

THE ELEMENTS

OF

RAILROAD ENGINEERING

Prepared for Siudents of
The International Correspondence Schools
SCRANTON, PA.

Volume V

ANSWERS TO QUESTIONS

First Edition

SCRANTON
THE COLLIERY ENGINEER CO. 1897

Copyright，1897，by The Colliery Engineer Company．

Arithmetic，Key：Copyright，1803，1894，1896，1897，1898，by Tilf COLIAERY ENGI－ NEER COMPANY．
Algebra，Key ：Copyright， $1 \times 94,1896,189{ }^{\circ}, 1898, b y$ The Collifery ENGiNefr Cos－ PANY。
Logarithms，Key：Copyright，189～，by The Colliery Engineer Company．
Geometry and Trigonometry，key：Copyright，1893，1494，1895，1899，by Tile Col－ LIERY ENGINEER COMPAN゙Y．

Elementary Mechanics，Key：Copyright，1893，1N94，1895，189＊，by The Colliery ENGINEER COMPANY．
Hydromechanics，Key ：Copyright，1893，1894，1895，189\％，by THE COLLIERY ENGI－ NEER COMPANT：
Pneumatics，Key ：Copyright， $1893,1895,189 \%$ ，by The Colliery ExGinefr Com－ PANY．
Strength of Materials，Key：Copyright，1894，1899，by The Colliery ENGiNeer COMPANY：
Surveying，Key：Copyright，1N95，by The Colliery Engineer Compaxi．
Land Surveying，Key：Copyright，1895，by 「IIE Colliery Engineer Company．
Kailroad Location，Key ：Copyright， 1×95 by TuE COliffry ENGinefr Company．
Railroad Construction，Key ：Copyright， 1×95 ，by The COLLIERY ENGINEER COM－ PANY．
Track Work，Key：Copyright，16月，by The Colliery ENGiNEER COMPINY．
Railroad Structures，Key ：Copyright，1896，by TIIE COLLIERY ENGINEER COM． PANY．

A KEY

TO ALL THE
 QUESTIONS AND EXAMPLES

included in
Vols. I and II, EXCEPT THE
EXAMPLES FOR PRACTICE.

It will be noticed that the Key is divided into sections which correspond to the sections containing the questions and examples at the end of Vols. I and II. The answers and solutions are so numbered as to be similar to the numbers before the questions to which they refer.

CONTENTS.

Arithmetic,	s	$\begin{aligned} & \text { nos. } \\ & 1-16 \% \end{aligned}$	pages. $1-94$
Algebra, -	Answers to Questions	(68-2.)	
Logarithms,	Answers to Questions		
Geometry and Trig-			
Elementary chanics,	Answers to Questions	355-453	
Hydromechani	Answers to Question	454-503	
Pneumatics,	- Answers to Question	504-55.3	
Strength of terials, -		61	
Surveying,	Answers to Questio	14-705	33-25
Land Surveyin	Answers to Questions	\%06-755	5\%
Railroad Locat	Answers to Quest	\%56-81	669
Railroad Construc tion, -	Answers to Questions	813	281-289
Ranlroad Construc-			
Track Work,	Answers to Questions	7-101	99
$\begin{array}{cc}\text { Railroad } \\ \text { tures, } & \text { St }\end{array}$	Answers to Questio		

ARITHMETIC.

(QUESTIONS 1-75.)

(1) See Art. 1.
(2) See Art. 3.
(3) See Arts. 5 and 6.
(4) See Arts. 10 and 11.
(5) $980=$ Nine hundred eighty.
$605=$ Six hundred five.
$28,284=$ Twenty-eight thousand, two hundred eighty-four, $9,006,042=$ Nine million, six thousand and forty-two.
$850,317,002=$ Eight hundred fifty million, three hundred seventeen thousand and two.
$700,004=$ Seven hundred thousand and four.
(6) Seven thousand six hundred $=7,600$.

Eighty-one thousand four hundred $\mathrm{two}=81,402$.
Five million, four thousand and seven $=5,004,00 \%$.
One hundred and eight million, ten thousand and one $=$ 108,010,001.

Eighteen million and six $=18,000,006$.
Thirty thousand and ten $=30,010$.
(7) In adding whole numbers, place the numbers to be added directly under each other so that

3290
the extreme right-hand figures will stand position of those at the left. Add the first

865403
column of figures at the extreme right, 2074 which equals 19 units, or 1 ten and 9 units. We place 9 units under the units column, and reserve 1 ten for the column 871359 Ans.
of tens. $1+8+\tilde{1}+9=25$ tens, or 2 hundreds and 5 tens. Place 5 tens under the tens column, and reserve \geqslant hundreds for the hundreds column. $\quad 2+4+5+2=13$ hundreds, or 1 thousand and 3 hundreds. Place 3 hundreds under the hundreds column, and reserve the 1 thousand for the thousands column. $1+2+5+3=11$ thousands, or 1 ten-thousand and 1 thousand. Place the 1 thousand in the column of thousands, and reserve the 1 ten-thousand for the column of ten-thousands. $\quad 1+6=\mathfrak{\imath}$ ten-thousands. Place this seven ten-thousands in the ten-thousands column. There is but one figure 8 in the hundreds of thousands place in the numbers to be added, so it is placed in the hundreds of thousands column of the sum.

A simpler (though less scientific) explanation of the same problem is the following: $7+1+4+3+4+0=19$; write the nine and reserve the $1.1+8+7+0+0+9=25$; write the 5 and reserve the $2 . \quad 2+0+4+5+2=13$: write the 3 and reserve the $1 . \quad 1+2+5+3=11$; write the 1 and reserve $1.1+6=7$; write the $\%$. Bring down the 8 to its place in the sum.
(8)
\% 09
8304725
391
100302
300
909
840:336 Ans.
(9) (a) In subtracting whole numbers, place the sub. trahend or smaller number under the minuend or larger number, so that the right-hand figures stand directly under each other. Begin at the right to subtract. We can not subtract S units from \approx units, so we take 1 ten from the 6 tens and add it to the 2 units. As 1 tcn $=10$ units, we have 10 units +2 units $=12$ units. Then, 8 units from 12 units leaves 4 units. We took 1 ten from 6 tens, so
only 5 tens remain. 3 tens from 5 tens 50962 leaves 2 tens. In the hundreds column we 3338 have 3 hundreds from 9 hundreds leaves $\frac{3864}{47624}$ Ans. 6 hundreds. We can not subtract 3 thou- 47624 Ans. sands from 0 thousands, so we take 1 ten-thousand from 5 ten-thousands and add it to the 0 thousands. 1 tenthousand $=10$ thousands, and 10 thousands +0 thousands $=10$ thousands. Subtracting, we have 3 thousands from 10 thousands leaves $\%$ thousands. We took 1 ten-thousand from 5 ten-thousands and have 4 ten-thousands remaining. Since there are no ten-thousands in the subtrahend, the 4 in the ten-thousands column in the minuend is brought down into the same column in the remainder, because 0 from t leaves 4 .

$$
\text { (b) } \begin{array}{r}
15339 \\
\frac{10001}{5338} \text { Ans. }
\end{array}
$$

(10) (a) 70968

32975
37993 Ans. 1265 Ans.
(11) We have given the minuend or greater number $(1,004)$ and the difference or remainder (49). Placing these 1004
in the usual form of subtraction we have $\frac{\text { in which }}{}$ the dash (-) represents the number sought. This number is evidently less than 1,004 by the difference 49 , hence, $1,004-49=955$, the smaller number. For the sum of the

$$
1004 \text { larger }
$$

two numbers we then have 955 smaller

$$
\overline{1959} \text { sum. Ans. }
$$

Or, this problem may be solved as follows: If the greater of two numbers is 1,004 , and the difference between them is 49 , then it is evident that the smaller number must be equal to the difference between the greater number $(1,004)$
and the difference (49); or, $1,004-49=955$, the smaller number. Since the greater number equals 1,004 and the smaller number equals 955 , their sum equals $1,004+955$ $=1,959$ sum. Ans.
(12) The numbers connected by the plus (+) sign must first be added. Performing these operations we have

$$
\begin{array}{ll}
5962 & 3874 \\
8 \pm 71 & \underline{2039} \\
9023 & 5913 \\
\hline
\end{array}
$$

Subtracting the smaller number $(5,913)$ from the greater $(23,456)$ we have

$$
\begin{aligned}
& 23456 \\
& \frac{5913}{17543} \text { difference. Ans. }
\end{aligned}
$$

(13) $\$ 446 \% 5=$ amount willed to his son.
$26380=$ amount willed to his daughter.
$\$ 71055=$ amount willed to his two children.
$\$ 125000=$ amount willed to his wife and two children.
\%1055 $=$ amount willed to his two children.
$\$ 539 \pm 5=$ amount willed to his wife. Ans.
(14) In the multiplication of whole numbers, place the multiplier under the multiplicand, and multiply each term of the multiplicand by each term of the multiplier, writing the right-hand figure of each product obtained under the term of the multiplier which produces it.
7×7 units $=49$ units, or 4 tens and 9
$\frac{7}{3684 \% 09}$ Ans. units. We write the 9 units and reserve the 4 tens. 7 times 8 tens $=56$ tens; 56 tens +4 tens reserved $=60$ tens or 6 hundreds and 0 tens. Write the 0 tens and reserve the 6 hundreds. 7×3 hundreds $=21$ hundreds; $21+6$ hundreds reserved $=2 \tau$ hundreds, or 2 thousands and 7 hundreds. Write the 7 hundreds and reserve
the 2 thousands. 7×6 thousands $=42$ thousands; 42 +2 thousands reserved $=44$ thousands or 4 ten-thousands and 4 thousands. Write the 4 thousands and reserve the 4 ten-thousands. 7×2 ten-thousands $=14$ ten-thousands; $14+4$ ten-thousands reserved $=18$ ten-thousands, or 1 hundred-thousand and 8 ten-thousands. Write the 8 tenthousands and reserve the 1 hundred-thousand. 7×5 hun-dred-thousands $=35$ hundred-thousands; $35+1$ hundredthousand reserved $=36$ hundred-thousands. Since there are no more figures in the multiplicand to be multiplied, we write the 36 hundred-thousands in the product. This completes the multiplication.

A simpler (though less scientific) explanation of the same problem is the following:

7 times $7=49$; write the 9 and reserve the 4.7 times $8=56 ; 56+4$ reserved $=60$; write the 0 and reserve the 6 . 7 times $3=21 ; 21+6$ reserved $=27$; write the 7 and reserve the 2. $7 \times 6=42 ; 42+2$ reserved $=44$; write the 4 and reserve $4.7 \times 2=14 ; 14+4$ reserved $=18$; write the 8 and reserve the $1 . \quad 7 \times 5=35 ; 35+1$ reserved $=36$; write the 36 .

In this case the multiplier is 17 units, or 1 ten and 7 units, so that the product is obtained by adding two partial products, namely, $7 \times$ 700,298 and $10 \times 700,298$. The actual operation is performed as
(b) 700298
$\frac{17}{4902086}$
700298
11905066 Ans. follows:

7 times $8=56$; write the 6 and reserve the $5 . \quad 7$ times $9=$ $63 ; 63+5$ reserved $=68$; write the 8 and reserve the 6 . 7 times $2=14 ; 14+6$ reserved $=20$; write the 0 and reserve the 2. 7 times $0=0 ; 0+2$ reserved $=2$; write the 2 . 7 times $0=0 ; 0+0$ reserved $=0$; write the $0 . \quad 7$ times $7=$ $49 ; 49+0$ reserved $=49$; write the 49 .

To multiply by the 1 ten we say 1 times $700298=700298$, and write 700298 under the first partial product, as shown, with the right-hand figure 8 under the multiplier 1. Add the two partial products; their sum equals the entire product.
(c) $217 \quad$ Multiply any two of the numbers together 103 and multiply their product by the third 651 number. $\frac{2170}{22351}$
$\frac{67}{15645^{7}}$
$\frac{134106}{1497517}$ Ans.
(15) If your watch ticks every second, then to find how many times it ticks in one week it is necessary to find the number of seconds in 1 week.

60 seconds $=1$ minute.
60 minutes $=1$ hour.
$\overline{3600}$ seconds $=1$ hour.
24 hours $=1$ day.
$\overline{14400}$
7200
$\overline{86400}$ seconds $=1$ day.
7 days $=1$ week.
$\overline{604800}$ seconds in 1 week or the number of times that Ans. your watch ticks in 1 week.
(16) If a monthly publication contains 24 pages, a yearly 24 volume will contain 12×24 or 288 pages, since 12 there are 12 months in one year; and eight
$\overline{288}$ yearly volumes will contain 8×288, or 2,304 8 pages.
$\overline{2304}$ Ans.
(17) If an engine and boiler are worth $\$ 3,246$, and the building is worth 3 times as much, plus $\$ 1,200$, then the building is worth

$$
\begin{array}{r}
\$ 3246 \\
\frac{3}{9738} \\
\text { plus } \begin{array}{r}
1200 \\
\$ 10938
\end{array}=\text { value of building. }
\end{array}
$$

If the tools are worth twice as much as the building, plus $\$ 1,875$, then the tools are worth

$$
\$ 10938
$$

2

$$
21876
$$

$$
\text { plus } \quad 1875
$$

$$
\$ \overline{23751}=\text { value of tools. }
$$

Value of building $=\$ 10938$
Value of tools $=23751$
$\$ \overline{34689}=$ value of the building and tools. (a) Ans.
Value of engine and

$$
\text { boiler }=\$ 3246
$$

Value of building

$$
\text { and tools }=\frac{34689}{837935}=\begin{gathered}
\text { value of the whole } \\
\text { plant. }(b) \text { Ans. }
\end{gathered}
$$

(18) (a) $(72 \times 48 \times 28 \times 5) \div(96 \times 15 \times 7 \times 6)$.

Placing the numerator over the denominator the problem becomes

$$
\frac{72 \times 48 \times 28 \times 5}{96 \times 15 \times 7 \times 6}=?
$$

The 5 in the dividend and 15 in the divisor are both divisible by 5 , since 5 divided by 5 equals 1 , and 15 divided by 5 equals 3 . Cross off the 5 and write the 1 over it; also cross off the 15 and write the 3 under it. Thus,

$$
\frac{72 \times 48 \times 28 \times \frac{1}{5}}{96 \times 15 \times 7 \times 6}=
$$

The 5 and 15 are not to be considered any longer, and, in fact, may be erased entirely and the 1 and 3 placed in their stead, and treated as if the 5 and 15 never existed. Thus,

$$
\frac{72 \times 48 \times 28 \times 1}{96 \times 3 \times 7 \times 6}=
$$

72 in the dividend and 96 in the divisor are divisible by 12, since $i 2$ divided by 12 equals 6 , and 96 divided by 12 equals 8. Cross off the \sim d and write the 6 over it; also, cross off the 96 and write the 8 under it. Thus,

$$
\frac{6}{\frac{72}{96} \times 3 \times 3 \times 28 \times 1}=
$$

The ${ }^{\gamma} 2$ and 96 are not to be considered any longer, and, in fact, may be crased entirely and the 6 and S placed in their stead, and treated as if the ~ 2 and 96 never existed. Thus,

$$
\frac{6 \times 48 \times 28 \times 1}{8 \times 3 \times 7 \times 6}=
$$

Again, 28 in the dividend and y in the divisor are divisible by τ, since 28 divided by 7 equals 4 , and 7 divided by ? equals 1. Cross off the 28 and write the \pm over it ; also, cross off the 7 and write the 1 under it. Thus,

$$
\frac{6 \times 48 \times \stackrel{4}{28} \times 1}{8 \times 3 \times \underset{1}{7} \times 6}=
$$

The 28 and 7 are not to be considered any longer, and, in fact, may be crased entirely and the \pm and 1 placed in their stead, and treated as if the 28 and $\%$ never existed. Thus,

$$
\frac{6 \times 48 \times 4 \times 1}{8 \times 3 \times 1 \times 6}=
$$

Again, 48 in the dividend and 6 in the divisor are divisible by 6 , since 48 divided by 6 equals 8 , and 6 divided by 6 equals 1. Cross off the 48 and write the 8 over it; also, cross off the 6 and write the 1 under it. Thus,

$$
\frac{8}{8 \times 48 \times 4 \times 1}=
$$

The 48 and 6 are not to be considered any longer, and, in fact, may be crased entirely and the 8 and 1 placed in their stead, and treated as if the 48 and 6 never existed. Thus,

$$
\frac{6 \times 8 \times 4 \times 1}{8 \times 3 \times 1 \times 1}=
$$

Again, 6 in the dividend and 3 in the divisor are divisible by 3 , since 6 divided by 3 equals 2 , and 3 divided by 3 equals 1. Cross off the 6 and write the 2 over it; also, cross off the 3 and write the 1 under it. Thus,

$$
\frac{2}{6 \times 8 \times 4 \times 1} \frac{1 \times 1 \times 1}{8 \times 3 \times 1}=
$$

The 6 and 3 are not to be considered any longer, and, in fact, may be erased entirely and the 2 and 1 placed in their stead, and treated as if the 6 and 3 never existed. Thus,

$$
\frac{2 \times 8 \times 4 \times 1}{8 \times 1 \times 1 \times 1}=
$$

Canceling the 8 in the dividend and the 8 in the divisor, the result is

$$
\frac{2 \times \stackrel{1}{8} \times 4 \times 1}{8 \times 1 \times 1 \times 1}=\frac{2 \times 1 \times 4 \times 1}{1 \times 1 \times 1 \times 1}
$$

Since there are no two remaining numbers (one in the dividend and one in the divisor) divisible by any number except 1 , without a remainder, it is impossible to cancel further.

Multiply all the uncanceled numbers in the dividend together, and divide their product by the product of all the uncanceled numbers in the divisor. The result will be the quotient. The product of all the uncanceled numbers in the dividend equals $2 \times 1 \times 4 \times 1=8$; the product of all the uncanceled numbers in the divisor equals $1 \times 1 \times 1 \times 1=1$.

Hence,

$$
\frac{2 \times 1 \times 4 \times 1}{1 \times 1 \times 1 \times 1}=\frac{8}{1}=8 . \quad \text { Ans. }
$$

(b) $(80 \times 60 \times 50 \times 16 \times 14) \div(70 \times 50 \times 24 \times 20)$.

Placing the numerator over the denominator, the problem becomes

$$
\frac{80 \times 60 \times 50 \times 16 \times 14}{20 \times 50 \times 24 \times 20}=?
$$

The 50 in the dividend and 70 in the divisor are both divisible by 10 , since 50 divided by 10 equals 5 , and 70 divided by 10 equals \%. Cross off the 50 and write the 5 over it; also, cross off the 70 and write the 7 under it. Thus,

$$
\frac{80 \times 60 \times 50 \times 16 \times 14}{\frac{50}{7} \times 50 \times 24 \times 20}=
$$

The 50 and 70 are not to be considered any longer, and; in fact, may be erased entirely and the 5 and 7 placed in their stead, and treated as if the 50 and 70 never existed. Thus,

$$
\frac{80 \times 60 \times 5 \times 16 \times 14}{7 \times 50 \times 24 \times 20}=
$$

Also, 80 in the dividend and 20 in the divisor are divisible by 20 , since 80 divided by 20 equals 4 , and 20 divided by 20 equals 1 . Cross off the 80 and write the 4 over it; also, cross off the 20 and write the 1 under it. Thus,

$$
\frac{4}{89 \times 60 \times 5 \times 16 \times 14} \frac{7 \times 50 \times 24 \times \frac{20}{1}}{7 \times}=
$$

The 80 and 20 are not to be considered any longer, and, in fact, may be erased entirely and the 4 and 1 placed in their stead, and treated as if the 80 and 20 never existed. Thus,

$$
\frac{4 \times 60 \times 5 \times 16 \times 14}{7 \times 50 \times 24 \times 1}=
$$

Again, 16 in the dividend and 24 in the divisor are divisible by 8 , since 16 divided by 8 equals 2 , and 24 divided by 8 equals 3 . Cross off the 16 and write the 2 over it; also cross off the 24 and write the 3 under it. Thus,

$$
\frac{4 \times 60 \times 5 \times \stackrel{2}{16} \times 14}{7 \times 50 \times \frac{44}{3} \times 1}=
$$

The 16 and 24 are not to be considered any longer, and, in fact, may be erased entirely and the 2 and 3 placed in their stead, and treated as if the 16 and 24 never existed. Thus,

$$
\frac{4 \times 60 \times 5 \times 2 \times 14}{7 \times 50 \times 3 \times 1}=
$$

Again, 60 in the dividend and 50 in the divisor are divis. ible by 10 , since 60 divided by 10 equals 6 , and 50 divided by 10 equals 5 . Cross off the 60 and write the 6 over it; also, cross off the 50 and write the 5 under it. Thus,

$$
\frac{4 \times 60 \times 5 \times 2 \times 14}{7 \times \frac{60}{5} \times 3 \times 1}=
$$

The 60 and 50 are not to be considered any longer, and, in fact, may be erased entirely and the 6 and 5 placed in their stead, and treated as if the 60 and 50 never existed. Thus,

$$
\frac{4 \times 6 \times 5 \times 2 \times 14}{7 \times 5 \times 3 \times 1}=
$$

The 14 in the dividend and 7 in the divisor are divisible by 7 , since 14 divided by 7 equals 2 , and 7 divided by 7 equals 1 . Cross off the 14 and write the 2 over it; also, cross off the 7 and write the 1 under it. Thus,

$$
\frac{4 \times 6 \times 5 \times 2 \times{ }_{14}^{2}}{\frac{7 \times 5 \times 3 \times 1}{1}}=
$$

The 14 and 7 are not to be considered any longer, and, in fact, may be erased entirely and the 2 and 1 placed in their stead, and treated as if the 14 and 7 never existed. Thus,

$$
\frac{4 \times 6 \times 5 \times 2 \times 2}{1 \times 5 \times 3 \times 1}=
$$

The 5 in the dividend and 5 in the divisor are divisible by 5 , since 5 divided by 5 equals 1 . Cross off the 5 of the dividend and write the 1 over it; also, cross off the 5 of the divisor and write the 1 under it. Thus,

$$
\frac{4 \times 6 \times \stackrel{1}{5} \times 2 \times 2}{1 \times \underset{1}{5} \times 3 \times 1}=
$$

The 5 in the dividend and 5 in the divisor are not to be considered any longer, and, in fact, may be erased entirely and 1 and 1 placed in their stead, and treated as if the 5 and 5 never existed. Thus,

$$
\frac{4 \times 6 \times 1 \times 2 \times 2}{1 \times 1 \times 3 \times 1}=
$$

The 6 in the dividend and 3 in the divisor are divisible by 3 , since 6 divided by 3 equals 2 , and 3 divided by 3 equals 1 . Cross off the 6 and place 2 over it; also, cross off the 3 and place 1 under it. Thus,

$$
\frac{4 \times 6 \times 1 \times 2 \times 2}{1 \times 1 \times 3 \times 1}=
$$

The 6 and 3 are not to be considered any longer, and, in fact, may be erased entirely and 2 and 1 placed in their stead, and treated as if the 6 and 3 never existed. Thus,

$$
\frac{4 \times 2 \times 1 \times 2 \times 2}{1 \times 1 \times 1 \times 1}=\frac{32}{1}=32 . \quad \text { Ans } .
$$

(19) 28 acres of land at $\$ 133$ an acre would cost $28 \times \$ 133=\$ 3,724$.

$$
\begin{array}{r}
\frac{28}{1064} \\
8 \frac{266}{8724}
\end{array}
$$

If a mechanic earns $\$ 1,500$ a year and his expenses are $\$ 968$ per year, then he would save $\$ 1500-\$ 968$, or $\$ 532$ per year.

$$
\frac{968}{8532}
$$

If he saves $\$ 532$ in 1 year, to save $\$ 3,724$ it would take as many years as $\$ 532$ is contained times in $\$ 3,724$, or 7 years.

```
532) 3724(7 years. Ans.
3%24
```

(20) If the freight train ran 365 miles in one week, and 3 times as far lacking 246 miles the next week, then it ran (3×365 miles) -246 miles, or 849 miles the second week. Thus,

365
3

(21) The distance from Philadelphia to Pittsburg is 354 miles. Since there are 5,280 feet in one mile, in 354 miles there are $354 \times 5,280$ feet, or $1,869,1 \geqslant 0$ feet. If the driving wheel of the locomotive is 16 feet in circumference, then in going from Philadelphia to Pittsburg, a distance of 1,869 ,120 feet, it will make $1,869,120 \div 16$, or 116,820 revolutions.

$$
\begin{aligned}
& \text { 16) } 1869120(116820 \mathrm{rev} \text {. Ans. } \\
& \frac{16}{26} \\
& \frac{16}{109} \\
& \frac{96}{131} \\
& \frac{128}{32} \\
& \frac{32}{0}
\end{aligned}
$$

(22) (a) 5 : 6) $589824(1024$ Ans.

$\frac{576}{1382}$
1152
2304
2304

(b)
$43911) 369730620(8420$ Ans.
$\frac{351288}{154426}$

175644
S7822
87822
0
(c)

$$
505) 2527525(5005 \text { Ans. }
$$

2525
2525
2525
(d) 1234)4961794302(4020903 Ans
$\frac{4936}{25 \% 9}$
$\frac{2468}{11143}$
$\frac{11106}{3702}$
$3 \div 02$
(23) The harness evidently cost the difference between $\$ 444$ and the amount which he paid for the horse and wagon.

Since $\leqslant 20 t+\$ 153=\leqslant 41 \%$, the amount paid for the horse and wagon, $\$ 444-\$ 41 \%=\$ 2 \%$, the cost of the harness.

$\$ 444$
41 i
$\$ 2 \%$ Ans.

(24) (a)	1024
	576
	$\overline{6144}$
	7168
	5120
	$\overline{589894}$
(b)	5005
	505
	25025
	250250
	2527525
(c)	43911
	8420
	878220
	175644
	351288
	369730620

(25) Since there are 12 months in a year, the number of days the man works is $25 \times 12=300$ days. As he works 10 hours each day, the number of hours that he works in one year is $300 \times 10=3,000$ hours. Hence, he receives for his work $3,000 \times 30=90,000$ cents, or $90,000 \div 100=\$ 900$. Ans.
(26) See Art. 71.
(27) See Art. 77.
(28) See Art. 73.
(29) See Art. 73.
(30) See Art. 75.
(31) $\frac{13}{8}$ is an improper fraction, since its numerator 13 is greater than its denominator 8 .
(32) $4 \frac{1}{2} ; 14 \frac{3}{10} ; 85 \frac{4}{19}$.
(33) To reduce a fraction to its lowest terms means to change its form without changing its value. In order to do this, we must divide both numerator and denominator by the same number until we can no longer find any num. ber (except 1) which will divide both of these terms without a remainder.

To reduce the fraction $\frac{4}{8}$ to its lowest terms we divide both numerator and denominator by 4 , and obtain as a result the fraction $\frac{1}{2}$. Thus, $\frac{4}{8} \div 4=4=\frac{1}{2}$; similarly, $\frac{4}{16} \div 4=4=$ $\frac{1}{4} ; \cdot \frac{8}{32} \div 4=\frac{2}{8} \div 2=2=\frac{1}{4} ; \frac{32 \div 8}{64} \div 8=\frac{4}{8} \div 4=4=\frac{1}{2} . \quad$ Ans.
(34) When the denominator of any number is not expressed, it is understood to be 1 , so that $\frac{6}{1}$ is the same as $6 \div 1$, or 6 . To reduce $\frac{6}{1}$ to an improper fraction whose denominator is 4 , we must multiply both numerator and denominator by some number which will make the denominator of 6 equal to 4 . Since this denominator is 1 , by multiplying both terms of $\frac{6}{1}$ by 4 we shall have $\frac{6 \times 4}{1} \times 4=\frac{24}{4}$, which has the same value as 6 , but has a different form. Ans.
(35) In order to reduce a mixed number to an improper fraction, we must multiply the whole number by the denominator of the fraction and add the numerator of the fraction to that product. This result is the numerator of the improper fraction, of which the denominator is the denominator of the fractional part of the mixed number.
$7 \frac{7}{8}$ means the same as $7+\frac{7}{8}$. In 1 there are $\frac{8}{8}$, hence in 7 there are $7 \times \frac{8}{8}=\frac{56}{8} ; \frac{56}{8}$ plus the $\frac{7}{8}$ of the mixed number $=\frac{56}{8}+\frac{7}{8}=\frac{63}{8}$, which is the required improper fraction.

$$
13 \frac{5}{16}=\frac{(13 \times 16)+5}{16}=\frac{213}{16} ; 10 \frac{3}{4}=\frac{(10 \times 4)+3}{4}=\frac{43}{4}
$$

(36) The value of a fraction is obtained by dividing the numerator by the denominator.

To obtain the value of the fraction $\frac{13}{2}$ we divide the numerator 13 by the denominator 2. 2 is contained in 13 six times, with 1 remaining. This 1 remaining is written over the denominator 2 , thereby making the fraction $\frac{1}{2}$, which is annexed to the whole number 6 , and we obtain $6 \frac{1}{2}$ as the mixed number. The reason for performing this operation is the following: In 1 there are $\frac{2}{2}$ (two halves), and in $\frac{13}{2}$ (thirteen halves) there are as many units (1) as 2 is contained times in 13 , which is 6 , and $\frac{1}{2}$ (one-half) unit remaining. Hence, $\frac{13}{12}=6+\frac{1}{2}=6 \frac{1}{2}$, the required mixed number. Ans. $\frac{17}{4}=4 \frac{1}{4} . \quad$ Ans. $\quad \frac{69}{16}=4 \frac{5}{16} . \quad$ Ans. $\quad \frac{16}{8}=2 . \quad$ Ans. $\quad \frac{67}{64}=$ $1 \frac{3}{64}$. Ans.
(37) In division of fractions, invert the divisor (or, in other words, turn it upside down) and proceed as in multiplication.
(a) $35 \div \frac{5}{16}=\frac{35}{1} \times \frac{16}{5}=\frac{35 \times 16}{1 \times 5}=\frac{560}{5}=112 . \quad$ Ans.
(b) $\frac{9}{16} \div 3=\frac{9}{16} \div \frac{3}{1}=\frac{9}{16} \times \frac{1}{3}=\frac{9 \times 1}{16 \times 3}=\frac{9}{48}=\frac{3}{16}$. Ans.
(c) $\frac{17}{2} \div 9=\frac{17}{2} \div \frac{9}{1}=\frac{17}{2} \times \frac{1}{9}=\frac{17 \times 1}{2 \times 9}=\frac{17}{18}$. Ans.
(d) $\frac{113}{64} \div \frac{7}{16}=\frac{113}{64} \times \frac{16}{7}=\frac{113 \times 16}{64 \times 7}=\frac{1,808}{448}=\frac{452}{112}=$ 113 $\frac{113}{28)} 113\left(4 \frac{1}{112}\right.$. Ans.
(c) $15 \frac{3}{4} \div 4 \frac{3}{8}=$? Before proceeding with the division, reduce both of the mixed numbers to improper fractions. Thus, $15 \frac{3}{4}=\frac{(15 \times 4)+3}{4}=\frac{60+3}{4}=\frac{63}{4}$, and $4 \frac{3}{8}=\frac{(4 \times 8)+3}{8}=$ $\frac{32+3}{8}=\frac{35}{8}$. The problem is now $\frac{63}{4} \div \frac{35}{8}=$? As before, invert the divisor and multiply; $\frac{63}{4} \div \frac{35}{8}=\frac{63}{4} \times \frac{8}{35}=\frac{63 \times 8}{4 \times 35}=$ $\frac{204}{140}=\frac{252}{60}=\frac{126}{35}=\frac{18}{5}$.

$$
\left.\frac{18}{5}\right) 18\left(3 \frac{3}{5}\right. \text { Ans. }
$$

(38)

$$
\frac{1}{8}+\frac{2}{8}+\frac{5}{8}=\frac{1+2+5}{8}=\frac{8}{8}=1 . \quad \text { Ans. }
$$

When the denominators of the fractions to be added are alike, we know that the units are divided into the same number of parts (in this case cighths); we, therefore, add the mumerators of the fractions to find the number of parts (eighths) taken or considered, thereby obtaining $\frac{8}{8}$ or 1 as the sum.
(39) When the denominators are not alike we know that the units are divided into unequal parts, so before adding them we must find a common denominator for the denominators of all the fractions. Reduce the fractions to fractions having this common denominator, add the numerators and write the sum over the common denominator.

In this case, the least common denominator, or the least number that will contain all the denominators, is 16 ; hence, we must reduce all these fractions to sixteenths and then add their numerators.
$\frac{1}{4}+\frac{3}{8}+\frac{5}{16}=$? To reduce the fraction $\frac{1}{4}$ to a fraction having 16 for a denominator, we must multiply both terms
of the fraction by some number which will make the denominator 16. This number evidently is 4 , hence, $\frac{1}{4} \times 4=\frac{4}{16}$.

Similarly, both terms of the fraction $\frac{3}{8}$ must be multiplied by 2 to make the denominator 16 , and we have $\frac{3}{8} \times 2=\frac{6}{2}=\frac{6}{16}$. The fractions now have a common denominator 16 ; hence, we find their sum by adding the numerators and placing their sum over the common denominator, thus: $\frac{4}{16}+\frac{6}{16}+\frac{5}{16}=$ $\frac{4+6+5}{16}=\frac{15}{16} . \quad$ Ans.
(40) When mixed numbers and whole numbers are to be added, add the fractional parts of the mixed numbers separately, and if the resulting fraction is an improper fraction, reduce it to a whole or mixed number. Next, add all the whole numbers, including the one obtained from the addition of the fractional parts, and annex to their sum the fraction of the mixed number obtained from reducing the improper fraction.
$42+31 \frac{5}{8}+9 \frac{7}{16}=?$ Reducing $\frac{5}{8}$ to a fraction having a denominator of 16 , we have $\frac{5}{8} \times \underset{2}{2}=\frac{10}{16}$. Adding the two fractional parts of the mixed numbers we have $\frac{10}{16}+\frac{7}{16}=$ $\frac{10+7}{16}=\frac{17}{16}=1 \frac{1}{16}$.

The problem now becomes $42+31+9+1 \frac{1}{16}=$?

42
31
9 $1 \frac{1}{16}$ $83^{\frac{1}{6}}$ Ans. as their sum.
(41) $29 \frac{3}{4}+50 \frac{5}{8}+41+69 \frac{3}{16}=$? $\quad \frac{3}{4}=\frac{3}{4} \times \frac{4}{4}=\frac{12}{16}$.
$\frac{5}{8}=\frac{5}{8} \times \frac{2}{2}=\frac{10}{16} . \quad \frac{12}{16}+\frac{10}{16}+\frac{3}{16}=\frac{12+10+3}{16}=\frac{25}{16}=1 \frac{9}{16}$
The problem now becomes $29+50+41+69+1 \frac{9}{16}=$?
29 square inches.
50 square inches.
41 square inches.
69 square inches.
$1 \frac{9}{16}$ square inches.
$190 \frac{9}{16}$ square inches. Ans.
(42) (a) $\frac{7}{\frac{3}{16}}=7 \div \frac{3}{16}=7 \times \frac{16}{3}=\frac{7 \times 16}{3}=\frac{112}{3}=37 \frac{1}{3}$. Ans.

The line between 7 and $\frac{3}{16}$ means that 7 is to be divided by $\frac{3}{16}$.
(b) $\frac{\frac{15}{32}}{\frac{5}{8}}=\frac{15}{32} \div \frac{5}{8}=\frac{15}{32} \times \frac{8}{5}=\frac{3}{\frac{15}{32} \times \frac{8}{4}}=\frac{3}{4} . \quad$ Ans.
(c) $\frac{\frac{4+3}{2+6}}{5}=\frac{7}{8}=\frac{7}{8 \times 5}=\frac{7}{40} . \quad$ (See Art. 131.) Ans.
(43) $\frac{7}{8}=$ value of the fraction, and $28=$ the numerator. We find that 4 multiplied by $7=28$, so multiplying 8 , the denominator of the fraction, by 4 , we have 32 for the required denominator, and $\frac{28}{32}=\frac{7}{8}$. Hence, 32 is the required denominator. Ans.
(44) (a) $\frac{7}{8}-\frac{7}{16}=$? When the denominators of fractions are not alike it is evident that the units are divided into unequal parts, therefore, before subtracting, reduce the
fractions to fractions having a common denominator. Then, subtract the numerators, and place the remainder over the common denominator.

$$
\frac{7}{8} \times \frac{2}{2}=\frac{14}{16} . \quad \frac{14}{16}-\frac{7}{16}=\frac{14-7}{16}=\frac{7}{16} . \quad \text { Ans. }
$$

(b) $13-7 \frac{7}{16}=$? This problem may be solved in two ways:

First: $13=12 \frac{16}{16}$, since $\frac{16}{16}=1$, and $12 \frac{16}{16}=12+\frac{16}{16}=$ $12+1=13$.
$12 \frac{16}{16}$ We can now subtract the whole numbers sepa$7 \frac{7}{16}$ rately, and the fractions separately, and obtain $12-7$ $\overline{5_{\frac{9}{16}}}=5$ and $\frac{16}{16}-\frac{7}{16}=\frac{16-7}{16}=\frac{9}{16} . \quad 5+\frac{9}{16}=5 \frac{9}{16} . \quad$ Ans.

Second: By reducing both numbers to improper fractions having a denominator of 16 .
$13=\frac{13}{1}=\frac{13 \times 16}{1} \times 16=\frac{208}{16} . \quad 7 \frac{7}{16}=\frac{(7 \times 16)+7}{16}=\frac{112+7}{16}=$ $\frac{119}{16}$.

Subtracting, we have $\frac{208}{16}-\frac{119}{16}=\frac{208-119}{16}=\frac{89}{16}$ and $\left.\frac{89}{16}=16\right) 89\left(5 \frac{9}{16} \quad\right.$ the same result that was obtained by the 80 the fractions of the two mixed numbers to fractions having a common denominator. Doing this we have $\frac{9}{16}=\frac{9 \times 2}{16 \times 2}=\frac{18}{32}$. We can now subtract the whole numbers and fractions separately, and have $312-229=83$ and $\frac{18}{32}-\frac{5}{32}=\frac{18-5}{32}=\frac{13}{32}$.
$312 \frac{1}{3} \frac{8}{2}$
$\frac{229 \frac{5}{32}}{83 \frac{13}{3} \frac{5}{2}} \quad 83+\frac{13}{32}=83 \frac{13}{32} . \quad$ Ans.
(45) The man evidently traveled $85 \frac{5}{12}+78 \frac{9}{15}+125 \frac{17}{35}$ miles.

Adding the fractions separately in this case,
$\frac{5}{12}+\frac{9}{15}+\frac{17}{35}=\frac{5}{12}+\frac{3}{5}+\frac{17}{35}=\frac{175+252+204}{420}=\frac{631}{420}=1 \frac{211}{420}$.
Adding the whole numbers and the mixed number 85
representing the sum of the fractions, the sum is 78 $289 \frac{211}{420}$ miles. Ans.

To find the least common denominator, we have $\quad \frac{1 \frac{211}{426}}{289 \frac{211}{420}}$

$$
\begin{aligned}
& 5) \begin{array}{l}
12,5,35 \\
7 \\
\frac{12,1, \quad 7}{12,1, \quad 1} \\
12
\end{array} \text { or } 5 \times 7 \times 12=420 \text {. }
\end{aligned}
$$

(46)

$$
\begin{array}{ll}
\text { 6) } & \begin{array}{ll}
573 \frac{4}{5} \text { tons. } & \frac{4}{5}=\frac{32}{40} \\
216 \frac{5}{8} \text { tons. } & \frac{5}{8}=\frac{25}{40} \\
\frac{7}{7} & \frac{7}{40}=\text { difference. }
\end{array} \text { diffcrence } 357 \frac{7}{40} \text { tons. Ans. }
\end{array}
$$

(47) Reducing $9 \frac{1}{4}$ to an improper fraction, it becomes $\frac{37}{4}$. Multiplying $\frac{37}{4}$ by $\frac{3}{8}, \frac{37}{4} \times \frac{3}{8}=\frac{111}{32}=3 \frac{15}{32}$ dollars. Ans
(48) Referring to Arts. 114 and 116,
$\frac{2}{3}$ of $\frac{3}{4}$ of $\frac{7}{11}$ of $\frac{19}{20}$ of 11 multiplied by $\frac{7}{8}$ of $\frac{5}{6}$ of $45=$ 3 15 $\frac{2 \times \neq 7 \times 19 \times 11 \times 7 \times 5 \times 45}{3 \times 4 \times 11 \times 20 \times 1 \times 8 \times 6 \times 1}=\frac{7 \times 19 \times 7 \times 5 \times 3}{4 \times 4 \times 8}=\frac{13,965}{128}=$ $109 \frac{13}{128} . \quad$ Ans.
(49) $\frac{3}{4}$ of $16=\frac{3}{4} \times \frac{4}{16}=12 . \quad 12 \div \frac{2}{3}=\frac{12}{1} \times \frac{3}{2}=18$. Ans.
(50) $211 \frac{1}{4} \times 1 \frac{7}{8}=\frac{845}{4} \times \frac{15}{8}$, reducing the mixed numbers
to improper fractions. $\frac{845}{4} \times \frac{15}{8}=\frac{12,675}{32}$ cents $=$ amount paid for the lead. The number of pounds sold is evidently 2,535
$\frac{12,675}{32} \div 2 \frac{1}{2}=\frac{12,675}{32} \times \frac{2}{5}=\frac{2,535}{16}=158 \frac{7}{16}$ pounds. The amount remaining is $211 \frac{1}{4}-158 \frac{7}{16}=\frac{845}{4}-\frac{2,535}{16}=\frac{3,380}{16}-$ $\frac{2,535}{16}=\frac{845}{16}=52 \frac{13}{16}$ pounds. Ans.
(51) $\cdot 0 \frac{8}{8}=$ Eight hundredths.

tenths. hundredths. ten-thousandths.
$93.0101=$ Ninety-three, and one hundred one ten-thousandths

In reading decimals, read the number just as you would if there were no ciphers before it. Then count from the decimal point towards the right, beginning with tenths, to as many places as there are figures, and the name of the last figure must be annexed to the previous reading of the figures to give the decimal reading. Thus, in the first example above, the simple reading of the figure is cigllt, and the name of its position in the decimal scale is hundredths, so that the decimal reading is eight hundredths. Similarly, the figures in the fourth example are ordinarily read twenty-seren; the name of the position of the figure γ in the decimal scale is millionths, giving, therefore, the decimal reading as twenty-seven millionths.

If there should be a whole number before the decimal point, read it as you would read any whole number, and read the decimal as you would if the whole number were not there; or, read the whole number and then say, "and" so many hundredths, thousandths, or whatever it may be, as "ninety-three, and one hundred one ten thousandths."
(52) See Art. 139.
(53) See Art. 153.
(54) See Art. 160.
(55) A fraction is one or more of the equal parts of a unit, and is expressed by a numerator and a denominator, while a decimal trastion is a number of tenths, Iundredths, thousandths, etc., of a unit, and is expressed by placing a period (.), called a decimal point, to the left of the figures of the number, and omitting the denominator.
(56) See Art. 165.
(57) To reduce the fraction $\frac{1}{2}$ to a decimal, we annex one cipher to the numerator, which makes it 1.0. Dividing 1.0 , the numerator, by 2 , the denominator, gives a quotient of .5 , the decimal point being placed before the one figure of the quotient, or .5 , since only one cipher was annexed to the numerator. Ans.

$\left.\frac{7}{8}\right) 7.000$		
$\frac{.875}{}$	Ans.	$\left.\frac{5}{32}\right) 5.00000(.15625$
Ans.	32	

Since . $65=\frac{65}{100}$, then, $\frac{65}{100} \quad 180$

(58) (a) This example, written in the form of a fraction, means that the numerator $(32.5+.29+1.5)$ is to be divided by the denominator $(4.7+9)$. The operation is as follows:

$$
\begin{aligned}
& \frac{32.5+.29+1.5}{47+9}=\text { ? } \\
& 32.5 \\
& +\quad .29 \\
& +1.5 \\
& \text { 13.7) } \overline{34.29000}(2.5029 \text { Ans. }
\end{aligned}
$$

(b) Here again the problem is to divide the numerator, which is ($1.283 \times \overline{8+5}$), by the denominator, which is $\approx .63$. The operation is as follows:

$$
\begin{aligned}
& \frac{1.283 \times \overline{8+5}}{2.63}=? \overline{8+5}=13 . \\
& 1.283 \\
& \begin{array}{r}
13 \\
\times \quad 1849
\end{array} \\
& 1283 \\
& 2.63) \overline{16.679000}(6.3418 \text { Ans. } \\
& \frac{1578}{899} \\
& 480 \\
& \frac{789}{1100} \\
& \frac{263}{2170} \\
& \frac{1052}{480} \\
& \begin{array}{r}
2104 \\
66
\end{array} \\
& \text { (c) } \\
& 589 \\
& +\frac{27}{616} \\
& 25 \\
& +\frac{39}{64} \\
& \begin{array}{r}
163 \\
\quad 8 \\
\hline 155
\end{array} \\
& \times \frac{616}{930} \\
& 155 \\
& 64) \frac{930}{95480.000(1491.875} \\
& \frac{64}{314} \\
& \frac{256}{588} \\
& \frac{576}{120} \\
& \begin{array}{l}
64 \\
560
\end{array} \\
& \frac{512}{480} \\
& \begin{array}{r}
448 \\
320
\end{array} \\
& 320
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } \frac{\overline{40.6+7.1} \times(3.029-1.8 .4)}{6.27+8.53-8.01}=\text { ? } \\
& \begin{array}{rr}
40.6 & 3.029 \\
+\quad \begin{array}{r}
7.1 \\
47.7
\end{array} & 1.874 \\
\hline 1.155
\end{array} \\
& \begin{array}{r}
6.27 \\
+\quad 8.53 \\
\hline 14.80 \\
-8.01 \\
\hline 6.79
\end{array} \\
& \begin{array}{r}
47.7 \\
\hline 8085
\end{array} \\
& 8085 \\
& 4620 \\
& 6.79) 55.093500(8.1139 . \text { Ans } \\
& 5432 \\
& 6 \text { decimal places in } \\
& \text { the dividend }-2 \text { deci- } \\
& \text { mal places in the divi- } \\
& \text { sor }=4 \text { decimal places } \\
& \text { to be pointed off in } \\
& \text { the quotient. } \\
& 773 \\
& \frac{679}{945} \\
& \frac{679}{2660} \\
& \frac{2037}{6230} \\
& 6111 \\
& 119
\end{aligned}
$$

(59) $\quad .875=\frac{875}{1,000}=\frac{175}{200}=\frac{7}{8}$ of a foot.

1 foot $=12$ inches.
3

$$
\frac{7}{8} \text { of } 1 \text { foot }=\frac{7}{8} \times \frac{12}{1}=\frac{21}{2}=10 \frac{1}{2} \text { inches. Ans. }
$$

(60) 12 inches $=1$ foot.

$$
\frac{3}{16} \text { of an inch }=\frac{3}{16} \div 12=\frac{3}{16} \times \frac{1}{1 \cdot 2}=\frac{1}{64} \text { of a foor. }
$$

Point off 6 decimal places in the quotient, since we annexed six ciphers to the dividend, the divisor containing no decimal places; hence, $6-0=6$ places to be pointed off.
$\left.\frac{1}{64}\right)$

$1.000000(.015625$ Ans.
$-\frac{360}{320}$
$\frac{400}{384}$
$\frac{160}{128}$
320
320

(61) If 1 cubic inch of water weighs .03617 of a pound, the weight of 1,500 cubic inches will be $.03617 \times 1,500=$ 54.255 lb .

(62) 7\%.6 feet of fencing at $\$.50$ a foot would cost

$$
\begin{aligned}
& 72.6 \times .50, \text { or } \$ 36.30 \text {. } \\
& \frac{.50}{\$ 36.300}
\end{aligned}
$$

If: by selling a carload of coal at a profit of $\$ 1.65$ per ton, I make $\$ 36.30$, then there must be as many tons of coal in the car as 1.65 is contained times in 36.30 , or 22 tons.

$$
\begin{aligned}
& \text { 1.65) } \begin{array}{l}
36.30(22 \text { tons. Ans. } \\
\quad \begin{array}{l}
330 \\
330 \\
330
\end{array}
\end{array} \text {. } \\
&
\end{aligned}
$$

(63)
(64)

$$
\begin{aligned}
& \text { 231) 17892.00000 (77.45454, or } 77.4545 \text { to } \\
& \frac{1617}{1722} \\
& \frac{1617}{1050} \\
& \frac{924}{1260} \\
& 1155 \\
& 1050 \\
& 924 \\
& 1260 \\
& \frac{1155}{1050}
\end{aligned}
$$

(64)	37.13 2	. 0952
	74.26× 74	$3.1416 \times 19 \times 19 \times 350$
	$33,000 \times 1 \% \times 4$	
	$1,000 \quad 2$	

$$
\frac{37.13 \times .0952 \times 19 \times 19 \times 350}{1,000}=\frac{446,618.947600}{1,000}=
$$

446.619 to three decimal places. Ans.

37.13	19	361	3.534776
. 0952	19	350	126350
7426	171	18050	176738800
18565	19	1083	10604328
33417	361	126350	21208656
3.534776			\%069552
			$3534 \% 66$

(65) See Art. 174. Applying rule in Art. 175,
(a) $.7928 \times \frac{64}{64}=\frac{50.7342}{6 t}=\frac{51}{64}$. Ans.
(b) $.1416 \times \frac{32}{32}=\frac{4.5312}{32}=\frac{5}{32}$. Ans.
(c) $.47915 \times \frac{16}{16}=\frac{7.6664}{16}=\frac{8}{16}=\frac{1}{2} . \quad$ Ans.
(66) In subtraction of decimals, (a) 709.6300 place the decimal points directly under each other, and proceed as in the subtraction of whole numbers,
.8514
708.7786 Ans. placing the decimal point in the remainder directly under the decimal points above.

In the above example we proceed as follows: We can not subtract 4 ten-thousandths from 0 ten-thousandths, and, as there are no thousandths, we take 1 hundredth from the three hundredths. 1 hundrcdth $=10$ thousandths $=100$ ten-thousandths. 4 ten-thousandths from 100 ten-thousandths leaves 96 ten-thousandths. 96 ten-thousandths $=9$ thousandths +6 ten-thousandths. Write the 6 ten-thousandths in the tenthousandths place in the remainder. The next figure in the subtrahend is 1 thousandth. This must be subtracted from the 9 thousandths which is a part of the 1 hundredth taken previously from the 3 hundredths. Subtracting, we have 1 thousandth from 9 thousandths leaves 8 thousandths, the 8 being written in its place in the remainder. Next we have to subtract 5 hundredths from 2 hundredths (1 hundredth having been taken from the 3 hundredths makes it but 2 hundredths now). Since we can not do this, we take 1 tenth from 6 tenths. 1 tenth ($=10$ hundredths) +2 hundredths $=12$ hundredths. 5 hundredths from 12 hundredths leaves 7 hundredths. Write the 7 in the hundredths place in the remainder. Next we have to subtract 8 tenths from 5 tenths (5 tenths now, because 1 tenth was taken from the 6 tenths). Since this can not be done, we take 1 unit from the 9 units. $1 \mathrm{mnit}=10$ tcuths; 10 tenths +5 tenths $=15$ tenths, and 8 tenths from 15 tenths leaves 7 tenths. Write the 7 in the tenths place in the remainder. In the minuend we now have 708 units (one unit having been taken away) and 0 units in the subtrahend. 0 units from 708 units leaves 708 units; hence, we write 708 in the remainder.
(b) $\quad 81.963$
$\frac{1.700}{80.263}$ Ans.
(c) 18.00
(d) 1.000
.001
.999 Ans.
(e) $872.1-(.8721+.008)=$? In this problem we are to subtract $(.8 \% 21+.008)$ from .8721 $8 \% 2.1$. First perform the operation as indi- .008 cated by the sign between the decimals .8801 sum . enclosed by the parenthesis.

Subtracting the sum (obtained by adding the decimals
872.1000
.8801
871.2199 Ans. enclosed within the parenthesis) from the number 872.1 (as required by the minus sign before the parenthesis), we obtain the required remainder.
(f) $(5.028+.0073)-(6.70 \pm-2.38)=$? First perform the operations as indicated by the signs between the numbers enclosed by the parentheses. The first parenthesis shows that

$$
5.0280
$$

5.028 and .0073 are to be added. This $\overline{5.0353} \mathrm{sum}$. gives 5.0353 as their sum.
6.704
2.380

The second parenthesis shows that

4.324 difference.

 2.38 is to be subtracted from 6.\%04.The sign between the parentheses indicates that the

$$
5.0353
$$

4.324 quantities obtained by performing the above operations, are to be subtracted, namely, that 4.324 is to be subtracted from 5.0353. Performing this operation we obtain .7113 as the final result.
(67) In subtracting a decimal from a fraction, or subtracting a fraction from a decimal, either reduce the fraction to a decimal before subtracting, or reduce the decimal to a fraction and then subtract.
(a) $\frac{7}{8}-.80 \%=? \frac{7}{8}$ reduced to a decimal becomes

$$
\frac{\overline{8}}{8} \frac{7.000}{.875}
$$

.875
$\frac{.807}{.068}$ Ans.
Subtracting .807 from .875 the remainder is . Ofs, as shown.
(b) $.8 \% 5-\frac{3}{8}=$? Reducing .875 to a fraction we have $.875=\frac{875}{1,000}=\frac{175}{200}=\frac{35}{40}=\frac{7}{8}$; hence, $\frac{7}{8}-\frac{3}{8}=\frac{7-3}{8}=\frac{4}{8}=\frac{1}{2}$. Ans.
Or, by reducing $\frac{3}{8}$ to a decimal, $\frac{3}{8) \frac{3.000}{.375}}$ and then subtracting, we obtain $.875-.375=.5=\frac{5}{10}=\frac{.875}{.375}$ $\frac{1}{2}$, the same answer as above. $\quad \frac{.37}{.500}$ Ans.
(c) $\left(\frac{5}{32}+.435\right)-\left(\frac{21}{100}-.07\right)=$? We first perform the operations as indicated by the signs between the numbers enclosed by the parentheses. Reduce $\frac{5}{32}$ to a decimal and we obtain $\frac{5}{32}=.15625$ (see example 7).

Adding .15625 and $435, \quad .15625 \quad \frac{21}{100}=.21$; subtracting, $\quad .21$

$$
\text { sum } \frac{.435}{.59125} \quad \text { difference } \frac{.07}{.14}
$$

We are now prepared to perform the . 59125 operation indicated by the minus sign be- .14 tween the parentheses, which is, difference $\overline{.45125}$ Ans.
(d) This problem means that 33 millionths and 17 thousandths are to be added. Also, that 53 hundredths and 274 thousandths are to be added, and the smaller of these sums is to be subtracted from the larger sum. Thus, $(.53+.274)-(.000033+.017)=$?

(68) In addition of decimals the .125
decimal points must be placad directly .7
under each other, so that tenths will .089
come under tonths, luundredths under .4005
hundredths, thousandths under thou- . 9 sandtlis, etc. The addition is then performed as in whole numbers, the decimal point of the sum being placed directly under the decimal points above.

(69)	927.416		($\mathbf{Z O}$)	
	8.274	Ans.		
	372.6			
	62.07938			
	$\overline{1370.36938}$. 017
				. 2
				. 000047
				. $21704 \%=$ Ans.

(71) (a) There are 3 decimal places in the multi$.10 \%$ plicand and 3 in the multiplier; hence, .013 there are $3+3$ or 6 decimal places in

321 10%
.001391 Ans.
(b) 203
2.03
$\overline{609}$
4060
412.09
.203
123627
824180
$\overline{83.65427}$ Ans.
(c) First perform the operations indicated by the signs between the numbers enclosed by the parenthesis, and then perform whatever may be required by the sign before the parenthesis.

Multiply together the numbers 2.7 and 31.85 .
The parenthesis shows that .316 is to be taken from 3.16. $\quad 3.160$
$\frac{.316}{2.844}$
2.844

The product obtained by the first operation is now multiplied by the remainder obtained by performing the operation indicated by the signs within the parenthesis.

$$
31.85
$$

2.7

22295
6370
85.995
85.995
2.844

$$
\overline{343980}
$$

$$
343980
$$

$$
687960
$$

$$
171990
$$

$$
\overline{244.569780} \text { Ans }
$$

(d) $(107.8+6.541-31.96) \times 1.742=$?
107.8

$+\quad$| 6.541 |
| :--- |
| 114.341 |
| $-\quad 31.96$ |
| 82.381 |
| $\times \quad 1.742$ |
| 164762 |
| 329524 |
| 576667 |
| 82381 |
| 143.507702 |\quad Ans.

(72) (a) $\left(\frac{7}{16}-.13\right) \times . \overline{625+\frac{5}{8}}=$?

First perform the operation indicated by the parenthesis.

$$
.4375
$$

$$
.13
$$

Subtracting, we obtain $\overline{.3075}$
The vinculum has the same meaning as the parenthesis; $5-\frac{5}{8} \quad$ hence, we perform the operation indicated $\overline{8}=\overline{8} \lcm{5.000}$ by it. We point off three decimal places, .625 since three ciphers were annexed to the 5.
Adding the terms in- .625
cluded by the vinculum, $\frac{.625}{1.250}$
we obtain
The final operation is to perform the work indicated by the sign between the parenthesis and the vinculum, thus,

$$
\begin{aligned}
& .3075 \\
& 1.25 \\
& \hline 15375 \\
& 6150 \\
& 3075 \\
& \hline .384375 \quad \text { Ans. }
\end{aligned}
$$

(b) $\left(\frac{19}{32} \times .21\right)-\left(.02 \times \frac{3}{16}\right)=$?
$.21=\frac{21}{100} . \quad \frac{19}{32} \times \frac{21}{100}=\frac{399}{3200} . \quad .02=\frac{2}{100} . \quad \frac{2}{100} \times \frac{3}{16}=\frac{6}{1600}=\frac{3}{800}$.
$\frac{3}{800}=\frac{3}{800} \times 4=\frac{12}{3200} . \quad \frac{399}{3200}-\frac{12}{3200}=\frac{399-12}{3200}=\frac{387}{3200}$.

Reducing $\frac{38 \pi}{3200}$ to a decimal, we obtain $\left.\frac{38 \%}{3200}\right) 35 \% .0000000(.1209375$ Ans.
$\frac{3200}{6700}$
6400

30000
$25800 \quad$ Point off seven decimal 12000 places, since seven ciphers $9600 \quad$ were annexed to the divi24000 dend.
(c) $\left(\frac{13}{4}+.013-2.17\right) \times \overline{13 \frac{1}{4}-7 \frac{5}{16}}=$?
$\begin{array}{llc}\left.\frac{13}{4}=\frac{13}{4}\right) \frac{13.00}{3.25} & \begin{array}{l}\text { Point off two decimal } \\ \text { places, since two ciphers } \\ \text { were annexed to the divi- } \\ \text { dend. }\end{array} & +\frac{.013}{3.263} \\ \frac{5}{16} \text { reduced to a decimal is } .3125, \text { since } & \frac{-2.17}{1.093}\end{array}$

$$
\begin{gathered}
\left.\frac{5}{16}\right) 5.00 \\
\frac{48}{20} \\
16
\end{gathered}
$$

Point off four decimal places, since fourciphers were annexed to the dividend.

Then. $\% \frac{5}{16}=7.3125$, and $13 \frac{1}{4}=13.25$, since $\frac{1}{4}=\frac{1}{4} \frac{1.00}{.25}$

$$
\begin{array}{cc}
13.25 & 5.9375 \\
-\quad 7.3125 \\
\hline 5.9375 & \times 1.093 \\
& 5348125 \\
& \frac{593750}{6.4896875}
\end{array}
$$

(73) (a). $875 \div \frac{1}{2}=.875 \div .5\left(\right.$ since $\left.\frac{1}{2}=.5\right)=1.75$. Ans. Another way of solving this is to reduce .875 to its equivalent common fraction and then divide.
$.875=\frac{7}{8}$, since $.875=\frac{875}{1,000}=\frac{175}{200}=\frac{35}{40}=\frac{7}{8} ;$ then, $\frac{7}{8} \div$ $\frac{1}{2}=\frac{7}{8} \times \frac{2}{1}=\frac{7}{4}=1 \frac{3}{4} . \quad$ Since $\left.\frac{3}{4}=\frac{3}{4}\right) 3.00\left(.75, \quad 1 \frac{3}{4}=1.75\right.$, the same answer as above. $\frac{28}{20}$

$$
\underline{20}
$$

(b) $\frac{7}{8} \div .5=\frac{7}{8} \div \frac{1}{2}\left(\right.$ since $\left..5=\frac{1}{2}\right)=\frac{7}{8} \times \frac{2}{1}=\frac{7}{4}=1 \frac{3}{4}$, or
75. Ans.

This can also be solved by reducing $\frac{7}{8}$ to its equivalent decimal and dividing by $.5 ; \frac{7}{8}=.875 ; .875 \div .5=1.75$.
Since there are three decimal places in the dividend and one in the divisor, there are $3-1$, or 2 decimal places in the quotient.
(c) $\frac{.375 \times \frac{1}{4}}{\frac{5}{16}-.125}=? \quad \begin{aligned} & \text { We shall solve this problem by first } \\ & \text { reducing the decimals to their equiva- }\end{aligned}$ lent common fractions.
$.375=\frac{375}{1,000}=\frac{75}{200}=\frac{15}{40}=\frac{3}{8} . \quad \frac{3}{8} \times \frac{1}{4}=\frac{3}{32}$, or the value of the numerator of the fraction.
$.125=\frac{125}{1,000}=\frac{25}{200}=\frac{1}{8} . \quad$ Reducing $\frac{1}{8}$ to sixteenths, we have $\frac{1}{8} \times 2=\frac{2}{16}$. Then, $\frac{5}{16}-\frac{2}{16}=\frac{3}{16}$, or the value of the de-
nominator of the fraction. The problem is now reduced to $\frac{\frac{3}{32}}{\frac{3}{16}}=$? $\frac{\frac{3}{32}}{\frac{3}{16}}=\frac{3}{32} \div \frac{3}{16}=\frac{\beta}{\frac{\beta}{22}} \times \frac{16}{\beta}=\frac{1}{2}$ or .5. Ans.
(74) $\frac{1.25 \times 20 \times 3}{\frac{87+(11 \times 8)}{459+32}}=? \quad \begin{aligned} & \text { In this problem } 1.25 \times 20 \times \\ & 3 \text { constitutes the numerator of } \\ & \text { the complex fraction. }\end{aligned}$
1.25 Multiplying the factors of the numerator $\times \quad 20$ together, we find their product to be 75.
$\times 3$
75
The fraction $\frac{87+(11 \times 8)}{459+32}$ constitutes the denominator of the complex fraction. The value of the numerator of this fraction equals $87+88=175$.

The numerator is combined as though it were written $87+(11 \times 8)$, and its result is
11
$\frac{8}{88}$
+87
+175

The value of the denominator of this fraction is equal to $459+32=491$. The problem then becomes
$\frac{75}{\frac{175}{491}}=\frac{75}{1} \div \frac{175}{491}=\frac{75}{1} \times \frac{491}{175}=\frac{3}{75} \times 4910, \frac{1,473}{7}=210 \frac{3}{7}$. Ans.
(75) 1 plus $.001=1.001$. . 01 plus $.000001=.010001$.

And $1.001-.010001=$

$$
\begin{aligned}
& 1.001 \\
& .010001 \\
& \hline .990999 \text { Ans. }
\end{aligned}
$$

ARITHMETIC.

(QUESTIONS 76-16\%.)
(76) A certain per cent. of a number means so many hundredths of that number.
25% of $8,428 \mathrm{lb}$. means 25 hundredths of $8,428 \mathrm{lb}$. Hence, 25% of $8,428 \mathrm{lb} .=.25 \times 8,428 \mathrm{lb} .=2,107 \mathrm{lb} . \quad$ Ans.
(77) Here $\$ 100$ is the base and $1 \%=.01$ is the rate. Then, $.01 \times \$ 100=\$ 1$. Ans.
(78) $\frac{1}{2} \%$ means one-half of one per cent. Since 1% is $.01, \frac{1}{2} \%$ is .005, for, $\frac{2) .010}{.005}$. And . $005 \times \$ 35,000=\$ 175$.
($\mathbf{7 9}$) Here 50 is the base, 2 is the percentage, and it is required to find the rate. Applying rule, Art. 193,

$$
\begin{aligned}
& \text { rate }=\text { percentage } \div \text { base } ; \\
& \text { rate }=2 \div 50=.04 \text { or } 4 \% . \quad \text { Ans. }
\end{aligned}
$$

(80) By Art. $\mathbf{1 9 3}$, rate $=$ percentage \div base. $*$

As percentage $=10$ and base $=10$, we have rate $=10$ $\div 10=1=100 \%$. Hence, 10 is 100% of 10 . Ans.
(81) (a) Rate $=$ percentage \div by base. Art. 193.

As percentage $=\$ 176.54$ and base $=\$ 2,522$, we have

$$
\begin{gathered}
\text { rate }=176.54 \div 2,522=.07=7 \% . \quad \text { Ans. } \\
2522) \frac{176.54}{.07}
\end{gathered}
$$

[^0](b) Base $=$ percentage \div rate. Art. 192.

As percentage $=16.96$ and rate $=8 \%=.08$, we have

$$
\begin{gathered}
\text { base }=16.96 \div .08=212 . \quad \text { Ans. } \\
.08 \frac{16.96}{212}
\end{gathered}
$$

(c) Amount is the sum of the base and percentage; hence, the percentage $=$ amount minus the base.

Amount $=216.7025$ and base $=213.5$; hence, percentage $=$ $216.7025-213.5=3.2025$.

Rate $=$ percentage \div base. Art. 193.
Therefore, rate $=3.2025 \div 213.5=.015=1 \frac{1}{2} \% . \quad$ Ans.

$$
213.5) 3.2025\left(.015=1 \frac{1}{2} \%\right.
$$

2135
10675
10675
(d) The difference is the remainder found by subtracting the percentage from the base; hence, base - the difference $=$ the percentage. \quad Base $=207$ and difference $=201.825$, hence percentage $=207-201.825=5.175$.
Rate $=$ percentage \div base. Art. 193.
Therefore, rate $=5.175 \div 207=.025=.02 \frac{1}{2}=2 \frac{1}{2} \% . \quad$ Ans.

$$
\begin{aligned}
& \text { 207) } 5.175(.025 \\
& \frac{414}{1035} \\
& 1035
\end{aligned}
$$

(82) In this problem $\$ 5,500$ is the amount, since it equals what he paid for the farm + what he gained; 15% is the rate, and the cost (to be found) is the base. Applying rule, Art. 197,

$$
\begin{aligned}
& \text { base }=\text { amount } \div(1+\text { rate }) ; \text { hence, } \\
& \text { base }=\$ 5,500 \div(1+.15)=\$ 4,782.61 . \quad \text { Ans. }
\end{aligned}
$$

ARITHMETIC.

$$
\begin{aligned}
& 1.15) 5500.0000(4782.61 \\
& \frac{460}{900} \\
& \frac{805}{950} \\
& \frac{920}{300} \\
& \frac{230}{700} \\
& \frac{690}{100} \\
& 115
\end{aligned}
$$

The example can also be solved as follows: $100 \%=$ cost ; if he gained 15%, then $100+15=115 \%=\$ 5,500$, the selling price.

If $115 \%=\$ 5,500,1 \%=\frac{1}{115}$ of $\$ 5,500=\$ 4 \% .8261$, and 100%, or the cost, $=100 \times \$ 47.8261=\$ 4,782.61$. Ans.
(83) 24% of $\$ 950=.24 \times 950=\$ 228$

$$
\begin{aligned}
12 \frac{1}{2} \% \text { of } \$ 950=.125 \times 950 & =118.75 \\
\frac{17 \%}{} \text { of } \$ 950=.17 \times 950 & =\frac{161.50}{53 \frac{1}{2} \% \text { of } \$ 950}
\end{aligned}
$$

The total amount of his yearly expenses, then, is $\$ 508.25$, hence his savings are $\$ 950-\$ 508.25=\$ 441.75$. Ans.

Or, as above, $24 \%+12 \frac{1}{2} \%+17 \%=53 \frac{1}{2} \%$, the total percentage of expenditures; hence, $100 \%-53 \frac{1}{2} \%=46 \frac{1}{2} \%=$ per cent. saved. And $\$ 950 \times .465=\$ 441.75=$ his yearly savings. Ans.
(84) The percentage is 961.38 , and the rate is. $37 \frac{1}{2}$. By Art. 192,

Base $=$ percentage \div rate
$=961.38 \div .375=2,563.68$, the number. Ans.

Another method of solv- . 375) $961.38000(2563.68$ ing is the following:

If $37 \frac{1}{2} \%$ of a number is 961.38 , then $.37 \frac{1}{2}$ times the
number $=961.38$ and the
Mumiver - Jol.vo arru lic

$$
2250
$$ number $=961.38 \div .37 \frac{1}{2}$,

$$
1380
$$

which, as above $=2,563.68$. Ans.

$$
\begin{array}{r}
\frac{750}{2113} \\
\frac{1875}{2388}
\end{array}
$$

$$
1125
$$

2550
2250
3000
3000

(85) Here $\$ 1,125$ is 30% of some number; hence, $\$ 1,125=$ the percentage, $30 \%=$ the rate, and the required number is the base. Applying rule, Art. 192,

$$
\text { Base }=\text { percentage } \div \text { rate }=\$ 1,125 \div .30=\$ 3, \% 50
$$

Since $\$ 3,750$ is $\frac{3}{4}$ of the property, one of the fourths is $\frac{1}{3}$ of $\$ 3,750=\$ 1,250$, and $\frac{4}{4}$ or the entire property, is $4 \times \$ 1,250$ $=\$ 5,000$. Ans.
(86) Here 84,810 is the difference and 35% the rate. By Art. 198,

$$
\begin{aligned}
\text { Base }= & \text { difference } \div(1-\text { rate }) \\
= & \$ 4,810 \div(1-.35)=\$ 4,810 \div .65=\$ 7,400 . \quad \text { Ans. } \\
& .65) 4810.00(7400 \\
& \frac{455}{260} \\
& \frac{260}{00}
\end{aligned}
$$

Solution can also be effected as follows: $100 \%=$ the sum diminished by 35%, then $(1-.35)=.65$, which is $\$ 4,810$.

If $65 \%=84,810,1 \%=\frac{1}{65}$ of $4,810=\$ 74$, and $100 \%=100 \times$ $\$ 74=\$ 7,400$. Ans.
(87) In this example the sales on Monday amounted to $\$ 197.55$, which was $12 \frac{1}{2} \%$ of the sales for the entire week; i. e., we have given the percentage, $\$ 197.55$, and the rate, $12 \frac{1}{2} \%$, and the required number (or the amount of sales for the week) equals the base. By Art. 192,

Base $=$ percentage \div rate $=\$ 197.55 \div .125 ;$
or, $\quad 125) 197.5500(1580.4$ Ans.
$\frac{125}{725}$
$\frac{625}{1005}$
$\frac{1000}{500}$
500
Therefore, base $=\$ 1,580.40$, which also equals the sales for the week.
(88) 16.5 miles $=12 \frac{1}{2} \%$ of the entire length of the road. We wish to find the entire length.
16.5 miles is the percentage, $12 \frac{1}{2} \%$ is the rate, and the entire length will be the base. By Art. $\mathbf{1 9 2}$,

$$
\begin{gathered}
\text { Base }=\text { percentage } \div \text { rate }=16.5 \div .12 \frac{1}{2} \\
.125) 16.500(132 \text { miles. Ans. } \\
\frac{125}{400} \\
\frac{375}{250} \\
\underline{250}
\end{gathered}
$$

(89) Here we have given the difference, or $\$ 35$, and the rate, or 60%, to find the base. We use the rule in Art. 198, Base $=$ difference $\div(1-$ rate $)$ $=\$ 35 \div(1-.60)=\$ 35 \div .40=\$ 8 \% .50$. Ans. .40) 35.000 (87.5
$\frac{320}{300}$

280
200
200
Or, $100 \%=$ whole debt $; 100 \%-60 \%=40 \%=\$ 35$.
If $40 \%=\$ 35$, then $1 \%=\frac{1}{40}$ of $\$ 35=\frac{35}{40}$, and $100 \%=$ $\frac{35}{40} \times 100=\$ 87.50 . \quad$ Ans.
(90) 28 rd. 4 yd. 2 ft .10 in . to inches.

$\times \overline{5 \frac{1}{2}}$
$+\quad \frac{4}{154}$
$\times \overline{158}$ yards
$\times \overline{374}$
$+\quad \frac{2}{476}$ feet
$\times \frac{12}{5712}$
$+\quad 10$
5722 inches. Ans.

Since there are $5 \frac{1}{2}$ yards in one rod, in 28 rods there are $28 \times 5 \frac{1}{2}$ or 154 yards; 154 yards plus 4 yards $=1 \check{2} 8$ yards. There are 3 feet in one yard; therefore, in 158 yards there are 3×158 or 474 feet; 474 feet + 2 feet $=476$ feet. There are 12 inches in one foot, and in 476 feet there are 12×476 or 5,712 inches; 5,712 inches +10 inches $=5,722$ inches. Ans.
(91)
12) 5722 inches.
3) $476+10$ inches.
$5 \frac{1}{2} \lcm{158}+2$ feet.
$28+4$ yards.
Ans. $=28 \mathrm{rd} .4 \mathrm{yd} .2 \mathrm{ft} .10 \mathrm{in}$.

Explanation.-There are 12 inches in 1 foot; hence, in 5,722 inches there are as many feet as 12 is contained times in 5,722 inches, or 476 ft . and 10 inches remaining. Write these 10 inches as a remainder. There are 3 feet in 1 yard: hence, in $4 \% 6$ feet there are as many yards as 3 is contained times in 476 feet, or 158 yards and 2 feet remaining. There are $5 \frac{1}{2}$ yards in one rod; hence, in 158 yards there are 28 rods and 4 yards remaining. Then, in 5,722 inches there are 28 rd .4 yd .2 ft .10 in .
(92)

$$
\begin{aligned}
& 5 \text { weeks } 3.5 \text { days. } \\
& \times \frac{7}{35} \text { days in } 5 \text { weeks. } \\
& +\frac{3.5}{38.5} \text { days. }
\end{aligned}
$$

Then, we find how many seconds there are in 38.5 days.

38.5 days	
$\times \quad 24$	hours in one day.
1540	
770	
924.0	hours in 38.5 days.
$\times 60$	minutes in one hour.
55440	minutes in 38.5 days.
$\times 60$	seconds in one minute.

(93) Since there are 24 gr . in 1 pwt ., in $13, \% 50 \mathrm{gr}$. there are as many pennyweights as 24 is contained times in $13, \% 50$, or 572 pwt . and 22 gr . remaining. Since there are 20 pwt. in 1 oz ., in $5 \% \mathrm{pwt}$. there are as many ounces as 20 is contained times in 522 , or 28 oz . and 12 pwt. remaining.

Since there are 12 oz . in 1 lb . (Troy), in 28 oz . there are as many pounds as 12 is contained times in 28 , or 2 lb . and 4 oz. remaining. We now have the pounds and ounces required by the problem; therefore, in $13,750 \mathrm{gr}$. there are 2 lb .4 oz .12 pwt .22 gr.

$$
\begin{aligned}
& 24 \frac{13750}{20} \mathrm{gr} . \\
& \begin{array}{c}
\frac{572}{2} \mathrm{pwt} .+22 \mathrm{gr} . \\
2 \\
\mathrm{oz} . \\
\mathrm{lb} .
\end{array}+4 \mathrm{pwt.}
\end{aligned}
$$

Ans. $=2 \mathrm{lb} .4 \mathrm{oz} .12 \mathrm{pwt} .22 \mathrm{gr}$.
(94)

$$
100 \frac{4763254}{80 \lcm{47632}}+54 \mathrm{li} .
$$

Ans. $=595 \mathrm{mi} .32 \mathrm{ch} .54 \mathrm{li}$.
Explanation.-There are 100 li . in one chain; hence, in $4,763,254$ li. there are as many chains as 100 is contained times in $4,763,254 \mathrm{li}$, or $47,632 \mathrm{ch}$. and 54 li . remaining. Write the 54 li. as a remainder. There are 80 ch . in one mile; hence, in $47,632 \mathrm{ch}$. there are as many miles as 80 is contained times in $47,632 \mathrm{ch}$., or 595 miles and 32 ch . remaining.

Then, in $4,763,254 \mathrm{li}$. there are 595 mi .32 ch .54 li .
(95)

$$
\begin{aligned}
& 1728 \frac{764325}{27} \mathrm{cu} . \mathrm{in} . \\
& \frac{442}{16}+549 \mathrm{cu} . \mathrm{cud} .+10 \mathrm{cu} . \mathrm{ft} .
\end{aligned}
$$

Ans. $=16 \mathrm{cu} . \mathrm{yd} .10 \mathrm{cu} . \mathrm{ft} .549 \mathrm{cu} . \mathrm{in}$.
Explanation.-There are $1,728 \mathrm{cu}$. in. in one cubic foot; hence, in $\% 64,3 \geqslant 5 \mathrm{cu}$. in. there are as many cubic feet as 1,728 is contained times in 764,325 , or 442 cu . ft . and 549 cu . in. remaining. Write the 549 cu . in. as a remainder. There are $27 \mathrm{cu} . \mathrm{ft}$. in one cubic yard; hence, in $442 \mathrm{cu} . \mathrm{ft}$. there are as many cubic yards as 27 is contained times in $442 \mathrm{cu} . \mathrm{ft}$., or $16 \mathrm{cu} . \mathrm{yd}$. and $10 \mathrm{cu} . \mathrm{ft}$. remaining. Then, in $764,325 \mathrm{cu}$. in. there are $16 \mathrm{cu} . \mathrm{yd} .10 \mathrm{cu} . \mathrm{ft} .549 \mathrm{cu} . \mathrm{in}$.
(96) We must arrange the different terms in columns, taking care to have like denominations in the same column.
rd. yd. ft. in.

	2	2	2	3	
		4	1	9	
			2	7	
				$2 \frac{1}{2}$	0
		7			
	or	3	2	2	1

Explanation.-We begin to add at the right-hand column. $7+9+3=19 \mathrm{in}$. .; as 12 in . make one foot, $19 \mathrm{in} .=$ 1 ft . and 7 in . Place the 7 in . in the inches column, and reserve the 1 ft . to add to the next column.

1 (reserved) $+2+1+2=6 \mathrm{ft}$. Since 3 ft . make 1 yard, 6 ft . $=2 \mathrm{yd}$. and 0 ft . remaining. Place the cipher in the column of feet and reserve the 2 yd . for the next column.
2 (reserved) $+4+2=8$ yd. Since $5 \frac{1}{2} \mathrm{yd} .=1$ rod, $8 \mathrm{yd} .=$ 1 rd. and $2 \frac{1}{2}$ yd. Place $2 \frac{1}{2} \mathrm{yd}$. in the yards column, and reserve 1 rd. for the next column; 1 (reserved) $+2=3$ rd.

\[

\]

(97) We write the compound numbers so that the units of the same denomination shall stand in the same column. Beginning to add with the lowest denomination, we find that the sum of the gills is $1+2+$

gal.	qt.	pt.	gi.
3	3	1	3
6	0	1	2
4	0	0	1
	8	5	0

(98) Reduce the grains, pennyweights, and ounces to higher denominations.
24) 240 gr .
10 pwt.
$20 \lcm{\frac{125}{6}} \mathrm{pwt}$ oz. 5 pwt.
$12 \underset{40}{51 \mathrm{~b} .2} 2 \mathrm{oz}$.

Then, $3 \mathrm{lb} .+4 \mathrm{lb} .2 \mathrm{oz} .+6 \mathrm{oz} .5 \mathrm{pwt} .+10 \mathrm{pwt} .=$

lb.	oz.	pwt.	
3			
4	2		
	6	5	
		10	
7 lb.	8 oz.	15	
	pwt.	Ans.	

(99) Since "seconds" is the lowest denomination in this problem, we find their sum first, which is $11+29+25+$ $30+12$, or 107 seconds. Since

deg.	min.	sec.
11	16	12
13	19	30
20	0	25
0	26	29
10	17	11
55°	19^{\prime}	$47^{\prime \prime}$

(100) Since "inches" is the lowest denomination in this problem, we find their sum first, which is $11+8+6$, or 25 inches. Since there are 12 inches in 1 foot, in 25 inches there are as many feet as 12 is contained times in 25 , or 2 feet and 1 inch remaining. Place the 1 inch under the inches column, and reserve the 2 feet to add to the column
of feet. The sum of the feet is 2 feet (rescrved) $+2+1=$ 5 fect. Since there are 3 rd. yd. ft. in. fect in 1 yard, in 5 feet

130	5	1	6
215	0	2	8
304	4	0	11
650	$4 \frac{1}{2}$	2	1

mi. there are as many yards as 3 is contained times in 5 feet, or 1 yard and 2 feet remaining. Place the 2 feet under the column of feet, and reserve the 1 yard to add to the column of yards. The sum of the yards is 1 yard (reserved) $+4+5=10$ yards. Since there are $5 \frac{1}{2}$ yards in 1 rod, in 10 yards there are as many rods as $5 \frac{1}{2}$ is contained times in 10 , or 1 rod and $4 \frac{1}{2}$ yards remaining. Place the $4 \frac{1}{2}$ yards under the column of yards, and reserve the 1 rod for the column of rods. The sum of the rods is 1 (reserved) $+304+215+130=650$ rods. Place 650 rods under the column of rods. Therefore, the sum is 650 rd . $4 \frac{1}{2} \mathrm{yd} .2 \mathrm{ft} .1 \mathrm{in}$. Or, since $\frac{1}{2}$ a yard $=1 \mathrm{ft} .6 \mathrm{in}$., and since there are 320 rods in 1 mile; the sum may be expressed as 2 mi .10 rd .5 yd .0 ft .7 in . Ans.
(101) Since "square links" is the lowest denomination in this problem, we find their sum first, which is $21+23$ $+16+18+23+21$, or

A.	sq. ch.	sq. rd.	sq. li.
21	67	3	21
28	78	2	23
47	6	2	18
56	59	2	16
25	38	3	23
46	75	2	21
255	3	14	122

contained times in 323 square chains, or 32 acres and 3 square chains remaining. Place 3 square chains under the column of square chains, and reserve the 32 acres to add to the column of acres. The sum of the acres is 32 acres (reserved) + $46+25+56+4 \hat{2}+28+21$, or 255 acres. Place 255 acres under the column of acres. Therefore, the sum is 255 A. 3 sq. ch. 14 sq. rd. 122 sq . li. Ans.
(102) Before we can subtract 300 ft . from 20 rd . : yd. 2 ft . and 9 in ., we must reduce the 300 ft . to higher denominations.

Since there are 3 feet in 1 yard, in 300 feet there are as many yards as 3 is contained times in 300 , or 100 yards. There are $5 \frac{1}{2}$ yards in 1 rod, hence in 100 yards there are as many rods as $\frac{1}{2}$ or $\frac{11}{2}$ is contained times in $100=18 \frac{2}{11}$ rods.

$$
\begin{aligned}
&\left.100 \div \frac{11}{2}=100 \times \frac{2}{11}=\frac{100 \times 2}{11}=\frac{200}{11}\right) 200\left(18 \frac{2}{11} \mathrm{rd} .\right. \\
& \frac{11}{90} \\
& 8 \mathrm{~S}
\end{aligned}
$$

Since there are $5 \frac{1}{2}$ or $\frac{11}{2}$ yards in 1 rod, in $\frac{\mathscr{2}}{11}$ rods there are $\frac{2}{11} \times \frac{11}{2}$, or one yard, so we find that 300 feet equals 18 rods and 1 yard. The problem now is as follows: From 20 rd .2 yd .2 ft . and 9 in . take 18 rd . and 1 yd .

We place the smaller number under the larger one, so that units of the same denomination fall in the same column. Beginning with the lowest

rd.	yd.	ft.	in.
20	$\underset{\sim}{2}$	2	9
18	1	0	0
2	1	2	9

yards, we have 1 yard remaining, and 18 rods from 20 rods leaves 2 rods. Therefore, the difference is 2 rd .1 yd .2 ft . 9 in. Ans.

(103)	A.	sq. rd.	sq. yd.	
	$\mathbf{1 1 4}$	80	25	
	75	$\% 0$	30	
	39	9	$\mathbf{2 5} \frac{1}{4}$	Ans.

Explanation.-Place the subtrahend under the minuend so that like denominations are under each other. Then begin at the right with the lowest denomination. We can not subtract 30 from 25 , so we take one square rod ($=30 \frac{1}{4}$ square yards) from 80 square rods, leaving 79 square rods; adding $30 \frac{1}{4}$ square yards to 25 square yards, we have $55 \frac{1}{4}$ square yards; subtracting 30 from $55 \frac{1}{4}$ square yards leaves $25 \frac{1}{4}$ square yards; we now subtract 70 square rods from 79 square rods, which leaves 9 square rods; next, we subtract 75 acres from 114 acres, which leaves 39 acres, which we place under the column of acres.
(104) If 10 gal . 2 qt . and 1 pt . of molasses are sold from a hogshead at one time, and 26 gal .3 qt . are sold at another time, then the total amount of molasses sold equals 10 gal. 2 qt. 1 pt. plus 26 gal. 3 qt.

Since the pint is the lowest denomination, we add the pints first, which equal $0+1$, or 1 pint. We can not reduce 1 pint to any higher denomina-

gal.	qt.	pt.
10	2	1
26	3	0
37 gal.	1 qt.	1 pt.

gallons. The number of gallons equals 1 (reserved) +26 +10 , or 37 gallons.

If 37 gal. 1 qt . and 1 pt . are sold from a hogshead of molasses (63 gal .), there remains the difference between 63 gal. and 37 gal. 1 qt. 1 pt., or 25 gal. 2 qt . and 1 pt .

63 gal. is the same as 62 gal. 3 qt. 2 pt., since 1 gal. equals 4 qt . and $1 \mathrm{qt} .=2 \mathrm{pt}$.

Beginning with the lowest denomination, 1 pt. from the

gal.	qt.	pt.	$2 \mathrm{pt}$. pint. One from 2 pints leaves 1 62
3	2	pint. Onom 3 quarts	

(105) If a person were born June 19, 1850, in order to find how old he would be on Aug. 3, 1892, subtract the earlier date from the later date.

On August 3, 7 mo . and 3 da. have elapsed from the beginning of the year, and on June 19,5 mo. and 19 da.

Beginning with the lowest denomination, we find that 19 days can not be taken from 3 days, so we take 1 month from 7 months. The 1 month which we took equals 30 days, for in all cases 30 days are allowed to

yr.	mo.	da.
1892	$\%$	3
1850	5	19
$4 \gtrsim$	1	14

column, we have $7-1$, or 6 months remaining; subtracting 5 months from 6 months, we have 1 month remaining. 1850 from 1892 leaves 42 years. Therefore, he would be 42 years 1 month and 14 days old. Ans.
(106) If a note given Aug. 5, 1890, were paid June 3, 1892 , in order to find the length of time it was due, subtract the earlier date from the later date.

Beginning with the lowest denomination, we find that 5 can not be subtracted from 3, so we take a unit from the next

yr.	mo.	da.	higher denomination, which is
1892	5	3	months. The 1 month which we
1890	7	5	take equals 30 days. Adding the 30 days to the 3 days, we have 33 days.
1	9	28	days from 33 days leaves 28 days.

(107) Write the number of the year, month, day, hour, and minute of the earlier date under the year, month, day, hour, and minute of the later date, and subtract.

22 minutes before 8 o'clock is the same as 38 minutes after 7 o'clock. 7 o'clock P. M. is 19 hours from the beginning of the day, as there are 12 hours in the morning and 7 in the afternoon. December is 11 months from the beginning of the year.

10 o'clock A. M. is 10 hours from the beginning of the day. July is 6 months from the beginning of the year. The minuend would be the later date, or 1,888 years, 11 months, 11 days, 19 hours, and 38 minutes.

The subtrahend would be the earlier date, or 1,883 years, 6 months, 3 days, 10 hours, and 16 minutes.

Subtracting, we have

yr.	mo.	da.	hr.	min.
1888	11	11	19	38
1883	6	3	10	16
5	5	8	9	22

or, 5 yr. 5 mo. 8 da. 9 hr . and 22 min . Ans.
16 minutes subtracted from 38 minutes leaves 22 minutes; 10 hours from 19 hours leaves 9 hours; 3 days from 11 days leaves 8 days; 6 months subtracted from 11 months leaves 5 months; 1,883 from 1,888 leaves 5 years.
(108) In multiplication of denominate numbers, we piace the multiplier under the lowest denomination of the multiplicand, as

17 ft.	3 in.
$8 \% 9 \mathrm{ft}$.	9 in.

and begin at the right to multiply. $51 \times 3=153$ in. As there are 12 inches in 1 foot, in 153 in . there are as many feet as 12 is contained times in $15:$, or 12 feet and 9 inches remaining. Place the 9 inches under the inches, and reserve the 12 feet. $51 \times 1 \% \mathrm{ft} .=86 \% \mathrm{ft} . \quad 867 \mathrm{ft} .+12 \mathrm{ft}$. (reserved) $=8.9 \mathrm{ft}$.

8:9 feet can be reduced to higher denominations by dividing by 3 feet to find the number of yards, and by $5 \frac{1}{2}$ yards to find the number of rods.

$$
\begin{aligned}
& 3) 8 \% 9 \mathrm{ft.} 9 \mathrm{in} . \\
& 5 . 5 \longdiv { \frac { 2 9 3 } { 5 3 } } \mathrm { yd } . \\
& \text { rd. } 1 \frac{1}{2} \mathrm{yd} .
\end{aligned}
$$

Then, answer $=53 \mathrm{rd} .1 \frac{1}{2} \mathrm{yd} .0 \mathrm{ft} .9 \mathrm{in}$.; or 53 rd .1 yd. 2 ft. 3 in.

(109)	qt.	pt.	gi.
	3	1	3
			4.7
	18.2	0	. 1
or	18	0 pt .	1.7 gi .
or, 4 gal		0 pt .	1. $\sim \mathrm{gli}$

Place the multiplier under the lowest denomination of the multiplicand, and proceed to multiply. $4 . \tilde{6} \times 3 \mathrm{gi} .=14.1 \mathrm{gi}$. As 4 gi. $=1$ pt., there are as many pints in 14.1 gi . as 4 is contained times in $14.1=3.5 \mathrm{pt}$. and .1 gi . over. Place .1 under gills and carry the 3.5 pt . forward. $4.7 \times 1 \mathrm{pt} .=4.7$ pt. $; 4.7+3.5 \mathrm{pt} .=8.2 \mathrm{pt}$. As $2 \mathrm{pt} .=1 \mathrm{qt} .$, there are as many quarts in 8.2 pt. as 2 is contained times in $8.2=4.1$ qt. and no pints over. Place a cipher under the pints, and carry the 4.1 qt . to the next product. $4 . \pi \times 3 \mathrm{qt} .=14.1$; $14.1+4.1=18.2 \mathrm{qt}$. The answer now is $18.2 \mathrm{qt} .0 \mathrm{pt} . \mathrm{I}^{2}$
gi. Reducing the fractional part of a quart, we have 18 qt . $0 \mathrm{pt} .1 .7 \mathrm{gi} .(.2 \mathrm{qt} .=.2 \times 8=1.6 \mathrm{gi} . ; 1.6+.1 \mathrm{gi} .=1.7$ gi. $)$. Then, we can reduce 18 qt . to gallons ($18 \div 4=4 \mathrm{gal}$. and 2 qt.$)=4$ gal. $2 \mathrm{qt} .1 .{ }^{\text {r }}$ gi. Ans.

The answer may be cbtained in another and much easier way by reducing all to gills, multiplying by 4.7 , and then changing back to quarts and pints. Thus, 3 qt .

$\times 2 \mathrm{pt}$.	$3 \mathrm{qt} .1 \mathrm{pt} .3 \mathrm{gi} .=31 \mathrm{gi}$.
6 pt .	$31 \mathrm{gi} . \times 4.7=145.7 \mathrm{gi}$.
+ 1 pt .	4) 145.7 gi .
7 pt .	2) $36 \mathrm{pt} .+1.7 \mathrm{gi}$.
$\times 4 \mathrm{gi}$.	$18 \mathrm{qt}+0 \mathrm{pt}$.
	Ans. $=18 \mathrm{qt} 1.7 gi.$. ;
+ 3 gi .	or, 4 gal. $2 \mathrm{qt}$.1.7 gi.
31 gi .	

(110) (3 lb. 10 oz .13 pwt. 12 gr.$) \times 1.5=$?

3 lb .10 oz .13 pwt .12 gr .
$\times \frac{12}{36} \mathrm{oz}$. $+\frac{10}{46} \mathrm{oz}$. $\times \frac{20}{920}$ pwt. $+\frac{13}{933 \mathrm{pwt}}$
$\frac{\times 24}{22392 \mathrm{gr} .}$

$$
\frac{+12}{22404 \mathrm{gr} .}
$$

$22.404 \mathrm{gr} . \times 1.5=33,606 \mathrm{gr}$.

$$
\begin{aligned}
& \text { 24)33606 gr. } \\
& 20 \lcm{1+00} \mathrm{pwt} .+6 \mathrm{gr} \text {. } \\
& \text { 12) } 70 \text { oz. }+{ }^{0} \text { pwt. } \\
& 5 \mathrm{lb} .+10 \mathrm{oz} \text {. }
\end{aligned}
$$

Since there are 24 gr . in 1 pwt., in $33,606 \mathrm{gr}$. there are as many pwt. as 24 is contained times in 33,606 , or 1,400 pwt. and 6 gr . remaining. This gives us the number of grains in the answer. We now reduce 1,400 pwt. to higher denominations. Since there are 20 pwt. in 1 oz ., in $1,400 \mathrm{pwt}$. there are as many ounces as 20 is contained times in 1,400 , or $\% 0 \mathrm{oz}$. and 0 pwt. remaining; therefore, there are 0 pwt. in the answer. We reduce $\tilde{\gamma} 0 \mathrm{oz}$. to higher denominations. Since there are 12 oz . in 1 lb ., in $\% 0 \mathrm{oz}$. there are as many pounds as 12 is contained times in $\% 0$, or 5 lb . and 10 oz . remaining. We can not reduce 5 lb . to any higher denominations. Therefore, our answer is 5 lb .10 oz . 6 gr .

Another but more complicated way of working this problem is as follows:

lb.	oz.	pwt.	gr.
3	10	13	12
			1.5
4.5	15	19.5	18
or, 4	21	19	30
or, 5	10	0	6 Ans.

To get rid of the decimal in the pounds, reduce .5 of a pound to ounces. Since $1 \mathrm{lb} .=12 \mathrm{oz} ., .5$ of a pound equals $.5 \mathrm{lb} . \times 12=6 \mathrm{oz}$. $6 \mathrm{oz} .+15 \mathrm{oz} .=21 \mathrm{oz} . \mathrm{We}$ now have 4 lb . 21 oz .19 .5 pwt. and 18 gr., but we still have a decimal in the column of pwt., so we reduce . 5 pwt. to grains to get rid of it. Since $1 \mathrm{pwt} .=24 \mathrm{gr}$., $.5 \mathrm{pwt} .=.5 \mathrm{pwt}$. $\times 24=12 \mathrm{gr} . \quad 12 \mathrm{gr} .+18 \mathrm{gr} .=30 \mathrm{gr}$. We now have 4 lb. 21 oz .19 pwt . and 30 gr . Since there are 24 gr . in 1 pwt ., in 30 gr . there is 1 pwt . and 6 gr . remaining. Place 6 gr . under the column of grains and add 1 pwt. to the pwt. column. Adding 1 pwt., we have $19+1=20 \mathrm{pwt}$. Since there are 20 pwt. in 1 oz ., we have 1 oz . and 0 pwt. remaining. Write the 0 pwt. under the pwt. column, and reserve the 1 oz . to the oz. column. $21 \mathrm{oz} .+1 \mathrm{oz} .=22 \mathrm{oz}$. Since there are 12 oz . in 1 lb ., in 22 oz . there is 1 lb . and 10 oz . remaining. Write the 10 oz . under the ounce coiumn, and reserve the 1 lb . to add to the lb . column. $4 \mathrm{lb} .+1 \mathrm{lb}$. $($ reserved $)=5 \mathrm{lb}$. Hence, the answer equals 5 lb .10 oz . 6 gr .
(111) If each barrel of apples contains 2 bu .3 pk . and 6 qt ., then 9 bbl . will contain $9 \times(2 \mathrm{bu} .3 \mathrm{pk} .6 \mathrm{qt}$.).

We write the multiplier under the lowest denomination of the multiplicand, which is quarts in this problem. 9 times 6 qt. equals 54 qt . There are 8 qt . in 1
bu. pk. qt. pk., and in 54 qt . there are as many pecks $2 \quad 3 \quad 6$ as 8 is contained times in 54 , or 6 pk . and $9 \quad 6 \mathrm{qt}$. We write the 6 qt . under the col-
182754 umn of quarts, and reserve the 6 pk . to or, $26 \quad 1 \quad 6$ add to the product of the pecks. 9 times 3 pk . equals 27 pk . 27 pk . plus the 6 pk . reserved equals 33 pk . Since there are 4 pk . in 1 bu., in 33 pk . there are as many bushels as 4 is contained times in 33, or S bu. and 1 pk . remaining. We write the 1 pk . under the column of pecks, and reserve the 8 bu. for the product of the bushels. 9 times 2 bu. plus the 8 bu. reserved equals 26 bu . Therefore, we find that 9 bbl . contain 26 bu .1 pk . 6 qt. of apples. Ans.
(112) (7 T. 15 cwt. 10.5 lb.$) \times 1.7=$? When the multiplier is a decimal, instead of multiplying the denominate numbers as in the case when the multiplier is a whole number, it is much easier to reduce the denominate numbers to the lowest denomination given; then, multiply that result by the decimal, and, lastly, reduce the product to higher denominations. Although the correct answer can be obtained by working examples involving decimals in the manner as in the last example, it is much more complicated than this method. $\quad 7 \mathrm{~T} .15 \mathrm{cwt} .10 .5 \mathrm{lb}$.

$$
\begin{aligned}
& \times \frac{20}{140} \mathrm{cwt} \\
& \frac{15}{155} \mathrm{cwt} \\
& \times \frac{100}{15500} \mathrm{lb} . \\
& \frac{10.5}{15510.5 \mathrm{lb} .}
\end{aligned}
$$

$15,510.5 \mathrm{lb} . \times 1.7=26,367.85 \mathrm{lb}$.

There are 100 lb . in 1 cwt ., and in $26,367.85 \mathrm{lb}$. there are as many cwt. as 100 is contained times in $26,367.85$, which equals 263 cwt . and $6 \% .85 \mathrm{lb}$. 100) $2636 \% .85 \mathrm{lb}$. remaining. Since we have $2 0 \longdiv { 2 6 3 \mathrm { cwt } . } + 6 7 . 8 5 \mathrm { lb }$. the number of pounds for 13 T. +3 cwt . our answer, we reduce 263 cwt. to higher denominations. There are 20 cwt . in 1 ton, and in 263 cwt . there are as many tons as 20 is contained times in 263 , or 13 tons and 3 cwt. remaining. Since we cannot reduce 13 tons any higher, our answer is 13 T. 3 cwt. 67.85 lb . Or, since .85 $\mathrm{lb} .=.85 \mathrm{lb} . \times 16=13.6 \mathrm{oz}$. , the answer may be written 13 T. 3 cwt .67 lb .13 .6 oz.

We begin with the highest denomination, and divide each term in succession by \%.
7 is contained in 358 A. 51 times and 1 A. remaining. We write the 51 A . under the 358 A . and reduce the remaining 1 A. to square rods $=160$ sq. rd. ; 160 sq. rd. + the 57 sq. rd. in the dividend $=217$ sq. rd. 7 is contained in 217 sq. rd. 31 times and 0 sq. rd. remaining. 7 is not contained in 6 sq. $y d$. , so we write 0 under the sq. y. and reduce 6 sq. yd . to square feet. 9 sq. ft. $\times 6=54$ sq. ft. $\quad 54$ sq. ft. +2 sq. ft . in the dividend $=56 \mathrm{sq} . \mathrm{ft} . \quad \%$ is contained in $\tilde{5} 6 \mathrm{sq} . \mathrm{ft} .8$ times. We write 8 under the 2 sq. ft . in the dividend.
(114) $\quad 12 \begin{array}{lllll}282 \mathrm{bu} . & 3 \mathrm{pk} . & 1 \mathrm{qt.} & 1 \mathrm{pt} . \\ 23 \mathrm{bu} . & 2 \mathrm{pk} . & 2 \mathrm{qt.} & \frac{1}{4} \mathrm{pt} . & \text { Ans. }\end{array}$

12 is contained in 282 bu. 23 times and 6 bu. remaining. We write 23 bu . under the 282 bu . in the dividend, and reduce the remaining 6 bu. to pecks $=24 \mathrm{pk}$. + the 3 pk . in the dividend $=27 \mathrm{pk} . \quad 12$ is contained in 27 pk .2 times and 3 pk. remaining. We write 2 pk . under the 3 pk . in the dividend, and reduce the remaining 3 pk . to quarts. 3 pk . $=24 \mathrm{qt} . ; 24 \mathrm{qt} .+$ the 1 qt . in the dividend $=25 \mathrm{qt} . \quad 12$ is contained in 25 qt . 2 times and 1 qt . remaining. We write

2 qt . under the 1 qt . in the dividend, and reduce 1 qt . to pints $=2 \mathrm{pt} .+$ the 1 pt. in the dividend $=3 \mathrm{pt} . \quad 3 \div 12=$ $\frac{3}{12}$ or $\frac{1}{4} \mathrm{pt}$.
(115) We must first reduce 23 miles to feet before we can divide by 30 feet. 1 mi . contains $5,280 \mathrm{ft}$; hence, 23 mi. contain $5,280 \times 23=121,440 \mathrm{ft}$.
$121,440 \mathrm{ft} . \div 30 \mathrm{ft} .=4,048$ rails for 1 side of the track.
The number of rails for 2 sides of the track $=2 \times 4,048$, or 8,096 rails. Ans.
(116) In this case where both dividend and divisor are compound, reduce each to the lowest denomination mentioned in either and then divide as in simple numbers.

47) 11421 (243

| $\frac{94}{202}$ |
| :--- | ---: |
| $\frac{188}{141}$ |
| 141 |$\quad 11,421 \mathrm{qt} . \div 47 \mathrm{qt} .=243$ boxes \quad Ans.

(117) We must first reduce 16 square miles to acres.

In 1 sq . mi. there are 640 A ., and in $16 \mathrm{sq} . \mathrm{mi}$. there are $16 \times 640 \mathrm{~A} .=10,240 \mathrm{~A}$.
62) 10240 A .

165 A. 25 sq. rd. 24 sq.yd. 3 sq.ft. $80+$ sq. in. Ans.

62 is contained in $10,240 \mathrm{~A} .165$ times and 10 A . remaining. We write 165 A . under the $10,240 \mathrm{~A}$. in the dividend and reduce 10 A . to sq. rd. In 1 A . there are 160 sq. rd., and in 10 A . there are $10 \times 160=1,600$ sq. rd. 62 is contained in 1,600 sq. rd. 25 times and 50 sq. rd. remaining. We write 25 sq. rd. in the quotient and reduce 50 sq. rd. to sq. yd. In 1 sq. rd. there are $30 \frac{1}{4}$ sq. yd., and in 50 sq. rd. there are 50 times $30 \frac{1}{4}$ sq. yd. $=1,512 \frac{1}{2}$ sq. yd. 62 is contained in $1,512 \frac{1}{2}$ sq. yd. 24 times and $24 \frac{1}{2}$ sq. yd. remaining. In 1 sq. yd. there are 9 sq. ft., and in $24 \frac{1}{2}$ sq. yd. there are $24 \frac{1}{2} \times 9=220 \frac{1}{2}$ sq. ft. 62 is contained in $220 \frac{1}{2}$ sq.ft. 3 times and $34 \frac{1}{2}$ sq. ft. remaining. We write 3 sq. ft. in the quotient and reduce $34 \frac{1}{2}$ sq. ft. to sq. in. In 1 sq. ft . there are 144 sq. in., and in $34 \frac{1}{2}$ sq. ft. there are $34 \frac{1}{2} \times 144=4,968$ sq. in. 62 is contained in 4,968 sq. in. 80 times and 8 sq. in. remaining.

We write 80 sq. in. in the quotient.
It should be borne in mind that it is only for the purpose of illustrating the method that this problem is carried out to square inches. It is not customary to reduce any lower than square rods in calculating the area of a farm.
(118) To square a number, we must multiply the number by itself once, that is, use the number twice as a factor. Thus, the second power of 108 is $108 \times 108=11,664$. Ans.

$$
\begin{aligned}
& 108 \\
& 108 \\
& \hline 864 \\
& 108 \\
& \hline 11664
\end{aligned}
$$

$\frac{181.25}{90625}$

$$
36250
$$

18125
145000
18125
3ヵ851.5625
181.25

1642578125
$65 \% 031250$
328515625
2628125000
328515625
5954345.703125
(120)
27.61
27.61

2761
16566
19327
5522
762.3121
27.61

7623121
45738726
53361847
15246242
21047.437081
27.61

21047437081
126284622486
147332059567
42094874162
581119.73780641

The third power of 181.25 equals the number obtained by using 181.25 as a factor three times. Thus, the third power of 181.25 is $181.25 \times 181.25 \times$ $181.25=5,954,345.703125$. Ans.

Since there are 2 decimal places in the multiplier, and 2 in the multiplicand, there are 2 $\dagger-2=4$ decimal places in the first product.

Since there are 4 decimal places in the multiplicand, and 2 in the multiplier, there are 4 $+2=6$ decimal places in the final product.

The fourth power of $2 \% .61$ is the number obtained by using 27.61 as a factor four times. Thus, the fourth power of 27.61 is $\quad 2 \% .61 \times 2 \% .61 \times 27.61 \times$ $2 \% .61=581,119.73780641$. Ans.

Since there are 2 decimal places in the multiplier and 2 in the multiplicand, there are 2 $+2=4$ decimal places in the first product.

Since there are 4 decimal places in the multiplicand and 2 in the multiplier, there are 4 $+\therefore=6$ decimal places in the second product.

Since there are 6 decimal places in the multiplicand and 2 in the multiplier, there are 6 $+2=8$ decimal places in the final product.
(121) (a) $106^{2}=106 \times 106=11,236$. Ans.

106
106
636

$$
\frac{1060}{11236}
$$

(b) $\left(182 \frac{1}{8}\right)^{2}=182 \frac{1}{8} \times 182 \frac{1}{8}=33,169.515625$. Ans.

1	182.125	
$\frac{1}{8}=8 \lcm{1.000}$	182.125	
.125	910625	Since there are 3 decimal places in the
	364250	multiplier and 3 in the
	182125	multiplicand, there are
	364250	$3+3=6$ decimal
	1457000	places in the product.
	182125	places in the product.

182125
33169.515625
(c) $.005^{2}=.005 \times .005=.000025 . \quad$ Ans.
.005
.005
.000025 Ans.

Since there are 3 decimal places in the multiplicand and 3 in the multiplier, there are $3+3=6$ decimal places in the product.
(d) $.0063^{2}=.0063 \times .0063=.00003969$. Ans.
.0063
.0063 Since there are 4 decimal places in the multiplicand and 4 in the multiplier, there are $4+4=8$ decimal places in the product.
.00003969 Ans.
(e) $10.06^{2}=10.06 \times 10.06=101.2036 . \quad$ Ans.

$$
10.06
$$

$$
\frac{10.06}{6036}
$$

100600
101.2036

Since there are 2 decimal places in the multiplicand and 2 in the multiplier, there are $\underset{\sim}{2}+\mathfrak{\sim}=4$ decimal places in the product.
(122) (a) $753^{3}=753 \times 753 \times 753=426,957,77 \%$. An! 753
753
2259
3765
5271

$$
567009
$$

$$
753
$$

1701027
2835045
$\frac{3969063}{426957777}$
(b) $98 \% .4^{3}=987.4 \times 987.4 \times 98 \% .4=962,674,279.624$. Ans. 987.4
987.4 Since there is 1 decimal place 39496 in the multiplicand and 1 in the $69118 \quad$ multiplier, there are $1+1=2$ 78992 decimal places in the first $\frac{88866}{944958 \%} \quad$ product.

Since there are 2 decimal
places in the multiplicand and one in the multiplier, there are $2+1=3$ decimal places in the final product.

$$
\frac{877462884}{962674279.624}
$$

(c) $.005^{3}=.005 \times .005 \times .005=.000000125 . \quad$ Ans.

Since there are 3 decimal places in the multiplicand and 3 in the multiplier, there are $3+3=6$ decimal places in the 3 in the multiplier, there are $3+3=6$ decimal places in the
first product; but, as there are only $\mathfrak{2}$

389983504 682471132
779967008
.005 .005 ciphers to make the six decimal places. .000025 Since there are six decimal places in .005 the multiplicand and 3 in the multi$\overline{.000000125}$ plier, there are $6+3=9$ decimal places in the final product. In this case we prefix six ciphers to form the nine decimal places.

$$
\begin{aligned}
& \text { (d) } .4044^{3}=.4044 \times .4044 \times .4044=.066135317184 \quad \text { Ans. } \\
& \text { Since there are } 4 \text { decimal } \\
& \text { places in the multiplicand and } \\
& 4 \text { in the multiplier, there are } \\
& 4+4=8 \text { decimal places in the } \\
& \text { first product. } \\
& \text { Since there are } 8 \text { decimal } \\
& \text { places in the second multipli- } \\
& \text { cand and } \pm \text { in the multiplier, } \\
& \text { there are } 8+4=12 \text { decimal } \\
& \text { places in the final product ; but, } \\
& \text { as there are only } 11 \text { figures in } \\
& \text { the product, we prefix } 1 \text { cipher } \\
& \text { to make } 12 \text { decimal places. } \\
& \text { (123) } 2^{b}=2 \times 2 \times 2 \times 2 \times 2=32 \text {. Ans. } \\
& \text { (124) } 3^{4}=3 \times 3 \times 3 \times 3=81 \text {. Ans. } \\
& \text { (125) (a) } 67.85^{2}=67.85 \times 67.85=4,603.6225 \text {. Ans. } \\
& 4603.6225 \text { Ans. } \\
& \text { (b) } 967,845^{2}=967,845 \times 967,845=936,723,944,025 . \quad \text { Ans }
\end{aligned}
$$

(c) A fraction may be raised to any power by raising both numerator and denominator to the required term.

Thus, $\left(\frac{3}{8}\right)^{2}=\frac{3}{8} \times \frac{3}{8}=\frac{3 \times 3}{8 \times 8}=\frac{9}{64} . \quad$ Ans.
(d) $\left(\frac{1}{4}\right)^{2}=\frac{1}{4} \times \frac{1}{4}=\frac{1 \times 1}{4 \times 4}=\frac{1}{16}$. Ans.
(126) (a) $5^{10}=5 \times 5 \times 5=$ 9,765,625. Ans.
(b) $9^{3}=9 \times 9 \times 9 \times 9 \times 9=59,049 . \quad$ Ans.

5	9
5	9
25	81
5	9
125	729
5	9
625	6561
5	9
$\overline{3125}$	$\overline{59049}$
5	
15625	
5	
$\overline{78125}$	
5	
$\overline{390625}$	
5	
$\overline{1953125}$	
5	
9765625	

(127) (a) $1.2^{4}=1.2 \times 1.2 \times 1.2 \times 1.2=2.0736$. Ans.

Since there is 1 decimal place in the multiplicand and 1 in the multiplier, we must point off $1+1=2$ decimal places in the first product.

Since there are 2 decimal places in the second multipli. cand and 1 in the multiplier, we must point off $2+1=3$ decimal places in the second product.

Since there are 3 decimal places in the third multiplicand and 1 in the multiplier, we must point off $3+1=4$ decimal places in the final product.

1.2
$\frac{1.2}{24}$
$\frac{12}{1.44}$
$\frac{1.2}{288}$
$\frac{144}{1.728}$
1.2
3456
1728
2.0736

(b) $11^{\circ}=11 \times 11 \times 11 \times 11 \times 11 \times 11=1,{ }^{7} 71,561$. Ans

11
11
121
11
1331
11
14641
11
161051
11
1771561

(c) $1^{\prime}=1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1=1$. Ans.
(d) $.01^{4}=.01 \times .01 \times .01 \times .01=.00000001$. Ans.

Since there are 2 decimal places in the multiplicand and 2 in the multiplier, we must point off $2+2=4$ decimal places in the first product; but, as there
.01 is only 1 figure in the product, we
.01 prefix 3 ciphers to make the 4 necessary
.0001
.01
.000001
.01
.00000001 decimal places.

Since there are 4 decimal places in the second multiplicand and 2 in the multiplier, we must point off $4+2=6$ decimal places in the second product. It is necessary to prefix 5 ciphers to make 6 decimal places.
Since there are 6 decimal places in the third multiplicand and 2 in the multiplier, we must point off $6+2=8$ decimal places in the product. It is necessary to prefix 7 ciphers to make 8 decimal places in the final product.
(c) $.1^{s}=.1 \times .1 \times .1 \times .1 \times .1=.00001$. Ans.

Since there is 1 decimal place in the multiplicand and l in the multiplier, we must point off $1+1=2$ decimal places in the first product. It is necessary to
. 1
.1 Since there are 2 decimal places in the
.1 we must point off $2+1=3$ decimal places .001
. 1
.0001 third multiplicand and 1 in the multiplier, we
.1 must point off $3+1=4$ decimal places in .00001 the third product. It is necessary to prefix 3 ciphers to this product.
Since there are 4 decimal places in the fourth multiplicand and 1 in the multiplier, we must point off $4+1$ or 5 decimal places in the final product. It is necessary to prefix 4 ciphers to this product.
(128) $(a) .0133^{3}=.0133 \times .0133 \times .0133=.00000235263 \%$.

Ans.
Since there are 4 decimal places in the multiplicand and 4 in the multiplier, we must point off $4+4=8$ decimal places in the product; but, as

.0133
.0133
399
399
.00017689
.0133
53067
53067
17689
.000002352637

Since there are 8 decimal places in the multiplicand and 4 in the multiplier, we must point off $8+$ $4=12$ decimal places in the product; but, as there are only 7 figures in the product, we prefix 5 ciphers to make the 12 necessary decimal places in the final product.
(b) $301.011^{3}=301.011 \times 301.011 \times 301.011=$
$27,273,890.942264331$. Ans.

(c) $\left(\frac{1}{8}\right)^{3}=\frac{1}{8} \times \frac{1}{8} \times \frac{1}{8}=\frac{1 \times 1 \times 1}{8 \times 8 \times 8}=\frac{1}{512}$. Ans.
(d) To find any power of a mixed number, first reduce it to an improper fraction, and then multiply the numerators together for the numerator of the answer, and multiply the denominators together for the denominator of the answer.

$$
\begin{aligned}
& \left(3 \frac{3}{4}\right)^{3}=\frac{15}{4} \times \frac{15}{4} \times \frac{15}{4}=\frac{15 \times 15 \times 15}{4 \times 4 \times 4}=\frac{3,375}{64}=52.734+. \\
& \text { Ans. } \\
& 3 \frac{3}{4}=\frac{3 \times 4+3}{4}=\frac{12+3}{4}=\frac{15}{4} . \\
& 1564) 3375.000(52.734+ \\
& \frac{15}{75} \quad \frac{320}{175} \\
& \frac{15}{225} \quad \frac{128}{470}
\end{aligned}
$$

Since three ciphers were annexed to the dividend, three decimal places must be pointed off in the quotient. It is easy to see that the next figure will be a 3 ; hence, write the sign + , as shown.
(129) Evolution is the reverse of involution. In involution we find the power of a number by multiplying the number by itself one or more times, while in evolution we find the number or root which was multiplied by itself one or more times to make the power.
(130) (a)
$\frac{1}{20}$
$\frac{8}{28}$
$\frac{8}{360}$
$\frac{6}{366}$
$\frac{6}{3720}$
$\frac{7}{3727}$
$\frac{7}{3734}$
$\sqrt{3^{\prime} 4 s^{\prime} 67^{\prime} 84.40^{\prime} 10}=186 \% .29 \div$ Ans.
1
248
224
2467
2196
2个184
26089
$3734) 1095.000(.293$ or .29+
$\frac{7468}{34820}$
$\frac{33606}{12140}$
Explanation.-Applying the short method described in Art. 272, we extract the root by the regular method to four figures, since there are six figures in the answer, and $6 \div 2+1=4$. The last remainder is 1095 , and the last trial divisor (with the cipher omitted) is $3: 34$. Dividing 1095 by 3734 , as shown, the quotient is $.293+$, or $.29+$ using two figures. Annexing to the root, gives $1,507.29+$. Ans.

Explanation.-Beginning at the decimal point we point off the whole number into periods of two figures each, proceeding from right to left; also, point off the decimal into periods of two figures each, proceeding from left to right. The largest number whose square is contained in the first period, 9 , is 3 ; hence, 3 is the first figure of the root. Place 3 at the left, as shown at (a), and multiply it by the first figure in the root, or 3 . The result is 9 . Write 9 under the first period, 9 , as at (b), subtract, and there is no remainder. Bring down the next period, which is 00 , as shown at (c). Add the root already found to the 3 at (a), obtaining 6 , and annex a cipher to this 6 , thus making it 60 , which is the trial divisor, as shown at (d). Divide the dividend (c) by the trial divisor, and obtain 0 as the next figure in the root. Write 0 in the root, as shown, and also add it to the trial divisor, 60, and annex a cipher, thereby making the next trial divisor 600. Bring down the next period, 00, annex it to the dividend already obtained, and divide it by the trial divisor. 600 is contained in 0000,0 times, so we place a nother cipher
in the root. Write 0 in the root, as shown, and also add it to the trial divisor, 600 , and annex a cipher, thereby making the next trial divisor 6,000 . Bring down the next period, 99 . The trial divisor 6,000 is contained in 000099,0 times, so we place 0 as the next figure in the root, as shown, and also add it to the trial divisor 6,000 , and annex a cipher, thereby making the next trial divisor 60,000. Bring down the next period, 40, and annex it to the dividend already obtained to form the new dividend, 00009940, and divide it by the trial divisor 60,000 . 60,000 is contained in 00009940,0 times, so we place another cipher in the root, as shown, and also add it to the trial divisor 60,000 , and annex one cipher, thereby making the next trial divisor 600,000 . Bring down the next period, 09 , and annex it to the dividend already obtained to form the new dividend, 0000994009 , and divide it by the trial divisor 600,000 . 600,000 is contained in 0000994009 once, so we place 1 as the next figure in the root, and also add it to the trial divisor 600,000 , thereby making the complete divisor 600,001 . Multiply the complete divisor, 600,001 , by 1 , the sixth figure in the root, and subtract the result obtained from the dividend. The remainder is 394,008 , to which we annex the next period, 00 , to form the next new dividend, or $39,400,800$. Add the sixth figure of the root, or 1 , to the divisor 600,001 , and annex a cipher, thus obtaining $6,000,020$ as the next trial divisor. Dividing $39,400,500$ by $6,000,020$, we find 6 to be the next figure of the root. Adding this last figure, 6 , to the trial divisor, we obtain $6,000,026$ for our next complete divisor, which, multiplied by the last figure of the root, or 6 , gives $36,000,156$, which write under $39,400,800$ and subtract. Since there is a remainder, it is clearly evident that the given power is not a perfect square, so we place + after the root. Since the next figure is 5 , the answer is $3,000.01 \%$ -

In this problem there are scven periods-four in the whole number and three in the decimal-hence, there will be seven figures in the root, four figures constituting the whole number, and three figures the decimal of the root. Hence, $\sqrt{9,000,099.4009}=3,000.017$ -
(c) 3

Pointing off periods, we find that the first period is com. posed of ciphers; hence, the first figure of the root will be a cipher. No further explanation is necessary, since this problem is solved in a manner exactly similar to the problem solved in Art. 264. Since there are three decimal periods in the power, there will be three decimal figures in the root.
(b)

2	$\sqrt{7^{\prime} 30^{\prime} 08.04}=270.2 \quad$ Ans
$\frac{2}{40}$	$\frac{4}{330}$
$\frac{7}{47}$	$\frac{329}{10804}$
$\frac{7}{5400}$	10804
$\frac{2}{5402}$	

74
ARITHMETIC.
(c)

9
9
180
184
4
1880
8
1888
8
1896

Having found the first three figures, we find the fourth by division, as shown.
(d) $\sqrt{.09}=.3$. Ans.
(132) (a)

Here we find the first three figures in the regular way, and the fourth figure by the short method. See Art. 284.

Explanation.-(1) When extracting the cube root we divide the power into periods of three figures each. Always begin at the decimal point, and proceed to the left in pointing off the whole number, and to the right in pointing off the decimal. In this power $\sqrt[3]{.32768}$, a cipher must be annexed to 68 to complete the second decimal period. Cipher periods may now be annexed until the root has as many figures as desired.
(2) We find by trial that the largest number whose cube is contained in the first period, 327 , is 6 . Write 6 as the first figure of the root, also at the extreme left at the head of column (1). Multiply the 6 in column (1) by the first figure of the root, 6 , and write the product 36 at the head of column (2). Multiply the number in column (2) by the first figure of the root, 6 , and write the product 216 under the figures in the first period. Subtract and bring down the next period 680; annex it to the remainder 111, thereby obtaining 111,680 for a new dividend. Add the first figure of the root, 6 , to the number in column (1), obtaining 12, which we call the first corrcction; multiply the first correction 12 by the first figure of the root, and we obtain 72 as the product, which, added to 36 of column (2), gives 108. Annexing two ciphers to 108 , we have 10,800 for the trial divisor. Dividing the dividend by the trial divisor, we see that it is contained about 8 times, so we write 8 as the second figure of the root. Add the first figure of the root to the first correction, and we obtain 18 as the second correction. To this annex one cipher, and add the second figure of the root, and we obtain 188 . This, multiplied by the second figure of the root, 8 , equals $1,50 t$, which, added to the trial divisor 10,800 , forms the complete dizisor 12,304 . Multiplying the complete divisor 12,304 by 8 , the second figure of the root, the result is 98,432 . Write 98,432 under the dividend 111,680 ; subtract, and there is a remainder of 13,248 . To this remainder annex the next period 000 , thereby obtaining $13,248,000$ for the next new dividend.
(3) Adding the second figure of the root, 8, to the number in column (1), 188, we have 196 for the first new
correction. This, multiplied by the second figure of the root, 8 , gives 1,568 . Adding this product to the last complete divisor, and annexing two ciphers, gives $1,387,200$ for the next trial divisor. Adding the second figure of the root, 8 , to the first new correction, 196, we obtain 204 for the new second correction. Dividing the dividend by the trial divisor $1,387,200$, we see that it is contained about 9 times. Write 9 as the third figure of the root. Annex one cipher to the new second correction, and to this add the third figure of the root, 9 , thereby obtaining 2,049 . This, multiplied by 9 , the third figure of the root, equals 18,441 , which, added to the trial divisor, $1,38 \%, 200$, forms the complete divisor $1,405,641$. Multiplying the complete divisor by the third figure of the root, 9 , and subtracting, we have a remainder of 597,231 . We then find the fourth figure by division, as shown.

(d)	7	49	$\begin{gathered} \sqrt[3]{.373^{\prime} 248}=.72 \\ 343 \end{gathered}$	Ans.
	7	98		
	14	14700	30248	
	7	424	30248	
	210	15124		
	2			
	$\overline{212}$			

(133)

1	1	$\sqrt[3]{2.000000000}=1.259921+\mathrm{Ans}$
1	2	1
$\overline{2}$	300	1000
1	64	728
30	364	272000
2	68	225125
32	43200	46875000
2	1825	42491979
$\overline{34}$	$\overline{45025}$	$4755243) 4383021.000$ (9217 or .922-
2	1850	42797187
360	4687500	10330230
5	33831	9510486
365	4721331	8197440
5	33912	4755243
$\begin{array}{r} 370 \\ 5 \end{array}$	4755243	$\overline{34421970}$
3750		
9		
3759		
9		
3768		

This example shows what a great saving of figures is effected by using the short method. The figures obtained by the division are 921%, thus making the last figures of the answer 922, according to Art. 272. This is not correct in this case; the true answer to eight decimal places being $1.25992104+$; hence, the first three figures
found by division should be used in this case. The reason for the apparent failure of the method in this case to give the seventh figure of the root correctly is because the fifth figure (the first obtained by division) is 9 . Whenever the first figure obtained by division is 8 or 9 , it is better to carry the root process one place further, before applying Art.
$\mathbf{2 7 2}$, if it is desired to obtain absolutely correct results.
(134) (a)

| 1 | 1 | $\sqrt[3]{1^{\prime 7} 58.4166^{\prime 7} 43}$ |
| :--- | :--- | :--- |$=12.07 \quad$ Ans.

(b) 1

1	1
$\frac{1}{2}$	$\underline{2}$
$\frac{1}{30000}$	
180 306	31836

$\sqrt[3]{1^{\prime} 191^{\prime} 016}=106$ Ans. 1
191016
191016
(c) $\sqrt[3]{\frac{4}{32}}=1^{\frac{3}{8}} \frac{\sqrt[3]{1}}{\sqrt[3]{3}}=\frac{1}{2}$. Ans.
(d) $\sqrt[3]{\frac{\sqrt{2}}{512}}=\frac{\sqrt[3]{28}}{\sqrt[3]{512}}=\frac{3}{8}$. Ans.

ARITHMETIC.

80
(137) (a)

(137)	(a)	
1	1	$\sqrt[3]{.006^{\prime} 500^{\prime} 000}=.18663-\mathrm{An}$
1	2	1
$\overline{2}$	$\overline{300}$	5500
1	304	4832
30	604	668000
8	368	602856
38	97200	$103788) 65144.00$ (.627 or . 63
8	3276	622728
$\overline{46}$	$\overline{100476}$	287120
8	3312	207576
$\begin{array}{r} 540 \\ 6 \end{array}$	103788	79544
$\begin{array}{r} \overline{546} \\ 6 \end{array}$		
$\overline{552}$		
(b)		
2	4	$\sqrt[3]{.021^{\prime} 000^{\prime} 000}=.2759-$ Ans.
2	8	8
$\overline{4}$	1200	$\overline{13000}$
2	469	11683
60	$\overline{1669}$	1317000
7	518	1113875
$\overline{67}$	218\%00	$2 2 6 8 7 5 \longdiv { 2 0 3 1 2 5 . 0 (. 8 9 ~ o r ~ . 9 - ~ }$
7	4075	1815000
74	222775	216250
7	4100	
$\overline{810}$	226875	
5		
815		
5		
820		

(137)	(a)	
1	1	$\sqrt[3]{.006^{\prime} 500^{\prime} 000}=.18663-$ Ans
1	2	1
$\overline{2}$	$\overline{300}$	5500
1	304	4832
30	604	668000
8	368	602856
38	97200	$103788) 65144.00$ (.627 or .63-
8	3276	622728
$\overline{46}$	$\overline{100476}$	287120
8	3312	207576
$\begin{array}{r} 540 \\ 6 \end{array}$	103788	79544
$\begin{array}{r} 546 \\ 6 \end{array}$		
$\overline{522}$		
(b)		
2	4	$\sqrt[3]{.021^{\prime} 000^{\prime} 000}=.2759-$ Ans.
2	8	8
$\overline{4}$	1200	$\overline{13000}$
2	469	11683
60	$\overline{1669}$	1317000
7	518	1113875
$\overline{67}$	218\%00	$2 2 6 8 7 5 \longdiv { 2 0 3 1 2 5 . 0 (. 8 9 ~ o r ~ . 9 - ~ }$
7	4075	1815000
74	222775	216250
7	4100	
810	226875	
5		
815		
5		
820		

(b)

(137	(a)	
1	1	$\sqrt[3]{.006^{\prime} 500^{\prime} 000}=.18663-\mathrm{An}$
1	2	1
$\overline{2}$	$\overline{300}$	5500
1	304	4832
30	604	668000
8	368	602856
38	97200	$1 0 3 7 8 8 \longdiv { 6 5 1 4 4 . 0 0 (. 6 2 7 }$ or . 63
8	3276	622728
46	100476	287120
8	3312	207576
$\overline{540}$	$\overline{103788}$	79544
6		
$\overline{546}$		
6		
$\overline{552}$		
(b)		
2	4	$\sqrt[3]{.021^{\prime} 000^{\prime} 000}=.2759-$ Ans.
2	8	8
$\overline{4}$	1200	13000
2	469	11683
60	1669	1317000
7	518	1113875
$\overline{67}$	218\%00	$226875) 203125.0$ (.89 or .9-
7	4075	1815000
74	222775	216250
7	4100	
810	226875	
5		
815		
5		
820		

(c)

(e)

2	4
2	8
$\overline{4}$	1200
2	325
60	1525
5	350
65	187500
5	5299
70	192799
5	5348
750	198147
7	
757	
7	
764	

(138) (a) In this example the index is 4 , and equals 2×2. The root indicated is the fourth root, hence the square root must be extracted twice. Thus, $\sqrt[4]{ }=\sqrt{ }$ of the $\sqrt{ }$ and $\sqrt[4]{6561}=\sqrt{\sqrt{6561}}=\sqrt{81}=9 . \quad$ Ans.

(b) In this example the index is 6 , and 6 equals 3×2 or 2×3. The root indicated is the sixth root; hence, extract both the square and cube root, it making no particular difference as to which root is extracted first. Thus,

$$
\sqrt[6]{ }=\sqrt[8]{ } \text { of the } \sqrt{ }, \text { or } \sqrt{ } \text { of the } \sqrt[8]{ } \text {. }
$$

Hence. $\quad \sqrt[6]{117,649}=\sqrt[3]{\sqrt{117,649}}=\sqrt[3]{343}=7 . \quad$ Ans.

3	$\sqrt{11^{\prime \prime 7} 6^{\prime} 49}=343$	$\sqrt[3]{343}=7$ Ans.
$\frac{3}{60}$	$\underline{276}$	
$\frac{4}{64}$	$\frac{256}{2049}$	
$\frac{1}{680}$	$\underline{2049}$	
$\frac{3}{683}$		

(c) $\sqrt[6]{.000064}=\sqrt[3]{\sqrt{.000064}}=.2 . \quad$ Ans.

$$
\sqrt{.000064}=.008 . \quad \sqrt[3]{.008}=.2 . \quad \text { Hence, } \sqrt[6]{.000064}=.2
$$

Ans.
(d) $\sqrt[3]{\frac{3}{8}}=? \frac{3}{8}=.375$, since $\frac{8) 3.000}{.375}$

7	49	$\sqrt[8]{375^{\prime} 000^{\prime} 000}=.72112+\mathrm{Ans} .$
7	98	
14	14700	32000
7	424	30248
210	15124	1752000
2	428	1557361
212	1555200	$1 5 5 9 5 2 3 \longdiv { 1 9 4 6 3 9 . 0 0 }$ (.124 or . $12+$
2	2161	1559523
214	1557361	3868670
2	2162	3119046
2160	1559523	749624
1		
$\overline{2161}$		
1		
2162		

Hence, $\sqrt[3]{\frac{3}{8}}=.72112+. \quad$ Ans.
(139) (a) $\sqrt{\frac{1225}{5476}}=\frac{\sqrt{1225}}{\sqrt{5476}} \cdot \begin{array}{ll}3 & \sqrt{12^{\prime} 25}=35 \\ \frac{3}{60} & \frac{9}{325} \\ & \frac{5}{65}\end{array}$

Hence, $\sqrt{\frac{1225}{5476}}=\frac{35}{74}$. Ans.

7	$\sqrt{54^{\prime 776}}=74$
$\frac{7}{140}$	$\underline{59}$
$\frac{576}{144}$	-576

(b) $\begin{array}{ll}5 & \sqrt{.33^{\prime} 64}=.58 \\ \frac{5}{100} & \frac{25}{864} \quad \mathrm{~A} \\ \frac{8}{108} & -864\end{array}$
(c)
Ans.
3

$\frac{3}{60}$	9 100 61

$\frac{1}{61} \quad \frac{61}{3900}$
$\left.\frac{1}{620} \quad 632\right) \frac{3756}{144.00}$ (.227 or .23-

$\frac{6}{626}$	$\frac{1264}{1760}$
$\frac{6}{632}$	$\frac{1264}{496}$

(d) $25.0 \frac{3}{4}=25.075$.

$$
\begin{array}{r}
5 \\
5 \\
\hline 10000 \\
7 \\
\hline 10007 \\
7 \\
\hline 100140 \\
\hline 100144 \\
\hline 4 \\
\hline 1001480 \\
\hline 1001489
\end{array}
$$

$$
\sqrt{25.07^{\prime} 50^{\prime} 00^{\prime} 00^{\prime} 00}=5.00749+
$$

$$
\frac{25}{075000}
$$

$$
\frac{70049}{495100}
$$

$$
\frac{400576}{9452400}
$$

$$
9 \frac{9013401}{438999}
$$

(e). $.000 \frac{4}{9}=.0004444444+$.
2
$\frac{2}{40}$
$\frac{1}{41}$
$\frac{1}{42} 00$
$\frac{8}{4208}$
$\sqrt{.00^{\prime} 04^{\prime} 44^{\prime} 44^{\prime} 44}=.02108+$ $\frac{00}{04}$

$$
\begin{aligned}
& \frac{4}{44} \\
& \frac{41}{34444} \\
& \frac{33664}{780}
\end{aligned}
$$

(140)	(a) $\sqrt[2]{2}=\sqrt{\sqrt{2}}$
1	$\sqrt{2.00^{\prime} 00^{\prime} 00^{\prime} 00}=1.41421356+$
1	1
20	100
4	96
$\overline{24}$	400
4	281
$\overline{280}$	11900
1	11296
281	60400
1	56564
$\overline{2820}$	$2 8 2 8 4 \longdiv { 3 8 3 6 . 0 0 0 0 }$ (.13562 or . $1356+$
4	28284
2824	100760
4	84852
$\overline{28280}$	159080
2	141420
28282	176600
2	169704
28284	6896
1	$\sqrt{1.41^{\prime} 42^{\prime} 13^{\prime} 56}=1.1892+$ Ans.
1	1 边
20	41
1	21
21	$\overline{2042}$
1	1824
$\overline{220}$	21813
8	21321
$\overline{228}$	49256 It is required in this prob-
8	47564 lem to extract the fourth
$\overline{2360}$	1692 root of 2 to four decimal
9	places; hence, we must ex-
$\overline{2369}$	tract the square root twice,
9	since $\sqrt[4]{ }=\sqrt{ }$ of the $\sqrt{ }$.
23780	In the first operation we carry the root to 8
2	decimal places, in order to carry the root in the
$\overline{23782}$	second operation to 4 decimal places.

(b) $\sqrt[1]{6}=\sqrt[3]{\sqrt[3]{6}}$

2
$2 \quad 4$

$\overline{40}$	$\overline{200}$
$\frac{4}{44}$	$\frac{176}{2400}$
$\frac{4}{480}$	$\frac{1936}{46400}$
$\frac{4}{484}$	$\frac{44001}{239900}$
$\frac{4}{4880}$	$\frac{195936}{4396400}$
9	3919104

$4889 \quad 489896) 477296.00000(.974280$ or .97428 +

$\frac{9}{48980}$	$\frac{4409064}{3638960}$
4	3429272

48984	2096880
4	1959584
489880	1372960
8	979792
489888	3931680
8	3919168
489896	12512

It is required in this problem to find the sixth root of 6 ; hence it is necessary to extract both the square and cube roots in succession, since the index, 6 , equals 2×3 or 3×2. It makes no particular difference as to which root we extract first, but it will be more convenient to extract the square root first. The result has been carried to 10 decimal places; since the answer requires but 5 decimal places, the remaining decimals will not affect the cube root in the fifth decimal place, as the student can see for himself if he will continue the operation.

1	1	$\sqrt[8]{2.449^{\prime} 489^{\prime} 742^{\prime} 800}=1.34801-$
1	2	1 Ans.
$\overline{2}$	300	$\overline{1449}$
1	99	1197
30	399	252489
3	108	209104
33	$50 \% 00$	43385742
3	1576	43352192
36	52276	$5451312) 33550.000$ (.006 or . $01-$
3	1592	32707872
$\overline{390}$	$\overline{5386800}$	842128
4	32224	
394	5419024	
4	32288	
398	5451312	
4		
$\overline{4020}$		
8		
4028		
8		
$\overline{4036}$		

(141) (a) 1
$\sqrt{3.14^{\prime} 16}=1.7725-\quad$ Ans.

$\frac{1}{214}$
$\frac{189}{2516}$
$\frac{2429}{}$
$3 5 4 \longdiv { 8 7 . 0 0 (. 2 4 5 + \text { or } 2 5 - }$
$\frac{708}{1620}$
$\frac{1416}{204}$

(b) $\begin{array}{r}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}$	8	$\sqrt{.78^{\prime} 54^{\prime} 00}=.8862+$ Ans. 64
	8	
	160	
	8	1454
	$\overline{168}$	1344
	8	11000
	$\overline{1760}$	10596
	6	1772)404.0 (.22 or $2+$
	$\overline{1766}$	3544
	'6	496
	1772	
(142) (a)		
1	1	$\sqrt[3]{3.141^{\prime} 600^{\prime} 000}=1.4646-$
1	2	1 Ans.
$\overline{2}$	300	$\overline{2141}$
1	136	1744
30	436	397600
4	152	368136
$\overline{34}$	58800	29464000
4	2556	25649344
$\overline{38}$	$\overline{61356}$	$6 4 2 9 8 8 8 \longdiv { 3 8 1 4 6 5 6 . 0 }$ (.59 or.6-
4	2592	
$\overline{420}$	6394800	5998120
6	17536	
426	6412336	
6	17552	
$\overline{432}$	$\overline{6429888}$	
6		
4380		
4		
$\overline{4384}$		
4	4	
$\overline{4388}$		

(b)

(143) $11.7: 13:: 20: x$. $11.7 x=13 \times 20$ $11.7 x=260$

$$
\left.x=\frac{260}{11.7}\right) 260.000(22.22+\text { Ans. }
$$

(144) (a) $20+7: 10+8:: 3: x$.

$$
27: 18:: 3: x
$$

The product of the means equals the product of the extremes.

$$
\frac{234}{260}
$$

$$
234
$$

260

$$
260
$$

$$
234
$$

$$
260
$$

$$
\frac{234}{26}
$$

$$
27 x=18 \times 3
$$

$$
27 x=54
$$

$$
x=\frac{54}{27}=2 . \quad \text { Ans. }
$$

(b) $12^{2}: 100^{2}:: 4: x$

144: 10,000:: $4: x$
$14+x=10,000 \times 4$
$144 x=40,000$

$$
\begin{aligned}
\left.x=\frac{40,000}{1 \pm 4}\right) & 40000.0(277.7+\text { Ans. } \\
& \frac{288}{1120} \\
& \frac{1008}{1120} \\
& \frac{1008}{1120} \\
& \frac{1008}{112}
\end{aligned}
$$

(145) (a) $\frac{4}{x}=\frac{7}{21}$, is equivalent to $4: x:: 7: 21$. The product of the means equals the product of the extremes. Hence,

$$
\begin{aligned}
7 x & =4 \times 21 \\
7 x & =84 \\
x & =\frac{84}{7} \text { or } 12 . \quad \text { Ans. }
\end{aligned}
$$

(b) In like manner,

$$
\begin{aligned}
& \frac{x}{24}=\frac{8}{16} \text { is equivalent to } x: 24:: 8: 16 . \\
& 16 x
\end{aligned}=24 \times 8.1 \text { Ans. }
$$

(c) $\frac{2}{10}=\frac{x}{100}$ is equivalent to $2: 10:: x: 100$.

$$
\begin{aligned}
10 x & =2 \times 100 \\
10 x & =200 \\
x & =\frac{200}{10}=20 . \quad \text { Ans. }
\end{aligned}
$$

(d) $\frac{15}{45}=\frac{60}{x}$ is equivalent to (c) $\frac{10}{150}=\frac{x}{600}$ is equivalent to

$$
\begin{array}{rlrl}
15: 45: 60: x . & 10: 150:: x: 600 \\
15 x & =45 \times 60 & 150 x & =10 \times 600 \\
15 x & =2,700 & 150 x=6,000 \\
x & =\frac{2,700}{15}=180 . & x & =\frac{6,000}{150}=40 . \text { Ans. }
\end{array}
$$

Ans.
(146) $x: 5:: 27: 12.5 . \quad(147) \quad 45: 60:: x: 24$

$$
5 \quad 60 x=45 \times 24
$$

$1 2 . 5 \longdiv { 1 3 5 . 0 (1 0 \frac { 4 } { 5 } }$ Ans.

$$
\frac{\frac{125}{100}}{125}=\frac{4}{5}
$$

$60 x=1,080$

$$
x=\frac{1,080}{60}=18 . \text { Ans. }
$$

(148) $x: 35:: 4: 7$.
(149) $9: x:: 6: 24$.
$7 x=35 \times 4$ $6 x=9 \times 24$
$7 x=140$ $6 x=216$ $x=\frac{140}{7}=20$. Ans. $\quad x=\frac{216}{6}=36 . \quad$ Ans.
(150)

(151) $64: 81=21^{2}: x^{2}$.

Extracting the square root of each term of any proportion does not change its value, so we find that $\sqrt{64}: \sqrt{81}=$ $\sqrt{21^{2}}: \sqrt{x^{2}}$ is the same as

$$
\begin{aligned}
8: 9=21 & : x \\
& 8 x \\
& =189 \\
\quad x & =23.625 . \quad \text { Ans. }
\end{aligned}
$$

(152) $7+8: 7=30: x$ is equivalent to

$$
\begin{aligned}
& 15: 7=30: x \\
& 15 x=7 \times 30 \\
& 15 x=210 \\
& \qquad x=\frac{210}{15}=14 . \quad \text { Ans. }
\end{aligned}
$$

(153) $2 \mathrm{ft} .5 \mathrm{in} .=29 \mathrm{in} . ; 2 \mathrm{ft} .7 \mathrm{in} .=31 \mathrm{in}$. Stating as a direct proportion, $29: 31=2,480: x$. Now, it is easy to see that x will be greater than 2,480 . But x should be less than 2,480 , since, when a man lengthens his steps, the number of steps required for the same distance is less; hence, the proportion is an inverse one, and

$$
\begin{aligned}
29: 31 & =x: 2,480 \\
\text { or, } 31 x & =71,920 ; \\
\text { whence, } x & =71,920 \div 31=2,320 \text { steps. Ans. }
\end{aligned}
$$

(154) This is evidently a direct proportion. 1 hr . $36 \mathrm{~min} .=96 \mathrm{~min} . ; 15 \mathrm{hr} .=900 \mathrm{~min}$. Hence,

$$
\begin{aligned}
96: 900 & =12: x \\
\text { or, } \quad 96 x & =10,800 \\
\text { whence, } \quad x & =10,800 \div 96=112.5 \mathrm{mi} . \quad \text { Ans. }
\end{aligned}
$$

(155) This is also a direct proportion; hence,

$$
\begin{aligned}
27.63: 29.4 & =.76: x \\
\text { or, } \quad 27.63 x & =29.4 \times .76=22.344 ; \\
\text { whence } \quad \quad x & =22.344 \div 27.63=.808+1 \mathrm{~b} . \quad \text { Ans. }
\end{aligned}
$$

(156) 2 gal. 3 qt. 1 pt. $=23$ pt. ; 5 gal. 3 qt. $=46$ pt. Hence,

$$
\begin{aligned}
23: 46 & =5: x \\
\text { or, } \quad 23 x & =46 \times 5=230 ; \\
\text { whence, } \quad x & =230 \div 23=10 \text { days. Ans. }
\end{aligned}
$$

(157) Stating as a direct proportion, and squaring the distances, as directed by the statement of the example, $6^{2}: 12^{2}=24: x$. Inverting the second couplet, since this is an inverse proportion,

$$
6^{2}: 12^{2}=x: 24 .
$$

Dividing both terms of the first couplet (see Art. 310) by 6

$$
1^{2}: 2^{2}=x: 24 ; \text { or } 1: 4=x: 24 ;
$$

whence, $4 x=2 t$, or $x=6$ degrees. Ans.
(158) Taking the dimensions as the causes,

12	15	
4	5	
2	2	
3	6	x, whence, $2 x=75$, or, $x=\$ 37.50$.
7	6	

(159) $2 \mathrm{hr} .=120 \mathrm{~min} . ; 14 \mathrm{hr} .28 \mathrm{~min} .=868 \mathrm{~min}$.

Hence, $\quad 120: 868=100: x$, or, $\quad 120 x=86,800$; whence, $\quad x=723 \frac{1}{3}$ gal. Ans.
(160) Taking the dimensions as the causes,

14	2	
28	20	
2	$=798$	x, whence, $2 x=17 \times 57=969$,
12	$17 \quad 57$	or, $x=48+\frac{1}{2}$ bbl. Ans.
10	6	

(161) $8 \mathrm{hr} .40 \mathrm{~min} .=520 \mathrm{~min}$. Hence,

$$
444: 1,060=520: x
$$

130
$\begin{array}{r}\text { or, } x=\frac{1,060 \times 520}{414} \\ 111\end{array} \frac{137,800}{111}=\begin{array}{r}1,241.44+\min .=20 \mathrm{hr} . \\ 41.44+\min . \text { Ans. }\end{array}$
(162) $1 \mathrm{~min} .=60 \mathrm{sec}$. Hence,

$$
\begin{aligned}
5 \frac{1}{2}: 60 & =6,160: x \\
\text { or, } x & =\frac{60 \times 6,160}{5.5}=67,200 \mathrm{ft} . \quad \text { Ans. }
\end{aligned}
$$

(163) Writing the statement as a direct proportion, $8: 10=5: x$, it is easy to see that x will be greater than 5 ; but, it should be smaller, since by working longer hours, fewer men will be required to do the same work. Hence, the proportion is inverse. Inverting the second couplet,

$$
\begin{aligned}
8: 10 & =x: 5 \\
\text { or, } \quad x & =\frac{8 \times 5}{\frac{8}{10}}=4 \mathrm{men} . \quad \text { Ans. }
\end{aligned}
$$

(164) Taking the times as the causes,

20	25	14
	5	70
	$=540$	639 ; whence, $3 x=2 \times 14=28$, or $x=9 \frac{1}{3} \mathrm{hr}$.
10	$\begin{array}{cc}x & 27 \\ & 3\end{array}$	Ans.

(165) Taking the horsepowers as the effects, we have for the known causes in example 4, Art. $\mathbf{3 4 9}, 14^{2}, 500$, and 48 , and for the known effect 112 horsepower. Hence,

		14	9 900	
		196	22	
14^{2}	30^{2}.	5	110	
500	$660=112$	x, or 590	$660=112$	
48	42	6	$\begin{array}{cc} 3 & 8 \\ 49 & \end{array}$	

whence, $x=9 \times 22 \times 3=594$ horsepower. Ans.
(166) First find the volume of the cylinder in cubic inches, as in the example, Art. 345. The volume, multiplied by the weight of one cubic inch (. 261 lb .), will evidently be the weight of the cylinder. Hence,

$$
\begin{array}{l|l|l|l|l}
10^{2} & 12^{2} \\
20 & 60
\end{array}=1,570.8 \mid x, \text { or } \begin{gathered}
100 \\
\\
\\
70
\end{gathered}\left|\begin{array}{c}
144 \\
60
\end{array}=1.570 .8\right| x ;
$$

whence, $x=\frac{144 \times 3 \times 1,570.8}{100}=6,785.856 \mathrm{cu}$. in. Therefore, weight of cylinder $=6, \% 85.856 \times .261=1,771.11 \mathrm{lb}$. Ans.
(167) Referring to the example in Art. 348,

\[

\]

whence, $x=\frac{3 \geqslant 4 \times 4 \times 187}{500}=484.7 \mathrm{lb}$. Ans.

A LGEBRA.

(QUESTIONS 168-217.)

(168) $-\frac{c-(a-b)}{c+(a+b)}=\frac{(a-b)-c}{c+(a+b)}$. Ans. (Art. 482.)
(169) (a) Factoring each expression (Art. 457), we have $9 x^{4}+12 x^{-2} y^{2}+4 y^{\prime}=\left(3 x^{2}+2 y^{2}\right)\left(3 x^{2}+2 y^{2}\right)=\left(3 x^{2}+2 y^{2}\right)^{2}$.
(b) $49 a^{4}-154 a^{2} b^{2}+121 b^{4}=\left(7 a^{2}-11 b^{2}\right)\left(7 a^{2}-11 b^{2}\right)=$ $\left(\% a^{2}-11 b^{2}\right)^{2}$. Ans.
(c) $64 x^{2} y^{2}+64 x y+16=16(2 x y+1)^{2}$. Ans.
(170) (a) Arrange the dividend according to the decreasing powers of x and divide. Thus,

$$
3 x-1) 9 x^{2}+3 x^{2}+x-1\left(3 x^{2}+2 x+1 \quad\right. \text { Ans. }
$$

$$
\begin{aligned}
& \frac{9 x^{2}-3 x^{2}}{6 x^{2}+x} \\
& \frac{6 x^{2}-2 x}{3 x-1}
\end{aligned}
$$

(Art. 444.)
(b) $a-b) a^{3}-2 a a^{\frac{3}{b^{2}}+b^{3}}\left(a^{2}+a b-b^{2} \quad\right.$ Ans.

$$
\begin{aligned}
& \frac{a^{2}-a^{2} b}{a^{2} b-2 a b^{2}} \\
& \frac{a^{2} b-a b^{2}}{-a b^{2}+b^{3}} \\
& -a b^{2}+b^{2}
\end{aligned} \quad \text { (Art. 444.) }
$$

(c) Arranging the terms of the dividend according to the decreasing powers of x, we have

$$
\begin{aligned}
& 7 x-3) \begin{array}{c}
7 x^{3}-24 x^{2}+58 x-21\left(x^{2}-3 x+7 \quad\right. \text { Ans. } \\
\frac{7 x^{3}-3 x^{2}}{-21 x^{2}+58 x} \\
\frac{-21 x^{2}+9 x}{49 x-21} \\
49 x-21
\end{array}
\end{aligned}
$$

(171) See Arts. 352 and 353.
(172) (a) In the expression $4 x^{2} y-12 x^{3} y^{2}+8 x y^{2}$, it is evident that each ferm contains the common factor $4 x y$. Dividing the expression by $4 x y$, we obtain $x^{2}-3 x^{3} y+2 y^{2}$ for a quotient. The two factors, therefore, are $4 x y$ and $x^{2}-3 x^{2} y+2 y^{2}$. Hence, by Art. 452,

$$
4 x^{3} y-12 x^{3} y^{2}+8 x y^{3}=4 x y\left(x^{-2}-3 x^{2} y+2 y^{2}\right) . \quad \text { Ans. }
$$

(b) The expression $\left(x^{4}-y^{4}\right)$ when factored, equals $\left(x^{2}+\right.$ $\left.y^{2}\right)\left(x^{2}-y^{2}\right)$. (Art. 463.) But, according to Art. 463, x^{2} $-y^{2}$ may be further resolved into the factors $(x+y)(x-y)$.

Hence, $\left(x^{4}-y^{4}\right)=\left(x^{2}+y^{2}\right)(x+y)(x-y)$. Ans.
(c) $8 x^{-3}-27 y^{3}$. See Art. 466. The cube root of the first term is $2 x$, and of the second term is $3 y$, the sign of the second term being -. Hence, the first factor of $8 x^{3}-27 y^{1}$ is $2 x-3 y$. The second factor we find to be $4 x^{2}+6 x y+9 y^{2}$, by division. Hence, the factors are $2 x-3 y$ and $4 x^{2}+6 x y+9 y^{2}$.
(173) Arranging the terms according to the decreasing powers of m.

$$
\begin{aligned}
& 3 m^{3}+10 m^{2} n+10 m n^{2}+3 n^{3} \\
& \frac{3 m^{4} n-5 m^{3} n^{2}+5 m n^{2} n^{3}-m n^{4}}{9 m^{7} n+30 m^{6} n^{2}+30 m^{5} n^{3}+9 m^{4} n^{4}} \\
& \quad-15 m^{6} n^{2}-50 m^{5} n^{3}-50 n^{4} n^{4}-15 m^{3} n^{5} \\
& \quad+15 m^{5} n^{3}+50 m^{4} n^{4}+50 m^{3} n^{5}+15 m^{2} n^{6} \\
& \quad-3 m n^{4} n^{4}-10 m^{3} n^{6}-10 m^{2} n^{6}-3 m n^{9} \\
& \frac{9 m^{2} n+15 m^{6} n^{2}-5 m^{6} n^{3}+6 m^{4} n^{4}+25 m^{3} n^{5}+5 m^{2} n^{6}-3 m n^{7}}{} \quad \text { Ans. }
\end{aligned}
$$

(174) $\left(2 a^{2} b c^{3}\right)^{4}=16 a^{8} b^{4} c^{12}$. Ans.

$$
\begin{aligned}
& \left(-3 a^{2} b^{2} c\right)^{5}=-243 a^{10} b^{10} c^{5} . \quad \text { Ans. } \\
& \left(-7 m^{3} u x^{2} y^{4}\right)^{2}=49 m m^{6} w^{2} x^{4} y^{8} . \quad \text { Ans. }
\end{aligned}
$$

(175) (a) $4 a^{2}-b^{2}$ factored $=(2 a+b)(2 a-b)$. Ans.
(b) $16 x^{10}-1$ factored $=\left(+x^{5}+1\right)\left(4 x^{-3}-1\right)$. (Art. 463.)

Ans.
(c) $16 x^{6}-8 x^{4} y^{2}+x^{2} y^{4}$ when factored $=$

$$
\left(4 x^{3}-x y^{2}\right)\left(4 x^{3}-x y^{2}\right) . \quad(\text { Art. 45Z, Rule.) }
$$

But, $\left(4 x^{3}-x y^{2}\right)=x\left(2 x+y^{\prime}\right)\left(2 x-y^{\prime}\right) . \quad($ Arts. 452 and 463.)

Hence, $16 x^{6}-8 x^{4} y^{2}+x^{2} y^{4}=x^{2}\left(2 x+y^{\prime}\right)(2 x+y)(2 x-y)$ ($2 x-y$). Ans.
(176) $\quad 4 a^{6}-12 a^{5} x+5 a^{4} x^{2}+6 a^{3} x^{3}+a^{2} x^{4}\left(2 a^{2}-3 a^{2} x-a x^{2}\right.$ $4 a^{6}$

Ans.
$4 a^{9}-3 a^{2} x \sqrt{-12 a^{5} x+5 a^{4} x^{2}} \begin{aligned} & -12 a^{5} x+9 a^{4} x^{2} \\ & -6 a^{2} x-a x^{2} \left\lvert\, \begin{array}{l}-4 a^{4} x^{2}+6 a^{3} x^{3}+a^{2} x^{4} \\ -4 a^{4} x^{2}+6 a^{3} x^{3}+a^{2} x^{4}\end{array}\right.\end{aligned}$
(177) (a) $6 a^{4} b^{4}+a^{3} b^{2}-7 a^{2} b^{3}+2 a b c+3$.
(b) $3+2 a b c+a^{3} b^{2}-7 a^{2} b^{3}+6 a^{4} b^{4}$.
(c) $1+a x+a^{2}+2 a^{3}$. Written like this, the a in the second term is understood as having 1 for an exponent; hence, if we represent the first term by a^{0}, in value it will be equal to 1 , since $a^{0}=1$. (Art. 439.) Therefore, 1 should be written as the first term when arranged according to the increasing powers of a.
(178) $\sqrt[4]{16 a^{12} b^{4} c^{8}}= \pm 2 a^{3} b c^{2}$. Ans. (Art. 521.) $\sqrt[5]{-32 a^{15}}=-2 a^{2}$. Ans. $\sqrt[3]{-1,728 a^{6} d^{22} \cdot x^{3} y^{9}}=-12 a^{2} d^{4} x y^{9} . \quad$ Ans.
(179) (a) $(a-2 x+4 y)-(3 z+2 b-c)$. Ans. (Art. 408.)
(b) $-3 b-4 c+d-(2 f-3 e)$ becomes
$-[3 b+4 c-d+(? f-3 c)]$ when placed in brackets preceded by a minus sign. Ans. (Art. 408.)
(c) The subtraction of one expression or quantity from another, when none of the terms are alike, can be represented only by combining the subtrahend with the minuend by means of the sign - .

In this case, where we are to subtract
$2 b-(3 c+2 d)-a$ from x, the result will be indicated by $x-[2 b-(3 c+2 d)-a$.] Ans. (Art. 408.)
(180) (a) $2 x^{3}+2 x^{2}+2 x-2$

$$
x-1
$$

$$
\overline{2 x^{4}+2 x^{3}+2 x^{2}-2 x}
$$

$$
-2 x^{3}-2 x^{2}-2 x+2
$$

$$
\overline{2 x^{4}} \quad-4 x+2 \quad \text { Ans. }
$$

(b) $x^{2}-4 a x+c$

$$
2 x+a
$$

$$
\begin{aligned}
& \overline{2 x^{3}-8 a x^{2}+2 c x} \\
& \frac{a x^{2}}{2 x^{3}-7 a x^{2}+2 c x-4 a^{2} x+a c}
\end{aligned}
$$

(c) $\quad-a^{3}+3 a^{2} b-2 b^{3}$

$$
5 a^{2}+9 a b
$$

$$
-5 a^{6}+15 a^{4} b-10 a^{2} b^{3}
$$

$$
\frac{-9 a^{4} b+27 a^{3} b^{2}-18 a b^{4}}{-5 a^{5}+6 a^{4} b-10 a^{2} b^{3}+27 a^{3} b^{2}-18 a b^{4}}
$$

Arranging the terms according to the decreasing powers of a, we have $-5 a^{6}+6 a^{4} b+27 a^{3} b^{2}-10 a^{2} b^{3}-18 a b^{4}$. Ans.
(181) (a) $4 x y z$
$-3 x y z$
$-5 x y z$ $6 x y z$
$-9 x y z$

$$
3 x y z
$$

$-4 x y z$ Ans.

The sum of the coefficients of the positive terms we find to be +13 , since $(+3)+(+6)+$ $(+4)=(+13)$.

When no sign is given before a quantity the + sign must always be understood. The sum of the coefficients of the nega- tive terms we find to be -17 since $(-9)+(-5)+(-3)=$ (-17). Subtracting the lesser sum from the greater, and prefixing the sign of the greater sum (-) (Art. 390, rule II), we have $(+13)+(-1 \tau)=-4$. Since the terms are all alike, we have only to annex the common symbols $x y z$ to -4 , thereby obtaining $-4 x y z$ for the result or sum.
(b) $3 a^{2}+2 a b+4 b^{2}$ $5 a^{2}-8 a b+b^{2}$
$-a^{2}+5 a b-b^{2}$ $18 a^{2}-20 a b-19 b^{2}$
$14 a^{2}-3 a b+20 b^{2}$
$39 a^{2}-24 a b+5 b^{2}$ Ans.

When adding polynomials, always place like terms under each other. (Art.

393.)

The coefficient of a^{2} in the result will be 39 , since $(+14)+(+18)+(-1)+$ $(+5)+(+3)=39$. When the coefficient of a term is not written, 1 is always understood to be its coefficient. (Art. 359.) The coefficient of $a b$ will be -24 , since $(-3)+$ $(-20)+(+5)+(-8)+(+2)=-24$. The coefficient of b^{2} will be $(+20)+(-19)+(-1)+(+1)+(+4)=+5$. Hence, the result or sum is $39 a^{2}-24 a b+5 b^{2}$.
(c)

$$
\begin{aligned}
& 4 m n+3 a b-4 c \\
&+ 2 m n-4 a b+3 x+3 m^{2}-4 p \\
& \hline 6 m n-a b-4 c+3 x+3 m^{2}-4 p
\end{aligned} \text { Ans. }
$$

(182) The reciprocal of 3.1416 is $\frac{1}{3.1416}=.3183+$. Ans.

Reciprocal of $.7854=\frac{1}{.7854}=1.273+$ Ans.
Of $\frac{1}{64.32}=\frac{1}{\frac{1}{64}}=1 \times \frac{64.32}{1}=64.32 . \quad \underset{\text { Ans. }}{\text { Anee }}$
(See Art. 481.)
(183) (a) $\frac{x}{x-y}+\frac{x-y}{y-x}$. If the denominator of the second fraction were written $x-y$, instead of $y-x$, then $x-y$ would be the common denominator.

By Art. 482, the signs of the denominator and the sign before the fraction $\frac{x-y}{y-x}$ may be changed, giving $-\frac{x-y}{x-y}$. We now have

$$
\frac{x}{x-y}-\frac{x-y}{x-y}=\frac{x-x+y}{x-y}=\frac{y}{x-y} . \quad \text { Ans. }
$$

(b) $\frac{x^{2}}{x^{2}-1}+\frac{x}{x+1}-\frac{x}{1-x}$. If we write the denominator of the third fraction $x-1$ instead of $1-x, x^{2}-1$ will then be the common denominator.

By Art. 482 , the signs of the denominator and the sign before the fraction may be changed, thereby giving $\frac{x}{x-1}$. We now have

$$
\begin{gathered}
\frac{x^{2}}{x^{2}-1}+\frac{x}{x+1}+\frac{x}{x-1}=\frac{x^{2}+x(x-1)+x(x+1)}{x^{2}-1}- \\
\frac{x^{2}+x^{2}-x+x^{2}+x}{x^{2}-1}=\frac{3 x^{2}}{x^{2}-1} . \quad \text { Ans. }
\end{gathered}
$$

(c) $\frac{3 a-4 b}{7}-\frac{2 a-b+c}{3}+\frac{13 a-4 c}{12}$, when reduced to a common denominator

$$
=\frac{12(3 a-4 b)-28(2 a-b+c)+7(13 a-4 c)}{84} .
$$

Expanding the terms and removing the parentheses, we have

$$
\frac{36 a-48 b-56 a+28 b-28 c+91 a-28 c}{84}
$$

Combining like terms in the numerator, we have as the result,

$$
\frac{71 a-20 b-56 c}{84} . \quad \text { Ans. }
$$

(184) (a) $45 x^{7} y^{10}-90 x^{5} y^{7}-360 x^{4} y^{8}=$
$45 x^{4} y^{7}\left(x^{3} y^{3}-2 x-8 y\right)$. Ans. (Art. 452.)
(b) $a^{2} b^{2}+2 a b c d+c^{2} d^{2}=(a b+c d)^{2}$. Ans. (Art. 457.)
(c) $(a+b)^{2}-(c-d)^{2}=(a+b+c-d)(a+b-c+d)$.

Ans. (Art. 463.)
(185) (a) If a man builds 20 rods of stone wall, and we consider this work as positive, or + , the work which he does in tearing it down may be considered as negative, or If he tore down 10 rods, we could say that he built -10 rods.
(b) See Arts. 388 and $\mathbf{3 9 8}$.
(186) (a) $\frac{2 a x+x^{2}}{a^{3}-x^{3}} \div \frac{x}{a-x}=\frac{x(2 a+x)}{a^{3}-x^{3}} \times \frac{a-x}{x}$.
(Art. 502.)

Canceling common factors, the result equals $\frac{2 a+x}{a^{2}+a x+x^{2}}$.
Ans.

$$
\begin{aligned}
& a-x) a^{3}-x^{3}\left(a^{2}+a x+x^{2}\right. \\
& \frac{a^{2}-a^{2} x}{a^{2} x-x^{3}} \\
& \frac{a^{2} x-a x^{2}}{a x^{2}-x^{3}} \\
& a x^{2}-x^{3}
\end{aligned}
$$

(b) Inverting the divisor and factoring, we have

$$
\frac{3 n\left(2 m^{2} n-1\right)}{\left(2 m^{2} n-1\right)\left(2 m^{2} n-1\right)} \times \frac{\left(2 m^{2} n+1\right)\left(2 m^{2} n-1\right)}{3 n} .
$$

Canceling common factors, we have $2 m^{2} n+1$. Ans.
(c) $9+\frac{5 y^{2}}{x^{2}-y^{2}} \div\left(3+\frac{5 y}{x-y}\right)$ simplified $=\frac{9 x^{2}-4 y^{2}}{x^{2}-y^{2}} \div$ $\frac{3 x+2 y}{x-y}$.

Inverting the divisor, we have $\frac{9 x^{2}-4 y^{2}}{x^{2}-y^{2}} \times \frac{x-y}{3 x+2 y}$.
Canceling common factors, the result equals $\frac{3 x-2 y}{x+y}$. Ans.
(187) According to Art. 456, the trinomials $1-2 x^{2}$ $+x^{4}$ and $4 x^{2}+4 x+1$ are perfect squares. (See Art. 458.) The remaining trinomials are not perfect squares, since they do not comply with the foregoing principles.
(188) (a) By Art. 481, the reciprocal of $\frac{24}{49}=1 \div \frac{24}{49}$ $=1 \times \frac{49}{24}=\frac{49}{24} . \quad$ Ans.
(b) Since, by Art. 481, a number may be found from its reciprocal by dividing 1 by the reciprocal, the number $=1 \div 700=.0014 \frac{2}{7} . \quad$ Ans.
(189) Applying the method of Art. 474,

$\begin{aligned} & x+y \\ & x-y \end{aligned}$	$12.2 y^{\prime}\left(x^{2}-y^{\prime}\right), 2 x^{2}\left(x^{2}+2 x y+y^{2}\right), 3 y^{2}(x-y)^{2}, 6\left(x^{2}+x y\right)$		
	$1 \geqslant x y$	$2 x^{2}(x+y)$	$3 y^{\prime 2}\left(x-y^{\prime}\right)^{2}, 6 x$
3 xy	$12 x y$	$2 x^{2}(x+y)$,	$3 y^{\prime 2}\left(x-y^{\prime}\right), 6$
2	4 ,	$2 \cdot x\left(x+y^{\prime}\right)$,	$y^{\prime}\left(x-y^{\prime}\right), \stackrel{\sim}{\sim}$
	2,	$x(x+y)$,	$y\left(x-y^{\prime}\right), 1$

Whence, L. C. M. $=(x+y)(x-y) 3 x y \times 2 \times 2 \times$ $x\left(x+y^{\prime}\right) \times y^{\prime}\left(x-y^{\prime}\right)=12 x^{2} y^{2}\left(x+y^{\prime}\right)^{2}\left(x-y^{\prime}\right)^{2}$.
$(190)(a) 2+4 a-5 a^{2}-6 a^{2}$
$7 a^{3}$
$\overline{14 a^{3}+28 a^{4}-35 a^{5}-42 a^{6}}$ Ans. (Art. 423.)
(b) $4 x^{2}-4 y^{2}+6 z^{2}$
$3 x^{2} y$
$\overline{12 x^{4} y-12 x^{2} y^{3}+18 x^{2} y^{2} z^{2}}$ Ans.
(c) $3 b+5 c-2 d$
$6 a$
$\overline{18 a b+30 a c-12 a d}$ Ans.
(191) (a) See Arts. 359 and 361.
(b) See Arts. 419 and 440.
(c) See Art. 416.
(192) (a) On removing the vinculum, we have
$2 a-[3 b+\{4 c-4 a-(2 a+2 b)\}+\{3 a-b-c\}]$.
(Art. 405.)
Removing the parenthesis,

$$
2 a-[3 b+\{4 c-4 a-2 a-2 b\}+\{3 a-b-c\}]
$$

Removing the braces,

$$
2 a-[3 b+4 c-4 a-2 a-2 b+3 a-b-c] .
$$

(Art. 406.)
Removing the brackets,

$$
2 a-3 b-4 c+4 a+2 a+2 b-3 a+b+c
$$

Combining like terms, the result is $5 a-3 c$. Ans.
(b) Removing the parenthesis, we have

$$
7 a-[3 a-\{2 a-5 a+4 a\}] .
$$

Removing the brace,

$$
7 a-[3 a-2 a+5 a-4 a]
$$

Removing the brackets,

$$
7 a-3 a+2 a-5 a+4 a
$$

Combining terms, the result is $5 a$. Ans.
(c) Removing the parentheses, we have

$$
a-[2 b+\{3 c-3 a-a-b\}+\{2 a-b-c\}] .
$$

Removing the braces,

$$
a-[2 b+3 c-3 a-a-b+2 a-b-c]
$$

Removing the brackets,

$$
a-2 b-3 c+3 a+a+b-2 a+b+c
$$

Combining like terms, the result is $3 a-2 c$. Ans.
(193) (a) $\left(x^{3}+8\right)=(x+2)\left(x^{2}-2 x+4\right)$. Ans.
(b) $x^{3}-27 y^{3}=(x-3 y)\left(x^{2}+3 x y+9 y^{2}\right)$. Ans.
(c) $x m-n m+x y-n y=m(x-n)+y(x-n)$, or $(x-n)(m+y)$. Ans.
(Arts. 466 and 468 .)
(194) Arrange the terms according to the decreasing powers of x. (Art. 523.)

$$
\begin{aligned}
& 4 x^{4}+8 a x^{3}+4 a^{2} x^{8}+16 b^{2} x^{2}+16 a b^{2} x+16 b^{4}\left(2 x^{9}+2 a x+4 b^{2} .\right. \text { Ans. } \\
&\left(2 x^{2}\right)^{8}= 4 x^{4} . \\
& \frac{4 x^{2}+2 a x \left\lvert\, \begin{array}{l}
8 a x^{3}+4 a^{8} x^{2} \\
8 a \cdot x^{8}+4 a^{2} x^{2}
\end{array}\right.}{} \\
& \quad 4 x^{2}+4 a x+4 b^{2} \quad \begin{array}{l}
16 b^{2} x^{2}+16 a b^{2} x+16 b^{4} \\
16 b^{2} x^{8}+16 a b^{2} x+16 b^{4}
\end{array}
\end{aligned}
$$

(195) $\frac{c(a+b)+c d}{(a+b) c}=\frac{a c+b c+c d}{a c+b c}$. Canceling c, which is common to each term, we have $\frac{a+b+d}{a+b}=1+\frac{d}{a+b}$. Ans.
(196) (a) $x+y+z-(x-y)-(y+z)-(-y)$ be. comes $x+y+z-x+y-y-z+y$ on the removal of the parentheses. (Art. 405.) Combining like terms,

$$
x-x+y+y-y+y+z-z=2 y . \quad \text { Ans. }
$$

(b) $(2 x-y+4 z)+(-x-y-4 z)-(3 x-2 y-z)$ be. comes $2 x-y+4 z-x-y-4 z-3 x+2 y+z$, on the removal of the parentheses. (Arts. 405 and 406.) Combining like terms,

$$
2 x-x-3 x-y-y+2 y+4 z-4 z+z=z-2 x . \text { Ans. }
$$

(c) $a-[2 a+(3 a-4 a)]-5 a-\{6 a-[(7 a+8 a)-9 a]\}$.

In this expression we find aggregation marks of different shapes, thus, [, (, and \{. In such cases look for the corresponding part (whatever may intervene), and all that is included between the two parts of each aggregation mark must be treated as directed by the sign before. it (Arts. $\mathbf{4 0 5}$ and $\mathbf{4 0 6}$), no attention being given to any of the other aggregation marks. It is always best to begin with the imnermost pair, and remove each pair of aggregation marks in order. First removing the parentheses, we have

$$
a-[2 a+3 a-4 a]-5 a-\{6 a-[7 a+8 a-9 a]\}
$$

Removing the brackets, we have

$$
a-2 a-3 a+4 a-5 a-\{6 a-7 a-8 a+9 a\}
$$

Removing the brace, we have

$$
a-2 a-3 a+4 a-5 a-6 a+7 a+8 a-9 a .
$$

Combining like terms, the result is $-5 a$. Ans.
(197) (a) A square x square, plus $2 a$ cube b fifth, minus the quantity a plus b.
(b) The cube root of x, plus y into the quantity a minus n square to the $\frac{2}{3}$ power.
(c) The quantity m plus n, into the quantity m minus n squared into the quantity m minus the quotient of n divided by 2 .
(198)

$$
\begin{gathered}
\left.a^{3}-a^{2}-2 a-1\right) 2 a^{6}-4 a^{5}-5 a^{4}+3 a^{3}+10 a^{2}+7 a+2\left(2 a^{3}-2 a^{2}-3 a-2\right. \\
\frac{2 a^{6}-2 a^{5}-4 a^{4}-2 a^{3}}{-2 a^{5}-a^{4}+5 a^{3}+10 a^{2}} \\
\frac{-2 a^{5}+2 a^{4}+4 a^{3}+2 a^{2}}{-3 a^{4}+a^{3}+8 a^{9}+7 a} \\
\frac{-3 a^{4}+3 a^{3}+6 a^{2}+3 a}{-2 a^{3}+2 a^{2}+4 a+2} \\
-2 a^{3}+2 a^{2}+4 a+2
\end{gathered}
$$

(199) (a) Factoring according to Art. 452, we have $x^{2} y^{2}\left(x^{6}-64\right)$. Factoring $\left(x^{6}-64\right)$, according to Art. 463, we have

$$
\left(x^{3}+8\right)\left(x^{3}-8\right)
$$

Art. 466, rule. $x^{3}+8=(x+2)\left(x^{2}-2 x+4\right)$.
Art. 466, rule. $x^{3}-8=(x-2)\left(x^{2}+2 x+4\right)$.
Therefore, $x^{6} y^{2}-64 x^{2} y^{2}=x^{2} y^{2}(x+2)\left(x^{2}-2 x+4\right)(x-2)$ $\left(x^{2}+2 x+4\right)$, or $x^{2} y^{2}(x+2)(x-2)\left(x^{2}+2 x+4\right)$ $\left(x^{2}-2 x+4\right)$. Ans.
(b) $a^{2}-b^{2}-c^{2}+1-2 a+2 b c$. Arrange as follows (Art. 408) :

$$
\left(a^{2}-2 a+1\right)-\left(b^{2}-2 b c+c^{2}\right)=(a-1)^{2}-(b-c)^{2}
$$

(Art. 455.)
By Art. 463, we have

$$
\begin{aligned}
&(a-1+b-c)(a-1-[b-c]) \\
& \text { or } \quad(a-1+b-c)(a-1-b+c) . \\
& \text { Ans. }
\end{aligned}
$$

(c) $1-16 a^{2}+8 a c-c^{2}$. Placing the last three terms in parentheses (Art. 408), $1-\left(16 a^{2}-8 a i+c^{2}\right)$.

$$
16 a^{2}-8 a c+c^{2}=(4 a-c)^{2} \quad(\text { Art. } 455 .)
$$

$$
1-\left(16 a^{2}-8 a c+c^{2}\right)=1-(4 a-c)^{2}
$$

$$
1-(4 a-c)^{2}=[1+(4 a-c)][1-(4 a-c)] . \quad \text { (Art. 463.) }
$$

Removing parentheses, and writing parentheses in place of the brackets,

$$
1-(4 a-c)^{2}=(1+4 a-c)(1-4 a+c) . \quad \text { Ans. }
$$

(200) See Art. 482.
(201) The subtraction of one expression from another, if none of the terms are similar, may be represented only by connecting the subtrahend with the minuend by means of the sign -. Thus, it is required to subtract $5 a^{3} b-i a^{2} b^{2}+$ $5 a b^{3}$ from $a^{4}-b^{4}$, the result will be represented by $a^{4}-b^{4}-$ $\left(5 a^{3} b-7 a^{2} b^{2}+5 a b^{3}\right)$, which, on removing the parentheses (Art. 405), becomes $a^{4}-b^{4}-5 a^{3} b+i a^{2} b^{3}-5 a b^{3}$. From this result, subtract $3 a^{4}-4 a^{3} b+6 a^{2} b^{2}+5 a b^{3}-3 b^{4}$.

$$
a^{4}-b^{4}-5 a^{3} b+5 a^{3} b^{2}-5 a b^{3} \text { minucnd. }
$$

$-3 a^{4}+3 b^{4}+4 a^{3} b-6 a^{2} b^{2}-5 a b^{2}$ subtrahcnd, with signs
$-2 a^{4}+2 b^{4}-a^{2} b+a^{2} b^{2}-10 a b^{3}$ changed. (Art. 101.)
Or, $-2 a^{4}-a^{3} b+a^{2} b^{3}-10 a b^{3}+2 b^{4}$. Answer arranged according to the decreasing powers of a.

$$
\begin{array}{rlr}
\text { (202) (a) } 3 a-2 b+3 c \\
2 a-8 b-c \\
\hline
\end{array} \text { becomes } \begin{array}{r}
3 a-2 b+3 c \\
\frac{-2 a+8 b+c}{a+6 b+4 c}
\end{array}
$$

when the signs of the subtrahend are changed. Now, adding each term (with its sign changed) in the subtrahend to its corresponding term in the minuend, we have $(-2 a)+$ $(3 a)=a ;(+8 b)+(-2 b)=+6 b ;(+c)+(3 c)=+4 c$. Hence, $a+6 b+4 c$ equals the difference. Ans.
(b) $2 x^{3}-3 x^{2} y+2 x y^{3}$

$$
\begin{aligned}
& \quad \begin{array}{l}
x^{3}-y^{3}-x y^{3} \text { becomes } \\
\\
\\
\\
\frac{-x^{3}-3 x^{2} y+2 x y^{3}}{x^{3}-3 x^{2} y+2 x y^{2}-y^{2}+x y^{2}}-x y^{2}
\end{array}
\end{aligned}
$$

when the signs of the subtrahend are changed. Adding each term in the subtrahend (with its sign changed) to its corresponding term in the minuend, we have $x^{3}-3 x^{2} y+$ $2 x y^{2}-y^{3}+x y^{2}$, which, arranged according to the decreasing powers of x, equals $x^{3}-3 x^{2} y+x y^{2}+2 x y^{3}-y^{3}$. Ans.

$$
\begin{align*}
& 14 a+4 b-6 c-3 a \tag{c}\\
& 11 a-2 b+4 c-4 a \\
& \hline
\end{align*}
$$

On changing the sign of each term in the subtrahend, the problem becomes

$$
\begin{array}{r}
14 a+4 b-6 c-3 d \\
-11 a+2 b-4 c+4 d \\
\hline 3 a+6 b-10 c+d
\end{array}
$$

Adding each term of the subtrahend (with the sign changed) to its corresponding term in the minuend, the difference, or result, is $3 a+6 b-10 c+d$. Ans.
(203) The numerical values of the following, when a $=16, b=10$, and $x=5$, are :
(a) $\left(a b^{2} x+2 a b x\right) 4 a=\left(16 \times 10^{2} \times 5+2 \times 16 \times 10 \times 5\right)$ $\times 4 \times 16$. It must be remembered that when no sign is expressed between symbols or quantities, the sign of multiplication is understood.
$(16 \times 100 \times 5+2 \times 16 \times 10 \times 5) \times 64=(8,000+1,600)$ $\times 64=9,600 \times 64=614,400$. Ans.
(b) $2 \sqrt{4 a}-\frac{2 b x}{a-b}+\frac{b-x}{x}=2 \sqrt{64}-\frac{2 \times 10 \times 5}{16-10}+$ $\frac{10-5}{5}=16-\frac{100}{6}+1=\frac{96-100+6}{6}=\frac{2}{6}=\frac{1}{3} . \quad$ Ans.
(c) $(b-\sqrt{a})\left(x^{3}-b^{2}\right)\left(a^{2}-b^{2}\right)=(10-\sqrt{16})\left(5^{3}-10^{2}\right)$ $\left(16^{2}-10^{2}\right)=(10-4)(125-100)(256-100)=6 \times 25 \times$ $156=23,400 . \quad$ Ans.
(204) (a) Dividing both numerator and denominator by $15 m x y^{2}, \frac{15 m x y^{2}}{75 m x^{2} y^{2}}=\frac{1}{5 x y}$. Ans.
(b) $\frac{x^{2}-1}{4 x(x+1)}=\frac{(x+1)(x-1)}{4 x(x+1)}$ when the numerator is factored.

Canceling $(x+1)$ from both the numerator and denominator (Art. $\mathbf{4 8 4}$), the result is $\frac{x-1}{4 x}$. Ans.
(c) $\frac{\left(a^{3}+b^{3}\right)\left(a^{2}+a b+b^{2}\right)}{\left(a^{3}-b^{3}\right)\left(a^{2}-a b+b^{2}\right)}$ when factored becomes

$$
\frac{(a+b)\left(a^{2}-a b+b^{2}\right)\left(a^{2}+a b+b^{2}\right)}{(a-b)\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right)} \quad \text { (Art. 466.) }
$$

Canceling the factors common to both the numerator and denominator, we have

$$
\begin{aligned}
& \frac{(a+b)\left(a^{2}-a b+b^{2}\right)\left(a^{2}+a b+b^{2}\right)}{(a-b)\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right)}=\frac{a+b}{a-b} \quad \text { Ans. } \\
& a+b) a^{3}+b^{3}\left(a^{2}-a b+b^{2} \quad a-b\right) a^{3}-b^{3}\left(a^{2}+a b+b^{2}\right. \\
& \frac{a^{3}+a^{2} b}{-a^{2} b+b^{3}} \\
& \frac{a^{3}-a^{2} b}{a^{2} b-b^{3}} \\
& -a^{2} b-a b^{2} \\
& a b^{2}+b^{3} \\
& a^{2} b-a b^{2} \\
& a b^{2}+b^{3} \\
& a b^{2}-b^{2} \\
& a b^{2}-b^{3} \\
& \text { (205) (a) } \frac{\frac{1}{1-x}-\frac{1}{1+x}}{\frac{1}{1-x}+\frac{1}{1+x}}=\frac{\frac{1+x-1+x}{1-x^{2}}}{\frac{1+x+1-x}{1-x^{2}}}=\frac{2 x}{1-x^{2}} \div \\
& \frac{2}{1-x^{2}}=\frac{2 x}{1-x^{2}} \times \frac{1-x^{2}}{2}=x \text {. Ans. (See Art. 509.) } \\
& \text { (b) } \\
& \frac{\frac{a^{2}}{b^{3}}+\frac{1}{a}}{\frac{a}{b^{2}}-\frac{a-b}{a b}}=\frac{\frac{a^{3}+b^{3}}{a b^{3}}}{\frac{a^{2} b-b^{2}(a-b)}{a b^{3}}}=\frac{\frac{a^{3}+b^{3}}{a b^{3}}}{\frac{a^{2} b-a b^{2}+b^{3}}{a b^{3}}}= \\
& \frac{a^{2}+b^{2}}{a b^{3}} \div \frac{a^{2} b-a b^{2}+b^{2}}{a b^{3}}=\frac{a^{3}+b^{3}}{a b^{3}} \times \frac{a b^{3}}{b\left(a^{2}-a b+b^{2}\right)}=\frac{a+b}{b} . \\
& \text { Ans. } \\
& \text { (c) } \\
& \frac{1}{x+\frac{1}{1+\frac{x+1}{3-x}}}=\frac{1}{x+\frac{3-x}{4}}=\frac{4}{3 x+3} \text {. Ans. }
\end{aligned}
$$

(206) $\frac{3+2 x}{2-x}-\frac{2-3 x}{2+x}+\frac{16 x-x^{2}}{x^{2}-4}$. If the denominator of the third fraction were written $4-x^{2}$, instead of $x^{2}-4$, the common denominator would then be $t-x^{2}$.

$$
\text { By Art. } 482, \frac{16 x-x^{2}}{-^{2}} \frac{-4}{-2} \text { becomes }-\frac{16 x-x^{2}}{-x^{2}+4}=-\frac{16 x-x^{2}}{4-x^{2}} .
$$

Hence, $\frac{3+2 x}{z-x}-\frac{2-3 x}{z+x}-\frac{16 x-x^{2}}{4-x^{2}}$, when reduced to a common denominator, becomes

$$
\begin{gathered}
\frac{(3+2 x)(2+x)-(2-3 x)(2-x)-\left(16 x-x^{2}\right)}{4-x^{2}}= \\
\frac{\left(6+7 x+2 x^{2}\right)-\left(4-8 x+3 x^{2}\right)-\left(16 x-x^{2}\right)}{4-x^{2}}
\end{gathered}
$$

Removing the parentheses (Art. 405), we have

$$
\frac{6+7 x+2 x^{2}-4+8 x-3 x^{2}-16 x+x^{2}}{4-x^{2}}
$$

Combining like terms in the numerator, we have

$$
\frac{2-x}{4-} \frac{x}{x^{2}} .
$$

Factoring the denominator by Art. 463, we have

$$
\frac{2-x}{(2+x)(2-x)}
$$

Canceling the common factor $(2-x)$, the result equals

$$
\begin{equation*}
\frac{1}{2+x}, \text { or } \frac{1}{x+2} . \quad \text { Ans. } \tag{Art.373.}
\end{equation*}
$$

(207) (a)
$1+2 x-\frac{4 x-4}{5 x}=\frac{5 x+10 x^{2}-4 x+4}{5 x}=\frac{10 x^{2}+x+4}{5 x}$. Ans. (Art. 504.)
(b) $\frac{3 x^{2}+2 x+1}{x+4}=3 x-10+\frac{41}{x+4}$. Ans. (Art. 505.)

$$
\begin{aligned}
& x+4) \begin{array}{l}
3 x^{2}+2 x+1\left(3 x-10+\frac{41}{x+4}\right. \\
\\
\frac{3 x^{2}+12 x}{}-10 x+1 \\
\end{array} \quad-10 x-40
\end{aligned}
$$

41
(c) Reducing, the problem becomes

$$
\frac{x^{2}+4 x-5}{x^{2}} \times \frac{x-7}{x^{2}-8 x+7}
$$

Factoring, we have

$$
\frac{(x+5)(x-1)}{x^{2}} \times \frac{x-7}{(x-1)(x-7)} .
$$

Canceling common factors, the result equals $\frac{x+5}{x^{2}}$. Ans.
(208) (a) Writing the work as follows, and canceling common factors in both numerator and denominator (Arts. 496 and 497), we have

$$
\begin{gathered}
\frac{9 m^{2} n^{2}}{8 p^{3} q^{3}} \times \frac{5 p^{2} q}{2 x y} \times \frac{24 x^{2} y^{2}}{90 m n}= \\
\frac{9 \times 5 \times 24 \times m^{2} n^{2} p^{2} q x^{2} y^{2}}{8 \times 2 \times 90 \times m \times n \times p^{3} \times q^{3} \times x \times y}=\frac{3 m n x y}{4 p q^{2}} . \quad \text { Ans. }
\end{gathered}
$$

(b) Factoring the numerators and denominators of the fraction (Art. 498), and writing the factors of the numerators over the factors of the denominators, we have

$$
\begin{gathered}
\frac{(a-x)\left(a^{2}+a x+x^{2}\right)(a+x)(a+x)}{(a+x)\left(a^{2}-a x+x^{2}\right)(a-x)(a-x)}= \\
\frac{(a+x)\left(a^{2}+a x+x^{2}\right)}{(a-x)\left(a^{2}-a x+x^{2}\right)} . \text { Ans. }
\end{gathered}
$$

(c) This problem may be written as follows, according to Art. 480 :

$$
\frac{3 a x+4}{1} \times \frac{a^{2}}{a(3 a x+4)(3 a x+4)}
$$

Canceling a and (3ax+4), we have $\frac{a}{3 a x+4}$. Ans.
(209)

$$
\text { (a) }-7 m y \frac{35 m^{3} y+28 m^{2} y^{2}-14 m y^{3}}{-5 m^{2}-4 m y+2 y^{2}}
$$

Ans. (Art. 442.)
(b) $a^{4} \frac{4 a^{4}-3 a^{5} b-a^{6} b^{2}}{4-3 a b-a^{2} b^{2}}$ Ans.
(c) $4 x^{2} \frac{4 x^{-3}-8 x^{-5}+12 x^{7}-16 x^{9}}{x-3 x^{3}+3 x^{-5}-4 x^{7}}$ Ans.
(210) (a) $16 a^{2} b^{3} ; a^{4}+4 a b ; 4 a^{2}-16 a^{3} b+5 a^{6}+7 a x$.
(b) Since the terms are not alike, we can only indicate the sum, connecting the terms by their proper signs. (Art. 389.)
(c) Multiplication: $4 a c^{2} d$ means $4 \times a \times c^{2} \times d$. (Art. 358.)
(211) $\frac{a^{2}+c^{2}+a c}{a^{2}+b^{2}-c^{2}-2 a b} \times \frac{a^{2}+c^{2}-b^{2}-2 a c}{a^{4} c-a c^{4}}$.

Arranging the terms, we have

$$
\frac{a^{2}+a c+c^{2}}{a^{2}-2 a b+b^{2}-c^{2}} \times \frac{a^{2}-2 a c+c^{2}-b^{2}}{a^{4} c-a c^{4}}
$$

which, being placed in parentheses, become

$$
\frac{a^{2}+a c+c^{2}}{\left(a^{2}-2 a b+b^{2}\right)-c^{2}} \times \frac{\left(a^{2}-2 a c+c^{2}\right)-b^{2}}{a^{4} c-a c^{4}}
$$

By Art. 456, we know that $a^{2}-2 a b+b^{2}$, also $a^{2}-2 a c$ $+c^{2}$, are perfect squares, and may be written $(a-b)^{2}$ and $(a-c)^{2}$.

Factoring $a^{4} c-a c^{4}$ by Case I, Art. 452, we have

$$
\begin{gathered}
\frac{a^{2}+a c+c^{2}}{(a-b)^{2}-c^{2}} \times \frac{(a-c)^{2}-b^{2}}{a c\left(a^{3}-c^{3}\right)}= \\
\frac{a^{2}+a c+c^{2}}{(a-b-c)(a-b+c)} \times \frac{(a-c-b)(a-c+b)}{a c(a-c)\left(a^{2}+a c+c^{2}\right)}
\end{gathered}
$$

(Arts. 463 and 466.)
Canceling common factors and multiplying, we have

$$
\frac{a-c+b}{(a-b+c) a c(a-c)} \text {, or } \frac{a+b-c}{a c(a-b+c)(a-c)} . \quad \text { Ans. }
$$

(212) The square root of the fraction a plus b plus c divided by n, plus the square root of a, plus the fraction b plus c divided by n, plus the square root of a plus b, plus the fraction c divided by n, plus the quantity a plus b, into c, plus a plus $b c$.
(213)

$$
\text { (a) } \frac{4 x+5}{3}-\frac{3 x-y}{5 x}+\frac{9}{12 x^{2}} \text {. }
$$

We will first reduce the fractions to a common denominator. The L. C. M. of the denominator is $60 x^{2}$, since this is the smallest quantity that each denominator will divide without a remainder. Dividing $60 x^{2}$ by 3 , the first denominator, the quotient is $20 x^{2}$; dividing $60 x^{2}$ by $5 x$, the second denominator, the quotient is $12 x$; dividing $60 x^{2}$ by $12 x^{2}$, the third denominator, the quotient is 5. Multiplying the corresponding numerators by these respective quotients, we obtain $20 x^{2}(4 x+5)$ for the first new numerator ; $12 x(3 x-7)$ for the second new numerator, and $5 \times 9=45$ for the third new numerator. Placing these new numerators over the common denominator and expanding the terms, we have
$\frac{20 x^{2}(4 x+5)-12 x(3 x-7)+45}{60 x^{2}}=\frac{80 x^{2}+100 x^{2}-36 x^{2}+84 x+45}{60 x^{2}}$.
Collecting like terms, the result is

$$
\frac{80 x^{3}+64 x^{2}+84 x+45}{60 x^{2}}
$$

(b) In $\frac{1}{2 a(a+x)}+\frac{1}{2 a(a-x)}$, the L. C. M. of the denominators is $2 a\left(a^{2}-x^{2}\right)$, since this is the smallest quantity that each denominator will divide without a remainder. Dividing $2 a\left(a^{2}-x^{2}\right)$ by $2 a(a+x)$, the first denominator, we will have $a-x$; dividing $2 a\left(a^{2}-x^{2}\right)$ by $2 a(a-x)$, the second denominator, we have $a+x$. Multiplying the corresponding numerators by these respective quotients, we have $(a-x)$ for the first new numerator, and $(a+x)$ for the second new numerator. Arranging the work as follows:

$$
\begin{aligned}
& 1 \times(a-x)=a-x=1 \text { st numerator. } \\
& 1 \times(a+x)=a+x=2 \text { d numerator. }
\end{aligned}
$$

or $2 a=$ the sum of the numerators.
Placing the $2 a$ over the common denominator $2 a\left(a^{2}-x^{2}\right)$, we find the value of the fraction to be

$$
\frac{2 a}{2 a\left(a^{2}-x^{2}\right)}=\frac{1}{a^{2}-x^{2}} . \quad \text { Ans. }
$$

(c) $\frac{x}{y}+\frac{y}{x+y}+\frac{x^{2}}{x^{2}+x y}=\frac{x}{y}+\frac{y}{x+y}+\frac{x}{x+y}$.

The common denominator $=y(x+y)$. Reducing the fractions to a common denominator, we have

$$
\frac{x\left(x+y^{\prime}\right)+y^{2}+x y^{\prime}}{y^{\prime}\left(x+y^{\prime}\right)}=\frac{x^{2}+2 x y+y^{2}}{y^{\prime}\left(x+y^{\prime}\right)}=\frac{x+y}{y} . \quad \text { Ans. }
$$

(214) (a) Apply the method of Art. 474:

$6 a x$	$18 a x^{2}$,	$72 a y^{2}$,	$12 x y$
$2 y$	$3 x$,	$12 y^{2}$,	$2 y$
3	$3 x$,	$6 y$,	1
x,	$2 y$,	1	

Whence, $6 a x \times 2 y \times 3 \times x \times 2 y=\% a x^{2} y^{2}$. Ans.

Hence, L. C. M. $=2(1+x) \times 2(1-x)=4\left(1-x^{2}\right)$. Ans.
(c) $\begin{array}{r}a-b \\ b-c \\ c-a\end{array} \left\lvert\, \frac{\frac{(a-b)(b-c),(b-c)(c-a),(c-a)(a-b)}{(b-c),(b-c)(c-a),(c-a)}}{\left.\frac{1,}{} \frac{c-a, c-a}{1,}\right)}\right.$

Hence, L. C. M. $=(a-b)(b-c)(c-a)$. Ans
(215) $3 x^{6}-3+a-a x^{-6}=(3-a) x^{6}-3+a=$ (3-a) $\left(x^{6}-1\right)$. Regarding $x^{6}-1$ as $\left(x^{2}\right)^{2}-1$, we have, by Art. 462, $x^{6}-1=\left(x^{2}\right)^{2}-1=\left(x^{3}-1\right)\left(x^{3}+1\right) . x^{2}-1=$ $(x-1)\left(x^{2}+x+1\right) ; x^{3}+1=(x+1)\left(x^{2}-x+1\right)$. Art.

466.

Hence, the factors are

$$
\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)(x+1)(x-1)(3-a) . \quad \text { Ans. }
$$

(216) Arranging the terms according to the decreasing powers of x, and extracting the square root, we have
$\quad x^{4}+x^{3} y+4 \frac{1}{4} x^{2} y^{2}+2 x y^{3}+4 y^{4}\left(x^{2}+\frac{1}{2} x y+2 y^{2}\right.$. Ans.

$2 x^{2}+\overline{\frac{1}{2} x y |$| $x^{2} y+4 \frac{1}{4} x^{2} y^{2}$ |
| :--- |
| $x^{3} y+\frac{1}{4} x^{2} y^{2}$ |$}$

$2 x^{2}+x y+2 y^{2} |$| $4 x^{2} y^{2}+2 x y^{2}+4 y^{4}$ |
| :--- |
| $4 x^{2} y^{2}+2 x y^{2}+4 y^{4}$ |

(217) The arithmetic ratio of $x^{4}-1$ to $x+1$ is $x^{4}-1-$ $(x+1)=x^{4}-x-2 . \quad$ Art. 381 .

The geometric ratio of $x^{4}-1$ to $x+1$ is $\frac{x^{4}-1}{x+1}=x^{3} \cdots x^{2}$ $+x-1=\left(x^{2}+1\right)(x-1)$. Ans.

A LGEBRA.

(QUESTIONS 218-257.)
(218) (a) According to Art. 528, $x^{\frac{3}{3}}$ expressed radically is $\sqrt[4]{x^{3}}$;

$$
3 x^{-\frac{1}{2}} y^{-\frac{3}{2}} \text { expressed radically is } 3 \sqrt{x y^{-3}} ;
$$

$$
3 x^{\frac{1}{3}} y^{\frac{8}{8}} z^{3}=3 \sqrt[6]{x y^{-5} z^{2}}, \text { since } z^{\frac{1}{2}}=z^{\frac{3}{6}} . \quad \text { Ans. }
$$

(b) $a^{-1} b^{\frac{1}{2}}+\frac{c^{-2}}{a+b}+(m-n)^{-1}-\frac{a^{2} b^{-2} c}{c^{-3}}=$

$$
\frac{b^{\frac{1}{2}}}{a}+\frac{1}{c^{2}(a+b)}+\frac{1}{m-n}-\frac{a^{2} c^{4}}{b^{2}} . \quad \text { Ans. }
$$

(c) $\sqrt[7]{x^{6}}=x^{\frac{7}{2}}$. Ans. $\sqrt[3]{x^{-4}}=x^{-4}$. Ans.

$$
\left(\sqrt[4]{b^{5} x^{2}}\right)^{3}=\left(b^{\frac{4}{4} x^{4}}\right)^{3}=b^{15} x^{\frac{3}{3}} . \text { Ans. }
$$

(219) $3 \sqrt{21}=\sqrt{189}$. Ans. (Art. 542.)
$a^{2} b \sqrt{b^{3} c}=\sqrt{a^{4} b^{5} c}$. Ans. $\quad 2 x \sqrt[5]{x}=\sqrt[5]{32 x^{6}}$. Ans.
(220)

Let $x=$ the length of the post.
Then, $\frac{x}{5}=$ the amount in the earth.

$$
\frac{3 x}{7}=\text { the amount in the water. }
$$

$$
\frac{x}{5}+\frac{3 x}{7}+13=x .
$$

$$
7 x+15 x+455=35 x
$$

$$
-13 x=-455
$$

$$
x=35 \text { feet. Ans. }
$$

(221) $t=\frac{W_{1} s_{1} t_{1}+W_{2} s_{2} t_{2}}{W_{1} s_{1}+W_{2} s_{2}}$.

In order to transform this formula so that t_{2} may stand alone in the first member, we must first clear of fractions. Clearing of fractions, we have

$$
t W_{1} s_{1}+t W_{2} s_{2}=W_{1} s_{1} t_{1}+W_{2} s_{2} t_{2}
$$

Transposing, we have

$$
-W_{2} s_{2} t_{2}=W_{1} s_{1} t_{1}-t W_{1} s_{1}-t W_{2} s_{2} .
$$

Factoring (Arts. 452 and 408), we have

$$
-W_{2} s_{2} t_{2}=W_{1} s_{1} t_{1}-\left(W_{1} s_{1}+W_{2} s_{2}\right) t
$$

whence, $\quad t_{2}=\frac{\left(W_{1} s_{1}+W_{2} s_{2}\right) t-W_{1} s_{1} t_{1}}{W_{2} s_{2}}$. Ans.
(222) Let $x=$ number of miles he traveled per hour.

Then, $\quad \frac{48}{x}=$ time it took him.

$$
\begin{aligned}
\frac{48}{x+4}= & \text { time it would take him if he traveled } t \\
& \text { miles more per hour. }
\end{aligned}
$$

In the latter case the time would have been 6 hours less; whence, the equation

$$
\frac{48}{x+4}=\frac{48}{x}-6
$$

Clearing of fractions,

$$
48 x=48 x+192-6 x^{2}-24 x
$$

Combining like terms and transposing,

$$
6 x^{2}+24 x=192
$$

Dividing by $6, \quad x^{2}+4 x=32$.
Completing the square, $x^{2}+4 x+4=36$.
Extracting square root, $\quad x+2= \pm 6$; whence, $\quad x=-2+6=4$, or the number of miles he traveled per hour. Ans.
(223) (a)

$$
S=\sqrt[3]{\frac{C P D^{2}}{f\left(z+\frac{D^{2}}{d^{2}}\right)}}=\sqrt[3]{\frac{C P D^{2}}{a f+\frac{f D^{2}}{d^{2}}}}
$$

Cubing both members to remove the radical,

$$
S^{3}=\frac{C P D^{2}}{2 f+\frac{f D^{2}}{d^{2}}}
$$

Simplifying the result, $S^{2}=\frac{C P D^{2} d^{2}}{\otimes f d^{2}+f D^{2}}$.

Clearing of fractions,

$$
2 S^{2} f d^{2}+S^{3} f D^{2}=C P D^{2} d^{2}
$$

Transposing, $C P P D^{2} d^{2}=2 S^{3} f d^{2}+S^{2} f D^{2}$;
whence, $\quad P=\frac{2 S^{3} f d^{2}+S^{3} f D^{2}}{C D^{2} d^{2}}=\frac{\left(2 d^{2}+D^{2}\right) f S^{3}}{C D^{2} d^{2}}$. Ans.
(b) Substituting the values of the letters in the given formula, we have

$$
\begin{gathered}
P=\frac{\left(2 \times 1 \mathrm{~S}^{2}+30^{2}\right) \times 564 \times 6^{3}}{10 \times 30^{2} \times 18^{2}}=\frac{(648+900) \times 864 \times 216}{9,000 \times 324}= \\
\frac{288,893,95 \mathcal{2}}{2,916,000}=99.1, \text { nearly. Ans. }
\end{gathered}
$$

(224) (a) $3 x+6-2 x=7 x$. Transposing 6 to the second member, and $r x$ to the first member (Art. 561),

$$
3 x-2 x-7 x=-6
$$

Combining like terms, $\quad-6 x=-6$;

$$
\text { whence, } \quad x=1 . \quad \text { Ans. }
$$

$$
\begin{equation*}
5 x-(3 x-7)=4 x-(6 x-35) \tag{b}
\end{equation*}
$$

Removing the parentheses (Art. 405),

$$
5 x-3 x+7=4 x-6 x+35
$$

Transposing 7 to the second member, and $4 x$ and $-6 x$ to the first member, $5 x-3 x-4 x+6 x=35-\%$. (Art. 561.)

Combining like terms, $\quad 4 x=28$;
whence, $\quad x=28 \div 4=7$. Ans.
(c)

$$
(x+5)^{2}-(4-x)^{2}=21 x
$$

Performing the operations indicated, the equation becomes

$$
x^{2}+10 x+25-16+8 x-x^{2}=21 x
$$

Transposing, $x^{2}-x^{2}+10 x+8 x-21 x=16-25$.
Combining like terms,
Dividing by -3 ,

$$
\begin{aligned}
-3 x & =-9 \\
x & =3 . \quad \text { Ans. }
\end{aligned}
$$

(225) (a) Simplifying by Art. 538,

$$
\begin{gathered}
\sqrt{27}=\sqrt{9} \times \sqrt{3}=3 \sqrt{3} \\
2 \sqrt{48}=2 \sqrt{16} \times \sqrt{3}=8 \sqrt{3} \\
3 \sqrt{108}=3 \sqrt{36} \times \sqrt{3}=18 \sqrt{3} \\
\text { Sum }=29 \sqrt{3} . \quad \text { Ans. (Art. 544.) }
\end{gathered}
$$

(b) $\sqrt[3]{128}=\sqrt[3]{64} \times \sqrt[3]{2}=4 \sqrt[3]{2}$.

$$
\sqrt[3]{686}=\sqrt[3]{343} \times \sqrt[3]{2}=7 \sqrt[3]{2}
$$

$$
\sqrt[3]{16}=\sqrt[3]{8} \times \sqrt[3]{2}=2 \sqrt[3]{2}
$$

Sum $=13 \sqrt[3]{2}$. Ans. (Art. 544.)
(c) $\sqrt{\frac{3}{8}}=\sqrt{\frac{3}{8} \times \frac{2}{2}}=\sqrt{\frac{6}{16}}=\frac{1}{4} \sqrt{6}$. (Art. 540.)

$$
\begin{aligned}
& \sqrt{\frac{1}{6}}=\sqrt{\frac{1}{6} \times \frac{6}{6}}=\sqrt{\frac{6}{36}}=\frac{1}{6} \sqrt{6} . \\
& \sqrt{\frac{2}{2 \gamma}}=\sqrt{\frac{\partial}{27} \times \frac{3}{3}}=\sqrt{\frac{6}{81}}=\frac{1}{9} \sqrt{6} . \\
& \text { Sum }=\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{9}\right) \sqrt{6}=\frac{19}{36} \sqrt{6} . \quad \text { Ans. }
\end{aligned}
$$

(226) Let $x=$ the capacity.

$$
\text { Then, } x-42=\text { amount held at first; }
$$

$$
\begin{aligned}
7(x-42) & =x ; \\
7 x-294 & =x ; \\
6 x & =294 ; \\
x & =49 \text { gallons. Ans. }
\end{aligned}
$$

(227) (a) $\quad 2 \sqrt{3 x+4}-x=4$.

Transposing, Art. $\mathbf{5 7 9}$, so that the radical stands alone in the first member, $\quad 2 \sqrt{3 x+4}=x+4$.

Squaring both members, since the index of the radical is understood to be $2, \quad 4(3 x+4)=(x+4)^{2}$,

$$
\text { or } \quad 12 x+16=x^{2}+8 x+16 .
$$

Transposing and uniting terms,

$$
\begin{aligned}
-x^{2}-8 x+12 x & =16-16 . \\
-x^{2}+4 x & =0 .
\end{aligned}
$$

Dividing by $-x$,

$$
x-4=0 ;
$$

$$
\text { whence, } x=4 . \quad \text { Ans. }
$$

Squaring,

$$
\begin{equation*}
\sqrt{3 x-2}=2(x-4) \tag{b}
\end{equation*}
$$

$$
\begin{aligned}
3 x-2 & =4(x-4)^{2}, \\
\text { or } \quad 3 x-2 & =4 x^{2}-32 x+64 .
\end{aligned}
$$

Transposing, $-4 x^{2}+32 x+3 x=64+2$.
Combining terms, $-4 x^{2}+35 x=66$.
Dividing by $-4, \quad x^{2}-\frac{35 x}{4}=-\frac{66}{4}$.
Completing the square,

$$
\begin{aligned}
& x^{2}-\frac{35 x}{4}+\left(\frac{35}{8}\right)^{2}=-\frac{66}{4}+\frac{1,225}{64} \\
& x^{2}-\frac{35 x}{4}+\left(\frac{35}{8}\right)^{2}=-\frac{1,056}{64}+\frac{1,225}{64}=\frac{169}{64}
\end{aligned}
$$

Extracting the square root,

Transposing,

$$
\begin{aligned}
x-\frac{35}{8} & = \pm \frac{13}{8} . \\
x & =\frac{35}{8} \pm \frac{13}{8}=6, \text { or } 2 \frac{3}{4} . \quad \text { Ans. }
\end{aligned}
$$

(c) $\sqrt{x+16}=2+\sqrt{x}$ becomes $x+16=4+4 \sqrt{x}+x$, when squared. Canceling x (Art. 562), and transposing,

$$
\begin{aligned}
-4 \sqrt{x} & =4-16 . \\
-4 \sqrt{x} & =-12 . \\
\text { whence, } \quad \sqrt{x} & =3 \\
\text { a } & =3^{2}=9 . \quad \text { Ans. }
\end{aligned}
$$

(228) (a) $\quad \sqrt{3 x-5}=\frac{\sqrt{7 x^{2}+36 x}}{x}$.

Clearing of fractions,

$$
x \sqrt{3 x-5}=\sqrt{7 x^{2}+36 x} .
$$

Removing radicals by squaring,

$$
\begin{aligned}
x^{2}(3 x-5) & =7 x^{2}+36 x \\
3 x^{2}-5 x^{2} & =7 x^{2}+36 x .
\end{aligned}
$$

Dividing by $x, \quad 3 x^{2}-5 x=7 x+36$.
Transposing and uniting,

$$
3 x^{2}-12 x=36
$$

Dividing by 3 ,

$$
x^{2}-4 x=12
$$

Completing the square,

$$
x^{2}-4 x+4=16
$$

Extracting the square root,

$$
x-2= \pm 4
$$

$$
\text { whence, } \quad x=6, \text { or }-2 . \quad \text { Ans. }
$$

(b)

$$
x^{2}-(b-a) c=a x-b x+c x
$$

Transposing, $\quad x^{2}-a x+b x-c x=(b-a) c$.
Factoring, $\quad x^{2}-(a-b+c) x=b c-a c$.
Regarding $(a-b+c)$ as the coefficient of x, and completing the square,

$$
\begin{aligned}
& x^{2}-(a-b+c) x+\left(\frac{a-b+c}{2}\right)^{2}=b c-a c+\left(\frac{a-b+c}{2}\right)^{2} . \\
& x^{2}-(a-b+c) x+\left(\frac{a-b+c}{2}\right)^{2}= \\
& \frac{a^{2}-2 a b+b^{2}-2 a c+2 b c+c^{2} .}{4} \\
& x-\frac{a-b+c}{2}= \pm \frac{a-b-c}{2} \\
& x=\frac{2 a-2 b}{2}, \text { or } \frac{2 c}{2} \\
& x=a-b, \text { or } c . ~ A n s . ~
\end{aligned}
$$

(c) $(x-2)(x-4)-2(x-1)(x-3)=0$, becomes $x^{2}-6 x+8-2 x^{2}+8 x-6=0$, when expanded.
Transposing and uniting terms,

$$
-x^{2}+2 x=-2
$$

Changing signs,

$$
x^{2}-2 x=2
$$

Completing the square, $\quad x^{2}-2 x+1=3$. Extracting the square root, $\quad x-1= \pm \sqrt{3}$; whence, $\quad x=1 \pm \sqrt{3 .}$ Ans.

$$
\text { (229) (a) } \quad \sqrt{x-4 a b}=\frac{(a+b)(a-b)}{\sqrt{x}}
$$

Expanding and clearing of fractions,

$$
\sqrt{x^{2}-4 a b x}=a^{2}-b^{2}
$$

Squaring both members,

$$
x^{2}-4 a b x=a^{4}-2 a^{2} b^{2}+b^{4}
$$

Completing the square,

$$
\begin{aligned}
& x^{2}-4 a b x+4 a^{2} b^{2}=a^{4}+2 a^{2} b^{2}+b^{4} . \\
& x-2 a b= \pm\left(a^{2}+b^{2}\right) \\
& x=\left(a^{2}+2 a b+b^{2}\right) \\
& \text { or }-\left(a^{2}-2 a b+b^{2}\right) \\
& x=(a+b)^{2}, \text { or }-(a-b)^{2} . \text { Ans. }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& -\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x-1}}=\frac{1}{\sqrt{x^{2}-1}} \text { becomes } \\
& -\sqrt{x-1}+\sqrt{x+1}=1 \text { when cleared of fractions. }
\end{aligned}
$$

Squaring,

$$
\begin{aligned}
x-1-2 \sqrt{x^{2}-1}+x+1 & =1 \\
-2 \sqrt{x^{2}-1} & =1-2 x
\end{aligned}
$$

Squaring again, $\quad 4 x^{2}-4=1-4 x+4 x^{2}$.
Canceling $4 x^{2}$ and transposing,

$$
\begin{aligned}
4 x & =5 \\
x & =\frac{5}{4}=1 \frac{1}{4} \quad \text { Ans }
\end{aligned}
$$

(230)

$$
\begin{align*}
5 x-2 y & =51 \tag{1}\\
19 x-3 y & =180 \tag{2}
\end{align*}
$$

We will first find the value of x by transposing $-2 y$ to the second member of equation (1), whence $5 x=51+2 y$, and

$$
\begin{equation*}
x=\frac{51+2 y}{5} \tag{3}
\end{equation*}
$$

This gives the value of x in terms of y. Substituting the value of x for the x in (2), (Art. 609.)

$$
\frac{19\left(51+2 y^{\prime}\right)}{5}-3 y=180
$$

Expanding, $\quad \frac{969+38 y}{5}-3 y=180$.
Clearing of fractions, $969+38 y-15 y=900$.
Transposing and uniting,

$$
\begin{aligned}
23 y^{\prime} & =-69 . \\
y & =-3 . \quad \text { Ans. }
\end{aligned}
$$

Substituting this value in equation (3), we have

$$
x=\frac{51-6}{5}=9 . \quad \text { Ans. }
$$

(231) (a) $\quad 2 x^{2}-27 x=14$.

$$
\begin{aligned}
x^{2}-\frac{27 x}{2} & =7 \\
x^{2}-\frac{27 x}{2}+\left(\frac{27}{4}\right)^{2} & =7+\left(\frac{27}{4}\right)^{2}=\frac{841}{16} \\
x-\frac{27}{4} & = \pm \frac{29}{4} . \\
x & =\frac{56}{4}=14, \\
\text { or } \quad x & =-\frac{2}{4}=-\frac{1}{2} . \\
x & =14, \text { or }-\frac{1}{2} . \text { Ans }
\end{aligned}
$$

Hence,

$$
\begin{equation*}
x^{2}-\frac{2 x}{3}+\frac{1}{12}=0 \tag{b}
\end{equation*}
$$

Transposing, $\quad x^{2}-\frac{2 x}{3}=-\frac{1}{12}$.
Completing the square,

$$
x^{2}-\frac{2 x}{3}+\left(\frac{1}{3}\right)^{2}=-\frac{1}{12}+\frac{1}{9}=\frac{1}{36}
$$

Extracting the square root,

$$
x-\frac{1}{3}= \pm \frac{1}{6}
$$

Transposing,

$$
x=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}
$$

$$
\text { or } \quad x=\frac{1}{3}-\frac{1}{6}=\frac{1}{6}
$$

Therefore,

$$
x=\frac{1}{2} \text { or } \frac{1}{6} . \quad \text { Ans. }
$$

(c)

$$
x^{2}+a x=b x+a b
$$

Transposing and factoring,

$$
\begin{aligned}
x^{2}+(a-b) x & =a b . \\
x^{2}+(a-b) x+\left(\frac{a-b}{2}\right)^{2} & =a b+\left(\frac{a-b}{2}\right)^{2}= \\
\frac{4 a b+a^{2}-2 a b+b^{2}}{4} & =\frac{a^{2}+2 a b+b^{2}}{4}
\end{aligned}
$$

Extracting square root,

$$
\begin{aligned}
x+\frac{a-b}{2} & = \pm \frac{a+b}{2} \\
x & =-\frac{a-b}{2}+\frac{a+b}{2}=b, \\
\text { or } \quad x & =-\frac{a-b}{2}-\frac{a+b}{2}=-a . \\
x & =b, \text { or }-a . \text { Ans. }
\end{aligned}
$$

Therefore,
(232)

$$
\text { Let } x=\text { rate of current. }
$$

$y=$ rate of rowing.
Down stream, the rowers are aided by the current, so $x+y=12$.

Since it takes them twice as long to row a given distance "p stream as it does down stream, they will go only $\frac{1}{2}$ as far in 1 hour, or $\frac{1}{2}$ of $12=6$ miles per hour up stream.

Subtracting, \quad| $x+y$ | $=12$. |
| ---: | :--- |
| $-x+y$ | $=6 . \quad(1)$ |
| $2 x$ | $=6$, |\quad and $x=3$ miles per hour.

Ans.
(233) (a) $\frac{10 x+3}{3}-\frac{6 x-y}{2}=10(x-1)$.

Reducing the last member to a simpler form, the equation becomes

$$
\frac{10 x+3}{3}-\frac{6 x-y}{2}=10 x-10 .
$$

Clearing of fractions by multiplying each term of both members by 6 , the L. C. M. of the denominators, and changing the sign of each term of the numerator of the second fraction, since it is preceded by the minus sign (Art. 567), we have

$$
20 x+6-18 x+21=60 x-60
$$

Transposing terms, $20 x-18 x-60 x=-60-21-6$.
Combining like terms,

$$
-58 x=-87
$$

Changing signs,

$$
58 x=87 ;
$$

whence, $\quad x=\frac{8 \%}{58}=1 \frac{1}{2}$. Ans.

$$
\begin{equation*}
\left(a^{2}+x\right)^{2}=x^{2}=4 a^{2}+a^{4} . \tag{b}
\end{equation*}
$$

Performing the operation indicated in the first member, the equation becomes

$$
a^{4}+2 a^{2} x+x^{2}=x^{2}+4 a^{2}+a^{4} .
$$

Canceling x^{2} (Art. 562) and transposing,

$$
2 a^{2} x=4 a^{2}+a^{4}-a^{4} .
$$

Combining like terms, $2 a^{2} x=4 a^{2}$.
Dividing by $2 a^{2}, \quad x=2$. Ans.

$$
\begin{equation*}
\frac{x-1}{x-2}-\frac{x+1}{x+2}=\frac{3}{x^{2}-4} \tag{c}
\end{equation*}
$$

Clearing of fractions, the equation becomes

$$
(x-1)(x+2)-(x+1)(x-2)=3 .
$$

Expanding, $x^{2}+x-2-x^{2}+x+2=3$.
Uniting terms,

$$
2 x=3 .
$$

$$
x=\frac{3}{2}=1 \frac{1}{2} . \quad \text { Ans. }
$$

(234)

$$
\begin{align*}
11 x+3 y & =100 . \tag{1}\\
4 x-7 y & =4 . \tag{2}
\end{align*}
$$

Since the signs of the terms containing x in each equation are alike, x may be eliminated by subtraction. If the first equation be multiplied by 4 , and the second by 11 , the coefficients in each case will become equal. Hence,
Multiplying (1) by $4, \quad 44 x+12 y=400$.
Multiplying (2) by $11, \quad 44 x-77 y=44$.
Subtracting (4) from (3), $\quad \$ 9 y=356$.

$$
\begin{equation*}
y=4 . \quad \text { Ans. } \tag{4}
\end{equation*}
$$

Substituting this value for y in (2),

$$
\begin{aligned}
4 x-28 & =4 . \\
4 x & =32 . \\
x & =8 . \quad \text { Ans. }
\end{aligned}
$$

(235) (a)

$$
y^{\frac{2}{3}}=243 .
$$

Extracting fifth root of both terms,

$$
\begin{aligned}
y^{3} & =3 . \\
y & =3^{3}=27 . \quad \text { Ans } .
\end{aligned}
$$

Cubing both terms,
(b)

$$
\begin{aligned}
x^{10}+31 x^{5}-10 & =22, \\
\text { or } \quad x^{10}+31 x^{6} & =32 .
\end{aligned}
$$

Completing the square,

$$
\begin{aligned}
& x^{10}+31 x^{3}+\left(\frac{31}{2}\right)^{2}=32+\left(\frac{31}{2}\right)^{2} \\
& x^{10}+31 x^{3}+\left(\frac{31}{2}\right)^{2}=32+\frac{961}{4}=\frac{1,089}{4}
\end{aligned}
$$

Extracting square root, $\quad x^{5}+\frac{31}{2}= \pm \frac{33}{2}$.
Transposing,

$$
\begin{aligned}
& x^{b}=-\frac{31}{2}+\frac{33}{2}=\frac{2}{2}, \text { or } 1 \\
& x^{3}=-\frac{31}{2}-\frac{33}{2}=-\frac{64}{2}=-32
\end{aligned}
$$

whence, $x=\sqrt[5]{1}=1$,
or $x=\sqrt[5]{-32}=-2 . \quad$ Ans. (Art. 600.)
(c)

$$
x^{3}-4 x^{3}=96
$$

Completing the square,

$$
x^{3}-4 x^{2}+4=96+4=100
$$

Extracting square root, $x^{3}-2= \pm 10$.
Transposing and combining, $x^{2}=12$, or -8 .
But, $x^{3}=\sqrt{x^{3}}=12$, or -8.
Removing the radical, $\quad x^{3}=144$, or $(-8)^{2}$.

$$
\begin{aligned}
\sqrt[3]{144}=\sqrt[3]{8} \times \sqrt[3]{18} & =2 \sqrt[3]{18} . \quad(\text { Art. 538.) } \\
\sqrt[3]{(-8)^{2}} & =(-8)^{3}
\end{aligned}
$$

Hence,

$$
x=2 \sqrt[3]{18}, \text { or }(-8)^{\frac{3}{3}} . \quad \text { Ans. }
$$

(236) (a) The value of a^{0} is the same as 1. (Arts. 438 and 439.)
(b) $\frac{a^{0}}{a^{-1}}=a$. Ans. (Art. 530.)
(c) $\sqrt[7]{\left(3 x^{2}+5 x y^{3}+6 x^{2} y\right)^{7}}=3 x^{2}+5 x y^{3}+6 x^{2} y=3 \times 2^{2}+5$ $\times 2 \times 4^{3}+6 \times 2^{3} \times 4=12+640+96=748$, when $x=2$, and $y=4$. Ans.
(237) (a)

$$
\frac{6 x+1}{15}-\frac{2 x-4}{7 x-16}=\frac{2 x-1}{5}
$$

Clearing of fractions,

$$
(6 x+1)(7 x-16)-15(2 x-4)=3(2 x-1)(7 x-16)
$$

Removing parentheses and expanding,

$$
42 x^{2}-89 x-16-30 x+60=42 x^{2}-117 x+48
$$

Canceling $42 x^{2}$ (Art. 562) and transposing,

$$
117 x-89 x-30 x=16-60+48
$$

Combining terms,

$$
\begin{aligned}
-2 x & =4 . \\
x & =-2 . \quad \text { Ans. }
\end{aligned}
$$

$$
\begin{equation*}
\frac{a x^{2}}{c-b x}+a+\frac{a x}{b}=0 \tag{b}
\end{equation*}
$$

$$
a b x^{2}+a b c-a b^{2} x+a c x-a b x^{2}=0
$$

Transposing and uniting, $a c x-a b^{2} x=-a b c$.

$$
\begin{aligned}
a\left(c-b^{2}\right) x & =-a b c \\
x & =-\frac{a b c}{a\left(c-b^{2}\right)}
\end{aligned}
$$

Canceling the common factor a and changing two of the signs of the fraction (Art. $\mathbf{4 8 2}$),

$$
x=\frac{b c}{b^{2}-c} . \quad \text { Ans }
$$

(c)

$$
\frac{\sqrt{x}-3}{\sqrt{x}+7}=\frac{\sqrt{x}-4}{\sqrt{x}+1}
$$

Clearing of fractions,

$$
\begin{aligned}
(\sqrt{x}-3)(\sqrt{x}+1) & =(\sqrt{x}+\sqrt{x})(\sqrt{x}-4)= \\
x-2 \sqrt{x}-3 & =x+3 \sqrt{x}-28
\end{aligned}
$$

Transposing and canceling r (Art. 562),

$$
\begin{aligned}
-2 \sqrt{x}-3 \sqrt{x} & =3-28 \\
-5 \sqrt{x} & =-25 \\
\sqrt{x} & =5 . \\
x & =25 . \quad \text { Ans. }
\end{aligned}
$$

(238) (a) $\sqrt{\frac{3}{2}}$ by Art. $540=\sqrt{\frac{3}{2} \times \frac{2}{2}}=\sqrt{\frac{6}{4}}=\frac{1}{2} \sqrt{6}$.

Ans.
(b) $\frac{3}{11} \sqrt{\frac{4}{7}}=\frac{3}{11} \sqrt{\frac{4}{7} \times \frac{7}{7}}=\frac{3}{11} \times \frac{2}{7} \sqrt{7}=\frac{6}{77} \sqrt{7}$. Ans.
(c) $z \sqrt[3]{\frac{2 x}{z}}=z \sqrt[3]{\frac{2 x}{z} \times \frac{z^{2}}{z^{2}}}=\frac{z}{z} \sqrt[3]{2 x z^{2}}=\sqrt[3]{2 x z^{2}} . \quad$ Ans.
(239) (a) $\quad \frac{9 x+20}{36}=\frac{4(x-3)}{5 x-4}+\frac{x}{4}=$?

When the denominators contain both simple and compound expressions, it is best to remove the simple expressions first, and then remove each compound expression in order. Then, after each multiplication, the result should be reduced to the simplest form.

Multiplying both sides by 36 ,

$$
\begin{aligned}
9 x+20 & =\frac{144(x-3)}{5 x-4}+9 x \\
\text { or } \frac{144 x-432}{5 x-4} & =20
\end{aligned}
$$

Clearing of fractions,

$$
144 x-432=100 x-80
$$

Transposing and combining,

$$
\begin{aligned}
44 x & =352 \\
\text { whence, } \quad x & =8 . \quad \text { Ans. }
\end{aligned}
$$

(b) $\quad a x--\frac{3 a-b x}{\sim}=\frac{1}{2}$ becomes, when cleared of fractions,

$$
2 a x-3 a+b x=1
$$

Transposing and uniting terms,

$$
2 a x+b x=3 a+1
$$

Factoring,

$$
(2 a+b) x=3 a+1
$$

whence, $\quad x=\frac{3 a+1}{2 a+b}$. Ans.
(c) $a m-b-\frac{a x}{b}+\frac{x}{m}=0$, when cleared of fractions $=$

$$
a b m^{2}-b^{2} m-a m x+b x=0
$$

Transposing, $\quad b x-a m x=b^{2} m-a b m^{2}$.
Factoring, $\quad(b-a m) x=b m(b-a m)$;

$$
\text { whence, } \quad x=\frac{b m(b-a m)}{(b-a m)}=b m . \quad \text { Ans. }
$$

(240)

$$
\begin{align*}
x+y & =13 . \tag{1}\\
x y^{\prime} & =36 . \tag{2}
\end{align*}
$$

Squaring (1) we have

$$
\begin{equation*}
x^{2}+2 x y+y^{2}=169 \tag{3}
\end{equation*}
$$

Multiplying (: 2) by $4, \quad 4 x y=144$.
Subtracting (4) from (3),

$$
\begin{equation*}
x^{2}-2 x y+y^{2}=25 \tag{5}
\end{equation*}
$$

Extracting the square root of (5),

$$
\begin{align*}
x-y & = \pm 5 \tag{6}\\
2 x & =18 \text { or } 8 \\
x & =9 \text { or } 4 . \quad \text { Ans. }
\end{align*}
$$

Adding (6) and (1),
Substituting the value of x in (1),

$$
\begin{aligned}
& 9+y^{\prime}=13 \\
& \text { or } \quad 4+y^{\prime}=13
\end{aligned}
$$

$\left.\begin{array}{rl}\text { whence, } & y=4, \\ \text { or } & y=9 .\end{array}\right\}$ Ans.

$$
\begin{gather*}
x^{-3}-y^{2}=98 \tag{1}\\
x-y=2 \tag{2}
\end{gather*}
$$

From (2),

$$
\begin{equation*}
x=2+y . \tag{3}
\end{equation*}
$$

Substituting the ralue of x in (1),

$$
8+12 y+6 y^{2}+y^{2}-y^{3}=98
$$

Combining and transposing,

$$
\begin{aligned}
6 y^{2}+12 y & =90 \\
y^{2}+2 y^{\prime} & =15 \\
y^{2}+2 y^{\prime}+1 & =15+1=16 \\
y+1 & = \pm 4 . \\
y^{\prime} & =3, \text { or }-5 . \quad \text { Ans. }
\end{aligned}
$$

Substituting the value of y in (3), $x=5$, or -3 . Ans.
(242) Let $x=$ the whole quantity.

Then, $\frac{2 x}{3}+10=$ the quantity of niter.

$$
\frac{x}{6}-4 \frac{1}{2}=\text { the quantity of sulphur. }
$$

$\frac{1}{7}\left(\frac{2 x}{3}+10\right)-2=$ the quantity of charcoal.
Hence,

$$
x=\frac{2 x}{3}+10+\frac{x}{6}-4 \frac{1}{2}+\frac{1}{7}\left(\frac{2 x}{3}+10\right)-2 .
$$

Clearing of fractions and expanding terms,

$$
42 x=28 x+420+7 x-189+4 x+60-84
$$

Transposing,

$$
\begin{aligned}
42 x-28 x-7 x-4 x & =420-189+60-84 . \\
3 x & =207 . \\
x & =69 \mathrm{lb} . \quad \text { Ans. }
\end{aligned}
$$

(243) Let $x=$ number of revolutions of hind wheel.

Then, $51+x=$ number of revolutions of fore wheel.
Since, in making these revolutions both wheels traveled the same distance, we have

$$
\begin{aligned}
16 x & =14(51+x) . \\
16 x & =714+14 x . \\
2 x & =714 . \\
x & =357 .
\end{aligned}
$$

Since the hind wheel made 35% revolutions, and since the distance traveled for each revolution is equal to the circumference of the wheel, or 16 feet, the whole distance traveled $=357 \times 16 \mathrm{ft}$. $=5,712$ feet. Ans.
(244) (a) Transposing,

$$
\begin{aligned}
5 x^{2}-2 x^{2} & =24+9 . \\
3 x^{2} & =33 . \\
x^{2} & =11 .
\end{aligned}
$$

Uniting terms, $\quad 3 x^{2}=33$.

Extracting the square root of both members,

$$
x= \pm \sqrt{11} . \quad \text { Ans. }
$$

$$
\begin{equation*}
\frac{3}{4 x^{2}}-\frac{1}{6 x^{2}}=\frac{7}{3} . \tag{b}
\end{equation*}
$$

Clearing of fractions, $9-2=28 x^{2}$.
Transposing terms, $28 x^{2}=7$.

$$
x^{2}=\frac{1}{4} .
$$

Extracting the square root of both members.

$$
x= \pm \frac{1}{2} . \quad \text { Ans. }
$$

(c) $\frac{x^{2}}{5}-\frac{x^{2}-10}{15}=7-\frac{50+x^{2}}{25}$.

Clearing of fractions by multiplying each term of both members by 75, the L. C. M. of the denominators, and expanding,

$$
15 x^{2}-5 x^{2}+50=525-150-3 x^{2} .
$$

Transposing and uniting terms,

$$
13 x^{2}=325 .
$$

Dividing by $13, \quad x^{2}=\frac{325}{13}=25$,

$$
\text { or } \quad x= \pm 5 . \quad \text { Ans. }
$$

(245)

$$
\begin{array}{r}
4 x+3 y=48 \\
-3 x+5 y=22 \tag{2}
\end{array}
$$

From (1),

$$
\begin{equation*}
y=\frac{48-4 x}{3} \tag{3}
\end{equation*}
$$

From (2),

$$
\begin{equation*}
y=\frac{22+3 x}{5} . \tag{t}
\end{equation*}
$$

Placing (3) and (4) equal to each other,

$$
\frac{48-4 x}{3}=\frac{22+3 x}{5}
$$

Clearing of fractions,

$$
240-20 x=66+9 x .
$$

Transposing and uniting terms,

$$
\begin{aligned}
-29 x & =-174, \\
\text { or } \quad x & =6 . \quad \text { Ans. }
\end{aligned}
$$

Substituting this value in (4),

$$
y=\frac{22+18}{5}=8 . \quad \text { Ans. }
$$

(246) Let $x=$ speed of one.
$x+10=$ speed of other.
Then, $\frac{1,200}{x}=$ number of hours one train required.

$$
\left.\begin{array}{rl}
\frac{1,200}{x+10}=\text { number of hours other train required. } \\
\frac{1,200}{x} & =\frac{1,200}{x+10}+10 \\
1,200 x+12,000 & =1,200 x+10 x^{2}+100 x \\
-10 x^{2}-100 x & =-12,000 \\
10 x^{2}+100 x & =12,000 \\
x^{2}+10 x & =1,200 \\
x^{2}+10 x+25 & =1,200+25=1,225 \\
x+5 & = \pm 35 \\
x & =30 \text { miles per hour. } \\
x+10 & =40 \text { miles per hour. }
\end{array}\right\} \text { Ans. }
$$

(247) $2 x-\frac{y-3}{5}-4=0$
cleared of fractions, becomes

$$
\begin{align*}
3 y+\frac{x-2}{3}-9 & =0 \tag{1}\\
10 x-y+3-20 & =0 . \tag{2}\\
9 y+x-2-27 & =0 .
\end{align*}
$$

Transposing and uniting, $10 x-y=17$.

$$
\begin{equation*}
x+9 y=29 . \tag{3}
\end{equation*}
$$

Multiplying (4) by 10 and subtracting (3) from the result,

$$
\begin{aligned}
10 x+90 y & =290 \\
10 x-\quad y & =17 \\
\hline 91 y & =273 \\
y & =3 . \quad \text { Ans. }
\end{aligned}
$$

Substituting value of y in (4),

$$
\begin{aligned}
x+27 & =29 . \\
x & =2 . \quad \text { Ans. }
\end{aligned}
$$

(248)

$$
\begin{aligned}
& \text { (a) } \sqrt[3]{2} \times \sqrt[8]{3}=2^{\frac{1}{3}} \times 3^{\frac{1}{6}} \quad \text { (Art. 547.) } \\
& 2^{\frac{5}{6}} \times 3^{\frac{18}{6}}=\sqrt[16]{2^{5}} \times \sqrt[18]{3^{3}}=\sqrt[18]{32 \times 27}=\sqrt[16]{864} . \quad \text { Ans. }
\end{aligned}
$$

(b) $\begin{gathered}\sqrt[4]{2 a x} \times \sqrt[3]{a x^{2}}=(2 a x)^{\frac{1}{2}} \times\left(a x^{2}\right)^{\frac{1}{2}}=\sqrt[12]{8 a^{3} x^{3}} \times \sqrt[12]{a^{4} x^{8}}= \\ \sqrt[8 a^{7} x^{11}]{ } \text {. Ans. }\end{gathered}$
(c) $2 \sqrt{x y} \times 3 \sqrt[5]{x^{3} y}=2 \times 3(x y)^{\frac{1}{2}} \times\left(x^{3} y\right)^{\frac{1}{6}}=6 \sqrt[10]{x^{12} y^{2}} . \quad$ Ans.
(249) Let $x=$ the part of the work which they all can do in 1 day when working together.

Then, since $\frac{1}{7 \frac{1}{2}}=\frac{2}{15}, \quad \frac{1}{5}+\frac{1}{6}+\frac{2}{15}=x$;
or, clearing of fractions and adding,

$$
15=30 x, \text { and } x=\frac{1}{2}
$$

Since they can do $\frac{1}{2}$ the work in 1 day, they can do all of the work in 2 days. Ans.
(250) Let $x=$ value of first horse.

$$
y=\text { value of second horse. }
$$

If the saddle be put on the first horse, its value will be $x+10$. This value is double that of the second horse, or $2 y$, whence the equation, $x+10=2 y$.

If the saddle be put on the second horse, its value is $y+10$. This value is $\$ 13$ less than the first, or $x-13$, whence the equation, $y+10=x-13$.

$$
\begin{align*}
x+10 & =2 y \tag{1}\\
y+10 & =x-13 \tag{2}\\
x-2 y & =-10 \tag{3}\\
-x+y & =-23
\end{align*}
$$

Transposing, $\quad x-2 y=-10$.
Adding (3) and (4), $-y=-33$.
$y=\$ 33$, or value of second horse. Ans.
Substituting in (1), $x+10=66$;
or $x=\$ \check{6}$, or value of first horse. Ans.
(251)

Let $x=$ A's money.
$y=$ B's money.
If A should give $\mathrm{B} \$ 5$, A would have $x-5$, and $\mathrm{B}, y+5$. B would then have $\$ 6$ more than A, whence the equation,

$$
\begin{equation*}
y+5-(x-5)=6 \tag{1}
\end{equation*}
$$

But if A received $\$ 5$ from B , A would have $x+5$, and B , $y-5$, and 3 times his money, or $3(x+5)$, would be $\$ 20$ more than 4 times B's, or $4(y-5)$, whence the equation,

$$
\begin{equation*}
3(x+5)-4(y-5)=20 \tag{2}
\end{equation*}
$$

Expanding equations (1) and (2),

$$
\begin{align*}
y+5-x+5 & =6 \tag{3}\\
3 x+15-4 y+20 & =20 \tag{4}
\end{align*}
$$

Transposing and combining,

$$
\begin{align*}
y-x & =-4 \tag{5}\\
-4 y+3 x & =-15 \tag{6}
\end{align*}
$$

Multiplying (5) by 4 , and adding to (6),

$$
\begin{aligned}
4 y-4 x & =-16 \\
-4 y+3 x & =-15 \\
\hline-x & =-31 . \\
x & =31
\end{aligned}
$$

Substituting value of x in (5),

$$
\begin{aligned}
y-31 & =-4 \\
y & =27
\end{aligned}
$$

Hence,

$$
\left.\begin{array}{l}
x=\$ 31, \text { A's money } . \\
y=\$ 27, \text { B's money. }
\end{array}\right\} \text { Ans. }
$$

(252) (a)

$$
x^{2}-6 x=16
$$

Completing the square (Art. 597),

$$
x^{2}-6 x+9=16+9
$$

Extracting the square root, $x-3= \pm 5$.
Transposing,

$$
x=8, \text { or }-2 . \text { Ans. }
$$

(b)

$$
x^{2}-7 x=8
$$

$$
\begin{aligned}
x^{2}-7 x+\left(\frac{7}{2}\right)^{2} & =8+\left(\frac{7}{2}\right)^{2}=\frac{81}{4} \\
x-\frac{7}{2} & = \pm \frac{9}{2} \\
\text { whence, } \quad x & =8 \text {, or }-1 . \quad \text { Ans. }
\end{aligned}
$$

(c)

$$
9 x^{-2}-12 x=21
$$

Dividing by 9 ,

$$
\begin{array}{r}
x^{-2}-\frac{12 x}{9}=\frac{21}{9}, \\
\text { or } \quad x^{2}-\frac{4 x}{3}=\frac{7}{3} .
\end{array}
$$

Completing the square,

$$
x^{2}-\frac{4 x}{3}+\left(\frac{2}{3}\right)^{2}=\frac{\gamma}{3}+\frac{4}{9}=\frac{25}{9} .
$$

Extracting square root,

$$
x-\frac{2}{3}= \pm \frac{5}{3} .
$$

Transposing,

$$
x=\frac{2}{3}+\frac{5}{3}=\frac{7}{3},
$$

$$
\text { or } \quad x=\frac{2}{3}-\frac{5}{3}=-\frac{3}{3}=-1 .
$$

Therefore,

$$
x=\frac{7}{3}, \text { or }-1 . \quad \text { Ans. }
$$

(253) $\left(c^{-\frac{1}{-1}}\right)^{-\frac{1}{2}}=c^{3}$. Ans. (Art. 526, III.)

$$
\left(m \sqrt{n^{5}}\right)^{-\frac{1}{2}}=m^{-\frac{1}{2}}\left(n^{\mathbf{4}}\right)^{-\frac{1}{2}}=m^{-\frac{1}{n}} n^{-\frac{1}{2}}=\frac{1}{m^{2} n^{2}} . \quad \text { Ans. }
$$

$\left(c d^{-2}\right)^{\frac{1}{d}}=c^{\frac{1}{a}} d^{-\frac{2}{a}}$, or $\sqrt[a]{c d^{-2}}$, or $\sqrt[a]{\frac{c}{d^{2}}}$. Ans. (Art. 530.)

(254)

Let $x=$ number of quarts of 90 -cent wine in the mixture
$y=$ number of quarts of 50 -cent wine in the mixture

Multiplying (1) by 50 ,

$$
\begin{equation*}
50 x+50 y=3,000 . \tag{3}
\end{equation*}
$$

Subtracting (3) from (2),

$$
\begin{align*}
40 x & =1,500 ; \\
\text { whence, } \quad x & =3 \pi \frac{1}{2} \mathrm{qt.} \quad \text { Ans. } \tag{4}
\end{align*}
$$

Multiplying (1) by $90,90 x+90 y=5,400$
Subtracting (2), $\quad \begin{aligned} 90 x+50 y & =4,500 \\ 40 y & =900 ;\end{aligned}$
whence, $\quad y=22 \frac{1}{2} q \mathrm{qt}$. Ans.

$$
\begin{align*}
& \text { Then, } \quad x+y=60 \text {, } \tag{1}\\
& \text { and } 90 x+50 y=4,500=75 \times 60 \text {. } \tag{2}
\end{align*}
$$

(255) Let $x=$ the numerator of the fraction.
$y=$ the denominator of the fraction.
Then, $\frac{x}{y}=$ the fraction.
From the conditions, $\quad \frac{2 x}{y+7}=\frac{2}{3}$,

$$
\begin{equation*}
\text { and } \quad \frac{x+2}{2 y}=\frac{3}{5} . \tag{1}
\end{equation*}
$$

Clearing (1) and (2) of fractions, and transposing,

$$
\text { and } \quad \begin{align*}
& 6 x=2 y+14, \quad(3) \\
& 5 x=6 y-10 . \quad(4) \tag{4}
\end{align*}
$$

Solving for x,

$$
\begin{align*}
& x=\frac{2 y+14}{6}=\frac{y+7}{3} . \tag{5}\\
& x=\frac{6 y-10}{5} \tag{6}
\end{align*}
$$

Equating (5) and (6), $\quad \frac{y+7}{3}=\frac{6 y-10}{5}$.
Clearing of fractions, $\quad 5 y+35=18 y-30$
whence, $\quad 13 y=65$,

$$
\text { or, } \quad y=5
$$

Substituting this value of y in (3),

$$
6 x=10+14=24 ;
$$

whence, $x=4$.
Therefore, the fraction is $\frac{4}{5}$. Ans.
(256) Let $x=$ digit in tens place.

$$
y=\text { digit in units place. }
$$

Then $10 x+y=$ the number.
From the conditions of the example,

$$
\begin{aligned}
10 x+y=4(x+y) & =4 x+4 y ; \\
\text { whence, } \quad 3 y & =6 x \\
\text { or } \quad y & =2 x .
\end{aligned}
$$

From the conditions of the example,

$$
10 x+y+18=10 y+x
$$

$$
\text { whence, } \quad 9 y-9 x=18
$$

Substituting the value of y, found above,

$$
18 x-9 x=18 ;
$$

$$
\text { whence, } \quad x=2 \text {. }
$$

$$
y=2 x=4 .
$$

Hence, the number $=10 x+y=20+4=24$. Ans.
(257) Let $x=$ greater number.

$$
y=\text { less number. }
$$

Then,

$$
\begin{equation*}
x+4=3 \frac{1}{4} y, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } y+8=\frac{x}{2} \tag{2}
\end{equation*}
$$

Clearing of fractions, $4 x+16=13 y$,

$$
\text { and } 2 y+16=x ;
$$

$$
\begin{equation*}
\text { whence, } 13 y-4 x=16 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
2 y-x=-16 \tag{4}
\end{equation*}
$$

Multiplying (4) by 4, and subtracting from (3)

$$
\begin{aligned}
5 y & =80, \\
\text { or } \quad y & =16 . \text { Ans. }
\end{aligned}
$$

Substituting in (4), $\quad 32-x=-16$; whence, $x=48$. Ans.

LOGARITHMS.

(QUESTJONS 258-272.)
(258) First raise $\frac{200}{100}$ to the $.290 \% 8$ power. Since $\frac{200}{100}=2$, $\left(\frac{200}{100}\right)^{.29078}=2^{.29078}$, and $\log 2^{.29078}=.29078 \times \log 2=.29078 \times$ $.30103=.08753$. Number corresponding $=1.2233$. Then,

$$
1-\left(\frac{200}{100}\right)^{.29078}=1-1.2233=-.2233
$$

We now find the product required by adding the logarithms of $351.36,100,24$, and .2233 , paying no attention to the negative sign of . 2233 until the product is found. (Art.

647.)

$$
\begin{aligned}
\log 351.36 & =2.54575 \\
\log 100 & =2 \\
\log 24 & =1.38021 \\
\log .2233 & =\overline{1} .34889 \\
\operatorname{sum} & =\overline{5.27485}= \\
\log 351.36 \times 100 & \times 24\left(1-\left(\frac{200}{100}\right)^{.29078}\right)
\end{aligned}
$$

Number corresponding $=188,300$.
The number is negative, since multiplying positive and negative signs gives negative; and the sign of . 2233 is minus. Hence,

$$
x=-188,300 . \quad \text { Ans. }
$$

(259) (a) $\log 2,3 \% 6=3.37585$. Ans. (See Arts. 625 and 627.)
(b) Log. $6413=\overline{1} .80706$. Ans.
(c) $\log .0002507=\overline{4} .39915 . \quad$ Ans.
(260) (a) Apply rule, Art. 652.

$$
\begin{aligned}
\log 755.4 & =2.87818 \\
\log .00324 & =\overline{3} .51055 \\
\text { difference } & =\overline{5.36763}=\text { logarithm of quotient. }
\end{aligned}
$$

The mantissa is not found in the table. The next less mantissa is 36754 . The difference between this and the next greater mantissa is $773-754=19$, and the P. P. is $763-\% 54=9$. Looking in the P. P. section for the column headed 19 , we find opposite $9.5,5$, the fifth figure of the number. The fourth figure is 1 , and the first three figures 233 ; hence, the figures of the number are 23315 . Since the characteristic is $5,755.4 \div .00324=233,150$. Ans.
(b) Apply rule, Art. 652.

$$
\begin{aligned}
\log \quad .05555 & =\overline{2} \cdot 74468 \\
\log .0008601 & =\overline{4} \cdot 93455 \\
\text { difference } & =1.81013=\text { logarithm of quotient. }
\end{aligned}
$$

The number whose logarithm is 1.81013 equals 64.584 .
Hence, $.05555 \div .0008601=64.584$. Ans.
(c) Apply rule, Art. 652.

$$
\begin{aligned}
\log 4.62 & =.66464 \\
\log .6448 & =\overline{1} .80943 \\
\text { difference } & =.85521=\text { logarithm of quotient. }
\end{aligned}
$$

Number whose logarithm $=.85521=7.1648$.
Hence, $4.62 \div .6448=7.1648$. Ans.
(261)

$$
\left.\begin{array}{c}
x^{.74}=\frac{238 \times 1,000}{.0042^{.6802}} \\
\log 238=2.37658 \\
\log 1,000=3 . \\
\operatorname{sum}=5.37658
\end{array}\right] \log (238 \times 1,000) .
$$

$$
\begin{gathered}
.6602 \\
-\frac{-3}{-1.9806}=\text { characteristic. } \\
\text { Adding, } \quad .41147 \\
-\frac{1.9806}{\overline{2} .43087} \quad \text { (See Art. } \mathbf{6 5 9 .} \text {) }
\end{gathered}
$$

Then, $\log \left(\frac{238 \times 1,000}{.0042^{.6602}}\right)=5.37658-\overline{2} .43087=6.94571=$ $74 \log x$; whence, $\log x=\frac{6.945 \% 1}{.74}=9.38609 . \quad$ Number whose logarithm $=9.38609$ is $2,432,700,000=x . \quad$ Ans.
(262) $\quad \log .00743=\overline{3} .87099$.

$$
\log .006=\overline{3} .77815
$$

$\sqrt[5]{.00743}=\log .00743 \div 5$ (Art. 662), and $\sqrt[6]{.006}=\log$ $.006 \div .6$. Since these numbers are wholly decimal, we apply Art. 663.

$$
\frac{5) \overline{3} .87099}{\overline{1} .57419}=\log \sqrt[8]{.00743}
$$

The characteristic $\overline{3}$ will not contain 5 . We then add $\overline{2}$ to it, making $\overline{5} . \quad 5$ is contained in $\overline{5}, \overline{1}$ times. Hence, the characteristic is $\overline{1}$. Adding the same number, 2 , to the mantissa, we have 2.87099. $2.87090 \div 5=.57419$. Hence, $\log \sqrt[5]{.00743}=\overline{1} .57419$.
$.6) \overline{3.77515}$
$\overline{5}$.$\quad .6$ is contained in $\overline{3},-5$ times..
1.29691
sum $=-\overline{\overline{4} .29691}=\sqrt[6]{.006}$.

$$
\begin{aligned}
\log \sqrt[5]{.00743} & =\overline{1} .57419 \\
\log \sqrt[6]{.006} & =\overline{4} .29691 \\
\text { differcnce } & =\overline{3.27728}=\log \text { of quotient. }
\end{aligned}
$$

Number corresponding $=1,893.6$.
Hence, $\sqrt[b]{.00743} \div \sqrt[6]{.006}=1,893.6$. Ans.
(263) Apply rule, Art. 647.

$$
\begin{aligned}
\log 1,728 & =3.23754 \\
\log .00024 & =\overline{4} .38021 \\
\log .7462 & =\overline{1} .87286 \\
\log 302.1 & =2.48015 \\
\log 7.6094 & =.88135 \\
\text { sum } & =\frac{2.85211}{}=
\end{aligned}
$$

$\log (1,728 \times .00024 \times .7462 \times 302.1 \times 7.6094)$. Number whose logarithm is $2.85211=711.40$, the product. Ans.
(264) $\log \sqrt{5.954}=.7 \% 481 \div 2=.38741$

$$
\begin{aligned}
\log \sqrt[3]{61.19} & =1.78668 \div 3=\frac{.59556}{.9829 ?} \\
\text { sum } & =
\end{aligned}
$$

$\log \sqrt[5]{298.54}=2.47500 \div 5=.49500$.
Then, $\frac{\sqrt{5.954} \times \sqrt[3]{61.19}}{\sqrt[5]{298.54}}=\log (\sqrt{5.954} \times \sqrt[3]{61.19})-\log$ $\sqrt[5]{298.54}=.98297-.49500=.48797=$ logarithm of the required result.

Number corresponding $=3.0 \% 59$. Ans.
(265) $\quad \sqrt{.0532864}=\log .0532864 \div 7$.
$\log .0532864=\overline{2} .72661$.
Adding $\overline{5}$ to characteristic $\overline{2}=\overline{7}$.
Adding 5 to mantissa $=5 .{ }^{7} 2662$.
$\overline{7} \div 7=\overline{1}$.
$5.72661 \div 7=.81809$, nearly.
Hence, $\log \sqrt[3]{.0532864}=\overline{1} .81809$.
Number corresponding to $\log \overline{1} .81809=.65780$. Ans.
(266) (a) $32^{4.8}$. 1.5 .0515
$\log 32=1.50515$.

$$
\begin{array}{r}
\frac{4.8}{1204120} \\
\frac{602060}{7.224720}
\end{array}
$$

7.22472 is the logarithm of the required power. (Art. 657.)

Number whose logarithm $=7.294 \%$ is $16,77 \%, 000$.
Hence, $32^{4.4}=16,77^{77}, 000$. Ans.
(b) $.76^{3.02}$.
$\log .76=\overline{1} .88081 . \quad \overline{1}+.88081$
(See Arts. 658 and 659.) 3.62
176162
528486
264243
3.1585322
-3.62
$\overline{1.56553=} \log .37028$.
Hence, $.76^{3.62}=.37028$. Ans.
(c) $.84^{.3 n}$.
$\log .84=\overline{1} .92428 . \quad \overline{1}+.92428$
.38

$$
\begin{aligned}
& 7739424 \\
& 277284 \\
& \hline .3512264 \\
& -.38 \\
& \hline 1.97123=\log .93590 .
\end{aligned}
$$

Hence, $.84^{.38}=.93590$. Ans.
(267) $\log \sqrt[6]{\frac{1}{249}}-\log \sqrt[5]{\frac{23}{71}}=$ logarithm of answer.
$\log \sqrt[6]{\frac{1}{249}}=\frac{1}{6}(\log 1-\log 249)=\frac{1}{6}(0-2.39620)=-.39937$ $=($ adding +1 and -1$) \overline{1} .60063$.
$\log \sqrt[5]{\frac{23}{71}}=\frac{1}{5}(\log 23-\log 71)=\frac{1}{5}(1.361 \% 3-1.8 .512(j)=$ $\frac{1}{5}(-.48953)=-.098904 ;=($ adding +1 and -1$) \overline{1} .902094$, or $\overrightarrow{1} .90209$ when using 5 -place logarithms.

Hence, $\overline{1} .60063-\overline{1} .90209=\overline{1} .69854=\log .49950$. Therefore,

$$
\sqrt[6]{\frac{1}{24!}} \div \sqrt[5]{\frac{83}{21}}=.49!50
$$

(268) The mantissa is not found in the tadle. The next less mantissa is .81291 ; the difference between this and the
next greater mantissa is $298-291=7$, and the P. P. is $.81293-.81291=2$. Looking in the P. P. section for the column headed 7, we find opposite 2.1, 3, the fifth figure of the number; the fourth figure is 0 , and the first three figures, 650. Hence, the number whose logarithm is. 81293 is 6.5003 . Ans.
$\underline{2.52460}=$ logarithm of 334.65. Ans. (See Art. 640.)

1. $27631=$ logarithm of .18893 . Ans. We choose 3 for the fifth figure because, in the proportional parts colurnn headed $23,6.9$ is nearer 8 than 9.2.
(269) The most expeditious way of solving this example is the following:

$$
p v^{1.41}=p_{1} v_{1}^{1.41}, \text { or } v_{1}=\sqrt[1.41]{\frac{p v^{1.41}}{p_{1}}}=\sqrt[1.41]{\frac{p}{p_{1}}} .
$$

Substituting values given, $v_{1}=1.495 \sqrt[1.41]{\frac{134.7}{16.421}}$.
$\log v_{1}=\log 1.495+\frac{\log 134.7-\log 16.421}{1.41}=.17464+$ $\frac{2.12937-1.21540}{1.41}=.17464+.64821=.82285=\log 6.6504$; whence, $v_{1}=6.6504$. Ans.
(270) $\log \sqrt[5]{\frac{7.1895 \times 4,764.2^{2} \times 0.00326^{5}}{.000489 \times 457^{3} \times .576^{2}}}=\frac{1}{5}[\log 7.1895$
$+2 \log 4,764.2+5 \log .00326-(\log .000459+3 \log 457+2$ $\log .576)]=\frac{\overline{5} .77878-4.18991}{5}=\bar{W} .3177 \%=\log .020786$. Ans
$\log \% .1895=.85670$
$2 \log 4,764.2=2 \times 3.67 \% 99=7.35598$
$5 \log .00326=5 \times \overline{3} .51322=\overline{13} .56610$

$$
\operatorname{sum}=\overline{\overline{5} .778 \% 8}
$$

$\log .000489=\overline{4} .68931$
$3 \log 457=3 \times 2.65992=7.97976$
$2 \log .576=2 \times \overline{1} .76042=\overline{1} .52084$

$$
s u m=\overline{4.18991} .
$$

(271) Substituting the values given,

$$
p=\frac{960,000 \times\left(\frac{3}{16}\right)^{2.19}}{1700 \times 2.25}=\frac{8,000\left(\frac{3}{16}\right)^{2.18}}{2.25}
$$

$\log p=\log 8,000+2.18 \log \frac{3}{16}-\log 2.25=3.90: 309+2.18$ $(\log 3-\log 16)-.35218=3.55091+2.18 \times\left(.4^{77} 12-\right.$ $1.20412)=1.96605=\log 92.480$. Ans.
(272) Solving for $t, \quad t=\sqrt[2.18]{\frac{p l d}{960,000}}$.

Substituting values given,

$$
\begin{aligned}
& t=\sqrt[2.18]{\frac{160 \times 139 \times 2}{960,909}} \stackrel{2.18}{.044} . \\
& 6,090 \\
& \text { 3,0øø } \\
& \text { 1,000 } \\
& \log t=\frac{\log .044}{2.18}=\frac{\overline{2} .64345}{2.18}=\frac{-2.18+.82345}{2.18}= \\
& \overline{1} .37773=\log .23863 . \quad \text { Ans. }
\end{aligned}
$$

Geometry and Trigonometry.

(QUESTIONS 2~3-354.)
(273) When one straight line meets another straight line at a point between the ends, the sum of the two adjacent angles equals two right angles. Therefore, since one of the angles equals $\frac{4}{5}$ of a right angle, then, the other angle equals $\frac{10}{5}$, or two right angles, minus $\frac{4}{5}$. We have, then, $\frac{10}{5}-\frac{4}{5}=\frac{6}{5}$, or $1 \frac{1}{5}$ right angles.
(274) The size of one angle is $\frac{1}{6}$ of two right angles, or $\frac{1}{3}$ of a right angle.
(275) The pitch being 4, the number of teeth in the wheel equals 4×12, or 48 . The angle formed by drawing lines from the center to the middle points of two adjacent teeth equals $\frac{1}{48}$ of 4 right angles, or $\frac{1}{12}$ of a right angle.
(276) It is an isosceles triangle, since the sides opposite the equal angles are equal.
(277) An equilateral heptagon has seven equal sides; therefore, the length of the perimeter equals 7×3, or 21 inches.
(278) A regular decagon has 10 equal sides; therefore, the length of one side equals $\frac{40}{10}$, or 4 inches.
(279) The sum of all the interior angles of any polygon equals two right angles, multiplied by the number of sides
in the polygon, less two. As a regular dodecagon has 12 equal sides, the sum of the interior angles equals two right angles $\times 10(=12-2)$, or 20 right angles. Since there are 12 equal angles, the size of any one of them equals $20 \div 12$, or $1 \frac{2}{3}$ right angles.
(280) Equilateral triangle.
(281) No, since the sum of the two smaller sides is not greater than the third side.
(282) No, since the sum of the three smaller sides is not greater than the fourth side.

Fig. 1.
(283) Since the two angles A and C, Fig. 1, are equal, the triangle is isosceles, and a line drawn from the vertex B will bisect the line $A C$, the length of which is γ inches; therefore,

$$
A D=D C=\frac{7}{2}=3 \frac{1}{2} \text { in. Ans. }
$$

(284) The length of the line $=\sqrt{12^{2}-9^{2}}+\sqrt{15^{2}-9^{2}}$, or 19.94 inches.
(285) The sum of the three angles is equal to $\frac{8}{4}$, or 2 right angles; therefore, since the sum of two of them equals $\frac{5}{4}$ of a right angle, the third angle must equal $\frac{8}{4}-\frac{5}{4}$, or $\frac{3}{4}$ of a right angle.
(286) One of the angles of an equiangular octagon is equal to $\frac{1}{8}$ of 12 right angles, or $1 \frac{1}{2}$ right angles, since the sum of the interior angles of the equiangular octagon equals 12 right angles.
(287) The sum of the acute angles of a right-angled triangle equals one right angle; therefore, if one of them equals $\frac{5}{8}$ of a right angle, the other equals $\frac{8}{8}-\frac{5}{8}$, or $\frac{3}{8}$ of a right angle.
(288) (See Art. 734.)
(289) In Fig. $\underset{\sim}{2}, A B=4$ inches, and $A O=6$ inches. We first find the length of $D O . D O=\sqrt{\overline{O A^{2}}-\overline{D A^{2}}}$; but $\overline{O A^{2}}=6^{2}$, or 36 , and $\overline{D A^{2}}=\left(\frac{4}{2}\right)^{2}$ or 4 ; therefore, $D O=\sqrt{36-4}$, or 5.65%.
$D C=C O-D O$, or $D C=6-5.657$, or .343 inch. In the right-angled triangle $A D C$, we have $A C$, which is the chord of one-half the arc $A C B$, equals $\sqrt{2^{2}+.343^{2}}$, or 2.03 inches.

(290) The method of solving this is similar to the last problem.

$$
\begin{gathered}
D O=\sqrt{9-4}, \text { or } 2.236 . \quad D C=3-2.236=.764 \\
A C=\sqrt{2^{2}+. \overline{764^{2}}}, \text { or } 2.14 \text { inches } .
\end{gathered}
$$

(291) Let $H K$ of Fig. 3 be the section; then, $B I$ $=2$ inches, and $H K=6$ inches, to find $A B$. $H I(=3$

FIG. 3. inches) being a mean proportional between the segments $A I$ and $I B$, we have

$$
\begin{array}{r}
B I: H I:: H I: I A \\
\text { or } 2: 3:: 3: I A .
\end{array}
$$

Therefore, $\quad I A=4 \frac{1}{2}$.
$A B=A I+I B ;$ therefore, $A B=4 \frac{1}{2}+2$, or $6 \frac{1}{2}$ inches.
(292) Given $O C=5 \frac{3}{4}$ inches, and $O A=\frac{17}{2}$, or $8 \frac{1}{2}$ inches, to find $A B$ (see Fig. 4). $C A$, which is one-half the chord $A B$, equals

$$
\sqrt{\overline{O A^{2}}-\overline{O C^{2}}}
$$

therefore, $\quad C A=\sqrt{\left(8 \frac{1}{2}\right)^{2}-\left(5 \frac{3}{4}\right)^{2}}$, or 6.26 inches. Now, $A B=2 \times C A$; therefore, $A B=2 \times 6.26$, or 12.52 inches.

(293) The arc intercepted equals $\frac{3}{4}$ of 4 , or 3 quadrants. As the inscribed angle is measured by one-half the intercepted arc, we have $\frac{3}{2}=1 \frac{1}{2}$ quadrants as the size of the angle.
(294) Four right angles $\div \frac{2}{7}=4 \times \frac{7}{2}$, or 14 equal sectors.
(295) Since 24 inches equals the perimeter, we have $\frac{24}{8}$, or 3 inches, as the length of each side or chord.

Then, $2 \times \sqrt{\left(\frac{3}{2}\right)^{2}+3.62^{2}}=\pi .84$ inches diameter.
(296) Given, $A C=\frac{A B}{2}=\frac{10.5}{2}$, or 5.25 inches. $A O$ and $A P=13$ inches. (See Fig. 5.)

The required distance between the arcs $D D^{\prime}$ is equal

Fig. 5. to $O A+A P-O P$. In the right-angled triangle $A C O$, we have

$$
\begin{gathered}
O C=\sqrt{\overline{A O^{2}}-\overline{A C^{2}}} \\
\text { or } O C=\sqrt{169-27.5625}=11.9
\end{gathered}
$$

inches.
Likewise, $C P=\sqrt{A P^{2}-\overline{A C^{2}}}=11.9 . \quad O P=O C+C P$ $=11.9+11.9=23.8$ inches. $O A+A P=13+13=26$ inches. $\quad 26-23.8=2.2$ inches. Ans.
(297) Given $A P=13$ inches, $O A=8$ inches, and $A C=5.25$ inches. Fig. 6.
$O C=\sqrt{A O^{2}-\overline{A C^{2}}}=\sqrt{8^{2}-5.95^{2}}=$ 6.03 inches.
$C P=\sqrt{A P^{2}}-\overline{A C^{2}}=11.9$ inches.
$O P=O C+C P=6.03+11.9=$ 1\%.93 inches.

Fig. 6.
$D D^{\prime}=O A+A P-O P=8+13-17.93=3.0 \%$ inches. Ans.
(298) $A B=14$ inches, and $A E=3 \frac{1}{4}$ inches, Fig. \%. $C E=E D$ is a mean proportional between the segments
$A E$ and $E B$. Then, $A E: C E:: C E: E B$,

$$
\text { or } 3 \frac{1}{4}: C E:: C E: 10 \frac{3}{4},
$$

$$
\text { or } \overline{C E^{2}}=3 \frac{1}{4} \times 10 \frac{3}{4}=34.93 \% 5 \text {. }
$$

Extracting the square root, we have $C E=5.91$.

Fig. $\%$
$2 \times C E=C D=2 \times 5.91$, or 11.82 inches. Ans.
(299) In $19^{\circ} 19^{\prime} 19^{\prime \prime}$ there are 69,559 seconds, and in 360°, or a circle, there are $1,296,000$ seconds. Therefore, 69,559 seconds equal $\frac{69,559}{1,296,000}$, or $.0536 \% 2$ part of a circle. Ans.
(300) In an angle measuring $19^{\circ} 19^{\prime} 19^{\prime \prime}$ there are 69,559 seconds, and in a quadrant, which is $\frac{1}{4}$ of 360°, or 90°, there are 324,000 seconds. Therefore, 69,559 seconds equal $\frac{69,559}{324,000}$, or . 214688 part of a quadrant. Ans.
(301) Given, $O B=O A=\frac{23}{2}$, or $11 \frac{1}{2}$ inches, and angle $A O B=\frac{1}{10}$ of 360°, or 36°. (See Fig. 8.) In the right-angled triangle $C O B$, we have

Substituting the values of $O B$ and sin $C O B$, we have

$$
\begin{aligned}
C B & =11 \frac{1}{2} \times \sin 18^{\circ} \\
\text { or } \quad C B & =11 \frac{1}{2} \times .30902=3.55
\end{aligned}
$$

Since $A B=2 C B, A B=2 \times 3.55=\% .1$ inches.
The perimeter then equals $10 \times \% .1=\% 1$ inches, nearly. Ans.
(302)

$$
90^{\circ}=\begin{array}{lll}
59^{\circ} & 59^{\prime} & 60^{\prime \prime} \\
& \frac{35^{\circ}}{} & 24^{\prime} \\
\hline 54^{\circ} & 35.5^{\prime \prime} & \\
& 34 \cdot 2^{\prime \prime} & \text { Ans. }
\end{array}
$$

(303) The side $B C=\sqrt{A B^{2}}-\overline{A C^{2}}$, or $B C=$ $\sqrt{\overline{17.6} \overline{9^{2}}-\overline{9.75^{2}}}=\sqrt{217.8736}=14 \mathrm{ft} .9 \mathrm{in}$. To find the angle $B A C$, we have $\cos B A C=\frac{A C}{A B}$, or $\cos B A C=\frac{9.75}{17.69}=$. 55115.

$$
.55115 \text { equals the } \cos \text { of } 56^{\circ} 33^{\prime} 15^{\prime \prime}
$$

Angle $A B C=90^{\circ}-$ angle $B A C$, or $90^{\circ}-56^{\circ} 33^{\prime} 15^{\prime \prime}=$ $33^{\circ} 26^{\prime} 45^{\prime \prime}$.
(304)

$$
\begin{array}{rcc}
159^{\circ} & 27^{\prime} & 34.6^{\prime \prime} \\
25^{\circ} & 16^{\prime} & 8.7^{\prime \prime} \\
3^{\circ} & 48^{\prime} & 53 \\
\hline 188^{\circ} & 32^{\prime} & 36.3^{\prime \prime}
\end{array}
$$

(305)
$\operatorname{Sin} 17^{\circ} 28^{\prime}=.30015$.
$\operatorname{Sin} 17^{\circ} 27^{\prime \prime}=.2998 \%$.
$.30015-.2998 \%=.00028$, the difference for 1^{\prime}. $.00028 \times \frac{37}{60}=.00017$, difference for $37^{\prime \prime}$.
$.2998 \%+.0001 \%=.30004=\sin 17^{\circ} 27^{\prime \prime} 37^{\prime \prime}$.
$\operatorname{Cos} 17^{\circ} 27^{\prime}=.95398$.
$\operatorname{Cos} 17^{\circ} 28^{\prime}=.95389$.
$.95398-.95389=.00009$, difference for 1^{\prime}.
$.00009 \times \frac{37}{60}=.00006$, difference for $37^{\prime \prime}$.
$.95398-.00006=.9539{ }^{\circ}=\cos 17^{\circ} 27^{\prime} 37^{\prime \prime}$.
$\operatorname{Tan} 17^{\circ} 28^{\prime}=.31466$.
$\operatorname{Tan} 17^{\circ} 27^{\prime}=.31434$.
$.31466-.31434=.00032$, difference for 1^{\prime}.
$.00032 \times \frac{37}{60}=.00020$, difference for $37^{\prime \prime \prime}$.
$.31434+.0002=.31454=\tan 17^{\circ} 27^{\prime \prime} 37^{\prime \prime \prime}$.
$\operatorname{Sin} 17^{\circ} 27^{\prime} 37^{\prime \prime}=.30004$
$\left.\operatorname{Cos} 1 \tau^{\circ} 27^{\prime} 3 r^{\prime \prime}=.95392\right\}$ Ans.
$\operatorname{Tan} 17^{\circ} 27^{\prime} 37^{\prime \prime}=.31454$
(306) From the vertex B, draw $B D$ perpendicular to $A C$, forming the right-angled triangles $A D B$ and $B D C$. In the right-angled triangle $A D B, A B$ is known, and also the angle A. Hence, $B D=26.583 \times \sin 36^{\circ} 20^{\prime} 43^{\prime \prime}=$ $26.583 \times .59265=15.754$ feet. $A D=26.583 \times \cos 36^{\circ} 20^{\prime} 43^{\prime \prime}=$ $26.583 \times .80546=21.411 . A C-A D=40-21.411=$ 18.589 feet $=D C$. In the right-angled triangle $B D C$, the two sides $B D$ and $D C$ are known; hence, $\tan C=\frac{B D}{D C}=$ $\frac{15.754}{18.589}=.84750$, and angle $C=40^{\circ} 16^{\prime} 53^{\prime \prime}$. Ans. $B C=\frac{B D}{\sin C}=\frac{15.754}{\sin 40^{\circ} 16^{\prime} 53^{\pi}}=\frac{15.754}{.64654}=24.37$, or 24 ft .4 .4 in. Ans.

Angle $B=180^{\circ}-\left(36^{\circ} 20^{\prime} 43^{\prime \prime}+40^{\circ} 16^{\prime} 53^{\prime \prime}\right)=180^{\circ}-76^{\circ}$ $37^{\prime} 36^{\prime \prime}=103^{\circ} 22^{\prime} 24^{\prime \prime}$. Ans.
(307) This problem is solved exactly like problem No. 305.

$$
\operatorname{Sin} \text { of } 63^{\circ} 4^{\prime} 51.8^{\prime \prime}=.89165
$$

Cos of $63^{\circ} 4^{\prime} 51.8^{\prime \prime}=.45274$.
Tan of $63^{\circ} 4^{\prime} 51.8^{\prime \prime}=1.96949$.
(308)

$$
\begin{aligned}
.27038 & =\sin 15^{\circ} 41^{\prime} 12.9^{\prime \prime} \\
.27038 & =\cos 74^{\circ} 18^{\prime} 47.1^{\prime \prime} \\
2.27038 & =\tan 66^{\circ} 13^{\prime} 43.2^{\prime \prime}
\end{aligned}
$$

(309) The angle formed by drawing radii to the extremities of one of the sides equals $\frac{360^{\circ}}{11}$, or $32^{\circ} 43^{\prime} 38.2^{\prime \prime}$. Ans. The length of one side of the undecagon equals $\frac{4 \mathrm{ft} .3 \mathrm{in} \text {. }}{11}$, or $4.636 \pm$ inches. The radius of the circle equals $\frac{\frac{1}{2} \text { of } 4.6364}{\sin \text { of } \frac{1}{2}\left(32^{\circ} 43^{\prime} 38.2^{\prime \prime}\right)}=\frac{9.3182}{.28173}=8.23$ inches. Ans.
($\mathbf{3 1 0}$) If one of the angles is twice the given one, then it must be $2 \times\left(47^{\circ} 13^{\prime} 29^{\prime \prime}\right)$, or $94^{\circ} 26^{\prime} 58^{\prime \prime}$. Since there are two right angles, or 180°, in the three angles of a triangle, the third angle must be $180-\left(47^{\circ} 13^{\prime} 29^{\prime \prime}+94^{\circ} 26^{\prime} 58^{\prime \prime}\right)$, or $38^{\circ} 19^{\prime} 33^{\prime \prime}$.
(311) If one of the angles is one-half as large as the given angle, then it must be $\frac{1}{2}$ of $75^{\circ} 48^{\prime} 17^{\prime \prime}$, or $3 \%^{\circ} 54^{\prime} 8.5^{\prime \prime}$. The third angle equals $180^{\circ}-\left(75^{\circ} 48^{\prime} 1 \tilde{\vartheta}^{\prime}+37^{\circ} 5 t 8.5^{\prime \prime}\right)$, or $66^{\circ} 1 \overbrace{}^{\prime} 34.5^{\prime}$.
(312) From the vertex B, draw $B D$ perpendicular to $A C$, forming the two right-angled triangles $A D B$ and $B D C$. In the right-angled triangle $A D B, A B$ is known, and also the angle A. Hence, $B D=\sin A \times A B=\sin 54^{\circ} 54^{\prime}$ $54^{\prime \prime} \times 16 \frac{5}{12}=.81830 \times 16 \frac{5}{12}=13.434$ feet .

Sine of angle $C=\frac{B D}{B C}=\frac{13.434}{13.542}=.99202$, and, hence, angle $C=82^{\circ} 45^{\prime} 30^{\circ}$. Ans.

Angle $B=180^{\circ}-\left(54^{\circ} 54^{\prime} 54^{\prime}+82^{\circ} 45^{\prime} 30^{\prime \prime}\right)=180-137^{\circ}$ $40^{\prime} 24^{\prime}=42^{\circ} 19^{\prime} 36^{\prime \prime}$. Ans.
$A D=A B \times \cos A=16 \frac{5}{12} \times \cos 54^{\circ} 54^{\prime} 54^{\prime \prime}=16 \frac{5}{12} \times$.รั4ヶ9 $=9.43613 \mathrm{ft}$.
$C D=B C \times \cos C=B C \times \cos 82^{\circ} 45^{\prime} 30^{\prime \prime}=13 \frac{13}{24} \times$ $.12605=1 . ヶ 0692 \mathrm{ft}$.
$A C=A D+C D=9.43613+1 . \% 0692=11.143=11 \mathrm{ft}$. $1 \frac{3}{4}$ in. Ans.
(313) If one-third of a certain angle equals $14^{\circ} 46^{\prime} 10^{\prime \prime}$, then the angle must be $3 \times 14^{\circ} 4 r^{\prime} 10^{\prime \prime}$, or $44^{\circ} 21^{\prime} 30^{\prime \prime}$. $2 \frac{1}{2}$ $\times 44^{\circ} \stackrel{2}{ } 1^{\prime} 30^{\prime \prime}$, or $110^{\circ} 53^{\prime} 45^{\prime \prime}$, equals one of the other two angles. The third angle equals $180^{\circ}-\left(110^{\circ} 53^{\prime} 45^{\prime \prime}+44^{\circ}\right.$ $\because 1^{\prime} 30^{\circ}$), or $24^{\circ} 44^{\prime} 45^{\prime \prime}$.
(314) Given, $B C=43 \%$ feet and $A C=792$ feet, to find the hypotenuse $A B$ and the angles A and B.

$$
\begin{aligned}
& A B=\sqrt{A C^{2}}+\overline{B C^{2}} \\
& \quad \sqrt{\overline{92^{2}}+\overline{43 \gamma^{2}}}=\sqrt{515,203}=904 \mathrm{ft} . \\
& 6 \frac{3}{4} \text { in. Ans. }
\end{aligned}
$$

$\operatorname{Tan} A=\frac{437}{792}=.551 \% 6$; therefore, $A=28^{\circ} 53^{\prime} 18^{\prime \prime}$. Ans.
Angle $B=90^{\circ}-28^{\circ} 53^{\prime} 18^{\prime \prime}$, or $61^{\circ} 6^{\prime} 42^{\prime \prime}$. Ans.
(315) In Fig. 9, angle $A O B=\frac{1}{8}$ of 360°, or 45°. Angle $m O B=\frac{1}{2}$ of 45°, or $22 \frac{1^{\circ}}{2}$. Side $A B=$ $\frac{1}{8}$ of 56 feet, or 7 feet. Now, in the triangle $m O B$, we have the angle $m O B$ $=22 \frac{1^{\circ}}{2}$, and $m B=\frac{7}{2}$, or $3 \frac{1}{2}$ feet, given, to find $O B$ and the angle $m B O$.

Fig. 9.

$$
\sin m O B=\frac{m B}{O B}, \text { or } O B=\frac{m B}{\sin m O B} .
$$

Substituting their values, $O B=\frac{3.5}{\sin 22 \frac{1}{2}^{\circ}}=\frac{3.5}{.38268}=9.146$ feet.
$B F$, the diameter of the circle, equals $2 \times B O$; therefore, $B F=2 \times 9.146=18.292$ feet $=18$ feet $3 \frac{1}{2}$ inches.

$$
\begin{aligned}
& \text { Angle } B O m=22^{\circ} 30^{\prime} . \\
& B O m+O B m=90^{\circ} . \\
& O B m=90^{\circ}-B O m=90^{\circ}-22^{\circ} 30^{\prime} . \\
& \\
& =67^{\circ} 30^{\prime} . \\
& A B C=2 O B m-2\left(67^{\circ} 30^{\prime}\right)=135^{\circ} .
\end{aligned}
$$

Therefore,

Ans.
By Art. 703, the sum of the interior angles of an octagon is $2(8-2)=12$ right angles. Since the octagon is regular, the interior angles are equal, and since there are eight of them, each one is $\frac{1 \%}{8}=1 \frac{1}{2}$ right angles. $1 \frac{1}{2} \times 90^{\circ}=135^{\circ}$.
(316) Lay off with a protractor the angle $A O C$ equal to $67^{\circ} 8^{\prime} 49^{\prime \prime}$. Fig. 10. Tangent to the circle at A, draw the line $A T$. Through the point C, draw the line $O C$, and continue it until it intersects the line $A T$ at T. From C
draw the lines $C D$ and $C B$ perpendicular, respectively,

Fig. 10. to the radii $O E$ and $O A, C B$ is the sine, $C D$ the cosine, and $A T$ the tangent.
(317) Suppose that in Fig. 10, the line $A T$ has been drawn equal to 3 times the radius $O A$. From T draw $T O$; then, the tangent of $T O A$ $=\frac{T A}{O A}=3 . \quad$ Where $T O$ cuts the circle at C, draw $C D$ and $C B$ perpendicular, respectively, to $O E$ and $O A$. $C D$ is the cosine and $C B$ the sine. The angle corresponding to $\tan 3$ is round by the table to equal $61^{\circ} 33^{\prime} 54^{\prime \prime}$; therefore, sin $71^{\circ} 33^{\prime} 54^{\prime \prime}=.94868$ and $\cos 71^{\circ} 33^{\prime} 54^{\prime \prime}=.31623$.
(318) The angle whose \cos is $.39278=66^{\circ} 52^{\prime} 20^{\prime \prime}$.

$$
\begin{aligned}
& \text { Sin of } 66^{\circ} 52^{\prime} 20^{\prime \prime}=.91963 . \\
& \text { Tan of } 66^{\circ} 5 \mathcal{Z}^{\prime} 20^{\prime \prime}=2.34132 .
\end{aligned}
$$

For a circle with a diameter $4 \frac{3}{4}$ times as large, the values of the above \cos , \sin, and tan will be

$$
\left.\begin{array}{l}
4 \frac{3}{4} \times .39278=1.865 \% \cos . \\
4 \frac{3}{4} \times .91963=4.36824 \sin . \\
4 \frac{3}{4} \times 2.34132=11.1212 \% \tan .
\end{array}\right\} \text { Ans. }
$$

(319) See Fig. 11. Angle $B=180^{\circ}-\left(29^{\circ} 21^{\prime \prime}\right.$ $\left.+76^{\circ} 44^{\prime} 18^{\prime \prime}\right)=180^{\circ}-106^{\circ} 5^{\prime} 18^{\prime \prime}=73^{\circ} 54^{\prime} 42^{\prime \prime}$.

From C, draw $C D$ perpendicular to $A B$.
$A D=A C \cos A=31.833$ $\times \cos 29^{\circ} 21^{\prime}=31.833 \times .87164$ $=27.747 \mathrm{ft} . C D=A C \sin A$ $=31.833 \times \sin 29^{\circ} 21^{\prime}=31.833$ $\times .49014=15.603$.

Fig. 11.

$$
\begin{aligned}
& B C=\frac{C D}{\sin B}=\frac{15.603}{\sin 73^{\circ} 54^{\prime} 42^{\prime \prime}}=16.24 \mathrm{feet}=16 \mathrm{ft} .3 \mathrm{in.} \\
& B D=\frac{D C}{\tan B}=\frac{15.603}{\tan 73^{\circ} 54^{\prime} 42^{\prime \prime}}=4.5 \text { feet. } \\
& A B=A D+D B=27.747+4.5=32.247=32 \mathrm{ft} .3 \mathrm{in} \\
& \text { Ans. }\left\{\begin{array}{r}
A B=32 \mathrm{ft} .3 \mathrm{in} . \\
B C=16 \mathrm{ft} .3 \mathrm{in} \\
B=73^{\circ} 54^{\prime} 42^{\prime \prime}
\end{array}\right.
\end{aligned}
$$

(320) In Fig. 8, problem 301, $A B$ is the side of a regular decagon; then, the angle $C O B=\frac{1}{20}$ of 360°, or 18°. To find the side $C B$, we have $C B=O B \times \sin 18^{\circ}$, or $C B=$ $9.75 \times .30902=3.013$ inches. Since $A B=2 \times C B, A B=$ 2×3.013, or 6.026 inches, which multiplied by 10 , the number of sides, equals 60.26 inches. Ans.
(321) Perimeter of circle equals $2 \times 9.75 \times 3.1416$, or 61.26 inches. $\quad 61.26-60.26=1$ inch, the difference in their perimeters. Ans.

In order to find the area of the decagon, we must first find the length of the perpendicular $C O$ (see Fig. 8 in answer to question 301) ; $C O=O B \times \cos 18^{\circ}$, or $C O=9.75$ $\times .95106=9.273 . \quad$ Area of triangle $A \quad O B=\frac{1}{2} \times 9.273$ $\times 6.026$, or 27.939 , which multiplied by 10 , the number of triangles in the decagon, equals 279.39 square inches. Area of the circle $=3.1416 \times 9.75 \times 9.75$, or 298.65 square inches.
$298.65-279.39=19.26$ square inches difference. Ans.
(322) The diameter of the circle equals $\sqrt{\frac{89.42}{.7854}}=$ $\sqrt{113.8528}$, or 10.67 inches. Ans.

The circumference equals 10.67×3.1416, or 33.52 inches. Ans.

In a regular hexagon inscribed in a circle, each side is equal to the radius of the circle; therefore, $\frac{10.67}{2}=5.335$ inches is the length of a side. Ans.
(323) Angle $m O B=\frac{1}{16}$ of 360°, or $22 \frac{1}{2}^{\circ} . \quad m O=\frac{1}{2}$ of $m n=\frac{1}{2}$ of 2 , or 1 inch. (See Fig. 12).

Fig. 12.

Side $m B=O m \times \tan 22 \frac{1}{2}^{\circ}$, or $m B=$ $1 \times .41421=.41421$.
$A B=2 m B$; therefore, $A B=.82842$ inch.

Area of $A O B=\frac{1}{2} \times .82842 \times 1=$.41421 square inch, which, multiplied by 8 , the number of equal triangles, equals 3.31368 square inches.

Wt. of bar equals $3.31368 \times 10 \times 12 \times .282$, or 112 pounds 2 ounces. Ans.
(324) $16 \times 16 \times 16 \times \frac{1}{6} \times 3.1416=2,144.66 \mathrm{cu}$. in. equals the volume of a sphere 16 inches in diameter.
$12 \times 12 \times 12 \times \frac{1}{6} \times 3.1416=904.78 \mathrm{cu}$. in. equals the volume of a sphere 12 inches in diameter.

The difference of the two volumes equals the volume of the spherical shell, and this multiplied by the weight per cubic inch equals the weight of the shell. Hence, we have $(2,144.66-904.78) \times .261=323.61 \mathrm{lb}$. Ans.
(325) The circumference of the circle equals $\frac{5 \frac{13}{32} \times 360}{27}$, or 72.0833 inches. The diameter, therefore, equals $\frac{72.0833}{3.1416}$, or 22.95 inches.
(326) The number of square inches in a figure 7 inches square equals 7×7 or 49 square inches. $49-7=42$ square inches difference in the two figures.
$\sqrt{7}=2.64$ inches is the length of side of square containing \tilde{r} square inches. The length of one side of the other squa:e equals 7 inches.
(327) (a) $17 \frac{1}{64}$ inches $=17.016$ inches.

Area of circle $=17.016^{2} \times .7854=227.41 \mathrm{sq} . \mathrm{in} . \quad$ Ans.
Circumference $=17.016 \times 3.1416=53.457$ inches . $16^{\circ} 7^{\prime} 21^{\prime \prime}=16.1225^{\circ}$.
(b) Length of the arc $=\frac{16.1225 \times 53.457}{360}=2.394$ inches. Ans.
(328) Area $=12 \times 8 \times .7854=75.4$ sq. in. Ans. Perimeter $=(12 \times 1.82)+(8 \times 1.315)=32.36 \mathrm{in} . \quad$ Ans.
$\mathbf{(3 2 9)}$ Area of base $=\frac{1}{4} \times 3.1416 \times 7 \times 7=38.484$ sq. in.
The slant height of the cone equals $\sqrt{11^{2}+3 \frac{1}{2}^{2}}$, or 11.54 in .

Circumference of base $={ }^{7} \times 3.1416=21.9912$.
Convex area of cone $=21.9912 \times \frac{11.54}{2}=126.92 \%$.
Total area $=126.927+38.484=165.41$ square inches . Ans.
(330) Volume of sphere equals $10 \times 10 \times 10 \times \frac{1}{6} \times$ $3.1416=523.6 \mathrm{cu}$. in.

Area of base of cone $=\frac{1}{4} \times 3.1416 \times 10 \times 10=7.5 .54 \mathrm{sq} . \mathrm{in}$.
$\frac{3 \times 523.6}{78.54}=20$ inches, the altitude of the cone. Ans.
(331) Volume of sphere $=\frac{1}{6} \times 3.1416 \times 12 \times 12 \times 12$ $=904.7808 \mathrm{cu} . \mathrm{in}$.

Area of base of cylinder $=\frac{1}{4} \times 3.1416 \times 12 \times 12=$ 113.0976 sq. in.

Height of cylinder $=\frac{904.7808}{113.0976}=8$ inches. Ans.
(332) (a) Area of the triangle equals $\frac{1}{2} A C \times B D$, or $\frac{1}{2} \times 9 \frac{1}{2} \times 12=57$ square inches. Ans.
(b) See Fig. 13. Angle $B A C=79^{\circ} 22^{\prime}$; angle $A B D$ $=90^{\circ}-79^{\circ} 22^{\prime}=10^{\circ} 38^{\prime}$. Side $A B=B D$ $\div \sin 79^{\circ} 22^{\prime}=12 \div .98283=12.209$ inches.
Side $A D=B D \times \tan 10^{\circ} 38^{\prime}=12 \times$ $.18775=2.253$ inches.
Side $D C=A C-A D=9.5-2.253=$ 7.247 inches.

Side $B C=\sqrt{\overline{D B^{2}}+\overline{D C^{2}}}=\sqrt{12^{2}+7.247^{2}}=\sqrt{196.519}=$ 14.018 inches.

Perimeter of triangle equals $A B+B C+A C=12.209$ $+14.018+9.5=35.73$ inches. Ans.
(333) The diagonal divides the trapezium into two triangles; the sum of the areas of these two triangles equals the area of the trapezium, which is, therefore,

$$
\frac{11 \times 7}{2}+\frac{11 \times 4 \frac{1}{4}}{2}=61 \frac{7}{8} \text { square inches. Ans. }
$$

(334) Referring to Fig. 17, problem 350, we have $O A$ or $O B=\frac{10}{2}$ or 5 inches, and $A B=6 \frac{3}{4}$ inches.
$\operatorname{Sin} C O B=\frac{C B}{O B}=\frac{63 \div 2}{5}=.675$; therefore, angle $C O B=$ $42^{\circ} 27^{\prime} 14.3^{\prime \prime}$.
Angle $A O B=\left(42^{\circ} 27^{\prime} 14.3^{\prime \prime}\right) \times 2=84^{\circ} 54^{\prime} 28.6^{\prime \prime}$. Ans.
$C O=O B \times \cos C O B=5 \times .73782=3.6891$.
Area of sector $=10^{2} \times .7854 \times \frac{84^{\circ} 54^{\prime} 28.6^{\prime \prime}}{360^{\circ}}=18.524$ sq.in
Area of triangle $=\frac{6.75 \times 3.6891}{2}=12.450$ sq. in.
$18.524-12.450=6.074$ sq. in., the area of the seg. ment. Ans.
(335) Convex area $=$
$\frac{\text { perimeter of base }}{2} \frac{\times \text { slant height }}{2}=\frac{63 \times 17}{2}=535.5$ square inches. Ans.
(336) See Fig. 14. Area of lower base $=18^{2} \times . \% 85 t=954.469 \mathrm{sq} . \mathrm{in}$.
Area of upper base $=12^{2} \times . \% 854=113.0976$ sq. in.
$G E=B G-A F=9-6$ or 3 inches.
Slant height $F G=\sqrt{G E^{2}}+\overline{E F^{2}}=$ $\sqrt{3^{2}+14^{2}}=14.32$ inches.

Convex area $=$

Fig. 14. circumference of upper base + circumference of lower base slant height, or convex area $=\frac{37.6992+56.5488}{2} \times 14.32=$ $6 \% 4.8156$ sq. in.

Total area $=674.8156+254.469+113.0976=1,042.3$ sq. in. Ans.

Volume $=$ (area of upper base + area of lower base + $\sqrt{\text { area of upper base } \times \text { area of lower base) }} \times \frac{1}{3}$ of the altitude $=$ $(113.0976+254.4696+\sqrt{113.0976 \times 254.4696}) \frac{14}{3}=2,506.84$ cubic inches. Ans.
(337) Area of surface of sphere 27 inches in diameter $=27^{2} \times 3.1416=2,290.2$ sq. in. Ans.
(338) Volume of each ball $=\frac{10}{.261}=38.3142 \mathrm{cu} . \mathrm{in}$.

Diameter of ball $=\sqrt[3]{\frac{38.3142}{.5236}}=4.18$ inches. Ans.
(339) Area of end $=19^{2} \times .7854=283.5294$ sq. in. Volume $=283.5294 \times 24=6,504.7056$ cubic inches $=3.938$ cubic feet. Ans.
(340) Given $B I=2$ inches and $H I=I K=\frac{14}{2}=y$ inches to find the radius.

$$
B I: H I:: H I: A I \text {, or } 2: 7:: 7: A I
$$

therefore, $\quad A I=\frac{49}{2}=24 \frac{1}{2}$ inches.

$$
A B=A I+B I=24 \frac{1}{2}+2=26 \frac{1}{2} \text { inches. }
$$

Radius $=\frac{A B}{2}=\frac{26 \frac{1}{2}}{2}=13 \frac{1}{4}$ inches. Ans.
(341) (a) Area of piston $=19^{2} \times . \% S 54=283.529$ sq. in., or 1.9689 square feet.

Length of stroke plus the clearance $=1.14 \times 2 \mathrm{ft} . \quad(24$ $\mathrm{in} .=\Omega \mathrm{ft}.)=\gtrsim .28 \mathrm{ft}$.
$1.9689 \times 2.28=4.489$ cubic feet, or the volume of steam in the small cylinder. Ans.
(b) Area of piston $=31^{2} \times . \% 854=\% 54.7694$ sq. in., or 5.2 ± 14 square feet.

Length of stroke plus the clearance $=1.08 \times 2=2.16 \mathrm{ft}$.
5. $241 \pm \times 2.16=11.321$ cubic feet, or the volume of steam in the large cylinder. Ans.

$$
\text { (c) } \text { Ratio }=\frac{11.321}{4.489} \text {, or } 2.522: 1 . \text { Ans. }
$$

(342). (a) Area of cross-section of pipe $=8^{2} \times .7854=$ 50.2656 sq. in.

Volume of pipe $=\frac{\dot{5} 0.2656 \times 7}{144}=2.443 \mathrm{cu} . \mathrm{ft} . \quad$ Ans.
(b) Ratio of volume of pipe to volume of small cylinder $=\frac{2.443}{4.489}$, or $0.544: 1 . \quad$ Ans.
(343) (a) In Fig. 15, given $O B=\frac{16}{2}$ or 8 inches, and $O A=\frac{13}{2}$ or $6 \frac{1}{2}$ inches, to find the volume, area and weight:

Fig. 15.

Radius of center circle equals $\frac{8+6.5}{2}$ or $: \frac{1}{4}$ inches. Length of center line $=$ $2 \times 3.1416 \times 7 \frac{1}{4}=45.5532$ inches.

The radius of the inner circle is $6 \frac{1}{2}$ inches, and of the outer circle S inches; therefore, the dia meter of the cross-section on the line $A B$ is $1 \frac{1}{2}$ inches. Then, the area of the ring is $1 \frac{1}{2} \times 3.1416 \times 45.553=214.665$ square inches. Ans.

Diameter of cross-section of ring $=1 \frac{1}{2}$ inches.
Area of cross-section of ring $=\left(1 \frac{1}{2}\right)^{2} \times .7854=1.76715$ sq. in. Ans.

Volume of ring $=1.76715 \times 45.553=80.499 \mathrm{cu} . \mathrm{in}$. Ans.
(b) Weight of ring $=80.499 \times .261=21 \mathrm{lb}$. Ans.
(344) The problem may be solved like the one in Art. 790. A quicker method of solution is by means of the principle given in Art. $8 \mathbf{2 6}$.
(345) The convex area $=4 \times 5 \frac{1}{4} \times 18=378$ sq. in. Ans.

Area of the bases $=5 \frac{1}{4} \times 5 \frac{1}{4} \times 2=55.125$ sq. in.
Total area $=378+55.125=433.125$ sq. in. Ans.
Volume $=\left(5 \frac{1}{4}\right)^{2} \times 18=496.125 \mathrm{cu}$. in. Ans.
(346) In Fig. 16, $O C=\frac{A C}{\tan 30^{\circ}} . \quad\left(\frac{1}{6}\right.$ of $360^{\circ}=60^{\circ}$, and since $A O C=\frac{1}{2}$ of $\left.A O B, A O C=30^{\circ}\right)$.

$$
O C=\frac{6}{.57735}=10.392
$$

Area of $A O B=\frac{12 \times 10.392}{2}=62.352$ square feet.

Since there are 6 equal triangles in a

Fig. 16. hexagon, then the area of the base $=6 \times 62.352$, or 374.112 square feet.

Perimeter $=6 \times 12$, or 72 feet.
Convex area $=\frac{72 \times 37}{2}=1,332$ sq. ft. Ans.
Total area $=1,332+374.112=1,706.112$ sq. ft . Ans.
(347) Area of the base $=374.112$ square feet, and altitude $=37$ feet. Since the volume equals the area of the base muitiplied by $\frac{1}{3}$ of the altitude, we have

$$
\text { Volume }=3 \% 4.112 \times \frac{3 \stackrel{i}{3}}{3}=4,614 \text { cubic feet. }
$$

(348) Area of room $=15 \times 18$ or $2 \% 0$ square feet.

One yard of carpet 27 inches wide will cover $3 \times 2 \frac{1}{4}(27$ inches $\left.=2 \frac{1}{t} \mathrm{ft}.\right)=6 \frac{3}{4}$ sq. ft. To cover $2 \% 0 \mathrm{sq} . \mathrm{ft}$., it will take $\frac{270}{6 \frac{3}{4}}$, or 40 yards. Ans.
(349) Area of ceiling $=16 \times 20=320$ square feet. Area of end walls $=2(16 \times 11)=352$ square feet. Area of side walls $=2(20 \times 11)=\quad 440$ square feet. Total area $=\overline{1,112}$ square feet.
From the above number of square feet, the following deductions are to be made:

$$
\begin{aligned}
\text { Windows } & =4(7 \times 4) \\
\text { Doors } & =3(9 \times 4)
\end{aligned}=112 \text { square feet. }
$$

Baseboard less the width of the three doors

$$
\text { equals }\left({ }^{\%} న^{\prime}-12^{\prime}\right) \times \frac{6}{12}=30 \text { square feet. }
$$

Total No. of feet to be deducted $=250$ square feet.
Number of square feet to be plastered, then, equals 1,112 - 250 , or 862 square feet, or $95 \frac{7}{9}$ square yards. Ans.
(350) Given $A B=6 \frac{7}{8}$ inches, and $O B=O A=\frac{10}{2}$ or 5 inches, Fig. 17, to find the area of the sector.

Area of circle $=10^{2} \times .7854=78.54$

Fig 17. square inches.
$\operatorname{Sin} A O C=\frac{A C}{O A}=\frac{6 \pi \div 2}{5}=.68 \pi 5 ;$ therefore, $A O C=43^{\circ} 26^{\circ}$.
$A O B=2 \times A O C=2 \times 43^{\circ} 26^{\prime}=$ $86^{\circ} 5 \gtrsim^{\prime}=86.8666^{\circ}$.

$$
\frac{86.8666}{360} \times 78.54=18.95 \text { square inches. }
$$

(351) Area of parallelogram equals
$7 \times 10 \frac{3}{4}\left(129\right.$ inches $\left.=10 \frac{3}{4} \mathrm{ft}.\right)=75 \frac{1}{4}$ sq. ft. Ans.
(352) (a) See Art. 778.

Area of the trapezoid $=\frac{15^{\frac{7}{2}}+21 \frac{1}{12}}{2} \times 7 \frac{2}{3}=143.75 \mathrm{sq} . \mathrm{ft}$.
Ans.
(b) In the equilateral triangle $A B C$, Fig. 18, the area, 143.75 square feet, is given to find a side. Since the triangle is equilateral all the angles are equal to $\frac{1}{3}$ of 180° or 60°. In the triangle $A B D=A D C$, we have A $D=A B \times \sin 60^{\circ}$. The area of any triangle is equal to one-half the product

Fig. 18. of the base by the altitude, therefore, $\frac{B C \times A D}{2}=143.75$. $B C=A B$ and $A D=A B \times \sin 60^{\circ}$; then, the above becomes

$$
\begin{aligned}
& \frac{A B \times A B \sin 60^{\circ}}{2}=143.75 \\
& \text { or } \quad \frac{A B^{2} \times .86603}{2}=143.75 \\
& \text { or } A B^{2}=\frac{2 \times 143.75}{.86603}
\end{aligned}
$$

Therefore, $A B=\sqrt{\frac{287.50}{.86603}}=18 \mathrm{ft} .2 .64 \mathrm{in}$. Ans.
(353) (a) Side of square having an equivalent area $=$ $\sqrt{143.75}=11.99$ feet. Ans.
(b) Diameter of circle having an equivalent area $=$ $\sqrt{\frac{143.75}{.7854}}=\sqrt{183.0277}=13 \frac{1}{2}$ feet. Ans.
(c)

Perimeter of square $=4 \times 11.99=47.96 \mathrm{ft}$.
Circumference or perimeter of circle $=13 \frac{1}{2} \times 3.1416=42.41 \mathrm{ft}$. Difference of perimeter $=5.55 \mathrm{ft} .=$ 5 feet 6.6 inches. Ans.

Fig. 19.
(354) In the triangle $A B C$. Fig. 19.
$A B=24$ feet,
$B C=11.25$ feet, and
$A C=18$ feet.
$m+n: a+b:: a-b: m-n$, or $24: 29.25:: 6.75: m-n$

$$
m-n=\frac{29.25 \times 6 . \tilde{15}}{24}=8.226562 .
$$

Adding $m+n$ and $m-n$, we have

$$
\begin{aligned}
m+n & =24 \\
m-n & =8.226562 \\
\hline 2 m & =32.226562 \\
m & =16.113281 .
\end{aligned}
$$

Subtracting $m-n$ from $m+n$, we have

$$
\begin{aligned}
2 n & =15.5 \% 3438 \\
n & =\sim .886 \approx 19 .
\end{aligned}
$$

In the triangle $A D C$, side $A C=15$ feet, side $A D=$ 16.113.81; hence, according to Rule 3, Art. 754, $\cos A=$ $\frac{16.113251}{18}=.8951 S$, or angle $A=26^{\circ} 28^{\prime} 5^{\prime \prime}$. In the triangle $B D C$, side $B D=\tilde{i} .856 \% 19$, and side $B C=11.25 \mathrm{ft}$. Hence, $\cos B=\frac{\tau .886 \% 19}{11.25}=. \% 0104$, or angle $B=45^{\circ} 29^{\prime} 23^{\prime \prime}$. Angle $C=180^{\circ}-\left(45^{\circ} 29^{\prime} 23^{\prime \prime}+26^{\circ} 25^{\prime} 5^{\prime \prime}\right)=108^{\circ} 2^{\prime} 32^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
A=26^{\circ} 28^{\prime} 5^{\prime \prime} \\
B=45^{\circ} 29^{\prime} 23^{\prime \prime} \\
C=108^{\circ} 2^{\prime} 32^{\prime \prime}
\end{array}\right.
$$

ELEMENTARY MECHANICS.

(QUESTIONS 355-453.)
(355) Use formulas 18 and 8.

Time it would take the ball to fall to the ground $=\hat{t}=$ $\sqrt{\frac{2 / 2}{g}}=\sqrt{\frac{2 \times 5.5}{32.16}}=.58484 \mathrm{sec}$.

The space passed through by a body having a velocity of 500 ft . per sec. in . 58484 of a second $=S=V t=500 \times$ $.58484=292.42 \mathrm{ft} . \quad$ Ans.
(356) Use formula 7.

$$
\frac{\frac{80}{12} \times 3.1416 \times 160}{60}=55.85 \mathrm{ft} . \text { per sec. Ans. }
$$

(357) $\quad 160 \div 60 \times 7=\frac{8}{21}$ revolution in $\frac{1}{7}$ sec. $360^{\circ} \times$ $\frac{8}{21}=137 \frac{1^{\circ}}{\gamma}=137^{\circ} 8^{\prime} 34 \frac{2^{\prime \prime}}{\gamma} . \quad$ Ans.
(358) (a) See Fig. 20. $36^{\prime \prime}=3^{\prime} . \quad 4 \div 3=\frac{4}{3}=$ number of revolutions of pulley to one revolution of fly-wheel. $54 \times \frac{4}{3}=72$ revolutions of pulley and drum per min. $100 \div$ $\left(\frac{18}{12} \times 3.1416\right)=21.22$ revolutions of drum to raise elevator $100 \mathrm{ft} . \frac{21.22}{72} \times 60=17.68 \mathrm{sec}$. to travel 100 ft . Ans.
(b) $21.22: x:: 30: 60$, or $x=\frac{21.22 \times 60}{30}=42.44 \mathrm{rev}$.
per min. of drum. The diameter of the pulley divided by

Fig. 20.
the diameter of the fly-wheel $=\frac{3}{4}$, which multiplied by $42.44=31.83$ revolutions per min. of fly-wheel. Ans.
(359) See Arts. 857 and 859.
(360) See Art. 861.
(361) See Arts. 843 and 871 .
(362). See Art. 871.
(363) See Arts. $\mathbf{8 4 2}, \mathbf{8 8 6}, \mathbf{8 8 7}$, etc.

The relative weight of a body is found by comparing it with a given standard by means of the balance. The absolute weight is found by noting the pull which the body will exert on a spring balance.

The absolute weight increases and decreases according to the laws of weight given in Art. $\mathbf{8 9 0}$; the relative weight is always the same.
(364) See Art. 861.
(365) See Art. 857.
(366) See Art. 857.
(367) If the mountain is at the same height above, and the valley at the same depth below sea-level respectively, it will weigh more at the bottom of the valley.
(368) $\frac{31,680}{5,280}=6$ miles. Using formula $\mathbf{1 2}, d^{2}: R^{2}::$ $W: w$, we have $w=\frac{R^{2} W}{d^{2}}=\frac{3,960^{2} \times 20,000}{3,966^{2}}=19,939.53+\mathrm{lb}$. $=19,939 \mathrm{lb} .8 \frac{1}{2} \mathrm{oz}$. Ans.
(369) Using formula 11, $R: d:: W: w$, we have $w=\frac{d W}{K}=\frac{3,958 \times 20,000}{3,960}=19,989.89 \mathrm{lb} .=19,989 \mathrm{lb} .14 \frac{1}{4}$ oz. Ans.
(370) See Art. 870.
(371) See Art. 894.
(372) The velocity which a body may have at the instant the time begins to be reckoned.
(373) Because the man after jumping tends to continue in motion with the same velocity as the train, and the sudden stoppage by the earth causes a shock, the severity of which varies with the velocity of the train.
(374) See Arts. 870 and 871.
(375) Sec Art. 872.
(376) That force which will produce the same final effect upon a body as all the other forces acting together is called the resultant.
(377) (a) If a $5-\mathrm{in}$. line $=20 \mathrm{lb}$., a $1-\mathrm{in}$. line $=4 \mathrm{lb}$.
$1 \div 4=\frac{1}{4}$ in. $=1 \mathrm{lb}$. Ans. (b) $6 \frac{1}{4} \div 4=1.5625 \mathrm{in} .=$ $6 \frac{1}{4} \mathrm{lb}$. Ans.
(378) Those forces by which a given force may be
replaced, and which will produce the same effect upon a body.
(379) Southeast, in the direction of the diagonal of a

Fig. 21. square. See Fig. 21.
(380) $\quad 4^{\prime} 6^{n}=54^{n} . \quad 54 \times 2 \times \frac{3}{4} \times$
$.261=21.141 \mathrm{lb} .=$ weight of lever. Center of gravity of lever is in the middle, at a, Fig. 22, $27^{\prime \prime}$ from each end. Consider that the lever has no weight. The center of gravity of the two weights is at b, at a distance from c equal to $\frac{47 \times 54}{47+71}=21.508^{\prime \prime}=b c$. Formula $\mathbf{2 0}$, Art. 911.

Fig. 22.
Consider both weights as concentrated at b, that is, imagine both weights removed and replaced by the dotted weight W, equal to $71+4 \%=118 \mathrm{lb}$. Consider the weight of the bar as concentrated at a, that is, as if replaced by a weight $w=21.141 \mathrm{lb}$. Then, the distance of the balancing point f, from c, or $f c,=\frac{21.141 \times 5.492}{21.141+118}=.835^{\prime \prime}$, since $a c=$ $27-21.508=5.492^{\prime \prime}$. Finally, $f c+c k=f k=.835+21.508$ $=20.343^{n}=$ the short arm. Ans. $\quad 54-20.343=31.657^{\prime \prime}=$ long arm. Ans.
(381) See Fig. 23.

Fig. 23.
(382) See Fig. 24.

Fig. 24.
(383) $46-27=19 \mathrm{lb}$., acting in the direction of the force of 46 lb . Ans.
(384) (a) $18 \times 60 \times 60=64,800$ miles per hour Ans.
(b) $64,800 \times 24=1,555,200$ miles. Ans.

Fig. ${ }^{2} 5$.
(385) (a) 15 miles per hour $=\frac{15 \times 5,280}{60 \times 60}=22 \mathrm{ft}$. per sec. As the other body is moving 11 ft . per sec., the distance between the two bodies in one second will be $22+11=33 \mathrm{ft}$., and in 8 minutes the distance between them will be $33 \times 60 \times 8=15,840 \mathrm{ft}$., which, divided by the number of feet in one mile, gives $\frac{15,840}{5,280}=3$ miles. Ans.
(b) As the distance between the two bodies increases 33 ft . per sec., then, 825 divided by 33 must be the time required for the bodies to be 825 ft . apart, or $\frac{825}{33}=25$ sec. Ans.
(386) See Fig. 25.
(387) (a) Although not so stated, the velocity is evidently considered with reference to a point on the shore. $10-4=6$ miles an hour. Ans.
(b) $10+4=14$ miles an hour. Ans.
(c) $10-4+3=9$, and $10+4+3=17$ miles an hour. Ans.

(389) See Fig. 2~. By rules $\mathbf{2}$ and 4, Art. 754, $b c=$ $8 \% \sin 23^{\circ}=8 \% \times .39073=33.994 \mathrm{lb} ., \quad a c=8 \% \cos 23^{\circ}=$ $\mathrm{Si}_{\mathrm{r}} \times .92050=80.08 \pm \mathrm{lb}$.

(390) See Fig. 28. (b) By rules $\mathbf{2}$ and 4, Art. 754, $b c=325 \sin 15^{\circ}=325 \times .25882=84.121 \mathrm{~b}$. Ans.
(a) $a c=325 \cos 15^{\circ}=325 \times .96593=313.93 \mathrm{lb}$. Ans.

Fig. 28.
(391) Use formula 10.

$$
m=\frac{W}{g}=\frac{125}{32.16}=3.8868 . \quad \text { Ans. }
$$

(392) Using formula $\mathbf{1 0}, m=\frac{W}{g}, W=m g=53.7 \times$ $32.16=1,72 \% \mathrm{lb} . \quad$ Ans.
(393) (a) Yes. (b) 25. (c) 25. Ans.
(394) (a) Using formula 12, $d^{2}: R^{2}:: W: w, d=$ $\sqrt{\frac{R^{2} W}{\tau}}=\sqrt{\frac{4,000^{2} \times 141}{100}}=4,749.736$ miles. $\quad 4,749.736-$ $4,000=749.736$ miles. Ans.
(b) Using formula 11, $R: d:: W: w, d=\frac{R w}{W}=$ $\frac{4,000 \times 100}{141}=2,836.88$ miles. $\quad 4,000-2,836.88=1,163.12$ miles. Ans.
(395) (a) Use formula 18,

$$
t=\sqrt{\frac{2 /}{g}}=\sqrt{\frac{2 \times 5,280}{32.16}}=18.12 \mathrm{sec} . \quad \text { Ans. }
$$

(b) Use formula 13, $v=g t=32.16 \times 18.12=582.74 \mathrm{ft}$. per sec., or, by formula 16, $v=\sqrt{2 g / h}=\sqrt{2 \times 32.16 \times 5,280}=$ 582.76 ft . per sec. Ans.

The slight difference in the two velocities is caused by not calculating the time to a sufficient number of decimal places, the actual value for t being 18.12065 sec .
(396) Use formula 25. Kinetic energy $=W h=\frac{W v^{2}}{2 g}$. $W h=160 \times 5,280=844,800 \mathrm{ft} .-\mathrm{lb}$.

$$
\frac{W v^{2}}{2 g}=\frac{160 \times 582.766^{2}}{2 \times 32.16}=844,799 \mathrm{ft} .-1 \mathrm{lb} . \quad \text { Ans. }
$$

(397) (a) Using formulas 15 and $\mathbf{1 4}$, $h=\frac{\hat{q}^{2}}{2 g}=\frac{2,360^{2}}{2 \times 32.16}=86,592 \mathrm{ft} .=16.4$ miles. Ans. $\quad(b)$ $t=\frac{v}{g}=$ time required to go up or fall back. Hence, total time $=\frac{2 v}{g}$ sec. $=\frac{2 \times 2,360}{60 \times 32.16}=2.4461 \mathrm{~min} .=2 \mathrm{~min} .26 .77$ sec. Ans.
(398) 1 hour $=60$ min., 1 day $=24$ hours; hence, 1 day $=60 \times 24=1,440 \mathrm{~min}$. Using formula $\mathbf{Z}, V=\frac{S}{t}$; whence, $V=\frac{8,000 \times 3.1416}{1,440}=1 \% .453+$ miles per min. Ans.
(399) (a) Use formula 25.

Kinetic energy $=\frac{W v^{2}}{2 g}=\frac{400 \times 1,875 \times 1,875}{2 \times 32.16}=21,863,339.55$ ft.-lb. Ans.
(b) $\frac{21,863,339.55}{2,000}=10,931.67 \mathrm{ft}$.-tons. Ans.
(c) See Art. 961.

Striking force $\times \frac{6}{12}=21,863,339.55 \mathrm{ft}$. -lb.,
or striking force $=\frac{21,863,339.55}{\frac{6}{12}}=43,726,679 \mathrm{lb} . \quad$ Ans.
(400) Using formula $18, t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \times 200}{32.16}}=$ 3.52673 sec , when $g=32.16$.

$$
\begin{aligned}
t=\sqrt{\frac{2 \times 200}{20}}=4.47214 \mathrm{sec} ., \text { when } g=20 . \\
4.47214-3.52673=0.94541 \text { sec. Ans. }
\end{aligned}
$$

(401). See Art. 910.
(402) See Art. 963.
(403) (a) See Art. 962.
$D=\frac{m}{V}=\frac{W}{g v} . \quad v=\frac{800}{1,728}$. Hence, $D=\frac{W}{g v}=\frac{500}{32.16 \times \frac{800}{1728}}=$ 33.582. Ans. (b) In Art. 962, the density of water was found to be 1.941 . (c) In Art. 963, it is stated that the specific gravity of a body is the ratio of its density to the density of water. Hence, $\frac{33.582}{1.941}=17.3=$ specific gravity. If the weight of water be taken as 62.5 lb . per $\mathrm{cu} . \mathrm{ft}$. , the specific gravity will be found to be $1 \% .28$. Ans.
(404) Assuming that it started from a state of rest, formula 13 gives $v=g t=32.16 \times 5=160.8 \mathrm{ft}$. per sec,
(405) Use formulas 17 and 13. $~ \hbar=\frac{1}{2} g t^{2}=$ $\frac{32.16}{2} \times 3^{2}=144.72 \mathrm{ft}$., distance fallen at the end of third second.
$v=g t=32.16 \times 3=96.48 \mathrm{ft}$. per sec., velocity at end of third second.
$96.48 \times 6=5 \% 8.88 \mathrm{ft}$., distance fallen during the remaining 6 seconds.
$144.72+578.88=723.6 \mathrm{ft} .=$ total distance. Ans.

(406) See Art. 961.

Striking force $\times \frac{\frac{1}{2}}{12}=8 \times 8=64$. Therefore, striking force $=\frac{64}{\frac{\frac{1}{2}}{12}}=1,536$ tons. Ans.
(407) See Arts. 901 and 902.
(408) Use formula 19.

Centrifugal force $=$ tension of string $=.00034 W R N^{2}=$ $.00034 \times\left(.5236 \times 4^{3} \times .261\right) \times \frac{15}{12} \times 60^{2}=13.38+\mathrm{lb} . \quad$ Ans.
(109) $\left(80^{2}-70^{2}\right) \times .7854 \times 26 \times .261 \times \frac{1}{2}=3,997.2933 \mathrm{lb}$., weight of one-half the fly-wheel rim. Inside radius $=$

According to formula $\mathbf{1 9}, I^{\prime}=.0003+W^{\prime} \mathrm{K}^{2}=$
$\frac{.00034 \times 3,99 \% .2933 \times 35 \times 175^{2}}{12}=121,394+1 \mathrm{~b}$. Ans.
(110) (a) Use formulas 11 and $12 . R: d:: W^{\prime}: w$, or $W=\frac{w R}{d}=\frac{1 \times 4,000}{100}=40 \mathrm{lb}$. Ans.
(b) $\quad d^{2}: R^{2}:: H: \pi$, or $z=\frac{4,000^{2} \times 40}{4,100^{2}}=38.072 \mathrm{lb}$. Ans.
(411) See Art. 955.

$$
\frac{10,746 \times 354}{10 \times 33,000}=11.5275 \mathrm{H} . \mathrm{P} . \quad \text { Ans. }
$$

(412) Use formula 12.

$$
\begin{gathered}
d^{2}: R^{2}:: W: w, \text { or } d=\sqrt{\frac{4,000^{2} \times 2}{\frac{3}{16}}}=13,064 \text { mi., nearly. } \\
13,064-4,000=9,064 \text { miles. Ans. }
\end{gathered}
$$

(413) Use formula 18. $t=\sqrt{\frac{2 / 2}{g}}=\sqrt{\frac{2 \times 50}{32.16}}=$ 1.7634 sec ., nearly.

$$
1.7634 \times 140=246.876 \mathrm{ft} . \text { Ans. }
$$

(414) $\frac{10}{30}=\frac{1}{3} \mathrm{sec}$. Use formula 17. $h=\frac{1}{2} g t^{2}=\frac{1}{2} \times 32.16 \times\left(\frac{1}{3}\right)^{2}=1.78 \frac{2}{3} \mathrm{ft} .=1 \mathrm{ft} .9 .44 \mathrm{in}$.

(415) See Arts. 906, 907.
(416) See Arts. 908, 909.
(117) No. It can only be counteracted by another equal couple which tends to revolve the body in an opposite direction.
(418) See Art. 914.
(119) Draw the quadrilateral as shown in Fig. 29. Divide it into two triangles by the diagonal $B \mathrm{D}$. 'The center of gravity of the triangle $B C D$ is found to be at a, and the center of gravity of the triangle $A B D$ is found to be at b (Art. 914). Join a and b by the line $a b$, which, on being measured, is found to have a length of 4.2% inches. From C and A drop the perpendiculars $C I$ and $A G$ on the diagonal $B D$. Then, area of the triangle $A B D=\frac{1}{2}(A G \times$ $B D)$, and area of the triangle $B C D=\frac{1}{2}(C F \times B D)$. Measuring these distances, $B D=11^{\prime \prime}, C F=5.1^{\prime \prime}$, and $A G=7.7^{\prime \prime}$.

$$
\begin{aligned}
& \text { Area } A B D=\frac{1}{2} \times 7.7 \times 11=42.35 \text { sq. in. } \\
& \text { Area } B C D=\frac{1}{2} \times 5.1 \times 11=28.05 \text { sq. in. }
\end{aligned}
$$

According to formula 20, the distance of O, the center of gravity, from b is $\frac{28.05 \times 4.27}{28.05+42.35}=1.7$. Therefore, the center of gravity is on the line $a b$ at a distance of $1.7^{\prime \prime}$ from b.
(420) See Fig. 30. The center of gravity lies at the geometrical center of the pentagon, which may be found as follows: From any vertex draw a line to the middle point of the opposite side. Repeat the operation for any other vertex, and the intersection of the two lines will be the desired center of gravity.

Fig. 30.
(421) See Fig. 31. Since any number of quadrilaterals can be drawn with the sides given, any number of answers can be obtained.

Draw a quadrilateral, the lengths of whose sides are equal to the distances between the weights, and locate a weight on each corner. Apply formula $\mathbf{2 0}$ to find the distance $C_{1} W_{1}$; thus, $C_{1} W_{1}=\frac{9 \times 18}{9+21}=5.4^{\prime \prime}$. Measure the distance $C_{1} W_{2}$;

Fig. 31.
suppose it equals say $36^{\prime \prime}$. Apply the formula again. $C_{1} C_{2}=\frac{15 \times 36}{15+(9+21)}=12^{\prime \prime}$. Measure $C_{2} W_{2}$; it equals say 31.7".

Apply the formula again. $\quad C_{2} C=\frac{17 \times 31.7}{17+15+9+21}=8.7^{\prime \prime}$. C is center of gravity of the combination.
(422) Let $A B C D E$, Fig. 32, be the outline, the right-angled triangle cut-off being $E S D$. Divide the figure into two parts by the line $m n$, which is so drawn that it cuts off an isosceles right-angled triangle $m B n$, equal in area to $E S D$, from the opposite corner of the square.

The center of gravity of $A m n C D E$ is then at C_{1}, its geometrical center. $B m=4 \mathrm{in}$. ; angle $B m r=45^{\circ}$; there-

fore, $B r=B m \times \sin B m r=4 \times .707=2.828 \mathrm{in} . \quad C_{2}$, the center of gravity of $B m n$, lies on $B r$, and $B C_{2}=\frac{2}{3} B r$ $=\frac{2}{3} \times 2.828=1.885$ in. $B C_{1}=A B \times \sin B A C_{1}=14 \times$ $\sin 45^{\circ}=14 \times .707=9.898$ in. $\quad C_{1} C_{2}=B C_{1}-B C_{2}=9.898$ $-1.885=8.013 \mathrm{in}$.

Area $A B C D E=14^{2}-\frac{4 \times 4}{2}=188$ sq. in. Area $m B n$ $=\frac{4 \times 4}{2}=8$ sq. in. Area $A m n C D E=198-8=180$ sq. in.

The center of gravity of the combined area lies at C, at
a distance from C_{1}, according to formula 20 (Art. 911), equal to $\frac{8 \times C_{1} C_{2}}{180+8}=\frac{8 \times 8.013}{188}=.341 \mathrm{in} . \quad C_{1} C=.341 \mathrm{in}$. $B C=B C_{1}-C_{1} C=9.898-.341=9.55 \%$ inches. Ans.
(423) (b) In one revolution the power will have moved through a distance of $2 \times 15 \times 3.1416=94.248^{\prime \prime}$, and the weight will have been lifted $\frac{1^{\prime \prime}}{4}$. The velocity ratio is then $94.248 \div \frac{1}{4}=376.992$.

$$
376.992 \times 25=9,424.8 \mathrm{lb} . \quad \text { Ans. }
$$

(a) $9,424.8-5,000=4,424.8 \mathrm{lb}$. Ans.
(c) $4,424.8 \div 9,424.8=46.95 \%$ Ans.
(424) See Arts. 920 and 922.
(425) Construct the prism $A B E D$, Fig. 33. From E, draw the line $E F$. Find the center of gravity of the

Fig. 33.
rectangle, which is at C_{1}, and that of the triangle, which is
at C_{2}. Connect these centers of gravity by the straight line $C_{1} C_{2}$ and find the common center of gravity of the body by the rule to be at C. Having found this center, draw the line of direction $C G$. If this line falls within the base, the body will stand, and if it falls without, it will fall.
(426) (a) $5 \mathrm{ft} .6 \mathrm{in} .=66^{\prime \prime} . \quad 66 \div 6=11=$ velocity ratio. Ans.
(b) $5 \times 11=55 \mathrm{lb} . \quad$ Ans.
(427) $55 \times .65=35.75 \mathrm{lb}$. Ans.
(428) Apply formula 20. $5 \mathrm{ft} .=60^{\prime \prime} . \frac{35 \times 60}{180+35}=$ 9.7674 in., nearly,$=$ distance from the large weight. Ans.
(429) (a) $1,000 \div 50=20$, velocity ratio. Ans. See Art. 945. (b) 10 fixed and 10 movable. Ans. (c) $50 \div 95$ $=52.63 \%$. Ans.
(430) $P \times$ circumference $=W \times \frac{1}{8}$, or $60 \times 40 \times 3.1416$
$=W \times \frac{1}{8}$, or $W=60 \times 40 \times 3.1416 \times 8=60,318.72 \mathrm{lb}$. Since the efficiency of combination is 40%, the tension on the stud would be $.40 \times 60,318.72=24,127.488 \mathrm{lb}$. Ans.
(431) (a) $\sqrt{20^{2}+5^{2}}=20.616 \mathrm{ft}$. = length of inclined plane.
$P \times$ length of plane $=W \times$ height, or $P \times 20.616=$ $1,580 \times 5$.
$P=\frac{1,580 \times 5}{20.616}=383.2 \mathrm{lb}$. Ans. (b) In the second case, $P \times$ length of base $=W \times$ height, or $P \times 20=1,580 \times 5$; hence, $P=\frac{1,580 \times 5}{20}=395 \mathrm{lb}$. Ans.
(432) $W \times 2=42 \times 6$, or $W=\frac{42 \times 6}{2}=126 \mathrm{lb}$.
$126+42=168 \mathrm{lb} . \quad 168 \times 1=W^{\prime} \times 12$, or $W^{\prime}=\frac{168}{12}=14 \mathrm{lb}$.
(433) See Fig. 34. $P \times 14 \times 21 \times 19=2 \frac{1}{2} \times 3 \frac{1}{4} \times 2 \frac{7}{8}$ $\times 725$, or

$$
P=\frac{21}{2} \times 3 \frac{1}{4} \times 2 \frac{7}{8} \times 725 .
$$

(434) See Fig. 35. (a) $35 \times 15 \times 12 \times 20=5 \times 3 \frac{1}{2} \times$ $3 \times W$, or

$$
W=\frac{35 \times 15 \times 12 \times 20}{5 \times 3 \frac{1}{2} \times 3}=2,400 \mathrm{lb} . \quad \text { Ans. }
$$

(b) $2,400 \div 35=68 \frac{4}{7}=$ velocity ratio. Ans.
(c) $1,932 \div 2,400=.805=80.5 \%$. Ans.
(435) In Fig. 36, let the $12-\mathrm{lb}$. weight be placed at A, the $18-1 \mathrm{~b}$. weight at B, and the $15-1 \mathrm{~b}$. weight at D.

Use formula 20.
$\frac{12 \times 15}{18+12}=6^{\prime \prime}=$ distance $C_{1} B=$ distance of center of

gravity of the 12 and $18-\mathrm{lb}$. weights from B. Drawing $C_{1} D$, $C_{1} C=\frac{15 \times C_{1} D}{(12+18)+15}=\frac{1}{3} C_{1} D . \quad$ Measuring the distances of C from $B D, D A$, and $A B$, it is found that $C a=3.45^{\prime \prime}$, $C b=5.25^{\prime \prime}$, and $C d=4.4^{\prime \prime}$. Ans.
(436) (a) Potential energy equals the work which the body would do in falling to the ground $=500 \times 75=$ $3 \uparrow, 500 \mathrm{ft} .-1 \mathrm{~b}$. Ans.
(b) Using formula $\mathbf{1 8}, t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \times 75}{32.16}}=2.1597$ sec. $=.035995$ min., the time of falling.

$$
\frac{37,500}{33,000 \times .035995}=31.57 \mathrm{H} . \mathrm{P} . \quad \text { Ans. }
$$

(437) $127 \div 62.5=2.032=$ specific gravity. Ans.
(438) $\frac{62.5}{1,728} \times 9.823=.35529 \mathrm{lb} . \quad$ Ans.
(439) Use formula 21. $W=\left(\frac{2 P R}{R-r}\right)$, or $\frac{2 \times 60 \times 6.5}{6.5-5.75} \times .48=499.2 \mathrm{lb}$. Ans. See Fig. 3\%
(440) See Art. 961. $F \times\left(\frac{3}{8} \div 12\right)=\frac{W v^{2}}{2 g}=\frac{1.5 \times 25^{2}}{2 \times 32.16}$, or $F=\frac{\frac{1.5 \times 25^{2}}{2 \times 32.16}}{\frac{3}{8} \div 12}=466.42 \mathrm{lb}$. Ans.
(441) (a) $2,000 \div 4=500=\mathrm{wt}$. of cu . ft. $500 \div 62.5=8=$ specific gravity. Ans.
(b) $\frac{500}{1,728}=.28935 \mathrm{lb}$. Ans.

Fig. 37.

(442) See Fig. 38. 14.5×2 $=29 . \quad 30 \times 29=W \times 5$, or $W=$ $\frac{30 \times 29}{5}=174 \mathrm{lb} . \quad$ Ans.
(443) $\quad 75 \times .21=15.75 \mathrm{lb}$.

Ans.
(444) (a) $900 \times 150=135,000 \mathrm{ft} . \mathrm{lb}$. Ans.

$$
\frac{135,000}{15}=9,000 \mathrm{ft} .-1 \mathrm{~b} . \text { per min. Ans. }
$$

(b) $\frac{9,000}{33,000}=\frac{3}{11}$ H.P. Ans.
(445) $900 \times .18 \times 2=324 \mathrm{lb}$. $=$ force required to over: come the friction. $900+324=1,224 \mathrm{lb} .=$ total force.

$$
\frac{1,224 \times 150}{15 \times 33,000}=.37091 \mathrm{H} . \text { P. Ans. }
$$

$\mathbf{(4 4 6)} \quad 18 \div 88=.2045$. Ans.
(447) See Art. 962. $D=\frac{W}{g V}=\frac{1,200}{32.16 \times 3}=12.438$.
(448) See Fig. 39. 125
$-47.5=77.5 \mathrm{lb} .=$ down ward pressure.
$77.5 \div 4=19.375 \mathrm{lb}$. $=$ pressure on each support.

Ans.

Fig. 39.
(449) See Fig. 40.

FIG. 40.
(450) See Fig. 41. $4.5 \div 2=2.25$.

$$
\frac{12}{2.25} \times 6 \times 30=960 \mathrm{lb} . \quad \text { Ans }
$$

(451) (a) $960 \div 30=32$. Ans.
(b) $790 \div 960=.8229=82.29 \% . \quad$ Ans.
$(452)(a)$ See Fig. 42. $475+(475 \times .24)=589 \mathrm{lb}$. Ans.
(b) $475 \div 589=.8064=80.64 \%$ Ans.

Fig. 42.
(453) (a) By formula 23, $U=F S=6 \times 25=150$ foct-pounds. Ans.
(b) $2 \frac{1}{2} \mathrm{sec} .=\frac{2 \frac{1}{2}}{60}=\frac{1}{2 t} \mathrm{~min}$.

Using formula $\mathbf{2 4}$, Power $=\frac{F S}{T}=\frac{150}{\frac{1}{24}}=3,600 \mathrm{ft} .-1 \mathrm{~b}$. per min. Ans.

HYDROMECHANICS.

(QUESTIONS 454-503.)

(454) The area of the surface of the sphere is 20×20 $\times 3.1416=1,256.64$ sq. in. (See rule, Art. 817.)
The specific gravity of sea water is 1.026 . (See tabies of Specific Gravity.) The pressure on the sphere per square inch is the weight of a column of water i sq. in. in crosssection and 2 miles long. The total pressure is, therefore,
$1,256.64 \times 5,280 \times 2 \times .434 \times 1.026=5,908,971 \mathrm{lb}$. Ans.
(455) $125-83.5=41.5 \mathrm{lb}$. $=$ loss of weight in water $=$ weight of a volume of water equal to the volume of the sphere. (See Art. 987.) 1 cu . in. of water weighs . 03617 lb . ; hence, 41.5 lb . of water must contain $41.5 \div .03617=$ $1,14 \% .4 \mathrm{cu} . \mathrm{in} .=$ volume of the sphere. Ans.

Note.-It is evident that the specific gravity of the sphere need not be taken into account.
(456) $\quad Q=\frac{225,000}{60 \times 60}=62.5 \mathrm{cu} . \mathrm{ft}$. per min.

Substituting the values given in formula $5 \mathbf{1}$,

$$
d=1.229 \sqrt[5]{\frac{2,800 \times 62.5^{2}}{26}}=16.38^{\prime \prime}+.
$$

Substituting this value of d in formula 49,

$$
v_{m}=\frac{24.51 \times 62.5}{16.38^{2}}=5.7095 .
$$

The value of f (from the table) corresponding to $z_{m}^{\prime}=$ 5.7005 is .0216, using but four decimal places. Hence, applying formula 52,

$$
d=2.57 \sqrt[r]{\frac{\left(.0216 \times 2,800+\frac{1}{8} \times 16.38\right) 62.5^{2}}{26}}=16^{\prime \prime} . \quad \text { Ans. }
$$

(457) (a) Area of piston $=\left(\frac{7}{8}\right)^{2} \times .7854=.6013$ sq. in.

Pressure per square inch exerted by piston $=\frac{50}{.6013}=$ 83.15 lb .

A column of water 1 foot high and of 1 sq. in. crosssection weighs .434 pound, and therefore exerts a pressure of .434 lb . per sq. in. The height of a column of water to exert a pressure of 83.15 lb . per sq. in. must be $\frac{83.15}{.434}=191.6 \mathrm{ft}$. Consequently, the water will rise 191.6 ft . Ans.

The diameter of the hole in the squirt gun has nothing to do with the height of the water, since the pressure per square inch will remain the same, no matter what the diameter may be.
(b) Using formula 34, range $=\sqrt{4 h y}$, we have

$$
\sqrt{4 h y}=\sqrt{4 \times 10 \times 191.6}=87.54 \cdot \mathrm{ft} . \quad \text { Ans. }
$$

(458) Use formulas 44 and 43.

$$
\begin{gather*}
Q_{a}=.41 b \sqrt{2 g}\left[\sqrt{h^{3}}-\sqrt{h_{1}^{3}}\right]= \tag{b}\\
.41 \times \frac{30}{12} \times \sqrt{2 \times 32.16}\left[\sqrt{\left(5 \frac{1}{2}\right)^{3}}-\sqrt{\left(3 \frac{1}{2}\right)^{3}}\right]=
\end{gather*}
$$

$52.21 \mathrm{cu} . \mathrm{ft}$. per sec. Ans.
(a) Area of weir $=b d=2.5 \times 2=5$ sq. ft.

Using formula 43,

$$
v_{m}=\frac{Q_{a}}{b d}=\frac{52.21}{5}=10.44 \mathrm{ft} . \text { per sec. Ans. }
$$

(c) To obtain the discharge in gallons per hour (b) multiply by 60×60 (seconds in an hour) and by 7.48 (gallons in a cu. ft.). Thus $52.21 \times 60 \times 60 \times 7.48=1,405,910.9 \mathrm{gal}$. per hour. Ans.
(459) First find the coefficient of friction by using formula 46, and the table of coefficients of friction. $v_{m}=2.315 \sqrt{\frac{h d}{f l}}=2.315 \sqrt{\frac{76 \times 7.5}{.025 \times 12,000}}=3.191 \mathrm{ft}$. per sec.

In the table $f=.0243$ for $v_{m}=3$ and .023 for $v_{m}=4$; the difference is.0013. $3.191-3=.191$. Then, $1: .191:: .0013: x$, or $x=.0002$. Therefore, $.0243-.0002=.0241=f$. Use formula $\mathbf{5 0}$; substitute in it the value of f here found, and multiply by 60 to get the discharge per minute.

$$
Q=.09445 d^{2} \sqrt{\frac{l d}{f l}} \times 60=
$$

$.09445 \times 7.5^{2} \sqrt{\frac{76 \times 7.5}{.0241 \times 12,000}} \times 60=447.6 \mathrm{gal}$. per min.
Note.-It will be noticed that the term $\frac{1}{8} d$, in formula 50, has been omitted. This was done because the length of the pipe exceeded 10,000 times its diameter.
(460) (a) Use formula 46

$$
v_{m}=2.315 \times \sqrt{\frac{h d}{f l}} \times 60=
$$

$2.315 \sqrt{\frac{76 \times 7.5}{.0241 \times 12,000}} \times 60=195 \mathrm{ft}$. per min. Ans.
(b) $\quad 44 \% .6$ gal. per min. $\div 60=7.46$ gal. per sec. $=1 \mathrm{cu}$. ft. per sec., nearly. Ans.
(461) See Art. 1005.
$v=\sqrt{2 g / 2}=\sqrt{2 \times 32.16 \times 10}=25.36 \mathrm{ft}$. per sec. Ans.
(462) Use formulas 49 and 47.

$$
\begin{gathered}
v_{m}=\frac{24.51 Q}{d^{2}}=\frac{24.51 \times 42,000}{6.5^{2} \times 60 \times 60}=6.768 \mathrm{ft} . \text { per sec. } \\
h=\frac{f l v_{m}^{2}}{5.36 d}+.0233 v_{m}^{2}=
\end{gathered}
$$

$$
\frac{.021 \times 1,500 \times 6.768^{2}}{5.36 \times 6.5}+.0233 \times 6.768^{2}=42.48 \mathrm{ft} . \quad \text { Ans. }
$$

(463) (b) Area of top or bottom of cylinder equals $20^{2} \times .7854=314.16$ sq. in. Area of cross-section of pipe $=$ $\left(\frac{3}{8}\right)^{2} \times .7854=.1104$ sq. in. 25 lb. 10 oz. $=25.625 \mathrm{lb}$. $25.625 \div .1104=232.11 \mathrm{lb} .$, pressure per square inch on top or bottom exerted by the weight and piston.

Pressure due to a head of $10 \mathrm{ft} .=.434 \times 10=4.34 \mathrm{lb}$. per sq. in.

Pressure due to a head of $13 \mathrm{ft} .=.434 \times 13=5.64 \mathrm{lb}$. per sq. in.
(Since a column of water 1 ft . high exerts a pressure of .434 lb . per sq. in.)
Pressure on the top $=$ pressure due to weight + pressure due to head of $10 \mathrm{ft} .=232.11+4.34=236.45 \mathrm{lb}$. per sq. in. Ans.
(a) Pressure on bottom $=$ pressure due to weight + pressure due to head of $13 \mathrm{ft} .=232.11+5.64=237.75 \mathrm{lb}$. per sq. in. Ans.
(c) Total pressure, or equivalent weight on the bottom $=$ $237.55 \times 314.16=74,691.54 \mathrm{lb}$. Ans.
(464) $.434 \times 1 \frac{1}{2}=.651 \mathrm{lb}$., pressure due to the head of water in the cylinder at the center of the orifice.
236.45 , pressure per square inch on top, $+.651=237.101$, total pressure per square inch. Area of orifice $=1^{2} \times$. 8854 $=.7554 \mathrm{sq}$. in.

$$
.7854 \times 237.101=186.22 \mathrm{lb} . \text { Ans. }
$$

(465) (a) Use formulas 28 and 27. Sp.Gr. $=$
$\frac{w}{\left(W-W^{\prime}\right)-\left(W_{1}-W_{2}\right)}=\frac{11.25}{(91.25-41)-\left(16 \times 5-3 \frac{1}{5} \times 16\right)}=$.5ั5. Ans.
(b) $\mathrm{Sp} . \mathrm{Gr} .=\frac{W}{W-W V^{\prime}}=\frac{80}{(16 \times 5)-\left(3 \frac{1}{5} \times 16\right)}=2.66 \%$ Ans.
(466) First find the coefficient of friction. Formula 46 gives
$z_{m}=2.315 \sqrt{\frac{h d}{f l}}=2.315 \sqrt{\frac{120 \times 4}{.025 \times 4,000}}=5.0 \tilde{1} 19 \mathrm{ft}$. per sec.
From the table in Art. 1033, $f=.0230$ for $\tau_{m}=4$, and .021t for $\tau_{m}^{\prime}=6 . \quad .0230-.0214=.0016 . \quad 5.0719-4=$ 1.0ヶ19. 2 : 1.0 :19 :: . $0016: x$, or $x=.0009$. . $0230-.0009$ $=.0221=f$ for $\tau_{m}^{\prime}=5.0 \hat{1} 19$. Hence,

$$
v_{m}=2.315 \sqrt{\frac{120 \times 4}{.0221 \times 4,000}}=5.4 \mathrm{ft.} \text { per sec. Ans. }
$$

(467) Use formulas 46 and 45.

$$
\tau_{m}^{\prime}=2.315 \sqrt{\frac{120 \times 4}{.025 \times 2,000}}=7.1728 \mathrm{ft} . \text { per sec. }
$$

From the table in Art. 1033, $f=.0214$ for $v_{m}=6$, and .0205 for $\tau_{m}=8 . \quad S-6=2$.
$.0214-.0205=.0009 . \quad 7.1728-6=1.1728$.
$2: 1.1728:: .0009: x$, or $x=.0005$.
$.0214-.0005=.0209=f$ for $v_{m}=7.1728$.
Hence, the velocity of discharge $=$
$v_{m}=2.315 \sqrt{\frac{120 \times 4}{.0209 \times 2,000+\frac{1}{8} \times 4}}=7.8 \mathrm{ft}$. per sec. Ans.
(468) (a) See Fig.43. Area of cylinder $=19^{2} \times .7854$; pressure, 90 pounds per sq. in. Hence, the total pressure on the piston is $19^{2} \times .7854$ $\times 90=25,51 \% .6 \mathrm{lb} .=$ the load that can be lifted. Ans.
(b) The diameter of the pipe has no effect on the load which can be lifted, except that a larger pipe will lift the load faster, since more water will flow in during a given time.
(469) (a) $f=.0205$ for $v_{m}=8$. Therefore, using formula 47,

$$
h=\frac{.0205 \times 5,280 \times 8^{2}}{5.36 \times 10}+.0233 \times
$$

$8^{2}=130.73 \mathrm{ft}$. Ans.
(b) Using formula 48, $Q=$

Fig. 43. $.0408 d^{2} v_{m}=.0408 \times 10^{2} \times 8=32.64$ gal. per sec. $32.64 \times 60 \times$ $60=117,504$ gal. per hour. Ans.
(470) A column of water 1 in . square and 2.304 ft . high weighs 1 lb . ; hence, to produce a pressure of 30 lb . per sq. in. would require a column of water $2.304 \times 30=69.12 \mathrm{ft}$. high $=$ nead. Using formula $\mathbf{3 6}$,
$v=.98 \sqrt{2 g / 2}=.98 \sqrt{2 \times 32.16 \times 69.12}=65.34 \mathrm{ft}$. per sec. Ans.
(471) (a) $36 \mathrm{in} .=3 \mathrm{ft}$. A column of water 1 in . square and 1 ft . high weighs $.43 \pm \mathrm{lb} . .434 \times 43=18.662 \mathrm{lb}$. per sq. in., pressure on the bottom of the cylinder. $.434 \times 40$ $=1 \% .36 \mathrm{lb}$. per sq. in., pressure on the top of the cylinder. Area of base of cylinder $=20^{2} \times .7854=314.16 \mathrm{sq}$. in. $314.16 \times 18.662=5,862.85 \mathrm{lb} .$, total pressure on the bottom.

Ans.
(b) $314.16 \times 17.36=5,453.82 \mathrm{lb}$., total pressure on the top. Ans.
(472) $2 \mathrm{lb} .=32 \mathrm{oz} . \quad 32-10=22 \mathrm{oz} .=$ loss of weight of the bottle in water. $\quad 32+16=48=$ weight of bottle and sugar in air. $48-16=32 \mathrm{oz} .=$ loss of weight of bottle and sugar in water. $32-22=10 \mathrm{oz}=$ loss of weight of sugar in water $=$ weight of a volume of water equal to the volume of the sugar. Then, by formula 27,
specific gravity $=\frac{W}{W-W^{\prime}}=\frac{16}{10}=1.6 . \quad$ Ans.
(473) $33=\sqrt{2 g / 2}$ (see Art. 1005), or

$$
h=\frac{33^{2}}{64.32}=16.931 \mathrm{ft} . \text { per sec. Ans. }
$$

(474) (a) Use formula 42, and multiply by 7.48×60 $\times 60$ to reduce cu. ft. per sec. to gal. per hour.

$$
\begin{array}{r}
Q_{a}=.41 \times \frac{21}{12} \times \sqrt{2 \times 32.16 \times\left(\frac{15}{12}\right)^{3}} \times 7.48 \times 60 \times 60= \\
216,551 \mathrm{gal.} \text { per hr. Ans. }
\end{array}
$$

(b) By formula 43,

$$
v_{m}=\frac{Q_{a}}{b d}=\frac{.41 \times \frac{21}{12} \times \sqrt{2 \times 32.16 \times\left(\frac{15}{12}\right)^{3}}}{\frac{21}{12} \times \frac{15}{12}}=3.6 \% 6
$$

(475) $f=.0193$ for $v_{m}=12$. Therefore, using formula 47,

$$
\begin{gathered}
h=\frac{f l z_{m}^{2}}{5.36 d}+.0233 \pi_{m}^{2}= \\
\frac{.0193 \times 6,000 \times 1 \Omega^{2}}{5.36 \times 3}+0233 \times 12^{2}=1,040.3 \% \mathrm{ft} . \quad \text { Ans }
\end{gathered}
$$

(476) (a) 1 cu . in. of water weighs .03617 lb .
$.03617 \times 40=1.4468 \mathrm{lb} .=$ weight of 40 cu . in. of water $=$ loss of weight of lead in water.
$16.4-1.447=14.953 \mathrm{lb}$. weight of lead in water. Ans.
(b) $16.4 \div 40=.41=$ weight of 1 cu. in. of the lead.
$16.4-\mathcal{Z}=14.4 \mathrm{lb}$. = weight of lead after cutting off 2 lb .
$14.4 \div .41=35.122 \mathrm{cu} . \mathrm{in} .=$ volume of lead after cutting off 2 lb .
(477) (a) See Fig. 44. $13.5 \times 9 \times .785 t=95.4261$ sq. in., area of base.
$.0361 \% \times 20=.7234 \mathrm{lb}$. per sq. in., pressure on the base due to the water only.
$12+.7234=12.7234 \mathrm{lb} .$, total pressure per square inch on base.
$12.7234 \times 95.4261=$ 1,214. 144 lb . Ans.
(b) $47 \times 12=564-\mathrm{lb} .$, total upward pressure. Ans.
(478) (a) See Fig. 44. $4 \sin 53^{\circ}=3.195^{\prime \prime}$, nearly.
$20-3.195=16.805^{\prime \prime}=$ dis tance of center of gravity of plate below the surface.
$.03617 \times 16.805+12=$ 12.60784 lb. per sq. in. $=$ per-

Fig. 44. pendicular pressure against the plate. $5 \times 8=40 \mathrm{sq}$. in., area of plate.
$12.60 \% 84 \times 40=504.314 \mathrm{lb}$. = perpendicular pressure on plate. Ans.
(b) $504.314 \sin 53^{\circ}=402.76 \mathrm{lb} .=$ horizontal pressure on plate. Ans.
(c) $504.314 \cos 53^{\circ}=303.5 \mathrm{lb} .=$ vertical pressure on plate. Ans.
(479) $\frac{5^{2} \times .7854}{144}=$ area of pipe in square feet. Using formula 31,
$Q=A v_{m}=\frac{5^{2} \times .7854}{144} \times 7.2=$ discharge in $\mathrm{cu} . \mathrm{ft}$. per sec.
$\frac{5^{2} \times .785 t}{14 t} \times 7.2 \times 7.48=$ discharge in gal. per sec.
$\frac{5^{2} \times .7854}{144} \times 7.2 \times 7.48 \times 60 \times 60 \times 24=634,478$ gal. dis . charged in one day. Ans.
(480) 38,000 gallons per hour $\frac{38,000}{60 \times 60}$ gal. per sec. $=Q$.

Using formula 49,
$v_{m}=\frac{24.51 Q}{d^{2}}=\frac{24.51 \times 38,000}{5.5^{2} \times 60 \times 60}=8.5526 \mathrm{ft}$. per sec. Ans.
(481) Area of $2 \frac{1}{2}$-in. circle $=4.9087$ sq. in. ; area of a 2 -in. circle $=3.1416$ sq. in. $(4.9087-3.1416) \times 12=21.2052$ cu . in. of brass.
$21.2052 \times .0361 \%=.767 \mathrm{lb} .=$ weight of an equal volume of water.
$6 \mathrm{lb} .5 \mathrm{oz} .=6.3125 \mathrm{lb} .6 .3125 \div .767=8.23 \mathrm{Sp}$. Gr. of brass. Ans.
(482) (b) A column of water 1 ft . high and 1 in . square weighs. $434 \mathrm{lb} . \quad .434 \times 180=78.12 \mathrm{lb}$. per sq. in. Ans.
(a) Projected area of 1 foot of pipe $=6 \times 12=72$ sq. in. (See Art. 985.) $72 \times 78.12=5,624.64 \mathrm{lb}$., nearly. Ans.
(483) Use formula 42.
(a) $Q_{a}=.41 b \sqrt{2 g d^{3}}=.41 \times \frac{27}{12} \times \sqrt{2 \times 32.16 \times\left(\frac{36}{12}\right)^{3}}=$ $38.44 \mathrm{cu} . \mathrm{ft}$. per sec. Ans.
(b) $Q=\frac{Q_{n}}{.615}=\frac{38.44}{.615}=62.5 \mathrm{cu} . \mathrm{ft}$. per sec. Ans.
(484) (a) Area of pipe : area of orifice :: $6^{2}: 1.5^{2}$; or, area of pipe is 16 times as large as area of orifice. Hence, using formula 35,
$v=\sqrt{\frac{2 g h}{1-\frac{a^{2}}{A^{2}}}}=\sqrt{\frac{2 \times 32.16 \times 45}{1-\frac{\left(1.5^{2} \times .7854\right)^{2}}{\left(6^{2} \times .7854\right)^{2}}}}=53.9 \mathrm{ft}$. per sec. Ans.
(b) $2.304 \times 10=23.04 \mathrm{ft}$. $=$ height of column of water which will give a pressure of 10 lb . per sq. in. $45+23.04$ $=68.04 \mathrm{ft}$.

$$
v=\sqrt{\frac{\sum \times 32.16 \times 68.04}{1-\frac{\left(1.5^{2} \times .7854\right)^{2}}{\left(6^{2} \times .7854\right)^{2}}}}=66.28 \mathrm{ft} . \text { per sec. Ans. }
$$

(485) Use formula 48.
$Q=.0408 d^{2} v_{m}=.0408 \times 6^{2} \times 7.5=11.016$ gal. per sec. Ans.
(486) $14^{2} \times .7854 \times 27=$ volume of cylinder $=$ volume of water displaced.
$14^{2} \times .7854 \times 27 \times .03617=150 \mathrm{lb} .$, nearly,$=$ weight of water displaced.
$\left(14^{2}-13^{2}\right) \times .7854 \times 27=$ volume of the cylinder walls.
$13^{2} \times .7854 \times \frac{1}{4} \times 2=$ volume of the cylinder ends.
$.261 \mathrm{lb} .=$ weight of a cubic inch of cast iron, then,
$\left[\left(14^{2}-13^{2}\right) \times .7854 \times 27+13^{2} \times .7854 \times \frac{1}{4} \times 2\right] \times .261=$ 167 lb ., nearly, $=$ weight of cylinder. Since weight of cylinder is greater than the weight of the water displaced, it will sink. Ans.
(487) $2 \mathrm{lb} .-1 \mathrm{lb} .5 \mathrm{oz} .=11 \mathrm{oz} .$, weight of water.
$1 \mathrm{lb} .15 .34 \mathrm{oz} .-1 \mathrm{lb} .5 \mathrm{oz} .=10.34 \mathrm{oz} .$, weight of oil.
$10.34 \div 11=.94=$ Sp. Gr. of oil. Ans.
(488) Head $=41 \div .434=94.4^{77} \mathrm{ft}$. Using formula $\mathbf{3 6}$, $v=.98 \sqrt{2 g / h}=.98 \sqrt{2 \times 32.16 \times 94.47}=76.39 \mathrm{ft}$. per sec. Ans. This is not the mean velocity, v_{m}.
(489) (a) Use formula 39.

$$
Q_{a}=.815 A \sqrt{2 g h}, \text { or }
$$

$$
Q_{a}=.815 \times \frac{1.5^{2} \times .7854}{144} \times \sqrt{2 \times 32.16 \times 94.47} \times 60=
$$ $46.7 \% \mathrm{cu} . \mathrm{ft}$. per min. Ans.

(b) See Art. 1005.

The theoretical velocity of discharge is $v=\sqrt{2 g h}$, and as $h=41 \div .434=94.47 \mathrm{ft}$., we have $v=\sqrt{2 \times 32.16 \times 94.47}$ $=\% \% .95 \mathrm{ft}$. per sec.

Using formula 31, $Q=A$ i, and multiplying by 60 to reduce the discharge from $\mathrm{cu} . \mathrm{ft}$. per sec. to $\mathrm{cu} . \mathrm{ft}$. per min., we have
$Q=\frac{1.5^{2} \times .7854}{144} \times 7 \% .95 \times 60=5 \% .39 \mathrm{cu} . \mathrm{ft}$. permin. Ans.
(c)

$$
\frac{Q_{a}}{Q}=\frac{46.7 \%}{5 \% .39}=.815 . \quad \text { Ans. }
$$

(490) (b) Use formulas 31 and 38. $Q=A v=\frac{1.5^{2} \times .7854}{144} \times 7 \% .95=.9568 \mathrm{cu} . \mathrm{ft}$. per sec. Ans.
(a) $Q_{a}=.615 Q=.615 \times .9568=.5884 \mathrm{cu} . \mathrm{ft}$. per sec. Ans.

$$
\begin{equation*}
\frac{Q_{a}}{Q}=\frac{.5884}{.9568}=.615 . \quad \text { Ans. } \tag{c}
\end{equation*}
$$

(491) (a) $9 \times 5 \times .7854=35.343$ sq. in. $=$ area of base. $2^{2} \times .7854=3.1416$ sq. in. $=$ area of hole.
$\frac{3.1416}{35.343}=\frac{1}{11.25} ;$ hence, the area of the base is less than 20 times the area of the orifice, and formula $\mathbf{3 5}$ must be used.

$$
v=\sqrt{\frac{2 g / h}{1-\frac{a^{2}}{A^{2}}}}=\sqrt{\frac{2 \times 32.16 \times 6}{1-\frac{\left(2^{2} \times .7854\right)^{2}}{(9 \times 5 \times .7854)^{2}}}}=19.722 \mathrm{ft}
$$

(b) $.434 \times 6=2.604$, or say 2.6 lb . per sq. in. Ans.
(492) $6 \times 4 \times .7854=18.85$ sq. in. $=$ area of upper surface.
$15^{2} \times .{ }^{7} 854=176.715$ sq. in. $=$ area of base.
$\frac{132}{18.85} \times 1 \% 6 . \% 15=1,23 \% .5 \mathrm{lb}$., pressure due to weight on upper surface.
$.03617 \times 24 \times 176.715=153.4 \mathrm{lb} .$, pressure due to water in vessel.
$1,23 \% .5+153.4=1,390.9 \mathrm{lb} .$, total pressure. Ans.
($\mathbf{4 9 3}$) Use formula 31 or 32.
Divide by 60×60 to get the discharge in gallons per second, and by 7.48 to get the discharge in cubic feet per second.

$$
\text { Area in sq. ft. }=\frac{4^{2} \times .7854}{144}
$$

$v_{m}=\frac{Q}{A}=\frac{12,000 \times 144}{60 \times 60 \times 7.48 \times 4^{2} \times .7854}=5.106 \mathrm{ft}$. per sec.
(494) A sketch of the arrangement is shown in Fig. 45.

Fig. 45.
(a) Area of pump piston $=\left(\frac{1}{2}\right)^{2} \times .7854=.19635$ sq. in.

Area of plunger $=10^{2} \times .7854=78.54$ sq. in.

Pressure per square inch exerted by piston $=\frac{100}{.19635} \mathrm{lb}$.
Hence, according to Pascal's law, the pressure on the plunger is $\frac{100}{.19635} \times 88.54=40,000 \mathrm{lb}$. Ans.
(b) Velocity ratio $=1 \frac{1}{2}: .00345=400: 1$. Ans.
(c) According to the principle given in Art. 981, $P \times$ $1 \frac{1}{2}$ inches $=W \times$ distance moved by plunger, or $100 \times$ $1 \frac{1}{2}=40,000 \times$ required distance; hence, the required dis. tance $=\frac{100 \times 1 \frac{1}{2}}{40,000}=.003 i 5 \mathrm{in} . \quad$ Ans.
(495) (a) Use formula 44, and multiply by 7.48 and 60 to reduce the discharge from $\mathrm{cu} . \mathrm{ft}$. per sec. to gal. per min.

$$
\begin{aligned}
& Q_{a}=.41 b \sqrt{2 g}\left[\sqrt{h^{3}}-\sqrt{h_{2}^{3}}\right] \times 60 \times 7.48= \\
& .41 \times \frac{14}{12} \times \sqrt{64.32}\left[\sqrt{\left(9+\frac{20}{12}\right)^{3}}-\sqrt{9^{3}}\right] \times 60 \times 7.48= \\
& \text { (b) In the second case, }
\end{aligned}
$$

$$
\begin{array}{r}
Q_{a}=.41 \times \frac{20}{12} \times \sqrt{64.32}\left[\sqrt{\left(9+\frac{14}{12}\right)^{3}}-\sqrt{9^{3}}\right] \times 60 \times 7.48= \\
13,323 \text { gal. Ans. }
\end{array}
$$

(496) (a) Area of weir $=14 \times 20 \div 144$ sq. ft. Use formula 32, and divide by 60×7.48 to reduce gal. per min. to $\mathrm{cu} . \mathrm{ft}$. per sec.
$\tau_{m}=\frac{Q}{A}=\frac{13,502 \times 144}{60 \times 7.48 \times 14 \times 20}=15.4 \% \mathrm{ft}$. per sec. Ans.
(b) $v_{n n}=\frac{13,323 \times 144}{60 \times 7.48 \times 14 \times 20}=15.27 \mathrm{ft}$. per sec. Ans.
(497) (a) See Art. 997.

$$
\begin{aligned}
& W=2 \mathrm{lb} .8 \frac{1}{2} \mathrm{oz}=40.5 \mathrm{oz} . \\
& w= \\
& 12 \mathrm{oz} . \\
& W^{\prime}=1 \mathrm{lb} .11 \mathrm{oz} .=27 \quad \mathrm{oz.}
\end{aligned}
$$

By formula 30,
Sp. Gr. $=\frac{W-w}{W^{\prime}-\tau v}=\frac{40.5-12}{27-12}=\frac{28.5}{15}=1.9 . \quad$ Ans.
(b) $\quad 15 \mathrm{oz} .=\frac{15}{16} \mathrm{lb} .=.9375 \mathrm{lb} . \quad .9375 \div .03617=25.92 \mathrm{cu}$. in. $=$ volume of water $=$ volume of slate. Therefore, the volume of the slate $=25.92 \mathrm{cu}$. in. Ans.
(498) In Art. 1019 it is stated that the theoretical mean velocity is $\frac{2}{3} \sqrt{2 g h}$. Hence, $v_{m}=\frac{2}{3} \sqrt{2 \times 32.16 \times 3}=$ 9.26 ft . per sec. Ans.
(499) (a) $4 \mathrm{ft} .9 \mathrm{in} .=4.75 \mathrm{ft} . \quad 19-4.75=14.25$.

Range $=\sqrt{4 / h y}=\sqrt{4 \times 4.75 \times 14.25}=16.454 \mathrm{ft} . \quad$ Ans.
(b) $19-4.75=14.25 \mathrm{ft}$. Ans.
(c) $19 \div 2=9.5 . \quad$ Greatest range $=\sqrt{4 \times 9.5^{2}}=19 \mathrm{ft}$. Ans. (See Art. 1009.)
(500) Use formulas 46 and 50.
$v_{m}=2.315 \sqrt{\frac{h d}{f l}}=2.315 \sqrt{\frac{25 \times 5}{.025 \times 1,300}}=4.5397 \mathrm{ft}$. per sec.
From the table, $f=.0230$ for $v_{m}=4$ and .0214 for $v_{m}=6$. $.0230-.0214=.0016 . \quad 6-4=2$.
$4.5397-4=.5397$. Then, $2: .5397:: .0016: x$, or $x=$.0004 . Hence, $.0230-.0004=.0226=f$ for $v_{m}=4.5397$. $Q=60 \times 60 \times .09445 \times 5^{2} \times \sqrt{\frac{25 \times 5}{.0226 \times 1,300+\frac{1}{8} \times 5}}=$ 17,350 gal. per hr. Ans.
(501) Obtain the values by approximating to those given in Art. 1033. Thus, for $\tau_{m}=2, f=.0265$; for $\tau_{m}=3, f=$ $.0243 ; .0265-.0243=.0022 . \quad 2.37-2=.37$. Hence, $1: 37$ $:: .0022: x$, or $x=.0008$. Then, $.0265-.0008=.0257=f$ for $v_{m}=2.3 \%$. Ans.

For $v_{m}=3, f=.0243 ;$ for $v_{m}=4, f=.0 \approx 30 ; .0 \approx 43-.0230$ $=.0013$. $3.19-3=.19$. Hence, $1: .19:: .0013: x$, or $x=$.0002 . Then, $.0243-.0002=.0241=f$ for $v_{m}=3.19$. Ans.

For $v_{m}=4, f=.0230 ;$ for $v_{m}=6, f=.0214 ; .0230-.0214$ $=.0016$. $5.8-4=1.8$. $6-4=2$. Hence, $2: 1.8:: .0016:$ x, or $x=.0014$. Then, $.0230-.0014=.0216=f$ for $v_{m}=5.8$. Ans.

For $v_{m}=6, f=.0214$; for $v_{m}=8, f=.0205 ; .0214-.0205$ $=.0009$. 7.4-6=1.4. $8-6=2$. Hence, $2: 1.4=.0009: x$, or $x=.0006$. Then, $.0214-.0006=.0208=f$ for $v_{m}=$ \%.4. Ans.

For $v_{m}=8, f=.0205$; for $v_{m}=12, f=.0193 ; .0205-.0193$ $=.0012$. $9.83-8=1.83 . \quad 12-8=4$. Hence, $4: 1.83::$ $.0012: x$, or $x=.0005$. Then, $.0205-.0005=.02=f$ for $v_{m}=9.83$. Ans.

For $v_{m}=8, f=.0205 ;$ for $v_{m}=12, f=.0193 ; .0205-$ $.0193=.0012 . \quad 11.5-8=3.5 . \quad 12-8=4$. Hence, $4: 3.5$ $:: .0012: x$, or $x=.0011$. $0205-.0011=.0194=f$ for $v_{m}=$ 11.5. Ans.
(502) Specific gravity of sea-water is 1.026. Total area of cube $=10.5^{2} \times 6=661.5 \mathrm{sq}$. in. 1 mile $=5,280 \mathrm{ft}$. Hence, total pressure on the cube $=661.5 \times 5,280 \times 3.5 \times .434 \times$ $1.026=5,443,383 \mathrm{lb}$. Ans.
(503) $19^{2} \times .7854 \times 80=22,682 \mathrm{lb}$. Ans.

PNEUMATICS.

(QUESTIONS 504-553.)

(504) The force with which a confined gas presses against the walls of the vessel which contains it.
(505) (a) $4 \times 12 \times .49=23.52 \mathrm{lb}$. per sq. in. Ans.
(b) $23.52 \div 14.7=1.6$ atmospheres. Ans.
(506) (a) A column of water 1 foot high exerts a pressure of .434 lb . per sq. in. Hence, $.434 \times 19=8.246 \mathrm{lb}$. per sq. in., the required tension. A column of mercury 1 in . high exerts a pressure of .49 lb . per sq. in. Hence, $8.246 \div .49=$ $16.828 \mathrm{in} .=$ height of the mercury column. Ans.
(b) Pressure above the mercury $=14.7-8.246=6.454$ lb. per sq. in. Ans.
(507) Using formula 53, $p_{1}=\frac{p v}{v_{1}}=\frac{(14.7 \times 3) \times 1}{2.5}=$ 17.64 lb . Ans.
(508) (c) Using formula 61,

$$
\begin{aligned}
& V= \frac{.37052 W T}{p}=\frac{.37052 \times 7.14 \times 535}{22.05}=64.188 \mathrm{cu} . \mathrm{ft} . \text { Ans } \\
&\left(T=460^{\circ}+75^{\circ}=535^{\circ}, \text { and } p=14.7 \times 1.5=2 \% .05 \mathrm{lb} .\right. \\
&\text { per sq. in. })
\end{aligned}
$$

(a) $7.14 \div .08=89.25 \mathrm{cu}$. ft., the original volume. Ans.
(b) If $1 \mathrm{cu} . \mathrm{ft}$. weighs $.08 \mathrm{lb} ., 1 \mathrm{lb}$. contains $1 \div .08=$ $12.5 \mathrm{cu} . \mathrm{ft}$. Hence, using formula $\mathbf{6 0}, p V=.37052 T$, or $T=\frac{p V}{.37052}=\frac{22.05 \times 12.5}{.37052}=743.887^{\circ} . \quad 743.887-460=$ 283.887°. Ans.
(509) Substituting in formula 59, $p=40, t=120$, and $t_{1}=55$,

$$
p_{1}=40\left(\frac{460+55}{460+120}\right)=\frac{40 \times 515}{580}=35.517 \mathrm{lb}: \text { Ans. }
$$

(510) Using formula $61, p V=.37052 W T$, or

$$
W=\frac{p V}{.37052 T} . \quad T=460^{\circ}+60^{\circ}=520^{\circ} .
$$

Therefore, $W=\frac{14.7 \times 1}{.37052 \times 520}=.076296 \mathrm{lb}$. Ans.
(511) $175,000 \div 144=$ pounds per sq. in.

$$
\begin{array}{r}
(175,000 \div 144) \div 14.7=82.672=\text { atmospheres. } \\
\text { Ans. }
\end{array}
$$

(512) Extending formula 63 to include 3 gases, we have $P V=p_{1} v_{1}+p_{2} v_{2}+p_{3} v_{3}$, or $40 \times P=1 \times 12+2 \times 10+3 \times 8$.

Hence, $P=\frac{56}{40}=1.4$ atmos. $=1.4 \times 14.7=20.58 \mathrm{lb}$. per sq. in. Ans.
(513) In the last example, $P V=56$. In the present case, $P=\frac{23}{14.7}$ atmos. Therefore, $V=\frac{56}{P}=\frac{56}{\frac{23}{14.7}}=35.79$
cu. ft. Ans.
(514) For $t=280^{\circ}, T={ }^{7} 40^{\circ}$; for $t=77^{\circ}, T=537^{\circ}$.
$p V=.37052 W T$, or $W=\frac{p V}{.37052} \bar{T}^{2} \quad$ (Formula 61.)

$$
\text { Weight of hot air }=\frac{14.7 \times 10,000}{.37052 \times 740}=536.13 \mathrm{lb}
$$

Weight of air displaced $=\frac{14.7 \times 10,000}{.37052 \times 537}=738.81 \mathrm{lb}$. $738.81-536.13=202.68 . \quad 202.68-100=102.68 \mathrm{lb}$. Ans,
(515) According to formula 64,

$$
\begin{gathered}
P V=\left(\frac{p_{1} v_{1}}{T_{1}}+\frac{p_{2} v_{2}}{T_{2}}\right) T, \text { or } \\
20 \times 31=\left(\frac{14.7 \times 13}{533}+\frac{30 \times 18}{513}\right) T=1.411168 T
\end{gathered}
$$

Therefore, $T=\frac{20 \times 31}{1.411168}=439.35^{\circ}$. Since this is less than 460°, the temperature is $460-439.35=20.65^{\circ}$ below zero, or -20.65°. Ans.
(516) A hollow space from which all air or other gas (or gaseous vapor) has been removed. An example would be the space above the mercury in a barometer.
(517) One inch of mercury corresponds to a pressure of .49 lb . per sq. in.
$\frac{1}{40}$ inch of mercury corresponds to a pressure of $\frac{.49}{40} \mathrm{lb}$. per sq. in. $\frac{.49}{40} \times 144=1.764 \mathrm{lb}$. per sq. ft. Ans.
(518) (a) $325 \times .14=45.5 \mathrm{lb} .=$ force necessary to overcome the friction. $6 \times 12=72^{\prime \prime}=$ length of cylinder. $72-40=32=$ distance which the piston must move. Since the area of the cylinder remains the same, any variation in the volume will be proportional to the variation in the length between the head and piston. By formula $\mathbf{5 3}$, $p v=p_{1} v_{1} . \quad$ Therefore, $p=\frac{p_{1} v_{1}}{v}=\frac{14.7 \times 40}{72}=8.1 \frac{2}{3} \mathrm{lb}$. per sq. in. $=$ pressure when piston is at the end of the cylinder. Since there is the atmospheric pressure of 14.7 lb . on one side of the piston and only $8.1 \frac{2}{3} \mathrm{lb}$. on the other side, the force required to pull it out of the cylinder is $14.7-8.1 \frac{2}{3}=$ $6.5 \frac{1}{3} \mathrm{lb}$. per sq. in. Area of piston $=40^{2} \times .7854=1,256.64$ sq. in. Total force $=1,256.64 \times 6.5 \frac{1}{3}=8,210.05$. Adding the friction, $8,210.05+45.5=8,255.55 \mathrm{lb}$. Ans.
(b) Proceeding likewise in the second case, $p v=p_{1} v_{1}$, or $p=\frac{p_{1} v_{1}}{v}=\frac{14.7 \times 40}{6}=98 \mathrm{lb} .98-14.7=83.3 \mathrm{lb}$. per sq. in. $1,256.64 \times 83.3+45.5=104.223 .612 \mathrm{lb}$. Ans.
(519) $8.4 \tau=$ original volume $=i_{2}^{\prime} . \quad 8.47-4.5=3.97$ cu. $\mathrm{ft} .=$ new volume $=\imath . \quad$ By formula 53,

$$
p_{1}=\frac{p \imath^{\prime}}{i_{1}^{\prime}}=\frac{3.9 i \times 3 \Sigma}{8.47}=17.812 \mathrm{lb} \text {. per sq. in. Ans. }
$$

(520) Original weight $=W=.5 \mathrm{lb} .=8 \mathrm{oz}$; new weight $=\Pi_{1}=1 \mathrm{lb} .6 \mathrm{oz}=22 \mathrm{oz}$. According to formula $\mathbf{5 6}$, $p W W_{1}=p_{1} W$, or $p_{1}=\frac{P W_{1}}{W}=\frac{14.7 \times 22}{8}=40.425 \mathrm{lb}$. per sq. in. Ans.
(521) Applying formula 58, $\tau_{1}^{\prime}=\imath^{\prime}\left(\frac{460+t_{1}}{460+t}\right)=\frac{4,516}{1, \because 28}\left(\frac{460+80}{460+260}\right)=1.96 \mathrm{cu} . \mathrm{ft} . \quad$ Ans.
(522) According to formula $61, p V=.3 i 052 W T$, or $W=\frac{p V}{.3 i 052 T}=\frac{14 . \tilde{2} \times 1.25 \times 55}{.3 \div 052 \times 548}=4.9 \% 7 \mathrm{lb} . \quad$ Ans.
(523) Using formula 63, $P V=p v+p_{1} \tau_{1}$, or $P \times \tau .5$ $=14 . \hat{i} \times 2 \times \hat{i} .5+40 \times \hat{i} .5$, or $P=69.4 \mathrm{lb}$. per sq. in. Ans.
(524) $45^{\prime \prime}, 36^{\prime \prime}$, and $24^{\prime \prime}=4^{\prime}, 3^{\prime}$, and 2^{\prime}, respectively. Hence, $\pm \times 3 \times 2=2 \pm \mathrm{cu} . \mathrm{ft}$. $=$ the volume of the block. The block will weigh as much more in a vacuum as the weight of the air it displaces. In example 510 , it was found that 1 cu . ft. of air at a temperature of 60° weighed $.0 \% 6296 \mathrm{lb} . \quad .0,6296 \times 24+1,200=1,201.83 \mathrm{lb}$. Ans.
(525) (a) (See Art. 1088.) $12 \%+16=143$.
$\frac{\left(\frac{9}{15}\right)^{2} \times .8554 \times 1 \times 1.55 \times 6.5 \times 143}{33,000}=14.9563 \mathrm{H} . \mathrm{P}$.

$$
14.9563 \div .55=19.942 \text { H.P. Ans. }
$$

(b) Discharge in gallons per hour $=$ volume of cylinder in cu. ft. \times number of strokes per minute $\times \mathfrak{\AA} .48 \times 60=$ $\left(\frac{9}{12}\right)^{2} \times . .7854 \times 125 \times 7.48 \times 60=24,784.3$ gal. per hr. Ans.
(526) In this example, the number of times that the pump delivers water in 1 minute is $100 \div 2=50$; in the last example, 125. Hence, the number of gallons discharged per hour in this case will be $24,786 \times \frac{50}{125}=9,914.4$ gal. Ans.

(527) See Art. 1043.

Pressure in condenser $=\frac{30-23}{30} \times 14.7=3.43 \mathrm{lb}$. per sq. in. Ans.
(528) $144 \times 14.7=2,116.8 \mathrm{lb}$. per sq. ft. Ans.
(529) $.27 \div 3=.09=$ weight of $1 \mathrm{cu} . \mathrm{ft}$. Using formula 56,
$p W_{1}=p_{1} W$, or $30 W_{1}=65 \times .09 . W_{1}=.195 \mathrm{lb}$. Ans.
(530) Using formula 61,
$p V=.37052 W T$, or $30 \times 1=.37052 \times .09 \times T$.
$T=\frac{30}{.37052 \times .09}=899.6^{\circ} .899 .6^{\circ}-460^{\circ}=439.6^{\circ}$. Ans.
(531) $460^{\circ}+32^{\circ}=492^{\circ} ; 460^{\circ}+212^{\circ}=672^{\circ} ; 460^{\circ}+62^{\circ}$ $=522^{\circ}$, and $460^{\circ}+\left(-40^{\circ}\right)=420^{\circ}$.
(532) Using formula 61, $p V=.37052 W T$, and substituting,
$(14.7 \times 10) \times 4=.37052 \times 3.5 \times T$, or $T=\frac{14.7 \times 10 \times 4}{.37052 \times 3.5}=$ $453.417^{\circ} .453 .417-460^{\circ}=-6.583^{\circ}$. Ans.
(533) Using formula $63, V P=v_{p}+v_{1} p_{1}$, we find

$$
P=\frac{15 \times 63+19 \times 14.7 \times 3}{25}=71.316 \mathrm{lb} . \quad \text { Ans. }
$$

(534) Using formula $\mathbf{6 0}$, $p V=.37052 T$, or $P=$ $\frac{.37052 \times 540}{10}=20 \mathrm{lb}$. per sq. in., nearly. Ans.
(535) One inch of mercury represents a pressure of .49 lb . Therefore, the height of the mercury column is $12.5 \div .49=25.51 \mathrm{in}$. Ans.
(536) Thirty inches of mercury corresponds to 34 ft . of water. (See Art. 1043.) Therefore, $30^{\prime \prime}: 34 \mathrm{ft} .:: 27^{\prime \prime}: x \mathrm{ft}$, or $x=30.6 \mathrm{ft}$. Ans.
A more accurate way is $(27 \times .49) \div .434=30.5 \mathrm{ft}$.
(537) (a) $30-17.5=12.5 \mathrm{in} .=$ original tension of gas in inches of mercury. $30-5=25 \mathrm{in}$. $=$ new tension in inches of mercury.
$V P=v p+v_{1} p_{1}$ (formula 63), or $6.7 \times 25=6.7 \times 12.5+v_{1} \times 30$.

$$
v_{1}=\frac{6.7 \times 25-6.7 \times 12.5}{30}=2.79 \frac{1}{6} \mathrm{cu} . \mathrm{ft} . \text { Ans. }
$$

(b) To produce a vacuum of 0 inches,

$$
v_{1}=\frac{6.7 \times 30-6.7 \times 12.5}{30}=3.908 \mathrm{cu} . \mathrm{ft} . \quad \text { Ans. }
$$

(538) $11+25=36$, final volume of gas. $2.4 \div 36=$ $\frac{1}{15} \mathrm{lb}$. Ans.
(539) Using formula 59 ,
$p_{1}=p\left(\frac{460+t_{2}}{460+t}\right)=12 \times\left(\frac{460+300}{460+60}\right)=17.54 \mathrm{lb}$. per sq. in.
(540) $T=460+212=672^{\circ}$. Using formula 61, $p V=$ $.37052 W T$, we have $14.7 \times 1=.37052 \times W \times 672$, or $W=$ $\frac{14.7}{.37052 \times 672}=.059039 \mathrm{lb}$. Ans.
(541) (a) $\frac{20^{2} \times .7854 \times 32}{1,728}=5.8178 \mathrm{cu} . \mathrm{ft} .=$ volume of cylinder.
$32-26=6 \mathrm{in}$., length of stroke unfinished. $5.8178 \times \frac{6}{32}=1.0908 \mathrm{cu} . \mathrm{ft} . \quad$ Ans.
(b) By formula 61, taking the values of p, V, and T at the beginning of stroke,
$p V=.37052 W T$, or $W=\frac{p V}{.37052 T}=\frac{14.7 \times 5.8178}{.37052 \times 535}=$.43143 lb . Ans.
(c) Now, substituting in formula 61 the values of V, W, and T at time of discharge,

$$
p=\frac{.37052 W T}{V}=\frac{.37052 \times .43143 \times 585}{1.0908}=85.72 \% \mathrm{lb} . \text { per }
$$

sq. in. Ans.
(542) Using formula 63, $V P=v p+v_{1} p_{1}$, or 30×35 $=19 \times 12+21 p_{1}$, or $p_{1}=\frac{30 \times 35-19 \times 12}{21}=39.14 \mathrm{lb}$. per sq. in. Ans.
(543) Use formula 64. $P V=\left(\frac{p_{1} \tau_{1}}{T_{1}}+\frac{p_{2} v_{2}}{T_{2}}\right) T$.

$$
T=460+72=532 .
$$

Therefore, $P=\frac{\left(\frac{13 \times 45}{520}+\frac{17 \times 60}{540}\right) 532}{60}=26.723 \mathrm{lb}$. per sq.
(544) One inch corresponds to a pressure of .49 lb . Therefore, the gauge will show $4.5 \div .49=9.18+\mathrm{in}$.

See Art. 1043.
(545) Sp. Gr. of alcohol $=.8$. Therefore, $16 \times .434 \times .8=$ pressure exerted by the column of alcohol. $\frac{16 \times .434 \times .8}{.49}=$ 11.337 in . = height of a column of mercury that will give the same pressure as 16 ft . of alcohol $=$ number of inches shown by the gauge. Ans.
(546) (a) $14.7+9=23.7 \mathrm{lb}$. per sq. in. Using formula 53,

$$
v_{1}=\frac{p v}{p_{1}}=\frac{14.7 \times 80}{23.7}=49.62 \mathrm{in} .=
$$

distance between piston and end of stroke. Since the area of the piston remains constant, the volume at any point of the stroke is proportional to the distance passed over by the piston. Hence, we may use the latter for the former in the formula. $\quad 80-49.62=30.38$ in. Ans.
(b) Area of piston $=80^{2} \times .7854$. The volume of air at point of discharge is $80^{2} \times .7854 \times 49.62 \mathrm{cu} . \mathrm{in} .=$

$$
\frac{80^{2} \times .7854 \times 49.62}{1,728}=144.34 \mathrm{cu} . \mathrm{ft} . \quad \text { Ans. }
$$

(547) Using formula $\mathbf{5 6}, p W_{1}=p_{1} W$, or $3.5 \times 14.7 \times 2=$ $p_{2} \times 13 ;$ hence, $p_{1}=\frac{14.7 \times 3.5 \times 2}{13}=7.915+\mathrm{lb}$. per sq. in. Ans.
(548) $60^{\prime \prime}-50^{\prime \prime}=10^{\prime \prime}$. Since the volumes are propor tional to the lengths of the spaces between the piston and the end of the stroke, we may apply formula $\mathbf{6 2}$,

$$
\frac{p V}{T}=\frac{p_{1} V_{1}}{T_{1}} ; \text { or } \frac{14.7 \times 60}{460+60}=\frac{p_{1} \times 10}{460+130}
$$

Therefore, $p_{1}=\frac{14.7 \times 60 \times 590}{520 \times 10}=100.0 \% \mathrm{lb}$. persq. in. Ans.
(549) $T=127^{\circ}+460^{\circ}=587^{\circ}$. Using formula $\mathbf{6 0}$, $p V=.37052 T$, or $V=\frac{.37052 \times 587}{27}=8.055 \mathrm{cu} . \mathrm{ft}$. Ans.
(550) $\quad T=100^{\circ}+460^{\circ}=560^{\circ}$.

Substituting in formula 61, $p V=.37052 W T$, or

$$
V=\frac{.37052 W T}{p}=\frac{.37052 \times .5 \times 560}{\frac{4,000}{144}}=3.735 \mathrm{cu} . \mathrm{ft} . \quad \text { Ans. }
$$

(551) Use formula 64. $P V=\left(\frac{p_{1} v_{1}}{T_{1}}+\frac{p_{2} v_{2}}{T_{2}}\right) T$.

$$
T=110^{\circ}+460^{\circ}=570^{\circ} ; T_{1}=100^{\circ}+460^{\circ}=560^{\circ} ; T_{2}=
$$ $130^{\circ}+460^{\circ}=590^{\circ}$.

Therefore, $V=\frac{\left(\frac{90 \times 40}{560}+\frac{80 \times 57}{590}\right) 570}{120}=67.248 \mathrm{cu} . \mathrm{ft}$ Ans.
(552) The pressure exerted by squeezing the bulb may be found from formula $\mathbf{5 3}$, in which p is $14.7, v$, the original volume $=20 \mathrm{cu}$. in., and v_{1}, the new volume, $=5 \mathrm{cu}$. in. $p_{1}=\frac{p v}{v_{1}}=\frac{14.7 \times 20}{5}=58.8 \mathrm{lb}$. The pressure due to the atmosphere must be deducted, since there is an equal pressure on the outside which balances it. $58.8-14.7=44.1$ lb. per sq. in. = pressure due to squeezing the bulb. $3^{2} \times .7854=7.0686$ sq. in. $=$ area of bottom. $\quad 7.0686 \times 44.1=$ $311.725 \mathrm{lb} . \quad 7.0686 \times .434=3.068 \mathrm{lb} .=$ pressure due to weight of water. $311.725+3.068=314.793 \mathrm{lb}$. Ans.
(553) Use formula 58.

$$
v_{2}=v\left(\frac{460+t_{1}}{460+t}\right)=4\left(\frac{460+115}{460+40}\right)=4.6 \mathrm{cu} . \mathrm{ft} . \quad \text { Ans. }
$$

STRENGTH OF MATERIALS.

(QUESTIONS 554-613.)
(554) See Arts. $\mathbf{1 0 9 4}, \mathbf{1 0 9 7}$, and $\mathbf{1 0 9 6 .}$
(555) See Arts. $1102,1103,1110$, and 1112.
(556) See Art. 1105.
(557) Use formula 67.

$$
E=\frac{P l}{A c} \text {; therefore, } c=\frac{P l}{A E} \text {. }
$$

$A=.7854 \times \lambda^{2} ; l=10 \times 12 ; P=40 \times 2,000 ; E=25,000,000$.
Therefore, $c=\frac{40 \times 2,000 \times 10 \times 12}{.7854 \times 4 \times 25,000,000}=.122^{\prime \prime}$. Ans.
(558) Using formula 67 ,
$E=\frac{P l}{A e}=\frac{\pi, 000 \times 7 \frac{1}{2}}{. \% 854 \times\left(\frac{1}{2}\right)^{2} \times .009}=29, \% 08,853.2 \mathrm{lb}$. per sq. in.
(559) Using formula 67,

$$
E=\frac{P l}{A e}, \text { or } P=\frac{A c E}{l}=\frac{1 \frac{1}{2} \times 2 \times .006 \times 15,000,000}{9 \times 12}=
$$

$2,500 \mathrm{lb}$. Ans.
(560) By formula 67,
$E=\frac{P l}{A \varepsilon}$, or $l=\frac{A c E}{P}=\frac{.785 t \times 3^{2} \times .05 \times 1,500,000}{2,000}=265.0 \tilde{\imath}^{n}$.
(561) Using a factor of safety of 4 (see Table 24), formula 65 becomes

$$
\begin{gathered}
P=\frac{A S_{1}}{4}, \text { or } A=\frac{4 P}{S_{1}}=\frac{4 \times 6 \times 2,000}{55,000}=.8727272 \text { sq. in. } \\
d=\sqrt{\frac{A}{.7854}}=\sqrt{\frac{.8727272}{.7854}}=1.054^{\prime \prime} . \text { Ans. }
\end{gathered}
$$

(562) From Table 19, the weight of a piece of cast iron $1^{\prime \prime}$ square and 1 ft . long is 3.125 lb . hence, each foot of length of the bar makes a load of 3.125 lb . per sq. in. The breaking load-that is, the ultimate tensile strength-is $20,000 \mathrm{lb}$. per sq. in. Hence, the length required to break the bar is $\frac{20,000}{3.125}=6,400 \mathrm{ft}$. Ans.
(563) Let $t=$ the thickness of the bolt head;
$d=$ diameter of bolt.
Area subject to shear $=\pi d t$.
Area subjected to tension $=\frac{1}{4} \pi d^{2}$.

$$
S_{1}=55,000 . \quad S_{3}=50,000 .
$$

Then, in order that the bolt shall be equally strong in both tension and shear, $\pi d t S_{3}=\frac{1}{4} \pi d^{2} S_{1}$,

$$
\text { or } t=\frac{\pi d^{2} S_{1}}{4 \pi d S_{3}}=\frac{d S_{1}}{4 S_{3}}=\frac{3 \times 55,000}{4 \times 50,000}=.206^{\prime \prime} . \quad \text { Ans. }
$$

(564) Using a factor of safety of 15 for brick, formula 65 gives

$$
P=\frac{A S_{3}}{15} .
$$

$$
A=\left(2 \frac{1}{2} \times 3 \frac{1}{2}\right) \text { sq. ft. }=30 \times 42=1,260 \text { sq. in. } ; S_{2}=2,500 .
$$

Therefore, $P=\frac{1,260 \times 2,500}{15}=210,000 \mathrm{lb} .=105$ tons. Ans.
(565) The horizontal component of the force P is $P \cos$ $30^{\circ}=3,500 \times .866=3,031 \mathrm{lb}$. The area A is $4 a$, the ultimate shearing strength, $S_{3}, 600 \mathrm{lb}$., and the factor of safety, 8 .

Hence, from formula 65 ,
$P=\frac{A S_{3}}{8}=\frac{4 a S_{3}}{8}=\frac{a S_{3}}{2} . \quad a=\frac{2 P}{S_{3}}=\frac{2 \times 3,031}{600}=10.1^{\prime \prime} . \quad$ Ans.
(566) See Art. 1124.

(567) Using formula $\mathbf{6 8}$, with the factor of safety of 4 , $p d=\frac{2 t S_{1}}{4}=\frac{t S_{2}}{2}$, or $t=\frac{2 p d}{S_{1}}=\frac{2 \times 120 \times 48}{55,000}$.

Since 40% of the plate is removed by the rivet holes, 60% remains, and the actual thickness required is

$$
\frac{t}{.60}=\frac{2 \times 120 \times 48}{.60 \times 55,000}=.349^{\prime \prime} . \quad \text { Ans. }
$$

(568) Using a factor of safety of 6 , in formula 68 ,

$$
p d=\frac{2 t S_{1}}{6}=\frac{t S_{1}}{3} .
$$

Hence, $\quad t=\frac{3 p d}{S_{1}}=\frac{3 \times 6 \times 200}{20,000}=.18^{\prime \prime} . \quad$ Ans.
(569) Using formula $\mathbf{7 1}$, with a factor of safety of 10 ,

$$
p=\frac{9,600,000 t^{2.18}}{10 / d}=960,000 \frac{t^{2.18}}{l d} .
$$

Hence, $t=\sqrt[2.18]{\frac{p l d}{960,000}}=\sqrt[2 \cdot 18]{\frac{130 \times 12 \times 12 \times 3}{960,000}}=.272^{\prime \prime}$.
(570) From formula $\mathbf{7 0}$,
$p=\frac{S t}{r+t}$, or $t=\frac{p r}{S-p}=\frac{2,000 \times \frac{4}{2}}{2,800-2,000}=\frac{4,000}{800}=5^{\prime \prime} . \quad$ Ans.
(571) See Fig. 46. (a) Upon the load line, the loads $0-1,1-2$, and 2-3 are laid off equal, respectively, to F_{2}, F_{3}, and F_{4}; the pole P is chosen, and the rays drawn in the usual manner; the pole distance $H=2,000 \mathrm{lb}$. The equilibrium polygon is constructed by drawing $a c, c d, d e$, and $e f$ parallel to $P O, P 1, P 2$, and $P 3$, respectively, and finally drawing the closing line $f a$ to the starting point a. $P m$ is drawn parallel to the latter line, dividing the load line into the reactions $m 0=R_{1}$, and $3 m=R_{2}$. The shear axis $m n$ is drawn through m, and the shear diagram $0 \mathrm{hl} . \ldots s^{\prime} n m 0$ is constructed in the usual manner. To the scale of forces $m 0=1,440 \mathrm{lb}$., and $3 m=2,160 \mathrm{lb}$. To the scale of distances the maximum vertical intercept $y=$ $d^{\prime} d=31.2 \mathrm{ft}$., which, multiplied by $H=31.2 \times 2,000=$ $62,400 \mathrm{ft} .-1 \mathrm{~b} .=718,800 \mathrm{in} .-\mathrm{lb} . \quad$ Ans.
(b) The shear at a point 30 ft . from the left support $=$ $0 \mathrm{~m}=1,440 \mathrm{lb}$. Ans.
(c) The maximum shear $=n s^{\prime}=-2,160 \mathrm{lb}$. Ans.
(572) See Fig. 4\%. Draw the force polygon 0-1-2-3-4-5-0 in the usual manner, $0-1$ being equal to and parallel to $F_{1}, 1-2$ equal to and parallel to F_{2}, etc. $0-5$ is the resultant.

Fig. 47.
Choose the pole P, and draw the rays $P 0, P 1, P \Omega$, etc. Choose any point, a on F_{1}, and draw through it a line parallel to the ray $P 1$. From the intersection b of this line with F_{2}, draw a line parallel to $P \leadsto$; from the intersection c of the latter line with $F_{\text {s }}$ produced, draw a parallel to $P \&$, intersecting F, produced in d. Finally, through d, draw a line parallel to P, intersecting F_{s} produced in c. Now, through a draw a line parallel to $P O$, and through c a line parallel to $P 5$; their intersection f is a point on the resultant. Through f draw the resultant R parallel to $0-5$. It will be found by measurement that $R=65 \mathrm{lb}$. , that it makes an angle of $22 \frac{1}{2}^{\circ}$ with $m n$, and intersects it at a distance of $1 \frac{1}{4}^{\prime \prime}$ from the point of intersection of F, and $m n$.
(573) See Fig. 48. The construction is entirely similar to those given in the text. $0-1,1-\Omega$, and $2-3$ are laid off to represent F_{1}, F_{2}, and F_{3}; the pole P is chosen and the rays
drawn. Parallel to the rays are drawn the lines of the equilibrium polygon $a b c d g a$. The closing line $g a$ is found to be parallel to $P 1$. Consequently, $0-1$ is the left reaction and $1-3$ the right reaction, the former being 6 tons

Scale of distance $1{ }^{\underline{\prime \prime} 5^{\prime}}$
Fig. 48.
and the latter 3 tons. The shear diagram is drawn in the usual manner; it has the peculiarity of being zero between F_{1} and F_{a}.
(574) The maximum moment occurs when the shear line crosses the shear axis. In the present case the shear line and shear axis coincide with $s t$, between F_{1} and F_{2}; hence, the bending moment is the same (and maximum) at F_{1} and F_{2}, and at all points between. This is seen to be true from the diagram, since $k h$ and $b c$ are parallel. Ans.
(b) By measurement, the moment is found to be $24 \times 12=$ 288 inch-tons. Ans.
(c) $288 \times 2,000=5 \% 6,000$ inch-pounds. Ans.
(575) See Arts. 1133 to 1137.
(576) See Fig. 49. The force polygon $0-1-2-3-4-0$ is drawn as in Fig. 4\%, $0-4$ being the resultant. The equilibrium polygon $a b c d g a$ is then drawn, the point g lying on the resultant. The resultant R is drawn through g, parallel to and equal to $0-4$. A line is drawn through C, parallel to R. Through g the lines $g e$ and $g f$ are drawn parallel, respectively, to PO and P4, and intersecting the parallel to R, through C in e and f; then, ef is the intercept, and $P u$, perpendicular to $0-4$, is the pole distance. $P u=33 \mathrm{lb}$.; $\epsilon f=1.32^{\prime \prime}$. Hence, the resultant mo-
 ment is $33 \times 1.32=43.6$ in. -lb . Ans.
(577) The maximum bending moment, $M=W \frac{l_{1} l_{2}}{l}$ (see Fig. 6 of table of Bending Moments) $=4 \times 2,000 \times \frac{14 \times 8}{22}=$ $40,727_{1 / 3} \frac{\mathrm{ft} .-\mathrm{lb} .}{}=488,727 \mathrm{in} .-\mathrm{lb}$. Then, according to for mula 74 ,

$$
\begin{aligned}
\frac{S_{4} I}{f c} & =488,727 . \\
\frac{I}{c} & =\frac{488,727 f}{S_{4}}=\frac{488,727 \times 8}{9,000}=434.424 .
\end{aligned}
$$

But, $\frac{I}{c}=\frac{\frac{1}{12} b d^{3}}{\frac{1}{2} d}=\frac{1}{6} b d^{2}$, and, according to the conditions of the problem, $b=\frac{1}{2} d$.

$$
\text { Therefore, } \begin{aligned}
\frac{I}{c} & =\frac{1}{6} b d^{2}=\frac{1}{12} d^{3}=434.424 \\
d^{3} & =5,213.088 \\
d & =17 \frac{1}{3}^{\prime \prime} \\
b & \left.=8 \frac{2^{\prime \prime}}{3} .\right\} \text { Ans. }
\end{aligned}
$$

(578) The beam, with the moment and shear diagrams, is shown in Fig. 50. On the line, through the left reaction,

are laid off the loads in order. Thus, $0-1=40 \times 8=320 \mathrm{lb}$., is the uniform load between the left support and $F_{1}: 1-2$ is
$F_{1}=2,000 \mathrm{lb} . ; 2-3=40 \times 12=480 \mathrm{lb} .$, is the uniform load between F_{1} and $F_{2} ; 3-4=2,000 \times 1.3=2,600 \mathrm{lb}$., is F_{2}, and $4-5=40 \times 10=400 \mathrm{lb}$., is the uniform load between F_{2} and the right support. The pole P is chosen and the rays drawn. Since the uniform load is very small compared with F_{1} and F_{2}, it will be sufficiently accurate to consider the three portions of it concentrated at their respective centers of gravity x, y, and z. Drawing the equilibrium polygon parallel to the rays, we obtain the moment diagram $a k b k c l d a$. From P, drawing $P m$ parallel to the closing line $a d$, we obtain the reactions $0 m$ and $m 5$ equal, respectively, to 2,930 and $2,8 \div 0 \mathrm{lb}$. Ans. The shear axis $m x$, and the shear diagram 0 rstuvum, are drawn in the usual manner. The greatest shear is $0 \mathrm{~m}, 2,930 \mathrm{lb}$. The shear line cuts the shear axis under F_{2}. Hence, the maximum moment is under F_{2}. By measurement, εc is $64^{\prime \prime}$, and $P x$ is $5,000 \mathrm{lb}$. hence, the maximum bending moment is $64 \times 5,000=320,000 \mathrm{in}$. -lb . Ans.
$\mathbf{(5 7 9)}$ From the table of Bending Moments, the greatest bending moment of such a beam is $\frac{w l^{2}}{8}$, or, in this case, $\frac{w \times 240^{2}}{8}$.

By formula 74,

$$
M=\frac{w \times 240^{2}}{8}=\frac{S_{4} I}{f c}=\frac{45,000}{4} \times \frac{280}{12 \div 2}
$$

Therefore, $w=\frac{45,000 \times 280 \times 8}{240 \times 240 \times 4 \times 6}=72.92 \mathrm{lb}$. per inch of length $=7.92 \times 12=875 \mathrm{lb}$. per foot of length. Ans.
(580) From the table of Bending Moments, the maximum bending moment is

$$
\frac{W l}{4}=\frac{W \times 96}{4}=24 W
$$

From formula 74,

$$
\begin{gathered}
M=24 W=\frac{S_{4} I}{f c} . \\
\left.I=\frac{\pi}{64}\left(d^{4}-d_{1}^{4}\right)=56.945 ; c=\frac{1}{2} d=\frac{6 \frac{1}{2}}{2}=3 \frac{1}{4} ; S_{1}=38,000 ; f=6\right\} .
\end{gathered}
$$

Hence, $24 W=\frac{38,000 \times 56.945}{6 \times 3.25}$.

$$
W=\frac{38,000 \times 56.945}{24 \times 6 \times 3.25}=4,624 \mathrm{lb} . \quad \text { Ans. }
$$

(581) (a) From the table of Bending Moments,

$$
M=\frac{w l^{2}}{8}=\frac{w \times 192^{2}}{8}
$$

From formula 74,

$$
M=\frac{z \times 192^{2}}{8}=\frac{S_{4} I}{f c}
$$

$$
S_{4}=7,200 ; f=8 ; \quad I=\frac{1}{12} b d^{3}=\frac{2,000}{12} ; c=\frac{1}{2} d=5
$$

$$
\text { Then, } \quad \frac{w \times 192^{2}}{8}=\frac{7,200}{8} \times \frac{2,000}{12 \times 5}
$$

$$
w^{\prime}=\frac{7,200 \times 2,000 \times 8}{8 \times 12 \times 5 \times 192 \times 192}=
$$

6.51 lb . per in. $=6.51 \times 12=78.12 \mathrm{lb}$. per ft. Ans.
(b) $I=\frac{1}{12} b d^{3}=\frac{10 \times 2^{3}}{12}=\frac{80}{12} \quad c=1^{\prime \prime}$.

$$
\begin{aligned}
& \frac{w \times 192^{2}}{8}=\frac{7,200}{8} \times \frac{80}{12 \times 1} \\
& w=\frac{\%, 200 \times 80 \times 8}{8 \times 12 \times 192 \times 192}=1.3 \mathrm{lb} . \text { per in. } \\
& \quad=1.3 \times 12=15.6 \mathrm{lb} . \text { per ft. Ans. }
\end{aligned}
$$

(582) (a) From the table of Bending Moments, the deflection of a beam uniformly loaded is $\frac{5}{384} \frac{W l^{3}}{E I}$. In Example $5 \% 9, \quad W=8 \% 4 \times 20=17,480 \mathrm{lb} ; \quad l=240^{\prime \prime}, \quad E=$ $25,000,000$, and $I=280$.

Hence, deflection $s=\frac{5 \times 17,480 \times 240^{3}}{384 \times 25,000,000 \times 280}=.45 \mathrm{in}$. Ans.
(b) From the table of Bending Moments, $s=\frac{1}{48} \frac{\|^{\prime} l^{s}}{E I}$.

In Example 580, $W^{\prime}=4,624 \mathrm{lb} . ; l=96 \mathrm{in} . ; E=15,000,000$, and $I=56.945$.

Hence, $s=\frac{4,624 \times 96^{3}}{48 \times 15,000,000 \times 56.945}=.1^{\prime \prime}$, nearly. Ans.
(c) $s=\frac{5}{384} \frac{W l^{3}}{E I} . \quad$ In Example $581 \quad(a), \quad W=78.12 \times 16 ;$
$l=192 ; E=1,500,000$, and $I=\frac{2,000}{12}$.
Hence, $s=\frac{5 \times 78.12 \times 16 \times 192^{3}}{384 \times 1,500,000 \times \frac{2000}{12} 2^{0}}=.461^{\prime \prime} . \quad$ Ans.
(583) Area of piston $=\frac{1}{4} \pi d^{2}=\frac{1}{4} \pi \times 14^{2}$.

$$
W=\text { pressure on piston }=\frac{1}{4} \pi \times 14^{2} \times 80
$$

From the table of Bending Moments, the maximum bending moment for a cantilever uniformly loaded is

$$
\begin{gathered}
\frac{w l^{2}}{2}=\frac{W l}{2}=\frac{\frac{1}{4} \pi \times 14^{2} \times 80 \times 4}{2}=\frac{S_{4}}{f} \frac{I}{c} . \text { See formula } \mathbf{7 4} . \\
\frac{S_{4}}{f}=\frac{45,000}{10}=4,500 . \quad \frac{I}{c}=\frac{\frac{1}{64} \pi d^{4}}{\frac{1}{2} d}=\frac{1}{32} \pi d^{3} \\
\text { Hence } \frac{\frac{1}{4} \pi \times 14^{2} \times 80 \times 4}{2}=\frac{4,500 \pi d^{3}}{32} \\
\text { or } d^{3}=\frac{14^{2} \times 80 \times 4 \times 32}{4 \times 2 \times 4,500}=55.75 \\
d=\sqrt[3]{55.75}=3.82^{\prime \prime} . \text { Ans. }
\end{gathered}
$$

(584) Substituting in formula 76, $S_{2}=90,000 ; A=$ $6^{2} \times .7854 ; f=6 ; l=14 \times 12=168 ; g=5,000 ; \quad I=\frac{\pi}{64} \times$ 64 , we obtain
$W=\frac{S_{2} A}{f\left(1+\frac{A l^{2}}{g I}\right)}=\frac{90,000 \times 6^{2} \times .7854}{6\left(1+\frac{6^{2} \times .7854 \times 168^{2}}{5,000 \times \frac{3.1416 \times 6^{4}}{64}}\right)}=120,8 \overbrace{\sim}^{A} \mathrm{lb}$.
(585) For timber, $S_{2}=8,000$ and $f=8$; hence, $\frac{S_{2}}{f}=$ $\frac{8,000}{8}=1,000$.

Substituting in formula 65,

$$
\begin{gathered}
P=A \frac{S_{2}}{f}=1,000 \mathrm{~A} . \\
A=\frac{P}{1,000}=\frac{7 \times 2,000}{1,000}=14 \text { sq. in., necessary area of a }
\end{gathered}
$$

short column to support the given load. Since the column is quite long, assume it to be $6^{\prime \prime}$ square. Then, $A=36$ and $I=\frac{1}{12} b^{4}=\frac{6^{4}}{12}=108$.

Formula 76 gives

$$
\begin{gathered}
W=\frac{S_{2} A}{f\left(1+\frac{A l^{2}}{g I}\right)}, \text { or } \frac{S_{2}}{f}=\frac{W}{A}\left(1+\frac{A l^{2}}{g I}\right) \\
l=30 \times 12=360, \text { and } g=3,000 \\
\frac{S_{2}}{f}=\frac{14,000}{36}\left(1+\frac{36 \times 360^{2}}{3,000 \times 108}\right)=5,990, \text { nearly. }
\end{gathered}
$$

Since this value is much too large, the column must be made larger. Trying $9^{\prime \prime}$ square, $A=81, I=546$.

Then, $\frac{S_{2}}{f}=\frac{14,000}{81}\left(1+\frac{81 \times 360 \times 360}{3,000 \times 546 \frac{3}{2}}\right)=1,2 \div 9$.
This value of $\frac{S_{2}}{f}$ is much nearer the required value, 1,000 .
Trying $10^{\prime \prime}$ square, $A=100, I=\frac{10,000}{12}=833 \frac{1}{3}$.

$$
\frac{S_{2}}{f}=\frac{14,000}{100}\left(1+\frac{100 \times 360 \times 360}{3,000 \times 833 \frac{1}{3}}\right)=866, \text { nearly. }
$$

Since this value of $\frac{S_{2}}{f}$ is less than 1,000 , the column is a little too large; hence, it is between 9 and 10 inches square. $95_{8}^{\prime \prime}$ will give $99 \tilde{i} .4 \mathrm{lb}$. as the value of $\frac{S_{2}}{f}$; hence, the column should be $9 \frac{\text { gis }}{}$ square.

This problem may be more readily solved by formula 77, which gives

$$
\begin{gathered}
c=\sqrt{\frac{7 \times 2000 \times 8}{2 \times 800}+1 \frac{7 \times 2000 \times 8}{8000}\left(\frac{\pi \times 2000 \times 8}{4 \times 8000}+\frac{12 \times 360^{2}}{3000}\right)}= \\
\sqrt{i+\sqrt{14(3.5+515.4)}=\sqrt{92.459}=9.61^{\circ}=9 s^{\circ "}, \text { nearly. }}
\end{gathered}
$$

(586) Here $W=21,000 ; f=10 ; S_{2}=150,000 ; g=$ 6,$250 ; l=7.5 \times 1 \stackrel{12}{\sim}=90^{\prime \prime}$. For using formula $\mathbf{7 8}$, we have

$$
\begin{aligned}
\frac{.3183 W f}{S_{2}} & =\frac{.3183 \times 21,000 \times 10}{150,000}=.4456 \\
\frac{16 l^{2}}{g} & =\frac{16 \times 8100}{6250}=20.7360
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
d=1.4142 \sqrt{.4456+\sqrt{.4456(.4456+20.7360)}}= \\
1.4142 \sqrt{.4456+3.0722}=2.65^{\prime \prime}, \text { or say } 25_{8}^{\prime \prime} .
\end{gathered}
$$

(587) For this case, $A=3.1416$ sq. in. ; $l=4 \times 12=$ $48^{\prime \prime} ; S_{2}=55,000 ; f=10 ; I=.7854 ; g=20,250$.

Substituting these values in formula $\mathbf{7 6}$,

$$
\begin{gathered}
W=\frac{S_{3} A}{f\left(1+\frac{A l^{2}}{g I}\right)}=\frac{55,000 \times 3.1416}{10\left(1+\frac{3.1416 \times 48^{2}}{20,250 \times .7854}\right)}= \\
\frac{5,500 \times 3.1416}{1.4551}
\end{gathered}
$$

Steam pressure $=60 \mathrm{lb}$. per sq. in.
Then, area of piston $=.785+d^{*}=\frac{W}{60}=\frac{5,500 \times 3.1416}{1.4551 \times 60}$.

$$
\begin{aligned}
\text { Hence, } d^{2} & =\frac{5,500 \times 3.1416}{.7854 \times 1.4551 \times 60}=252, \text { nearly, } \\
\text { and } d & =\sqrt{252}=15 \frac{7^{\prime \prime}}{}, \text { nearly. Ans. }
\end{aligned}
$$

(588) (a) The strength of a beam varies directly as the width and square of the depth and inversely as the length.

Hence, the ratio between the loads is

$$
\frac{9 \times 8^{2}}{10}: \frac{4 \times 12^{2}}{16}=16: 15, \text { or } 1 \frac{1}{15} . \quad \text { Ans. }
$$

(b) The deflections vary directly as the cube of the lengths, and inversely as the breadths and cubes of the depths.

Hence, the ratio between the deflections is

$$
\frac{10^{3}}{6 \times 8^{3}}: \frac{166^{3}}{4 \times 12^{3}}=.54!\text { Ans. }
$$

(589) Substituting the value of c_{1}, from Table 2\% in formula 80, we obtain

$$
\begin{aligned}
& \text { (a) } d=c_{1} \sqrt[4]{\frac{H}{N}}=4.92 \sqrt[4]{\frac{40}{120}}=3.739^{\prime \prime} . \quad \text { Ans. } \\
& \text { (b) } d=c_{1} \sqrt[4]{\frac{H}{N}}=4.92 \sqrt[4]{\frac{80}{100}}=4.65^{\prime \prime} . \quad \text { Ans. }
\end{aligned}
$$

(590) Using formula 80 ,

$$
d=5.59 \sqrt[4]{\frac{4,000}{50}}=14.06^{\prime \prime}
$$

Since this result is greater than $13.6^{\prime \prime}$, formula $\mathbf{8 1}$ must be used, in which

$$
d=k_{1} \sqrt[3]{\frac{H}{N}}=3.3 \sqrt[3]{\frac{4,000}{50}}=14.22^{\prime \prime} . \text { Ans. }
$$

(591) From formula 80,

$$
d=c_{1} \sqrt[4]{\frac{H}{N}}, \text { or } H=\frac{d^{4} N}{c_{1}^{4}} . \quad c_{1}=4.11 . \quad \text { (Table 2\%.) }
$$

Hence, $\quad H=\frac{4^{4} \times 80}{4.11^{4}}=71.775$ H. P. Ans.
(592) Using formula 83,
$H=q_{1} N\left(\frac{d_{1}^{4}-d_{2}{ }^{4}}{d_{1}}\right)=.0212 \times 100\left(\frac{\left(7 \frac{1}{2}\right)^{4}-5^{4}}{7 \frac{7}{2}}\right)=71 \% .7$ H.P. Ans
(. 0212 is the value of q_{1} from Table 28.)
(593) (a) Using formula 84 ,

$$
P=100 C^{2}=100 \times 8^{2}=6,400 \mathrm{lb} . \quad \text { Ans. }
$$

(b) Using formula 85,

$$
\begin{gathered}
P=600 C^{2}, \text { or } C^{2}=\frac{P}{600}=\frac{6,000}{600}=10 . \\
C=\sqrt{10}=3.162^{\prime \prime} . \\
d=\frac{1}{3} C=1.054^{\prime \prime} . \text { Ans. }
\end{gathered}
$$

(c) Using formula 86,

$$
\begin{gathered}
P=1,000 C^{2} ; C^{2}=\frac{P}{1,000}=\frac{6 \frac{2}{3} \times 2,000}{1,000}=13 \frac{1}{3} . \\
C=\sqrt{13 \frac{1}{3}}=3.651^{\prime \prime} . \text { Ans. }
\end{gathered}
$$

(594) (a) Using formula 87 ,

$$
P=12,000 d^{2}=12,000 \times\left(\frac{7}{8}\right)^{2}=9,187.5 \mathrm{lb} . \quad \text { Ans }
$$

(b) Formula $\mathbf{8 8}$ gives $P=18,000 d^{2}$.

Therefore, $d=\sqrt{\frac{P}{18,000}}=\sqrt{\frac{8,000}{18,000}}=\sqrt{\frac{4}{9}}=.667^{\prime \prime}$. Ans
(595) The deflection is, by formula $\mathbf{7 5}$,
$s=a \frac{W l^{3}}{E I}=\frac{1}{192} \frac{W l^{3}}{E I}$, the coefficient being found from the table of Bending Moments.
Transposing, $W=\frac{192 s E I}{l^{3}} ; l=120 ; E=30,000,000 ; I=$ $.7854 ; s=\frac{1}{8}$.
Then, $W=\frac{192 \times 30,000,000 \times .7854}{8 \times 120^{3}}=327.25 \mathrm{lb}$. Ans.
(596) (a) The maximum bending moment is, according to the table of Bending Moments, $\frac{W l}{4}=\frac{6,000 \times 60}{4}=$ 90,000 inch-pounds.

By formula 74,

$$
M=90,000=\frac{S_{4}}{f} \frac{I}{c}
$$

$$
S_{4}=120,000 ; f=10 . \quad \frac{I}{c}=\frac{\frac{\pi d^{4}}{6 t}}{\frac{1}{2} d}=\frac{\pi d^{3}}{32} .
$$

Hence,

$$
90,000=\frac{120,000}{10} \frac{\pi d^{3}}{32},
$$

$$
\text { or } d=\sqrt[3]{\frac{90,000 \times 10 \times 32}{120,000 \times 3.1416}}=4.244^{\prime \prime}=44^{\prime \prime}, \text { nearly. }
$$

(b) Using formula 80,

$$
d=c_{1} \sqrt[4]{\frac{H}{N}}=4.7 \sqrt[4]{\frac{85}{80}}=45^{\prime \prime}, \text { nearly. Ans. }
$$

(597) (a) The graphic solution is shown in Fig. 51. On the vertical through the support $0-1$ is laid off equal to the uniform load between the support and $F_{1} ; 1-2$ is laid off

Fig. 51.
to represent F_{1}. 2-3 represents to the same scale the remainder of the uniform load, and 3 m represents F_{2}. The pole P is chosen and the rays drawn. The polygon $a b c e f h$ is then drawn, the sides being parallel, respectively, to the corresponding rays. If the uniform load between F_{1} and F_{2} be considered as concentrated at its center of gravity, the polygon will follow the broken line $c \in f$. It will be better in this case to divide the uniform load into several parts, $2-4,4-5,5-6$, etc., thus obtaining the line of the polygon
$c d f$. To draw the shear diagram, project the point 1 across the vertical through F_{1}, and draw $O s$. Next project the point O across to t, and S across to u, and draw $t u$. Ostu $u m$ is the shear diagram. The maximum moment is seen to be at the support, and is equal to $a k \times P m$. To the scale of distances, $a k=58.8$ in., while $P m=H=$ $1,400 \mathrm{lb}$. to the scale of forces. Hence, the maximum bending moment is $58.8 \times 1,400=82,320 \mathrm{in} .-1 \mathrm{~b}$. Ans.
(b) From formula 74 ,

$$
M=\frac{S_{4}}{f} \frac{I}{c}=8 \cdot, 320 . \quad S_{4}=12,500 ; f=8
$$

Therefore, $\frac{I}{c}=\frac{82,320 \times 8}{12,500}=52.68$.
But, $\frac{I}{c}=\frac{\frac{1}{12} b d^{3}}{\frac{1}{2} d}=\frac{b d^{2}}{6}$, and $d=2 \frac{1}{2} b$, or $b=\frac{2 d}{5}$.
Hence, $\frac{I}{c}=\frac{b d^{2}}{6}=\frac{d^{3}}{15}=52.68 . \quad d^{3}=52.68 \times 15=\% 90 . \varrho$.

$$
d=\sqrt[3]{890 . 冗}=9.245^{\prime \prime} . \quad b=\frac{2 d}{5}=3 . \imath^{\prime \prime}, \text { nearly. Ans. }
$$

$\mathbf{(5 9 8)}$ Referring to the table of Moments of Inertia,

$$
\begin{gathered}
I=\frac{\left(b d^{2}-b_{1} d_{1}^{2}\right)^{2}-4 b d b_{1} d_{1}\left(d-d_{1}\right)^{2}}{12\left(b d-b_{1} d_{1}\right)}= \\
\frac{\left[8 \times 10^{2}-6 \times\left(8 \frac{1}{2}\right)^{2}\right]^{2}-4 \times 8 \times 10 \times 6 \times 8 \frac{1}{2}\left(10-8 \frac{1}{2}\right)^{2}}{12\left(8 \times 10-6 \times 8 \frac{1}{2}\right)}= \\
280.466 \\
c=\frac{d}{2}+\frac{b_{1} d_{1}}{2}\left(\frac{d-d_{1}}{b d-b_{1} d_{1}}\right)= \\
\frac{10}{2}+\frac{6 \times 8 \frac{1}{2}}{2}\left(\frac{10-8 \frac{1}{2}}{8 \times 10-6 \times 8 \frac{1}{2}}\right)=6.319 .
\end{gathered}
$$

(a) From the table of Bending Moments, the maximum bending moment is $\frac{\mathrm{II}^{\prime} \mathrm{l}}{4}$.

$$
S_{4}=120,000 ; f=\pi ; l=35 \times 12=420 \mathrm{in} .
$$

Using formula $\mathbf{7 4}, M=\frac{\| l^{\prime} l}{t}=\frac{S_{4} l}{f_{i}}$, or

$$
I^{\prime}=\frac{4 S_{4} I}{l f c}=\frac{4 \times 120,000 \times 280.466}{420 \times i \times 6.319}=7.246 \mathrm{lb} . \quad \text { Ans }
$$

(b) In this case $f=5$, and the maximum bending moment is $\frac{\pi i^{3}}{S}$. Hence, from formula $\mathbf{Z 4}$,

$$
M=\frac{w l^{2}}{s}=\frac{S_{4} I}{f c}, \text { or } u^{\prime}=\frac{\delta S_{4} I}{l^{2} f c}
$$

Therefore, $\quad W=\pi l=\frac{s S_{1} I}{l f c}=\frac{s \times 120,000 \times 280.466}{420 \times 5 \times 6,319}=$ $20,290 \mathrm{lb}$. Ans.
(599) (a) According to formula $\mathbf{7 2}$,

$$
I=A r^{3}, \text { or } r=\sqrt{\frac{I}{A}}=\sqrt{\frac{72}{24}}=\sqrt{3}=1 . \% 32 . \quad \text { Ans. }
$$

Scale of forces $1 \stackrel{\prime \prime}{=} 960 \mathrm{lb}$. Scale of distance $1^{\prime \prime \prime} 8^{\prime}$ Fig. 5 .
(b) From the table of Moments of Inertia, $I=\frac{1}{1: 2} b d^{3}=$ $\therefore \therefore ; A=b d=\Omega 4 . \quad$ Dividing, $\frac{T^{1} b d^{3}}{b d}=\frac{\tilde{\sim} \cdot}{2 t}$, or $\frac{1}{1 \cdot 2} d^{2}=3 . \quad d^{2}=$ $36 ; d=66^{\circ}$ and $b=4^{\prime}$. Ans.
(c) As above, $r=\sqrt{\frac{I}{A}}=\sqrt{\frac{\frac{\pi d^{4}}{\frac{64}{2 d^{2}}}}{4}}=\sqrt{\frac{d^{2}}{16}}=\frac{d}{4}$. Ans.
(600) Using formula $69, p d=4 t S$, we have $t=\frac{p d}{4 S}$.

Using a factor of safety of 6 ,

$$
p d=\frac{4 t S}{6}, \text { or } t=\frac{6 p d}{4 S}=\frac{6 \times 100 \times 8}{4 \times 20,000}=.06^{\prime \prime} . \quad \text { Ans. }
$$

(601) The graphic solution is shown in Fig. 52. The uniform load is divided into 14 equal parts, and lines drawn through the center of gravity of each part. These loads are laid off on the line through the left reaction, the pole P chosen, and the rays drawn. The polygon $b c d c f a$ is then drawn in the usual manner. The shear diagram is drawn as shown. The maximum shear is either $t 7$ or $r v=540 \mathrm{lb}$. The maximum moment is shown by the polygon to be at $f c$ vertically above the point u, where the shear line crosses the shear axis. The pole distance $P 7$ is $1,440 \mathrm{lb}$. to the scale of forces, and the intercept $f c$ is 14 inches to the scale of distances. Hence, the bending moment is $20,160 \mathrm{in} .-1 \mathrm{~b}$.
(602) From formula 74 ,

$$
\begin{gathered}
M=\frac{S_{4}}{f} \frac{I}{c}=20,160 . \quad S_{4}=9,000 ; f=8 \\
\text { Then, } \frac{I}{c}=\frac{20,160 \times 8}{9,000}=1 \% .92
\end{gathered}
$$

$$
\text { But, } \frac{I}{c}=\frac{\frac{1}{12}_{12} b d^{3}}{\frac{1}{2} d}=\frac{1}{6} b d^{2} \text { for a rectangle. }
$$

$$
\text { Hence, } \frac{1}{6} b d^{2}=1 \% .92, \text { or } b d^{2}=10 \% .52
$$

Any number of beams will fulfil this condition.

$$
\begin{aligned}
& \text { Assuming } d=6^{\prime \prime}, b=\frac{10 \% \cdot 52}{36}=3^{\prime \prime}, \text { nearly. } \\
& \text { Assuming } d=5^{\prime \prime}, b=\frac{10 \% .52}{25}=4.3^{\prime \prime}
\end{aligned}
$$

($\mathbf{6 0 3}$) Using the factor of safety of 10 , in formula $7 \mathbf{1}$, $p=\frac{9,600,000}{10} \frac{t^{2.18}}{l d}=\frac{960,000 \times \cdot 2^{2.18}}{108 \times 2.5}=106.45 \mathrm{lb} . \quad$ Ans.
(604) Using formula $\mathbf{8 7}$,
$P=12,000 d^{2}$, or $d=\sqrt{\frac{P}{12,000}}=\sqrt{\frac{5 \times 2,000}{12,000}}=.913^{\prime \prime}$. Ans.
($\mathbf{6 0 5}$) The radius r of the gear-wheel is $24^{\prime \prime}$. Using formula 80, $d=c \sqrt[1]{P_{r}^{-}}=.297^{7} \sqrt{350 \times 24}=2.84^{\prime \prime}$. Ans.
(606) Area of cylinder $=. .8554 \times 1 \stackrel{2}{2}^{2}=113.1$ sq. in.

Total pressure on the head $=113.1 \times 90=10,1 \% 9 \mathrm{lb}$.
Pressures on each bolt $=\frac{10,1 \div 9}{10}=1,01 \% .9 \mathrm{lb}$.
Using formula $\mathbf{6 5}$,
$P=A S$, or $A=\frac{P}{S}=\frac{1,01 \% .9}{2,000}=.5089$ sq. in., area of bolt.

$$
\text { Diameter of bolt }=\sqrt{\frac{.5089}{.785 t}}=.8^{\prime \prime} \text {, nearly. Ans. }
$$

(607) (a) The graphic solution is clearly shown in Fig. 53. On the vertical through F_{i}, the equal loads F_{1} and F_{2}

Fig. 53.
are laid off to scale, $0-1$ representing F, and $1-2$ representing
F_{2}. Choose the pole P, and draw the rays $P O, P 1, P 2$.
 $b c$ between F, and F_{2} parallel to $P 1$, and $c d$ parallel to $P 2$, between F_{2} and the right support. Through P draw a line parallel to the closing line $a d . \quad 0.1=1-2$; hence, the reactions of the supports are equal, and are each equal to 1 ton. The shear between the left reaction and F_{i} is nega. tive, and equal to $F_{2}=1$ ton. Between the left and the right support it is 0 , and between the latter and F_{2} it is positive and equal to 1 ton. The bending moment is constant and a maximum between the supports. To the scalc of forces $P 1=2$ tons $=4,000 \mathrm{lb}$., and to the scale of distances a $f=30 \mathrm{in}$. Hence, the maximum bending is $4,000 \times 30$ $=120,000 \mathrm{in} .-\mathrm{lb}$. Ans.
(b) Using formula $\mathbf{Z 4}$,

$$
\begin{aligned}
& M=\frac{S_{4}}{f} \frac{I}{c}=120,000 . \quad S_{4}=38,000 ; f=6 . \\
& \text { Then, } \frac{I}{c}=\frac{120,000 \times 6}{38,000}=\frac{360}{19}=19, \text { nearly. } \\
& \text { But. } \frac{I}{c}=\frac{\frac{\pi d^{4}}{64}}{\frac{d}{2}}=\frac{\pi d^{3}}{32}
\end{aligned}
$$

$$
\text { Hence, } \frac{\pi d^{3}}{32}=19 \text {, or } d^{3}=\frac{32 \times 19}{3.1416}
$$

$$
d=\sqrt[3]{\frac{32 \times 19}{3.1416}}=5.784^{\prime \prime} . \quad \mathrm{Ans}
$$

(608) Since the deflections are directly as the cubes of the lengths, and inversely as the breadths and the cubes of the depths, their ratio in this case is

$$
\frac{18^{3}}{2 \times 6^{3}}: \frac{12^{3}}{3 \times 8^{3}}, \text { or } \frac{27}{2}: \frac{9}{8}=12
$$

That is, the first beam deflects 12 times as much as the second. Hence, the required deflection of the second beam is $.3 \div 12=.025^{\prime \prime}$. Ans.
(609) The key has a shearing stress exerted on two sections; hence, each section must withstand a stress of $\frac{20,000}{2}=10,000$ pounds.

Using formula 65, with a factor of safety of 10 ,

$$
P=\frac{A S_{3}}{10}, \text { or } A=\frac{10 P}{S_{3}}=\frac{10 \times 10,000}{50,000}=2 \mathrm{sq} . \mathrm{in} .
$$

Let $b=$ width of key;
$t=$ thickness.
Then, $b t=A=2$ sq. in. But, from the conditions of the problem,

$$
\left.\begin{array}{c}
t=\frac{1}{4} b . \\
\text { Hence, } b t=\frac{1}{4} b^{2}=2 ; b^{2}=8 ; b=2.828^{\prime \prime} . \\
\\
t=\frac{2.828}{4}=.707^{\prime \prime}
\end{array}\right\} \text { Ans. }
$$

(610) From formula $\mathbf{7 5}$, the deflection $S=a \frac{W l^{3}}{E I}$, and, from the table of Bending Moments, the coefficient a for the beam in question is $\frac{1}{48}$.

$$
\begin{aligned}
& \quad W=30 \text { tons }=60,000 \mathrm{lb} . ; l=54 \text { inches } ; E=30,000,000 \\
& I=\frac{\pi d^{4}}{64}
\end{aligned}
$$

$$
\text { Hence, } S=\frac{1 \times 60,000 \times 54^{3}}{48 \times 30,000,000 \times \frac{3.1416 \times 1 \Xi^{4}}{64}}=.0064 \mathrm{in}
$$

(611) (a) The circumference of a $\%$-strand rope is 3 times the diameter; hence, $C=1 \frac{1}{4} \times 3=3 \frac{3}{4}$.

Using formula $8 \mathbf{8 6}, \quad P=1,000 \quad C^{2}=1,000 \times\left(3 \frac{3}{4}\right)^{2}=$ $14,062.5 \mathrm{lb}$. Ans.
(b) Using formula $\mathbf{8 4}$,
$P=100 C^{2}$, or $C=\sqrt{\frac{P}{100}}=\sqrt{\frac{13 \times 2,000}{100}}=5.92^{\prime \prime}$. Ans.
(612) Using formula 70 ,

$$
p=\frac{S_{1} t}{r+t}=\frac{120,000}{\frac{8}{2}+6}=12,000 \mathrm{lb} . \quad \text { Ans. }
$$

(613) The construction of the diagram of bending

Scale of distance $1 " 32^{\prime}$
FIG. 54.
moments and shear diagram is clearly shown in Fig. 54. It is so nearly like that of Fig. 46 that a detailed description is unnecessary. It will be noticed that between k and k^{\prime} the shear is zero, and that since the reactions are equal the shear at either support $=\frac{1}{2}$ of the load $=2,400 \mathrm{lb}$. The greatest intercept is $c c^{\prime}=d d^{\prime}=30 \mathrm{ft}$. The pole distance $H=2,400 \mathrm{lb}$. Hence, the bending moment $=2,400 \times 30=$ $\sim 2,000 \mathrm{ft} .-1 \mathrm{~b} .=\mathfrak{\sim}, 000 \times 12=864,000 \mathrm{in} .-1 \mathrm{~b}$.

SURVEYING.

(QUESTIONS 614-705.)
(614) Let $x=$ number of degrees in angle C; then, $2 x=$ angle A and $3 x=$ angle B. The sum of A, B, and C is $x+2 x+3 x=6 x=180^{\circ}$, or $x=30^{\circ}=C ; 2 x=60^{\circ}=A$, and $3 x=90^{\circ}=B$. Ans.
(615) Let $x=$ number of degrees in one of the equal angles; then, $2 x=$ their sum, and $2 x \times 2=4 x=$ the greater angle. $2 x+4 x=6 x=$ sum of the three angles $=180^{\circ}$; hence, $x=30^{\circ}$, and the greater angle $=30^{\circ} \times 4=$ 120°. Ans.
(616) $A B$ in Fig. 55 is the given diagonal 3.5 in . $3.5^{2}=12.25 \div 2=6.125 \mathrm{in}$. $\sqrt{6.125}=2.475$ in. $=$ side of the required square. From A and B as centers with radii equal to 2.475 in., describe arcs intersecting at C and D. Connect the extremitics A and B with the points C and D by straight

Fig. 55. lines. The figure $A C B D$ is the required square.
($\mathbf{6 1 7}$) Let $A B$, Fig. 56, be the given shorter side of the rectangle, 1.5 in . in length. At A erect an indefinite perpendicular $A C$ to the line $A B$. Then, from B as a center with a radius of 3 in . deseribe an are intersecting the perpendicular $A C$ in the point D. This will give us two
adjacent sides of the required rectangle. At B erect an indefinite perpendicular $B E$ to $A B$, and at D erect an indefinite perpendicular $D F$ to $A D$. These perpendiculars will intersect at G, and the

Fig. 56. resulting figure $A B G D$ will be the required rectangle. Its area is the product of the length $A D$ by the width $A B$. $\overline{A D}^{2}=\overline{B D}^{2}-{\bar{A} \bar{B}^{2}}^{2} \quad \bar{B} \bar{D}^{2}=$ $\boldsymbol{E} \frac{9 \mathrm{in.} ;}{A_{A}^{2}}{ }^{2}=2.25 \mathrm{in} . ;$ hence,
$=9 \mathrm{in} .-2.25 \mathrm{in} .=6.75$ in. $\sqrt{6.75}=2.59 \mathrm{~s}$ in. $=$ side $A D . \quad 2.598$ in. $\times 1.5=3.897$ sq. in., the area of the required rectangle.
(618) (See Fig. 5\%.) With the two given points as centers, and a radius equal to $3.5^{\prime \prime} \div \lambda=1.75^{\prime \prime}=13^{\prime \prime}$, describe short arcs intersecting each other. With the same radius and with the point of intersection as a center, describe a circle; it will pass through the two given points.

(619) $A B$ in Fig. 58 is the given line, A the given

Fig. 58. point, $A C$ and $C B=A B$. The angles A, B, and C are each equal to 60°. From B and C as centers with equal radii, describe arcs intersect. ing at D. The line $A D$ bisects the angle A; hence, angle $B A D=30^{\circ}$.
(620) Let $A B$ in Fig. 59 be one of the given lines, whose length is 2 in., and let $A C$, the other line, meet $A B$ at A, forming an angle of 30°. From A and B as centers,
with radii equal to $A B$, describe ares intersecting at D. Join $A D$ and $B D$. The triangle $A B D$ is equilateral; hence, each of its angles, as A, contains 60°. From D as a

Fig. 59.
center, with a radius $A D$, describe the arc $A B$. The line $A C$ is tangent to this are at the point A.
(621) $A B$ in Fig. 60 is the given line, C the given point, $C D=C E$. From D and E as centers with the same radii, describe ares intersecting at F. Through F draw $C G$. Lay off $C G$ and $C B$ equal to each other, and from B and G as centers with equal
 radii describe ares intersecting at H. Draw $C H$. The angle $B C H=45^{\circ}$.
(622) 1st. A B in Fig. 61 is the given line 3 in . long. At A and B erect perpendiculars $A C$ and $B D$ each 3 in.
 D long. Join $A D$ and $B C$. These lines will intersect at some point E. The angles $E A B$ and $E B A$ are each 45°, and the sides $A E$ and $E B$ must be equal, and the angle $A E B=90^{\circ}$.

2d. $A B$ in Fig. 62 is the given line and c its middle point. On $A B$ describe the semicircle $A E R$. At c erect a perpendicular to $A B$, cutting the arc $A E B$ in E. Join $A E$ and $E B$. The angle $A E B$ is 90°.
(623) See Art. 1181 and Fig. 꼬․
(624) See Art. 1187.
(625) (See Art. 1195 and Fig. $\because 45$.) Draw the line

Fig. 6. $A B$, Fig. 63, 5 in. long, the length of the given side. At A draw the indefinite line $A C$, making the angle $B A C$

Fig. 63.
equal to the given angle of 30°. On $A C$ lay off $A D 1.5$ in. long, the given difference between the other two sides of
the triangle. Join the points B and D by a straight line, and at its middle point E erect a perpendicular, cutting the line $A C$ in the point F. Join $B F$. The triangle $A B F$ is the required triangle.
(626) See Art. 1198.
(627) See Art. 1200.
(628) See Art. 1201.
(629) See Art. 1204.
(630) See Art. 1205.
(631) See Arts. 1205 and 1206.
(632) See Art. 1206.
(633) See Art. 1204.
(634) See Art. 1207.
(635) See Art. 1207.
(636) See Arts. 1209 and 1213.
(637) See Art. 1211.
(638) (a) In this example the declination is cast, and

Magnetic Bearing.	True Bearing.
$\mathrm{N} 15^{\circ} 20^{\prime} \mathrm{E}$	$\mathrm{N} 15^{\circ}: 35^{\prime} \mathrm{E}$
$\mathrm{N} 88^{\circ} 50^{\prime} \mathrm{E}$	$\mathrm{S} 87^{\circ} 55^{\prime} \mathrm{E}$
$\mathrm{N} 20^{\circ} 40^{\prime} \mathrm{V}$	$\mathrm{N} 1 \%^{\circ} 25^{\prime} \mathrm{W}$
$\mathrm{N} 50^{\circ} 20^{\prime} \mathrm{E}$	$\mathrm{N} 5: 3^{\circ}: 35^{\prime} \mathrm{E}$

for a course whose magnctic bcaring is N E or S W, the
true bearing is the sum of the magnetic bearing and the declination. For a course whose magnctic bearing is N W or S E, the truc bearing is the difference between the magnetic bearing and the declination.

As the first magnetic bearing is $\mathrm{N} 15^{\circ} 20^{\prime} \mathrm{E}$, the true bearing is the sum of the magnctic bcaring and the declination. We accordingly make the addition as follows:
$\mathrm{N} 15^{\circ} 20^{\prime} \mathrm{E}$
$3^{\circ} 15^{\prime}$
$\mathrm{N} 18^{\circ} 35^{\prime} \mathrm{E}$,
and we have $\mathrm{N} 18^{\circ} 35^{\prime} \mathrm{E}$ as the true bearing of the first course.

The second magnetic bearing is $\mathrm{N} 88^{\circ} 50^{\prime} \mathrm{E}$, and we add the declination of $3^{\circ} 15^{\prime}$ to that bearing, giving $\mathrm{N} 92^{\circ} 05^{\prime} \mathrm{E}$. This takes us past the east point to an amount equal to the difference between 90° and $92^{\circ} 05^{\prime}$, which is $2^{\circ} 05^{\prime}$. This angle we subtract from 90°, the total number of degrees between the south and east points, giving us $\mathrm{S} 87^{\circ} 55^{\prime} \mathrm{E}$ for the true bearing of our line. A simpler method of determining the true bearing, when the sum of the magnetic bearing and the declination exceeds 90°, is to subtract that sum from 180°; the difference is the true bearing. Applying this method to the above example, we have 180° $92^{\circ} 05^{\prime}=\mathrm{S} 87^{\circ} 55^{\prime} \mathrm{E}$.

The third magnetic bearing is $\mathrm{N} 20^{\circ} 30^{\prime} \mathrm{W}$, and the true bcaring is the difficonce between that bearing and the declination. We accordingly deduct from the magnetic bearing $\mathrm{N} 20^{\circ} 40^{\prime} \mathrm{W}$, the declination $3^{\circ} 15^{\prime}$, which gives $\mathrm{N} 17^{\circ} 25^{\prime} \mathrm{W}$ for the true bearing.
(b) Here the diclination is acst, and for a course whose magnetic bcaring is N W or S E the true bcaring is the sum of the magnetic bearing and the declination. For a course whose magnetic bcaring is N E or S W , the true bcaring is the differcuce between the magnetic bearing and the declination.

The first magnetic bearing is $\mathrm{N} \% 0^{\circ} \mathrm{W}$, and as the declination is west, it will be added. We, therefore, have for the true bearing $\mathrm{N} \sim^{\circ} \geqslant 0^{\prime} \mathrm{W}+5^{\circ} 10^{\prime}=\mathrm{N} 12^{\circ} 30^{\prime} \mathrm{W}$.

Magnetic Bear- ing.	True Bearing.
$\mathrm{N} \because^{\circ} \because 0^{\prime} \mathrm{W}$	$\mathrm{N} 12^{\circ} 30^{\prime} \mathrm{W}$
$\mathrm{N} 45^{\circ} 00^{\prime} \mathrm{E}$	$\mathrm{N} 39^{\circ} 30^{\prime} \mathrm{E}$
$\mathrm{S} 15^{\circ} \because 0^{\prime} \mathrm{E}$	$\mathrm{S} 20^{\circ} 30^{\prime} \mathrm{E}$
$\mathrm{S} \quad 2^{\circ} 30^{\prime} \mathrm{W}$	$\mathrm{S} \quad 2^{\circ} 40^{\prime} \mathrm{E}$

The next two bearings the student can readily determine for himself.

The fourth magnetic bearing is $S 2^{\circ} 30^{\prime} \mathrm{W}$, and to obtain the true bearing we must subtract the deelination, i. e., we must change the direction eastwards. A change of $\overbrace{}^{\circ}: 30^{\prime}$ will bring us due south; hence, the bearing will be east of south to an amount equal to the difference between $\mathscr{2}^{\circ} 30^{\prime}$ and the total declination $5^{\circ} 10^{\prime}$, which is $2^{\circ} 40^{\prime}$. The true bearing is, therefore, $\mathrm{S} \Im^{\circ} 40^{\prime} \mathrm{E}$.
(639) See Art. 1216.
(640) See Art. 1217.
(641) See Art. $1 \mathbf{2 1 9 .}$
(642) A plat of the accompanying notes is given in Fig. 64 to a scale of 600 ft . to the inch. The order of work is as follows:

First draw a meridian $N S$ (see Fig. 64), and then assume the starting point A, which call Sta. 0 . Through A draw a meridian $A B$ parallel to $N S$. Then, placing the center of the protractor at A, with its zero point in the line $A B$, lay off the bearing angle $10^{\circ} 10^{\prime}$ to the right of
$A B$, as the bearing is
N E. Mark the point of angle measurement carefully and draw a line joining it and the point A. This line will give the direction of the first course, the end of which is at Sta. $5+20$, giving 520 ft . for the length of that course. On this line lay off to a scale of 600 ft . to the inch the distance $5 \geqslant 0 \mathrm{ft}$., locating the point C, which is Sta. $5+20$. Through C draw a meridian $C D$, and with the protractor lay off the bearing angle N $40^{\circ} 50^{\prime} \mathrm{E}$ to the right of the meridian, marking the point of angle measurement and joining it with the point C by a straight line, which will be the direction of the second course. The end of this course is Sta. $10+89$, and its length is the difference between 1,089 and 520 , which is
(643) See Art. 1231 and Figs. 261 and 262.
(644) For first adjustment see Art. $1 \mathbf{2 3 3}$. For second adjustment see Art. $\mathbf{1 2 3 4}$ and Fig. 263 , and for third adjustment see Art. $1 \mathbf{2 : 3 5}$ and Fig. 264.
(645) See Art. 1238 and Fig. 265.
(646) See Art. $1 \mathbf{2 3 9}$) and Fig. 256.
($\mathbf{6 4 7}$) See Art. $\mathbf{1 2 4 0}$ and Fig. 26\%.
$(\mathbf{6 4 8})$ See Art. $\mathbf{1 2 4 2}$ and Fig. 269.
(649) Sec Art. $\mathbf{1 2 4 2}$ and Fig. 269.
(650) To the bearing at the given line, viz., $\mathrm{N} 55^{\circ} 15^{\prime} \mathrm{E}$, we add the angle $15^{\circ} 1 \tilde{\gamma}^{\prime}$, which is turned to the right. This gives for the second line a bearing of $\mathrm{N} \approx 0^{\circ} 32^{\prime} \mathrm{E}$.
(651) To the bearing of the given line, viz., $\mathrm{N} 80^{\circ} 11^{\prime}$, we add the angle $92^{\circ} 13^{\prime}$, which is the amount of change in the direction of the line. The sum is $102^{\circ} 24^{\prime}$, and the direction is $10 \gtrsim^{\circ} 2 t^{\prime}$ to the right or cast of the north point of the compass. At 90° to the right of north the direction is due east. Consequently, the direction of the second line must be south of east to an amount equal to the difference between $10 \vartheta^{\circ} 24^{\prime}$ and 90°, which is $12^{\circ} 24^{\prime}$. Subtracting this angle from 90°, the angle between the south and east points, we have $7 \%^{\circ} 36^{\prime}$, and the direction of the second line is $\mathrm{S}\left\{\%^{\circ} 36^{\prime} \mathrm{E}\right.$. The simplest method of determining the direction of the second iine is to subtract $102^{\circ} 2 t^{\prime}$ from $180^{\circ} 00^{\prime}$. The difference is $7 \%^{\circ} 36^{\prime}$, and the direction changing from NE to SE grives for the second line a bearing of $\mathrm{S} \pi 7^{\circ} 36^{\prime} \mathrm{E}$.
(652) To the bearing of the given line, viz. N $133^{\circ} 15^{\prime} \mathrm{W}$, we add the angle $40^{\circ} 20^{\prime}$, which is turned to the left. The sum is $5: 3^{\circ} 35^{\prime}$, which gives for the second line a bearing of N $5.3^{\circ} 35^{\prime} \mathrm{W}$.
(65:3) The bearing of the first course, viz., S $10^{\circ} 15^{\prime \prime} \mathrm{W}$, is found in the column headed Mag. Bearing, opposite Sta. o. For the first course, the deduced or calculated bearing must be the same as the magnetic bearing. At Sta. $4+40$,
an angle of $15^{\circ} 10^{\prime}$ is turned to the right. It is at once evident that if a person is traveling in the direction $\mathrm{S} 10^{\circ} 15^{\prime} \mathrm{W}$, and changes his course to the right $15^{\circ} 10^{\prime}$, his course will approach a due westerly direction by the amount of the change, and the direction of his second course is found by adding to the first course, viz., S $10^{\circ} 15^{\prime}$, the amount of such

Station.	Deflection.	Mag. Bearing.	Ded. Bearing.
$54+25$			
$49+20$	L. $25^{\circ} 14^{\prime}$	$\mathrm{S} 25^{\circ} 40^{\prime} \mathrm{W}$	$\mathrm{S} 25^{\circ} 39^{\prime} \mathrm{W}$
$44+80$	L. $10^{\circ} 46^{\prime}$	$\mathrm{S} 50^{\circ} 50^{\prime} \mathrm{W}$	$\mathrm{S} 50^{\circ} 53^{\prime} \mathrm{W}$
$33+\pi$	R. $16^{\circ} 55^{\prime}$	$\mathrm{S} 61^{\circ} 45^{\prime} \mathrm{W}$	$\mathrm{S} 61^{\circ} 40^{\prime} \mathrm{W}$
$25+60$	R. $24^{\circ} 40^{\prime}$	$\mathrm{S} 44^{\circ} 50^{\prime} \mathrm{W}$	$\mathrm{S} 44^{\circ} 45^{\prime} \mathrm{W}$
$16+20$	L. $15^{\circ} 35^{\prime}$	$\mathrm{S} 20^{\circ} 00^{\prime} \mathrm{W}$	$\mathrm{S} 20^{\circ} 05^{\prime} \mathrm{W}$
$5+90$	R. $10^{\circ} 15^{\prime}$	$\mathrm{S} 35^{\circ} 50^{\prime} \mathrm{W}$	$\mathrm{S} 35^{\circ} 40^{\prime} \mathrm{W}$
$4+40$	R. $15^{\circ} 10^{\prime}$	$\mathrm{S} 25^{\circ} 20^{\prime} \mathrm{W}$	$\mathrm{S} 25^{\circ} 25^{\prime} \mathrm{W}$
0		$\mathrm{~S} 10^{\circ} 15^{\prime} \mathrm{W}$	$\mathrm{S} 10^{\circ} 15^{\prime} \mathrm{W}$

change in direction. The sum is $25^{\circ} 25^{\prime}$, and the second course $\mathrm{S} 25^{\circ} 25^{\prime} \mathrm{W}$. The needle at this point reads $\mathrm{S} 25^{\circ} 20^{\prime} \mathrm{W}$. The difference between the magnetic bearing and the calculated bearing may be owing to local attraction, but as we can not read the needle to within 10 minutes, we must generally ascribe small discrepancies to that cause. This calculated bearing we write in its proper column opposite Sta. $4+40$, where the change in direction occurred.

The next angle is $10^{\circ} 15^{\prime}$ to the right, which we add to the previous calculated bearing $\mathrm{S} 25^{\circ} 25^{\prime} \mathrm{W}$, giving $\mathrm{S} 35^{\circ} 40^{\prime} \mathrm{W}$ for the calculated bearing of the third course, which extends from Sta. $8+90$ to $16+20$. In a similar manner, the student will calculate the remaining bearings, considering well how the changes in direction will affect his relations to the points of the compass. A plat of the notes to a scale of 400 ft . to the inch is given in Fig. 65.

in dotted lines. In platting the remaining angles, he will produce the lines in pencil only, erasing ther. as soon as the forward angle is laid off. Write the proper station number in pencil at the end of each line as soon as platted, and the angle with its direction, R. or L., before laying off the following angle. Write the bearing of each line distinctly, the letters reading in the same direction in which the line is being run. The magnetic meridian is platted as follows: The bearing of the course from Sta. $33+i$ to Sta. $44+80$ is $\mathrm{S} 61^{\circ} 45^{\prime} \mathrm{W}$, i. e., the course is $61^{\circ} 45^{\prime}$ to the left of a north and south line, which is the direction we wish to indicate on the map. Accordingly, we place a protractor with its center at Sta. $33+88$ and its zero on the following course, and read off the angle $61^{\circ} 45^{\prime}$ to the right. Through this point of angle measurement and Sta. $33+\%$ draw a straight line $N \mathrm{~S}$. This line is the required meridian.
(654) Angle $B=39^{\circ} 25^{\prime}$. From the principles of trigonometry (see Art. $\mathbf{1 2 4 3}$), we have the following proportion:

$$
\begin{aligned}
& \sin 39^{\circ} \because 5^{\prime}: \sin 60^{\prime} 15^{\prime}:: 415 \mathrm{ft} .: \text { side } A B . \\
& \sin 60^{\circ} 15^{\prime}=.8682 \\
& 415 \mathrm{ft} . \times .868^{\circ}=360.303 \mathrm{ft} . \\
& \sin \cdot 39^{\circ} \cdot 5^{\prime}=.63496 . \\
& 360.303 \div .6: 4^{\prime} 96=567.44^{2} \mathrm{ft.}, \text { the side } A B . \text { Ans. }
\end{aligned}
$$

(655) (See Fig. 66.) At A we turn angle $B A C$ of 60° and set a plug at $C 100^{\circ}$ from A. At C we turn an angle $A C B$ of 60° and set a plug at $B 100^{\prime}$ from C. The point B will be in the line $A B$, and setting up the instrument at B, we turn the angle $C B A=60^{\circ}$. The instrument is then reversed, and the line $A B$ produced as required.
(656) See Art. 1245.
(657) See Art. 1246.
(658) See Art. 1246.
(659) See Art. 1248.
(660) See Art. $1 \mathbf{2 4 9}$.
(661) A 5° curve is one in which a central angle of 5° will subtend a chord of 100 ft . at its circumference. Its radius is practically one-fifth of the radius of a 1° curve, and equal to $5,730 \mathrm{ft} . \div 5=1,146 \mathrm{ft}$.
(662) The degree of curve is always twice as great as the deflection angle.
(663) See Art. 1249 and Fig. 289.
(664) Formula $90, C=\mathfrak{\sim} R \sin D$. (See Art. $\mathbf{1 2 5 0}$.)
(665) Formula 91, $T=R \tan \frac{1}{2} I$. (See Art. 1251.)
(666) The intersection angle $C E F$, being external to the triangle $A E C$, is equal to the sum of the opposite interior angles A and C. $A=22^{\circ} 10^{\prime}$ and $C=2: 3^{\circ} 15^{\prime}$. Their sum is $45^{\circ} 25^{\prime}=C E F$. Ans.

The angle $A E C=180^{\circ}-\left(22^{\circ} 10^{\prime}+23^{\circ} 15^{\prime}\right)=134^{\circ} 35^{\prime}$.
From the principles of trigonometry (see Art. $1 \mathbf{2 4 3}$), we have
$\sin 134^{\circ} 35^{\prime}: \sin 23^{\circ} 15^{\prime}:: 253.4 \mathrm{ft}$. : side $A E ;$
whence, side $A E=140.44 \mathrm{ft}$., nearly. Ans.
Also, $\sin 134^{\circ} 35^{\prime}: \sin 22^{\circ} 10^{\prime}:: 253.4 \mathrm{ft}$. : side $C C^{\prime} E$ whence, side $C E=134.24 \mathrm{ft}$., nearly. Ans.
(667) We find the tangent distance T by applying formula 91, $T=R \tan \frac{1}{2} I$. (See Art. 1251.) From the table of Radii and Deflections we find the radius of a $6^{\circ} 15^{\prime}$ curve $=917.19 \mathrm{ft} \cdot ; \frac{1}{2} I=\frac{35^{\circ} 10^{\prime}}{2}=17^{\circ} 35^{\prime} ; \tan 17^{\circ} 35^{\prime}=$.3169. Substituting these values in the formula, we have $T=91 \% .19 \times .3169=900.66 \mathrm{ft}$. Ans.
(668) We find the tangent distance T by applying formula $91, T=K \tan \frac{1}{2} \Gamma$. (See Art. 1251.) From the
table of Radii and Deflections we find the radius of a $: 3^{\circ} 15^{\prime}$ curve is $1, \% 63.18 \mathrm{ft} ; \frac{1}{2} I=\frac{14^{\circ} 12^{\prime}}{2}=7^{\circ} 06^{\prime} ; \tan 7^{\circ} 06^{\prime}=$.12456. Substituting these values in the above formula, we have $T=1,763 \times .12456=219.62 \mathrm{ft}$. Ans.
(669) See Art. 1252.
$\mathbf{(6 7 0)}$ The angle of intersection $30^{\circ} 45^{\prime}$, reduced to decimal form, is 30.75°. The degree of curve $5^{\circ} 15^{\prime}$, reduced to decimal form, is 5.25°. Dividing the intersection angle 30.75° by the degree of curve 5.25 (see Art. $\mathbf{1 2 5 2}$), the quotient is the required length of the curve in stations of 100 ft . each. $\frac{30.75^{\circ}}{5.25^{\circ}}=5.85 \% 1$ full stations equal to $585 . \% 1 \mathrm{ft}$.
(671) In order to determine the P. C. of the curve, we must know the tangent distance which, subtracted from the number of the station of the intersection point, will give us the P . C. We find the tangent distance T by applying formula $91, T=R \tan \frac{1}{2} I$. (See Art. 1251.) From the table of Radii and Deflections we find the radius of a 5° curve is $1,146.28 \mathrm{ft}$. $; \frac{1}{2} I=\frac{33^{\circ} 06^{\prime}}{2}=16^{\circ} 33^{\prime} ; \tan 16^{\circ} 33^{\prime}=.29716$.

Fig. 67

Substituting these values in formula 91, we have $T=1,146.28 \times$ $.29 \% 16=340.63 \mathrm{ft} . \quad \mathrm{In}$ Fig. 6\%, let $A B$ and $C D$ be the tangents which intersect in the point E, forming an angle $D E F=33^{\circ} 06^{\prime}$.
The line of survey is being run in the direction $A B$, and the line is measured in regular order up to the intersection point E, the station of which is $20+37.8$. Subtracting the tangent distance, $B E=340.63 \mathrm{ft}$. from Sta. $20+3 \% .8$, we have $16+9 \% 1 \%$, the station of the P. C. at B. The intersection angle $333^{\circ} 06^{\prime}$ in decimal form is 33.1°. Dividing
this angle by 5 , the degree of the curve, we obtain the length $B G D$ of the curve in full stations. $\frac{33.1}{5}=6.62$ stations $=669 \mathrm{ft}$. The length of the curve, 662 ft ., added to the station of the P. C., viz. $16+97.17$, gives $23+59.17$, the station of the P. T. at D.
(672) The given tangent distance, viz., 291.16 ft ., was obtained by applying formula $\boldsymbol{\Theta 1}, T=R \tan \frac{1}{2} I$ (see Art. 1251), $I=20^{\circ} 10^{\prime}$, and $\frac{1}{2} I=10^{\circ} 05^{\prime}$, $\tan 10^{\circ} 05^{\prime}=$.17i83. Substituting these values in the above formula, we have $291.16=R \times .17 \% 83$; whence, $R=\frac{291.16}{.17583}=1,63 \% .29 \mathrm{ft}$.

The degree of curve corresponding to the radius $1,637.29$ we determined by substituting the radius in formula $\mathbf{8 9}$, $K=\frac{50}{\sin D}$ (see Art. $\mathbf{1 2 4 9}$), and we have

$$
1,637.29=\frac{50}{\sin D} ; \text { whence, } \sin D=\frac{50}{1,6: 34.29}=.03054
$$

The deflection angle corresponding to the sine .0.3054 is $1^{\circ} 45^{\prime}$, and is one-half the degree of the curve. The degree of curve is, therefore, $1^{\circ} 45^{\prime} \times 2=3^{\circ} 30^{\prime}$. Ans.
(673) Formula $\mathbf{9 2}, d=\frac{c^{2}}{R}$. (See Art. $\mathbf{1 2 5 5}$ and Fig. 283.)
(674) The ratio is : ; i. e., the chord deflection is double the tangent deflection. (See Art. $1 \mathbf{2 5 4}$ and Fig. 2s3.)
(675) As the degree of the curve is \tilde{r}°, the deflection angle is $3^{\circ} 30^{\prime}=210^{\prime}$ for a chord of 100 ft ., and for a chord of 1 ft . the deflection angle is $\frac{210^{\prime}}{100}=2.1^{\prime}$; and for a chord of 48.2 ft . the deflection angle is $48.2 \times 2.1^{\prime}=101.22^{\prime}=1^{\circ} 41.22^{\prime}$.
(676) The deflection angle for 100 -ft. chord is $\frac{66^{\circ} 15^{\prime}}{2}=$ $3^{\circ} 07 \frac{1}{2}^{\prime}=18 \% .5^{\prime}$, and the deflection angle for a $1 \cdot \mathrm{ft}$ chord is
$\frac{18 \% .5^{\prime}}{100}=1.875^{\prime}$. The deflection angle for a chord of $72.7 \mathrm{ft}:$ is, therefore, $1.875^{\prime} \times{ }^{\prime} 2.7=136.31^{\prime}=2^{\circ} 16.31^{\prime}$.
(677) We find the tangent deflection by applying formula 93, tan def. $=\frac{c^{2}}{2 R^{\circ}} \quad($ See Art. 1255.) $\quad c=50$. $50^{2}=2,500$. The radius R of $5^{\circ} 30^{\prime}$ curve $=1,042.14 \mathrm{ft}$. (See table of Radii and Deflections.) Substituting these values in formula $\mathbf{9 3}$, we have \tan def. $=\frac{2,500}{2,084.28}=1.199$ ft. Ans.
(678) The formula for chord deflections is $d=\frac{c^{2}}{R}$. (See Art. 1 255, formula 92.) $c=35.2 . \quad 35.2^{2}=1,239.04$. The radius R of a $4^{\circ} 15^{\prime}$ curve is $1,348.45 \mathrm{ft}$. Substituting these values in formula $\mathbf{9 2}$, we have $d=\frac{1,239.04}{1,348.45}=.919 \mathrm{ft}$. Ans.
(679) The formula for finding the radius R is $R=$ $\frac{5^{0}}{\sin D}$. (See Art. 1249.) The degree of curve is $3^{\circ} 10^{\prime}$. D, the deflection angle, is $\frac{3^{\circ} 10^{\prime}}{2}=1^{\circ} 35^{\prime} ; \sin 1^{\circ} 35^{\prime}=.02763$. Substituting the value of $\sin D$ in the formula, we have $R=$ $\frac{50}{.02763}$; whence, $R=1,809.63 \mathrm{ft}$. Ans.

The answer given with the question, viz., $1,809.57 \mathrm{ft}$, agrees with the radius given in the table of Radii and Deflections, which was probably calculated with sine given to eiglit places instead of five places, as in the above calculation, which accounts for the discrepancy in results.
(680) In Fig. 68, let $A B$ and $A C$ represent the given lines, and $B C$ the amount of their divergence, viz., 18.2 .2

Fisg. fis
ft . The lines will form a triangle $A B C$, of which the angle $A=1^{\circ}$. Draw a perpendicular from A to D, the middle point of the base. The perpendicular will
bisect the angle A and form two right angles at the base of the triangle. In the triangle $A D B$ we have, from rule $\mathbf{5}$, Art. $754, \tan B A D=\frac{B D}{A D} \cdot B A D=30^{\prime}, B D=\frac{18.2 \cdot \mathrm{ft}}{2}=$ 9.11 ft , and $\tan 30^{\prime}=.008 \% 3$. Substituting known values in the equation, we have $.008 \% 3=\frac{9.11}{A D}$; whence, $A D=$ $\frac{9.11 \mathrm{ft}}{.0087}=1,043.53 \mathrm{ft} . \quad$ Ans.

By a practical method, we determine the length of the lines by the following proportion:
$.1 .745: 18.22:: 100 \mathrm{ft}$. : the required length of line; whence, length of line $=\frac{1,822}{1.245}=1,044.13 \mathrm{ft} . \quad$ Ans.
The second result is an application of the principle of two lines 100 ft . in length forming an angle of 1° with each other, which will at their extremity diverge 1.745 ft .
(681) Degree of curve $=\frac{24^{\circ} 15^{\prime}}{6.0625}=\frac{24.25^{\circ}}{6.0625}=4^{\circ}$. Ans.
(682) See Arts. 1 264, 1265,1266 , and 1267.
(683) See Arts. 1 269-1 274.
(684) Denote the radius of the bubble tube by x; the distance of the rod from the instrument, viz., 300^{\prime}, by d; the difference of rod readings, 03 ft ., by l, and the movement of the bubble, viz., . 01 ft ., by S. By reference to Art. $\mathbf{1 2 7 5}$ and Fig. 289, we will find that the above values have the proportion $h: S:: d: x$. Substituting known values in the proportion, we have $.03: .01:: 300: x$; whence, $x=\frac{3}{.03}=100 \mathrm{ft}$., the required radius. Ans.
(685) See Art. 1277.
(686) See Art. 1278.
(687) To the elevation 61.84 ft . of the given point, we add 11.81 ft ., the backsight. Their sum, 93.65 ft , is the height of instrument. From this H. I., we subtract the fore-
sight to the T. P., viz., 0.49 ft ., leaving a difference of 73.16 ft ., which is the elevation of the T. P. (See Art. $\mathbf{1 2 7 9}$.)
(688) See Art. 1280.
(689) See Art. 1281.
(690) See Art. 1282.
(691) See Art. 1286.
(692) See Art. $1 \mathbf{2 8 9}$.
(693) See Art. 1290.
(694) See Art. 1291.
$\mathbf{(6 9 5})$ The distance between Sta. 66 and Sta. 93 is 2 ? stations. As the rate of grade is +1.25 ft . per station, the total rise in the given distance is $1.25 \mathrm{ft} . \times 27=33.75 \mathrm{ft}$. which we add to 126.5 ft ., the grade at Sta. 66 , giving 160.25 ft . for the grade at Sta. 93. (See Art. 1291.)
(696) See Art. 1292.

$$
(697) \frac{-16.4^{\prime}}{56^{\prime}} \frac{-10.3^{\prime}}{73^{\prime}} \stackrel{+11.4^{\prime}}{84^{\prime}} \frac{+8.8^{\prime}}{96^{\prime}}
$$

Contour 50.0 at 48.5 ft . to left of Center Line. Contour 40.0 at 94.0 ft . to left of Center Line. $\stackrel{c}{0}_{8}^{4}$ Contour 30.0 at 128.0 ft . to left of Center Line.

Contour 60.0 at $\approx 6 \mathrm{ft}$. to right of Center Litie. Contour $\quad 70.0$ at 106.9 ft . to right of Center Lint. Elevation $76 . \%$ at 180 ft , to right of Center Line.
(698) The elevations of the accompanying level notes are worked out as follows: The first elevation recorded in the column of elevations is that of the bench mark, abbreviated to B. M. This elevation is 161.42 ft . The first rod reading, 5.53 ft ., is the backsight on this B. M., a plus reading, and recorded in column of rod readings. This rod reading we add to the elevation of the bench mark, to determine the height of instrument, as follows: $161.42 \mathrm{ft} .+5.53$ $\mathrm{ft} .=166.95 \mathrm{ft}$., the H. I. The next rod reading, which is at S ta. 40 , is 6.4 ft . The rod reading means that the surface of the ground at Sta. 40 is 6.4 ft . below the horizontal axis of the telescope. The elevation of that surface is, therefore, the difference between 166.95 ft ., the H. I., and 6.4 ft , the rod reading. $166.95-6.4=160.55 \mathrm{ft}$. The $\frac{5}{100} \mathrm{ft}$. is a
fraction so small that in surface elevations it is the universal practice to ignore it, and the elevation of the ground at

Station.	Rod Reading.	Height Instrument.	Elevation.	Grade.
B. M.	$+5.53$	166.95	161.42	
40	6.4		160.5	162.0
41	\%.2		159.7	160.485
$41+60$	10.9		. 156.0	
42	8.6		158.3	158.97
43	8.8		158.1	$15 \% .455$
T. P. -	8.66		158.29	
$+$	2.22	160.51		
44	4.8		155.7	155.94
45	6.3		154.2	154.425
46	8.8		151.	152.91
47	9.9		150.6	151.395
48	11.1		149.4	149.88
T. P. -	11.24		149.27	
+	3.30	152.5%		
49	4.7		14\%.9	148.365
50	7.1		145.5	146.85
51	$8 . i$		143.9	145.335
52	9.8		142.8	143.82
53	10.9		141.7	142.305
T. P. -	11.62		140.95	

Sta. 40 is taken at 160.5 ft . The rod reading at Sta. 41 is 7.2, which, subtracted from 166.95 ft ., gives for that station an elevation of $159 . \%$. The remaining rod readings up to
and including that at Sta. 43, we subtract from the same H. I., viz., 166.95. Here at a turning point (T. P.) of 8.66 ft . is taken and recorded in the column of rod readings. This reading being a foresight is mimus, and is subtracted from the preceding H. I. This gives us for the elevation of the T. P., $166.95 \mathrm{ft} .-8.66 \mathrm{ft}=158.29 \mathrm{ft}$, which we record in the column of elevations. The instrument is then moved forwards and a backsight of 2.2 ft taken on the same T. P. and recorded in the column. This is a plus reading, and is added to the elevation of the T. P., giving us for the next H. I. an elevation of $158.29 \mathrm{ft} .+2.22 \mathrm{ft} .=160.51 \mathrm{ft}$. The next rod reading, viz., 4.8 , is at Sta. 44 , and the elevation at that station is the difference between the preceding H. I., 160.51, and that rod reading, giving an elevation of 160.51 ft . - 4.8 $\mathrm{ft} .=155.7 \mathrm{ft}$., which is recorded in the column of elevations opposite Sta. 44. In a similar manner, the remaining elevations are determined.

In checking level notes, only the turning points rod readings are considered. It will be evident that starting from a given bench mark, all the backsight or plus readings will add to that elevation, and all the foresight or mimus readings will subtract from that elevation. If now we place in one column the height of the B. M., together with all the backsight or + readings, and in another column all the foresight or - readings, and find the sum of each column, then, by subtracting the sum of the - readings from the sum of the + readings, we shall find the elevation of the last point calculated, whether it be a turning point or a height of instrument. Applying this method to the foregoing notes we have the following:

	+ readings.	- readings.
B. M.	161.42 ft .	8.66 ft .
	5.53 ft .	$11.2+\mathrm{ft}$.
	2.22 ft .	$11.6 \% \mathrm{ft}$.
	3.30 ft .	31.5 ¢ ft.
	179.48 ft .	
	$31.5 \geqslant \mathrm{ft}$.	
	140.95 ft .	

The difference of the columns, viz., 140.95 ft , agrees with the elevation of the T. P. following Sta. 53, which is the last one determined. A check mark V is placed opposite the clevation checked, to show that the figures have been verified. The rate of grade is determined as follows: In one mile there are $5,280 \mathrm{ft} .=52.8$ stations. A descending grade of 80 ft . per mile gives per station a descent of $\frac{80 \mathrm{ft}}{52.8}=1.515$ ft . The elevation of the grade at Sta. 40 is fixed at 162.0 ft . As the grade descends from Sta. 40 at the rate of 1.515 ft . per station, the grade at Sta. 41 is found by subtracting 1.515 ft . from 162.0 ft ., which gives 160.485 ft , and the grade for each succeeding station is found by subtracting the rate of grade from the grade of the immediately preceding station.

A section of profile paper is given in Fig, 69 in which the level notes are platted, and upon which the given grade line

-		5												
	\square		\square			aules	-							
	$=0$					\rightarrow	1-5	$1 \bar{s}^{2}$						
	± 8					\cdots	\cdots	$\underline{\sim}$	er. 10	$0{ }^{\circ}$			Elev	150!
	\square					$\underline{-1}$								
	\pm						+				-	,		
	二 ${ }^{6}$!		\cdots					\checkmark
	-							+						
						+	\square	-	!	:				
						$\underline{1}$	-	\pm	+		1			
								\square						
	\square													
								1		-				
	40						FIG				5			

is drawn. The profile is made to the following scales: viz., horizontal, $400 \mathrm{ft} .=1 \mathrm{in}$; vertical, $20 \mathrm{ft} .=1 \mathrm{in}$.

Every fifth horizontal line is heavier than the rest, and each twenty-fifth horizontal line is of double awight. Every tenth vertical line is of double weirht. 'The spaces between the vertical lines represent 100 ft ., and those between the
horizontal lines 1 ft . The figure represents $1,500 \mathrm{ft}$. in length and 45 ft . in height. Assume the elevation of the sixth heary line from the bottom at 150 ft . The second vertical line from the left of the figure is Sta. 40, which is written in the margin at the bottom of the page. Under the next heary vertical line, ten spaces to the right, Sta. 50 is written. The elevation of Sta. 40, as recorded in the notes, is 160.5 ft . We determine the corresponding elevation in the profile as follows:

As the elevation of the sixth heavy line from the bottom is assumed at 150 ft ., 160.5 ft ., which is 10.5 ft . higher, must be $10 \frac{1}{2}$ spaces above this line. This additional space covers two heavy lines and one-half the next space. This point is marked in pencil. The elevation of Sta. 41, viz., 159.7 ft , we locate on the next vertical line and 9.7 spaces above the 150 ft . line. The next elevation, 156.0 ft ., is at Sta. $41+$ 60. This distance of 60 ft . from Sta. 41 we estimate by the eye and plat the elevation in its proper place. In a similar manner, we plat the remaining elevations and connect the points of elevation by a continuous line drawn free-hand. The grade at Sta. 40 is 162.0 ft . This elevation should be marked in the profile by a point enclosed by a small circle. At each station between Sta. 40 and Sta. 53 there has been a descent of 1.515 ft ., making a total descent between these stations of $1.515 \times 13=19.695$. The grade at Sta. 53 will, therefore, be $16 \% .0 \mathrm{ft} .-19.695 \mathrm{ft} .=142.305 \mathrm{ft}$. Plat the elevation in the profile at Sta. 53 , and enclose the point in a small circle. Join the grade point at Sta. 40 with that at Sta. 53 by a straight line, which will be the grade•line required. Upon this line mark the grade -1.515 per 100 ft .
$\left.(699) \frac{-5^{\circ}}{65^{\prime}} \quad \frac{-9^{\circ}}{117^{\prime}} \right\rvert\, \frac{+11^{\circ}}{1 \because 0^{\prime}}$
Nine 5-foot contours are included within the given slopes, as follows:

[^1](700) $1.745 \mathrm{ft} . \times 3=5.235 \mathrm{ft}$., the vertical rise of $a 3^{\circ}$ slope in 100 ft , or 1 station and $\frac{10}{5.9: 35}=1.91$ stations $=1.91 \mathrm{ft}$.
(701) (See Question 701, Fig. 15.) From the instrument to the center of the spire is $100 \mathrm{ft} .+15=115 \mathrm{ft}$., and we have a right triangle whose base $A D=11.5 \mathrm{ft}$. and angle A is $45^{\circ} 20^{\prime}$. From rule $\mathbf{5}$, Art. $\mathbf{7 5 4}$, we have tan $45^{\circ} 20^{\prime}=$ $\frac{\text { side } B D}{115}$; whence, $1.01170=\frac{\text { side } B D}{115}$; or $B D=116.345$ feet. The instrument is 5 feet above the level of the base; hence, $116.345 \mathrm{ft} .+5 \mathrm{ft} .=191.345$, the height of the spire.
(702) Apply formula $\mathbf{9 6}$.
$$
Z=(\log h-\log H) \times 60,384.3 \times\left(1+\frac{t+t^{\prime}-64^{\circ}}{900}\right)
$$
(See Art. 1304.)
\[

$$
\begin{gathered}
\log \text { of } h, 29.40=1.46835 \\
\log \text { of } H, 26.95=1.43056 \\
\text { Difference }=\overline{0.03 \% \% 9} \\
1+\frac{t+t^{\prime}-64^{\circ}}{900}=1+\frac{74+58-64}{900}=1.0 \% 55 .
\end{gathered}
$$
\]

Hence, $Z=.03 \% 79 \times 60,384.3 \times 1.0755=2,454 \mathrm{ft}$., the difference in elevation between the stations.
(703) See Art. $1 \mathbf{3 0 5}$.
(704) See Art. 1308.
(705) See Art. 1308.

LAND SURVEYING

(QUES'IONS 706-75̃.)

(706) See Art. 1309.
(707) See Art. $1 \mathbf{3 0 9 .}$
(708) See Art. 1310.
(709) See Art. 1312.
(710) See Art. 1313.
(711) See Art. 1310 and Fig. 306.
(712) See Art. 1314 and Fig. 308.
(713) See Art. $1: 314$ and Fig. 309.
(214) Sce Art. 1:314.
(715) See Art. 1315 and Fig. .310 .
(716) See Art. 1317.
(717) See Art. 1318.
(718) See Art. 1:319.
(719) See Art. $1: 319$ and Figs. 311 and 312.
(720) See Art. 1:319.
(721) See Art. 1319.
(722) See Art. 1319.
(723) See Art. 1320.
(724) See Art. 1320.
(725) See Art. 1321.
($\mathbf{2 2 6}$) The magnetic variation is determined by subtracting the present bearing from B to C, viz., $\mathrm{N} 60^{\circ} 15^{\prime} \mathrm{E}$ from the original bearing, viz., $\mathrm{N}^{\top} 62^{\circ} 00^{\prime} \mathrm{E}$. The difference is $1^{\circ} 45^{\prime}$ and a west variation; hence, to determine the present bearings of the boundaries we must add the variation to an original bearing, which was N W or S E, and subtract it from an original bearing, which was N E or S W . The corrected bearings will be as follows:

Stations.	Original Bearings.	Distances.	Corrected Bearings.
A	N $31 \frac{1}{2}^{\circ} \mathrm{W}$	10.4 chains	N $33 \frac{1}{4}^{\circ} \mathrm{W}$
B	N69 ${ }^{\circ} \mathrm{E}$	9.2 chains	N $60^{\circ} 15^{\prime} \mathrm{E}$
C	$\mathrm{S} 36^{\circ} \mathrm{E}$	7.6 chains	$\mathrm{S}: 33^{\frac{3}{4}} \mathrm{E}$
I)	S $45 \frac{1}{2}^{\circ} \mathrm{W}$	10.0 chains	S $433{ }^{\circ} \mathrm{W}$

(727) See Art. 1323.
(728) See Art. 1324.
(729) See Art. 1326 and Fig. 316.
(730) See Art. 1327 and Figs. 31\% and 318.
(731) See Art. 1328 and Fig. 319.
(732) As the bearing of the line $A B$ is $N \mathrm{E}$, the end B will be east of the meridian passing through A. The depar-
ture of $A B$ is the distance which B is east of A, or of the meridian passing through A. Now, if from B we drop a perpendicular $B C$ upon that meridian, $B C$ will be the departure of $A B$. The latitude of $A B$ is the distance which the end B is north of the end A. The distance $A C$, measured on the meridian from A to the foot of the perpendicular from B, is the latitude of $A B$.

From an inspection of Fig. 80, we see that the line $A B$, together with its latitude $A C$ and departure $B C$, form a right triangle, right angled at C, of which triangle $B C$ is the sin and $A C$ the \cos of the bearing 30°. From rule $\mathbf{3}$, Art. $\mathbf{Z 5 4}$, we have

Fig. 70. $\cos A=\frac{A C}{A B} ;$ whence, $A C=A B \cos A ;$ and from rule 1, Art. $\mathbf{7 5 4}$, $\sin A=\frac{B C}{A B}$; whence, $B C=A B \sin$ A, and we deduce the following:

Latitude $=$ distance $\times \cos$ bearing.
Departure $=$ distance \times sin bearing.
(733) See Art. 1329.
(73.1)

Bearing. 231°	Distances. $400 \mathrm{ft} .$	Latitudes. 3675	Departures. $15 \% 9$
	20 ft .	1838	$0 \% 89$
	3 ft .	2750	1184

We divide the distance 423 ft . into thrce parts, viz., 400 ft ., 20 ft ., and 3 ft . If now we find the latitude and departure for 4 ft . and multiply them by 100 , we shall obtain the latitude and departure for 400 ft . The latitude of $t \mathrm{ft}$. is 3.675 ft ., and the departure $1.5 \% 9 \mathrm{ft}$. We place these figures under their proper headings as whole numbers. The latitude and departure of 2 ft , are 1.838 and 0.789 , respectively, which we place as whole numbers under their proper
headings, but removed one place to the right of the figures above them, as they are the latitude and departure of tens of feet. The latitude and departure of 3 ft . are 2.856 ft . and 1.184 ft ., respectively, and we place them under their proper headings, but removed one place to the right as they are for units of feet. We now add up the partial latitudes and departures, and from the right of each sum we point off three decimal places, the same number as given in the traverse table, giving us for for the required latitude 388.636 ft , and for the required departure 166.974 ft .
(735)

Bearing.	Distances.	Latitudes.	Departures.
40°	200 ft	1532	1286
	20 ft.	1532	1286
	5 ft.	3830	3214
	225 ft.	$\overline{172.350} \mathrm{ft}$.	$\overline{144.674 \mathrm{ft} .}$

For the given bearing of 40° and distance of 225 ft ., the latitude is 172.35 ft ., and the departure 144.674 ft .

The complement of the given bearing is the difference between 90° and 40°, which is 50°. With this complement as the bearing, we have

Bearing.	Distances.	Latitudes.	Departures.
50°	200 ft.	1286	153 Z
	20 ft.	1286	1532
	5 ft.	3214	3830
	$\boxed{225} \mathrm{ft}$.	$\overline{144.674} \mathrm{ft}$.	$\overline{179.350} \mathrm{ft}$,

in which the latitude and departure are exactly the reverse of those when the line had a bearing of 40°, the complement of 50°.
(736) See Art. $\mathbf{1 3 3 0}$.
(737) We rule 11 columns, headed as below. The latitudes and departures for the several courses we calculate by traverse tables; placing the north latitudes, which are + , in the column headed $\mathrm{N}+$, and the south latitudes, which are - , in the column headed $\mathrm{S}-$; the cast departures, which are

+ , in the column headed $\mathrm{E}+$, and the cocst departures, which are -, in the column headed W-. These several columns we add, placing their sums at the foot of the columns. The sum of the distances is $3 \% .20$ chains; the sum of the north latitudes 13.19 chains, and of the south latitudes 13.1 ; chains. The difference is . 03 chain, or 3 links. The sum of the east departures is $1 \otimes .60$ chains, and the sum of the west departures is 12.56 chains. The difference is . 4 chain, or 4 links.

This difference indicates an error in either the bearings or measurements of the line or both. For had the work been correct, the sums of the north and south latitudes would have been equal. (See Art. 1330.) The corrections for latitudes and departures are made as shown in the following proportions, the object of such correction being to make the sums of the north and south latitudes and of the east and west longitudes equal, and is called balancing the survey. (See Art. 1331.)

Sta. tions.	Bearings.	Distances	Latitudes.		Departures		Corrected Latitudes		Corrected Departures.	
			N+	S-	$1 \mathrm{E}+$	W	N+	s	$\mathrm{E}+$	W -
1	N31 ${ }^{\circ} \mathrm{W}$	10.40 ch.	8.85			5. 43	8.86			5.44
2	$N 62^{\circ} \mathrm{E}$	9.20 ch .	4.32		R. 13		4.81		8.12	
3	S $36^{\circ} \mathrm{E}$	7.60 ch .		6.15	4.47			6.1.)	4.46	
4	$\therefore 4.9$	10.00 ch .		7.01		7.13		\%.02		7.14
		35.20	18.19	13.16	12.60	12.56	13.17	13.17	12.78	12.58

Difference between N and S latitudes $=.03$ chain $=3$ links.

Difference between E and W departures $=0.0$ chain $=4$ links.

Corrections for Latitudes.
3 . 20 : $10.40:: 3: 1$ link
3 3. $20: 9.20:: 3: 1$ link
$37.20: \% .60:: 3: 0$ link
$37.20: 10.00:: 3: 1$ link

Corrections for Departures. $3 \% .20: 10.40:: 4: 1 \mathrm{link}$
$87.20: 9.20:: 4: 1$ link
3 3. 20: $7.60:: 4: 1 \mathrm{link}$
3~. $20: 10.00:: 4: 1$ link

Taking the first proportion, we have $3 \underset{\sim}{\sim} .20 \mathrm{ch}$. , the sum of all the distances : 10.40 ch., the first distance $:: 3$ links, the total error : 1 link, the correction for the first distance. The latitude of the first course, viz., 8.8% ch., is north, and as the sum of the north latitudes is the greater, we subtract the correction leaving 8.86 chains. The correction for the latitudes of the second course is 1 link, and is likewise subtracted. The correction for the third course is less than 1 link, and is ignored. The correction for the latitude of the fourth course is 1 link, and as the sum of the south latitudes is less than the north latitudes we add the correction. We place the corrected latitudes in the eighth and ninth columns. In a similar manner we correct the departures, as shown in the abuve proportions, placing the corrected departures in the tenth and eleventh columns.
(738) We rule three columns as shown below, the first column for stations, the second for total latitudes from Sta. 2, and the third for total departures from Sta. ... Station ${ }^{2}$ being a point only, its latitude and departure are 0 . The latitude of the second course, i. e., from Sta. 2 to Sta. 3, is +4.31 chains, and the departure +8.12 chains. These distances we place opposite Sta. 3, in their proper columns. The latitude of the third course, i. e., from Sta. 3 to Sta. 4, is -6.15 chains, and the departure +4.46 chains. Therefore, the total latitude from Sta. $\underset{\sim}{\sim}$ is the sum of +4.31 and -6.15 , which is -1.84 chains. The total departure from Sta. 2 is the sum of +8.12 and +4.46 , which is +12.58 chains. These totals we place opposite Sta. 4 in their proper columns. The latitude of the fourth course, i. e., from Sta. 4 to Sta. 1, is $-\hat{i} .02$ chains, and the departure $-i .14$ chains. These quantities we add with their proper signs to those previously obtained, which give us the total latitudes and departures from the initial Sta. 2, and we have, for the total latitude of Sta. 1, the sum of -1.84 and - $\tilde{2} .02$, which is -8.86 chains, and for the total departure the sum of +12.58 and $-\tilde{i} .14$, which is +5.44 chains. The latitude of the first course, i. e., from Sta. 1 to Sta. \&,
is +8.86 chains, and the departure -5.44 chains. These quantities we add with their proper signs to those already obtained, giving us the total latitudes and departures from Sta. 2, and we have for the total latitude of Sta. 2 the sum of -8.86 and +8.86 , which is 0 ; and for the total departure, the sum of +5.44 and -5.44 , which is 0 . The latitude and departure of Sta. 2 coming out equal to 0 , proves the work to be correct. (See Art. 1332.) A plat of this survey made from total latitudes and departures from Sta. 2 is given in Fig. 71. Through Sta. 2 draw a meridian $N S$. Lay off on this meridian above Sta. 2 the total latitude at Sta. 3, viz., +4.31 chains, a north latitude, and at its extremity erect a right perpendicular to the meridian, and upon this perpendicular scale off the total departure of Sta. 3, viz., +8.12 chains, an east departure locating Sta. 3. A line joining Stations 2 and 3 will have the direction and length of the second course. For Sta. 4 we have a total latitude of -1.84 chains, a south latitude which we scale off on the meridian below Sta. 2. The total departure of this station is +12.58 chains, which we lay off on a right perpendicular to the meridian, locating Sta. 4. A line joining Stations 3 and 4 gives the direction and length of the third course.

Stations.	Total Latitudes from Station 2.	Total Departures from Station 2.
$\ddot{\text { rom }}$	0.00 ch.	0.00 ch.
3	+4.31 ch.	$+8.1 \% \mathrm{ch}$.
4	-1.84 ch.	+12.58 ch.
1	-8.86 ch.	+5.44 ch.
$\ddot{\sim}$	0.00 ch.	0.00 ch.

The total latitude of Sta. 1 is -8.86 chains, a south latitude, which we scale off on the meridian below Sta. 2. The total departure of Sta. 1 is +5.44 chains, an east departure, which we scale off on a right perpendicular to the meridian, locating Sta. 1. A line joining Stations 4 and 1 will have the direction and length of the fourth course. The total latitude and departure of Sta. 2 being 0, a line joining Sta. 1 with Sta. 2 will have the direction and length of the first course, and the resulting figure $2,3,4,1$ is the required plat of the survey.
(739) See Art. 1334.
($\mathbf{7 4 0}$) See Art. 1335.
($\mathbf{Z 4 1}$) See Art. 1336 and Fig. 323.
($\mathbf{Z 4 2}$) See Art. 1336.
($\mathbf{7 4 3}$) The signs of the latitude always determine the character of the products, north or + latitudes giving north products and south or - latitudes giving south products. See Examples 746 and 74%.

(744) See Art. 1338.

($\mathbf{7 4 5}$) Rule twelve columns with headings as shown in the following diagram, calculate the latitudes and departures, placing them in proper order. Balance them, writing the corrected latitudes directly above the original latitudes, which are crossed out. Calculate the double longitudes from Sta. \mathcal{Z} by rule given in Art. $\mathbf{1 3 3 5}$, and place them with their corresponding stations as shown in columns 11 and 12. Place the double longitudes in regular order in column S. Multiply the double longitude of each course by the corrected latitude of that course, placing the products in column 9 or 10 , according as the products are north or south. Add the columns of double areas, subtracting the less from the greater and divide the remainder by 2 . In this example the area is given in square chains, which we reduce to acres, roods, and poles as follows: Divide the sq. chains by 10 , reducing to acres. Multiply the decimal part successively by 4 and 40 , reducing to roods and poles.

(746)

(747)

(748) See Art. 1339.
($\mathbf{7 4 9}$) See Art. $\mathbf{1 3 4 0}$ and Fig. 326.
($\mathbf{7 5 0}$) See Art. 1341 and Fig. 32\%.
(751) See Art. 1341 .
(752) See Art. 1342.
(753) See Art. $\mathbf{1 3 4 3}$ and Fig. 32\%.
(754) See Art. 1344 .
($\mathbf{7 5 5}$) See Art. $\mathbf{1 3 4 3}$.

RAILROAD LOCATION,

(QUESTIONS 笣-812.)

(756) See Art. 1392.
(757) See Art. 1393.
(758) See Art. 1393.
(759) See Art. 1394.
($\mathbf{7 6 0}$) This question is asked in order to elicit indivndual judgment.
(761) See Art. 1395.
(762) See Art. 1396.
(763) See Art. 1397.
(764) See Art. 1398.
(765) See Art. $\mathbf{1 3 9 9}$.
(766) See Art. 1399.
(767) See Art. 1400.
(768) See Art. 1401.
(769) See Art. 1402.
(770) See Art. 1403.
(771) See Art. 1404.
(772) See Art. 1405.
(773) See Arts. 1406 and 1407.
(774) See Art. 1408.
(775) See Art. $1 \mathbf{4 0 9 .}$
(776) See Art. 1409.
(777) See Arts. 1410 and 1412.
(778) See Art. 1413.
(279) See Art. 1414.
(280) See Art. 1415.
(781) See Art. 1416.
(782) See Art. 1416.
(783) See Art. 1417.
(784) See Art. 1418.
(785) See Art. 1419.
(786) See Art. 1420.
($\mathbf{7 8 7}$) This is an example under Problem I, Art. 1422. The distance which the P. C. must be moved backwards is equal to 26 ft ., the distance between the parallel tangents, divided by the \sin of $32^{\circ} 30^{\prime}$, the intersection angle of the curve. $\quad \operatorname{Sin} 32^{\circ} 30^{\prime}=.5373 ; \frac{26 \mathrm{ft}}{.5373}=48.39 \mathrm{ft}$.
(788) This question also comes under Problem I, Art. 1422. We must move the P. C. forwards a distance equal to 13.4 divided by $\sin 41^{\circ} 20^{\prime}$. Sin $41^{\circ} 20^{\prime}=.66044 . \frac{13.4 \mathrm{ft}}{.66044}=$ 20.29 ft .
($\mathbf{7 8 9}$) This question comes under Problem II, Case $\boldsymbol{D}^{\text {, }}$ Art. 1424. As we must move the P. C. C. backwards, we must increase the angle of the second curve. This will diminish the cos of the angle of the second curve, and D, the distance between the tangents, will be negatia'c. Ac. cordingly, we use formula $\mathbf{1 0 0}, \cos y=\frac{(R-r) \cos x-L}{R-r}$ (see Art. 1424), in which $x=34^{\circ} \stackrel{2}{2} 0^{\prime}$, the angle of the
second curve; $R=055.3 \% \mathrm{ft}$., the radius of the 6° curve, and $r=63 \% .2 \% \mathrm{ft}$., the radius of 9° curve, and $D=26.4 \mathrm{ft}$. Substituting these values in the foregoing formula, we have

$$
\cos y^{\prime}=\frac{(955.37-637.2 \%) \times .82577-26.4}{955.37-637.27}=
$$

As the given angle of the second curve is $34^{\circ} 20^{\prime}$, and the required angle $42^{\circ}\left(02^{\prime}\right.$, the difference, viz., $7^{\circ} 42^{\prime}$, we must deduct from the first curve. The distance which we must retreat on the first curve we determine by dividing the angle $7^{\circ} 42^{\prime}$ by 6 , the degree of the first curve. The quotient will be the required distance in stations. Reducing $7^{\circ} 4 \mathfrak{Z}^{\prime}$ to the decimal of a degree, we have $7.7^{\circ} \cdot \frac{7.7}{6}=1.2833$ stations $=128.33 \mathrm{ft}$.
(790) This question comes under Problem II, Case 1, Art. $\mathbf{1 4 2 3}$, but the tangent falls within instead of without the required tangent. Consequently, we must advance the P. C. C., which will diminish the angle of the second curve and, consequently, increase its \cos. D, the distance between the given tangents, will, therefore, be positize, giving us formula $\mathbf{9 9}$, viz., $\cos y=\frac{(K-r) \cos x+D)}{R-r}$ (see Art. 1423), in which $x=36^{\circ} 40^{\prime}$, the angle of the second curve; $K=1,910.98 \mathrm{ft}$, the radius of a 3° curve; $r=$ 819.02 ft , the radius of a 7° curve, and $D=32.4 \mathrm{ft}$, the distance between the tangents. Substituting these values in the given formula, we have

$$
\cos y^{\prime}=\frac{(1.910 .08-819.02) \times .80212+32.4}{1,910.08-819.02}=
$$

The given angle of the second curve is $366^{\circ} 40^{\circ}$, and the required angle is $33^{\circ} 43^{\prime}$. The difference, $\mathfrak{2}^{\circ} 57^{\prime}$, we must deduct from the second curve and add it to the first curve. To determine the number of feet which we must add to the first curve, we divide the angle $2^{\circ} 5 \tilde{N}^{\prime}$ by 3 , the
degree of the first curve. The quotient will be the distance in full stations. Reducing $2^{\circ} 57^{\prime}$ to decimal form of a degree, we have 2.95°. $\frac{2.95}{3}=0.9833$ station $=09.33 \mathrm{ft}$., the distance which the P. C. C. must be advanced.
($\mathbf{7 9 1}$) This question comes under Problem II, Case 1. (See Art. 1423.) In this case we must increase the angle of the second curve, and, consequently, diminish the length of the cos. Hence, I), the distance between the given tangents, will be negative, and the formula will read

$$
\cos y=\frac{(R-r) \cos x-D}{R-r}(\text { see formula } 100, \text { Art. } 1423),
$$

in which $x=37^{\circ} 10^{\prime}$, the angle of the second curve; $R=$ $1,432.69 \mathrm{ft}$., the radius of a 4° curve; $r=955.37 \mathrm{ft}$., the radius of a 6° curve, and $D=56 \mathrm{ft}$., the distance between the given tangents. Substituting these values in the given formula, we have
$\cos y=\frac{(1,432.69-955.37) \times .79688-56}{1,432.69-955.37}=.6 \pi 956=\cos 47^{\circ} 11^{\prime}$.
The given angle of the second curve is $37^{\circ} 10^{\prime}$, and the required angle, $4 \overbrace{}^{\circ} 11^{\prime}$. The difference, viz., $10^{\circ} 01^{\prime}$, we must add to the second curve and deduct from the first curve. The distance backwards which we must move the P. C. C. we obtain by dividing the angle $10^{\circ} 01^{\prime}$ by 4 , the degree of the first curve. The quotient gives the distance in full stations. $10^{\circ} 01^{\prime}$ in decimal form is 10.016°. $\frac{10.016}{4}=$ 2.504 stations $=2.50 .4 \mathrm{ft}$.
($\mathbf{7 9 2}$) This question comes under Problem II, Case 2, Art. 1424. Here we must reduce the angle of the second curve, and, consequently, increase the length of its cos. Hence, D, the distance between the given tangents, is positive, and our formula is

$$
\cos y^{\prime}=\frac{(k-r) \cos x+D}{k-r}
$$

in which $x=28^{\circ} 40^{\prime}$, the given angle of the second curve; $K=1,910.08 \mathrm{ft}$. , the radius of a $9{ }^{\circ}$ curve; $r=\% 16.78 \mathrm{ft}$, the radius of an 8° curve, and $D=25.4 \mathrm{ft}$., the distance between the given tangents. Substituting these values in the above formula, we have
$\cos y^{\prime}=\frac{(1,910.08-716.78) \times .87743+25.4}{1,910.08-716.78}=.8987 \%=\cos 20^{\circ} 00^{\prime}$.
The given angle of the second curve is $28^{\circ} 40^{\prime}$, and the required angle is $26^{\circ} 00^{\prime}$. The difference, $\because^{\circ} 40^{\prime}$, we must deduct from the second curve and add to the first, i. e., we must advance the P. C. C. The number of feet which we adrance the P. C. C. we determine by dividing the angle $2^{\circ} 40^{\prime}$ by 8 , the degree of the first curve; the quotient gives the distance in stations. Reducing $\mathscr{2}^{\circ} 40^{\prime}$ to the decimal of a degree, we have $2.6667^{\circ} \cdot \frac{2.6667}{8}=.3333$ station $=33.33 \mathrm{ft}$.
(793) This question is also under Problem II, Case ${ }^{2}$. (See Art. 1424.) Here we increase the angle of the second curve, and, consequently, diminish the cos, and D the distance between the tangents is negative. We use formula 100, $\cos y=\frac{(R-r) \cos x-D}{R-r}$, in which $x=36^{\circ} 15^{\prime} . R=$ $1,432.69 \mathrm{ft} ., r=63 \% .27 \mathrm{ft}$., and $D=33 \mathrm{ft}$. Substituting these values in the given formula, we have
$\cos y^{\prime}=\frac{(1,432.69-63 \% .27) \times .80644-33}{1,432.69-637.27}=.66495 \cos 40^{\circ} 06^{\prime}$.
The given angle of the second curve is $336^{\circ} 15^{\prime}$ and the required angle $40^{\circ} 06^{\prime}$. The difference, viz., $3^{\circ} \delta l^{\prime}$, we add to the second curve and deduct from the first. We must, therefore, place the P. C. C. back of the given P. C. C., and this distance we find by dividing the angle $3^{\circ} 51^{\prime}$ by 9 , the degree of the first curve. Reducing $3^{\circ} 51^{\prime}$ to decimal form, we have $3.85^{\circ} \cdot \frac{3.85}{9}=.4288$ station $=42.28 \mathrm{ft}$.
(794) This question comes under Problem III, Art. 1425. The radius of a $\%^{\circ}$ curve is $819.0 \% \mathrm{ft}$. The radius
of the parallel curve will be $819.0:-100=\{19.02 \mathrm{ft}$. The chords on the $\overbrace{}^{\circ}$ curve are each 100 ft , and we obtain the length of the parallel chords from the following proportion:

S19.02: $\quad 19.02:: 100 \mathrm{ft}$. : the required chord.
Whence, we have required chord $=\frac{\pi 19.02 \times 100}{81!.0 \cdot 2}=8 \% .79 \mathrm{ft}$.
($\mathbf{7 9 5}$) This question comes under Problem IV, Art. 1426.

$$
\frac{34^{\circ} 20^{\prime}}{\partial}=1 i^{\circ} 10^{\prime} ; \frac{41^{\circ}: 30^{\prime}}{\because}=20^{\circ} 45^{\prime}
$$

The distance between intersection points is $1,011 \mathrm{ft}$. From Art. 1426 , we have $\left(\tan 17^{\circ} 10^{\prime}+\tan 20^{\circ} 45^{\prime}\right): \tan 1:^{\circ} 10^{\prime}:: 1,011:$ the tangent distance of the first curve.
Whence, $(.30891+.3: 88$ r $): .30891:: 1,011 \mathrm{ft}$. : the tangent distance.
Whence, tangent distance of the first curve $=\frac{312.308}{.685 \%}=$ 454.08 ft .

Substituting known values in formula 91, $T=R \tan \frac{1}{2} I$ (see Art. 1251), we have $454.08=R \times .30591$; whence, $R=\frac{454.08}{.30891}=1,469.94 \mathrm{ft}$. Dividing $5,730 \mathrm{ft}$., the radius of a 1° curve, by $1,469.94$, the length of the required radius, the quotient 3.899 is the degree of the required curve. Reducing the decimal to minutes, we have the degree of the required curve $=3^{\circ} 53.99^{\prime}$.
($\mathbf{7 9 6}$) This question also comes under Problem IV, Art. 1426 . We have

$$
\frac{20^{\circ} 14^{\prime}}{\approx}=10^{\circ} 00^{\prime \prime} ; \frac{41^{\circ} 0 s^{\prime}}{2}=20^{\circ} 34^{\prime}
$$

The distance between intersection points is 816 ft . From Art. $\mathbf{1 4 2 6}$, we have
$\left(\tan 10^{\circ} 00^{\prime}+\tan 20^{\circ} 34^{\prime}\right): \tan 10^{\circ} 00^{\prime}:: \$ 16 \mathrm{ft}$. : the tangent distance of the first curve.

Whence, we have (.1ist: $+.30: 1,: 1784: 3: 816:$ tangent distance.

Whence, tangent distance $=\frac{145.50 \mathrm{~s}!}{.5053(4)}=:(6.9 \mathrm{n} 5 \mathrm{ft}$.
Substituting known values in formula ©1, $T=K \tan \frac{1}{2} I$ (see Art. 1 251), we have $210 .!85=R \times .1$ istis; whence,

(797) This question comes under Problem V, Art. 1427. The required radius is equal to $f_{i} 0 \mathrm{ft}$. divided by $\left(\tan \frac{1}{2}: 2 s^{\circ} 40^{\prime}+\tan \frac{1}{2} 30^{\circ} 10^{\prime}\right) . \frac{28^{\circ} 40^{\prime}}{2}=14^{\circ} 20^{\prime}$; tan $14^{\circ} 20^{\prime}=.25552 . \frac{30^{\circ} 16^{\prime}}{2}=15^{\circ} 08^{\prime} ; \tan 15^{\circ} 08^{\prime}=.2 \% 044$. The sum of these tangents is .52596 , and we have $R=$ $\frac{40 \mathrm{ft}}{.55!4 ;}=\mathrm{s} 93.6 \mathrm{ft}$. Dividing $5, \% 30 \mathrm{ft}$, the radius of a 1° curve, by the radius s. 3.64 ft ., the quotient is the degree of the required curve. $\frac{5,730}{893.64}=6.41 \Re^{\circ}=66^{\circ} 24 . \hat{i}^{\prime}$ curve.
(798) This question also comes under Problem V, Art. 1427. The required radius $R=\frac{516 \mathrm{ft}}{\tan \frac{1}{2} 32^{\circ} 5 \theta^{\prime}+\tan \frac{1}{2}+1^{\circ} 20^{\prime}}$. $\frac{32^{\circ} 50^{\prime}}{2}=16^{\circ} 25^{\prime} . \quad$ tan $16^{\circ} 25^{\prime}=.29463 . \quad \frac{41^{\circ} 20^{\prime}}{2}=20^{\circ} 40^{\prime}$. $\tan 20^{\circ} 40^{\prime}=.30 \% .294(63+.3 \% 200=.9 \% 183 . \quad$ Substituting this value in the above equation, we have $R=\frac{510}{.6 i 15: 3}=$

($\mathbf{Z 9 9})$ This question comes under Problem VII, Art.
1429 . The required distance across the stream $=\frac{\tilde{i .3 \times 100}}{1.845}=$ 41s.: ft .
(800) See Art. 1433.
(801) See Art. 1434.
(802) See Art. 1435.
(803) The usual compensations for curvature are from .03 ft . to .05 ft . per degree.
$\mathbf{(8 0 4)}$ As the elevation of grade at Sta. 20 is 118.5 ft ., and that at Sta. 40 is 142.5 ft ., the total actual rise between those stations is the difference between 142.5 and 118.5 , which is 24 ft . Hence, the average grade between those points is $\frac{24}{20}=1.2 \mathrm{ft}$. per station. As the resistance owing to the curvature is equivalent to an increase in grade of .03 ft . per each degree, the total increase in grade owing to curvature is equal to .03 ft . multiplied by is, the total number of degrees of curvature between Sta. 20 and Sta. 40. $88 \times$ $.03=0.34 \mathrm{ft}$. This amount we add to 24 ft ., the total actual rise between the given stations, making a total theorctical rise of 26.34 ft . Dividing 26.34 by 20 , we obtain for the tangents on this portion of the line an ascending grade of $1.31 \% \mathrm{ft}$. per station. Hence, the grade between Sta. 20 and Sta. $2 t+50$ is $+1.31 \% \mathrm{ft}$. per station. The distance between Sta. 20 and Sta. $24+50$ is $450 \mathrm{ft} .=4.5$ stations, and the total rise between these stations is $1.31 \% \mathrm{ft} . \times 4.5=$ 5.9265 ft ., which we add to 118.5 ft ., the elevation of grade at Sta. 20, giving 124.4265 ft . for the elevation of grade at Sta. $2 t+30$. The first curve is 10°, which is equivalent to a grade of $.03 \mathrm{ft} . \times 10=0.3 \mathrm{ft}$. per station, which we subtract from 1.31\%, the grade for tangents. The difference, 1.01%, is the grade on the 10° curve, the length of which is $4 \because 0 \mathrm{ft} .=4.2$ stations. Multiplying $1.01 \% \mathrm{ft}$., the grade on the 10 curve, by 4.2 , we have $4.2 \imath 14 \mathrm{ft}$. as the total rise on that curve, the P. T. of which is Sta. $28+\hat{i} 0$. Adding $4.2 \tilde{\imath} 14 \mathrm{ft}$. to 124.4265 ft ., we have $128.69 \mathfrak{\mathrm { f }} 9 \mathrm{ft}$, the elevation of grade at Sta. $28+\% 0$. The line between Sta. $28+70$ and Sta. $31+80$ being tangent, has a grade of 1.31 : ft . The distance between these stations is $310 \mathrm{ft} .=3.1$ stations, and the total rise between the stations is $1.31 \% \times 3.1=$
$4.082 \% \mathrm{ft}$., which we add to 128.6979 ft ., the elevation of grade at Sta. $28+70$, giving 132.7806 ft . for the elevation of grade at Sca. $31+80$. Here we commence an 8° curve for $450 \mathrm{ft} .=4.5$ stations. The compensation in grade for an S° curve is $.03 \mathrm{ft} . \times 8=0.24 \mathrm{ft}$. per station. Hence, the grade for that curve is $1.31 \% \mathrm{ft} .-0.24 \mathrm{ft}=+1.0 \% \mathrm{ft}$. per station, and the total rise on the 8° curve is $1.0 \sim \% \mathrm{ft} . \times 4.5=$ 4.8465 ft ., which we add to $132 . \% 806$, the tlevation of grade at Sta. $31+80$, giving $13 \% .62 \% 1 \mathrm{ft}$. for the elevation of grade at Sta. $36+30$, the P. T. of the 8° curve. The line between Sta. $36+30$ and Sta. 40 is a tangent, and has a grade of $+1.31 \% \mathrm{ft}$. per station. The distance between these stations is $3 \% 0 \mathrm{ft}=3 . \%$ stations, and the total rise is $1.31 \% \times 3 . \%=4.8 \% 29 \mathrm{ft}$. , which, added to $13 \% .62 \% 1 \mathrm{ft}$., the elevation of grade at Sta. $36+30$, gives 142.5 ft . for the elevation of grade at Sta. 40 .

(805) See Art. 1439.

(806) In this question, $\delta^{r}=+1.0 \mathrm{ft} ., g^{\prime}=-0.8 \mathrm{ft}$. and $n=3$. Substituting these values in formula $\mathbf{1 0 1}$, $a=\frac{g-g^{\prime}}{4 n}($ see Art. $\mathbf{1 4 0})$, we have $a=\frac{1.0-(-0.8)}{12}=$ $\frac{1.8}{12}=0.15 \mathrm{ft}$. The successive grades or additions for the f stations of the vertical curve are the following: $g-a$, $g-3 a, g-5 a, g-i a, g-9 a, g-11 a$. Substituting known values of g and a, we have for the successive grades:

Stations.	Heights of Curve Above Starting
Point.	

As the elevation of the grade at the starting point of the
curve (which we will call Sta. 0) is 110 ft ., the elevations of the grades for all the stations of the curve are the following:

Stations. $0 .$	Elevation of Grade. 110.00
1 110.85
2	. . . 111.40
3. 111.65
4.	. . . 111.60
5	. . . 111.25
(\%. 110.60

(807) In Fig. 72, $A C$ is an ascending grade of 1 per cent., and $C B$ is a descending grade of 0.8 per cent., which

Fig. 72.
are the grades specified in Question 806. To draw these grade lines, first draw a horizontal line $A \cdot D 6 \mathrm{in}$. long, which will include both grade lines to a scale of 100 ft . to the inch. Divide this line into six equal parts, with the letters a, b, c, etc., at the points of division. Now, d being 300 ft . from A, the height of the original grade line above d is the rate of grade. $g=1.0 \mathrm{ft} . \times 3=3 \mathrm{ft}$., which distance we scale off above d to a vertical scale of 5 ft . to the inch, locating the point C. The grade of $C B$ is -0.8 ft . per 100 ft . Consequently, B, which is 300 ft . from C, is 0.8 ft . $\times 3=2.4 \mathrm{ft}$. below C, and the height of B above $A D$ is equal to 3.0 ft . -2.4 ft . $=0.6 \mathrm{ft}$. We scale off above D the distance 0.6 ft ., locating B. Joining $A C$ and $B C$, we have the original grade lines, which are to be united by a vertical curve. Now, the elevation of the grade at Sta. 0 is 110 ft . The line $A D$ has the same elevation. We have already determined the heights of the curve above this line at the several stations on the curve. Accordingly, we lay off these distances, viz., at b, corresponding to Sta. $1,0.85 \mathrm{ft}$.; at c, Sta. ㄹ, $1.4 \mathrm{ft} . ;$ at d, Sta. 3, 1.65 ft , etc., marking each
point so determined by a small circle. The curved line joining these points is the vertical curve required.
(808) See Art. 1443.
(809; See Art. $1+44$.
(810) See Art. 14 世.
(811) See Art. 144 .
(812) See Art. 1451 .

RAILROAD CONSTRUCTION.

(2UESTIONs si-3-872)
(813) See Art. 1454 .
(814) See Art. 1455.
(815) The slope given to embankment is $1 \frac{1}{2}$ horizontal to 1 vertical, and the slope usually given to cuttings is 1 horizontal to 1 vertical. (See Art. 1457 and Figs. 380 and 381.)
(816) The height of the instrument being $12 \% .4$ feet and the elevation of the grade 140 feet, the instrument is below grade to an amount equal to the difference between 140 and 127.4 feet, which is 12.6 feet. The rod reading for the right slope being 9.2 feet, the surface of the ground is 9.2 feet below the instrument, which we have already shown to be $1 \% .6$ feet below grade. Hence, the distance which the surface of the ground is below grade is the sum of 12.6 and 9.2 which is 21.8 feet, which we describe as a fill of 21.8 feet. Ans. The side distance, i. e., the distance at which we must place the slope stake from the center line, is $1 \frac{1}{2}$ times 21.8 feet, the amount of the fill, plus $\frac{1}{2}$ the width of the roadway, or 8 feet. Therefore, side distance $=\frac{3 \times 21.8}{2}+8=$ 40.7 feet. Ans.
(817) The height of instrument H. I. being 96.4 feet, and the rod reading at the surface of the ground 4.7 feet, the elevation of the surface of the ground is $96.4-4.7=$ $91 . \%$ feet. As the elevation of grade is 78.0 feet, the amount of cutting is the difference between 91.7 and $78.0=13.7$ feet. Ans.
(818) The elevation of the surface of the ground is the height of instrument minus the rod reading; i. e., $96.4-8.8=$ $8 \% .6$ feet. The elevation of grade is $\% 8.0$ feet; hence, the cutting is $8 \% .6-\% 8.0=9.6$ feet. The slope of the cutting is 1 foot horizontal to 1 foot vertical; hence, from the foot of the slope to its outer edge is 9.6 feet. Ans. To this we add one-half the width of the roadway, or 9 feet, giving for the side distance $9.6+9=18.6$ feet. Ans.
(819) See Art. 1459.
(820) See Art. 1460.
(821) See Art. 1461.
(822) We substitute the given quantities in formula $\mathbf{1 0 2}$ $A=C \sqrt{M}$ (see Art. 1461), in which $A=$ the area of the culvert opening in square feet; C the variable coefficient, and M the area of the given water shed in acres. We accordingly have $A=1.8 \sqrt{400}=36$ square feet. Ans.
(823) Applying rule \mathbf{I}, Art. $\mathbf{1 4 6 2}$, we obtain the distance from the center line to the face of the culvert as follows : To the height of the side wall, viz., 4 feet, we add the thiciness of the covering flags and the height of the parapet-each 1 foot, making the total height of the top of parapet $t+2=6$ feet. $\quad 28$ feet, the height of the embankment at the center line, minus 6 feet $=2 d$ feet. With this as the height of the embankment, we calculate the side distance as in setting slope stakes $1 \frac{1}{2}$ times 22 feet $=33$ feet. One-half the width of roadway is $\frac{16}{2}=8$ feet. $33+8=41$ feet. To this distance we add 18 inches, making 42 feet 6 inches. As the embankment is more than 10 feet in height, we add to this side distance 1 inch for each foot in height above the parapet, i. e., 22 inches $=1$ foot 10 inches. Adding 1 foot 10 inches to 42 feet 6 inches, we have for the total distance from the center line to the face of the culvert 44 feet + inches. Ans.

We find the length of the wing walls by applying rule $\mathbf{I I}$.

Art. 1462. The height of top of the covering flags is 5 feet. $1 \frac{1}{2}$ times 5 feet $=7.5$ feet. Adding 2 feet, we have length of the wing walls, i. e., the distance from inside face of the side walls to the end of the wing walls, $7.5+2=!$ feet 6 inches. Ans.
(824) The span of a box culvert should not exceed 3 feet. When a larger opening is required, a double box culvert with a division wall $\underset{\sim}{ }$ feet in thickness is substituted.
(825) See Art. 1462.
(826) See Art. 1462.
(827) See Art. 1463.
(828) See Art. 1465.
(829) The thickness of the base should be $\frac{4}{10}$ of the height. The height is 16 feet and the thickness of the base should be $\frac{4}{10}$ of 16 feet, or 6.4 feet. Ans.
(830) See Art. 1468.
(831) See Art. 1468.
(832) Trautwine's formula for finding the depth of keystone (see formula $\mathbf{1 0 3}$, Art. $\mathbf{1 4 6 9}$), is as follows:
depth of keystone in feet $=\frac{\sqrt{\text { radius of areh }+\frac{1}{2} \operatorname{span}}}{4}+0.2$ foot.
In this example the arch being semicircular, the radius and half-span are the same. Substituting known values in the given formula, we have
depth of keystone $=\frac{\sqrt{15+15}}{4}+1.2$ foot $=1.57$ feet. Ans.
Applying Rankine's formula (formula 104), depth of keystone $=1.1$ radius, we have depth of keystone $=$ $\sqrt{12 \times 15}=1.34$ feet. Ans.
(833) Applying the rule given in Art. $\mathbf{1 4 6 9}$, we find the length of radius is equal to $\frac{19^{2}+12^{2}}{24}=\frac{505}{24}=21.04$ feet.
(834) Applying formula $\mathbf{1 0 5}$, Art. $\mathbf{1 4 7 0}$, we have $\begin{aligned} & \text { thickness of abutment } \\ & \text { at spring line }\end{aligned}=\frac{12 \text { feet }}{5}+\frac{8 \text { feet }}{10}+2$ feet $=5.2$ feet. Ans.
(835) See Art. 1472.
(836) See Art. 1471.
(837) See Art. 1472.
(838) See Art. 1473.
(839) See Art: 1473.
(840) See Art. 1474.
(841) See Art. 1475.
(842) See Art. 1475.
(843) They should be laid in the radial lines of the arch. See Art. 1477.
(844) See Art. 1477.
(845) Until the arch is half built, the effect of the weight of the arch upon the centering is to cause a lifting at the crown. After that point is passed, the effect of the weight is to cause a lifting of the haunches.
(846) 120°. Ans.
(847) See Art. 1480.
(848) According to the rule given in Art. 1480, the thickness of the base should be $\frac{4}{10}$ of the vertical height 10 feet $\times \frac{4}{10}=4$ feet. Ans.
(849) See Art. 1480.
(850) The friction of the backing against the wall adds considerably to its stability.
(851) See Art. 1481.
(852) See Art. 1482.
(853) See Art. 1483 and Fig. 401.
(854) See Art. 1484.
(855) The line $d c$ in Fig. 73 forms an angle of $333^{\circ} 41^{\prime}$ with the horizontal $d / /$ and is the natural slope of earth.

Fig. 3.
The line $d f$ bisects the angle $o d c$. The angle $o d f$ is called the angle, the slope $d f$ is called the slope, and the triangular prism od f is called the prism of maximum pressure.
(856) See Art. 1486.
(857) See Art. 1486.
(858) From Fig. 73, given above, we have, by applying formula 106 , Art. 1486,
perpendicular pressure $n P=$

$$
\frac{\text { the weight of the triangle of earth od } f \times o f}{\text { the vertical height } o d} .
$$

(859) First graitity, i. e., the weight of the wall itself, and second friction produced by the weight of the wall upon its foundation and by the pressure of the backing against the wall.
(860) The angle of wall friction is the angle at which a plane of masonry must be inclined in order that dry sand and earth may slide freely over it.
(861) The base b, f, Fig. 74, of the triangle $b d f$ is 12.73 feet, and the altitude $o d$ is 16 feet. Hence, area of $b d f$ is $12.73 \times 8=101.84$ square feet. Taking the weight of the backing at 120 pounds per cubic foot, we have the weight of $b d f=101.84 \times$
$120=12,201$ pounds. Multiplying this weight by $f=$ 8.56 feet, we have $12,2.21 \times 8.56=104,612$ pounds, which, divided by o $d, 16$ feet, $=6,538$ pounds $=$ the pressure of the backing. This pressure to a scale of 4,000 pounds to the inch equals 1.63 inches. P, the center of pressure, is at $\frac{1}{3}$ of the height of $b d$ measured from d. At P erect a perpendicular to the back of the wall. Lay off on this perpendicular the distance $P n=1.63$ in. Draw $P t$, making the angle $n P t=33^{\circ}+1^{\prime}=$ the angle of wall friction. At n draw a perpendicular to $P u$, intersecting the line $P t$ in k. Draw $h k$, completing the parallelogram $n h k P ; k n$, or its equal $k l$, will represent the friction of the backing against the wall and the diagonal $k P$, which, to the same scale, $=$ $\approx 85 \%$ pounds, will be the resultant of the pressure of the backing and the friction. Produce $P h$ to s. The section $a b d c$ of the wall is a trapezoid. Its area is 84 square feet, which, multiplied by 154 pounds, the weight of rubble per cubic foot, gives 12,936 pounds, as the weight of the wall, which, to a scale of 4,000 pounds to the inch, $=3.23$ inches. Find the center of gravity g of the section $a b d c$, as explained in Art. 1488 . Through g draw the vertical line g^{l}, intersecting the prolongation of P / l in l. Lay off from l, on $g i$, the distance $l i, 3.23$ inches $=$ weight of the wall, and on $l s$, the distance $l m=1.96$ inches, the length of the resultant $P h$; complete the parallelogram $l m \pi z$. The diagonal $l u$ is the resultant of the weight of the wall and the pressure. The distance $c r$ from the toe c to the point where the resultant $l u$ cuts this base is 3.6 feet, or nearly $\frac{1}{2}$ of the base $c d$. This guarantees abundant stability to the retaining wall.

The distance $o f$ is obtained as follows: $c d=8$ feet; batter of $c a=1$ inch for each foot of length of $o d=16$ inches; hence, $a \quad o=8$ feet $-1 ;$ inches $=6$ feet 8 inches; $a b=$ 2.5 feet ; therefore, of $=12.73-(6$ feet 8 inches -2.5 feet $)=$ 856 feet.
(862) See Art. 1491.
(863) Sec Art. 1491 and Figs. 409, 410, and 411
(864) See Art. 1492.
(865) See Art. 1493.
(866) $\frac{540 \text {, the number of working minutes in a day }}{1.25+4}=$ 102.9 trips. $\frac{102.9}{14}=7.35$ cubic yards per man $\frac{\$ 1.15}{7.35}=$ 15.64 cents per cubic yard for wheeling. One picker serves 5 wheelbarrows; he will accordingly loosen $\% .35 \times 5=36.55$ cubic yards. Cost of picking will, therefore, be $\frac{\$ 1.15}{36.50}=$ 3.13 cents per cubic yard. There are 25 men in the gang, one-fifth of whom are pickers. There are, consequently, 20 wheelers, who together will wheel in one day $7.35 \times 20=$ 14% cubic yards. One foreman at $\$ 2.00$ and one water-car. rier at 90 cents per day are required for such a gang. Their combined wages are $\$ 2.90$. The cost of superintendence and water-carrier is, therefore, $\frac{\$ 2.90}{147}=1.9 \%$ cents per cubic yard. Use of tools and wheelbarrows is placed at $\frac{1}{2}$ cent per cubic yard.

Placing items of cost in order, we have
Cost of wheeling. 15.64 cents per cubic yard. Cost of picking 3.13 cents per cubic yard. Cost of water-carrier and super-
intendence................. 1.97 cents per cubic yard. Use of tools and wheelbarrows. . 50 cents per cubic yard. $21.2 t$ cents per cubic yard.
(867) The number of carts loaded by each shoveler (Art. $\mathbf{1 4 9 4}$), is $\frac{420}{5}=84 . \quad 84 \div 3=28$ cubic yards handled per day by each shoveler. The cost of shoveling is, therefore, $\frac{120}{25}=4.28$ cents per cubic yard. The number of cart trips per day is $\frac{600}{8+4}=54.54$. As a cart carries $\frac{1}{3}$ cubic yard, each cart will in one day carry $\frac{54.5 t}{3}=18.18 \mathrm{cubic}$
yards. As cart and driver cost $\$ 1.40$ per day, the cost of hauling is $\frac{81.40}{18.18}=\% . \%$ cents per cubic yard. Foreman and water-carrier together cost $\$ 3.25$. The gang contains 12 carts, which together carry $18.18 \times 12=218.2$ cubic yards. $\frac{83.25}{218.2}=1.49$ cents per cubic yard for water-carrier and superintendence. As loosening soil costs 2 cents per cubic yard, dumping and spreading 1 cent per cubic yard, and wear of carts and tools $\frac{1}{2}$ cent per cubic yard, we have the total cost per cubic yard as follows:

Loosening soil................... 2.00 cents per cubic yard.
Shoveling into carts............ 4.28 cents per cubic yard.
Hauling 7.70 cents per cubic yard.
Superintendence and water-car-
rier 1.49 cents per cubic yard.
Wear and tear of carts and tools, 0.50 cents per cubic yard.
Dumping and spreading........ 1.00 cents per cubic yard.
Cost for delivering on the dump, 16.9 cents per cubic yard.
(868) See Art. 1499.
(869) See Art. 1499.
(870) See Art. $\mathbf{1 5 0 0}$.
(871) Sce Art. 1500.
(872) In carrying the steam a long distance through iron pipes its pressure is greatly reduced by condensation, whereas compressed air may be carried a great distance without suffering any loss in pressure excepting that due tc friction and leakage.

RAILROAD CONSTRUCTION.

(QUESTIONS 873-946.)
(873) See Art. 1503.
(874) See Art. 1504.
(875) See Art. 1504.
(876) Sce Art. 1505 and Figs. 426 and 428.
(877) As $60^{\circ} \mathrm{F}$. is assumed as normal temperature, and as the temperature at the time of measuring the line is 94°, we must, in determining the length of the line, make an allowance for expansion due to an increase of temperature equal to the difference between 60° and 94°, or 34°. The allowance per foot per degree, as stated in Art. 1505, is .0000066 ft ., and for 34° the allowance per foot is $.0000066 \times$ $34=.0002244 \mathrm{ft}$. ; for 89.621 ft . the allowance is $.0002244 \times$ $89.621=0.020 \mathrm{ft}$. The normal length of the line will, therefore, be $89.621+.020=89.641 \mathrm{ft}$. Ans.
(878) Let the line $A B$ in Fig. 75 represent the slope distance as measured, viz., 89.72 ft . This line will, together with the difference of elevation between the extremities A and B, viz., 11.44 ft ., and the
 required horizontal distance $A C$, form a right-angled triangle, right-angled at C. By rule 1, Art. 754, we have $\sin A=\frac{11.44}{89.7^{2}}=.12751$; whence, $A=7^{\circ} 20^{\prime}$. Again, by rule 3, Art. $\mathbf{7 5 4}, \cos 7^{\circ} 20^{\prime}=\frac{A C}{89.7_{2}^{2}}$; whence, $.99180=$ $\frac{A C}{89.72}$, and $A C=89.7 \% \times .99182=88.986 \mathrm{ft} . \quad$ Ans.
(879) See Art. $\mathbf{1 5 0 8}$.
(880) See Art. 1511.
(881) See Art. 1511 and Figs. 43.5, 4.36. 445, and 446.
(882) See Art. 1513.
(883) See Art. 1514.
(884) See Art. 1517.
(885) If the elevation of the grade of the station is 162 ft . and the height of the tunnel section is 24 ft ., the elevation of the tunnel roof at that station is $162+24=$ 186 ft . The height of instrument is 179.3 ft ., and when the roof at the given station is at grade, the rod reading will be $186-179.3=1 . \% \mathrm{ft}$. Ans.
(886) See Art. 1515.
(887) See Art. 1517 and Fig. 448.
(888) See Art. 1520 and Fig. 45\%.
(889) See Art. 1523.
(890) See Art. 1525.
(891) See Art. 1526.
$(\mathbf{8 9 2})$ The area of an 18 -inch air pipe is $1.5^{2} \times .7854=$ $1 . \tilde{i} \mathrm{sq} . \mathrm{ft}$. At a velocity of 13 ft . per second, the amount of foul air removed from the heading per second is $1 . \% \% \times$ $13=23.01 \mathrm{cu} . \mathrm{ft}$. And as each cubic foot of foul air removed is replaced by one of pure air, in 1 minute the
 As each man requires $100 \mathrm{cu} . \mathrm{ft}$. of pure air per minute, there will be a supply for as many laborers as 100 is contained times in $1,380.6$, which is 13.8 , say 14 . Ans.
(893) See Art. 1528.
(894) See Art. $\mathbf{1 5 3 3}$ and Fig. 455.
(895) See Art. $\mathbf{1 5 3 5}$ and Fig. 45%
(896) See Art. $\mathbf{1 5 3 6}$ and Fig. 45 S.
$\mathbf{(8 9 7})$ The height of embankment is 21 ft . ; the culvert opening, 3 ft . in height, and the covering flags and parapet each 1 ft . in height, making the top of parapet 5 ft . above the foundation. In Fig. $f ;$ the angle $B A L$ is 75° and represents the skew of the culvert. Drawing the line $A D$ at right angles to the center line $A C$, we have the angle $B A D=90^{\circ}-75^{\circ}=15^{\circ}$. If the culvert were built at right angles to the center line, the side distance $A D$ from the

Fig. $\%$.
center line to the end of the culvert would be as follows: $21 \mathrm{ft} .-5 \mathrm{ft} .=16 \mathrm{ft} . \quad 16 \mathrm{ft} . \times 1 \frac{1}{2}=24 \mathrm{ft}$. Adding 1.5 ft , and, in addition, 1 in . for each foot of embankment above the parapet, i. e., 16 in ., or 1.33 ft , we have $2 t+1.5+1.33=$ 26.83 ft . Adding 8 ft ., one-half the width of the roadway, we have $26.83+8=34.83 \mathrm{ft} .=A D$. At D erect the perpendicular $D B$. In the right-angled triangle $A D B$, we have $\cos A=\frac{A D}{A B}$, i. e., $\cos 15^{\circ}=\frac{34.83}{A B}$; whence, $.94593=$ $\frac{34.83}{A B}$, and $A B=\frac{34.83}{.96593}=36.06 \mathrm{ft}$. Ans.
(898) See Art. 1541.
(899) See Art. 1541 and Fig. 46\%.
(9OO) See Art. 1542.
(901) See Art. $\mathbf{1 5 4 4}$.
(902) The rod reading for grade will be the difference between the height of instrument and the elevation of the grade for the given station ; i. e., 125.5-118.7 $=6.8 \mathrm{ft}$.

Ans.
(903) See Art. 1547.
(904) See Art. 1548.
(905) The skew of a bridge is the angle which its center line makes with the general direction of the channel spanned by the bridge.
(906) See Art. 1549.
(907) The length of $A B$ is determined by the principles of trigonometry stated in Art. $\mathbf{1 2 4 3}$, from the following proportion $: \sin 46^{\circ} 55^{\prime}: \sin 43^{\circ} 22^{\prime}:: 421.532: A B$; whence, $A B=396.31 \mathrm{ft}$. Ans.
(908) See Art. 1551.
(909) See Art. 1553.
(910) See Art. 1554 and Figs. 465 and 466.
(911) The depth of the center of gravity of the water below the surface is $\frac{10}{2}=5 \mathrm{ft}$. Applying the law for lateral pressure, given in Art. $\mathbf{1 5 5 4}$, we have
(a) Total water pressure $=10 \times 5 \times 40 \times 62.5=125,000 \mathrm{lb}$. Ans.
(b) Taking a section of the dam 1 ft . in length, we have lateral pressure $=10 \times 5 \times 62.5=3,125 \mathrm{lb}$.
The center of water pressure is at $\frac{1}{3}$ the depth of the water above the bottom, i. e., at $10 \div 3=3 \frac{1}{3} \mathrm{ft}$.

The moment of water pressure about the inner toe of the dam will, therefore, be $3,125 \times 3 \frac{1}{3}=10,41 \% \mathrm{ft}$.-lb. Ans.
(912) The volume of a section of the cofferdam 1 ft . in length is $11 \times 1 \times 5=55 \mathrm{cu} . \mathrm{ft}$., which, at 130 lb . per cubic foot, will weigh $55 \times 130=7,150 \mathrm{lb}$.
(a) The moment of resistance of the cofferdam is the product of its weight, viz., $7,150 \mathrm{lb}$. multiplied by the perpendicular distance from the inner toe of the dam to the vertical line drawn through the center of gravity of the dam. This perpendicular distance is 2.5 ft . The moment of resistance is, therefore, $\quad 7,150 \times 2.5=17,875 \mathrm{ft} .-\mathrm{lb}$. Ans.
(b) The factor of safety of the cofferdam is the quotient of the moment of resistance of the dam divided by the moment of water pressure. Hence, $17,875 \div 10,41 \%=1.71$. This calculation does not include the additional weight and resistance of the piles and timber enclosing the puddled wall, which will greatly increase the factor of safety.
(913) See Art. 1555.
(914) See Art. 1555.
(915) See Art. 1556.
(916) See Art. 1557.
(917) See Art. 1559.
(918) See Arts. 1560 and 1561.
(919) See Arts. 1563 and 1564.
$\mathbf{(9 2 0)}$ As the sides of the bridge piers are always, and the ends often, battered, the deeper the foundation the greater will be the dimensions of the caisson plan. The thickness of the walls and deck of the caisson will depend upon the weight of the masonry and the bridge which they must support.
(921) To reduce the friction of the earth against its sides while sinking.
(922) See Art. 1566.
(923) See Art. 1566.
(924) See Art. 1568.
(925) See Art. 1568.
(926) See Art. $\mathbf{1 5 7 0}$
(927) Multiplying 70 ft ., the depth of the water, by the decimal .434 and adding 15 lb ., the pressure of the atmosphere, we have $70 \times .434=30.38 .30 .38+15=45.38 \mathrm{lb}$. Ans.
(928) Formula $\mathbf{1 0 9}, L=\frac{2 w h}{S+1}$. (See Art. 1572.)
(929) See Art. 1573.
(930) The striking force of the hammer is equal to $3,500 \mathrm{lb}$., the weight of the hammer multiplied by 30 , the number of feet in its fall, or $3,500 \times 30=105,000 \mathrm{ft} .-1 \mathrm{~b}$.
(931) See Art. 1575.
(932) See Art. 1576.
(933) See Art. 1577.
(934) See Art. 1578.
(935) See Art. 1580.
(936) Applying formula $\mathbf{1 0 9}, L=\frac{2 w h}{S+1}$ (see Art. $\mathbf{1 5 7 2}$), in which $L=$ the safe load in tons, $w=$ the weight of the hammer in tons, $h=$ the height of the fall of the hammer in feet, and $S=$ the average penetration of the last three blows; we have, by substituting known values in the formula, safe load $L=\frac{3 \times 22}{1.5}=44$ tons. Ans.
(937) Applying formula $\mathbf{1 0 9}, L=\frac{2 w h}{S+1}$, we find the safe load of each pile as follows: First pile, $L=\frac{3.3 \times 35}{.75+1}=$ 66 tons; second pile, $L=\frac{3.3 \times 35}{.8+1}=64.166$ tons; third pile, $L=\frac{3.3 \times 35}{.875+1}=61.6$ tons; total safe load of three piles $=$ 191.i8 tons. Ans.
(938) See Art. 1585.
(939) See Art. $\mathbf{1 5 8 5}$.
(940) See Art. $\mathbf{1 5 8 6}$.
(941) See Art. 1589 and Figs. 484. 485, and 486 .
(942) See Art. 1590.
(913) See Art. $\mathbf{1 5 9 1}$
(944) Sce Art. 1591 .
(945) See Art. 1591.
(946) See Art. 1592.

TRACK WORK.

(QUESTIONS 947-1016.)
(947) See Art. 1593.
(948) See Art. $\mathbf{1 5 9 5}$.
(949) See Art. 1596.
(950) See Art. 1597.
(951) See Art. 1599.
(952) See Art. 1600.
(953) See Arts. $\mathbf{1 6 0 2}$ and $\mathbf{1 6 0 3 .}$
(954) See Art. 1606.
(955) See Art. 1607.
(956) See Art. 1608.
(957) See Art. $\mathbf{1 6 0 9 .}$
(958) The coefficient of expansion is .00000686 per degree per lineal foot (see Art. 1611). As the temperature of the bar is 85° and normal temperature is 60°, the elongation per foot due to increase of temperature is equal to $85-60=25 \times .00000686=.0001 \% 15$ of a foot for each foot of length of the bar, and the total elongation is equal to $.0001715 \times 30.016=.00515 \mathrm{ft}$., say $.005 \mathrm{ft} .=\frac{1}{16} \mathrm{in}$. The normal length of the bar is, therefore, $30.015-.005=$ 30.011 ft . Ans.
(959) See Art. 1611.
(960) See Art. 1612.
(961) See Art. 1615.
(962) See Art. 1617.
(963) See Art. 1618.
(964) See Art. 1619.
(965) See Art. 1619.
(966) See Figs. 507, Art. 1618 , and 510, Art. 1619.
(967) See Art. 1625.
(968) See Art. 1631.
(969) See Art. 1638.
(970) See Art. 1642.
(971) See Art. 1650 and Fig. 513
(972) See Art. 1650.
(973) See Art. 1655.
(974) See Art. 1656.
(975) See Art. 1659.
(976) See Art. 1662.
($\mathbf{9 7 7}$) The distance between rail centers is 4 ft .11 in ., which, expressed in feet and the decimal of a foot, is 4.916 ft . The radius of an 8° curve is $716 . \% 8 \mathrm{ft}$. Applying rule 2, under Art. $\mathbf{1 6 6 4}$, we have
excess of length of outer rail $=\frac{4.916 \times 425}{716.78}=2.91 \mathrm{ft} . \quad$ Ans.
(978) The chord $c=30 \mathrm{ft}$. ; the radius $R=955.37 \mathrm{ft}$. Applying formula 112, Art. 1665 ,

$$
m=\frac{c^{2}}{8 R},
$$

and substituting known values, we have

$$
m=\frac{30^{2}}{8 \times 955.37}=\frac{900}{7,642.96}=.118 \mathrm{ft} \text {, nearly } 1 \frac{1}{2} \mathrm{in} . \text { Ans. }
$$

$\mathbf{(9 7 9)}$ We find in Table 32, Art. $\mathbf{1 6 6 5}$, that the middle ordinate of a $50-\mathrm{ft}$. chord of a 1° curve is $\frac{5}{8} \mathrm{in}$. The middle ordinate of the given chord is $3 \frac{1}{2} \mathrm{in}$., and the
degree of the given curve is, therefore, the quotient, or, $3 \frac{1}{2} \div \frac{5}{8}=5.5^{\circ}=5^{\circ} 36^{\prime}$. The degree of the given curve is probably $5^{\circ} 30^{\prime}$. Ans.
(980) See Art. 1667.
(981) See Art. $\mathbf{1 6 6 9}$.
(982) Formula $1 \mathbf{1 3}, c=1.58 \% V$. (See Art. 1670.)
(983) Applying formula $1 \mathbf{1 3}, c=1.587 V^{\prime}$ (see Art. 167() , in which c is equal to the chord whose middle ordinate m is equal to the required elevation, and l^{Y} the v elocity of the train in miles per hour, we have

$$
c=1.58 \% \times 35=55.5 \mathrm{ft}
$$

We next find the middle ordinate m by applying formula 112 , Art. 1665,

$$
m=\frac{c^{2}}{8 R},
$$

in which $c=55.5 \mathrm{ft}$. and $R=573.69 \mathrm{ft}$. Substituting known values, we have

$$
m=\frac{555.5^{2}}{8 \times 573.69}=\frac{3,080}{4,589}=.6 \% \mathrm{ft} .=8 \text { in., nearly. Ans. }
$$

(984) For each half inch of curve elevation we add one rail length to the elevated approach, which gives for a 4 -in. elevation $t \div \frac{1}{2}=8$ rail lengths, equal to $3 \times 30=240 \mathrm{ft}$. Ans.
(985) See Art. $\mathbf{1 6 7 4 .}$
(986) See Art. 1676 and Fig. 522.
(987) See Art. $\mathbf{1 6 7 9}$.
(988) See Art. 1681 and Figs. 525,524 , and 52%
(989) See Art. 1682 and Fig. 528.
(990) See Art. 1683 and Fig. 529.
(991) See Art. 1684.
(992) See Art. 1685 and Fig. 530.
(993) See Art. 1686 and Fig. 531.
(994) See Art. 1687.
(995) See Art. 1687 and Fig. 53\%.
(996) See Art. 1688 and Fig. 533.
(997) See Art. $\mathbf{1 6 8 9}$ and Fig. 535.
(998) See Art. $\mathbf{1 6 9 0}$ and Fig. 536.
(999) See Art. $\mathbf{1 6 9 1}$ and Fig. 538.
(1000) Applying formula 115 , given in Art. 1692 ,
frog number $=\sqrt{\text { radius } \div \text { twice the gauge }, ~}$
and substituting known values, we have
frog number $=\sqrt{602.8 \div 9.417} ;$ whence, frog number $=8$, almost exactly. Ans.
(1001) Applying formula 117 , given in Art. $\mathbf{1 6 9 2}$, radius $=$ twice the gauge \times square of frog number, and substituting known values, we have

$$
\text { radius }=\left(4 \mathrm{ft} . .8 \frac{1}{2} \mathrm{in} .\right) \times 2 \times 6^{2}=9.417 \times 36=339 \mathrm{ft} .
$$

Ans.
To find the degree of the required curve, we divide 5,730 ft ., the radius of a 1° curve, by 339 , the length of the required radius, which gives $16.902^{\circ}=16^{\circ} 54^{\prime}$, the degree of the required curve.
(1002) From table of Tangent and Chord Deflections, we find the tangent deflection of an 18° curve is 15.64 ft . Calling the required frog distance x, we have, from Art. 1692 and Fig. 540 , the following proportion:

$$
15.64: 4.65:: 100^{2}: x^{2}
$$

$$
\begin{aligned}
& \text { whence, } x^{2}=\frac{100^{2} \times 4.75}{15.64}=\frac{47,500}{15.64}=3,037.08, \\
& \text { and } \\
& x=55.1 \mathrm{ft} . \quad \text { Ans. }
\end{aligned}
$$

The frog angle is equal to the central angle of a 55.1 ft . arc of an 18° curve. As 18° is the central angle of a $100-$ ft . arc, the central angle of an arc of 55.1 ft . is $\frac{55.1}{100}$ of $18^{\circ}=$ $9^{\circ} 55^{\prime}$. Ans.
(1003) This example comes under Case I of Art. 1693. The sum of the tangent deflections of the two curves for chords of 100 ft . is equal to the tangent deflection of a 16° 30^{\prime} curve for a chord of 100 ft . This deflection, we find from the table of Tangent and Chord Deflections, is 14.35 ft . Calling the required frog distance x, we have, from Art.
$\mathbf{1 6 9 2}$, the following proportion:

$$
14.35: 4.75:: 100^{2}: x^{-2}
$$

whence, $\quad x^{2}=\frac{100^{2} \times 4.75}{14.35}=\frac{47,600}{14.35}=3,310$,
and $\quad x=5 \% .5 \mathrm{ft}$. Ans.
As the central angle subtended by a $100-\mathrm{ft}$. chord is 16° 30^{\prime}, the angle subtended by a chord of 1 ft . is $\frac{16^{\circ} 30^{\prime}}{100}=9.9^{\prime}$, and for a chord of $5 \% .5 \mathrm{ft}$. the central angle is $9.9 \times 57.5=$ $509.25^{\prime}=9^{\circ} 29 \frac{1}{4}^{\prime}$, the required frog angle.
(1004) This example comes under Case II of Art. 1693 , in which the curves deflect in the same direction. As the main track curve is 4° and the turnout curve 12°, the rate of their deflection from each other is equal to the deflection of a $12^{\circ}-4^{\circ}$, or of an 8° curve from a straight line. From the table of Tangent and Chord Deflections, we find the tangent deflection of an 8° curve for a chord of 100 ft . is 6.98 ft . Now, the distance between the gauge lines at the head-block is fixed at $5 \mathrm{in} .=.42 \mathrm{ft}$., and calling the required head-block distance x, we have the proportion

$$
\begin{gathered}
6.98: 0.42:: 100^{2}: x^{2} \\
x^{2}=601.7, \text { and }
\end{gathered}
$$

whence,
head-block distance $x=24.5 \mathrm{ft}$. Ans.
(1005) Multiply the spread of the heel by the number of the frog; the product will be the distance from the heel to the theoretical point of frog.
(1006) See Art. 1694.
(1007) $60 \times 1 \cdot=720 \mathrm{in} . \quad 720 \div 15=48$. Ans.
(1008) $S \mathrm{ft} .6 \mathrm{in} .=102 \mathrm{in} . \quad 15 \mathrm{ft} .3 \mathrm{in} .=183 \mathrm{in} . \quad 183$ in. $-102 \mathrm{in} .=81 \mathrm{in} .81 \mathrm{in} . \div 48=1.69 \mathrm{in} .=1 \frac{11}{16} \mathrm{in}$. Ans.
($\mathbf{1 0 0 9)}$ See Art. 1698.
(1010) We find the crotch frog distance as follows: From the table of Tangent and Chord Deflections, we find the tangent deflection of a $100-\mathrm{ft}$. chord of a 10° curve is 8.72 ft . One-half the gauge is 2.35 ft . Calling the crotch frog distance x, we have the proportion

$$
\text { 8. } 72: 2.35:: 100^{2}: x^{2} \text {; }
$$

whence, $\quad x^{2}=\frac{100^{2} \times 2.35}{8 . \tilde{x}^{2}}=2,695$, nearly
and $\quad x=51.9 \mathrm{ft}$. Ans.
The central angle for a chord of 51.9 ft . is $6^{\prime} \times 51.9=$ $311.4^{\prime}=5^{\circ} 11.4^{\prime}$, and the angle of the crotch frog is $5^{\circ} 11.4^{\prime} \times$ $2=10^{\circ} 22.8^{\prime}$. Ans.
(1011) See Art. 1700.
(1012) See Art. 1710.
(1013) See Art. 1711.
(1014) See Art. 1712.
(1015) See Art. 1714.
(1016) See Art. 1715.

RAILROAD STRUCTURES.

(QUESTIONS 101\%-1082.)
(1017) Eight years.
(1018) See Art. 1731.
(1019) See Art. 1732.
(1020) See Art. 1734.
(1021) See Art. 1734.
(1022) See Art. 1735.
(1023) Test piles should be driven at frequent intervals and the required lengths determined by actual measurement.
(1024) See Art. 1739 and Fig. 558.
(1025) See Art. 1739.
(1026) See Art. 1741 and Fig. 561.
(1027) See Art. 1742.
(1028) See Art. 1742 and Figs. 562 to 56.7, inclusive.
(1029) See Art. 1745 and Fig. 565.
(1030) See Art. 1746 and Fig. 566.
(1031) See Art. 1748 and Fig. 567.
(1032) See Art. 1749 and Figs. 568 and 569.
(1033) See Art. 1752 and Figs. $5 \% 7$ and $5 \% 8$.
(1034) See Art. 1753 and Figs. $5 \% 9$ to 584 , inclusive.
(1035) See Art. 1754 and Figs. 585 to 58%, inclusive.
(1036) See Art. $1 \mathbf{7 5 6}$ and Figs. 588 to 591, inclusive.
(1037) See Art. $1 \mathbf{7 5 6}$ and Fig. 592.
(1038) See Art. 1757.
(1039) See Art. $1 \mathbf{7 5 8}$ and Fig. 59%.
$(\mathbf{1 0 4 0})$ See Art. 1759.
(1041) See Art. $1 \mathbf{7 5 9}$.
(1042) See Art. 1760.
(1043) See Art. 1760 and Figs. 598 to 601, inclusive.
(1044) See Art. $1 \mathbf{7 6 1}$ and Fig. 604.
(1045) See Art. $\mathbf{1 7 6 3}$ and Figs. 606 and 60%.
(1046) See Art. $1 \mathbf{7 6 7}$ and Figs. 608, 609, and 610 .
(1047) See Art. $1 \mathbf{7 7 0}$.
(1048) See Art. 1775 and Figs. 617 and 618.
(1049) See Art. 1778.
($\mathbf{1 0 5 0}$) See Art. $1 \mathbf{7 8 0}$.
(1051) See Art. 1787.
(1052) See Art. 1789 and Fig. 622.
(1053) See Art. 1800 . From Table 52, Art. 1802 , we find the constant for cross-breaking center loads for spruce is 450 . Applying formula $\mathbf{1 2 7}$, Art. $\mathbf{1 8 0 0}$, we have

$$
\frac{10 \times 144}{18} \times 450=36,000 \mathrm{lb} . \quad \text { Ans. }
$$

(1054) See Art. 1803.
(1055) The constant for center breaking loads for yellow pine is 550 , Table 52, Art. 1802 . Applying the rule given in Art. $\mathbf{1 8 0 4}$, we have $\frac{50,000 \times 20}{550}=1,818$. The cube root of 1,818 is 12.2 nearly. Hence, the beam should be $12 \frac{1}{4}$ inches square. Ans.

On account of the great size of this beam, its own weight constitutes a considerable factor of the breaking load, and to provide for this additional weight we must increase the size of the beam as directed in Art. 1804.

Yellow pine weighs, on an average, 65 lb . per cu. ft. The beam between supports contains $20.8 \mathrm{cu} . \mathrm{ft}$. Its weight is, therefore, $20.8 \times 65=1,352 \mathrm{lb}$. Applying the proportion
given in Art. 1804 , and denoting the required addition in width by x, we have

$$
50,000: \frac{1,35 \cdot}{2}:: 12.2: x
$$

whence, $x=0.16 \mathrm{in}$. The beam should, therefore, be $12.2+0.16=12.36$ inches square, equal to about 123 inches.
(1056) A safe center load of $16,000 \mathrm{lb}$. with a factor of safety of 5 , will call for a center breaking load of $16,000 \times 5=80,000 \mathrm{lb}$. We next find, by Art. 1804, the side of a square beam which will break under this center load of $80,000 \mathrm{lb}$, and we have $\frac{80,000 \times 16}{550}=2,32 \%$, the cube root of which is 13.25 , nearly. Hence, the side of the required square beam is $13 \frac{1}{4}$ inches. Ans.
(1057) The constant for center breaking loads for spruce is 450. (See Table 52, Art. 1802.) Applying the rule given in Art. $\mathbf{1 8 0 6}$, we have

$$
\frac{40,000 \times 14}{144 \times 450}=\frac{560,000}{64,800}=8.64 \mathrm{in} .=8 \frac{5}{8} \mathrm{in} . \quad \text { Ans. }
$$

(1058) The constant for center breaking loads for yellow pine (Table 52, Art. 1802) is 550. Applying the rule given in Art. 1807, we have

$$
\frac{24,000 \times 16}{10 \times 550}=\frac{384,000}{5,500}=69.82
$$

the square root of which is $8.35=$ say $8 \frac{3}{8}$, the required depth in inches of the beam.
(1059) Applying formula 128, Art. 1808 , we have:

Breaking load in pounds per square inch of area $=$

$$
\frac{5,000}{1+\left(\frac{1+t^{2}}{1 \vartheta^{2}} \times .004\right)}=3,1 \approx \cdot \mathrm{lb}
$$

With a factor of safety of 5 , we have for the safe load per square inch, $\frac{3,1 \hat{R}^{Q}}{5}=6,34 \mathrm{lb}$. The area of the cross-section of the pillar is $12 \times 12=144$. Hence, the safe load for the pillar is $144 \times 6: 34=01,29 \% 1 b$. Ans.
(1060) From Art. $\mathbf{1 8 0 9}$ we find the safe shearing stress across the grain for long-leaf yellow pine to be 500 lb . per sq. in., and to resist a shearing stress of $30,000 \mathrm{lb}$. will require an area of $\frac{30,000}{200}=60 \mathrm{sq}$. in. Ans.
(1061) From Art. 1809 we find the safe shearing stress across the grain for white oak to be $1,000 \mathrm{lb}$. per sq. in., and to sustain a shearing stress of $40,000 \mathrm{lb}$. will require an area of $\frac{40,000}{1,000}=40$ sq. in. Ans.
(1062) A uniform transverse safe load of $36,000 \mathrm{lb}$. is equivalent to a center load of $18,000 \mathrm{lb}$., which, with a factor of safety of 4 , is equivalent to a center breaking load of $\tau 2,000 \mathrm{lb} . \quad 2,000 \times 12=864,000$. The constant for transverse breaking loads for spruce is 450 . (Table 52 , Art. 1802.) $\frac{864,000}{450}=1,920$, the cube root of which is 12.4 , the side dimension in inches of a square beam, which will safely bear the given transverse load. (Art. 1805.)

For tension, we find in Art. 1810 the safe working stress for ordinary bridge timber is $3,000 \mathrm{lb}$. per sq. in. The given beam has a pulling stress of $20,000 \mathrm{lb}$., and to resist this stress it will require $\frac{20,000}{3,000}=6.6$ sq. in. We must, accordingly, add this to the area of the beam required to sustain the transverse load alone. We determine the increased size as follows: $\sqrt{12.4^{2}+6.6}=12.6$; hence, the beam is 12.6 inches square. Ans.
(1063) See Art. 1813 and Fig. 629.
$(\mathbf{1 0 6 4})$ The total load upon the bridge is $6,000 \times 20=$ $120,000 \mathrm{lb}$. Of this amount the two king-rods sustain onehalf, or $60,000 \mathrm{lb}$., which places upon each king-rod a load of $\frac{60,000}{2}=30,000$. This, with a factor of safety of 6 , would be equivalent to an ultimate or breaking load of $30,000 \times$ $6=180,000 \mathrm{lb}$. By reference to Table 53, Art. 1813, we
find that a rod $2 \frac{3}{8} \mathrm{in}$. in diameter has a breaking strain of $128,52 \mathrm{~s} 1 \mathrm{~b}$., which is a close approximation to the given stress. We would, accordingly, use a de in. king-rod. Ans.
(1065) The king-rod.; support the needle-beam, and, as all the floor-beams rest upon the needle-beam, it carries half the total bridge load excepting what rests upon the tiebeams.
(1066) By trussing the needle-beam we practically reduce its span t, one-half of its actual length.
(1067) See Art. 1814 and Fig. fis1.
(1068) 20,000 lb. Ans.
(1069) The load per lineal foot on each truss is $\frac{6,000}{2}=$ $3,000 \mathrm{lb}$. As each rod supports half the load between itself and each adjrcent support, it will support one-third of the total load of each truss. The total load of the truss is $3,000 \times 33=09,000 \mathrm{lb} .$, one-third of which is $\frac{919,000}{3}:=$ $33,000 \mathrm{lb}$. (See Art. 1814 .) Ans.
(1070) See Art. 1815.
(1071) See Art. 1815.
(1072) See Art. 1816.
(1073) See Art. 1816.
(1074) See Art. 1816.
(1075) See Art. 1817.
(1076) See Art. 1818.
(1077) See Art. 1818.
(1078) See Art. 1819 and Fig. fi36.
(1079) See Art. 1820 .
(1080) See Art. 1821.
(1081) See Art. 1822.
(1082) See Art. 1823.

 cserncosereres cracece criv crac oumerco crecrocs roccracose crecercoce
 rek rrecreroccura
cmere coscre - sic Cosccc - merceseccer
cecsccesceres
 rarcocerer cis orscres errecores co lué C

- merccecccs - bercercercra Mrecru cccs crcra rruct
 cruccuccos crchracrace Cruccccsec) croccacuscoch crercres acct - Corccecras 6 ccracescrcce बcracrerserctis -rccescocts cu cer crociccece ccrercecroc

 recercrecucere -accercesceress ccercce cr cce c crestrescrivec
 cre curucscrec rincrucrscecrat cocrecreccecs

-arircru accse

creces crect
 cmerersus
 croc

[^0]: * Remember that an expression of this form means that the first term is to be divided by the second term. Thus, as above, it means percentage divided by base.

[^1]: Contour $\quad 90.0$ at 315 ft . to left of Center Line. نi Contour (t 50 at 63.0 ft to left of Center Line. Contour 600 at 91.5 ft , to left of Center Line. Contour 55.0 at 1330 ft to left of Center Line. Contour 80.0 at 25.5 tt . to right of Center Line. Contour 85.0 at 51.0 ft . to right of Center Line. Contour 55,0 at 1330 ft to left of Center Line. Contour 93.0 at 1030 ft to right of Center Line. Elevation $50 . \mathrm{i}$ at 182.0 ft . to left of Center Line. $\mathrm{U} \mid$ Elevation 98.5 at 120.0 ft . to right of Center Line.

