<r determines the aspect and the circulation of the unit

circuit* in which the circulation is a maximum, and D^VVo- measui-es the rate of

change (following the motion of the fluid) from one principal unit circuit to another.

A principal unit circuit obviously does not remain fixed in the fluid.

The difference between these vectors is easily seen to be

VVD<o- - D^VVo- = - VV,So-,V. <r = - VV,V , a^YVa- (cxxxviii)

for V and — are commutative in order of operation so that as a first step the

difference isf

- VV(So-V . 0-) + So-V.VVo-.

It vanishes as it ought if Wo- = 0. In Lagrange's method the equivalent equation is

d_

d^
VVp - — YVp = - Yvp. (cxxxix)

• This haa been called the principal circuit (23.),

f It is useful to observe that « term such as Vw.So-ir, vanishes for it should remain unchanged
when the suffixes are transposed but it appareniiy changes sign.
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(54.) As aa additional example on the application of the operator V, we shall

consider the nature of the stress in a viscous fluid. We assume as usual that the

stress consists of a hydrostatic pressure p and a part linear in the rate of distortion or

in the constituents of the strain function ^o = 2-(^ + ^') of section (27.), and that the

principal planes of the stress-function ($) and the strain function ^^ coincide. These

considerations lead to the equation

$a = - pa + 2n<f>fp. + n'm"a (cxl)

where a is an arbitrary vector, where n and n' are scalars independent of the rate

of distortion and where m"{ = - SV<r) is the first invariant of ^q. For this is the

most general linear function involving p in the manner specified and linear in the

constituents of ^^ and having the same principal planes.

(55.) Defining JO more particularly by the condition that the hydrostatic pressure

ifi equal to the mean of the magnitudes of the principal stresses, we have, for i,j, and k

along the principal axes,

- %^i^i =M" = -3p + (2n + Sn')m"
;

(cxli)

and the condition requires

2n + 3n' = 0. (cxlii)

Therefore when we replace n' in terms of n and
(f>Q

in terms of V and o- (section (27.))

^a = -pa- w(SaV . or + V . Saa) + |»aSV<r. (cxliii)

If n is constant, the equation of motion (cxxiv) becomes

D^o- = ^ - c-^Vp - c-'?i(W + iVSVor). (cxliv)

(56.) In like manner for an isotropic elastic solid if o- is the displacement, the

stress is given by (cxl) when p is put equal to zero, and the equation analogous to

(cxliv) is

D,(r = I - tf-'«VV - c-\n + w')VSVo-. (cxlv)

(57.) The rate of change of the kinetic energy of the substance in any region

fixed in space is evidently

This is due to the activity of the forces acting on the substance and to the trans-

ference of portions of the substance through the walls of the fixed enclosure.

3 N 2
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Transforming and utilizing the equations of continuity and of motion (cxxix), so

as to remove the difEerentials with respect to the time*

ct

where o-q is free from the operation of V. Or again this is

-
J ieTa-^dv = J (iSV(co-To-2) _ So-$(v) + 8<r^^V - c^<r$)dv,

ot

where (V) operates both on o- and # and where 4>(, is free from V.

Finally on integrating by parts

-
J icT(T^dv =

J ^cTo-^So-dv -
J S<7$dv + / So-^o^dv -

J cSa-^dv. (cxlvii)

The first integral on the right is the rate of increase of kinetic energy due to the

influx of fresh matter ; the second is the activity of the surface stress ; the fourth

that of the external forces; and the third with sign changed measures the rate at

which energy is stored in the substance and dissipated (see section (59.)).

(58.) On the other hand for a definite portion of the substance the rate of change

of kinetic energy is

Bt J
^cTa-^dv = Dt J iTa^dm = -

J So-D^o-dm = -
J So-(c^ + ^V)dv. (cxlviii)

This reduces as in the last section the only difference being that there is no contribu-

tion due to influx across the boundary.

(59.) When ^ is given by the equation (cxliii),

- S(r$oV = + p&^a- + «(SVV,So-a + SV(r,SV,cr) - iw(SVo-)2 (cxlix)

is the rate of storage and waste of energy per unit volume.

The term in p may be modified as follows. By the equation of continuity

SVo- = D, log c = - D, log b (cl)

if J is the reciprocal of the density {c) or the bulkiness of the fluid. Hence asj? is a

function of c and therefore of h

^SVo- = - DJ^i-»d*. (cU)

Also we havef for the rate of change of the intrinsic energy of a given mass

JjoSVo-df = -
\ pJitC'^dm = - D< / d»t \ pdh. (clii)

• Namely from j( J^ T«r« - cScr ^) dv.

t Compare Lamb's Hydrodynamics, Art. 287.
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(60.) The part of (cxlix) quadratic in a- has been called by Lord Raylcigh the

Dissipation Function. It measures the rate at which energy is wasted by the

viscosity and it admits of many transformations which may serve as exercises.

It is essentially positive, for if we write the invariant m! of section (28.) in the

form
m! = i(SVo-)2 _ i-SVo-^SV^a (cHii)

and
SVV,8o-o-, = SV<r,So-V, - SVVo-VV^o-, (cHv)

we have in the notation of the section cited

'IF = n(SVV,So-(r, + SVo-^SV^o- - f(SVo-)^) = ^{m"^ - Zm' - 3^^) (civ)

when we utilize (cliii) and (cliv) to eliminate SVV^So-o-^ and SVo-^SV^cr.

But (p. 520, vol. i.) m' + e' is the sum of the products of the roots of the self-

conjugate function ^ = i(«^ + <f>'),
so if these roots are ei, Cz, and e^,

2F=%n ((^2 - ^3)' + (^3 - e^f + {e^ - e^f). (clvi)

If then the dissipation function vanishes every spherical element must remain

spherical, for the condition is

«i = ^2 = 63. (clvii)

Again as Vo-* = 2VSo-^(r if <t, is free from V^ we have

W = 2V=^So-,(r + 2V,VS(r,<r = 2So-,W + 2SV,VSa cr. (clviii)

Hence by (cliv), we obtain the relation

2F= n{^^<T^ - 2So-,VV + (Wo-)* - f(SV<r)^)

in which the operator is contiguous to the operand.

Integrating and supposing n constant we may transform as follows :*

2 / i^d-y = » J SdvV . cr^ - 2n / So-^dvVo- + n J (f(SVo-)« - (VV(r)^)d«; (cHx)

because

/ So-^V'o-dt; = J So-^dvVo- -
J So-.V^Vo-dt;

and
So-,V,Vo- = (SVo-)^ - (VVo-)^

(61.) Before passing on to other matters, we shall consider the expression of

stress in' terms of strain.f By Hooke's law stress is a linear function of strain and

* Compare Lamb, he. cit.

+ Here, as elsewhere in this Appendix, my object is to provide suggestive illustrations of

quaternion methods rather than short solutions of special problems.
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therefore of the space variations of the displacement. Consequently the stress across

any small plane ai'ea (w) is a linear function of w, of V, and of the displacement <r,

the operand of V. Thus we may write

$0) = 6{(o, V, a) (clx)

and we shall investigate in the first place the nature of this trilinear vector function 6.

We have seen that $o) is a self-conjugate function of <». Therefore for any pair of

vectors w and is,

Si!re{<o, V, 0-) = 8(1)9 {nr, V, a). (clxi)

Again we know when a potential function exists that the expression (comp. (cxlix))

S^V^cr, = 8<r,d{V^, V, a) (clxii)

is symmetrical in the strain arising from the displacement cr and in that arising from

the displacement a^, it being understood that V operates on cr alone and V, on o-^.

Therefore identically

S(r,6(V,, V, 0-) = S<r^(V, V,, (t,). (clxiii)

The two properties expressed by the equations (clxi) and (clxiii) furnish us with

sufficient data to determine the natui-e of the function 6, or in other words to express

stress in terms of strain.

(62.) On account of the arbitrariuess of the vectors a- and o-, we may replace the

equations just referred to by

8a9{fi, y, 8) = SfiOia, y, 8) = 88^(7, /?, a) (clxiv)

where a, /8, y, and 8 are four arbiti'ary vectors. Using as a matter of convenience

the symbol fa, p, y, 8) defined by the equation

(a,;8,y, 8) = -Sa^(/8,y, 8), (clxv)

we see by (clxiv) that it is permissible to reverse the order of the vectors and to

transpose the first and second vectors. Hence ringing the changes on these allowable

alterations we have

(S P, r, S) = (A a, y, 8) = (8, y, a, /3) = (y, 8, a, /3)

= (A a, S, y) = (a, P, 8, y) = (y, 8, P, a) = (8, y, ^, a), (clxvi)

and the laws of the symbols (a, /?, y, 8) may be summed up in the statement, the

pair composed of the first and second vectors is interchangeable with the pair composed

of the third and fourth and the members of each pair are likewise interchangeable.
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(63.) Since (8, a, P, y) = (S, a, y, ft) we have generally as the vectors are

arbitrary,

^(a, A y) = 0{a, y, P). (clxvii)

In particular

^0) = ^(w, V, 0-) = 0(w, <r, V)
;

(clxviii)

or more fully for any mutually rectangular system i, j, k

$<o = S^(a), «, i) S^VS^o + S^(a), j, h) (SyvS^-o- + S/fcVSyo-) (clxix)

because 0{<i},j\ k) = ^(w, k,j), or again in a usual notation for the strains,

$w = ^e{<o, i, i) a + %6{io,j\ k) . 2/ (clxx)

The constituents of the six vector functions ${(0, i, i), 6{(o,j, k), &c. are the elastic

constants. They are all of the type (a, p, y, 8) (comp. (clxv)) where a, ft, y, and 8

stand for «', j\ and k ; and they fall into the following groups :—three of the type

(*, I, i, i) ; six (/, i, i,j) ; three («, i,j\j) ; three {i,j, ij) ; three (/, k, i, i) ; and

three (y, «, ^, *) ; twenty-one in all bearing in mind the laws of the symbol

(a, P, y, 8) (clxvi).

(64.) We saw at the beginning of the last section that the second and third

vectors are interchangeable in ^(a, /3, y). "We shall now investigate the effect of

interchanging the first and second vectors and we shall prove that

d(a, /S, y) - ^(^8, a, y) = 2N&YaP . y (clxxi)

where is a linear and self-conjugate vector function of the ordinary kind. The

left-hand member obviously vanishes if a and y8 are parallel. We are therefore

entitled to assume

^(a, p, y) - e{P, a, y) = x(^«A 7) (d-^xii)

where x i^ ^ bi-linear function of Va)8 and of y. Operating by Sy and referring

again to (clxvi) we find Syx(Va)8, y) = for all vectors y. The fonn of the right-

hand member of (clxxi) is therefore justified and it only remains to prove that is

self-conjugate. To do so we operate by S8 ; and the law of interchanges again shows

us that

S8e{a, p, y) - SS6{P, a, y) = 8a6{8, y, /S) - Sa6{y, 8, ^)

when we find almost immediately

SVy8©Va/? = SVa)80VyS, (clxxiii)

and is self-conjugate as asserted.
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(65.) "We have now at our disposal two distinct geometrical methods of investi-

gating the arrangement of the elastic properties of a body with respect to certain

natural directions of reference. The first and the most obvious method consists in

the study of the quartic surface

(p, p, p, p) = - 8p6{p, p, p) = const. (clxxiv)

whose radii vectors are inversely proportional to the fourth roots of the elastic

constants depending on a single direction—that of the corresponding radius vector.

When the body has a plane of symmetry normal to i, the elastic constants which

involve « an odd number of times must vanish. Perhaps the most instructive way

of seeing the truth of this is to equate the reflection, with respect to the plane of

symmetry, of the stress across any small area to the stress due to the reflection of the

strain across the reflection of the area. In this case the quartic surface has also a

plane of symmetry. The converse is not generally true for the quartic depends on

but fifteen constants, for example 2 {j'ijk) + {jjik).

The surface must evidently be closed and finite ; otherwise the potential energy

might vanish for an actual strain. To discover the planes of symmetry, when they

exist, we may calculate the positions of the summits of the surface,* or the points at

which a concentric sphere can touch it. The vectors to these points have the

directions of the solutions of

Ype{p, p, p) = (clxxv)

for by the rule of interchanges

dSp^(p,p, p) = 4Sdp^(p,p,p).

The normal to a plane of symmetry obviously cuts the surface at a pair of summits.

The radius of a touching sphere may be obtained by equating to zero the discriminant

of the cone through its intersection with the surface, the centre being the vertex.f

It is easy to see geometrically that three at least of the vector solutions of (clxxv)

must be real.

(66.) When the potential energy involves the strains only in the combinations

« + J + <; and the minors be - p, &c., gh - af, &c. of the well-known determinant of

a conic, that is when

2JF=m{a+b + ef + Sw,(ic -/^) + Vi{gh - af), (clxxvi)

the equation of the quartic reduces to

mp* = const. (clxxvii)

* A more convenient process will be found in section (67.).

t When ihe surface has three planes of symmetry the equation has thirteen roots, one quadruple

and three double.
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The surface is spherical and fails to afEord special directions of reference. In this

case the second method to which we now proceed must be selected.

(67.) This method depends on the self-conjugate function © of section (64.).

The coefficients of the quadric

Bp®p = const, (clxxviii)

are easily calculated in terms of the elastic constants by means of equations such as

OiJ, k, y) - e{kj, y) = 2Y®iy (clxxix)

which is merely a modification of (cLxxi). We find

2S»0t = {Jj'kk) - (j'kjk) ; 28j®k = {ijih) - {iijh) (clxxx)

and the remaining coefficients may be written down from symmetry.

If the body has a plane of symmetry it must be a principal plane of this quadric,

for if i is normal to a plane of symmetry S;'0« = S^^ = or \i®i = 0. The

converse of course is not true. But (compare (65.)) when the quartic has a principal

plane of the quadric for a plane of symmetry, we have from the equation of the

quartic 2{jijk) + (^V^) = and from that of the quadiic {jijk) - {jjik) = 0, &c.

The elastic constants vanish separately and the plane is a plane of symmetry of

the body.

Thus provided the quadric has determinate axes they form a natural system of

lines of reference, and planes of symmetry may be at once detected by expressing the

equation of the quartic in terms of these vectors. In the most general case having

selected this system of axes we have only eighteen constants to deal with, the last

group of (63.) being then merged in the preceding group. As an example for the

case noticed in (66.)

(mV) = m
;
{jjkk) = m + 2wi ;

{jkkj) = - »i ;
{iyk) = - 2/i ;

{jiik) = li (clxxxi)

but when e, /, and k are along the axes of the quadric the constants li, I2, and ^3 vanish.

(68.) It is only when the quadric is of revolution that the body can have two

planes of symmetry not at right angles to one another ; and moreover when the

quadric is of revolution and when the quartic has a plane of symmetry through the

axes of revolution it must be a plane of symmetry of the body, for every plane

through the axis is a principal plane of the quadric. Taking the axis of revolution

as axis of cylindrical coordinates z, p, u the equation of the quartic becomes

p* Ui + %p^ Ui + z^y U2 + %^p TJx + z* Z7o = const. (clxxxii)

where the suffixes denote the order in which cos u and sin u enter in the functions U.

Hamilton's Elements of Quaternions, Vol. II. 3 t)
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If w = is a plane of symmetry of the quartic the angle u must enter only in cosines

and we may write

Ui = a^- a' cos 2u + a" cos 4« ; Ui = h cos m + 5' cos Zu
;

112 = c \ c' cos 2w ; Ui = d cos w. (clxxxiii)

If M = » is a second plane of symmetry, substitution of t? + w and oiv - w for m must

lead to the same results. Hence

b Bmv =^ d Bmv = a' sin 2v = c' sin 2t> = i' sin 3» = a" sin 4t; = 0. (clxxxiv)

If the quartic is not a surface of revolution, the only admissible values of v are

evidently \ir, ^tt, and \ir. Thus the planes of symmetry of the body must intersect

at angles of 90°, 60°, or 45° if every plane through their intersection is not a plane

of symmetry.

(69.) When the quadric is a sphere it fails of course to afford a natural system of

lines of reference. This want may be supplied by the axes of the new quadric

V* . (jyppp) = const. (clxxxv)

for it is easy to see that a plane of symmetry of the quartic must be a principal plane

of the quadric. In case this quadric is a sphere we can derive a third quadric by

means of the operator V to take its place. If for brevity (pppp) =f, the equation of

this quadric is

(SVjVz)^ . /i/a = const., (clxxxvi)

the suffixes being omitted after operation.

Even when this is a sphere, the quadric*

(SViVs)* (SVjV,)* SV1V2 . /1/2/3 = const. (clxxxvii)

is available and must of necessity determine a natural system of axes if such exists.

For when any one quadric becomes a sphere five conditions are established

connecting the elastic constants. If the four quadrics are spheres but one constant

remains in the equation of the quartic as in the case noticed in section (66.).

* The equations of these third and fourth quadric may be obtained by operating by v* and v'"
on/* aud/^ respectively and rejecting terms in Tp-. In Cartesians (olxxxvi) becomes

2 (D^y )^ + 32 (D,2D,/)» + 6(D,DyD./)2 = const.

In Aronhold's notation if/ = rt,« = *,*, the equation is

{a\bi + ajbi + aibi)^aj>x = const.
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(70.) Although the subject is foreign to this ISTote on Hamilton's operator, it may
be useful to ofPer here a few remarks on functions linear and distributive in several

vectojs as such functions have occurred in the treatment of stress. Though the

process is general we take the case of a trilinear function and write in analogy with
the notation for conjugates

8a6)(/3, y, 8) = S/3^(y, 8, a) = 87^(8, a, ft)
= m"'{a, ft, y). (clxxxviii)

If the function is self-conjugate in the first vector so that a and ft may be interchanged

in these equations, we must have in general

^(a, A y) = &{ft, y, a) ; ^(a, ft, y) = ^(a, y, ft) ;

e"Xa, ft, y) = d"'{ft, a, y). (clxxxix)

If it is self-conjugate in the second vector

^(a,
ft, y) = e"(y, ft, a) ; ^(a, ft, y) = &{y, ft,

a)
;

e"\a, ft, y) = 6"'{y, ft, a) (cxc)

and if it is self-conjugate in both of these

e{a, ft, y) = e{ft, a, y). (cxci)

If finally it is self-conjugate in all three they may be interchanged in all possible ways.

There is the closest analogy between these completely self-conjugate functions

and Aronhold's notation aja^^„ {j = 1, 2, or 3). We may imitate his notation by

writing

^(S A y) = (A)S(X)aS(X)/8S(\)y (cxcii)

where (X) is a symbolic vector devoid of interpretation unless it occurs in a term

involving three other vectors (A). We may extend this notation to the case of

non-conjugate functions by writing

^(o, ft, y) = {\)8ifJL)a8{v)yS{w)8 (cxciii)

where (\), {fx), (v), and (-ar) are symbolic and uninterpretable unless they occur

together in a term.

Reference to Aronhold's notation is sufficient to suggest a number of interpre-

tations of quaternion forms. For example* if

e(a, ft)
= (cxciv)

where generally 0{p, w) = 6{w, p), the vectors a and ft arc corresponding edges of

the Hessian of a cubic cone '^p6{p, p) = 0. The equation of the Hessian is

S^(p, ^)6{pj v)^{pj = 0> ^> Vj and C being arbitrary constant vectors.

* This vector equation may be compared with the scalar /(o, $) = 0, where generally /{p, w)

= f{zs, p), which expresses that a and /3 are conjugate with respect to the cone/(p, p) = 0.

302
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(71.) The operations performed in deducing the quadrics of section (69.) are

related to the application of V to the theory of Spherical Harmonics.* If /„(V) is

any integral and rational function of V of degree n and with constant coefficients,

/nV . Tp~^ is obviously a solid harmonic of order - (n + 1 ). In fact this function is of

the degree - (n + 1) inTp and it vanishes under the operator V^.

It is always possible to determine a function f„_2p so that

fvP + pVn^P = SaipSttzp . . . Sa,^, (cxcv)

For draw n planes through distinct pairs of the 2n common edges of the cones

/„p = 0, p^ = 0; and through i {n - 2) (w - 2 + 3) of the remaining intersections of the

planes with the cone f„p = draw a cone /,^.2p = 0. The complex cone p%i^ =

passes through 2n + i{n - 2) (n + 1) or ^n{n + 3) - I oi the intersections oif,j) =

with the n planes ; it must consequently pass through all the remaining intersections

as i» (w + 3) - 1 is one less than the number of edges requisite to determine a cone

of the w'* degree. The relation (cxcv) is therefore justified. Again the common

edges of the cones/^ = 0,
p"^ = 0, group themselves into pairs a'l ± a"i -v/- 1 and each

group lies in a real plane. The reduction may therefore be uniquely effected in such

a manner that the planes shall be all real. But in operating on Tp~^, any fimction

V^ii-zV may be added to /„V without altering the result. Thus we may always

supposef
/„V .

Tp-i = SaiVSo^V . . . Sa„V . Tp'^. (cxcvi)

This enables us to expand any homogeneous function of p in a series of spherical

harmonics. When we effect the operations indicated and multiply across by Tp^"+*,

we have, (-^„_2p being a determinate function of degree n - 2),

V"*y„V .
Tp-i = [w)SaipSa2p . . . Sa^ + Tp^F„_2p- (cxcvii)

where for the sake of brevity

[n) = (-)» .1.3.5 . . . (2» - 1). (cxcviii)

Comparing (cxcv) and (cxcvii) we see that

fr_2»+i 1

/^ = -^ ./„V .^ + TpKff^ (cic)

where ^,^^9 is a homogeneous function of p. Treating this new function <7„.2p in the

same manner we obtain the second harmonic in the series and the process may be

repeated.

• Much of the following is adapted from Clerk Maxwell's most interesting and instructive

chapter on Spherical Harmonics, Electricity and Magnetism.

t The extremities of the vectors Uai, Uaz, &c. are the^ofe* of the spherical harmonic
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(72.) The potential due to any distribution of matter at any point (p) external to a

sphere which encloses all the matter may be expressed by a relation of the form

P=/V.T(p-a)-' (cc)

/V being a function of V expansible in ascending powers and the centi-c of the sphere

being at the extremity of a. For if dm is the element of matter at the extremity

of

1

T(p~-ay^-'lf^-^)--^'-^''-'''T(^-^)=^-^^

If Qa= J
d»i'T(p - a)"' is the potential at the extremity of a of a second distribu-

tion of matter wholly exterior to the sphere enclosing the lirst, the mutual potential

energy is

W=jdm'P = Id/;i7(V) . T(p - a)'' = Jdm7(- V„)T(p - a)-' =/(- V„) . <3„. (cci)

Or more conveniently if we take the origin at the centre of the sphere

W =f{-V).Q, (ccii)

provided we put p = after the operations have been performed as indicated by the

suffix.

If Q is due to a surface distribution of density s over the sphere

JF=
J
PsdS =/(- V) . Q,. (cciii)

When Q=r''Y„, Y„ being a spherical harmonic so that47r« = (2n + 1)«"~^F„ if a is the

radius of the sphere, this equation becomes

47r/(- V)r" 7„ = (2» + 1 )a'^*' jPT,A^ (cciv)

if do is an element of solid angle. It is manifest that the terms in^- V) of the

w*^ order in V alone contribute to the left-hand member. For the operation of terms

of higher order destroys r'Y„, and the results of operation of terms of lower order

vanish when r is put equal zero. Hence in particular

47r/„(- vyY„ = {2n+l)! K, r„dI2
; j Z^ Y,A^ = (ccv)

if Z^ and Z^ are spherical harmonics and if

/„(+V).r-' = r-''-iir„.

(73.) Up to the present we have scarcely considered the analytical structui-e of

the operator V. In section (7.) we obtained an expression (xiii) depending on three

arbitrary differentials and the corresponding differentiating symbols. In section (12.)
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we employed the well-known Cartesian form (xviii) for purposes of illustration, and

a third form (cxx) depending like (xviii) on the highly artificial method of determining

a vector by means of those systems of surfaces occurred in section (47.) in connexion

with Lagrange's method in fluid motion. Of all these forms (xiii) is the most accor-

dant with the spirit of the JElements because there is perfect freedom in the choice of

differentials most suitable for special purposes and because the conception of a vector

as an entity is not obscured by any system of coordinates.

(74.) To leave as little obscurity as possible about the method of arbitrary diffe-

rentials we shall consider the square of the operator (xiii) which we write for brevity

in the form

V = Sd + 8'd' + 8"d" (ccvi)

where the vectors S, 8', and 8" are determined by the equations

'yd'pd"p _ Yi"pdp Ydpd'p

Mpd'pd"p Sdpd'pd"p' Mpd'pd"p

TU^u p yu. pup yu.pu.p
for>rr\i\

It must be observed however that any advantage that may arise from the use of

this form is concealed when the operator is separated from the operand ; and owing to

the generality of the expression the result is apparently cumbrous. Squaring we find

V» = 28*d2 + 2 (8'S"d'd" + 8"8'd"d') + 2V8 . d. (ccviii)

In the third sum V operates on the vectors 8 alone and not on the operand of V.

Remembering that V^ is a scalar operator this equation breaks up into two, a

scalar and a vector,

V« = :S,8W + 2SS'8" (d'd" + d"d') + 5Sv8 . d ' (ccix)

and
= ^Y8'8" (d'd" - d"d') + 2Vv8 . d. (ccx)

It is only when the differentials are independent that the order in which the

differentiations are performed is indifferent and in this case only is it generally lawful

to suppress the terms involving d'd" - d"d' and similar expressions.

(75.) When independent differentials are employed, we may fall back on the

equation (cxx) or

V = - -X^~ — - _y^3Pi_ _^ _ Vpipz _9^

Sp2P3|Oi ^u ^paPiPi ^ SpipaPs dtp

which we shall write for brevity in the form

V = V — + v'— + v"r- (CCXI)
du ov dtp

where v, i/', v" are normals to the surfaces determined by constant values of m, v and w
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reepectively. The following equations among others are satisfied by these normal

vectors,

Spiv +1=0, Sp2V = 0, Spsv = 0. (ccxii)

Also when we consider n, v and w to be functions of p we have

?) /) r\

V = Vm — + V« — + V«J— • (ccxiii)
ou ov ow '

So the vectors v may be expressed by the equations

V = Vm, v' = Vi>, v" = Vw (ccxiv)

whence we find

¥71/ = 0, VVv' = 0, YVt/' = 0. (ccxv)

(76.) These equations may be deduced from (ccx) as a particular case. In fact

V^ = Si'' ^, + 2SSI/V'^^ + 5SVv - (ccxvi)
ow' ovcw du '

and
JS Jl pi

= VVv — + VVi/ — + Wv"— • (ccxvii)
ou ov ow '

The vector equation furnishes the three equations (ccxv) as appears by operating

for example on «, v and to respectively.

(77.) But there is stiU another form for V, namely

in which for greater clearness the operand is inserted. On expansion this obviously

reduces to (cxx). Hence we have

SP1P2/O3 I
^u \ Spipzps duj du\ Spip2/03 9^/;

where the second sum includes six terms and to this the sign S may be prefixed.

This may also be written in the more compact form

CCXX)

(78.) The analytical expression for V* becomes immensely simplified in two

important cases
;

(I.) whenever the parameters are Cartesian coordinates, rectangular

or otherwise, for then the vectors v, /, v" are constant instead of being as in general

variable with p; and (II.) whenever the three families of surfaces are mutually

rectangular.
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In the second case, which includes the most important application of the first,

we may remove at once the superfluous symbols S and V from (cxx) or the first

expression of (75.) we then have

19 19 13 / -xV=--r r ^- (CCXXI)

Forming the square of this directly or replacing Spipzps by - Tpip2p3 and (Vp2Ps)'' by

- Tpi^ps^ in (ccxix) we obtain

which is equivalent to the usual expression for V^ in orthogonal curvilinear coordinates.

(79.) If the family of surfaces u constant is isothermal or equipotential, we must

have
vy{u) = (ccxxiii)

where /(w) is the potential. Operating by V^ as given by (ccxxii) on/(M) we obtain

|;(tp.-w|) = or Tp,-'«.3| = J^(>-,-).
. (---')

If the parameter u is the potential, so that V*m = 0, the product Tpipa'^ps"^ is a

function of v and w. If moreover the three families are equipotential (ccxxii)

reduces to

1 92 1 92 1 92 / V

V2 = — —- + — 4- — (ccxxv)

pi' du" Pi" 9i;2 p3« dw^

when u, v, and w are the corresponding potentials.

(80.) More generally we shall find the condition that the family of surfaces

/(p, li) = (ccxxvi)

should be isothermal. If we suppose the parameter (u) of the family to be found by

solution as a function of p we may treat (ccxxvi) as an identity and may equate to

zero the results of operating by V and V^ on /(p, «) when we operate both on u

and on p. Hence

V/+VM.r^ = (ccxxvii)

where p alone is operated on in V/. Again

VV+ Vm . -^ + V rf^. Vu + V»« . r^+ (Vm)' -£1 = 0. (ccxxviii)
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But evidently V as operating on p is commutative with — , so we have the simpler
ou ^

expression

vy + 2^Vu . ^/+ V^^. I + (V^.)^ ^^ = 0. (ccxxix)

Now if P is a function of u which satisfies V^P = o, as a particular case of this

equation

a^^°^a^ +
(v^3

= o (ccxxx)

Eliminating Vw and V^u between (ccxxvii), (ccxsix) and (ccxxx) we obtain

without difficulty

9 , 9i» 9 , a/ 9 , , ., V^f df

^u
^'^ 9-« =

9li
1«S lu-^u

''^^""^^'^ m-i- ^''^^^'^

When the operations* indicated have been performed on the right-hand member

of this equation, it must be possible to reduce it by means of the equation (ccxxvi) of

the family of surfaces to a function of u alone if the family is isothermal. This con-

dition being satisfied, two integrations afford P, the temperature (or thy potential)

appropriate to the surfaces. The condition may be obtained explicitly, for if F{p, u)

can thxis be reduced to a function of u,

dF
V. P+ Vw —

II
Vw

!|
V/ or YvfvF= 0. (ccxxxii)

Hence the condition may be written as a partial differential equation in the form

VV/.vjilogf?^ ^ ] + ^_Z^j=0. (ccxxxiii)

(81.) As an example take the system of confocals

/(p, u) = Sp(«I> + uy^p -1=0. (ccxxxiv)

For this

V/=-2($ + w)-V; V\f=2{{a' + uy' + {b- + uY' + {e' + uy'); g^^-iW)'-

(ccxxxv)

The differential equation for P is simply

^log^-^ = - iV^f= - Hi(^' + ur + {¥ + ur + {c^ + uy);
ou ou

* The fact that these operations are partial must be borne in mind. This may be illustrated for

the cases f^p^ + u', f=p^u^+l.

Hamilton's Elements of Quaternions, Vol. II.
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the condition (ccxxxiii) is obviously satisfied and

P = Po 1> (ccxxxvi)

a second arbitrary constant being understood to accompany the sign of integration.

(82.) It is also easy to find in terms of V the condition that the family of surfaces

Fp - u (ccxxxvii)

should compose one of three mutually orthogonal systems.*

The vectors pi, p%, pz being the deriveds of p with respect to three parameters

u, V, and w, the corresponding surfaces will be mutually orthogonal if the equations

S/32P3 = Spspi = Spip2 = (ccxxxviii)

are true for all values of u, v, and w. Under these conditions we may differentiate

and equate the results to zero. Thus we obtain

S(/oi2P3 + PuPsi) = S(p23pi + papij) = S(p3ip2 + P1P23) = 0,

or what is equivalent

Sp23Pi = Sp3ip2 = Spizps = (ccxxxix)

or again by the conditions of perpendicularity,

Sp23P2p3 = Spsipspi = Spi2PlP2 = 0. (CCXI)

These equations show that the surfaces intersect along their lines of curvature

for they are of the form
Svdvdp = (ccxli)

which is the well-known equation of the lines of curvature. They may be replaced

by vector equations, one of which is

P23 = yp2 + zp3 (ccxlii)

where y and z are certain scalars. Differentiating with respect to u, we may write

the result in the form

dvdw dv dw du du

and this implies

Now go ja

g^
= -Sp'aV, _ = -Sp'3V, ^-^ = Sp'2VSp'3V - Sp'23V (ccxlv)

• Compare Salmon's Geometry of Three Dimensions, fourth edition, pages 436-450.
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in which the accents signify that the marked vectors are free from the operation of V.

Hence we see immediately hy (ccxlii) that generally and symholically

while the condition (ccxliv) may be replaced by

Sp'jVSp'aVSpVi = (ccxlvii)

in which V operates solely upon the unaccented vector p^.

It only remains to replace pi, p2, and ps in terms of V and Fp in order to obtain

the differential equation which the equation of the family of surfaces Fp = u must

satisfy.

In the first place (ccxxi)

VF=Vu = - pi'^ or pi = -VF-^; (ccxlviii)

and again if we put v = VF and write

dv = tfidp = MpV.VF (ccxlix)

in the equation of the lines of curvature (ccxli), we find

where the suffix n = 2 or 3 and where t^ and ts are the roots of the quadratic

Sv(<^ + t„)-'v = or Sv(./. + tnx + tn^> = 0- (ccli)

We may also write

P» ii
v-iVv(^ + t„x)v li

A. + t„ix, (cclii)

the vectors A and fi being introduced for the sake of brevity and being known in

terms of V and i^by the results of sections (27.) and (28.). Substituting in (ccxlvii)

we obtain

S(Xo + Vo)VS(Xo + ^3/^0) VS(Vi^)-i(Vi?')o = ; (ccliii)

and finally by the aid of the quadratic (ccli) we arrive at the equivalent of Cayley's

differential equation of the third order in the form

{(SX„V)^ - (Sv-'xv)o S\<,VS/.oV + (Sv-Vv)o (S/.oV)n S(Vi^)-^ (Vi^)o = 0. (ccliv)

In this the suffixes are intended to indicate that the quantities distinguished by them

are exempt from the operation of V.
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[The Roman Numerah i, ii, refer to the First and Second Volumes respectively; the AraibicJigures to the pages.']

Ablatitious force, 322 ii.

Abstraction of symbol from subject of operation, T,

168 i; K, U, R, 142 i; K, S, V, 204 i; </>,

494 i ; V, 434 ii.

Academy, Royal Irish, first communication on quater-

nions, note, 160 i, 316 i, 380 i.

construction of ellipsoid, note, 230 i.

spherical quadrilaterals, note, 392 i.

lines of curvature, note, 239 ii.

hodograph, notes, 300 ii, 310 ii, 318 ii, 319 ii.

rotation of a soUd, note, 290 ii

development of disturbing force on planet, note,

321 ii.

Third Supplement on Systems of Rays, notes,

330 ii, 341 ii.

Conical Refraction, note, 341 ii.

Operator v, note, 548 i.

Acceleration, vector of, 100 i.

with respect to moving axes, 289 ii, 403 ii.

Action of a dynamical system, 296 ii.

Actual vector, 3 i, 110 i.

Addition, extended meaning of, 5 i.

of vector and point, 5 i.

of vectors, 5 i ; is commutative and associative, 7 i.

of quaternions, 116 i ; is commutative and asso-

ciative, 176 i, 204 i, 207 i.

of vector-arcs, is not commutative, 156 i ; is

associative, 304 i, 408 i.

of vector-angles, 406 i.

of amplitudes, 264 i.

spherical, 406 i.

Algebra, imaginary symbol of, 133 i, 224 i, 263 i,

258 i, 289 i, 316 i.

paradox in, 149 i.

principles adopted from, 108 i.

extended use of signs in, 5i, 6i, 108 i, 123 i, 256 i.

Algebraic form, equations of, 77 i.

Alternation and inversion, equidifference of points, 4 i.

equality of geometric quotients, 118 i.

of vector-arcs, 144 i.

Am, symbol for amplitude, 262 i.

Amn or ^,, 263 i ; Amo, principal amplitude, 263 i.

Amplitude of quaternion, 262 i ; note, 120 i.

of a twist, 390 ii.

Amplitudes, addition of, 264 i.

Analytical expressions for V, 469 ii.

Angle of quaternion, 120 i, 111 i.

differential of, 458 i, 277 ii.

Euclidean, 120 i.

representative, 151 i.

vector-, 151 i, 406 i.

for curves, auxiliary, S, 89 ii, P, 89 ii, (7, 91 ii,

D, 98 ii, /, 116 ii, j, 118 ii.

of contact, 403 ii, of torsion, 403 ii.

Angular acceleration, note, 28 9 ii.

momentum, 289 ii.

velocity, 288 ii, of emanent, 84 ii, 119 ii.

Anharmonic coordinates, 23 i, 378 ii ; in space, 55 i,

388 ii.

construction of cubic curve, 38 i.

equations of curves, 32 i ; of surfaces, 87 i.

function or quotient, 16 i.
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Anharmonio coordinates of four points on a line, 15 i

;

in space, 294 i ; on a circle, 297 i.

properties of ruled surface, 408 ii.

of triangle, 21 i.

quaternion, 294 i, 350 i.

Anti-parallel sections of a cone, 183 i.

ApoUonius of Perga, locus, 130 i, 165 i, 191 i, 182 ii.

cyclic cone, 181 i.

Applicable surfaces, 264 ii, 402 ii.

Arc, vector-, 143 i.

representative, 143 i.

cyclic, 185 i, 308 i.

of curve, element of, 32 ii, 87 ii ; of surface,

263 ii, 411 ii.

on surface, variation of, notes, 48 ii, 271 ii.

affections of curve involving the third power of,

88 ii ; fourth power of, 112 ii ; fifth power of,

156 ii.

of cusp-edge of polar developable, 120 ii ; of

rectifying developable, 123 ii.

of evolute, 169 ii.

Arch, oblique, 283 ii.

Arcual sum, 156 i, 303 i, 369 i.

Area, sign of, 18 i.

directed, 482 i.

of parallelogram, 246 i.

of spherical triangle, 364 i.

of spherical polygon or curve, 368 i, 370 i.

of spherical cap, 482 i.

Areal velocity, 299 ii.

Arithmetic, illustration of differential from, 434 i.

Aronhold's notation, 467 ii.

Arrangement of axes of a function and its conjugate,

512 i, 384 ii.

of rays of complex and congruency, 419 ii.

Aspect of plane, 112 i ; note, 207 i.

Associative law for addition of vectors, 7 i ; of qua-

ternions, 207 i ; of vector-arcs, 304 i.

for multiplication of i,j, k, 159 i ; of quaternions,

308 i, 245 i ; of vectors, 337 i.

for multiplication, enunciations of, 301 i.

Assumption as to equality of a right quaternion with

its index-vector, 334 i ; note, 175 i.

Asymptote of hyperbola, 34 i ; 9 ii ; of twisted cubic,

131 ii, 162 ii.

Asymptotic cones, 189 ii, 186 ii.

Attracting bodies, system of, 293 ii.

Atwood's machine, 100 i.

Auxiliary functions, linear vector, 486 i, 495 i
;
quater-

nion, 560 i.

spherical curves, 28 ii, 51 ii, 110 ii.

angles for curves, £", 89 ii ; P, 89 ii ; C, 91 ii ;

i), 98ii; J, 116 ii;/, 118 ii.

vector function for confocals, 199 ii.

Ax., symbol for axis of quaternion, 120 i.

examples on, 121 i.

equals lUV, 203 i.

replaced by TJV, 334 i.

Axes or directions of linear vector function, 508 i.

arrangement of, and of its conjugate, 512 i,

384 ii.

coincidence of two, 503 i, 379 ii.

of three, 505 i, 379 ii.

determination of, note, 612 i.

imaginary, 514 i.

indeterminate, 501 i, 525 i, 369 ii, 379 ii,

385 ii.

rectangularity of two, note, 513 i.

of three, note, 513 i, 514 i, 517 i.

of system of functions, 384 ii.

of ellipsoid, principal, 238 i ; of quadric, 536 i,

187 ii, 272 ii.

of section of quadric, 238 i, 525 i, 231 ii, 253 ii.

of sphero-conic, 192 ii.

of confocals, 199 ii ; of touched confocal, 228 ii.

of inertia, 291 ii.

of crystal, optic, 348 ii.

moving, 403 ii, 404 ii, 410 ii ; note, 289 ii.

Axis of quaternion, 119 i, 112 i, 203 i ; differential

of, 458 i.

of parabola, 34 i.

of screw rotation, 84 ii, 95 ii. See Screw,

of system of applied forces, central, 285 ii.

of instantaneous rotation, 288 ii.

polar, 57 ii.

Ball, Sir R. S., Theory of Screws, Note VIII., 390 ii

;

notes, 285 ii, 287 ii ; 374 ii.

Barycentres, 86 i.

Barycentric Calculus, refeiTed to in notes, 22 i, 60 i,

61 i, 62 i, 85 i, 162 ii.

Bertrand, geodetics on cylinder, note, 111 ii.

Biaxal crystal, 323 ii.

BiconcycUc surfaces, 527 i, 187 ii, 272 ii.
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Bicouple, 289 i.

Bifocal form of linear vector function, 545 i, 195 ii.

Binet's theorem on principal axes, note, 292 ii.

Binomial form of quaternion, 254 i.

of linear vector function, 498 i.

Binormal, 28 ii, 82 ii.

Biquadratic equation of linear quaternion function,

560 i.

of united points, 387 ii.

Biquatemion, 133 i, 225 i, 289 i, 316 i.

Biscalar, 225 i, 289 i.

Bisecting sides of spherical triangle, triangle, 358 i.

Bisectors of a triangle, 18 i.

Bivector, 225 i; note, 171 ii.
^

Bonnet on geodetic torsion, 415 ii.

Booth, tangential coordinates, notes, 40 i, 255 ii.

Calculus, Barycentric, notes, '22 i, 60 i, 61 i, 62 i, 85 i,

162 ii.

of finite differences, 83 i.

of functions, 202 i, 205 i. See Abstraction.

of partial differentials, 48 ii.

of variations, notes, 48 ii, 271 ii.

Cambrure, note, 81 ii.

Cap, area of spherical, 482 i.

Camot on transversals, notes, 65 i, 377 i.

Cartesian coordinates and quaternions, note, 248 i,

351 ii.

expressions for functions of a quaternion, 242 i.

Cassinian oval, 281 i, 285 i.

Cauchy on the wave-surface, note, 324 ii.

Cayley on the theorem of the polar plane, note, 357 ii.

on quaternion determinants, 361 ii.

on orthogonal surfaces, 474 ii.

Central sections of quadric, 238 i, 625 i, 231 ii, 253 ii.

surfaces, 186 ii. See Quadric.

axis of system of applied forces, 285 ii.

of finite displacement, 398 ii.

orbit, 298 ii.

Centre of involution, 16 i, 409 ii.

of homology, 60 i.

of conic inscribed to triangle, 36 i.

of ruled hyperboloid, 92 i ; vector to, 96 i.

of osculating circle, vector to, 60 ii, 57 ii.

of spherical curvature, 74 ii, 134 ii, 155 ii, 168 ii.

of quadric, 280 ii.

of applied forces, 286 ii. i

Centres of curvature of a surface, 246 ii.

quadric, 260 ii.

surface of, 254 ii.

reciprocal of surface of, for a quadric, 255 ii.

Centro-focal ellipses, 203 ii.

Characteristic function, 297 ii ; for central orbit, 314 ii.

of operation. See Symbol.

Chasles, referred to in notes, 16 i, 31 i, 72 i, 89 i,

183 i, 300 i, 308 i, 340 i, 227 ii, 236 ii.

Chiastic homography of screws, 394 ii.

Circle, inscribed or exscribed to triangle, 33 i ; to

spherical triangle, 401 i.

quaternion equation of, 133 i.

expressed by square of right radial, 134 i.

examples on, 174 i.

inverse of line, 296 i, 349 i.

through three points, vector equation of, 355 i.

exponential equation of, 417 i, 462 i, 5 ii.

touching three small circles on a sphere, 427 i.

osculating a curve, 50 ii, 86 ii, 174 ii.

vector equation of, 68 ii.

and intersecting, 60 ii.

deviation of, from curve, 97 ii, 133 ii, 138 ii,

404 ii.

locus of, 140 ii.

geodetic, or Didonia, 271 ii.

of excentricity, 306 ii.

Circular sections of cyclic cone, 184 i.

of elUpsoid, 232 i, 239 i.

of index surface, 234 ii.

of Fresnel's wave surface, 332 ii.

group of four points, 297 i.

successions, 297 i, 305 i, 311 i.

logarithmic spiral, 419 i.

points at infinity, note, 516 i.

hodograph, 300 ii.

ridges on Fresnel's wave-surface, 337 ii, 344 ii.

Circumscribed developable of curve, 116 ii.

to confocals, 222 ii.

to surfaces, 232 ii.

Cia (symbol), 260 i.

Class of a curve, 42 i, 93 i.

surface, 88 i.

eongruency, 431 ii.

Classification of points of construction, 65 i, 75 i.

of quadrics by roots of function, 187 ii.

by centres, 280 ii.
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Clifford, note, 289 ii.

Co-axial quaternions, 250 i.

linear functions, 364 ii.

Coefficient of non-sphericity, 80 ii, 120 ii, 135 ii, 138 ii.

Coefficients of vectors, 9 i.

differential, 99 i, 444 i.

Coincidence of axes of linear function, 378 ii.

of cusp-edges of envelope, 145 ii.

CoUinear, condition that three points should be, 14 i,

49 i, 52 i, 67 i.

three right quaternions, 247 i.

quaternions, 210 i.

termino-, vectors, 14 i, 343 i.

Comet, distance from earth of, 320 ii.

Commutative law for addition of vectors, 6 i.

of quaternions, 176 i, 207 i.

not valid for addition of vector arcs, 156 i.

multiplication of quaternions, 147 i, 156 i.

of linear functions, 364 ii.

Complanar points, 14 i, 45 i, 56 i.

vectors, 14 i, 340 i; proportion of, 250 i, 256 i.

termino-, 45 i, 344 i.

quaternions, 116 i, 211 i, 250 i.

Complanarity, sign of, 117 i.

condition of, of points, 14 i, 45 i, 52 i.

of vectors, 14 i, 338 i.

of quaternions, 148 i.

Complex mean of n vectors, 85 i.

of lines, note, 211 ii ; Note XII., 417 ii.

Composition of two quadrantal rotations, 149 i.

of rotations, 415 i.

of wrenches and twists, 390 ii.

Concircularity, condition of, of four points, 297 i,

355 i, 177 ii.

Concurrence of three lines, 18 i.

of four planes, 57 i, 342 i.

of three circles, 311 i.

Concyclic quadrics, 527 i, 187 ii, 272 ii.

Condition of collinearity of three points, 14 i, 49 i,

62 i, 57 i.

right quaternions, 247 i.

commutation of quaternions, 148 i.

linear vector functions, 364 ii.

complanarity of points, 14 i, 45 i, 52 i.

of vectors, 14 i, 338 i, 345 i.

of quaternions, 148 i.

of versors, 148 i.

Condition of concircularity, 297 i, 177 ii.

concurrence of lines, 18 i.

of planes, 57 i, 342 i.

of contact of line and sphere, 224 i, 427 i, 428 i.

and quadric, 209 ii.

homoconicism, 375 ii.

homosphericity, 352 i, 354 i.

indeterminateness of axes, 379 ii.

integrahility of Svdp, 275 ii.

parallelism, 10 i, 194 i, 325 i.

perpendicularity, 180 i, 325 i, 345 i.

planarity of curve, 25 ii.

rectangularity of axes of function, note, 513 i.

sphericity of curve, 80 ii, 120 ii, 135 ii, 138 ii,

406 ii.

tennino-collinearity of vectors, 14 i, 343 i.

complanarity, 45 i, 344 i.

Cone, asymptotic, 186 ii, 189 ii.

of axes of system <p + t0, 384 ii.

of complex, 430 ii.

confocal, 213 ii.

cubic, vector expression for, 95 i ; monomial

equation of, 281 ii, 384 ii.

on curve, 27 ii, 34 ii.

cyclic or quadric, 95 i, 181 i, 309 i, 189 ii.

expressed by S, 181 i.

vector expression for, 95 i, 101 i.

differential equation of, 45 ii.

focal, 202 ii, 216 ii.

geodetics on, 31 ii.

motion of body about fixed point represented by

rolling, 290 ii, 291 ii.

of normals, 243 ii.

osculating, related to curves, 91 ii, 99 ii, 125 ii>

129 ii, 163 ii.

of parallels to tangents, 6 ii, 27 ii, 29 ii.

Pascal's theorem deduced from equation of,

375 ii.

of revolution, 183 i ; note, 184 ii.

expressed by £, 121 i, by S, 180 i.

equation of one sheet of, 121 i.

tangent to sphere, 225 i ; to quadric,

217 ii.

tangent, to sphere, 225 i ; to quadric, 209 ii.

to confocals, 213 ii ; note, 224 ii.

right, 217 ii.

at wave-cusp, 336 ii, 341 iL
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Confocal quadrics, 196 ii.

tangent cones, 213 ii ; note, 224 ii.

right, 217 ii.

equation of, 207 ii.

a line touches two, 214 ii.

developable circumscribing, 222 ii.

corresponding points on, note, 225 ii.

vector equation of, note, 225 ii.

axes of inertia related to, note, 293 ii.

wave-surface and, 346 ii.

as isothermal surfaces, 473 ii.

Congruence for quinary symbols, formula of, 51 i.

Congruency of lines, 417 ii.

Conic, anharmonic equation of, 32 i.

asymptotes of, 34 i, 9 ii.

circumscribed to triangle, 36 i.

conjugate diameters of, 94 i.

curvature of, 52 ii, 54 ii.

evolute of, 63 ii, note, 168 ii.

excentric anomaly of, 417 i, 5 ii.

exiwnential equation of, 417 i, 462 i, 5ii, 25 ii.

exscribed to triangle, 33 i, 36 i.

focal, 202 u, 219 ii.

index-, 231 ii.

intersection of cone and plane, 181 i.

cylinder and plane, 196 i, 199 i.

invariants, 380 ii.

quaternion equation of, 9 ii.

spherical, intersection of cone and sphere, 182 i.

of ellipsoid and sphere, 239 i.

associative principle illustrated by, 302 i,

308 i.

curvature of, 63 ii.

axes and foci of, 192 ii.

on wave surface, 345 ii.

vector equation of general, note, 10 ii.

Conical points on wave-surface, 332 ii, 336 ii, 341 ii.

refractions, 341 ii.

rotation, 154 i, 172 i, 3591, 398 i, 429 i, 397 ii.

linear function of, 367 ii.

surfaces, family of, 45 ii.

Conjugate diameters of ellipse, 94 i ; ellipsoid, 94 i.

of quadric, mutually, 211 ii, note, 250 ii,

374 ii.

directions to two quadrics, mutually, note, 250 ii,

364 ii.

harmonic, 161.

Hamilton's Elkmbnts of Quaternions, Voi.. II.

Conjugate of linear vector function, 485 i.

quaternion function, 555 i.

transformation function, 388 ii.

point of cubic, 41 i.

points to quadric 229 i, 428 i, 209 ii.

quadrics, note 188 ii.

quaternions, 115 i, 123 i.

screws of potential, 395 ii.

tangents, 231 ii.

of vector, 346 i.

Conjugation, characteristic of, K, 124 i.

equation of (linear vector function), 485 i.

(linear quaternion function), 555 i.

(pole and polar), 229 i, 428 i, 209 ii.

Connected region, multiply, 449 ii.

Constants determining a linear vector function, 486 i,

530 i, 374 ii.

quaternion function, 556 i.

dynamical, of a body, 396 ii.

elastic, 463 ii.

or invariants of linear vector function, 491 i, 376 ii.

vector-, of ellipsoid, 201 i, 236 i.

Constituents of a quaternion, 242 i.

Construction for centre of curvature of hyperbola,

54 ii ; of sphero-conic, 65 ii.

of spherical curvature, 77 ii.

for cubic curve, 38 i.

for ellipsoid by diacentric spheres, 234 i, 241 i,

184ii.

by variable ellipses 201 i, 204 Li.

modular and umbUicar, 279 ii.

of fourth proportional to three diplanar vectors,

362 i.

points of, for plane net, 17 i, 22 i ; for net in

space, 61 i. See Points,

for potential in orbit, 307 ii

of rays of congi'uency, 419 ii.

of series of spherical parallelograms, 390 i.

for wave-surface, 327 ii, 253 ii.

Contact of line with sphere, 225 i.

quadric 209 ii.

See Tangent, Osculating.

Continued proportion of complanar vectors, 256 i,

251 i.

Continuity, equation of, 455 ii.

Convention respecting sign of area, 18 i.

of volume, 48 i.
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Convention respecting sense of rotation, 119 i, notes,

llli, 152 i, 369 i.

position of operator and operand, 110 i, 147 i.

expansion of quaternion detenninante, 361 ii.

Convergency of series, 269 i, 424 i.

Coordinates, anharmonic, 23 i, 55 i.

of a plane, 60 i.

Cartesian, 248 i.

of a couple, 254 i.

curvilinear, 471 ii.

elliptic, note, 225 ii.

geodetic,"264 ii.

idea of, foreign to quaternions, note, 112i, 404 i,

351 ii.

of a line, note, 211 ii ; 426 ii.

screw, 392 ii.

tangential, 40 i, 255 ii.

Co-reciprocal screws, 392 ii.

Co-residuals on cubic, 385 ii.

Corresponding points on confocals, note, 225 ii.

Cosine of quaternion, 275 i, 424 i.

Couple (quaternion in given plane), 254 i.

or moment, 284 ii.

Criterion as to nature of conic inscribed to triangle, 34 i.

Crystal, propagation of ligbt in biaxal, 323 ii.

incidence of light on, 352 ii.

Cube-root of quaternion, 256 i
; principal, 257 i.

Cube-roots of unity, nine, 291 i.

Cubic, anharmonic construction of plane, 38 i.

equation of, 41 i.

cone, 95 i, 281 ii, 384 ii.

surface, general equation of, 281 ii.

related to curve, 164 ii.

symbolic, of linear function, 494 i.

depressed, 501 i, 505 i, 379 ii.

twisted, having contact of third order with a

curve, 92 ii, 104 ii; of fourth order, 125 ii,

128 ii ; of fifth order, 129 ii, 167 ii, 404 ii.

vector equation of, 131 ii, note, 662 i.

Curl of vector, 444 ii.

Curvature of curve, absolute, 50 ii.

second,ortorsion,88ii,81ii, 92ii, 10811, 10911.

spherical, 74 ii.

vector of, 62 ii, 5611.

ofhodograph, 30211.

of surfaces, 246 ii.

geodetic, 267 ii.

Curvature of surfaces, linea of, 230 ii, 235 11, 236 ii.

through umbilic, 242 ii.

measure of, 261 ii, 412 ii, 415 ii.

of section, 267 ii.

total, 26411, 41611.

Curvatures, constant ratio of, 111 ii, 40611.

difference of, of surface, 249 ii.

Curve, affections of, depending on third power of arc,

8811.

on fourth power, 11211.

on fifth power, 166 ii.

auxiliary angles for a. See Angle,

cubic. See Cubic,

deviation of. See Deviation,

element of arc of, 32 ii.

emanating line and planes, 8311, 85 ii, 109 ii»

1 14 ii, 40811.

osculating planes and absolute normals to, 24 ii.

reciprocal of, 41 11, 111 ii, 193 11.

spherical, 62 11. See Spherical,

tangents and normal planes to, 4 ii.

unicursal, note, 10 ii.

vector equation of, 94 1.

Curvilinear coordinates, 471 ii.

Cusp or conical point on wave-surface, 33211, 33511,

34111.

-cones of wave-surface, 343 ii.

-edge of developable, 931, 1001, 36 ii.

(polar), 120 ii.

(rectifying), 12211.

of envelope of sphere, 14411.

-rays, 332 ii.

Cyclic arcs, 1851, 3081.

cones, 95 i, 181 i, 3091, 189 ii.

form of linear vector function, 520 1, 528 i, 535 1,

5381.

applied to quadric, 5351, 18711.

to wave-surface, 332 11.

to strain, 36911, 373 ii.

planes, normals, of cone, 1831, 5491.

of ellipsoid, 2321, 2361.

of quadric, 1811.

quadrilateral, 2961, 3471.

Cyclical law of i,j, k, 1581.

permutation under S of vectors, 350 1 ; of quater-

nions, 2481.

of linear vector functions, 363 ii.
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Cylinder of revolution expressed by TV, 195 i.

by V, 199 i.

centre indeterminate, 280 ii.

geodetic on, 30 ii, 405 ii.

osculating curve, right, 98 ii.

tangent, to sphere, 201 i; spheroid, 201 i; ellip-

soid, 202 i.

right, 201 i, 202 i, 236 i, 241 i, 220 ii.

Cylindrical surfaces, equation of, 44 ii, 46 ii.

Cylindroid, 391 ii, 419 ii, 422 ii.

D'Alembert's principle, 288 ii.

Darboux, referred to in notes, 401 ii, 415 ii.

Decomposition of quaternion q = Tq . Vq, 169 i ;

q = Sq + Yq, 193 i ; in terms of four quater-

nions, 242 i, 564 i.

of vector along and perpendicular to a given direc-

tion, 193 i.

along three given directions, 338 i.

at right angles to three planes, 339 i.

into tensor and versor, 164 i.

of strain, 366 ii, 370 ii, 375 ii.

Definite integral, analogue of, 368 i.

over sphere, 482 i, 483 i.

total curvature, 265 ii, 416 ii.

principal function, 294 ii, 314 ii.

characteristic function, 296 ii, 314 ii, 317 ii.

time in orbit, 310 ii, 317 ii.

Definition of addition, 5 i, 109 i, 116 i.

of difi"eiential, 97 i, 430 i, 438 i.

of multiplication, 108 i, 10 i.

of power of a vector, 396 i.

of a quaternion, 421 i.

of reciprocal of vector, 293 i.

of subtraction of vectors^ 5 i ; of quaternions,

109 i, 116i.

of a sum of vectors, 7 i.

of a vector, 3 i.

Deformation of sphere, 232 i.

theorem of geometrical, 525 i.

of surfaces, 264 ii, 402 ii, 416 ii.

strain, 365 ii.

Degenerate quaternions, 120 i, 178 i, 333 i.

Degree of plane curve, 32 i.

of twisted curve, 93 i, 10 iL

of surface, 87 i.

Delaunay on isoprometricul problem, note, 271 ii.

De Moivre's theorem, 264 i.

De Morgan, Double Algebra, note, 278 i.

on geodetics on surfaces of revolution, 49 ii.

on evolutes, 169 ii.

Denominator, reduction of two quaternions to a com-

mon, 116 i.

Depressed equation of linear vector functions, 501 i,

605 i, 379 ii.

Derivative of a vector, 99 i.

partial, 294 ii.

Derived from scalar, vector (v), 548 i, 13 ii, 432 ii.

Descartes on powers of lines, notes, 394 i, 404 i.

Desk, illustration of quaternion by, 113 i.

Determinants, quaternion, 361 ii, 382 ii, 393 ii.

Developable surface, 100 i, 36 ii, 409 ii.

circumscribed, 116 ii.

to surface (conjugate tangents), 232 ii.

circumscribing confocals, 222 ii.

cusp-edge of, 93 i, 100 i, 36 ii.

differential equation of, 45 ii.

as envelope, 42 ii.

generated by emanants, 85 ii, 409 ii.

geodetic on, 37 ii, 272 ii.

normal surface, 256 ii,

polar, 58 ii.

reciprocal of, 41 ii.

rectifying, 81 ii, 122 u.

Development of a vector, 102 i.

of functions of quaternions, 465 i, 476 i.

of vector to point on curve, 112 ii, 156 ii, 404 ii.

of disturbing force, 320 ii.

Deviation of curve from osculating sphere, 79 ii,

132 ii, 138 ii.

circle, 87 ii, 97 ii, 133 ii, 138 ii ; helix, 95 ii.

parabola, 96 ii.

of helix from twisted cubic, 161 ii.

in general, 404 ii.

Diacentrie sphere, 234 i, 241 i; note, 204 ii.

Diameters, conjugate, of ellipse, 95 i ; eUipsoid, 95 i

;

quadric, 211 ii ; note, 250 ii.

Didonia, note, 271 ii.

Difference of two points, 3 i ; of two vectors, 5 i.

of two quaternions, 176 i.

of curvatures of a surface, 249 ii.

Differenced equation of quadric, 21 ii.

Differences and differentials, 102 i, 431 i, 434 i,469 i,

174 ii, 179 ii.
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Differences and differentials, successive, 479 i.

finite, equation in, 84 i.

Differential coefficient, 99 i, 444 i.

definition of, 97 i, 431 i, 440 i.

8 and differences, 102 i, 431 i, 434 i, 469 i, 174 ii,

179 ii.

distributive property of, 441 i.

elimination of, 448 i.

equation of families of surfaces, 44 ii, 47 ii.

of geodetics, 29 ii, 34 ii, 226 ii, 414 ii.

of lines of curvature, 230 ii, 412 ii.

for principal function, 296 ii, 314 ii.

for characteristic function, 297 ii, 315 ii.

exact, 275 ii, 654 i.

with multiplier, 276 ii.

finite, 99 i, 103 i, 432 i, note, 179 ii.

fluxion compared with, 431 i.

illustrations of, 432 i, 435 i, 469 i.

Lacroix on, 473 i.

Lagrange on, 441 i.

Maxwell on, 102 i.

Newton on, 431 i.

partial, 101 i, 446 i, 479 i, 48 ii.

of quaternion function, 438 i, 440 i, 445 i
;

of ^^ 438 i ; of q-\ 439 i, 447 i ; of ?"», 461i ;

of ?J, 452i, 560 i; of e«, 453 i ; of Kq, &q, Yq,

455 i ; of T^ and TJq, 456 i ; of Ax q, 458 i

;

of Iq, 459 i.

of function of function, 449 i.

of implicit quaternion function, 484 i.

quotient, 443 i, 98 i.

of a scalar function of vectors, 459 i.

s simultaneous, 431 i.

s successive, 100 i, 465 i, 479 i.

. of a vector, 96 i, 462 i.

Differentiation formula of, 98 i, 438 i.

examples of quaternion, 451 i.

symbol a = (S • dp)"M, note, 548 i.

with respect to moving axes,note, 289ii, 403 ii.

See also Differential.

Dilatation, 372 ii.

Dimensions, principle of, applied to linear fimction of

a vector, 488 i.

Diplanar quaternions, 116 i.

Direct and inverse similitude, 115 i, 366 ii.

circular Buccession, 297 i.

Directed area, 482 i.

Direction, relative, 110 i, 138 i.

unchanged by strain, 368 ii.

Directions of linear vector function, 508 i. See

Linear vector function or Axes.

Displacement, axis of, 95 ii.

finite, 397 ii.

Dissipation function, 461 ii.

Distance of comet from earth, 320 ii.

Distribution, parameter of, 408 ii.

Distributive property of multiplication of vectors by

co-efficients, 9 i.

of quaternions, 212 i, 219 i.

of sign I, 206i; K, 176 i, 207 i; S, 185 i;

V, 204i.

of differential, 44 1 i.

Disturbing force on planet, 320 ii.

Division of vector by parallel vector, 10 i.

of quaternions, defined, 109 i, 116i.

homographic, 16 i.

Double algebra, note, 278 i.

Duality, 388 ii, 427 ii. See Eeciprocity.

Dupin, indicatrix, 231 ii.

conjugate tangents, 232 ii.

lines of curvature on confocals, 235 ii.

focal conies, note, 236 ii.

Dynamical constants of a body, 396 ii.

Dynamics, general equation of, 287 ii.

general method in, note, 295 ii.

Edge of regression, 93 i, 100 i, 36 ii.

Effective vector, 3 i.

Eight square roots of linear vector function, note,

225 ii, 367 ii.

umbilicar generators, 222 ii, 235 ii.

Elastic constants, 463 ii.

force, Fresnel's, 324 ii.

Electro-magnetic force, 446 ii.

wave surface, note, 326 ii.

Elimination of arbitrary functions, 48 ii.

of differential, 448 i.

of a vector 342 i, 355 i.

Ellipse, centro-focal, 203 ii.

curvature of, 52 ii.

evolute of, 63 ii, note, 168 ii.

focal, 202 ii, 219 ii.

section of cylinder, 196 i, 199 i, 418 i.

vector expression for, 95 i, 417 i.
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Ellipsoid, axes of, 238 i.

of section, 238 i.

circular sections of, 232 i, 235 i.

construction by diacentric sphere, 2341, notes,

184ii, 204ii, 351ii.

cyclic normals, 236 i.

cylinder (right) tangent to, 202 i.

equation of, focal, 201 i, 230 i.

cyclic, 627 i.

T(«p + pic) = «» - »S note, 241 i, 314 i, 325 i,

328 i, 637 i, 15 ii, 185 ii, 274 ii, 360 ii.

homologous deformation of mean sphere, 232 i,

314 i.

strain-, 36611.

vector-constants of, 201 1, 236 i, 537 i.

vector expression for, 95 1.

Ellipsoidal linear function, 366 ii.

Elliptic coordinates, note, 226 ii.

functions, 38511.

logarithmic spiral, 419 1.

Elongation in strain, 372 ii.

Emanant lines and planes, 8311, 8511, 10911, 11411,

408 11.

Energy equation, dynamics, 288 11, 294 11.

for light, 354 11.

hydrodynamics, 460 ii.

Enunciation of the associative principle, 301 1.

Taylor's theorem, 22 ii

Envelope of confocals, 222 11.

involute as limit of, 171 11.

lines of curvature on quadrlc, 235 11.

planes, developable as, 42 11.

osculating sphere, 141 11.

sphere with varying radius, 14311, 171 11.

wave-surface as, note, 326 11.

Equality of points, 3 i, 13 1.

quaternions, 109 1, 115 i, 243 1, 408 1.

vectors, 3 1.

vector- arcs, 144 1.

versors, 409 1.

Equation of algebraic form in quaternions, 277 1

;

«* roots of, 292 1.

anharmonlc of curve, 32 1 ; local and tangential,

39 1 ; of surface, 87 L

of confocals, 207 11.

of conjugation (poles and polars), 229 i, 186 11.

(lineal' functions), 485 1, 555 i.

Equation of continuity, 455 ii.

depressed, of Knear function, 501 1, 605 i, 379 11.

differential. See Differential.

of dynamics, 287 11, 289 ii, 295 ii, 396 u.

of equilibrium, 284 11.

exponential, for spherical triangle, 404 1, 409 1.,

in finite differences, 84 i.

functional, of families of surfaces, 45 ii.

of loci involving signs Ax. and Z, 121 1 ; K, 127 1

;

S, 180 1, 190 1; V, 195 1, 199 1; T, 165 1,

167 i, 190 1; U, 142 1.

powers of a vector, 417 1.

of second degree, homogeneous and vector, 508 i.

of six segments, 21 1, 18 i.

symbolic, for K, S, T, U, V, 142 1, 205 i.

for linear functions, 494 1, 560 i.

vector for curve, 94 1 ; surface, 94 i.

Equi-difference of points, 4 1.

Equilibrium, equation of, 284 11.

Euclidean angle, 120 1, 262 1.

Euler, Identity, law of the norms, 244 1.

theorem on curvature, 268 11.

equations of motion, 289 ii.

fluid motion, 457 ii.

Evolute, 16711.

of ellipse, 53 ii, note, 168 11.

of spherical curve, 169 11.

Evolutionary quaternion, 295 i.

Exact differential, 275 ii.

Examples, geometrical, on signs Z, Ax, 121 ; K, 1271

;

R, 296 1; S, 1801, 1901; T, 1651,1671, 1901;

U, 142 1; V, 1951, 199 1.

depending on powers of vectors, 417 1-

of quaternion differentiation, 451 1.

Excentric anomaly, 6 'a.

Excess, spherical, 364 1.

spheroidal (total curvature), 266 ii.

Expansion. See Development.

Exponential of quaternion, 421 i.

form for sine and cosine, 266 1, 274 1, 424 1.

equation for spherical tiiangle, 404 1, 409 i.

of quadrlc, 206 11.

transformation of Taylor's series, 468 i, 473 i,

5511.

Exponents, scalar, 264 1.

quaternion, 274 1, 421 1.

Exscribed or circumscribed conic, 36 i.
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Extensions of algebraic notation, 5 i, 6 i, 108 i, 123 i,

266 i.

Extreme points of congruency, 420 ii.

Factor or operator, 108 i, 136 i.

integrating, 276 ii.

Factorials, notation of, 476 i.

Families of surfaces, 46 ii.

isothermal, 472 ii.

orthogonal, 474 ii.

Finite differences, equation in, 84 i.

differentials, 99 i, 103 i, 432 i, note, 179 ii.

displacements, 397 ii.

Five qxiaternions, identical relation connecting, 563 i.

vectors, 47 i ; terminating on a sphere, 364 i.

system of screws, 392 ii, 394 ii.

Flexion, note, 81 ii.

Flow, Lord Kelvin on, 457 ii.

Fluid motion, 454 ii.

Fluxions, note, 431 i.

Focal conies, 202 ii, 219 ii.

ellipses, centro-, 203 ii.

equation of quadrics, 636 i.

generations of quadrics, 278 ii.

lines of cones, 545 i, 549 i, 213 ii, 243 ii.

notation for, relations, 310 i.

properties of sphero-conics, 310 i, 393 i, 72 ii.

surface of congruency, 431 ii.

Foci of involution, 16 i.

modular, 278 ii.

principal, 420 ii.

by projection, 423 ii.

umbiKcar, 278 ii.

virtual, 419 ii, 420 ii.

Force, Fresnel's elastic, 324 ii.

conservative, 444 ii.

disturbing, on planet, 320 ii.

function, 293 ii.

Formula (A), 160 i, 243 i, 344 i, 182 ii, 351 ii.

of addition, 5 i.

of association, 7 i, 245 i, 302 i.

of collinearity of three right quaternions, 247 i.

of commutation, 7 i.

of complanarity of three vectors, 338 i, 341 i,

247 i.

of congruence for quinary symbols, 51 i.

of differentials, 98 i, 438 i.

Formula of inversion of linear function, 486 i.

of parallelism of two vectors, 326 i.

of perpendicularity of two vectors, 325 i.

of relation between + and — , 5 i.

Formulae of spherical trigonometry, fundamental, 400 i.

Four constituents of quaternion, 114 i, 242 i.

identical rows, determinant with, 363 ii.

points, group of, linear, 15 i; circular, 297 i.

complanarity of, 14 i, 45 i, 344 i.

concircularity of, 355 i.

system of screws, 392 ii, 394 ii.

vectors, linear relations between 44 i, 338 i,

proportion of, 250 i.

Fourth proportional to three vectors, complanar, 250 i,

293 i; diplanar, 356 i: rectangular, 377 i.

unit in space, 394 i, 380 i.

power of arc, affections of curve depending on,

112ii.

Fraction or quotient, geometric, 1071.

Fresnel, wave-surface, 323 ii, note, 253 ii.

Function, anharmonic quaternion, 294 i.

s, calculus of, 205 i, 202 i. See Abstraction of

symbol.

characteristic, 297 ii.

dissipation, 461 ii.

elimination of arbitrary, 48 ii.

elliptic, 385 ii.

force, 293 ii, 394 ii.

implicit, differential of, 484 i.

linear. See Linear.

principal, in dynamics, 294 ii, 314 ii.

strain, 365 ii.

transcendental, of quaternions, 421 i, 453 i.

trigonometrical, of quaternions, 424 i,

of vectors, a quaternion, 332 i, 394 i.

Functional notation, 205 i, 202 i.

equations of families of surfaces, 45 ii.

Fundamental formulae of trigonometry, plane 214 i

;

spherical, 400 i.

Gauche curve. See Cubic, etc.

hexagon inscribed to sphere, 305 i, 354 i.

polygons inscribed to sphere, 347 i.

quadrilateral, 82 i.

on quadric, 88 i, 95 i.

Gauss on measure of curvature, 263 ii, 261 ii, 264 ii,

412 ii, 416 ii.
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Generation of ellipsoid, 241 ij notes, 184 ii, 204 ii,

351 ii.

of quadric, modular and umbilicar, 278 ii.

of ruled hyperboloid, 90 i.

of wave surface, 327 ii, 253 ii.

Generatrix of ruled hyperboloid, 89 i, 213ii.

umbilicar, 221 ii, note, 225 ii.

Geocentric distance of comet, 320 ii.

Geodetic lines, 29 ii, 225 ii, 264 ii, 415 ii.

circles, 271 ii.

coordinates, 264 ii.

curvature, 267 ii.

on cylinder, lllii, 405 ii.

on developable, 37 ii, 272 ii.

Didonia, 271 ii.

on quadric, 225 ii ; P • D = const. 226 ii.

on surface of revolution, 48 ii.

torsion, 415 ii.

triangle, curvature of, 266 ii.

Geometric quotient, 107 i.

inversion aud alternation of, llSi.

Geometrical examples on V, 195 i, 199 i; S, 180 i;

Ax. and Z^, 121i; K, 127i;R, 296i; U, 142i;

B and T, 190 i.

deformation, theorem of, 525 i.

Geometrical illustration of differential, 436 i.

of ratio of vanishing quantities, 470 i.

nets, plane, 20 i, 29 i; in space, 61 i.

" G6omctrie de position " of Cainot, note, 377 i.

"Geometric superieure," of Chasles, notes, 16 i;

72 i, 89 i, 300 i.

Geometry of Three Dimensions. See Salmon.

Grammarithni, note, 335 i.

Graves, C, note, 308 i.

Graves, J. T., note, 276 i.

Gravitation, Newton's law of, 99 i, 302 ii.

Group of four points on a line, 15 i ; in space, 294 i

;

on a circle, 297 i.

of six points, evolutionary of, 295 i.

Guide-points, 239 i.

Guiding curve, 35 ii.

Half-line or ray, equation of, 1211, 142 i.

Handle, versor compared to a, 336 i, note, 345 i.

Harmonic mean of two vectors, 231 i, 298 i; of n,

300 i.

polar of point to triangle, 21 i.

Harmonic property of quadrilateral, 20 i.

of pole and polar, 229 i.

spherical, 468 ii.

Helicoid or screw-surface, 419 i, 12 ii, 28 ii, 83 ii,

281 ii.

Helix, 419 i, 5 ii, 25 ii, 28 ii, 51 ii, 77 ii, 92 ii, 95 ii,

112 ii, 157 ii.

as curve of constant curvatures, 112 ii.

osculating curve, 95 ii.

related to complex, 428 ii.

Heptagon, inscribed to sphere, 354 i.

Herschel, Sir John F. W., Treatise on Light, note,

327 ii.

Hexagon, spherical, 303 i.

inscribed to sphere, 305 i, 354 i.

evolutionary of, 295 i.

" Higher Plane Curves," Salmon's, notes, 37 i, 40 i,

41 i, 42 i.

Historical notes on quaternions, 206 i, 258 i, 262 i,

278 i, 351 ii.

Hodograph, 300 ii, 99 i, 29 ii, note, 112 ii.

curvature of, 302 ii.

of evolute, 173 ii.

Hodographic isochronism, 310 ii.

geometrical proof, 319 ii.

relation to Lambert's theorem, 314 ii.

nomographic division, 16 i.

nets (plane), 31 i; (in space), 79 i.

property of ruled hyperboloid, 89 i.

surfaces, 408 ii.

screw-systems, 396 ii.

Homologies of ellipsoid and sphere, 315 i, 232 i.

Homology, centre of, 60 i
;
plane of, 60 i.

Homospberic property of cyclic sections, 18 ii.

Homospbericity, equation of, 354 i.

Huyghens, note, 353 ii.

Hydrodynamics, 454 ii.

Hydrostatics, 483 i.

Hyperbola, 33 i, 9 ii, 54 ii, 60 ii.

curvature of, 54 ii.

focal, 201 ii, 219 ii.

Hyperbolic paraboloid, 93 i, 96 i.

orbit, note, 303 ii.

Hyperboloid, ruled, anharmonic equation of, 88 i.

generators of, 89 i, 213 ii.

vector equation of, 95 i.

Hypotenuse, proof of theorem of square on, 212 i.
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I, symbol for index of right quotient, 187 i.

is distribution, 206 i.

Ax. = lUV, 203 i ; IV = V, 335 i.

t, j, h, laws of, 167 i, 344 i.

early use of, notes, 160 i, 316 i, 345 i, 351 ii.

formula (A), 160 i, 243 i, 344 i, 182 ii, 351 ii.

links between quaternions and coordinates, 351 ii.

quaternion in terms of, 242 i.

vector in terms of, 344 i.

Ideal or imaginary intersections, 223 i.

Identical rows, determinant with, 362 ii, 383 ii, 393 ii.

Identification of a right quaternion with its index,

331 i, note, 193 i.

Identity connecting three vectors, 337 i, 344 i, 375 i,

426 i.

four vectors, 338 i, 339 i, 376 i.

five quaternions, 563 i.

six spherical arcs, 377 i.

seven screws, 393 ii.

on square root of quaternion, 315 i.

Illustration of differential and difference, 434 i, 436 i.

of ratio of vanishing quantities, 470 i.

of a quaternion by a desk, 113 i.

Imaginary* of algebra, 224 i, 289 i.

geometrically real, notes, 133 i, 253 i.

as mark of geometrical impossibility, note,

404 i.

axes and roots of linear vector function, 514 i.

i, j, k formerly called, note, 316 i.

part, or vector part, note, 316 i.

quaternion. See Biquatemion.

Imponential, 274 i.

Independent differentials, 563 i.

variable, change of, 24 ii, 33 ii.

Indeterminateness of axis of linear vector function,

501 i, 525 i, 364 ii, 369 ii, 379 ii, 385 ii.

of interpretation of y^- 1, 133 i.

of versor of null quaternion, note, 120 i, 139 i.

of construction for fourth proportional, 379 i.

Index of right quotient, 122 i.

symbol of, 187 i.

equals right quotient, 331 i, note, 193 i.

curve ^indicatrix), 231 ii.

surface, 233 ii, 237 ii.

surface or surface of wave-slowness, 324 ii.

Index of vector, 323 ii.

connexion with ray, 328 ii.

Indicatrix, 231 ii.

Indices of right quotients, quotient of, 175 i.

sum of, 206 i.

product of, 329 i.

Inertia, axis of, 287 ii, 291 ii.

linear function of, 289 ii.

principal screws of, 395 ii.

Infinitesimals, 170 ii, note 230 ii.

osculating circles treated by, 174 ii.

Infinity, line at, 27 i.

circular points at, note, 516 i.

circle at, 222 ii.

Inflexion points of, note, 25 ii.

Inflexional tangents to cubic, 37 i.

Inscription of polygons in sphere, 354 i.

Integrability, condition of, 277 ii.

Integral as limit of a sum, 482 i, 170 ii.

definite, analogue of, 368 i.

over sphere, 482 i, 483 i.

total curvature, 265 ii, 416 ii.

principal function, 294 ii, 314 ii.

characteristic function, 296ii, 314ii, 317 ii.

time in orbit, 310 ii, 317 ii.

of differential equation of family of surfaces,

45 ii, 48 ii.

of geodetics, 35 ii, 37 ii, 48 ii, 226 ii.

intermediate, of general equations of dynamics,

295 ii, 297 ii.

s, volume and surface, 448 ii.

s, line and surface, 449 ii.

Integration of differential equations, examples on,

30 ii, 62 ii, 277 ii.

See Integral.

Intensity of a wrench, 390 ii.

Intermediate integrals of dynamics, 295 ii, 297 ii.

Interpretation of a product of vectors aa a quaternion,

321 i, 337 i, 394 i.

of a/^, 133 i, 253 i.

Intersection, ideal or imaginary, 223 i, note, 87 i.

real, 220 i.

of line and plane, 47 i.

of two planes, 338 i.

of confocala, 198 ii, 235 ii.

• The words ideal and symbolical are occasionally used by Hamilton as synonymous with imaginary.
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Intersection of normals, 230 ii, 239 ii.

of osculating circle and curve, 60 ii ; and sphero-

conic, 67 ii.

surfaces, 103 ii, 160 ii.

Invariants, 491 i, 506 i, 376 ii, 364 ii, 386 ii.

screw, 393 ii.

Inverse or reciprocal of a vector, 293 i, 322 i.

symbol for, R, 141 i, 293 i, 328 i.

called vector of proximity, 20 ii, 461 i.

of a quaternion, 122 i; differential of, 439 i.

of line, 296 i ; of circle, 296 i, 349 i ; of spliere, 353 i,

similitude, 115 i, 129 i, 365 ii.

Inversion and alternation, equidifference of points, 4 i.

equality of geometric quotients, 118 i.

of vector-axes, 144 i.

geometrical, 293 i. See Inverse.

of linear vector function, 485 i, 280 ii.

of linear quaternion function, 557 i.

Inversor, 135 i.

semi-, 135 i.

Involute, 167 ii.

as limit of envelope, 171 ii.

Involution, 16 i.

double, 72 i.

in space, 295 i, 300 i.

Irish Academy, Royal. See Academy.

Isochronism, hodographic, 310 ii. See Hodographic.

Isothermal surfaces, 472 ii.

Jacobi, generators of confocal, note, 213 ii.

Jamin, experiments on light, 358 ii.

Joachimstal, first integral for geodetics, note, 226 ii.

E introduced, 124 i.

examples on, 127 i.

differential of Kq, 455 i.

Kelvin, Lord, on flow, 467 ii.

Kinematical treatment of curves, 83 ii, 92 ii, 114 ii,

118ii, 403 ii.

of surfaces, 410 ii.

Kummer surface of complex, 430 ii.

Lacroix, on Taylor's theorem, note 473 i.

Lagrange, definition of a derived function, note, 441 i.

ratio of vanishing quantities, note, 472 i.

virtual velocities, 288 ii.

motion of fluid, 457 ii.

Hamiiton's Elements of Quatefntons, Vol. II.

Lambert's theorem, 314 ii, 316 ii.

Lancret, angle 5" for curves, note, 90 ii.

on evoiutes, note, 172 ii.

Laplace, rule of heliocentric distances, note, 320 ii.

Latent roots of linear function, 517 i, 508 i, 500 i,

562 i, 369 ii, 376 ii.

Law of the Norms, 173 i, 244 i.

Lectures on Quaternions referred to in notes, 160 i,

206i, 219i, 304i, 311i, 315 i, 345 i, 354i, 380i,

479 i, 525 i, 38 ii, 48 ii, 129 ii, 203 ii, 204 ii, 219ii,

226 ii, 264 ii, 269 ii, 270 ii, 271 ii, 279 ii, 283 ii,

321 ii, 351 ii.

Left-handed, 111 i. See Rotation.

Lemniscata, 2861.

Length of line. See Tensor.

relative of two lines. 111 i.

" Letters on Quaternions," note, 311 i.

Light, Fresnel's theory of, 323 ii.

Limit, of sum, integral as, 482 i, 170 ii.

Limiting ratios, 469 i.

Line, expressed by L and Ax., 121 i; K, 127 i;

U, 142 i; V. 195 i.

anharmonic equation of, 26 i ; coordinates of, 27 i.

s, complex of, 417 ii, 427 ii.

concuiTcnt 18 i.

congruency of, 417 ii.

contact of, with sphere, 225 i.

with confocals, 214 ii.

of curvature, 230 ii, 235 ii, 236 ii.

emanant, 83 ii, 408 ii.

focal, 545 i, 549 i, 213 ii, 243 ii.

geodetic, 29 ii, 225 ii, 264 ii.

group of points on, 15 i, 72 i.

half, 121 i, 142 i.

at infinity, 27 i.

integral, 449 ii.

intersection of, and plane, 47 i ; and sphere,

220 i; 223 i.

of intersection of two planes, 338 i.

inverse of, 296 i.

number added to line, 335 i.

parallel, 10 i, 194 i, 325 i.

perpendicular to line, 179 i, 194 i, 427 i.

to plane, 180 i, 342 i, 353 i.

to two lines, 83 ii.

to itself, note, 236 ii.

point added to, 5 i.

3R
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Line, projection of, 179 i.

rational, 29 i, 54 i, 79 i.

reflexion of, 129 i, 358 i.

regulus of, 408 ii, 417 ii.

relative length and direction of two, 1 1 1 i.

shortest, 83 ii.

singular on envelope of sphere, 144 ii.

six coordinates of, note, 211 ii ; 426 ii.

of striction, 408 ii.

symbol of, ternary, 56 i ; anharmonic, 57 i

;

quinary, 63 i.

tangent, 99 i, 4 ii, 7 ii. See Tangent,

vector expression for, 15 i, 94 i ; equation of, 195 i.

Linear complex, 427 ii.

Linear equation between two vectors, 12 i.

three vectors, 13 i.

four vectors, 44 i, 338 i.

five quaternions, 563 i.

seven screws, 393 ii.

function of several vectors, 467 ii.

transformation, 387 ii.

Linear quaternion function, 485 i, 555 i.

number of constants in, 556 i.

standard quadrinominal form of, 565 i.

symbolic biquadratic of, 560 i.

Linear vector function, 484 i.

auxiliary ((^), 485 i
; (x), 495 i.

axes or directions of, 608 i.

arrangement of, and of its conjugate, 512 i.

coincidence of two, 503 i, 379 ii.

of three, 506 i, 379 ii.

determination of, note, 612 i.

imaginary, 514 i.

indeterminate, 501 i, 525 i, 369 ii, 379 ii,

386 ii.

rectangularity of two, note, 613 i.

of three, note, 513 i, 514 i, 517 i.

of system of, 384 ii.

bifocal, 545 i, 196 ii.

binomial, 498 i.

conjugate, 485 i.

constants in, number of, 486 i, 530 i.

cyclic {<Pp = gp + VAp/i), 520 i, 528 i, 635 i,

549 i, 187 ii, 193 ii, 233 ii, 240 ii, 332 ii, 369 ii,

373 ii.

with depressed equation, 501 i, 606 i, 379 ii.

derived, 651 i.

Linear vector function

—

continued.

dimensions of, 488 i.

focal {<pp = aaYap + bpSfip) 531 i, 633 i, 535 i,

538 i, 373 ii.

invariants of, 491 i, 376 ii, 364 ii, 386 ii.

inversion of, 485 i.

monomial, 501 i, 505 i.

non-conjugate, part of, 492 i.

powers of, 491 i.

principal planes of, 512 i, 384 ii.

reduction of two, 363 ii.

roots of, 517 i, 608 i.

equal, 500 i.

imaginary, 515 i.

self- conjugate, 513 i, 519 i, 525 i, 272 ii.

specification of, 374 ii.

square-root of, 225 ii, 367 ii.

standard trinomial form of, 486 i.

strain represented by, 365 ii.

symbolic cubic of, 494 i.

of self-conjugate part, 520 i.

unifocal. See Focal.

LiouviUe on confocals, 228 ii.

on geodetic curvature, 267 ii.

Liouville's Monge referred in notes, 92 ii, lllii,

145 ii, 153 ii, 235 ii, 239 ii, 261 ii, 264 ii,

266 ii, 267 ii, 271 ii.

Lloyd, experiments on conical refraction, note, 341 ii.

Local equations, 39 i.

Loci, equations of, involving, Z, Ax., 121 i ; K, 127 i;

R, 296 i; S, 180 i, 190 i; T, 165 i, 167 i:

U, 142 i; V, 195 i, 199 i.

powers of a vector, 417 i.

Locus, Apollonian, 130 i, 165 i, 191 i, 182 ii.

of centres of curvature of curve, 77 ii, 106 ii, 168 ii.

of spherical cui-vatixre, 120 ii.

of osculating circle, 140 ii.

of vertices of right cones tangent to confocals,

223 ii.

Logarithm of quaternion, 268 i, 275 i, 421 i, 83 ii.

Logarithmic spiral, 418 i, 54 ii.

MacCullagh, modular generation of quadrics, note,

279 ii.

motion about a fixed point, 291 ii.

theorem of the polar plane, 352 ii.

referred to in notes, 323 ii, 324 ii.
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Magnetic analogies for Vi 445 ii.

Maxwell, on differentials, note, 102 i.

on sense of rotation, note, 111 i.

electro-magnetic equations, note, 326 ii.

Mean point, projection of, 19 i, 81 i.

of gauche quadrilateml, 82 i.

of partial systems, 83 i.

proportional between two vectors, 251 i.

of two vectors, harmonic, 298 i ; of m, 300 i.

of n vectors, simple, 81 i ; complex, 85 i.

Measure of curvature, 261 ii, 412 ii, 415 ii.

Mecaniquo Celeste, note 320 ii.

Meusnier's theorem, note, 257 ii, 413 ii.

Mixed transformations of functions, 645 i, 278 ii.

Mobius referred to in notes, 22 i, 31 i, 61 i, 62 i, 65 i,

66 i, 77 i, 79 i, 162 ii, 236 ii.

Modular generation of quadric, 278 ii.

Moment, central, 285 ii.

of inertia, 292 ii.

total, 286 ii.

Monge, families of surfaces, 48 ii.

envelope of sphere, 144 ii, 153 ii.

evolutes, 167 ii.

lines of curvature, 235 ii.

referred to in notes, 53 ii, 90 ii. 5(S# Liouville's

Monge.

Monomial form of linear vector function, 501 i, 605 i.

equations of circle and sphere, 365 i.

of cubic cone, 281 ii, 384 ii, 467 ii.

Motion on surface of revolution, 49 ii.

about fixed point, 290 ii.

screw-, 83 ii, 84 ii, 285 ii. See Screw,

fluid, 454 ii.

Mourey, note, 278 ii.

Moving axes, note, 289 ii, 403 ii, 404 ii, 410 ii.

Multiplicand, 147 i, 110 i, 159 i.

Multiplication of i,j, k, 159 i.

of quaternions, definition of, 116 i.

is not commutative, 147 i.

is doubly distributive, 219 i, 212 i.

is associative, 245 i, 308 i.

reduced to multiplication of versors, 172 i.

by coefficients, 119 i.

of vectors is associative, 337 i.

by coefficients, 9 i.

-arcs by scalars is not distributive, 156 i.

of versors illustrated by vector arcs, 147 i.

Multiplier, 147 i, 110 i, 169 i.

or integrating factor, 276 ii.

N, symbol for norm, 130 i.

Ny, differential of, 465 i.

Negative unity, square of right radial, 132 i.

square root of, has geometrically real value,

notes, 133 i, 263 i.

as an uninterpreted symbol, 224 i, 289 i.

square of vector, 203 i, 346 i.

Net, plane geometrical, 20 i, 29 i; in space, 61 i.

Nets are homographic figures, 31 i, 79 i.

Newton on fluxions, note, 97 i ; 431 i, 471 i.

Non-commutative multiplication, 147 i.

addition, 156 i.

Non-conjugate part of linear vector function, 492 i.

Non-distributive multiplication, 156 i.

Non-scalar, 110 i.

Non-sphericity, coefficient of, 80 ii, 120 ii, 135 ii, 138 ii.

Norm, 130 i, note, 128 i.

of sum, 189 i, 219 i, 476 i.

differential of, 465 i.

8, law of the, 173i, 244 i.

Normal, absolute, 24 ii, 38 ii.

hi-, 27 ii.

to confocals, 199 ii.

cyclic of cone, 183 i ; of ellipsoid, 232 i, 235 i.

developable, surface, 266 ii, 259 ii.

emanants, 109 ii, 117 ii.

s, intersection of, 230 ii, 239 ii.

planes to curves, 4 ii, 8 ii.

to quadric, 16 ii, 199 ii, 239 ii.

to surfaces, 11 ii.

at umbilic, 241 ii.

Notation, extended meaning of algebraic, 5i, 6i, 108 i,

123 i, 256 i.

of factorials, 476 i.

for focal relations, 310 i.

functional, 206 i, 202 i.

simplification of, 334 i.

See Symbol.

Null quaternion, 125 i, 139 i.

vector, 3 i ; vector-arc, 146 i.

Number added to line, 336 i.

of constants in linear vector function, 486 i, 530 i.

in linear quaternion function, 556 i.

in equation of twisted cubic, 131 ii.

3 R
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Number of points of construction, 22 i, 73 i.

signless, 111 i, 170 i.

Numbers, norm borrowed from theory of, note, 130 i.

Oblique cone, 183 i, note, 181 i.

quotient, 321 i, 337 i.

Ohm on logarithms, note, 276 i.

Olivier, note, 91 ii.

Opening, spherical, 366 i.

Operation, characteristic of. See Symbol.

Operations, Calculus of, 202 i, 205 i.

Operator or factor, 108 i, 135 i.

V, 432 ii ; notes, 548 i, 554 i, 251 ii.

disguised as - D,,, 294 ii.

Opposite quaternions, 126 i,

vectors, 3 i.

Optic axes of crystal, 348 ii.

Orbit, central, 298 i.

Order of curve (plane), 32 i
;

(twisted), 93 i ; 10 ii.

of surface, 87 i.

of congruency, 431 ii.

of complex, 430 ii.

of factors, indifferent when one is scalar, 119 i.

generally vital, 147 i, 163 i, 158 i.

Origin of vectors, 12 i.

Orthogonal axes of self-conjugate function, 513 i,

519 i, 524 i, 272 ii.

vectors for curve, 82 ii.

section of confocals, 198 ii.

surfaces, 474 ii.

Osculating circles, 58 ii, 86 ii, 174 ii.

intersections with curve, 60 ii.

deviation from curve, 97 ii, 133 ii, 138 ii,

404 ii.

cone (right), 99 ii; to cone of chords, 102 ii;

(oblique), 99 ii.

cylinder, 126 ii, 128 ii.

helix, 95 ii, 404 ii.

parabola, 96 ii.

plane, 24 ii.

quadric, to surface, note, 249 ii.

screw-surface, 85 ii.

sphere, 50 ii, 74 ii, 1 78 ii ; to surface, 269 ii.

surfaces, 103 ii.

twisted cubic, 129 ii, 156 ii, 404 ii.

Oval, 279 i.

P, symbol for ponential, 268 i.

Pairs of vectors, note, 393 ii.

Parabola inscribed to triangle, 34 i.

osculating curve, 96 ii.

Parabolic time in orbit, 311 ii.

Paraboloid, centre at infinity, 280 ii.

ruled, anharmonic equation of, 93 i.

vector expression for, 96 i.

noimal to, 11 ii.

Paradox, apparent, 149 i.

Parallelepiped, volume of, 247 i, 338 i.

Parallelism, condition of, 325 i.

Parallelogram, area of, 246 i.

spherical, 388 i.

Parameters in vector equations, 94 i.

of confocal system, 196 ii, note, 224 ii.

of distribution, 408 ii.

Part, right or vector, of a quaternion, 193 i, 204 i.

Partial differentials, 101 i, 446 i, 479 i, 48 ii.

equations for dynamical functions, 296 ii, 297 ii.

Pencil of lines, 23 i, 307 i
;
planes, 57 i.

of a congruency, 424 ii.

Pentagon inscribed to a sphere, 351 i.

Permanent screws, 396 ii.

Permutation, cyclical, of t, j, k, 158 i.

of quaternions under S, 248 i, 350 i.

of linear vector functions, 363 ii.

Perpendicular from point on line, 179 i, 194 i, 427 i.

on plane, 180 i, 342 i, 353 i.

to two lines, 83 ii.

to itself, Une, note, 236 ii.

of spherical triangle, 217 i.

of tetrahedron, note, 568 i.

Perpendicularity, condition of, 325 i, 345 i.

Perturbing force, 320 ii.

Pitch of a screw, 285 ii, 390 ii.

Plane, expressed by /. 121 i ; Ax., 121 i ; K, 127 i

;

T, 165 i, 167 i; U, 143 i; S, 180 i.

anharmonic equation of, 56 i.

concurrence of four, 57 i, 342 i.

cyclic, of cone, 183 i ; of ellipsoid, 232 i.

equation of, scalar, 180 i ; vector, 24 i, 94 i.

geometrical nets, 20 i, 29 i.

intersection of and line, 47 i.

8, intersection of two, 338 i.

inverse of, 353 i.

normal, 4ii, 8ii.
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Planes, pencil of, 57 i.

polar, to sphere, 228 i ; to qnadric, 210 ii.

polar, Mac Cullagh's theorem of, 352 ii.

rational, 64 i.

of quaternion, 11 1 i.

quinary symbol of, 53 i.

strain, 370 ii.

of symmetry, elastic, 464 ii, 466 ii.

8, system of, related to linear vector function, 512 i.

quaternion function, 568 i.

through three points, 344 i.

Planet, distance of, from earth, 320 ii.

Pliicker's six coordinates of a line, note, 211 ii, 426 ii.

Poinsot, representation of motion about fixed point,

290 ii.

Point, addition of, to vector, 5 i.

8, circular, note, 516 i.

8, condition of three on a line, 14 i, 49 i, 52 i,

57 i.

four in a plane, Hi, 45 i.

five on a sphere, 354 i.

8 of construction in plane, 17 i, 22 i.

in space, (first) 61 i ; (second) 62 i : table of

types, 76 i ; diagram of, 78 i.

8, corresponding, on confocals, note, 226 ii.

s, difference of two, 3 i.

8, equality of, 3 i, 13 i.

8, equidifference of, 4 i.

8, extreme, 420 ii.

8, group of, on line, 15 i ; in space, 294 i ; on

circle, 297 i.

guide, 239 i.

mean, of triangle, 19 i; of gauche quadrilateral,

82i; in general, 81 i.

8 rational, in a plane, 29 i ; in space, 54 i, 79 i

;

types of, 55 i, 75 i.

symbol of, ternary, 26 i ; quinary, 51 i ;
qua-

ternary, 55 i.

of transformation, united, 387 ii.

Polar axis, 57 ii.

developable, 58 ii ; cusp -edge of, 120 ii.

plane to quadric, 210 ii.

to sphere, 228 i.

Mac Cullagh's theorem of, 362 ii.

reciprocals, 547 i, 20 ii, 41 ii.

Pole and polar of a sphere, 228 i.

of plane curve, 85 i.

Poles of a plane ^pth respect to confocals, note, 224 ii.

s of a spherical harmonic, 468 ii.

Polygon, area for spherical, 368 i.

exponential equation for spherical, 404 i.

geodetic, 266 ii, 416 ii.

inscribed to sphere, 347 i, note, 129 ii.

spherical sum of angles of, 415 i.

Polynomial equations, 277 i.

Poncelet, plane of homology, note, 60 i.

Ponential of a quaternion, 268 i.

Position, vector of, 100 i.

function of, 432 ii.

Positive or signless number, 170 i, note, 111 i.

Potential of attracting system, 293 ii, 305 ii.

function, 469 ii.

Power of a vector, a quaternion, 396 i, 399 i.

development of a, 476 i.

differential of a, 451 i.

equation of loci involving a, 417 i.

transformations of a, 420 i,

of a quaternion, 264 i, 274 i, 421 i.

of a linear vector function, 491 i.

Pressure, hydrostatic, 483 i, 440 ii, 459 ii.

Principal amplitude, amo, 263 i.

axes of a body, 292 ii.

of ellipsoid, 238 i.

of quadric, 536 i, 187 ii, 272 ii.

of a section of, 238 i, 625 i, 231 ii, 253 ii.

foci of congruency, 420 ii.

fimction in djmamics, 294 ii.

for central orbit, 314 ii.

root, 259 i.

screws of inertia, 395 ii.

Principia, Newton's, 97 i, 431 i, 471 i.

Principles adopted from algebra, 108 i.

Prism showing properties of curve, 100 ii.

Product of quaternions defined, 90 Ii.

conjugate of, 173 i.

differential of, 451 i.

reciprocal of, 173 i.

scalar of, 187 i, 245 i.

tensor of, 171 i.

vector of, 246 i.

versor of, 171 i.

of two quaternions, 109 i, 116 i, 171 i.

of two vectors, interpreted, 321 i, 329 i.

rectangular vectors, 333 i.
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Product of vectoi-s, 337 i, 346 i, 394 i.

of indices, 329 i.

of linear vector functions, 363 ii.

of sides of a triangle, 348 i.

of an inscribed polygon, 347 i.

Projection of closed figure, 8 i.

of line, 179 i.

of mean point, 19 i, 81 i.

stereographic, 311 i.

foci by, 423 ii.

Property, associative, of addition, 7 i, 207 i, 304 i.

of multiplication, 159 i, 245 i, 308 i, 337 i.

commutative, of addition, 7 i, 176 i, 207 i.

distributive, 9 i, 212 i, 219 i.

harmonic, of quadrilateral, 20 i.

homographic, of ruled surface, 408 ii.

Proportion of vectors, 118 i, 175 i, 2501.

continued, 251 i, 256 i.

mean, 251 i.

Proportional to three vectors, fourth (complanar), 250 i;

(diplanar), 356 i, 362 i; rectangular, 377 i.

Provector, 3 i, 146 i.

Proximity, vector of, 461 i, 20 ii.

Pure strain, 366 ii.

Pyramid, volume of, 247 i, 338 i ; sign of, 48 i.

Quadrantal rotations, 149 i, 167 i.

triangle, 377 i.

Quadratic equation in quaternions, 281 i.

vector equation, 508 i.

Quadric, anharmonic equation of, 88 i.

axes of, 536 i, 187 ii, 272 ii.

of section of, 238 i, 525 i, 231 ii, 253 ii.

biconcyclic, 527 i, 187 ii, 272 ii.

bifocal equation of, 646 i, 195 ii.

centre of, 280 ii.

s, confocal, 196 ii.

s, classification of, 187 ii, 280 ii.

conjugate radii, 211 ii, note, 250 ii, 374 ii.

curvature of, 249 ii.

cyclic equation of, 635 i, 187 ii.

elongation, 372 ii.

exponential equation of, 206 ii.

focal equation of, 535 i.

generation of, modular and umbilicar, 278 ii.

generators of, 89 i, 213 ii.

geodetics on, 226 ii.

Quadratic, normals to, 16 ii, 199 ii, 239 ii.

osculating surface, note, 249 ii.

s, reciprocal, 389 ii.

species of, 187 ii, 280 ii.

sub-contrary circular sections are on a sphere, 18 ii.

tetrahedron self-conjugate to, 389 ii.

zero pitch, 392 ii.

Quadrilateral, cyclic, 296 i, 347 i.

ga:iche, 82 i, 88 i, 95 i.

harmonic property of, 20 i.

of a plane net, 31 i.

product of sides of, 347 i.

spherical, area of, 368 i.

Quadrinomial form for quaternion, 242 i.

for linear quaternion function, 565 i.

Qualitative element of a quaternion, note, 167 i.

Quantitative element of a quaternion, notes, 138 i, 167 i.

Quantities, ratio of vanishing, 470 i.

Quartic, Steiner's, 392 ii.

Quaternary symbols, 55 i.

Quaternion addition, 116 i, 176 i, 207 i.

amplitude of, 262 i.

angle of, 119 i.

anharmonic, 294 i, 296 i, 350 i.

axis of, 119 i, 203 i.

binomial, 254 i.

8, collinear, 116 i, 210 i.

s, complanar, 116 i, 148 i, 211 i, 250 i.

conjugate of, 123 i ; of product, 173 i.

s, conjugate, 115 i, 123 i.

convergence of, series, 269 i, 424 i.

cosine of, 275 i, 424 i.

cube-root of, 256 i.

cyclical permutation under S, 248 i.

decomposition of, TgTJq, 169 i, Sq + Yq, 193 i.

determinants, 361 ii, 382 ii, 393 ii.

development, 473 i, 465 i, 320 ii.

differentials, 438 i.

8, diplanar, 116 i.

division, 109 i, 116 i.

elements of, 112 i, 113 i, note, 167 i.

equality of, 109 i, 115 i, 243 i, 408 i.

equations, 243 i ; algebraic, 292 i ; (complanar),

277 i.

evolutionary, 295 i.

exponent, 274 i, 421 i.

exponential, 421 i.
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Quaternion, as a factor or operator, 135 i.

as a fourth proportional, 357 i, 362 i.

functions of vectors a, 332 i, 394 L

8, historical notes on, 206 i, 258 i, 262 i, 278 i,

351 ii.

identities, 426 i, 563 i.

imaginary. See Biquaternion.

imponential of, 274 i.

index of right, 122 i.

integration, 482 i, 170 ii.

invariants, 491 i, 506 i, 382 ii.

inverse of, 122 i.

inversion, 557 i.

Lectures on. See Lectures.

Letters on, note, 311 i.

linear function, 485 i, 555 i.

logarithm of, 275 i, 421 i, 83 ii.

moment, 286 ii.

multiplication, 116 i, 172 i, 219 i, 245i, 301 i, 308i.

null, 125 i, 139 i.

as numher added to line, 335 i.

oblique quotient, 321 i, 337 i.

opposite of, 126 i.

plane of, 111 i.

ponential of, 268 i.

as power of a vector, 396 i, 399 i.

power of, 268 i, 274 i, 421 i.

s product of two, 109 i, 116 i, 171 i.

product of vectors a, 321 i, 337 i.

quadrinomial form of, 242 i.

as quotient of two vectors, 110 i.

s, quotient of two, 109 i, 116 i, 171 i.

radial, 131 i.

reciprocal of, 122 i.

8 reciprocal of product of two, 173 i.

right part, 192 i.

quotient, 121 i.

root of, 259 i.

scalar, 1 20 i.

scalar of, 177 i.

as scalar plus vector. Hi, 335 i.

sine of, 275 i, 424 i.

square of, 132 i, 141 i, 170 i, 187 i.

square-root of, 188 i, 315 i, 367 i ; differential of,

452 i, 560 i.

as square-root of a positive plus square-root of a

negative, 203 i.

Quaternion, subtraction of, 116 i.

s, sum of, 176 i, 207 i.

Taylor's series adapted to, 473 i, 7 ii, 22 ii.

tensor of, 167 i.

transcendental functions of a, 421 i, 453 i.

and trigonometry (plane), 178 i, 197 i, 214 i, 208 i.

(spherical), 216 i, 209 i.

vector of a,'192 i.

vector as a, 336 i.

versor of, 137 i.

versor as a, 143 i.

Quinary symbols, 50 i ; types, 55 i.

Quotients, differential, 443 i.

geometric, 107 i.

inversion and alternation of, 118 i.

two with common denominator, 109 i, 116 i.

oblique, 321 i, 337 i.

of quaternions, 109 i, 116 i, 171 i ; scalar of, 187 i.

radial, 131 i.

right, 121 i.

index of, 122 i, 331 i.

quotient of, 175 i.

sum of, 206 i.

of vectors, 107 i.

R, symbol for reciprocal, 141 i, 293 i, 328 i.

Radial quotient, 131 i.

right, 132 i.

Radical plane, 328 i.

Radius of absolute curvature of curve, 51 ii.

second curvature, 88 ii, 108 ii.

spherical curvature, 79 ii.

Ratio of vanishing quantities, 470 i.

Rational points, lines and planes, 29 i, 54 i, 79 i.

Ray or half-line, equation of, 121 i, 142 i.

8, systems of, 417 ii.

Third supplement on Systems of, notes, 330 ii,

341 ii.

-velocity, 323 ii ; lines of single, 332 ii.

Rayleigh, Lord, on the dissipation function, 461 ii.

Reality of roots of self- conjugate function, 513 i, 519 i,

525 i, 272 ii.

of principal screws of inertia, 395 ii.

Reals, 11 i, 258 i.

Reciprocal of quaternion, 122 i ; development of,

475 i.

versor of, 1 38 i.
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Beciprocal of vector, 293 i.

curves, 41ii; on sphere, lll,ii.

of sphero-conic, 193 ii.

surfaces, 20 ii, 275 ii, 389 ii.

of surface of centres, 255 ii.

of system of confocals, 198 ii.

of wave-surface, 326 ii.

screws, 390 ii.

Reciprocity of forms, 547 i, 41 ii, 328 ii, 388 ii, 427 ii.

Rectangle, spherical, note, 388 i.

Rectangular system for confocals, 199 ii.

curves, 82 ii, 403 ii.

surfaces, 410 ii.

self-conjugate function, 513 i, 519 i, 525 i,

272 ii.

transformations of linear vector function 528 i.

vectors, fourth proportional to three, 377 i.

versors, multiplication of, 149 i, 157 i ; vectors,

333 i.

Rectifying vector, 89 ii.

developable, cusp-edge, 122 ii.

Reduced wrench, 395 ii.

Reduction of two geometric quotients to a common

denominator, 116 i.

two linear vector functions, 363 ii.

quaternion to a power of a vector, 399 i.

multiplication, 171 i.

Reflexion of a line, 129 i, 358 i.

successive, 361 i.

at surface of crystal, 352 ii.

strain accompanied by, 365 ii.

Refraction, conical, 341 ii.

crystalline, 352 ii.

Regression, edge of, 93 i, 100 i, 36 ii.

of polar developable, 120 ii.

of rectifying developable, 122 ii.

of envelope of sphere, 144 ii.

Relation connecting three vectors, 337 i, 344 i, 375 i,

426 i.

four vectors, 44 i, 338 i, 3761.

five vectors, 47 i.

five quaternions, 663 i.

six spherical arcs, 377 i.

seven screws, 393 ii.

Relative length and direction. 111 i, 138 i.

Remainder of a series, 474 i.

Representative angle, 151 i ; arc, 143 i
; point, 143 i.

Resolution of vector along and at right angles to line,

193 i.

along three lines, 338 i.

normal to three planes, 339 i.

of quaternion TqUq, 169 i ; S? + V^', 193 i.

Resultant of forces, condition for unique, 284 ii.

wrenches, 390 ii.

Revector, 3 i.

Reversor, 139 i.

Revolution, cone of, 183 i ; tangent to confocals, 217 ii.

cylinder of, 195 i, 199 i.

spheroid of, 201 i.

surfaces of, 47 ii.

Ribaucour, 402 ii.

Ridges on wave-surface, 337 ii, 344 ii.

Right-hand rotation, 119 i.

part of quaternion, 193 i.

quotient or quaternion, 121 i.

index of, 122 i.

identification of, with index, 331 i, note, 193i.

quotients, quotient of, 175 i.

index of sum of, 206 i.

radial, 1321.

versor as unit vector, 335 i.

Roberts, Michael, note, 235 ii.

Root, cube, of quaternion, 256 i ; of unity (nine), 291 i.

of equation of algebraic form, 277 i.

of linear vector function or latent, 5171, 5001,

5081, 5621, 369 ii, 37611.

of negative unity, imaginary symbol, 224 1, 289 1.

geometrically real values of, notes, 133 1,

253 i.

principal, 259 1.

square, of quaternion, 1881, 2521, 3161, 367 i,

4521,5601.

of linear vector function, note, 225 ii, 367 Ji.

of unity «"», geometrically real, 259 1 ; imaginary,

2901.

of zero, 3161, 2911.

Rotations, composition of, 415 1.

convention of sense of, 1111, 1191, notes, 491,

3691.

conical, 154 i, 1721,3691, 3981, 4291, 397 ii.

of emanant, 85 11.

finite, 397 11.

instantaneous, 288 11.

linear function for, 367 ii.

9o
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Botation, molecular, 446 ii.

quadrantal, 149 i, 157 i.

of radius of spherical curvature, 114 ii.

of solid, 3611, 398 ii.

Royal Irish Academy, see Academy.

Euled hyperboloid, 88 i, 95 i.

paraboloid, 96 i, 93 i.

surface, 408 iL

heUcoid osculating, 83 ii.

S, symbol for scalar, 177 i; = ^ (1 + K) 1 77 i, = 1 - V,

193 i; 8-1,2021.

cyclical permutation under, 248 i, 350 1.

distributive, 1851.

examples on, 180 i, 190 i.

Sadleir, Rev. W. D., note, 375 i.

Saint Venant, de, notes, 2711, 81 ii, 91 ii, 9411, 111 ii,

12411.

Salmon, Geometry of Three Dimensions, notes, 27 ii,

4211, 9211, 10411, 129 ii, 213 ii, 22311, 22811,

235 11, 236 ii, 259 11, 260 11, 261 11.

Higher Plane Curves, notes, 371, 41 i, 421.

on centres of curvature of quadric, note,

260 u.

Scalar, differential of, 455 1.

exponents, 264 i.

integration, 4821.

origin of term, 11 1.

plus vector equals quaternion, 111, 336 1.

of a product, 245 1.

of a quaternion, 1771, 1861.

of a sum, 185 i.

symbol of, 177 i. See S.

unit in space, 394 1, 380 1.

Screw, axis, 8311, 28611, 39011, 430 ii.

coordinates of a, 39211.

s, chlastlc, 39 ii.

cylindroid of, 391 ii, 419 11, 422 ii.

homography, 396 ii.

invariants, 39311.

motion, 83 11, 84 11, 285 11.

pitch of, 286 11, 390 ii.

surface, 419 i, 12 ii, 2811, 8311. 281 ii.

osculating, 85 ii.

system, 391 11, 393 11.

translation, 8511.

Second curvature, 88 ii, 81 ii, 9211, 108 11, 109 ii.

Hamilton's Elbmknts of Quaternions, Vol. II.

Section of cone, 181 1.

cyclic of cone, 1831.

of ellipsoid, 232 1.

of cylinder, 1961, 199 1.

of ellipsoid, 238 i.

harmonic, 161.

homographic, 161.

normal, curvature of, 247 ii.

component of curvature of, 267 ii, 413 ii.

of quadric, axes of, 523 1, 25311.

sub-contrary of cone, 1831.

of quadric, 18 ii.

of wave-surface, 332 ii.

Segments, equation of six, 181, 21 i.

Self-conjugate function, 492 i.

reality of roots of, 5131, 519 i, 525 i, 272 ii.

of linear fransformation, 389 ii.

tetrahedron, 389 11.

Semi-inversor, 1351.

Sense of rotation, 1111, 1191, notes, 491, 3691.

Series, convergance of, 269 i, 424 i.

exponential, 2741, 421 i.

pouentlal, 268 1.

remainder of, 4741.

of spherical parallelograms, 388 .

Taylor's, 1021, 4731, 711, 22 ii.

Serret, referred to in notes, 92 11, 108 ii.

Sexiant of screws, 393 ii.

Shortest distance between two lines, 83 ii.

Sign of area of plane triangle, 181.

of spherical area, 370 1.

of volume of a pyramid, 48 1, 342 i.

Signless number, tensor a, 1701, 1 1 1 i.

Similitude, direct and inverse, 1151, 365 ii.

Simplification of notation, 334 1.

Simultaneous diflFerentials, 431 1.

Sine, exponential form for, 266 1, 274 1.

of a quaternion, 424 1.

Six planes, arrangements of, to illustrate the associa-

tive principle, 302 1, 304 1, 305 i.

points, evolutionary of, 295 1.

CO - 1 eciprocal screws, 392 ii.

Skew, centre of arch, 283 ii.

surface of emanants, 85 ii.

Solution of exponential equation, 409 i.

Space, scalar unit in, 3801.

symmetry of, 394 1.
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Space, transformation, linear, 387 ii>

Species of quadrics, 187 ii, 280 ii.

Sphere equation of, in terms of K, 130i; S, 180i;

V, 199 i ; N, T, 165 i, 167 i ; S^i - V^, 200 i.

Apollonian locus, 130 i, 165 i, 191 i.

monomial, 355 i.

square of vector, 327 i.

various, 180 ii.

diacentric, 234 i, 241 i.

envelope of, 143 ii, 171 ii.

geodetic on, 30 ii.

homologies of ellipsoid and, 315 i, 232 i,

intersection of right line and, 220 i, 223 i.

of cone and, 181 i.

of ellipsoid and, 240 i.

inverse of, 353 i.

osculating curve, 50 ii, 74 ii, 178 ii; surface,

269 ii.

poles and polars of, 228 i.

tangent cone to, 225 i.

cylinder to, 201 i.

Spherical addition, 406 i.

area, 364 i, 368 i, 482 i.

cap, 482 i.

conic, intersection of cone and sphere, 182 i.

of ellipsoid and, 239 i.

associative principle illustrated hy, 302 i, 308 i.

curvature of, 63 ii.

axis and foci of, 192 ii.

on -wave-surface, 345 ii.

cubic, 281 ii.

curvature, 74 ii.

curve of absolute normals, 28 ii.

osculating circle of, 62 ii.

defect, 266 ii.

excess, 364 i.

total curvature, 266 ii.

harmonics, 468 ii.

hexagon, 303 i.

inscription of polygons in, 347 i, note, 129 ii.

opening, 366 i.

parallelogram, 388 i.

polygon, 414 i.

sum, 156 i, 406 i, 415 i.

tetragonometry, 417 i.

triangle, area of, 364 i.

exponential equation for, 404 i.

Spherical trigonometry, 209 i, 216 i, 325 i, 3581, 400 i

fundamental formula, 400 i.

Sphericity, coefficient of non-, 80 ii, 120 ii, 135 ii,

138 ii.

Spheroid of revolution, 201 i.

Spin-vector, 492 i, 373 ii, 382 ii.

Spiral, 418 i.

Square of quaternion, 132 i, 141 i, 170 i, 187 i.

of right radial, 132 i.

of vector, 327 i, 345 i.

root of - 1, geometrically real values, notes, 133 i,

263 i.

as uninterpreted symbol, 224 i, 289 i.

of linear vector function, note, 225 ii, 367 ii.

of quaternion, 188 i, 252 i, 315 i, 367 i.

differential of, 452 i, 560 i.

of zero, 316 i, 291 i.

theorem of, on hypotenuse, 212 i.

Standard form, quaternion, quadrinomial, 242 i.

binomial, 254 i.

vectors, 344 i.

linear function, vector, 486 i.

quaternion, 565 i.

Statics, 283 ii.

Steiner's quartic, 392 u.

Stereographic projection 311 i.

Stokes's theorem, 44 ii, 449 ii, 416 ii.

Strain, 366 ii.

Stress, 466 ii.

in terms of strain, 461 ii.

Striction, line of, 408 ii.

Sub-contrary sections of cone, 183 i.

of quadric, circular, are homospherical, 18 ii.

Subtraction of vectors, 5 i.

of quaternions, 116 i.

of amplitudes, 264 i.

Succession, direct or indirect, 297 i.

Successive differentiation, 100 i, 465 i, 479 i.

Sum, arcual, 156 i, 369 i.

of quaternions, 176 i.

scalar of, 185 i.

spherical, 156 i, 406 i, 416 i.

tensor and norm of a, 189 i, 219 i, 476 i.

of vectors, 7 i.

Summand, 5 i.

Supplementary triangle, 217 i.

8, formed by axis of ^ and f', note, 612 i.
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Surface, anhanuonic equation of, 87 i.

properties of ruled, 408 ii.

of centres, 254 ii ; vector equation of, 260 ii.

8, confocal, 196 ii.

curvature of, 246 ii.

deformation of, 264 ii, 402 ii.

developable, 100 i, 36 ii, 232 ii, 40911.

emanant, 85 ii, 408 ii.

B, families of, 45 ii.

focal, of congruency, 431 ii.

geodetics on, 29 ii, 225 ii, 264 ii, 415 ii.

integral, line and, 449 ii.

volume and, 448 ii.

kinematical treatment of, 410 ii.

Eummer, of complex, 430 ii.

normals to, 11 ii.

order of, 87 i.

osculating, related to curve, 103 ii.

quadric osculating, note, 249 ii.

of revolution, 47 ii.

ruled, 408 ii.

screw, 419 i, 12 ii, 28 ii, 83 ii, 281 ii.

of second order, 179 ii. See Quadric.

vector equation of, 94 i.

wave-, 326 ii.

Symbol,* Am. 262 i ; Amo., Am«., 263 i.

Z120i, z:,. 2631.

Ax. 120 i ; replaced by TJV, 334 i.

cis, 260 i.

V, note, 548 i. See Operator.

I, 187 i ; suppressed, 334 i.

»,y, k, note, 160 i.

K, 124

L

/, 276 i.

N, 1301, note, 128 i.

P, 268i.

R, 141 i.

8, 177 i, 166 i, note, 127 i ; S-»0, 202 i.

T, 163 i, note, 1311.

U, 136 i; UO, note 140 i.

V, 1931, note, 124 i; V-^O, 202 i.

of complanarity (||!), 117 i.

of focal relation (. .), 393 i.

of intersection (oa'bc), 17 i.

Symbol of similarity, direct (« ), 1 1 5 i.

inverse («'), 115 i.

for spherical addition [(+)], 406 i.

\/-l, indeterminate, 1331; uninterpreted, 2891.

s, equations in, 202 i, 205 i.

8 of algebra, extended use of, 5 i, 6 i, 108 i, 123 i,

256 i.

+ and -, formula of relation, 5 i.

8, notes on, 262 i, 334 i, 351 ii.

of point ternary, 25 i, 56 i ;
quaternary, 55 i

;

quinary, 50 i.

Symbolic cubic of linear and vector function, 494 i.

depressed, 501 i, 5051, 379 ii.

biquadratic of linear quaternion function, 560 i.

expression for Taylor's Series, 468 i, 473 i, 551 i.

Symbolical or imaginary roots of quaternion equation,

288 i.

See also Imaginary.

Symmetry of space, 394 i.

elastic, 464 ii, 466 ii.

Synchronism, hodographic, 310 ii.

Syntypical points, 55 i, 75 i.

System of linear vector functions, 384 ii.

of Unes and planes related to linear vector func-

tion, 512 i, 568 i.

of rays, 41711.

of screws, 391 ii, 393 ii, 429 ii.

of six planes (association principal), 3021, 3041,

3051.

of three right versors, 157 i.

T, symbol for tensor, 163 i.

examples on, 165 i, 167 i, 190 i.

T^, differential of, 456 i.

Table of types of points of construction, 75 i.

Tait, Prof. P. G., on electro-magnetic wave-surface,

note, 326 ii.

on wave-surface, note, 350 ii.

on strain, 365 ii.

Tangent cone to sphere, 2251.

to quadric, 209 ii.

to system of confocals, 213 ii, note, 224 ii.

right, 217 ii.

to wave-surface at cusp, 335 ii, 342 ii.

* References are given to an early or the earliest usage of the following symbols in this work. Fuller

particulars will be found under the letters appropriate to each symbol.
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Tangent to curve, 97 i, 4 ii, 7 ii.

cylinder, right, 201 i, 202 i, 236 i, 241 i, 220 ii.

developable, 36 ii, 91 ii, 98 ii.

circumscribed to surface, 222 ii, 232 ii.

to geodetic, 227 ii.

to locus of centres of curvature of curve, 77 ii,

106 ii, 168 ii.

plane, 11 ii.

Tangential co-ordinates, 40 i, 265 ii.

equations, 39 i.

Taylor's series, 102 i, 469 i, 473 i, 7ii, 22 ii.

symbolic form of, 468 i, 473 i, 551 i.

Tension, act of, 164 i.

total,* 287 ii.

Tensor of quaternion, 1 67 i.

a signless number, 170i, note, 111 i.

of a scalar, 168 i.

of a sum, 189 i, 219 i.

development of, 476 i.

of a vector, 163 i.

Term, 3i.

Termino-coUinear vector, 14 i, 343 i.

-complanar vectors, 45 i, 344 i.

Ternary product of vectors, 337 i.

symbols, 25 i, 56 i.

types, 76 i.

Tetragonometry, spherical, 417 i.

Tetrahedron, pyramid or gauche quadrilateral, 82 i.

self-conjugate, 389 ii.

Total curvature, 264 ii, 416 ii.

differentiation, 479 i.

moment, 286 ii.

tension, 287 ii.

Torsion, 88 ii, 178 ii, note, 81 ii.

expressions for, 108 ii.

geodetic, 415 ii.

Transcendental equations of surfaces, 206 ii, 281 ii.

functions of a quaternion, 421 i, 453 i.

Transformation, S and T, 190 i, U, 141 i.

exponential, of Taylor's series, 468 i, 473 i, 551 i.

of equation of wave-surface, 326 ii, 331 ii, 332 ii,

342 ii, 344 ii, 346 ii, 352 ii.

linear, 387 ii.

Translation in finite displacement, 397 ii.

screw, 85 ii, 390 ii.

Transport, 4 i.

Transvector, 3i, 147 i.

Transversal, triangle cut by, 21 i.

of spherical triangle, 362 i.

Triangle, geodetic, 266 ii.

plane, conies and, 32 i.

harmonic relations, 21 i.

product of vector sides of, 348 i.

spherical, area of, 364 i.

exponential equation for, 404 i.

sum of angles, 406 i.

Trigonometry, plane, fundamental formula, 214 i.

examples, 178 i, 197 i, 265 i, 272i.

S and V, 208 i,

spherical, fundamental formula, 216 i, 400 i.

examples, 357 i, 325 i, 400 i.

S and V, 209 i.

solution of exponential equation of, 409 i.

Trigonometrical functions of quaternion, 424 i.

Trinomial form for vectors, 242 i, 344 i.

for linear vector functions, 486 i.

Tube of flow, 441 ii.

Twist on a screw, 390 ii.

Twisted cubic, contact with cui-ve of third order,

92 ii, 104 ii.

fourth, 125 ii, 128 ii.

osculating curve, 129 ii, 156 ii, 404 ii.

vector equation of, 129ii, 131 ii.

Two-system of screws, 391 ii, 393 ii.

Types of points of construction, 55 i, 75 i.

U, symbol for unit-vector, 136.L

versor, 137 i.

examples on, 142 i.

U^, differential of, 456 i.

Ultimate ratio, 469 i.

Umbilic, 218ii, 249ii.

lines of curvature through, 242 ii.

normals at, 241 ii.

Umbilicar generation of quadric, 278 ii.

generatrix, 221 ii, 235 ii.

as line of curvature, 242 iL

as envelope, 235 ii.

locus of, 222 ii.

Unicursal curves, note, 10 ii.

* Clausius has called this the virial.
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Unifocal or focal form of function, 531 i, 533 i, 535 i.

538i, 373ii.

equation of wave-surface, 342 iL

Uninterpreted symbol, v - 1, 224 i, 289 i.

Unique resultant, condition for, 284 ii.

Unit in space, scalar or fourth, 380 i, 394 i.

sphere, 120 i.

-vector, 120 i.

conception of right versor as, 336 i.

-vectors of curve, 82 ii, 403 ii.

of surface, 410 ii.

United points of transformation, 387 ii.

Unity, cube root of, principal, 258 i.

nine, 291 i.

geometrical real «'* roots of, 259 i.

imaginary w'* roots of, 290 L

negative, inversor, 135 i.

square of right radial, 132 L

square root of, geometrically real, notes,

1331,2531.

uninterpreted symbol, 224 1, 289 i.

views of other writers, 258 i, 278 L

particular case of radial quotient, 132 L

of linear function, 376 ii.

V, sjrmbol for vector or right part, 193 i ; = IV, 335 1.

= 1 -S = ^(l-K), 197 i.

distributive character of, 204 1.

examples on, 195 i, 1971, 1991, 208 L

V^, differential of, 455 1.

Vanishing quantities, ratio of, 470 L

Variable, change of independent, 24 11, S3 11.

Variations, calculus of, note, 48 11, 271 11.

Vectlon, 51.

Vector of acceleration, 1001, 289 IL

addition, commutative, 6 1 ; associative, 7 L

to point, 5 i.

angle, 3 i.

representative of versor, 1511.

associative property, 304 1.

sum of, 1561, 4061.

arc, 31.

determination of, 144 1.

addition of, 1561.

is associative, 304 1.

representative of versor, 1431.

coefficients of, 9 1.

Vectors, complanar, 3401.

continued proportion of, 251 1.

s, complanarity of three, 338 1.

conjugate of, 346 1.

of conjugate, 197 i.

constants, 201 i, 2361, 491 1.

curl of, 442 11.

of curvature, 6011, 267 11.

second, 88 ii.

definition of, 3 1.

difference of points, 3 1.

differential of, 96 i.

division of, by number. 111.

by parallel vector, 101.

by vector, 107 i.

elimination of, 342 i, 355 1.

equation of curve, 94 i ; of surface, 94 i.

of confocals, note, 225 ii.

of congruency, 417 11 ; of complex, 417 ii.

of cylindroid, 391 11.

of second degree, 508 1.

of surface of centres, 260 11.

of twisted cubic, 129 11, 131 ii, note, 10 ii.

of unicursal curves, note, 10 ii.

as factor, 335 i.

s, fourth proportional to three complanar, 250 i

;

diplanar, 357 1 ; rectangular, 377 i.

function. See Linear,

s harmonic mean of two, 298 1 ; of n, 300 L

Identities. See Identity,

or imaginary part, note, 316 i.

imaginary or bi-vector, 2241, note, 171 ii.

integral, 483 1. See Integral,

invariant. See Invariant,

s, linear relations in four, 44 1, 338 1 ; five, 471.

s, mean between two, 251 1.

multiplication, 3231.

is associative, 337 i.

null, 3 1.

origin and term of, 3 1, 12 1.

pairs of, note, 393 ii.

parallel, 10 i, 325 1 ; perpendicular, 325 i, 345 1.

plus scalar is quaternion, 11 1, 3351.

power of, 396 1, 399 1, 420 1, 476 1.

of product, 245 1.

product of two, a quaternion, 321 1, 333 1 ; of «,

337 1, 346 i, 394 1.
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Vectors, proportion of, 118 i, 176 i, 250 i.

of proximity, 20 ii, 461 i.

quotient, 107 i.

reciprocal of, 293 i.

resolution of, 194 i,; 338 i, 339 i.

is right part of quaternion, 335 i.

scalar of, 346 i.

special case of quaternion, 335 i.

spin-, 492 i, 373,ii, 382.ii.

square of, 327i,'345 i.

subtraction of, 6 i.

sum of, defined, 7 i.

tensor of, 163,i.

s, termino-collinear,'^14 i, 343 i; complanar, 45 i,

344 i.

three conditions determine, 341 i.

trinomial fonn for, 344 i.

umbilical, \21 8 ii.

units of curve,'82 ii, 403 ii.

versor of, note 137 i.

Velocity, vector of, 99 i.

angular, 84 ii, 119 ii, 288 ii.

areal, 299 ii.

single ray-, 332 ii.

single wave-, 335 ii.

virtual, 287 ii.

twist, 390 ii.

Version, 1641.

Versor, of conjugate, 138 L

conjugate of, 139 i.

depends on relative direction, 138 i.

as factor, 135 i.

of null quaternion, 139 i.

power of unit vector, 261 i.

of product, 171 i.

of quaternion, 137 i, note, 124 i.

of reciprocal, 138 i.

reciprocal of, 138 i.

right, as unit-vector, 335 i.

Versor of'scalar, 139 i.

of sum, 476 i.

development of, 476 i.

of vector, note 137 i.

Versors, condition of complanarity of, 148 i.

equation between, 409 i.

Vibration, lines of, on wave-surface, 330 ii.

orthogonals, to, 345 ii.

principle of equivalent, 354 ii.

Virial or total tension, 287 ii.

Virtual focus, 419 ii.

velocities, 287 ii.

Viscous fluid, 459 ii.

Volume, sign of a, 48 i, 342 i.

of parallelepiped, 247 i, 338 i.

of sphere, spheric shell, 483 i.

and surface integrals, 448 ii.

Vortex motion, 453 ii.

Warren, note, 278 i.

Wave-cusps, 332 ii.

tangent cones at, 335 ii, 342 ii.

ridges, 337 ii, 344 ii.

-slowness, surface of, or index surface, 325 ii.

-surface, equation of, 326 ii, 331 ii.

cyclic form of, 332 ii.

unifocal form of, 342 ii.

bi-focal form of, 344 ii.

confocal form of, 346 ii.

Cartesian, 352 ii.

electro -magnetic, note, 326 ii.

vibrations, 347 ii.

Wrench, 390 ii.

Zero, square'root of, 316 i, 291 i.

versor of, 1 39 i.

null quaternion is, 125 i.

pitch quadric, 392 ii.

Zone, area of, 482 i.

END OF VOLUME II.
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