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PREFACE TO PART I.

TN the following work I have aimed at writing a

-*-
working text-book on Statics for the use of Junior

Students.

Throughout the book will be found a large number

of examples ;
most of them, with the exception of

many of those at the end of the Chapter on Friction

and the Miscellaneous Examples at the end of the

volume, are of an easy type.

I have tried to make the book complete as far as

it goes; it is suggested, however, that the student

should, on the first reading of the subject, omit every-

thing marked with an asterisk.

I must express my obligations to my friend

Mr H. C. Eobson, M.A., Fellow and Lecturer of

Sidney Sussex College, Cambridge, for his kindness

in reading through the proof-sheets, and for many
suggestions that he has made to me.

Any corrections of errors, or hints for improvement
will be thankfully received.

S. L. LONEY.
Barnes, S.W.

December, 1890.



PEEFACE TO THE TENTH EDITION.

THE
book has been somewhat altered, and I hope

improved, for this edition, and the type entirely

re-set. Graphic solutions have been introduced much

earlier, and more use has been made of graphic methods

throughout the book. More experimental work has also

been introduced.

The chapter on Work has been placed earlier, and

much greater stress has been laid upon the Principle of

Work.

Sundry somewhat long analytical proofs have been

relegated to the last chapter, and here I have not

scrupled to introduce alternative proofs involving the

use of the Differential Calculus.

For ten of the new figures in this book I am much
indebted to the kindness and courtesy of Dr R. T.

Glazebrook, who allowed me to use the blocks prepared
for his Statics. Most of these figures have the additional

merit of having been drawn from actual apparatus in

use at the Cavendish Laboratory at Cambridge.

S. L. LONEY.

KoYAl. HoLLOWAY CoLliEGE

Eng^efield Gkeen, Subbey.

July 23rd, 1906.
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STATICS.

CHAPTER I.

INTRODUCTION.

1. A Body is a portion of matter limited in every

direction.

2. Force is anything which changes, or tends to

change, the state of rest, or uniform motion, of a body.

3. Rest. A body is said to be at rest when it does

not change its position with respect to surrounding objects.

4. Statics is the science which treats of the action

of forces on bodies, the forces being so arranged that the

bodies are at rest.

The science which treats of the action of force on bodies

in motion is called Dynamics.
In the more modern system of nomenclature which is gradually

gaining general acceptance, the science which treats of the action of

force on bodies is called Dynamics, and it has two subdivisions,
Statics and Kinetics, treating of the action of forces on bodies which
are at rest and in motion respectively.

5. A Particle is a portion of matter which is in-

definitely small in size, or which, for the purpose of our

investigations, is so small that the distances between its

different parts may be neglected.

L. S. 1
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A body may be regarded as an indefinitely large number
of indefinitely small portions, or as a conglomeration of

particles.

6. A Rigid Body is a body whose parts always

preserve an invariable position with respect to one another.

This conception, like that of a particle, is idealistic.

In nature no body is perfectly rigid. Every body yields,

perhaps only very slightly, if force be applied to it. If a

rod, made of wood, have one end firmly fixed and the other

end be pulled, the wood stretches slightly if the rod be

made of iron the deformation is very much less.

To simplify our enquiry we shall assume that all the

bodies with which we have to deal are perfectly rigid.

7. Equal Forces. Two forces are said to be equal

when, if they act on a particle in opposite directions, the

particle remains at rest.

8. Mass. The mass of a body is the quantity of

matter in the body. The unit of mass used in England is

a pound and is defined to be the mass of a certain piece of

platinum kept in the Exchequer Office.

Hence the mass of a body is two, three, four... lbs.,

when it contains two, three, four... times as much matter

as the standard lump of platinum.

In France, and other foreign countries, the theoretical

unit of mass used is a gramme, which is equal to about

15*432 grains. The practical unit is a kilogramme (1000

grammes), which is equal to about 2*2046 lbs.

9. Weight. The idea of weight is one with which

everyone is familiar. We all know that a certain amount

of exertion is required to prevent any body from falling to

the ground. The earth attracts every body to itself with
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a force which, as we shall see in Dynamics, is proportional

to the mass of the body.

The force with which the earth attracts any body to

itself is called the weight of the body.

10. Measurement of Force. "We shall choose, as our

unit of force in Statics, the weight of one pound. The unit

of force is therefore equal to the force which would just

support a mass of one pound when hanging freely.

We shall find in Dynamics that the weight of one

pound is not quite the same at different points of the

earth's surface.

In Statics, however, we shall not have to compare forces

at different points of the earth's surface, so that this variation

in the weight of a pound is of no practical importance ;
we

shall therefore neglect this variation and assume the weight
of a pound to be constant.

11. In practice the expression
"
weight of one pound

"

is, in Statics, often shortened into "one pound." The

student will therefore understand that "a force of 10 lbs."

means "a force equal to the weight of 10 lbs."

12. Forces represented by straight lines. A force will

be completely known when we know
(i)

its magnitude,

(ii)
its direction, and

(iii)
its point of application, i.e. the

point of the body at which the force acts.

Hence we can conveniently represent a force by a

straight line drawn through its point of application; for

a straight line has both magnitude and direction.

Thus suppose a straight line OA represents a force,

equal to 10 lbs. weight, acting at a point 0. A force of

5 lbs. weight acting in the same direction would be repre-
sented by 0, where B bisects the distance OA, whilst a

12
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force, equal to 20 lbs. weight, would be represented by OC,
where OA is produced till AC equals OA.

An arrowhead is often used to denote the direction in

which a force acts.

13. Subdivisions of Force. There are three different

forms under which a force may appear when applied to a

mass, viz. as
(i)

an attraction, (ii)
a tension, and

(iii)
a

reaction.

14. Attraction. An attraction is a force exerted by
one body on another without the intervention of any
visible instrument and without the bodies being necessarily

in contact. The only example we shall have in this book

is the attraction which the earth has for every body ;
this

attraction is (Art. 9) called its weight.

15. Tension. If we tie one end of a string to any

point of a body and pull at the other end of the string, we

exert a force on the body ;
such a force, exerted by means

of a string or rod, is called a tension.

If the string be light [i.e.
one whose weight is so small

that it may be neglected] the force exerted by the string is

the same throughout its length.

For example, if a weight W be

supported by means of a light

string passing over the smooth

edge of a table it is found that the

same force must be applied to the

T

W
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string whatever be the point, A, 2>, or C of the string at

which the force is applied.

Now the force at A required to support the weight

is the same in each case
;
hence it is clear that the effect

at A is the same whatever be the point of the string to

which the tension is applied and that the tension of the

string is therefore the same throughout its length.

Again, if the weight W be sup-

ported by a light string passing round

a smooth peg A, it is found that the

same force must be exerted at the other

end of the string whatever be the

direction (AB, AC, or AD) in which

the string is pulled and that this force

is equal to the weight W.

[These forces may be measured by attaching the free

end of the string to a spring-balance.]

Hence the tension of a light string passing round a

smooth peg is the same throughout its length.

If two or more strings be knotted together the tensions

are not necessarily the same in each string.

The student must carefully notice that the tension of a string is

not proportional to its length. It is a common error to suppose that

the longer a string the greater is its tension ; it is true that we can
often apply our force more advantageously if we use a longer piece of

string, and hence a beginner often assumes that, other things being

equal, the longer string has the greater tension.

16. Reaction. If one body lean, or be pressed, against

another body, each body experiences a force at the point of

contact
;
such a force is called a reaction.

The force, or action, that one body exerts on a second

body is equal and opposite to the force, or reaction, that

the second body exerts on the first.
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This statement will be found to be included in Newton's

Third Law of Motion [Part II., Art. 73].

Examples. If a ladder lean against a wall the force

exerted by the end of the ladder upon the wall is equal and

opposite to that exerted by the wall upon the end of the

ladder.

If a cube of wood is placed upon a table the force which

it exerts upon the table is equal and opposite to the force

which the table exerts on it.

17. Equilibrium. When two or more forces act

upon a body and are so arranged that the body remains at

rest, the forces are said to be in equilibrium.

18. Introduction, or removal, of equal and opposite

forces. We shall assume that if at any point of a rigid

body we apply two equal and opposite forces, they will

have no effect on the equilibrium of the body; similarly,

that if at any point of a body two equal and opposite

forces are acting they may be removed.

19. Principle of the Transmissibility of Force. If a

force act at any point of a rigid body, it may be considered

to act at any other point in its line of action provided that

this latter point be rigidly connected with the body.

Let a force F act at a point A of a body in a direction

AX. Take any point B in AX and at B introduce two
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equal and opposite forces, each equal to F, acting in the

directions BA and BX
;
these will have no effect on the

equilibrium of the body.

The forces F acting at A in the direction AB, and F at

B in the direction BA are equal and opposite; we shall

assume that they neutralise one another and hence that

they may be removed.

We have thus left the force F at B acting in the

direction BX and its effect is the same as that of the

original force F at A.

The internal forces in the above body would be different

according as the force F is supposed applied at A or B
;

of the internal forces, however, we do not treat in the

present book.

20. Smooth bodies. If we place a piece of smooth

polished wood, having a plane face, upon a table whose top

is made as smooth as possible we shall find that, if we

attempt to move the block along the surface of the table,

some resistance is experienced. There is always some

force, however small, between the wood and the surface

of the table.

If the bodies were perfectly smooth there would be

no force, parallel to the surface of the table, between the

block and the table; the only force between them would

be perpendicular to the table.

Def. When two bodies, which are in contact, are

perfectly smooth the force, or reaction, between them is

perpendicular to their common surface at the point of

contact.



CHAPTER II.

COMPOSITION AND RESOLUTION OF FORCES.

21. Suppose a flat piece of wood is resting on a

smooth table and that it is pulled by means of three strings

attached to three of its corners, the forces exerted by the

strings being horizontal
;

if the tensions of the strings be

so adjusted that the wood remains at rest it follows that

the three forces are in equilibrium.

Hence two of the forces must together exert a force

equal and opposite to the third. This force, equal and

opposite to the third, is called the resultant of the first two.

22. Resultant. Def. If two or moreforces P, Q,

S. . . act upon a rigid body and if a single force, R, can be

found whose effect upon tlie body is tlie same as that of tlie

forces P, Q, S... this single force R is called tlie resultant of
tlie oilier forces and the forces P} Q, S... are called tlie com-

ponents of R.

It follows from the definition that if a force be applied

to the body equal and opposite to the force R, then the

forces acting on the body will balance and the body be in

equilibrium ; conversely, if the forces acting on a body
balance then either of them is equal and opposite to the

resultant of the others.
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23. Resultant offorces acting in the same straigM line.

If two forces act on a body in the same direction their

resultant is clearly equal to their sum
j

thus two forces

acting in the same direction, equal to 5 and 7 lbs. weight

respectively, are equivalent to a force of 12 lbs. weight

acting in the same direction as the two forces.

If two forces act on a body in opposite directions their

resultant is equal to their difference and acts in the direction

of the greater; thus two forces acting in opposite directions

and equal to 9 and 4 lbs. weight respectively are equivalent

to a force of 5 lbs. weight acting in the direction of the

first of the two forces.

24. When two forces act at a point of a rigid body in

different directions their resultant may be obtained by
means of the following

Theorem. Parallelogram of Forces. If tivo

forces, acting at a point, be represented in magnitude and

direction by the hvo sides of a parallelogram drawnfrom one

of its angular points, their resultant is represented both in

magnitude and direction by the diagonal of the parallelogram

passing through that angular point.

This fundamental theorem of Statics, or rather another

form of it, viz. the Triangle of Forces (Art. 36), was first

enunciated by Stevinus of Bruges in the year 1586. Before

his time the science of Statics rested on the Principle of

the Lever as its basis.

In the following article we shall give an experimental

proof; a more formal proof will l>e found in the last chapter.

In Art. 72 of Part II. of this book will be found a proof

founded on Newton's Laws of Motion.

25. Experimental proof. Let F and G be two

light pulleys attached to a fixed support; over them let
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there pass two light strings tied together at 0, and carrying

scale-pans L and M at their other ends.

A second string is knotted at and carries a third

scale-pan N.

Into these scale-pans are placed known weights, and the

whole system is allowed to take up a position of equilibrium.

Let the weights in the scale-pans, together with the weights
of the scale-pans themselves, be P, Q and R lbs. respectively.

On a blackboard, or a piece of paper, conveniently

placed behind the system draw the lines OF, 00, ON as in

the figure.
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Taking some convenient scale (say three inches, or less,

per one lb.) mark off OA, OB, and OB to represent P, Q,

and R lbs. Complete the parallelogram OACB. Then OC
will be found to be equal in length, and opposite in direction,

to OB.

But, since P, Q, and R balance, therefore R must be

equal and opposite to the resultant of P and Q.

Therefore the resultant of P and Q is represented by
0C

}
i.e. by the diagonal of the parallelogram whose sides

represent P and Q.

This will be found to be true whatever be the relative

magnitudes of P, Q, and R, provided only that one of them

is not greater than the sum of the other two.

In the figure P, Q, and R are taken respectively to be 4, 3, and
5 lbs. In this case, since 52=42+ 32

, the angle AOB is a right

angle.

"When the experiment is performed, it will probably be

found that the point may be moved into one of several

positions close to one another. The reason for this is that

we cannot wholly get rid of the friction on the pivots of the

pulleys. The effect of this friction will be minimised, in

this and similar statical experiments, if the pulleys are of

fairly large diameter; aluminium pulleys are suitable be-

cause they can be made of comparatively large size and yet
be of small weight.

Apparatus of the solid type shewn in the above figure

is not necessary for a rough experiment. The pulleys F
and G may have holes bored through them through which

bradawls can be put ;
these bradawls may then be pushed

into a vertical blackboard.

The pulleys and weights of the foregoing experiment may be

replaced by three Salter's Spring Balances. Each of these balances

shews, by a pointer which travels up and down a graduated face, what
force is applied to the hook at its end.
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Three light strings are knotted at O and attached to the ends of

the spring balances. The three balances are then drawn out to shew-

any convenient tensions, and laid on a horizontal table and fixed to it

by hooks or nails as shewn. The readings of the balances then give
the tensions P, Q, and B of the three strings. Just as in the

0^ V
N C

preceding experiment we draw lines OA, OB, and OC to represent

P, Q, and B on any scale that is convenient, and then verify that OC
is equal in magnitude and exactly opposite in direction to OD, the

diagonal of the parallelogram of which OA and OB are adjacent
sides.

26. To find the direction and magnitude of the re-

sultant of two forces, we have to find the direction and

magnitude of the diagonal of a parallelogram of which the

two sides represent the forces.

Ex. 1. Find the resultant of forces equal to 12 and 5 lbs. weight

respectively acting at right angles.

B ^C
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Let OA and OB represent the forces so that OA is 12 units of

length and OB is 5 units of length; complete the rectangle OACB.

Then OC2=0^'2 +^C2=122+ 52 =169. .-. 0C=13.

5
Also tanCO^=^ =

]

Hence the resultant is a force equal to 13 lbs. weight making with

the first force an angle whose tangent is y%, i.e. about 22 37'.

Ex. 2. Find the resultant of forces equal to the -weights of 5 and

3 lbs. respectively acting at an angle of 60.

Let OA and OB represent the forces, so that OA is 5 units and OB
3 units of length ; also let the angle AOB be 60.

Complete the parallelogram OACB and draw CD perpendicular to

OA. Then OC represents the required resultant.

Now AD=ACeosCAD=3cos60=%; OD:

Also DC=4Csin60=3'

and

OC= JoiP+DC*= \/^F+?= V49=7,

tnCOD= = *g=.SM.

Hence the resultant is a force equal to 7 lbs. weight in a direction

making with OD an angle whose tangent is *3997.

On reference to a table of natural tangents this angle is easily seen

to be about 21 47'.

27. The resultant, R, of two forces P and Q acting at

an angle a may be easily obtained by Trigonometry.

For let OA and OB represent the forces P and Q acting

at an angle a. Complete the parallelogram OACB and draw

CD perpendicular to OA, produced if necessary.

Let R denote the magnitude of the resultant.
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Then OD = OA +AD = 04 + ^4(7 cos 2)^1(7

=P+ Q cos BOD=P+ Q cos a.

[If D fall between O and A, as in the second figure, we have

OD=OA -DA= OA -AC cosDAC=P-Q cos (180- a)=P+Q cos a.]

P u Q ^
p D

Also DC =AC sinDAC=Q sin a.

:. fi2 =OC* = OD* + CD2 = (P + Q cos a)
2 + (Q sin a)

2

= P2 + Q2 + 2PQ COS a.

.-. R = >/p2+ Q2+ 2PQ cos a
(i).

ai /v/m DC () sin aAlso t&nCOD = -^^i = ~
(ii).OD P+Qcosa

These two equations give the required magnitude and
direction of the resultant.

Cor. 1. If the forces be at right angles, we have a=90, so that

JR=VP2+ g2
, and tan COA=Q

Cor. 2. If the forces be each equal to P, we have

B=VP8
(l + l + 2cosa) = PV2(l + cosa)

=rP /y/2.2C0S
2

|=2PC0s|,

and tan COA m Psina
P+Pcosa

2
1* u.

sin - cos ^

2 cos2 -

= tan
2'

so that the resultant of two equal forces bisects the angle between
them; this ia obviou3 also from first principles.
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EXAMPLES. I.

1. In the following seven examples P and Q denote two com-

ponent forces acting at an angle o and P denotes their resultant. [The
results should also be verified by a graph and measurement.]

(i).
IfP=24

(ii). IfP=13

(hi). IfP= 7

(iv). IfP= 5

(v). IfP= 3

(vi). IfP=13

(vii). IfP= 5

<2= 7; o= 90; find R.

R=U; a= 90; find Q.

Q= 8; a= 60; find P.

Q= 9; a= 120; find P.

Q= 5;P= 7; find a.

Q= 14; a=sin-1
^|; find P.

P= 7; a= 60; find Q.

2. Find the greatest and least resultants of two forces whose
magnitudes are 12 and 8 lbs. weight respectively.

3. Forces equal respectively to 3j 4, 5, and 6 lbs. weight act on a

particle in directions respectively north, south, east, and west; find

the direction and magnitude of their resultant.

4. Forces of 84 and 187 lbs. weight act at right angles ; find their

resultant.

5. Two forces whose magnitudes are P and P/\/2 lbs. weight act
on a particle in directions inclined at an angle of 135 to each other ;

find the magnitude and direction of the resultant.

6. Two forces acting at an angle of 60 have a resultant equal to

2^/3 lbs. weight ;
if one of the forces be 2 lbs. weight, find the other

force.

7. Find the resultant of two forces equal to the -weights of 13 and

11 lbs. respectively acting at an angle whose tangent ia -^. Verify by a

drawing.

j 8. Find the resultant of two forces equal to the weights of 10 and
9 lbs. respectively acting at an angle whose tangent is . Verify by a

drawing.

9. Two equal forces act on a particle; find the angle between
them when the square of their resultant is equal to three times their

product.

si5y
Find tlie ^aagaitude of two forces such that, if they act at

rigrrtrangles, their resultant is ^/lO lbs. weight, whilst when they act at
an angle of 60 their resultant is ^\% lbs. weight.



16 STATICS Exs. I

11 Find the angle between two equal forces P when their

p
resultant is (1) equal to P, (2) equal to .

12. At what angle do forces, equal to (A + B) and (A -B), act so

that the resultant may be Ja^+B2?

13. Two given forces act on a particle; find in what direction a
third force of given magnitude must act so that the resultant of the

three may be as great as possible.

14. By drawing alone solve the following :

(i). IfP=10; Q = 15; a= 37; find P.

(ii). IfP= 9; g= 7; o=133; find P.

(Hi). IfP= 7; Q= 5; P=10; find a.

(iv). IfP=7-3; P=8-7; a= 65; find Q.

28. Two forces, given in magnitude and direction, have

only one resultant
;
for only one parallelogram can be con-

structed having two lines OA and OB (Fig. Art. 27) as

adjacent sides.

29. A force may be resolved into two components in

ail infinite number of ways ;
for an infinite number of

parallelograms can be constructed having OC as a diagonal

and each of these parallelograms would give a pair of such

components.

30. The most important case of the resolution of forces

occurs when we resolve a force into two components at

right angles to one another.

Suppose we wish to resolve a force F, represented by

OC, into two components, one of which is in the direction

OA and the other is perpendicular to OA.

Draw CM perpendicular to OA and complete the paral-

lelogram OMCN. The forces represented by OM and ON
have as their resultant the force OC, so that OM and ON
are the required components.
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Let the angle AOC be a.

C

o

Then OM = OC eos a = F cos a,

and 0N=MO = OC sin a = Fain a.

[If the point M lie in OA produced backwards, as in the second

figure, the component of F in the direction OA
= - OM= - OC cos COM= - OC cos (180

-
o) = OC cos a=Fcos a.

Also the component perpendicular to OA
=ON=MC= OC sin COM=Fsin a.]

Hence, in each case, the required components are

^cosa and i^sina.

Thus a force equal to 10 lbs. weight acting at an angle of 60 with

the horizontal is equivalent to 10 cos 60 (= 10 x = 5 lbs. weight) in a

horizontal direction, and 10 sin 60
(
= 10 x

^-
= 5 x 1-732= 8-66 lbs.

weight) in a vertical direction.

31. Def. The Resolved Part of a given force in a

given direction is the component in the given direction

which, with a component in a direction perpendicular to the

given direction, is equivalent to the given force.

Thus in the previous article the resolved part of the

force F in the direction OA is F cos a. Hence
The Resolved Part of a given force in a given direction is

obtained by multiplying the given force by the cosine of the

angle between the given force and the given direction.

32. A force cannot produce any effect in a direction

perpendicular to its own line of action. For (Fig. Art. 30)

there is no reason why the force ON should have any

tendency to make a particle at move in the direction OA

\* a 2
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rather than to make it move in the direction AO produced ;

hence the force ON cannot have any tendency to make the

particle move in either the direction OA or AO produced.

For example, if a railway carriage be standing at rest

on a railway line it cannot be made to move along the rails

by any force which is acting horizontally and in a direction

perpendicular to the rails.

33. The resolved part of a given force in a given

direction represents the whole effect of the force in the given

direction. For (Fig. Art. 30) the force OC is completely

represented hy the forces ON and OM. But the force ON
has no effect in the direction OA. Hence the whole effect

of the force F in the direction OA is represented by OM,
i.e. by the resolved part of the force in the direction OA.

34. A force may be resolved into two components in any two

assigned directions.

Let the components of a force F, represented by OC, in the

directions OA and OB be required and let the angles A OC and COB
be a and

fi respectively.

Draw CM parallel to OB to meet OA in M and complete the

parallelogram OMCN.
Then OM and ON are the required components.

Since MC and ON are parallel, we have

OCM=p; also OMC= 180 - CMA = 180 -
(a + /3) .

Since the sides of the triangle OMC are proportional to the sines

of the opposite angles, we have

.
0M -J1. 0C

BinOGM
"
iinMOC

~
sinOMC
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OM^_MC__ F
sin 8 sin a

~~

sin (a+ 8)
*

Hence the required components are

sin 8 sin a
.F j~s andF-

sin(a + /3) sin(a+ /9)"

35. The student must carefully notice that the com-

ponents of a force in two assigned directions are not the

same as the resolved parts of the forces in these directions.

For example, the resolved part of F in the direction OA is,

by Art. 30, Fcosa.

EXAMPLES. II.

1. A force equal to 10 lbs. weight is inclined at an angle of 30 to
the horizontal ; find its resolved parts in a horizontal and vertical
direction respectively.

2. Find the resolved part of a force P in a direction making (1) an

angle of 45, (2) an angle equal to cos-1 (^f) with its direction.

3. A truck is at rest on a railway line and is pulled by a hori-
zontal force equal to the weight of 100 lbs. in a direction making an
angle of 60 with the direction of the rails

; what is the force tending
to urge the truck forwards ?

y 4. Eesolve a force of 100 lbs. weight into two equal forces acting
at an angle of 60 to each other. Verify by a graph and measurement.

*- 5. Eesolve a force of 50 lbs. weight into two forces making angles
of 60 and 45 with it on opposite sides. Verify by a graph and
measurement.

6. Find the components of a force P along two directions makingk
angles of 30 and 45 with P on opposite sides.

7. If a force P be resolved into two forces making angles of 45

and 15 with its direction, shew that the latter force is ~ P.

8. Find a horizontal force and a force inclined at an angle of 60
with the vertical whose resultant shall be a given vertical force F.

9. If a force be resolved into two component forces and if one

component be at right angles to the force and equal to it in magnitude,
find the direction and magnitude of the other component.

22
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10. A force equal to the weight of 20 lbs. acting vertically up-
wards is resolved into two forces, one being horizontal and equal to

the weight of 10 lbs. ; what is the magnitude and direction of the
other force?

11. By a graphic construction and measurement resolve a force

equal to 35 lbs. wt. into components making angles of 98 and 40 with
it on opposite sides.

36. Triangle of Forces. If three forces, acting at

a point, be represented in magnitude and direction by the

sides of a triangle, taken in order, they will be in equi-

librium.

Let the forces P, Q, and B acting at the point be

represented in magnitude and direction by the sides AB,

Dr
\

B

BC, and CA of the triangle ABC; they shall be in equi-

librium.

Complete the parallelogram ABCJ).

The forces represented by BC and AB are the same,

since BC and AD are equal and parallel.

Now the resultant of the forces AB and AD, is, by the

parallelogram of forces, represented by AC.

Hence the resultant of AB, BC, and CA is equal to the

resultant of forces AC and CA, and is therefore zero.

Hence the three forces P, Q, and R are in equilibrium.

Cor. Since forces represented by AB, BC, and CA
are in equilibrium, and since, when three forces are in

equilibrium, each is equal and opposite to the resultant

of the other two, it follows that the resultant of AB and

BC is equal and opposite to CA, i.e. their resultant is

represented by AC.
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Hence the resultant of two forces, acting at a point

and represented by the sides AB and BC of a triangle,

is represented by the third side AC.

37. In the Triangle of Forces the student must carefully note
that the forces must be parallel to the sides of a triangle taken in

order, i.e. taken the same way round.

For example, if the first force act in the direction AB, the second
must act in the direction BC, and the third in the direction GA ;

if the second force were in the direction CB, instead of BC, the forces

would not be in equilibrium.

The three forces must also act at a point ; if the lines of action of

the forces were BC, CA, and AB they would not be in equilbrium ; for

the forces AB and BC would have a resultant, acting at B, equal and
parallel to AG, The system of forces would then reduce to two equal
and parallel forces acting in opposite directions, and, as we shall

see in a later chapter, such a pair of forces could not be in

equilibrium.

38. The converse of the Triangle of Forces is also

true, viz. that If three forces acting at a point be in equi-

librium they can be represented in magnitude and direction

by the sides of any triangle which is draum so as to have its

sides respectively parallel to the directions of the forces.

Let the three forces P, Q, and R, acting at a point t

be in equilibrium. Measure off lengths OL and OAI along
the directions of P and Q to represent these forces respec-

tively.

Complete the parallelogram OLNM and join ON.
Since the three forces P, Q, and R are in equilibrium,

each must be equal and opposite to the resultant of the
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other two. Hence R must be equal and opposite to the

resultant of P and Q, and must therefore be represented

by NO. Also LN is equal and parallel to OM.

Hence the three forces P, Q, and R are parallel and

proportional to the sides OL, LN, and NO of the triangle

OLN
Any other triangle, whose sides are parallel to those of

the triangle OLN, will have its sides proportional to those

of OLN and therefore proportional to the forces.

Again, any triangle, whose sides are respectively per-

pendicular to those of the triangle OLN, will have its sides

proportional to the sides of OLN and therefore proportional

to the forces.

39. The proposition of the last article gives an easy

graphical method of determining the relative directions of

three forces which are in equilibrium and whose magni-
tudes are known. We have to construct a triangle whose

sides are proportional to the forces, and this, by Euc. I. 22,

can always be done unless two of the forces added together

are less than the third.

40. Lami's Theorem. If three forces acting on a

2>article keep it in equilibrium, each is proportional to the

sine of the angle between the other two.

Taking Fig., Art 38, let the forces P, Q, and R be in

equilibrium. As before, measure off lengths OL and OM to

represent the forces P and Q, and complete the parallelo-

gram OLNM. Then NO represents R.

Since the sides of the triangle OLN are proportional to

the sines of the opposite angles, we have

OL LN_ NO
sinLNO

~
sinLON

~
smOLN'
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But

sin LNO = sinNOM= sin (180
- QOR) = sin QOR,

sin LON= sin (180
-
ZOff) sin ROP,

and sin 0LN= sin (180
- PCX?) = sin i>0#.

6> OM NO
sin #0#

_
sin ROP

~
sin P0#'

P _#_ H
sin 2?OP

Also

Hence

sin QOR sin POQ

41. Polygon of Forces. 7/* any number offorces,

acting on a particle, be represented, in magnitude and

direction, by tlie sides of a polygon, taken in order, the

forces shall be in equilibrium.

P B

Let the sides Ah, BC, CD, DE, EF and FA of the

polygon ABCDEF represent the forces acting on a particle

0. Join AC, AD and AE.

By the corollary to Art. 36, the resultant of forces AB
and BC is represented by AC.

Similarly the resultant of forces AC and CD is repre-

sented by AD ;
the resultant of forces AD and DE by AE ',

and the resultant of forces AE and EF by AF.

Hence the resultant of all the forces is equal to the

resultant of AF and FA, i.e. the resultant vanishes.
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Hence the forces are in equilibrium.

A similar method of proof will apply whatever be the

number of forces. It is also clear from the proof that the

sides of the polygon need not be in the same plane.

The converse of the Polygon of Forces is not true ; for the ratios of

the sides of a polygon are not known when the directions of the sides

are known. For example, in the above figure, we might take any
point A' on AB and draw A'F' parallel to AF to meet EF in F' ; the

new polygon A'BCDEF' has its sides respectively parallel to those of

the polygon ABCDFF but the corresponding sides are clearly not

proportional.

42. The resultant of two forces, acting at a point in

directions OA and OB and represented in magnitude by
X . OA and

fx . OB, is represented by (X +
/x) . 00, where G is

a point in AB such that X . CA =
fx . CB.

For let G divide the line AB, such that

X.CA^ll.GB.

E

Complete the parallelograms OCAD and OGBE.

By the parallelogram of forces the force X . OA is

equivalent to forces represented by X . OG and X . OD.

Also the force fx . OB is equivalent to forces represented

by fx,
. OG and fx . OB.

Hence the forces X . OA and fx . OB are together equiva-

lent to a force (X + fx) OG together with forces X . OB and

a. OB.
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But, (since X . OD = X.CA =
l
i. CB = fi. OE) these two

latter forces are equal and opposite and therefore are in

equilibrium.

Hence the resultant is (\ + /u.)
. OC.

Cor. The resultant of forces represented by OA and

OB is 20C, where C is the middle point of AB.

This is also clear from the fact that OC is half the

diagonal OD of the parallelogram of which OA and OB are

adjacent sides.

EXAMPLES. HI.

1. Three forces acting at a point are in equilibrium; if they
make angles of 120 with one another, shew that they are equal.

If the angles are 60, 150, and 150, in what proportions are the

forces ?

2. Three forces acting on a particle are in equilibrium ; the angle
between the first and second is 90 and that between the second and
third is 120 ; find the ratios of the forces.

3. Forces equal to IP, 5P, and 8P acting on a particle are in

equilibrium; find, by geometric construction and by calculation, the

angle between the latter pair of forces.

4. Forces equal to 5P, 12P, and 13P acting on a particle are in

equilibrium; find by geometric construction and by calculation the

angles between their directions.

5. Construct geometrically the directions of two forces 2P and
3P which make equilibrium with a force of 4P whose direction is

given.

6. The sides AB and AG of a triangle ABC are bisected in D and
E\ shew that the resultant of forces represented by BE and DC is

represented in magnitude and direction by -|PC

7. P is a particle acted on by forces represented by X . AP and
X . PB where A and B are two fixed points ; shew that their resultant
is constant in magnitude and direction wherever the point P may be.

8. ABCD\is a parallelogram ; a particle P is attracted towards A
and G by forces which are proportional to PA and PC respectively and
repelled from B and D by forces proportional to PB and PD ; shew
that P is in equilibrium wherever it is situated.

The following are to be solved by geometric construction. In
each case P and Q are two forces inclined at an angle a and JB is their

resultant making an angle 6 with P.
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9. P= 251bs. wt., Q=201bs. wt. and = 35; find R and a.

10. P=50 kilog., Q=60 kilog. and P = 70 kilog. ; find a and 0.

11. P=30, P = 40 and a= 130; find Q and 0.

12. P= 60, a= 75 and 6= 40 ; find Q and P.

13. P=60, P= 40 and 0=50; find Q and a.

14. P= 80, a= 55 and R= 100 ; find Q and 0.

15. A boat is being towed by means of a rope which makes an

angle of 20 with the boat's length; assuming that the resultant
reaction R of the water on the boat is inclined at 40 to the boat's

length and that the tension of the rope is equal to 5 cwt., find, by
drawing, the resultant force on the boat, supposing it to be in the
direction of the boat's length.

EXAMPLES. IV.

1. Two forces act at an angle of 120. The greater is represented

by 80 and the resultant is at right angles to the less. Find the latter.

2. If one of two forces be double the other and the resultant be

equal to the greater force, find the angle between the forces.

3. Two forces acting on a particle are at right angles and are

balanced by a third force making an angle of 150 with one of them .

The greater of the two forces being 3 lbs. weight, what must be the

values of the other two ?

4. The resultant of two forces acting at an angle equal to -gds
of a right angle is perpendicular to the smaller component. The
greater being equal to 30 lbs. weight, find the other component and
the resultant.

5. The magnitudes of two forces are as 3 : 5, and the direction of

the resultant is at right angles to that of the smaller force ; compare
the magnitudes of the larger force and of the resultant.

6. The sum of two forces is 18, and the resultant, whose direction

is perpendicular to the lesser of the two forces, is 12; find the magni-
tude of the forces.

7. If two forces P and Q act at such an angle that P=P, shew
that, if P be doubled, the new resultant is at right angles to Q.

8. The resultant of two forces P and Q is equal to *JSQ and
makes an angle of 30 with the direction of P ; shew that P is either

equal to, or is double of, Q.

9. Two forces equal to 2P and P respectively act on a particle ; if

the first be doubled and the second increased by 12 lbs. weight the

direction of the resultant is unaltered; find the value of P.
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10. The resultant of two forces P and Q acting at an angle is

equal to (2t + 1) >Jp~ + Q2
; when they act at an angle 90 -0, the

resultant is (2?-1)n/P*+Q
2

; prove that

m + l faoNT covert ,

11. The resultant of forces P and Q is R; if Q be doubled R is

doubled, whilst, if Q be reversed, R is again doubled
;
shew that

. P : Q : R :: SI2 : ^3 : J2.

12. If the resultant, R, of two forces P and Q, inclined to one
another at any given angle, make an angle with the direction of P,
shew that the resultant of forces (P+R) and Q, acting at the same

a

given angle, will make an angle - with the direction of (P+R).

13. Three given forces acting at a point are in equilibrium. If

one of them be turned about its point of application through a given
angle, find by a simple construction the resultant of the three, and, if

the inclination of the force continue to alter, shew that the inclination
of the resultant alters by half the amount.

14. Decompose a force, whose magnitude and line of action are

given, into two equal forces passing through two given points, giving
a geometrical construction, (1) when the two points are on the same
side of the force, (2) when they are on opposite sides.

15. Two given forces act at two given points of a body; if they
are turned round those points in the same direction through any two
equal angles, shew that their resultant will always pass through a
fixed point.

16. A, B, and C are three fixed points, and P is a point such
that the resultant of forces PA and PB always passes through C ; shew
that the locus of P is a straight line.

17. A given force acting at a given point in a given direction is

resolved into two components. If for all directions of the components
one remains of invariable magnitude, shew that the extremity of the
line representing the other lies on a definite circle.

18. Shew that the system of forces represented by the lines

joining any point to the angular points of a triangle is equivalent to
the system represented by straight lines drawn from the same point to
the middle points of the sides of the triangle.

19. Find a point within a quadrilateral such that, if it be acted
on by forces represented by the lines joining it to the angular points
of the quadrilateral, it will be in equilibrium.
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20. Four forces act along and are proportional to the sides of the

quadrilateral ABCD; three act in the directions AB, BC, and CD and
the fourth acts from A to D; find the magnitude and direction of

their resultant, and determine the point in which it meets CD.

21. The sides BC and DA of a quadrilateral ABCD are bisected

in F and H respectively ; shew that if two forces parallel and equal to

AB and DC act on a particle, then the resultant is parallel to HF and

equal to 2 . HF.

22. The sides AB, BC, CD, and DA of a quadrilateral ABCD are

bisected at E, F, G, andH respectively. Shew that the resultant of the
forces acting at a point which are represented in magnitude and
direction by EG ana HF is represented in magnitude and direction

by^C.

23. From a point, P, within a circle whose centre is fixed,

straight lines PA
1 , PA 2 , PA 3 , and PAi are drawn to meet the circum-

ference, all being equally inclined to the radius through P; shew
that, if these lines represent forces radiating from P, their result-

ant is independent of the magnitude of the radius of the circle.



CHAPTER III.

COMPOSITIONAND RESOLUTION OF FORCES (continued).

43. The sum of the resolved parts of two forces in

a given direction is equal to the resolved part of their re-

sultant in the same direction.

Let OA and OB represent the two forces P and Q, and

00 their resultant R, so that OACB is a parallelogram.

L N X

Let OX be the given direction ; draw AL, BM, and CN
perpendicular to OX and AT perpendicular to CN.

The sides of the two triangles OBM, ACT are respec-

tively parallel, and OB is equal to AC in magnitude;

,\ OM=AT^lN.
Hence ON=QL + IN=0L + OM.

But OL, OM, and ON represent respectively the resolved

parts of P, Q, and R in the direction OX.
Hence the theorem is proved.

The theorem may easily be extended to the resultant of

any number of forces acting at a point.
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44. To find the resultant of any number of forces

in one plane acting upon a particle.

Let the forces P, Q, R... act upon a particle at 0.

O X

Through draw a fixed line OX and a line OY&t right

angles to OX.

Let the forces P, Q, R, ... make angles a, /?, y... with

OX.

The components of the force P in the directions OX
and Y are, by Art. 30, P cos a and P sin a respectively ;

similarly, the components of Q are Q cos /? and $sin/?;

similarly for the other forces.

Hence the forces are equivalent to a component,

P cos a + Q cos (3 + R cos y. . . along OX,
and a component,

P sin a + Q sin {} + R sin y. . . along OF.

Let these components be X and Y respectively, and let

F be their resultant inclined at an angle 6 to OX.

Since F is equivalent to FcosO along OX, and i^sinfl

along Y, we have, by the previous article,

Fco&0=X. (1),

and F8w0=Y. (2).

Hence, by squaring and adding,

F*= X*+Y*.

Also, by division, tan0 =
-p.
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These two equations give F and 6, i.e., the magnitude

and direction of the required resultant.

Ex. 1. A particle is acted upon by three forces, in one plane, equal
to 2, 2^2, and 1 lbs. weight respectively ; the first is horizontal, the

second acts at 45 to the horizon, and the third is vertical ; find their

resultant.

Here X=2 + 2N/2cos45+0= 2 + 2V2 . -7o
= 4,

2^/2.-^
+ 1= 3.7=0 + 2^2 sin 45 + 1

Hence Poos 0=4; JFsin0=3;

f. 1^=^42+32=5, and tan 0= .

The resultant is therefore a force equal to 5 lbs. weight acting at

an angle with the horizontal whose tangent is
, i.e. 36 52'.

Ex. 2. A particle is acted upon by forces represented by P,
2P, 3*J3P, and 4P; the angles between the first and second, tlie

second and third, and the third and fourth are 60, 90, and 150

respectively. Shew that tlie resultant is a force P in a direction

iticlined at an angle of 120 to that of the first force.

In this example it will be a simplification if we take the fixed line

OX to coincide with the direction of the first force P; let XOX' and
YOY' be the two fixed lines at right angles.

The second, third, and fourth forces are respectively in the first,

second, and fourth quadrants, and we have clearly

P.OX=60; COX'= 30; and DOX=60.
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The first force has no component along OY.

The second force is equivalent to components 2Pcos60 and
2Psin60 along OX and OY respectively.

The third force is equivalent to forces

3^3? cos 30 and 3^/3Psin30
along OX' and OY respectively,

i.e. to forces - 3J3P cos 30 and 3JSP sin 30 along OX and OY.

So the fourth force is equivalent to 4Pcos60 and 4Psin60 along
OX and OY', i.e. to 4Pcos 60 and -4Psin60 along OX and OY.

Hence X=P+ 2P cos 60 - 8 /3P ooa 30 + 4P cos 60

=P+P^+2P= _2-
and 7= + 2P sin 60 + 3J3P sin 30 - 4P sin 60

= P^3+
3

-^P-4P.^ = ^P.
Henoe, if F be the resultant at an angle 6 with OX, we have

Y
and tan === -

/3= tan 120,
JL

so that the resultant is a force P at an angle of 120 with the first

force.

45. Graphical Construction. The resultant of

a system of forces acting at a point may also be obtained

by means of the Polygon of Forces. For, (Fig. Art. 41,)

forces acting at a point and represented in magnitude
and direction by the sides of the polygon ABCDEF are in

equilibrium. Hence the resultant of foroes represented by

AB, BC, CD, DE, and EF must be equal and opposite to

the remaining force FA, %e., the resultant must be repre-

sented by AF.

It follows that the resultant of forces P, Q, R, S, and T
acting on a particle may be obtained thus

;
take a point A

and draw AB parallel and proportional to P, and in

succession BC, CD, DE, and EF parallel and proportional

respectively to Q, R, S, and T; the required resultant will

be represented in magnitude and direction by the line AF.
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The same construction would clearly apply for any
number of forces.

Ex. Fourforces equal to 2, 2h , 1 and 3 kilogrammes wt. act along

straightlines OP, OQ, ORandOS,"suchtliat L POQ= 40, L QOR= 10Q,
and l ROS= 125; find their resultant in magnitude and direction.

:i25 O 2 P A ---...

'3

3

Draw AB parallel to OP and equal to 2 inches ; through B draw BC
parallel to OQ and equal to 2-5 inches, and then CD parallel to OR and

equal to 1 inch, and finally DE parallel to OS and equal to 3 inches.

On measurement we have AE equal to 2-99 inches and L BAE equal
to a little over 14.

Hence the resultant is 2*99 kilogrammes wt. acting at 14 to OP.

EXAMPLES. V.

[Questions 2, 3, 4, 5, and 8 are suitable for graphic solutions.
"\

1. Forces of 1, 2, and ^/3 lbs. weight act at a point A in

directions AP, AQ, and AR, the angle PAQ being 60 and PAR a

right angle; find their resultant.

2. A particle is acted on by forces of 5 and 3 lbs. weight which
are at right angles and by a force of 4 lbs. weight bisecting the angle
between them ; find the force that will keep it at rest.

3. Three equal forces, P, diverge from a point, the middle one

being inclined at an angle of 60 to each of the others. Find the
resultant of the three.

L. S. 3
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4. Three forces 5P, 10P, and 13P act in one plane on a particle,
the angle between any two of their directions being 120. Find the

magnitude and direction of their resultant.

5. Forces 2P, 3P, and 4P act at a point in directions parallel to

the sides of an equilateral triangle taken in order ; find the magnitude
and line of action of the resultant.

6. ForcesP
1 , P2 ,P3 , and P4 act on a particle O at the centre of a

square ABCD ; P1
and P2 act along the diagonals OA and OB, and

P3 and P4 perpendicular to the sides AB and BC. If

P
1 :P2 :P3 :P4 ::4:6?5:1,

find the magnitude and direction of their resultant.

7. ABCD is a square; forces of 1 lb. wt., 6 lbs. wt., and 9 lbs. wt.
act in the directions AB, A C, and AD respectively ; find the magnitude
of their resultant correct to two places of decimals.

8. Five forces, acting at a point, are in equilibrium; four of

them, whose respective magnitudes are 4, 4, 1, and 3 lbs. weight make,
in succession, angles of 60 with one another. Find the magnitude
of the fifth force. Verify by a drawing and measurement.

9. Four equal forces P, Q, B, and 8 act on a particle in one

plane ; the angles between P and Q, between Q and B, and between
R and 8 are all equal and that between P and S is 108. Find their

resultant.

10. Forces of 2, ^/S, 5, ,J3, and 2 lbs. wt. respectively act at

one of the angular points of a regular hexagon towards the five other

angular points ; find the direction and magnitude of the resultant.

11. Forces of 2, 3, 4, 5, and 6 lbs. wt. respectively act at an

angular point of a regular hexagon towards the other angular points
taken in order; find their resultant.

12. Shew that the resultant of forces equal to 7, 1, 1, and 3 lbs.

wt. respectively acting at an angular point of a regular^ pentagon
towards the other angular points, taken in order, is V71 lbs. wt.

Verify by a drawing and measurement.

13. Equal forces P act on an angular point of an octagon towards
each of the other angular points ; find their resultant.

By the use of trigonometrical Tables, or by a graphic construction
find the magnitude (to two places of decimals) and the direction (to
the nearest minute by calculation, and to the nearest degree by
drawing) of the resultant of

14. three forces equal to 11, 7, and 8 lbs. weight, making angles
of 18 18', 74 50', and 130 20* with a fixed line,
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15. four forces equal to 4, 3, 2, and 1 lb. weight, making angles

of 20, 40, 60, and 80 with a fixed line,

16. four forces equal to 8, 12, 15, and 20 lbs. weight, making

angles of 30, 70, 120 15', and 155 with a fixed line,

17. three forces equal to 85, 47, and 63 kilog. wt. acting along
lines OA, OB, and OC, where L AOB= 78 and L BOC=125.

46. To find the conditions of equilibrium of any
number offorces acting upon a particle.

Let the forces act upon a particle as in Art. 44.

If the forces balance one another the resultant must

vanish, i.e. F must be zero.

Hence X* + Fa = 0.

Now the sum of the squares of two real quantities

eannot be zero unless each quantity is separately zero;

.'. X=0, and Y= Q.

Hence, if the forces acting on a particle be in equi-

librium, the algebraic sum of their resolved parts in two

directions at right angles are separately zero.

Conversely, if the sum of their resolved parts in two

directions at right angles separately vanish, the forces are

in equilibrium.

For, in this case, both X and Y are zero, and therefore

F is zero also.

Hence, since the resultant of the forces vanishes, the

forces are in equilibrium.

47. When there are only three forces acting on a

particle the conditions of equilibrium are often most easily

found by applying Lami's Theorem (Art. 40).

32
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48. Ex. 1. A body of 65 lbs. weight is suspended by two strings
of lengths 5 and 12 feet attached to two points in the same horizontal
line wlwee distance apart is 13 feet; find the tensions of the strings.

Let AC and BC be the two strings, so that

AG=5it., BC=12ft., and ^B=13ft.

A D

Since 132= 122+ 52 , the angle ACB is a right angle.

Let the direction CE of the weight be produced to meet AB in D ;

also let the angle CBA be 0, so that

lACD=90- lBCD= iCBD= 0.

Let T
x
and T2 be the tensions of the strings. By Lami's theorem

we have
T

x
T

2
65

sin ECB
~

sin EGA
~

sin ACB '

y, ra _ 65
"'

sin BCD
~

sin 6
~

sin 906
'

.-. Tj= 65 cos 6, and T = 65 sin 0.

* BC 12 . . . AG
But cos 6 = r =

, and sin 6 = -7^=

.-. T^eO, and T
2=25 lbs. wt.

13'

Otherwise thus ; The triangle ACB has its sides respectively per-

pendicular to the directions of the forces Tlt T2 , and 65 ;

BC~CA~AB'
HP AC

;. r1
= 65^ = 60, and T2

= 65^s = 25.
1 AB i AB

Graphically; produce BC to meet a vertical line through A in 0.

Then A CO is a triangle having its sides parallel to the three forces

Tlt T
2 , and W. Hence it is the triangle of forces, and

" AG~ CO~ OA'
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Ex. 2. A string ABCD, attached to tioo fixed points A and D, has
two equal weights, W, knotted to it at B and G and rests with the

portions AB and CD inclined at angles of 30 and 60 respectively
to the vertical. Find the tensions of the portions of the string and the

inclination of BG to the vertical.

Let the tensions in the strings be Tj ,
T2 , and T3 respectively and

let BG be inclined at an angle to the vertical.

[N.B. The string BG pulls B towards G and pulls G towards B,
the tension being the same throughout its length.]

Since B is in equilibrium the vertical components and the hori-
zontal components of the forces acting on it must both vanish

(Art. 46).

A

IS0
N

I

Ti\B

IT,,v Vrc T
w

|

w

Hence Tx cos 30 - T2 cos =W
(1),

and ^ sin 30 -r
a
sin 0=0

(2).

Similarly, since G is in equilibrium,

r
8 cos6O

o+:ra cos0=jr (3),

and T8 sin6O-r3 sin0=O (4).

From (1) and (2), substituting for T
lt we have

W= T
2 [cot 30 sin - cos 0] = r2 [v/3sin0 -cos 0] (5).

So from (3) and (4), substituting for T
3 , we have

W= T2 [cot60sin + cos 0]= T3
T sin + cos

0~| (6) ;

therefore from (5) and (6),

^3 sin - cos = -^ sin + cos ;

V3
.-. 2 8^0=2^/3 008 0;

.-. tan O^sjS, and hence 0=60.

Substituting this value in (5), we have
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Hence from (2), we have
sin 60

^ 2Ih7805-MWd '

and from (4) T3
= T

2^- = T2
= W.

Hence the inclination of BG to the vertical is 60, and the tensions

of the portions AB, BG, and CD are TT^/3, W, and W respectively.

EXAMPLES. VI.

1. Two men carry a weight W between them by means of two

ropes fixed to the weight ; one rope is inclined at 45 to the vertical

and the other at 30 ; find the tension of each rope.

2. A body, of mass 2 lbs., is fastened to a fixed point by means
of a string of length 25 inches ; it is acted on by a horizontal force F
and rests at a distance of 20 inches from the vertical line through
the fixed point ; find the value of F and the tension of the string.

3. A body, of mass 130 lbs., is suspended from a horizontal beam
by strings, whose lengths are respectively 1 ft. 4 ins. and 5 ft. 3 ins.,

the strings being fastened to the beam at two points 5 ft. 5 ins. apart.
What are the tensions of the strings ?

4. A body, of mass 70 lbs., is suspended by strings, whose lengths
are 6 and 8 feet respectively, from two points in a horizontal fine

whose distance apart is 10 feet; find the tensions of the strings.

5. A mass of 60 lbs. is suspended by two strings of lengths
9 and 12 feet respectively, the other ends of the strings being attached
to two points in a horizontal line at a distance of 15 feet apart ; find

the tensions of the strings.

6. A string suspended from a ceiling supports three bodies, each
of mass 4 lbs., one at its lowest point and each of the others at

equal distances from its extremities; find the tensions of the parts
into whioh the string is divided.

7. Two equal masses, of weight W, are attached to the extremities

of a thin string which passes over 3 tacks in a wall arranged in the

form of an isosceles triangle, with the base horizontal and with a
vertical angle of 120; find the pressure on each tack.

8. A stream is 96 feet wide and a boat is dragged down the middle
of the stream by two men on opposite banks, each of whom pulls
with a force equal to 100 lbs. wt. ; if the ropes be attached to the same

point of the boat and each be of length 60 feet, find the resultant

force on the boat.
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9. A string passing over two smooth parallel bars in the same
horizontal plane has two equal weights fastened to its ends and
another equal weight is fastened to a point of the string between the

bars; find the position of equilibrium of the system and the thrust

upon each bar.

10. A string is tied to two points in a horizontal plane ; a ring of

weight 27 lbs. can slide freely along the string and is pulled by a
horizontal force equal to the weight of P lbs. If in the position of

equilibrium the portions of the string be inclined at angles of 45 and
75 to the vertical, find the value of P.

11. Two weightless rings slide on a smooth vertical circle and
through the rings passes a string which carries weights at the two
ends and at a point between the rings. If equilibrium exist when
the rings are at points distant 30 from the highest point of the circle,
find the relation between the three weights.

12. Two masses, each equal to 112 lbs., are joined by a string
which passes over two small smooth pegs, A and B, in the same
horizontal plane ; if a mass of 5 lbs. be attached to the string halfway
between A and B, find in inches the depth to which it will descend
below the level of AB, supposing AB to be 10 feet.

What would happen if the small mass were attached to any other

point of the string ?

13. A body, of mass 10 lbs., is suspended by two strings, 7 and 24
inches long, their other ends being fastened to the extremities of a
rod of length 25 inches. If the rod be so held that the body hangs
immediately below its middle point, find the tensions of the string.

14. A heavy chain has weights of 10 and 16 lbs. attached to its

ends and hangs in equilibrium over a smooth pulley ; if the greatest
tension of the chain be 20 lbs. wt., find the weight of the chain.

15. A heavy chain, of length 8 ft. 9 ins. and weighing 15 lbs.,
has a weight of 7 lbs. attached to one end and is in equilibrium
hanging over a smooth peg. What length of the chain is on each
side?

16. A body is free to slide on a smooth vertical circular wire and
is connected by a string, equal in length to the radius of the circle,
to the highest point of the circle ; find the tension of the string and
the reaction of the circle.

17. A uniform plane lamina in the form of a rhombus, one of
whose angles is 120, is supported by two forces applied at the centre
in the directions of the diagonals so that one side of the rhombus
is horizontal ; shew that, if P and Q be the forces and P be the
greater, then

P2=3Q2
.
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18. The ends of a driving rein are passed through two smooth
rings which are fastened, one to each side of the bit. They are then
doubled back and tied to fixed points in the headpiece one on each
side of the horse's head. Find the pressure produced by the bit on
the horse's tongue by a given pull P of the driver.

19. Three equal strings, of no sensible weight, are knotted

together to form an equilateral triangle ABC and a weight W is

suspended from A. If the triangle and weight be supported, with BG
horizontal, by means of two strings at B and C, each at the angle
of 135 with BG, shew that the tension in BG is

W
(3-V3).

20. Three weightless strings AG, BG, and AB are knotted to-

gether to form an isosceles triangle whose vertex is C. If a weight W
be suspended from G and the whole be supported, with AB horizontal,
by two forces bisecting the angles at A and B, find the tension of the

string AB.

21. A weightless string is suspended from two points not in the
same horizontal line and passes through a small smooth heavy ring
which is free to slide on the string ; find the position of equilibrium'of
the ring.

If the ring, instead of being free to move on the string, be tied to

a given point of it, find equations to give the ratio of the tensions of

the two portions of the string.

22. Four pegs are fixed in a wall at the four highest points of a
regular hexagon (the two lowest points of the hexagon being in a
horizontal straight line) and over these is thrown a loop supporting a
weight W; the loop is of such a length that the angles formed by
it at the lowest pegs are right angles. Find the tension of the string
and the pressures on the pegs.

23. Explain how the force of the current may be used to urge
a ferry-boat across the river, assuming that the centre of the boat
is attached by a long rope to a fixed point in the middle of the
stream.

24. Explain how a vessel is enabled to sail in a direction nearly
opposite to tliat of the wind.

Shew also that the sails of the vessel should be set so as to bisect

the angle between the keel and the apparent direction of the ivind in
order tliat the force to urge the vessel forward may be as great as

possible.

[Let AB be the direction of the keel and therefore that of the

ship's motion, and OA the apparent direction of the wind, the angle
OAB being acute and equal to o. Let AG be the direction of the sail,
AG being between OA and AB and the angle BAG being 0.



COMPOSITION AND RESOLUTION OF FORCES 4 1

Let P be the force of the wind on the sail ; resolve it in directions

along and perpendicular to the sail. The component (KA = )
Pcos (a

-
6)

along the sail has no effect. The component (LA = )
P sin (a

-
6) per-

pendicular to the sail may again be resolved into two, viz. (NA = )

Psin(a-0)cos0 perpendicular to AB and (MA = )
P sin (a

- 6
)
sin 6

along AB.

The former component produces motion sideways, i.e. in a direction

perpendicular to the length of the ship. This is called lee-way and is

considerably lessened by the shape of the keel which is so designed as

to give the greatest possible resistance to this motion.

The latter component, P sin (a
-

6) sin 6, alongAB is never zero
unless the sail is set in either the direction of the keel or of the wind,
or unless a is zero in which case the wind is directly opposite to the
direction of the ship.

Thus there is always a force to make the ship move forward ; but
the rudder has to be continually applied to counteract the tendency
of the wind to turn the boat about.

This force = jP[cos (a
-
26)

- cos a] and it is therefore greatest when

cos (a -26) is greatest, i.e. when a -20=0, i.e. when = ~, i.e. when

the direction of the sail bisects the angle between the keel and the

apparent direction of the wind.]

49. Examples of graphical solution. Many
problems which would be difficult or, at any rate, very

laborious, to solve by analytical methods are comparatively

easy to solve graphically.
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These questions are of common occurrence in en-

gineering and other practical work. There is generally

little else involved besides the use of the Triangle of Forces

and Polygon of Forces.

The instruments chiefly used are : Compasses, Rulers,

Scales and Diagonal Scales, and Protractors for measuring

angles.

The results obtained are of course not mathematically

accurate; but, if the student be careful, and skilful in

the use of his instruments, the answer ought to be trust-

worthy, in general, to the first place of decimals.

In the following worked out examples the figures are

reduced from the original drawings ;
the student is recom-

mended to re-draw them for himself on the scale mentioned

in each example.

SO. Ex. 1. ACDB is a string whose ends are attached to two

points, A and B, which are in a horizontal line and are seven feet
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apart. The lengths of AC, CD, and DB are 3|, 3, and 4 feet respec-

tively, and at C is attached a one-pound weight. An unknoivn weight
is attached to D of such a magnitude that, in the position of equilibrium,
CDB is a right angle. Find the magnitude of this weight and the

tensions of the strings.

Let T
x , T2 ,

and T3 be the required tensions and let x lbs. be the

weight at D.

Take a vertical line OL, one inch in length, to represent the

weight, one pound, at C. Through O draw OM parallel to AC, and

through L draw LM parallel to CD.

By the triangle of forces OM represents 2\ , and LM represents !Ta .

Produce OL vertically downwards and through M draw MN
parallel to BD.

Then, since LM represents T2 , it follows that T3 is represented by
MN, and x by LN.

By actual measurement, we have

<W= 3-05 ins., LM= 2-49 ins., MN=5-1 ins.,

and NL= 5-63 ins.

Hence the weight atD is 5-63 lbs. and the tensions are respectively
3-05, 2-49, and 5-1 lbs. wt.

Ex. 2. A and B are two points in a horizontal line at a distance

of \& feet apart; AO and OB are two strings of lengths 6 and 12 feet
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carrying, at 0, a body of weight 20 lbs.; a third string, attached to the

body at O, passes over a small smooth pulley at the middle point, C, of
AB and is attached to a body of weight 5 lbs.; find the tensions of the

strings AO and OB.

Let T
x
and T2 be the required tensions. On OC mark off OL,

equal to one inch, to represent the tension, 5 lbs. wt., of the string OC.
Draw LM vertical and equal to 4 inches. Through M draw SIN,

parallel to OB, to meet AO produced in N.

Then, by the Polygon of Forces, the lines ON and NM will

represent the tensions T
x
and T

2
.

On measurement, ON and NM are found to be respectively 3-9 and
2*45 inches.

Hence Tj=5 x 3-9 =19*5 lbs. wt.,

and T2=5 x 2-45= 12-25 lbs. wt.

Ex. 3. The Crane. The essentials of a Crane are represented
in the annexed figure. AB is a vertical post; AG a beam, called the

jib, capable of turning about its end A ; it is supported by a wooden

bar, or chain, CD, called the tie, which is attached to a pointD of the

post AB. At G is a pulley, over which passes a chain one end of which

%N

is attached to a weight to be lifted and to the other end of which, E, is

applied the force which raises W. This end is usually wound round
a drum or cylinder. The tie CD is sometimes horizontal, and often

the direction of the chain CE coincides with it. In the above crane
the actions in the jib and tie may be determined graphically as follows.

Draw KL vertically to represent W on any scale, and then draw
LM equal to KL and parallel to CE ; through M draw MN parallel to

AC and KN parallel to DC.
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Then KLMN is a polygon of forces for the equilibrium of C ; for

we assume the tension of the chain to be unaltered in passing over the

pulley C, and hence that the tension of CE is equal to W. Hence, if T
be the thrust of AG and T the pull of CD, we have

T _ r _ W
MN~ NK~ KL'

Hence T and T' are represented by MN and NK on the same scale

that KL represents W.

EXAMPLES. VH.

[The folloioing examples are to be solved hy geometric construction.]

1. A boat is towed along a river by means of two ropes, attached

to the same point, which are pulled by two men who keep at opposite

points of the bank 50 feet apart ; one rope is 30 feet long and is pulled
with a force equal to the weight of 35 lbs., and the other rope is

45 feet long ; the boat is in this way made to move uniformly in a

straight line ; find the resistance offered to the boat by the stream and
the tension of the second rope.

2. The jib of a crane is 10 feet long, and the tie-rod is horizontal

and attached to a point 6 feet vertically above the foot of the jib; find

the tension of the tie-rod, and the thrust on the jib, when the crane

supports a mass of 1 ton.

3. A and B are two fixed points, B being below A, and the
horizontal and vertical distances between them are 4 feet and 1 foot

respectively; AC and BC are strings of length 5 and 3 feet respectively,
and at C is tied a body of weight 1 cwt. ; find the tensions of the

strings.

4. ABCD is a light string attached to two points, A and D, in the
same horizontal line, and at the points B and C are attached weights.
In the position of equilibrium the distances of the points B and C
below the line AD are respectively 4 and 6 feet. If the lengths
of AB and CD be respectively 6 and 8 feet and the distance AD be
14 feet, find the weight at C, the magnitude of the weight at B being
4 lbs.

5. A framework ABC is kept in a vertical plane with AB hori-

zontal by supports at A and B; if the lengths AB, BO, and CA be 10,

7, and 9 feet respectively, and a weight of 10 cwt. be placed at C, find

the reactions at A and B and the forces exerted by the different

portions of the framework.

6. A framework ABC is supported at A and B so that it is in a
vertical plane with AB horizontal, and a weight of 200 lbs. is hung
on at C; if AB=5 feet, (7=4 feet, and AC=S feet, find the tensions
or thrusts in AG and CB, and the reactions at A and B.
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7. The jib of a crane is 20 feet long, the tie 16 feet, and the post
10 feet. A load of 10 cwts. is hung at the end of a chain which

passes over a pulley at the end of the jib and then along the tie.

Find the thrust in the jib and the pull in the tie.

8. In the figure of Ex. 3, Art. 50, the tie DG is horizontal and
the chain coincides with it; if W=500 lbs., AG=11 feet, an<*

X>C=5 feet, find the actions along DG and AC.

9. In the figure of Ex. 3, Art. 50, the angle CDB=45, and the

angle ACD=15; the chain EG coincides with DC; if W be one ton,

find the forces exerted by the parts AG, CD.

10. In the figure of Ex. 3, Art. 50, DA = 15 feet, DG=20 feet and
AC=30 feet, and a weight of one ton is suspended from C, find the

thrusts or tensions produced in AC, CD, and DA when the chain

ooincides with

(1) the jib CA,

(2) the tie CD.

11. In the figure of Ex. 3, Art. 50, the jib AC is 25 feet long,
the tie' CD is 18 feet, AD=12 feet and AE= Q feet; find the tensions

or thrusts in AC and CD, when a weight of 2 tons is suspended from

the end of the chain.

12. ABCD is a frame-work of four weightless rods, loosely jointed

together, AB and AD being each of length 4 feet and BG and CD of

length 2 feet. The hinge G is connected with A by means of a fine

string of length 5 feet. Weights of 100 lbs. each are attached to B
and D and the whole is suspended from A. Shew that the tension in

AC is 52 lbs. weight.

13. In the preceding question, instead of the string AC a weight-
less rod BD of length 3 feet is used to stiffen the frame ; a weight of

100 lbs. is attached to G and nothing at B and D. Shew that the

thrust in the rod BD is about 77 lbs. weight.

14. In question 12 there are no weights attached to B and D and
the whole framework is placed on a smooth horizontal table; the

hinges B and D are pressed toward one another by two forces each

equal to the weight of 25 lbs. in the straight line BD. Shew that the

tension of the string is about 31*6 lbs. weight.

15. ABCD is a rhombus formed by four weightless rods loosely

jointed together, and the figure is stiffened by a weightless rod, of

one half the length of eaoh of the four rods, joined to the middle

points of AB and AD. If this frame be suspended from A and a

weight of 100 lbs. be attached to it at C, shew that the thrust of the

cross rod is about 115-5 lbs. weight.



CHAPTER IV.

PAKALLEL FOKCES.

51. In Chapters n. and in. we have shewn how to

find the resultant of forces which meet in a point. In

the present chapter we shall consider the composition of

parallel forces.

In the ordinary statical problems of every-day life parallel

forces are of constant occurrence.

Two parallel forces are said to be like when they act

in the same direction ;
when they act in opposite parallel

directions they are said to be unlike.

52. Tofind the resultant of two 'parallel forces acting

upon a rigid body.

Case I. Let theforces be like.

Let P and Q be the forces acting at points A and B of

the body, and let them be represented by the lines AL and

BM.
Join AB and at A and B apply two equal and opposite

forces, each equal to S, and acting in the directions BA and

AB respectively. Let these forces be represented by AD
and BE. These two forces balance one another and have

no effect upon the equilibrium of the body.

Complete the parallelograms ALFD and BMGE
;

let

the diagonals FA and GB be produced to meet in 0. Draw
OG parallel to AL or BM to meet AB in G.
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The forces P and S at A have a resultant Px , represented

by AF. Let its point of application be removed to 0.

So the forces Q and S at B have a resultant Qx repre-

sented by BG. Let its point of application be transferred

to 0.

The force P2 at may be resolved into two forces,

S parallel to AD, and P in the direction OG.

So the force Qx
at may be resolved into two forces,

S parallel to BE, and Q in the direction OG.

Also these two forces S acting at are in equilibrium.

Hence the original forces P and Q are equivalent to a

force (P + Q) acting along OG, i.e. acting at G parallel to

the original directions of P and Q.

To determine the position of the point G. The triangle

OCA is, by construction, similar to the triangle ALF ;

OGALP
" CA~LF~S'

so that P.CA^S.OC (1).
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So, since the triangles OGB and BMG are similar, we

have

OGBMQ
GB~ MG~ S'

so that Q.CB^S.OG (2),

Hence, from (1) and (2),
we have

P.CA = Q.CB,

.w CA Q
so that CB~F'
i.e. G divides the line AB internally in the inverse ratio of

the forces.

Case II. Let the forces be unlike.

Let P, Q be the forces (P being the greater) acting at

points A and B of the body, and let them be represented by
the lines AL and BM.

Join AB, and at A and B apply two equal and opposite

forces, each equal to S, and acting in the directions BA
and AB respectively. Let these forces be represented by
AD and BE respectively; they balance one another and

have no effect on the equilibrium of the body.

Complete the parallelograms ALFD and BMGE, and

produce the diagonals AF and GB to meet in 0.

[These diagonals will always meet unless they be parallel, in

which case the forces P and Q will be equal.]

Draw OG parallel to AL or BM to meet AB in C.

The forces P and S acting at A have a resultant Px

represented by AF. Let its point of application be trans-

ferred to 0.

So the forces Q and S acting at B have a resultant Q i

represented by BG. Let its point of application be trans-

ferred to 0.

l. s. 4
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The force P1 at may be resolved into two forces,

S parallel to AD, and P in the direction CO produced.

i*-7fc*S

Q^

M G

So the forces Qt
at may be resolved into two forces,

S parallel to BE, and Q in the direction OC.

Also these two forces S acting at are in equilibrium.

Hence the original forces P and Q are equivalent to

a force P Q acting in the direction CO produced,

i.e. acting at C in a direction parallel to that of P.

To determine the position of the point C. The triangle

OCA is, by construction, similar to the triangle FDA ;

OC _FD _ AL _ P
." CA~DA~AD~S'

so that P.CA =S.0C (1),

Also, since the triangles OCB and BMG are similar, we
have

OC _ BM_ Q
CB~ MG~ S'

so that Q.CB = S. OC (2).

Hence, from (1) and (2), P.CA^Q.CB.
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Hence ^rn ~T *- e - @ divides the line AB externally

in the inverse ratio of the forces.

To sum up ;
If two parallel forces, P and Q, act at

points A and B of a rigid body,

(i)
their resultant is a force whose line of action is

parallel to the lines of action of the component forces;

also, when the component forces are like, its direction is

the same as that of the two forces, and, when the forces

are unlike, its direction is the same as that of the greater

component.

(ii)
the point of application is a point G in AB such

that

P.AG^Q.BC.

(iii)
the magnitude of the resultant is the sum of the

two component forces when the forces are like, and the

difference of the two component forces when they are

unlike.

53. Case offailure of the preceding construction.

In the second figure of the last article, if the forces

P and Q be equal, the triangles FDA and GEB are equal

in all respects, and hence the angles DAF and EBG will be

equal.

In this case the lines AF and GB will be parallel and

will not meet in any such point as
;
hence the construction

fails.

Hence there is no single force which is equivalent to two

equal unlike parallel forces.

We shall return to the consideration of this case in

Chapter vi.

42
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54. If we have a number of like parallel forces acting

on a rigid body we can find their resultant by successive

applications of Art. 53. We must find the resultant of the

first and second, and then the resultant of this resultant

and the third, and so on.

The magnitude of the final resultant is the sum of the

forces.

If the parallel forces be not all like, the magnitude of

the resultant will be found to be the algebraic sum of the

forces each with its proper sign prefixed.

Later on (see Art. 114) will be found formulae for

calculating the centre of a system of parallel forces, i.e. the

point at which the resultant of the system acts.

55. Resultant of two parallel forces. Experimental

verification.

Take a uniform rectangular bar of wood about 3 feet

long, whose cross-section is a square of side an inch or

rather more. A face of this bar should be graduated, say

in inches or half inches, as in the figure.

Let the ends A and B be supported by spring balances

which are attached firmly to a support. For this purpose

a Salter's circular balance is the more convenient form as

it drops much less than the ordinary form when it is
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stretched. On the bar AB let there be a movable loop C

carrying a hook from which weights can be suspended;

this loop can be moved into any position along the bar.

Before putting on any weights, and when C is at the

middle point of AB, let the readings of the balances D and

E be taken. The bar being uniform, these readings should

be the same and equal to R (say).

Now hang known weights, amounting in all to W, on

to C, and move C into any position Cx on the bar. Observe

the new readings of the balances D and E, and let them be

P and Q respectively.

Then P-R(=P1)
and Q-R(=QX)

are the additional

readings due to the weight W, and therefore P1 and Q1 are

the forces at D and E which balance the force W at Cv
It will be found that the sum of

Px and Qx is equal to W (1).

Again measure carefully the distances AGX and BCX .

It will be found that

P
1 xAC1

= Ql.C1 (2).

In other words the resultant of forces Px and Qx at A
and B is equal to Px + Qx acting at C1} where

But this is the result given by the theoretical investigation

of Art. 52 (Case I).

Perform the experiment again by shifting the position

of Clt keeping W the same; the values of Px
and Qx will

alter, but their sum will still be W, and the new value of

P1 .AC1 will be found to be equal to the new value of

Qt.BCx .

Similarly the theorem of Art. 52 will be found to be

true for any position of Cx
and any value of W.
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Numerical illustration. Suppose the weight of the beam and the
attached apparatus (without any weights) to be 2 lbs. Then the

original reading, JR, of the balances will be each 1 lb. Put on
a weight of 4 lbs. at G and move G to Gx until the readings of the
balances A and B are respectively 4 and 2 lbs.

Then a force 4 lbs. at Cx is balanced by a force 3 lbs. (=4-1) at
A and lib. (=2-1) at B.

Measure the distances AG
X
and BG

X \ they will be found to be
9 inches and 27 inches respectively (assuming the length AB to be
3 feet, i.e. 36 inches).

We thus have P1 .AC1=3x9,
and Q1

.BC1=lxZI,
and these are equal.

Hence the truth of Art. 52 (Case I) for this case.

Unlike parallelforces.

In the last experiment the forces P1} W and Qx
at A,

C15 and B are in equilibrium, so that the resultant of Px

upwards and W downwards is equal and opposite to Qx .

Measure the distances AB and CXB. Then it will be

found that

Q,= W-P,
and P1 .AB=W.C1B.

Hence the truth of Art. 52 (Case II) is verified.

56. Ex. Ahorizontalrod,Qfeetlong,whoseweightmaybeneglected,
rests on two supports at its extremities; a body, of weight 6 cwt., is

suspended from the rod at a distance of 2\ feet from one end; find the

reaction at each point of support. If one support could only hear a
thrust equal to the weight of 1 cwt. , what is the greatest distance from
the other support at which the body could be suspended ?

/\

Qcwt.

A

Let AB be the rod and R and S the reactions at the points of sup-

port. Let G be the point at which the body is suspended so that
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AC=3^ and CB= 2\ feet. For equilibrium the resultant of P and S
must balance 6 cwt. Hence, by Ait. 52,

R+ S=6 (1),

P BG 2_5and
S=IcT^

=
7

(2) "

5 7
Solving (1) and (2) , we have R=

^ , and S= ^
. Hence the reactions

are 2J and 3^ cwt. respectively.

If the reaction at A can only be equal to 1 cwt., S must be 5 cwt.

Hence, if AG be x, we have

l_BC_6-x
5~~AC~ x

'

:. x=5 feet.

Hence BG is 1 foot.

EXAMPLES. VHI.

In the four following examples A and B denote the points of appli-
cation of parallel forces P and Q, and G is the point in which their

resultant R meets AB.

1. Find the magnitude and position of the resultant (the forces

being like) when

(i) P=4; <3= 7; AB= 11 inches;

(ii) P=ll; Q=19; ^B=2^feet;
(hi) P=5; Q=5; AB= 3 feet.

2. Find the magnitude and position of the resultant (the forces

being unlike) when

(i) P=17

(ii)
P=23

(iii)
P=26

Q= 25; ^B=8 inches;

Q=15; AB= 40 inches;

Q=9; JP=3feet.

3. The forces being like,

(i) ifP=8; P=17; AC=4% inches; find Q and AB;

(ii)
if Q= ll; AC=1 inches; AB=8% inches; find P and P;

(iii) ifP=6; AC= 9 inches; CB= 8 inches; find Q and P.

4. The forces being unlike,

(i)
if P=8; P=17; AC=\ inches; find and ^P;

(ii) ifQ=ll; ^C=-7inches; JP=8f inches; findPandP;

(iii)
if P=6; AC= -9 inches; AB=12 inches; find Q and P.
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5. Find two like parallel forces acting at a distance of 2 feet

apart, which are equivalent to a given force of 20 lbs. wt., the line

of action of one being at a distance of 6 inches from the given force.

6. Find two unlike parallel forces acting at a distance of 18
inches apart which are equivalent to a force of 30 lbs. wt., the greater
of the two forces being at a distance of 8 inches from the given force.

7. Two parallel forces, P and Q, act at given points of a body ;

P2

if Q be changed to -~- , shew that the line of action of the resultant is

the same as it would be if the forces were simply interchanged.

8. Two men carry a heavy cask of weight 1^ cwt., which hangs
from a light pole, of length 6 feet, each end of which rests on a
shoulder of one of the men. The point from which the cask is hung
is one foot nearer to one man than to the other. What is the pressure
on each shoulder?

9. Two men, one stronger than the other, have to remove a
block of stone weighing 270 lbs. by means of a light plank whose

length is 6 feet ; the stronger man is able to carry 180 lbs. ; how must
the block be placed so as to allow him that share of the weight ?

10. A uniform rod, 12 feet long and weighing 17 lbs., can turn

freely about a point in it and the rod is in equilibrium when a weight
of 7 lbs. is hung at one end ; how far from the end is the point about
which it can turn?

N.B. The weight of a uniform rod may be taken to act at its

middle point.

11. A straight uniform rod is 3 feet long; when a load of 5 lbs.

is placed at one end it balances about a point 3 inches from that end ;

find the weight of the rod.

12. A uniform bar, of weight 3 lbs. and length 4 feet, passes over
a prop and is supported in a horizontal position by a force equal to

1 lb. wt. acting vertically upwards at the other end; find the distance

of the prop from the centre of the beam.

13. A heavy uniform rod, 4 feet long, rests horizontally on two

pegs which are one foot apart ; a weight of 10 lbs. suspended from
one end, or a weight of 4 lbs. suspended from the other end, will just
tilt the rod up ; find the weight of the rod and the distances of the

pegs from the centre of the rod.

14. A uniform iron rod, 2^- feet long and of weight 8 lbs., is

placed on two rails fixed at two points, A and B, in a vertical wall.
AB is horizontal and 5 inches long ; find the distances at which the
ends of the rod extend beyond the rails if the difference of the thrusts
on the rails be 6 lbs. wt.
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15. A uniform beam, 4 feet long, is supported in a horizontal

position by two props, which are 3 feet apart, so that the beam pro-

jects one foot beyond one of the props; shew that the force on one

prop is double that on the other.

16. A straight weightless rod, 2 feet in length, rests in a horizon-

tal position between two pegs placed at a distance of 3 inches apart,

one peg being at one end of the rod, and a weight of 5 lbs. is suspended
from the other end ;

find the pressure on the pegs.

17. One end of a heavy uniform rod, of weight W, rests on a

smooth horizontal plane, and a string tied to the other end of the

rod is fastened to a fixed point above the plane; find the tension

of the string.

18. A man carries a bundle at the end of a stick which is placed
over his shoulder ; if the distance between his hand and his shoulder

be changed how does the pressure on his shoulder change ?

19. A man carries a weight of 50 lbs. at the end of a stick, 3 feet

long, resting on his shoulder. He regulates the stick so that the

length between his shoulder and his hands is
(i) 12, (ii) 18 and (iii)

24

inches ;
how great are the forces exerted by his hand and the pressures

on his shoulder in each case?

20. Three parallel forces act on a horizontal bar. Each is equal
to 1 lb. wt., the right-hand one acting vertically upward and the other

two vertically down at distances of 2 ft. and 3 ft. respectively from
the first; find the magnitude and position of their resultant.

21. A portmanteau, of length 3 feet and height 2 feet and whose
centre of gravity is at its centre of figure, is carried upstairs by two
men who hold it by the front and back edges of its lower face. If this

be inclined at an angle of 30 to the horizontal, and the weight of the

portmanteau be 1 cwt., find how much of the weight each supports.



CHAPTER V.

MOMENTS.

57. Def. Tlie moment of a force about a given point

is the product of the force and the perpendicular drawn

from the given point upon the line of action of the force.

Thus the moment of a force F about a given point is

F x ON, where ON" is the perpendicular drawn from upon
the line of action of F.

It will be noted that the moment of a force F about

a given point never vanishes, unless either the force

vanishes or the force passes through the point about which

the moment is taken.

58. Geometrical representation of a moment.

Suppose the force F to be represented in magnitude,

direction, and line of action by the line AB. Let be any
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given point and ON the perpendicular from upon AB or

AB produced.

^% O

rfc
F N B A

f
n

Join 04 and OS.

By definition the moment of ^ about is Fx ON, i.e.

AB x ON. But .4.3 x OiV is equal to twice the area of the

triangle OAB [for it is equal to the area of a rectangle

whose base is AB and whose height is 0N~\. Hence the

moment of the force F about the point is represented by
twice the area of the triangle OAB, i.e. by twice the area of

tJie triangle wliose base is the line representing the force and

whose vertex is the point about which the moment is taken.

59. Physical meaning of the moment ofaforce about a

point.

Suppose the body in the figure of Art. 57 to be a plane

lamina
[i.e.

a body of very small thickness, such as a piece

of sheet-tin or a thin piece of board] resting on a smootlx

table and suppose the point of the body to be fixed.

The effect of a force F acting on the body would be to

cause it to turn about the point as a centre, and this

effect would not be zero unless (1) the force F were zero, or

(2) the force F passed through 0, in which case the distance

ON would vanish. Hence the product F x ON would seem

to be a fitting measure of the tendency of F to turn the

body about 0. This may be experimentally verified as

follows;

^Jh fa h "**
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Let the lamina be at rest under the action of two strings

whpse tensions are F and Flt which are tied to fixed points

of the lamina and whose lines of action lie in the plane of

the lamina. Let OiVand 0NX be the perpendiculars drawn

from the fixed point upon the lines of action of F
and Fj_.

If we measure the lengths ON and ON^ and also the

forces F and F1} it will be found that the product F . ON
is always equal to the product Flt 0NX .

Hence the two forces, F and F1} will have equal but

opposite tendencies to turn the body about if their

moments about have the same magnitude.

These forces F and Fx may be measured by carrying
the strings over light smooth pulleys and hanging weights
at their ends sufficient to give equilibrium ;

or by tying the

strings to the hooks of two spring balances and noting the

readings of the balances, as in the cases of Art. 25.

60. Experiment. To shew that if a body, having

one 'point fixed, be acted upon by twoforces and it be at rest,

then the moments of the two forces about the fixed point are

equal but opposite.
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Take the bar used in Art. 55 and suspend it at C so

that it rests in a horizontal position ;
if the bar be uniform

G will be its middle point ;
if it be not uniform, then C will

be its centre of gravity [Chapter ix]. The beam must be

so suspended that it turns easily and freely about C.

When the forces are parallel. From any two points

A, B of the bar suspend carriers on which place weights

until the beam again balances in a horizontal position.

Let P be the total weight, including that of the carrier,

at A, and Q the total weight similarly at B. Measure

carefully the distances AC and BC.

Then it will be found that the products P.AC and

Q.BC are equal.

The theorem can be verified to be true for more than

two forces by placing several such carriers on the bar and

putting weights upon them of such an amount that equi-

librium is secured.

In every such case it will be found that the sum of the

moments of the weights on one side of C is equal to the

sum of the moments of those on the other side.

When tlie forces are not parallel. Arrange the bar as

before but let light strings be attached at A and B which

after passing over light pulleys support carriers at their
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other ends. Let these carriers have weights put upon
them until the beam balances in a horizontal position.

Let P and Q be the total weights on the carriers

including the weights of the carriers themselves
;
these will

be the tensions of the strings at A and B.

Measure the perpendicular distances, p and q, from C
upon OA and OB respectively.

Then it will be found that

P.p = Q.q.

61. Positive and negative moments. In Art. 57 the

force F would, if it were the only force acting on the

lamina, make it turn in a direction opposite to that in

which the hands of a watch move, when the watch is laid

on the table with its face upwards.

The force Fx would, if it were the only force acting on

the lamina, make it turn in the same direction as that in

which the hands of the watch move.

The moment of F about 0, i.e. in a direction
^),

is said

to be positive, and the moment of F1 about 0, i.e. in a

direction
^),

is said to be negative.
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IS

'
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(a) If be without the angle DAC, as in the first

figure, we have to shew that

2AOAB + 2AOAC = 2AOAD.

[For the moments of P and Q about are in the same direction.]

C
0'<

Since AB and OD are parallel, we have

A OAB =ADAB =AACD.

:.2aOAB + 2AOAC = 2AACD + 2aOAC=2AOAD.

(B) If be within the angle CAD, as in the second

figure, we have to shew that

2AAOB - 2AAOC = 2 AAOD.

[For the moments of P and Q about O are in opposite directions.]

As in (a), we have

AAOB= ADAB= AACD.

:.2AAOB-2AAOC = 2AACD-2AOAC=2AOAD.

Case II. Let theforces be parallel.

O --... A

... C

'---i

R=P+Q
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Let P and Q be two parallel forces and li (= P + Q)

their resultant.

From any point in their plane draw OAGB perpen-

dicular to the forces to meet them in A, G, and B respec-

tively.

By Art. 52 we have P.AG=Q.CB (1);

.'. the sum of the moments of P and Q al>out

= Q.OB + P.OA
= Q(OC + GB) + P(OG-AC)
= (P + Q)OG + Q.GB-P.AC
= (P + Q). OC, by equation (1),

= moment of the resultant about 0.

If the point about which the moments are taken be

between the forces, as
y ,

the moments of P and Q have

opposite signs.

In this case we have

Algebraic sum of moments of P and Q about
X

= P.01A-Q.01
B

= P (0XC + GA)-Q(CB- XG)
= {P + Q).OxG + P.CA-Q.CB
= (P + Q). OA by equation (1).

The case when the point has any other position, as also

the case when the forces have opposite parallel directions,

are left for the student to prove for himself.

63. Case I of the preceding proposition may be otherwise proved
in the following manner :

Let the two forces, P and Q, be represented by AB and AG re-

spectively and let AD represent the resultant R so that ABDC is a

parallelogram.

Let O be any point in the plane of the forces. Join OA and draw
BL and CM, parallel to OA, to meet AD in L and M respectively.

L. s. 5
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Since the sides of the triangle ACM are respectively parallel to the

sides of the triangle DBL, and since AC is equal to BD,

:. AM=LD,
;. aOAM= aOLD.

First, let fall without the angle CAD, as in the first figure.

M
Then 2aOAB+2aOAC

=2aOAL + 2aOAM
=2aOAL+2aOLD
=2aOAD.

Hence the sum of the moments of P and Q is equal to that of R.

Secondly, let fall within the angle CAD, as in the second figure.

The algebraio sum of the moments of P and Q about

=2aOAB-2aOAC
=2aOAL-2aOAM
=:2aOAL-2aOLD
=2aOAD
=moment of II about 0.

64. If the point about which the moments are taken

lie on the resultant, the moment of the resultant about the

point vanishes. In this case the algebraic sum of the

moments of the component forces about the given point



MOMENTS 67

vanishes, i.e. The moments of two forces about any 'point on

the line of action of their resultant are equal and of opposite

sign.

The student will easily be able to prove this theorem

independently from a figure ; for, in Art. 62, the point
will be found to coincide with the point D and we have

only to shew that the triangles AGO and ABO are now

equal, and this is obviously true.

65. Generalised theorem of moments. Ifany
number offorces in one plane acting on a rigid body have a

resultant, the algebraic sum of their moments about any point

in their plane is equal to the moment of their resultant.

For let the forces be P, Q, R, S,... and let be the

point about which the moments are taken.

Let P
1
be the resultant of P and Q,

P2 be the resultant of P
x
and R,

Ps be the resultant of P2 and S,

and so on till the final resultant is obtained.

Then the moment of P1 about = sum of the moments
of P and Q (Art. 62);

Also the moment of P2 about sum of the moments
of P

x
and R

= sum of the moments of P, Q, and R.

So the moment of P3 about

= sum of the moments of Pa and S
= sum of the moments of P, Q, R, and S,

and so on until all the forces have been taken.

Hence the moment of the final resultant

= algebraic sum of the moments of the component forces.

Cor. It follows, similarly as in Art. 64, that the alge-

braic sum of the moments of any number of forces about a

52
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point on the line of action of their resultant is zero
; so,

conversely, if the algebraic sum of the moments of any
number of forces about any point in their plane vanishes,

then, either their resultant is zero (in which case the forces

are in equilibrium), or the resultant passes through the

point about which the moments are taken.

66. The theorem of the previous article enables us to

find points on the line of action of the resultant of a system
of forces. For we have only to find a point about which

the algebraic sum of the moments of the system of forces

vanishes, and then the resultant must pass through that

point. This principle is exemplified in Examples 2 and 3

of the following article.

If we have a system of parallel forces the resultant is

known both in magnitude and direction when one such

point is known.

67. Ex. 1. A rod, 5 feet long, supported by two vertical strings
attached to its ends, has weights of 4, 6, 8, and 10 lbs. Ming from the

rod at distances of 1, 2, 3, and 4 feetfrom one end. If the weight of
the rod be 2 lbs., what are the tensions of the strings 1

LetAF be the rod, B, C, D, and E the points at which the weights

R<

A
C G D

id v* 8 + 10

are hung ; let G be the middle point ; we shall assume that the weight
of the rod acts here.

Let R and S be the tensions of the strings. Since the resultant of

the forces is zero, its moment about A must be zero.

Hence, by Art. 65, the algebraic sum of the moments about A
must vanish.
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Therefore 4xl + 6x2 + 2x2i+ 8x3 + 10x4-,Sx5=0,
.-. 53=4 + 12 + 5 + 24+ 40 = 85,

.-. s=n.

Similarly, taking moments about F, we have

5P.=10xl + 8x2 + 2x2 + 6x3 +4x4= 65,

/. P= 13.

The tension R may be otherwise obtained. For the resultant of the

weights is a weight equal to 30 lbs. and that of R and S is a force

equal to R + S. But these resultants balance one another.

.-. P+ S=30;
/. = 30- 5=30- 17=13.

Ex. 2. Forces equal to P, 2P, 3P, and 4P act along the sides of a
square ABCD taken in order ; find the magnitude, direction, and line

of action of the resultant.

Let the side of the square be a.

The forces P and 3P are, by Art. 52, equal to a parallel force 2P

acting at E, where DE is -
.

m

The forces 4P and 2P are, similarly, equal to a force 2P acting at
a point F on CD where DF is a.

Let the lines of action of these two components meet in O. Then
the final resultant is equal to 2P^/2 acting in a direction parallel
to CA.
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Otherwise thus; without making any geometric construction

(which is often tedious) the line of action of the resultant force can
be easily obtained by using the theorem of Art. 65.

Let the line of action meet AD and CD in Q and R.

Since Q is a point on the line of action of the resultant the alge-
braic sum of the moments of the four forces about Q must be zero ;

/. P(DQ+a) + 2P(a) = 3P . DQ;

=!
So for the point R we have

P .a+ 2P(RD+ a)= 4P . RD;

Also the components of the forces perpendicular to CD are 4P - 2P,
i.e. 2P, and the components parallel to CD are 3P-P, i.e. 2P.
Hence the magnitude of the resultant is 2J2P.

Ex. 3. Forces equal to 3P, IP, and 5P act along the sides AB, BC,
and CA ofan equilateral triangle ABC; find the magnitude, direction,
and line of action of the resultant.

Let the side of the triangle be a, and let the resultant force meet

B 7P C\

the side BC in Q. Then, by Art. 65, the moments of the forces about

Q vanish.

/. 3Px(<2C+ a)sin60=5Px<K7sin60.

, <*>-*

The sum of the components of the forces perpendicular to BC
= 5P sin 60 - 3P sin 60 =P^3.

Also the sum of the components in the direction BC
=7P - 5Pcos 60 - 3P cos 60 = 3P.

Hence the resultant is P ^/12 inclined at an angle tan-1~ , i.e.

30, to BC and passing through Q where CQ=*BC.
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EXAMPLES. IX.

1. The side of a square ABCD is 4 feet; along the lines CB, BA,
DA, andDB, respectively act forces equal to 4, 3, 2, and 5 lbs. weight;

find, to the nearest decimal of a foot-pound, the algebraic sum of the

moments of the forces about C.

2. The side of a regular hexagon ABCDEF is 2 feet ; along the

sides AB, CB, DC, DE, EF, and FA act forces respectively equal to 1,

2, 3, 4, 5, and 6 lbs. wt. ; find the algebraic sum of the moments of

the forces about A.

3. A pole of 20 feet length is placed with its end on a horizontal

plane and is pulled by a string, attached to its upper end and inclined

at 30 to the horizon, whose tension is equal to 30 lbs. wt. ; find the

horizontal force which applied at a point 4 feet above the ground will

keep the pole in a vertical position.

4. A uniform iron rod is of length 6 feet and mass 9 lbs., and
from its extremities are suspended masses of 6 and 12 lbs. respec-

tively; from what point must the rod be suspended so that it may
remain in a horizontal position ?

5. A uniform beam is of length 12 feet and weight 50 lbs., and
from its ends are suspended bodies of weights 20 and 30 lbs. respec-

tively; at what point must the beam be supported so that it may
remain in equilibrium?

6. Masses of 1 lb., 2 lbs., 3 lbs., and 4 lbs. are suspended from a

^tiniform rod, of length 5 ft., at distances of 1 ft., 2 ft., 3 ft., and 4 ft.

respectively from one end. If the mass of the rod be 4 lbs., find the

position of the point about which it will balance.

7. A uniform rod, 4 ft. in length and weighing 2 lbs., turns freely

about a point distant one foot from one end and from that end a

weight of 10 lbs. is suspended. What weight must be placed at the

other end to produce equilibrium ?

8. A heavy uniform beam, 10 feet long, whose mass is 10 lbs. ,
is

supported at a point 4 feet from one end ; at this end a mass of 6 lbs.

/is placed ; find the mass which, placed at the other end, would give

equilibrium.

,9. The horizontal roadway of a bridge is 30 feet long, weighs
6 tons, and rests on similar supports at its ends. What is the thrust

borne by each support when a carriage, of weight 2 tons, is (1) half-

way across, (2) two-thirds of the way across?

10. A light rod, AB, 20 inches long, rests on two pegs whose
distance apart is 10 inches. How must it be placed so that the

reactions of the pegs may be equal when weights of 2W and 3W
respectively are suspended from A and B ?
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11. A light rod, of length 3 feet, has equal weights attached to it,

one at 9 inches from one end and the other at 15 inches from the other
end ; if it be supported by two vertical strings attached to its ends and
if the strings cannot support a tension greater than the weight of

1 cwt., what is the greatest magnitude of the equal weights?

12. A heavy uniform beam, whose mass is 40 lbs., is suspended
in a horizontal position by two vertical strings each of which can
sustain a tension of 35 lbs. weight. How far from the centre of the

beam must a body, of mass 20 lbs., be placed so that one of the strings

may just break?

13. A uniform bar, AB, 10 feet long and of mass 50 lbs., rests on
the ground. If a mass of 100 lbs. be laid on it at a point, distant

3 feet from B, find what vertical force applied to the end A will just

begin to lift that end.

14. A rod, 16 inches long, rests on two pegs, 9 inches apart, with
its centre midway between them. The greatest masses that can be

suspended in succession from the two ends without disturbing the

equilibrium are 4 lbs. and 5 lbs. respectively. Find the weight of the

rod and the position of the point at which its weight acts.

15. A straight rod, 2 feet long, is movable about a hinge at one
end and is kept in a horizontal position by a thin vertical string
attached to the rod at a distance of 8 inches from the hinge and
fastened to a fixed point above the rod ; if the string can just support
a mass of 9 ozs. without breaking, find the greatest mass that can
be suspended from the other end of the rod, neglecting the weight of

the rod.

16. A tricycle, weighing 5 stone 4 lbs., has a small wheel sym-
metrically placed 3 feet behind two large wheels which are 3 feet apart ;

if the centre of gravity of the machine be at a horizontal distance of

9 inches behind the front wheels and that of the rider, whose weight
is 9 stone, be 3 inches behind the front wheels, find the thrusts on
the ground of the different wheels.

17. A tricycle, of weight 6 stone, has a small wheel symmetri-
cally placed 3 ft. 6 ins. in front of the line joining the two large
wheels which are 3 feet apart ; if the centre of gravity of the machine
be distant horizontally 1 foot in front of the hind wheels and that of

the rider, whose weight is 11 stone, be 6 inches in front of the hind

wheels, find how the weight is distributed on the different wheels.

18. A dog-cart, loaded with 4 cwt., exerts a force on the horse's

back equal to 10 lbs. wt. ; find the position of the centre of gravity of

the load if the distance between the pad and the axle be 6 feet.

19. Forces of 3, 4, 5, and 6 lbs. wt. respectively act along the sides

of a square ABCD taken in order; find the magnitude, direction, and
line of action of their resultant.
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(
20. ABCD is a square; along AB, GB, AD, and DC equal forces,

P, act ; find their resultant.

21. ABCD is a square the length of whose side is one foot; along
AB, BC, DC, and AD act forces proportional to 1, 2, 4, and 3 respec-

tively ; shew that the resultant is parallel to a diagonal of the square
and find where it cuts the sides of the square.

22. ABCD is a rectangle of which adjacent sides AB and BC are

lal to 3 and 4 feet respectively; along AB, BC, and CD forces of 30,

40, and 50 lbs. wt. act; find the resultant.

23. Three forces P, 2P, and 3P act along the sides AB, BC, and
CA of a given equilateral triangle ABC; find the magnitude and
direction of their resultant, and find also the point in which its line

of action meets the side BC.

24. ABC is an isosceles triangle whose angle A is 120 and forces

of magnitude 1, 1, and JB lbs. wt. act along AB, AC, and BC', shew
that the resultant bisects BC and is parallel to one of the other sides

of the triangle.

25. Forces proportional to AB, BC, and 2CA act along the sides

of a triangle ABC taken in order; shew that the resultant is repre-
sented in magnitude and direction by CA and that its line of action

meets BC at a point X where CX is equal to BC.

26. ABC is a triangle and D, E, and F are the middle points of

the sides; forces represented by AD, \BE, and iCF act on a particle
at the point where AD and BE meet; shew that the resultant is

represented in magnitude and direction by \AC and that its line of

action divides BC in the ratio 2:1.

27. Three forces act along the sides of a triangle ; shew that, if

the sum of two of the forces be equal in magnitude but opposite in

sense to the third force, then the resultant of the three forces passes

through the centre of the inscribed circle of the triangle.

28. The wire passing round a telegraph pole is horizontal and
the two portions attached to the pole are inclined at an angle of 60
to one another. The pole is supported by a wire attached to the

middle point of the pole and inclined at 60 to the horizon ; shew that

the tension of this wire is 4^/3 times that of the telegraph wire.

29. At what height from the base of a pillar must the end of a

rope of given length be fixed so that a man standing on the ground
and pulling at its other end wfth a given force may have the greatest

tendency to make the pillar overturn ?
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30. The magnitude of a force is known and also ita momenta
about "two given points A and B. Find, by a geometrical construction,

ita line of action.

31. Find the locus of all points in a plane such that two foroea

given in magnitude and position shall have equal moments, in the

same sense, round any one of these points.

32. AB ia a diameter of a circle and BP and BQ are chorda at

right angles to one another ; shew that the momenta of forcea repre-

sented by BP and BQ about A are equal.

33. A cyclist, whose weight ia 150 lbs., puts all his weight upon
one pedal of his bicycle when the crank is horizontal and the bicycle

is prevented from moving forwards. If the length of the crank is

6 inches and the radius of the chain-wheel ia 4 inches, find the

tension of the chain.



CHAPTER VI.

COUPLES.

68. Def. Two equal unlike parallel forces, whose

lines of action ar6 not the same, form a couple.

The Arm of a couple is the perpen-
dicular distance between the lines of action

of the two forces which form the couple,

i.e. is the perpendicular drawn from any

point lying on the line of action of one of

the forces upon the line of action of the

other. Thus the arm of the couple (P, P)
is the length AB.

The Moment of a couple is the product
of one of the forces forming the couple

and the arm of the couple.

In the figure the moment of the couple is P x AB.

Examples of a couple are the forces applied to the

handle of a screw-press, or to the key of a clock in winding
it up, or by the hands to the handle of a door in opening it.

A couple is by some writers called a Torque ; by others

the word Torque is used to denote the Moment of the

Couple.
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69. Theorem. The algebraic sum of the moments of

the two forces forming a couple about any point in their

plane is constant, and equal to tlte moment of tJie couple.

Let the couple consist of two forces, each equal to P,

and let be any point in their plane.

Draw OAB perpendicular to the lines of action of the

forces to meet them in A and B respectively.

The algebraic sum of the moments of the forces about

= P.OB-P.OA=P(OB-OA) = P.AB
= the moment of the couple, and is therefore the same

whatever be the point about which the moments are

taken.

70. Theorem. Two couples, acting in one plane upon
a rigid body, whose moments are equal and opposite, balance

one another.

Let one couple consist of two forces (P, P), acting at

the ends of an arm p, and let the other couple consist of

two forces (Q, Q), acting at the ends of an arm q.

Case I. Let one of the forces P meet one of the forces

Q in a point 0, and let the other two forces meet in '.

From 0' draw perpendiculars, O'M and O'N, upon the

forces which do not pass through 0', so that the lengths of

these perpendiculars are p and q respectively.
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Since the moments of the couples are equal in magni-

tude, we have

P.p^Q.q,
i.e., P. 0'M=Q.OfK

Hence, (Art. 64), 0' is on the

line of action of the resultant of

P and Q acting at 0, so that 00'

is the direction of this resultant.

Similarly, the resultant of P
and Q at 0' is in the direction

O'O.

Also these resultants are equal in magnitude ;
for the

forces at are respectively equal to, and act at the same

angle as, the forces at 0'.

Hence these two resultants destroy one another, and

therefore the four forces composing the two couples are in

equilibrium.

Case II. Let the forces composing the couples be all

parallel, and let any straight line perpendicular to their

directions meet them in the points A, B, G, and D, as in

the figure, so that, since the moments are equal, we have

P.AB = Q.GD (i).

Let L be the point of application of the resultant of Q
at G and P at B, so that

P.BL^Q.GL (Art. 52) (ii).

Q

Q
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By subtracting (ii)
from

(i),
we have

P.AL = Q.LD,
so that L is the point of application of the resultant of P
at A, and Q at D.

But the magnitude of each of these resultants is

{P + Q), and they have opposite directions ;
hence they are

in equilibrium.

Therefore the four forces composing the two couples

balance.

71. Since two couples in the same plane, of equal but

opposite moment, balance, it follows, by reversing the

directions of the forces composing one of the couples, that

Any two couples of equal moment in the same plane are

equivalent.

It follows also that two like couples of equal moment

are equivalent to a couple of double the moment.

72. Theorem. Any number of couples in the same

plane acting on a rigid body are equivalent to a single

couple, whose moment is equal to the algebraic sum of the

moments of the couples.

For let the couples consist of forces (P, P) whose arm

is p, (Q, Q) whose arm is q, (B, P) whose arm is r, etc.

Replace the couple (Q, Q) by a couple whose components
have the same lines of action as the forces (P, P). The

magnitude of each of the forces of this latter couple will

be X, where X.p = Q . q, (Art. 71),

so that X = Q^.
P

So let the couple (R, P) be replaced by a couple

\ P P/
whose forces act in the same lines as the

forces (P, P).
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Similarly for the other couples.

Hence all the couples are equivalent to a couple, each of

whose forces isP+Q-+B- + ... acting at an arm p.
P P

The moment of this couple is

(**!**;*:}*
i.e., P.p + Q ,q+ R ,r + ....

Hence the original couples are equivalent to a single

couple, whose moment is equal to the sum of their moments.

If all the component couples have not the same sign we
must give to each moment its proper sign, and the same

proof will apply.

EXAMPLES X.

1. ABCD is a square whose side is 2 feet ; along AB, BC, CD, and
DA act forces equal to 1, 2, 8, and 5 lbs. wt., and along AG and DB
forces equal to 5^2 and 2J2 lbs. wt. ; shew that they are equivalent
to a couple whose moment is equal to 16 foot-pounds weight.

2. Along the sides AB and CD of a square ABCD act forces each

equal to 2 lbs. weight, whilst along the sides AD and CB act forces
each equal to 5 lbs. weight ;

if the side of the square be 3 feet, find
the moment of the couple that will give equilibrium.

3. ABCDEF is a regular hexagon ; along the sides AB, CB, DE,
and FE act forces respectively equal to 5, 11, 5, and 11 lbs. weight,
and along CD and FA act forces, each equal to x lbs. weight. Find
x, if the forces be in equilibrium.

4. A horizontal bar AB, without weight, is acted upon by a
vertical downward force of 1 lb. weight at A, a vertical upward force
of 1 lb. weight at B, and a downward force of 5 lbs. weight at a
given point C inclined to the bar at an angle of 30. Find at what
point of the bar a force must be applied to balance these, and find
also its magnitude and direction.

73. Theorem. The effect of a couple upon a rigid

body is unaltered if it be transferred to any plane parallel to

its own, the arm remaining parallel to its original position.
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Let the couple consist of two forces (P, P), whose arm

is AB, and let their lines of action be AC and BD.

pi

4'"

-'ON

\P
Bi

f P
F

Let A XBX be any line equal and parallel to AB.

Draw A 1C1 and BXDX parallel to AC and BD respec-

tively.

At A
x introduce two equal and opposite forces, each

equal to P, acting in the direction A
XCX and the opposite

direction A XE.

At Bx introduce, similarly, two equal and opposite forces,

each equal to P, acting in the direction B1
D

1 and the

opposite direction B^F.

These forces will have no effect on the equilibrium of

the body.

Join AB
X
and A

XB, and let them meet in 0; then O is

the middle point of both AB
X
and A XB.

The forces P at B and P acting along A XE have a re-

sultant 2P acting at parallel to BD.

The forces P at A and P acting along BXF have a

resultant 2P acting at parallel to AC.
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These two resultants are equal and opposite, and there-

fore balance. Hence we have left the two forces (P, P) at

A
l and Bx acting in the directions A 1C1 and BXDU i.e.,

parallel to the directions of the forces of the original

couple.

Also the plane through A 1C1 and B1
D

l
is parallel to the

plane through AC and BD.

Hence the theorem is proved.

Cor. From this proposition and Art. 71 we conclude

that A couple may be replaced by any other couple acting in

a parallel plane, provided that the moments of the two couples

are the same.

74. Theorem. A singleforce and a couple acting in

the same plane upon a rigid body cannotproduce equilibrium,

but are equivalent to the single force acting in a direction

parallel to its original direction.

Let the couple consist of two forces, each equal to P,

their lines of action being OB and XC respectively.

Let the single force be Q.

Case I. If Q be not parallel to the forces of the couple,
let it be produced to meet one of them in 0.

Then P and Q, acting at 0, are equivalent to some force

R, acting in some direction OL which lies between OA and

OB.

Let OL be produced (backwards if necessary) to meet

the other force of the couple in U and let the point of

application of J? be transferred to X .

Draw OyAi parallel to OA.

Then the force R may be resolved into two forces Q and

P, the former acting in the direction 0^, and the latter in

the direction opposite to
XC.

L. s. 6
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This latter force P is balanced by the second force P of

the couple acting in the direction XC.

Hence we have left as the resultant of the system a

force Q acting in the direction 1A 1 parallel to its original

direction OA.

Case II. Let the force Q be parallel to one of the

forces of the couple.

A

Q

Let
X meet the force Q in 0%.

The parallel forces P at and Q at 2 are, by Art. 52,

equivalent to a force (P + Q) acting at some point S in a

direction parallel to OB. The unlike parallel forces (P + Q)
at 3 and P at X are, similarly, equivalent to a force Q

acting at some point A in a direction parallel to 3D.

Hence the resultant of the system is equal to the single

force Q acting in a direction parallel to its original direc-

tion.
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75. If threeforces, acting upon a rigid body, be repre-

sented in magnitude, direction, and line of action by the sides

of a triangle taken in order, they are equivalent to a couple

whose moment is represented by twice tlte area of the triangle.

Let ABC be the triangle and P, Q, and R the forces, so

that P, Q, and R are represented by the sides BC, CA, and

AB of the triangle.

Through B draw LBM parallel to the side AC, and in-

troduce two equal and opposite

forces, equal to Q, at B, acting

in the directions BL and BM
respectively. By the triangle

of forces (Art. 36) the forces P,

R, and Q acting in the straight

line BL, are in equilibrium. m
Hence we are left with the

two forces, each equal to Q,
M

acting in the directions CA and BM respectively.

These form a couple whose moment is Q x BN, where

BN is drawn perpendicular to CA.

Also Q x BN= CA x BN twice the area of the triangle

ABC.
Cor. In a similar manner it may be shewn that if

a system of forces acting on one plane on a rigid body be

represented in magnitude, direction, and line of action by
the sides of the polygon, they are equivalent to a couple
whose moment is represented by twice the area of the

polygon.

62



CHAPTER VII.

EQUILIBRIUM OF A RIGID BODY ACTED ON BY
THREE FORCES IN A PLANE.

76. In the present chapter we shall discuss some

simple cases of the equilibrium of a rigid body acted upon

by three forces lying in a plane.

By the help of the theorem of the next article we shall

find that the conditions of equilibrium reduce to those of a

single particle.

77. Theorem. If three forces, acting in one plane

upon a rigid body, keep it in equilibrium, they must either

meet in a point or be parallel.

If the forces be not all parallel, at least two of them

must meet
;

let these two be P and Q,

and let their directions meet in 0. h
The third force R shall then pass \ ...---^q'

through the point 0. /O
Since the algebraic sum of the

moments of any number of forces about

a point in their plane is equal to the

moment of their resultant,

therefore the sum of the moments of P, Q, and R about

is equal to the moment of their resultant.

But this resultant vanishes since the forces are in equi-

librium.
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Hence the sum of the moments of P, Q, and R about

is zero.

But, since P and Q both pass through 0, their moments

about vanish.

Hence the moment of R about vanishes.

Hence by Art. 57, since R is not zero, its line of action

must pass through 0.

Hence the forces meet in a point.

Otherwise. The resultant of P and Q must be some force passing
through 0.

But, since the forces P, Q, and R are in equilibrium, this resultant

must balance R.

But two forces cannot balance unless they have the same line of

action.

Hence the line of action of R must pass through 0.

78. By the preceding theorem we see that the

conditions of equilibrium of three forces, acting in one

plane, are easily obtained. For the three forces must meet

in a point; and by using Lami's Theorem, (Art. 40), or

by resolving the forces in two directions at right angles,

(Art. 46), or by a graphic construction, we can obtain

the required conditions.

Ex. 1. A heavy uniform rod AB is hinged at A to a fixed point,
and rests in a position inclined at 60
to the horizontal, being acted upon by
a horizontal force F applied at the

lower end B: find the action at the

hinge and the magnitude of F.

Let the vertical through C, the
middle point of the rod, meet the
horizontal line through B in the point
D and let the weight of the rod be W.

There are only three forces acting
on the rod, viz., the force F, the

weight W, and the unknown reaction,
P, of the hinge.

These three forces must therefore
meet in a point.
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Now F and W meet at D ; hence the direction of the action at
the hinge must be the line DA.

Draw AE perpendicular to EB, and let the angle ABE be 6.

Then
A F 1A W

tan^^- =2tan60=2V3.ED EB
Also, by Lami's Theorem,

F W

i.e.,

sin WDA
F

sin ADB sin WDB'
W P

sin (90 + 0) sin (180 -6>) sin 90'

cos0 TT JF= IF COt = r- =
sin0 2J3 6

and P=JF^-
1

= Jr\/l + cot2 = TF
/V /;^.sin 'V 12

Otherwise; ADE is a triangle of forces, since its sides are parallel
to the forces. Hence 6 can be measured, and

P _ F _ W
AD~ED~ AE'

Ex. 2. A uniform rod, AB, is inclined at an angle of 60 to the

vertical with one end A resting against a smooth
vertical wall, being supported by a string attached

to a point C of the rod, distant 1 footfrom B, and
also to a ring in the wall vertically above A ; if
the length of the rod be 4 feet, find the position of
the ring and the inclination and tension of the

string.

Let the perpendicular to the wall through A
and the vertical line through the middle point,

G, of the rod meet in O.

The third force, the tension T of the string,
must therefore pass through 0. Hence CO pro-
duoed must pass through D, the position of the

ring.

Let the angle CDA be 6, and draw CEF horizontal to meet OG in

E and the wall in F.

Then ^ CE CG sin CGE
tan 0= tan COE=^m

j^,

_ l.sin60p _ 1

"a.cosGO0-^*
.-. 0=30.
^<7D=6O-0=3O.
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Hence AD=AG=B feet, giving the position of the ring.

If R be the reaction of the wall, and W be the weight of the

beam, we have, since the forces are proportional to the sides of the

triangle AOD,

_T __B _ W_
0D~ A0~ DA'

DA cos30 V3'
AO 1

R=W^r= Wt&n 30 = W .-.,.DA J3
and

Ex. 3. .4 rod whose centre of gravity divides it into tivo portions,
wlwse lengths are a and b, has a string, of length I, tied to its tivo ends
and tfie string is slung over a small smooth peg ; find tlie position of

equilibrium of the rod, in which it is not vertical.

[N.B. The centre of gravity of a body is the point at which it*

weight may be assumed to act.]

Let ifl be the rod and C its centre of gravity; let O be the peg
and let the lengths of the portions AO
and OB of the string be x and y respec- O
tively.

Since there are only three forces

acting on the body they must meet in

a point.

But the two tensions pass through
0; hence the line of action of the

weight W must pass through O, and
hence the line CO must be vertical.

Now the tension T of the string is

not altered, since the string passes
round a smooth peg ; hence, since W
balances the resultant of two equal forces, it must bisect the angle
between them.

/. / AOC= L BOC=a (say).

Hence, by Geometry, - = - - = -
.

y CB b

Also x+y=l.

.: solving these equations, we have

x_y I

a b a+ b'
.(i).
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Also, from the triangle AOB, we have

(a+ &)
2=x2+y2 - 2xy cos 2a= (x+y)

2 - 2xy (1 + cos 2a)

= (x + y)
2 - 4xy cos2 a = Z

2 - 4 . rr5cos
2a.

(a+ ft)-*

;
Z
2
-(a +&)

2
(a+ t>)

2

This equation gives a.

Let be the inclination of the rod to the horizon, so that

OCA = 90 +0.

From the triangle ACO we have

Bin(90+fl) _.aO_3;_ I , ...

sina ~AG~a~a+b' y W "

Z sin a
" o^-^, giving*.

Also, by resolving the forces vertically, we have 2Tooaa=W,
giving T.

Numerical Example. If the length of the rod be 5 feet, the length
of the string 7 feet, and if the centre of gravity of the rod divide it in

the ratio 4 : 3, shew that the portions of the string are at right angles,

that the inclination of the rod to the horizon is tan-1 \, and that the

tension of the string is to the weight of the rod as ^/2 : 2.

Ex. 4. A heavy uniform rod, of length 2a, rests partly within and

partly without a fixed smooth hemispherical bowl, of radius r ; the rim

of the bowl is horizontal, and one point of the rod is in contact with the

rim ; if 6 be the inclination of the rod to the horizon, shew that

2r cos 20= a cos 0.

Let the figure represent that vertical section of the hemisphere
which passes through the rod.

Let AB be the rod, G its centre of gravity, and G the point where
the rod meets the edge of the bowl.

The reaction at A is along the line to the centre, O, of the bowl ;

for JO is the only line through A which is perpendicular to the
surface of the bowl at A.

Also the reaction at G is perpendicular to the rod ; for this is the

only direction that is perpendicular to both the rod and the rim of

the bowl.

These two reactions meet in a point D; also, by Euc. m. 31,
D must lie on the geometrical sphere of which the bowl is a portion.

Hence the vertical line through Gf, the middle point of the rod,
must pass through D.
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Through A draw AE horizontal to meet DG in E and join 00.

Since 00 and AE are parallel,

.-. lOCA= lCAE=0.
Since OG=OA, :. iOAG= lOCA = 0.

Also GDC=90- /.DGC=0.
Now .425= .4G cos 0=a cos 0,

and ^.E=^Dcos20=2rcos20.
/. 2r cos 20= a cos 0, giving 0.

Also, by Lami's Theorem, if R and <S be the reactions at A and C,
we have

sin0

a w
sin ^DG

~~
efoiADG

'

_JL- g W
'
sin cos 20

~~
cos

'

Numerical Example. If r = ^- a, then we have 0=30, and

o

Ex. 5. .4 6eam whose centre of gravity divides it into two por-
tions, a and b, is placed inside a smooth sphere; shew that, if be its

inclination to the horizon in the position of equilibrium and 2a be the

angle subtended by the beam at the centre of the sphere, then

b a
tan0=r tana.

b+a
In this case both the reactions, i? and S, at the ends of the rod

pass through the centre, 0, of the sphere. Hence the centre of gravity,
G, of the rod must be vertically below 0.

Let OG meet the horizontal line through A in N.

Draw OD perpendicular to AB.
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Then

and

lAOD= lBOD= a,

ADOG=90- lDGO= LDAN=6.

Hence

AGAD-GD _ OP tan AOD-OD tan GOD
GB

~
BD+ GD

~
OD tan BOD+OD tan GOD

tan o - tan

tan a+ tan

;. tan = = tan a.
o+ a

This equation gives 0.

Also, by Lami's Theorem,
R S W

sinBOG
~
smAOG

~
sin AOB

'

B S W
sin (a+ 0)

~
sin (a-$)~ sin 2a

'

giving the reactions.

Numerical Example. If the rod be of weight 40 lbs. ,
and subtend

a right angle at the centre of the sphere, and if its centre of gravity
divide it in the ratio 1 : 2, shew that its inclination to the horizon

is tan-1 ^, and that the reactions are 8^/5 and 16J5 lbs. weight
respectively.

Ex. 6. Shew how the forces which act on a kite maintain it in

equilibrium, proving that the perpendicular to the kite must lie between

the direction of the string and the vertical.

Let AB be the middle line of the kite, B being the point at which
the tail is attached ; the plane of the kite is perpendicular to the

plane of the paper. Let G be the centre of gravity of the kite

including its tail.

The action of the wind may be resolved at each point of the kite

into two components, one perpendicular to the kite and the other
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along its surface. The latter components have no effect on it and

may be neglected. The former components compound into a single

A M

force R perpendicular to the kite which acts at a point II which is

a short distance above G.

B and W meet at a point O and through it must pass the direction

of the third force, viz. the tension T of the string.

Draw KL vertically to represent the weight W, and LM parallel
to HO to represent R.

Then, by the triangle of forces, MK must represent the tension T
of the string.

It is clear from the figure that the line MK must make a greater

angle with the vertical LK than the line LM,
i.e. the perpendicular to the kite must lie between the vertical

and the direction of the string.

From the triangle of forces it is clear that both T and W must
be smaller than the force R exerted by the wind.

79. Trigonometrical Theorems.

trigonometrical theorems which are useful in

There are two

Statical

Problems, viz. If P be any point in tlie base AB of a

triangle ABC, and if CP divides AB into two parts m
and n, and the angle C into two parts a and

($,
and if

the angle CPB be 0, then

(m + n)cotO = mcot a ncotfi (1),

and (m + ri)cotQ ncotA mcot B (2).
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Foi

m AP AP PC sin ACP sin PBC
n PB PC PB sinPAC sin PCB

sin a sin (0 + /3) . __ . OAO ,_ ..

= -T-72 r . : ,
since z. PBC = 180 -

(/? + 0),
sm(()-o) sm/2
sin a (sin 6 cos B + cos sin B) _ cot /? + cot

sin /? (sin cos a cos 6 sin a) cot a cot 6
'

.'. racota n cot B = (m + n) cot 6.

Again
m _ sin ACP sin P,g(7

n
~

sinPAC sin PCB
sin (0

- A) sin i?

sin .4
"

sin ($ + B)

(sin 6 cos -4 cos $ sin .4 ) sin B
sin .4 (sin cos i? + cos 6 sin i?)

cot 4 cot 6
~
cot B + cotd'

.'. (m + n) cot = n cot A m cot 2?.

As an illustration of the use of these formulae take Ex. 5 of

Art. 78. Here formula (2) gives

(a+ b) cot OGB= b cot OAB - a cot OBA,

i.e., (a+b) tan0=fctana atana.

Other illustrations of their use will be found later on in this book.

EXAMPLES. XI.

1. A uniform rod, AB, of weight W, is movable in a vertical

plane about a hinge at A, and is sustained in equilibrium by a weight
P attached to a string BCP passing over a smooth peg C, AG being
vertical ; if AG be equal to AB, shew that P= Wcos AGB.

2. A uniform rod can turn freely about one of its ends, and is

pulled aside from the vertical by a horizontal force acting at the

other end of the rod and equal to half its weight ; at what inclination

to the vertical will the sod resfc?
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3. A rod AB, hinged at A, is supported in a horizontal position

by a "string BC, making an angle of 45 with the rod, and the rod has

a mass of 10 lbs. suspended from B. Neglecting the weight of the

rod, find the tension of the string and the action at the hinge.

4. A uniform heavy rod AB has the end A in contact with a

smooth vertical wall, and one end of a string is fastened to the rod

at a point C, such that AC=\AB, and the other end of the string is

fastened to the wall ;
find the length of the string, if the rod rest in

a position inclined at an angle to the vertical.

5. AGB is a uniform rod, of weight W ; it is supported (B being

uppermost) with its end A against a smooth vertical wall AD by means
of a string CD, DB being horizontal and CD inclined to the wall at

an angle of 30. Find the tension of the string and the reaction of

the wall, and prove that AC= \AB.

6. A uniform rod, AB, resting with one end A against a smooth
vertical wall is supported by a string BC which is tied to a point C
vertically above A and to the other end B of the rod. Draw a diagram
shewing the lines of action of the forces which keep the rod in equi-

librium, and shew that the tension of the string is greater than the

weight of the rod.

7. A uniform beam AB, of given length, is supported with its

extremity, A, in contact with a smooth wall by means of a string CD
fastened to a known point C of the beam and to a pointD of the wall ;

if the inclination of the beam to the wall be given, shew how to find

by geometrical construction the length of the string CD and the height
of D above A.

For the problem to be possible, shew that the given angle BAD
must be acute or obtuse according as AC is less or greater than \AB.

8. A uniform rod, of length a, hangs against a smooth vertical
wall being supported by means of a string, of length I, tied to one end
of the rod, the other end of the string being attached to a point in the
wall ; shew that the rod can rest inclined to the wall at an angle 6

I? -a?
given by cos2 fl=

3
. What are the limits of the ratio of a : I that

equilibrium may be possible?

9. Equal weights P and P are attached to two strings ACP and
BCP passing over a smooth peg C. AB ia a heavy beam, of weight W,
whose centre of gravity is a feet from A and b feet from B ; shew that
AB is inclined to the horizon at an angle

tan -1 rtan( sin -1^ ) ,

\_a+ b \ 2P/J
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10. A heavy uniform beam is hung from a fixed point by two
strings attached to its extremities ; if the lengths of the strings and
beam be as 2 : 3 : 4, shew that the tensions of the strings and the

weight of the beam are as 2 : 3 : ^10.

11. A heavy uniform rod, 15 inches long, is suspended from a
fixed point by strings fastened to its ends, their lengths being 9 and
12 inches ; if 6 be the angle at which the rod is inclined to the vertical,
shew that 25 sin 6= 24.

12. A straight uniform rod, of weight 3 lbs., is suspended from a

peg by two strings, attached at one end to the peg and at the other to

the extremities of the rod ; the angle between the strings is a right

angle and one is twice as long as the other ; find their tensions.

13. Two equal heavy spheres, of 1 inch radius, are in equilibrium
within a smooth spherical cup of 3 inches radius. Shew that the
action between the cup and one sphere is double that between the two

spheres.

14. A sphere, of given weight W, rests between two smooth
planes, one vertical and the other inclined at a given angle a to the
vertical ; find the reactions of the planes.

15. A solid sphere rests upon two parallel bars which are in the
same horizontal plane, the distance between the bars being equal to

the radius of the sphere ; find the reaction of each bar.

16. A smooth sphere is supported in contact with a smooth
vertical wall by a string fastened to a point on its surface, the other
end being attached to a point in the wall ; if the length of the string
be equal to the radius of the sphere, find the inclination of the string
to the vertical, the tension of the string, and the reaction of the wall.

17. A picture of given weight, hanging vertically against a smooth
wall, is supported by a string passing over a smooth peg driven into

the wall; the ends of the string are fastened to two points in the

upper rim of the frame which are equidistant from the centre of the

rim, and the angle at the peg is 60 ; compare the tension in this case
with what it will be when the string is shortened to two-thirds of its

length.

18. A picture, of 40 lbs. wt., is hung, with its upper and lower

edges horizontal, by a cord fastened to the two upper corners and

passing over a nail, so that the parts of the cord at the two sides of

the nail are inclined to one another at an angle of 60. Find the
tension of the cord in lbs. weight.

19. A picture hangs symmetrically by means of a string passing
over a naif and attached to two rings in the picture; what is the
tension of the string when the picture weighs 10 lbs., if the string be
4 feet long and the nail distant 1 ft. 6 inches from the horizontal line

joining the rings?
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20. A picture frame, rectangular in shape, rests against a smooth
vertical wall, from two points in which it is suspended by parallel

strings attached to two points in the upper edge of the back of the

frame, the length of each string being equal to the height of the

frame. Shew that, if the centre of gravity of the frame coincide with
its centre of figure, the picture will hang against the wall at an angle

tan-1 to the vertical, where a is the height and b the thickness of

the picture.

21. It is required to hang a picture on a vertical wall so that it

may rest at a given inclination, a, to the wall and be supported by a
cord attached to a point in the wall at a given height h above the
lowest edge of the picture ; determine, by a geometrical construction,
the point on the back of the picture to which the cord is to be
attached and find the length of the cord that will be required.

22. A rod rests wholly within a smooth hemispherical bowl, of

radius r, its centre of gravity dividing the rod into two portions of

lengths a and b. Shew that, if d be the inclination of the rod to the

horizon in the position of equilibrium, then sin 6= ; , and
Isjri-ab

find the reactions between the rod and the bowl.

23. In a smooth hemispherical cup is placed a heavy rod, equal
in length to the radius of the cup, the centre of gravity of the rod

being one-third of its length from one end ; shew that the angle made
by the rod with the vertical is tan-1 (3^/3).

24. A uniform rod, 4 inches in length, is placed with one end
inside a smooth hemispherical bowl, of which the axis is vertical and
the radius ^/3 inches ; shew that a quarter of the rod will project over
the edge of the bowl.

Prove also that the shortest rod that will thus rest is of length
2^/2 inches.

The following examples are to be solved graphically.

25. A heavy beam, AB, 10 feet long, is supported, A uppermost,
by two ropes attached to it at A and B which are respectively inclined
at 55 and 50 to the horizontal; if AB be inclined at 20 to the
horizontal, find at what distance from A its centre of gravity is.

Also, if its weight be 200 lbs., find the tensions of the two ropes.

26. A light rod AB, of length 2 feet, is smoothly jointed to a fixed

support at A and rests horizontally; at D, where AD = 9 inches, it

carries a weight of 10 lbs., being supported by a light rod CB, where
C is exactly underneath A and AC= 6 inches ; find the thrust in the
rod CB.
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27. -4-B ia a uniform beam turning on a pivot at C and kept in

equilibrium by a ligbt string AD attached to the highest point A and
to a point D vertically below C. If AB= 3 ft. , AC= 1 ft. , CD= 2 ft. ,

and DA 2-7 ft., and the weight of the beam be 10 lbs., find the
tension of the string and the reaction of the pivot.

28. A cantilever consists of a horizontal rod AB hinged to a fixed

support at A, and a rod DC hinged at a point G of AB and also

hinged to a fixed point D vertically below A. A weight of 1 cwt.

is attached at B; find the actions at A and C, given that AB=6 ft.,

AC=2 ft., and AD=3 ft., the weights of the rods being neglected.

29. The plane of a kite is inclined at 50 to the horizon, and its

weight is 10 lbs. The resultant thrust of the air on it acts at a point
8 inches above its centre of gravity, and the string is tied at a point
10 inches above it. Find the tension of the string and the thrust

of the air.



CHAPTER VIII.

GENERAL CONDITIONS OF EQUILIBRIUM OF A
BODY ACTED ON BY FORCES IN ONE PLANE.

80. Theorem. Any system offorces, acting in one

plane upon a rigid body, can be reduced to either a single

force or a single couple.

By the parallelogram of forces any two forces, whose

directions meet, can be compounded into one force; also,

by Art. 52, two parallel forces can be compounded into one

force provided they are not equal and unlike.

First compound together all the parallel forces, or sets

of parallel forces, of the given system.

Of the resulting system take any two forces, not form-

ing a couple, and find their resultant fix ;
next find the

resultant Ji.2 of 7^ and a suitable third force of the system ;

then determine the resultant of R2 and a suitable fourth

force of the system ;
and so on until all the forces have

been exhausted.

Finally, we must either arrive at a single force, or we

shall have two equal parallel unlike forces forming a

couple.

81. Theorem. If a system of forces act in one

plane upon a rigid body, and if the algebraic sum, of their

moments about each of three points in the plane (not lying in

the same straight line) vanish separately, the system offorces

is in equilibrium.

L. s. 7
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For any such system of forces, by the last article,

reduces to either a single force or a single couple.

In our case they cannot reduce to a single couple ; for,

if they did, the sum of their moments about any point in

their plane would, by Art. 69, be equal to a constant which

is not zero, and this is contrary to our hypothesis.

Hence the system of forces cannot reduce to a single

coupla

The system must therefore either be in equilibrium or

reduce to a single force F.

Let the three points about which the moments are taken

be A, B, and G.

Since the algebraic sum of the moments of a system of

forces is equal to that of their resultant (Art. 62), therefore

the moment of F about the point A must be zero.

Hence F is either zero, or passes through A.

Similarly, since the moment of F about B vanishes,

F must be either zero or must pass through B,

i.e., F is either zero or acts in the line AB.

Finally, since the moment about G vanishes, F must be

either zero or pass through G.

But (since the points A, B, C are not in the same

straight line) the force cannot act along AB and also pass

through G.

Hence the only admissible case is that F should be zero,

i.e., that the forces should be in equilibrium.

The system will also be in equilibrium if (1) the sum of the
moments about each of two points, A and B, separately vanish, and
if (2) the sum of the forces resolved along AB be zero. For, if (1)

holds, the resultant, by the foregoing article, is either zero or acts

along AB. Also, if
(2) be true there is no resultant in the direction

AB] hence the resultant force is zero. Also, as in the foregoing
article, there is no resultant couple. Hence the system is in equi-
librium.
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82. Theorem. A system offorces, acting in oneplane

upon a rigid body, is in equilibrium, if the sum oftheir compo-
nents parallel to each of two lines in their plane be zero, and if

the algebraic sum oftheir moments about anypoint be zero also.

For any such system of forces, by Art. 80, can be

reduced to either a single force or a single couple.

In our case they cannot reduce to a single force.

For, since the sums of the components of the forces

parallel to two lines in their plane are separately zero,

therefore the components of their resultant force parallel to

these two lines are zero also, and therefore the resultant

force vanishes.

Neither can the forces reduce to a single couple ; for, if

they did, the moment of this couple about any point in its

plane would be equal to a constant which is not zero
; this,

however, is contrary to our hypothesis.

Hence the system of forces must be in equilibrium.

83. It will be noted that in the enunciation of the last

article nothing is said about the directions in which we are

to resolve. In practice, however, it is almost always desir-

able to resolve along two directions at right angles.

Hence the conditions of equilibrium of any system of

forces, acting in one plane upon a rigid body, may be ob-

tained as follows
;

I. Equate to zero the algebraic sum of the re-

solvedpartsofall the forces in some fixed direction.

II. Equate to zero the algebraic sum of the
resolved parts of all the forces in a perpendicular
direction.

III. Equate to zero the algebraic sum of the
moments of the forces about any point in their

plane.

72
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I and II ensure that there shall be no motion of the

body as a whole
;
III ensures that there shall be no motion

of rotation about any point.

The above three statical relations, together with the

geometrical relations holding between the component

portions of a system, will, in general, be sufficient to deter-

mine the equilibrium of any system acted on by forces

which are in one plane.

In applying the preceding conditions of equilibrium to

any particular case, great simplifications can often be intro-

duced into the equations by properly choosing the directions

along which we resolve. In general, the horizontal and

vertical directions are the most suitable.

Again, the position of the point about which we take

moments is important ;
it should be chosen so that as few

of the forces as possible are introduced into the equation of

moments.

84. We have shewn that the conditions given in the previous
article are sufficient for the equilibrium of the system of forces ; they
are also necessary.

Suppose we knew only that the first two conditions were satisfied.

The system of forces might then reduce to a single couple ; for the
forces of this couple, being equal and opposite, are such that their

components in any direction would vanish. Hence, resolving in any
third direction would give us no additional condition. In this case
the forces would not be in equilibrium unless the third condition were
satisfied.

Suppose, again, that we knew only that the components of the

system along one given line vanished and that the moments about a
given point vanished also ; in this case the forces might reduce to a

single force through the given point perpendicular to the given line ;

hence we see that it is necessary to have the sum of the components
parallel to another line zero also.
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85. We shall now give some examples of the applica-

tion of the general conditions of equilibrium. In solving

any statical problem the student should proceed as

follows
;

(1) Draw the figure according to the conditions given.

(2) Mark all the forces acting on the body or bodies,

taking care to assume an unknown reaction (to be deter-

mined) wherever one body presses against another, and

to mark a tension along any supporting string, and to

assume a reaction wherever the body is hinged to any other

body or fixed point.

(3) For each body, or system of bodies, involved in

the problem, equate to zero the forces acting on it resolved

along two convenient perpendicular directions (generally

horizontal and vertical).

(4) Also equate to zero the moments of the forces

about any convenient point.

(5) Write down any geometrical relations connecting

the lengths or angles involved in the figure.

Ex. 1. A heavy uniform beam rests with one end upon a horizontal

plane, and the other end upon a given inclined plane; it is kept in

equilibrium by a string tchich is attached to the end resting on the

Iwrizontal plane and to the intersection of the inclined and horizontal

planes; given tliat the inclination
(a) of the beam to the horizontal is

one-half that of the inclined plane, find the tension of the string and the

reactions of the 2)lanes.

Let AB be the beam, AO the horizontal, and OB the inclined

plane.
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Let T be the tension of the string AO, W the weight of the body,
R and S the reactions at A and B respectively vertical and perpen-
dicular to OB.

Besolving horizontally and vertically we have

T=Ssin2a (1),

TF=.R+ Scos2a (2).

Also, taking moments about A, we have

W .aoosa= S . ABsinABL= S .2acosa (3),

where 2a is the length of the beam.

These three equations give the circumstances of the equilibrium.

From (3), we have S=\W.
:. from (2), R=W-\WGOs2a=W(l-\ooHa).
Also, from (1),

T=^-sin2a.

Hence the reactions and the tension of the string are determined.

Suppose that, instead of the inclination of the beam to the horizon

being given, the length of the string were given (
= 1 say).

Let us assume the inclination of the beam to the horizon to be 6.

The equations (1) and (2) remain the same as before.

The equation of moments would be, however,

W. acos 6=8 . AB sinABL= S . 2aoosABO
= S.2acos(2a-0) (4).

We should have a geometrical equation to determine 6, viz.,

l__OA_ sinABO _ sin(2q-fl)

2a~AB~ sinAOB" sin2a
* ''

This latter equation determines 6, and then the equations (1), (2),

and (4) would give T, R, and S.

This question might have been solved by resolving along and

perpendicular to the beam ;
in each equation we should then have

involved each of the quantities T, R, S, and W, so that the resulting

equations would have been more complicated than those above.

It was also desirable to take moments about A ; for this is the

only convenient point in the figure through which pass two of the

forces which act on the body.

Ex. 2. A beam whose centre of gravity divides it into portions, of

lengths a and b respectively, rests in equilibrium with its ends resting

on two smooth planes inclined at angles a and
/3 respectively to the

horizon, the planes intersecting in a horizontal line; find the inclination

of the beam to the Iwrizon and the reactions of the planes.
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Let the planes be OA and OB, and let AB be the rod, whose centre
of gravity is G, so that GA and GB are a and b respectively.

Let R and S be the reactions at A and B perpendicular to the
inclined planes, and let be the inclination of the beam to the
horizon.

Resolving vertically and horizontally, we have

i2cosa + 5cos)3=Tr
R sin a= S sin /S

Also, by taking moments about G, we have

R . GA sin GAL = S.GB sin GBM.

Now L GAL=90 -BAO= 90 -(a -0),
and / GM= 90 - XBO= 90 -

( + 0) .

Hence the equation of moments becomes

R.acos(a-0) = S .bcoB{p+ 0)

From (2), we have

R
_

S Rcosa+ ScoBp W
sin/3 sin a sin /S cos a+ sin a cos

/3 sin (a+/S)

(1),

.(2).

.(3)-

. by (1).

These equations give R and S; also substituting for R and S in (3)
we have

a sin /3 cos (a
-

0) = 6 sin a cos ( + 0) ;

.". a sin /S (cos a cos + sin a sin 0) = b sin a (cos /3 cos
- sin /3 sin 0) ;

.*. (a+ 6) sin a sin
/3 sin = cos (b sin a cos

/3
- a cos a sin

/3) ;

.*. (a + 6) tan = fccot/S-acota (4),

giving the value of 0.

Otherwise thus; Since there are only three forces acting on the

body this question might have been solved by the methods of the last

chapter.
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For the three forces R, S, and W, must meet in a point O'.

The theorem of Art. 79 then gives

(a + b) cot O'GA = b cot /3
- a cot a,

i.e. (a+b) tan = &cot/3-acot a,

which is equation (4).

Also Lami's Theorem (Art. 40) gives

.R S FT

sin (7G
~

sin AVG
~

sin ACfB '

-S ^ IF"

sin /3

"~
sin a sin (a+ /3)

*

Ex. 3. .4 ladder, whose weight is 192 lbs. and whose length is 25

feet, rests with one end against a smooth vertical wall and icith the

other end upon the ground; if it be prevented from slipping by a peg
at its lowest point, and if the lowest point be distant 7 feet from the

wall, find the reactions of the peg, the ground, and the wall.

Let AB be the rod and G its middle point ; let R and R
x
be the

reactions of the ground and wall, and S the hori-

zontal reaction of the peg. Let the angle GAO be

a, so that
AO 7

cos =7S = <>AB 25

and hence

/, 49 /5763ina=V 625
=
Vo25

=

Equating to zero the horizontal and vertical

components of the forces acting on the rod, we have

JB-192=0 (1),

and ^-=0 (2).

Also, taking moments about A ,
we have

192 xAG cos a=R
1
xAB sin a (3);

.-. i?1= 192x^cota=96x^=28.

Hence, from (1) and (2),

JJ=192 and #=28.

The required reactions are therefore 28, 192, and 28 lbs. weight

respectively.

The resultant of R and S must by the last chapter pass through O',

the point of intersection of the weight and JJj.
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Ex. 4. One end of a uniform rod is attached to a hinge, and the

other end is supported by a string attaclied to the extremity of the rod,

and the rod and string are inclined at tlve same angle, 0, to the hori-

zontal; if W be the weight of tlie rod, shew that the action at the

W I

hinge is s/8+ cosec2 9.

Let AB be the rod, C its middle point, and BD the string meeting
the horizontal line through A in D.

Let the tension of the string be T.

The action at the hinge is unknown both in magnitude and

direction. Let the horizontal and vertical components of this action

be X and Y, as marked in the figure. Draw BE perpendicular to AD.
Then AD=2AE= 2AB cos 0.

Besolving horizontally and vertically, we have

X=Tcosd (1),

Y+TsinO=W (2).

Also, taking moments about A, we have

W. AC cos 0=T.AD sin 0=T.2AB cos sin (3).

AC W
From (3),

T=W
211^^8

=
IsW0-

Hence, by (1) and (2),

X=^-cot0, and Y=W_-- = -;-.4 4 4

Therefore the action at the hinge= Jx^+Y2

=^ J9 + cot2 0= ? A/8+cosec
2 0.

4 4

If DB meet the direction of W in M, then, by the last chapter,

AM is the direction of the action at A. Hence, if CN be parallel to

AM, then CMN is a triangle of forces.
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Ex. 5. A uniform heavy rod can turn freely about one end, which

is fixed; to this end is attached a string which supports a sphere of

radius a. If the length of the rod be 4a, the length of the string a, and

the weights of the sphere and rod be each W, find the inclinations of the

rod and string to the vertical and the tension of the string.

Let OA be the rod, OG the string, B the centre of the sphere, and
D the point in which the rod touches the sphere.

Between the sphere and the rod at D there is a reaction, B, per-

pendicular to OD, acting in opposite directions on the two bodies.

The forces which act on the sphere only must be in equilibrium ;

and so also must the forces which act on the rod.

Since there are only three forces acting on the sphere they must

meet in a point, viz., the centre of the sphere.

Hence OGB is a straight line.

Let 6 and <p be the inclination of the rod and string to the

vertical.

m, . / v
DB a 1

Then sm (*+ *)= 0I?=2a-
=

2'

so that 6 + <p=S0 (1).

The forces acting on the rod are the reaction at D, the weight of

the rod, and the action at the hinge 0.

If we take moments about O we shall avoid this action, and we
have

W. 2a sin 6=R. OD=R. 2a cos 30 (2).
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(3)-

From the conditions of equilibrium of the sphere,

T R W
sin(< + 60) sin</> sin 60

Therefore, from (2) and (3),

sin 6 _ R _ sin0
oos30o_ TF~slri"66o

"

.-. $=0, and henoe, from (1),

0=0=15.

Substituting in (3), we have

EXAMPLES. XH.

1. A uniform beam, AB, whose weight is W, reBts with one end,

4,ona smooth horizontal plane AG. The other end, B, rests on a

plane CB inclined to the former at an angle of 60. If a string CA,

equal to CB, prevent motion, find its tension.

2. A ladder, of weight W, rests with one end against a smooth

vertical wall and with the other resting on a smooth floor; if the

inclination of the ladder to the horizon be 60, find, by calculation

and graphically, the horizontal force that must be applied to the lower

end to prevent the ladder from sliding down.

3. A beam, of weight W, is divided by its centre of gravity C into

two portions AG and BC, whose lengths are a and b respectively. The
beam rests in a vertical plane on a smooth floor AD and against a

smooth vertical wall DB. A string is attached to a hook at D and to

the beam at a point P. If T be the tension of the string, and and
<f>

be the inclinations of the beam and string respectively to the horizon,

shew that T=W -. . . tt . .

(a + b) sin (6
-

<p)

4. A ladder rests at an angle a to the horizon, with its ends rest-

ing on a smooth floor and against a smooth vertical wall, the lower

end being attached by a string to the junction of the wall and floor ;

find the tension of the string.

Find also the tension of the string when a man, whose weight is

one-half that of the ladder, has ascended the ladder two-thirds of its

length.
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5. One end of a uniform beam, of weight W, is placed on a smooth
horizontal plane; the other end, to which a string is fastened, rests

against another smooth plane inclined at an angle a to the horizon
; the

string, passing over a pulley at the top of the inclined plane, hangs
vertically, and supports a weight P; shew that the beam will rest in
all positions if IP W sin a.

6. A heavy uniform beam rests with its extremities on two smooth
inclined planes, which meet in a horizontal line, and whose inclinations
to the horizon are a and p ; find its inclination to the horizon in the

position of equilibrium, and the reactions of the planes.

7. A uniform beam rests with a smooth end against the junction
of the ground and a vertical wall, and is supported by a string
fastened to the other end of the beam and to a staple in the wall.
Find the tension of the string, and shew that it will be one-half
the weight of the beam if the length of the string be equal to the

height of the staple above the ground.

8. A uniform rod BC, of weight 2 lbs., can turn freely about B
and is supported by a string AC, 8 inches long, attached to a point A in

the same horizontal line as B, the distance AB being 10 inches. If

the rod be 6 inches long, find the tension of the string. Verify by
a drawing and measurement.

9. A uniform rod has its upper end fixed to a hinge and its other
end attached by a string to a fixed point in the same horizontal plane
as the hinge, the length of the string being equal to the distance
between the fixed point and the hinge. If the tension of the string be

equal to the weight W of the rod, shew that the rod is inclined to the

horizon at an angle tan-1 \, and that the action of the hinge is equal
W

to a force
-^ ^/10 inclined at an angle tan-1 ^ to the horizon.
5

10. A rod is movable in a vertical plane about a hinge at one end,
and at the other end is fastened a weight equal to half the weight of

the rod ; this end is fastened by a string, of length I, to a point at a

height c vertically over the hinge. Shew that the tension of the string
IW

is , where W is the weight of the rod.

11. AB is a uniform rod, of length 8a, which can turn freely
about the end A, which is fixed; G is a smooth ring, whose weight is

twice that of the rod, which can slide on the rod, and is attached by a

string CD to a pointD in the same horizontal plane as the point A ; if

AD and CD be each of length a, find the position of the ring and the
tension of the string when the system is in equilibrium.

Shew also that the action on the rod at the fixed end A is a hori-

zontal force equal to JSW, where W is the weight of the rod.
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12. A rigid wire, without weight, in the form of the arc of a circle

subtending an angle a at its centre, and having two weights P and
Q at its extremities, rests with its convexity downwards upon a hori-

zontal plane ; shew that, if 8 be the inclination to the vertical of the
radius to the end at which P is suspended, then

tan*=- gsina
P+Qcosa

13. A smooth hemispherical bowl, of diameter a, is placed so
that its edge touches a smooth vertical wall ; a heavy uniform rod is

in equilibrium, inclined at 60 to the horizon, with one end resting on
the inner surface of the bowl, and the other end resting against the

wall; shew that the length of the rod must be a+ .

14. A cylindrical vessel, of height 4 inches and diameter 3 inches,
stands upon a horizontal plane, and a smooth uniform rod, 9 inches

long, is placed within it resting against the edge. Find the actions
between the rod and the vessel, the weight of the former being 6 ounces.

15. A thin ring, of radius B and weight W, is placed round a
vertical cylinder of radius r and prevented from falling by a nail

projecting horizontally from the cylinder. Find the horizontal re-

actions between the cylinder and the ring.

16. A heavy carriage wheel, of weight W and radius r, is to be

dragged over an obstacle, of height h, by a horizontal force F applied
to the centre of the wheel ; shew that F must be slightly greater than

W
r-h

17. A uniform beam, of length 2a, rests in equilibrium, with one
end resting against a smooth vertical wall and with a point of its

length resting upon a smooth horizontal rod, which is parallel to the
wall and at a distance 6 from it; shew that the inclination of the
beam to the vertical is

*

18. A circular disc, BCD, of radius a and weight W, ia supported
by a smooth band, of inappreciable weight and thickness, which sur-

rounds the disc along the arc BCD and is fastened at its extremities to

the point A in a vertical wall, the portion AD touching the wall and
the plane of the disc being at right angles to the wall. If the length
of the band not in contact with the disc be 2ft, shew that the tension

of the band is r^ , and find the reaction at D.
2 o2
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19. Two equal uniform heavy straight rods are connected at one

extremity by a string and rest upon two smooth pegs in the same
horizontal line, one rod upon one peg and the other upon the other ;

if the distance between the pegs be equal to the length of each rod and
the length of the string be half the same, shew that the rods rest at an

angle 6 to the horizon given by 2 cos3 0=1.

20. A uniform rod, whose weight is W, is supported by two fine

strings, one attached to each end, which, after passing over small
fixed smooth pulleys, carry weights w1

and w2 respectively at the other
ends. Shew that the rod is inclined to the horizon at an angle

21. A uniform rod, of weight W, is supported in equilibrium by
a string, of length 21, attached to its ends and passing over a smooth
peg. If a weightW be now attached to one end of the rod, shew that
it can be plaoed in another position of equilibrium by sliding a length
IW

== => of the string over the peg.

22. AB is a straight rod, of length 2a and weight \W, with the
lower end A on the ground at the foot of a vertical wall AC, B and O
being at the same vertical height 26 above A ; a heavy ring, of weight
W, is free to move along a string, of length 21, which joins B and C.

If the system be in equilibrium with the ring at the middle point of

the string, shew that

l - a b
(\+ir

23. A given square board ABCD, of side b, is supported hori-

zontally by two given loops of string OACO and OBDO passing under

opposite corners and hung over a fixed hook ; find the tensions of

the strings, if the height of above the board be 6.

24. A gate weighing 100 lbs. is hung on two hinges, 3 feet apart,
in a vertical line which is distant 4 feet from the centre of gravity of

the gate. Find the magnitude of the reactions at each hinge on the

assumption that the whole of the weight of the gate is borne by the
lower hinge.

25. A triangle, formed of three rods, is fixed in a horizontal

position and a homogeneous sphere rests on it; shew that the
reaction on each rod is proportional to its length.

26. A light triangular frame ABC stands in a vertical plane, C
being uppermost, on two supports, A and B, in the same hori-

zontal line and a mass of 18 lbs. weight is suspended from C. If

AB=AC=1Q feet, and BC=5 feet, find the reactions of the supports.

27. The sides of a triangular framework are 13, 20, and 21 inches
in length ; the longest side rests on a horizontal smooth table and a
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weight of 63 lbs. is suspended from the opposite angle. Find the

tension in the side on the table. Verify by a drawing and measure-

ment.

28. A bowl is formed from a hollow sphere, of radius a, and is so

placed that the radius of the sphere drawn to each point in the rim
makes an angle a with the vertical, whilst the radius drawn to a point
A of the bowl makes an angle /S

with the vertical ; if a smooth uniform
rod remain at rest with one end at A and a point of its length in

contact with the rim, shew that the length of the rod is

ia sin ft sec ^- .

a

86. In the following articles the conditions of equi-

librium enunciated in Art. 83 will be obtained in a slightly

different manner.

*87. Theorem. Any system offorces, acting in one

plane upon a rigid body, is equivalent to a force acting

at an arbitrary point of the body together with a couple.

Let P be any force of the system acting at a point A of

the body, and let be any arbitrary point. At O introduce

two equal and opposite forces, the magnitude of each being

P, and let their line of action be parallel to that of P.

These do not alter the state of equilibrium of the body.

The force P at A and the opposite parallel force P
at form a couple of moment P . p, where p is the per-

pendicular from upon the bine of action of the original

force P.
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Hence the force P at A is equivalent to a parallel force

P at and a couple of moment P . p.

So the force Q at B is equivalent to a parallel force

Q at and to a couple of moment Q . q, where q is the

perpendicular from on the line of action of Q.

The same holds for each of the system of forces.

Hence the original system of forces is equivalent to

forces P, Q, P... acting at 0, parallel to their original

directions, and a number of couples ;
these are equivalent

to a single resultant force at 0, and a single resultant

couple of moment

P.p + Q .q + ....

*88. By Art. 74 a force and a couple cannot balance

unless each is zero.

Hence the resultant of P, Q, P,... at must be zero,

and therefore, by Art. 46, the sum of their resolved parts

in two directions must separately vanish.

Also the moment Pp + Qq+... must be zero, i.e., the

algebraic sum of the moments of'theforces about an arbitrary

point must vanish also.

*80. Ex. ABCD is a square; along the sides AB, BC, DC, and
DA act forces equal to 1, 9, 5, and 3 lbs. weight ; find the force, passing

through the centre of the square, and the couple which are together

equivalent to the given system.

Let be the centre of the square and let OX and OF be perpendi-
cular to the sides BC, CD respectively. Let
the side of the square be 2a.

The force 9 is equivalent to a force 9

along 0Y together with a couple of moment
9. a.

The force 3 is equivalent to a force - 3

along OY together with a couple of moment
3. a.

A I ^ Id
The force 5 is equivalent to a force 5 1

along OX together with a couple of moment
-5. a.
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The force 1 is equivalent to a force 1 along OX together with a

couple of moment 1 . a.

Hence the moment of the resultant couple is 9a+ 3a - 5a + 1 . a,

i.e., 8. a.

The component force along OX is 6 and the component along OY
is 6.

Hence the resultant force is one of 6^/2 lbs. weight inclined at 45

to the side AB.

EXAMPLES. XIII.

1. A square is acted upon by forces equal to 2, 4, 6, and 8 lbs.

weight along its sides taken in order ; find the resultant force and the
resultant couple of these forces, when the resultant force goes through
the centre of the square.

2. ABCB is a square ; along DA, AB, BC, CD, and DB act forces

equal to P, 3P, 5P, IP, and 9^/2P; find the force, passing through .4,

and the couple, which are together equivalent to the system.

3. Forces equal to 1, 2, 3, 4, 5, and 6 lbs. weight respectively act

along the sides AB, BC, CD, DE, EF, and FA of a regular hexagon;
find the force, passing through A, and the couple, which are together
equivalent to the system.

4. Given in position a force equal to 10 lbs. weight and a couple
consisting of two forces, each equal to 4 lbs. weight, at a distance of
2 inches asunder, draw the equivalent single force.

Constrained body.

90. A body is said to be constrained when one or

more points of the body are fixed. For example, a rod

attached to a wall by a ball-socket has one point fixed and

is constrained.

If a rigid body have two points A and B fixed, all the

points of the body in the line AB are fixed, and the only

way in which the body can move is by turning round

AB as an axis. For example, a door attached to the door-

post by two hinges can only turn about the line joining the

hinges.

If a body have three points in it fixed, the three points
not being in the same straight line, it is plainly immovable.

L. S. 8
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The only cases we shall consider are (1) when the

body has one point fixed and is acted upon by a system
of forces lying in a plane passing through the fixed point,

and (2) when the body can only move about a fixed axis

in it and is acted upon by a system of forces whose

directions are perpendicular to the axis.

91. When a rigid body has one pointfixed, and is acted

upon by a system of forces in a plane passing through the

point, it will be in equilibrium if the algebraic sum of the

moments of the forces about the fixed point vanishes.

When a body has one point A fixed (as in the case

of Ex. 4, Art. 85), there must be exerted at the point some

force of constraint, F, which together with the given

system of forces is in equilibrium. Hence the conditions

of equilibrium of Art. 83 must apply.

If we resolve along two directions at right angles, we
shall have two equations to determine the magnitude and

direction of the force F.

If we take moments about A for all the forces, the

force F (since it passes through A) does not appear in

our equation, and hence the equation of moments of Art.

83 will become an equation expressing the fact that the

algebraic sum of the moments of the given system of

forces about A is zero.

Hence for he equilibrium of the body (unless we wish

to find the force of constraint F) we have only to express

that the algebraic sum of the moments of the forces about

the fixed point A is zero.

92. Ex. A rodAB has one end A fixed, and is kept in a horizontal

position by a force equal to 10 lbs. xceight acting at B in a direction

inclined at 30 to the rod; if the rod be homogeneous, and of length
4 feet, find its weight.

The moment of the weight about A must be equal to the moment
of the force about A.
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If W be the weight, the former moment is W x 2, and the latter is

10 x 4 sin 30.
.-. 2W= 10x4 sin 30 =20.

A IF=10 lbs. wt.

93. When a rigid body has an axis fixed, and is acted

upon by forces, whose directions are perpendicular to this

axis, it will be in equilibrium if the algebraic sum of tlie

moments of the forces about the fixed axis vanishes.

[If a force be perpendicular to a given axis and do not meet it, its

moment about the axis is the product of the force and the perpen-
dicular distance between the axis and the force.]

Suppose AB to be the fixed axis in the body, and let

the body be acted on by forces P, Q... ; these forces need

h? Q
! Id

'*piC D", B
C J

Y V
P Q

not be parallel but their directions must be perpendicular
to the axis.

Draw CC perpendicular to both the axis and P, and
DD' perpendicular to the axis and Q ;

let their lengths be

p and q.

At C introduce two equal and opposite forces, each

equal to P, one of these being parallel to the original

force P.

The force P at and the two forces (P, P) at C are

equivalent to a force P, parallel to the original P, and a

couple of moment P . p.

Similarly, the force Q at D is equivalent to a force Q
at D' and a couple of moment Q . q.

Similarly for the other forces.

82
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The forces, since they intersect the axis, can have no

effect in turning the body about the axis and are balanced

by the forces of constraint applied to the axis.

The couples are, by Arts. 72 and 7 3, equivalent to a couple

of moment P ,p + Q ,q + ... in a plane perpendicular to the

axis.

Hence the body will be in equilibrium if

P.p + Q. q + ... be zero;

also the latter expression is the algebraic sum of the

moments of the forces about the axis.

Hence the theorem is true.

94. Ex. A circular uniform table, of weight 80 lbs., rests onfour
equal legs placed symmetrically round
its edge; find the least weight which hung
upon the edge of the table will just over-

turn it.

Let AE and BF be two of the legs of

the table, whose centre is ; tbe weight
of the table will act through the point 0.

If the weight be hung on the portion
of the table between A and B the table

will, if it turn at all, turn about the line

joining the points E and F. Also it will

be just on the point of turning wben the

weight and the weight of the table have equal moments about EF.

Now the weight will clearly have the greatest effect when placed at

M, the middle point of the arc AB.

Let OM meet AB in L, and let x be the required weight. Taking
moments about EF, which is the same as taking moments about AB,
we have

x. LM= 80. OL.

LM=OM-OL=OA- OA cos 45But

and

x(l-~) OA =80. OL= 80. ~.OA,

=80(^2+ 1)
80

^2-1
= 193-1 lbs. wt.
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95. Theorem. If threeforces acting on a body keep

it in equilibrium, they must lie in a plane.

Let the three forces be P, Q, and R.

Let P1 and Qx
be any two points on the lines of action

of P and Q respectively.

Since the forces are in equilibrium, they can, taken

together, have no effect to turn the body
about the line P^. But the forces P
and Q meet this line, and therefore

separately have no effect to turn the body
about P&!. Hence the third force R
can have no effect to turn the body about

Therefore the line PxQy must meet R.

Similarly, if Q2 , Qs ,... be other points

on the line of action of Q, the lines PXQ2 ,

PxQi,... must meet R.

Hence R must lie in the plane through i\ and the line

of action of Q, i.e., the lines of action of Q and R must be

in a plane which passes through i>

1 .

But i\ is any point on the line of action of P
;
and

hence the above plane passes through any point on the

line of action of P,

i.e., it contains the line of action of P.

Cor. From Art. 77 it now follows that the three forces

must also meet in a point or be parallel.

EXAMPLES. XIV.

1. A square uniform plate is suspended at one of its vertices, and
a weight, equal to half that of the plate, is suspended from the

adjacent vertex of the square. Find the position of equilibrium of the

plate.
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2. A hollow vertical cylinder, of radius 2a and height 3a, rests on
a horizontal table, and a uniform rod is placed within it with its

lower end resting on the circumference of the base ;
if the weight of

the rod be equal to that of the cylinder, how long must the rod be so

that it may just cause the cylinder to topple over?

3. A cylinder, whose length is b and the diameter of whose base
is c, is open at the top and rests on a horizontal plane; a uniform
rod rests partly within the cylinder and in contact with it at its upper
and lower edges ; supposing the weight of the cylinder to be times
that of the rod, find the length of the rod when the cylinder is on- the

point of falling over.

4. A square table stands on four legs placed respectively at the
middle points of its sides ; find the greatest weight that can be put at

one of the corners without upsetting the table.

5. A round table stands upon three equidistant weightless legs at

its edge, and a man sits upon its edge opposite a leg. It just upsets
and falls upon its edge and two legs. He then sits upon its highest

point and just tips it up again. Shew that the radius of the table is

^/2 times the length of a leg.

6. A circular table, whose weight is 10 lbs., is provided with three
vertical legs attached to three points in the circumference equidistant
from one another ;

find the least weight which hung from any point
in the edge of the table will just cause it to overturn.

7. A square four-legged table has lost one leg ; where on the table

should a weight, equal to the weight of the table, be placed, so that

the pressures on the three remaining legs of the table may be equal ?

8. A square table, of weight 20 lbs.
, has legs at the middle points

of its sides, and three equal weights, each equal to the weight of the

table, are placed at three of the angular points. What is the greatest

weight that can be placed at the fourth corner so that equilibrium

may be preserved ?

9. A circular metallic plate, of uniform thickness and of weight
id, is hung from a point on its circumference. A string wound on its

edge, carries a weighty. Find the angle which the diameter through
the point of suspension makes with the vertical.

10. A uniform circular disc, of weight riW, has a particle, of

weight W, attached to a point on its rim. If the disc be suspended
from a point A on its rim, B is the lowest point; also, if suspended
from B, A is the lowest point. Shew that the angle subtended by AB
at the centre of the disc is 2 sec-1 2 (n+ 1).

11. A heavy horizontal circular ring rests on three supports at

the points A, B, and C of its circumference. Given its weight and
the sides and angles of the triangle ABC, find the reactions of the

supports.



CHAPTER IX.

CENTRE OF GRAVITY.

96. Eveky particle of matter is attracted to the

centre of the Earth, and the force with which the Earth

attracts any particle to itself is, as we shall see in

Dynamics, proportional to the mass of the particle.

Any body may be considered as an agglomeration of

particles.

If the body be small, compared with the Earth, the

lines joining its component particles to the centre of the

Earth will be very approximately parallel, and, within the

limits of this book, we shall consider them to be absolutely

parallel.

On every particle, therefore, of a rigid body there is

acting a force vertically downwards which we call its

weight.

These forces may by the process of compounding

parallel forces, Art. 52, be compounded into a single

force, equal to the sum of the weights of the particles,

acting at some definite point of the body. Such a point

is called the centre of gravity of the body.

Centre of gravity. Def. The centre of gravity of a

body, or system of particles rigidly connected togetJier, is

that point through which the line of action of the weight of

the body always passes in whatever position the body is

placed.
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97. Every body, or system ofparticles rigidly connected

together, has a centre ofgravity.

Let A, B, C, D... be a system of particles whose

weights are wlt w2t w3 ....

E

Join AB, and divide it ac G1 so that

AGX : GXB :: w2 : wx
.

Then parallel forces wx and w2 , acting at A and B, are,

by Art. 52, equivalent to a force (wx + w2) acting at Gx .

Join G-iG, and divide it at G2 so that

G
XG2 : G2C :: wz : wx + w2 .

Then parallel forces, (tvx + w2)
at G1 and tvs at C, are

equivalent to a force (wx + w2 + w3) at G2 .

Hence the forces wlt w2 ,
and w3 may be supposed to be

applied at G2 without altering their effect.

Similarly, dividing G2D in G3 so that

G2G3 : G3D : : w4 : wx + w2 + w3 ,

we see that the resultant of the four weights at A, B, C,

and D is equivalent to a vertical force, wx
+ w2 + w3 + w4 ,

acting at (t3 .

Proceeding in this way, we see that the weights of any
number of particles composing any body may be supposed
to be applied at some point of the body without altering

their effect.

98. Since the construction for the position of the

resultant of parallel forces depends only on the point of

application and magnitude, and not on the direction of

the forces, the point we finally arrive at is the same if
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the body be turned through any angle; for the weights

of the portions of the body are still parallel, although they

have not the same direction, relative to the body, in the

two positions.

We can hence shew that a body can only have one

centre of gravity. For, if possible, let it have two centres

of gravity G and Gl
. Let the body be turned, if necessary,

until GGX be horizontal. We shall then have the resultant

of a system of vertical forces acting both through G and

through Gi. But the resultant force, being itself neces-

sarily vertical, cannot act in the horizontal line GGX .

Hence there can be only one centre of gravity.

99. If the body be not so small that the weights of its component
parts may all be considered to be very approximately parallel, it has

not necessarily a centre of gravity.

In any case, the point of the body at which we arrive by the con-

struction of Art. 97, has, however, very important properties and is

called its Centre of Mass, or Centre of Inertia. If the body be of

uniform density its centre of mass coincides with its Centroid.

100. We shall now proceed to the determination of

the centre of gravity of some bodies of simple forms.

I. A uniform rod.

Let AB be a uniform rod, and G its middle point.

Take any point P of the rod between G and A
y
and a

point Q in GB, such that

GQ = GP.

The centre of gravity of equal particles at P and Q
is clearly G

; also, for every particle between G and A,

there is an equal particle at an equal distance from G
%

lying between G and B.
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line, then the centre of gravity of the lamina must lie on

that line.

Similarly, if a body can be divided into portions, the

centres of gravity of which lie in a plane, the centre of

gravity of the whole must lie in that plane.

103. III. Uniform triangular lamina.

Let ABC be the triangular lamina and let D and E be

the middle points of the sides BC
and CA. Join AD and BE, and

let them meet in G. Then G
shall be the centre of gravity of

the triangle.

Let -SjCj be any line parallel

to the base BC meeting AD in DY .

As in the case of the parallelogram, the triangle may
be considered to be made up of a very large number of

strips, such as B-fix ,
all parallel to the base BC.

Since BXCX
and BC are parallel, the triangles AB1

D
1

and ABD are similar; so also the triangles ADlC1
and

ADC are similar.

Hence M=**=%&nence
J) AJ) m

But BD = DC; therefore B^DX
=DXCX . Hence the

centre of gravity of the strip BXCX
lies on AD.

So the centres of gravity of all the other strips lie on

AD, and hence the centre of gravity of the triangle lies

on AD.

Join BE, and let it meet AD in G.

By dividing the triangle into strips parallel to AC we

see, similarly, that the centre of gravity lies on BE.

Hence the required centre of gravity must be at G.
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Since D is the middle point of BC and E is the middle

point of CA, therefore DE is parallel to AB.

Hence the triangles GDE and GAB are similar,

GD _VE _CE _\" GA~ AB" CA~ 2
'

so that 2GD = GA, and 3GD = GA+GD = AB.

.: GD = \AD.

Hence the centre of gravity of a triangle is on the

line joining the middle point of any side to the opposite

vertex at a distance equal to one-third the distance of

the vertex from that side.

104. The centre of gravity of any uniform, triangular

lamina is the same as that of three equal particles placed at

the vertices of the triangle.

Taking the figure of Art. 103, the centre of gravity of

two equal particles, each equal to w, at B and C, is at D
the middle point of BC

;
also the centre of gravity of 2io

at D and wati divides the line DA in the ratio of 1 : 2.

But G, the centre of gravity of the lamina, divides DA in

the ratio of 1 : 2.

Hence the centre of gravity of the three particles is the

same as that of the lamina.

105. XV. Three rods forming a triangle.

Let BC, CA, and AB be the three rods, of the same thickness and
material, forming the triangle, and let D, E, and F be the middle

points of the rods. Join DE, EF, and FD. Clearly DE, EF, and
FD are half of AB, BC, and CA respectively. The centres of gravity
of the three rods are D, E, and F\

The centre of gravity of the rods AB and AC is therefore a point
L on EF such that

EL : LF :: weight at F : weight at E
:: AB : AC
:: DE : DF,

so that, by Geometry, DL bisects the angle FDE.
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Also the centre of gravity of the three rods must lie on DL.

Similarly the centre of gravity must lie on EM which bisects the

angle DEF.
A

Hence the required point is the point at which EM and DL meet,
and is therefore the centre of the circle inscribed in the triangle DEF,

i.e., the centre of the circle inscribed in the triangle formed by
joining the middle points of the rods.

106. V. Tetrahedron.

Let ABCD be the tetrahedron, E the middle point of

AB, and G1 the centre of gravity of the base ABC.

B C

Take any section A'B'C of the tetrahedron which is

parallel to ABC; let DE meet A'B1

in E' and let DGX

meet E'C in G' .

Then
"FT" T)C"

itr
=
m, ' by similar Aa DE'G'* DEGxi

= ^, by similar As DG'C\ BGXC,

E'G' _EG1 _l"
C'G'~ CG~r
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Hence G' is the centre of gravity of the section A'B'C.

By considering the tetrahedron as built up of triangles

parallel to the base ABC, it follows, since the centre of

gravity of each triangle is in the line DG1 ,
that the centre

of gravity of the whole lies in DGX .

D

Similarly, it may be shewn that the centre of gravity

lies on the line joining C to the centre of gravity G2 of the

opposite face. Also G2 lies in the line ED and divides it in

the ratio 1:2.

Hence G, the required point, is the point of intersection

of CG% and DGX .

Join GXG% .

Then

W =2&, by similar As GG& and GCD,
GO DO

= ?&1 by similar As EG& and ECD,EC
_ i

#

.-. GC = 3.G2G,

:. G2C=.GzG.

Similarly GJ) =WXG.

Hence the centre of gravity of the pyramid lies on the

line joining the centre of gravity of any face to the opposite
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angular point of the tetrahedron at a distance equal to one-

quarter of the distance of the angular point from that face.

Cor. The centre of gravity of the tetrahedron is the

same as that of equal particles placed at its vertices.

For equal weights w placed at the angular points ABC
of a triangle are equivalent, by Art. 104, to a weight 3w

placed at ff the centre of gravity of ABC. Also 3w at G
x

and w at D are equivalent to 4w at G, since G divides GX
D

in the ratio 1 : 3.

107. VI. Pyramid on any base. Solid Cone.

If the base of the pyramid in the previous article, instead

of being a triangle, be any plane figure ABCLMN... whose

centre of gravity is G1} it may be shewn, by a similar

method of proof, that the centre of gravity must lie on the

line joining D to Gx .

Also by drawing the planes DAG1} DBGX ,... the whole

pyramid may be split into a number of pyramids on tri-

angular bases, the centres of gravity of which all lie on

a plane parallel to ABCL... and at a distance from D
of three-quarters that of the latter plane.

Hence the centre of gravity of the whole lies on the line

GJ), and divides it in the ratio 1 : 3.

Let now the sides of the plane base form a regular

polygon, and let their number be indefinitely increased.

Ultimately the plane base becomes a circle, and the pyramid

becomes a solid cone having D as its vertex ;
also the point

Gx is now the centre of the circular base.

Hence the centre of gravity of a solid right circular

cone is on the line joining the centre of the base to the

vertex at a distance equal to one-quarter of the distance of

the vertex from the base.
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108. VII. Surface of a hollow cone.

Since the surface of a cone can be divided into an

infinite number of triangular laminas, by joining the vertex

of the cone to points on the circular base indefinitely close

to one another, and since their centres of gravity all lie in

a plane parallel to the base of the cone at a distance from

the vertex equal to two-thirds of that of the base, the centre

of gravity of the whole cone must lie in that plane.

But, by symmetry, the centre of gravity must lie on the

axis of the cone.

Hence the required point is the point in which the

above plane meets the axis, and therefore is on the axis at

a point distant from the base one-third the height of the

EXAMPLES. XV.

1. An isosceles triangular lamina has its equal sides of length
5 feet and its base of length 6 feet ; find the distance of the centre of

gravity from each of its sides.

2. The sides of a triangular lamina are 6, 8, and 10 feet in

length; find the distance of the centre of gravity from each of the
sides.

3. The base of an isosceles triangular lamina is 4 inches and the

equal sides are each 7 inches in length; find the distances of its

centre of gravity from the angular points of the triangle.

4. D is the middle point of the base BC of a triangle ABC; shew
that the distance between the centres of gravity of the triangles ABD
and ACD i&^BC.

5. A heavy triangular plate ABC lies on the ground; if a vertical

force applied at the point A be just great enough to begin to lift that
vertex from the ground, shew that the same force will suffice, if applied
at B or C.

6. Three men carry a weight, W, by putting it on a smooth

triangular board, of weight w, and supporting the system on their

shoulders placed respectively at the angular points; find the weight
that each man supports.
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7. The base of a triangle is fixed, and its vertex moves on a given
straight line ; shew that the centre of gravity also moves on a straight
line.

8. The base of a triangle is fixed, and it has a given vertical

angle; shew that the centre of gravity of the triangle moves on an
arc of a certain circle.

9. A given weight is placed anywhere on a triangle ; shew that
the centre of gravity of the system lies within a certain triangle.

10. A uniform equilateral triangular plate is suspended by a

string attached to a point in one of its sides, which divides the side
in the ratio 2:1; find the inclination of this side to the vertical.

11. A uniform lamina in the shape of a right-angled triangle, and
such that one of the sides containing the right angle is three times
the other, is suspended by a string attached to the right angle ; in the

position of equilibrium, shew that the hypotenuse is inclined at an

angle sin-1 f to the vertical.

12. A uniform triangular lamina, whose sides are 3, 4, and 5

inches, is suspended by a string from the middle point of the longest
side ; find the inclination of this side to the vertical.

109. General formulae for the determination

of the centre of gravity.
In the following articles will be obtained formulae

giving the position of the centre of gravity of any system
of particles, whose position and weights are known.

Theorem. If a system of particles whose weights are

w
x ,
w2 ,

... wn be on a straight line, and if tlieir distances

measured from a fixed point in the line be

the distance, x, of their centre of gravityfrom thefixedpoint
is given by

_ WXXX + W.JC2 + ... + WnXH
w1 + w2 + ... +wn

Let A, B, C, D... be the particles and let the centre of

gravity of wx and w2 at A and B be Gx ;
let the centre of

O A B C D
-+

G
\1/ \/ *,

L. S.
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gravity of (m>2 + w.2) at G1 and w3 at G be r2 ,
and so for the

other particles of the system.

By Art. 97, we have wx . AG1
=w2 . GXB;

:. w1 {0G1 -0A) = w2 {0B-0G1 ).

Hence (wx + w2)
. 0GX

=wx . OA + w2 . OB,

= w]
x
k
+ w^?

w
1 + w2

v '

Similarly, since G2 is the centre of gravity of (wx + w2)

at (?i and w3 at G, we have

(tt^ + W2) . (?(?! + W, . OC
l/Cra

=
t

r

{Wx +W2) + W3

W1X1 + W2X^ + W3X3 ,

Wj + W2 + W3

' ^ ^ '*

~ _ (^! + w2 + w3) . 2 + wt . oz>

(Wx + W2 + #g) + W4

W^ + W&z + wsx3 + wtx4

w
1 + w2 + w3 + w4

Proceeding in this manner we easily have

_ _ W-fa + W2X2 + . . . + WnXn
to1 + w2 + ... +wn

'

whatever be the number of the particles in the system.

Otherwise, The above formula may be obtained by the use of

Article 65. For the weights of the particles form a system of parallel
forces whose resultant is equal to their sum, viz. id

1 + w^+ ..,+tc^.
Also the sum of the moments of these forces about any point in their

plane is the same as the moment of their resultant. But the sum of

the moments of the forces about the fixed point is

io1x1+w2x2+...+wnxn .

Also, if x be the distance of the centre of gravity from 0, the moment
of the resultant is

(u>1 +Wa +...+U>B)x.
Hence 5(w1 +w2+ ...+wn)=w1

x
1 +w2x2+ ... + wnxn ;

__w1
x

1 +w2x2+ ...+wnxn
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HO. Ex.1. A rod AB, 2 feet in length, and of weight 5 lbs., is

trisected in the points G and D, and at the points A, G, T>, and B are

placed particles of 1, 2, 3, and 4 lbs. weight respectively ; find wliat

point of the rod must be stipported so that the rod may rest in any
position, i.e., find the centre of gravity of the system.

Let G be the middle point of the rod and let the fixed point of

the previous article be taken to coincide with the end A of the rod.

The quantities xlt x2 ,
ar3 ,

xv and x6 are in this case 0, 8, 12, 16, and
21 inches respectively.

Hence, if X be the point required, we have

1 .0+ 2.8 + 5.12 + 3.16 + 4.24
"

1+2+5+3+4
220 *A*i v.=-TS

-= l& :

g inches.

Ex. 2. If, in the previous question, Hie body at B be removed and
another body be substituted, find the weight of this unhnonm body so that

tiie new centre of gravity may be at the middle point of the rod.

Let X lbs. be the required weight.

Since the distance of the new centre of gravity from A is to be

12 inches, we have

1.0 + 2.8 + 5.12 + 3.16+ X.24 _ 124+ 24X

1+2+5+8+X
:

11+X
'

.-. 132 + 12X=124 + 24X.

.-. X=|lb.

Ex. 3. To the end of a rod, whose length is 2 feet and whose weight
is 3 lbs., is attached a sphere, of radius 2 inches and weight 10 lbs.;

find the position of the centre of gravity of the compound body.

Let OA be the rod, G1
its middle point, G the centre of the sphere,

and G the required point.

Then QG=3.OG+10.O(^
3 + 10

But OG
1
= 12 inches ; 0(?a= 26 inches.

, nn 3.12 + 10.26 296 Q _ 10 . .
- QG=

3 + 10 =13=22^ inches.

EXAMPLES. XVI.

1. A straight rod, 1 foot in length and of mass 1 ounoe, has an
ounce of lead fastened to it at one end, and another ounce fastened to

it at a distance from the other end equal to one-third of its length ;

find the centre of gravity of the system.

92
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2. A uniform bar, 3 feet in length and of mass 6 ounces, has
3 rings, each of mass 3 ounces, at distances 3, 15, and 21 inches from
one end. About what point of the bar will the system balance?

3. A uniform rod AB is four feet long and weighs 3 lbs. One lb. is

attached at A, 2 lbs. at a point distant 1 foot from A, 3 lbs. at 2 feet

from A, 4 lbs. at 3 feet from A, and 5 lbs. at B. Find the distance
from A of the centre of gravity of the system.

4. A telescope consists of 3 tubes, each 10 inches in length,
one within the other, and of weights 8, 7, and 6 ounces. Find the

position of the centre of gravity when the tubes are drawn out at full

length.

5. Twelve heavy particles at equal intervals of one inch along a

straight rod weigh 1, 2, 3,... 12 grains respectively; find their centre

of gravity, neglecting the weight of the rod.

6. Weights proportional to 1, 4, 9, and 16 are placed in a straight
line so that the distances between them are equal ; find the position
of their centre of gravity.

7. A rod, of uniform thickness, has one-half of its length com-

posed of one metal and the other half composed of a different metal,
and the rod balances about a point distant one-third of its whole

length from one end
; compare the weight of equal quantities of the

metal.

8. An inclined plane, with an angle of inclination of 60, is 3 feet

long; masses of 7, 5, 4, and 8 ounces are placed on the plane in order

at distances of 1 foot, the latter being the highest ; find the distance

of their centre of gravity from the base of the inclined plane.

9. AB is a uniform rod, of length n inches and weight (n+ 1) W.
To the rod masses of weight W, 2W, 3W,...nW are attached at distances

1, 2, 3,... inches respectively from A. Find the distance from A of

the centre of gravity of the rod and weights.

10. A rod, 12 feet long, has a mass of 1 lb. suspended from one

end, and, when 15 lbs. is suspended from the other end, it balances

about a point distant 3 ft. from that end ; if 8 lbs. be suspended there,

it balances about a point 4 ft. from that end. Find the weight of the

rod and the position of its centre of gravity.

111. Theorem. If a system of particles, whose

weights are wx ,
w2 ,

. . . wn ,
lie in a plane, and if OX and OY

be two fixed straight lines in the plane at right angles, and if

tlie distances of the particles from OX be y1 , y.2 ,
... yn ,

and

the distance of their centre of gravity be y, then

_ Uhf/l + MW2 + + WnVn
y ~ wx + w2 + . . . + wn
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Similarly, if the distances of the particles from OY be

xlt X2, ... xn and tluit of tlieir centre ofgravity be x, tJten

_ tOj&i + w^x2 + ... + wHxn

Let A, B, C,... be the particles, and AL, BM, CN... the

perpendiculars on OX.

Let G1 be the centre of gravity of wx
and w2 ,

G2 the

centre of gravity of (ivx + w2)
at Gx and w3 at C, and so on.

Draw G
1
R

l ,
G2R2 ,

... perpendicular to OX, and througli

G
x
draw HGXK parallel to OX to meet AL and BM in II

and K.

Since G
1
is the centre of gravity of w

x
and w2y we have

|=^. (Art. 97.)GXB w
x

x

Now AG-fl and BG^K are similar triangles,

" BK
=

G~Jt
=
w

x

"

7/J =HL-AL = G& - yu
BK= J?ilf- JOf = ya - tf,tfx

"
2/a
~ ^1^1 *

'

But

and
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Hence wt (G& --
yi)

= w2 (y2
- G& ) ;

.-. Q^-^*"** (1).

Similarly, since G2 is the centre of gravity of {wx + w2)

at Gi and w3 at C, we have

T2 2

Wi + w2 + ws w^ + w2 + w3

' ^ v /'

Proceeding in this way we easily obtain

- >
1y1

+ tgaya +... +M>ylt

y =
.w1 + w2 + ... + wn

Again, since the triangles AGX
H and BGXK are similar,

we have

GXK~ G
y
B ~w1

'

But iT^ -- XJ?x = OJ?x
- OX = 02^ - *, ,

and G
1K=RlM=OM-OR1

= xi -OR1 .

.'. w
1 (OR1 x1)

= w2 (x2 OR1 ).

Hence 0*. =
** + **

.

tOj + w2

Proceeding as before we finally have

_ _ WjQCy + w<$c% + . . . + wnxn
w

l
+ w2 + ... + wn

The theorem of this article may be put somewhat

differently as follows;

The distance of the centre of gravity from any line in

the plane of tJie particles is equal to a fraction, wliose

numerator is the sum of the products of each weight into its

distance from the given line, and whose denominator is tlie

sum of the weights.

In other words, the distance of the centre of gravity is

equal to the average distance of the particles.
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112. The formula of the preceding article may be deduced from
Article 93. For, since the resultant weight (w1 + w2+ ...+wn) acting
at G, where G is the centre of gravity of all the weights, is equivalent
to the component weights w l , w2 ,... the resultant would, if the line

OX be supposed to be a fixed axis, have the same moment about
this fixed axis that the component weights have.

But the moment of the resultant is

(w1 +w2+...+wn)y,
and the sum of the moments of the weights is

Wiyl+w2y2 +... +wr$n .

Hence -w^+w^y^ ... + wnyn= wJy1+wiy2+ .

In a similar manner we should have

w
1 +wa+...+wn

113. Ex.1. A square lamina, whose loeight is 10 lbs., Jias attached

to its angular points particles lohose weights, taken in order, are 3, 6, 5,

and 1 lbs. respectively. Find the position of the centre of gravity of
the system, if the side of the lamina be 25 inches.

Let the particles be placed at the angular points 0, A, B, and C.

Let the two fixed lines from which the distances are measured be OA
and OG.

The weight of the lamina acts at its centre D. Let G be the

required centre of gravity and draw DL and GM perpendicular
to OX.

The distances of the points 0, A, B, C, andD from OX are clearly

0, 0, 25, 25, and 12^ inches respectively.

.0 + 5. 25 + 1. 25 + 10. 12^ 275,,~ _ 3.0 + 6.MG= y= = =-=11 ins.
3 + 6 + 5 + 1 + 10 25

So the distances of the particles from OY are 0, 25, 25, 0, and

12i| inches respectively.

OM=x= 3.0 + 6.25 + 5.25 + 1.0 + 10 121 _ 400

3+6+5+1+10
=w=16ins.
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Hence the required point may be obtained by measuring 16 inches
from O along OA and then erecting a perpendicular of length 11 inches.

Ex. 2. OAB is an isosceles weightless triangle, lohose hase OA is

6 inches and whose sides are each 5 inches; at the points O, A, and B
are placed particles of weights 1, 2, and 3 lbs.; find their centre of
gravity.

Let the fixed line OX coincide with OA and let OF be a perpen-
dicular to OA through the point 0.

If BL be drawn perpendicular to OA, then 0L= S ins., and

LB= fJ&^3*= tins.

Hence, if G be the required centre of gravity and GM be drawn

perpendicular to OX, we have

0M= 1. + 2 6 + 3.3^21 ^1+2+3 6 2

. - Tn 1.0 + 2.0 + 3.4 12 -, ,

and MG= - =_ = 2 inches.
1+2+3 6

Hence the required point is obtained by measuring a distance

3^ inches from along OA and then erecting a perpendicular of

length 2 inches.

114. Centre of Parallelforces.

The methods and formulae of Arts. 109 and 111 will

apply not only to weights, but also to any system of parallel

forces and will determine the position of the resultant of

any such system. The magnitude of the resultant is the

sum of the forces. Each force must, of course, be taken

with its proper sign prefixed.

There is one case in which we obtain no satisfactory

result
;

if the algebraic sum of the forces be zero, the

resultant force is zero, and the formulae of Art. Ill give

x cc
,
and y=co.

In this case the system of parallel forces is, as in

Art. 53, equivalent to a couple.
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EXAMPLES. XVIL

1. Particles of 1, 2, 3, and 4 lbs. weight are placed at the angular

points of a square ; find the distance of their c.o. from the centre of

the square.

2. At two opposite corners A and C of a square ABCD weights
of 2 lbs. each are placed, and at B and D are placed 1 and 7 H>s.

respectively ; find their centre of gravity.

3. Particles of 5, 6, 9, and 7 lbs. respectively are placed at the

corners A, B, C, and t> of a horizontal square, the length of whose side

is 27 inches; find where a single force must be applied to preserve

equilibrium.

4. Five masses of 1, 2, 3, 4, and 5 ounces respectively are placed
on a square table. The distances from one edge of the table are 2, 4,

6, 8, and 10 inches and from the adjacent edge 3, 5, 7, 9, and 11 inches

respectively. Find the distance of the centre of gravity from the two

edges.

5. Weights proportional to 1, 2, and 3 are placed at the corners

of an equilateral triangle, whose side is of length a ; find the distance

of their centre of gravity from the first weight.

Find the distance also if the weights be proportional to 11, 13,

and 6.

6. ABC is an equilateral triangle of side 2 feet. At A , B, and C
are placed weights proportional to 5, 1, and 3, and at the middle

points of the sides BC, CA, and AB weights proportional to 2, 4,

and 6 ; shew that their centre of gravity is distant 16 inches from B.

7. Equal masses, each 1 oz., are placed at the angular points of

a heavy triangular lamina, and also at the middle points of its sides ;

find the position of the centre of gravity of the masses.

8. ABC is a triangle right-angled at A, AB being 12 and AC
15 inches; weights proportional to 2, 3, and 4 respectively are placed
at A , C, and B ; find the distances of their centre of gravity from B
and C.

9. Particles, of mass 4, 1, and 1 lbs., are placed at the angular

points of a triangle ; shew that the centre of gravity of the particles
bisects the distance between the centre of gravity and one of the

vertices of the triangle.

10. Three masses are placed at the angular points of a triangle
ABC. Find their ratios if their centre of inertia be halfway between
A and the middle point of BC.
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11. Bodies of mass 2, 3, and 4 lbs. respectively are placed at the

angular points A,B, and C of a triangle ; find their centre of gravity G,
and shew that forces 2GA, 3GB, and 4GC are in equilibrium.

12. ABC is a uniform triangular plate, of mass 3 lbs. Masses
of 2, 3, and 5 lbs. respectively are placed at A, B, and C. Find the

position of the centre of gravity of the whole system.

13. To the vertices A, B, and C of a uniform triangular plate,
whose mass is 3 lbs. and whose centre of gravity is G, particles of

masses 2 lbs., 2 lbs., and 11 lbs., are attached ; shew that the centre

of gravity of the system is the middle point of GC.

14. Masses of 2, 3, 2, 6, 9, and 6 lbs. are placed at the angular
corners of a regular hexagon, taken in order; find their centre of

gravity.

15. Weights proportional to 5, 4, 6, 2, 7, and 3 are placed at the

angular points of a regular hexagon, taken in order ; shew that their

centre of gravity is the centre of the hexagon.

16. Weights proportional to 1, 5, 3, 4, 2, and 6 are placed at the

angular points of a regular hexagon, taken in order ; shew that their

centre of gravity is the centre of the hexagon.

17. If weights proportional to the numbers 1, 2, 3, 4, 5, and 6 be

placed at the angular points of a regular hexagon taken in order,
shew that the distance of their centre of gravity from the centre of

the circumscribingcircle of the hexagon is -fths of the radius of the circle.

18. At the angular points of a square, taken in order, there act

parallel forces in the ratio 1:3:5:7; find the distance from the
centre of the square of the point at which their resultant acts.

19. A, B, C, and D are the angles of a parallelogram taken in

order ; like parallel forces proportional to 6, 10, 14, and 10 respectively
act at A, B, C, and D ; shew that the centre and resultant of these

parallel forces remain the same, if, instead of these forces, parallel

forces, proportional to 8, 12, 16, and 4, act at the points of bisection

of the sides AB, BG, CD, and DA respectively.

20. Find the centre of parallel forces equal respectively to P, 2P,
3P, 4P, 5P, and 6P, the points of application of the forces being at

distances 1, 2, 3, 4, 5, and 6 inches respectively from a given point A
measured along a given line AB.

21. Three parallel forces, P, Q, and R, act at the vertices A , B, and
C, of a triangle and are proportional respectively to a, b, and c. Find
the magnitude and position of their resultant.
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115. Given the centre ofgravity oftlie two portions of a

body, tofind the centre ofgravity of the whole body.

Let the given centres of gravity be G
l
and G2 ,

and let

the weights of the two portions be W
1 and W.2 ;

the re-

quired point G, by Art. 97, divides G
X
G2 so that

GXG\GG2 \: W2 : W
x

.

The point G may also be obtained by the use of

Art. 109.

Ex. On the same base AB, and on opposite sides of it, isosceles

triangles CAB and DAB are described whose
altitudes are 12 inches and 6 inches respectively.
Find the distance from AB of the centre of

gravity of the quadrilateral CADB.
Let CLD be the perpendicular to AB, meet-

ing it in L, and let G
1
and G2 be the centres of

gravity of the two triangles CAB and DAB
respectively. Hence

CG
x
=

-g . CL = &,

and CG2
=CL +LG2=12 + 2 = U.

The weights of the triangles are propor-

tional to their areas, i.e., to \AB . 12 and \AB . 6.

If G be the centre of gravity of the whole figure, we have

A CAB xCGx + ADAB x CG2

aCAB+aDAB
- %AB.12x8 + %AB.6xU _ 48+ 42 _ 90 _

$AB.12 + $AB.6
"

6+ 3
~

9

Hence LG= CL-CG= 2 inches.

This result may be verified experimentally by cutting the figure

out of thin cardboard.

116. Given the centre of gravity of the whole of a body

and of a portion of the body, to find the centre of gravity of

the remainder.

Let G be the centre of gravity of a body ABCD, and G1

that of the portion ADC.
Let W be the weight of the whole body and Wx

that of

the portion ACD, so that Wa (= W- Wx)
is the weight of

the portion ABC.
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Let G2 be the centre of gravity of the portion ABC.

Since the two portions of the body make up the whole,

therefore W1
at G

x
and W2 at G2 must have their centre of

gravity at G.

Hence G must lie on G-fi2 and be such that

Wx'.QQx**. W2 .GG2 .

Hence, given G and G1} we obtain G2 by producing GXQ
to G2 ,

so that
W

6'^.ir- WY
The required point may be also obtained by means of

Art. 109.

Ex. 1. From a circular disc, of radius r, is cut out a circle, whose

diameter is a radius of the disc; find the centre of gravity of the

remainder.

Since the areas of circles are to one another as the squares of their

radii,

,*. area of the portion cut out

: area of the whole circle

::1 :4.

Hence the portion cut off is one-

quarter, and the portion remaining is

three-quarters, of the whole, so that
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Now the portions W1
and W2 make up the whole disc, and therefore

balance about 0.

Hence W2 . OG2
=W

l
. OG^W, x Jr.

.-. OG2=\r.
This may be verified experimentally.

Ex. 2. .From a triangular lamina ABC is cut off, by a line parallel
to its base BC, onc-qwirter of its area; find the centre of gravity of the

remainder.

Let AB
1
C

1
be the portion cut off, 4

so that
,./

aAB^ : a ABC :: 1 : 4. ..-'/''

By Geometry, since the triangles B
x ..-''' /I

AB
1
G

l
and yli>C are similar, we have S -fz

AABX
C

X
: aABC::AB?\AW. yS /Q

l

.: AB* : AB* :: 1 : 4, Q ^ /Q
and hence yfBj = ^i?. D

The line B
i C\ therefore bisects AB, AC, and AD.

Let G and G, be the centres of gravity of the triangles ABC and
AB

1
C

1 respectively ; also let W
t
and W2 be the respective weights of

the portion cut off and the portion remaining, so that W.y SWj.
Since Wo at G 2

and W
1
at G

x
balance about G, we have, by Art. 109,

_ Wi -P^i + TF2 . DGU _ DG1 + 3DGa

^x+W^a 4 W *

But DG =$DA = DDlt

and DG^D^ +^D^ = DDj^DD^DD^
Hence

(i)
is 4 x fDI^ =$DDX + 3DG2 .

This result can also be easily verified experimentally.

EXAMPLES. XVIII.

{The student should verify some of the following questions experi-

mentally ; suitable ones for this purpose are Nos. 1, 2, 4, 5, 8, 9, 10,

11, 17, 18, and 19.]

1. A uniform rod, 1 foot in length, is broken into two parts, of

lengths 5 and 7 inches, which are placed so as to form the letter T> t>ne

longer portion being vertical ; find the centre of gravity of the system.

2. Two rectangular pieces of the same cardboard, of lengths 6 and

8 inches and breadths 2 and 2^ inches respectively, are placed touching,
but not overlapping, one another on a table so as to form a T-shaped
figure, the longer portion being vertical. Find the position of its centre

of gravity.
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3. A heavy beam consists of two portions, whose lengths are as

3:5, and who3e weights are as 3 : 1 ; find the position of its centre
of gravity.

4. Two sides of a rectangle are double of the other two, and on
one of the longer sides an equilateral triangle is described ; find

the centre of gravity of the lamina made up of the rectangle and
the triangle.

5. A piece of cardboard is in the shape of a square ABCD with
an isosceles triangle described on the side BC; if the side of the

square be 12 inches and the height of the triangle be 6 inches, find the
distance of the centre of gravity of the cardboard from the line AD.

6. An isosceles right-angled triangle has squares described ex-

ternally on all its sides. Shew that the centre of gravity of the figure
so formed is on the line, which bisects the hypothenuse and passes

through the right angle, and divides it in the ratio 1 : 26.

7. Two uniform spheres, composed of the same materials, and
whose diameters are 6 and 12 inches respectively, are firmly united ;

find the position of their centre of gravity.

8. From a parallelogram is cut one of the four portions into

which it is divided by its diagonals ; find the centre of gravity of the

remainder.

9. A parallelogram is divided into four parts, by joining the

middle points of opposite sides, and one part is cut away; find the
centre of gravity of the remainder.

10. From a square a triangular portion is cut off, by cutting the

square along a line joining the middle points of two adjacent sides;
find the centre of gravity of the remainder.

11. From a triangle is cut off ^th of its area by a straight line

parallel to its base. Find the position of the centre of gravity of the
remainder.

12. ABC is an equilateral triangle, of 6 inches side, of which
is the centre of gravity. If the triangle OBC be removed, find the

centre of gravity of the remainder.

13. If from a triangle ABC three equal triangles ARQ, BPR,
and CQP, be cut off, shew that the centres of inertia of the triangles
ABC and PQB are coincident.

14. G is the centre of gravity of a gives, isosceles triangle, right-

angled at A, and having BC equal to a. The portion GBC is cut

away; find the distance of the centre of gravity of the remainder
from A.
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15. On the same base BG are two triangles, ABC and A'BC, the

vertex A' falling within the former triangle. Find the position of A'

when it is the centre of gravity of the area between the two triangles.

16. Two triangles, each th of the whole, are cut off from a

given triangle at two of its angular points, B and C, by straight lines

parallel to the opposite sides; find the c.g. of remainder.

17. Out of a square plate shew how to cut a triangle, having one
side of the square for base, so that the remainder may have its centre

of gravity at the vertex of this triangle and therefore rest in any
position if this point be supported.

y 18. A uniform plate of metal, 10 inches square, has a hole of area

3 square inches cut out of it, the centre of the hole being 2^- inches

from the centre of the plate ; find the position of the centre of gravity
of the remainder of the plate.

j,
19. Where must a circular hole, of 1 foot radius, be punched cut

of a circular disc, of 3 feet radius, so that the centre of gravity of

the remainder may be 2 inches from the centre of the disc?

20. Two spheres, of radii a and b, touch internally; find the

centre of gravity of the solid included between them.

21. If a right cone be cut by a plane bisecting its axis at right

angles, find the distance of the vertex of the cone from the centre of

gravity of the frustum thus cut off.

22. A solid right circular cone of homogeneous iron, of height
64 inches and mass 8192 lbs. , is cut by a plane perpendicular to its

axis so that the mass of the small cone removed is 686 lbs. Find the

height of the centre of gravity of the truncated portion above the base
of the cone.

23. A solid right circular cone has its base scooped out, so that
the hollow is a right cone on the same- base; how much must be

scooped out so that the centre of gravity of the remaindermay coincide
with the vertex of the hollow?

24. The mass of the moon is '013 times that of the earth.

Taking the earth's radiums as 4000 miles and the distance of the moon's
centre from the earth's centre as 60 times the earth's radius, find the
distance of the c.g. of the earth and moon from the centre of the earth.
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117. Centre of gravity of a hemisphere.
If a hemisphere be of radius r, the centre of gravity-

lies on that radius which is perpendicular to its plane

2>r

face, and is at a distance -5- from the centre of the plane
o

r
face. If the hemisphere be hollow, the distance is .

The proofs of these statements are difficult by elementary

methods
; they will be found in the last chapter.

118. To find the centre of gravity of a quadrilateral

lamina having two parallel sides.

Let ABCD be the quadrilateral, having the sides AB
and CD parallel and equal to 2a and 2b respectively.

D F c

Let E and F be the middle points of AB and CD

respectively. Join DE and EC ;
the areas of the triangles

ADE, DEC, and BEC are proportional to their bases

AE, DC, and EB, i.e., are proportional to a, 26, and a.

Replace them by particles equal to one-third of their

weight placed at their angular points (Art. 104).

"We thus have weights proportional to

k + ^- at each of C and D,
.5 o

k at each of A and B,
o

2a 2b Land -K- +
-q

at E.
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Again, replace the equal weights at and D by a

weight proportional to -%- + -=- at the middle point F
o o

of (72), and the equal weights at A and B by a weight

proportional to -5- at E.

"We thus have weights

y + T at^

and -- + -5- at JL.

Hence the required centre of gravity G is on the

straight line EF, and is such that

EG _ weight at F _ a + 26

^
~
weight at E

~
2a + b

'

EXAMPLES. XIX.

1. A triangular table rests on supports at its vertices; weights of

6, 8, and 10 lbs. are placed at the middle points of the sides. Find by
how much the pressures on the legs are increased thereby.

2. A piece of thin uniform wire is bent into the form of a four-

sided figure, ABCD, of which the sides AB and CD are parallel, and
BG and DA are equally inclined to AB. If AB be 18 inches, CD
12 inches, and BC and DA each 5 inches, find the distance from AB
of the centre of gravity of the wire.

3. AB, BC and CD are three equal uniform rods firmly joined,
so as to form three successive sides of a regular hexagon, and are

suspended from the point A ; shew that CD is horizontal.

4. ABC is a piece of uniform wire ; its two parts AB and BG are

straight, and the angle ABC is 135. It is suspended from a fixed

point by a string attached to the wire at B, and the part AB is

observed to be horizontal. Shew that BG is to AB as J/2 to 1.

5. A rod, of length 5a, is bent so as to form five sides of a regular
hexagon ; shew that the distance of its centre of gravity from either

end of the rod is
_n ^133.

L. S. 10
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6. The side CD of a uniform trapezoidal lamina ABCD is twice
as long as AB, to which it is opposite and parallel; compare the
distances of the centre of gravity of ABCD from AB and CD.

7. If the centre of gravity of a quadrilateral lamina ABCD
coincide with one of the angles A, shew that the distances of A and C
from the line BD are as 1 : 2.

8. A uniform quadrilateral ABCD has the sides AB and AD, and
the diagonal AC all equal, and the angles BAC and CAD are 30 and
60 respectively. If a weight, equal to two-thirds that of the triangle

ABC, be attached at the point B, and the whole rest suspended from
the point A, shew that the diagonal AC will be vertical.

9. Explain what will take place when 3 forces, represented by
AB, BC, and CA respectively, act along the sides of a triangular board
ABC which is supported on a smooth peg passing through its centre
of gravity.

10. Three forces act at a point O in the plane of a triangle ABC,
being represented by OA, OB and OC; where must be the point O so

that the three forces may be in equilibrium ?

U. A particle P is attracted to three points A, B, C by forces

equal to ix . PA, /j.
. PB, and fi . PC respectively; shew that the re-

sultant is 3/jl . PG, where G is the centre of gravity of the triangle
ABC.

12. A particle P is acted upon by forces towards the points
A, B, C, ... which are represented by X . PA, ft . PB, v . PC, ... ; shew
that their resultant is represented by (\+/jl+ v + ...)PG, where G is

the centre of gravity of weights placed at A, B, C, ... proportional
to X, ft, v, ... respectively.

[This is the generalised form of Art. 42, and may be proved by
successive applications of that article.]

13. A uniform rod is hung up by two strings attached to its ends,
the other ends of the strings being attached to a fixed point; shew
that the tensions of the strings are proportional to their lengths.

Prove that the same relation holds for a uniform triangular lamina

hung up by three strings attached to its angular points.

14. Find the vertical angle of a cone in order that the centre of

gravity of its whole surface, including its plane base, may coincide
with the centre of gravity of its volume.

15. A cylinder and a cone have their bases joined together, the
bases being of the same size ; find the ratio of the height of the cone
to the height of the cylinder so that the common centre of gravity may
be at the centre of the common base.
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16. Shew how to cut out of a uniform cylinder a cone, whose base
coincides with that of the cylinder, so that the centre of gravity of the

remaining solid may coincide with the vertex of the cone.

17. If the diameter of the base of a cone be to its altitude as
1 : ,/2, shew that, when the greatest possible sphere has been cut

out, the centre of gravity of the remainder coincides with that of the
cone.

18. From a uniform right cone, whose vertical angle is 60, is cut
out the greatest possible sphere; shew that the centre of gravity of

the remainder divides the axis in the ratio 11 : 49.

19. A solid in the form of a right circular cone has its base

scooped out, so that the hollow so formed is a right circular cone on
the same base and of half the height of the original cone ; find the

position of the centre of gravity of the cone so formed.

20. A uniform equilateral triangle ABC is supported with the

angle A in contact with a smooth wall by means of a string BD, equal
in length to a side of the triangle, which is fastened to a point D ver-

tically above A. Shew that the distances of B and C from the wall
are as 1 : 5.

21. A cone, whose height is equal to four times the radius of its

base, is hung from a point in the circumference of its base
;
shew that

it will rest with its base and axis equally inclined to the vertical.

22. Two right cones, consisting of the same material, have equal
slant slides and vertical angles of 60 and 120 respectively, and are
so joined that they have a slant side coincident. Shew that, if they
be suspended from their common vertex, the line of contact will be
inclined at 15 to the vertical.

23. A triangular piece of paper is folded across the line bisecting
two sides, the vertex being thus brought to lie on the base of the

triangle. Shew that the distance of the centre of inertia of the paper
in this position from the base of the triangle is three-quarters that of
the centre of inertia of the unfolded paper from the same line.

24. A rectangular sheet of stiff paper, whose length is to its

breadth as ^/2 to 1, lies on a horizontal table with its longer sides

perpendicular to the edge and projecting over it. The corners on the
table are then doubled over symmetrically, so that the creases pass
through the middle point of the side joining the corners and make
angles of 45 with it. The paper is now on the point of falling over;
shew that it had originally f-f-ths of its length on the table.

25. At each of n - 1 of the angular points of a regular polygon of
n sides a particle is placed, the particles being equal; shew that the
distance of their centre of gravity from the centre of the circle

circumscribing the polygon is
^

where r is the radius of the

circle.

102
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26. A square hole is punched out of a circular lamina, the

diagonal of the square being a radius of the circle. Shew that the

centre of gravity of the remainder is at a distance - from the

centre of the circle, where a is the diameter of the circle.

27. From a uniform triangular board a portion consisting of the

area of the inscribed circle is removed ; shew that the distance of the

centre of gravity of the remainder from any side, a, is

S 2s*-3waS
3as s*-irS

'

where S is the area and s the semiperimeter of the board.

28. A circular hole of a given size is punched out of a uniform cir-

cular plate ; shew that the centre of gravity lies within a certain circle.

29. The distances of the angular points and intersection of the

diagonals of a plane quadrilateral lamina from any line in its plane
are a, b, c, d, and e; shew tliat the distance of the centre of inertia

from the same line is ^ (a + b+ c + d-e).
Let A, B, C, D be the angular points, and E the intersection of the

diagonals. Then

AACD _ perpendicular from D on AG _DE _d-e
AAGB

~
perpendicular from B on AG

~
EB

~~
e - b

'

By Arts. 104 and 111 the distance of the centre of gravity of the

AACD from OX is
a + c + d

and that of the aACBis
a+ c + b

.

6 o

Hence distance of required c.g. from OX

_ AACDx^(a+c+d)+ aACBx^ (a+ b+ c)

AACD+AACB
_ ! (d-e)(a+ c+ d) + (e-b)(a+b+c)_F

(d-e) + (e-b)
= ^(a+b+ c+d-e), on reduction.

30. If A and B be the positions of two masses, m and n, and if

G be their centre of gravity, shew that, if P be any point, then

m . AP*+ n . BP2=m . AG*+n . BG9
+(m+n) PG\

Similarly, if there be any number of masses, m,n,p,... at points

A, B, G, ... , and G be their centre of gravity, shew that

m . APt+n . BP*+p . CF^+ ...

=m . AG*+n . BG*+p . CGf2+ ... + (m+n+p+ ...)PGK



CHAPTER X.

CENTRE OF GRAVITY {continued).

119. If a rigid body be in equilibrium, one point

only of the body being fixed, the centre of gravity of (lie body
will be in tlie vertical line passing through the fixed point of
(lie body.

Let be the fixed point of the body, and G its centre of

gravity.

The forces acting on the body are the reaction at

the fixed point of support of the body, and the weights of

the component parts of the body.

The weights of these component parts are equivalent to

a single vertical force through the centre of gravity of the

body.
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Also, when two forces keep a body in equilibrium, they
must be equal and opposite and have the same line of action.

But the lines of action cannot be the same unless the vertical

line through G passes through the point 0.

Two cases arise
;
the first, in which the centre of gravity

G is below the point of suspension 0, and the second, in

which G is above 0.

In the first case, the body, if slightly displaced from its

position of equilibrium, will tend to return to this position;

in the second case, the body will not tend to return to its

position of equilibrium.

120. To find, by experiment, the centre of gravity of
a body of any shape.

Take a flat piece of cardboard of any shape. Bore

several small holes A, B,C,D,... in it

of a size just large enough to freely

admit of the insertion of a small pin.

Hang up the cardboard by the

hole A and allow it to hang freely

and come to rest. Mark on the card-

lx>ard the line AA ' which is now

vertical. This may be done by hang-

ing from the pin a fine piece of string

with a small plummet of lead at the other end, the string

having first been well rubbed with chalk. If the string be

now flipped against the cardboard it will leave a chalked

line, which is AA'. Now hang up the cardboard with the

hole B on the pin, and mark in a similar manner the line

BB' which is now vertical.

Perform the experiment again with the points C, D, E
as the points through which the small pin passes, and

obtain the corresponding vertical lines CG\ DD', EE'.
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These chalked lines AA', BB', CG', DD', EE' will all be

found to pass through the same point G. If the thickness

of the cardboard be neglected, this point G is its centre of

gravity. If the pin be now passed through G, the card-

board will be found to rest in any position in which it is

placed.

121. If a body be placed with its base in contact with

a horizontal plane, it will stand, or fall, according as the

vertical line drawn through the centre of gravity of the body

meets the plane within, or without, the base.

The forces acting on the body are its weight, which acts

at its centre of gravity G, and the reactions of the plane,

acting at different points of the base of the body. These

reactions are all vertical, and hence they may be com-

pounded into a single vertical force acting at some point

of the base.

Since the resultant of two like parallel forces acts

always at a point between the forces, it follows that the

resultant of all the reactions on the base of the body
cannot act through a point outside the base.

Hence, if the vertical line through the centre of gravity

of the body meet the plane at a point outside the base,

it cannot be balanced by the resultant reaction, and the

body cannot therefore be in equilibrium, but must fall over.
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If the base of the body be a figure having a re-entrant

D

angle, as in the above figure, we must extend the meaning
of the word "base" in the enunciation to mean the area

included in the figure obtained by drawing a piece of thread

tightly round the geometrical base. In the above figure

the "base" therefore means the area ABDEFA.

For example, the point G, at which the resultant

reaction acts, may lie within the area AHB, but it cannot

lie without the dotted line AB.

If the point G were on the line AB, between A and B,

the body would be on the point of falling over.

Ex. A cylinder, of height h, and the radius of whose base is r, is

placed on an inclined, plane and prevented

from sliding; if the inclination of the

plane be gradually increased, find when
the cylinder will topple.

Let the figure represent the section

of the cylinder when it is on the point of

toppling over; the vertical line through
the centre of gravity G of the body must
therefore just pass through the end A of

the base. Hence GAD must be equal to

the angle of inclination, a, of the plane.

Hence -=-
J1=tan<7^B=cota;

2r
. . tan a= -=-

h

giving the required inclination of the plane.
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Stable, unstable, and neutral equilibrium.

122. We have pointed out in Art. 119 that the body
in the first figure of that article would, if slightly dis-

placed, tend to return to its position of equilibrium, and

that the body in the second figure would not tend to return

to its original position of equilibrium, but would recede

still further from that position.

These two bodies are said to be in stable and unstable

equilibrium respectively.

Again, a cone, resting with its flat circular base in

contact with a horizontal plane, would, if slightly displaced,

return to its position of equilibrium ;
if resting with its

vertex in contact with the plane it would, if slightly dis-

placed, recede still further from its position of equilibrium;

whilst, if placed with its slant side in contact with the

plane, it will remain in equilibrium in any position. The

equilibrium in the latter case is said to be neutral.

123. Consider, again, the case of a heavy sphere,

resting on a horizontal plane, whose centre of gravity is

not at its centre.

Let the first figure represent the position of equilibrium,
the centre of gravity being either below the centre 0, as Glt

or above, as G2 . Let the second figure represent the sphere

turned through a small angle, so that B is now the point of

contact with the plane.
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The reaction of the plane still acts through the centre

of the sphere.

If the weight of the body act through Gu it is clear that

the body will return towards its original position of equi-

librium, and therefore the body was originally in stable

equilibrium.

If the weight act through G2 ,
the body will move still

further from its original position of equilibrium, and there-

fore it was originally in unstable equilibrium.

If however the centre of gravity of the body had been

at 0, then, in the case of the second figure, the weight

would still be balanced by the reaction of the plane ;
the

body would thus remain in the new position, and the

equilibrium would be called neutral.

124. Def. A body is said to be in stable equi-

librium when, if it be slightly displaced from its position

of equilibrium, the forces acting on the body tend to

make it return towards its position of equilibrium ;
it is

in unstable equilibrium when, if it be slightly displaced,

the forces tend to move it still further from its position of

equilibrium ;
it is in neutral equilibrium, if the forces

acting on it in its displaced position are in equilibrium.

In general bodies which are "
top-heavy," or which have

small bases, are unstable.

Thus in theory a pin might be placed upright with its

point on a horizontal table so as to be in equilibrium ;
in

practice the "base" would be so small that the slightest

displacement would bring the vertical through its centre of

gravity outside its base and it would fall. So with a billiard

cue placed vertically with its end on the table.

A body is, as a general principle, in a stable position of

equilibrium when the centre of gravity is in the lowest
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position it can take up ; examples are the case of the last

article, and the pendulum of a clock
;
the latter when dis-

placed always returns towards its position of rest.

Consider again the case of a man walking on a tight

rope. He always carries a pole heavily weighted at one

end, so that the centre of gravity of himself and the pole is

always below his feet. When he feels himself falling in one

direction, he shifts his pole so that this centre of gravity
shall he on the other side of his feet, and then the resultant

weight pulls him back again towards the upright position.

If a body has more than one theoretical position of

equilibrium, the one in which its centre of gravity is lowest

will in general be the stable position, and that in which the

centre of gravity is highest will be the unstable one.

125. Ex. A homogeneous body, consisting of a cylinder and
a hemisphere joined at their bases, is placed with the hemisplierical end
on a horizontal table; is the equilibrium stable or unstable?

Let Gj and G2 be the centres of gravity of the hemisphere and

cylinder, and let A be the point of the body
which is initially in contact with the table,
and let be the centre of the base of the ^^ o

hemisphere. #^'**^*T*,**^
If h be the height of the cylinder, and / / *7

r be the radius of the base, we have III
OG^fr, and OG2

= % (Art. 117). Ill
Also the weights of the hemisphere and I q/1 ~~~j

cylinder are proportional to irr3 and it . r2h. \ * / I y
The reaction of the plane, in the dis- ^^ : -^

placed position of the body, always passes
through the centre O.

The equilibrium is stable or unstable according as G, the centre
of gravity of the compound body, is below or above O,

i.e., according as

0G
X x wt. of hemisphere is^ OG2 x wt. of cylinder,
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i.e., according as

i.e., according as

i.e., according as

i.e.,

frxf7rr
3 is< -X7rr%

Vr is >h\

r\s <s/2h,

>
h x 1-42.

**126. Within the limits of this book we cannot

enter into the general discussion of the equilibrium of one

body resting on another
;
in the following article we shall

discuss the case in which the portions of the two bodies

in contact are spherical.

A body rests in equilibrium upon another fixed body,

the portions of the two bodies in contact being spheres of

radii r and R respectively ; if the first body be slightly

displaced, to find whether the equilibrium is stable or un-

stable, the bodies being rough enough to prevent sliding.

Let be the centre of the spherical surface of the

lower body, and
1

that of

the upper body; since there

is equilibrium, the centre of

gravity Gx of the upper body
must be in the line 001} which

passes through the point of

contact A-l of the bodies.

Let A& be h.

Let the upper body be

slightly displaced, by rolling,

so that the new position of

the centre of the upper body
is 0.z ,

the new point of contact

is A 2 ,
the new position of the
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centre of gravity is G2 ,
and the new position of the point

A
x
is C. Hence CG2 is h.

Through A2 draw A 2L vertically to meet 2C in L,

and draw 2M vertically downwards to meet a horizontal

line through A2 in M.

Let the angle A 2OA 1 be 6, and let A2 2C be
<f>,

so that

the angle G02M is (0 + <f>).

Since the upper body has rolled into its new position,

the arc A
X
A2 is equal to the arc CA 2 .

Hence (EleTnents of Trigonometry, Art. 158) we have

R.0 =
r.<t> (1),

where r and R are respectively the radii of the upper and

lower surfaces.

The equilibrium is stable, or unstable, according as G2

lies to the left, or right, of the line A2L,

i.e., according as the distance of G2 from 2M is

> or < the distance of L from 2M, i.e., A 2M,

i.e., according as

2G2 sin (0 + <j>)
is > or < O^A? sin 6,

i.e., according as

(r h) sin (0 + <f>)
is > or < r sin 0,

i.e., according as

r h. sin 6
is > or <

But

sin (9 + <f>)'

sintf 6

sin(0 + <) e+<f>'

since 6 and < are both very small,

r=
r~+H ,hy

'

e(luation (!)
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Hence the equilibrium is stable, or unstable, according as

r h . r
is > or < =

,

r r + R
r2

i.e., according as r -~ is > or < h,1 r + R '

i.e., according as

i.e., according as

Rr
r + R is > or < h,

1 . 11
T is > or < - + -= .

h r R

111
If r = - + -5 ,

the equilibrium is sometimes said to be

neutral
;

it is however really unstable, but the investiga-

tion is beyond the limits of this book.

Hence the equilibrium is stable only when

1 1 1

VS>
r
+
R'

in all other cases it is unstable.

Cor. 1. If the surface of the lower body, instead of

being convex, as in the above

figure, be concave, as in the follow-

ing figure, the above investigation

will still apply provided we change
the sign of R.

Hence the equilibrium is stable

when
1 . 11
VS> r~R'

otherwise it is, in genera], un-

stable.
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Cor. 2. If the upper body have a plane face in

contact with the lower body, as in the following figure, r

is now infinite in value, and therefore - is zero.

if

Hence the equilibrium is stable

l
]ie>

R>

i.e., h be < R.

Hence the equilibrium is stable,

if the distance of the centre of

gravity of the upper body from its

plane face be less than the radius of the lower body;

otherwise the equilibrium is unstable.

Cor. 3. If the lower body be a plane, so that R is

infinity, the equilibrium is stable if

1 1

T be > -
, i.e., if h be < r.

h r

Hence, if a body of spherical base be placed on a hori-

zontal table, it is in stable equilibrium, if the distance of

its centre of gravity from the point of contact be less than

the radius of the spherical surface.

EXAMPLES. XX.

1. A carpenter's rule, 2 feet in length, is bent into two parts at

right angles to one another, the length of the shorter portion being
8 inches. If the shorter be placed on a smooth horizontal table, what
is the length of the least portion on the table that there may be equi-
librium ?

2. A piece of metal, 18 cubic inches in volume, is made into a

cylinder which rests with its base on an inclined plane, of 30 slope,
and is prevented from slipping. How tall may the cylinder be made
so that it may just not topple over?

3. If a triangular lamina ABC can just rest in a vertical plane
with its edge AB in contact with a smooth table, prove that

B&^ACP^SAB2
.
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4. The side CD of a uniform square plate ABCD, whose weight
is W, is bisected at E and the triangle AED is cut off. The plate
ABCEA is placed in a vertical position with the side CE on a hori-

zontal plane. What is the greatest weight that can be placed at A.

without upsetting the plate?

5. ABC is a flat board, A being a right angle and AG in contact
with a flat table; D is the middle point of AC and the triangle ABD
is cut away; shew that the triangle is just on the point of falling

6. A brick is laid with one-quarter of its length projecting over
the edge of a wall ; a brick and one-quarter of a brick are then laid

on the first with one-quarter of a brick projecting over the edge of the

first brick ; a brick, and a half are laid on this, and so on ; shew that

4 courses of brick laid in the above manner will be in equilibrium
without the aid of mortar, but that, if a fifth course be added, the

structure will topple.

7. How many coins, of the same size and having their thick-

nesses equal to -o^li of their diameters, can stand in a cylindrical pile
on an inclined plane, whose height is one-sixth of the base, assuming
that there is no slipping?

If the edge of each coin overlap on one side that of the coin below,
find by what fraction of the diameter each must overlap so that a

pile of unlimited height may stand on the plane.

8. A number of bricks, each 9 inches long, 4 inches wide, and
3 inches thick, are placed one on another so that, whilst their narrowest

surfaces, or thicknesses, are in the same vertical plane*, each brick

overlaps the one underneath it by half an inch; the lowest brick

being placed on a table, how many bricks can be so placed without
their falling over?

9. ABC is an isosceles triangle, of weight W, of which the angle
A is 120, and the side AB rests on a smooth horizontal table, the

W
plane of the triangle being vertical ;

if a weight be hung on at C,

shew that the triangle will just be on the point of toppling over.

10. The quadrilateral lamina ABCD is formed of two uniform

isosceles triangles ABC and ADC, whose vertices are B and D, on

opposite sides of a common base AC, the angle ABC being a right

angle. Shew that it will rest in a vertical plane with BC on a hori-

zontal plane, provided the area of ADC be not greater than four times

that of ABC.
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11. A body, consisting of a cone and a hemisphere on the same
base, rests on a rough horizontal table, the hemisphere being in con-

tact with the table ; find the greatest height of the cone so that the

equilibrium may be stable.

12. A solid consists of a cylinder and a hemisphere of equal
radius, fixed base to base ; find the ratio of the height to the radius of

the cylinder, so that the equilibrium may be neutral when the spherical
surface rests on a horizontal plane.

13. A hemisphere rests in equilibrium on a sphere of equal radius ;

shew that the equilibrium is unstable when the curved, and stable

when the flat, surface of the hemisphere rests on the sphere.

14. A heavy right cone rests with its base on a fixed rough sphere
of given radius ; find the greatest height of the cone if it be in stable

equilibrium.

15. A uniform beam, of thickness 2b, rests symmetrically on a

perfectly rough horizontal cylinder of radius a ; shew that the equi-
librium of the beam will be stable or unstable according as b is less or

greater than a.

16. A heavy uniform cube balances on the highest point of a

sphere, whose radius is r. If the sphere be rough enough to prevent
irT

sliding, and if the side of the cube be -g- , shew that the cube can rock

through a right angle without falling.

17. A lamina in the form of an isosceles triangle, whose vertical

angle is o, is placed on a sphere, of radius r, so that its plane is vertical

and one of its equal sides is in contact with the sphere; shew that, if

the triangle be slightly displaced in its own plane, the equilibrium is

Sr
stable if sin a be less than , where a is one of the equal sides of the

a

triangle.

18. A weight W is supported on a smooth inclined plane by a

given weight P, connected with W by means of a string passing round
a fixed pulley whose position is given. Find the position of W
on the plane, and determine whether the position is stable or un-

stable.

19. A rough uniform circular disc, of radius r and weight p, is

movable about a point distant c from its centre. A string, rough
enough to prevent any slipping, hangs over the circumference and
carries unequal weights W and w at its ends. Find the position of

equilibrium, and determine whether it is stable or unstable.

L. S. 11
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20. -A. solid sphere rests inside a fixed rough hemispherical bowl
of twice its radius. Shew that, however large a weight is attached to

the highest point of the sphere, the equilibrium is stable.

21. A thin hemispherical bowl, of radius b and weight W, rests

in equilibrium on the highest point of a fixed sphere, of radius a,
which is rough enough to prevent any sliding. Inside the bowl is

placed a small smooth sphere of weight ic. Shew that the equilibrium
is not stable unless

,<JT._.



CHAPTER XL

WORK.

127. Work. Def. A force is said to do work

when its point of application moves in the direction of the

force.

The force exerted by a horse, in dragging a waggon, does work.

The force exerted by a man, in raising a weight, does work.

The pressure of the steam, in moving the piston of an engine,
does work.

When a man winds up a watch or a clock he does work.

The measure of the work done by a force is the product
of the force and the distance through which it moves its

point of application in the direction of the force.

Suppose that a force acting at a point A of a body

A B

moves the point A to D, then the work done by P is

measured by the product of P and AD.

If the point D be on the side of A toward which the

force acts, this work is positive; if D lie on the opposite

side, the work is negative.

Next, suppose that the point of application of the force

is moved to a point C, which does not lie on the line AB.

112
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Draw CD perpendicular to AB, or AB produced. Then
AD is the distance through which the point of application

is moved in the direction of the force. Hence in the first

figure the work done is P x AD ; in the second figure the

-5fc
K

B O A P B

work done is Px AD. When the work done by the force

is negative, this is sometimes expressed by saying that the

force has work done against it.

Ir the case when AC is at right angles to AB, the

points A and D coincide, and the work done by the force

P vanishes.

As an example, if a body be moved about on a horizontal table the
work done by its weight is zero. So, again, if a body be moved on an
inclined plane, no work is done by the normal reaction of the plane.

128. The unit of work, used in Statics, is called a

Foot-Pound, and is the work done by a force, equal to the

weight of a pound, when it moves its point of application

through one foot in its own direction. A better, though
more clumsy, term than " Foot-Pound " would be Foot-

Pound-weight.

Thus, the work done by the weight of a body of 10 pounds, whilst

the body falls through a distance of 4 feet, is 10 x 4 foot-pounds.

The work done by the weight of the body, if it were raised through
a vertical distance of 4 feet, would be - 10 x 4 foot-pounds.

129. It will be noticed that the definition of work,

given in Art. 127, necessarily implies motion. A man may
use great exertion in attempting to move a body, and yet

do no work on the body.

For example, suppose a man pulls at the shafts of a

heavily-loaded van, which he cannot move. He may pull

to the utmost of his power, but, since the force which he
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exerts does not move its point of application, he does no

work (in the technical sense of the word).

130. Theorem. To shew tliat the work done in

raising a number ofparticles from, one position to another is

Why vjJiere W is the total weight of the particles, and h is the

distance through which (lie centre of gravity of the particles

has been raised.

Let wu w2 ,
w3 , ...to, be the weights of the particles; in

the initial position let x1} x%, x3,...xn be their heights
above a horizontal plane, and x that of their centre of

gravity, so that, as in Art. Ill, we have

_ _ W^Dj + W&J+ ... + WnXn
w1

+ w2 + ... +wn
^ '*

In the final position let a;/, x2', . . . xn
'

be the heights of

the different particles, and x the height of the new centre

of gravity, so that

_, _ w&{ + w<pc2
'

+ . . . wnxn
'

Wi + w2 + . . . wn
* '"

But, since wt + w2 + ... = W, equations (1) and (2) give

WxXx 4- w$c% + . . . = W . x,

aixd M^aj/ + wrfcj + ... b= W . da'.

By subtraction we have

W
l (x1

'

Xj) + w2 (x2
' -x2)

+ ... - W(x x).

But the left-hand member of this equation gives the

total work done in raising the different particles of the

system from their initial position to their final position ;

also the right-hand side

W x height through which the centre of gravity has been

l'aised

= W. h.

Hence the proposition is proved.
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131. Power. Def. The power of an agent is

the amount of work that would be done by the agent if

working uniformly for the unit of time.

The unit of power used by engineers is called a Horse-

Power. An agent is said to be working with one horse-

power when it performs 33,000 foot-pounds in a minute, i.e.,

when it would raise 33,000 lbs. through a foot in a minute,

or when it would raise 330 lbs. through 100 feet in a

minute, or 33 lbs. through 1000 feet in a minute.

This estimate of the power of a horse was made by

Watt, but is above the capacity of ordinary horses. The

word Horse-power is usually abbreviated into H.p.

132. It will be noted that the result of Art. 130 does

not in any way depend on the initial or final arrangement
of the particles amongst themselves, except in so far as the

initial and final positions of the centre of gravity depend
on these arrangements.

For example, a hole may be dug in the ground, the soil

lifted out, and spread on the surface of the earth at the

top of the hole. We only want the positions of the c.G.

of the soil initially and finally, and then the work done is

known. This work is quite independent of the path by
which the soil went from its initial to its final position.

Ex. A well, of which the section is a square wlwse side is 4 feet,
and ivhose depth is 300 feet, is full of water; find the work done, in

foot-pounds, in pumping the water to the level of the top of the well.

Find also the H.P. of the engine which would just accomplish this

ivork in one hour.

[N.B. A cubic foot of water weighs 1000 ounces.]

Initially the height of the centre of gravity of the water above the
bottom of the well was 150 feet and finally it is 300 feet, so that the

height through which the centre of gravity has been raised is 150 feet.

The volume of the water= 4 x 4 x 300 cubic feet.

Therefore its weight=4 x 4 x 300 x 1y^- lbs. =300,000 lbs.

Hence the work done=300,000 x 150 ft.-lbs. =45,000,000 ft.-lbs.
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O A LMN B

Let x be the required h.p. Then the work done by the engine in

one hour = x x 60 x 33,000.

Hence we have x x 60 x 33,000= 45,000,000 ;

.-.x=22T
8
T .

133. Graphical representation of the work done by a

force.

It is sometimes difficult to calculate directly the work

done by a varying force, but it

may be quite possible to obtain

the result to a near degree of

approximation.

Suppose the force to always
act in the straight line OX, and

let us find the work done as its

point of application moves from A to B. At A and B erect

ordinates AG and DB to represent the value of the force

for these two points of application. For any and every
intermediate point of application L erect the ordinate LP to

represent the corresponding value of the acting force; then

the tops of these ordinates will clearly lie on some such

curve as GPD.

Take M a very near point to L, so near that the force

may be considered to have remained constant as its point

of application moved through the small distance LM.

Then the work done by the force

= its magnitude x distance through which its

point of application has moved

= LP x LM area PM very nearly.

Similarly whilst the point of application moves from M
to N the work done

= area QN very nearly, and so on.
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Hence it follows that the work done as the point of

application moves from A to B is, when the lengths LM,
MN, ... are taken indefinitely small, equal more and more

nearly to the area ACDB.

[Where the shape of the curve CPD is irregular a rough

approximation to its area may be found as follows
;
divide

AB into a number, say 10, of equal strips ;
take the middle

ordinates of these strips and obtain the average of these

middle ordinates; and multiply this average ordinate by
the distance AB. This clearly gives an approximation to

the area of ACDB.]

134. As an example of the above construction let us find the
work done by a force which was initially zero and which varied as the
distance through which its point of application was moved.

In this case AG is zero, and NP=\. AN, where X is some
constant.

PN o D
.". tan PAN=-r^-r=\, so that Plies on a straightAN

line passing through A. The work done= area ABD if- ir-i
= \AP> . BD= ? . displacement of the point of applica-
tion x the final value of the force.

EXAMPLES. XXI.

1. How much work is done by a man

(1)
in climbing to the top of a mountain 2700 feet high, if his

weight is 10 stone ?

(2) in cycling 10 miles if the resistance to his motion be equal
to 5 lbs. wt. ?

2. A chain, whose mass is 8 lbs. per foot, is wound up from a
shaft by the expenditure of four million units of work; find the

length of the chain.

3. A shaft, whose horizontal section is a rectangle 10 ft. by 8 ft.,

is to be sunk 100 ft. into the earth. If the average weight of the soil

is 150 lbs. per cubic foot, find the work done in bringing the soil

to the surface.
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4. How many cubic feet of water will an engine of 100 h.p. raise

in one hour from a depth of 150 feet ?

5. In how many hours would an engine of 18 h.p. empty a vertical

shaft full of water if the diameter of the shaft be 9 feet, and the depth
420 feet?

6. Find the h.p. of an engine that would empty a cylindrical
shaft full of water in 32 hours, if the diameter of the shaft be 8 feet

and its depth 600 feet.

7. Find how long an engine of 20 h.p. would take to pump
5000 cubic feet of water to a height of 100 feet, one-third of the
work being wasted by friction, etc.

8. A man whose weight is 10 stone climbs a rope at the rate

of 18 inches per second. Prove that he is working at just under

!h.p.

y" 9. A tower is to be built of brickwork, the base being a rectangle
whose external measurements are 22 ft. by 9 ft., the height of the

tower 66 feet, and the walls two feet thick
;
find the number of hours

in which an engine of 3 h.p. would raise the bricks from the ground,
the weight of a cubic foot of brickwork being 112 lbs.

^ 10. At the bottom of a coal mine, 275 feet deep, there is an iron

cage containing coal weighing 14 cwt., the cage itself weighing 4 cwt.

109 lbs., and the wire rope that raises it 6 lbs. per yard. Find the
work done when the load has been lifted to the surface, and the h.p.

of the engine that can do this work in 40 seconds.

11. A steamer is going at the rate of 15 miles per hour ; if the
effective h.p. of her engines be 10,000, what is the resistance to her
motion ?

12. A man is cycling at the rate of 6 miles per hour up a hill

whose slope is 1 in 20 ; if the weight of the man and the machine be
200 lbs. prove that he must at the least be working at the rate of

16 H.P.

13. A man rowing 40 strokes per minute propels a boat at the
rate of 10 miles an hour, and the resistance to his motion is equal to

8 lbs. wt. ; find the work he does in each stroke and the h.p. at which
he is working.

14. A Venetian blind consists of 30 movable bars, the thickness
of each bar being negligible, and, when it is hanging down, the distance

between each pah of consecutive bars is 2g inches; if the weight
of each bar be 4 ozs., find the work done in drawing up the blind.

If there were n such bars, what would be the corresponding work?
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15. A Venetian blind consists of n thin bars, besides the top fixed

bar, and the weight of the movable part is W. When let down the

length of the blind is a, and when pulled up it is b ; shew that the
work done against gravity in drawing up the blind is

+lW. (a-b).

16. A solid hemisphere of weight 12 lbs. and radius 1 foot rests

with its flat face on a table. How many foot-lbs. of work are required
to turn it over so that it may rest with its curved surface in contact

with the table? [Use the result of Art. *9$.l ^ ^

17. A uniform log weighing half a ton is in the form of a

triangular prism, the sides of whose cross section are 1^- ft., 2ft.,

and 2^- ft. respectively, and the log is resting on the ground on its

narrowest face. Prove that the work which must be done to raise it

on its edge so that it may fall over on to its broadest face is approxi-

mately -27 ft.-tons.

18. A force acts on a particle, its initial value being 20 lbs. wt.

and its values being 25, 29, 32, 31, 27, and 24 lbs. wt. in the direction

of the particle's motion when the latter has moved through 1, 2, 3, 4,

5, and 6 feet respectively; find, by means of a graph, the work done

by the force, assuming that it varies uniformly during each foot of

the motion.



CHAPTER XII.

MACHINES.

135. In the present chapter we shall explain and

discuss the equilibrium of some of the simpler machines,

viz., (1) The Lever, (2) The Pulley and Systems of Pulleys,

(3) The Inclined Plane, (4) The Wheel and Axle, (5) The

Common Balance, (6) The Steelyards, and (7) The Screw.

The Lever, The Wheel and Axle, The Balance, and the

Steelyards are similar machines. In each we have either

a point, or an axis, fixed about which the machine can

revolve.

In the pulleys an essential part is a flexible string or

strings.

We shall suppose the different portions of these

machines to be smooth and rigid, that all cords or strings

used are perfectly flexible, and that the forces acting on

the machines always balance, so that they are at rest.

In actual practice these conditions are not even approxi-

mately satisfied in the cases of many machines.

136. When two external forces applied to a machine

balance, one may be, and formerly always was, called the

Power and the other may be called the Weight.
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A machine is always used in practice to overcome some

resistance; the force we exert on the machine is the power;
the resistance to be overcome, in whatever form it may
appear, is called the Weight

Unfortunately the word Power is also used in a different

sense with reference to a machine (Art. 131); of late years
the word Effort has been used to denote what was formerly
called the Power in the sense of this article. The word

Resistance is also used instead of Weight; by some writers

Load is substituted for Weight.

137. Mechanical Advantage. If in any
machine an effort P balance a resistance W, the ratio

W : P is called the mechanical advantage of the machine,

so that

Resistance _, , . .

. = Mechanical Advantage,

and Resistance Effort x Mechanical Advantage.

Almost all machines are constructed so that the me-

chanical advantage is a ratio greater than unity.

If in any machine the mechanical advantage be less

than unity, it may, with more accuracy, be called me-

chanical disadvantage.

The term Force-Ratio is sometimes used instead of

Mechanical Advantage.

Velocity Ratio. The velocity ratio of any machine

is the ratio of the distance through which the point of

application of the effort or "
power

" moves to the distance

through which the point of application of the resistance, or

"weight," moves in the same time; so that

. ., ^, ,
. Distance through which P moves

Velocity Ratio = .= -j ^ = -= == .

Distance through which W moves
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If the machine be such that no work has to be done in

lifting its component parts, and if it be perfectly smooth

throughout, it will be found that the Mechanical Advantage
and the Velocity Ratio are equal, so that in this case

W Distance through which P moves

P
~~

Distance through which W moves '

and then

P x distance through which P moves

= W x distance through which W moves,

or, in other words,

work done by P will = work done against W.

138. The following we shall thus find to be a uni-

versal principle, known as the Principle of Work, viz.,

Whatever be tlie machine we use, provided that there be no

friction and that the weight of the machine be neglected, the

work done by the effort is always equivalent to the work done

against the weight, or resistance.

Assuming that the machine we are using gives me-

chanical advantage, so that the effort is less than the

weight, the distance moved through by the effort is there-

fore greater than the distance moved through by the weight

in the same proportion. This is sometimes expressed in

popular language in the form
;
What is gained in povjer is

lost in speed.

More accurate is the statement that mechanical ad-

vantage is always gained at a proportionate diminution

of speed. No work is ever gained by the use of a machine

though mechanical advantage is generally obtained.

139. It will be found in the next chapter that, as

a matter of fact, some work, in practice, is always lost by
the use of any machine.

The uses of a machine are

(1) to enable a man to lift weights or overcome
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resistances much greater than he could deal with unaided,

e.g., by the use of a system of pulleys, or a wheel and axle,

or a screw-jack, etc.,

(2) to cause a motion imparted to one point to be

changed into a more rapid motion at some other point,

e.g., in the case of a bicycle,

(3) to enable a force to be applied at a more con-

venient point or in a more convenient manner, e.g., in the

use of a poker to stir the fire, or in the lifting of a bucket

of mortar by means of a long rope passing over a pulley at

the top of a building, the other end being pulled by a man

standing on the ground.

I. The Lever.

140. The Lever consists essentially of a rigid bar,

straight or bent, which has one point fixed about which

the rest of the lever can turn. This fixed point is called

the Fulcrum, and the perpendicular distances between the

fulcrum and the lines of action of the effort and the weight

are called the arms of the lever.

When the lever is straight, and the effort and weight

act perpendicular to the lever, it is usual to distinguish

three classes or orders.

iiiiimii aClass I. Here the effort P *mmmmm}mmm
and the weight W act on opposite

sides of the fulcrum G. p

Class II. Here the effort P
and the weight W act on the

same side of the fulcrum G, but

the former acts at a greater dis-

tance than the latter from the

fulcrum.

PA AR

milium iiiiiii/im/iw. O

A
iw
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Class III. Here the effort

P and the weight W act on the b a|
P
\l

same side of the fulcrum C, but fMMZMMMHMIM^C
the former acts at a less dis-

tance than the latter from the

fulcrum.

W

141. Conditions of equilibrium ofa straight lever.

In each case we have three parallel forces acting on

the body, so that the reaction, R, at the fulcrum must

be equal and opposite to the resultant of P and W.

In the first class P and W are like parallel forces, so

that their resultant is P + W. Hence

R = P + W.

In the second class P and W are unlike parallel forces,

so that

R = W - P.

So in the third class R = P - W.

In the first and third classes we see that R and P act

in opposite directions
;
in the second class they act in the

same direction.

In all three classes, since the resultant of P and W
passes through C, we have, as in Art. 52,

P.AC=W.BC,
i.e. P x the arm of P = W x the arm of W.

. W arm of P .
, .

fcmce
-y,-

=
-F-^fn-i we observe that generally mP arm of JT & J

Class I., and always in Class II., there is mechanical

advantage, but that in Class IIL there is mechanical

disadvantage.
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The practical use of levers of the latter class is to

apply a force at some point at which it is not convenient

to apply the force directly.

In this article we have neglected the weight of the

lever itself.

If this weight be taken into consideration we must,

as in Art. 91, obtain the conditions of equilibrium by

equating to zero the algebraic sum of the moments of the

forces about the fulcrum G.

The principle of the lever was known to Archimedes

who lived in the third century B.c. ;
until the discovery of

the Parallelogram of Forces in the sixteenth century it was

the fundamental principle of Statics.

142. Examples of the different classes of levers are;

Class I. A Poker {when used to stir the fire, the bar

of the grate being the fulcrum) ;
A Claw-hammer {when

used to extract nails) ;
A Crowbar [when used with a point

in it resting on a fixed support) ;
A Pair of Scales

;
The

Brake of a Pump.

Double levers of this class are; A Pair of Scissors, A
Pair of Pincers.

Class II. A Wheelbarrow; A Cork Squeezer; A
Crowbar {with one end in contact with the ground) ;

An
Oar {assuming the end of the oar in contact ivith the water

to be at rest).

A Pair of Nutcrackers is a double lever of this class.

Class III. The Treadle of a Lathe; The Human
Forearm {when tlie latter is used to support a weight placed

on the palm of the hand. The Fulcrum is the elbow, and

the tension exerted by the muscles is the effort).

A Pair of Sugar-tongs is a double lever of this class.
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143. Bent Levers.

Let AOB be a bent lever, of which O is the fulcrum, and let OL
and OM be the perpendiculars from O upon the lines of action AG and
BG of the effort P and resistance W.

The condition of equilibrium of Art. 91 again applies, and we have,

by taking moments about 0,

P.OL=W.OM (1);

P OM
''" W~ OL

_ perpendicular from fulcrum on direction of resistance

perpendicular from fulcrum on direction of effort

To obtain the reaction at O let the directions of P and W meet in C.

Since there are only three forces acting
on the body, the direction of the reaction
P at O must pass through C, and then,

by Lami's Theorem, we have

R P W
sin AOB sinBGO

~
sin ACO

'

The reaction may also be obtained,
as in Art. 46, by resolving the forces R,
F, and W in two directions at right

angles.

If the effort and resistance be parallel forces, the reaction P is

parallel to either of them and equal to (P+W), and, as before, we
have P.OL = W.OM, .

where OL and OM are the perpendiculars from O upon the lines of

action of the forces.

If the weightW of the lever be not neglected, we have an additional
term to introduce into our equation of moments.

144. If tivo weights balance, about a fixed fulcrum, at the
extremities of a straight lever, in any position inclined, to the vertical,
they will balance in any other position.

Let AB be the lever, of weight W,
and let its centre of gravity be G.
Let the lever balance about a ful-

crum O in any position inclined at an
angle to the horizontal, the weights
at A and B being P andW respectively. ,. Qa

Through O draw a horizontal line

LONM to meet the lines of action of

P, W, and W in L, N, and M re-

spectively.

Since the forces balance about 0,
we have

P. OL= W. OM+ W. ON.

YW

VP

L. S. 12
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:. P.OAcose=W.OBco&0+W'.OGcos6.
.-. P . OA = W. OB + W. OG.

This condition of equilibrium is independent of the inclination of

the lever to the horizontal ; hence in any other position of the lever
the condition would be the same.

Hence, if the lever be in equilibrium in one position, it will be in

equilibrium in all positions.

EXAMPLES. XXII.

1. In a weightless lever, if one of the forces be equal to 10 lbs. wt.

and the thrust on the fulcrum be equal to 16 lbs. wt., and the length
of the shorter arm be 3 feet, find the length of the longer arm.

2. Where must the fulcrum be so that a weight of 6 lbs. may
balance a weight of 8 lbs. on a straight weightless lever, 7 feet long?

If each weight be increased by 1 lb., in what direction will the

lever turn?

3. If two forces, applied to a weightless lever, balance, and if the

thrust on the fulcrum be ten times the difference of the forces, find

the ratio of the arms.

4. A lever, 1 yard long, has weights of 6 and 20 lbs. fastened to

its ends, and balances about a point distant 9 inches from one end ;

find its weight.

y 5. A straight lever, AB, 12 feet long, balances about a point,
I foot from A, when a weight of 13 lbs. is suspended from A. It will

balance about a point, which is 1 foot from B, when a weight of

II lbs. is suspended from B. Shew that the centre of gravity of the

lever is 5 inches from the middle point of the lever.

6. A straight uniform lever is kept in equilibrium by weights of

12 and 5 lbs. respectively attached to the ends of its arms, and the

length of one arm is double that of the other. What is the weight of

the lever?

7. A straight uniform lever, of length 5 feet and weight 10 lbs.,

has its fulcrum at one end and weights of 3 and 6 lbs. are fastened to

it at distances of 1 and 3 feet respectively from the fulcrum; it is

kept horizontal by a force at its other end; find the thrust on the

fulcrum.

8. A uniform lever is 18 inches long and is of weight 18 ounces ;

find the position of the fulcrum when a weight of 27 ounces at one
end of the lever balances one of 9 ounces at the other.

If the lesser weight be doubled, by how much must the position of

the fulcrum be shifted so as to preserve equilibrium?
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y 9. Two weights, of 8 and 4 ounces, are in equilibrium when
attached to the opposite ends of a rod of negligible weight ;

if 2 ounces

be added to the greater the fulcrum must be moved through yths of

an inch to preserve equilibrium ; find the length of the lever.

10. The short arm of one lever is hinged to the long arm of a
second lever, and the short arm of the latter is attached to a press ;

the long arms being each 3 feet in length, and the short arms 6 inches,
find what thrust will be produced on the press by a force, equal to

10 stone weight, applied to the long end of the first lever.

11. A straight heavy uniform lever, 21 inches long, has a ful-

crum at its end. A force, equal to the weight of 12 lbs., acting at a
distance of 7 inches from the fulcrum, supports a weight of 3 lbs.

hanging at the other end of the lever. If the weight be increased by
1 lb., what force at a distance of 5 inches from the fulcrum will

support the lever?

12. On a lever, forces of 13 and 14 lbs. weight balance, and their

directions meet at an angle whose cosine is y
5
^; find the thrust

on the fulcrum.

13. A straight lever is acted on, at its extremities, by forces in

the ratio ^/3 + 1 : ^/3
-

1, and which are inclined at angles of 30 and
60 to its length. Find the magnitude of the thrust on the fulcrum,
and the direction in which it acts.

14. The arms of a bent lever are at right angles to one another,
and the arms are in the ratio of 5 to 1. The longer arm is inclined

to the horizon at an angle of 45, and carries at its end a weight of

10 lbs. ; the end of the shorter arm presses against a horizontal plane ;

find the thrust on the plane.

15. The arms of a uniform heavy bent rod are inclined to one
another at an angle of 120, and their lengths are in the ratio of 2 : 1 ;

if the rod be suspended from its angular point, find the position in

which it will rest.

16. A uniform bar, of length l\ feet and weight 17 lbs. , rests on

a horizontal table with one end projecting l\ feet over the edge ; find

the greatest weight that can be attached to its end, without making
the bar topple over.

17. A straight weightless lever has for its fulcrum a hinge at one
end A , and from a point B is hung a body of weight W. If the strain

at the hinge must not exceed ^W in either direction, upwards or down-
wards, shew that the effort must act somewhere within a epace equal

to %AB.

122
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18. Shew that the propelling force on an eight-oared boat is

224 lbs. weight, supposing each man to pull his oar with a force of

56 lbs. weight, and that the length of the oar from the middle of the

blade to the handle is three times that from the handle to the row-

lock.

19. In a pair of nutcrackers, 5 inches long, if the nut be placed

at a distance of
-g-

inch from the hinge, a force equal to 3^ lbs. wt.

applied to the ends of the arms will crack the nut. What weight

placed on the top of the nut will crack it?

20. A man raises a 3-foot cube of stone, weighing 2 tons, by
means of a crowbar, 4 feet long, after having thrust one end of the

bar under the stone to a distance of 6 inches; what force must be

applied at the other end of the bar to raise the stone?

21. A cubical block, of edge a, is being turned over by a crowbar

applied at the middle point of the edge in a plane through its centre

of gravity; if the crowbar be held at rest when it is inclined at an

angle of 60 to the horizon, the lower face of the block being then

inclined at 30 to the horizon, and if the weight of the block be n
times the force applied, find the length of the crowbar, the force

being applied at right angles to the crowbar.

II. Pulleys.

145. A pulley is composed of a wheel of wood, or

metal, grooved along its circumference to receive a string

or rope ;
it can turn freely about an axle passing through

its centre perpendicular to its plane, the ends of this axle

being supported by a frame of wood called the block.

A pulley is said to be movable or fixed according as its

block is movable or fixed.

The weight of the pulley is often so small, compared
with the weights which it supports, that it may be neg-

lected; such a pulley is called a weightless pulley.

We shall always neglect the weight of the string or

rope which passes round the pulley.

We shall also in this chapter consider the pulley to be

perfectly smooth, so that the tension of a string which

passes round a pulley is constant throughout its length.
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146. Single Pulley. The use of a single pulley-

is to apply an effort in a different direction from that in

which it is convenient to us to apply the effort.

Thus, in the first figure, a man standing on the ground
and pulling vertically at one end of the rope might support
a weight W hanging at the other end

;
in the second figure

the same man pulling sideways might support the weight.

In each case the tension of the string passing round

the pulley is unaltered
;
the effort P is therefore equal to

the weight W.

In the first figure the action on the fixed support to

which the block is attached must balance the other forces

on the pulley-block, and must therefore be equal to

W+P + w,

i.e., 2W + W, where w is the weight of the pulley-block.

C D

ffi
W

\/P

In the second figure, if the weight of the pulley be

neglected, the effort P, and the weight W, being equal,

must be equally inclined to the line OA.

Hence, if T be the tension of the supporting string OB
and 20 the angle between the directions of P and W, we
have

T= Pcos0+Wcoa6 = 2 IT cos 0.
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If w be the weight of the pulley, we should have,

T2=(W+w)*+P2+ 2 (W+w) . P . cos 20

= 2IF2+ 2Wxo+w2+ 2 (W+ w) . W (2 cos
2
0-1), since P and IF are equal,

= ?p2+ 4JF(IF+w)cos
2 0.

147. We shall discuss three systems of pulleys and

shall follow the usual order
;
there is no particular reason

for this order, but it is convenient to retain it for purposes
of reference.

First system of Pulleys. Each string attaclied to

the supporting beam. To find the relation between the effort

or "power
" and the weight.

In this system of pulleys the weight is attached to the

lowest pulley, and the string pass-

ing round it has one end attached

to the fixed beam, and the other

end attached to the next highest

pulley ;
the string passing round

the latter pulley has one end

attached to the fixed beam, and

the other to the next pulley, and

so on; the effort is applied to the

free end of the last string.

Often there is an additional

fixed pulley over which the free

end of the last string passes; the

effort may then be applied as a

downward force.

Let A x ,
A 2 ,

... be the pulleys, beginning from the

lowest, and let the tensions of the strings passing round

them be Tlf T2 , ... . Let W be the weight and P the

power.

[N.B. The string passing round any pulley, A2 say, pulls A2 ver-

tically upwards, and pulls A3 dow7iwards.]
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I. Let the weights of the pulleys be neglected.

From the equilibrium of the pulleys A
x ,

A.z ,
...

,
taken

in order, we have

2 4̂ =r3 ; .-. Tt=\Tt=W.

But, with our figure, T = P.

JP = JP
24

Similarly, if there were w pulleys, we should have

2n

Hence, in this system of pulleys, the mechanical

advantage

-p-2".

II. Let the weights of the pulleys in succession, be-

ginning from the lowest, be wlt w2 , ... .

In this case we have an additional downward force

on each pulley.

Resolving as before, we have

2T1 =W + w,,

2T2=T1 + w2i

2T3 =T2 + w3 ,

2Ti=T3 + wi .
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" l
2 2

'

T -IT 4.
W*- W a.

Wl a.
W*

x 2 ^^ i +
"2" ~"22

+
22
+

"2">

w3 W w1 w2 w3

23
+

23
+

22
+

"2
'

ana ^_ ^ 4_^ 3 +___ + _ + _ + _+ _.

Similarly, if there were n pulleys, we should have

2n 2n 2~ 2
"

.'. 2nP= W + w1 +2.w2 + 2 2w3 +... + 2n
~'iwn .

If the pulleys be all equal, we have

w1
= w2

= ... = wn = w.

.'. 2nP=W+w(l + 2 + 22 +... + 2n
~1

)

= W + w(2
n
-l),

by summing the geometrical progression.

W
It follows that the mechanical advantage, -_

, depends

on the weight of the pulleys.

In this system of pulleys we observe that the greater

the weight of the pulleys, the greater must P be to support
a given weight W \

the weights of the pulleys oppose the

effort, and the pulleys should therefore be made as light as

is consistent with the required strength.

Stress on the beam from which the pulleys are hung.

Let R be the stress on the beam. Since R, together with the
force P, supports the system of pulleys, together with the weight IV,
we have

R+P=W+wl+ws +... +wn .
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+"k(i-iPi)+-+
i,

w(
1
-i)"

Ex. If t//rre be 4 movable pulleys, wlwse weight*, commencing
with the lowest, are 4, 5, 6, and 7 Z&., what effort will support a body

of weight 1 cwt. ?

Using the notation of the previous article, we have

2^ = 112 + 4; .-. ^=58.
2r2=ri + 5=63; .-. T2=3l.

2T3=r2+ 6=37j; .-. T2=18f.

2P=T3+7=25f; /. P=12|lbs. wt.

148. Verification of the Principle of Work.

Neglecting the weights of the pulleys we have, if there

be four pulleys,

P = - W.
24

If the weight W be raised through a distance x, the

pulley A2 would, if the distance A X
A2 remained unchanged,

rise a distance x
; but, at the same time, the length of the

string joining A 1
to the beam is shortened by x, and a

portion x of the string therefore slips round A y ; hence,

altogether, the pulley A 2 rises through a distance 2x.

Similarly, the pulley Az rises a distance 4a?, and the

pulley i 4 a distance 8x.

Since A 4 rises a distance 8a;, the strings joining it to

the beam and to the point at which P is applied both

shorten by 8a?.

Hence, since the slack string runs round the pulley Ai}

the point of application of P rises through 16a?, i.e., through
sixteen times as far as the point of application of W.

Hence the velocity-ratio (Art. 137) =16, so that it is

equal to the mechanical advantage in this case.
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Also

work done by the effort P . I6x

work done against the weight W . x

i IT. 16a; _
_2* W.x
~

W.x ~W7x~ '

Hence the principle is verified.

Taking the weights of the pulleys into account, and

taking the case of four pulleys, we have

p_W ^ w* Ws Wi

24 24 23 22 2
'

As before, if A x
ascend a distance x, the other pulleys ascend

distances 2x, Ax, and 8a;, respectively. Hence the work

done on the weight and the weights of the pulleys

= W . x + w1
. x + w2 . 2x + w3 . 4x + Wt . 8x

_ , A \~W w
1

w2 w% w4

~

= Lbx
[ji

+
jjj

+
2s

" +
2^

+
2"

= 16a; x P work done by the effort.

A similar method of proof would apply, whatever be the

number of pulleys.

EXAMPLES. XXIII.

1, In the following cases, the movable pulleys are weightless,
their number is n, tbe weight is W, and the "

power
" or effort is P;

(1) If n=4 and P=201bs. wt., find W;
(2) If n=4and W=l cwt., find P;

(3) If TT=56 lbs. wt. and P=7 lbs. wt., find n.

2. In the following cases, the movable pulleys are of equal weight
w, and are n in number, P is the "power" or effort, and W is the

weight ;

(1) If =4, w=llb. wt., and JF=971bs. wt., findP;

(2) If = 3, w= l lbs. wt.
, and P= 7 lbs. wt. , find W ;

(3) If n=5, JF=7751bs.wt.,andP=31 lbs. wt., find;

(4) If TF=107 lbs. wt., P=2 lbs. wt., and xo=\ lbs. wt., find n.
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3. In the first system of pulleys, if there be 4 pulleys, each of

weight 2 lbs., what weight can be raised by an effort equal to the

weight of 20 lbs. ?

4. If there be 3 movable pulleys, whose weights, commencing
with the lowest, are 9, 2, and 1 lbs. respectively, what force will sup

port a weight of 69 lbs. ?

5. If there be 4 movable pulleys, whose weights commencing
with the lowest, are 4, 3, 2, and 1 lbs. respectively, what force will

support a weight of 54 lbs. ?

6. If there be 4 movable pulleys, each of weight w, and the effort

be P, shew that the stress on the beam is 15P- llw.

7. If there be 3 movable pulleys and their weights beginning from

the lowest be 4, 2, and 1 lbs. respectively, what force will be required
to support a weight of 28 lbs. ?

8. Shew that, on the supposition that the pulleys are weightless,
the mechanical advantage is greater than it actually is.

9. In the system of pulleys in which each hangs by a separate

string, if there be 3 pulleys, it is found that a certain weight can be

supported by an effort equal to 7 lbs. weight ; but, if there be 4 pulleys,
the same weight can be supported by an effort equal to 4 lbs. weight ;

find the weight supported and the weight of the pulleys, which are

equal.

10. A. system consists of 4 pulleys, arranged so that each

hangs by a separate string, one end being fastened to the upper block,

and all the free ends being vertical. If the weights of the pulleys,

beginning at the lowest, be w, 2tu, 3io, and 4ic, find the power
necessary to support a weight of 15w, and the magnitude of the single

force necessary to support the beam to which the other ends of the

string are attached.

11. In the system of 4 heavy pulleys, if P be the effort and W
the weight, shew that the stress on the beam is intermediate between

i|TFandl5P.

12. A man, of 12 stone weight, is suspended from the lowest of a

system of 4 weightless pulleys, in which each hangs by a separate

string, and supports himself by pulling at the end of the string which

passes over a fixed pulley. Find the amount of his pull on this

string.

13. A man, whose weight is 156 lbs., is suspended from the

lowest of a system of 4 pulleys, each being of weight 10 lbs., and

supports himself by pulling at the end of the string which passes over

the fixed pulley. Find the force which he exerts on the string, sup-

posing all the strings to be vertical.



188 STATICS

149. Second system of pulleys. The same

string passing round all the pulleys. To find tlie relation

between the effort and the weight.

In this system there are two blocks, each containing

pulleys, the upper block being fixed and the lower block

movable. The same string passes round all the pulleys

as in the figures.

If the number of pulleys in the upper block be the

same as in the lower block (Fig. 1),
one end of the string

r

p/Up>E[p

O
lw

Fig. 1.

must be fastened to the upper block
;

if the number in

the upper block be greater by one than the number in

the lower block (Fig. 2), the end of the string must be

attached to the lower block.

In the first case, the number of portions of string con-

necting the blocks is even
;
in the second case, the number

is odd.



MACHINES. THE PULLEY 189

In either case, let n be the number of portions of string

at the lower block. Since we have only one string passing

over smooth pulleys, the tension of each of these portions

is P, so that the total upward force at the lower block

is n . P.

Let W be the weight supported, and w the weight of

the lower block.

Hence W + w nP, giving the relation required.

In practice the pulleys of each block are often placed

parallel to one another, so that the strings are not mathe-

matically parallel ; they are, however, very approximately

parallel, so that the above relation is still very approxi-

mately true.

EXAMPLES. XXIV.

1. If a weight of 5 lbs. support a weight of 24 lbs., find the

weight of the lower block, when there are 3 pulleys in each block.

2. If weights of 5 and 6 lbs. respectively at the free ends of the

string support weights of 18 and 22 lbs. at the lower block, find the

number of the strings and the weight of the lower block.

3. If weights of 4 lbs. and 5 lbs. support weights of 5 lbs. and
18 lbs. respectively, what is the weight of the lower block, and how
many pulleys are there in it?

4. A weight of 6 lbs. just supports a weight of 28 lbs., and
a weight of 8 lbs. just supports a weight of 42 lbs.

;
find the number

of strings and the weight of the lower block.

5. In the second system of pulleys, if a basket be suspended from
the lower block and a man in the basket support himself and the

basket, by pulling at the free end of the rope, find the tension he
exerts, neglecting the inclination of the rope to the vertical, and

assuming the weight of the man and basket to be W.
If the free end of the rope pass round a pulley attached to the

ground and then be held by the man, find the force he exerts.

6. A man, whose weight is 12 stone, raises 3 cwt. by means of

a system of pulleys in which the same rope passes round all the

pulleys, there being 4 in each block, and the rope being attached to

the upper block; neglecting the weights of the pulleys, find what
will be his thrust on the ground if he pull vertically downwards.
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7. We are told that the cable by which "Great Paul," whose
weight is 18 tons, was lifted into its place in the cathedral tower,
passed four times through the two blocks of pulleys. From this
statement give a description of the pulleys, and estimate the strength
of the cable.

8. Prove the Principle of Work in this system of pulleys, and find
the Velocity Batio.

9. An ordinary block and tackle has two pulleys in the lower
block and two in the upper. What force must be exerted to lift

a load of 300 lbs. ? If on account of friction a given force will only
lift -45 times as much as if the system were frictionless, find the force

required.

10. In a block and tackle the velocity ratio is 8 : 1. The friction
is such that only 55% of the force applied can be usefully employed.
Find what force will raise 5 cwt. by its use.

150. Third system of pulleys. All the strings
attached to the weight. Tofind the relation between the effort

and the weight.

In this system the string passing round any pulley
is attached at one end to a bar, from
which the weight is suspended, and at

the other end to the next lower pulley;
the string round the lowest pulley is

attached at one end to the bar, whilst

at the other end of this string the

power is applied. In this system the

upper pulley is fixed.

Let Alt A2 , A3 , ... be the movable

pulleys, beginning from the lowest,

and let the tensions of the strings

passing round these pulleys respec-

tively be Tu T2 , T* ....

If the power be F
t
we have clearly

c

T4A,M
Ti=^P
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I. Let the weights of the pulleys be neglected.

For the equilibrium of the pulleys, taken in order and

commencing from the lowest, we have

T3
= 2T2

= 2*P,

and T4
= 2T3=23P.

But, since the bar, from which W is suspended, is in

equilibrium, we have

W= Tx + T2 + T3 + 1\ = P + 2P + 22P + 23P

-i>f~=p(2*-i) (i).

If there were n pulleys, of which (n 1) would be

movable, we should have, similarly,

W=2\+T2 +Ts +... + Tn

=pT
2^1
L2-1J'

by summing the geometrical progression,

= P(2
n
-l) (2).

Hence the mechanical advantage is 2n 1.

II. Let the weights of the movable pulleys, taken in

order and commencing with the lowest, be w1} w2 ,
....

Considering the equilibrium of the pulleys in order,

we have
T2 =2T1 + w1

= 2P +w1 ,

T3
= 2T2 + w2

= 2*P + 2wx + w2 ,

Tt
= 2T3 + wz

= 23P + 22w
x + 2w2 + wt .
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But, from the equilibrium of the bar,

=
(2

3 + 22 + 2 + 1) P + (2
2 + 2 + l)uh + (2 + 1) w,+ w3

24 - 1 2 3 - 1 22 - 1
=
2=1 P+ 2=T Wl + J^i w> + Ws

=
(2

4

-l)P+(2
3

-l)^1 + (2
2

-l);2 + ;3 (3).

If there were n pulleys, of which (n 1) would be

movable, we should have, similarly,

W^^ + T^+.-.+T. + T,

=
(2

w-1 + 2 ra-2 + ... + l)P + (2
n
--'+ 2"-3 + ... + 1) w1

+ (2
n-s +2n-*+ ...+ 1) %+...+ (2 + l)wn_ a + >_!

2_1 2"- 1 -! 2 re-2-l
^2=r p+_2=r M;i + -2=r^

2 2 -l
+ + ^7J ^'n-2 + Ww_!

= (2
n -

1) P + (2'
1- 1 -

1) w1 + (2"-
2 -

1) w2 + . ..

+ (2
2
-l) re_2+(2-l>n_ 1 (4).

If the pulleys be all equal, so that

w1
= w2

= ... = wn_x
= w,

the relation (4) becomes

W= (2
n
-I) P + wfi"-

1 + 2n~* + ... + 2 -(n ~1)]

=
(2

n -
1) P + w[2

n - n -
1],

by summing the geometrical progression.

Stress on the supporting beam. This stress balances the effort, the

weight, and the weight of the pulleys, and therefore equals

P+W+w1+w2 +...+wn ,

and hence is easily found.

Ex. If there be 4 pulleys, whose weights, commencing with the

loioest, are 4, 5, 6, and 7 lbs., what effort will support a body of weight
lmvtJ
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Using the notation of the previous article, we have

T2
= 2P + 4,

r3=2T2 + 5 = 4P+ 13,

2'4 =2Z'3 + 6=8P+32.
Also 112=r4 +2's+2

,

2+ P=152
J +49.

68
:

15
:P= = 4] lbs. wt.

15 X. In this system we observe that, the greater the weight of

each pulley, the less is P required to be in order that it may support
a given weight W. Hence the weights of the pulleys assist the effort.

If the weights of the pulleys be properly chosen, the system will remain
in equilibrium without the application of any effort whatever.

For example, suppose we have 3 movable pulleys, each of weight
Iff, the relation (3) of the last article will become

IF=15P+lltt\

Hence, if lliv = W, we have P zero, so that no power need be

applied at the free end of the string to preserve equilibrium.

152. In the third system of pulleys, the bar supporting the

weight W will not remain horizontal, unless the point at which the

weight is attached be properly chosen. In any particular case the

proper point of attachment can be easily found.

Taking the figure of Art. 146 let there be three movable pulleys,
whose weights are negligible. Let the distances between the points
D, E, F, and G at which the strings are attached, be successively a,
and let the point at which the weight is attached be X.

The resultant of T
x , T3 ,

Ts , and Ti must pass through X.

Hence by Art. 109,

T
t x 0+ T3 x a+ JT3 x 2a+'l\ x 3a

_4P.a + 2P.2a+ P.3a _lla
8P+ 4P+2P+P ~15~"

.. DX=j^DE, giving the position of X.

153. This system of pulleys was not however designed
in order to lift weights. If it be used for that purpose it

is soon found to be unworkable. Its use is to give a short

strong pull. For example it is used on board a yacht to

set up the back stay.

In the figure of Art. 150, DEFG is the deck of the

yacht to which the strings are attached and there is no W.

L. s. 13
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The strings to the pulleys A x ,
A 2 ,

A s ,
AA are inclined to the

vertical and the point is at the top of the mast which is

to be kept erect. The resistance in this case is the force at

necessary to keep the mast up, and the effort is applied

as in the figure.

154. Verification of the Principle of Work.

Suppose the weight W to ascend through a space x.

The string joining B to the bar shortens by x, and hence

the pulley A3 descends a distance x. Since the pulley A s

descends x and the bar rises x, the string joining A 3 to the

bar shortens by 2x, and this portion slides over A 3 ;
hence

the pulley A 2 descends a distance equal to 2x together with

the distance through which A 3 descends, i.e., A 2 descends a

distance 2x + x, or Sx. Hence the string A^shortens by

4a:, which slips over the pulley A 2 ,
so that the pulley Aj

descends a distance ix together with the distance through

which A 2 descends, i.e., 4x+3x, or 7x. Hence the string

A XG shortens by 8a;, and Ax itself descends 7x, so that the

point of application of P descends 15a;.

Neglecting the weight of the pulleys, the work done by
P therefore

= 15* . P = x (2
4 -

1) P = x . W by equation (1), Art. 150,

bb work done on the weight W.

Taking the weights of the pulleys into account, the

work done by the effort and the weights of the pulleys

[which in this case assist the power]
= P . 15a; + wx . 7x + w2 3x + w3 . x

= x[P (2
4 -

1) + wx (2
3 -

1) + y (2
2 -

1) + w3]

x. W by equation (3), Art. 150,

= work done on the weight W.

If there were n pulleys we should in a similar manner

find the point of application of P moved through (2" 1)

times the distance moved through by W, so that the

velocity ratio is 2" 1.
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EXAMPLES. XXV.

1. In the following cases, the pulleys are weightless and n in

number, P is the "power" or effort and. W the weight;

(1) If n=4 and P= 2 lbs. wt., find W;
(2) If n=5 and TF=124 lbs. wt., find P;

(3) IfW= 105 lbs. and P= 7 lbs. wt. , find 7i.

2. In the following cases, the pulleys are equal and each of weight
to, P is the "power," and W is the weight;

(1) If 7t=4, 70 = 1 lb. wt., and P= 10 lbs. wt., find W;
(2) If n=3, w= ^lb. wt., and W=1U lbs. wt., find P;

(3) If 7i=5, P= 3 lbs. wt., and W =106 lbs. wt., find w ;

(4) If P=4 lbs. wt., IF=137 lbs. wt., and w= \ lb. wt., find n.

3. If there be 5 pulleys, each of weight 1 lb., what effort is

required to support 3 cwt.?

If the pulleys be of equal size, find to what point of the bar the

weight must be attached, so that the beam may be always hori-

zontal.

4. If the strings passing round a system of 4 weightless pulleys
be fastened to a rod without weight at distances successively an inch

apart, find to what point of the rod the weight must be attached, so
that the rod may be horizontal.

5. Find the mechanical advantage, when the pulleys are 4 in

number, and each is of weight ^j-th that of the weight.

6. In a system of 3 weightless pulleys, in which each string is

attached to a bar which carries the weight, if the diameter of each

pulley be 2 inches, find to what point of the bar the weight should be
attached so that the bar may be horizontal.

7. If the pulleys be equal, and the effort be equal to the weight
of one of them, and the number of pulleys be 5, shew that the weight
is 57 times the power.

8. In the third system of 3 pulleys, if the weights of the pulleys
be all equal, find the relation of the effort to the weight when equi-
librium is established. If each pulley weigh 2 ounces, what weight
would be supported by the pulleys only ?

If the weight supported be 25 lbs. wt., and the effort be 3 lbs. wt.,
find what must be the weight of each pulley.

9. In the third system of weightless pulleys, the weight is sup-
ported by an effort of 70 lbs. The hook by which one of the strings is

attached to the weight breaks, and the string is then attached to the

pulley which it passed over, and an effort of 150 lbs. is now required.
Find the number of pulleys and the weight supported.

132
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10. In the third system of weightless pulleys, if the string round
the last pulley be tied to the weight, shew that the tension of the

string is diminished in a ratio depending on the number of pulleys.

If the tension be decreased in the ratio 16 : 15, find the number of

pulleys.

11. In the system of pulleys in which each string is attached to

the weight, if each pulley have a weight w, and the sum of the weights
of the pulleys be W', and P and W be the effort and weight in this

case, shew that the effort P + w would support the weight W+W in

the same system if the pulleys had no weight.

12. If there be n weightless pulleys and if a string, whose ends
are attached to the weights P and W, carry a pulley from which a

weight W is suspended, find the relation between P, W, and W .

13. If there be n pulleys, each of diameter 2a and of negligible

weight, shew that the distance of the point of application of the
2"

weight from the line of action of the effort should be ^ = na.

III. The Inclined Plane.

155. The Inclined Plane, considered as a mechanical

power, is a rigid plane inclined at an angle to the horizon.

It is used to facilitate the raising of heavy bodies.

In the present chapter we shall only consider the case

of a body resting on the plane, and acted upon by forces

in a plane perpendicular to the intersection of the inclined

plane and the horizontal, i.e., in a vertical plane through
the line of greatest slope.

The reader can picture to himself the line of greatest slope on an
inclined plane in the following manner :

take a rectangular sheet of cardboard

ABCD, and place it at an angle to the

horizontal, so that the line AB is in

contact with a horizontal table: take

any point P on the cardboard and draw
PM perpendicular to the line AB; PM is

the line of greatest slope passing through
the point P.

From G draw CE perpendicular to the horizontal plane through
AB, and join BE. The lines BC, BE, and CE are called respec-
tively the length, base, and height of the inclined plane; also the

angle CBE is the inclination of the plane to the horizon.
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In this chapter the inclined plane is supposed to be

smooth, so that the only reaction between it and any Ixxly

resting on it is perpendicular to the inclined plane.

Since the plane is rigid, it is capable of exerting any

reaction, however great, that may be necessary to give

equilibrium.

156. A body, of given weight, rests on an inclined

plane ; to determine the relations between the effort, the

weight, and the reaction of the plane.

Let W be the weight of the body, P the effort, and

B the reaction of the plane ;
also let a be the inclination

of the plane to the horizon.

Case I. Let the effort act up the plane along the line of

greatest slope.

Let AC be the inclined plane, AB the horizontal line

through A, DE a vertical line, and

let the perpendicular to the plane . _ P >C
through D meet AB in F. ^w^^^

Then clearly ^aT & i

/. FDE=90 -/LADE A eIf B
w

= ZDAE=a.

By Land's Theorem (Art. 40), since only three forces

act on the body, each is proportional to the sine of the

angle between the other two.

P R- W
' '

sin (B, W) sinXir, P)
~

sin (P, B)
'

P B W
%.e.

'

sin (180- a) sin (90 + a) sin 90 '

P ft

i.e., -r = = W (1).sin a cos a v '

P= IF sin a, and B= TFcosa.
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The relation (1) may be written in the form

P :R : W
: : Height of plane : Base of plane : Length of plane.

Otherwise thus: Eesolve W along and perpendicular to the

plane; its components are

WcosADE, i.e., Weina, along DA,
and W sin ADE, i.e., IP" cos a, along DF.

Hence P=JP"sin a, and R=W cos a.

The work done by the force P in dragging the body
from A to G is P x AG.

But P= Wsin a.

Therefore the work done is IP"sin ax AG,

i.e., WxAGsina, i.e., WxBG.

Hence the work done is the same as that which would

be done in lifting the weight of the body through the same

height without the intervention of the inclined plane.

Hence the Principle of "Work is true in this case.

Case II. Let the effort act horizontally.

[In this case we must imagine a
'V C

small hole in the plane at D through '\ .^"^i
which a string is passed and attached to D>^i > i

the body, or else that the body is pushed ^^<^e & ^
i

toward the plane by a horizontal force.] <"^ * -
A

v]/F
B

As in Case I., we have W

P_ _R_ W
sin (R, W)

~
sin

( W, P)
~

sin (P, R)
'

P R W
i.e.,

sin(180-a) sin 90 sin (90+ a)'

P R W
'

* sin a 1 cos a

P = Wt&n a, and R = JFsec a.

(!)
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The relation (1) may be written in the form

P.R: W
:: Height of Plane : Length of Plane : Base of Plane.

Otherwise thus : The components of W along and perpendicular
to the plane are IF sin a and Wcoaa; the components of P, similarly,

are P cos a and P sin a.

.*. P cos a=W sin a, and

TrrTsm
2* "1 sin2a + cos2a lirP= Psina + ircosa=lF + cosa = W = IF sec a.

[_cos a J cos a

.*. P=W tan a, and P= IF sec a.

Case III. Let the effort act at an angle 6 ivith the

inclined plane.

By Lami's Theorem we have

P R W
sin (R, W)

~
sin (Wt P)

~
sin (P, R)

'

P R W
*'e"

sin (180
-

a)

~
sin (90 + + a)

~
sin (90

-
6)

*

- 2L. B
*
sin a cos (0 + a) cos 6

'

cos 6 cos

Otherwise thus: Kesolving along and perpendicular to the

plane, we have

Poos0=TPsina, and P+Psin 0=IFcosa.

rsina

COS0'
sin a sin 0~l

cos0 J
_cos a cos - sin a sin . cos (a+ 0)

cos cos 6

and

.: P=W-

R= JFcos a - Psin 0=
TFJc
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If through E we draw EK parallel to P to meet DF in K, then
DEK is a triangle of forces, and

.-. F:B:W :: EK : KD : BE,
and thus we have a graphic construction for P and li.

It will be noted that Case III. include? both Cases I.

and II.
;

if we make $ zero, we obtain Case I.
;

if we put
8 equal to (- a), we have Case II.

Verification of the Principle of Work. In

Case III. let the body move a distance x along the plane ;

the distance through which the point of application of P
moves, measured along its direction of application, is clearly

a; cos 6; also the vertical distance through which the weight
moves is x sin a.

Hence the work done by the power is P . x cos 6, and

that done against the weight is W.xsina. These are

equal by the relation proved above.

157. Experiment. To find experimentally the relation between,

the effort and the weight in the case of an inclined plane.

Take a wooden board AB, hinged at A to a second board, which
can be clamped to a table ; to the board AB let a sheet of glass be fixed
in order to minimise the friction. At B is fixed a vertical graduated
scale, so that the height of B above A can be easily read off.
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The weight consists of a heavy brass roller to which is attached a

string which after passing over a pulley supports a scale-pan in which

weights can be placed. These weights, together with the weight of

the scale-pan, form the "effort" or "power" P.

The pulley is so arranged that the string between it and W is

parallel to the plane.

Set the arm AB at any convenient angle; load the scale-pan so

that W is just supported. [In actual practice it is better to take for P
the mean of the values of the weights which will let W just run down

and just drag it up respectively.]

Observe h the height of B above A, and I the length AB.

P h
Then it will be found that =~=

j
.

Now set the board at a different angle and determine P, h, I for

this second experiment. The same relation will be found to be true.

If there be a slit along the length of the board through which the

string can pass, then a pulley can be arranged in such a position that

the string can be horizontal. In this case the effort, as in Case II. of

Art. 156, will be horizontal and we shall find that

P _ Height of the plane

W ~
Base of the plane

158. If the power does not act in a vertical plane

through the line of greatest slope there could not be

equilibrium on a smooth inclined plane; in this case we

could, however, have equilibrium if the inclined plane were

rough. We shall return to this case in the next chapter.

EXAMPLES. XXVI.

1. What force, acting horizontally, could keep a mass of 16 lbs.

at rest on a smooth inclined plane, whose height is 3 feet and length
of base 4 feet, and what is the reaction of the plane ?

2. A body rests on an inclined plane, being supported by a force

acting up the plane equal to half its weight. Find the inclination of

the plane to the horizon and the reaction of the plane.

3. A rope, whose inclination to the vertical is 30, is just strong

enough to support a weight of 180 lbs. on a smooth plane, whose
inclination to the horizon is 30. Find approximately the greatest
tension that the rope could exert.
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4. A body rests on a plane, inclined at an angle of 60 to the

horizon, and is supported by a force inclined at an angle of 30 to the
horizon ; shew that the force and the reaction of the plane are each

equal to the weight of the body.

5. A body, of weight 2P, is kept in equilibrium on an inclined

plane by a horizontal force P, together with a force P acting parallel
to the plane ; find the ratio of the base of the plane to the height and
also the reaction of the plane.

6. A body rests on a plane, inclined to the horizon at an angle
of 30, being supported by a force inclined at 30 to the plane ; find
the ratio of the weight of the body to the force.

7. A weight is supported on an inclined plane by a force inclined

to the plane; if the weight, the force, and the reaction be as the
numbers 4, 3, and 2, find the inclination of the plane and the direction

of the force.

8. A body, of 5 lbs. wt., is placed on a smooth plane inclined at

30 to the horizon, and is acted on by two forces, one equal to the

weight of 2 lbs. and acting parallel to the plane and upwards, and the
other equal to P and acting at an angle of 30 with the plane. Find
P and the reaction of the plane.

9. Find the force which acting up an inclined plane will keep a

body, of 10 lbs. weight, in equilibrium, it being given that the force,
the reaction of the plane, and the weight of the body are in

arithmetical progression.

10. If a force P, acting parallel to an inclined plane and sup-
porting a mass of weight W, produces on the plane a thrust B, shew
that the same power, acting horizontally and supporting a mass of

weight P, will produce on the plane a thrust W.

11. Two boards, of lengths 11 and 8 feet, are fixed with their

lower ends on a horizontal plane and their upper ends in contact; on
these planes rest bodies of weights W and 12 lbs. respectively, which
are connected by a string passing over the common vertex of the

boards; find the value of W.

12. A number of loaded trucks, each containing 1 ton, on one

part of a tramway inclined at an angle a to the horizon supports
an equal number of empty trucks on another part whose inclination is

. Find the weight of a truck.

13. A body rests on a plane inclined to the horizon at an angle a;
if the reaction of the plane be equal to the effort applied, shew that
the inclination of the effort to the inclined plane is 90 - 2a.

14. A heavy string is placed with a portion of it resting on a

given inclined plane, the remaining part hanging vertically over a
small pulley at the top of the plane. Find what point of the string
should be placed over the pulley for equilibrium.



XXVI MACHINES. THE INCLINED PLANE 203

15. On two inclined planes, of equal height, two weights are

respectively supported, by means of a string passing over the common
vertex and parallel to the planes ; the length of one plane is double its

height, and the length of the other plane is double its base; shew
that the reaction of one plane is three times the reaction of the
other.

16. A body, of weight 50 lbs., is in equilibrium on a smooth

plane inclined at an angle of 20 20' to the horizon, being supported by
a force acting up the plane; find, graphically or by use of trigono-
metrical tables, the force and the reaction of the plane.

17. A body, of weight 20 lbs., rests on a smooth plane inclined at

an angle of 25 to the horizon, being supported by a force P acting at
an angle of 35 with the plane; find, graphically or by use of trigono-
metrical tables, P and the reaction of the plane.

18. A body, of weight 30 lbs., rests on a smooth plane inclined
at an angle of 28 15' to the horizon, being supported by a horizontal
force P; find, graphically or by use of trigonometrical tables, P and
the reaction of the plane.

IV. The Wheel and Axle.

159. This machine consists of a strong circular

cylinder, or axle, terminating in two pivots, A and B,

C

which can turn freely on fixed supports. To the cylinder
is rigidly attached a wheel, CD, the plane of the wheel

being perpendicular to the axle.

Round the axle is coiled a rope, one end of which is

firmly attached to the axle, and the other end of which is

attached to the weight.
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Round the circumference of the wheel, in a direction

opposite to that of the first rope, is coiled a second rope,

having one end firmly attached to the wheel, and having
the "

power," or effort, applied at its other end. The cir-

cumference of the wheel is grooved to prevent the rope
from slipping off.

160. To find the relation between the effort and the

weight.

In Art. 93, we have shewn that a body, which can turn

freely about a fixed axis, is in equilibrium if the algebraic

sum of the moments of the forces about the axis vanishes.

In this case, the only forces acting on the machine are the

effort P and the weight W, which tend to turn the machine

in opposite directions. Hence, if a be the radius of the axle,

and b be the radius of the wheel, the condition of equili-

librium is

P. b= W.a (1).

W
Hence the mechanical advantage = -^

_ b radius of the wheel

a radius of the axle

Verification of the Principle of Work. Let the

machine turn through four right angles. A portion of

string whose length is 2nb becomes unwound from the

wheel, and hence P descends through this distance. At
the same time a portion equal to 2ira becomes wound upon
the axle, so that W rises through this distance. The work

done by P is therefore P x 2irb and that done against W
is W x lira. These are equal by the relation

(1).

Also the velocity-ratio (Art. 137)

= ^ = - = the mechanical advantage.
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161. Theoretically, by making the quantity
-
very

large, we can make the mechanical advantage as great as

we please ; practically however there are limits. Since the

pressure of the fixed supports on the axle must balance P
and W, it follows that the thickness of the axle, i.e., la,

must not be reduced unduly, for then the axle would break.

Neither can the radius of the wheel in practice become very

large, for then the machine would be unwieldy. Hence the

possible values of the mechanical advantage are bounded,

in one direction by the strength of our materials, and in

the other direction by the necessity of keeping the size of

the machine within reasonable limits.

162. In Art. 160 we have neglected the thicknesses of the

ropes. If, however, they are too great to be neglected, compared with
the radii of the wheel and axle, we may take them into consideration

by supposing the tensions of the ropes to act along their middle
threads.

Suppose the radii of the ropes which pass round the axle and
wheel to be a; and y respectively ; the distances from the line joining
the pivots at which the tensions now act are (a+ x) and (b+ y) respec-

tively. Hence the condition of equilibrium is

so that

P{b+ y) = W(a + x),

P _ sum of the radii of the axle and its rope

W~
sum of the radii of the wheel and its rope

'

163. Other forms of the Wheel and Axle are the

Windlass, used for drawing water from a well, and Capstan,

used on board ship. In these machines the effort instead

of being applied, as in Art. 159, by means of a rope passing

round a cylinder, is applied at the ends of a spoke, or

spokes, which are inserted in a plane perpendicular to the

axle.

In the Windlass the axle is horizontal, and in the

Capstan it is vertical.
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In the latter case the resistance consists of the tension

T of the rope round the axle,

and the effort consists of the

forces applied at the ends of

bars inserted into sockets at

the point A of the axle. The

advantage of pairs of arms is

that the strain on the bearings
of the capstan is thereby much
diminished or destroyed. The

condition of equilibrium may
be obtained as in Art. 160.

164. Differential "Wheel and Axle. A slightly modified form
of the ordinary wheel and axle is the differential wheel and axle. In
this machine the axle consists of two cylinders, having a common axis,

joined at their ends, the radii of the two cylinders being different.

One end of the rope is wound round one of these cylinders, and its

other end is wound in a contrary direction round the other cylinder.

Upon the slack portion of the rope is slung a pulley to which the

weight is attached. The part of the rope which passes round the
smaller cylinder tends to turn the machine in the same direction as
the effort.

As before, let b be the radius of the wheel and let a and c be the
radii of the portion AC and CB of the axle, a being the smaller.

Since the pulley is smooth, the tension T of the string round it is

the same throughout its length, and hence, for the equilibrium of the

weight, we have T=\W.
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Taking moments about the line AB for the equilibrium of the

machine, we have
P.b+T.a=T.c.

P=T Wc-a
2 ~b

"

W 26
Hence the mechanical advantage= -= = .

IT C Qi

By making the radii c and a of the two portions of the axle very

nearly equal, we can make the mechanical advantage very great, with-

out unduly weakening the machine.

165. Weston's Differential Pulley.

In this machine there are two blocks; the upper contains two

pulleys of nearly the same size which turn together
as one pulley; the lower consists of one pulley to

which the weight W is attached.

The figure represents a section of the machine.

An endless chain passes round the larger of the

upper pulleys, then round the lower pulley and the

smaller of the upper pulleys ; the remainder of the

chain hangs slack and is joined on to the first portion
of the chain. The effort P is applied as in the figure.

The chain is prevented from slipping by small pro-

jections on the surfaces of the upper pulleys, or by
depressions in the pulleys into which the links of

the chain fit.

If T be the tension of the portions of the chain
which support the weight W, we have, since these

portions are approximately nearly vertical, on neg-

lecting the weight of the chain and the lower pulley,

2T=W (1).

If B and r be the radii of the larger and smaller

pulleys of the upper block we have, by taking
moments about the centre A of the upper block,

P.B+T.r=T.B.

Hence P=TB-r WB-r
B 2 B

The mechanical advantage of this system therefore

_W_ 2B~ P~ B-r'

Since B and r are nearly equal this mechanical advantage is there-

fore very great.
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The differential pulley-block avoids one great disadvantage of the
differential wheel and axle. In the latter machine a very great
amount of rope is required in order to raise the weight through an

appreciable distance.

EXAMPLES. XXVII.

1. If the radii of the wheel and axle be respectively 2 feet and
3 inches, find what power must be applied to raise a weight of
56 lbs.

2. If the radii of the wheel and axle be respectively 30 inches
and 5 inches, find what weight would be supported by a force equal
to the weight of 20 lbs., and find also the pressures on the supports on
which the axle rests.

If the thickness of the ropes be each 1 inch, find what weight would
now be supported.

3. If by means of a wheel and axle a power equal to 3 lbs. weight
balance a weight of 30 lbs., and if the radius of the axle be 2 inches,
what is the radius of the wheel?

4. The axle of a capstan is 16 inches in diameter and there are

8 bars. At what distance from the axis must 8 men push, 1 at each

bar and each exerting a force equal to the weight of 26^ lbs., in order

that they may just produce a strain sufficient to raise the weight of

1 ton?

5. Four sailors raise an anchor by means of a capstan, the radius

of which is 4 ins. and the length of the spokes 6 feet from the capstan ;

if each man exert a force equal to the weight of 112 lbs., find the

weight of the anchor.

6. Four wheels and axles, in each of which the radii are in the

ratio of 5 : 1, are arranged so that the circumference of each axle is

applied to the circumference of the next wheel ; what effort is required
to support a weight of 1875 lbs. ?

7. The radii of a wheel and axle are 2 feet and 2 ins. respectively,
and the strings which hang from them are tied to the two ends of a
uniform rod, 2 feet 2 ins. in length and 10 lbs. in weight ;

what weight
must be also hung from one of the strings that the rod may hang
in a horizontal position?

8. A pulley is suspended by a vertical loop of string from a wheel-

and-axle and supports a weight of 1 cwt. , one end of the string being
wound round the axle and the other in a contrary direction round the

wheel. Find the power which acting at one end of an arm, 2 feet in

length, so as to turn the axle, will support the weight, assuming the

radii of the wheel and axle to be 1 foot and 2 ins.
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9. In the Differential Wheel and Axle, if the radius of the wheel

be 1 foot and the radii of the two portions of the axle be 5 and 4 ins.

respectively, what power will support a weight of 56 lbs. ?

10. In the Differential Wheel and Axle, if the radius of the wheel

be 18 ins. and the radii of the two portions of the axle be 6 and 4 ins.

respectively, what weight will be supported by an effort equal to 20 lbs.

weight?

11. In a wheel and axle the radius of the wheel is 1 foot and that

of the axle is 1 inch ; if 2 weights, each 10 lbs., be fastened to 2 points

on the rim of the wheel, so that the line joining them subtends an

angle of 120 at the centre of the wheel, find the greatest weight
which can be supported by a string hanging from the axle in the usual

way.

12. In a wheel and axle, if the radius of the wheel be six times

that of the axle, and if by means of an effort equal to 5 lbs. wt. a

body be lifted through 50 feet, find the amount of work expended.

13. A capstan, of diameter 20 inches, is worked by means of a

lever, which measures 5 feet from the axis of the capstan. Find the

work done in drawing up by a rope a body, of weight one ton, over

35 feet of the surface of a smooth plane inclined to the horizon at an

angle cos-1 -y . Find also the force applied to the end of the lever, and
the distance through which the point of application moves.

14. Verify the Principle of Work in the cases of the Differential

Wheel-and-Axle and Weston's Differential Pulley, finding the Velocity-
Eatio in each case.

V. The Common Balance.

166. The Common Balance consists of a rigid beam

AB (Art. 167), carrying a scale-pan suspended from each

end, which can turn freely about a fulcrum outside the

beam. The fulcrum and the beam are rigidly connected

and, if the balance be well constructed, at the point

is a hard steel wedge, whose edge is turned downward

and which rests on a small plate of agate.

The body to be weighed is placed in one scale-pan and

in the other are placed weights, whose magnitudes are

known
;
these weights are adjusted until the beam of the

balance rests in a horizontal position. If OH be perpen-

L.S. U
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dicular to the beam, and the arms HA and HB be of equal

length, and if the centre of gravity of the beam lie in

the line OH, and the scale-pans be of equal weight, then

the weight of the body is the same as the sum of the

weights placed in the other scale-pan.

If the weight of the body be not equal to the sum of

the weights placed in the other scale-pan, the balance

will not rest with its beam horizontal, but will rest with

the beam inclined to the horizon.

In the best balances the beam is usually provided with

a long pointer attached to the beam at H. The end of

this pointer travels along a graduated scale and, when
the beam is horizontal, the pointer is vertical and points
to the zero graduation on the scale.

167. To find the position of equilibrium of a balance

when the weights placed in the scale-pans are not equal.

Let the weights placed in the scale-pans be P and W,
the former being the greater ;

let S be the weight of each

scale-pan, and let the weight of the beam (and the parts

rigidly connected with it) be W\ acting at a point K
on OH.

[The figure is drawn out of proportion so that the points

may be distinctly marked ; K is actually very near the beam.]

"When in equilibrium let the beam be inclined at an

angle 8 to the horizontal, so that OH is inclined at the

same angle 6 to the vertical.

Let OH and OK be h and k respectively, and let the

length of AH or HB be a.

Let horizontal lines through and H meet the vertical

lines through the ends A and B of the beam in the points

L, M, It and M' respectively.
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Also let the vertical lines through H and K meet LM
in F and G respectively.

W+s

P+S

When the system is in equilibrium, the moments of

the forces about must balance.

.'. (P + S).OL = (W+S)OM + W'.OG,

U, (P + S) (FL -FO) = (W + S) (FM + OF)+W'. OG,

.'. (P + )(acos0-Asin0) = (JF + A$)(acos0 + Asin0)
+ W'.k sin 6.

[For OF= OH cos FOH = h sin
; OG = OK sin 6;

and FL = ^TZ' = a cos
0.]

.-. a cos 0(P- W) = sin
[
W'k + (P + W + 2S) h\

(P
- W) a

tan 6 =
W'k + (P+ W+2S)h'

168. Requisites of a good balance.

(1) The balance must be true.

This will be the case if the arms of the balance be

equal, if the weights of the scale-pans be equal, and if

the centre of gravity of the beam be on the line through

142
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the fulcrum perpendicular to the beam
;
for the beam willnow

be horizontal when equal weights are placed in the scale-pans.

To test whether the balance is true, first see if the beam

is horizontal when the scale-pans are empty ; then make

the beam horizontal by putting sufficient weights in one

scale-pan to balance the weight of a body placed in the

other ;
now interchange the body and the weights ;

if they
still balance one another, the balance must be true; if in

the second case the beam assumes any position inclined to

the vertical, the balance is not true.

(2) The balance must be sensitive, i.e., the beam must,

for any difference, however small, between the weights

in the scale-pans, be inclined at an appreciable angle to

the horizon.

For a given difference between P and W, the greater

the inclination of the beam to the horizon the more sensitive

is the balance; also the less the difference between the

weights required to produce a given inclination 6, the

greater is the sensitiveness of the balance.

Hence, when P W is given, the sensitiveness increases

as 6 increases, and therefore as tan 6 increases
; also, when

is given, it varies as

1

P-W
The sensitiveness is therefore appropriately measured by

tand

U* Wk + (P+W+2S)h
- (

Art - 167->

Hence, the sensitiveness of a balance will be great if

the arm a be fairly long in comparison with the distances

h and k and the weight W of the beam be as small
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as is consistent with the length and rigidity of the

machine.

If h is not zero, it follows that the sensitiveness depends

on the values of P and W, i.e. depends on the loads in the

scale-pans. In a balance for use in a chemical laboratory

this is undesirable. Such balances are therefore made with

h zero, i.e. with the point in the figure coinciding with

H. The sensibility then varies inversely with k, the

distance of the centre of gravity of the beam below

or H.

But we must not make both h and k zero
;
for then the

points and K would both coincide with H. In this case

the balance would either when the weights in the scale-pans

were equal, be, as in Art. 144, in equilibrium in any

position or else, if the weights in the scale-pans were not

equal, it would take up a position as nearly vertical as

the mechanism of the machine would allow.

(3) The balance must be stable and must quickly take

up its position of equilibrium.

The determination of the time taken by the machine to

take up its position of equilibrium is essentially a dynamical

question. We may however assume that this condition

is best satisfied when the moment of the forces about the

fulcrum is greatest. When the weights in the scale-pans

are each P, the moment of the forces tending to restore

equilibrium

= (P + S) (a cosO + h sin 0)
- (P + S) (a cos - h sin 6)

+ W'.kBinO
= [2(P + S)h+W'.k]sinO.

This expression is greatest when h aud k are greatest.

Since the balance is most sensitive when h and k are

small, and most stable when these quantities are large, we
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see that in any balance great sensitiveness and quick weigh-

ing are to a certain extent incompatible. In practice this

is not very important ;
for in balances where great sensi-

tiveness is required (such as balances used in a laboratory)

we can afford to sacrifice quickness of weighing; the

opposite is the case when the balance is used for ordinary

commercial purposes.

To insure as much as possible both the qualities of

sensitiveness and quick weighing, the balance should be

made with fairly light long arms, and at the same time

the distance of the fulcrum from the beam should be

considerable.

169. Double weighing. By this method the

weight of a body may be accurately determined even

if the balance be not accurate.

Place the body to be weighed in one scale-pan and in

the other pan put sand, or other suitable material, sufficient

to balance the body. Next remove the body, and in its

place put known weights sufficient to again balance the

sand. The weight of the body is now clearly equal to the

sum of the weights.

This method is used even in the case of extremely good
machines when very great accuracy is desired. It is known

as Borda's Method.

170. Ex. 1. The arms ofa balance are equal in length but the

beam is unjustly loaded; if a body be placed in each scale-pan in suc-

cession and weighed, shew that its true weight is the arithmetic mean
between its apparent weights.

For let the length of the arms be a, and let the horizontal distance

of the centre of gravity of the beam from the fulcrum be x.

Let a body, whose true weight is W, appear to weigh W1
and W2

successively.

If W be the weight of the beam, we have

W.a=W'.x +W1 .a,

and W.a=W .x+W.a.
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Hence, by subtraction,

(W-W2)a=(W1 -W)a.
.: W=%(W1 +W2)

= arithmetic mean between the

apparent weights.

Ex. 2. The arms of a balance are of unequal length, but the beam
remains in a horizontal position when the scale-pans are not loaded ;

shew that, if a body be placed successively in each scale-pan, its true

weight is the geometrical mean between its apparent weights.

[Method of Gauss.]

Shew also that if a tradesman appear to weigh out equal quantities

of the same substance, using alternately each of the scale-pans, he will

defraud himself.

Since the beam remains horizontal when there are no weights in

the scale-pans, it follows that the centre of gravity of the beam and

scale-pans must be vertically under the fulcrum.

Let a and b be the lengths of the arms of the beam and let a body,
whose true weight is W, appear to weigh W1

and W2 successively.

Hence W.a=W
1
.b

(1),

and W2 .a=W.b (2).

Hence, by multiplication, we have

W*.ab=W
1
W2 .ab .

.: W=JWX .W2 ,

i.e., the true weight is the geometrical mean between the apparent
weights.

Again, if the tradesman appear to weigh out in succession quan-
tities equal to W, he really gives his customers W^ + W^.

Now W
l +W2-2W=W

(

^
+ W--2W

ab ab

Now, whatever be the values of a and b, the right-hand member of

this equation is always positive, so that W
1+W2 is always >2W.

Hence the tradesman defrauds himself.

Numerical example. If the lengths of the arms be 11 and 12 ins.

respectively, and if the nominal quantity weighed be 66 lbs. in each

case, the real quantities are j^ . 66 and yf . 66, i.e., 60^ and 72,

i.e., 132^ lbs., so that the tradesman loses \ lb.

Ex. 3. If a balance be unjustly weighted, and have unequal arms,
and if a tradesman weigh out to a customer a quantity 2IP of some sub-

stance by iceighing equal portions in the tico scale-pans, shew that he
will defraud himself if the centre of gravity of the beam be in the longer
arm.
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Let a and b be the lengths of the arms ; and let the weight W of

the machine act at a point in the arm b at a distance x from the

fulcrum. Let a body of weight W, placed in the two pans in suc-

cession, be balanced by TFj and W2 respectively. Then we have

W.a=W1
.b+ W'.x,

and W3 .a=W.b + W'.x.

... frVy,-ir=
*-*''

+
**+*" -ay

1 J b a

Wlb-a)* JTr,b-a
ab ab

If b be>a, the right-hand member of this equation is positive, and

then W
x + W^ is >2W.

Hence, if the centre of gravity of the beam be in the longer arm,
the tradesman will defraud himself.

EXAMPLES. XXVIII.

1. The only fault in a balance being the unequalness in weight
of the scale-pans, what is the real weight of a body which balances

10 lbs. when placed in one scale-pan, and 12 lbs. when placed in the

other?

2. The arms of a balance are 8f and 9 ins. respectively, the goods
to be weighed being suspended from the longer arm; find the real

weight of goods whose apparent weight is 27 lbs.

3. One scale of a common balance is loaded so that the apparent

weight of a body, whose true weight is 18 ounces, is 20 ounces ; find

the weight with which the scale is loaded.

4. A substance, weighed from the two arms successively of a

balance, has apparent weights 9 and 4 lbs. Find the ratio of the

lengths of the arms and the true weight of the body.

5. A body, when placed in one scale-pan, appears to weigh 24 lbs.

and, "when placed in the other, 25 lbs. Find its true weight to three

places of decimals, assuming the arms of the scale-pans to be of

unequal length.

6. A piece of lead in one pan A of a balance is counterpoised by
100 grains in the pan B ; when the same piece of lead is put into the

pan B it requires 104 grains in A to balance it ;
what is the ratio of

the length of the arms of the balance ?

7. A body, placed in a scale-pan, is balanced by 10 lbs. placed in

the other pan ; when the position of the body and the weights are

interchanged, 11 lbs. are required to balance the body. If the length
of the shorter arm be 12 ins., find the length of the longer arm and
the weight of the body.
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8. The arms of a false balance, whose weight is neglected, are in

the ratio of 10 : 9. If goods be alternately weighed from each arm,

shew that the seller loses |-ths per cent.

9. If the arms of a false balance be 8 and 9 ins. long respectively,

find the prices really paid by a person for tea at two shillings per lb.,

if the tea be weighed out from the end of (1) the longer, (2) the shorter

arm.

10. A dealer has correct weights, but one arm of his balance is

T^th part shorter than the other. If he sell two quantities of a

certain drug, each apparently weighing 9^ lbs., at 40s. per lb., weigh-

ing one in one scale and the other in the other, what will he gain or

lose?

11. When a given balance is loaded with equal weights, it is

found that the beam is not horizontal, but it is not known whether

the arms are of unequal length, or the scale-pans of unequal weight ;

51-075 grains in one scale balance 51-362 in the other, and 25-592

grains balance 25-879 grains ; shew that the arms are equal, but that

the scale-pans differ in weight by -287 grains.

12. P and Q balance on a common balance ; on interchanging
them it is found that we must add to Q one-hundredth part of

itself; what is the ratio of the arms and the ratio of P to Q?

13. A true balance has one scale unjustly loaded ; if a body be

successively weighed in the two scales and appear to weigh P and

Q pounds respectively, find the amount of the unjust load and also

the true weight of the body.

14. The arms of a false balance are unequal and the scale

loaded; a body, whose true weight is P lbs., appears to weigh w lbs.

when placed in one scale and w' lbs. when placed in the other ; find

the ratio of the arms and the weight with which the scale is loaded.

15. In a loaded balance with unequal arms, P appears to weigh

Q, and Q appears to weigh R ; find what B appears to weigh.

16. A piece of wood in the form of a long wedge, of uniform

width, one end being -5-inch and the other ^--inch thick, is suspended

by its centre of gravity and used as the beam of a balance, the goods
to be weighed being suspended from the longer arm; find the true

weight of goods whose apparent weight is 20 lbs.

17. The arms of a false balance are a and b, and a weight W
balances P at the end of the shorter arm b, and Q at the end of the

arm a ; shew that

a_ P-W
b~W-Q'

18. If a man, sitting in one scale of a weighing-machine, press
with a stick against any point of the beam between the point from

which the scale is suspended and the fulcrum, shew that he will

appear to weigh more than before.
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VI. The Steelyards.

171. The Common, or Roman, Steelyard is a

machine for weighing bodies and consists of a rod, AB,
movable about a fixed fulcrum at a point C.

A ?Cp ft

T,w w
f-

X4

At the point A is attached a hook or scale-pan to carry

the body to be weighed, and on the arm CB slides a movable

weight P. The point at which P must be placed, in order

that the beam may rest in a horizontal position, determines

the weight of the body in the scale-pan. The arm CB has

numbers engraved on it at different points of its length, so

that the graduation at which the weight P rests gives the

weight of the body.

172. To graduate the Steelyard. Let W be the

weight of the steelyard and the scale-pan, and let G be the

point of the beam through which W acts. The beam is

usually constructed so that G lies in the shorter arm AC.
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When there is no weight in the scale-pan, let be the

point in CB at which the movable weight P must be placed

to balance W.

Taking moments about C, we have

W'.GC=P.CO (i).

This condition determines the position of the point

which is the zero of graduation.

When the weight in the scale-pan is W, let X be the

point at which P must be placed. Taking moments, we

have
W .CA+W'.GC =P.CX (ii).

By subtracting equation (i)
from equation (ii),

we have

W.CA = P.OX.

.'. OX=y. CA (iii).

Eirst, let W = P
; then, by (iii),

we have

OX=CA.

Hence, if from we measure off a distance 0XX (= CA),
and if we mark the point Xx with the figure 1, then,

when the movable weight rests here, the body in the

scale-pan is P lbs.

Secondly, let W = 2P; then, from
(iii),

0X = 2CA.

Hence from mark off a distance 2CA, and at the

extremity put the figure 2. Thirdly, let W = 3P
; then,

from
(iii),

OX 3CA, and we therefore mark off a distance

from equal to SCA, and mark the extremity with the

figure 3.

Hence, to graduate the steelyard, we must mark off from

successive distances CA, 2CA, 3CA,... and at their ex-

tremities put the figures 1, 2, 3, 4, The intermediate

spaces can be subdivided to shew fractions of P lbs.
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If the movable weight be 1 lb., the graduations will

shew pounds.

Cor. Since the distances between successive graduations are equal,
it follows that the distances of the points of graduations from the

fulcrum, corresponding to equal increments of weight, form an
arithmetical progression whose common difference is the distance

between the fulcrum and the point at which the body to be weighed
is attached.

173. When the centre of gravity G of the machine is in the

longer arm, the point from which the graduations are to be measured
must lie in the shorter arm. The theory will be the same as before,

except that in this case we shall have to add the equations (i)
and (ii).

174. The Danish steelyard consists of a bar AB,

terminating in a heavy knob, or ball, B. At A is attached

a hook or scale-pan to carry the body to be weighed.

X3X C Xi

w>

-1 1 1 T T

i 3 2 A i

The weight of the body is determined by observing

about what point of the bar the machine balances.

[This is often done by having a loop of string, which can slide

along the bar, and finding where the loop must be to give equi-

librium.]

175. To graduate the Danish steelyard. Let P be

the weight of the bar and scale-pan, and let G be their

common centre of gravity. When a body of weight W is

placed in the scale-pan, let C be the position of the fulcrum.
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By taking moments about C, we have

AG. W=CG.P=(AG-AC).P.
:. AC(P + W) = P.AG.

' ao =pTW ao (i) -

First, let W=P; then AG = \AG.

Hence bisect AG and at the middle point, Xx , engrave

the figure 1
;
when the steelyard balances about this point

the weight of the body in the scale-pan is P.

Secondly, let W=2P; then AG = \AG.
Take a point at a distance from A equal to %AG and

mark it 2.

Next, let W in succession be equal to SP, iP, ... ;
from

(i),
the corresponding values of AC are \AG, \AG,.... Take

points of the bar at these distances from A and mark them

3, 4,....

Finally, let W= \P ; then, from
(i),

AC = %AG j

and let W= ^P j then, from
(i),

AC = \AG.
Take points whose distances from A are \AG, \AG,

^AG,..., and mark them |, , J,...,

It will be noticed that the point G can be easily de-

termined ;
for it is the position of the fulcrum when the

steelyard balances without any weight in the scale-pan.

Cor. Since AXV AX, AX3,...
are inversely proportional to the

numbers 2, 3, 4, ... they form an harmonical progression; hence the

distances of the points of graduation from the scale-pan (corresponding
to equal increments of the body to be weighed) are in harmonical pro-

gression.

Ex. A Danish steelyard weighs 6 lbs., and the distance of its

centre of gravity from the scale-pan is 3 feet; find the distances of the

successive points of graduationfrom tlie fulcrum.

Taking the notation of the preceding article, we have P=6, and
AG=i feet.

fi 18
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.: when W=l, AX1=^=
2%- feet,

when W=2, ^Z2
=-X/= 2T feet

when W=3, AX3
= ^-= 2 feet,

when W=h, AX,=r^- =2H feet,

and so on.

These give the required graduations.

EXAMPLES. XXIX.

1. A common steelyard weighs 10 lbs. ; the weight is suspended
from a point 4 inches from the fulcrum, and the centre of gravity of

the steelyard is 3 inches on the other side of the fulcrum ; the movable

weight is 12 lbs.; where should the graduation corresponding to 1 cwt.

be situated?

2. A heavy tapering rod, 14^ inches long and of weight 3 lbs.,

has its centre of gravity 1 inches from the thick end and is used as

a steelyard with a movable weight of 2 lbs. ; where must the fulcrum
be placed, so that it may weigh up to 12 lbs., and what are the inter-

vals between the graduations that denote pounds?

3. In a steelyard, in which the distance of the fulcrum from the

point of suspension of the weight is one inch and the movable weight
is 6 ozs., to weigh 15 lbs. the weight must be placed 8 inches from the
fulcrum ; where must it be placed to weigh 24 lbs. ?

4. The fulcrum is distant 1- inches from the point at which are

suspended the goods to be weighed, and is distant 2 inches from the
centre of gravity of the bar; the bar itself weighs 3 lbs. and a 2 lb.

weight slides on it. At what distance apart are the graduations
marking successive pounds' weight, and what is the least weight that
can be weighed?

5. A steelyard, AB, 4 feet long, has its centre of gravity 11 inches,
and its fulcrum 8 inches, from A . If the weight of the machine be
4 lbs. and the movable weight be 3 lbs., find how many inches from
B is the graduation marking 15 lbs.

6. A uniform bar, AB, 2 feet long and weighing 3 lbs., is used
as a steelyard, being supported at a point 4 inches from A. Find
the greatest weight that can be weighed with a movable weight of

2 lbs., and find also the point from which the graduations are

measured.
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7. A uniform rod being divided into 20 equal parts, the fulcrum is

placed at the first graduation. The greatest and least weights which

the instrument can weigh are 20 and 2 lbs. ; find its weight and the

magnitude of the movable weight.

8. A uniform rod, 2 feet long and of weight 3 lbs., is used as

a steelyard, whose fulcrum is 2 inches from one end, the sliding

weight being 1 lb. Find the greatest and the least weights that can

be measured.

Where should the sliding weight be to shew 20 lbs. ?

9. The beam of a steelyard is 33 inches in length ; the fulcrum is

distant 4 inches and the centre of gravity of the beam 5i inches from

the point of attachment of the weight ; if the weight of the beam be

6 lbs. and the heaviest weight that can be weighed be 24 lbs., find the

magnitude of the movable weight.

10. A steelyard is formed of a uniform bar, 3 feet long and

weighing 2\ lbs., and the fulcrum is distant 4 inches from one end ; if

the movable weight be 1 lb., find the greatest and least weights that

can be weighed by the machine and the distance between the gradua-
tions when it is graduated to shew pounds.

11. A common steelyard, supposed uniform, is 40 inches long,
the weight of the beam is equal to the movable weight, and the greatest

weight that can be weighed by it is four times the movable weight ;

find the position of the fulcrum.

12. In a Danish steelyard the distance between the zero gradua-
tion and the end of the instrument is divided into 20 equal parts and
the greatest weight that can be weighed is 3 lbs. 9 ozs. ; find the weight
of the instrument.

13. Find the length of the graduated arm of a Danish steelyard,
whose weight is 1 lb., and in which the distance between the gradua-
tions denoting 4 and 5 lbs. is one inch.

14. In a Danish steelyard the fulcrum rests halfway between the

first and second graduation ; shew that the weight in the scale-pan is

^ths of the weight of the bar.

15. If the weight of a steelyard be worn away to one-half, its

length and centre of gravity remaining unaltered, what corrections

must be applied to make the weighing true, if the distance of the zero

point of graduation from the fulcrum were originally one-third of the

distance between successive graduations, and if the movable weight be

one pound?

16. A steelyard by use loses xu-*n * i*s weight, its centre of gravity

remaining unaltered ; shew how to correct its graduations.
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17. A shopman, using a common steelyard, alters the movable

weight for which it has been graduated ; does he cheat himself or his

customers ?

18. In a weighing machine constructed on the principle of a

common steelyard, the pounds are read off by graduations reading
from to 14 lbs., and the stones by a weight hung at the end of the

arm ; if the weight corresponding to one stone be 7 ounces, the movable

weight \ lb.
,
and the length of the arm measured from the fulcrum 1

foot, shew that the distance between successive graduations is f inch.

19. A weighing machine is constructed so that for each complete
stone placed in the weighing pan an additional mass of m ounces has

to be placed at the end of the arm, which is one foot in length
measured from the fulcrum, whilst the odd pounds in the weighing

pan are measured by a mass of n ounces sliding along the weighing
arm. Shew that the distances between the graduations for successive

lbs. must be inches, and that the distance from the fulcrum of the
In

3wj

point of suspension of the weight is
-^ inches.

VII. The Screw.

176. A Screw consists of a cylinder of metal round

the outside of which, runs a protuberant thread of metal.

Let ABGD be a solid cylinder, and let EFGH be a

-|G

A0B
rectangle, whose base EF is equal to the circumference

of the solid cylinder. On EH and FG take points

L, N, Q... and K, M, P...

such that EL, LN, ...FK, KM, MP ...

are all equal, and join EK, LM, NP,....
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Wrap the rectangle round the cylinder, so that the

point E coincides with A and EH with the line AD. On

being wrapped round the cylinder the point F will coincide

with E at A.

The lines EK, LM, NP, ... will now become a con-

tinuous spiral line on the surface of the cylinder and, if

we imagine the metal along this spiral lino to become

protuberant, we shall have the thread of a screw.

It is evident, by the method of construction, that the

thread is an inclined plane running round the cylinder

and that its inclination to the horizon is the same every-

where and equal to the angle KEF. This angle is often

called the angle of the screw, and the distance between

two consecutive threads, measured parallel to the axis, is

called the pitch of the screw.

It is clear that FK is equal to the distance between

consecutive threads on the screw, and that EF is equal to

the circumference of the cylinder on which the thread is

traced.

.'. tan (angle of screw) = -=^

pitch of screw

circumference of a circle whose radius is the distance from

the axis of any point of the screw.

The section of the thread of the screw has, in practice,

various shapes. The only kind that we shall consider has

the section rectangular.

177. The screw usually works in a fixed support,

along the inside of which is cut out a hollow of the same

shape as the thread of the screw, and along which the

thread slides. The only movement admissible to the screw

L. s. 15
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is to revolve about its axis, and at the same time to move

in a direction parallel to its length.

If the screw were placed in an upright position, and

a weight placed on its top, the screw would revolve and

descend since there is supposed to be no friction between

it and its support. Hence, if the screw is to remain in

equilibrium, some force must act on it; this force is usually-

applied at one end of a horizontal arm, the other end of

which is rigidly attached to the screw.

178. In a smooth screw, to find the relation between

the effort and the weight.

Let a be the distance of any point on the thread of the

screw from its axis, and b the distance, AB, from the axis

of the screw, of the point at which the effort is applied.

v w

The screw is in equilibrium under the action of the

effort P, the weight W, and the reactions at the points

in which the fixed block touches the thread of the screw.

Let R, S, T, ... denote the reactions of the block at different
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points of the thread of the screw. These will be all per-

pendicular to the thread of the screw, since it is smooth.

Let a be the inclination of the thread of the screw

to the horizon.

The horizontal and vertical components of the reaction

R are R sin a and R cos a respectively.

Similarly, we may resolve S, T, ....

Hence the reactions of the block are equivalent to

a set of forces R cos a, S cos a,

T cos a, ... vertically, and a set \R

R sin a, S sin a, T sin a, . . . horizon- \^^^
tally. These latter forces, though ^-^^!j>
they act at different points of the ^^jj r*\

screw, all act at the same distance

from the axis of the screw; they also tend to turn the

screw in the opposite direction to that of P.

Equating the vertical forces, we have

W-R cos a + ^cosa+ ... = (R + S + T + ...) cos a ...(1).

Also, taking moments about the axis of the screw, we

have, by Art. 93,

P . b = R sin a . a + S sin a . a + T sin a . a + ...

= asina(R + S+T+ ...) (2).

From equations (1) and (2) we have, by division,

P .b _ a sin a

W cos a '

P a lira tan a

But, by Art. 176,

27ra tan a = distance between consecutive threads pitch of

the screw.

152



228 STATICS

Also 2-n-b ss circumference of the circle described by the

end B of the effort-arm.

Hence the mechanical advantage = -~r
;P 2ira tan a

circumference of a circle whose radius is the effort-arm

distance between consecutive threads of the screw

Verification of the Principle of Work.

For each revolution made by the effort-arm the screw

rises through a distance equal to the distance between two

consecutive threads.

Hence, during each revolution, the work done by the

effort is

P x circumference of the circle described by the end of the

effort-arm,

and that done against the weight is

W x distance between two consecutive threads.

These are equal by the relation just proved.

*179. Theoretically, the mechanical advantage in

the case of the screw can be made as large as we please, by

decreasing sufficiently the distance between the threads

of the screw. In practice, however, this is impossible ;

for, if we diminish the distance between the threads to

too small a quantity, the threads themselves would not

be sufficiently strong to bear the strain put upon them.

By means of Hunter's Differential Screw this

difficulty may be overcome.

In this machine we have a screw AD working in a fixed

block. The inside of the screw AD is hollow and is

grooved to admit a smaller screw DE. The screw DE
is fastened at E to a block, so that it cannot rotate, but

can only move in the direction of its length.
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When the effort-arm AB lias made one revolution,

the screw AD has advanced a distance equal to the dis-

tance between two consecutive threads, and at the same

time the smaller screw goes into DA a distance equal

to the distance between two consecutive threads of the

smaller screw. Hence the smaller screw, and therefore

also the weight, advances a distance equal to the difference

of these two distances.

When in equilibrium let R, S, T, ... be the reactions

between the larger screw and its block, and R', S', T', ...

the reactions between the inner and outer screws
;

let

a and a' be the radii, and a and a' the angles of the screws.

As in the last article, since the outer screw is in equi-

librium, we have

P.b =
(ll + S+ T+ ...) sin a . a - (' + S' +

...)
sin a . a'

(1),

and (R + S+T+ ...) cos o = (B' + S' + ...)cos a
...(2).
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Also, since the inner screw is in equilibrium, we have

W=(R' + S'+T' ...)
cos a! (3).

Prom (2) and (3), we have

W W
R' + S'+ ... =

,
and H + S+ ...

cos a cos a

Hence, from (1),

P .b = W . a tan a W . a' tan a.

W 2tt6

P 2-n-a tan a 27ra' tan a'

circum. of the circle described by the end of the power-arm
difference of the pitches of the two screws

By making the pitches of the two screws nearly equal,

we can make the mechanical advantage very great without

weakening the machine.

The principle of work is seen to be true in this case

also
;

for the weight rises in this case a distance equal

to the difference between the pitches of the screws.

EXAMPLES. XXX.

1. Find what mass can be lifted by a smooth vertical screw of

1^ ins. pitch, if the power be a force of 25 lbs. wt. acting at the end of

an arm, 3g- feet long.

2. What must be the length of the power-arm of a screw, having
6 threads to the inch, so that the mechanical advantage may be 216?

3. What force applied to the end of an arm, 18 ins. long, will

produce a pressure of 1100 lbs. wt. upon the head of a screw, when
seven turns cause the screw to advance through f^rds of an inch?

4. A screw, whose pitch is inch, is turned by means of a lever,
4 feet long ; find the force which will raise 15 cwt.

5. The arm of a screw-jack is 1 yard long, and the screw has
2 threads to the inch. What force must be applied to the arm to

raise 1 ton?

6. What is the thrust caused by a screw, having 4 threads to the

inch, when a force of 50 lbs. wt. is applied to the end of an arm, 2 feet

long?
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7. What thrust will a screw, whose arm is 2 feet and with

10 threads per foot of its length, produce, if the effort be a force of

112 lbs. weight?

8. If the effort be applied at the end of an arm of 1 foot in length,

and if the screw make seven complete turns in 1 foot of its length,

find the effort that will support a weight of 1 ton.

9. If the lever by which a screw is worked be 6 feet in length,

determine the distance between two successive threads of the screw,

in order that a thrust of 10 lbs. wt. applied to each end of the

lever may produce a thrust of 1000 lbs. wt. at the end of the

screw.

10. Find tbe mechanical advantage in a differential screw, having
5 threads to the inch and 6 threads to the inch, the effort being

applied at the circumference of a wheel of diameter 4 feet.

11. Find the mechanical advantage in a differential screw, the

larger screw having 8 threads to the inch and the smaller 9 threads,

the length of the effort-arm being 1 foot.

12. If the axis of a screw be vertical and the distance between

the threads 2 inches, and a door, of weight 100 lbs., be attached to

the screw as to a binge, find the work done in turning the door

through a right angle.

13. Prove that the tension of a stay is equal to 9 tons' weight if

it be set up by a force of 49 lbs. at a leverage of 2 feet acting on a double

screw having a right-handed screw of 5 threads to the inch and
a left-handed one of 6 threads to the inch.

[For one complete turn of the screw its ends are brought nearer by

a distance of (^ + ^) inch. Hence the principle of work gives

2
,

x(i + )x TV= 49x2,r.2,

where T is the tension of the stay in lbs. wt.]



CHAPTER XIII.

FRICTION.

180. In Art. 20 we defined smooth bodies to be

bodies such that, if they be in contact, the only action

between them is perpendicular to both surfaces at the

point of contact. With smooth bodies, therefore, there

is no force tending to prevent one body sliding over the

other. If a perfectly smooth body be placed on a perfectly

smooth inclined plane, there is no action between the plane
and the body to prevent the latter from sliding down the

plane, and hence the body will not remain at rest on the

plane unless some external force be applied to it.

Practically, however, there are no bodies which are

perfectly smooth
; there is always some force between two

bodies in contact to prevent one sliding upon the other.

Such a force is called the force of friction.

Friction. Def. If two bodies be in contact with one

another, the property of the two bodies, by virtue of which

a force
rts exerted between them at their jioint of contact to

prevent one body sliding on the other, is called friction ; also

theforce exerted is called the force offriction.
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181. Friction is a self-adjusting force; no more

friction is called into play than is sufficient to prevent

motion.

Let a heavy slab of iron with a plane base be placed on

a horizontal table. If we attach a piece of string to some

point of the body, and pull in a horizontal direction passing

through the centre of gravity of the slab, a resistance is felt

which prevents our moving the body ;
this resistance is

exactly equal to the force which we exert on the body.

If we now stop pulling, the force of friction also ceases

to act
; for, if the force of friction did not cease to act, the

body would move.

The amount of friction which can be exerted between

two bodies is not, however, unlimited. If we continually

increase the force which we exert on the slab, we find that

finally the friction is not sufficient to overcome this force,

and the body moves.

182. Friction plays an important part in the me-

chanical problems of ordinary life. If there were no friction

between our boots and the ground, we should not be able

to walk
;

if there were no friction between a ladder and

the ground, the ladder would not rest, unless held, in any

position inclined to the vertical
;

without friction nails

and screws would not remain in wood, nor would a loco-

motive engine be able to draw a train.

183. The laws of statical friction are as follows :

Law I. Wlien two bodies are in contact, t/ie direction

of the friction on one of them at its point of contact is oppo-

site to the direction in which this point of contact would com-

mence to move.

Law II. The magnitude of the friction is, when there

is equilibrium, just sufficient to prevent the bodyfrom moving.
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184. Suppose, in Art. 156, Case I., the plane to be

rough, and that the body, instead of being supported by
a force, rested freely on the plane. In this case the force

P is replaced by the friction, which is therefore equal to

W sin a.

Ex. 1. In what direction does the force of friction act in the

case of (1) the wheel of a carriage, (2) the feet of a man who is

walking ?

Ex. 2. A body, of weight 30 lbs., rests on a rough horizontal

plane and is acted upon by a force, equal to 10 lbs. wt., making an

angle of 30 with the horizontal ; shew that the force of friction is

equal to about 8 - 661bs. wt.

Ex. 3. A body, resting on a rough horizontal plane, is acted on

by two horizontal forces, equal respectively to 7 and 8 lbs. wt., and

acting at an angle of 60; shew that the force of friction is equal to

13 lbs. wt. in a direction making an angle sin-1
-j~-

with the first

force.

Ex. 4. A body, of weight 40 lbs., rests on a rough plane inclined

at 30 to the horizon, and is supported by (1) a force of 14 lbs. wt.

acting up the plane, (2) a force of 25 lbs. acting up the plane, (3) a
horizontal force equal to 20 lbs. wt., (4) a force equal to 30 lbs. wt.

making an angle of 30 with the plane.

Find the force of friction in each case.

Am. (1) 6 lbs. wt. up the plane ; (2) 5 lbs. wt. down the plane ;

(3) 2*68 lbs. wt. up the plane ; (4) 5-98 lbs. wt. down the plane.

185. The above laws hold good, in general ;
but the

amount of friction that can be exerted is limited, and equi-

librium is sometimes on the point of being destroyed, and

motion often ensues.

Limiting Friction. Def. When one body is just on

the point of sliding upon another body, the equilibrium is

said to be limiting, and the friction then exerted is called

limiting friction.

186. The direction of the limiting friction is given

by Law I. (Art. 183).

The magnitude of the limiting friction is given by the

three following laws.
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Law III. The magnitude of the limiting friction

always bears a constant ratio to ilie normal reaction, and

this ratio depends only on the substances of which the bodies

are composed.

Law IV. The limiting friction is independent of the

extent and shape of the surfaces in contact, so long as the

normal reaction is unaltered.

Law V. When motion ensues, by one body sliding over

the oilier, the direction offriction is opposite to the direction

of motion ; the magnitude of the friction is independent of

the velocity, but the ratio of t/ie friction to the normal reaction

is slightly less than when the body is at rest and just on the

point of motion.

The above laws are experimental, and cannot be ac-

cepted as rigorously accurate, though they represent,

however, to a fair degree of accuracy the facts under

ordinary conditions.

For example, if one body be pressed so closely on

another that the surfaces in contact are on the point of

being crushed, Law III. is no longer true; the friction

then increases at a greater rate than the normal reaction.

187. Coefficient of Friction. The constant

ratio of the limiting friction to the normal pressure is

called the coefficient of friction, and is generally denoted

by fj.; hence, if F be the friction, and R the normal

pressure, between two bodies when equilibrium is on the

F
point of being destroyed, we have

-p
=

fi,
and hence

F =
1
lR.

The values of
fi.

are widely different for different pairs

of substances in contact
;

no pairs of substances are,
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however, known for which the coefficient of friction is as

great as unity.

188. To verify the laws offriction by experiment.

vW
**W r-i T
Hp-> -

ow

Experiment 1. Take a large smooth piece of wood (A) and

clamp it firmly so as to be horizontal. Take a second piece of wood

(B) to act as a sliding piece and make it as smooth as possible ;

attach a light string to it and pass the string over a light pulley
fixed at the end of the piece A, and at the other end of the string

attach a scale-pan.

The pulley should be so placed that the part of the string, which
is not vertical, should be horizontal.

Upon the sliding piece put a known weight E, and into the scale-

pan put known weights, F, until the slider is just on the point of

motion. The required weight F can be very approximately ascer-

tained by gently tapping the fixed piece A.

Consider now the right-hand diagram.

Let W be the total weight of E and the sliding piece, and W the

total weight of F and the scale-pan. Since the slider is just on the

point of motion the friction on it is /jlW; also the tension T of the

string is equal to W, since it just balances the scale-pan and F.

From the equilibrium of the slider we have

fJW= T= W.
w

Next, put a different weight on the slider, and adjust the corre-

sponding weight .F until the slider is again on the point of motion

and calculate the new values, Wx
and TT/, of W and W. Then, as

before,

= WY

Perform the experiment again with different weights on the slider

and obtain the values of
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Then, approximately, it will be found that

W W{ WJW W
1

1

JF2
'" -

will be the same.

Hence the truth of the first part of Law III. viz. that the value

of fj.
is independent of the normal reliction.

Experiment 2. Take another piece of wood (B) whose shape is

quite different from the piece used in Experiment 1. [This should be

obtained by cutting it from the same piece of well-planed wood from
which the first piece B was taken.]

The area of this piece B in contact with the board A should differ

considerably from that in Experiment 1, whether greater or less is im-

material.

Perform the Experiment 1 over again and deduce the corresponding
value of fi. It will be found to be, within the limits of experiment,
the same as in Experiment 1. But the only difference in the two

experiments is the extent of the rough surfaces in contact.

Hence the truth of Law IV.

Experiment 3. Take another piece of a different kind of wood

(C) and plane it well. Cut out from it pieces, of different area, but
with surfaces otherwise as nearly alike as possible.

Perform Experiments 1 and 2 over again and obtain the value of /*.

This value of
/j.

will be found to differ from the value of ft found when
the slider was made of wood B. Hence the truth of the second part
of Law IH. viz. that the ratio depends on the substances of which the

bodies are composed.

Experiment 4. Perform the above three experiments over again
but in this case choose F not so that the slider shall just be on the

point of motion, but so that the slider shall move with a constant

velocity. The truth of Law V. will then approximately appear.

However carefully the surfaces of the wood used in the previous
experiments be prepared, the student must expect to find some
considerable discrepancies in the actual numerical results obtained.
There must also be applied a correction for the force necessary to

make the pulley turn. However light and well-made it may be, there
will always be a certain amount of friction on its axis. Hence the
tensions of the string on each side of it will not quite be equal, as
we have assumed ; in other words some part of F will be used in

turning the pulley.

This method is the one used by Morin in a.d. 1833.

189. Angle of Friction. "When the equilibrium
is limiting, if the friction and the normal reaction be com-

pounded into one single force, the angle which this force

makes with the normal is called the angle of friction, and

the single force is called the resultant reaction.
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Let A be the point of contact of the two bodies, and

let AB and AG be the directions of the normal force R
and the friction pR.

Let AD be the direction of the resultant reaction *S
Y

,
so

that the angle of friction is BAB. Let this angle be X.

Since R and fi.R are the components of S, we have

S cos X = R
}

and S&in X /xR.

Hence, by squaring and adding, we
have

S=RjlTi?,
and, by division,

tan X =
fj..

Hence we see that the coefficient offriction is equal to

the tangent of the angle offriction.

190. Since the greatest value of the friction is /x,E, it follows

that the greatest angle which the direction of resultant reaction can
make with the normal is X, i.e., tan-1 /*.

Hence, if two bodies be in contact and if, with the common normal
as axis, and the point of contact as vertex, we describe a cone whose
semi-vertical angle is tan-1 fi, it is possible for the resultant reaction

to have any direction lying within, or upon, this cone, but it cannot
have any direction lying without the cone.

This cone is called the Cone of friction.

191. The following table, taken from Prof. Eankine's Machinery
and Millwork, gives the coefficients and angles of friction for a few

substances.

Substances
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192. If a body be placed upon a rough inclined plane,

and be mi tlie point of sliding doum the plane under the

action of its weight and the reactions of the plane only, tlie

angle of inclination of the plane to the horizon is equal to

the angle of friction.

Let 6 be the inclination of the plane to the horizon, W
the weight of the body, and R
the normal reaction.

Since the body is on the

point of motion down the

plane, the friction acts up
the plane and is equal to /xR.

Resolving perpendicular

and parallel to the plane, we

have
JF cos =

2?,

and W sin 6 = /xR.

Hence, by division,

tan 6 = fi
= tan (angle of friction),

.'. 6 = the angle of friction.

This may be shewn otherwise thus :

Since the body is in equilibrium under the action of its weight and
the resultant reaction, the latter must be vertical; but, since the

equilibrium is limiting, the resultant reaction makes with the normal
the angle of friction.

Hence the angle between the normal and the vertical is the angle
of friction, i.e., the inclination of the plane to the horizon is the angle
of friction.

On account of the property just proved the angle of

friction is sometimes called the angle of repose.

The student must carefully notice that, when the body
rests on the inclined plane supported by an externalforce, it

must not be assumed that the coefficient of friction is equal

to the tangent of inclination of the plane to the horizon.
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193. To determine the coefficient offriction experimentally, and
to verify the laios offriction. [Second Method.]

By means of the theorem of the previous article the coefficient of

friction between two bodies may be experimentally obtained.

For let an inclined plane be made of one of the substances and let

its face be made as smooth as is possible; on this face let there be

placed a slab, having a plane face, composed of the other substance.

If the angle of inclination of the plane be gradually increased, until

the slab just slides, the tangent of the angle of inclination is the co-

efficient of friction.

To obtain the result as accurately as possible, the experiment
should be performed a large number of times with the same sub-

stances, and the mean of all the results taken.

In the apparatus here drawn we have a board hinged at one end to

another board which can be clamped to the table. The hinged board
can be raised or lowered by a string attached to it whose other end

passes over the top of a fixed support.

On the hinged board can be placed sliders of different sizes and
materials upon which various weights can be placed. Each slider x
has two thin brass rods screwed to it on which weights can be piled so

that they shall not slip during the experiment. A graduated vertical

scale is attached to the lower board, so that the height of the hinged
HO

board at B is easily seen. The value of -
^, i.e., tan of Art. 185, is

then easily obtained.
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By this apparatus the laws of friction can be verified ; for, within

the limits of experiment, it will be found that the value of
^

, i.e., /i,

(1) is always the same so long as the slide x is made of the same

material in the same 'state of preparedness of surface,

(2) is independent of the weights put upon the slide, or of its

shape,

(3) is different for different substances.

This method is the one used by Coulomb in the year 1785.

194. Equilibrium on a rough inclined plane.

A body is placed on a rough plane inclined to tJie horizon at

an angle greater than the angle offriction, and is supported

by a force, acting parallel to the plane, and along a line of

greatest slope ; to find the limits between which the force

must lie.

Let a be the inclination of the plane to the horizon,

W the weight of the body, and H the normal reaction

(Fig. I., Art. 156).

(i)
Let the body be on the point of motion down the

plane, so that the friction acts up the plane and is equal to

fxE ;
let P be the force required to keep the body at rest.

Resolving parallel and perpendicular to the plane, we

have
P + /xE= JFsina (1),

and P=Wcoaa (2).

.". P- W (sin a ft.
cos a).

If n = tan X, we have

P= W [sin a tan A. cos a]

"sin a cos A sin A cos a

:,p cos A
= r sin(a-X)

cos A.
'

(ii)
Let the body be on the point of motion up the

plane, so that the friction acts down the plane and is equal

L. s. 16
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to fiR ;
let Px be the force required to keep the body at

rest. In this case, we have

P1 fxR W sin a,

and R= IF cos a.

Hence Px W (sin a + jx cos a)

= W Tsin a + tan X cos al = W^ (
" * ^

(4).L J cos A v '

These values, P and Px ,
are the limiting values of the

force, if the body is to remain in equilibrium ;
if the force

lie between P and P1} the body remains in equilibrium,

but is not on the point of motion in either direction.

Hence, for equilibrium, the force must lie between the

values W '

r .

cos A

It will be noted that the value of Px may be obtained

from that of P by changing the sign of
fi.

195. If the power P act at an angle with the in-

clined plane (as in Art. 156, Case III.), when the body is

on the point of motion down the plane and the friction

acts therefore up the plane, the equations of equilibrium are

Pcos^ +^-Fsina (1),

PsinO + fi=Wcosa (2).

Hence, multiplying (2) by fi,
and subtracting, we have

p w sin a fi cos a w sin (a A)

cos fi sin 6
~

cos (6 + A)
*

By substituting this value of P in (2), the value of A' may
be found.

When the body is on the point of motion up the plane

we have, by changing the sign of p,

P - TF
sin

(
a + X

)
I_

cos(0-A)'
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Cor. The force that will just be on the point of moving
the body up the plane is least when

W ~ r* is least,
cos (0 A)

i.e., when cos (0 A) is unity,

i.e., when 6 A.

Hence the force required to move the body up the plane
will be least when it is applied in a direction making with

the inclined plane an angle equal to the angle of friction.

196. The results of the previous article may be found by
geometric construction.

Draw a vertical line KL to represent W on any scale that is

convenient {e.g. one inch per lb. or one inch per 10 lbs.).

Draw LO parallel to the direction of the normal reaction R.
Make OLF, OLF

x
each equal to the angle of friction X, as in the

figure.

Then LF, LF
X
are parallel to the directions DH, D^ of the

resulting reaction at D according as the body is on the point of
motion down or up the plane.

Draw KMMj^ parallel to the supporting force P to meet LF, LF
t

in M and M
x

.

Then clearly KLM and KLM1 are respectively the triangles of

forces for the two extreme positions of equilibrium.

Hence, on the same scale that KL represents W, KM and KMX

represent the P and P
x

of the previous article.

Clearly OLK= l between R and the vertical= a, so that

lMLK=a-\ and L M1
LK= a + X.

162
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Similarly

L KQO= L between the directions of li and P= 90 -
6,

so that /LKQL= 9O + 0, aKM1
L=9O + 0-\,

and lKML=9Q + 6 + \.

Hence

P _KM_ sinKIM _ Bin(a-X) _ sin(g-X)
W~ KL

~
sinKML

~
sin (90 + + X)

~
cos (0 + X)

'

Pi _KM1 _ sinKLM1 _ sin(a + X) _ sinJa + X)

W~ KL
~

sinKM
X
L
~

sin (90 + 6 - X)

~
cos (6

-
xj

'

Cor. It is clear that KM
1
is least when it is drawn perpendicular

to LF
l ,

i.e. when P
x

is inclined at a right angle to the direction of

resultant reaction DH
X , and therefore at an angle X to the inclined

plane.

EXAMPLES. XXXI.

1. A body, of weight 40 lbs., rests on a rough horizontal plane
whose coefficient of friction is -25 ; find the least force which acting

horizontally would move the body.

Find also the least force which, acting at an angle cos_1 -| with the

horizontal, would move the body.

Determine the direction and magnitude of the resultant reaction

of the plane in each case.

2. A heavy block with a plane base is resting on a rough hori-

zontal plane. It is acted on by a force at an inclination of 45 to the

plane, and the force is gradually increased till the block is just going
to slide. If the coefficient of friction be -

5, compare the force with
the weight of the block.

3. A mass of 30 lbs. is resting on a rough horizontal plane and
can be just moved by a force of 10 lbs. wt. acting horizontally ; find

the coefficient of friction and the direction and magnitude of the
resultant reaction of the plane.

4. Shew that the least force which will move a weight W along a

rough horizontal plane is W sin <p, where <j>
is the angle of friction.

5. The inclination of a rough plane to the horizon is cos_1y;
shew that, if the coefficient of friction be $, the least force, acting

parallel to the plane, that will support 1 cwt. placed on the plane is

8y% lbs. wt. ; shew also that the force that would be on the point of

moving the body up the plane is 77xV 1DS< w*-



FRICTION 245

6. The base of an inclined plane is 4 feet in length and the height

is 3 feet ; a force of 8 lbs., acting parallel to the plane, will just prevent

a weight of 20 lbs. from sliding down ;
find the coefficient of friction.

7. A body, of weight 4 lbs. , rests in limiting equilibrium on a

rough plane whose slope is 30 ; the plane being raised to a slope of

60, find the force along the plane required to support the body.

8. A weight of 30 lbs. just rests on a rough inclined plane, the

height of the plane being -fths of its length. Shew that it will require

a force of 36 lbs. wt. acting parallel to the plane just to be on the

point of moving the weight up the plane.

9. A weight of 60 lbs. is on the point of motion down a rough
inclined plane when supported by a force of 24 lbs. wt. acting parallel

to the plane, and is on the point of motion up the plane when under

the influence of a force of 36 lbs. wt. parallel to the plane ; find the

coefficient of friction.

10. Two inclined planes have a common vertex, and a string,

passing over a small smooth pulley at the vertex, supports two equal

weights. If one of the planes be rough and the other smooth, find the

relation between the two angles of inclination of the two planes
when the weight on the smooth plane is on the point of moving
down.

11. Two unequal weights on a rough inclined plane are connected

by a string which passes round a fixed pulley in the plane ; find the

greatest inclination of the plane consistent with the equilibrium of

the weights.

12. Two equal weights are attached to the ends of a string which
is laid over the top of two equally rough planes, having the same
altitude and placed back to back, the angles of inclination of the

planes to the horizon being 30 and 60 respectively ; shew that the

weights will be on the point of motion if the coefficient of friction be

2-^/3.

13. A particle is placed on the outside surface of a rough sphere
whose'coefficient of friction is p. Shew that it will be on the point of

motion when the radius from it to the centre make3 an angle tan-1 fi

with the vertical.

14. How high can a particle rest inside a hollow sphere, of radius

a, if the coefficient of friction be ^ ?

V3

15. At what angle of inclination should the traces be attached to

a sledge that it may be drawn up a given hill with the least exertion ?
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16. A cubical block of stone, of weight 5 cwt., is to be drawn

along a rough horizontal plane by a force P inclined at 40 to the
horizontal. If the angle of friction be 25, find, by a graphic con-

struction, the least value of P.

17. A body, of weight 1 cwt., rests on a plane inclined at 25
to the horizon, being just prevented from sliding down by a force

of 15 lbs. acting up the plane ; find, by a graphic construction, the
force that will just drag it up and the value of the coefficient of

friction.

197. Tofind the work done in dragging a body up a

rough inclined plane.

From Art. 194, Case II., we know that the force Px

which would just move the body up the plane is

TT(sina + /Ltcosa).

Hence the work done in dragging it from A to C

^P^AC (Fig. Art. 156)

=
J-F(sin a + ft cos a). AC

= W. AC sin a + ftW. AC cos a

= W.BC + ixW.AB
= work done in dragging the body through the same

vertical height without the intervention of the plane

+ the work done in dragging it along a horizontal distance

equal to the base of the inclined plane and of the same

roughness as the plana

198. From the preceding article we see that, if our

inclined plane be rough, the work done by the power is

more than the work done against the weight. This is true

for any machine ; the principle may be expressed thus,

In any machine, the work done by the power is equal to

the work done against the weight, together with the work done

against the frictional resistances of the machine, and the

work done against the weights of the component parts of the

machine.
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The ratio of the work done on the weight to the work

done by the effort is, for any machine, called the efficiency

of the machine, so that

. Useful work done by the machine
*
_

Work supplied to the machine
'

Let P be the effort required if there were no friction,

and P the actual effort. Then, by Art. 138,

"Work done against the weight
= P x distance through which its point of application moves,

and work supplied to the machine

= P x distance through which its point of application moves.

Hence, by division,

p
Efficiency = -^

Effort when there is no friction

Actual effort

We can never get rid entirely of frictional resistances,

or make our machine without weight, so that some

work must always be lost through these two causes.

Hence the efficiency of the machine can never be so great

as unity. The more nearly the efficiency approaches to

unity, the better is the machine.

There is no machine by whose use we can create work,

and in practice, however smooth and perfect the machine

may be, we always lose work. The only use of any machine

is to multiply the force we apply, whilst at the same time

the distance through which the force works is more than

proportionately lessened.

199. Equilibrium of a rough screw. To find
the relation between the effort and the resistance in the case of

a screw, when friction is taken into account.
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Using the same notation as in Art. 178, let the screw

be on the point of motion downwards,

so that the friction acts upwards along

the thread. [As in Art. 176, its sec-

tion is rectangular.]

In this case the vertical pressures

of the block are

R (cos a + fi sin a), S (cos a + fx sin a), . . .

and the horizontal components of these pressures are

R (sin a fi
cos a), S (sin a [x cos a), . . .

Hence the equations (1) and (2) of Art. 178 become

W=(R + S+T+ ...)(cosa + fxsina) (1),

and P. b~a(R + S+ T+ ...) (sin a
-

/x cos a) (2).

Hence, by division,

P. b sin a u. cos a sin a. cos X cos a sin X
~HT

~ a
i

= a
\ : * 5W cosa + ju,sina cos a cos A + sin a sin A

sin (a X)

cos (a X)

.. _=-tan(a-X).

Similarly, if the screw be on the point of motion up-

wards, we have, by changing the sign of
ft.,

P, a sin a + a cos a a
,

. . ._ _ c__ _ tan (a + X).W o cos a n sin a 6

If the effort have any value betweenP andPlf the screw

will be in equilibrium, but the friction will not be limiting

friction.

It will be noted that if the angle a of the screw be equal

to the angle of friction, X, then the value of the effort P is

zero. In this case the screw will just remain in equilibrium

supported only by the friction along the thread of the screw.

If a<X, P will be negative, i.e. the screw will not descend

unless it is forced down.
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Ex. 1. If the circumference of a screw be two inclies, the distance

between its threads half an inch, and the coefficient of friction -^,

find the limits between which the effort must lie, so that the screiv may
be in equilibrium when it is supporting a body of weight 1 cwt., tlie

length of the effort-arm being 12 inches.

Here 2ira=2, and 27ratana= j.

.-. a=-, and tana= l.
x

Also tanX= ? , and 6=12.
o

Hence the force which would just support the screw

= 112 x
j
tan (a

-
X)

= 112 x - x -i^- =^xl =^ lbs. wt. = -14 lbs. wt.
127r i + 1 i 127T 21 99

Again, the force which would just be on the point of moving the
screw upwards

no a
* i j.xi

112 T+T n2 9=
112x^tan(a+ X)= I^:

x
i-i^_

=
I^x Ig

= 1-jj% lbs. wt. = 1-4067 lbs. wt.

Hence the screw will be in equilibrium if the effort lie between
i4 and 1-4067 lbs. wt.

If the screw were smooth, the force required would

.,/, 112 1 49 _._,;= 112-tana = r7r- x T =^= -742 lbs. wt.
o 127r 4 bo

The efficiency therefore, by Art. 198,

742

1-4067
= 527.

Ex. 2. The coefficient of friction of wrought iron on wood being
15, shew that the least angle of inclination of the thread of a screw,
so that it may slide into a prepared hole in the wood under the

influence of its own weight, is tan_1 ^j.

Ex. 3. If the circumference of a screw be -| inch, the coefficient

of friction -15, the length of the power-arm 12 inches, and if there be
3 threads to the inch, find the forces which will respectively just

support, and just move, the screw when it supports a weight W. Find
also the value of the effort, when the same screw is smooth, and
deduce its efficiency.



250 STATICS

Ex. 4. STieic that the efficiency of a screio is greatest when its

angle is 45--.

The force required to lift the weight W, when there is friction,

=W r tan a + \,
o

and where there is no friction it

=W T ta,na.
b

As in Art. 198 the efficiency, E,

= the ratio of these

tan a _ sin a cos (a+ X)

tan(a+ X) cosasina+ X

,
sin a cos (a+ X) sinX

' - J- "~*
: ; rr =

and then

200.

hearings.

l-E:
cos o sin (o+ X) cos a sin (a + X)

2sinX

sin (2a+ X) + sin X
*

E is greatest when 1 - E is least,

i.e. when sin (2a + X) is greatest,

i.e. when 2a+X=90,
X

a=45-

Wheel and Axle with the pivot resting on rough
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Let the central circle represent the pivots A or B of

Fig. Art. 159 (much magnified) when looked at endways.

The resultant action between these pivots and the

l>earings on which they rest must be vertical, since it

balances P and W.

Also it must make an angle \, the angle of friction,

with the normal at the point of contact Q, if we assume

that P is just on the point of overcoming W.

Hence Q cannot be at the lowest point of the pivot, but

must be as denoted in the figure, where OQ makes an angle

A with the vertical. The resultant reaction at Q is thus

vertical.

Since R balances P and W,

.'. R = P+W (1).

Also, by taking moments about 0, we have

P.b-R.csinX=W.a ...(2),

where c is the radius of the pivot and b, a the radii of the

wheel and the axle (as in Art. 159).

Solving (1) and (2), we have

. a + c sin AP=W
b c sin A

'

If P be only just sufficient to support W, i.e. if the

machine be on the point of motion in the direction
*),

then, by changing the sign of X, we have

a-csinX
b + c sin A

In this case the point of contact Q is on the left of the

vertical through 0.
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201. The Wedge is a piece of iron, or metal,

which has two plane faces meeting
in a sharp edge. It is used to split

wood or other tough substances, its

edge being forced in by repeated

blows applied by a hammer to its

upper surface.

The problem of the action of a

wedge is essentially a dynamical
one.

We shall only consider the statical problem when the

wedge is just kept in equilibrium by a steady force applied

to its upper surface.

Let ABG be a section of the wedge and let its faces be

equally inclined to the base BG. Let the angle GAB be a.

Let P be the force applied to the upper face, R and R'

the normal reactions of the wood at the points where the

wedge touches the wood, and fiR and pR' the frictions, it

being assumed that the wedge is on the point of being

pushed in.

We shall suppose the force P applied at the middle

point of BG and that its direction is perpendicular to BG
and hence bisects the angle BAG.

Resolving along and perpendicular to BG, we have

ft,R sin ^ R cos ^ m fx.R' sin ->R' cos ^ (1),A A 2 2

and P =
fA.(R + R')cos^ + (R + R')sm^ (2).

From equation (1) we have R = R', and then (2) gives

P = 2r(u. cos ^ + sin -V2)
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TT 2K 1 cos A.

Hence -=- = =

fx.
cos = + sin. 5 sin ^ cos X + cos ^ sin X

cosX

(?-)'
if X be the coefficient of friction.

The splitting power of the wedge is measured by B.

For a given force P this splitting power is therefore

greatest when a is least.

Theoretically this will be when a is zero, i.e. when the

wedge is of infinitesimal strength. Practically the wedge
has the greatest splitting power when it is made with as

small an angle as is consistent with its strength.

202. If there be no friction between the wedge and wood
(though this is practically an impossible supposition), we should have
X=0, and therefore

2R 1 a

P= S
= OOSeC

2-
sin-

203. If the force of compression exerted by the wood on the

wedge be great enough the force P may not be large enough to make
the wedge on the point of motion down ; in fact the wedge may be on
the point of being forced out.

If P
x
be the value of P in this case, its value is found by changing

the sign of
ju.

in Art. 201, so that we should have

P
1=2BUin^-^cos|j

jin Qr x
)

sin

= 2JR
cosX

If - be>\, the value of P
x
is positive.

If
^
be < X, Pi is negative and the wedge could therefore only be
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on the point of slipping out if a pull were applied to its upper
surface.

If h=X) the wedge will just stick fast without the application of

any force.

Ex. Prove that the multiplication of force produced by a screw-

press, in which the distance between successive threads is c and the

power is applied at the extremities of a cross-bar of length 26, is the

same as that produced by a thin isosceles wedge of angle a such that

sin -= c 4-471-6.

204. Friction exerts such an important influence on

the practical working of machines that the theoretical

investigations are not of much actual use and recourse

must for any particular machine be had to experiment.

The method is the same for all kinds of machines.

The velocity-ratio can be obtained by experiment ; for

in all machines it equals the distance through which the

effort moves divided by the corresponding distance through

which the weight, or resistance, moves. Call it n.

Let the weight raised be W. Then the theoretical

W
effort P

, corresponding to no friction, is . Find by

experiment the actual value of the effort P which just

raises W. The actual mechanical advantage of the machine

W Pa
is -jj ,

and the efficiency of it is, by Art. 198, -p
. The

P W W
product of the efficiency and the velocity ratio =

-p ,-=j-
=
-p

= the mechanical advantage.

205. As an example take the case of a class-room model of

a differential wheel and axle on which some experiments were

performed. The machine was not at all in good condition and was
not cleaned before use, and no lubricants were used for the bearings of

either it or its pulley.

With the notation of Art. 164 the values of a, b, and c were found

to be lj, 3, and 6 inches, so that the value of the velocity ratio n

26 _ 2x6f
~c-a

-
3_i|~
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This value was also verified by experiment ; for it was found that for

every inch that W went up, P went down nine inches.

P was measured by means of weights put into a scale-pan whose

weight is included in that of P ; similarly for W.

The weight of the pulley to which W is attached was also included

in the weight of W.

The corresponding values of P and W, in grammes' weight are

given in the following table. ; the value of P was that which just over-

came the weight W. The third column gives the corresponding values

of P , i.e. the effort which would have been required had there been
no frictional resistances.

w
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w w
and M--P -144W+23-4*

These give E and M for any weight W.

The values of E and M get bigger as W increases. Assuming the
above value of E to be true for all values of W, then its greatest value
is when IV is infinitely great, and

=-TT7=about -77,
144

so that in this machine at least 23 / of the work put into it

is lost.

The corresponding greatest value of the mechanical advantage

=-77= about 7.
144

If the machine had been well cleaned and lubricated before the

experiment, much better results would have been obtained.

206. Just as in the example of the last article,

so, with any other machine, the actual efficiency is found

to fall considerably short of unity.

There is one practical advantage which, in general,

belongs to machines having a comparatively small

efficiency.

It can be shewn that, in any machine in which the

magnitude of the effort applied has no effect on the

friction, the load does not run down of its own accord

when no effort is applied provided that the efficiency is less

than .

Examples of such machines are a Screw whose pitch is

small and whose " Power " or effort is applied horizontally

as in Art. 178, and an Inclined Plane where the effort acts

up the plane as in Art. 194.

In machines where the friction does depend on the

effort applied no such general rule can be theoretically

proved, and each case must be considered separately.

But it may be taken as a rough general rule that where
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the effort has a comparatively small effect on the amount of

friction then the load will not run down if the efficiency be

less than 1. Such a machine is said not to "reverse"

or "overhaul."

Thus in the case of the Differential Pulley (Art. 165),

as usually constructed the efficiency is less than
|,

and the

load IT does not run down when no force P is applied, that

is, when the machine is left alone and the chain let go.

This property of not overhauling compensates, in great

measure, for the comparatively small efficiency.

In a wheel and axle the mechanical advantage is

usually great and the efficiency usually considerably more

than | ; but the fact that it reverses does not always make

it a more useful machine than the Differential Pulley.

The student, who desires further information as to the

practical working of machines, should consult Sir Robert

Ball's Experimental Mechanics or works on Applied
Mechanics.

EXAMPLES. XXXII.

1. How much work is done in drawing a load of 6 cwt. up a rough
inclined plane, whose height is 3 feet and base 20 feet, the coefficient

of friction being T\?

2. A weight of 10 tons is dragged in half an hour through a

length of 330 feet up an inclined plane, of inclination 30, the co-

efficient of friction being -^ ;
find the work expended and the h. p. of

the engine which could do the work.

3. A tank, 24 feet long, 12 feet broad, and 16 feet deep, is filled

by water from a well the surface of which is always 80 feet below the

top of the tank; find the work done in filling the tank, and the h.p.
of an engine, whose efficiency is *5, that will fill the tank in 4 hours.

L. s. 17
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4. The diameter of the circular piston of a steam engine is

60 inches and it makes 11 strokes per minute, the length of each
stroke being 8 feet, the mean pressure per square inch on the piston

being 15 lbs., and the efficiency of the engine *65. Find the number
of cubic feet of water that it will raise per hour from a well whose

depth is 300 feet, on the supposition that no work is wasted.

5. The diameter of the piston of an engine is 80 inches, the mean
pressure of steam 12 lbs. per square inch, the length of the stroke

10 feet and the number of double strokes per minute is 11. The

engine is found to raise 42f cub. ft. of water per minute from a depth
of 500 fathoms. Shew that its efficiency is -6 nearly.

6. The radii of a wheel and axle are 4 feet and 6 inches. If a force

of 56 lbs. wt. is required to overcome a resistance of 200 lbs. wt. what
is the efficiency of the machine?

7. In some experiments with a block and tackle (second system of

pulleys), in which the velocity-ratio was 4, the weights lifted were 10,

80, and 160 lbs. and the corresponding values of the effort were 23, 58,
and 85 lbs. Find the efficiency in each case.

8. With a certain machine it is found that, with efforts equal to

12 and 7*5 lbs. wt. respectively, resistances equal to 700 and 300 lbs.

wt. are overcome; assuming that P=a+ bW, find the values of

a and b.

9. In some experiments with a screw-jack the values of the load W
were 150, 180, 210, 240 and 270 lbs. wt. and the corresponding values
of the effort P were found to be 20-9, 22-7, 25-75, 28-4 and 31-4 lbs. wt. ;

plot the results on squared paper and assuming that P= a+ bW, find

the approximate values of a and b.

10. In some experiments with a model block and tackle (the
second system of pulleys), the values of W (including the weight of

the lower block) and P expressed in grammes' weight were found to

be as follows :

JF=75, 175, 275, 475, 675, 875, 1075;

P=25, 48, 71, 119, 166, 214, 264.

Also there were five strings at the lower block. Find an approxi-
mate relation between P and W and the corresponding values for the

efficiency and mechanical advantage.

Draw the graphs of P, P , JB, and M.
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11. The following table gives the load in tons upon a crane, and
the corresponding effort in lbs. wt. :

Load 1, 3, 5, 7, 8, 10, 11.

Effort 9, 20, 28, 37, 42, 51, 56.

Find the law of the machine, and calculate the efficiency at the
loads 5 and 10 tons given that the velocity-ratio is 500.

12. A weight is lifted by a screw-jack, of pitch \ inch, the force

being applied at right angles to a lever of length 15 inches. The
values of the weight in tons, and the corresponding force in lbs., are

given in the following table :

Weight 1, 2-5, 5, 7, 8, 10.

Force 24, 32, 46, 57, 63, 73.

Find the law of the machine, and calculate its efficiency for the

weights 4 and 9 tons.

172



CHAPTER XIV.

FRICTION {continued).

207. In this chapter we give some further examples

of the solution of problems where friction is involved.

Ex. 1 . A uniform ladder is in equilibrium, with one end resting on the

ground, and the other end against a vertical toall; if the ground and
tcall be both rough, the coefficients offriction being /x and fi' respectively,

and if the ladder be on the point of slipping at both ends, find the

inclination of the ladder to the Iwrizon.

Let AB be the ladder, and G its centre of gravity ;
let R and S be

the normal reactions at A and B re-

spectively ; the end A of the ladder is

on the point of slippingfrom the wall,
and hence the friction /j.R is towards
the wall; the end B is on the point
of motion vertically downwards, and
therefore the friction fi'S acts upwards.

Let be the inclination of the lad-

der to the ground, and 2a its length.

Eesolving horizontally and ver-

tically, we have

/xR=S
and R+ u'S=W (2).

Also, taking moments about A, we have

W. a cos 6=n'S .2acoa0+ S.2a sin 0,

.: Wcos0=2S(fjL'co3d+ sm6) (3).

From (1) and (2), we have

M.(W- M.'S)= S,

and . ^=8(1+^') (4).
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By (3) and (4), we have, by division,

cos 9 _ 2 (u' cos 6 + sin 6
)

.-. cos 0(1- /*/*')
= 2/* sin 0.

1 Ml'
Hence tan0= . .

2fi

Otherwise thus;

Let X and X' be the angles of friction at A and B ; draw AC making
an angle X with the normal at A , and BC making an angle X' with
tbe normal at B, as in the figure.

By Art. 189, AC and BG are the directions of the resultant re-

actions at A and B.

The ladder is kept in equilibrium by these resultant reactions and
its weight ; hence their directions must meet in a point and therefore

the vertical line through G must pass through C.

Formula (1) of Art. 79 gives

(a+ a) cot CGB=acotACG-a cot BCG,

i.e. 2tan0=cotX-tanX'= a'.

/. tan0=^^.
2/4

Ex. 2. A ladder is placed in a given position with one end resting
on the ground and the other against a vertical wall. If the ground and
wall he both rough, the angles of friction being X and, \' respectively,

find by a graphic construction how high a man can ascend the ladder
without its slipping.

Let AB (Fig. Ex. 1) be the ladder.

Draw AG and BG making the angles of friction with the normals
at A and B to the wall and ground respectively.

Draw CG vertically to meet AB in G. If the centre of gravity of

the man and ladder together be between A and G the ladder will rest ;

if not, it will slide.

For if this centre of gravity be between G and B the vertical

through it will meet BC, the limiting direction of friction at B,
in a point P such that the / PAR is greater than the angle of friction

at A, and so equilibrium will be impossible.

If this centre of gravity be between G and A equilibrium will be

possible ; for even if the friction were limiting at A the vertical

through this centre of gravity would meet A G in a point P such that
the angle PBS would be <X', so that equilibrium would be possible.

Similarly we may shew that if the friction be limiting at B, there is

still equilibrium.

If then G
x
be the centre of. gravity of the ladder, G2 the highest
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possible position of the man, and W
1
and W2 be their respective

weights, then G2 is determined by the relation

W,.GGy
= W.GG.

EXAMPLES. XXXIH.

1. A uniform ladder, 13 feet long, rests with one end against a
smooth vertical wall and the other on a rough horizontal plane at a

point 5 feet from the wall ; find the friction between the ladder and
the ground, if the weight of the ladder be 56 lbs.

2. A uniform ladder rests with one end on a horizontal floor and
the other against a vertical wall, the coefficients of friction being

respectively \ and \ ; find the inclination of the ladder when it is

about to slip.

3. If in the last example the coefficienfof friction in each case be

\, shew that the ladder will slip when its inclination to the vertical is

tan-1

!.

4. A uniform ladder rests in limiting equilibrium with one end
on a rough floor, whose coefficient of friction is ju, and with the other

against a smooth vertical wall ; shew that its inclination to the vertical

is tan-1 (2/u).

5. A uniform ladder is placed against a wall ; if the ground and
wall be equally rough, the coefficient of friction being tan 6, shew that

the limiting inclination of the ladder to the vertical is 20.

When the ladder is in this position can it be ascended without its

slipping ?

6. A uniform ladder rests in limiting equilibrium with one end
on a rough horizontal plane, and the other against a smooth vertical

wall ; a man then ascends the ladder
; shew that he cannot go more

than half-way up.

7. A uniform ladder rests with one end against a smooth vertical

wall and the other on the ground, the coefficient of friction being f ;

if the inclination of the ladder to the ground be 45, shew that a man,
whose weight is equal to that of the ladder, can just ascend to the top
of the ladder without its slipping.

8. A uniform ladder, of length 70 feet, rests against a vertical
wall with which it makes an angle of 45, the coefficients of friction

between the ladder and the wall and ground respectively being -^
and

i. If a man, whose weight is one-half that of the ladder, ascend the
ladder, how high will he be when the ladder slips ?

If a boy now stand on the bottom rung of the ladder what must be
his least weight so that the man may go to the top of the ladder?
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9. Two equal ladders, of weight w, are placed so as to lean against
each other with their ends resting on a rough horizontal floor ; given
the coefficient of friction, u, and the angle 2a, that they make with
each other, find what weight on the top would cause them to slip.

Explain the meaning of the result when tan a>2u or <fi.

10. A uniform ladder rests, at an angle of 45 with the horizon,
with its upper extremity against a rough vertical wall and its lower

extremity on the ground. If a and a' be the coefficients of limiting
friction between the ladder and the ground and wall respectively, shew
that the least horizontal force which will move the lower extremity

towards the wall is \w . j-^ .1
1-m'

11. In Ex. 9 if the weight be placed at the middle point of one

leg and be heavy enough to cause slipping, shew that the other leg
wul be the one that will slide first.

208. Ex. 1. A uniform cylinder is placed with its plane base

on a rough inclined plane and the inclination of the plane to the

horizon is gradually increased ; sliew that the cylinder will topple over

before it slides if the ratio of the diameter, of the base of the cylinder
to its height be less than the coefficient offriction.

Let
<f>

be the inclination of the plane to the horizon when the

cylinder is on the point of tumbling over.

The vertical line through the centre of

gravity G of the cylinder must just fall

within the base.

Hence, if AB be the base, the line GA
must be vertical.

Let C be the middle point of the base,
r its radius, and let h be the height of the

cylinder,

.: t&nd>=cotCAG= = ^ = m
CG \h h

w
Also the inclination of the plane to the horizon, when the

cylinder is about to slide, is given by

tan0=/x (2).

Hence the cylinder will topple before it slides if <p be less than 0,

i.e., if -r- be<u.
h
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Ex. 2. A rectangle ABCD rests on a vertical plane, icith its base

AB on a rough table ; a gradually increasing force acts along DC ; will

equilibrium be broken by sliding or toppling 1

Let F be the force, and W the weight of the rectangle.

Let AB= 2a and BC=h.
If the rectangle topples it will clearly

turn about B, and this will be when the

moments of F and W about B just balance,

i.e., when F . h=W . a (1).

Also the rectangle will slide when F is

equal to the limiting friction,

i.e., when F=fj,W (2).

The rectangle will topple or slide ac-

cording as the value of F given by (1) is less

or greater than the value of F given by (2),

i.e., according as-< /i,
ft>

i.e., according as fi is the ratio of the base to twice the height of the

rectangle.

EXAMPLES. XXXIV.

1. A cylinder rests with its circular base on a rough inclined

plane, the coefficient of friction being \. Find the inclination of the

plane and the relation between the height and diameter of the base of

the cylinder, so that it may be on the point of sliding and also of

toppling over.

2. A solid cylinder rests on a rough horizontal plane with one of

its flat ends on the plane, and is acted on by a horizontal force through
the centre of its upper end ; if this force be just sufficient to move
the solid, shew that it will slide, and not topple over, if the coefficient

of friction be less than the ratio of the radius of the base of the

cylinder to its height.

3. -An equilateral triangle rests in a vertical plane with its base

resting on a rough horizontal plane ; a gradually increasing horizontal
force acts on its vertex in the plane of the triangle ; prove that the

triangle will slide before it turns about the end of its base, if the

coefficient of friction be less than 3>/3.

4. A conical sugarloaf , whose height is equal to twice the diameter
of its base, stands on a table rough enough to prevent sliding ; one
end is gently raised till the sugarloaf is on the point of falling over ;

find the inclination of the plane to the horizon in this position.
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5. A cone, of given vertical angle 2a, rests on a rough plane which

is inclined to the horizon. As the inclination of the plane is in-

creased, shew that the cone will slide, before it topples over, if the

coefficient of friction be less than 4 tan a.

6. A right cone is placed with its base on a rough inclined plane ;

if 7- be the coefficient of friction, find the angle of the cone when

it is on the point of both slipping and turning over.

7. A cone rests on a rough table, and a cord fastened to the vertex

of the cone passes over a smooth pulley at the same height as the top
of the cone, and supports a weight. Shew that, if the weight be con-

tinually increased, the cone will turn over, or slide, according as the

coefficient of friction is > or <tan<x, where a is the semi-vertical

angle of the cone.

8. A cubical block rests on a rough inclined plane with its edges

parallel to the edges of the plank. If, as the plank is gradually raised,

the block turn on it before slipping, what is tbe least value that the

coefficient of friction can have ?

9. The triangular lamina ABC, rigbt-angled at B, stands with BC
upon a rough horizontal plane. If the plane be gradually tilted round
an axis in its own plane perpendicular to BC, so that the angle B is

lower than the angle C, shew that the lamina will begirt to slide, or

topple over, according as the coefficient of friction is less, or greater,
than tan A .

10. A square uniform metallic plate ABCD rests with its side BC
on a perfectly rough plane inclined to the horizon at an angle a. A
string AP attached to A, the highest point of the plate, and passing
over a smooth pulley at P, the vertex of the plane, supports a weight
w, and AP is horizontal. If W be the weight of the plate, shew that,

as w increases, it will begin to turn when

Trr 1 + tan a
w >W

^
.

11. A block, of weight one ton, is in the form of a rectangular

parallelopiped, 8 feet high, standing on a square base whose side is

6 feet. It is placed on a rough weightless board with the sides of its

base parallel to the length and breadth of the board, and the centre

of the base is distant 6 feet from one extremity of the board. The
board is now tilted round this extremity until the block topples with-

out sliding ;
find the work done.
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209. Ex. A uniform rod rests in limiting equilibrium within

a rough hollow sphere; if the rod subtend an angle 2a at the centre

of the sphere, and if X be the angle of friction, shew that the angle

of inclination of the rod to the horizon is

taw
'[

tan (a+ X) tan (a X)~

Let AB be the rod, G its centre of gravity, and the centre. of the

sphere, so that

lGOA= lGOB=a.

Through A and B draw
lines AC and BG making an

angle X with the lines join-

ing A and B to the centre.

By Art. 189, these are the
directions of the resultant

reactions, R and S, at A and
B respectively.

Since these reactions and
the weight keep the rod in

equilibrium, the vertical line

through G must pass through G.

Let AD be the horizontal line drawn through A to meet GG in D
so that the angle GAD is 0.

The angle CAG= L OAG-\=90-a-\,
and the angle CBG= L OBG+ X= 90 - a + X.

Hence theorem (2) of Art. 79 gives

(a+ a) cot GGB=acotCAB-a cot GBA ,

i.e. 2 tan = cot (90
- o - X)

- cot (90
- a + X)

=tan(a+ X)-tan(o-X) (1).

Otherwise thus; The solution may be also obtained by using the
conditions of Art. 83.

Eesolving the forces along the rod, we have

R cos (90
- a - X)

- S cos (90
- a + X)

=W sin 0,

i.e. .Rsin(a + X)-Ssin(a-X) = TFsin0

Besolving perpendicular to the rod, we have

JRcos(a + X) + Scos(a-X) = F'cos0

By taking moments about A, we have

S.ABam(9O-a+ \) = W.AGcoB0,
i.e. 2Scos(a-\)= Wcos0

From equations (3) and (4), we have

R cos (o + X)
= S cos (a

-
X)
= W cos 0.

.(2).

.(3).
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Substituting these values of R and S in (2), we have

tan (a + X)
- tan (a

-
X)
= 2 tan 0.

Numerical example. If the rod subtend a right angle at the centre

of the sphere, shew that its inclination to the horizon is twice the

angle of friction.

210. Ex. Two bodies, of weights W^ and W.
z ,
are placed on an

inclined plane and are connected by a light string which coincides with

a line of greatest slope of the plane ; if the coefficients of friction

betioeen the bodies and the plane be respectively
(j.^

and p..,, find the

i7iclination of the plane to the horizon when both bodies are on the point

of motion, it being assumed that the smoother body is below the other.

The lower body would slip when the inclination is tan-1 nv but the

upper would not do so till the inclina-

tion had the value tan-1
fi^.

When the

two are tied together the inclination for

slipping would be between these two
values. Let it be and let R

1
and R%

be the normal reactions of the bodies ;

also let T be the tension of the string.

The frictions fj.^ and /i.2R2 both
act up the plane.

For the equilibrium of W
Y , we have

W1 smd= T+fi1R1 ,

and W1 coaO=Rl .

.-. T= W^ (sin
-

/*!
cos 0)

For the equilibrium of TF2 ,
we have

W2 sme+T=v2R2 ,

TF2 cos0 =i^.
.-. T=fi2R2-W!i

sme=W2 (fi2 oosd -Bind)

Hence, from (1) and (2),

W
x (sin

-
ft^ cos 0)

=W2 (/^ cos
- sin 0) .

.-. (W-l + WJ sin 0=(Wlfi.1 + WzM.i)cofi0.

wl+w2

Ex. 1. Two equal bodies are placed on a rough inclined plane,

being connected by a light string; if the coefficients of friction be

respectively \ and -J, shew that they will both be on the point of

motion when the inclination of the plane is tan-1 y^.

Ex. 2. Shew that the greatest angle at which a plane may be
inclined to the horizon so that three equal bodies, whose coefficients

of friction are |, -, and respectively, when rigidly connected together,

may rest on it without slipping, is tan-1 j.

and

.(1).

.(2).
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211. Ex. A particle is placed on a rough plane, wlwse inclina-

tion to the horizon is a, and is acted upon by a force P acting parallel
to the plane and in a direction making an angle ft

ivith the line of

greatest slope in the plane; if the coefficient of friction be a and the

equilibrium be limiting, find the direction in which the body tvill begin
to move.

Let W be the weight of the particle, and R the normal reaction.

The forces perpendicular to the in-

clined plane must vanish.

.-. R^Woosa (1).

The other component of the weight
will be If sin a, acting down the line of

greatest slope.

Let the friction, uR, act in the direc-

tion AB, making an angle with the
line of greatest slope, so that the particle
would begin to move in the direction BA produced.

Since the forces acting along the surface of the plane are in equi-

librium, we have, by Laml's Theorem,
uR Wsina P
sin sin (6 + /3)

~
sin0

From (1) and (2), eliminating R and W, we have

R _ sin a sin /3

.(2).

cos a: W /ttsin(0+ /3)"

tt ,
tan a sin /3 MHence sin(0+/3) = -

(3),

giving the angle 0.

Numerical Example. Suppose the inclination of the plane to be

30, the coefficient of friction to be \, and the angle between the force

P and the line of greatest slope to be 30.

In this case we have

. In ortm tan 30. sin 30 J3 . nnn
sin (0 + 30) = = - = ^-= sm60 (4).

Hence is 30, and the body begins to slide down the plane in a
direction making an angle of 30 with the line of greatest slope.

W
The force P could be easily shewn to be

-^- ^3.

If the force be on the point of overcoming the weight, it can be

easily shewn [or it follows from (4), since another solution is = 90],
that the friction p.R acts horizontally, so that the particle would start

in a horizontal direction, and that the corresponding value- of P is

W
W8.
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EXAMPLES. XXXV.

1. A ladder, whose centre of gravity divides it into two portions
of length a and b, rests with one end on a rough horizontal floor, and
the other end against a rough vertical wall. If the coefficients of

friction at the floor and wall be respectively fi and //, shew that the

inclination of the ladder to the floor, when the equilibrium is limiting,

is tan-1 r .

M (a + b)

2. A weightless rod is supported horizontally between two rough
inclined planes at right angles to each other, the angle of friction X

being less than the inclination of either plane. Shew that the length
of that portion of the rod on which a weight may be placed without

producing motion is sin 2<x.sin2\ of the whole length of the rod,
where a is the inclination of either plane to the horizon.

3. A heavy uniform rod is placed over one and under the other of

two horizontal pegs, so that the rod lies in a vertical plane ; shew that

the length of the shortest rod which will rest in such a position is

(l + tanacotX),
where a is the distance between the pegs, a is the angle of inclination

to the horizon of the line joining them, and X is the angle of friction.

4. A uniform heavy rod, 1 foot long, one end of which is rough
and the other smooth, rests within a circular hoop in a vertical plane,
the radius of the hoop being 10 inches. If the rod is in limiting equi-
librium when its rough end is at the lowest point of the, hoop, shew
that the coefficient of friction is j%.

5. A heavy uniform rod rests with its extremities on a rough cir-

cular hoop fixed in a vertical plane ;
the rod subtends an angle of 120

at the centre of the hoop, and in the limiting position of equilibrium
is inclined to the horizon at an angle 6. If J3/n= tan a, /j. being the
coefficient of friction, shew that

tantf: tan 2a :: 2: ^3.

6. A and B are two small equal heavy rings which slide on a rough

horizontal rod, the coefficient of friction being S
-
*. Another equal

heavy ring C slides on a weightless smooth string connecting A and B ;

shew that, in the position of limiting equilibrium, ABC is an equi-
lateral triangle.

7. One end of a heavy uniform rod AB can slide along a rough
horizontal rod AG, to which it is attached by a ring; B and C are

joined by a string. If ABC be a right angle when the rod is on the

point of sliding, /j. the coefficient of friction, and a the angle between
AB and the vertical, shew that

tana

tana a+ 2.
'
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8. A uniform rod slides with its ends on two fixed equally rough
rods, one being vertical and the other inclined at an angle a to the

horizon. Shew that the inclination to the horizon of the movable
rod, when it is on the point of sliding, is given by

1 =f= 2u tan a u?
tan0= -r-

2 (tan a
=*=/*)

9. A uniform ladder, whose length is a and whose weight is W,
makes an angle d with the horizontal, and rests with one end against
a vertical wall and the other upon a horizontal floor, the wall and
floor being equally rough, and the coefficient of friction being tan X.

Shew that a man, whose weight is P, can never get nearer to the top of

. i ,a a. Wcot2\ +Pcot\-(W+P)t&n6 . -
the ladder than r-6

s - a Bin 2X.

10. The poles supporting a lawn-tennis net are kept in a vertical

position by guy ropes, one to each pole, which pass round pegs 2 feet

distant from the poles. If the coefficient of limiting friction between

the ropes and pegs be ^, shew that the inclination of the latter to the

vertical must not be less than tan-1 yy ,
the height of the poles being

4 feet.

11. A chest in the form of a rectangular parallelopiped, whose
weight without the lid is 200 lbs, , and width from back to front 1 foot,
has a lid weighing 50 lbs. and stands with its back 6 inches from a
smooth wall and parallel to it. If the lid be open and lean against the

wall, find the least coefficient of friction between the chest and the

ground that there may be no motion.

12. A heavy circular disc, whose plane is vertical, is kept at rest

on a rough inclined plane by a string parallel to the plane and touch-

ing the circle. Shew that the disc will slip on the plane if the

coefficient of friction be less than \ tan i, where i is the slope of the

plane.

13. A particle resting on a rough table, whose coefficient of
friction is /*, is fastened by a string, of length a, to a fixed point A on
the table. Another string is fastened to the particle and, after passing
over the smooth edge of the table, supports an equal particle hanging
freely. Shew that the particle on the table will rest at any point P
of the circle, whose centre is A and whose radius is a, which is such
that the string AP is kept taut and the distance of the second string
from A is not greater than \m.

14. A heavy rod, of length 2a, lies over a rough peg with one
extremity leaning against a rough vertical wall ; if c be the distance of
the peg from the wall and X be the angle of friction both at the peg
and the wall, shew that, when the point of contact of the rod with the
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wall is above the peg, then the rod is on the point of sliding down-
wards when

sin3 0=-cos2
X,

a

where 6 is the inclination of the rod to the wall. If the point of

contact of the rod and wall be below the peg, prove that the rod is on
the point of slipping downwards when

sin2 sin (6 + 2\) = - cos2 X,

and on the point of slipping upwards when

sin2 6 sin (0 -2\) = - cos2 X.

15. A circular disc, of radius a and weight W, is placed within a

smooth sphere, of radius b, and a particle, of weight w, is placed on
the disc. If the coefficient of friction between the particle and the

disc be fi, find the greatest distance from the centre of the disc at

which the particle can rest.

16. A smooth sphere, of given weight W, rests between a vertical

wall and a prism, one of whose faces rests on a horizontal plane ; if the

coefficient of friction between the horizontal plane and the prism be fi,

shew tbat the least weight of the prism consistent with equilibrium is

W ( - 1
)

, where a is the inclination to the horizon of the face

in contact with the sphere.

17. Two equal rods, of length 2a, are fastened together so as to

form two sides of a square, and one of them rests on a rough peg.
Shew that the limiting distances of the points of contact from the

middle point of the rod are -(1m) where n is the coefficient of

friction.

18. Two uniform rods, AG and BG, are rigidly joined at C so

that they form one uniform bent rod, whose two portions are at right

angles. This bent rod is supported on the edge of a rough table

which touches iC at its middle point. If BG be three times AG,
shew that the tangent of the inclination of AC to the horizon is \.

Find also the least value of the coefficient of friction that the rod

may rest with the point A on the edge of the table.

19. A heavy string rests on two given inclined planes, of the same
material, passing over a small pulley at their common vertex. If the

string be on the point of motion, shew that the line joining its two
ends is inclined to the horizon at the angle of friction.
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20. On a rough inclined plane (n= 5) a weight W is just supportedW
by a force g- acting up the plane and parallel to it. Find the

magnitude and direction of the least additional force, acting alongW
the plane, which will prevent motion when the force 5- acts along

the plane, but at 60 with the line of greatest slope.

21. A weight W is laid upon a rough plane (
fi=w-

J
,
inclined

at 45 to the horizon, and is connected by a string passing through a
smooth ring, A, at the top of the plane, with a weight P hanging
vertically. If W~dP, shew that, if d be the greatest possible inclina-

tion of the string AW to the line of greatest slope in the plane, then

cos = ~-
.

Find also the direction in which W would commence to move.

22. A weight W rests on a rough inclined plane inclined at an

angle a to the horizon, and the coefficient of friction is 2 tan a. Shew
that the least horizontal force along the plane which will move the

body is *J3W sin a, and that the body will begin to move in a direction

inclined at 60 to the line of greatest slope on the plane.

23. If two equal weights, unequally rough, be connected by a

light rigid rod and be placed on an inclined plane whose inclination,

a, to the horizon is the angle whose tangent is the geometric mean
between the coefficients of friction, shew that the greatest possible
inclination to the line of greatest slope which the rod can make when

/ M1 + M2 \
at rest is cos-1 (

~-j-
1

, where m and yu2
are the coefficients of

friction.

24. A heavy particle is placed on a rough plane inclined at an

angle a to the horizon, and is connected by a stretched weightless
string AP to a fixed point A in the plane. If A B be the line of greatest

slope and the angle PAP. when the particle is on the point of

slipping, shew that sinfl^/ucota.

Interpret the result when fi cot a is greater than unity.

25. A hemispherical shell rests on a rough plane, whose angle of

friction is X ; shew that the inclination of the plane base of the rim
to the horizon cannot be greater than sin-1 (2 sin X).

26. A solid homogeneous hemisphere rests on a rough horizontal

plane and against a smooth vertical wall. Shew that, if the coefficient

of friction be greater than
|-, the hemisphere can rest in any position
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and, if it be less, the least angle that the base of the hemisphere can

make with the vertical is cos-1
-j-

.

If the wall be rough (coefficient of friction /*')
shew that thi3 angle

is cos-1
1
--

. j- -,

27. A heavy homogeneous hemisphere rests with its convex sur-

face in contact with a rough inclined plane; shew that the greatest

possible inclination of the plane to the horizon is sin-1
-g.

Shew that a homogeneous sphere cannot rest in equilibrium on any
inclined plane, whatever its roughness.

28. If a hemisphere rest in equilibrium with its curved surface

in contact with a rough plane inclined to the horizon at an angle

sin-1 y$, find the inclination of the plane base of the hemisphere to

the vertical.

29. A uniform hemisphere, of radius a and weight W, rests with
its spherical surface on a horizontal plane, and a rough particle, of

weight W, rests on the plane surface ; shew that the distance of the

particle from the centre of the plane face is not greater than
, ,

where /x is the coefficient of friction.

30. A sphere, whose radius is a and whose centre of gravity is at

a distance c from the centre, rests in limiting equilibrium on a rough
plane inclined at an angle a to the horizon; shew that it may be

turned through an angle
_ , (a sin a\
2C0S1

(^-)'
and still be in limiting equilibrium.

L. S. 18



CHAPTER XV.

MISCELLANEOUS.

212. Bodies connected by smooth hinges.

When two bodies are hinged together, it usually happens

that, either a rounded end of one body fits loosely into

a prepared hollow in the other body, as in the case of

a ball-and-socket joint; or that a round pin, or other

separate fastening, passes through a hole in each body, as

in the case of the hinge of a door.

In either case, if the bodies be smooth, the action on

each body at the hinge consists of a single

force. Let the figure represent a section

of the joint connecting two bodies. If

it be smooth the actions at all the points

of the joint pass through the centre of the

pin and thus have as resultant a single

force passing through 0. Also the action

of the hinge on the one body is equal and opposite to the

action of the hinge on the other body ;
for forces, equal

and opposite to these actions, keep the pin, or fastening, in

equilibrium, since its weight is negligible.
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If the joint be not smooth, then at the points of contact A, B, C,

D, ... there will also be Motional resistances acting in directions per-

pendicular to OA, OB, OC, The forces acting on such a joint will

not, in general, reduce to a single force but to a force and a couple

(Art. 87).

In solving questions concerning smooth hinges, the

direction and magnitude of the action at the hinge are

usually both unknown. Hence it is generally most con-

venient to assume the action of a smooth hinge on one

body to consist of two unknown components at right angles

to one another
\
the action of the hinge on the other body

will then consist of components equal and opposite to

these.

The forces acting on each body, together with the

actions of the hinge on it, are in equilibrium, and the

general conditions of equilibrium of Art. 83 will now apply.

In order to avoid mistakes as to the components of

the reaction acting on each body, it is convenient, as in

the second figure of the following example, not to pro-

duce the beams to meet but to leave a space between

them.

213. Ex. Three equal uniform rods, each of weight W, are

smoothly jointed so as to form an equilateral triangle. If the system
be supported at the middle point of one of the rods, shew tliat the

action at the lowest angle is ^ W, and that at each of the others is
b

13

12'

Let ABC be the triangle formed by the rods, and D the middle
point of the side AB at which the system is supported.

Let the action of the hinge at A on the rod AB consist of two
components, respectively equal to Y and X, acting in vertical and
horizontal directions; hence the action of the hinge on AC consists
of components equal and opposite to these.

Since the whole system is symmetrical about the vertical line

through D, the action at B will consist of components, also equal to
Y and X, as in the figure.

182

w
sJ
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Let the action of the hinge G on CB consist of Y
x vertically up-

wards, and X1 horizontally to the right, so that the action of the same

hinge on CA consists of two components opposite to these, as in the

figure.

4S

(1).

For AB, resolving vertically, we have

S=W+2Y
where S is the vertical reaction of the peg at D.

For CB, resolving horizontally and vertically, and taking moments
about G, we have

X+X^O (2),

W=Y+YX (3),

and W. a cos 60 + X. 2a sin 60 =Y. 2a cos 60 (4).

For GA, by resolving vertically, we have

W=Y-Y
1 (5).

From equations (3) and (5) we have

Fx=0, and Y=W.
Hence equation (4) is

X^Wcot
60=273

=fW-

Therefore, from (2), *i=
6

Also (1) gives S=SW.
Hence the action of the hinge at B consists of a force Jx2+Y2

(i.e. W
a/jTj). acting at an angle tan_1 =

(i.e. tan-1 2^3), to the

horizon; also the action of the hinge at C consists of a horizontal

force equal to ^-W.
o

A priori reasoning would have shewn us that the action of the

hinge at G must be horizontal
; for the whole system is symmetrical

about the line GD, and, unless the component F
2 vanished, the re-

action at G would not satisfy the condition of symmetry.
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EXAMPLES. XXXVI.

1. Two equal uniform beams, AB and BC, are freely jointed at B
and A. is fixed to a hinge at a point in a wall about which AB can

turn freely in a vertical plane. At what point in BG must a vertical

force be applied to keep the two beams in one horizontal line, and

what is the magnitude of the force?

2. Two uniform beams, AC and CB, are smoothly hinged together
at C, and have their ends attached at two points, A and B, in the

same horizontal line. If they be made of the same material and be of

total weight 60 lbs., and if each be inclined at an angle of 60 to the

horizon, shew that the action of the hinge at the point G is a hori-

zontal force of 5^/3 lbs. weight.

3. A pair of compasses, each of whose legs is a uniform bar of

weight W, is supported, hinge downwards, by two smooth pegs placed
at the middle points of the legs in the same horizontal line, the legs

being kept apart at an angle 2a with one another by a weightless rod

joining their extremities; shew that the thrust in this rod and that

the action at the hinge are each jIF cot a.

4. Two equal uniform rods, AB and AC, each of weight W, are

smoothly jointed at A and placed in a vertical plane with the ends B
and G resting on a smooth table. Equilibrium is preserved by a

string which attaches G to the middle point of AB. Shew that the

tension of the string and the reaction of the rods at A are both

equal to

jy .

-a- cosec a Jl + 8 cos2 a,
4

and that each is inclined at an angle tan-1 (^ tan a) to the horizon,
where a is the inclination of either rod to the horizon.

5. Two equal beams, AC and BC, freely jointed together at C,
stand with their ends, A and B, in contact with a rough horizontal

plane, and with the plane ABC vertical. If the coefficient of friction

be ^, shew that the angle ACB cannot be greater than a right angle,
and find the thrust at C in any position of equilibrium.

6. Three uniform heavy rods, AB, BC, and CA, of lengths 5, 4,

and 3 feet respectively, are hinged together at their extremities to form
a triangle. Shew that the whole will balance, with AB horizontal,

about a fulcrum which is distant 1^ of an inch from the middle point
towards A.

Prove also that the vertical components of the actions at the

hinges A and B, when the rod is balanced, are s^W and -sk^W

respectively, where W is the total weight of the rods.
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7. Two equal rods, AB and BC, are jointed at B, and have their

middle points connected by an inelastic string of such a length that,

when it is straightened, the angle ABC is a right angle; if the system
be freely suspended from the point A, shew that the inclination of

AB to the vertical will be tan-1 ^, and find the tension of the string
and the action at the hinge.

8. Two equal bars, AB and BC, each 1 foot long and each of

weight W, are jointed together at B and suspended by strings OA, OB,
and OC, each 1 foot long, from a fixed peg O ; find the tensions of the

three strings and the magnitude of the action at the hinge, the strings
and bars being all in one plane.

9. Three uniform beams AB, BC, and CD, of the same thickness,
and of lengths I, 21, and I respectively, are connected by smooth hinges
at B and C, and rest on a perfectly smooth sphere, whose radius is 21,

so that the middle point of BC and the extremities, A and D, are in

contact with the sphere ; shew that the pressure at the middle point
of BC is y^\j of the weight of the beams.

10. Three uniform rods AB, BC, and CD, whose weights are

proportional to their lengths a, b, and c, are jointed at B and C and
are in a horizontal position resting on two pegs P and Q; find the
actions at the joints B and C, and shew that the distance between the

pegs must be
"2 c2

+ H-T-E + &-
2a+b 2c + b

11. AB and AG are similar uniform rods, of length a, smoothly
jointed at A. BD is a weightless bar, of length b, smoothly jointed
at B, and fastened at D to a smooth ring sliding on A C. The system
is hung on a small smooth pin at A. Shew that the rod AC makes
with the vertical an angle

tan-1 .

a+JcP-b*

12. A square figure ABCD is formed by four equal uniform rods

jointed together, and the system is suspended from the joint A, and
kept in the form of a square by a string connecting A and C ; shew
that the tension of the string is half the weight of the four rods, and
find the direction and magnitude of the action at either of the joints
B or D.

13. Four equal rods are jointed together to form a rhombus,
and the opposite joints are joined by strings forming the diagonals,
and the whole system is placed on a smooth horizontal table. Shew
that their tensions are in the same ratio as their lengths.
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214. Funicular, i.e. Rope, Polygon. If a light

cord have its ends attached to two fixed points, and if at

different points of the cord there be attached weights, the

figure formed by the cord is called a funicular polygon.

Let and
X
be the two fixed points at which the

ends of the cord are tied, and let Au A%, ... An be

the points of the cord at which are attached bodies,

whose weights are wu w2 ,
... wn respectively.

Let the lengths of the portions

0AU A^ A 2A3 ,
... A n x ,

heau a2 ,
a3 ,

... an+l , respectively,

and let their inclinations to the horizon be

<*u a2> a +i-

A n/*n+}\^

Let h and k be respectively the horizontal and vertical

distances between the points and lf so that

% cos a.i + a2 cos clj + ... + an+1 cos an+1 = A...(l),

and a
x
sin ax + a.2 sin e^ + ... + an+1 sin an+1 = k...(2).

Let Tly T%, ... Tn+1 be respectively the tensions of the

portions of the cord.
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Resolving vertically and horizontally for the equilibrium
of the different weights in succession, we have

T2 sin euj Tx sin a
x
= wx ,

and T2 cos a2 Tx cos ax
=

T3 sin a3 T2 sin ai
= w2 ,

and ^ cos a3 5^ cos a2
=

T4
sin a4 T3 sin aj = w3 ,

and 5^ cos a4 Ts cos a3 ='0

Tn+1 sin a +1
- 2^ sin a =ww ,

and Tn+1 cos an+1 -^ cos an = 0.

These 2n equations, together with the equations (1)
and (2), are theoretically sufficient to determine the (n + 1)
unknown tensions, and the (n+ 1) unknown inclinations

From the right-hand column of equations, we have

Tx cos a, = T2 cos 02 = T3 cos a3
=

. . . = Tn+1 cos an+1
= ^(y) (3),

so that the horizontal component of the tension of the
cord is constant throughout and is denoted by K.
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From (3), substituting for Tlt T2i ..

hand column of equations, we have

tan a^ tan a
x
= -=

,

JL

tan a3 tan 04 = -=
,

T1
I!

281

in the left-

tan a4 tan a3

tana tan an K
If the weights be all equal, the right-hand members of

this latter column of equations are all equal and it follows

that tana1} tanog, ... tana +1 ,
are in arithmetical pro-

gression.

Hence when a set of equal weights are attached to

different points of a cord, as above, the tangents of in-

clination to the horizon of successive portions of the cord

form an arithmetical progression whose constant difference

is the weight of any attached particle divided by the

constant horizontal tension of the cords.

215. Graphical construction. If, in the Funi-

cular Polygon, the inclinations of the different portions of

cord be given, we can easily, by geometric construction,

obtain the ratios of wlt w2 ,
... wn .

For let C be any point and CD
the horizontal line through C. Draw /i Pn + 1

CPlt CP2 ,
... 0Pn+1 parallel to the

cords 0A X ,
A XA 2 ,

... An 1} so that

the angles PXCD, P2CD, ... are re-

spectively a
x ,

a2 ,
....

Draw any vertical line cutting
these lines in J), PXi P2 ..
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Then, by the previous article,

wx DP2 DP, P,P2

I =tana2 -tana1= ^--^ =w ,

w2 _ _ DP3 DP2 _ PJPt

H- ta'na3 ~ ta,na*
~

~C
~
CD

~
~CD>

and so on.

Hence the quantities K, w
1 ,
w2> ... wn are respectively

proportional to the lines CD, P,P2 ,
P2PS ,

Pn^n+iy and

hence their ratios are determined.

This result also follows from the fact that CP2PX
is

a triangle of forces for the weight at; A x ,
CP3P2 similarly

for the weight at A 2 ,
and so on.

Similarly, if the weights hung on at the joints be given
and the directions of any two of the cords be also known,
we can determine the directions of the others. We draw a

vertical line and on it mark off P1P2 ,
P2P$, ... proportional

to the weights Wlt W2 ,.... If the directions of the cords

0Aly A X
A 2 are given, we draw Pft, P2 parallel to them

and thus determine the point 0. Join to P3 ,
P4 ,

... etc.,

and we have the directions of the rest of the cords.

216. Tensions of Elastic Strings. All through
this book we have assumed our strings and cords to be

inextensible, i.e. that they would bear any tension without

altering their length.

In practice, all strings are extensible, although the

extensibility is in many cases extremely small, and prac-

tically negligible. When the extensibility of the string

cannot be neglected, there is a simple experimental law

connecting the tension of the string with the amount

of extension of the string. It may be expressed in the

form

The tension of an elastic string varies as the extension of
the string beyond its natural length.
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Suppose a string to be naturally of length one foot; its tension,

when the length is 13 inches, will be to its tension, when of length
15 inches, as

13-12 : 15-12, i.e., as 1 : 3.

This law may be verified experimentally thus ; take a spiral spring,
or an india-rubber band. Attach one end A to a fixed point and at the

other end B attach weights, and observe the amount of the extensions

produced by the weights. These extensions will be found to be

approximately proportional to the weights. The amount of the

weights used must depend on the strength of the spring or of the

rubber band; the heaviest must not be large enough to injure
or permanently deform the spring or band.

217. The student will observe carefully that the

tension of the string is not proportional to its stretched

length, but to its extension.

The above law was discovered by Hooke (a.d. 1635

1703), and enunciated by him in the form TJt tensio, sic iris.

From it we easily obtain a formula giving us the tension in

any case.

Let a be the unstretched length of a string, and T
its tension when it is stretched to be of length x. The

extension is now x a, and the law states that

T oc x a.

This is generally expressed in the form

a

the constant of variation being .

a

The quantity A depends only on the thickness of the

string and on the material of which it is made, and is called

the Modulus of Elasticity of the String.

It is equal to the force which would stretch the string,

if placed on a smooth horizontal table, to twice its natural

length ; for, when x = 2a, we have the tension

2a a
=3 A = A.

a

No elastic string Avill however bear an unlimited
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stretching; When the string, through being stretched, is

on the point of breaking, its tension then is called the

breaking tension.

Hooke's Law holds also for steel and other bars, but the

extensions for which it is true in these cases are extremely

small. We cannot stretch a bar to twice its natural length ;

but X will be 100 times the force which will extend the bar

by T^th of its natural length. For if x a =
-^-r ,

then

m_ ^

~100'

The value of T will depend also on the thickness of the

bar, and the bar is usually taken as one square inch section.

Thus the modulus of elasticity of a steel bar is about

13500 tons per square inch.

By the method of Art. 134 it is easily seen that

the work done in stretching an elastic string is equal to the

extension multiplied by the mean of the initial and final

tensions.

Ex. ABC is an elastic string, hanging vertically from a fixed

point A; at B and C are attached particles, of weights 2W and W
respectively. If the modulus of elasticity of the string be SW, find the

ratio of the stretched lengths of the portions of the string to their un-

stretched lengths.
Let c and cx be the unstretched lengths of AB and BC, and x and

y their stretched lengths.
Let T and T

x
be their tensions, so that

c

A
and r-x^ll=3JF^l.

c
x

cx

From the equiUbrium of B and G, we have

T- T1= 2W, &nd T1= W.
Hence T=BW.

fiC
" C-a^ orwl *wV- cl

A

T,

3W -=3W,&adBW^^i=W. C
c c-

.*. x= 2c, and y= -jCj ,

so that the stretched lengths are respectively twice and four-thirds of
the natural lengths.
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EXAMPLES. XXXVH.

1. ABC is an elastic string, whose modulus of elasticity is 4W,
which is tied to a fixed point at A . At B and G are attached weights
each equal to W, the unstretched lengths of AB and BC being each

equal to c. Shew that, if the string and bodies take up a vertical

position of equilibrium, the stretched lengths of AB and BG are -%c

and \c respectively.

2. An elastic string has its ends attached to two points in the

same horizontal plane, and initially it is just tight and unstretched ;

a particle, of weight W, is tied to the middle point of the string; if the

W
modulus of elasticity be ^ , shew that, in the position of equili-

brium, the two portions of the string will be inclined at an angle of

60 to one another.

3. In the previous question, if 2a be the distance between the

two points, 2c the unstretched length of the string, and X the modulus
of elasticity, shew that the inclination, 0, of the strings to the vertical

is given by
W* . a

,-tan0+ sm 6=-.
2X c

4. A body rests on a rough inclined plane whose inclination a to

the horizon is greater than X, the angle of friction ; it is held at rest

by an elastic string attached to it and to a point on the plane. If the

modulus of elasticity be equal to the weight of the body, prove that in

the position of equilibrium the ratio of the length of the string to its

original length is

l + sin(a-X) . secX.

5. Four equal jointed rods, each of length a, are hung from an

angular point, which is connected by an elastic string with the

opposite point. If the rods hang in the form of a square, and if

the modulus of elasticity of the string be equal to the weight of a

aJ2
rod, shew that the unstretched length of the string is -~- .

o

6. An elastic cord, whose natural length is 10 inches, can be kept
stretched to a length of 15 inches by a force of 5 lbs. wt. ; find the

amount of work done in stretching it from a length of 12 inches to a

length of 15 inches.

7. A spiral spring requires a force of one pound weight to stretch

it one inch. How much work is done in stretching it three inches
more?
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Graphic Constructions.

218. To find the resultant of any number of coplanar

forces.

Let the forces be P, Q, li, and S whose lines of action

are as in the left-hand figure.

Draw the figure ABODE having its sides AB, BC, CD,
and DE respectively parallel and proportional to P, Q, R
and S. Join AE, so that by the Polygon of Forces AE re-

presents the required resultant in magnitude and direction.

Take any point and join it to A, B, C, D, and E
;

let

the lengths of these joining lines be a, b, c, d, and e

respectively.

Take any point a on the line of action of P
;
draw aft

parallel to BO to meet Q in
ft, fty parallel to CO to meet

R in
y,

and yS parallel to BO to meet S in 8.

Through 8 and a draw lines parallel respectively to EO
and OA to meet in e.

Through c draw cZ parallel and equal to AE. Then
eL shall represent the required resultant in magnitude and
line of action, on the same scale that AB represents P.
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For P, being represented by AB, is equivalent to forces

represented by AO and OB and therefore may be replaced

by forces equal to a and b in the directions a and /3a. So

Q may be replaced by b and c in directions a/3 and y/3,
K by

c and d in directions /3y and 8y, and S by forces c and e in

directions y8 and e8.

The forces iJ
, #, R> ana

" $ have therefore been replaced

by forces acting along the sides of the figure a/3ySe, of

which the forces along a/3, /3y and y8 balance.

Hence we have left forces at e which are parallel and

equal to AO and OE, whose resultant is AE.

Since *L is drawn parallel and equal to AE, it therefore

represents the required resultant in magnitude and line of

action.

Such a figure as ABODE is called a Force Polygon
and one such as a/3y8e is called a Link or Funicular

Polygon, because it represents a set of links or cords

in equilibrium.

219. If the point E of the Force Polygon coincides

with the point A it is said to close, and then the resultant

force vanishes.

If the Force Polygon closed, but the Funicular Polygon
did not close, i.e. if Sea was not a straight line, we should

have left forces acting at 8 and a parallel to OE and AO,
i.e. we should in this case have two equal, opposite, and

parallel forces forming a couple.

If however the Funicular Polygon also closed, then Sea

would be a straight line and these two equal, opposite, and

parallel forces would now be in the same straight line and

would balance.

Hence, if the forces P, Q, R, S are in equilibrium, both

their Force and Funicular Polygons must close.
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220. If the forces be parallel the construction is the

same as in the previous article. The annexed figure is

drawn for the case in which the forces are parallel and two

of the five forces are in the opposite direction to that of

the other three.

Since P, B, and S are in the same direction we have

AB, CD, and DE in one direction, whilst BC and EF
which represent Q and T are in the opposite direction.

The proof of the construction is the same as in the last

article. The line tJL, equal and parallel to AF, represents
the required resultant both in magnitude and line of

action.

This construction clearly applies to finding the re-

sultant weight of a number of weights.

221. A closed polygon of light rods freely jointed at

their extremities is acted upon by a given system offorces
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acting at the joints which are in equilibrium ; find the

actions along the rods.

Let A
XA.2 ,

A.,A 3 ,
... A 5A X

be a system of five rods freely

jointed at their ends and at the joints let given forces

Plt P2 ,
P3 ,

P4 ,
and Ph act as in the figure.

Let the consequent actions along the rods be tlt t, t
:i ,

tA ,

and t5 ,
as marked.

Draw the pentagon a^a^a.^ having its sides parallel

and proportional to the forces Plt P2 ,
... P5 . Since the

forces are in equilibrium this polygon is a closed figure.

Through ! draw a
x parallel to A

X
A2 and through 5

draw a5 parallel to A^A-^.

Now the triangle a^Oa^ has its sides parallel to the

forces Plt t
x ,
and t5 which act on the joint A

x . Its sides

are therefore proportional to these forces; hence, on the

same scale that a5ax represents Plt the sides 0as and a
x

represent t5 and tt .

Join 0a2 ,
0a3 ,

and 0a4 .

The sides a^a^ and Oa^ represent two of the forces, P2

and t1} which act on A2 . Hence a20, which completes the

triangle axOa2 , represents the third force t2 in magnitude
and direction.

Similarly 0a3 and 0a4 represent t3 and t4 respectively.

The lines Oa^, 0a2 ,
0a3 ,

0a4 and 0a5 therefore represent,
both in magnitude and direction, the forces along the sides

of the framework. The figure a^a^a^^ is called the force

polygon.

A similar construction would apply whatever be the

number of sides in the framework.

L. s. 19
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222. It is clear that the figure and construction of the

preceding article are really the same as those of Art. 218.

If the right-hand figure represents a framework of rods

axa2 , a%a3 ,
aza4 ... acted on at the joints by forces along

aft, a20, ... then the polygon A-^A^A^A^A^ of the left-hand

figure is clearly its force polygon, since A
XA^ A2A3 ... are

respectively parallel to a^O, a2 ....

Hence either of these two polygons may be taken as the

Framework, or Funicular Polygon, and then the other is

the Force Polygon. For this reason such figures are called

Reciprocal.

As another example we give a triangular framework

acted on at its joints by three forces Plt P2 ,
P3 in equili-

brium whose force polygon is a^a^ ; conversely, A^AZA X is

the force polygon for the triangle a^a%az acted on by forces

T, T, and T9 .

323. Ex. 1. A framework, ABCD, consisting of light rods

stiffened by a brace AC, is supported in a vertical plane by supports at
A and B, so that AB is horizontal; the lengths of AB, BC, CD and
DA are 4, 3, 2, and 3 feet respectively; also AB and CD are parallel,
and AD and BC are equally inclined toAB. If weights of 5 and 10 cwt.

respectively be placed at C and D, find the reactions of the supports
at A and B, and the forces exerted by the different portions of the

framework.

Let the forces in the sides be as marked in the figure and let P and
Q be the reactions at A and B.
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Draw a vertical line a/3, 5 inches in length, to represent the weight
10 cwt. at D ; also draw o5 parallel to AD and /35 parallel to CD.

Then a/35 is the Triangle of Forces for the joint D, and the forces at

D must be in the directions marked.

Note that the force at C in the bar DC must be along DC or CD,
and that at D in the same bar along CD or DC.

[This is an important general principle ; for any bar, which under-

goes stress, is either resisting a tendency to compress it, or a tendency
to stretch it.

In the first case, the action at each end is from its centre towards

its ends, in which case it is called a Strut ; in the second case it is

towards its centre, when it is called a Tie.

In either case the actions at the two ends of the rod are equal and

opposite.]

Draw j8y vertical and equal to 2j ins. to represent the weight at C.

Draw ye parallel to BC and 5e parallel to AC. Then dflyed is the

Polygon of Forces for the joint C, so that the actions at C are as

marked.

Draw ef horizontal to meet 07 in f.

192
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Then e-yf' is the Triangle of Forces for B, so that the reaction Q is

represented by yf, and Tt by fe.

Finally, for the joint A, we have the polygon SefaS, so that P is

represented by fa.

On measuring, we have, in inches,

ef=l-10, 7e= 3-31, 5)3
= 1-77, 5a=5-30, 5e=-91,

7f=3-125, and fa=4-375.

Hence, since one inch represents 2 cwt., we have, in cwts.,

r
i
= 2-20, T2 =6-62, T3 =3-54, T4=10-6, T5=V82,

(3= 6-25, and P=8-75.

It will be noted that the bars AB and AG are in a state of tension,
i.e. they are ties, whilst the other bars of the framework are in a state

of compression, i.e. they are struts.

The values of P and Q may be also found, as R and S are found
in the next example, by the construction of Art. 220.

Ex. 2. A portion of a Warren Girder consists of a lightframe com-

posed of three equilateral triangles ABC, CBD, CDE and rests with ACE
lionzontal being supported at A and E. Loads of 2 and 1 tons are hung
on at B and D; find the stresses in the various members.

>o

Draw a/3, /3y vertical, and equal to 2 inches and 1 inch respectively,
to represent 2 tons and 1 ton. Take any pole O and join Oa, Oft, Oy.

Take any point a on the line of action of the 2 ton wt. ; draw ad

parallel to aO to meet the reaction B in d, and ab parallel to /SO to

meet the vertical through D in b, and then be parallel to yO to meet
S in c. Join cd. Then abed is the funicular polygon of which (if we
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draw 05 parallel to cd) a/3>5 is the force polygon (in this case a straight

line). Hence 8a represents R and 75 represents S.

Let the forces exerted by the rods, whether thrusts or tensions, be

1\ , T2 , ... as marked.

Draw 5e parallel to CA and ae parallel to AB ; then ae8 is a

triangle of forces for the joint A, so that ae and ed represent !T2

and T
1

.

Draw ef and f parallel to BC and BD respectively. Then ea/Jf is

the polygon of forces for the joint B so that Ti and T3 are given by ef

and fj8 respectively.

Draw 50 parallel to DC; then 5e0 is the polygon of forces for the

joint C and hence and 05 represent T5 and T6 .

Draw 71 parallel to DC to meet ef produced in i; then fflyi is the

polygon of forces for the joint D so that 71 and if represent 2'6 and 1\

respectively; [it follows that 71 must be equal and parallel to 50, and
hence 16 must be equal and parallel to 75 and therefore represent S.]

Finally i0f is the triangle of forces for the joint E.

Hence if we measure off the lengths a5, 57, e8, ea, f/3, ef, 0, 05, if
in inches, we shall have the values of B, S, Tlt T2 , Tz , T4 , 2'8 ,

T6 ,

TT respectively expressed in tons' wt.

They are found to be 1-75, 1-25, 1-01, 2-02, -87, -29, '72, -29, and
1*44 tons' wt. respectively.

From the figure it is clear that AC, CE and CD are ties and that

the others are struts.

EXAMPLES. XXXVIH.

[The following are to be solved by graphic methods.]

1. A uniform triangular lamina ABC, of 30 lbs. weight, can turn
in a vertical plane about a hinge at B ; it is supported with the side

AB horizontal by a peg placed at the middle point of BC. If the sides

AB, BC, and CA be respectively 6, 5, and 4 feet in length, find the

pressure on the prop and the strain on the hinge.

2. A uniform ladder, 30 feet long, rests with one end against a
smooth wall and the other against the rough ground, the distance of

its foot from the wall being 10 feet ; find the resultant force exerted

by the ground on the foot of the ladder if the weight of the ladder be
150 lbs. (1) when there is no extra weight on the ladder, (2) when
1 cwt. is placed f of the way up.

3. It is found by experiment that a force equal to the weight of

10 lbs. acting along the plane is required to make a mass of 10 lbs.

begin to move up a plane inclined at 45 to the horizon ; find the co-

efficient of friction between the mass and the plane.
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4. Three forces equal respectively to the weights of 5*05 lbs.,
4*24 lbs., and 3-85 lbs. act at three given points of a flat disc resting
on a smooth table. Place the forces, by geometric construction,
so as to keep the disc in equilibrium, and measure the number of

degrees in each of the angles which they make with one another.

5. A uniform rectangular block, of which ABGD is the sym-
metrical section through its centre of gravity, rests with CZ) in con-

tact with a rough horizontal plane (/*=); the weight of the block is

40 lbs. and a force equal to 10 lbs. wt. acts at D in the direction CD ;

if the lengths of BC and CD be respectively 3 and 5 feet, find the value
of the least force which, applied at the middle point of CB parallel to
the diagonal DB, would move the block.

6. A body, of weight 100 lbs., rests on a rough plane whose

slope is 1 in 3, the coefficient of friction being ^ ;
find the magnitude

of the force which, acting at an angle of 40 with the plane, is on the

point of dragging the body up the plane. Find also the force which,
acting at an angle of 40 with the plane, is on the point of dragging
the body down the plane.

7. ABC is a triangle whose sides AB, BC, GA are respectively
12, 10, and 15 inches long and BD is the perpendicular from B on CA.
Find by means of a force and funicular polygon the magnitude and the
line of action of the resultant of the following forces ; 8 from A to C,
8 from C to B, 3 from B to A, and 2 from B to D.

8. AB is a straight line, 3 feet long; at A and B act parallel
forces equal to 7 and 5 cwt. respectively which are (1) like, (2) unlike ;

construct for each case the position of the point D at which their
resultant meets AB and measure its distance from A.

9. Loads of 2, 4, 3 cwt. are placed on a beam 10 ft. long at
distances of 1 ft., 3 ft., 7 ft. from one end. Find by an accurate

drawing the line of action of the resultant.

10. A horizontal beam 20 feet long is supported at its ends and
carries loads of 3, 2, 5, and 4 cwt. at distances of 3, 7, 12, and 15 feet

respectively from one end. Find by means of a funicular polygon the
thrusts on the two ends.

U. A triangular frame of jointed rods ABC, right-angled at A,
can turn about A in a vertical plane. The side AB is horizontal and
the corner C rests against a smooth vertical stop below A . If AB= 3 ft. ,

AC= 1 ft., and a weight of 50 lbs. be hung on at B, find graphically the
stresses in the various bars.

12. Forces equal to 1, 2, 4, and 4 lbs. weight respectively act

along the sides AB, BC, CD, and DA of a square. Prove that their

resultant is 3-6 lbs. weight in a direction inclined at tan-1 to CB and

intersecting BC produced at G, where CG is equal to BG.
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13. AG and CB are two equal beams inclined to one another at

an angle of 40, the ends A and B resting on the ground, which is

rough enough to prevent any slipping, and the plane ACB being
inclined at an angle of 70 to the ground. At C is attached a body
of weight 10 cwt., and the system is supported by a rope, attached to

C, which is in the vertical plane passing through C and the middle

point of AB. if the rope be attached to the ground and be inclined

at an angle of 50 to the ground, find the tension of the rope and the

action along the beams. [This arrangement is called a Sheer-legs.]

14. A beam, AB, of weight 140 lbs., rests with one end A on a

rough horizontal plane, the other end, B, being supported by a cord,

passing over a smooth pulley at C, whose horizontal and vertical

distances from A are respectively 15 and 20 feet. If the length of the

beam be 15 feet, and it be on the point of slipping when the end B is

at a height of 9 feet above the horizontal plane, find the magnitudes
of the coefficient of friction, the tension of the chord, and the resultant

reaction at A.

15. A triangular framework ABC, formed of three bars jointed at

its angular points, is in equilibrium under the action of three forces

P, Q, and R acting outwards at its angular points, the line of action

of each being the line joining its point of application to the middle of

the opposite bar. If the sides BC, CA, and AB be 9 ft., 8 ft., and 7 ft.

in length respectively, and if the force P be equal to 50 lbs. wt., find

the values of Q and B, and the forces acting along the bars of the

framework.

16. A and B are two fixed pegs, B being the higher, and a heavy
rod rests on B and passes under A ; shew that, the angle of friction

between the rod and the pegs being the same for both, the rod will

rest in any position in which its centre of gravity is beyond B,

provided that the inclination of AB to the horizon is less than the

angle of friction; also, for any greater inclination, determine graphic-

ally the limiting distance of the centre of gravity beyond B consistent

with equilibrium.

17. A uniform beam AB, weighing 100 lbs., is supported by
strings AC and BD. the latter being vertical, and the angles CAB and
ABD are each 105. The rod is maintained in this position by a
horizontal force P applied at B. Shew that the value of P is about
25 lbs. weight.

18. AB and AG are two equal rods of no appreciable weight
smoothly jointed together at A, which rest in a vertical plane with
their ends upon a smooth horizontal plane BC. D is a point in AB
such that AD = \ AB and E and F are the points of trisection of AC,
E being the nearer to A. A fine string connects D and F and is of

such a length that the angle A is 60. Shew that, if a weight W be
W

attached to E, the tension of the string is -^- .
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19. ABCDEF is a regular hexagon. Shew that the forces which

must act along AC, AF, and BE to produce equilibrium with a force

of 40 lbs. weight acting along EC are respectively 10, 17-32, and
34-64 lbs. weight.

20. Fig. 1 consists of a symmetrical system of light rods freely

jointed and supported vertically at the extremities; vertical loads of

10 and 5 cwt. are placed at the points indicated ;
find the thrusts or

tensions of the rods, if the side rods are inclined at 50 to the

horizon.

21. Fig. 2 consists of a symmetrical system of light rods freely

jointed and supported by vertical reactions at A and B ;
if a weight of

10 cwt. be placed at D find the thrusts or tensions in the rods, given
that / IMS= 55 and / CAB=35.

Fig. 1. Fig. 2. Fig. 3.

22. A crane is constructed as in Fig. 3, and 15 cwt. is hung on
at A ; find the forces along the parts AC and AB.

If the post BC be free to move, and BD be rigidly fixed, find the

pull in the tie CD.

23. A portion of a Warren girder consists of three equilateral

triangles ABC, ADC, BCE, the lines AB, DCE being horizontal and
the latter the uppermost. It rests on vertical supports at A and B and
carries 5 tons at D and 3 tons at E. Find the reactions at the supports
and the stresses in the four inclined members.

24. ABCD consists of a quadrilateral consisting of four light rods

loosely jointed, which is stiffened by a rod BD ; at A and C act forces

equal to 40 lbs. weight. Given that AB=2 ft., 2X7=3 ft., CD=4 ft.,

DA= 4:^ ft., and DB=5 ft., find the tensions or thrusts of the rods.



CHAPTEE XVI.

SOME ADDITIONAL PKOPOS1TIONS.

224. Formal proof of the Parallelogram of

Forces.

The proof is divided into two portions, (I) as regards the

direction, (II) as regards the magnitude of the resultant.

I. Direction.

(a) Equal Forces.

Let the forces be equal and represented by OA and

OB.

Complete the parallelogram ^\~
*

\

OACB, and join OC. Then 00 \\
bisects the angle A OB. \ ^\ \

Since the forces are equal, \ ^s. \

it is clear that the resultant \ _.A
B C

must bisect the angle between

them; for there is no reason to shew why the resultant

should lie on one side of OC which would not equally hold

to shew that the resultant should lie on the other side of

00. Hence, as far as regards direction, we may assume

the truth of the theorem for equal forces.
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(/?) Commensurable Forces.

Lemma. If the theorem be true, as far as regards

direction, for a pair offorces P and Q, and also for a pair

offorces P and R acting at the same angle, to shew that it is

truefor the pair offorces P and (Q + E).

Let the forces act at a point A of a rigid body, and let

AB be the direction of P, and AGD that of Q and P.

Let AB and AG represent the forces P and Q in

magnitude.

Since, by the principle of The Transmissibility of

Force, the force R may be supposed to act at any point in

its line of action, let it act at G and be represented by

GD.

si^. ;5>J

E F

Complete the parallelograms ABEG and ABFD.
The resultant of P and Q is, by supposition, equal to

some force T acting in the direction AE
;

let them be

replaced by this resultant and let its point of application be

removed to E.

This force T, acting at E, may now be replaced by

forces, equal to P and Q, acting in the directions CE and

EF respectively.

Let their points of application be removed to G
and F.

Again, by the supposition, the resultant of P and R,

acting at C, is equivalent to some force acting in the

direction CF; let them be replaced by their resultant and

let its point of application be removed to F.
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All the forces have now been applied at F without

altering their combined effect
;
hence F must be a point

on the line of action of their resultant therefore AF is

the direction of the required resultant.

Hence the Lemma is proved.

Application of the lemma.

By (a) we know that the theorem is true for forces

which are each equal to S.

Hence, by the lemma, putting P, Q, and R each equal

to S, we see that the theorem is true for forces S and IS.

Again, by the lemma, since the theorem is true for forces

(S, S) and (S, 2S) we see that it is true for forces (S, 3S).

Similarly for forces (S, 4) and so on.

Continuing in this way we see that it is true for forces

S and mS, where m is any positive integer.

Again, from the lemma, putting P equal to mS, and

Q and R both equal to S, the theorem is true for forces

mS and 2S.

Again, putting P equal to mS, Q to 2S, and R to S,

the theorem is true for forces mS and 3a5.

Proceeding in this way we see that the theorem is true

for forces mS and nS, where m and n are positive integers.

Also any two commensurable forces can be represented

by mS and nS.

(y) Incommensurable Forces.

Let P and Q be incommensurable forces, and let AB
and AG represent them.
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Complete the parallelogram ABDG.
If the resultant of P and Q be not in the line AD let it

act in the line AE meeting CD in E.

Divide AC into any number of equal parts x, each less

titan ED, and from CD cut off successively portions, each

equal to x. The last point of subdivision F must' fall

between E and D, since x is less than ED.
Draw EG parallel to CA to meet AB in G, and join

AF.

The lines AC and AG represent commensurable forces,

and therefore their resultant is, by (J3), in the direction

AF.

Hence the resultant of forces AC and AB must lie

within the angle BAF. But this resultant acts in the

direction AE, which is without the angle BAF.
But this is absurd.

Hence AE cannot be the direction of the resultant.

In a similar manner it can be shewn that no other

line, except AD, can be the direction of the resultant.

Hence AD is the direction of the resultant.

II. Magnitude.

As before let AB and AC represent the forces P and Q.

Complete the parallelogram ABDC.
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Take a force R, represented both in magnitude and

direction by AE, to balance the resultant of P and Q.

Then, by the first part of the proof, AE is in ilie same

straight line with AD. AE shall also be equal to AD.

Complete the parallelogram AEFB.
Since the three forces P, Q, and K are in equilibrium,

each of them is equal and opposite to the resultant of the

other two.

Now the resultant of P and R is in the direction AE;
hence AC, the direction of Q, is in the same straight line

with AE.

Therefore ADBF is a parallelogram, and hence DA
equals BE.

But, since AEFB is a parallelogram, BE equals AE.

Therefore AD equals AE, and hence AD is equal, in

magnitude as well as direction, to the resultant of P
and Q.

The above proof is known as Duchayla's Proof.

225. Centre of gravity of a uniform circular

arc.

Let AB be a circular arc, subtending an angle 2a at its

centre 0, and let OC bisect the

angle AOB.
Let the arc AB be divided

into 2n equal portions, the

points of division, starting from

C, being Px ,
P2,...Pn. 1 towards

A, and Qlf Q-2>---Qn-i towards B.

At each of these points of

division, and at the extremities

A and B, and also at the point

G, let there be placed equal particles, each of mass m.

Let the arc joining two successive particles subtend

an angle /? at the centre 0, so that 2nft = 2a.
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Since the system of particles is symmetrical with respect

to the line OC, the centre of gravity, G, must lie on the

line OC. Let x be the distance OG.

Then, by Art. Ill,

mr + 2m . r cos B + 2m . r cos 28 4- ... + 2mr cos nB

m + 2m + 2m + . . . + 2m
v- ~ r

[1 + 2 cos j3 + 2 cos 2/3 + . . . + 2 cos nj3]

2

2n+l

n + 1 _ . nB
cos

^r /3 sin

1+2.
:-sin

, [Trig. Art. 242]

by summing the trigonometrical series,

2n+l
1 +

sin
^

sm
2

dn
(n

+
^)

^ sin
(a

+
^J

ZJ8
.(i).

(2n + 1) sin ^ (2n + 1) sin g-

Now let the number of particles be increased without

limit, a remaining constant, and consequently /3 decreasing

without limit. We thus obtain the case of a uniform

circular arc.

a

-vr /n 1 \ a (2rc + 1) 2nNow (2 + l)sinH-=^-ia.'2w 2w a

2n

=L
1 +

2^J-
a - =a

>

2rc

when w is made indefinitely great.
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Hence, in the case of a uniform circular arc, (i) becomes

sin a _

7T
Cor. In the case of a semicircular arc, in which a =

-^ ,

the distance of the centre of gravity from the centre

. ir
sin

2 2r

7T 7T

2

226. Centre of gravity of a sector of a circle.

With the same notation as in the last article, let P and Q
be two consecutive points on the circular boundary of the

sector, so that PQ is very approximately a straight line,

and OPQ is a triangle with a very small vertical angle at 0.

Take F on OP such that OF = %0P ;
when PQ is very

small, F is the centre of gravity of the triangle OPQ.

* The Student who is acquainted with the Integral Calculus
can obtain this result very much easier thus;

Let P be a point on the arc such that / POC=&, and P" a very
close point such that lP'OP=dd.

If If be the mass of the whole arc the mass of the element PP/
is

jr- . M, and the abscissa of the point P is r cos 6. Hence, by Art. Ill,

f+a Se f+a
I jr- M.r cos d

/
cosddd

ae
J a

Ht:

i_ sin a

Also, by symmetry, it is clear that the centre of gravity must lie

on OC.
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By joining to an indefinitely large number of con-

secutive points on the arc AB, the

sector can be divided into an in-

definitely large number of triangles,

each of whose centres of gravity
lies on the dotted circular arc, whose

radius is |r.

Hence the centre of gravity of

the sector is the same as that of the

circular arc A'G'B', so that, by the

last article,

0G' = 0C'
& =

lr7

Cor. If the sector be a semi-circle, a =
,
and the

A

distance OG' = -x .

Sir

227. Centre of gravity of the segment of a
circle.

The segment of a circle AGB is the difference between

the sector OAGB and the triangle

OAB.

Using the same notation as in

the two previous articles, let G1 and

G2 be respectively the centres of

gravity of the triangle AOB and the

segment AGB. Also let G be the

centre of gravity of the sector, and

let AB meet OG in D.

We have, by Art. 109,

AAOBxOGi + segment AGB

0<:h :

0G = OG,
AAOB + segment AGB .(i).
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But OG1
= %-OD = |f cos a,

and ^ = |r^-
a

.5 a

Also AA0B =
%r* sin 2a,

and segment ABC sector AOB AAOB
=

\r> . 2a - \f sin 2a.

Hence equation (i) becomes

2
sin a _ \r

2 sin 2a x |r cos a + Ir
3

(2a sin 2a) x asr= p?2a

_ fr cos a sin 2a + OG^ (2a sin 2a)

2a^
;

.'. r sin a r cos a sin 2a = 0G2 (2a sin 2a) ;

sin a cos2 a sin a
.'. 0G2

= ir-2 * 2a - sin 2a

sin3 a
/

2a sin 2a

228. Centre of gravity of a Zone of a Sphere.

To prove that the centre of gravity of the surface of any
zone of a sphere is midway between its plane ends.

[A zone is the portion of a sphere intercepted between

any two parallel planes.]

Let ABCD be the section of the zone which is made by
a plane through the centre of the sphere perpendicular to

its plane ends.

In the plane of the paper let BOR' be the diameter

parallel to the plane ends. Draw the tangents RU and

L. s. 20
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R'JJ' at its ends, and let AB and CD meet them in the

points a, b, c, and d.

Consider the figure obtained by revolving the above

figure about EOE'. The arc AD will trace out the zone

and the line ad will trace out a portion of the circum-

scribing cylinder.

a Pq d

b P'q'

We shall shew that the areas of the portions of the

zone and cylinder intercepted between the planes ab and cd

are the same.

Take any point P on the arc between A and D and

another point Q indefinitely close to P. Draw the lines

pPMP'p and qQNQ'c[ perpendicular to OE as in the

figure.

Let PQ meet E'E in T and draw QS perpendicular

to PM.

Since Q is the very next point to P on the arc, the

line PQ is, by the definition of a tangent, the tangent at P
and hence OPT is a right angle. Also in the limit, when
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P and Q are very close to one another, the area traced out

by PQ, which really lies between 2-n-MP.PQ and 2-n-NQ.PQ,

is equal to either of them.

We then have

element of the zone area traced out by PQ
element of the cylinder area traced out by pq

2w.MP.PQ MP PQMP 1
=

~2~777Mp.pq
"
Mp' SQ~ Mp' cos SQP

MP 1 MP 1 MP OP
~
Mp

'

cosOTP
"
Mp

'

sinMOP
~
Mp' MP

The portions of the zone and cylinder cut off by these

two indefinitely close planes are therefore the same and

hence their centres of gravity are the same.

If we now take an indefinitely large number of thin

sections of the zone and cylinder starting with AB and

By Integral Calculus. Let L AOE= a, I DOE= B, and L POE= 0.

The element of area at P=a50 x 2wa sin 0, and the abscissa of P is

acos0. Hence, by Art. Ill,

I 2ira2 sin 030 . a cos I sin0cos0d0
Jp Jp

x= z- a

I 2ira2 sin 6(16
\

si

J P J P

["^sin^TL^ J/3 _ a sin2 a - sin3 8
n*

~~
2 cos 8 - cos a

a cos2 fl - cos2 a a . .=s = -
(cos 8+ cos a)2 cos /3

- cos a 2 v

=|[OL + OL'].

sin 0d0

202
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ending with CD the corresponding sections have the same

mass and the same centre of gravity.

The centre of gravity of the zone and cylinder are

therefore the same, and the centre of gravity of the latter

is clearly the middle point of LL'.

Hence the centre of gravity of any zone of a sphere is

midway between its plane ends.

229. Centre of gravity of a hollow hemisphere.

Let AB pass through the centre of the sphere and

therefore coincide with RR'. Also let D and C move up
to coincide with E, so that the bounding plane DC becomes

a point at E.

The zone thus becomes the hemisphere RDECR' and its

centre of gravity is therefore at the middle point of OE,

i.e., it bisects the radius of the sphere perpendicular to the

plane base of the hemisphere.

230. To find the position of the centre of gravity of
a solid hemisphere.

*Let LAM be the section of the hemisphere made by the

* By Integral Calculus. Let P be any point on the arc AL;
draw PN perpendicular to OA and let 0N=x, NPy; then clearly

x2+ y
2=a2

,

where a is the radius of the hemisphere.
The element of volume included between PN and the plane at

distance x + 5x is iry^dx. Also the abscissa of P is x.

Hence, by Art. Ill,

fa
ra

I iry
2Sx.x

\ x(a?-x
2
)5x

x=lX- = 4
fa fa
I iry

2Sx I (a*-x
2
)dx
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plane of the paper, and let OA be the radius of the

hemisphere which is perpendicular to its

plane base.

Take any point P on the hemisphere

and consider an exceedingly small ele-

ment of the surface at P. The centre

of gravity of the very thin pyramid,

whose base is this small element and

whose vertex is 0, is at a point P' on

OP, such that 0P' = \0P. (Art. 107.)

The weight of this very thin pyramid

may therefore be considered concentrated

atP'.

Let the external surface of the hemisphere be entirely

divided up into very small portions and the corresponding

pyramids drawn. Their centres of gravity all lie on the

hemisphere L'P'aM' whose centre is and whose radius is

0a{=\0A).
Hence the centre of gravity of the solid hemisphere is

the same as that of the hemispherical shell L'P'aM', i.e. it

is at G, where
0G = \0a- 40A.

231. In a similar manner we may obtain the position

of the centre of gravity of a spherical sector which is the

figure formed by the revolution of a circular sector, such as

the figure OAQEBO, in the figure of Art. 228, about the

bisecting radius OE.

The distance of its centre of gravity from is easily

seen to be f (OL + OE).

232. There are some points which are not quite

satisfactory in the foregoing proofs. For a strict demon-

stration the use of the Calculus is required.
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233. Virtual Work.

When we have a system of forces acting on a body in

equilibrium and we suppose that the body undergoes a

slight displacement, which is consistent with the geometrical

conditions under which ilie system exists, and if a point Q of

the body, with this imagined displacement, goes to Q\ then

QQ' is called the Virtual Velocity, or Displacement, of the

point Q.

The word Virtual is used to imply that the displacement
is an imagined, and not an actual, displacement.

234. If a force R act at a point Q of the body and

QQ' be the virtual displacement of Q and if Q'N be the

perpendicular from Q' on the direction of R, then the

product R. QN is called the Virtual Work or Virtual

Moment of the force R. As in Art. 127 this work is

positive, or negative, according as QN is in the same

direction as R, or in the opposite direction.

235. The virtual work of a force is equal to the

sum of the virtual works of its components.

Let the components of R in two directions at right

angles be X and Y, R being
inclined at an angle <f>

to the

direction of X, so that

X = Rcos<f> and YR sin
<f>.

Let the point of application

Q of R be removed, by a virtual

displacement, to Q' and draw Q'N perpendicular to R
and let

lNQQ'= a.
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The sura of the virtual works of X and Y

= X.QL+Y.QM
R cos

<f>
. QQ' cos

(<
+ a) + P sin

<f>
. QQ' sin

(<
+ a)

= R . QQ' [cos </>
cos

(<
+ a) + sin

<ft
sin

(<f>
+ a)]

= R . QQ' cos a

= R.QN
= the virtual work of R.

236. The principle of virtual work states that If a

system offorces acting on a body be in equilibrium and the

body undergo a slight displacement consistent with the

geometrical conditions of the system, the algebraic sum of

the virtual works is zero ; and conversely if this algebraic

sum be zero the forces are in equilibrium. In other words,

if each force R have a virtual displacement r in the

direction of its line of action, then % (R . r) ;
also con-

versely if 2,(R . r) be zero, the forces are in equilibrium.

In the next article we give a proof of this theorem for

coplanar forces.

237. Proof of the principle of virtual work for any
system of forces in one plane.

Take any two straight lines at right angles to one

another in the plane of the forces and let the body under-

go a slight displacement. This can clearly be done by

turning the body through a suitable small angle a radians

about and then moving it through suitable distances a

and b parallel to the axis.

[The student may illustrate this by moving a book from any
position on a table into any other position, the book throughout
the motion being kept in contact with the table.]
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Let Q be the point of application of any force R, whose

coordinates referred to are

x and y and whose polar

coordinates are r and 8, so

that x r cos $ and y = r sin 0,

where C> = r and X<9<2 = ft

When the small displace-

ment has been made the coordinates of the new position

Q' of Q are

r cos (6 + a) + a and r sin (0 + a) + b,

i.e. r cos 6 cos a r sin sin a + a

and r sin 6 cos a + r cos sin a + 6,

i.e. r cos 6 a . r sin + a

and r sin + a.r cos + 6,

since <z is very small.

The changes in the coordinates of Q are therefore

a a.r sin 6 and b + a.r cos 0,

i.e. a ay and 6 + asc.

If then X and F be the components of R, the virtual

work of R, which is equal to the sum of the virtual

works of X and F, is

X (a ay) + Y (b + ax),

i.e. a.X +b. Y+ a(Yx-Yy).

Similarly we have the virtual work of any other

force of the system, a, b, and a being the same for each

force.'

The sum of the virtual works will therefore be zero if

a% (X) + b% ( F) + a% (Yx - Xy) be zero.

If the forces be in equilibrium then 2 (X) and 2 ( F) are

the sums of the components of the forces along the axes

OX and 0Y and hence, by Art. 83, they are separately

equal to zero.
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Also Yx Xy = sum of the moments of X and Y about

the origin moment of R about 0. (Art. 62.)

Hence % ( Yx Xy) sum of the moments of all the

forces about 0, and this sum is zero, by Art. 83.

It follows that if the forces be in equilibrium the sum

of their virtual works is zero.

238. Conversely, if the sum of the virtual works be

zero for any displacement, the forces are in equilibrium.

With the same notation as in the last article, the sum of

the virtual works is

a%(X) + b%{Y) + a-%{Yx-Xy) (1),

and this is given to be zerofor all displacements.

Choose a displacement such that the body is displaced

only through a distance a parallel to the axis of x. For

this displacement b and a vanish, and (1) then gives

d%(X) = 0,

so that 5 (X)
^ 0, i.e. the sum of the components parallel to

OX is zero.

Similarly, choosing a displacement parallel to the axis

of y, we have the sum of the components parallel to OY
zero also.

Finally, let the displacement be one of simple rotation

round the origin 0. In this case a and b vanish and (1)

gives

%{Yx-Xy) = Q,

so that the sum of the moments of the forces about

vanish.

The three conditions of equilibrium given in Art. 83

therefore hold and the system of forces is therefore in

equilibrium.
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239. Ag an example of the application of the Principle of

Virtual Work we shall solve the following

problem.

Six eaual rods AB, BC, CD, DE, EF,
and FA are each of weight W and are

freely jointed at their extremities so as to

form a hexagon; the rod AB is fixed in a
horizontal position and the middle points

of AB and DE are joined by a string;

prove that its tension is 3W.

Let Gj, G2 ,
G3 ,'G4 ,

G
6 , and G6 be the

middle points of the rods.

Since, by symmetry, BG and CD are equally inclined to the

vertical the depths of the points C, G. and D below AB are respec-

tively 2, 3, and 4 times as great as that of G.2 .

Let the system undergo a displacement in the vertical plane of

such a character that D and E are always in the vertical lines through
B and A and DE is always horizontal.

If G2 descend a vertical distance x, then G3 will descend 3x, G4

will descend 4x, whilst Gs and G6 will descend 3# and x respectively.

The sum of the virtual works done by the weights

= W.x + W.Bx+WAx + W.3x+ W.x
= 12W.x.

If T be the tension of the string, the virtual work done by it

will be

Tx(-4:X).

For the displacement of G4 is in a direction opposite to that in

which T acts and hence the virtual work done by it is negative.

The principle of virtual work then gives

12W.x + T(-4:x)=0,

i.e. T=3W.

240. RobervaPs Balance. This balance, which

is a common form of letter-weigher, consists of four rods

AB, BE, ED, and DA freely jointed at the corners A, B,

E, and D, so as to form a parallelogram, whilst the middle

points, G and F, of AB and ED are attached to fixed

points G and F which are in a vertical straight line. The

rods AB and DE can freely turn about G and F.
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To the rods AD and BE are attached scale-pans. In

one of these is placed the substance W which is to be

weighed and in the other the counterbalancing weight P.

We shall apply the Principle of Virtual Work to prove
that it is immaterial on what part of the scale-pans the

weights P and W are placed.

Since CBEF and CADF are parallelograms it follows

that, whatever be the angle through which the balance is

turned, the rods BE and AD are always parallel to CF and

therefore are always vertical.

If the rod AB be turned through a small angle the

point B rises as much as the point A falls. The rod BE
therefore rises as much as AD falls, and the right-hand

scale-pan rises as much as the left-hand one falls. In such

a displacement the virtual work of the weights of the rod

BE and its scale-pan is therefore equal and opposite to the

virtual work of the weights of AD and its scale-pan. These

virtual works therefore cancel one another in the equation
of virtual work.

Also if the displacement of the right-hand scale-pan be

p upwards, that of the left-hand one is p downwards.
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The equation of virtual work therefore gives

P.p + W(-p) = 0,

i.e. P=W.

Hence, if the machine balance in any position whatever,

the weights P and W are equal, and this condition is

independent of the position of the weights in the scale-pans.

The weights therefore may have any position on the

scale-pans.

It follows that the scale-pans need not have the same

shape, nor be similarly attached to the machine, provided

only that their weights are the same.

For example, in the above figure either scale-pan instead

of pointing away from GF may point towards it, and no

change would be requisite in the position of the other.

EXAMPLES. XXXIX.

1. Four equal heavy uniform rods are freely jointed so as to
form a rhombus which is freely suspended by one angular point and
the middle points of the two upper rods are connected by a light rod
so that the rhombus cannot collapse. Prove that the tension of
this light rod is 4JFtana, where W is the weight of each rod and 2a
is the angle of the rhombus at the point of suspension.

2. A string, of length a, forms the shorter diagonal of a rhombus
formed of four uniform rods, each of length b and weight W, which
are hinged together.

If one of the rods be supported in a horizontal position prove that
the tension of the string is

2TT(26
2 -a2

)

bJW-a?
'

3. A regular hexagon ABCDEF consists of 6 equal rods
which are each of weight W and are freely jointed together. The
hexagon rests in a vertical plane and AB is in contact with a
horizontal table; if G and F be connected by a light string, prove
that its tension is W sj.
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4. A tripod consists of three equal uniform bars, each of length
a and weight w, which are freely jointed at one extremity, their

middle points being joined by strings of length 6. The tripod is

placed with its free ends in contact with a smooth horizontal plane
and a weight W is attached to the common joint; prove that the

tension of each string is

f (2W+ Bw)
b

.

5. A square framework, formed of uniform heavy rods of equal

weight W, jointed together, is hung up by one corner. A weightW is suspended from each of the three lower corners and the shape
of the square is preserved by a light rod along the horizontal

diagonal. Prove that its tension is 4W.

6. Four equal rods, each of length a, are jointed to form a
rhombus ABCD and the angles B and D are joined by a string of

length I. The system is placed in a vertical plane with A resting on
a horizontal plane and AC is vertical. Prove that the tension of the

string is 2W
, , where IT is the weight of each rod.

V4a2_p'

7. A heavy elastic string, whose natural length is 2ira, is placed
round a smooth cone whose axis is vertical and whose semivertical

angle is a. If IF be the weight and X the modulus of elasticity of the

string, prove that it will be in equilibrium when in the form of a circle

whose radius is a ( 1 + x r cot a
)

.

8. Two equal uniform rods AB and AC, each of length 26, are

freely jointed at A and rest on a smooth vertical circle of radius a.

Shew, by the Principle of Virtual Work, that, if 20 be the angle
between them, then

frsin3 0=acos 6.

9. Solve Ex. 13, page 278, by the application of the Principle
of Virtual Work.



318 STATICS

EASY MISCELLANEOUS EXAMPLES.

1. Find the resultant of two forces, equal to the weights of 13

and 14 lbs. respectively, acting at an obtuse angle whose sine is -

x
-

a

2. Resolve a force of 100 lbs. weight into two equal forces acting
at an angle of 60.

3. ABCD is a square; forces of 1 lb. wt., 6 lbs. wt. and 9 lbs. wt.

act in the directions AB, AC, and AD respectively; find the magni-
tude of their resultant correct to two places of decimals.

4. The resultant of two forces, acting at an angle of 120, is

perpendicular to the smaller component. The greater component is

equal to 100 lbs. weight ;
find the other component and the resultant.

5. If E and F be the middle points of the diagonals AG and BD
of the quadrilateral ABCD, and if EF be bisected in G, prove that the

four forces represented in magnitude and direction by AG, BG, CG,
and DG, will be in equilibrium.

6. A stiff pole 12 feet long sticks horizontally out from a vertical

wall. It would break if a weight of 28 lbs. were hung at the end.

How far out along the pole may a boy who weighs 8 stone venture

with safety?

7. A rod weighing 4 ounces and of length one yard is placed on a
table so that one-third of its length projects over the edge. Find the

greatest weight which can be attached by a string to the end of the

rod without causing it to topple over.

8. A uniform beam, of weight 30 lbs., rests with its lower end on
the ground, the upper end being attached to a weight by means of a
horizontal string passing over a small pulley. If the beam be

inclined at 60 to the vertical, prove that the pressure on the lower

end is nearly 40 lbs. wt., and that the weight attached to the string is

nearly 26 lbs. wt.

9. Find the centre of parallel forces which are equal respectively
to 1, 2, 3, 4, 5, and 6 lbs. weight, the points of application of the

forces being at distances 1, 2, 3, 4, 5, and 6 inches respectively
measured from a given point A along a given line AB.

10. The angle B of a triangle ABC is a right angle, AB being
8 inches and BC 11 inches in length; at A, B, and C are placed

particles whose weights are 4, 5, and 6 respectively; find the distance

of their centre of gravity from A.
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11. On the side AB of an equilateral triangle and on the side

remote from C is described a rectangle whose height is one half of

AB ; prove that the centre of gravity of the whole figure thus formed
is the middle point of AB.

12. From a regular hexagon one of the equilateral triangles with
its vertex at the centre, and a side for base, is cut away. Find the

centre of gravity of the remainder.

13. A pile of six pennies rests on a horizontal table, and each

penny projects the same distance beyond the one below it. Find the

greatest possible horizontal distance between the centres of the highest
and lowest pennies

14. The pressure on the fulcrum when two weights are suspended
in equilibrium at the end of a straight lever, 12 inches long, is 20 lbs.

wt. and the ratio of the distances of the fulcrum from the ends is

3 : 2. Find the weights.

15. A straight lever of length 5 feet and weight 10 lbs. has its

fulcrum at one end and weights of 3 and 6 lbs. are fastened to it at

distances of 1 foot and 3 feet from the fulcrum ; it is kept horizontal

by a force at its other end; find the pressure on the fulcrum.

16. Find the relation between the effort P and the weight W in a

system of 5 movable pulleys in which each pulley hangs by a separate

string, the weight of each pulley being P.

17. In the system of 5 weightless pulleys in which each string is

attached to a weightless bar from which the weights hang, if the

strings be successively one inch apart, find to what point of the bar the

weight must be attached, so that the bar may be always horizontal.

18. A body, of mass 5 lbs., rests on a smooth plane which is

inclined at 30 to the horizon and is acted on by a force equal to the

weight of 2 lbs. acting parallel to the plane and upwards, and by a
force equal to P lbs. weight acting at an angle of 30 to the plane.
Find the value of P if the body be in equilibrium.

19. If one scale of an accurate balance be removed and no mass
be placed in the other scale, prove that the inclination of the beam to

the horizon is tan-1 =
,
where 2a is the length of the beam, hWk+ Sh 8 '

and k are respectively the distances of the point of suspension from
the beam and the centre of gravity of the balance, and S and W arc

respectively the weight of the scale-pan and the remainder of the
balance.

20. If the distance of the centre of gravity of the beam of a
common steelyard from its fulcrum be 2 inches, the movable weight
4 ozs., and the weight of the beam 2 lbs., find the distance of the zero
of graduations from the centre of gravity. Also, if the distance
between the fulcrum and the end at which the scale-pan is attached
be 4 inches, find the distance between successive graduations.
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21. If the circumference of a screw be 20 inches and the distance

between successive threads *75 inch, find its mechanical advantage.

22. The height of a rough plane is to its base as 3 to 4 and it is

found that a body is just supported on it by a horizontal force equal
to half the weight of the body ; find the coefficient of friction between
the body and the plane.

23. -A- ladder, 30 feet long, rests with one end against a smooth
vertical wall and with the other on the ground, which is rough, the

coefficient of friction being \ ; find how high a man whose weight is

4 times that of the ladder can ascend before it begins to slip, the foot

of the ladder being 6 feet from the wall.

24. A cylindrical shaft has to be sunk to a depth of 100 fathoms

through chalk whose density is 23 times that of water; the diameter
of the shaft being 10 feet, what must be the h.p. of the engine that

can lift out the material in 12 working days of 8 hours each ?

**HARDER MISCELLANEOUS EXAMPLES.

1. If O be the centre of the circle circumscribing the triangle

ABC, and if forces act along OA, OB, and OC respectively propor-
tional to BC, CA, and AB, shew that their resultant passes through
the centre of the inscribed circle.

2. Three forces act along the sides of a triangle ABC, taken
in order, and their resultant passes through the orthocentre and
the centre of gravity of the triangle; shew that the forces are in

the ratio of

sin 2A sin (B
-

C) : sin 2B sin (C
-
A) : sin 2(7 sin (A

-
B) .

Shew also that their resultant acts along the line joining the centres

of the inscribed and circumscribing circles, if the forces be in the

ratio

cosl? cosC : cosC-cos.4 : cos.4 cos-B.

3. Three forces PA, PB, and PC, diverge from the point P and
three others AQ, BQ, and CQ converge to a point Q. Shew that

the resultant of the six is represented in magnitude and direction

by 3PQ and that it passes through the centre of gravity of the

triangle ABC.

4. T is the orthocentre, and the circumcentre of a triangle

ABC; shew that the three forces AT, BT, and CThave as resultant

the force represented by twice OT.
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5. Find the centre of gravity of three particles placed at the

centres of the escribed circles of a triangle, if they be inversely

proportional to the radii of these circles.

6. ABCD is a rectangle; find a point P in AD such that, when
the triangle PDC is taken away, the remaining trapezoid ABCP
may, when suspended from P, hang with its sides AP and BG
horizontal.

7. A triangular lamina ABC, obtuse-angled at G, stands with
the side AG in contact with a table. Shew that the least weight,
which suspended from B will overturn the triangle, is

a"+ 3b--c2

~S }V c2 -aa -62 '

where W is the weight of the triangle.

Interpret the above if c*>-d,+86*.

8. A pack of cards is laid on a table, and each card projects
in the direction of the length of the pack beyond the one below it ;

if each project as far as possible, shew that the distances between
the extremites of successive cards will form a harmonica! pro-

gression.

9. If aA, bB, cG ... represent n forces, whose points of appli-
cation are a, b, c ... and whose extremities are A, B, G, ..., shew that
their resultant is given in magnitude and direction by n.gG, where
g is the centre of inertia of n equal particles a, b,'c, ..., and G the
centre of inertia of n equal particles A, B, C, ....

What follows if g coincide with <??

10. From a body, of weight W, a portion, of weight w, is cut
out and moved through a distance x ; shew that the line joining the
two positions of the centre of gravity of the whole body is parallel to

the line joining the two positions of the centre of gravity of the part
moved.

11. Two uniform rods, AB and AC, of the same material are

rigidly connected at A, the angle BAC being 60, and the length
of AB being double that of AC. If G be the centre of inertia of the

/19
rods, shew that BG=AG .

r^, and, if the system be suspended

freely from the end B of the rod AB, shew that the action at A
consists of a vertical force equal to one-third of the weight, W, of

the system, and a couple whose moment is

L. s. 21
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12. If the hinges of a gate be 4 feet apart and the gate be 10 feet

wide and weigh 500 lbs., shew that, on the assumption that all the

weight is borne by the lower hinge, the stress on the upper hinge
must be 625 lbs. wt.

13. A step-ladder in the form of the letter A, with each of its legs

inclined at an angle a to the vertical, is placed on a horizontal floor,

and is held up by a cord connecting the middle points of its legs,

there being no friction anywhere; shew that, when a weight W is

placed on one of the steps at a height from the floor equal to - of the

height of the ladder, the increase in the tension of the cord is - TFtan a.

14. A cylinder, of radius r, whose axis is fixed horizontally,
touches a vertical wall along a generating line. A flat beam of uni-

form material, of length 21 and weight W, rests with its extremities

in contact with the wall and the cylinder, making an angle of 45
Z /5 1

with the vertical. Shew that, in the absence of friction, =
...

_ ,

r (y/10

that the pressure on the wall is ^W, and that the reaction of the

cylinder is -%iJ5W.

15. A uniform rod, of length 32a, rests partly within and partly
without a smooth cylindrical cup of radius a. Shew that in the

position of equilibrium the rod makes an angle of 60 with the

horizon, and prove also that the cylinder will topple over unless its

weight be at least six times that of the rod.

16. A tipping basin, whose interior surface is spherical, is free

to turn round an axis at a distance c below the centre of the sphere
and at a distance a above the centre of gravity of the basin, and a

heavy ball is laid at the bottom of the basin; shew that it will tip

over if the weight of the ball exceed the fraction - of the weight of

the basin.

17. A thin hemispherical shell, closed by a plane base, is filled

with water and, when suspended from a point on the rim of the base,
it hangs with the base inclined at an angle a to the vertical. Shew
that the ratio of the weight of the water to that of the shell is

tan a
-g-

: tan a.

18. A hollow cylinder, composed of thin metal open at both

ends, of radius a, is placed on a smooth horizontal plane. Inside it

are placed two smooth spheres, of radius r, one above the other, 2r

being > a and < 2a. If W be the weight of the cylinder and W the

weight of one of the spheres, shew that the cylinder will just stand

upright, without tumbling over, if

W.a=2W(a-r).
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19. An isosceles triangular lamina, with its plane vertical, rests,

vertex downwards, between two smooth pegs in the same horizontal

line ; shew that there will be equilibrium if the base make an angle
sin-1 (cos

2
a) with the vertical, 2a being the vertical angle of the

lamina and the length of the base being three times the distance

between the pegs.

20. A prism, whose cross section is an equilateral triangle, rests

with two edges horizontal on smooth planes inclined at angles a
and

/3
to the horizon. If be the angle that the plane through these

edges makes with the vertical, shew that

2^/3 sin a sin /8 + sin (a+ ft)tan = 7^ : ; a .

^3 sin (a~p)

21. A thin board in the form of an equilateral triangle, of weight
1 lb., has one-quarter of its base resting on the end of a horizontal

table, and is kept from falling over by a string attached to its vertex
and to a point on the table in the same vertical plane as the triangle.
If the length of the string be double the height of the vertex of the

triangle above the base, find its tension.

22. A solid cone, of height h and semi-vertical angle a, is placed
with its base against a smooth vertical wall and is supported by a

string attached to its vertex and to a point in the wall ; shew that

the greatest possible length of the string is 7ivl+-V"tan
2 a.

23. The altitude of a cone is h and the radius of its base is r ; a

string is fastened to the vertex and to a point on
,
the circumference

of the circular base, and is then put over a smooth peg ; shew that, if

the cone rest with its axis horizontal, the length of the string must

be JW+W.
24. Three equal smooth spheres on a smooth horizontal plane

are in contact with one another, and are kept together by an endless

string in the plane of their centres, just fitting them; if a fourth

equal sphere be placed on them, shew that the tension of the string
is to the weight of either sphere as 1 : 3^/6.

25. A smooth rod, of length 2a, has one end resting on a plane
of inclination a to the horizon, and is supported by a horizontal rail

which is parallel to the plane and at a distance c from it. Shew
that the inclination 6 of the rod to the inclined plane is given by
the equation c sin a= a sin3 cos (0

-
a) .

26. A square board is hung flat against a wall, by means of a

string fastened to the two extremities of the upper edge and hung
round a perfectly smooth rail ; when the length of the string is less

than the diagonal of the board, shew that there are three positions of

equilibrium.

212
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27. A hemispherical bowl, of radius r, rests on a smooth hori-

zontal" table and partly inside it rests a rod, of length 2 J and of

weight equal to that of the bowl. Shew that the position of equili-

brium is given by the equation

Zsin(a+/3)=r sina= -2rcos (a + 2/3),

where a is the inclination of the base of the hemisphere to the hori-

zon, and 2/3 is the angle subtended at the centre by the part of the

rod within the bowl.

28. A uniform rod, of weight W, is suspended horizontally from

two nails in a wall by means of two vertical strings, each of length I,

attached to its ends. A smooth weightless wedge, of vertical angle
W

30, is pressed down with a vertical force
-^-

between the wall and

the rod, without touching the strings, its lower edge being kept hori-

zontal and one face touching the wall. Find the distance through
which the rod is thrust from the wall.

29. AB is a smooth plane inclined at an angle a to the horizon,

and at A, the lower end, is a hinge about which there works, without

friction, a heavy uniform smooth plank AG, of length 2a. Between
the plane and the plank is placed a smooth cylinder, of radius r,

which is prevented from sliding down the plane by the pressure of

the plank from above. If W be the weight of the plank, W that of

the cylinder, and the angle between the plane and the plank, shew
that

W'r . nx 1 - cos 6

^=-= 003 (a + d) : .

Wa v ' sin a

30. Two equal circular discs of radius r with smooth edges,
are placed on their flat sides in the corner between two smooth
vertical planes inclined at an angle 2a, and touch each other in the

line bisecting the angle ; prove that the radius of the least disc that

can be pressed between them, without causing them to separate, is

r (sec a 1).

31. A rectangular frame ABCD consists of four freely jointed

bars, of negligible weight, the bar AD being fixed in a vertical posi-
tion. A weight is placed on the upper horizontal bar AB at a given

point P and the frame is kept in a rectangular shape by a string A C.

Find the tension of the string, and shew that it is unaltered if this

weight be placed on the lower bar CD vertically under its former

position.

32. A uniform rod MN has its ends in two fixed straight rough
grooves OA and OB, in the same vertical plane, which make angles a

and p with the horizon ;
shew that, when the end M is on the point

of slipping in the direction AO, the tangent of the angle of inclina-

tion of MN to the horizon is -. ^ J. ^- r > where e is the
2 sin

(/3 + e) sin (a
-

e)

angle of friction.
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33. A rod, resting on a rough inclined plane, whose inclination a

to the horizon is greater than the angle of friction X, is free to turn

about one of its ends, which is attached to the plane ; shew that,

for equilibrium, the greatest possible inclination of the rod to the

line of greatest slope is sin-1 (tan X cot a).

34. Two equal uniform rods, of length 2, are jointed at one

extremity by a hinge, and rest symmetrically upon a rough fixed

sphere of radius c. Find the limiting position of equilibrium, and
shew that, if the coefficient of friction be c-^-a, the limiting inclination

of each rod to the vertical is tan-1 IJc-^-a.

35. A uniform straight rod, of length 2c, is placed in a horizontal

position as high as possible within a hollow rough sphere, of radius

a. Shew that the line joining the middle point of the rod to the

/Ml
centre of the sphere makes with the vertical an angle tan-1 /

8

~
3

.

36. A rough rod is fixed in a horizontal position, and a rod,

having one end freely jointed to a fixed point, is in equilibrium

resting on the fixed rod ; if the perpendicular from the fixed point

upon the fixed rod be of length b and be inclined to the horizon at an

angle o, shew that the portion of the fixed rod upon any point of which
the movable rod may rest is of length

2nb cos a

/^sin^a n2 cos2a
'

where /j.
is the coefficient of friction.

37. A glass rod is balanced, partly in and partly out of a cylin-
drical tumbler, with the lower end resting against the vertical side

of the tumbler. If a and 8 be the greatest and least angles which
the rod can make with the vertical, shew that the angle of friction is

i , , sin3 a - sin3 8
h tan-1 -^-; . .,

i* .
*

sin2 a cos a + sin2 8 cos 8

38. A rod rests partly within and partly without a box in the

shape of a rectangular parallelopiped, and presses with one end

against the rough vertical side of the box, and rests in contact with
the opposite smooth edge. The weight of the box being four times
that of the rod, shew that if the rod be about to slip and the box
be about to tumble at the same instant, the angle that the rod makes
with the vertical is |x + 2"C 8-1 (h cosX), where X is the angle of

friction.
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39. A uniform heavy rod lies on a rough horizontal table and is

pulled'perpendicularly to its length by a string attached to any point.

About wbat point will it commence to turn?

Shew also that the ratio of the forces, required to move the rod,

when applied at the centre and through the end of the rod perpen-
dicular to the rod, is ^2 + 1 : 1.

40. Two equal heavy particles are attached to a light rod at

equal distances c, and two strings are attached to it at equal distances

a from the middle point; the rod is then placed on a rough hori-

zontal table, and the strings are pulled in directions perpendicular
to the rod and making the same angle B with the vertical on opposite
sides of the rod. Find the least tensions that will turn the rod and

shew that, if the coefficient of friction be -
, the tension will be least

c

when 6 is 45.

41. Two equal similar bodies, A and B, each of weight W, are

connected by a light string and rest on a rough horizontal plane,
the coefficient of friction being /x. A force P, which is less than

2fiW, is applied at A in the direction BA, and its direction is

gradually turned through an angle 6 in the horizontal plane. Shew
that, if P be greater than sJ2fj.W, then both the weights will slip

p
when cos B= 7r- T̂r , but, if P be less than J2p.W and be greater than

ftW, then A alone will slip when sin =C
p-

42. A uniform rough beam AB lies horizontally upon two others

at points A and C ; shew that the least horizontal force applied at B
in a direction perpendicular to BA ,

which is able to move the beam,

is the lesser of the two forces iuTTand uW 5- , where AB is 2a,* 2a -b
AC is b, W is the weight of the beam, and fi the coefficient of friction.

43. A uniform rough beam A B, of length 2a, is placed horizontally
on two equal and equally rough balls, the distance between whose centres

is b, touching them in G and D ; shew that, if b be not greater than

4a
,
a position of the beam can be found in which a force P exerted at

3

B perpendicular to the beam will cause it to be on the point of motion
both at C and D at the same time.

44. A uniform heavy beam is placed, in a horizontal position,
between two unequally rough fixed planes, inclined to the horizon

at given angles, in a vertical plane perpendicular to the planes. Find
the condition that it may rest there.
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45. A uniform rod is in limiting equilibrium, one end resting

on a rough horizontal plane and the other on an equally rough plane
inclined at an angle a to the horizon. If \ be the angle of friction,

and the rod be in a vertical plane, shew that the inclination, 0.

of the rod to the horizon is given by

^ sin(a-2X)_
2 sin X sin (a X)

*

Find also the normal reactions of the planes.

46. If a pair of compasses rest across a smooth horizontal

cylinder of radius c, shew that the frictional couple at the joint
to prevent the legs of the compasses from slipping must be

W (c cot a cosec a - a sin a),

where W is the weight of each leg, 2a the angle between the legs, and
a the distance of the centre of gravity of a leg from the joint.

47. The handles of a drawer are equidistant from the sides of

the drawer and are distant c from each other ; shew that it will be

impossible to pull the drawer out by pulling one handle, unless the

length of the drawer from back to front exceed /ic.

48. If one cord of a sash-window break, find the least coefficient

of friction between the sash and the window-frame in order that the
other weight may still support the window.

49. A circular hoop, of radius one foot, hangs on a horizontal
bar and a man hangs by one hand from the hoop. If the coefficient

of friction between the hoop and the bar be l-=-^/3, find the shortest

possible distance from the man's hand to the bar, the weight of

the hoop being neglected.

50. A square, of side 2a, is placed with its plane vertical between
two smooth pegs, which are in the same horizontal line and at a
distance c

; shew that it will be in equilibrium when the inclination

of one of its edges to the horizon is either 45 or J sin-1
^

.

51. Three equal circular discs, A, B, and C, are placed in contact
with each other upon a smooth horizontal plane, and, in addition,
B and G are in contact with a rough vertical wall. If the coefficient

of friction between the circumferences of the discs and also between
the discs and wall be 2-^/3, shew that no motion will ensue when A
is pushed perpendicularly towards the wall with any force P.
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52. If the centre of gravity of a wheel and axle be at a distance

a from the axis, shew that the wheel can rest with the plane through
the axis and the centre of gravity inclined at an angle less than

to the vertical, where sin<?=- sin0, b being the radius of the axle,

and <p the angle of friction.

53. A particle, of weight w, rests on a rough inclined plane, of

weight W, whose base rests on a rough table, the coefficients of friction

being the same. If a gradually increasing force be applied to the

particle w along the surface of the inclined plane, find whether it will

move up the plane before the plane slides on the table, the angle of

inclination of the plane being a.

54. A rough cylinder, of weight W, lies with its axis horizontal

upon a plane, whose inclination to the horizontal is a, whilst a man,
of weight W (with his body vertical), stands upon the cylinder and

keeps it at rest. If his feet be at A and a vertical section of the

cylinder through A touch the plane at B, shew that the angle, 6, sub-

tended by AB at the centre of the section, the friction being sufficient

to prevent any sliding, is given by the equation

W sin (0+ a)
= {W+ W) sin a.

55. Two rough uniform spheres, of equal radii but unequal
weights Wx and W2 , rest in a spherical bowl, the line joining their

centres being horizontal and subtending an angle 2o at the centre of

the bowl; shew that the coefficient of friction between them is not

less than *
~

Trr
2 tan (

45 -
)

.

56. Two rigid weightless rods are firmly jointed, so as to be at

right angles, a weight being fixed at their junction, and are placed
over two rough pegs in the same horizontal plane, whose coefficients

of friction are p and //. Shew that they can be turned either way

from their symmetrical position through an angle ^tan
-1

,

without slipping.

57. A sphere, of weight W, is placed on a rough plane, inclined

to the horizon at an angle a, which is less than the angle of friction
;

shew that a weight W , , fastened to the sphere at the
cos a - sin a

upper end of the diameter which is parallel to the plane, will just

prevent the sphere from rolling down the plane.

What will be the effect of slightly decreasing or slightly increasing
this weight?
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58. Two equal uniform rods are joined rigidly together at one

extremity of each to form a V, with the angle at the vertex 2a, and

are placed astride a rough vertical circle of such a radius that the

centre of gravity of the V is in the circumference of the circle, the

angle of friction being e. Shew that, if the V be just on the point of

motion when the line joining its vertex with the centre of the circle

is horizontal, then sin e= >/sin a.

If the rods be connected by a hinge and not rigidly connected

and the free ends be joined by a string, shew that the joining string

will not meet the circle if sin a be < J ; if this condition be satisfied,

shew that if the V is just on the point of slipping when the line

joining its vertex to the centre is horizontal, the tension of the string

will be ^/l + cosec a, where W is the weight of either rod.

59. A vertical rectangular beam, of weight W, is constrained by

guides" to move only in its own direction, the lower end resting on a

smooth floor. If a smooth inclined plane of given slope be pushed
under it by a horizontal force acting at the back of the inclined

plane, find the force required.

If there be friction between the floor and the inclined plane, but

nowhere else, what must be the least value of /a so that the inclined

plane may remain, when left in a given position under the beam,
without being forced out?

60. A. circular disc, of weight W and radius a, is suspended

horizontally by three equal vertical strings, of. length b, attached

symmetrically to its perimeter. Shew that the magnitude of the

horizontal couple required to keep it twisted through an angle 6 is

7- 4a2 sin2 ^

61. Two small rings, each of weight TV, slide one upon each of

two rods in a vertical plane, each inclined at an angle a to the

vertical; the rings are connected by a fine elastic string of natural

length 2a, and whose modulus of elasticity is \; the coefficient of

friction for each rod and ring is tan ; shew that, if the string be

horizontal, each ring will rest at any point of a segment of the rod

whose length is

TVX'1 a cosec a {cot (a
-

/3)
- cot (a + /3) }

.

62. A. wedge, with angle 60, is placed upon a smooth table, and

a weight of 20 lbs. on the slant face is supported by a string lying on

that face which, after passing through a smooth ring at the top,

supports a weight TV hanging vertically ;
find the magnitude of TV.
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Find also the horizontal force necessary to keep the wedge at rest

(1) when the ring is not attached to the wedge,

(2) when it is so attached.

Solve the same question supposing the slant face of the wedge to

be rough, the coefficient of friction being j-
and the 20 lb. weight on

the point of moving down.

63. Shew that the power necessary to move a cylinder, of radius
r and weight W, up a smooth plane inclined at an angle a to the
horizon by means of a crowbar of length I inclined at an angle p to

the horizon is

Wr sin a

~T l + cos(a+ /9)'

64. A letter-weigher consists of a uniform plate in the form of a

right-angled isosceles triangle ABC, of mass 3 ozs., which is suspended
by its right angle C from a fixed point to which a plumb-line is

also attached. The letters are suspended from the angle A, and their

weight read off by observing where the plumb-line intersects a scale

engraved along AB, the divisions of which are marked 1 oz., 2 oz.,
3 oz., etc. Shew that the distances from A of the divisions of the
scale form a harmonic progression.

65. A ladder, of length I feet and weight JFlbs., and uniform in

every respect throughout, is raised by two men A and B from a hori-

zontal to a vertical position. A stands at one end and B, getting
underneath the ladder, walks from the other end towards A holding
successive points of the ladder above his head, at the height of d feet

from the ground, the force he exerts being vertical. Find the force

exerted by B when thus supporting a point n feet from A, and shew
that the work done by him in passing from the th to the (n

-
l)

th foot

. Wld
1S

2n(n-l)*
When must A press his feet downwards against his end of the

ladder?

66. Prove that an ordinary drawer cannot be pushed in by a
force applied to one handle until it has been pushed in a distance
a . fi by forces applied in some other manner, where a is the distance
between the handles and fi is the coefficient of friction.

67. Three equal uniform rods, each of weight W, have their ends

hinged together so that they form an equilateral triangle ; the triangle
rests in a horizontal position with each rod in contact with a
smooth cone of semivertical angle a whose axis is vertical; prove

that the action at each hinge is .

s/3
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68. A reel, consisting of a spindle of radius e with two circular

ends of radius a, is placed on a rough inclined plane and has a thread

wound on it which unwinds when the reel rolls downwards. If fi be

the coefficient of friction and a be the inclination of the plane to the

horizontal, shew that the reel can be drawn up the plane by means

of the thread if a be not less than .

r a-c cos a

69. Prove the following geometrical construction for the centre

of gravity of any uniform plane quadrilateral ABCD ; find the centres

of gravity, X and Y, of the triangles ABD, CBD ;
let XY meet BD in

U; then the required centre of gravity is a point G on XY, such that

YG=XU.

70. There is a small interval between the bottom of a door and
the floor, and a wedge of no appreciable weight has been thrust into

this interval, the coefficient of friction between its base and the floor

being known. If the angle of the wedge be smaller than a certain

amount, shew that no force can open the door, the slant edge of the

wedge being supposed smooth.

71. On the top of a fixed rough cylinder, of radius r, rests a thin

uniform plank, and a man stands on the plank just above the point
of contact. Shew that he can walk slowly a distance (n+ 1) re along
the plank without its slipping off the cylinder, if the weight of the

plank is n times that of the man and e is the angle of friction between
the plank and the cylinder.

72. A. hoop stands in a vertical plane on a rough incline which
the plane of the hoop cuts in a line of greatest slope. It is kept in

equilibrium by a string fastened to a point in the circumference,
wound round it, and fastened to a peg in the incline further up and
in the same plane. If X is the angle of friction, 6 the angle the hoop
subtends at the peg, and a that of the incline, shew that there is

limiting equilibrium when = a + cos-1 . . What will

happen if 6 has a greater value ?

73. Shew that the least force which applied to the surface of a

heavy uniform sphere will just maintain it in equilibrium against a

rough vertical wall is

W cos e or Iftan e [tan e - \/tan
2 -

1]

J5 1

according as e<or>cos-1 ^-
, where W is the weight and e the

angle of friction.

74. A uniform rod, of weight W, can turn freely about a hinge at

one end, and rests with the other against a rough vertical wall making
an angle a with the wall. Shew that this end may rest anywhere on
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an aro of a circle of angle 2 tan-1 [fi tan a], and that in either of the

extreme positions the pressure on the wall is \W[oot
2a+ fi

2
]

~
2, where

fi is the coefficient of friction.

75. If the greatest possible cube be cut out of a solid hemisphere
of uniform density, prove that the remainder can rest with its curved
surface on a perfectly rough inclined plane with its base inclined to
the horizon at an angle

sin
LV-8 sina

J'

where a is the slope of the inclined plane.

76. A cylindrical cork, of length I and radius r, is slowly ex-
tracted from the neck of a bottle. If the normal pressure per unit of
area between the bottle and the unextracted part of the cork at any
instant be constant and equal to P, shew that the work done in

extracting it is v/trPP, where /* is the coefficient of friction.



ANSWERS TO THE EXAMPLES.

I. (Pages 15, 16.)

1. (i) 25; (ii) 3,/3; (iii) 13; (iv) ^61; (v) G0
;

(vi) 15 or 7505; (vii) 3.

2. 20 lbs. wt.
;
4 lbs. wt.

3. j'2 lbs. wt. in a direction south-west.

4. 205 lbs. wt.

5. P lbs. wt. at right angles to the first component.

6. 2 lbs. wt. 7. 20 lbs. wt. 8. 17 lbs. wt.

9. G0. 10. 3 lbs. wt.
;

1 lb. wt.

11. (i)
120

; (ii)
cos- 1

(-1),
> 151 3'.

12.
""-\-2jrrj?)'

13. In the direction of the resultant of the two given
forces.

14. (i) 23-8; (ii) 6*64; (iii)
68 12'; (iv) 2*50.

II. (Pages 19, 20.)

1. 5^/3 and 5 lbs. wt. 2.
(i) ^PJ'2 ; (ii) }P.

3. 50 lbs. wt.

4. Each
is^ 100^/3, i.e. 57-735, lbs. wt.

5. 3G-603 and 44-83 lbs. wt. nearly.
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6. P
(^3 -

1) and ?
(^6 - ^2), i.e. P x -732 and

Px-5176.

8. FJ3 and 2F.

9. FJZ at 135 with the other component.

10. 10^/5 at an angle tan" 1

f {i.e. 22-36 at 26
34')' with

the vertical.

11. 33-62 lbs. wt.
;
51-8 lbs. wt.

III. (Pages 25, 26.)

1. 1 : 1 : J3. 2. ^3 : 1 : 2. 3. 120.

4. 90, 112 37' (
- 180 - cos" 1

T%), and 157 23'.

9. ^=34-4 lbs. wt., a^SV; B2=6-5 lbs. wt, a=169\
10. 10H; 57. 11. 52; 95.

12. 67-2"; 101. 13. 46; 138.

14. 29-6; 14. 15. 2-66 cwts.

IV. (Pages 2628.)

1. 40. 2. cos"1 (-^ , i.e. 104 29'.

3. 273 and J3 lbs. wt.

4. 1573 and 15 lbs. wt. 5. 5 : 4.

6. 5 and 13. 9. 12 lbs. wt.

16. The straight line passes through C and the middle

point of AB.

19. The required point bisects the line joining the
middle points of the diagonals.

20. Through B draw BL, parallel to AG, to meet CD
in L ;

bisect DL in X; the resultant is a force through X,
parallel to AD, and equal to twice AD,
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V. (Pages 3335.)

1. 4 lbs. wt. in the direction AQ.

2. n/50 + 32^2 at an angle tan" 1

yj '
*-e- ^"76

lbs. wt. at 36 40', with the first force.

3. 2P in the direction of the middle force.

4. IP at cos" 1

\\, i.e. 38 13', with the third force.

5. J3P at 30 with the third force.

6. 12-31 making an angle tan-1 5, i.e. 78 41', with AB.

7. 14-24 lbs. wt.

8. 5 lbs. wt. opposite the second force.

9. P( /s/5 + l)\/lO + 2 v/5 bisecting the angle between

Q and R.

10. 10 lbs. wt. towards the opposite angular point.

64+19^3
11. V 125 + 68^/3 lbs. wt. at an angle tan-1 v

,

i.e. 15-58 lbs. wt. at 76 39', with the first force.

13. P x 5-027 towards the opposite angular point of the

octagon.

14. 17-79 lbs. wt. at 66 29' with the fixed line.

15. 9-40 lbs. wt. at 39 45' with the fixed line.

16. 39-50 lbs. wt. at 111 46' with the fixed line.

17. 42-5 kilog. wt. at 30 with OA.

VI. (Pages 3841.)

1.



iv STA TICS

10. 7*23 lbs. wt. 11. The weights are equal.

12. 1-34 inches. 13. 2 and 9| lbs. wt.

14. 14 lbs. wt. 15. 6 ft. 5 ins.
;

2 ft. 4 ins.

16. They are each equal to the weight of the body.

18. 2Pcos -, where a is the angle at the bit between
A

the two portions of the rein.

W C
20. Y sec

lr
22 - w > WJ2 -

VII. (Pages 45, 46.)

1. 42-9 lbs. wt.
j
19-91 lbs. wt.

2. 1^ and 1 tons wt.

3. 37-8 and 85-1 lbs. wt. 4. 15-2 lbs.

5. 3*4, 6*6, 3-67, 7 "55 and 5 cwt. respectively.

6. 160 lbs. and 120 lbs. wt.
;
128 and 72 lbs. wt.

7. 20 cwts. and 6 cwts.

8. 244-84 and 561-34 lbs. wt.

9. 2-73 and -93 tons wt.

10. (1) 3, 1 and 1 ton wt.
; (2) 2, and 1 ton wt.

11. A thrust of 5-01 tons wt. in AC, and a pull of 1-79

tons wt. in CD.

VIII. (Pages 5557.)

1. (i) =11, AC = 7 ins.; (ii)
E = 30, AC'=1 ft.

7 ins.; (hi) i?=10, AC =1 ft. 6 ins.

2.
(i)

72 = 8, AC=25 ins.; (ii)
12 = 8, AC = -75 ins.;

(hi) H = 1 7, AC = - 1 9TV ins.

3. (i)<?
=

9, ^8 = 8|ins.; (ii) P=2f, R= 13f ;

(iii)Q=%JB=12f.
4.

(i) # = 25, ^ = 3^ ins.; (ii) P=24|, i?=13f j

(iii)#
= 2f, = 3f,
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5. 15 and 5 lbs. wt. 6. 43| and 13^ lbs. wt.

8. 98 and 70 lbs. wt.

9. The block must be 2 ft. from the stronger man.

10. 4 ft. 3 ins. 11. 1 lb. wt. 12. 1 foot.

13. 20 lbs.
;
4 ins.

;
8 ins. 14. 14| ins. ; 10| ins.

16. 40 and 35 lbs. wt. 17. f TF.

18. The force varies inversely as the distance between

his hand and his shoulder.

19. (i)
100 and 150 lbs. wt.

; (ii) 50 and 100 lbs. wt.
j

(iii) 25 and 75 lbs. wt.

20. 1 lb. wt. at 5 ft. from the first.

21. 77*55 and 34-45 lbs. wt. approx.

IX. (Pages 7174.)
1. 10-1. 2. 573ft.-lbs.

3. 75 ,/3
= 129-9 lbs. wt.

4. 3 ft. 8 ins. from the 6 lb. wt.

5. At a point distant 6 -6 feet from the 20 lbs.

6. 2 ft. from the end. 7. 2f lbs.

8. 2$ lbs.

9. (1)4 tons wt. each
; (2) 4^- tons wt., 3| tons wt.

10. B is 3 inches from the peg. 11. cwt.

12. One-quarter of the length of the beam.

13. 55 lbs. wt.

14. The weight is 3^ lbs. and the point is 8^ ins. from
the 5 lb. wt.

15. 3 ozs. 16. 85, 85, and 29 lbs. wt.

17. 96, 96 and 46 lbs. wt.

18.
1|-|-

ins. from the axle.

19. 272 lbs. wt., parallel to GA, and cutting AD at P,

where AP equals ^AD.
20. 2P acting along DC.

21. The resultant is parallel to AG and cuts AD at P,
where AP is ft.

l. s 22
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22. 20 N/5 lbs. wt, cutting AB and AD in points distant

from A 8 ft. and 16 ft. respectively.

23. Pj'i perpendicular to BC and cutting it at Q where

BQ is ?jBC.

29. The required height is ^IJ2, where I is the length
of the rope.

31. A straight line dividing the exterior angle between

the two forces into two angles the inverse ratio of whose
sines is equal to the ratio of the forces.

33. 225 lbs. wt.

X. (Page 79.)

2. 9 ft.-lbs. 3. 6.

4. A force equal, parallel, and opposite, to the force at

C, and acting at a point C in AC, such that CC is \ AB.

XL (Pages 9296.)
2. 45. 3. 10^/2 and 10 lbs. wte

4. The length of the string is AC.

5. fr^3;JF>.
8. y

must be < 1 and > \.

12. 1^5 and %J5 lbs. wt.

14. W cosec a and IF cot a. 15. JJF^/3.

16. 30
; |WyS ; WJZ. 17. J7 : 2^3.

18. 43V3 1bs. wt. 19. 6lbs. wt.

21. hjh2 + a2 sin2 a/(h + a cos a), where 2a is the height
of the picture.

22. The reactions are

ITand-^ JL- W.
a + b Vr2 - ab + b Jr2 - ah

25. 3-16 ft.
;
133 and 118-8 lbs. wt.

26. 15-5 lbs. wt. 27. 6-75 and 16-6 lbs. wt.

28. 2-83 and 3-61 cwts. 29. 26-8 and 32-1 lbs. wt.
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XII. (Pages 107111.)

1. \WVS. 2. TFV3.

4. |ITcot a; f-
W cot a.

TT sin /3 TT sin a
_j

/cot /? cot a\

sln^T^ sTn^T+^)
;

V 2~ /'

8. I lb. wt. 11. AC = a
;
the tension = 2 TF^/3.

14. The reactions at the edge and the base are

respectively 3 -24 and 4 -8 ozs. wt. nearly.

15. W.r/lsjW^r*. 18. W?. 23. IWJ6.

24. 1331 and 166f lbs. wt.

26. 17$$ and ||- lbs. wt. 27. 20 lbs. wt.

XIII. (Page 113.)

1. The force is 4 J2 lbs. wt. inclined at 45 to the

third force, and the moment of the couple is 10a, wbere
a is the side of the square.

2. The force is 5P J2, parallel to DB, and the moment
of the couple is SPa, where a is the side of the square.

3. The force is 6 lbs. wt., parallel to CB, and the

moment of the couple is ^ ,
where a is the side of

the hexagon.

XIV. (Pages 117, 118.)

1. The side makes an angle tan" 1 2 with the horizon.

2. 15a. 3. (n + 2)*JW+?.

4. A weight equal to the weight of the table.

6. 10 lbs.

7. On the line joining the centre to the leg which is

opposite the missing leg, and at a distance from the centre

equal to one-third of the diagonal of the square.

222
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8. 120 lbs. 9. sin- 1 ^
,

p + w

11. The pressure on A is W -

2 sin i? sin G
'

XV. (Pages 128, 129.)

1. 1J, If, and If feet. 2. 2, 2|, and If feet.

3. 2^/5, 3, and 3 inches.

6. The pressure at the point A of the triangle is

w tv a
1- W ;

3 c sin B '

where a is the perpendicular distance of the weight W from
the side BG.

10. 60. 12. cos-1

2V i.e. 73 44'.

XVI. (Pages 131, 132.)

1. 4^ inches from the end.

2. 15 inches from the end.

3. 2f feet. 4. ff inch from the middle.

5. 7^ inch from the first particle.

6. It divides the distance between the two extreme

weights in the ratio of 7 : 2.

7. 5:1. 8. 1-335... feet. 9. finches.

10. 12 lbs. ;
the middle point of the rod

XVII. (Pages 137, 138.)

1. One-fifth of the side of the square.

2. r from AB :
- from AD.

4 4

3. At a point whose distances from AB and AD are

16 and 15 inches respectively.
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4. 1\ and 8 inches. 5. S^Mj ^V283 -

7. At the centre of gravity of the lamina.

8. 8 and 11$ inches. 10. 2:1:1.

12. At a point whose distances from BG and GA are

respectively yjths and ygths of the distances of A and B
from the same two lines.

14. It divides the line joining the centre to the fifth

weight in the ratio of 5:9.

18. One-quarter of the side of the square.

20. 4J inches from A.

21. It passes through the centre of the circle inscribed

in the triangle.

XVIII. (Pages 141143.)

1. 2Jj inches from the joint.

2. 5|-
inches from the lower end of the figure.

3. It divides the beam in the ratio of 5 : 11.

4. At the centre of the base of the triangle.

5. 7f inches.

7. One inch from the centre of the larger sphere.

8. Its distance from the centre of the parallelogram is

one-ninth of a side.

9. The distance from the centre is one-twelfth of the

diagonal.

10. The distance from the centre is -gyth of the diagonal
of the square.

11. It divides the line joining the middle points of the

opposite parallel sides in the ratio of 5 : 7.

12. 173 inches from 0. 14. ~.
lo

15. A' bisects AD, where D is the middle point of BG.

16. It divides GA in the ratio Jm 1 : m^Jm 3Jm + 1.
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17. The height of the triangle is --

,
i.e. -634, of the

side of the square.

18. yy
5

T inches from the centre.

19. The centre of the hole must be 1 6 inches from the

centre of the disc.

b
3

20. It is at a distance -. = r from the centre of the
a- + ab + 6-

larger sphere.

21. ^|7i, where h is the height of the cone.

22. 13-532 inches.

23. The height, x, of the part scooped out is one-third

of the height of the cone.

24. 3080 miles nearly.

XIX. (Pages 145148.)
1. By 7, 8, and 9 lbs. wt. respectively.

2. 1T\ inch. 6. 5:4.

10. At the centre of gravity of the triangle.

14. imr1
^. 15. J6 : 1.

16. The height of the cone must be to the height of the

cylinder as 2-^2 : 1, i.e. as -5858 : 1.

19. It divides the axis of the original cone in the ratio

3 :5.

XX. (Pages 159162.)

6 W
1. 6f inches. 2. -rr- inches. 4. -w .7

\]v 6

7. 120;^^.
8. 18 if they overlap in the direction of their lengths,

and 8 if in the direction of their breadths.

11. y3 times the radius of the hemisphere.

12. 1 : J2, 14. ir.



(1) 168f ft.-tons; 117f ft.-tons.
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XXIII. (Pages 186, 187.)

1. (i)
320 ; (ii)

7
; (iii) 3.

2. (i)7; (ii)
45 1

; (iii)
7 ; (iv) 6.

3. 290 lbs. 4. lOf lbs. 5. 5 lbs.

7. 5 lbs. 9. 49 lbs.
;

1 lb. each.

10. Uo;21u>. 12. 9iflbs. wt. 13. 18 lbs. wt

XXIV. (Pages 189, 190.)
'

1. 6 lbs. 2. 4 strings ;
2 lbs.

3. 47 lbs.; 6 pulleys. 4. 7 strings; 14 lbs.

W . W
5. -

, where n is the number of strings ; -.
n+ 1 n 1

6. 9 stone wt.

7. The cable would support 2^ tons. 8. n.

9. 75 lbs.
; 166f lbs. 10. 1* cwt.

XXV. (Pages 195, 196.)

1. (i)
30 lbs.

; (ii)
4 lbs.

; (iii) 4.

2. (i)
161 lbs. wt. ; (ii)

16 lbs. wt.
; (iii) \ lb.

; (iv) 5.

3. 10 lbs. wt.
;
the point required divides the distance

between the first two strings in the ratio of 23 : 5.

18**1



ANSWERS xiii

1 7
8. rx lbs. wt.

; p:
lbs. wt. 9. 6 lbs. wt.

11. 16i lbs. 12. . *l

ina
tons.

J sin p sin a

14. The point divides the string in the ratio 1 : sin a.

16. 17-374 lbs. wt.
;
46-884 lbs. wt

17. 10-318 lbs. wt.
;
12-208 lbs. wt.

18. 16-12 lbs. wt. ; 34-056 lbs. wt.

XXVII. (Pages 208, 209.)

1. 7 lbs. wt.

2. 120 lbs. wt. ; 70 lbs. wt. on each; l\0\\ lbs. wt.

3. 20 inches. 4. 7 feet. 5. 3| tons.

6. 3 lbs. wt. 7. 55 lbs. 8. 23* lbs. wt.

9. 2i lbs. wt. 10. 360 lbs. 11. 120 lbs.

12. 1500 ft.-lbs.

13. 47040 ft.-lbs.
;

2 cwt.
; 210 feet.

26 2R
14

13.

c-a' R

XXVIII. (Pages 216, 217.)

1. 11 lbs. 2. 26^ lbs. 3. 2ozs.

4. 2 : 3
;
6 lbs. 5. 24-494 lbs. 6. 5 : ^26.

7. |jl 10 inches; V110 lbs-

9. 2s. 3d
; Is. 9|d

10. He will lose one shilling.

12. 10 : ^101 ; ^101 : 10.

P-Q P+Q
2

' 2

14. w P : P w ; j-P w

15. S _(QzJ? m 16. 16 lbs.P v



xiv STATICS

XXIX. (Pages 222224),

1. 34 inches from the fulcrum.

2. 2 inches from the end
;

1 inch.

3. 32 inches from the fulcrum.

4. | inch
; 4| lbs. 5. 4 inches.

6. 16 lbs.
;
8 inches beyond the point of attachment of

the weight.

7 2 ]}, 18 IV,I . f iU.
, la ID.

8. 26 lbs.
;
15 lbs.

; 10 inches from the fulcrum.

9. 3 lbs. 10. 15| lbs. ; 6| lbs.
;
4 inches

11. It is 10 inches from the point at which the weight
is attached.

12. 3ozs. 13. 30 inches.

15. The machine being graduated to shew lbs. the

weights indicated must each be increased by th of a lb.

16. The numbers marked on the machine must each be
x W

increased by - ^ ,
where x and y are respectively the

distances of the centre of gravity of the machine and its

end from the fulcrum, and W is the weight of the machine.

17. He cheats his customers, or himself, according as he

decreases, or increases, the movable weight.

XXX. (Pages 230, 231.)

(/w the following examples ir is taken to be
-y*-.)

1. 4400 lbs. 2. 5^- inches. 3. | lbs- wt -

4.



ANSWERS xv

XXXI. (Pages 244246.)

1. 10 lbs. wt.; 12i lbs> wt .

10^/17 and hfJU lbs.

wt. respectively, inclined at an angle tan-1 4 with the

horizontal.

2. =^*=4714W 3

3. lO^lO lbs. wt. at an angle tan-1 3 with the

horizon.

6. . 7. |V3 1bs,wt. 9. *&.

10. sin /8
= sin a +

ju,
cos a.

11. tan-1

[Pfnr ur
)

where W^ and Wj, are the two

weights.

14. a x -134.

15. At an angle equal to the angle of friction.

16. 2-19 cwta. 17. 797 lbs. wt.
5

-32.

XXXII. (Pages 257259.)

1. 3808 ft-lbs. 2. 7,392,000 ft. -lbs. 7 T̂ h.p.

3. 23,040,000 ft.-lbs.
;
5T\ h.p.

4. 7766. 6. -446.

7. -11, '34, and '47 nearly.

8. a =4-125; b = -01125.

(The answers to the following four questions
will be only approximations.)

9. a = 5-3; b =-097.

10. P= 7-3 + -236 W;
W w W

36-5+ 1-18 JT 7-3 + -2361T

11. P= 4-3 + 4-7 W; -8 and -88.

12. P = 18-5 + 5-5 W; -59 and -79.



xvi STATICS

XXXIII. (Pages 262, 263.)

1. 1 If lbs. wt. 2. 45.

5. It can be ascended as far as the centre.

8. 50 feet
; one-quarter of the weight of the ladder.

n 2a tan a .

9. w
;

if tan a >
2/a, the weight is negative,tan ci it

i.e. the ladder would have to be held up in order that there

should be equilibrium ;
if tan a <

/a,
the weight is again

negative, and we should then only get limiting equilibrium
if the ladder were held up, and in this case the feet would
be on the point of moving towards one another.

XXXIV. (Pages 264, 265.)

1. tan-1 ^; height = twice diameter. 4. 45.

6. 2 tan- 1^ = 2 tan"1

(-1443) = 16 26'.

8. Unity.

XXXV. (Pages 269273.)

11. j^L-0577. 15.
tx. ( + l) J^a~\30 \w J

18.

20. The required force is ^W at an angle cos '

\\ with

the line of greatest slope.

5 /3
21. In a direction making an angle cos

_1 % (= 15 48')

with the line of greatest slope.

24. If
fj.
cot a be greater than unity, there is no limiting

position of equilibrium, i.e., the particle will rest in any
position.

28. 60.



ANSWERS xvii

XXXVI. (Pages 277, 278.)

SW
1. Ab P, where BP equals \BG ; -y-.

JT ACB
5. T tan-^-.

3W W
7. 7P-; -sr -s/10 at tan-1

^ to the horizontal.

*/5 5

W 3W J3W8 '

J' ~T'> 4
"

10. Half the weight of the middle rod.

12. One-eighth of the total weight of the rods, acting
in a horizontal direction.

XXXVII. (Page 285.)

6. | ft. -lb. 7. fft.-lb.

XXXVIII. (Pages 293296.)

1. 39 lbs. wt.
j
25-8 lbs. wt. at 1 40' to the horizon.

2. 152-3 and 267-96 lbs. wt. 3. -41.

4. 124, 103, 133. 5. 26-9 lbs. wt.

6. 74 lbs. wt.
;
12-7 lbs. wt.

7. A force 2*6 lbs. along a line which cuts BC and AC
produced in points K and L such that CK= 19*25 ins. and
CL = 17 -Q ins.

8. (1) 1 ft. ; (2) 7|- ft. in the direction opposite
to AB.

9. 3-9 ft. from the end.

10. 7-15 lbs. wt. and 6-85 lbs. wt.

11. 150, 158-115, and 50 lbs. wt.

13. Each equals the wt. of 10 cwt.

14. -46
;
91-2 and 57-2 lbs. wt.

15. 58-1, 65-8, 37-4, 33-2, and 29 lbs. wt. respectively.



xviii STATICS

20. 7^13-05; ^ = 9-79; ^ = 3-26; 7>4 =:8-39;T6
= 5 cwts. 1\ and T5 are ties

;
the others are struts.

21. ^ = 8-39; T2 =1V9S- 3̂ =9-62. T2 is a strut;T
x and 1\ are ties.

22. 37-2, 47-5 and 43-1 cwts.

23. 6 tons and 2 tons; 577, M55, 1-155 and 3-464;
of these last four the first, third and fourth are struts and
the second is a tie.

24. The tensions of A B, BC, CD, DA are 32-4, 36-4,
16-8 and 25-5 lbs. wt.

;
the thrust of BD is 307 lbs. wt.

EASY MISCELLANEOUS EXAMPLES.
(Pages 318320.)

1. 1 5 lbs. wt. at an angle tan-1
-|

with the second

force.

2. Each component is 57735... lbs. wt.

3. 14-24 lbs. wt. 4. 50 and 86-6025... lbs. wt.

6. 3 feet. 7. 2 ozs. 9. 4}r inches from A.
p

10. 7$ inches.

12. It divides the line joining the centre to the middle

point of the opposite side in the ratio 2:13.

13. fths of the diameter of a penny.

14. 8 and 12 lbs. wt. 15. 9| lbs. wt.

16. W=P.
17. The required point divides the distance between the

two extreme strings in the ratio 13 : 49.

18. 1^/3 lbs. wt. 20. 18 inches; 4 inches.

21. 26f. 22. T
2
T .

23. He can ascend the whole length.

24. 10#&.



ANSWERS xix

HARDER MISCELLANEOUS EXAMPLES.

(Pages 320332.)

5. The centre of the inscribed circle.

6. P divides AD in the ratio 1 : ^3.

9. The forces are in equilibrium.

21. J lb. wt. 28.
l
-

.

31. W = , where a and b are the lengths of the
ab

' &

sides of the frame and AP is x.

39. At a point distant vc2
4- a2 - a from the centre of

the rod, where 2c is the length of the rod, and a is the

distance from the centre of the given point.

ixcW
40. -. ^ >,, where W is the weight of each

a sin 6 + fxc cos

particle.

44. The difference between the angles of inclination of

the planes to the horizon must be not greater than the sum
of the angles of friction.

45. ITcos Xsin (a- X) coseca, and JTcosAsinA. coseca,
where W is the weight of the rod.

48. The ratio of the depth to the width of the sash.

49. ^3 feet.

53. The particle will move first, if p.W>{\ +/x
2

)wcosa
sin a, where a is the inclination of the face of the plane.

57. The equilibrium will be broken.

W
59. IFtan i

;
-=

> tan i, where W is the weight of

the inclined plane.



XX STATICS

62. ^=10^/3; the force is (i) 5^/3 lbs. weight, and

(ii) zero.

20 /3 10W ~
;
the force is

(i) ^ lhs. wt., and (ii)
zero.

3 sjo

65. He must press downwards when B has raised more
than half the ladder.
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