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SYMBOLS AND ABBREVIATIONS.

ax. . . axiom. . . circle.

cor. . . corollary. + . . plus.

def. . . definition. — . . minus.

iden.

.

. identity. X . . multiplied by.

prop.

.

. proposition. -,/,:. . divided by.

post. . . postulate. . is equal to or equivalent to.

cons.

.

. construction. ~ . . is similar to.

hyp. . . hypothesis. S . . is congruent to.

rect. . . rectangle. > . . is greater than.

rt. . right. < . . . is less than.

8t. . straight. • ± . . is perpendicular to, or a

^ •
. angle. perpendicular.

A . . triangle. II . . is parallel to, or a parallel.

O . parallelogram.

Q. E. D. (quod erat demonstrandum), which was to be proved.

Q. E. F. (quod erat faciendum), which was to be done.

Note. The foregoing are used also in the plural, as = means •' are

equal to," as well as "is equal to."
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63. The sum of all the angles about a point is equal to two

straight angles.

65. If two straight lines intersect, the vertical angles are

equal.

85. In congruent figures homologous parts are equal.

86. Any side of a triangle is less than the sum of the other

two, and greater than their difference.

91. Two triangles are congruent if they have two sides and

the included angle of the one equal, respectively, to two sides

and the included angle of the other.

92. Two right triangles are congruent if the legs of the

one are equal, respectively, to the legs of the other.

94. Two triangles are congruent if they have two angles

and the included side of the one equal, respectively, to two

angles and the included side of the other.

95. Two right triangles are congruent if a leg and an adja-

cent acute angle of the one are equal, respectively, to a leg and

an adjacent acute angle of the other.

108. The perpendicular bisector of a line is the locus of

points equidistant from the extremities of the line.

109. Two points each equidistant from the extremities of a

line determine the perpendicular bisector of the line.

115. Only one perpendicular can be drawn from a given ex-

ternal point to a given straight line.

116. The perpendicular is the shortest line that can be

drawn from a given point to a given line.

117. Two oblique lines from the same point in the perpen-

dicular to a given line, cutting off equal segments from the
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foot of the perpendicular, are equal ; and of two lines cutting

off unequal segments from the foot of the perpendicular, the

one cutting off the greater segment is the greater line.

121. Two right triangles are congruent if they have the hy-

potenuse and an acute angle of the one equal, respectively, to

the hypotenuse and an acute angle of the other.

122. Two right triangles are congruent if the hypotenuse

and a leg of the one are equal, respectively, to the hypotenuse

and a leg of the other.

123. Two triangles are congruent if they have the three

sides of the one equal, respectively, to the three sides of the

other.

132. If two triangles have two sides of the one equal, re-

spectively, to two sides of the other, but the third side of the

first greater than the third side of the second, the angle oppo-

site the third side of the first is greater than the angle opposite

the third side of the second.

137. Two straight lines in the same plane perpendicular to

the same straight line are parallel.

139. If a straight line is perpendicular to one of two par-

allels, it is perpendicular to the other.

151. Two angles having their right sides respectively par-

allel and also their left sides parallel are equal, whereas if the

right side of each is parallel to the left side of the other they

are supplementary.

165. The sum of three angles of a triangle is equal to a

straight angle.

166. A diagonal divides a parallelogram into congruent tri-

angles.

167. The opposite sides and the opposite angles of a paral-

lelogram are equal.

169. Parallels included between parallels are equal.
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173. If two sides of a quadrilateral are equal and parallel,

the figure is a parallelogram.

176. Two parallelograms are congruent if two sides and the

included angle of one are equal, respectively, to two sides and

the included angle of the other.

213. Kadii of the same circle or of equal circles are equal.

233. In the same circle, or in equal circles, equal arcs are sub-

tended by equal chords and intercepted by equal central angles.

234. In the same circle, or in equal circles, equal chords

subtend equal central angles and equal arcs.

240. Ten propositions, in all, may be obtained by selecting

any two of the following conditions for the hypothesis and

any one of the remaining three for the conclusion;

1. passes through the center of the circle.

2. bisects the chord.

3. is perpendicular to the chord.

4. bisects the minor arc.

5. bisects the major arc.

246. Through three points not in the same straight line one

circle, and only one, can be drawn.

275. If two variables are constantly equal and each ap-

proaches a limit, their limits are equal.

277. The limit of the product of a constant and a variable

is the product of the constant by the limit of the variable.

283. In the same circle, or in equal circles, central angles

have the same ratio as their intercepted arcs.

287. A central angle is measured by its intercepted arc.

330. In any proportion the terms are in proportion by alter-

nation.

331. In any proportion the terms are in proportion by in-

version. •

A straight line that
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338. In any proportion like powers of the terms are in pro-

portion,

340. A line parallel to one side of a triangle divides the

other sides proportionally.

343. If a straight line parallel to the side BC of. a triangle

ABC cuts AB at D and AC at E, then DE :BC= AD: AB.

363. Similar polygons are those whose homologous angles

are equal and whose homologous sides are proportional.

369. Two triangles are similar if their sides are respectively

proportional.

370. Two triangles are similar if the sides of the one are,

respectively, parallel or perpendicular to the sides of the

other.

374. The homologous altitudes of two similar triangles

have the same ratio as any two homologous sides.

376. Two similar polygons may be divided into the same

number of similar triangles, similarly placed.

391. The square of the hypotenuse of a right triangle is

equal to the sum of the squares of the two legs.

392. The square of either leg of a right triangle is equal to

the difference of the square of the hypotenuse and the square

of the other leg.

420. The area of a parallelogram is equal to the product of

its base and altitude.

421. Parallelograms having equal bases and equal altitudes

are equivalent.

425. The area of a triangle is equal to half the product of

its base and altitude.

428. Triangles of equal altitudes are to each other as their

bases.
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430. Triangles of equal bases and altitudes are equivalent.

434. The areas of two triangles, having an angle in the one

equal to an angle in the other, are to each other as the products

of the sides including the equal angles.

436. The areas of two similar polygons are to each other

as the squares of any two homologous sides.

486. If the number of sides of an inscribed polygon be in-

definitely increased, the apothem of the polygon will approach

the radius of the circle as a limit.

488. The circle is the limit of the perimeters of regular in-

scribed and circumscribed polygons and the area of the circle

is the limit of the areas of these polygons when the number of

their sides is indefinitely increased.





SOLID GEOMETKY.

Book YI.

Solid geometry, or geometry of three dimensions, treats of

figures whose elements are not all in the same plane. (§ 35.)

522. A plane is a surface such that the straight line joining

any two of its points, lies wholly in the surface. (§ 16.) While

regarded as indefinite in extent, it is usually represented in

diagrams, by parallelograms that lie in the plane. •

A plane is said to be determined by points or lines, when
these points or lines fix its position in space.

523. A plane is determined by any three given points which

are not in the same straight

line.

Two points determine a

line (§ 9), but do not deter-

mine a plane, because a

plane may be rotated about

any given line, assuming, in

turn, an indefinite number of

positions, but a third point,

without this line, fixes the

plane.
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524. Because two points determine a line and three points

a plane, so a plane is determined by the equivalent of three

points; namely, a straight line and a point without this

line; two intersecting straight lines; two parallel straight

lines.

525. The point in which a straight line meets a plane is

called the foot of the line.

526. A straight line is perpendicular to a plane when it is

perpendicular to every line in the plane drawn through its

foot.

527. A straight line is parallel to a plane, or a plane is

parallel to a straight line, when the two will not meet if pro-

duced indefinitely.

528. An oblique line is one which is neither perpendicular

nor parallel to a plane.

529. Two planes are parallel if they will not meet if pro-

duced indefinitely.

530. If two planes are not paral-

lel, they must intersect in a line

common to the two planes. For two

planes cannot have, in common, a

straight line and any point with-

out that line. If they could, the

two planes would coincide. (§ 623.)

That is, the common points, or intersection, cannot be other

than a straight line.
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Proposition I. Theobem.

531. The perpendicular is the shortest line that can

he drawnfrom a point to aplane.

Given the point P, the line PA ± the plane MN, and any other

line PB from P to MN.

To prove PA < PB.

Proof. Through A, the foot of PA, draw the line AB.

Then PA is ± AB. § 626

.-. PA < PB. § 116

{The JL is the shortest line that can be drawn from a given

point to a given line.) Q. e. d.

532. The distance from a point to a plane is the length of

the perpendicular from the point to the plane.
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Pboposition II. Theorem.

533. Oblique lines draicn from a point to a plane,

meeting the plane at equal distances from the foot of

the perpendicular, are equal ; and of two oblique lines

meeting the plane at unequal distances from the foot

of the perpendicular, the more remote is the greater.

Given PO JL plane MN, and AG = BG, and GD > GB.

To prove I. PA = PB.

II. PD > PB.

Proof. I. The rt. As POA and POB are congruent, having

PO common and OA = OB. Hyp. § 92

..PA = PB.

II. On CD take OC = OB and draw PO.

Then PD > PC.

But PC = PB.

.: PD > PB.

§85

§117

Proof I

Q. E. D.

634. Cor. Conversely : Equal oblique lines from a point

to a plane meet the plane at equal distances from tJie foot of the

perpendicular ; and of two unequal lines the greater meets the

plane at the greater distance from the foot of the perpendicular.
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Proposition III. Theorem.

535. A straight line perpendicular to each of two

strata^ lines at their point of intersection is perpen-

dicular to the plane of those lines.

A

Given AB ± BC and BD at B.

To prove AB 1. MN, the plane of these lines.

Proof. Draw BE, any other line, in the plane MJ^.

Draw DC meeting BE at E, and prolong AB to A' so that

BA' = AB.
Join A and A' with D, E, and C.

BD and BC are each ±. AA' at its mid-point.

Hyp. and Cons.

Hence in As ADC and A'DC,

AD = DA', § 108

also, AC=A'C, §108

and DC=DC. Idem
.-. A ADC ^ A A'DC. § 123

.-. ^ ADE = ^ A'DE. ^ 85

Hence A ADE ^ A A'DE, § 91

.-. AE = EA\ and ^iJ ± ^^' at B. §§ 109, 85

••• AB 1. any line in MN passing through its foot.

.-. it is J. the plane MN. § 526
Q. E. D.
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^v'^ Proposition IV. Theorem.

536. All the perpendiculars to a straight line at the

same point lie in a plane perpendicular to that line

(Converse of § 535).

Given PB, PC, PD, each ± line AP at P.

To prove PB, PC, PD, lie in a common plane X AP.

Proof. Let MN be the plane of PB and PC. § 624

Then ^P± plane JO: §636

Let the plane of AP and PD intersect the plane MN in the

line PD'. § 530

Then AP ± PD\ § 626

But AP ± PD. Hyp.

Since in the plane APD but one ± can be drawn to AP at

P, §116
PD' must coincide with PD.

.'. PB, PC, and PD lie in a common plane A. AP.
' ' ^ Q.E.D.

537. Cor. Tlirongh a given point hut one plane can he

passed perpendicular to a given line, and the plane which is the

perpendicular hisector of a straight line is the locus ofpoints equi-

distantfrom the extremities of the line.
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Proposition V. Pkoblem.

638. Through a given point, to draw a line perpen-

dicular to a given plane.

I. When the given point is within the plane.

II. When the given point is without the plane.

I. Given point P within the plane MN.

Required through P to draw a _L 3/-^.

Construction. From P in plane MN draw any line PB.

In same plane draw PD JL PB. § 113

Through P pass a plane intersecting MN in the line PJ5,

and in this plane draw PL 1. PB.

In RS, the plane of PD and PL, draw AP JL PD. § 113

Then PA ± MN.

Proof. Because PB is ± PD and PL, it is 1. their plane.

§ 535

..PB±AP. §526

And because AP is X PB and PD, it is X MN, their plane.

§ 535

Ex. 556. Find the locos of points in space equidistant from all points

of a circle.
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II. Given point P without the plane KN.

Required through P to draw a l.to MN.

Construction. Pass through P a plane intersecting MN in

some line BC, and in this plane draw BP _L BC § 114

In the plane MN draw BD ± BC. § 113

And in the plane of BD, BP, draw PA ± BD. § 114

Then is PA JL MN.

Proof. The A& PAB, ABC, and PBC are rt. As. Cons.

.-.pa' = PB'- A^. §392

AC'=AB' + B(f. §391

Pff + BC' = PC\ §391

Adding, PAl+A&= PC\

.-. AP^Cis art. A. §391

.-. PA ± AC.

..PA±MN. Q.E.F.

539. Cor. Through a given point but one perpendicular to a

plane can be drawn.

Ex. 557. Find the locus of a point in space equidistant from three

given points not in the same straight line.

Ex. 558. Find a point equidistant from four given points not all in

the same plane.
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Proposition VI. Theorem.

540. If from the foot of a perpendicular to a plane

a line he drawn at right angles to any line of the plane,

and the point of intersection he joined ivith any point

of the perpendicular, the last line will he perpendic-

ular to the line of the plane.

Given AF ± plane MN, FP ± any line CB in plane MN, and

PA drawn from P to any point of AF.

To prove APA-BC.

Proof. Erom P on CB take PC=PB.

Join A and F with C and B.

Then FC=FB. §108

.'.AB =Aa §533

Hence AP ± BC. §109
Q. E. D.
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V / Proposition VII. Theorem.

541 . Twoperpendiculars to the sameplane areparallel.

JE

ID

§113

§540

Given AB and CD ± the plane MN.

Toprcyoe AB W CD.

Proof. Join D to A and B. Draw EF± BD.

.•.AD±EF.

Because BD, AD, and CD are each J_ EF, they lie in same

plane. § 536

AB also lies in this plane. Because the three points A, B,

and D determine a plane. § 523

.•. AB and CD lying in the same plane and _L the same line,

BD, are II. § 137

Q. E. D.

^ iO .A. . .,.

\ ^N ^
: *2»r

542. Cor. 1. If one of tioo parallels is perpendicular to a

plane, the other is perpendicular to the same plane.

If CD is not ±MN,dvAyrCE± MN. Then CEWAB. §641.

.-. CE and CD must coincide. .*. CD± MN.
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543. Cor. 2. If two lines are II a third line they are II each

other.

If MN is drawn ± AB, it must be ± CD and also ± EF.
.'. the lines are II.

Pboposition VIII. Theorem.

544. A straight line parallel to a line in a plane is

parallel to the plane.

Given AB II CD in plane MN.

To prove AB II plane MN.

Proof. AB and CD being II lie in the same plane AD. § 524

.*. if AB meets MN, it must meet it in line CD. § 530

But AB and CD are II and cannot meet.

.•. AB II plane MN. q.e.d.

545. Cor. 1. If a line is parallel to a plane, the intersection

of the plane with any plane through the line is parallel to the line.

546. Cor. 2. If two intersecting lines are each parallel to a

given plane, the plane of these lines is parallel to the given plane.
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v(^

TWO PLANES.

Pbopositiox IX. Theorem.

547. Two planes perpendicular to same straight line

are parallel.

M

N
-B

Given planes MN and PQ ± AB.

To prove the plane MN II the plane PQ.

Proof. IfMN and PQ are not II, they will meet if sufficiently

produced.

Suppose them to meet. We would then have two planes

through the same point _L to the same line, which is impos-

sible. § 537

Therefore, plane MN II plane PQ. Q. B. d.

548. CoR. If a straight line and a plane are perpendicular to

the same straight line, they are parallel.
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Proposition X. Theorem.

13

549. The intersections of two j^cirallel planes hy a

third plane are parallel lines.

Given two planes, MN and PQ, intersected by the plane RS in

AB and CD.

To prove AB II CD.

Proof. AB and CD lie in the same plane ^*S'. Hyp.

Because they also lie in the planes MN and PQ they can-

not meet. § 529

AB II CD. Q. E. D.

550. CoR. 1. Parallel lines included between parallel planes

are equal.

551. Cor. 2. Parallel planes are everywhere equally distant.
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vW Proposition XI. Theorem.

552. A straight line perpendicular to one of two

parallel planes is perpendicular to the other, also.

Given MN and PQ, II planes, and AB ± plane PQ.

To prove AB ± plane MN.

Proof. Draw BE and BF, any two lines in PQ intersecting

atB.

Suppose planes passed through AB-BE and AB-BF, inter-

secting MN in AC and AD, respectively.

Then AC II BE and AD II BF. § 649

But ABl. BE Qxid. to BF. §526

.-. AB A. AC and to AD. § 139

.*. ABl.plane MN. §535
Q. E. D.

553. CoR. 1. Reciprocally, a plane perpendicular to one of

two parallel lines is perpendicular to the other, also.

554. Cor. 2. Throiigh a given point one plane, and only one,

can he drawn parallel to a given plane.



BOOK VI. SOLID GEOMETRY.

Proposition XII. Theorem.

16

555. Two angles not m the same plane, having their

sides respectively parallel, right side to right side and

left side to left side, are equal and their planes are

parallel.

Given ^s o and o' lying in planes MN and PQ, respectively, and

having sides AB II A'B', AC II A'C.

To prove "^ o = "if o' and MN II PQ.

Proof. Take A'B' = AB and A'C = AO. Draw AA', BB',

CC.
Because AB and AC are respectively II and = A'B' and A'C,

Hence

But

Also

AA'B'B and AA'CC are Os. §173

. AA' = and II BB' and AA' = and II CC §167

BB' = and II CC. §543

.'. CB' is a O, and BC = B'C. §167

.'. A ABC ^ A A'B'C. §123

.-. ^ = ^ o\ §85

^o' = ^ o". §65
.-. ^ = ^ o".

PQ is II AB and AC. §545

,'.MN\\PQ. §546
Q. B. D.
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556. Cob. Two angles not in the same plane, having their

sides respectively parallel, right side to left side and left side to

right side, are supplementary and their planes are parallel.

Propositiox XIII. Theorem.

557. If two straight lines are intersected hy parallel

planes, the corresponding segments are proportional.

N

\ X- t \M
\ "

\ L-
N \ S

\ „ „ '^J^ \
\ ^ ^ \

EB FD GD

Given AB and CD, intersected by planes MN, PQ, and RS, in

A, E, B, and C, G, D, respectively.

To prove 4E= 9E.
' EB GD

Proof. DrawAD intersectingPQ in 2?: Draw EF, BD, FG, AC.

Then EF II BD and FG II AC. § 549

:^ §340
FD

. ^= 9^" EB GD'
Q.E.D.

DIHEDRAL ANGLES.

558. When two planes intersect, their divergence from the

line of intersection is called a dihedral angle.

559. The two planes are its faces and the line of intersection

is its edge.
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A b

B

^le inter-

e B

560. When a dihedral angle stands alone it may be desig-

nated by the two letters on its edge, as

the dihedral angle AB. When two or

more dihedral angles have a common
edge, each angle is designated by four

letters, as angles C-AB-D, or D-AB-E.

561. The plane angle of a dihedral angle is the angle formed

by two lines, one in each face, drawn q
perpendicular to the edge at the same

point. Thus ^ ohc and i^ def are plane

angles of the dihedral ^ C-AB-D. ^ ^

A plane perpendicular to the edge of a dihedral angle inter-

sects the faces in lines which form the

plane angle of the dihedral.

562. Any two plane angles of a dihe-

dral angle or of equal dihedral angles

^ * ^ ahc = ^ def, their sides being II. § 555

Since the points b and e are taken anywhere on the edge,

the plane angle of a dihedral angle is of the same magnitude at

every point of the edge.

Conversely, two dihedral angles are equal if their plane

angles are equal.

Given the plane ^ BAC = ^ DEF. The edge AH A. the plane

BAC and EK ± plane DEF. Then by

superposition it may be shown that

the dihedral ^ B-HA-C = dihedral

^ D-KE-F. § 524

563. A dihedral angle may be con-

ceived as generated by the revolution

of a plane about a line taken as an

edge. As the magnitude of the plane

angle depends upon the amount of the revolution of one of its

sides, from an initial line, independent of the length of its

K

B E

! i

D
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sides (§ 57), so the magnitude

of a dihedral angle depends upon

the amount of the revolution of

a plane from an initial plane,

and is independent of the ex-

tent of the planes.

564. By passing a plane perpendicular to the edge of the

dihedral angle it is evident that the plane angle is the measure

of the dihedral angle. A dihedral

angle is acute, right, obtuse, straight,

or reflex, according as its plane

angle is acute, right, obtuse, straight,

or reflex.

565. Dihedral angles are adja-

cent, vertical, complementary, or

supplementary just as their plane angles hold these relations.

566. Many of the theorems of lines and angles have analo-

gous theorems with planes and dihedral angles. By forming

right sections of the dihedral angles the proofs of the follow-

ing theorems may be obtained from the corresponding theorems

of plane geometry

:

1. The supplements of equal dihedral angles are equal.

2. The complements of equal dihedral angles are equal.

3. Vertical dihedral angles are equal.

4. If two parallel planes are cut by a third plane, the alternate

interior dihedral angles are equal ; the interior dihedral angles

on the same side of the transverse plane are supplementary

;

the corresponding dihedral angles are equal ; and conversely.

5. Two dihedral angles whose faces are respectively parallel

are either equal or supplementary.

6. Two dihedral angles whose edges are parallel and whose

faces are respectively perpendicular are either equal or supple-

mentary.
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Proposition- XIY. Theorem.
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567. If a straight line is perpendicular to a plane^

every plane containing that line is perpendicular to the

plane.

Given AB ± plane MN, and PQ any plane passing through AB
intersecting MN in CQ.

To prove plane PQ ± plane MN.

Proof. In Jf^draw BD ± CQ. § 113

But AB ± CQ. § 526

.'. ^ ABD is the plane ^ of the dihedral ^ P-QC-N. § 561

And ^ ABD is a rt. ^. § 526

.-. plane PQ ± plane MK § 564
Q.E.D.

568. Cor. A plane perpendicular to the edge of a dihedral

angle is perpendicular to its faces.

Proposition XV. Theorem.

569. If tivo planes are perpendicular to each other,

any straight line in one plane drawn 2^erpendicular to

their intersection is perpendicular to the other.
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Pr
A

D.

M^ C-
^B lE

Given plane PQ ± plane MN, and AB in PQ ± DE, their in.

tersection.

To prove AB ± plane MN.

Proof. In plane MN draw BC± DE. § 113

Then ^ ABC is the plane :^ of the dihedral ^ P-DE-M.
§561

But dihedral ^ P-DE-M is a rt. dihedral ^. Hyp.

.'. ^ -4£C, its measure, is a rt. ^. § 564

Also AB 1. DE. Hyp.

.•. AB, being ± ^O and Z)^ at their intersection, is 1. their

plane. § 535
.• AB _L plane MN. Q. e. d.

570. Cor. 1. If tivo planes are perpendicular to each other,

and a perpendicular to one of them is drawn from any point in

their intersection, it will lie in the other plane. .

571. Cor. 2. If two planes are peipendicular to each other,

and a perpendicidar to one of them is drawn from any point in

the other plane, it icill lie in that plane.

/\V>\^ Proposition XVI. Theorem.

572. If two intersecting planes are each perpendicu-

lar to a third plane, the line of intersection is perpen-

dicular to that 2)lane.
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Given planes PQ and RS, each ± plane MN, and intersecting

in AB.

To prove AB X plane MN.
Proof. At B in plane MN erect a ± to MN.
This ± lies in each of the planes RS and PQ. § 570

.".it coincides with AB, their intersection. § 530

.
•
. AB A. plane MN. q. e d

573. Cob. Conversely, if a plane is perpendicular to each of

two intersecting planes, it is perpendictdar to their line of inter-

section.

Proposition XVII. Theorem.

574. The plane bisecting a dihedral angle is the locus

ofpoints equidistantfrom its faces.
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I. Given the dihedral "^ A-BG-C, the plane BD bisecting this

"i^, any point P in the plane BD, PE, and PF, ±s drawn from P
to the faces AB and BC.

To prove Pis equidistant from the faces AB and BC, or

PE=PF.
Proof. 1. Through PE and PF pass a plane intersecting

AB in EG, BC in GK, and BD in PG.

Because PE ± AB and PF± BC, Cons,

the plane PEF± BG, their intersection. § 573

.-. BG ± EG, PG, and FG. § 535

.-. ^s EGP and PGF are the plane ^s of the dihedral ^s

A-BG-D and D-BG-C. § 561

But the ^ A-BG-D = ^ D-BG-C. Hyp.

.-. ^ EGP= ^ PGF. § 562

.-. rt. A PEG ^ rt. A PEG. § 121

.'. PE= PF. §85

II. Given P' any point without the bisecting plane BD.

To prove P' unequally distant from the faces AB and AC.

Proof. DrawPK± BC, P'E± AB, and from P draw PF±
BC. Pass a plane through P'E and P'K intersecting AB in

EG, BD in PG, and BC in GK.

Then PP + PF>PF. (§86.) Also P'2i^>P'^. §531

.-. PP' + PF> P'K and PF= PE. Proof I

.-. PP + PE> P'K or PE> P'/iT.

.-. any point without the bisecting line is unequally distant

from the faces of the dihedral angle. Q. e. d.

675. Dep. The projection of a point on a plane is the foot of

the perpendicular from the point to the plane.
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The projection of a line on a plane is the locus of the projec-

tion of its points on the plane.

This may be illustrated by a shadow cast by a ruler on a

wall, when the rays of light casting the shadow fall perpen-

dicularly upon the wall.

Proposition XVIII. Problem.

576. Through a straight line not perpendicular to a

given plane to pass a plane perpendicular to that plane.

Given the line AB not ± plane MN.

Required to pass a plane through AB 1. MN.

Ccnstruction. From P, any point in AB, draw PK X plane

MN. § 538
Through PK and AB pass a plane AF.

AF is the plane required.

Proof. The plane AF through AB intersects MN.
.'. plane AF ± plane MN.

Cons.

§567
Q. E. F.

677. Cor. 1. Tlirough a straight line not perpendicular to a

given plane only one plane can he passed perpendicular to that

plane.

578. Cor. 2. The projection of a straight line, not perpen-

dicular to a plane, upon that plane, is a straight line.
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579. Cor. 3. The projection of a straight line, perpendicular

to a plane, is a point.

580. Def. The plane containing all the perpendiculars

drawn from a straight line to a plane is called the projecting

plane.

Proposition XIX. Theorem.

581. The acute angle ivhich a line makes with its pro-

jection on a plane is the least angle which it makes with

any line of that plane.

Proof.

Given BC the projection of the line AB on the plane MN, and

BD any other line, drawn in plane MN, through B.

To prom -^ ABC< ^ ABD.

Take BD=BC, draw AD and AC.

lu the As ABC and ABD,

AB = AB.

BD = BC.

AC <:AD.

.: :^ ABC<^ ABD.

But

Iden.

Cons.

§531

§132
Q. B. D.

582. Def. The inclination of a line to a plane is the acute

angle which the line makes with its projection on that plane.
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Proposition XX. Problem,

583. To draw a common perpendicular to tioo lines

not in the same plane.

A K B

AT

\ \

'^- A
\ E XP A
\ ^^D \
m\ X

Given two lines AB and CD not in the same plane.

Required to draw a common _L to AB and CD.

Construction. Through any point P of CD draw EF II AB.

Through EF and CD pass a plane MN.
Then MNisWAB. §544

Through AB pass a plane AH 1. MN (§ 576), intersecting

MN in GH. Then GH II ^i^ (§ 545), and must intersect CD
in some point L.

At L in the plane AH draw i/iTX G^. § 113

Then LK is the ± required.

Proof. Since G^IT II AB, and iif ± GH (cons.), i^ X ^5.

§ 139

But LKl. MN. § 569

.-. LKl. CD. § 526
Q. E. F.

584. Cor. 1. Only one common perpendicular can he drawn

to two lines not in the same plane.

585. Cor. 2. The common perpendicular is the shortest path

between two lines not in the same plane.
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POLYHEDRAL ANGLES.

586. When three or more planes meet at a common point the

angle thus formed is called a polyhedral angle.

y
V

The common point is the vertex of the angle, the intersections

of the planes are the edges, the portions of the planes between

the edges are the faces, and the plane angles formed by the

edges at the vertex are the face angles.

Thus in the diagram, V is the vertex, VA, VB, VC, etc., are

the edges, VAB, VBC, etc., are the faces, and the angles AVB,
BVC, etc., are face angles.

587. A polyhedral angle is designated by the letter at the ver-

tex, as the polyhedral angle F; or by the letter at the vertex and

a letter at a point on each edge, as the polyhedral angle V-ABC.

588. A polyhedral angle whose base is a convex polygon is

called a convex polyhedral angle.

589. A polyhedral angle of three faces is called a trihedral

angle.



BOOK VI. SOLID GEOMETRY. 27

590. Two polyhedral angles are congruent when their face

angles and their dihedral angles are equal, each to each, and are

arranged in the same order, for they may be made to coincide.

591. Two polyhedral angles are S3nnmetrical when their face

angles and their dihedral angles are equal each to each but ar-

ranged in a reverse order.

V

Two symmetrical polyhedral angles cannot, generally, be

made to coincide ; hence to show their equivalence, an indirect

method is necessary.

592. Two polyhedral angles are vertical if the edges of one

are the prolongations through the vertex of the edges of the

other.

Proposition XXI. Theorem.

593. The sum of any two face angles of a trihedral

angle is greater than the third face angle.
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Given the trihedral '^ V, with ^ AVC > :^ AVB or ^ BVC.

To prove ^ AVB + ^BVC>^AVa
Proof. In ^ AVC draw VD, making ^AVD = :^AVB.

Through D, any point in VD, draw AC.

Take F5 = VD, and draw ^B and BC.

Then A^F^^A^FD. §91

.'.AB=AD. §85

In A ^BC, AB + BC> AC. § 86

But AB= AD.

By subtraction, BC > (AC-AD) or J5C > DC.

In As 5FC and DVC, VC is common,

VB = VD, Cons.

and BC > DC. Just proved

.•.:^BVC>^DVC. §132

But ^ ^ FB = ^ ^ FD. Cons.

Adding, ^ ^FB + ^ £F(7 > ^ ^FD + ^ ZJFC.

.-. ^ y1FB+ ^ 5FC' > ^ ylFC.

Proposition XXII. Theorem.

Q. B. D.

594. 71ie sum of the face angles of any convex pohj'

hedral angle is less than tvjo straight angles.
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Given the polyhedral ^ V.

To j)rove the sum of the ^s at V less than 2 st. ^s.

Proof. Pass a plane cutting the polyhedral ^ in the polygon

ABODE.
From 0, any point in this polygon, draw OA, OB, 00, OD, OE.

The number of ^s having a common vertex is the same as

the number of 2^s having a common vertex V.

.'. the sum of all the ^s in the As having a vertex at =
the sum of all the ^s of the As having a vertex at V. § 155

But ^ VBA + ^ VBO > :^ ABO,

and :f VOB+ ^ VOD > ^ BOD, etc. § 593

.'. the sum of the base ^s of the As having a common vertex

at Fis > the sum of the base ^s of the As having a common
vertex at 0.

.'. the sum of the ^s at the vertex at F< the sum of the ^s
at the vertex 0.

But the sum of the angles at the vertex = 2 st. ^s. § 63

.'. the sum of the l^s at V<2 st. ^s. Q. e. d.

Proposition XXIII. Theorem.

595. If two trihedral angles have the three face angles

of one equal to the three face angles of the other, they

are either congruent or symmetrical.
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Given the trihedral ^s V and V, having the face ^s AVB, AVC,

and BVC = the face ^s A'V'B', A'V'C, and B'V'C, respectively:

To prove the corresponding dihedral ^s of V and V are =,
and that the trihedral ^s V and V are congruent or symmetrical.

Proof. On the edges of V and V take VA, VB, VC, V'A',

V'B', V'C all equal, and draw AB, BC, AC, A'B', B'C, A'C.

Then As VAB, VBC, VAC ^ As V'A'B', V'B'C, V'A'C. § 91

.-. A ABC^ A A'B'C. § 123

In the edges VC, V'C, take VD= V'D' and in the faces

VBC, VAC, and V'B'C, V'A'C, draw DE, DF, and D'E',

D'F' X the edges VC and V'C respectively, meeting BC, AC,
B'C, and A'C in E, F, E', and F". Draw EF, E'F'.

Then A CED ^ A C'E'D'. § 95

..CE=CE',
and DE = D'E'.

Likewise CF= CF',

and DF= D'F'.

.'.A CFE ^ A CF'E'. § 91

..FE = F'E'. §85
.-. A FED ^ A F'E'D'. § 123

.•.:^FED = -^ F'E'D'. § 85

.-. dihedral ^ VC= dihedral ^ V'C.

In like manner it can be proved that dihedral ^ VB = dihe-

dral ^ V'B' and dihedral ^ VA = dihedral ^ VA'. § 562

.'. the trihedrals V and V' are congruent or symmetrical

according as the equal face angles are arranged in the same or

reverse order. q.e. d.

596. Cor. If two trihedral angles have three face angles oftlie

one equal to the three face angles of the other, then the dihedral

angles of the one are respectively equal to the dihedral angles of the

other.
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polyhedrons.

597. A polyhedron is a solid TDounded by planes. These

planes are the faces; the intersections of the faces, the edges,

and the intersections of the edges, the vertices of the polyhe-

dron.

A line joining any two vertices, not in the same face, is a

diagonal.

A polyhedron cannot have less than four faces.

598. A section of a polyhedron is the figure formed by its

intersection with a plane.

599. A polyhedron is convex when every section of it, formed

by the intersection of a plane with its faces, is a convex polygon.

All polyhedrons considered in this book are convex.

600. A polyhedron of four faces is called a tetrahedron ; of

six faces, a hexahedron ; of eight faces, an octahedron ; of twelve

faces, a dodecahedron ; of twenty faces, an icosahedron.

Tetrahedron. Hexahedron. Octahedron.

31
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Dodecahedron. Icosahedron.

Prism.

PRISMS AND PARALLELOPIPEDS.

601

.

A prism is a polyhedron, of which two faces arecongruent

polygons in parallel planes, and the other faces are parallelo-

grams. The congruent polygons are the bases

and the parallelograms are the lateral faces of

the prism. The intersections of the lateral faces

are the lateral edges. The sum of the areas

of the lateral faces is the lateral area. The per-

pendicular distance between its bases is the

altitude. The lateral edges of a prism are all

equal, because parallel lines included between

parallel planes are equal.

602. A prism whose lateral edges are "perpendicular to its

bases is a right prism.

Hence, the lateral edge of a right prism is equal to its alti-

tude.

603. A right prism whose bases are

regular polygons is a regular prism.

604. A prism whose lateral edges are

not perpendicular to its bases is an

oblique prism.

605. A prism is triangular, quadran-

gular, etc., according as the bases are

triangles, quadrilaterals, etc.
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606. The section of a prism made by a plane perpendicular

to its lateral edges is a right section.

607. A truncated prism is that part of a prism included

between a base and a section made by a plane

oblique to the base.

608. A parallelepiped is a prism whose bases are

parallelograms. Hence all the faces of a paral-

lelopiped are parallelograms.

609. A right parallelepiped is a parallelopiped

whose lateral edges are perpendicular to its

bases.

610. A rectangular parallelopiped is a right parallelopiped

whose bases are rectangles.

Hence all its faces are rectangles.

611. A cube is a parallelopiped whose faces are squares.

Hence all of its edges are equal.

612. The volume of any solid is the ratio of the solid to

another solid taken arbitrarily as the unit of

volume. Because of its convenience a cube

whose edge is a linear unit is adopted as the

unit of volume.

613. Equal solids are solids whose volumes

are equal.
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Proposition I. Theorem.

614. Sections of a prism made hy parallel planes

cutting all the lateral edges are congruent polygons.

Given the prism PM cut by II planes making the sections AD
and A'D'.

To prove section AD ^ section A'D'.

Proof. AB, BC, CD, etc. II A'B', B'C, CD', etc., respec-

tively. § 549

.-. AB, BC, CD, etc. = A'B', B'C, CD', etc., respectively.

§169

Also ^s ABC, BCD, etc. = ^s A'B'C, B'C'D', etc., respec-

tively. § 655

.-. polygon AD ^ polygon A'D'.

(for the polygons have their sides and ^s equal each to each, and are

therefore congruent)

.

Q. B. D.

615. CoR. Any section of a prism made by a plane parallel

to the base is equal to the base; also all right sections of a prism

are equal.
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Proposition II. Theorem.

616. The lateral area of a prism is equal to the

product of the perimeter of a right section by a lateral

edge.

Given the prism PM. Denote its lateral area by s, a lateral edge

by e, and the perimeter of a right section by p.

To prove s=p xe.

Proof. PF=KG = LH, etc. =e. § 601

Also AB± KG, BC±LH, etc. §606

.-. areaO FK= AB x PF, =ABxe,

area CJ GL = BCxe,

and areaO ^.V= CD x e, etc. § 420

But the sum of these Os equals the lateral area a.

.-. s ={AB + BC+ CD + etc.)x e.

And the sum of AB i-BC-\-CD + etc. = p.

.-. s=p X e. Q.E.D.

617. Cor. The lateral area of a right prism equals the prod-

uct of the perimeter of the base by the altitude.
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Proposition III. Theorem.

618. Tivo prisms are congruent when the three faces,

including a trihedral angle of the one, are congruent, re-

spectively, to the three faces, including a trihedral angle

of the other, and are similarly placed.

Given the prisms, AK and A'K', having the faces AD, AL,

AG = respectively to faces A'D', AX', A'G', and similarly placed.

To prove AK^A'K'.

Proof. The face '^s BAE, EAF, BAF are equal respectively

to the face ^s B'A'E', E'A'F', B'A'F. Hyp.

.-. trihedral ^ ^ = trihedral ^ ^'. § 595

Apply the prism FD' to the prism FD so that trihedral

"^ A' will fall on its congruent trihedral ^ A, and the faces of

trihedral ^ A' shall coincide i^ith the congruent faces of tri-

hedral ^ A, and the points C, D shall fall on the points C", D'.

Since the points L\ F, G' coincide with L, F, G, the planes

F'K' and FK coincide (§ 523), because the lateral edges of

the prism are II.

.-.the edges C'ff, D'K' coincide with CH, DK, and the

points i?', iT' coincide with IT, /iT. .'. AK^A'K'. q.e.d.
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619. Cor. 1. Two truncated prisms are congruent when the

three faces including a trihedral angle of the one are congruent to

the three faces including a trihedral angle of the other.

620. Cor. 2. Two prisms with equivalent bases and equal

altitudes are equal.

Proposition IV. Theorem.

621. An oblique prism is equivalent to a right prism

whose hase is a right section of the oblique j^rism mid

whose altitude is a lateral edge of the oblique prism.

B G

Given the oblique prism PM with the right section A'M' and

lateral edge PA ; also the right prism P'M' with base A'M' and

lateral edges each equal to PA.

To prove PM=PW.
Proof. PA' = PA.
Subtracting PA' from each of these equals,

P'P = A'A.

R'R = B'B.

PR = AB and P'R' = A'B'.

2(:s of PR' = ^s of AB>.
.-. face PR' ^ face AB'.

face RS' ^ face BC

Likewise

Also

And

Hyp.

§167
§151

§176
Similarly,
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And base PN= AM. § 601

.-. truncated prism PN' = truncated prism AM', § 619

Hence PM-FN'= PM- AM',
or PM=P'M'. Q.E.D.

Proposition Y. Theorem.

622. The opposite lateral faces of a parallelopiped

are parallel and congruent.

H_

E

/rr~

X

a

Given parallelepiped AG.

To p)'ove

n AFWand ^O DG, and nAH Wand^O BG,

Proof. Because AC is a O, § 608

.-. AB II and = DG, § 167

But AH" is a O, §608

.'.AE\\Q.udi=DH. §167

.-. ^ EAB = ^ HBGy
and plane AF II plane DG, § 656

.-.OAF^ODG. §176

Similarly, O AH II and ^O ^G'. Q. e. d.

623. Cor. Any two opposite faces of a parallelopiped may be

taken as bases.
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Pboposition VI. Theorem.

624. The plane passed through two diagonally oppo-

site edges of a parallelopiped divides it into two

equivalent triangular prisms.

Given the plane QSBC passing through the diagonally opposite

edges QC and SB of the parallelopiped PD.

To prove PD is divided by the plane into two equivalent tri-

angular prisms, ACB-S and BCD-B.

Proof. Let EFGH be a right section of PD intersected by

the plane QSB C in the diagonal IIF.

Then EF II HG and EH II FG.

.: EFGH is a O.

.-. AEFH^AHFG.

§549

§164

§166

The triangular prism ACB-S = a right prism whose base

is EHF and altitude AP, and the prism BCD-B = a right

prism whose base is FHG and altitude AP.
But these right prisms are equal, having equal bases and

equal altitudes. § 621

.-. ACB-P= BCD-B. Q. E. D.
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Pboposition VII. Theorem.

625. Tiuo rectangular parallelopipeds having con

gruent bases are to each other as their altitudes.

FT" " \
\

^N

D_

Given two rectangular parallelopipeds P and Q having congruent

bases and the altitudes AB and CD.

To prove
Q CD'

Case I. When AB and CD are commensurable.

Proof. Let AKhe the common measure of AB and CD.
Suppose it is contained m times in AB and n times in CD.

Then AB^m
CD n

At the points of division of AB and CD pass planes II to

the bases.

These planes divide P into m and Q into n equal parallelo-

pipeds. § 620

"Q n ^ Q CD'
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Case II. When AB and CD are incommensurable.

Bwr r, V

K

Proof. Divide AB into any number of equal parts and

apply one of these parts, as AK, to CD as a unit of measure.

Since AB and CD are incommensurable, there will be a re-

mainder ED less than one of the parts.

Through E pass a plane II the bases of Q and let Q' be the

parallelepiped between this plane and the lower base of Q.

Then q^^CE
P AB

Case I

If the unit of measure for AB be continually decreased, the

remainder ED, which is always less than the unit of measure,

may be made smaller than any assignable quantity, but not

equal to zero, since AB and CD are incommensurable.

.*. CE will approach CD as a limit.

.'. will approach as a limit.
AB ^^ AB

0'
.'. -^ will approach ^ as a limit.

§275

§331
Q. £ D

p
_CD
~AB

p
Q

AB
CD
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626. Def. The three edges of a rectangular parallelepiped

meeting at a common vertex are called its dimensions.

627. Cor. Two rectangular parallelopipeds which have two

dimensions in cominon are to each other as their third dimension.

Pboposition VIII. Theorem.

628. Two rectangular parallelopipeds having equal

altitudes are to each other as their bases.

/'/ /^ / "

a

AV
oJ

a

c

Given two rectangular parallelopipeds P and Q, having a com-

mon altitude a and the dimensions of their bases b, c, and b', c',

respectively.

Q
To prove

b'Xc'

Proof. Construct a third rectangular parallelepiped M, hav-

ing the same altitude a and the dimensions of the base c and b'.

Then Q and M have two dimensions, a and b' in common.

.-.-= -. §627
Q c<

Likewise P and R have two dimensions a and c in common.

. P _
" B~

b

Multiplying the equations,

P b-xc

Q b'x&

627

Q.B.D.
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629. CoK. Two rectangular parallelopipeds having one di-

mension in common are to each other as the products of the other

two dimensions.

Proposition IX. Theorem.

630. Tivo rectangular parallelopipeds are to each

other as the products of their three dimensions.

/ / / / x^//-/
p a

, y R a

h

/c
b

yc'

Given the two rectangular parallelopipeds P and Q having the

dimensions a, b, c and a', b', c', respectively.

To prove
P_ axbxc
Q~a' X b' xc''

Proof. Construct a third rectangular DarallelopipedR having

the dimensions a, b, and c'.

Then

id

B
Q

p_
R

axb
a'x6'

c

''c''

Multiplying the equations,

P axb xc

§ 629

§ 627

Q a'xb'xc' Q.E.D.
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Proposition X. Theobem.

631. The volume of a rectangular parallelopiped is

equal to the product of its three dimensions.

Given any rectangular parallelopiped P, with dimensions a, b,

c, and the cube U, the unit of volume, whose edge is the linear

unit.

To prove P=a xbx c

Proof.
P axbxc
U 1x1x1 § 630

p .

Because TJ is the unit of volume, — is the numerical meas-

ure of the volume P.
^

§ 612

the volume of P= a x 6 X c. Q.E. D.

632. Cor. 1. TJie volume of a cube is equal to the cube of

its edge.

633. CoR. 2. Tlie volume of a rectangular parallelopiped is

equal to the product of its base by its altitude.

NoTK. By the statement of Proposition X is meant that the number
of unit cubes in the volume of any rectangular parallelopiped is equal to

the product of the numerical measures of its length, breadth, and

thickness,
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Proposition XI. Theorem.
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634. The volume of any parallelopiped is equal to

the product of its base hy its altitude.

Given the oblique parallelepiped P, with base B and altitude H.

To prove volume P=Bx H.

Proof. Produce the edge AO and the edges II it. On AO
produced take EF = AC and through E and F pass planes JL

the produced edges, forming the oblique parallelopiped Q whose

base B' is a rectangle.

Produce the edge FG and the edges II it. Take KL = FG
and through L and K pass planes _L these edges, forming

the rectangular parallelopiped M.

Then P=Qa,ndQ = R § 621

Also B = B' SindB' = B'

.

§421

Because the planes of the upper and lower bases are 11 the

three parallelopipeds have a common altitude H.

But volume R = B" x H. § 633

.-. volume Q = B' X H,

and volume P=B x H. q.e.d.
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Pboposition XII. Theorem.

635. TJie volume of a triangular prism is equal to

the product of its hase and altitude.

Given the triangular prism ADC-M having its base B and

altitude H.

To prove volume ADC-M= BxH.
Proof. Upon DA, DC, DM as edges construct the paral-

lelopiped ADCR-M.
Then volume ADC-M= | volume of DS. § 624

But volume DS = ADCR x H= 2BxII. § 634

.-. volume ADC-M= ^x2BxH=BxH. q.e.d.

636. Cor. 1. TJie volume of any prism is equal to the prod-

uct of its hase by its altitude.

Any prism may be divided by diagonal

planes into triangular prisms. These prisms

have a common altitude. The volume of

each is equal to the base multiplied by the

common altitude. Hence the sum of the vol-

umes of the triangular prisms is equal to the

sum of the bases multiplied by the common
altitude H. The sum of the triangular prisms

is equal to the given prism and the sum of the

bases is equal to B, . y— BxH
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637. Cor. 2. Prisms that have equivalent bases and equal

altitudes are equal; jjrisms are to each other as the product of

their bases by their altitudes; prisms having equivalent bases are to

each other as their altitudes; prisms having equal altitudes are to

each other as their bases.

THE PYRAMID.

638. A pyramid is a polyhedron, one of whose faces, called

the base, is a polygon, and the lateral faces are

triangles having a common vertex.

The lateral edges are the intersections of the

lateral faces.

The altitude of a pyramid is the perpendicu-

lar from the vertex to the plane of the base.

The lateral area is the sum of the areas of the

lateral faces.

639. When the base is a regular polygon, the center of

which coincides with the foot of the altitude, the pyramid

is regular and its altitude is its axis.

640. A pyramid is triangular, quadrangular, pentagonal,

etc., as its base is a triangle, quadrilateral, pentagon, etc.

641. A triangular pyramid is also called a tetrahedron be-

cause it has four faces.

642. The slant height of a regular pyra-

mid is the altitude of any one of its lateral

faces.

643. A truncated pyramid is the part of a

pyramid contained between the base and a

section made by a plane cutting all its lat-

eral edges. If the plane of the section is

parallel to the base, the part between this section and the base

is called a frustum of a pyramid.
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644. The altitude of a frustum of a pyramid is the perpen-

dicular between the planes of its bases. The lateral faces of

a frustum of a regular pyramid are congruent isosceles trape-

zoids and its slant height is the altitude of any lateral face.

645. The lateral edges of a regular pyramid are equal, and

the lateral faces of a regular pyramid are equal.

Pbopositiox XIII. Theorem.

646. The lateral area of a regular 'pyramid is equal

to half the product of the slant height by the perimeter

of the base.

Given A-BCDEF, a regular pyramid, L its slant height, P the

perimeter of its base, and S its lateral area.

To prove S = ^ L X P.

Proof. The lateral faces ABC, ACD, etc., are equal isoa-

celes A. § 645

The common slant height L is the altitude of each A.

.'. the area of each lateral face is = ^L x its base. § 425

.'. the sum of all the lateral faces =^ L X sum of bases.

But the sum of the bases = P.

.•.S = hLxP. Q. E. D.
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647. Cob. The lateral area of the frus- ^^-^>>«.^

turn of a regular pyramid is equal to half the AT
\ y\

product of the slant height multiplied by the / /
] \ \ \

sum of the perimeters of its bases. If P L-h']"" V"""-)

is the perimeter of its lower base and p is \ / \ /
the perimeter of its upper base, then S = ^ ^ ^
(P+P)L.

Ex. 559. Find the locus of si point in space equidistant from two

given intersecting lines.

Ex. 560. The planes bisecting the dihedral angles of a trihedral angle

intersect in the same straight line.

Ex. 561. The lateral faces of a right prism are rectangles.

Ex. 562. The diagonals of a parallelopiped bisect one another.

Ex. 663. The diagonals of a rectangular parallelopiped are equal.

Ex. 564. The square of a diagonal of a rectangular parallelopiped

is equal to the sum of the squares of its three dimensions.

Ex. 565. The sum of the squares of the diagonals of a parallelopiped

is equal to the sum of the squares of its twelve edges.

Ex. 566. Two rectangular parallelopipeds with equal altitudes have

the dimensions of their bases 5 and 12, and 9 and 20, respectively. What
is the ratio of their volumes ?

Ex. 567. Find the volume and the area of the surface of a cube whose

edge is 12 ft.

Ex. 568. Find the edge of a cube equal in volume to a rectangular

parallelopiped whose dimensions are 6 ft., 8 ft., and 36 ft., respectively.

Proposition XIV. Theorem.

648. If a pyramid is cut hy a plane parallel to the

hose,

I. The edges and altitude are dividedproportionally.

II. The section is a polygon similar to the base.
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L y
/

i 7m-jlMt /"
/

\/'<7 >' 1
/ ^ (^ /

Given the P3rramid V-ABCDE cut by the plane QR II
the base

and intersecting the lateral edges in a, b, c, d, e and the altitude in p.

Toprove I. Z« =Z^=J^= ... ^Yp..
VA VB VC VP

II. The section abode ~ base ABODE.
Proof. I. Through vertex V pass a plane II QR.
Then the edges VA, VB, VC, etc., and the altitude VP, being

intersected by parallel planes, are cut proportionally. § 657

"VA VB VC '" VP'

II. Since ah II AB, he II BC, cd II CD, etc. (§ 549), and ^ abc

= ^ ABC, '^hcd = :^ BCD, etc. (§ 555), then the two polygons

abcde and ABCDE are mutually equiangular.

Since^=i^, ^=n.,,. ^=_^. §343AB VB' BC VB AB BG
Similarly, •—- = —— , etc.•^' BO CD'

Hence the homologous sides of the polygons are propor-

tional.

.-. section ahcde ~ base ABCDE. § 360
Q. E. D.

Ex. 569. How many bricks, each 8 in. Jong, 4 in. wide, and 2 in.

thick, are equal in volume to a wall 16 ft, long, 4 ft. wide, and 12 ft.

high?
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649. Cor. 1. Parallel sections of a pyramid are to each other

as the squares of their distances from the veiiex.

Tor

But

abode _ ab

ab _Vp= --S- or
ab Vp

AB VP VP

§436

§338

dbcde Vp_,
'

' ABODE vP

650. Cor. 2. If two pyramids having equal altitudes are cut

hy planes imrallel to their bases, and at equal distances from their

vertices, the sections have the same ratio as their bases.

For

But

abode -jy^also--^ so

ABODE vP" ^^^ so"

VP=SosindVP=SO.

dbcde abode ABODE

§649

Hyp.

§330

651. Cor. 3. If two pyramids have equal altitudes and equiv-

alent bases, sections made by planes parallel to the bases, and at

equal distances from the vertices, are equivalent.
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Proposition XV. Theorem.

652. Two triangular pyramids having equal altir

tildes and equivalent bases are equivalent.

Given two triangular pyramids P-ABC and P'-A'B'C', with

equivalent bases, ABC and A'B'C', and the same altitude H.

To prove P-ABC = P-A'B'C.

Proof. So place the pyramids that their bases shall be in

the same plane.

Divide the altitude H into n equal parts, and through the

points of division pass planes II to the bases.

The corresponding sections of the pyramids will be equiv-

alent. § 651

Upon these sections as upper bases inscribe a series of

prisms, a, h, c, etc., a', h', c', etc., in each pyramid.

.-. a = a', b = b', and each prism in P = corresponding prism

in I" and a -{- b + c, etc., = a' + &' + c', etc.

Let the number of equal parts into which H is divided be

increased indefinitely, then the sum a + b + c + etc., will ap-

proach the pyramid P as a limit, and the sum a'-f-fi'-f-c'-}- etc.,

will approach P as a limit.

But a -)- 6 -f c + etc., = a' + 6' + c'-f- etc., always.

.-. P= P'. § 275
Q. E. D.

653. CoR. Any two pyramids having equal altitudes and

equal bases are equivalent.
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Proposition XVI. Theorem.

654. The volume of a triangular pyrartiid is equal to

one third the product of its base by its altitude.

Given V the volume, B the base, and H the altitude of the tri-

angular pyramid P-ACD.

To prove F=|-BX-ff.

Proof. On the base JB construct the prism F-ACD with its

lateral edges II and = PC.

Pass a plane through P and FD.
Then the prism F~ACD is composed of three triangular

pyramids P-ACD, P-FAD, and P-F9^D. c~

But pyramid P-ACD = pyramid D-PF0,

and

§653

Iden.

§166

§653

D-PF(ff = P-FgD.

Since A AFD ^ A DF^,

.'. P-F0D = P-FAD.

.'. P-ACD = P-F^D = P-FAD.

.'. the prism is composed of three equivalent pyramids.

But the volume of the prism = B x IL § 636

.-. the volume of a triangular pyramid = ^ B x H. fi.E.i>.

655. Cor. 1. The volume of any pyramid is equal to one

third the product of its base by its altitude.
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For, hy drawing diagonals from one vertex of the base of any

pyramid the base can be divided into triangles. By passing

planes through the vertex of the pyramid and these diagonals the

pyramid can be divided into triangidar pyramids.

656. Cor. 2. The volumes of two pyramids are to each other

as the prodxict of their bases and altitudes ; pijramids having

equivalent bases and equal altitudes are equivalent.

657. Cor. 3. Pyramids having equivalent bases are to each

other as their altitudes; pyramids having equal altitudes are to

each other as their bases.

658. Note. The volume of any polyhedron may be determined by

dividing the polyhedron into pyramids, finding the volume of each

pyramid and taking their sum.

Proposition XVII. Theorem.

659. A frustum of a triangular pyramid is equivalent

to the sum of three pyraynids ichose common altitude is

the altitude of the frustum, and whose bases are the

upper base, the lower base of the frustum, and a mean

proportional betiveen them.

Given the frustum of any triangular pyramid, F-ADC, with

lower base B, upper base B', and altitude H.
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To prove, F—ADC= three pyramids whose altitude is H and

whose bases are B, B', and a mean proportional between B and B'.

Proof, Divide the frustum, by passing planes through E
and FC, E and AO, into three triangular pyramids: E-ADC,
C-EFG, and E-AFG.
Denoting these pyramids by P, Q, and H, respectively.

(P and Q have a common altitude, H.)

Then P=^Hx B, and Q^^Hx B'. §654

It remains to prove that E-AFC or J? = a pyramid whose

altitude is H and whose base is a mean proportional between

B and B' or V-B x B'.

Because P and R have a common vertex C, and their bases

in the same plane AFED,

.P^AAED^
§657

R AAEF

But As AED and AEF have a common altitude.

. AAED^AD ^g
' ' A AEF EF

• L= 4R
' ' R EF'

Likewise pyramids Q and R may be considered as having a

common vertex E, with their bases in the same plane AFOC.

. E^AAFC
" Q A FGC'

AAFC^AC
AFGC FG'

R^AC
•'•

Q FG'

and
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A ADC ~ A FGE,

AD^AO
EF OF § 363

.-. B^= (^ HxB ') X (i // X B') = (I Hf xBx B'.

.:E = ^ HVB X B', or E-AFC= pyramid with altitude H
and baseV5 x B'.

. : frustum F-ABC=\ H (B + B' + VB x B'). q. e. d.

660. Formula for volume of frustum of a triangular pyra-

mid is

V==iH(B + B'+ VjB X B').

Proposition XVIII. Theorem.

661. A frustum of any pyramid is equivalent to the

sum of three pyramids ivhose common altitude is the

altitude of the frustum, and lohosc bases are the upper

base, the lower base of the frustum, and a mean propor-

tional between them.

S T
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Given the frustum of any pyramid Ad, with, its upper base B',

its lower base B, its altitude H, and its volume V.

Topr(yoe V= ^H{B + B' +^B x B').

Proof. Produce the lateral edges of the frustum Ad to meet

inS.

Construct a triangular pyramid T-FKG ^v\.i\v altitude =^
and base = ABODE and lying in the same plane.

Produce the plane of abode to cut the pyramid T-FKG
in fhg.

.•.fkg = abode. § 651

But S-ACDE= T-FKG (l), §653

and S-abcde = T-fhg (2).

Subtracting (2) from (1), frustum aD — frustum fG.

But \o\umG fG = \H{B + B' + ^BxB'). §660

.•.V=\H{B+ B' + ^BxB'). Q.E.D.

Ex. 570. The diagonal of a cube is to its edge as V3 is to 1.

Ex. 571. Find the diagonal of tlie rectangular parallelepiped whose

edges are 8 ft., 9 ft., and 12 ft., respectively.

Ex. 572. Find the area of the entire surface of a triangular pyramid

each of whose edges is 10 ft.

Ex. 573. Find the volume of a regular triangular pyramid each of

whose edges is 8 ft.

Ex. 574. The volume of a truncated parallelopiped is equal to the

area of a right section multiplied by one-fourth the sura of the lateral

edges.

Ex. 575. Find the volume of a right prism, if its altitude is 15 ft., and

the sides of its base are, respectively, 10, 17, and 21 ft.

Ex. 576. A regular pyramid, whose base is an equilateral triangle,

each side of which is 12 ft., has an altitude of 20 ft. Find its volume.
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Proposition XIX. Theorem.

662. A truncated triangular prism is equivalent to

the sum of three pyramids ivhose commo7i base is the

base of the prism, and ivhose vertices are the vertices

of the inclined section.

D

Given the truncated triangular prism P, with base ABC and in-

clined section D£F.

To prove P= pyramid F-ABC + pyramid D-ABC + pyrcv-

mid E-ABC.

Proof. Let the planes determined by DE and C, and by

AC and E divide the truncated prism into three pyramids,

E-FDC, E-DAC, and E-ABC.
1. E-FDC = B-ACF, for their bases DEC and AFC are

equal (§ 430) and their altitudes are equal because their ver-

tices E and B lie in the edge of the prism which is II to the

face in which the bases lie.

But B-ACF is identical with F-ABC.

.'. E-FDC=F-ABC.
2. E-DAC= B-DAC, having same base and equal altitudes

because their vertices E and B lie in the edge of the prism II

the face opposite.

^nt B-DAC= D-ABC, lO^en. .: E-DAC= D-ABC.
3. E-ABC has the required base and vertex.

.
•
. P= F-ABC+ D-ABC+ E-ABC. q. e. d.
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663. Cor. 1. The volume of a right truncated triangular

prism is equal to the jyroduct of its base by one third the sum of

its lateral edges.

664. Cor. 2. The volume of any truncated triangular prism

is equal to the product of its right section by one third the sum of

its lateral edges.

Proposition XX. Theorem

665. Tetrahedrons having a trihedral angle of one

equal to a trihedral angle of the other are to each other

as the products of the edges about the equal trihedral

angles. f

A D

Given two tetrahedrons T-ABC and T'-DEF, with equal trihedral

i^s at T and T' and volumes V and V'', respectively.

rjy V TAxTBxTG
To prove -—=—- —

—

.^ V TDxTCxTD
Proof. Apply the tetrahedron T-ABG to T-DEF so that

the equal trihedral ^s T and T coincide. From C" and F
drop ±s upon the plane TED.
The three points T, K, and G lie in a straight line, § 578

(the projection of a straight line upon a plane is a straight line).

Then with TDE and TA'B' as the bases and FG and CK
the altitudes of the tetrahedrons,

V^ ^ TA'B' X G'K^ TA'B' OK -
g^gV TDExFG TDE FG'
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T> 4. . T'A'B' VA'x TB' . .^.
But -— = —.—

.

§ 434
TDE TD X TE

In the right similar As T'C'IC and TFG,

CK^ TO
FG TF

'

§374

V ^ TA X T'B' ^ TO ^ TAxTBxTC
' ' V TDxTE TF TBxTExTF' q.e.d.

666. Polyhedrons are similar if they have the same number

of faces, similar each to each, and similarly placed, and have

their corresponding polyhedral ^s equal.

Ex. 577. The altitude of the fnistruni of a given pyramid is 18 ft.

The lower base is a triangle whose sides are, respectively, 8 ft., 26 ft.,

and 30 ft. The shortest side of the upper base is 4 ft. Eind the volume

of the finistrum.

Ex. 578. The diagonal of one of the faces of a cube is d. Find the

volume of the cube.

Ex. 579. The diagonal of a cube is D. Find the volume of the cube.

Ex. 580. Find the lateral area of a regular pyramid if it3 base is a

square 16 ft. to the side, and the slant height 28 ft.

Ex. 581. The specific gravity of mercury being 14, and water weigh-

ing 62^ lb. per cubic foot, what is the edge of a cubical box that would

hold 40 lb. of mercury ?

Ex. 582. Find the area of the surface of a regular icosahedron, whose
edge is 2 in.

Ex. 583. In a regular pyramid with square base the lateral edge is

41 ft. and the slant height is 40 ft. Find the volume of the pyramid.
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PROPOSiTiojf XXI. Theorem.

667, The homologous edges of similar polyhedrons

are proportional.

Given the similar polyhedrons P aiid P', with edges AB and CH
homologous to A'B' and C'H'.

To prove -——
- = -——

,.^
A'B' CH'

Proof. Because the face ABGF ~ A'B'G'F'
;

. AB ^ BG
A'B' B'G''

and becaiase face BCHG ~ B'C'HG',

. BG ^ CH
B'G' CH'

. AB ^ CH
' ' A'B' CH'

§ 666

§363

§ 666

§363

Q.B.D.

Ex. 584. The base of a regular pyramid is an equilateral triangle

•whose side is 6 ft. The altitude of the pyramid is 20 ft. Find the volume.
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668. Cor. 1. Any two homologous lines of similar polyhe-

drons are proportiojial to any other two homologous lines of the

polyhedrons.

669. Cor. 2. Any two homologous faces of similar polyhe-

drons are proportional to the squares of any two homologous lines

of the polyhedrons, and the total surface oftwo similarpolyhedrons

are proportional to the squares of any two homologous lines of the

polyhedrons.

Proposition XXII. Theorem.

670. Similar tetrahedrons are to each other as the

cubes of their homologous edges.

B B'

Given two similar tetrahedrons T and T', whose volumes are V
and V, and whose altitudes are H and H', respectively.

V A&
To prove r A'B"

Proof.
V base ABC X
V' bsiseA'B'C'x

H
W § 656

But
base ABC AB^
base A'B'C a'B'^

§ 669

And H AB
H' A'B'

§ 668

. V _ AB'xAB
V A'B'' X A'B'

Alf

A'B''

Q. E. D.
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Proposition XXIII. Theorem.
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671. Similar polyhedrons may he divided into the

same number of tetrahedrons similar each to each and

similarly placed.

B' C B G

Given the two similar polyhedrons, P and P'.

To prove P and P' may be divided into the same number of

tetrahedrons similar each to each, and similarly placed.

Proof. Take any homologous trihedral ^s in P and P', as B
and B', and through points G, A, C pass a plane ; also through

points G', A', C pass a plane. Then in the two tetrahedrons

thus cut off, G-ABC and G'-A'B'C,

AG BG CG AC
A'G' B'G' CG' A'C'

§ 363

.'. the faces BAG, BAC, and BGC are similar to B'A'G',

B'A'C, and B'G'C respectively. § 376

.-. the homologous faces of these tetrahedrons are similar.

§ 3G9

But the homologous trihedral ^s of these tetrahedrons are

equal. § 595

.-. tetrahedron (^-^JSC~ tetrahedron G'-A'B'C. § 666

After removing tetrahedron G-ABC from P and G'-A'B'C
from P' the polyhedrons which remain will be similar, for

their faces are similar and the polyhedral ^s are equal. By
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this process P and P' may be divided into the same number of

tetrahedrons, similar each to each and similarly placed, q.e d.

672. Cor. Tlie volumes of any two similar polyhedrons are

to each other as the cubes of any two homologous lines of the

polyJiedrons.

673. A regular polyhedron has all its faces congruent regular

polygons and all its polyhedral angles congruent.

Pboposition XXIV. Theorem.

674. Only five regular polyhedrons are possible.

Given, congruent regular polygons of any number of sides.

To prove, only five regular polyhedrons, with congrxient regular

polygons for faces, can he constructed.

Proof. A polyhedron '^ must have at least three faces and

the sum of the face ^s must be < 360°.

1. With equilateral As where each ^ is 60°;

60° X 3= 180°; 60° X 4=240°; 60° x 5=300°; but 60° x 6=360°.

.-. only three regular polyhedrons can be formed with equi-

lateral As for faces.

2. With squares where each ^ is 90°,

90° X 3 = 270° ; but 90° x 4 = 360°.

.'. only one regular polyhedron can be formed with squares

for faces.

3. With regular pentagons where each ^ is 108°.

108x3 = 324°; but 108° X 4 = 432°

.'. only one regular polyhedron can be formed with regular

pentagons for faces.

4. But with regular hexagons where each ^ is 120°, because

120° X 3 = 360°, no regular polyhedron can be formed. Hence
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no regular polyhedron can be formed with polygons having

more than five sides.

.-. only five regular polyhedrons are possible. q.e. d.

675. Note. The five regular polyhedrons are the tetrahedron, the

octahedron, and the icosahedron from equilateral triangles; the hexahe-

dron or cube from squares ^and the dodecahedron from pentagons.

676. These regular polyhedrons may be formed by cutting

out cardboard as indicated in the following diagrams. Cut

entirely through on the full lines, half through on the broken

lines, and bring the edges together. The edges may be held

in place by pasting narrow strips of paper over them.
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CYLINDERS.

677. A cylindrical surface is a curved surface generated by a

moving straight line that constantly touches a given curve and

is always parallel to a fixed straight

line.

The moving line is called the gen-

eratrix and the given curve the direc-

trix. The generatrix in any position

is called an element of the cylindrical

surface.

678. A cylinder is a solid bounded

by a cylindrical surface, called the

lateral surface and two parallel planes

which are the bases of the cylinder.

679. The altitude of a cylinder is

the perpendicular distance between

the bases.

680. Because parallel lines included

between parallel planes are all equal, the elements of a cylin-

drical surface are all equal.

681. A circular cylinder is a cylinder whose bases are circles.

The term "cylinder," as hereafter used,

will mean circular cylinder, as the circle is

the only curve discussed in elementary plane

geometry.

682. A right cylinder is a cylinder whose

elements are perpendicular to its bases.

An oblique cylinder is one whose elements

are oblique to its bases.

A right cylinder is called a cylinder of

revolution because it may be generated by the revolution of a
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rectangle about one of its sides as an axis. The radius of the

base is the radius of the

cylinder.

683. Similar cylinders of

revolution are cylinders gen-

erated by similar rectangles

revolving about correspond-

ing sides as axes.

684. A plane is tangent to

a cylinder when it passes

through one element of the cylinder but does not cut it.

685. A prism is inscribed in a cylinder when its base is a

polygon inscribed in the base of the cylinder and its lateral

edges are elements of the cylinder.

686. A prism is circumscribed about a cylinder when its bases

are polygons circumscribed about the bases of the cylinder

and its lateral faces are tangent to the cylinder.

687. A right section of a cylinder is the figure formed by

the intersection of a plane with the cylinder perpendicular to

its elements. The right section of a cylinder is a circle.

688. Because the circle is the limit of the perimetersjof-regu-

Ja£_jnscribed and circumscribed polygons and the area of a-

circle is^ the limit of the areas of these polygons when the

iminBer of their sides is indefinitely increased, § 488, hence:

1. The circle of a right section of a cylinder is the limit of

the perimeter of a right section of an inscribed or circum-

scribed prism.

2. The lateral area of a cylinder is the limit of the lateral

area of the inscribed or circumscribed prism.

3. The volume of a cylinder is the limit of the volume of

an inscribed or circumscribed prism.
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Proposition XXV. Theorem.

689. Tlie lateral area of a cylinder is equal to the

prodiLct of the circle of a right section by an element.

Given the cylinder AB, with lateral area S, circle of a right section

C, and element H.

To prove S=CxH.
Proof. Inscribe in the cylinder a regular prism, with lateral

area S', and perimeter of a right section P. Its lateral edge

is E.

Then S' = PxII. § 616

Let the number of lateral faces of the prism be indefinitely

increased.

Then S' approaches /S' as a limit. § 688, 2

P approaches C as a limit § 688, 1

and Px H approaches C X H a.s a. limit. § 277

But S' = PxH always. § 616

.-. S=CxH. §275
Q. E. D.

690. Cor. 1. The lateral area of a cylinder of revolution is

equal to the circle of the base multiplied by the altitude.

691. Cor. 2. If 8 is the lateral area, T the total area, and

H an element, then

S = 2irBxH.
T=2-nBx H+ 2 irR^ =2 irR{H-\- B).
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692. Cor. 3. Lateral areas or total areas of two similar

cylinders are to each other as the squares of their like dimensions.

Pbopositiox XXVI. Theorem.

693. The volume of a cylinder is equal to the product

of its base and altitude.

Given the cylinder AB, with volume V, base B, and altitude H.

To prove V=B x H.

Proof. Inscribe in the cylinder a regular prism with volume

V and base B'. Its altitude is equal to II.

Then V'=B'xH. §636

Let the number of the lateral faces of the prism be indefi-

nitely increased.

Then "P approaches F as a limit,

B' approaches jB as a limit,

and B' X H approaches J5 X ^ as a limit.

. But F= 5' X ^ always.

.-. V=BxH.

§ 688, 3

§ 688, 1

§ 277

§ 636

§275
Q.E D.

694. Cor. 1. If the radius of the cylinder is R, then

V= ttR'H.

695. Cor. 2. Volumes of two similar cylinders are to each

other as the cubes of their like dimensions.
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CONES.

696. A conical surface is a curved surface

generated by a Inoving straight line that

constantly touches a given curve and passes

through a fixed point. The moving line is

called the generatrix, the fixed point, the

vertex, and the given curve, the directrix.

The generatrix in any position is called

an element of the conical surface.

697. The conical surface may consist of

two parts, one above and the other below

the vertex, called the upper and lower nappes,

respectively.

698. A cone is a solid bounded by a coni-

cal surface, called the lateral surface and a

plane which is the base of the cone.

699. The altitude of a cone is the per-

pendicular from the vertex to the plane of

the base.

700. A circular cone is a cone whose base

is circular. The term " cone " as hereafter

used, will mean a circular

cone of one nappe.

701. The axis of a cone

is the straight line from

the vertex to the center of

the base,

702. A right cone is a

cone in which the axis is

perpendicular to the base. A right cone is also called a cone

of revolution because it may be generated by revolving a right

triangle about one of its legs as an axis.
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703. The slant height is an element of the conical surface.

704. Similar cones of revolution are cones generated by simi-

lar right triangles revolving about corresponding legs.

705. A plane is tangent to a cone when it

touches it in one element of the cone but

does not cut it.

706. A pyramid is inscribed in a cone

when its base is a polygon inscribed in the

base of the cone and its lateral edges are

elements of the cone.

707. A pyramid is circumscribed about

a cone when its base is a polygon circum-

scribed about the base of the cone, and its

lateral faces are tangent to the cone.

708. When the number of sides of regu-

lar inscribed or circumscribed polygons is

indefinitely increased, §§ 488, 688,

1. The circle of a right section of a cone is the limit of the

perimeter of a right section of an inscribed or circumscribed

pyramid.

2. The lateral area of a cone is the limit of the lateral area

of an inscribed or circumscribed pyramid.

3. The volume of a cone is the limit of the volume of an

inscribed or circumscribed pyramid.

709. The axis of a right cone is its altitude.

710. The elements of a right cone are all equal.

711. The frustum of a cone is the part

of a cone contained between its base and

a plane parallel to its base. The base of

the cone is the lower base of the frustum

and the section made by the plane parallel

to the base is the upper base of the frustum.
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Proposition XXVII. Theorem.

712. The lateral area of a cone of revolution is equal

to half the product of the slant height hy the circle of
the base.

Given V-EFG a cone of revolution, L its slant height, C the circle

of its base, and S its lateral area.

To prove S = \-LxC.

Proof. Circumscribe about the cone a regular pyramid, de-

noting its lateral area by S' and the perimeter of its base

by P.

Then S' = ^LxP. § 646

Let the number of lateral faces of the pyramid be indefi-

nitely increased.

Then S' will approach /S as a limit, § 708, 2

P' will approach P as a limit, § 708, 1

^nd \ Lx P will approach \L x C as a limit. § 277

But S' = ^LxP always.

.'. S = \L X C. Q.E.D.
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713. Cor. 1. If R is the radius of a cone and T is its total

surface, because the circle of the base is 2 tH, and the area is

irR\

S=ix2TrRxL = ttRL. T= tRL + 7ri22 = TrR{L + R).

714. Cor. 2. The lateral areas or the total areas of two

similar cones are to each other as the squares of their like dimen-

sions.

Proposition XXVIIL

715. T7ie lateral area of the frustum of a right cone

is equal to half the product of the slant height of the

frustum hy the sum. of the circles of the bases.

Given L' the slant height, c the upper base

of the frustum, C the lower base, and S' the

lateral area.

To prove S' = ^ (c + C)L'.

Proof. The lateral area of the frustum

of the inscribed pyramid is

S = i{p + P)L. §647

"When the number of lateral faces of the inscribed frustum

of the pyramid is indefinitely increased, F api)roaches C, p ap-

proaches c, L approaches L', and aS approaches S' as a limit.

.: S' = ^{c+C)L'. Q.E.D.

716. Cor. Tlie lateral area of the frustum of a cone of revo-

lution is equal to the j)roduct of the circle of a section midway

between the bases, by the slant height.
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Proposition XXIX. Theorem.

717. The volume of a cone is equal to one third the

product of its hose hy its altitude.

Given V the volume, B the base, and H the altitude of the cone

V-EFG.

To prove V=\BxH.
Proof. Inscribe in the cone a regnlar pyramid, denoting its

volume by V, its base by B', and // will be its altitude.

Then V = \B' x H. §655

Let the number of lateral faces of the pyramid be indefi-

nitely increased.

Then V approaches F as a limit. § 708, 3

Also Bf approaches B as a limit. § 708, 1

But V = \B' xH always. § 656

.:V=\BxH. §275
Q.E.D.

718. CoK. 1. If ttH^ = area of the base,

719. Cor. 2. The volumes of similar cones are to each other

as the cubes of their like dimensions.
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Proposition XXX, Theorem.

720. A frustum of a cone is equivalent to the sum of

three cones of the altitude of the frustum, and ivhose

bases are the upper base, the lower base of the frustum,

and a mean proportional between them.

Given V the volume, b the upper base, B the lower base, and H the

altitude of the frustum F.

To prove V= \ H{h +B+ y/b x B).

Proof. Inscribe in F the frustum of a regular pyramid,

denoting its volume by V, its bases by b' and B'. II will be

its altitude.

Then F = ^ 7/(6 ' + 5' + V&' X B'). § 661

Let the number of lateral faces of the inscribed frustum be

indefinitely increased.

Then V will approach Fas a limit. § 708, 3

Also B' will approach jB as a limit. § 708, 1

And 6' will approach 6 as a limit. § 708, 1

But V =i H{h' +B' + Vb' X B') always. § 661

.-. F = i H(b + 5 + ^b^B). § 275
Q. E. D.

721. If r and B denote the radii of the upper and lower

bases respectively, then itr^ and wR^ denote their areas, and
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Ex. 585. Find the volume of a cube whose entire surface is 54 sq. ft.

Ex. 586. The radius of the lower base of a frustum of a cone is 21, the

radius of the upper base 10, and the slant height (Jl. Find its volume.

Ex. 587. A chimney 60 ft. high is in the shape of the frustrum of a
cone. Its lower diameter is 28 ft. and the upper diameter 20 ft. The
conical flue has the lower diameter 12 ft. and the upper diameter 6 ft.

Find the volume of the chimney.

Ex. 588. The volumes of two similar prisms are to each other as 5 to 6.

What is the ratio of their surfaces ?

Ex. 589. Find the volume of a frustum of a regular quadrangular

pyramid, the sides of whose bases are 10 and and whose altitude is 12.

Ex. 590. The radius of the lower base of the frustum of a cone is 34,

the radius of the upper base 20, and the altitude 48. Find its lateral area.

Ex. 591. The altitude of the Great Pyramid is 488 ft. and its base is

764 ft. square. What is its volume ?

Ex. 592. The altitude of a pyramid is 9 ft. and its base is a rhombus

whose diagonals are, resijectively, 10 and 12 ft. What is its volume ?

Ex. 593. The lateral edge of a pyramid is 10 ft. and its inclination to

the base is 30°. The base is an equilateral triangle whose side is 12 ft.

Find the volume of the pyramid.

Ex. 594. Find the volume of a truncated right triangular prism, the

sides of whose base are, respectively, 13, 14, and 15 ft., and whose lateral

edges are 6, 8, and 10 ft., respectively.

Ex. 595. Find the volume of the cube, in which the diagonal of each

face is 16 in.

Ex. 596. The base of a right pyramid is a regular hexagon of side 18

in. and the lateral faces are inclined to the base at an angle of 60"^.

Find the volume.
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THE SPHERE.

722. A sphere is a solid bounded by a surface, all points of

which are equidistant from a point within, called the center.

723. The radius of a sphere is a straight line from the center

to any point on the surface.

724. The diameter of a sphere is a straight line through the

center terminated at both ends by the surface.

725. It follows from the definition of the sphere that all

radii of the same sphere or of equal spheres are equal, that all

diameters of the same sphere or of equal spheres are equal, and

that spheres are equal if their radii or their diameters are equal.

726. A sphere may be gener-

ated by the revolution of a semi-

circle about its diameter as an

axis.

727. A line or a plane which

has one, and only one, point in

common with the surface of a

sphere is tangent to the sphere.

The sphere is then, also, tangent to the line or the plane.

728. Two spheres whose surfaces have one, and only one,

point in common are tangent to each other.

729. A polyhedron is inscribed in a sphere when all its ver-

tices are in the surface of the sphere. The sphere is then cir-

cumscnbed about the polyhedron.

77
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730. A polyhedron is circumscribed about a sphere when all

its faces are tangent to the sphere. The sphere is then ii\r

scribed in the polyhedron.

Proposition I. Theorem.

731. The intersection of a plane and the surface of a

sphere is a circle.

Given ABC, a section made by a plane cutting the sphere whose

center is 0.

To prove ABC is a O.

Proof. Let OQ be ± plane ABC.

From A and B, any two points in the boundary of the sec-

tion ABC, draw AO and BO, and draw also AQ and BQ.

Then in rt. As OAQ and BOQ,

OQ = OQ. Iden.

AO = BO. §725

..AQ = BQ. §§122,85

But A and B are any two points on the boundary of the

section ABC . ^^^ ^^ ^ q § 208
Q. E. D.

732. CoR. 1. The line from the center of a sphere to the cen-

ter of a circle of the sphere is perpendicular to the plane of tJie

circle.

733. Def. a great circle of a sphere is a section of the

sphere made by a plane that passes through the center of the

sphere.



THE SPHERE. 79

734. Def. a small circle of a sphere is a section of the

sphere made by a plane that does not pass through the center

of the sphere.

735. Def. The diameter of a sphere perpendicular to the

plane of a circle of the sphere is called the axis of the circle,

and the extremities of the diameter are called the poles of the

circle.

736. CoR. 2. A great circle has the same center and the same

radius as the sphere, hence all great circles of the same sphere or of

all equal spheres are equal.

737. CoR. 3. A great circle bisects the sphere and the surface

of the sphere,

For, if the two parts into which it divides the sphere be so

placed that their plane surfaces coincide, then the curved sur-

faces must coincide, otherwise there would be points in the

surface of the sphere at different distances from the center.

738. Def. The distance between any two points on the

surface of a sphere is the arc of a great circle, not greater than

a semicircle, that joins the points.

Ex. 697. Of two given cubes the diagonal of the first is three times

that of the second. What is the ratio of their volumes ?

Ex. 598. The edges of a given rectangular parallelepiped are, respec-

tively, 9 ft., 24 ft., and 32 ft. What is the volume of a similar parallelo-

piped, whose diagonal is 82 ft. ?

Ex. 599. A pyramid has an altitude of 26 ft. At what distance from

the base must it be cut by a plane parallel to the base that the frustum

may be half the pyramid ?

Ex. 600. If the area of the entire surface of a tetrahedron is 200 sq. ft.

and the altitude 60 ft,, what is the altitude of a similar tetrahedron

whose entire surface is 800 sq. ft. ?
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Proposition II. Theorem.

739. All points on a circle of a sphere are equidis-

tantfrmn either of its poles.

Given two points, D and £ on the O D£F, and A and B, the

poles of the O DEF.

To prove the great circle arcs AD and AE are equal, and the

great circle arcs BD and BE are equal.

Proof. The straight lines AD and AE are equal. § 533

.-. arc AD = arc AE. § 234

Similarly, arc BD = arc BE. Q. b. d.

740. Def. The distance on the surface of a sphere from

the nearer pole of a circle to any point of the circle is called

the polar distance of the circle.

741. Cor. Hie polar distance of a great circle of a sphere is

the qvxidrant of a great circle.

Ex. 601. The base of a regular pyramid is an equilateral triangle

whose side is 18 ft. The slant height of the pyramid is 30 ft. Find the

volume.

Ex. 602. Of two similar pyramids the entire surface of the first is

four times that of the .^second. What is the ratio of the volume of the

first to that of the second ?
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Proposition III. Problem.

742. To construct the radius of a material sphere.

Let MNP represent a material sphere.

Required to construct its radius.

Construction. Take any two points, A and B, on the surface

of the sphere, as poles, and with the same radius construct two

arcs intersecting each other at C; then with the same poles and

with other equal radii, construct two arcs intersecting at D
;

finally, with still the same poles and with other equal radii,

construct two arcs intersecting at E.

The three points, C, D, and E, thus determined, determine

the plane that is the perpendicular bisector of the straight

line joining A and B. §§ 523, 538

.". the plane GDE passes through the center of the sphere.

§§ 722, 538

.. C, D, E lie on the great circle of the sphere. § 733

Construct a plane triangle OD'E', whose sides are equal,

respectively to CD, DE, and CE. § 303

Circumscribe the circle about the plane triangle CD'E'.

§306
Then Q = great O of the sphere. § 246

.'. OC, the radius of O = radius of great O (§ 246) = ra-

dius of the sphere, § 213
Q.B.F.
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Propositiox IV. Theorem.

743. A plane perpendicular to a radius at its outer

extremity is tangent to the sphere.

Given 0, the center of a sphere, MN, a plane A. radius OA at A.

To prove the plane MN is tangent to the sphere.

Proof. Let B be any other point except A in the plane MN.

Then OB > OE. § 531

.'. the point B is without the sphere. § 722

But B is any point in the plane MN other than A.

.'. the plane MN is tangent to the sphere.
Q. E. D.

744. Cob. 1. A plane tangent to a sphere is perpendicular to

the radius drawn to the point of tangency.

745. Cor. 2. A line in a tangent plane drawn through the

point of tangency is tangent to the sphere at that point.

746. Cor. 3. A line tangent to a circle of a sphere lies in the

plane that is tangent to the sphere at the point of contact.

Ex. 603. If the volumes of two similar prisms are to each other as

8 to 27, what is the ratio of their altitudes ?
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Proposition V. Theorem.

747. Through any four points, not all in the same

plane, one, and only one, sphere may he passed.

A

c
Given A, B, C, and D, four points, not all in the same plane.

To prove one sphere, and only one, may he passed through A,

B, C, and D.

Proof. Let F and G be the centers of Os circumscribing

As BCD and ACD, respectively. Let FK be ± tlie plane BCD
and GH± the plane ACD.
Then every point in FK is equidistant from B, C, and D,

and every point in GH is equidistant from A, C, and Z). § 533

Join F and G to E, the mid-point of CD.

Then FE and GE are each ± CD. § 240

.-. the plane GEF 1. CD. § 535

.-. the plane GEF A. planes BCD and ACD. § 567

Then, since GH is X plane ACD by constniction, GH lies in

the plane GEF. § 569

Similarly, FK lies in the plane GEF. Therefore ±s GH and

and FK lie in the same plane and being ± to non-parallel

planes, they meet in some point, as 0.

.•. lies in ± GH and FK equidistant from B, C, and D,

and from A, C, and D. § 533

.'. is equidistant from A, B, C, and D.
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Hence the sphere whose center is and radius OA will pass

through A, B, C, and Z>.

Again, since the center of any sphere through A, B, C, and

D must lie in GH and FK (§ 534), their intersection is the

center of the only sphere that will pass through the four points

A, B, C, and D. q.e.d.

748. CoR. Four points not all in the same plane determine a

sphere.

SPHERICAL ANGLES.

749. Def. The angle formed by two intersecting curves is

the angle formed by the tangents to the curves at the point of

intersection.

750. Def. The angle formed by two intersecting great

circles of a sphere is called a spherical angle.

Proposition VI. Theorem.

751. A spherical angle is 'measured hy the are of a

great circle described from the vertex as a pole and in-

cluded between its sides, or its sides produced.

Given the great Os BCA and BDA, intersecting at A, and CD, the

arc of a great O described with A as a pole.

To prove the spherical angle CAD is measured by tJie arc CD.
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Proof. Draw radii OC and OD and tangents AE and AF.

Arcs AC and AD are quadrants. § 216

OG and OD each ± 0^, and ^ COD ^ ^ EAF. § 555

.'. the spherical ^ CAD is measured by the ai'c CD. q.e. d.

^52. Cor. A spherical angle has the same measure as the

dihedral angle formed by the planes of the two circles.

SPHERICAL POLYGONS.

753. Def. a spherical polygon is a portion of the surface of

a sphere bounded by three or more great circles.

The bounding arcs are called the sides, their points of inter-

section, the vertices, and the spherical angles formed by the

slides, the angles of the spherical polygon.

754. Def. The diagonal of a spherical polygon is the arc

of a great circle drawn between two non-consecutive vertices.

755. The planes of the sides of a spherical polygon form

a polyhedral angle at the center of the sphere. A spherical

polygon is .convex if the corresponding polyhedral angle is con-

vex. Unless stated otherwise a spherical polygon is assiimed

to be convex. From any property of polyhedral angles may be

inferred an analogous property of spherical polygons, and con-

versely.

756. The measures of the sides of a spherical polygon are

usually expressed in degrees.

757. Def. Two spherical polygons are vertical when their

corresponding polyhedral angles are vertical.

758. Two spherical polygons are symmetrical when the

parts of one are, respectively, equal to the parts of the other

and arranged in reverse order.
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Proposition VII. Theorem.

759. Two vertical spherical triangles are symmetrical.

Given two vertical spherical triangles, ABC and A'B'C .

To prove sphencal As ABC and A'B'C are symmetrical.

Proof. Let be tlie center of the sphere.

Plane As AOC and A'OC have two sides and the included

^s respectively equal, and are, therefore, congruent. §§ 65, 91

.-. chord AC = chord A'C. § 85

.-. arc ^C = arc A'C. § 234

Similarly, arc BC = arc B'C,

arc AB = arc A'B', etc.

.. spherical As ABC and A'B'C are symmetrical,

Q. B. D.

Ex. 604. Find the volume of a right circular cylinder the diameter of

whose base is 12 ft. and whose altitude is 20 ft,

Ex. 605. If the diameter of a right circular cylinder is 8 ft., and its

total surface is 128 sq. ft., what is its altitude ?

Ex. 606, Reckoning 7^ gal. to the cubic foot, how many gallons

will a cylindrical standpipe hold if its diameter is 20 ft, and the altitude

60 ft.?

Ex. 607. Given the lateral surface of a right circular cylinder, S, and

altitude H, to find the volume.
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760. Two symmetrical spherical polygons may be placed in

position such that each is the vertical of the other.

Proposition VIII. Theorem,

761. The sirni of two sides of a spherical triangle is

greater than the third side.

Given the spherical A ABC.

To prove AB + BC > AC.

Proof. Draw radii OA^ OB, and OC.

Then in the trihedral ^ 0-ABC, :^AOB + ^ BOO

> ^ AOC. § 593

But the central angle is measured by the intercepted arc.

.'. arc AB + arc BC > arc AC.
Q.E.D.

Ex. 608. The slant height of a regular pyramid is divided by a plane

parallel to the base iu the ratio 1 : 4, the longer segment being next the

base. What is the ratio of the section to the base ?

Ex. 609. Given V, the volume, and the altitude equal to the radius, of

a right circular cylinder, to find the entire surface.

Ex. 610. A pyramid is divided into two parts by a plane parallel to

the base and bisecting the altitude. What is the ratio of the two parts ?

Ex. 611. Two similar right circular cones have their volumes in the

ratio 8 : 27. What is the ratio of their lateral surfaces ?
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Proposition IX. Theorem.

762. The sum of the sides of a splierical polygon is

less than 360°.

Given the spherical polygon ABCD.

To prove AB + BC+CD + DA< 360°.

Proof. Arcs AB, BC, CD, DA are the measures of the

central angles AOB, BOC, COD, and DOA.

But the sum of these central angles < 360°. § 594

..AB + BC+CD + DA< 360°. q. e. d.

763. Cor. TJie sum of the sides of q, spherical polygori, is less

than a great circle.

Proposition X. Theorem.

764. 77ie shortest line that can he drawn on the sur-

face of a sphere between two points on the surface is

the arc of a great circle not greater than a semicircle.

Given two points, A and B, on the surface of a sphere, and AB,

the arc of a great circle not greater than a semicircle.
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To prove AB is the shortest line on the surface of the sphere

between A and B.

Proof. Take any point C on the arc AB, and with A and B
as poles with radii equal, respectively, to AC and BC, describe

Os.

These Os cannot meet in any other point, for should they

meet in any point, as K, the spherical AABK would have the

sum of two sides, ^/^and BK=AC, which is impossible.

§761
Therefore, any other line, as ADEB, between A and B must

intersect the Os in two points, as D and E.

But ADEB cannot be shorter than AB, for by revolving

AD about A and BE about B until D and E coincide with C
there would be a line between A and B shorter than ADEB
by the part EF.

Hence the shortest line between A and B must pass through

a
But by hypothesis C is any point on the great O arc AB.
.'. AB is the shortest line that can be drawn on the surface

between A and B. q.b.d.

Ex. 612. Given tlie lateral surface, S, and altitude, equal to radius of

the base, of a right circular cone, to find the volume.

Ex. 613. Two similar right circular cones have their altitudes in the

ratio 6 : 7. What is the ratio of their volumes ?

Ex. 614. The altitude of the frustum of a pyramid is 36 ft. The
lower base is a triangle whose sides are, respectively, 8, 26, and 30 ft.

The longest side of the upper base is 16 ft. Find the volume of the

frustum.

Ex. 615. The altitude of the frustum of a cone is 24 ft. The diam-

eters of the bases are, respectlvelj^ :32 ft. and 18 ft. How far from the

lower base must a plane parallel to the base be passed to divide the frus-

tum into two equivalent frustums ?
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Proposition XI. Theorem.

765. Two mutually equilateral triangles on the same

sphere or equal spheres are mutually equiangular^ and

are congruent or symmetrical.

Given the spherical As ABC and A'B'C' on equal spheres,

AB= A'B', BC = B'C', AC=A'C'.

To prove As ABC and A'B'C are either congruent or sym-

metrical.

Proof. The face angles of the corresponding polyhedral

angles at the center of the spheres are, respectively, equal.

§233

.'. the corresponding dihedral angles are equal. § 596

.. the angles of the spherical As are respectively equal.

§ 752

Therefore the As ABC and A'B'C are congruent or sym-

metrical according as the equal sides are arranged in the same

or reverse order. q e.d.

766. CoR. Two symmetrical isosceles triangles are congruent.

Ex. 616. The altitude of the frustum of a cone is 24 ft. The diam-

eters of the bases are, respectively, 31 ft. and 18 ft. How far from the

lower base must a plane be passed in order to divide the frustum into two
similar frustums ?

Ex. 617. The edges of a rectangular parallelepiped are, respectively,

12 ft., 10 ft., and 21 feet. What is the area of the surface of a similai

parallelopiped whose diagonal is 87 ft. ?
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Proposition XII. Theorem.

767. Two symmetrical spherical triangles are equal

in area.

Given two symmetrical As, ABC and A'B'C.

To prove As ABO and A'B'C are equal in area.

Proof. Let Os be circumscribed about the plane As ABO
and A'B'C. § 306

Let and 0', respectively, be the poles of these Os

Then the chord AB = the chord A'B',

. the chord BC= the chord B'C,

and the chord ^C= the chord A'C. § 233

.-. Q ABC = (D A'B'C.

.-. radius of O ABO= radius of O A'B'C. § 213

.-. arcs AG, BO, CO, A'O', B'O', and CO' are all equal.

§234

.'.the spherical As AOB and A'O'B' are congruent, there-

fore equal in area. § 766

Similarly, spherical As BOO and AOC are respectively

equivalent in area to spherical As B'O'C and A'O'C.

Whence, by addition, spherical As ABC and A'B'C are equal

in area. q.e.d.

Ex. 618. A regular cone 18 in. in height and 24 in. in diameter at the

base is cut by a plane parallel to the base and 10 in. from it. Find the

volume of the frustum so formed.
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768. Def. If from the vertices of any spherical triangle as

poles ares of great circles are drawn, another triangle is formed

which is called the polar triangle of the first triangle.

Thus, if A is the pole of the great circle arc B'C, B the pole

of the great circle arc A'C, and C the

pole of the great circle arc A'B', the tri-

angle A'B'C is the polar triangle of the

triangle ABC.

769. The great circles of which A'B',

A'C, and B'C are arcs form by their in-

tersections eight spherical triangles. Of

these eight triangles that one is the polar

of ABC in which the vertex A', homologous to A, lies on the

same side of the arc BC as the vertex A, etc.

Propositiox XIII. Theorem.

770. Tioo spherical triangles on the same or equal

spheres are equal in area if they have two sides and

the included angle, or two angles and the included side,

of the one equal, respectively , to the corresponding j^arts

of [he other.

Proof. If the equal parts of spherical As ABC and A'B'C
are arranged in the same order, they are superposable, as in

cases of plane triangles. §§ 91, 94
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If the equal parts are arranged in reverse order, the A ABO
and the symmetrical A of A'B'C will be superposable.

But A A'B'C and its symmetrical A are equal in area.

§ 767

.'. A ABC and A A'B'C are equal in area. q.e.d.

Pkoposition XIV. Theorem.

771. If one spherical triangle is the polar of another,

then the second spherical triangle is the polar of the

first.

Given A A'B'C, the polar of ABC. '

To prove A ABC is the polar of A A'B'C.

Proof. Since A is the pole of B'C, C is the pole of A'B'.

§768
.*. J5' is a quadrant's distance from A and C § 741

.'. B' is the pole of AC.

Similarly, A' and C are the poles of BC and AB, respec-

tively.

.
•

. A ABC is the polar A of A A'B'C. Q. e. d.

Ex. 619. The radius of a sphere is given, B, and the radius of a

small circle of the sphere, r. Find the distance of the plane of the circle

from the center of the sphere.

Ex. 620. The base of a pyramid is a triangle whose sides are, respec-

tively, 17 ft., 26 ft., and 28 ft., and the altitude is 18 ft. Find the volume.

Ex. 621. The base of a regular pyramid is a square whose side is 10 ft.

and the lateral edge of the pyramid is 24 ft. Find the volume.
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Proposition XV. Theorem.

772. In two polar triangles each angle of the one is the

siqjplement of the side of the other of which it is the

pole.

Given the polar spherical triangles ABC and A'B'C, A being the

pole of B'C, etc.

To prove '^A + arc B'a = 180°.

Proof. Produce the sides of "^ A to meet B'C at D and E.

'^ Ais measured by arc DE. § 751

Since B' is the pole of arc AE and C of arc AD, arcs B'E
and CD are both quadrants. § 741

But DE+ B'C = B'E + CD = 180°,

i.e. DE + B'C = 180°

.•.^^ + arc^'(7' = 180°. Q.e.d.

Proposition XVI. Theorem.

773. The sum of the angles of a spherical triangle is

less than 540° and greater than 180°.

Giv§n ft spherical A ABC.
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To prove ^^+2CJ5+^C< 540° and > 180°.

Proof. Construct spherical A A'B'C, the polar A of A ABC,
and denote the sides B'C\ A'C, A'B', expressed in degrees by

a, b, and c, respectively.

Then ^^ = 180°- a,

:^ 5= 180° -&,

and ^C= 180°-c. §772

.•.:^^+:^S4-^C=540°-(a + & + c).

.•.^^+^J5+^(7<540*.

But a + h + c< 360°. § 762

.•.:^yl+^5 + ^C>180^ Q.E.D.

774. Cob. A spherical triangle muiy have one, two, or three

right angles ; also one, two, or three obtuse angles.

775. Def. a birectangular spherical triangle is one that

contains two right angles.

776. Def. A trirectangular spherical triangle is one that

contains three right angles.

777. Def. The spherical excess of a spherical triangle is

the difference between the sum of its angles and 180°.

778. CoR. 1. In a birectangular spherical triangle the sides

opposite the right angles are quadrants, and the side ojyposite the

third angle measures that angle.

779. CoR. 2. Each side of a trirectangular triangle is a

quadrant.

780. Cor. 3. If three planes be passed through the center of

a sphere each perpendicular to the other tico, they divide the sur-

face of the sphere into eight congruent trirectangular spherical

triangles.
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Proposition XVII. Theobem.

781. Tico mutually equiangular spherical triangles

on the same sphere or equal spheres are mutually equi-

lateral, and are either congruent or symmetrical.

'C' E

Given the spherical As ABC and DEF mutually equiangular, on

equal spheres.

To prove As ABC and DEF are mutually equilateral, and are

either covgruent or symmetrical.

Proof. Let A'B'C and D'E'F' be the polar As of ^i5Cand
DEF, respectively.

Then because A ABC and A DEF are mutually equiangular,

A A'B'C and A D'E'F are mutually equilateral. § 772

.'. As A'B'C and D'E'F' are mutually equiangular. § 765

But ABC is the polar triangle of A'B'C and DEF is the

polar triangle of D'E'F'. § 771

.'. As ABC and DEF are mutually equilateral. § 772

.".As ABC and DEF are congruent or symmetrical. § 765
Q.E.D.

782. Cor. If tico spherical triangles on the same or equal

spheres are mutually equiangular, they are congruent if their

equal parts are arranged in the same order, or symmetrical if

their equal parts are arranged in. reverse order.
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Pkopositiok XVIII. Theorem.

783. In an isosceles spherical triangle the angles

opposite the equal sides are equal.

Given the spherical triangle ABC, in which AB = AC.

To prove '^B='^C.

Proof. Let AD, the arc of a great O, be drawn from C to D,

the mid-point of the arc BG.
Then As ABD and ACD are mutually equilateral.

.*. As ABD and AflD are mutually equiangular § 765

^5=:^ a Q.E.D.

MEASUREMENT OF SPHERICAL SURFACES.

784. Def. a lune is a portion of the

surface of a sphere bounded by two great

semicircles.

785. The angle of a lune is the spherical

angle between the semicircles that bound it.

It is evident that lunes on the same

sphere are congruent if their angles are

equal.
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786. Def. a zone is a portion of the

surface of a sphere included between two

parallel planes.

787. Def. The common sections of the

sphere and the planes are the bases of the

zone, and the perpendicular distance be-

tween the planes is the altitude of the zone.

Proposition XIX. Theorem.

788. The area generated hy the revolution ofa straight

line about an axis in its plane is equal to the product

of the p)TOJection of the line on the axis by the circle

whose radius is the perpendicular from the mid-point

of the line terminated by the axis.

E

Given AB, a line revolving about the line PQ in its plane, M, the

mid-point of AB, DF, the projection of AB on PQ, and MO -L AB.

To prove the area of surface generated by AB = DF X 2 irMO.

Proof. Draw ME ± and AK II PQ.

The area generated byAB is the lateral area of the frustum of

a cone of revolution whose slant height is AB and altitude DF.

.-. area AB= ABx2 wME. § 716
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A ABK r^ A EOM. § 370

.'.AB : MO= AK : ME.

Hence AB x ME=MO X AK=MO x DF.

.-. area AB =DFx2 ttMO.

Hence, if AB meets PQ or is II PQ, the result is the same.

§§ 712, 689

PROPOSiTiojf XX. Theorem.
Q. E. D.

789. The area of the surface of a sphere is equal to

the product of its diameter hy a great circle.

Let the sphere be generated by the revolution of a semicircle

about the diameter PQ.

Let be the center of the sphere, and let its radius OM be

denoted by R and the surface by S.

To prove S = PQx2tR.
Proof. Let PA, AB, BC, CQ, be equal chords of the O.

Draw BO, then BO ± PQ. § 240

'Dva.w AD, CF±PQ.
Draw OMA. PA.

OJf bisects PA §240

Then the area generated by PA = PD x 2 irOM.

Similarly, the area generated by AB = DO x 2 rrOJf, etc.

§788
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But the sum of the projections of PA, AB, etc., on PQ = PQ,

the diameter.

.'. the surface generated by the polygon PABCQ = PQx
2irOM.

Now, let the number of sides of the polygon be indefinitely

increased, then the perimeter will approach the semicircle on

PQ as a limit and OM will approach li as a limit. § 488, 486

.*. the surface generated by the revolution of the polygo'

will approach the surface of the sphere as a limit.

.•.S = PQx2TrR. Q.E.D.

790. Cor. 1. Since PQ = 2R,S = 4: irRK

791. Cor. 2. The area of the surface of a sphere is equal to

the area offour great circles.

792. Cor. 3. The areas of the surfaces of two spheres are to

each other as the squares of their radii or the squares of their

diameters.

793. Cor. 4. Tlie area of a zone is equal to the product of

its altitude by a great circle; Z=2 wRH:

794. Cor. 5. Tlie areas of zones on the same sphere or equal

spheres are to each other as their altitudes.

Ex. 622. Prove that the surface of a Sphere is equal to the lateral

surface of the circumscribed cylinder.

Ex. 623. The lateral edge of a regular pyramid is 73 ft. and its alti-

tude 65 ft., the base of the pyramid being a square. Find its volume.

Ex. 624. Find the volume of a truncated right triangular prism, the

sides of the base being, respectively, 33 in., 34 in., and 65 in., and the

lateral edges, respectively, 18 in., 21 in., and 27 in.

Ex. 625. Find the capacity in bushels of a bin 12 ft. long, 10 ft. wide,

8 ft. high, a bushel being 2150.42 cu. in.

Ex. 626. A zone whose altitude is 16 in. is one-third the surface of

the sphere. What is the radius of the sphere ?
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Proposition XXI. Theorem.

795. Tlie area of a lime is to the area of the surface

of a sphere as the number of degrees in its angle is to

360°.

Given ACBE, a lune on the surface of the sphere whose center is 0.

Let A denote the angle of the lune, L the area of the lune,

and S the surface of the sphere.

To prove L: S : : A:S60°.

Proof. Let CEDF be the great O whose pole is A.

CE measures 'if A. § 751

.-.CE-.Q CEDF= A : 360°. § 287

If CE and O CEDF are commensurable, let their common
measure be contained in CE m times and in O CEDF n times.

Then arc CE : © CEDF= m : n.

.-. :^ A : 360° = m:n. §287

By passing great Os through the points of division of the

arc CE and the O CEDF, the arcs will divide the surface of

the sphere into n equal lunes of which the lune ACBE will

contain m. • r . e ^ . ^

.\L:S = A:360°.

If CE and O CDEF are incommensurable, by the method

of limits as used in § 283 the same conclusion is reached.

Q. B. 0.
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796. Cob. 1. The areas of two limes on the same or equal

spheres are to each other as their angles.

797. Cor. 2. If the right angle is the unit of angle and the

trirectangular triangle the unit of surface, the a/i'ea of the surface

of the sphere being eight trirectangular triangles (§ 780), then

i : 8 = ^ : 4,

or L = 2A.

That is, the measure of the area of a lune is twice its angle.

Proposition XXII. Theorem.

798. If the unit angle is the right angle and the unit

surface the area of the trirectangular triangle, the area

of a spherical triangle is equal to its spherical excess.

Given the spherical A ABC.

To prove area A ABC = ^^ + ^5+^C — 2, the right A
being the unit ^, and the trirectangular A being the unit su7face.

Proof. Complete the O of which BC is an arc, and let AB
and AC intersect it again at B' and A'.

Then, since As ABC and AB'C together form the lune whose

angle is B,

area A ABC + area A AB'C =2:^B. § 796

Similarly, area A ABC + area A ABC = 2^0.
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Also As ABC and AB'C together form the lune whose angle

is A.
.'. area A ABC + area A AB'C = 2 ^A

.:2AABC+ (AABC+A AB'C+ A ABC + A AB'C)
= 2(^A + ^B + ^C).

But A ABC + A AB'C + A ABC + A AB'C make up the

surface of a hemisphere.

.-. A ABC+A AB'C + A ABC + A AB'C = 4 trirectangu-

lar As. § 779
.-. 2 A ^BC + 4 = 2(^ ^ + ^ 5+ ^ C).

Hence area A ^15C= ^ ^ + 2^ jB+ ^ (7- 2. q.e.d.

Proposition XXIII. Theorem.

799. If the right angle is the angular unit and the

trirectangular triangle the unit of surface, the area of

a spherical polygon is equal to the sum of its angles

diminished by the number of its sides less two.

Given ABCDE, a spherical polygon of n sides.

To prove area ABCDE= :^ A -\- ^ B + :^ C -]- :^ D + -^ E \

-2{n-2). 3

Proof. Draw all possible diagonals from the vertex A.
*

These will divide the spherical polygon into (n — 2) spheri-
^

cal As. •

The area of each spherical A = the sum of its ^s less two.
]

§ 798
'
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.-. area ABODE =^^ + ^-B + ^C+:^Z)4-^-£^
-2(n-2). Q.E.D.

800. Def. The spherical excess of a spherical polygon, is

the spherical excess of the triangles into which its diagonals

divide it.

801. Cor. The area of a spherical polygon is to the area of
the sphere as the spherical excess of the polygon expressed in

degrees is to 720.

SPHERICAL VOLUMES.

802. Def. A spherical pyramid is a portion of a sphere

bounded by a spherical polygon and the faces of the corre-

sponding polyhedral angle.

803. Def. The spherical polygon is called

the base of the pyramid.

804. Def. A spherical sector is the vol-

ume generated by the revolution of a circular

sector about the diameter of the circle of

which the sector is a part.

805. Def. The base of a spherical sector is the zone gener-

ated by the arc of the circular sector.

806. Def. A spherical segment is a por-

tion of a sphere bounded by two parallel

.planes.

807. Def. The bases of a spherical seg-

ment are the sections of the sphere made by

the parallel planes.

808. Def. The altitude of a spherical segment is the per-

pendicular distance between its bases. If one of the planes is

tangent to the sphere, the segment is called a segment of one
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Proposition XXIV. Theorem.

809. The volume of a sphere is equal to the product

of the area of its surface by its radius.

Given V, the volume, S, the area of the surface, and R, the radius

of a sphere.

To prove V=^RS.
Proof. Suppose the surface of the sphere to be divided into

any number of congruent spherical polygons.

Then let pyramids be formed by joining the vertices of the

polygons successively and drawing radii of the sphere to the

vertices.

It is obvious that these pyramids will be congruent and will

have equal altitudes.

The volume of each pyramid is equal to its base by one

third its altitude. § 655

Therefore, the sum of the volumes of the pyramids is equal

to the sum of the bases multiplied by one third the common
altitude.

Then let the number of spherical polygons be indefinitely

increased. Then the sum of the bases of the pyramids will

approach the surface of the sphere as a limit.

.-. V=IRS. Q.B.D.

Formula: V=iirE\
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810. Cor. 1. The volume of a spherical pyramid is equal to

the product of its base by one third its altitude.

811. CoK. 2. The volumes of two spheres are to each other as

the cubes of their radii or as the cubes of their diameters.

812. The volume of a spherical sector is equal to one third the

area of the zone which forms its base multiplied by theraditis of

the sphere.

For, if Z denote the area of the zone, H its altitude, E the

radius of the sphere, and Fthe volume of the sector, then

Z= 2 7ri?fl'(§ 793), and F= 2 ttEH x ^ i?= | ttE^IT.

Proposition XXV. Problem.

813. To find the volume of a spherical segment.

Given a spherical segment generated by the revolution of arc

ABCD about PQ as an axis, being the center of the sphere.

Draw OB and OD.

Denote the radius OD by B, AB by r, CD by r', and the

volume of the segment by V.

The volume generated by ABCD is equal to the spherical

sector DBO + the cone generated by ODC — the cone gen-

erated by BAO.
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Hence

F= I ttR'^H+ \ itCD^ y.CO-\ ttA^ xAO §§ 812, 717

= I TT [2 R'H+ (/2- - CO")CO -(R^-A (y)AO]

= ^7rl2R'H+RXC0-A0)-{C(f-A0^j.

Factoring CO —AO, and substituting H for its equal,

CO - AO,

F= i TT [2 R'H+ R^H- H{CO^ j^cOxAO- W)']

= ^7rir[3i22-((70' + C0x^0+ Z0')]. (1)

But H^={C0~A0f = C0''-2C0xA0 + 'A(?,

and CO"+ CO X ^0 +^'
__, ^ __2 /CO' 2 OCX ^0 . 'Ad'\

=f(co- +^oVf-

^'^^^
2 "^*

Substituting this value in (1),

F=—
3

'f(r^ + r'^+
f-']

814. Cor. In a spherical segment of one base, r* = 0.
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Ex. 627. The section of a tunnel being a semicircle whose diameter

is 60 ft., how many cubic feet of earth is removed in excavating the tun-

nel 600 ft. ?

Ex. 628. Find the volume of a sphere whose radius is 14 ft.

Ex. 629. Find the surface of a sphere whose radius is 22 ft.

Ex. 630. Find the radius of the sphere whose surface contains the

same number of units of surface that its volume contains of units of

volume.

Ex. 631. What part of the surface of the sphere is the lune whose

angle is 80° ?

Ex. 632. How many spheres 2 ft. in diameter are required to equal

in volume one sphere 6 ft. in diameter ?

Ex. 633. If a sphere of iron 1 ft. in diameter weigh 230 lb., what

would be the weight of a spherical iron shell whose inner diameter is 3 ft.

and outer diameter 4 ft. ?

Ex. 634. If the area of a lune whose angle is 30° is 200 sq. ft., what

is the volume of the sphere ?

Ex. 635. If the area of a lune whose angle is 60° is 360 sq. ft., what
is the surface of the sphere ?

Ex. 636. On a sphere whose surface is 600 sq. ft. the area of a lune

is 200 sq. ft. What is the angle of the lune ?

Ex. 637. What is the area of a spherical triangle whose angles are,

respectively, 80°, 100°, and 130°, if the surface of the sphere is 100 sq. ft.?

Ex. 638. What is the area of a spherical triangle on a sphere whose

radius is 30 yd., if the angles of the triangle are, respectively, 120°, 130",

and 140° ?

Ex. 639. If the volume of a sphere is given 972 cu. ft., what is the

area of a spherical triangle whose angles are, respectively, 140°, 150°, and

160°?

Ex. 640. What is the area of the zone whose altitude is 12 ft. on a

sphere whose radius is 20 ft. ?

Ex. 641. What part of the surface of the sphere is a zone whose

altitude is one-third the diameter ?

Ex. 642. If the radius of the earth be 4000 mi. and the altitude of

the torrid zone 3200 mi., what part of the surface of the earth is the

torrid zone ?
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Ex. 643. The sides of a spherical triangle are 80°, 110°, and 120°.

What is the area of its polar triangle, the surface of the sphere being 144

sq. ft. ?

Ex. 644. Find the area of the zone of a sphere of radius JB, illumi-

nated by a light at a distance d from the surface of the sphere.

Ex. 645. At what distance from the surface of a sphere whose radius

is 20 ft. must a light be placed so as to illuminate one-eighth its surface ?

Ex. 646. What is the area of a spherical pentagon whose angles are,

respectively, 80°, 100°, 130°, 150°, and 160°, on a sphere whose radius is

18 ft. ?

Ex. 647. If a light 20 ft. from the surface of a sphere illuminates one-

eighth its surface, what is the volume of the sphere ?

Ex. 648. A ball 3 in. in diameter is dropped into a conical glass 8 in.

high and 6 in. in diameter at the top. What part of the volume of the

glass does tLe ball occupy ?

Ex. 649. What is the area of the surface of a spherical polygon of

four sides, the angles being, respectively, 125°, 135°, 145°, and 155°, the

diameter of the sphere being 80 ft. ?

Ex. 650. What is the area of the section 8 in. from the center of a

sphere whose radius is 17 in. ?

Ex. 651. Find the volume of a spherical segment of one base which

is 21 in. from the center of the sphere whose radius is 29 in.

Ex. 652. The altitude of a zone is 6 ft. and its area 30 sq. ft. Find

the ai'ea of a lune whose angle is GO^ on the same sphere.

Ex. 653. If the angle of a lune is 72"" and equal to a zone with alti-

tude 4 ft. on the same sphere, what is the diameter of the sphere ?

Ex. 654. If a sphere is divided into two segments, the altitude of one

being 2 ft. and the other 4 ft., what is the ratio of their volumes ?

Ex. 665. The angles of a spherical triangle are, respectively, 130",

135°, 140° ; its area is equivalent to that of a lune on the same sphere

whose angle is bow many degrees ?

Ex. 656. Considering the moon as a sphere of diameter of 2160 mi.,

and whose surface as 240,000 mi. from the earth, what part of the surface

of the moon can be seen ?

Ex. 657. In a sphere whose radius is B, what is the altitude of the

zone whose area is equal to the area of a great circle of the sphere ?
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Ex. 658. If a zone of one base is the mean proportional between the

remainder of the surface of the sphere and the entire surface of the

sphere, what is the distance of the base of the zone from the center of

the sphere ?

Ex. 659. A spherical triangle is one-tenth the area of the surface of

the sphere. Two of its angles are right angles. How many degrees in

the third angle ?

Ex. 660. What fraction of the surface of the sphere is the spherical

triangle whose angles are 100°, 105°, and 115°, respectively?

Ex. 661. What is the ratio of the area of a lune whose angle is 100°

to that of an equiangular triangle on the same sphere, each of whose

angles is 100° ?

Ex. 662. The angles of a spherical quadrilateral are, respectively,

120°, 130°, 140°, 150°. Find the angle of an equivalent lune on the same

sphere.

Ex. 663. • The volume of a sphere is to the volume of the circumscribed

cube as v is to 6.

Ex. 664. The diameters of two spheres are to each other as 7 to 8

What is the ratio of their volumes ?

Ex. 665. Prove that the volume of a sphere is two-thirds the volume

of the circumscribing cylinder.

Ex. 666. Prove that the surface of a sphere is two-thirds the entire

surface of the circumscribing cylinder.
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