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Preface 

THIS BOOK HAS BEEN DEVELOPED TO PROVIDE THE BASIS OF AN 

introductory course in probability and statistics for the college and 
university student. It includes material which has been tried out in 

many classes and by several instructors for almost a decade. 

The instructor using the book as a text or the student interested 

in the subject will find that college algebra is a necessary and suffi- 

cient prerequisite for this course, which aims to teach modern but ele- 

mentary ideas, methods of reasoning, and methods of analysis funda- 

mental but not peculiar to any particular specialized field. Once the 

student has acquired a background of elementary methods, prob- 

ability, and frequency distributions, he can be taught some of the 

simpler sampling statistics in common use today. Thus, he may 

learn their importance as well as their application. The serious stu- 

dent will find included in this book problems to provoke thought and 
provide practice in statistical methods and reasoning. 

Some colleges and universities offer statistics courses—often with 

graduate credit—in which the elementary concepts and methods are 

not assumed to be known and hence are taught during the first part 

of the course. It seems to me that one general course in probability 

and statistics, with emphasis on statistical reasoning and modern 

methods, helps to avoid useless duplication of instruction. It also 

leaves time in subsequent courses to do more advanced work in spe- 

cialized fields. Such an introductory course also is rapidly becoming 

a necessary part of a student’s education even if he does not use sta- 

tistics directly in his specialized field. 

It is helpful to the students during the studies of sampling to pro- 

vide them with some mathematical models of populations so that they 

can obtain sampling experiences which—for a whole class—empirically 

verify for them the sampling distributions given in some of the tables 

which they will be using. It has been my experience that most stu- 

dents need this sort of empirical evidence before they really under- 

stand the nature and the use of sampling distributions. Numbers, 
and other symbols, written on plastic discs can be made to correspond 

closely to normal, non-normal, and binomial populations which are 
Vv 
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met in actual practice. These populations, if properly employed, will 

enable the student to understand the more common sampling distri- 
butions rather well despite a lack of familiarity with mathematical 

statistics. Some of the problems in this book assume that such popu- 
lations are available to the students. 

It is desirable to have calculating machines available so that the 

students can learn what operations can be performed on them and can 

solve some of their problems more efficiently. However, I do feel 

that the acquisition of routine computational skills is not worthy of 
much college credit; hence, whenever there are heavy computations in 

a problem in this book, the necessary computations are usually given 

with the problem. For example, D(X) and 2(X?) are given for most 

problems with even a moderate amount of computation and asking 
for the mean and the standard deviation. 

It has been my experience that it takes most of the equivalent of a 

three-semester-hour course to equip the student with the ideas and 

methods he needs before he can solve even the most elementary sam- 

pling problems in any particular field. For that reason we offer at 

Kansas State College a two-hour course in which the rest of the work 

on sampling contained herein can be given, and some applications to 

the students’ fields of interest can be considered. 

It is a pleasure to acknowledge the assistance given me by my col- 

league J. I. Northam, who pointed out errors in previous lithoprinted 

versions and made suggestions regarding the way the material should 

be presented. This book also has derived considerable benefit from 

the reviews made available to me during the last revisions of the 

manuscript. Obviously, the responsibility for all remaining short- 

comings of the book is solely mine. 
H. C. FRYER 

Kansas State College 

Manhattan, Kansas 

December, 1953 



Contents 

1. History AND INTRODUCTION . 

il History. . : 
1.2 Some of the purposes of statistical reasoning 

2. THE SUMMARIZATION OF Sets OF Data INVOLVING ONE TYPE OF 
MEASUREMENT . : 

2.1 The arithmetic mean ene fie ree iavatian 
2.2 The average (or mean) deviation 
2.3 Other averages 
2.4 Frequency distributions 
2.5 Calculation of the arithmetic mean “and the standard devia, 

tion from frequency distribution tables. 
2.6 Percentiles, deciles, and quartiles . 
2.7 Coefficient of variation . 
2.8 Some of the problems created when only a ‘sample of § a popu- 

lation is available for statistical study. 
Review problems . 

3. ELEMENTARY PROBABILITY 

ol The determination of pr aenities : 
Permutations and combinations ; 
Repeated trials under specified conditions ; 
Mathematical expectation 
Review problems 

4. THe BINoMIAL AND NORMAL FREQUENCY DISTRIBUTIONS 

The binomial frequency distribution 
The normal frequency distribution . 
Determination of the proportion of a normal population of 

measurements included between any specified limits 
Use of the normal distribution to approximate probabilities 

for a binomial frequency distribution . ; 
Studying the normality of a pega! distribution by recti- 

fying the r.c.f. curve : ae A oe 
Review problems 

5. SAMPLING FROM BINOMIAL POPULATIONS 

5.1 
5.2 

Obtaining the sample : 
Calculation of point and inter val estimates of p for a binomial 

population 
5.3 Testing predetermined hypotheses regarding D. 

vii 

TL075 



vill 

5.4 

5.5 

5.6 

CONTENTS 

Testing the hypothesis that two random samples came from 
the same binomial population . : 

The x7-test when more than one degree of freedom i is re- 
QUIT OG BEE pane 5. Vie cates ee are apron ce. Seer oe ; 

Control: charts’. \y . asses tek ee oss See ae 
Review problems, 2°) tsk oe saps tee ee 

6. InrRopucTORY SAMPLING THEORY FOR A NORMAL POPULATION IN- 

VOLVING ONLY ONE VARIABLE 

6.1 
6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

Obtaining the sample : 
The statistical distribution of sample means, ge Guan fran 

a normal population 
Estimation of the unknown mean and variance of a popula- 

tion from the information contained in a sample . : 
A statistical test of a hypothesis that a given sample came 

from a normal population with a specified mean . 
A statistical test of the hypothesis that two samples of ob- 

servations have been drawn from the same normal pe 
tion of numerical measurements . . 

Use of the sample range instead of the standard deviation ; in 
certain tests of statistical hypotheses . ; : 

The central limit theorem and non-normal populations ’ 
Review problems 

7. LINEAR REGRESSION AND CORRELATION. 

feel 
7.2 
7.3 

TABLES 

INDEX . 

Scatter diagrams and types of trend lines . ; 
A method for determining linear regression (or trend) lines 
Measurement of the variation about a linear trend line deter- 

mined by the method of least squares 
Coefficients of linear correlation . 
Rank correlation 
Review problems 

ee “@ fe © ‘8 ce ee wy, ‘@ «<e 0 wi Yee <0) , 18) <6, Gor wis 

o Rae: ie fe.” te) ee fer Ger fa) je te” ee ser fei. ww coh te) Ler ce. Fie) vis iain ce feats) fey enemas 

136 



GyneATe Wee R= 

History and Introduction 

1.1 HISTORY 

The word “statistics,” the associated mathematical analyses, and 

the general process of statistical reasoning appear to have begun their 

evolution around the time of Aristotle. This evolution can be de- 

scribed in terms of the following four phases, some of which occurred 

simultaneously among different groups of persons: 

(1.11) An early, highly philosophical, study of “matters of state” 

which did little more for the statistical science used today than help 

to suggest its name. 

(1.12) A semi-numerical and strongly sociological stage typified 

by the mathematical and philosophical study of large groups of 

numerical measurements bearing on health, insurance, foreign and 

domestic trade, and political matters. 

(1.13) The development of the mathematical theory of probabil- 

ity starting in the sixteenth century with mathematical attacks on 

the various problems associated with games of chance. 

(1.14) The current phase, starting late in the nineteenth century, 

during which phases (1.12) and (1.13) were combined, improved, and 

extended to produce a branch of mathematics which can handle a 
wide variety of problems pertaining to the drawing of valid and use- 

ful inferences from relatively small groups of numerical measure- 

ments. 

During Aristotle’s time interest developed in comparative descrip- 

tions of states. Aristotle is reported * to have written at least one 

hundred and fifty-eight descriptions of states, covering their histories, 

public administrations, arts, sciences, and religious practices. It was 

customary to refer to such compositions as treatises on ‘‘matters of 

state.” That apparently is an important part of the origin of the 

* Harald L. Westergaard (1942), Contributions to the History of Statistics, 

King. 

1 



2 HISTORY AND INTRODUCTION Ch. 1 

term “statistics,” although the name itself was coined many years 

after Aristotle’s death. 

For quite a long time after Aristotle a weak interest was main- 

tained in descriptions of states partly by the intellectuals who enjoyed 

that pastime and partly by the rulers of the various states through 

their natural desire to know how many subjects they ruled, and to 

ascertain the wealth within their realms. Hence it is probable that 

some sort of crude census taking was attempted. 

During the seventeenth and eighteenth centuries sufficient interest 

was generated in the study of the political, sociological, and economic 

features of states that societies developed for that purpose. In Ger- 

many this line of intellectual effort caused the development of the 

Staatenkunde, a name which appears to have led rather directly to 

the actual coining of the term “statistics.” However, the Germans 

remained content to pursue the philosophical aspects of “matters of 

state’; hence the Staatenkunde never did become either very mathe- 

matical in character, or very useful. It merely typifies the last stages 

of the purely philosophical phase of the development of the science 

of statistical analysis, and points out its socio-political ancestry. 

Another, and more fruitful, step in the evolution of the present-day 

type of statistical reasoning originated in England under the leader- 

ship of John Graunt. This was a semi-mathematical study of vital 

statistics, insurance, and economic statistics which came to be known 

as “Political Arithmetic.”’ Epidemic diseases periodically decimated 

the populations of European nations; problems of agricultural pro- 

duction, foreign trade, and public administration became too com- 

plex to be handled without some form of numerical measurement and 

an objective means of interpretation of such measurements. Hence 

there was a natural interest in numbers of births and deaths, in esti- 

mates of the populations in various areas, in figures on agricultural 

production and foreign trade, and in methods for administering in- 

surance against the economic situations created by death and dis- 

ability. 

Public interest in specific measurements of populations and of re- 

sources was heightened by the constant danger of war with a neigh- 

boring state, and by the advent of an industrial revolution during 

the eighteenth century. It was the objective of the political arith- 

meticians to help with the collection and interpretation of data perti- 

nent to the economic, sociological, and political problems which were 

becoming increasingly important and numerous. They devised meth- 

ods for estimating the numbers of persons residing in certain political 
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units, and methods for summarizing groups of data. Their efforts to 

apply mathematical analysis to such problems helped to lay the 

foundation for the statistical methods now in use. 
A third step in the evolution of statistical analysis and reasoning 

came in the development of the mathematical theory of probability, 

without which statistical reasoning could never have attained its 

present reliability and usefulness. Games of chance were especially 

popular among the well-to-do of the sixteenth and seventeenth cen- 

turies; and many problems involving probability were presented to 

the mathematicians of the day for solution. For example, an Italian 

nobleman asked Galileo to explain the following facts: If three dice 

are thrown, the numbers 9 and 10 can each be obtained from six 

different combinations of the numbers on the faces of the dice; but 

it has been found from experience that a sum of 10 appears more 

frequently than a sum of 9. Why so? By an enumeration of all the 

physically different ways that three dice can produce sums of 9 or 

10, Galileo was able to answer this question clearly and convinc- 

ingly. His answer appears to be the first published application of 

the theory of probability.* Other prominent mathematicians such 

as Pascal, Fermat, James and Daniel Bernoulli, de Moivre, Laplace, 

Gauss, Simpson, Lagrange, Hermite, and Legendre developed many 

important theorems and methods of attacking problems involving 

chance events, and they passed this information on for later use by 

mathematical statisticians. 

During the last quarter of the nineteenth century, Sir Francis 

Galton took the lead in the development of the ideas of regression 

and correlation when two (or more) measurements are made simul- 

taneously on each member of a group of objects. He appears to have 

built his ideas around problems in genetics. Karl Pearson and C. 
Spearman extended this theory and applied it to studies in the social 

sciences, especially psychology. Karl Pearson and others also had 

* The nature of Galileo’s solution is as follows. A sum of 9 can be obtained 

from any of the following combinations of numbers on three dice: 1, 2, 6; 1, 3, 

5; 1,4, 4; 2, 2,5; 2,3, 4; or 3, 3,3. A sum of 10 is obtained from any of these: 

173,163 1, 4, 532, 2,6; 2;3, 5; 2, 4, 4: or 3, 3, 4. There are six different com-= 

binations giving each of the sums 9 and 10; but the different combinations do 

not occur equally frequently. For example, the combination 3, 3, 3 can be 

thrown but one way whereas the combination 3, 3, 4 can occur on any of three 

different throws, and hence would tend to appear three times as often as 3, 3, 3. 

As a matter of fact, a 9 can be thrown in twenty-five different ways, a 10 in 

twenty-seven different ways, which is the reason that the 10 appears more 

frequently in games than the 9. 
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begun to study the effects of sampling errors on conclusions drawn 

from samples. 

By the end of the nineteenth century the Staatenkunde had ceased 

to exist, and “Political Arithmetic” had died in name but had devel- 

oped into a science of statistical analysis, with emphasis on socio- 

logical and economic applications. The theory of mathematical 

probability had grown extensively as a branch of pure mathematics, 

and also was beginning to be associated with applied statistics. Thus 

the groundwork was laid for the present phase in the evolution of 

statistical theory and methods. 

In 1908 William Seely Gosset, who wrote under the pseudonym 

“Student,” published an article in the journal Biometrika which was 

later to typify the opening of a new era in the statistical analysis and 

interpretation of sampling data. From 1899 until his death in 1937, 

Gosset worked for the brewing firm, Messrs. Guiness. His associa- 

tions with this firm led him into a variety of experiences and sug- 

gested uses for statistical methods which are typical of several of the 

present-day applications of statistics. 

Messrs. Guiness were interested in barley, not just any barley, but 

in those varieties, growing conditions, and practices which would 

produce the best barley for breweries to use. These circumstances 

brought Gosset into contact with agricultural experimentation aimed 

at the improvement of crops and of agricultural practices. Moreover, 

Messrs. Guiness did not wish to subsidize the raising of large crops 

purely for the sake of scientific experimentation; they were a com- 

mercial firm which wanted to show a profit from their enterprises. 

That fact, plus the shortage of tillable land in Ireland and England, 

made Gosset well aware of the importance of small samples and of 

methods for deriving reliable information from such samples. 

Furthermore, a large brewery conducts many chemical analyses, 

and hence needs to take proper account of errors of measurement. 

And, finally, the firm with which Student was associated was con- 

fronted with problems concerning industrial statistics: production and 

marketing analyses, price analyses, and methods for controlling the 

quality of the products which it manufactures for market. Thus Stu- 

dent came into contact with a wide variety of agricultural, economic, 

and industrial problems which would require some form of statistical 

study. Moreover, those problems had to be solved for a commercial 

firm, a situation which demanded efficiency and reliability with a 

minimum cost consistent with these qualities. The twentieth cen- 

tury renaissance of statistical theory and methods appears to be 
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based on that attitude toward the purposes of statistical analysis. 

Unfortunately, the statistical ideas and procedures which Student 

introduced in 1908 did not become familiar to persons outside his own 

firm for nearly a decade, at which time R. A. Fisher and his col- 

leagues in England began to extend and to popularize the theory of 

small samples and its applications. The theory of statistics was 

developed extensively by Jerzy Neyman and Karl Pearson’s son, 

Egon 8. Pearson. They placed special emphasis on rigor in statisti- 

cal reasoning and led the way by publishing many papers in this field. 

Many others have followed their lead since their papers began to 

appear. The results of this research are being applied in many fields, 

such as biology, the physical sciences, industry, economics, sociology, 

medicine, education, and psychology. 

12 SOME OF THE PURPOSES OF STATISTICAL 

REASONING 

Early in his history man displayed a desire to take numerical 

measurements of the various phenomena involving himself and his 

environment. At first, those measures probably consisted of simple 

counts, or of crude measures of weight, volume, length, and area. At 

present many instruments are available for the precise measurement 

of those features of man’s self and environment which interest him. 

He constantly is taking groups of numerical measurements because 

such a procedure can furnish a relatively precise and standard means 

of obtaining the information desired, of using it efficiently, and of 

transmitting that information to others. The general purpose of 

statistical analysis is to assist in the collection and the interpretation 

of sets of numerical measurements which supposedly have been 

taken for some useful purpose. ; 

Once it is decided that a particular phenomenon should be meas- 

ured numerically, one of two general classes of data is then ob- 

tained. It may be that it was both possible and practicable to secure 

every measurement of that particular kind which exists or could be 

obtained under the particular circumstances. Such a complete record 

is one type of statistical population of numerical measurements. An 

example is the record of the ages of all the legal residents of the state 

of Kansas on April 1, 1950, as contained in the official United States 

Census for that date. Another example is a list of the I.Q.’s of all the 

students entering a particular university in a given year. 
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However, it is more commonly true that it is impossible, or un- 

wise, to collect a whole population of numerical measurements. In 

that event we obtain but a portion of a population for actual analysis, 

and attempt to draw from it useful conclusions about the popula- 

tion which was merely sampled. If the sample is to be useful it must 

be adequately representative of the population; that is, it should 

faithfully reflect the important features of the population. 

In the event that the whole population of data is available for 

analysis, the purpose of statistical analysis is to reduce what is a 

relatively large bulk of numbers to a comprehensible form by means 

of graphs and tables and/or by calculating a few figures which con- 

tain most of the important information theoretically available in the 

original mass of data. For example, the ACE scores at the beginning 

of Chapter 2 are numerical measurements which the college took in 

the belief that they would be of value to the student and to the 

school, perhaps by helping to determine what profession the student 

should prepare to enter. Obviously those data are so bulky that they 

demand some sort of condensation. 

It is worth noting at this point that even though the necessity to 

analyze whole populations of data is a rare circumstance, it is not 

logical to study the statistical analysis of samples without some ade- 

quate knowledge of the statistical features of the populations from 

which the samples are taken. Fortunately a considerable amount of 

useful statistical analysis can be learned and appreciated without 

studying more than two general types of populations. 

Whenever we attempt to base conclusions concerning a statistical 

population of numerical measurements upon relatively few observa- 

tions (a sample) from that population, we face two important gen- 

eral questions. (a) How shall the sample be taken so as to maxi- 
mize its chance of being representative of that population? (b) 

Having obtained some numerical observations from the population 

with question a in mind, how do we draw valid conclusions from the 

sample? As an illustration, consider the following sampling prob- 
lem. Suppose that a highway commission is considering the pur- 
chase of some cement for highway construction, and that two com- 

panies are offering their products for purchase. The commission 
wishes to compare the seven-day tensile strengths of the two cements 

before letting the contract. Obviously they must resort to sampling 

because they can test only a tiny portion of each company’s total 

output of a particular sort of cement. It will be supposed, for pur- 

poses of illustration, that it has been decided that ten of the stand- 



Sec. 1.2 PURPOSES OF STATISTICAL REASONING 7 

ard laboratory specimens will be tested from each company’s prod- 

uct. The test of each specimen will produce an “observation” from 

the population of all such tensile strengths possible from that com- 

pany’s cement. All told, there will be twenty samples taken, ten 
from each company. 

Would it be satisfactory to inform each company of the plans for 

testing the cements and ask each company to provide ten specimens 

of concrete for testing? Or, would it be better to go into the open 

market and purchase a sack of each company’s cement from each 

of ten stores and have a laboratory uniformly make up the ten 

testing specimens? Rather clearly the latter method would be much 

more likely to produce specimens which were representative of the 

respective strengths of those concretes at seven days of age. 

One of the purposes of statistical theory is to devise methods for 

taking samples in such a way that they do yield essentially the same 

information as is contained in the population which was sampled. 

For the most part, that phase of statistics lies beyond the scope of 

this book; hence no attempt will be made to do more than to remind 

the reader of a few commonsense considerations from time to time. 

Suppose now that the ten sample specimens of concrete have been 

tested for tensile strength at seven days of age, with the following 

results: 

Cement Seven-Day Tensile Strength (lb./sq. in.) of Concrete 

No. 1 425, 410, 425, 460, 430, 445, 445, 415, 450, and 440 
No. 2 420, 450, 405, 400, 400, 415, 435, 425, 400, and 480 

How do we decide from such evidence whether one concrete will, as 

a rule, excel the other in tensile strength; or if either or both conform 

to pre-assigned standards for such building materials? Casual ob- 

servation indicates that cement No. 1 tends to produce greater ten- 

sile strength in its concrete than No. 2; but there are several speci- 

mens from cement No. 2 that produced greater strength than certain 

of the specimens from No. 1 cement. For example, five of the No. 1 

specimens had tensile strengths at or below 430 pounds per square 

inch, and two of the specimens of cement No. 2 had strengths greater 

than 480 pounds per square inch. Without doubt, then, some batches 

of cement No. 2 are better than some batches of cement No. 1. Such 

a situation is met quite frequently in sampling studies; only rarely 

do progressive improvements in methods or materials come on such 

a large scale that all previous methods or materials are excelled with- 

out exception. What is needed—and now available to a highly use- 
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ful degree—is a method of reasoning which enables us to induce from 

relatively few samples useful information regarding the population 

sampled. 

Inductive reasoning based on evidence obtained from samples 

necessarily runs some risk of error; but as long as the extent of this 

risk can be measured, the process offers real hope for useful appli- 

cation. Much of the recent research in mathematical statistics has 

been devoted to the development of methods of reasoning based on 

sampling observations. 

The reader should not feel from the preceding remarks that sam- 

pling is useful only in scientific research, because everyone is con- 

stantly being confronted with sampling studies of one sort or an- 

other. Radio advertising is quite full of alleged sampling investiga- 

tions during which various products presumably have been tested and 

shown to be superior. Life insurance premiums are based on samples 

of mortality rates among insurable persons. Public opinion polls, 

economic polls, and the like, often reported in the newspapers, are 

attempts to reason from a sample to conclusions about a whole 

population of possible responses to one or more questions. Persons 

who have visited other parts of the world return and, upon the basis 

of relatively small samples, attempt to say how whole nations or 

societies are reacting to certain world events. The reader un- 

doubtedly can think of many other examples of sampling followed 

by more or less valid applications of either inductive or deductive 

reasoning, or what might be better described in this instance as 

statistical inference. 

In closing these introductory remarks, it seems fair to warn the 

student that, as in many other lines of thought, he cannot immedi- 

ately jump into interesting applications of statistical methods and 

reasoning. He must first learn some fundamental principles and 

some statistical tools with which to work, a process which necessarily 

occupies most of the time in a first course in statistics. There is, 

however, nothing to prevent him from reading the rest of the book 

for himself, and from taking other courses in statistics. 
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The Summarization of Sets 
of Data Involving One Type 

of Measurement 

Whenever a statistical investigation is to be made, two initial steps 

must be taken: (a) A group of objects (persons, plants, bolts, or any- 

thing capable of being measured) is specified as the subject to be 

studied. (b) A decision is made regarding the feature of these 

objects that is to be measured numerically or by some qualitative 

designation. Such a set of measurements is called a population if it 

includes every member of the group to be defined in a. For example, 

suppose that an economist proposes to study the net cash incomes 

of beef-cattle ranchers in Kansas during the decade from January 

1, 1944, to January 1, 1954. It would be necessary first to define 

the group of ranchers to be included in this study. How many beef 

animals must he raise? Must the raising of beef cattle be his major 

source of income according to some standard? Are absentee owners 

included? There are many other matters which would have to be 

considered. When a specific group of Kansas ranchers has been 

defined, part a above has been completed. 

Next it is necessary to decide upon the specific meaning of the 

term, net cash income. Is the measurement to be on a per-animal 

basis, or the total for the ranch regardless of its size? Is any ad- 

justment to be made for inflation, cost-of-living indexes, and the 

like? When net cash income has been defined specifically, part b 

listed above has been completed, and the population is defined. 

In some situations it is feasible to obtain every possible one of 

the measurements in a population, as would be the case if every 

beef-cattle rancher in the group discussed above were to be inter- 

viewed and his net cash income determined according to the defini- 

tion adopted by the investigator. Under these circumstances, the 

purpose of statistical analysis is to summarize the information in the 

9 
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data as clearly and as concisely as is possible. A statistical descrip- 

tion of a population will be found to be important also when the 

population is to be studied by means of samples rather than in its 

entirety. There are various widely used methods of accomplishing 

such a purpose. The choice of a method depends upon what is to be 

learned from the data, and upon the statistical characteristics of the 

population which is being summarized. 

The need for statistical descriptions and summaries is pointed out 

rather specifically by means of the data in Table 2.01. It contains 

the 1290 ACE scores made by students entering Kansas State College 

for the first time in 1947. An ACE score is intended to measure 

certain features of a student’s intellect and aptitudes which are 

thought to be related to his success in pursuing one of the various 

possible college curricula. If so, ACE scores should help the student 

and the staff to do a better job of fitting the students’ abilities and 

interests to the facilities which the college has to offer. 

The reader is already generally familiar with the term average as 

some kind of usefully typical number which partially replaces a 

whole group of numbers; but he may be less familiar with the fact 

that there are several averages in use. It should be intuitively 

obvious that no single number, like an average, can be expected to 

summarize adequately the set of data in Table 2.01. Some measure 

of the variability exhibited by these ACE scores is needed; that is, 

an adequate description of the way these scores are dispersed, or 

distributed, between the lowest and highest scores is needed in addi- 

tion to a description of the general level of performance. More 

specifically, we need a standard method of describing any particular 

student’s score relative to the whole group of scores. With such in- 

formation at hand, a trained adviser may be able to give a student 

considerable assistance in the choice of a vocation or a profession, 

or in the solution of personal problems. 

The statistical procedures described and illustrated in this chapter 

will make it possible to replace the 1290 ACE scores by relatively 

few statistical constants, graphs, and tables which still contain all 

the really pertinent information embodied in the original popula- 

tion of numerical measurements. Some of these possible procedures 

will be introduced by means of small sets of data for the sake of 

convenience. Thereafter, reference again will be made to Table 2.01. 



TABLE 2.01 

1290 ACE Test Scores Mabe By STUDENTS ENTERING KANSAS STATE 

COLLEGE DURING 1947 

(Data furnished by the Counseling Bureau of Kansas State College.) 

108 84 104 103 92 103 128 96 82 145 139 128 136 94 67 
84 121 86 108 65 47 75 95 67 53 95 104 95 89 79 
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2.1 THE ARITHMETIC MEAN AND THE STANDARD 
DEVIATION 

When it is necessary to analyze a population of statistical meas- 

urements it often is desirable to calculate a single number which 

will be typical of the general level of magnitude of the measurements 

in the population. Logically, the first question is: What features 

should averages have in order to be typical of the data in some useful 

sense? Therefore, the following properties of averages are suggested 

as being either required of averages, or desirable: 

(2.11) An average should be close, on the scale of measurement, 

to the point (or interval) of greatest concentration of the measure- 

ments in the population. 

(2.12) It should be as centrally located among the numbers as is 

compatible with property (2.11). 

(2.13) An average should be simple to compute if that is achiev- 

able under the circumstances. 

(2.14) It should be tractable to mathematical operations so that 

useful theoretical information can be derived by means of mathe- 

matical methods. 

(2.15) The average should be such that measures of the scatter 

of the data about the average can be obtained and also have prop- 

erties (2.13) and (2.14). 

A simple but crude average which sometimes is quite useful is the 

midrange, MR. It is defined as that number (not necessarily one of 

those being studied) which is halfway between the extreme numbers 

in the set being summarized. For example, the extreme ACE scores 

in Table 2.01 are 23 and 183. The difference is 160; hence 

23 + 183 
MR = 23 + 160/2 = 103, also = ————- 

because this is the number which is halfway between 23 and 183. 

Among the desirable properties of averages listed above, the midrange 

is centrally located (in the sense that it is midway between the 

extremes), and it often is in the region of the greatest concentration 

of the data. It also is easily calculated, but it does not possess the 

other properties listed. In addition, the midrange does not appear 

to be a very reliable average because its size depends on only two of 

the numbers. 
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An average called the arithmetic mean has been found to possess 

all the properties (2.11) to (2.15) to a rather high degree for a broad 

class of statistical populations. In addition, it is extremely useful in 

the analysis of sampling data, as will be shown later. Hence the 

arithmetic mean is a highly recommended average. 

The arithmetic mean, » (Greek letter mu), of N measurements: 

X1,..., Xy is calculated by dividing the sum of the N measurements 

by N. Symbolically, 

DAGig 2 a A 
(2.11) I N 

N 
Xx; 

= ————, or for brevity, » = —- Y, bo N 

To illustrate, suppose that X,; = 2, Xo = 5, X3 = 1, X4 = 3, and X; 

= 4; then the arithmetic mean is 

W(t Ole ect te) [otk ed! ces 

Problem 2.11. Suppose that eight players are on the traveling squad of a 

basketball team, and their weights are 152, 170, 165, 185, 201, 174, 191, and 210 

pounds. What is the arithmetic mean of these weights? 

The first question which may occur to the student is: What are the 

X; in this instance? It is a well-known assumption in arithmetic 

and algebra that the same sum is obtained for a given set of numbers 

no matter what the order of addition; that is, 3+6+ 15 = 24 = 

6+154+3=15+ 3-46, or any other possible order of addition. 

Likewise, in the present problem, it makes no difference which weight 

is symbolized as X,, which as Xo, ete. It is convenient just to let 

X, = the first weight listed, X2. = the second weight on the list, and 

so on. If that is done in this problem, X; = 152, X2 = 170, X3 = 165, 

* Although the discussion in this chapter is chiefly devoted to methods and 

ideas appropriate to populations of data—which usually contain a large number 

of measurements—small groups of numbers will be used in examples and prob- 

lems for the purpose of facilitating and shortening discussions. Obviously, most 

of these problems and examples resemble samples far more than populations. 

However, the methods introduced will apply to populations and will not neces- 

sarily be correct or efficient for sampling studies, as will be noted later in the 

book. 
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Xa = 185, Xs = 201, Xe = 174, X, = 191, and, Xs = 210; allen 

pounds. Therefore, 

8 

>> X;, = Xy + Xo +---+ Xg = 152+ 170 +---+ 210 = 1448 
1 

so that » = 1448/8 = 181 pounds, which is the arithmetic mean of 

the weights. 

Although the number 181 pounds gives a useful impression of the 

general weight size of the players of problem 2.11, it is obvious that 

the same mean weight could have been obtained for many other 

groups of eight weights, some of which might be considered to be 

quite different from those above. For example, each of the following 

sets of eight weights (in pounds) has » = 181: 

Set 1. 185, 180, 181, 184, 182, 179, 177, and 180. 
Set 2. 190, 190, 190, 182, 184, 183, 190, and 139. 
Set 3. 172, 180, 165, 160, 175, 168, 180, and 248. 

In Set 1, the extreme weights are but 8 pounds apart; three weights 

are higher than the mean, four are lower than the mean, and one is 

the same as the mean weight. This set differs from that of problem 

2.11 chiefly by being more uniform. In Set 2, the difference between 

the extremes is 51 pounds, and every weight but one is higher than 

the mean. This set differs from that in problem 2.11 chiefly in the 

fact that the mean actually is not very representative of the weights 

of the squad members. Similar remarks hold for Set 3 except that 

seven of the eight weights are below the mean. To summarize: Sets 

1, 2, and 3 differed from the example of Problem 2.11 in the amount 

of dispersion, or non-uniformity, among the numbers and in the 

manner in which it occurred. All sets of data had the same arith- 

metic mean. 

A measure of the dispersion, or variation, of the measurements, 

X;, about their arithmetic mean, p, logically would be based upon 

the amounts by which the X; are greater than or less than that mean. 

It is customary to symbolize those amounts by x; = X; — p, and to 

call the 2; the deviations from the mean. It is observed that when 

an X is smaller than the mean, the z is negative; when the X is larger 

than the mean, the corresponding deviation, 2, is positive. 

In the first numerical example of this chapter, 7; = —1, v2 = +2, 

tg = —2, X% = 0, and z; = +1. For problem: 2.11, 4, = —29) a 

—11, wv; = —16, % = +4, 2 = +20, rw = —7, t = +10, and 

%g = +29. It is observed that, at least in these instances, =r = 0. 
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The truth of the general theorem that the sum of the algebraic values 

of the x; always is zero is established as follows. By definition and 

simple algebra, Sx = 3(X — p) = 3X — 3(p); but SX = Ny, and 
(pu) also = Nu because this symbol requires that we add N terms 

obtained by letting 7 have values from 1 to N, inclusive. The p stays 

constant for each 7; therefore, 3(u) = Nw. Since Sx = Np — Ny, it 

is always equal to zero, as was to be shown. 

As a consequence of the truth of the above theorem, a measure 

of the variation about the arithmetic mean cannot be based upon the 

algebraic sum of the 2;. Therefore, one of two actions should be 

taken: (a) Ignore the signs of the x; and obtain their mean there- 

after. Or (b), find some other relatively simple function of the 2; 

which has more of the desirable properties (2.11) to (2.15) than are 

obtained by method a. The latter procedure has proved to be the 

more successful and therefore will be considered first. As a matter 

of fact, it involves a function of the squared deviations, 7;?. 

The quantity 

(2.12) o = Vi(z2)/N , 

where o, the Greek letter sigma, has been found by statisticians to be 

a good measure of the variability of a set of numerical measurements 

about their arithmetic mean. Just why it should be so useful cannot 

be shown to the student at this time, but it does have more of the 

desirable properties of measures of variation than any other such 

measure which has yet been devised. The quantity defined by 

formula 2.12 is called the standard deviation of the X; about their 

mean, p. It would be zero if all the X; were equal; the more dis- 

persed they are about the mean, the larger the standard deviation 

tends to be. For example, consider the weights of problem 2.11 and 

of Set 1. The former obviously are more dispersed and generally 

more variable than the latter. The two standard deviations are 18.0 

and 2.4, respectively, which certainly is a concise way to point out 

that, although the mean weights of the two squads are the same, 

their dispersions about that mean are far from the same. 

The square of the standard deviation, o7, is called the variance 

of the X; about ». There are some relatively advanced statistical 

procedures in which it is preferable to work with the variance in- 

stead of the standard deviation, but the latter will be used most of 

the time in this book. 

From the definition of o contained in formula 2.12 it appears that 

each x; must be calculated and squared, but such is not the case. If 
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the z’s are difficult to compute, the following results are useful. In 

view of the fact that 2? = (X — p)? = (X? — 2pX + p?), it should 

be clear that 327 = 3(X? — 2nX + p?) = 3X? — QusX + Sp2. But 

Sy? = Np’, as explained earlier, and p = 3X /N; therefore, —2u3X = 

—2(3X)?/N and Sy? = +1(3X)?/N. It follows that Sx? = 3X? — 

(3X )°/N. If this substitution is made into formula 2.12, the follow- 

ing alternative method for computing the standard deviation, o, is 

obtained: 

ei ZNO, 

(2.13) piel eet e),, 
N 

For a numerical example considered earlier in this chapter, formula 

55 — (15)7/5 — 
2.13 becomes ¢ = eee = V2. The variance is o2 = 2. 

To further illustrate the uses to which o? and o can be put, con- 
sider again the ACE scores of Table 2.01. The arithmetic mean is 

95.7. The standard deviation is calculated to be 26.1 (see problem 

11 at the end of this section), with the extreme scores being 23 and 

183. It is noted that 95.7 is a bit less than midway between the 

lowest and highest scores, but in general it is quite centrally located 

in that respect. To obtain a clearer picture of the dispersion of the 

scores between the extreme scores, and about the mean, the standard 

deviation will be found to be very useful in subsequent discussions. 

It is entirely possible for different sets of data to have essentially 

the same extremes but very different distributions with respect to the 

mean. The o? and o will help to describe these differences. This 

use of the variance and standard deviation is illustrated, in part, by 

the following discussion. 

As the student can verify, approximately 67.1 per cent of the ACE 

scores in Table 2.01 lie within a distance (on the ACE scale) of lo 

below or above the mean, p»; that is, approximately 67.1 per cent of 

the 1290 scores are among the numbers from 70 to 121, inclusive. 

This fact can be put in the following brief form: » + lo includes 

67.1 per cent of the scores. In a strictly normal population the cor- 

responding percentage is 68.3. Such information sometimes is con- 

sidered useful in the summarization of sets of numbers like Table 

7a OTE 
Likewise the interval » + 20 (which includes scores from 44 to 147, 

inclusive) contains 95.2 per cent of the 1290 scores in the table. If 
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this population were perfectly normal, that percentage would be 

95.4. Also the interval » + 30 includes 99.8 per cent of the ACE 

scores, whereas a normal population would have 99.7 per cent of its 

members in that interval. The reader can determine how closely the 

population of Table 2.01 conforms to the normal requirement that 

38.3 per cent of the measurements shall lie not more than one-half a 

standard deviation above or below the mean, p. 

More discussion of normality and of population distributions will 

come later; the point of the above discussion is that knowledge about 

the mean and the standard deviation is useful in the study of one of 

the most important types of populations of data. 

PROBLEMS 

1. Calculate the arithmetic mean and the standard deviation of the following 

numbers: 2, 3, 9, 7, 5, 4, 10, 6, 3, 1, and 5: 

2. Make up three sets of numbers, each of which has uw = 7. 

3. Compute the 2; for problem 1 and verify that =z; = 0. 

4. Given the numbers 0, 8, 0, 1, 1, 1, 10, 2, 1, 1, 2, 3, 0, and 1, compute u. 

Does » seem to you to be a good average for these numbers? Why? Ans. 2.21. 

5. Suppose that the mathematics grades for a certain class were 54, 95, 68, 71, 

87, 75, 84, 63, 76, 81, 70, 90, 73, 77, and 61. Calculate w and co, using the indi- 

vidual z, first and then using formula 2.13 for o. 

6. The following percentages of protein in samples of pasture grasses were 

made available by Dr. George Wise, formerly of the Department of Dairy 

Husbandry at Kansas State College. Compute yp, o?, and o, given that =X 

= 1423.33 and that 2X? = 21,924.2025. 

D2 Oe lo2O loon sb 20 e 1OIS2 9129 12:25" 2007 18:88 

16.52 15.54 16.17 10.03 15.71 12.79 Ss itil 14.85 11.45 

EO 7120 (5:26) 9.31 12.30 18.04 14.19 1294 14.36 

15.02 11.15 12.08 15.41 8.56 9:09) 3:07 12-51 18.91 

14.28 1454 138.68 11.78 14.22 13.07 14.27 10.27 11.01 

11.66 8.19 6.75 1448 15.98 14.36 15.24 14.48 14.05 

15.02 15.41 10.02 9.96 1234 16.26 10.19 14.20 12.56 

9.74 14.34 138.07 12.383 11.57 15.48 11.74 9.39 6.47 

25.09 23.23 16.75 10.62 16.30 17.29 20.63 18.76 11.88 

10.57 8.37 26.20 26.74 22.02 20.60 20.36 15.83 14.11 

22.42 19.47 17.98 20.32 14.83 13.03 10.31 8.055 2 Ea 
16.03 

Ans. 14.23, 16.66, 4.08. 

7. The following are bearings taken with a radio direction finder on a signal 

sent repeatedly from a fixed location. Compute their arithmetic mean and 

standard deviation as though these data constituted a population. 

ee 97 8;6, 4, — 1056, 7, 10, 8; "9; 7, 6, 8, 8, 10; 10; 8, 8, 10, 9, 10, 7,°7; 3, and 8 

(degrees from north). 
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8. The following data are like those of problem 7, but taken on a different 

direction finder. Obtain the variance and the o for these data given that >X2 

= 116,830, 2X = 1708. 

X: 66, 68, 69, 68, 71, 70, 66, 70, 68, 67, 68, 73, 68, 65, 72, 73, 68, 67, 69, 65, 64, 

66, 67, 70, and 70 (degrees from north). Ans. 5.58, 2.36. 

9. Work problem 8, after subtracting 60 degrees from each bearing. How 

much were » and o changed? How much were the z; changed? What if only 

50 degrees had been subtracted? 

10. Use one-sixth of the range in problem 6 as an estimate of the standard 

deviation, and compare this estimate with the true standard deviation. 

Ans. 3.38. 

11. Given that for Table 2.01 [X = 123,445, and =X? = 12,693,988. Calculate 

the arithmetic mean and the variance about the mean, uz. 

12. Given the following six yields of Ponca wheat at Manhattan, Kansas, 

compute their mean after first subtracting 27 from each number. (Data 

provided by Department of Agronomy, Kansas State College.) Yield 

(bushels/acre) : 27.2, 40.9, 46.0, 38.1, 43.8, 46.3. 

Ans. 13.2 bushels per acre; therefore, true mean = 40.2. 

13. The test weights corresponding to the bushel yields of problem 12 were 

as follows (data from same source): 59.3, 60.7, 60.6, 60.2, 61.9, 58.1. Calculate 

the midrange, the arithmetic mean, and the variance. 

14. In problems 12 and 13, which of the types of measurement, yield or test 

weight, gives the more consistent results according to this evidence? Give 

reasons. 

15. Write down every fiftieth score in Table 2.01, starting in the upper left- 

hand corner of the table and working from left to right. Compute the arith- 

metic mean of the sample thus obtained and compute the percentage error 

relative to the true mean, 95.7. 

2.2 THE AVERAGE (OR MEAN) DEVIATION 

A measure of the variation about the arithmetic mean based 

on the numerical values (signs are ignored) of the x; was mentioned 

in the preceding section. If we were to set out to devise a simple 

and logical way to measure the dispersion of a group of numbers 

about some point, such as the arithmetic mean, we might well decide 

to use what is called the average (or mean) deviation. It is the 

arithmetic mean of the x; each taken as a positive number regardless 

of its actual sign. For example, consider the weights of problem 

2.11. The numerical deviations from the mean, p», were found to be: 

29, 16, 11, 7, 4, 10, 20, and 29 pounds. On the average—that is, con- 

sidering the arithmetic mean as the average—the weights of those 
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basketball players differed from the mean weight of the group by 

(29+ 16+ 11+7+4+4 10 + 20 + 29)/8 

= 126/8:= 15.75 pounds. 

Then the average deviation for these weights is 15.75 pounds. 

Symbolically the average deviation is defined by 

>| xX -—p| >| 2 | 
(2.21) AD = ————> of AD==——, 

N N 

where | x | = a deviation from » taken as a positive number whether 
the corresponding X was larger than » or smaller than p. 

For the weights just used for illustration, o = 18.11 pounds. The 

standard deviation is larger than the mean deviation, as is usual. 

The standard deviation is much more widely used than the mean 

deviation partly because it has many useful applications in sampling 

studies, which after all is by far the more fruitful and interesting 

field of statistical analysis. 

2.3 OTHER AVERAGES 

Another average which is simple to compute and of rather wide 

application for descriptive purposes 1s the median, symbolized as md. 

The median of a set of numerical measurements is intended to be a 

number such that one-half the numbers are less than or equal to the 

median, and the other half are greater than or equal to the median; 

that is, the median is exactly in the middle of the set of numbers in 

order of size, if such is possible. 

It is necessary—either actually or effectively—to list the numbers 

in order of size before the median can be determined accurately. 

Such an ordered group of numbers is called an ordered array. Thus 

the numbers 1, 5, 2, 3, 0, 1, 8, and 10 do not form an ordered array, 

whereas these same numbers listed as 0, 1, 1, 2, 3, 5, 8, and 10 do 

constitute an ordered array. 

With the definition of an ordered array established, it is con- 

venient to define the median of N numbers: X,, Xo, ..., Xw as the 

[(N + 1)/2]th number in the array, starting with the lowest num- 

ber in the array. It is noted that only if N is odd does such an ordinal 

number exist; but it is sufficient herein to define an “ordinal” number 

like 4.5 to be a number which is just midway in magnitude between 

the fourth and fifth numbers in the array. For example, for the 
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array used above, N = 8, so that (VN +1)/2=4.5. Hence the 

median is md = 2.5, a number midway in size between the 2 (which 

is the fourth number in the array) and the 3 (which is the fifth num- 

ber in the array). 

It can be seen, with a little study, that the median is an average 

which will be nearer the region of concentration of the numerical 

measurements in a population than the arithmetic mean if there are 

a few “stray” numbers at one end of the scale of measurement. For 

example, consider the following simulated annual salaries (in thou- 

sands of dollars) of college instructors in one department: 3.1, 3.5, 

3.0, 3.6; 3.6, 3.6; 3.8, 3.8, 3:8, 3.9,.3.9, 4.0, 4.0, 4.0, 44, 4.8 -o10 sais: 

8.4, 8.7, and 8.8. For these data N = 21, 3X = 96.1, » = 4.7, and 

md = 3.9. It is seen that eleven of that staff are receiving within 

$300 of the median salary whereas only three are that close to the 

arithmetic mean. The arithmetic mean exaggerates the typical salary 

in a very real sense for all but the fortunate six at the top. In situa- 

tions of this sort—whick. will be described later as skewed distribu- 

tions when more data are involved—the median is a better average 

than the arithmetic mean when its purpose is to describe the typical 

measurement in the population. 

If a fairly large group of numbers is to be summarized and the 

median is a desirable average to use, the midrange can be helpful in 

reducing the necessary labor. For example, the MR for Table 2.01 

is 103; hence we can hope that the median has about the same size. 

On this assumption we can count the scores greater than or equal 

to 100 and thereafter determine exactly the 645.5th number in the 

array without excessive labor. It thus is found that md = 97. 

There are three other averages which will be considered, and 

which will find occasional application to numerical measurements. 

One is the mode (MO). The mode is defined to be that measure- 

ment which occurs in a given set of numbers with the greatest fre- 

quency, if such a number exists. For example, the mode of the set 

5, 8, 9, 10, 10, 10, 11, 18, and 15 is MO = 10. If some number inja 

group of data decisively occurs with the greatest frequency, the 

mode may well be the average to use; but such is rather rarely the 

case. 

The geometric mean of Xy, ..., Xy is defined as the Nth root of 

the product of these numbers. Symbolically, 

&&,. SSS = 

(2.31) GM = X1X9X3 Based XN . 
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Under most circumstances it is easier to compute the geometric 

mean from the relation 

(2.32) log (GM) = — 3(log Oe 

As an illustration consider the numbers 2, 5, 8, and 15. By definition 

GM = the fourth root of the product (2) -(5)-(8)- (15); but, using 

logarithms to the base 10, one has log GM = (log 2+ --- + log 

15) /4 = 0.7698. The antilog 0.7698 is approximately 5.9, which is 

the geometric mean of the given set of numbers. The geometric 

mean is useful in the calculation of certain index numbers, in studies 

of biological growth, and, in general, whenever the statistical array 

indicates that a geometrical series is involved. Obviously the geo- 

metric mean is not used if any X = 0 or if the product under the 

radical is negative. 

The last average to be considered herein is called the harmonic 

mean. It also is used only in specialized circumstances, but the pos- 

session of some information about it will help to round out the reader’s 

knowledge regarding statistical averages. 

The harmonic mean is defined as the reciprocal of the arithmetic 

mean of the reciprocals of a given group of numbers; or 

- 1 is N 

Pacey 8 eS 
For example, if the X’s are 3, 8, 2, 5, and 2 the denominator is 

3(1/X;) = 1/3 + 1/8 + 1/2 + 1/5 + 1/2 = 1.6583, approximately ; 

hence HM = 5/1.6583 = 3.02. One use of the harmonic mean comes 

when rates of some sort are involved. Consider this problem. A man 

drives the first 50 miles of a trip at 50 mph, and the second 50 miles 

at a rate of 60 mph. What is his average rate for the trip? By the 

usual definition, the average rate is obtained by dividing the total 

distance traveled by the total time taken to go that distance. The 

distance traveled was 100 miles. The first 50 miles took one hour, 

and the second 50 miles took five-sixths of an hour; hence the total 

time was 11/6 hours. Therefore, the average rate of speed was 

100/(11/6) = 600/11 = 54 and 6/11 mph. The harmonic mean of 

50 and 60 also is 54 and 6/11 mph; that is, the required average rate 

is Just the harmonic mean of the two rates in this instance. It is 

noted that the distance traveled was the same for each rate of speed. 

Now suppose that a person drives for one hour at 50 mph and then 

the second hour at 60 mph. What is the average rate of speed during 

(2.33) 



22 SUMMARIZATION OF DATA Ch. 2 

this trip? The total distance traveled is 110 miles, and it took 2 

hours; therefore the average rate is 55 mph. But that is just the 

arithmetic mean of the two rates. It is seen that when time (hours) 

was fixed in the problem, the appropriate average was the arith- 

metic mean; when the distance (miles) was fixed and time was 

variable according to the speed of travel, the appropriate average 

was the harmonic mean. 

In general, the proper average to use in any particular situation 

either will be determined at the outset by previous practices in the 

particular sort of work, or it can be determined by a bit of prelim- 

inary study of the matter. Hence no attempt will be made to lay 

down rules. However, it should be apparent to the reader that when 

a body of data is to be summarized statistically there may be several 

possible choices of averages and also of measures of variation. We 
should be fully conscious of this fact when we compute averages, or 

when we interpret those averages computed by someone else. 

PROBLEMS 

1. The following numbers are salaries (in dollars) in a public school system 

before World War II: 1300, 1500, 1300, 1350, 1600, 1250, 1400, 1350, 1800, 4500, 

1450, 3000, 2200, 1250, 1300, 1550, 1700, 1600, 1350, 1400, 1450, 1750, 1500, 1600, 

and 1400. Calculate the arithmetic mean and the median, and state which aver- 

age you consider the more typical of these salaries. 

2. Suppose, in problem 1, that the following raises in salary were given: $2200 

to $3000, $3000 to $3500, $4500 to $5000, $1800 to $2200, $1750 to $2200; and 

all others are given a $100 raise. The salaries of problem 1 add to $41,850, and 

the total of the raises is $4650, approximately 11 per cent of $41,850. Is it then 

fair to state that those teachers received an 11 per cent increase in salary, on 

the average? 

3. Compute the geometric mean of 76.3 and, 85.1. 

4. Sometimes the median can be used as an average when numerical measure- 

ments are not employed. For example, some radio direction finder networks 

rate their bearings as to their quality, ranging from A, (best) through B, C, F, 

and P. If the median does not turn out to be indeterminate (as by falling be- 

tween two different letters) it may be useful in describing the average quality 

of the readings. Obtain the median quality of the following quality ratings: 

ARCH. DA. ts C.D, Paglia lO4 Lata As anders: Ans. C. 

5. What is the modal quality rating for problem 4? 

6. Compute the geometric mean of the salaries in problem 1 to the nearest 

dollar. Ans. $1591. 

7. Suppose that peaches were bought in three different areas for $3 per bushel, 

$2 per bushel, and $4 per bushel, respectively. Suppose also that $24 was spent 

for peaches at each price level. What was the average price paid per bushel? 

8. Do as in problem 7 except to consider that 10 bushels of peaches were 

bought at each price. Ans. $3 per bushel. 
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9. Suppose that 5 bushels of the $3 peaches, 10 of the $2 peaches, and 15 

bushels of the $4 peaches were purchased. What was the average price per 

bushel? 

2.4 FREQUENCY DISTRIBUTIONS 

To introduce the method of constructing frequency distributions, 

and to show what sort of information can be derived from them, 

reference is made to the numbers of Table 2.01. It is possible by 

means of problem 11, section 2.1, to calculate that » = 95.7 and 

o = 26.1. These statistical constants furnish some useful information 

about the population of scores, but they fail quite badly to sum- 

marize them adequately. For example, a person who made a score of 

120 could not be told accurately how he compared with the others 

taking this same test, and that information usually is important in 

the use of such tests. One way to obtain this sort of information is to 

construct frequency distributions and graphs which display the out- 

standing features of the population. 

Two types of summaries of distributions will be considered both 

numerically and graphically: a frequency and a relative cumulative 

frequency (or r.c.f) distribution. Both distributions will be de- 

scribed by means of a grouping of the individual scores into con- 

venient score classes, even though such frequency distributions could 

be made without grouping the members of the population into classes. 

The scores then lose their individual identities and become members 

of ten to twenty groups. The data become more manageable, and 

little accuracy is lost in the process. To illustrate, consider Table 

2.01 again. The extreme scores have been noted previously to be 23 

and 183 so that the range is 160. If the range is divided by 10 a 

quotient of 16 is obtained. Classes of that length would give the 

minimum acceptable number of classes; hence for convenience in 

tallying (as shown below) the class interval will be taken as 15. 

Table 2.41 was constructed starting with the lowest score at 10 purely 

because it was convenient and the lowest class included the lowest 

ACE score in Table 2.01. The actual tallying of the data is shown, 

as is the summarization of the tallies into a frequency (f) for each 

class. In Table 2.42 a more concise form of the frequency distribu- 

tion is shown along with the r.c.f. distribution. The latter distribu- 

tion gives the decimal fraction of the ACE scores which were less 

than or equal to the upper limit of the corresponding score class at 

the left. For example, practically one-third (actually .332) of the 

scores were at or below a score of 84, according to Table 2.42. 
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TABLE 2.41 

FREQUENCY DISTRIBUTION TABLE FOR THE Data OF TABLE 2.01, SHOWING 
TALLYING 

Score Class if 

175-189 /// 3 
160-174 = //// 4 
145-159 TW TW OW OT OOP OT// 33 
130-144 [WIN TN TN TW OM OTN OTN OA OO OT Os 

TH TH] 81 
115-129 WIM OTM TW WOM OM OTN OTA OM OM OOO 

THE TA TAL OTA TA OTN OTA OTN THOT OO OT 
TRE OTNU TAY ONE THE TRE TA TH TR 186 

100-114 TW TN TW OW ON OM ON ON OOM OO OT 
a ea a a 
THE TA TAL PA OTA OT TOT THOT THOT OTOL 
A TA OT OT OTM OTA THOTT OTA OME I 278 

85- 99 TW TH TW OTN OTN OTH OTM OTN OTN OTA OH OTM OT OTN 
THE PA TA OTM OTA OTM OTA OTN OTA OPO OM OTA Oo 
THE TA TA OTA OTR OT OTA OTN ONO OOOH OT 
Dn a a | 

70- 84 «TA TW OTN HOON ON OTN ON OTN ON ONO OO 
TRE PA TA OTA OTA OT OTA OOO TOT oO 
THE TA TA OTM OTA OTM OTA OT OO OHO OT s/I//- 209 

55- 69 TA TW OTM OTM OTN OTN OT OT OT OTN OHO oO 
DN a a 132 

40-54 WIN WW IW WWW IA OO OM ON II! ~—O89 
25- 39 TMI TW TW 15 
10- 24 /// 3 

Total 1290 

To assist in the drawing of conclusions from Tables 2.41 and 2.42, 

the information they contain is presented in graphic form in Figure 

2.41. Conclusions such as the following can be drawn from that figure 

and the tables pertaining to Table 2.01: 

(2.41) Only about 7 per cent of the students made a score less 

than 55. This information can be read directly from Table 2.42 and 

verified approximately from the r.e.f. curve of Figure 2.41. Also, 

approximately 50 per cent of the students made a score of 98 or more, 

a fact which corresponds closely with the fact that the exact median 

is 97. Information of this sort can be obtained from Figure 2.41 by 

reading horizontally from r.c.f. = .50 over to the r.c.f. curve and then 

vertically downward to the scale of ACE scores. 
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TABLE 2.42 

True RELATIVE CUMULATIVE FREQUENCY DISTRIBUTION OF THE DATA 

IN TABLE 2.01 

Score Class fi 

175-189 3 
160-174 4 
145-159 33 
130-144 81 
115-129 186 
100-114 278 
85- 99 Dit 
70— 84 209 
55- 69 132 
40- 54 69 
25- 39 05 
10— 24 3 

Total 1290 

Cae 

1290 
1287 
1283 
1250 
1169 

TCJo 

1.000 
.998 
.995 
2069 
. 906 
762 
546 
302 
at70 
067 
.014 
.002 

25 

(2.42) With specific reference to the student mentioned above 

who made a score of 120, it is learned that about 82 per cent of the 
Hence 

he should be considered to be quite high in aptitude and intelligence 

relative to those who took that same test, and would be expected to 

students did no better; or only about 18 per cent beat him. 

do rather well in college. 

300 
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Relative cumulative frequency 

40 

Figure 2.41. Frequency distributions of the ACE test scores listed in Table 

2.01. Data furnished by the Counseling Bureau of Kansas State College. 
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Other similar information can be read from the above tables and 

graphs. Moreover, it will be shown later that the r.c.f. graph can be 

employed to determine quartile, decile, and even percentile limits if 

the graph is drawn with sufficient care. In addition it will be shown 

in the next section that in some situations good approximations to p 

and o can be computed from the frequency distribution table. In 

brief, the frequency and r.c.f. tables and graphs serve as visual guides 

and as sources of good approximations. If more precise information 

is needed or desired (and it seldom is), one can analyze the individual 

observations. 

The graph of the r.c.f. distribution sometimes is called an ogive. 

PROBLEMS 

1. Following are some numbers of house flies counted on individual dairy 

cows which had been sprayed with a 3 per cent solution of Thanite in 40 oil: 

a5, 37, 41, 103, 174, 7, 11, 32; 238, 7,-6, 3, 14, 23, 23, 36, 25, 27, 3, 3, 13,14, 146) 

15; 95 21595 12513, 15, 19, 29426; 1, 8) 45.9% 7, 12.75, 1-3, 5; 60h iG aAeepeoDs 

28, 9; 3510; [545 25 11,4, 27, 1700). 19, 6; 2)-3, 4,43, o. 12) Tih 14 4b Ae ee bealice 

27, 39, 33, 13,9, 8, 33, 19; 6,12, 32, 11, 35,185 11,25, 23, 45, 30, 4, 4, a oiseaiG: 

11, 16, 18, 32, 49, 129, 7, 21, 26, 76, 40, 5, 7, 5, 7, 4, 62, 91, 133, 61, 59, 20, 26, 10, 

1256, 7, 8, 8, 2,.24, 21, Sl, 110; Wy 6, 4, 4,5, 5; 5, 13,3) 6) andedae Consinuct 

frequency and relative cumulative frequency distributions for these data, esti- 

mate the median, and decide whether u or md is the preferable average for 

these data. Is this a skewed distribution? Use class intervals: 0-8, 9-17, etc. 

2. Graph the distributions asked for in problem 1. 

3. Compute the arithmetic mean and the median of the counts in problem 1. 

Compare them, and draw appropriate conclusions. 2X = 3031, =X? = 163,439. 

4. Estimate from the ogive (7.c.f. curve) for problem 1 what percentage of 

the fly counts lie between 5 and 25, inclusive. Check your calculation by 

actually counting in problem 1. Ans. Graph, 46; by count, 45. 

5. Use the following frequency distribution table of 8-week weights (in grams) 

of male White Rock chickens raised at the Kansas State College Poultry Farm 

and the accompanying graphs to: (a) estimate uw, (b) determine what percentage 

of the weights exceeded 800 grams, (c) determine the range covered by the 

“middle” 50 per cent of the weights, that is, excluding the upper and lower 

25 per cent of the weights. 

6. Construct the frequency and the relative cumulative frequency distribu- 

tions for the following counts, which are similar to those numbers in problem 1: 

6, 8, 13, 36, 48, 65, 34, 24, 49, 24, 40, 18, 20, 34, 87, 28, 14, 30, 24, 53, 57, 938, 36, 

80, 38, 48, 57, 98, 73, 135, 21, 40, 32, 58, 4, 20, 30, 33, 20, 22, 28, 11, 23, 46, 41, 

41, 44; 23, 18, 41, 48. 81, 80; 70; 5, 2, 13, 21, 21, 171, 1,7, 10; 5; 2 esosos Gas: 

10, 23, 19, 3, 25, 16, 131, 19, 19, 24, 12, 10, 4, 5, 2; 14, 17, 18, 10, 8,4; 0, 4, 12, 

14 Il, 17, 33, 3; 2, 4% 10; 17, 4; 5,2, 484 11 3) 18. 32,26) 3, 18.19 eOle0s 

10, 3, 27, 14, 29, 24,13, 26; 31, 5, 20, 16,, 13, 6, 7, 32, 17, 25,6; 8, 5; ZA ISisamn 

2, 1, 3, 26, 38, 44, 3, 5, 6, 22, 28, 16, 22, 8, 19, 12, 3, 24, 10, 8, 33, 20, 29, 3, 15, 
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Relative 

Cumulative Cumulative 

Frequency, Frequency, Frequency, 

Weight Class if Cus mCoi 

1025-1074 1 IPAS 1.000 

975-1024 16 1216 .999 

925- 974 29 1200 .986 

875-— 924 66 1171 .962 

825- 874 148 1105 .908 

775— 824 169 957 . 786 

725- 774 265 788 .647 

675-— 724 210 523 .430 

625-— 674 155 313 PART 

575-— 624 85 158 ~130 

525- 574 51 73 .060 

475-— 524 ils 22 .018 

425- 474 5 5 .004 

Total 1217 

250 1.00 

90 D 

200 80 = 

70 = 

> 150 60 = 
- o 

= 50 2 
2 =) 

u 100 40 : 

30 % 

50 20 © 
10 

0 Lr NI 9 
425 525 625 725 825 925 1025 

Weight 

1SeeOee. Ia, 17, 2%, 23, 23, 10,25, 135/10, 12, 10;6, 6; 14, 24,161; 25, 26; 21, 12; 

15, 18, 19, 26, 21, 11, 0, 0, 8, 34, 66, 32, 7, 8, 23, 20, 24, 62, 8, 15, 19, 33, 20, 51, 

iie2013..27, 15, 10, 16; 16, 5, 4,24) 30, 37, 26,,17; 14, 15, 6, 3, 22,53, 54, 74; 

1710, 12, 22, A9, 52, 31, 7, 20, 23, 28, 56, 2, 6, 6, 30, 30,38, 1, 2, 4, 21, 51, 14, 5, 

17, 21, 28, 9, and 7. 

7. Construct the relative cumulative frequency distribution for the data of 

the preceding problem, and read from it the value of the median. Check that 

result with the value obtained from an ordered array of those data. 

8. Use the graph of the relative cumulative frequency distribution for the 

counts in problem 6 to determine what percentage is less than or equal to ten 

flies per cow. Ans. 29 per cent. 
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9. Within what extremes did the lowest one-fourth of the counts listed in 

problem 6 lie? The middle one-fourth? The highest one-fourth? 

10. Take any newspaper with at least one hundred bond or stock quotations 

and make frequency and relative cumulative frequency distributions of those 

prices. 

2.5 CALCULATION OF THE ARITHMETIC MEAN AND 

THE STANDARD DEVIATION FROM FREQUENCY 

DISTRIBUTION TABLES 

If the frequency distribution table has class intervals of equal 

lengths, approximate values can be computed for » and o with a 
considerable saving in labor as compared to their computation from 

the individual measurements. The method of computation involves 

the sole assumption that the numbers grouped into each class actu- 

ally were at the midpoint of their class. Although that assumption 

is not strictly correct, the individual discrepancies usually balance 

out so well that the net error is unimportant in practice. If it should 

be decided that some additional accuracy is needed, Sheppard’s cor- 

rections for grouping can be employed. (See, for example, Kenney, 

Mathematics of Statistics, Part One, D. Van Nostrand.) 

Table 2.51 presents methods for computing » and o which follow 

directly from the definitions of these quantities if all the data in a 

class are considered to be at the midpoint of the class. For example, 

the data in Table 2.51 would be considered to be 22.5, 22.5, 17.5, 17.5, 

17.5, 17.5,.17.55 174.5, 12-5, 12:5, 12.5, 12.5,-12.5, 12.5, 1225, Ieee 

12.5, 7.5, 7.5, 7.5, 7.5, 7.5, 2.5, and 2.5 each midpoint appearing pre- 

cisely that number of times indicated by the class frequency, f. The 

student should check the fact that the sum of these products is 317.5, 

which is shown in Table 2.51 as the total of the column headed “f-z.” 

The symbol z is employed to denote the midpoint of the class interval. 

For convenience and for uniformity of procedure, the midpoint of a 

class of data measured on a continuous scale is defined to be the 

lower limit of the class (as recorded in the table) plus one-half the 

length of the class interval. Also, the length of the class interval, for 

such data, is defined as the numerical difference between any two 

successive left- or right-hand end points of classes. Thus the mid- 

point of the class “20-24.999 ...” is 20 + (1/2) (5) = the 2 for this 

class interval. 

The reader should note that there will be circumstances in practice 

which will justify a different determination of the midpoint, z. For 
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example, if some objects have been weighed to the nearest pound it 

is reasonable to suppose that an interval written as 20-24 actually 

means 19.5 to 24.5. If the class intervals are so written, the above- 

stated rules apply. The length of the class interval will be 5 as be- 

fore, but the midpoint will be computed as 19.5 + (1/2) (5) = 22.0 

instead of 22.5, as it would be if computed on the assumption that 

the interval started at 20. 

If we are summarizing data which can only be integers, a class 

interval such as 20-24 should include only the numbers 20, 21, 22, 

23, and 24. It then is reasonable to take z = 22. The length of the 

class interval should be taken as 5 again so that the numerical dis- 

tance between midpoints will coincide with the length of the class 

interval, which seems to be a reasonable requirement. The proper 

procedure for other methods of measurement can be figured out along 

the lines just outlined. 

TABLE 2.51 

ILLUSTRATION OF A METHOD OF CALCULATING » AND o FROM THE DATA IN A 

FREQUENCY DISTRIBUTION TABLE WITH CLASS INTERVALS OF EQuat LENGTHS 

Class Midpoint Frequency 
Interval Z ii i2 Z2—p f-@-— 2)? 

20-24 .9 22.5 2 45.0 9.8 192.08 

15-19.9 Niggas 6 105.0 4.8 138.24 

10-14.9 12.5 10 125.0 — 0.2 0.40 

5- 9.9 7.5 5 37.5 — 5.2 135.20 

Q- 4.9 2.5 2 5.0 —10.2 208 .08 

Totals 25 ole 674.00 

Zf-2 317.5 Df-(z — »)? ; Se 1 ol = ; ; mn j 25 do Si 5.19, approximately 

Another, and easier, method of computing p» and o from a frequency 

distribution table with equal class intervals is illustrated in Table 

2.52 along with a partial demonstration of the generality of the 

method. The procedure involves the same assumption made above 

and produces exactly the same values for » and o. However, in this 

method the class interval is employed as the computational unit, 

with the result that the sizes of the numbers needed in the process 

are smaller than those of Table 2.51. This makes the computations 

simpler. 
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The procedures outlined in Table 2.52 can be justified as follows. 

It is obvious that the midpoints, 2;, of Table 2.51 can be rewritten 

as follows: 

2:5 — 2.5 —12(5),, 

7 = 12 — 1(5), 

12.5 = 12.5 + 0(5), 

17.5 = 12.5 + 1(5), 

925 = 12:5 -- 2(5). 

Then 

D(f-z) = 212.5 + 2(5)] + 6[12.5 + 1(5)] + 10[12.5 + 0(5)] 

+ 5[12.5 — 1(5)] + 212.5 — 2(5)]; 

= (2+6+10+5 + 2)(12.5) 

+ [2(2) + 6(1) + 10(0) + 5(—1) + 2(—2)](); 

or, a bit more generally, 

D(f-z) = (2f)(12.5) + 2(f-d)(), 

if d = +2 for the top class of Tables 2.51 and 2.52, d = +1 for the 

next class down, ete., until d = —2 for the bottom class of each of 

those tables. (The symbol J stands for the length of the class in- 

terval.) Therefore, 

Qt) = oie = 12.5+ ce! 
=(f) =(f) 

is the approximation to » which can be obtained from the frequency 

distribution table. It should be clear that some other midpoint be- 

sides 12.5 could have been used without changing the answer ob- 

tained. Hence if there is any best choice of a midpoint to use as a 

base point (with d = 0), that choice must rest on its leading to 

simpler computations. Generally, the d should be taken as zero for 

the class with the greatest frequency. If the distribution is quite 

non-symmetrical, it is advisable to shift the choice one way or the 

other so that the positive and negative fd’s will be more nearly bal- 

anced. This rarely will be more than two classes from the one with 

the greatest frequency, f. 
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It can be seen in Tables 2.51 and 2.52 that when d = 0 for the 

class with the largest frequency (f) the resulting arithmetic involves 

smaller numbers than for the other methods. It should be noted, 

again, that all three of the methods illustrated give exactly the same 

answers; the only differences lie in the ease of computation. 

TABLE 2.52 

ILLUSTRATION OF A SIMPLIFIED METHOD FOR COMPUTING AND o FROM A 

FREQUENCY DISTRIBUTION TABLE WITH EQuaL Cuass INTERVALS 

Method A (d taken 0 Method B (d taken 0 

Mid- Fre- for interval with for interval with 
Class point quency — greatest frequency) lowest frequency) 

Interval Z a d f-d f@& d fed f-@? 

20-24 .9 22.5 2 +2 4 8 0 0 0 
15-19.9 L725 6 +1 6 6 —1 — 6 6 
10-14.9 12.5 10 0 0 0 —2 —20 40 

5- 9.9 7.5 5 —1 —5 5 —3 —15 45 
0- 4.9 2.5 2 —2 —4 8 —4 — 8 32 

Totals 25 +1 27 —49 123 

2(f-d) 
pw = (2 for class with d = 0) + 50) (D = 12.5 + (1/25)(5) = 12.7. 

=n) | URS ECT TEE a’) — ae DP/Z) — (5) i EOE: 2/25 _ 

The derivation of the formula shown for o is more difficult than 

that for », as might be expected, but it can be obtained by elementary 

algebra, formula 2.13, and by expressing each z in terms of the one 

for which d = 0. This derivation will be left as an exercise for the 

ambitious student. 

The methods just described can be applied to obtain satisfactory 

approximations to the arithmetic mean and the standard deviation 

of the ACE scores in Table 2.01, a task which clearly would be quite 

laborious if formulas 2.13 and 2.11 were to be employed directly on 

the 1290 numbers in that table. The d are taken as zero for the class 

with a frequency of 277 (Table 2.42) instead of the class with f = 278 

because they are essentially the same size and the distribution is a 

bit non-symmetrical (or skewed) in the direction of the lower ACE 

scores. The general result is to have smaller d’s with the larger fre- 
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quencies, and hence to make the computations somewhat easier. Fol- 

lowing are the required calculations based on Table 2.42; it is assumed 

that the scores are necessarily integers. 

2 f d fd f-@ 

3 6 18 108 
4 5 20 100 

33 4 132 «528 
81 3 243 729 

186 2 372 744 
278 1 278 278 

92 277 0 0 0 
209 —1 —209 209 
132), ° 29 —264 528 
69 «3 —207 621 
150 4 —"60 ~~ 240 
Wace = 15 75 

Z(f) = 1290 D(f-d) = +308 4160 = D(f-d?) 

By the formulas previously used, 

uw = 92 + (308/1290)(15) = 95.6 compared to the true mean of 95.7. 

4160 — (308)?/1290 
o = (15) ./—_—————_ = 26.7 compared to the true value of 

1290 26.1. 

In view of the fact that the scores were integers, these approxima- 

tions certainly would be considered satisfactory, and the time and 

labor saved by these methods are considerable. 

The distribution of the population of ACE scores is rather sym- 

metrical, that is, there is a region of high frequency about halfway 

between the extremes, and the frequency of occurrence of scores away 

from this region diminishes at about the same rate as scores are 

considered equally far above and below the region of highest fre- 

quency. This distribution is shown in Figure 2.41. With this type 

of distribution the arithmetic mean is an excellent average to use as 

a part of the description of the population. 

Other distributions may be non-symmetrical, or skewed. For such 

populations the median often serves as the more descriptive average. 

As a matter of fact, the difference between the sizes of the arithmetic 

mean and the median is an indication of the degree of skewness or 

lack of symmetry, in the frequency distribution. If the distribution 
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is perfectly symmetrical (no skewness) the arithmetic mean and the 

median are equal. The more skewed the distribution, the farther 

apart the median and this mean may become. 

PROBLEMS 

1. Compute the arithmetic mean of the following numbers by Method A of 

Table 2.52: 

Keel Ser 14. QhalOo12 14. 17, 90 11,.5, 15, 16,8, 2, 18s e123 5-4, 16; 19; 

and 11. 

Use class intervals 2-5.9..., etc., to 22-25.9.... 

2. Compute the arithmetic mean and the standard deviation for problem 1 

exactly, and compare with the values obtained by the methods of Table 2.52. 

Ans. w = 12.2, 6 = 5.5; they are 12.8 and 53 by table. 

3. Put the numerical measurements of problem 1, section 2.4, into a fre- 

quency distribution table with class intervals of equal lengths, and compute 

the standard deviation of those counts. 

4. Do as in problem 3 for the data of problem 6, section 2.4. Ans. 23.7. 

5. Calculate the mean and standard deviation for the hypothetical data in 

the following table. Also, compare six times the standard deviation with the 

range as nearly as it can be derived from the table. 

Class Interval Frequency 

28-29.9... 5 
26-27.9... 16 
24-25.9... 29 
22-23.9... 41 

20-21.9... 50 
18-19.9... 45 
16-17.9... 32 
14-15.9... 20 
12-13.9... 9 
10-11.9... 3 

Total 250 

6. Graph the relative cumulative frequency distribution for problem 5 and 

read from it the percentage of the measurements which exceed 23. Which ex- 

ceed the arithmetic mean. Which lie between the mean and 23. 

Ans. 28%, 50%, 22%. 

7. What is the median for problem 5 as read from the r.c.f. curve?) Which is 

the modal class? Would you expect the mode and the median to differ by 

as much as two units; or less than two units? Give reasons. 

8. Graph the following actual or estimated age distributions of the United 

States population and draw appropriate conclusions regarding apparent trends 

during the decades covered. Consider top class as 0-4 and bottom one as 75-79. 
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(Data from Current Population Report, Population Estimates, August 10, 1950, 

Bureau of the Census.) Numbers are thousands. 

Age Class 

Under 5 years 

5-9 
10-14 

15-19 
20-24 
25-29 
30-34 

35-39 
40-44 

45-49 
50-54 

55-59 
60-64 

65-69 
70-74 

75 years and over 

1940 

10,542 
10,685 
11,746 
12,334 
11,588 
11,097 
10,242 
9 545 
8,788 
8 255 
7,257 
5 , 868 
4,760 
3,748 
2,561 
2,655 

1950 

16,580 
13,959 
11,349 
10,561 
11,585 
12,161 
11,439 
10,960 
10,061 
9,231 
8,254 
7,440 
6,210 
4,611 
3,282 
3,716 

1960 

13,121 
15,693 
17,439 
13,860 
11,274 
10,725 
W774 
12,211 
11,377 
10,713 
9 583 
8,469 
7,205 
5,980 
4,428 
5,083 

9. Change the top and bottom classes in problem 8 to 0-4 and 75-79, and then 

compute ~ and md. Which do you consider the better average here? 

10. Given the following frequency distribution of the minimum annual tem- 

peratures in 116 cities of Kansas, compute the arithmetic mean and the stand- 

ard deviation: 

Temperature 

Interval 

—17.4 to —15.0 

—19.9 —17.5 

—22.4  —20.0 

—249 —22.5 

—27.4 —25.0 

—29.9 —27.5 

the median length. Which would be the most descriptive average here? 

Class Interval 

198-202 days 

193-197 

188-192 
183-187 

178-182 

173-177 

Temperature 

Interval 

—32.4 to —30.0 

—34.9 —82.5 

—37.4 —35.0 

—39.9 —87.5 

—42.4 —40.0 

2(f) =1 

i 

Pee erect ee 

16 

Ans, —25cy 4A 

11. Given the following table of average lengths of growing season for ninety- 

five Kansas counties, compute the mean length of growing season, and also 

Class Interval 

168-172 days 

163-167 

158-162 

153-157 
leno aa cote. 
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2.6 PERCENTILES, DECILES, AND QUARTILES 

The standard deviation about the arithmetic mean, the range, the 

average deviation, and the comparative magnitudes of the median 

and the mean (all presented earlier) provide useful information re- 

garding the dispersion of the numerical measurements in a group of 

data which is being analyzed. However, there are some circum- 

stances in which it is desirable to divide the ordered array into seg- 

ments each containing a stated percentage of all the numbers in the 

set. More specifically, it may be convenient to partition a large 

body of data into four, ten, or one hundred subgroups, each contain- 

ing approximately the same number of measurements from the set, 

and with the subgroups corresponding to successive segments of the 

array. The subgroups will be called quartiles if four divisions are 

employed, deciles if there are ten subgroups, and percentiles if there 

are one hundred subgroups.* The aim in stating the upper limit of 

the first quartile, for example, is to designate a number such that 

one-fourth the numbers in the array are less than or equal to that 

upper limit. 

Although the upper and the lower limits of the quartiles, deciles, 

and percentiles could be read from a carefully drawn r.c.f. curve if 

the data are sufficiently numerous, it is desirable to have precise 

definitions for them. This could be done in a variety of ways, not 
essentially different, so that certain convenient and reasonably stand- 

ard definitions will be adopted rather arbitrarily. 

Before general rules and methods for determining the limits on 

the quartiles, deciles, and percentiles are considered attention is called 

to the following two arrays and to some general problems inherent 

in the determination of such subgroups as quartiles: 

Sei 1.23468) 89,10) 10, 1 1215, 18.18 = 45. 
Seu 24.7.9, 9, 11) 11 12) 15, 15, 18, 20, 24.2597. NN = 46. 

Suppose that we wish to divide these sets of numbers into four sub- 

groups, each containing equally many numbers, if possible, and com- 

ing as close as possible to equality in other instances. Two facts are 

*Tt seems to the author that the term percentile should refer to an interval 

which includes approximately one per cent of all the measurements. However, 

most textbooks use this term to designate only one end point of what is called 

a percentile herein. Similar remarks apply to the terms decile and quartile. 

Since we usually speak of a score being in a percentile rather than at it, usage 

seems to support the point of view taken herein. 
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immediately clear. (a) When JN is not a multiple of four, we cannot 

define four groups each containing one-fourth of N measurements; 

and (b) repetitions of numbers will pose a problem in some instances 

because numbers of equal size logically must be in the same subgroup, 

and yet to put them there sometimes will cause one subgroup to con- 

tain more than its stated proportion of all the measurements. 

It will be convenient first to describe the method to be used to 

determine percentile limits because deciles and quartiles can be de- 

fined in terms of percentiles. The general aim in defining percentiles 

is to divide the ordered array into 100 subgroups, each of which con- 

tains one per cent of the numbers in the set, as nearly as this is pos- 

sible. This result will be accomplished by defining the upper lmit 

of the pth percentile to be the Fe (N + | th number in that 
100 

array. For example, if N = 1290, as in Table 2.01, the upper limit 

of the ninetieth percentile is the [99 (1291) |th, or the 1161.9th, 

number in the array or along its scale of measurement. Such an 

“ordinal” number as 1161.9 will be defined to be the number which 

is nine-tenths of the way between the 1161st and the 1162nd numbers 

from the bottom of the array. It is seen from Table 2.42 that there 

are 1169 numbers less than or equal to 129. With this information 

it is found that the 1161st and the 1162nd scores in order of size are 

128 and 129, respectively. Hence, the 1161.9th number along the 

scale of the ACE scores is 128.9, which, then, is the upper limit of 

the ninetieth percentile. The lower limit of this percentile is just the 

upper limit of the eighty-ninth percentile. By definition, this is the 

[89 (1291) /100]th number along the array of the ACE scores. Since 

89 (1291) /100 = 1148.99, the lower limit of the ninetieth percentile 

is anumber which is .99 of the way between the 1148th and 1149th 

scores from the bottom of the array. The 1148th score is 127, whereas 

the 1149th score is 128; hence the lower limit of the ninetieth per- 

centile is 127.99. It follows then that the ninetieth percentile con- 

tains scores of 128 only. Actual enumeration discloses that there 

are 13 scores of 128, which is as close to one per cent of 1290 as is 

possible with integers. Such close agreement with the ideal will not 

be attained with most of the percentiles, especially in the neighbor- 

hood of the mean and the median, because there will be repetitions 

of scores which will cover more than one percentile. It may be better 

when much of this occurs to be content with the coarser subgroups 

given by deciles or even quartiles. 
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The upper limit of the first decile is the same as the upper limit of 

the tenth percentile, and similarly for the other deciles. The upper 
limits of the first, second, and third quartiles are the same as the 

upper limits of the twenty-fifth, fiftieth, and seventy-fifth percentiles. 

It should be clear that the median is the upper limit of the second 

quartile. 

It is traditional to designate the upper limits of the first and third 

quartiles as Q@, and Qs, respectively, even though the term quartile 

may be used differently from the way they are used in this book, as 

was mentioned earlier in a footnote. 

PROBLEMS 

1. Following are the average temperatures for July in Topeka, Kansas, from 

1901 to 19380, inclusive, in degrees Fahrenheit: 86.6, 77.0, 77.6, 75.0, 74.1, 7438, 

78.7, 76.0, 78.0, 79.4, 78.8, 79.9, 81.8, 80.2, 74.0, 81.9, 80.4, 78.0, 81.6, 76.8, 79.8, 

76.4, 79.0, 75.2, 78.6, 79.0, 76.6, 78.3, 79.0, and 82.4. Obtain Q,, md, and Qs. 

2. Determine and interpret the limits of the second decile for the data of 

problem 1. Also compute the median. Ans. 74.88 to 76.08; md = 78.65. 

3. What are the limits of the third quartile of the data of problem 6 of 

section 2.1? 

4. What are the limits of the first quartile for the fly counts given in prob- 

lem 6, section 2.4? Ans. 0 to 8 inclusive. 

5. Calculate the limits on the ninth decile for the counts of problem 1, section 

24. What information can you derive from these limits? 

6. Use Figure 2.61 on page 40 to determine the approximate sizes of Q,, md, 

and Q., for the birth weights recorded in Table 2.61. What information about 

the birth weights do these numbers give? Ans. 66, 81, 95 grams. 

7. Construct a frequency distribution table and a graph for the 4-day gains 

of Table 2.62 and compute the mean gain. 

8. Determine the limits on the 10th percentile of the 4-day gains of Table 

2.62 and interpret these numbers statistically. Ans. —30 to —1.7, inclusive. 

9. Construct a relative cumulative frequency distribution table for the birth 

weights listed in Table 2.61, using the class limits indicated in Figure 2.61. 

10. Suppose that a student entering college takes the following tests: a 

general psychological test, a reading test, a mathematics aptitude test, a social 

science aptitude test, and a physical science aptitude test. If his respective 

percentile ratings are 90, 87, 50, 92, and 63, what advice would you give him 

regarding a choice of a curriculum, assuming that you have faith in these tests? 

Explain your reasoning. 

11. Determine the lower limit of the upper (tenth) decile for the ACE scores 

of Table 2.01. 
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TABLE 2.61 

BrrtH WEIGHTS OF FEMALE (F) AND Mate (M) Guinea Pics Born 
DURING A PARTICULAR EXPERIMENT 

(Data obtained from H. L. Ibsen, Kansas State College.) 

Jan., F 65.3 106.0 100.7 52.0 81.6 83.9 89.6 Nov., M 
77.6 73.3 106.2 74.4 60.3 93.6 90.0 87.2 118.9 

100.2 80.0 84.7 63.0 53.9 43.9 92.2 83.7 108.4 
66.7 57.2 69.4 65.0 73.1 84.6 79.2 98.2 75.9 
62.7 64.3 79.5 70.0 81.5 87.0 105.5 98.6 
72.7 del: May, F 85.5 77.3 63.7 115.3 82.2 122.3 
82.9 63.4 93.5 72.4 67.4 64.3 68.0 123.6 99.6 
59.4 57.7 84.5 90.7 58.2 54.6 52.5 86.8 89.4 

99.0 85.2 75.6 57.5 80.6 79.3 
Jan.,M March, M 77.5 97.3 62.2 59.3 Sept., F 90.0 106.7 

87.4 94.0 77.8 57.0 62.2 81.8 69.6 95.5 
97.3 80.5 76.6 June, M 41.1 74.2 57.4 109.8 105.1 
97.6 84.3 91.1 112.0 66.6 61.7 70.2 119.1 

107.3 73.7 57.3 44.5 41.5 64.7 53.0 Oct., F 130.4 
86.7 79.1 96.7 36.1 50.7 63.2 80.7 60.9 102.7 
58.9 92.6 112.4 60.3 48.6 61.6 77.4 92.9 100.6 
75.3 82.1 79.8 63.0 48.0 81.2 91.2 93.5 
46.1 90.0 100.3 69.1 43.3 Aug., M 80.9 96.4 134.0 

56.2 100.8 66.1 51.6 102.7 76.8 50.4 136.3 
Feb., F 63.2 91.0 53.8 65.8 117.2 64.0 76.2 113.5 

77.3 61.8 84.6 82.1 45.8 63.7 96.5 115.6 
75.0 109.6 88.0 63.0 65.9 55.0 87.3 Oct., M 74.9 
72.3 76.5 69.0 62.5 63.4 75.2 89.2 124.9 80.0 
77.6 68.9 75.6 79.4 67.3 85.2 109.0 107.0 98.2 

105.5 67.9 83.9 94.6 46.6 76.4 91.2 91.7 89.7 
98.8 57.8 72.1 74.0 49.0 47.4 121.1 119.2 82.2 
88.7 78.8 97.4 82.0 49.9 66.6 91.5 109.6 106.7 
76.5 73.9 104.3 87.6 55.3 82.0 87.6 107.8 
56.7 75.5 67.0 80.5 79.6 78.8 99.6 Dec., F 
90.1 68.2 64.1 53.6 <Aug., F 66.5 91.0 101.9 110.6 

138.4 65.0 94.6 78.0 53.3 62.9 112.2 68.1 97.9 
51.4 94.2 70.3 124.5 88.8 73.6 94.7 72.0 76.8 

133.4 59.8 83.2 74.3 56.9 87.8 94.2 
44.4 56.2 July, F 45.0 88.3 76.0 Nov., F 89.3 

Feb., M 50.6 37.0 85.9 92.2 67.7 94.0 87.9 
96.5 Apr., F 54.7 85.8 58.4 ‘ 91.2 90.8 81.5 

105.0 89.8 May, M 51.6 89.0 45.6 93.1 BW ers 79.6 
80.8 95.5 110.0 65.7 71.2 98.0 84.8 103.5 67.0 
76.5 82.2 112.7 53.7 121.9 92.0 99-9 88.2 52.5 

104.9 69.2 109.4 76.1 120.4 94.7 85.7 45.6 
104.2 67.2 113.4 54.3 78.3 95.7  Sept., M 95.7 87.3 
88.2 79.3 115.6 47.3 76.1 98.3 68.6 95.6 70.5 

104.0 68.9 102.7 43.3 110.8 99.3 72.7 78.3 
105.0 75.5 110.6 42.1 91.3 72.5 53.0 105.3 Dec., M 
83.1 75.2 80.3 40.8 Shee) 98.4 84.0 108.3 72.3 
84.2 68.1 102.6 65.8 83.8 50.1 67.1 103.7 111.6 
94.5 84.5 77.8 38.7 72.4 70.2 116.2 108.3 94.7 
98.0 102.6 102.5 47.3 55.9 33.5 70.3 88.0 114.0 
80.0 77.6 82.6 54.6 56.5 30.0 73.2 110.3 93.6 
67.2 63.9 59.7 68.9 73.8 68.4 63.2 96.9 92.2 

70.0 59.9 67.8 74.0 68.9 105.9 88.0 
March, F Apr., M 80.5 56.5 84.8 75.4 65.9 97.8 136.9 

88.0 110.3 77.5 43.6 67.0 77.2 90.8 99.5 94.5 
90.0 96.8 61.5 78.3 75.2 98.5 95.1 87.5 
99.3 51.8 113.5 July, M 76.6 75.8 86.6 102.0 94.7 
50.2 117.8 127.2 97.8 82.0 79.2 84.1 92.4 84.6 
84.5 64.4 54.6 80.1 Midi 90.8 101.7 66.5 
82.6 71.2 June, F 38.6 88.9 86.7 87.1 109.0 

105.2 69.8 34.9 70.8 77.8 81.2 107.5 
67.8 67.2 57.1 49.5 88.2 34,2 102.1 
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1.00 

Relative cumulative frequency 
ge the ee : 

oO 

30 40 50 60 70 80 90 100 110 120 130 140 
Birth weight in grams 

Figure 2.61. Graph of the relative cumulative frequency distribution for the 

data of Table 2.61. 

2.7 THE COEFFICIENT OF VARIATION 

There is considerable need for a measure of relative variability in 

one set of numbers as compared with another when the units of meas- 

ure, or the levels of magnitude of measurement, are quite different. 

The standard deviation, the mean deviation, and the range are ex- 

pressed in the same units as those in which the data were taken; so 

they obviously reflect the general size of those units. 

Suppose that one bushel of a particular sort of crop weighs 60 

pounds, on the average. Then the frequently used unit ‘pounds per 

1/1000 acre” is but 0.06, or 6 per cent, of the size of the unit ‘bushels 

per acre.”’ Hence to convert yields in pounds per 1/1000 acre into 

bushels per acre would require multiplication by 1624. To see what 

effect such a procedure has on the standard deviation, consider the 

general case of two measurements X and kX, where the k is any con- 

stant. For example, X could be the number of pounds per 1/1000 

DX? — (SX)2/N 

N 
is the standard deviation of X. For the measurement, kX, 

D(kX)? — (ShX)?/N— fe@EX? — WP-(DX)2/N ; 
N ip N ie 

acre so that k = 1624. By formula 2.13, cx = 

Oxia 
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In other words, the standard deviation of the yields in bushels per 

acre is 1634 times that of the same yields expressed as pounds per 

1/1000 acre. Hence, even though o is an excellent and widely used 

measure of the variability exhibited by a group of numerical meas- 

urements, its size does depend directly upon the units of measure 

involved, and also upon the level of magnitude of those measurements. 

To illustrate the point regarding the level of magnitude of measure- 

ment, suppose that one were interested in knowing if the weights of 

thirty-year-old males in Manhattan, Kansas, were more (or less) 

variable than the weights of twelve-year-old boys in that city. Sup- 

pose also that the average weight of the men is known to be approxi- 

mately twice that of the youths. The analysis just presented shows 

that if the boys’ weights were each to be doubled so they would be 

on a level comparable to that of the men, their standard deviation ~ 

automatically would be doubled too. It does not seem reasonable 

that doubling all of the X’s in a set of measurements should change 

their fundamental variability relative to another set of measure- 

ments; hence there is need for a measure of variability which would 

not be so affected. The coefficient of variation is that sort of measure 

of relative variability. 

It is easy to see that the mean of kX is k times the mean of XY be- 

cause pry = S(kKX)/N = k3(X)/N = kwy. Therefore, the ratio of 

the standard deviation to the arithmetic mean will be a measure of 

relative variability in a useful sense because 

bex kx px 

regardless of the size of k(40). It is customary to express this ratio 

of the standard deviation to the arithmetic mean as a percentage, and 

to define the coefficient of variation (CV) by 

(2.71) CV = 1000/p. 

To illustrate formula 2.71 from previously discussed data, the stu- 

dent can verify that, for ACE scores, CV = 27.3; for the birth weights 

of guinea pigs, CV = 25.2; and for problem 5, section 2.5, CV = 18.9, 

each as a per cent. A person acquainted with ACE scores might then 

observe that the scores at Kansas State College during 1947 were 

relatively more variable than the national scores, which (it is sup- 

posed for illustration) had CV = 20 per cent. Concerning the birth 

weights, we might learn that some other group of these animals has 

a standard deviation of only 15 grams, and hastily (and erroneously) 
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conclude that they were more uniform in weight than those whose 

weights are reported in Table 2.42. However, if the second group 

has a mean weight of » = 50 grams, it then is.apparent that CV = 

100(15/50) = 30 per cent. Hence Professor Ibsen’s guinea pigs had 

less variability in weight at birth than the other group of guinea pigs 

when account is taken of the fact that they were generally heavier. 

PROBLEMS 

1. Compute the coefficient of variation for each of the following and draw 

appropriate conclusions: 

X (N. Y. Curb Issues): 4, 3, 88, 1, 108, 42, 1, 25, 18, 5, 3, 6, 2, 22, and 70; 

Y (Bond Quotations): 88, 115, 104, 113, 119, 80, 66, 40, 31, 101, 48, 43, 100, 84, 
and 15. 

2. Using the X; as —2, 5, 8, 3, 1, 0, —2, 4, 3, and 6, and using k = 2, demon- 

strate the o,, = k-oy. 
3. Suppose that a group of measurements of the yield of corn in a certain 

area of Iowa had u = 70 bushels per acre, with « = 10 bushels, whereas an area 

in Kansas, growing the same variety of corn and employing the same agronomic 

method of culture, gave yields with » = 40 bushels per acre and o = 8 bushels 

per acre. Are the yields in that part of Iowa relatively more variable than 

those in Kansas, less variable, or about the same, according to these data? 

4. Suppose that during a certain period of years the prices of a certain com- 

modity averaged $1.25, with standard deviation of 25 cents. The prices of this 

same commodity during another period averaged but 80 cents, with a standard 

deviation of 10 cents. During which period were the prices of this commodity 

relatively more stable? Give reasoning. 

5. Following are simulated breaking strengths of samples of concrete (in hun- 

dreds of pounds per square inch): 40, 65, 50, 33, 48, 57, 60, 52, 50, 46, 70, 55, 51, 

41, 49, 53, 56, 44, 47, 50, 46, 53, and 55. Compute the coefficient of variation. 

6. In problems 7 and 8, section 2.1, for which direction finder were the read- 

ings relatively less variable? Would that result bear on the choice of one 

instrument over the other if such a choice were to be made? 

7. Use the data of Table 2.61 to determine if the birth weights of female 

guinea pigs born during January and February were relatively more or less 

variable than those of males born during the same period. 

8. Solve as in problem 7 for June and July considered together. 

9. Use Table 2.62 to determine if the four-day gains of the males born during 

January, February, and March were relatively more or less uniform than those 

of females born during the same period. 

10. Solve as in problem 9 for animals born during October, November, and 

December. 
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2.8 SOME OF THE PROBLEMS CREATED WHEN ONLY 

A SAMPLE OF A POPULATION IS AVAILABLE 

FOR STATISTICAL STUDY 

Suppose that we wished to study ACE scores of college students 

but could not afford the time or the expense required to analyze all 

their scores, and hence took only a portion of them, say 50. Although 

an economy of time and money will be obtained, several new prob- 

lems will be created. 

First, how should the 50 students be chosen for the sample? 

Ideally, they should be representative, in all important respects, of 

the whole group which is being sampled. But this cannot be ascer- 

tained without studying the ACE scores of the whole group—and 

then no sampling would be needed. If the first 50 on an alphabetical 

list were to be taken, the MacIntoshes, MeTaverishes, Swensons, and 

Swansons never would be chosen; and they might differ fundamentally 

from those who would be chosen. If the first 50 who came into the 

counseling bureau were taken as a sample, they might differ as re- 

gards ACE scores from those who came in later, or who never came 

into the bureau at all. In view of these and similar dangers of 

acquiring a biased sample from such procedures, it is necessary to 

devise a sampling method such that every eligible student has an 

equal and independent opportunity to be chosen in the sample. The 

net result of these requirements is to make it true that every pos- 

sible sample of the chosen size (50 in the example above) will be 

equally likely to be drawn. This is the fundamental requirement of 

random sampling. 

There are various ways to draw a random sample of 50 from among 

1290 members of a population. One would be to assign each person 

who took the ACE test a different number, place these numbers on 

pieces of cardboard, and draw 50 of them at random (in the popular 

sense) from a bowl containing all of the pieces of cardboard. If the 

scores in the population are recorded in rows and columns, as in 

Table 2.01, we can assign numbers to the rows and to the columns, 

and then draw a row number and a column number at random as 

before. These two numbers together will uniquely designate a score 

for the sample. If this is done 50 times—ignoring any repeats of 

exactly the same row-column combination—this sample also will be 

a random sample because every possible set of 50 scores among the 

1290 in the population will have had an equal opportunity to have 

been drawn. 
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The following random sample of 50 scores from Table 2.01 was 

obtained by the second method described above: 

121, 66, 117, 117, 145, 71, 118, 99, 128, 111, 95, 78, 88,55, 86, 69) Sar 
98, 87, 80, 100, 76, 124, 89, 79, 101, 89, 156, 111, 98, 103, 68, 110, 76, 
99, 100, 102, 61, 50, 125, 92, 106, 63, 117, 124, 87, 95, 100, 58, and 99. 

These particular measurements were obtained by chance from among 

many possible different sets of 50. This fact suggests that the theory 

of probability is needed in the analysis of sampling data. 

It is found in the usual manner that the mean and the standard 

deviation for the sample above are 96.28 and 22.55, respectively. 

The range of scores in this sample is 106, the median is 98, and the 

coefficient of variation is 23.4 per cent. It is known that these sta- 

tistical measures are not likely to be exactly the same as the popula- 

tion parameters, but it is to be hoped that they are not far from 

those values. 

Another sample was drawn in the same manner as the sample just 

described. The following were calculated for this second sample: 

mean = 99.22, standard deviation = 27.30, range = 144, median = 

100.5, and the coefficient of variation is 27.5 per cent. It is noted 

that each of these statistical measures is different for the two samples, 

yet only the ranges differ by a large percentage. It is typical of 

random samples that they usually differ from each other in several 

respects because the particular members of such samples are in the 

sample by chance. It also is true that the sizes of such statistical 

measures as the sampling mean will follow some predictable pattern 

over considerable sampling experience. If this were not true, nothing 

much could be learned from sampling. It will be seen in later chap- 

ters that probability theory is needed to study these matters. 

To illustrate the effect of the type of population on the results 

obtained from random sampling, consider two samples drawn from 

the data in problem 1 at the end of section 2.4. For convenience, 

samples of 10 numbers each were drawn even though this is a some- 

what larger fraction of the population than was taken from Table 

2.01. These samples were obtained by considering that the fly counts 

were numbered serially from left to right, starting with the top row. 

There are 148 fly counts in this population; hence a sample of 10 was 

drawn by effectively drawing 10 numbers at random from among 

the numbers 1, 2, 3,..., 148. When these 10 ordinal numbers were 

drawn, the corresponding fly counts were obtained by counting in 
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the manner indicated above. Following are the summaries of the 

two samples: 

Sample 1 Sample 2 

Mean = 23.2, median = 19 Mean = 13.4, median = 10 

Standard deviation = 16.2, range = 45 Standard deviation = 9.7, range = 28 

CV = 69.8 per cent CV = 72.4 per cent 

For these two samples, each of the five statistical measures is dif- 

ferent again. Moreover, considering the fact that these fly counts 

are generally smaller numbers than the ACE scores, the relative 

differences are much larger between the two samples than was true 

for the ACE scores. For example the mean for one sample of the 

counts is almost twice the size of the mean of the other sample. Much 

the same is true of each of the other measures except the coefficient 

of variation. This is an illustration of the fact that a statistical study 

of samples requires some information about the frequency distribu- 

tions of the populations sampled. Hence this matter, and probability, 

must be studied before more can be done about the analysis of sam- 

pling data. These are the aims of chapters 3 and 4. 

REVIEW PROBLEMS 

1. The effectiveness of penicillin in controlling bacterial growth can be meas- 

ured by the “inhibition zone” produced when a standard amount of penicillin is 

properly added to a plate of agar containing the type of bacterial growth one 

wishes to study. Following are 54 such determinations arranged in 9 groups 

of 6 tests each. (From an article by Jackson W. Foster and H. Boyd Woodruff, 

Journal of Bacteriology, August, 1943.) Calculate the arithmetic mean of each 

set of tests, and then compute the standard deviation of these nine means. 

Test 1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test 9 

28.1 28.5 28.0 27.5 29.0 28.0 29.0 28.5 28.0 

28.0 28.0 28.2 28.0 28.0 28.0 29.0 28.2 29.0 

27.5 28.0 27.5 28.1 28.3 28.0 27.3 28.2 28.6 

27.8 28.0 28.0 28.5 27.3 28.0 27.0 27.5 27.7 

28.0 27.5 28.0 28.0 29.0 28.1 29.0 28.0 27.5 

27.5 28.0 28.0 28.2 28.0 27.5 29.0 28.0 29.0 

2. Determine the range for each set of data in problem 1, and compute the 

standard deviation for the set with the greatest range. 

Ans. 0.6, 1.0, 0.7, 1.0, 1.7, 0.6, 2.0, 1.0, 1.5; 0.88. 

3. If a list of the farm acreages in a certain county in Kansas forms a statis- 

tical array of numbers from 35 to 4000; and if ~« =600 and md = 350 acres: 

(a) Which average would you think might be more typical of the size of 

farm in that county? 

(b) Would you expect the high point of the frequency distribution to be 

about over the mean, to its right, or to its left? Give reasons. 
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4. Determine the median and also the upper limits of the first and third 

quartiles for the data of problem 1 when all results are considered as one group 

of data. Ans. 28.0, 27.95, 28.22. 

5. Take any newspaper which gives quotations from New York bond prices 

and make frequency and r.c.f. distributions for all the closing prices as listed 

for that particular day. 

6. Graph the distributions for problem 5. Then determine graphically the 

proportion of the prices which exceed 100. Check this result by actual count. 

You are given the following information as a basis for working problems 7 

to 11, inclusive. These data are from the Ohio Psychological Tests given to 

602 students at Kansas State College during 1945. The scores are represented 

by the symbol X in the following summary, and are given only as integers: 

Score Class f Score Class if 

At least 111 3 55-61 70 

104-110 9 48-54 74 
97-103 16 41-47 72 For ungrouped data: 

90— 96 21 34-40 65 2X = 36,000 

83- 89 32 27-33 49 >X* = 2,400,000 
76— 82 49 20-26 12 

69-— 75 59 Less than 20 5 

62— 68 66 — 

Total 602 

7. Make the r.c.f. distribution and graph it. 

8. Compute approximations to wu and o? after changing the top and bottom 

classes to 111-117, and 13-19, respectively. Ans. 58.6, 423.0. 

9. What percentage of the students had scores above 100? Between 50 and 

75? What range of scores is included between the 80th and 90th percentiles? 

10. Graph the frequency distribution and state which average you would 

employ to convey the best impression of the level of performance by these 

students on this standard test. 

11. If 30 scores were to be selected at random from these 602, how many of 

them would you expect to fall at or below 40? 

12. Given that N = 25, SY = 110, and SY? = 600 for any particular set of 

measurements, calculate the coefficient of variation. Ans. 48.9 per cent. 

13. Given the following frequency distributions for a certain group of prices 

of bonds, construct graphs of these distributions. Briefly describe the sorts 

of information which can be obtained from such figures, and give several 

illustrations. 

Price Class ii C.J. Price Class i oe 

At least 121 5 1.00 85-90.99 70 25 
115-120.99 10 .99 79-84.99 30 adit 
109-114.99 40 97 73-78.99 15 .05 

103-108.99 90 .89 67-72.99 ch .02 

97-102.99 130 Ach Less than 67 3 OL 

91— 96.99 100 45 = 
Total 500 
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14. Calculate the median and the lower limits of the second quartile and of 

the 85th percentile of the data in problem 13. Ans. 98.14, 90.99, 107.32. 

15. What percentage of the bonds of problem 13 had prices below 100? 

16. Within what limits do the prices of the “middle” 60 per cent of the 

bonds lie (that is, excluding the lower and also the upper 20 per cent of the 

prices in the array)? Ans. 88.85 to 105.99. 

17. The figures recorded below are the batting averages of all American Asso- 

ciation players who were at bat at least 100 times, as reported by the Kansas 

City Star on July 29, 1951. The averages are arrayed from highest to lowest. 

Make a frequency distribution table, and compute pw and o. 

Aver- Aver- Aver- 

Player age Player age Player age 

Walker .389 Federoff .295 Lerchen .266 

Cerv .304 Thorpe .292 Daugherty .265 

Crowe .335 Segrist 291 Markland .262 

Thompson 33D Mangan .290 Marchio .262 

Sullivan .332 Beard .288 Montag .262 

Wright 323 Milne .287 Scherbarth .262 

Richter O22 Bollweg .286 Atkins .260 

Katt 2322 Lyons 284 Henley .260 

Clarkson .o22 Unser .283 Lund .259 

Dandridge 317 Barnacle .282 Basso 206 

Whitman 015 Pendleton .280 Antonello .256 
Benson 314 Brancato .280 Hoak .254 

Reed ole Deal .279 Marshall 254 

Mordarski Sill Chapman 279 Fernandez DEY 

Hoderlein 310 Marquis .278 Kropf 250 

Mavis 310 Tipton .278 Turner .250 

Carey 309 Zauchin 200 Ruver .248 

Campbell 309 MecQuillen 207 Conway .247 

Courtney .309 Ozark .276 Lu Cadello 243 

O’Brien .307 Dallasandro .276 Aliperto 237 

Broome (L) .307 Stevens .274 Natisin 235 

Saffell 305 Thomas 274 McAlister 234 

Kalin .304 Cole 274 House 231 

Mozzali .304 Wright 274 Teed .230 

Cassini 301 Olmo .270 Thomson 223 

Merson .300 Klaus .269 Rocco PAP 

Repulski .300 Gilbert .268 Morgan 179 

Broome (C) .295 De La Garza _—_.267 Okrie 165 

18. Referring to problem 17, write numbers from 1 to 84, inclusive, on pieces 

of pasteboard, mix them well, and then draw 5 at random. Consider each 

number drawn as the rank of a person’s batting average in the above list, 

starting at the top. Do this 10 times, and record the range of batting averages 

in each set of 5 so drawn. Compare the average range with the standard 

deviation obtained in problem 17. If another such set of batting averages had 

twice as large a standard deviation, what general effect do you think this would 

have on the range? 
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Gr Age ESR 3 

Elementary Probability 

Several relatively small populations of data have been studied be- 

cause it is not feasible to use large groups of data in the classroom. 

Quite commonly, populations actually involve a very large number 

of numerical measurements; so large, in fact, that their number can 

be considered as infinite without doing appreciable violence to the 

subsequent analyses. Obviously, no more than a portion (sample) 

of the measurements in an infinite population can be obtained for 

study. Sampling theory requires certain probability considerations 

and some definite assumptions regarding the distribution of the meas- 

urements in the population (as noted in section 2.8). Hence it is 

appropriate to consider some of the more basic and widely used fre- 

quency distributions before attacking the problems of sampling. 

That is done in this and the following chapter. 

Probability is involved whenever the occurrence, or non-occurrence, 

of any anticipated event is dependent to some degree upon chance. 

An “event” can be any sort of occurrence or non-occurrence which 

has been specified in advance. In the classroom, red and green 

marbles might be placed in a sack, thoroughly mixed, and one drawn 

out without looking into the sack. The drawing of a green marble 

could be considered as the event / in this instance. Likewise, if a 

bridge deck is thoroughly shuffled and one card drawn at random 

from it, the appearance of the ace of spades then might be the event 

E. 

Another wide application of probability in everyday life lies in 

the determination of the premiums for life insurance policies and 

annuities. If a man aged 35 years purchases an annuity which will 

pay him $100 per month starting at age 60 if he is alive, there are 

three major matters to be considered: (a) interest on the money 

involved, (b) the probabilities that the man will live to receive each 

successive payment, and (c) operating expenses and a fair profit for 

49 
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the company. Whether or not such a person does live to receive a 

particular payment must be regarded as a chance event and, there- 

fore, requires some use of the theory of probability. Public opinion 

polls regarding political matters, buyers’ preferences, and foreign 

affairs involve chance in the selection of the persons who are to be 

interviewed. The reader should be able to think of many other 

everyday events in which the theory of probability is involved. 

3.1 THE DETERMINATION OF PROBABILITIES 

Before a method is presented for determining the probability that 

an event EH will occur under specified conditions it is useful to dis- 

tinguish between what will be called single events and classes of 

events. For the purposes of this book this distinction can be made 

by means of examples. Suppose that two dice are placed in a can, 

shaken vigorously, and rolled out upon a flat, hard surface. Many 

“events” can occur with each die, but just six usually are of interest: 

a 1, 2, 3, 4, 5, or a 6 appears on the upper face of each die when it 

stops rolling. How the dice were turned when they were thrown, 

where on the surface they came to rest, or how many turns they 

made while in motion are ordinarily of no interest. Moreover, it 

would be at least impracticable, if not impossible, to relate those 

phenomena to the number of dots on the upper face of a die. Hence 

the six possible events which will be considered herein are the ap- 

pearance of a 1, 2, 3, 4, 5, or a 6 on the upper face of each die. Since 

these events cannot be further decomposed, we shall refer to them as 

single events. If, with each die, these faces tend to appear with equal 

relative frequencies over many trials, the dice are each said to be 

unbiased. It is with single events occurring with equal relative fre- 

quencies that we shall be primarily concerned in the subsequent dis- 

cussion. If both dice are considered simultaneously and an event is 

considered to consist of a number on one die and a number on the 

other die, thirty-six single events are possible because any one face 

on the first die can appear with any of the six faces on the other die. 

Each possible pair of faces defines an observable event. 

If attention is turned to the sum of the numbers of dots appearing 

on the upper faces of two dice which have been thrown simulta- 

neously, any one of eleven different sums is possible. The different 

possible sums define eleven classes of single events (occurring with 

equal relative frequencies). For example, the class of events (com- 
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posed of such single events), “sum = 7,” contains the following single 

events: 

1 on die 1, 6 on die 2; 6 on die 1, 1 on die 2; 

2 on die 1, 5 on die 2; 5 on die 1, 2 on die 2; 

3 on die 1, 4 on die 2; 4 on die 1, 3 on die 2. 

The class, “sum = 2,” includes but one single event because there is 

but one way that it is possible to get a sum of 2. The class, “sum = 

3,” includes two single events: a 1 on die 1, a 2 on die 2; or a 2 on die 

1, a 1 on die 2. The class, “sum = 4,” includes three single events, 

ete., until all thirty-six of the possible single events have been put 

into one of the eleven classes of events. 
We could define other classes of events among the thirty-six single 

events possible when two unbiased dice are tossed. For example, 

we could have class 1 = “sum = 7” and class 2 = “sum is not = 7.” 

There are six single events in class 1 and thirty single events in class 2. 

The preceding discussion has brought out the fact that single events 

and classes of events differ in one important respect. The single 

events are expected to occur with equal relative frequencies over 

many trials under the specified conditions, whereas the classes of 

events consist of groupings of single events, and hence would be ex- 

pected to occur with relative frequencies which depend upon the 

numbers of single events in the classes. 

Upon the basis of the preceding discussion, a useful method for 

determining probabilities can be devised for instances in which the 

single events occur with unequal relative frequencies. Suppose that 

under certain specified conditions any one of N possible single events 

can occur and that they form an exhaustive set; that is, some one of 

these single events must occur on any trial under the specified condi- 

tions. Assume also that the single events are grouped into s non- 

overlapping classes of events, with n; in class 1, no in class 2, ..., 

and with n, in class s. Then the probability that the single event 

which actually does occur on one future trial will belong to class 2 

(7 varies from 1 to s) is given by 

(3.11) P(E;) = n/N. 

As an illustration of the use of formula 3.11 consider the dice prob- 

lem discussed above in which thirty-six single events are possible. 

Certain classes of events, the single events which each class includes, 

and the probabilities associated with each class of events are given 

in Table 3.11. 
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Classes of 

Events 

Sum = 2 

Sum = 3 

Sum = 4 

Sum = 5 

Sum = 6 

Sum = 7 

Sum = 8 

Sum = 9 

Sum = 10 

Sum = 11 

Sum = 12 

ELEMENTARY PROBABILITY 

Single Events Number of Probabilities 

Die 1 Die2 Single Events for Classes 

1 1 1 (= 1) 1/36 

1 2, 2 (= Nn) 2/36 
2, 1 

if 3 3 (= nz) 3/36 
3 1 

2 2 

1 4 4 (= na) 4/36 
4 1 

2 3 

3 2 

1 5 5 (= ms) 5/36 
5 | 
2 4 

4 2 

3 3 

ul 6 6 (= 7%) 6/36 
6 1 
2 5 

5 2 
3 4 
4 3 

2 6 5 (= nz) 5/36 
6 2 

3 5 
5 3 
4 4 

3 6 4 (= ng) 4/36 

6 3 
4 m 
5 4 

4 6 3 (= Ns) 3/36 
6 4 

5 5 

5 6 2 (= m0) 2/36 
6 5 

6 6 iL (Ss n11) 1/36 

Dn, = iN = 36 

TABLE 3.11 

SINGLE Events AND CLASSES OF Events INVOLVED WHEN Two UNBIASED 
Dicr ARE THROWN, AND THE PROBABILITIES ASSOCIATED WITH THOSE CLASSES 

oF EvENTS 

Ch. 3 
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Other classes of single events could be defined, of course, such as 

the two classes: “sum = 5” and “sum > 5.” From Table 3.11 it is 

apparent that 10 of the 36 possible single events produce sums which 

are less than or equal to 5, whereas the remaining twenty-six single 

events yield sums which are greater than 5. Therefore, in this case, 

We— 30, 6 = 2, nm, = 10) and m2 = 26; so that P(sum = 5) = 15/N 

= 2) 10) iby key aie ey 

Two useful facts are derivable from formula 3.11: 

(3.12) O < P(£) < 1 because no n, can be larger than N; and, 

(3.13) P(#) + Pinot F) = 1 because n;/N + (N — n,)/N 

NIN ele 

Other laws follow from formula 3.11. Two of the more important 
theorems will be proved and illustrated. Suppose that £, and E>» 

denote two mutually exclusive classes of events; that is, single events 

in classes #H,; and H, cannot occur simultaneously on any one trial. 

Suppose also that there are n; and nz single events in classes EZ, and 

E», respectively. If a total of N single events is possible, the prob- 

ability that an event in either class EZ; or class H2 will occur on one 

random trial is, by definition, 

(3.14) P(E, or Ea) = (ny + n2)/N = n/N + no/N 

= P(E) + P(E). 

The same reasoning and algebra are sufficient to show that for r 

classes of events: Hy, Hz, ..., H, with n; single events in class E; 

(1 = 1 tor), the probability that some one of the mutually exclusive 

events Hy, Ho, ..., H, will occur on one random trial is given by 

(3.15) P(E, Ea, as Ob E,) = P(E}) ae P(E) por ar led Gap) 

This result is known as the Law of Total Probability for Mutually 
Exclusive Events. 

To illustrate formula 3.15, suppose that a sack contains 10 green, 

15 red, 5 white, and 20 purple marbles, all identical save for color. 

What is the probability that a colored marble will be drawn on one 

future random trial? Let #, stand for the drawing of any one of the 
green marbles. There are 10 green marbles, and each is equally 
likely to be drawn; hence there are 10 single events in the class EZ). 
Also, let Hz represent the drawing of any red marble, £3 stand for the 
drawing of a white marble, and H, equal the drawing of any purple 
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marble; Then ny = 10, me =)15, > ne = 5, “and “nz — 205 tience 

P(E;, Ee, or Hs) = (10 + 15 + 20) /50 = 10/50 + 15/50 + 20/50 
— 0) 

In the discussion leading to the Law of Total Probability the events 

Ey, Eo, ..., H, were assumed to be mutually exclusive, that is, only 

one of those events could occur on any one random trial. Suppose 
now that H; and H2 are independent events in the sense that each can 

occur simultaneously on one trial without interfering or helping with 

the occurrence of the other in any way. For example, the obtaining 

of a 6 on one die and a 5 on another die on a single throw of the pair 

of dice is an illustration of independent events. If H, and Hp» are 

independent events, they can occur together in n1-n2 combinations of 

single events because each of the n; single events in EH; can occur 

with each of the nz single events in Hy. The classes of events, Ey 

and Es, will each belong to a general class of events, which will be 

supposed to contain N, and No single events, respectively. There- 

fore, the total number of combinations of single events possible on 

random trials now is N;:N»2. Of those possible single events, ny-n2 

will belong to both H; and Hy. Therefore, the probability that an 

even in H, will occur simultaneously with an event in E>» is given by 

P(E, and Eg) = (m1-n2)/(Ni-Ne2) = (m1/N1)- (n2/N2) 

= P(E,)-P(E2). 

As an illustration of the above discussion and results, suppose that 

a game consists in throwing a penny and an unbiased die simul- 

taneously, with the thrower winning if he throws a head on the 

penny along with a 5 or a 6 on the die. Let H; represent throwing a 

head on the coin, and EF, throwing a 5 or a 6 on the die. A single 

event now consists of a particular result on the coin plus a particular 

result of throwing the die. The coin can turn up either of two ways, 

the die any of six ways; hence there are 2(6) = 12 combinations of 

events, each equally likely to occur on any one trial. In these cir- 

cumstances, 7 = 1, mg = 2, Ni = 2, and Ne = 6; hence 

(1) (2) 
P(H and a 5 or a 6) = ——— = (1/2)(2/6) = 1/6. 

(2) (6) 

The reasoning and algebra above can be extended easily to prove 
that, if the occurrence of events in classes #1, Hs, ..., and H, are 

independent and can occur in n; out of N; ways, respectively (2 = 1 

to r), the probability of the simultaneous occurrence of these r events 
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on one future random trial can be obtained from the following 

formula: 

(3.16) P(E), Eg, aera) and E,) a P(E) - P(E) A P(E,). 

This result is known as the Law of Compound Probability for Inde- 

pendent Events. 

A similar and more general law than (3.16) can be established for 

situations involving dependent, rather than independent, events. 

Suppose that the occurrence of event H. depends on another event 

E, having occurred previously, or that it is useful to regard H»’s oc- 

currence as depending on the prior happening of /,, perhaps for the 

sake of convenient computation. For example, suppose that a bridge 

deck is to be well shuffled, and then two cards drawn successively 

and at random without replacing the first card drawn. What is the 

probability that the second card to be drawn will be an ace? It 
should be apparent that the answer depends somehow on the out- 

come of the first draw from the deck so that the second event is 
dependent upon the first event. 

To attack the problem rather generally, suppose that n single 

events are possible under a given set of circumstances and that an 

event H is associated with n; of these n single events. Assume also 

that an event EH. occurs on 42 of the events on which E, also occurs. 

Then the probability that both £, and Hy», will occur on one trial is 

P(Ey;E2) = n42/n, which can be rewritten in the following way: 

N12 ny N12 
(3.17) P(E\E2) = — = (“) (~) as P(E) -P(E2/E}), 

n n n41 

where P(E.2/E;) is the probability that EH, will occur after it is known 

that LE, has occurred. 

The probability law expressed in (3.17) actually includes the law 

of (3.16) as a special case. If EH» is independent of H,, the number 

of single events on which H, can occur will be the same regardless 

of the prior occurrence or the non-occurrence of H,; hence the prob- 

ability P(H2/E,) will be just P(#2), and the formula 3.17 becomes 

(3.16). 

Problem 3.11. What is the probability that two successive aces will be drawn 

from a well-shuffled bridge deck if the first card drawn is not replaced before 
the second draw is made? 

The number of aces available for the first draw is 4, and any of 
52 cards might be drawn; hence P(#,) = 4/52. On the second draw 
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—assuming that an ace was drawn on the first draw—there are 3 

aces among 51 cards remaining in the deck. Hence, P(H2/E;) = 

3/51; then, by formula 3.17,.P(A, A) = (4/52)-(8/ol) = 1/22E 

There are many situations in which those chance occurrences 

which would be considered as the single events do not occur with 

equal relative frequencies. For example, a coin may be biased so 

that the heads side turns up more frequently than the tails side. Un- 

der such conditions, we cannot assign a probability of 1/2 to the 

occurrence of heads (and likewise for tails) and employ the simple 

arguments used above. However, we can think of determining the 

appropriate probabilities for these single events by empirical means, 

that is, by many actual trials under the specified conditions. For 

example, we could toss the coin in question many times and then use 

the observed proportion of heads as an approximation to the true 

probability, p. Thereafter, formulas 3.15, 3.16, and 3.17 can be used. 

An interesting and instructive application of the probability meth- 

ods introduced above can be made to the study of human blood 

groups. If the red blood corpuscles of one individual’s blood are 

mixed with the blood serum of another person (as in transfusions) , 

one of two general results will be observed to follow: the red cor- 

puscles will disperse evenly through the recipient’s blood as though 

in their own serum, or they will form clumps of cells. The latter 

reaction is called agglutination, and it is so undesirable that there is 

considerable interest in preventing its occurrence. To that end, 

bloods are classified according to certain systems. One such system 

is based on the known existence of factors A and B each (or both) 

of which may be either present or absent from any person’s blood. 

The following four blood groups are based on the A and B factors: 

(1) type O: neither A nor B present in the blood; 

(2) type A: factor A present but not factor B; 

(3) type B: factor B present but not factor A; 

(4) type AB: both of the factors A and B are present in the blood. 

There are several interesting features about the A and B factors 

in blood. (1) They are inherited essentially in accord with simple 

Mendelian laws of inheritance, a circumstance which requires meas- 

ures of probability. (2) Various racial or geographic groups tend to 

differ from each other in the proportions carrying the A and/or B 

factors, thus providing a source of some additional evidence about 

racial origins. (3) The mode of inheritance of the A-B groups can 

be used in genetic studies and in some legal problems. 
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Each person is considered to have in the cells of his body twenty- 

four pairs of chromosomes, one member of each pair having come 

from each parent. On these chromosomes are carried genes which 

are believed to govern the inheritance of various human character- 

istics. The genes which determine the presence or the absence of the 

A and B factors in the blood are carried on one of the twenty-four 

pairs of chromosomes. Attention here is centered solely on the chro- 

mosomes of that pair, one of which came from the father, the other 

from the mother. Moreover, attention is to be fixed upon one spe- 

cific gene position on each such chromosome, namely, that position 

occupied by the genes which cause the presence or the absence of the 

A and B factors. If the gene at this position produces neither the 

A nor the B factor in the blood, it is marked (diagrammatically) 

as an O gene. Similarly there are A and B genes so that the blood 

type can be indicated by showing what genes the two chromosomes 

carry. Symbolically, there are the following four blood types: 

O/O = type O; A/O or A/A = type A; B/O or B/B = type B; and 

A/B = type AB. 

The information presented in the preceding paragraphs makes it 

possible to predict the proportions of the various blood groups among 

the progeny of any particular combination of parents, provided that 

a large number of such parents and children are involved. Suppose 

that one parent has blood of type AB and the other has type O blood. 

Then the possible blood types which can occur among their offspring 

are as follows: 

Father Mother 

Parents Ae/Be 3 O/® 
Genes passed on AorB O or O 

B/O 

Possible offspring we 
A/O 

Of the four possible pairings of chromosomes from the father and 

the mother, two produce type B blood in the child because only the 

gene for the factor B is carried on the chromosomes. Similarly, the 

other two possible pairings of chromosomes produce type A blood in 

the children. There is no reason to doubt the usual hypothesis that 

each of these four possible pairings occurs the same percentage of the 
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time in the long run of many such matings; hence the individual pair- 

ings are considered to be single events. It follows that the probability 

that any specified future child of these parents will have type B 

blood is P(B) = 2/4=1/2. Similarly, P(A) =1/2. There isimo 

possibility that these parents will produce a child of either type O 

or type AB; hence P(AB) = P(O) = 0/4 = 0. 

In view of the fact that the inheritance which a child receives from 

its father is an independent event with respect to its inheritance 

from its mother, formula 3.16 can be applied. This gives the follow- 

ing simple solution for the probability that a child with blood type 

B will be produced: 

P(B from father) = 1/2; P(O from mother) = 1; therefore, P(B 

from father and O from mother) = (1/2) (1) = 1/2. 

Since that is the only way a child with B-type blood can be produced 

by these parents, that is the solution to the problem. 

If one parent is type O and the other type A, something must be 

known or assumed regarding the specific type A, that is, A/O or A/A. 

If one parent is A/O and the other is type O/O, P(A) = P(O) = 1/2. 

No other type is possible. But if the parent with type A blood is 

actually A/A, all children will be A/O. 

If it is known only that the parents are of types A and O, respec- 

tively, and if it assumed that type A is equally frequently A/O and 

A/A, the probability that any particular future child will be type 

A is 

P(type A child) = P(A/O parent) -P[A child/(A/O parent)] 

+ P(A/A parent): P[A child/(A/A parent)] 

= (1/2)-(1/2) + (1/2)-(1) = 3/4 

by the probability laws of (3.15) and (3.17). 

Table 3.12 was derived by the above methods under the assump- 

tion that type A is equally frequently A/A and A/O; and similarly 

for type B. (Actually this assumption is unrealistic, but it 1s con- 

venient here.) The reader should verify several of the probabilities 

in this table, noting particularly where the assumption regarding 

the relative frequency of A/A and A/O among type A parents (or 

likewise for type B) affects the calculations. 
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Mother’s 
Type 

O 

TABLE 3.12 

TYPES AND PROPORTIONS OF OFFSPRING FROM THE INDICATED MAaTINGS 

Father’s 
Type 

ane) 

oe © 3 ee) 

AB 

Types of 
Progeny 

O 

eicgkas cle Bee volte ae vole) eel AS) Wo pus Ea PO PO We WO PO 

Probability 
of That Type 
of Progeny 

1 

1/4 
3/4 

1/4 
3/4 

1/2 
1/2 

1/4 
3/4 

1/16 
15/16 
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Another method of classifying human bloods is based on the M 

and N factors, which are inherited independently of the A and B 

factors; that is, the genes for M and N are on a different pair of 

chromosomes from that which carries the gene for A and B. Appar- 

ently, both M and N are never both absent. There are, therefore, just 

three types: M, N, and MN if we ignore the subtypes which have 

been discovered recently. The following symbolism will be employed 

in the discussion of the M-N blood types: 

M/M = type M, N/N = type N, and M/N = type MN. 

The inheritance of these types can be studied in the manner already 

established for the A-B blood groups. 

In view of the fact that the three M-N types are classifications 

which are independent of a person’s A-B type, the two blood group- 

ings considered simultaneously make it possible to distinguish 

3 4 = 12 different blood types even without bothering with the 

subdivisions of the A-B and M-N groups, which are serologically 

determinable. 

Problem 3.12. If a woman’s blood belongs to types O and MN, and her hus- 

band’s blood is AB and N, what are the possible blood types for their first child, 

and what is the probability associated with each type? 

The mother can pass on to her child one of the pairs of genes 

O, M or O, N because her genetic constitution as regards blood types 

is (O/O)(M/N). Likewise, the father can transmit either A, N or 

B, N to his offspring. Therefore, the possible gene combinations in 

the child are: O, M with A, N; O, M with B, N; O, N with A, N; and 

O, N with B, N. This makes the following four classifications of 

bloods possible for their first child: A-MN, A-N, B-MN, and B-N, 

each being expected to occur equally frequently. Hence, each of these 

four classifications has a probability of one-fourth occurrence in 

their first child. No other type can occur. 

Two other general blood groups will be mentioned: one involves 

the Rh factor, the other is based on the P factor. Each is inherited 

independently of the other and of the A-B and M-N types. Recent 

discoveries of subdivisions of these groups will be ignored. There- 

fore, P+ and P— groups will be recognized, and also Rh+ and Rh— 

types. Genetically, PP and Pp are P+, and RhRh and Rhrh are 

Rh-+, leaving pp as P— and rhrh as Rh—-. 
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The information given previously on blood groups can be sum- 

marized as follows: 

Bioop Typina SysTeM 

I(A-B) II(M-N) III(P) IV(Rh) 

O/O = groupO M/M=typeM _ P/P Rh/Rh 
or or 

A/O N/N = type N P/p = type P+ Rh/rh = type Rh+ 
or 

A/A = group A M/N = type MN p/p = type P—_ rh/rh = type Rh— 

B/O 
or 

B/B = group B 

A/B = group AB 

It is seen that there are 4 x 3 X 2 X 2 = 48 mutually exclusive 

and serologically distinguishable blood classifications, even with the 

simplified groups discussed herein. By using all the known sub- 

groups of blood types, there are many more distinguishable and mutu- 

ally exclusive classifications of human bloods. The availability of 

these classifications has been helpful in legal cases involving dis- 

puted parentage, heirship claims when alleged maternity is doubted, 

identification of blood stains, genetic studies, anthropological inves- 

tigations, and the identification of corpses when other methods have 

failed. 

Apparently the chief use of blood types in legal cases occurs when 

one can prove the impossibility of an allegation. For example, an 

O-type father and an AB-type mother cannot (under the informa- 

tion set forth above) have an O-type child. Or, as another case, if 

an accused person has blood stains on his clothing and claims that 

they. resulted from his having had a nosebleed, the finding that his 

blood is A, M whereas the stains are A, N would disprove his claim. 

PROBLEMS 

1. What is the probability that a wife with type A blood and a husband with 

type B blood will have three children whose blood types all are O? 

2. Suppose that a husband has type A blood and that his wife’s blood group 

is AB. What is the most likely type of blood for their first child under the 

assumptions made in Table 3.12? What type is impossible? Ans. A, O. 

3. If the parents of problem 2 claim five children all of blood type B, would 

you doubt the blood types or, perhaps, the alleged parentage? Give probability 

argument. 
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4. If a name is to be selected at random from among those persons who were 

residents of the United States in 1950 and who then were between the ages of 

35 and 74, inclusive, estimate the probability that the person so chosen will be 

aged 50 to 59, inclusive. (See problem 8, section 2.5 for the appropriate table.) 

Ans. .26. 

5. Compute the probability of throwing either a sum of seven or of eleven 

on one throw of two unbiased dice by enumerating the single events in these two 

classes of events. Verify your answer by applying the Law of Total Probability. 

6. If five unbiased coins are to be flipped simultaneously, calculate the proba- 

bility that there will be a 3:2 division of heads and tails, either way. Ans. 5/8. 

7. Verify the probabilities given in the second and tenth lines of Table 3.12 

by listing all the possible combinations of chromosomes. Where does the matter 

of single events come into these calculations? 

8. Use the laws of Total and Compound Probabilities to solve problem 7. 

9. Suppose that two bags—identical in appearance—contain, respectively, 20 

red and 30 blue marbles; and 40 red and 10 blue marbles. If one bag is to be 

selected at random and then one marble withdrawn from that bag, what is the 

probability that it will be red? That it will not be red? 

10. If three unbiased dice are to be thrown once, what is the probability that 

a sum of 4 will be thrown? A sum of at least 4? Ans. 1/72, 215/216. 

11. If the throw described in problem 10 is to be made twice, what is the 

probability that a sum of 4 will be thrown both times? What is the probability 

that exactly one sum of 4 will be thrown on the two throws? 
12. Suppose that two babies have been born almost simultaneously in a cer- 

tain hospital, and that one of the families subsequently claims that the babies 

were interchanged either willfully or accidentally. The blood classes of the 

babies and of the parents are as follows: 

Mr. Timoféef is A, MN, P+, and Rh-+; 

Mrs. Timoféef is B, N, P+, and Rh—-; 

Mr. Brown’ isB, M, P+, and Rh-; 

Mrs. Brown isO, N, P—, and Rh-. 

The child the Timoféefs now have is O, MN, P—, and Rh+. The child the 

Browns now have is O, MN, P+, and Rh—. Have the babies been inter- 

changed? Or is it impossible to tell from this information? Give reasons. 

Ans. No interchange has occurred. 

13. Suppose that a few days after a wealthy man has died a woman claims 

that a certain girl is her daughter and that the deceased was the father. Also 

suppose that the following facts about blood classes have been established: 

(1) The deceased’s blood was B, M, Rh-+, and P+. 

(2) The deceased had a son whose blood was in group O and also was Rh—. 

(3) The alleged mother’s blood is A, MN, Rh-+, and P+. 

(4) The girl’s blood is O, M, Rh—, and P-. 

What conclusions can you draw about the paternity of the girl? Justify your 

statements with probability evidence based on the following assumptions: (1) 

For a person whose blood is B it is assumed that the chances are two out of 

three that the specific type is B/O if no other pertinent information is available 
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to change this assumption. (2) Similarly, for type A. (3) The probability that 

a person who tests Rh+ is specifically Rh/rh is 2/3, and similarly for P+ if 

there is no other information available which would change the probability. 

14. Suppose that a tortoise (land turtle) is wandering at random on a 50 by 

50-foot lawn enclosed by a fence. He is equally likely to be on any particular 

square foot of lawn one could designate in advance. What is the probability 

that at any specified future time he will be within 10 feet of the fence? If it is 

known that he is not within 10 feet of the south fence, what is the probability 

that he is not within 10 feet of any of the four fences? Ans. 16/25, 9/20. 

15. Ignoring the refinements, the Rh factor is inherited as described above. 

The discovery of this factor in 1940 led to an explanation of one type of infant 

mortality, erythroblastosis. In a large majority of the cases, the father is Rh+, 

the mother is Rh—, and the child is Rh+. Only a fraction of the cases wherein 

the child is Rh+ and the mother is Rh—, which are potentially erythroblastotic, 

actually result in trouble; but why some do and others do not is not presently 

known. Obviously, the father could be either Rh/Rh or Rh/rh, but the mother 

must be rh/rh. Assume that the population of potential parents is divided for 

each sex as follows: 

30 per cent RhRh, 60 per cent Rhrh, and 10 per cent rhrh 

What is the expected proportion of potential erythroblastotics among their 

children? 

3.2 PERMUTATIONS AND COMBINATIONS 

Probability has been calculated in such a way that two numbers 

need to be determined: (a) the number of single events in the class 

of events whose probability of occurrence is being determined, and 

(b) the total number of single events possible under the prescribed 

conditions or in the mathematical model. For example, the prob- 

ability of throwing a sum of seven with two unbiased dice is the 

ratio of the number of single events which give a seven to the total 

number of ways a sum can be produced. In this instance it is easy 

to determine those two numbers, but it is not usually easy. The 

determination of the necessary two numbers often is greatly facili- 

tated by the use of the mathematical concepts, permutations and 

combinations. In the process of introducing these concepts, it 1s con- 

venient to develop certain useful formulas in terms of abstract let- 

ters. Thereafter, these symbols will be employed to represent per- 

sons, heads and tails on a coin, physical objects, ete. 

A set of letters, such as ABC, can differ from another set of the 

same number of similar marks in one, or both, of two ways: the same 

letters may appear in a different order, or exactly the same letters 

may not be present in both sets. For example, ABC and ACB are 

different orderings of the same three letters, whereas ABC and BCD 
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involve different letters. Two sets of three (or of n) lettérs are said 

to be different permutations of letters if they differ in either the order 

in which the letters are arranged, or if some different letters are in- 

volved in the two sets. Two groups of n letters are considered to be 

different combinations of letters only if some different letters are 

included in the two sets. A reordering of the same letters forms a 

new permutation but not a new combination. Hence, just one com- 

bination can be formed from n given letters if all the letters are used 

at once. This question then arises: How many different permuta- 

tions can one form from n letters, using all n letters each time? 

The process of constructing a permutation consists in determining 

a first, a second, ..., and finally an nth letter. The first letter is 

chosen from among n, the second from among the remaining (n — 1) 

letters, the third from among the (n — 2) then remaining unchosen, 

etc., until finally only one letter is left for the nth choice. These n 

choices can be made in n(n — 1) (n — 2)(n — 8) ... (2) (1) ways, 

which is then the number of different permutations possible with n 

letters if all n of them are used in each permutation. To illustrate, 

suppose that there are three letters: A, B, and C. The following out- 

line shows how the choices can be made: 

For first letter, A; . or. By “or, C. 

For second letter, B or C A or C A or B. 

For third letter, C or B CorA B or A. 

Therefore the permutations are: ABC, ACB, BAC, BCA, CAB, CBA, 

and there are 3(2)(1) = 6 of them. 

It is convenient to denote the product n(n — 1) (n — 2)... (2) (1) 

by the symbol n!, and to call it n factorial. Hence, if Pn, » is adopted 

as the symbol for the number of permutations of m marks arranged in 

sets of n, we have 

(3.21) Pain =n! 

as the formula for computing the number of such permutations. If 

nh = 3; a8 above, Pg = 3! = 3-2-1:= 6, as before: 

More often, it is necessary to make up permutations of marks in 

which only r of the n marks are used at any one time. For example, 

we might be choosing a batting order of 9 men from a squad of more 

than 9 men. To see how the process goes, suppose that it is required 

to make up all the possible two-letter permutations from the letters 

A,B, C,and D. There are 4 choices for the first letter and 3 choices 

for the second; therefore, there are 4(3) = 12 possible choices of two 
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from among four. In general, the symbol P,,, stands for the num- 

ber of r-letter permutations which can be formed from n letters. 

then torn = 4 and7— 2, Ps 5 = 4(3) = 412; or, in general, 

(22) PP, =n — (nm — 2) += ier Se 1). 

It is possible and useful to express P,,, , 1n terms of factorials. To 

do so, we deliberately create the factorials from formula 3.22 by 

multiplying and dividing by (n — r)(n —r —1) ... (2) (1) to make 

the numerator into n! and the denominator into (n — r)!. The final 

result is 

n! 
3.23 a 
( ) (n — r)! 

From the definitions of permutations and combinations it follows 

that every set of r letters can be formed into but one combination, 

using all r of the letters; whereas, r letters can be formed into r! 
permutations. Hence, it is concluded that there are r! times as many 

permutations of n marks taken r at a time as there are different 

combinations of n letters taken r at a time. Therefore, if the symbol 

Cn, y 1s adopted to indicate the number of possible combinations of 

n letters taken in groups of r letters each, the formula for that num- 

ber is whichever of 

(3.24) Cee ea ee a 4a 
1 fas 

n! 
(3.25) Ce nh 

Ge a) 

we wish to employ. 

Problem 3.21. In how many different orders can 4 cars be parked among 6 

consecutive parking places along a curb? 

It should be clear in this situation that the order in which the cars 

are parked makes a difference because the different orders are dis- 

tinguishable, and would be considered as different by a policeman 

checking parking. Therefore, this is a problem in numbers of permu- 

tations and can be worked by either formula 3.22 or 3.23. By 
formula 3.23 

6! 6:5-4:°3°2-1 
Jef ey see 
ne a: (Gray 2-1 

= 360. 
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Problem 3.22. How many different (as to cards held) 5-card poker hands are 

possible from the usual 52-card deck? 

In view of the fact that the order in which the cards were dealt 

does not affect the actual cards held, this is a problem in numbers 

of combinations of 52 objects taken 5 at a time; hence the number 

of poker hands is Cs2,5 = (52!)/(5!47!) = 53,040 after common fac- 

tors in numerator and denominator are divided out and the remain- 

ing factors multiplied together. 

Problem 3.23. What is the probability that 5 cards dealt from a well-shuffled 

poker deck will all be spades? 

Two numbers need to be determined before formula 3.11 can be 

applied: (1) the total number of 5-card hands which are all spades, 

and (2) the total number of 5-card hands of any sort which possibly 

could be dealt from the deck. In view of the fact that the order in 

which the cards were dealt is unimportant, this is a matter of finding 

numbers of combinations, namely, Ci3,5 and Cs2,5. Therefore, the 

required probability is 

P(all spades) = C13, 5/Cs2, 5 = -0005, or 1 chance in 2000. 

Problem 3.24. What is the probability that 5 cards dealt from a well-shuffled 

poker deck will include exactly 3 aces? 

Three aces can be chosen from among the 4 available in C4, 3 or 

4 ways. Likewise, C4s, 2 = 1128 is the number of different pairs of 

cards which do not include any aces. All possible 5-card hands with 

exactly 3 aces must necessarily be the same as all the possible ways 

to put some 3 aces with one of the 1128 pairs of cards which are not 

aces; hence there must be 4(1128) = 4512 different 5-card hands 

which include exactly 3 aces. Therefore, the probability of being 

dealt such a hand is 

P(exactly 3 aces, 2 non-aces) = 4512/Cs2, 5 

.0016, or 1 chance in 625. 

PROBLEMS 

1. In how many ways, which differ as regards the persons in particular chairs, 

can 4 men and 4 women be seated around a dinner table, with men and women 

seated alternately? 

2. Suppose that there are 10 persons in a room, and that they have the fol- 

lowing blood types: 1 is AB, 3 are A, 2 are B, and 4 have type O blood. If 2 
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are chosen at random what is the probability that they will have the same type 

of blood? Ans. 2/9. 

3. Suppose that a baseball team has 4 men who can bat in any of the first 

3 positions, 5 who can bat in any of the fourth, fifth, and sixth positions, and 

7 who can bat in any of the last three positions. How many possible batting 

orders are there? 

4. Assume that 7 insecticides are to be tested as to their effectiveness in 

killing house flies. If each spray is to be tested against every other spray once 

in a separate test, how many tests will this require? Ans. 21. 

5. Suppose that a housewife buys 3 cans of peaches, 6 cans of apricots, and 4 

cans of pears; and suppose that her child tears off all the labels on the cans. 

If the housewife needs 2 cans of fruit for dinner, what is the probability that 

the first 2 cans chosen will contain the same kind of fruit? 

6. How many 138-card bridge hands are there with no card higher than 8? 

Ans. 37,442,160. 

7. If 7 unbiased coins are flipped simultaneously, how many single events are 

there in the class: 3 heads, 4 tails? 

8. Compare the coefficients of (x + y)5 with Cs 5, Cs 4, Cs 3, C 

and C's 9 given that 0! = 1. 

9. What is the probability that 5 cards dealt from a well-shuffled poker deck 

will include 3 queens and 2 aces? Three queens and at least 1 ace? 

10. What is the probability that 13 cards dealt from a well-shuffled bridge 

deck will include exactly 8 honor cards (honor cards are 10, J, Q, K, and Ace)? 

Ans. 040. 

11. In how many ways can 6 boxers be paired off for 3 bouts being held 

simultaneously? 

Cs, 1) 5, 2? 

3.3 REPEATED TRIALS UNDER SPECIFIED 

CONDITIONS 

Situations involving the numbers of occurrences and non-occur- 

rences of an event # on repeated trials under the same original con- 

ditions are of particular interest in statistical analysis. The prin- 

ciples involved will be seen to be important to the study of frequency 

distributions, and to sampling studies. 

The probability problems created when trials are repeated under 

fixed conditions can be illustrated by means of mathematical models 

of these problems. Suppose that a coin is flipped n times and the 

number of heads noted. On such a set of repeated trials any number 

of heads is possible from 0 to n, that is, there are (n + 1) possible 

classes of event: 0 heads, n tails; 1 head, (n — 1) tails; 2 heads, 

(n — 2) tails; ...; m heads, 0 tails. Each class of events includes 

some number of single events (if the coin is unbiased) from 1 to 

whatever the maximum size of C;,, is for the given n. For example, 
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if an unbiased coin is tossed 5 times, there are 6 classes of events, and 

the specific single events in the class 4H, 1T are 

Toss 

First Second Third Fourth Fifth 

fi Jat H H 1A 

H T H H H 

H H fh H H 

H H H iT H 

H fab H H fi 

! 
It is seen that Cs, 4 = ria 5 = the number of single events in the 

class which includes exactly 4 heads. It also should be observed that 

the outcome of each toss is an independent event relative to the out- 

come of any other toss; hence the probability of the first result listed 

above, THHHG, is (1/2)(1/2) --- (1/2) = (1/2)°. With this un- 

biased coin, that also is the probability for any of the other single 

events in this class of events. Therefore, the probability of an event 

in the class 4H, 1T is Cs, 4(1/2)*(1/2)', in which the exponent 4 refers 

to the number of heads and the exponent 1 refers to the number of 

tails. The reader can verify the fact that for any specified number of 

heads from 0 to 5 the probability of exactly r heads is Cs, ,(1/2)” 

X (1/2)°~", where r takes any value from 0 to 5. 
In general, if m unbiased coins are to be flipped (or one such coin be 

flipped n times) the probability of the appearance of any specific 

number of heads, say 7, is 

(a))) Pirheads, (2 — 7) tails|i="C, 172)" 2)' 

To extend this result a bit, let an event EH have a constant prob- 

ability, p, of occurrence on each of n repeated trials. Then the 

probability that # will occur on exactly r of the trials [and fail on 

the other (n — r) trials] is given by the following formula: 

(3.32) P(r E’s, (n — r) not-E’s] = C,,,(p)’(1 — p)” *. 

The student can verify that this formula becomes (3.31) if p = 1/2, 

= He and) (not-)\e— ie 

One more generalization can be obtained regarding formulas 3.31 

and 3.32 by considering the expansions of the two binomials 
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(172 4217/2)" and (q+ p)", in which gq=1—p. To see these 

generalizations, consider the following binomials expansions: 

(1/2 + 1/2)? = 1(1/2)°(1/2)? + 2(1/2)1(1/2)' + 1(1/2)7(1/2)°, 

Co, o(1/2)°(1/2)? + Co, 1(1/2)*(1/2)* 

+ C2, 2(1/2)?(1/2)°, 

POH, 2T) + P(1H, 1T) + P@H, OT). 

That is, the successive terms of the expansion of (1/2 + 1/2)? are 

given by formula 3.31 if r= 0, 1, and 2, successively; and those 

three terms give the probabilities for the three possible classes of 

events in terms of the number of heads appearing. The generaliza- 

tions for 3, 4, ..., or n tosses should be apparent. For the more 

general situation in which the probability of the occurrence of an 

event H is constantly p under repeated trials, 

(g + p)? = 1(p)°(q)? + 2(p)'(@)! + 1(p)?(@", 
P(0 E’s, 2 not-E’s) + P(1 #, 1 not-E) 

+ P(2 E’s, 0 not-E’s); 

I 

and again it should be apparent that these successive terms corre- 

spond to formula 3.32 for r = 0, 1, and 2, successively. 

PROBLEMS 

1. What is the probability that if 6 unbiased pennies are tossed simulta- 

neously, exactly 3 heads will appear? 

2. What is the probability that at least 3 heads will appear under the condi- 

tions of problem 1? Ans. 21/32. 

3. If one parent is Rhrh and AO, and the other parent is rhrh and BO, what 

is the probability that both their first two children will be Rh— and AB? 

4. Suppose that a sample of 100 bolts is taken from a very large batch which 

contains exactly one-half of 1 per cent of unacceptable bolts. What is the 

probability that at least 2 bolts in the sample will be unacceptable? Ans. .09. 

5. If 5 bolts among the 100 in the sample of problem 4 are found to be un- 

acceptable products, what would you conclude about the hypothesis that only 

one-half of 1 per cent were faulty in the whole batch? Give reasons. 

6. Write out the series for (2 + y)4 and show that the coefficients are num- 

bers of combinations, Cy ,, with r=0 to 4. 

7. Suppose that the teams listed on a football parlay card are so handicapped 

that you actually have a 50-50 chance on each team you pick. What is the 

probability that you will pick exactly 9 winners out of 10? Would this proba- 

bility justify odds of 25 to 1 for this accomplishment? What about odds of 

250 to 1 for getting 10 out of 10 correct? 
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8. If a pair of unbiased dice is to be thrown 6 times in succession, what is the 

probability that exactly 3 sevens will be thrown? What would you think the 

most likely number of sevens would be? Ans. .054. 

9. If a certain manufacturing process is producing machine parts of which 10 

per cent have some serious defect, what is the probability that all of the 10 

parts chosen at random will be acceptable (that is, have no serious defect)? 

How many would you have to take in the sample before the probability of all 

being acceptable will be no greater than .05? 

10. Graph f(p) = (1 — p)!9, and relate this graph to problems like problem 9. 

3.4 MATHEMATICAL EXPECTATION 

The discussions earlier in this chapter have involved the occur- 

rences of chance events as a result of what have been termed 

“trials” under specified conditions. The outcome of a trial is de- 

scribed in one of two general ways: (a) Something happens a certain 

number of times on a specified nwmber of trials, or (b) we simply 

note whether or not an event E has, or has not, occurred and asso- 

ciate with that occurrence some value, say a financial loss, as in in- 

surance. With either type of situation it may be important to be 

able to predict what will be the average outcome of trials under the 

stated conditions, over the long run of experience. For example, an 

insurance company needs to know what amounts it should expect 

to have to pay out in death benefits during a particular period of 

time, one year, for instance. 

In case a, the prediction needed is to be presented in the form of an 

expected number of occurrences of an event EF on a set of n future 

trials. A formula for this expected number can be justified heuristi- 

cally as follows. If the probability of E is :, the p is just the fraction 

of the time that # should occur over many trials. Hence, if there are 

to be n trials, it is reasonable to say that the expected number of 

occurrences of EF on 7 trials is 

(3.41) Expected number = E(r) = p-(n). 

Problem 3.41. If 6 unbiased coins are to be tossed simultaneously, what is the 

expected number of heads? 

In this circumstance p = 1/2 and n = 6; hence the expected (or 

long-run average) number of heads is E(r) = (1/2) (6) = 3. Actu- 

ally, our intuition would lead to the same conclusion. 

Problem 3.42. Suppose that an insurance company has insured 50,000 persons 

who are each 30 years old, and that records from past experience show that 

6/1000 of such persons die before reaching the age of 31. What is the expected 

number of deaths during the first year of the insurance contract? 
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For this situation p = .006, n = 50,000; therefore the mathemat- 

ically expected number of death benefits among those thirty-year- 

olds is E(r) = .006(50,000) = 300. The reader will realize that it 

would be unsound financially for the company to be prepared to pay 

only 300 death benefits because this time the number of deaths might 
be considerably higher. All that is being said is that over a period 

of years of such calculations the average number of deaths among 

thirty-year-olds in this same insurance class will be very close to 300. 

When chance occurrences are of the type b described above there 

may be associated with the occurrence of HZ some value, say a finan- 

cial gain or loss. Then we may wish to predict the loss or gain to 

be expected on the average under the given conditions. For example, 

suppose that you are going to roll a pair of unbiased dice and are 

to be paid 60 cents if you get a sum of 7. How much should you 

pay to play such a game if you just wish to break even? Obviously 

you will receive either 60 cents or zero cents after each game; but 

over many games what will be your average winnings per game? 

That is the amount you can pay and break even. Because the prob- 

ability of throwing a sum of 7 is 1/6 you expect, mathematically, to 

win 60 cents on about one-sixth of your throws and to win zero cents 

on the other five-sixths of the throws. Hence, the mathematical 

expectation logically is 

(1/6) -(60 cents) + (5/6)-(0 cents) = 10 cents. 

Therefore you can expect to break even in the long run if you pay 

10 cents to play each game. 

The game just described can be extended to include a reward of 

90 cents if you throw a sum of 11 on the two dice. In this circum- 

stance you can win in either of two mutually exclusive ways, that is, 

you can throw a7 or an 11. Therefore attention is centered on three 
classes of events and the corresponding rewards: 

A sum of 7 with a reward of 60 cents, 

a sum of 11 with a reward of 90 cents, and 

a sum other than 7 and 11 with a reward of 0 cents. 

Therefore, over a large number of games you will tend to win 60 

cents on one-sixth of the throws, 90 cents on one-eighteenth of the 

throws, and 0 cents on the other seven-ninths of the throws. Hence 

your mathematical expectation on this game is (1/6) (60 cents) + 

(1/18) (90 cents) + (7/9) (0 cents) = 15 cents, because that is the 
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average winnings per game and is, therefore, the amount you could 
pay to play this game and expect to break even. 

The preceding ideas and methods can be generalized and sym- 

bolized in the following manner. Let all the single events possible 

under a specified set of conditions be grouped into s mutually ex- 

clusive classes of events. Let a2; be the reward, loss, or in general 

the “value” of the occurrence of an event in the 7th class; and let 

pi be the probability that an event in the 7th class will occur on any 

designated future trial under the stipulated conditions. Finally, let 

E(x) stand for the total mathematical expectation under the given 

conditions. It follows from the reasoning outlined above that 

(3.42) E(x) = pity + pot2 +++-+ pets = DS (pix). 
t=1 

PROBLEMS 

1. Suppose that you are 20 years of age and that you are to inherit $10,000 

at the age of 30 if you are alive then. What is the expected value of this in- 

heritance if you have a probability of .92 of living to be 30 years of age? (This 

probability is derived from the American Experience Mortality Table.) 

2. It is approximately true that brown and blue eye colors are inherited in 

a manner similar to that explained for the A-B blood groups. If b/b = blue 

eye color and either B/b or B/B = brown eye color, what is the expected num- 

ber of blue-eyed children among 500 from parents who are B/b and b/b, re- 

spectively? Ans. 250. 

3. Answer the same question as in problem 2 for parents who are both B/b. 

4. If in each three-month period 1 car in 20 of the type which you drive has 

an accident costing an average of $75 for repairs, how much insurance against 

such a loss should you pay each quarter if you allow the company 15 per cent 

beyond mathematical expectation for handling the business, and if you ignore 

interest on your money? Ans. $431. 

5. How much would one be justified mathematically in wagering against one 

dollar that on 10 throws of two unbiased dice a sum of 7 will appear less than 

3 times? 

6. Suppose that you have the choice of receiving $10,000 at age 65 if you are 

alive then, or of taking a cash payment now. From a purely mathematical 

point of view and ignoring interest on money, what should the size of the pay- 

ment be if your probability of living to be 65 is .56? Ans. $5600. 

7. Suppose that a concession at a fair offers a 50-cent prize if you pay 10 

cents for 3 throws and knock down all of a stack of milk bottles on the 3 

throws. Suppose also that you have 1 chance in 10 to knock down the bottles. 

If the operator of the concession has to pay $75 per day for the privilege of 

doing business there, how many customers must he have per day in order that 

he can expect (mathematically) to make some money? 

8. Suppose that a person who is 40 years of age is to receive $1000 on each of 

his sixtieth, sixty-first, and sixty-second birthdays if he is alive to receive them. 

Also suppose that interest on money is to be ignored. Given that his proba- 
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bilities of living to those successive ages are .74, .72, and .70, what should this 

person pay for an annuity of this sort if the company is allowed 15 per cent for 

overhead? Ans. $2484. 

REVIEW PROBLEMS 

1. What is the difference between a population of numerical measurements 

and a sample of such measurements? 

2. What. was Political Arithmetic? With what sorts of problems were the 

political arithmeticians mainly concerned? 

3. Who was Student and how was his work connected with present types of 

statistical problems? 

4, Expand (1/3 + 2/3)4 into a series and state specifically what probability 

is given by each term if p = 2/3 is the probability that a certain loaded penny 

will turn up heads on any particular future throw. Describe the mathematical 

procedure needed here to define the single events. 

5. What is a frequency distribution? A relative cumulative frequency dis- 

tribution? 

6. Suppose that a college freshman has earned the following percentile ratings 

on the indicated tests: (a) general intelligence, 90; (6) achievement in social 

sciences, 65; (c) achievement in physical sciences, 92; (d) achievement in 

mathematics, 95. What can you say about the student’s probable future success 

in courses in chemistry, physics, mathematics, history, and sociology if it is 

assumed that the tests are trustworthy and if no serious personal problems 

interfere? 

7. Given that for a set of numerical measurements X,, Xo, ..., X59, 2X = 95 

and =(22) = 2.06, caleulate the coefficient of variation. 

8. Calculate the geometric, arithmetic, and harmonic means of 1/2, 2, and 8 

and discuss the choice of the best average for these numbers. Ans. 2, 3.5, 8/7. 

9. Suppose that the following probabilities regarding football games have been 

determined reliably: A to beat B, p, = 2/3; C to beat D, po = 1/2; and E to 

beat F, ps = 5/6. What are the odds that A, D, and £ all win? 

10. Given that the graph below is the r.c.f. curve for a certain group of scores, 

determine from it the median, the upper limit of the third quartile, and the 

upper limit of the sixth decile. Also interpret these results statistically, with 

some indication of the uses to which such information can be put. 

Ans. 31.5, 41.0, 35.0. 

Relative cumulative frequency 

o oO 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 
Score 
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11. What proportion of the scores summarized in problem 10 lay between 40 

and 60 inclusive? What proportion exceeded 60? 

12. What is the probability that on 15 flips of an unbiased penny one will get 

elther 7 or 8 heads? Will get neither 7 or 8 heads? Ans. 39, 61. 

18. Suppose that for a certain strain of chickens the probability that a late- 

feathering chick will be hatched from any egg selected at random is 1/16. What 

is the expected number of such late-feathering chicks among 800 newly hatched 

chicks? 

14. If a pair of true dice is rolled 60 times, what is the mathematically ex- 

pected number of sevens? Of either sevens or elevens? Of sums greater than 9? 

Ans. 10, 13%, 10. 

15. Assume that the semester grades in a large chemistry class have the 

ogive graphed below. If the letter grades are to be distributed as follows: 

7 per cent A, 20 per cent B, 46 per cent C, 20 per cent D, and 7 per cent F, 

what are the grade ranges covered by each letter grade? 

1.00 

.90 

.80 

70 

.60 

50 

— 

Relative cumulative frequency 

30 40 50 60 70 80 90 100 
Grade 

16. What is the median numerical grade for the data of problem 15 above? 

What are the upper limits of the quartiles? Ans. 69; 59.5, 69, 77, 100. 

17. Suppose that 6 unbiased pennies are to be tossed simultaneously. What 

is the probability that no more than 2 will show heads? That at least 2 will 

turn up heads? 

18. Assume that the true odds on each of 3 horses to win a particular race 

are determined to be as follows: horse A, 3:2; horse B, 1:3; and horse C, 1:9. 

What is each horse’s probability of winning? What is the probability that 

some one of these 3 horses will win? Ans. 60, .25, .10; .95. 

19. Given that for three separate statistical populations of data: mw, = 25, 

o, =4; uw, = 50, og = 5; and ws = 100, o, = 18. Which group of data would 

you consider as relatively the more variable? Give specific statistical evi- 

dence to back your answer. 

20. Compute the mean deviation and the standard deviation for the fol- 

lowing data: 13, 9, 10, 17, 15, 20, 11, 5, 2, 10, 14, 13, 19, 21, 16, 8, 14,°6,.8, 29) 16; 

17, 15, 15, 18, and 2. Which measure of variation do you think best describes 

the dispersion of these data about their arithmetic mean? Give reasons. You 

are given that 2X = 338, 2X? = 5406. Ans. 4.92, 6.24. 
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21. According to Figure 2.41, in which quartile would you place a score of 85? 

In which decile would this score fall? 
22. If all students whose ACE scores (Table 2.01) fell among the lower 15 

per cent, approximately, of all scores made were to be advised to consider 

seriously dropping out of college, what would be the highest score whose re- 

cipient would receive such advice? Ans. 67. 

23. From Figure 2.41 determine approximately the percentage of those scores 

which were not more than one times the standard deviation either greater than 

or less than the mean, uz. 

24. In the game of “craps” two unbiased dice are thrown successively by the 

same person. He wins if: (a) he throws a sum of either 7 or 11 on his first 

throw; or (b) he throws a 4, 5, 6, 8, 9, or 10 on the first throw and repeats his 

number on a subsequent throw before he throws a 7. What is his probability 

of winning within 2 throws? Ans. 97/324. 

25. In a certain gambling game you are paid 15 for 1 if you throw a 1 and a 2 

(either order) on two unbiased dice. On 1800 games on each of which the 

player pays one dollar, what is the expected percentage profit for the house 

relative to the amount taken in? 
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GASP ER *4 

The Binomial and Normal 
Frequency Distributions 

The discussions and illustrations of Chapter 2 involved situations 

in which groups of measurements (usually numerous) had been 

taken under specified conditions, and we had in mind only an efficient 

summarization of the data. The ACE scores in Table 2.01 were 

cited as an example. In a sense, we simply took what we got and 

thereafter applied statistical methods to reduce a bulk of data to a 

more comprehensible form without losing any essential information. 

More generally, however, populations of numerical measurements 

must be studied by means of samples because so many measurements 

are involved that it is not feasible, efficient, or even possible to obtain 

and to analyze the whole of the population. 

Two different types of populations will be considered. In one type, 

the chance variable will be a qualitative one such as male or female, 

dead or alive, own an automobile or do not own an automobile. The 

population will consist of individual members, each falling into one 

of just two classes according to the qualitative designation adopted. 

The other type of population to be considered will be based upon 

a variable which is measured along a continuous scale, such as the 

weight of an individual, the volume of a gas, or the bushel yield of 

a variety of wheat. 

As regards populations in which a qualitative variable is used, 

attention herein will be confined to what is called a binomial popula- 

tion because each member of the population falls into one of only two 

classes. The proportion of a binomial population which belongs to 

one of the two classes will be measured by the fraction p, leaving the 

fraction falling into the other class to be 1 —p=q. For example, 

if all the babies born in New York City during a given year were 

to be classified as male or female, p might be the fraction who were 

males. If p = .51, then g = 1 — .51 = 49. The sex would be the 

qualitative variable mentioned above, and has but two “values”: 

76 
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male and female. If a baby were to be chosen at random from 

among those born in the specified year, its classification as male or 

female would be a member of this binomial population. Under the 

above assumptions, the probability that such a selection will turn 

out to be male is p = .51. 

If n repeated observations, or trials, are made on a binomial pop- 

ulation in which the proportion p is staying fixed, and if attention is 

fixed upon the number of individuals in each of the two classes, these 

numbers are variable from one set of n trials to another. For exam- 

ple, it was noted in Chapter 3 that the probability that r males, say, 

and n — r females would be observed is given by Cn, -(p)"(1 — p)"~". 

In other words, 7 is a chance variable. The relative frequencies with 

which r will have the values 0,1, 2,..., and n after a great many sets 

of n random trials from a binomial population constitutes a binomial 

frequency distribution. This distribution will be of more direct in- 

terest to us than the binomial population in itself because the binomial 

frequency distribution describes results which are obtained in the 

process of sampling a binomial population. 

There are many types of populations for which the random vari- 

able is of the second type discussed at the beginning of this chapter, 

namely, a measurement referred to a continuous scale, such as weight. 

Probably, the most important populations of this sort are those called 

normal populations. It will be convenient to describe this type of 

population by means of a mathematical formula for its frequency 

distribution. This will be done in a later section. 

It seems obvious that we cannot possibly learn much by sampling 

a population which cannot be clearly and concisely described; hence 

there is need for a mathematical description, or classification, of 

populations. We choose to study types of populations by means of 

their frequency distributions because that—or something equivalent 

—constitutes the fullest description we can obtain for a particular 

population. As noted above, the discussion in this chapter will be 

devoted to two of the most important types of frequency distribu- 

tions: one, the binomial, is appropriate to qualitative measurements 

of a certain kind; the other, the normal, typifies continuous numerical 

measurements of types quite frequently met in practice. Between 

these two theoretical distributions, a great many of the uses of 

statistical analysis will be introduced. 
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4.1 THE BINOMIAL FREQUENCY DISTRIBUTION 

As was stated above, a binomial population and the corresponding 

binomial frequency distribution are involved when every single event 

which can occur under prescribed conditions must belong to one of 

two classifications. This fact corresponds to the meaning of the 

prefix bz- in the word binomial. For example, if you take out a term 

insurance policy for a period of 10 years you and the company are 

interested in your subsequent classification as “dead” or “alive” 
before, or at, the end of the 10 years. Of course, the company in- 

sures many persons and regards them as a group, some of whom 

will be classifiable as “dead” and the remainder as “alive” at the 

expiration of the 10-year term. What the insurance company and 

its clients need to know, then, is this: Given a group of n persons 
insured for a 10-year term, what are the probabilities associated with 

each of the possible numbers of “dead” and “alive” insured persons 

during the 10-year period of the insurance contract? For any spe- 

cific n the relative frequency—over a great deal of experience—of the 

occurrence of 0, 1, 2, 3,..., (n — 1), or all nm “dead” after 10 years 

will be the binomial frequency distribution mentioned above. It is 

upon the basis of this sort of information that insurance premiums 

are calculated. 

Suppose, for simplicity, that a company has insured 10 persons 

who are 30 years of age for a 10-year term. What can the company 

expect to pay out in death benefits? It is obvious that at the end 

of the 10-year period any one of 11 events may have occurred. There 

can be 0, 1, 2, ..., or all 10 classified as “dead.” Also, over the 

experience of many such groups of contracts for 10-year periods those 

11 possible outcomes will occur with unequal relative frequencies 

which depend both on the number, such as n = 10, and on the prob- 

ability of death for persons in this age interval. Clearly, this bi- 

nomial frequency distribution depends on n and on p = probability 

of death between the ages of 30 and 40 years. 

No one can state theoretically what the probability of death is for 

any particular person during the age period of 30 to 40 years; but 

tables have been compiled from experience which give the best avail- 

able estimate of the desired probability. For example, the American 

Experience Table of Mortality indicates that the average probability 

is approximately one-tenth that an insurable person (determined by 

examination before the company will insure) now 30 years of age 

will die before he is 40 years of age. 
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If 10 persons are insured under conditions to which the American 

Experience Mortality Table applies, it follows from the discussion 

of section 3.3 that the 11 corresponding probabilities of occurrence 

of these numbers of deaths are given by the successive terms of the 

following binomial series: 

(.9 + .1)!° = (.9)?° + 10(.9)9(.1)? + 45(.9)8(.1)? +--+ +(.1)1° 

It is not necessary to devise some game with p = .1 and discover from 

experience that a fraction (.9)?° of the trials will show no occurrences 

of the event H because the only interest is in the relative number of 
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Figure 4.11. Graph of the binomial frequency distribution for p = 1/2 and 

i— 10: 

occurrences, and that is what the probability gives. Hence, the above 

series gives the frequency distribution of the eleven possible classes 

of events. 

To re-illustrate the discussion of the preceding paragraphs with an 

example which the reader can reproduce easily and, in addition, to 

show how to graph a binomial frequency distribution, attention again 

is called to a mathematical model. Suppose that an unbiased coin 

is to be flipped 10 times and the number of heads is to be recorded 

after each set of 10 throws. In these circumstances, n = 10, p = 1/2, 

and gq = 1—p=1/2; hence the successive terms of the following 

binomial series give the probabilities for 0, 1, 2, 3, ..., or 10 heads 

on any future set of 10 throws: (1/2)1° + 10(1/2)9(1/2)1 + 45(1/2)8 

(1/2)? +::-+ (1/2)?9; or 1/1024 + 10/1024 + 45/1024 ++---+ 

1/1024. In view of the fact that each of the denominators is 1024, 

we obtain a useful and simpler expression for the relative frequency 

of occurrence of 0,1, 2,..., or 10 heads on 10 throws, by using only 

the numerators. From them a graph can be constructed to depict 

the relative frequency for each possibility, as is done in Figure 4.11. 
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This figure also can be described as the graph of the binomial fre- 

quency distribution when n = 10 and p = 1/2. 

It is apparent that the actual form of a binomial frequency dis- 

tribution depends upon two numbers, n and p. If p=1/2 =1-—p, 
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Figure 4.12A. Graph of the binomial frequency distribution with p = 2/9 and 
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Figure 4.12B. Graph of the binomial frequency distribution with p = 13/16 and 

T—10) 

the graph is symmetrical, as in Figure 4.11. If p > 1/2, the event EH 

is more likely to occur than to fail to occur; hence the higher ordinates 

of the graph will be toward the right-hand side of the graph. If 

p < 1/2, the reverse situation is expected. These remarks are illus- 

trated in Figures 4.12A and B. For Figure 4.12A, p = 2/9; and for 

Figure 4.12B, p = 13/16. In both cases n = 10. The series for the 

binomials (7/9 + 2/9)?° and (3/16 + 18/16)1° were employed in the 



Sec. 4.1 THE BINOMIAL FREQUENCY DISTRIBUTION 81 

constructions of these figures, using only the numerators of the terms 

as explained above. 

The r.c.f. distribution for a binomial situation is discontinuous— 

as is expected—and involves successive ordinates, each at least as 

large as the preceding one to its left on the graph. Such a graph is 

shown in Figure 4.13. If we were to draw a smooth curve through 

the tops of the ordinates, it would have the same general appearance 

as the r.c.f. curves drawn in Chapter 2. 

Fundamentally the frequency and r.c.f. tables corresponding to 

Figures 4.11 and 4.13 are as shown in Table 4.11. The meaning and 

TABLE 4.11 

FREQUENCY AND 1.c.f. DISTRIBUTIONS FOR THE BINOMIAL DISTRIBUTION 
DEFINED BY p = gq = 1/2, n = 10. Totat FREQUENCY TakEN = 1024, THE 

Sum oF THE NUMERATORS OF THE SERIES FOR (1/2 + 1/2)! 

Number of Oc- 

currences of H 
r ti Che TO 

10 1 1024 1.000 
9 10 1023 .999 
8 45 1013 .989 
7 120 968 945 
6 210 848 .828 
5 252 638 .623 
4 210 386 317 
3 120 176 .172 
2 45 56 .055 
1 10 aL sO et 

0 1 1 001 

Z(f) = 1024 

use of Table 4.11 are fundamentally the same as for similar tables 

in Chapter 2, but some differences should be noted. The major dif- 

ference arises from the fact that the class “intervals” now are just 

isolated points on a scale of measurement appropriate to r. For 

example, 51% per cent (0.055) of the observed values of r (over a very 

large number of observations on r) will be at or below r = 2. How- 

ever, these observed numbers of occurrences of EH will be 2’s, 1’s, and 

0’s only: there is no such r as 1.6, for example. Another difference 

between Table 4.11 and similar tables in Chapter 2 is that the former 

is a theoretical table which fits any situation for which p = 1/2 and 

n= 10. The frequency tables in Chapter 2 were relevant only to the 
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particular situation which produced the data summarized in a given 

table. 

We might wish to know what the median r is for a binomial dis- 

tribution. By Table 4.11, 37.7 per cent of the numbers are seen to 

be 0’s, 1’s, 2’s, 3’s, and 4’s. If 5’s are included, the percentage runs 

past 50 (needed for the median) to 62.3; therefore the median r 

must be 5. It is not some decimal fraction between 4 and 5 because 

no such numbers even exist on the scale of measurement of r. 
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Figure 4.13. The r.c.f. distribution for the binomial distribution with p = 1/2 
and n = 10. 

The median of the binomial distribution just considered also can 

be obtained from the r.c.f. distribution of Figure 4.13 by reading 

horizontally from the point where r.c.f. = .50 until we come to the 

first ordinate on the left, which is high enough to be intersected by 

the horizontal line from r.c.f. = .50. 

It is interesting to compare a frequency distribution which was 

obtained by actual trials with that which would be expected mathe- 

matically under the specified conditions. This is done approximately 

in Table 4.12 for a situation in which 5 pennies were flipped 2000 

times. It was assumed that the pennies were unbiased, although 

this is known not to be strictly true for any actual coin. It should 

be apparent from previous discussions that the mathematically ex- 

pected proportions of the 6 possible combinations of heads and tails 

listed in column 1 of Table 4.12 are 1:5:10:10:5:1. The resulting 

expected numbers of occurrences of each of the possibilities are given 

to the nearest whole number under the heading “Exp.” in columns 

3, 5, 7, and 9. 
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TABLE 4.12 

COMPARISON OF OBSERVED AND EXPECTED FREQUENCIES OF Heaps (H) AND 
Tarts (7) Wuen 5 Pennies (AssuMED UNBIASED) ARE F.iiprep 100, 500, 

1000, AND 2000 TimgEs 

phot 100 Throws | 500 Throws | 1000 Throws | 2000 Throws 
Combination 
of H and T 

ltt =) Obs. | Exp. | Obs. | Exp. | Obs. | Exp. | Obs. | Exp. | 

5H, OT 4 3 16 16 33 31 63 62 * 
4H, 1T 10 16 71 78 | 135 | 156 | 293 | 312 
aH, 27 33 31 151 156 | 287 | 313 | 600 | 625 
2H, 3T jl 31 163 | 156 | 342 | 313 | 641 | 625 
1H, 4T 18 16 86 78 | 168 | 156 | 332 | 312 
OH, 5T 3 3 13 16 35 31 71 63 * 

* Actually each of these numbers is 62.5 but was rounded off this way to 
keep the sum of the observed and expected frequencies equal. 

After the 2000 trials involving 10,000 tosses the ratio of heads to 

tails is 0.94 to 1. Hence there apparently is a weak but definite 

tendency for tails to appear more frequently than heads; that is, p 

is not exactly equal to 1/2. Methods will be described in Chapter 5 

for deciding when a coin, say, is biased, and for estimating the de- 
gree of bias. 

If the observed frequencies in any column of Table 4.12 are taken 

as the f and the r is listed merely as 5, 4, 3, 2, 1, and 0, we have an 

observed frequency distribution, as in Chapter 2. If the expected 

frequencies (which follow a mathematical law) are used as the f 

column and r again is listed as 5, 4, 3, 2, 1, and 0, we have a the- 

oretical frequency distribution of the sort being discussed in this 
chapter. 

In view of the existence of a general mathematical expression for 

the binomial frequency distribution (as in formula 3.32), we might 

be curious to know if such statistical measures as the arithmetic 

mean and the standard deviation can be determined just from the 

n and p which determine the distribution. This is, in fact, true, as 

will be shown partially below. 

The discussion of mathematical expectation given in Chapter 3 

included the information that the arithmetic mean of the number 

of occurrences of an event H over many trials coincides with the ex- 
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pected number, E(r), for any designated future trial. Hence it al- 

ready has been found from experience and intuition that for the 

binomial situation » = np. This result can be established for any 

binomial frequency distribution, but such will not be done herein. 

It also can be shown by somewhat more difficult mathematics that 

the standard deviation for a binomial frequency distribution is given 

by ¢ = V npq ; consequently, given n and p, we can compute the mean 

and standard deviation very easily. This will be found to be helpful 

later in this chapter. 

Sometimes when dealing with binomial distributions it is advanta- 

geous to work with the fractional number of occurrences, r/n, rather 
than with the actual number, rv. In this case, the arithmetic mean is 

p, rather than np; and the standard deviation is V pg/n , instead of 

V npq. To illustrate the use of these formulas both for r and for r/n 

consider again the insurance example above in which n = 10 and p 
= .1. Under these circumstances the mean r is np = 10(.1) = 1, and 

the standard deviation is V npg = V 10(.1)(.9) = 0.949, approxi- 

mately. The mean r/n is p = .1, and the standard deviation of the 

fraction dead is V pq/n = V (.1)(.9)/10 = 0.095, approximately. If 

the number n were sufficiently large that it would be practical, such 

information as that just derived might be useful to an insurance com- 

pany in anticipating the average number (or fraction) of death benefits 

it could expect to pay, and in making sufficient allowance for chance 

deviations from those average numbers so that adequate funds would 

be available to pay death benefits. 

PROBLEMS 

1. Use the coefficients of (1/2)” in the series for (1/2 + 1/2)® to graph the 

binomial frequency distribution appropriate to sets of 6 trials with an event 

whose probability of occurrence is constantly p = 1/2. 

2. Under the conditions of problem 1, what is the probability that the event 

will occur at least 4 times on 6 trials. Ans. 11/82. 

3. Graph the frequency distributions for the binomial with p=1/2 and 

n = 4, 8, and 12, successively. Compute the w and oa in each instance and locate 

on the scale of r: w + lo, w + 20, and uw + 3c. 

4. Graph the binomial frequency distribution for p= 1/4, n = 4, and read 

from it the probability that r will be 2, 3, or 4. 

5. Check the result obtained in problem 4 by constructing the r.c.f. graph and 

reading the answer from this graph. 

6. Graph the binomial frequency distribution for p = .7, n = 4, and determine 

the probability that on one random set of 4 trials FE will occur at least « times, 

where uw = arithmetic mean. 
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7. Flip 3 pennies 80 times, recording the number of heads after each toss of 

the 3 pennies. Then compare the observed and the mathematically expected 

numbers of occurrences in each of the four possible classes of events in terms 

of number of heads. 

8. Perform the operations of problem 7, except to compare the observed 

and the theoretical values of the arithmetic mean. 

9. Suppose that a large group of fruit flies consists of members who are 

classified as either “normal” or “sooty.” Among 10 of these flies selected at 

random, 3 were found to be “sooty.” How frequently would that result be 

obtained if half the flies in the population are “sooty”? How frequently if 25 

per cent are “sooty”? 

10. Suppose that under the conditions of problem 9, 100 flies are chosen at 

random and 30 (same percentage as in problem 9) are “sooty.” Answer the 

same questions as in problem 9. 

Ans. 23 times in 1,000,000; 12 times in 1 billion. 

11. Construct the r.c.f. distributions for problem 3 and then determine the 

median r in each distribution. 

12. Suppose that there are two political parties interested in a certain college 

election, and that 60 per cent of the eligible voters are Progressives and 40 per 

cent are Independents. If a random sample of 10 persons is taken, what is the 

probability that a plurality of them will be Independents, even though they 

constitute the minority party? Ans We 

13. Referring to problem 12, how large must the sample be before the proba- 

bility is less than 1/4 that there will be more Independents than Progressives 

in the sample? 

14. Suppose that 6 persons out of 10 selected at random in a certain city 

favor a particular flood-control policy. What is the probability of such a result 

when only 45 per cent of those in that city actually favor that policy? Ans. .16 

15. For problem 9 determine the median number of “sooty” flies among 10. 

What is the probability that the actual number observed will exceed the 

median? 

42 THE NORMAL FREQUENCY DISTRIBUTION 

A frequency distribution for a population of numerical measure- 

ments is intended to display in some manner the density with which 

the measurements are distributed along the scale on which they are 

measured. Such a frequency distribution indicates the region (along 

the scale of measurement) in which the measurements tend to be 

most numerous, and also shows the way in which they are dispersed 

about that region of concentration. The reader should see that these 

are the same two general matters of concern considered in Chapter 

2. Averages were used to measure general level of performance (as 

on ACE scores), and measures like the standard deviation, mean 

deviation, range, and quartiles were employed in the description of 

the dispersion of the data along the scale of measurement. This sort 
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of information is essential to any adequate description of a popula- 

tion, and also is vital when considering sampling problems. 

In order that we may be able to perform certain useful statistical 

analyses it usually is necessary to assume (after investigation) that 

the data conform to some general type of frequency distribution, 

such as the binomial frequency distribution considered in the preced- 

ing section. In that section a formula was used to determine the 

frequency distribution for a binomial population when the basic 

information (n and p) was available. The formulas and the proce- 

dures for their use are appropriate for discontinuous measurements 

which fall into only two categories, such as heads and tails. 

Likewise, we need a mathematical formula which is appropriate 

when continuous measurements (such as weights, heights, and ages) 

can be expected to conform to what is called a normal frequency dis- 

tribution. Mathematicians long ago derived the necessary formula, 

in fact, it has been derived several different ways, all of which—as 

rigorous derivations—are inappropriate to this book. However, it is 

possible here, and useful, to show how the normal distribution is re- 

lated to the binomial frequency distribution. 

As the number of trials (n) is increased the number of ordinates 

which graphically represent the binomial frequency distribution also 

becomes greater. As the nm increases the discontinuity of the dis- 

tribution may become less important and less noticeable for many 

practical purposes. This matter is illustrated in Figures 4.21A, B, 

and C, for which p = 1/2 and n = 5, 20, and 100, respectively. In 

Figure 4.21A our eyes have to search a bit for the actual form of the 

distribution; for n = 20, the points rather definitely follow a certain 

symmetrical curve quite well; and for n = 100, the points of the graph 

dot out a symmetrical bell-shaped curve quite clearly. To put the 

matter another way, if the instructor were to ask each member of 

the class to draw a smooth curve which seemed to the student to fit 

the points of the figures best, there would be considerable hesitation 

and disagreement about Figure 4.21A, much less trouble with Figure 

4.21B, and practically unanimous accord concerning the curve needed 

for Figure 4.21C. 

The student will realize that the labor involved in the construction 

of figures 4.214, B, and C becomes increasingly great as n varies from 

5 to 100. In view of the fact that Figures 4.21B and C are closely 
approximated by continuous curves, we might hope that a relatively 

simple formula for a continuous curve might be employed instead of 

Cn, rpg, or instead of a summation involving this formula. For- 
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Figure 421A. The binomial frequency distribution with p = 1/2 and n= 5. 
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Figure 4.21B. The binomial frequency distribution with p = 1/2 and n = 20. 
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Figure 4.21C. The binomial frequency distribution for p = 1/2 and n= 100. 



88 BINOMIAL AND NORMAL DISTRIBUTIONS Ch. 4 

tunately, it can be shown mathematically that if n is fairly large and 

p is not far from 1/2, the numbers obtained from C,, ,-p’(1 — p)""" 

by setting r successively equal to 0, 1, 2, ---, and m are much the same 

as those obtained from (1/ V Opa) en ae ons wherein X replaces 

r, np = wp, o = Vnpq, and e = the base for natural logarithms. In 

patucular af p= 1/2 so that ~ — 1/2 and ¢ — V n/2, it is found 

that the approximation is very close for n = 20 or more. Table 4.21 

shows the approximation when n = 20. 

TABLE 4.21 

ILLUSTRATION OF THE GOODNESS WITH WHICH THE NORMAL FREQUENCY 

Curve Fits tHE BrnomiaL FrEQquENcy DIstRIBUTION WHEN p = gq = 1/2 
AND n = 20 

ror X Binomial Normal Error ror X Binomial Normal Error 

0 . 000 .000 eee 1M . 160 .161 .001 
1 .000 .000 at 12 .120 .120 .000 
2 .000 .000 me cic 13 .074 “O73 .001 
3 .001 .001 .000 14 .037 .036 .001 
4 .005 .005 .000 15 .015 .015 .000 

5 O15 .015 .000 16 .005 .005 .000 
6 .037 .036 .001 174 .001 .001 .000 
a .074 0738 .001 18 .000 .000 
8 120 .120 .000 19 .000 .000 
9 . 160 161 .001 20 .000 .000 

10 76 .178 .002 

If the relative frequencies calculated the two ways shown in Table 

4.21 are plotted on a common set of axes, Figure 4.22A is obtained. 

Graphically, the normal frequency distribution fits this binomial dis- 

tribution almost perfectly at the points where the binomial distribu- 

tion exists. 

The sum of all the relative frequencies (ordinates) for the binomial 

frequency distribution is 1 because it is the sum of the probabilities | 

for all of the (n+ 1) mutually exclusive events which are possible 

under the specified conditions. Likewise the sum of all the ordinates 

of the normal curve at the points where X = 0, 1, 2,..., 19, and 20 

will add to approximately 1. If rectangles of width 1 and heights 

1 —~(X; — 10)2 7 (Xs — 10)?/10 
1) | iy a 

/ 107 

where 2 = 0 to 20, inclusive, are constructed as in Figure 4.22B, their 

total area also is approximately 1. Moreover, the total area of the 
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Figure 4.22A. The normal curve fitted to the binomial frequency distribution 

with n = 20 and p = 1/2. 
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Figure 4.22B. Illustration of the relationship between the area under the normal 

curve and the probabilities which can be derived from a binomial distribution 
with p = 1/2 and n = 20. 
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rectangles is approximately the same as the area under the normal 

curve, as the reader can verify visually. 

With the preceding remarks in mind, consider the following two 

facts: (a) To obtain the exact probability that r will have one of 

the values from a to b, inclusive, we need to sum the ordinates, 

Cy, -(1/2") forn = 20 andr =a,a+1,a+2,...b. (b) The opera- 

tion described in a is approximately the equivalent of finding the 

area under the normal curve between the points X = a — 1/2 and 

X =b+1/2. The operation of a is very laborious; hence if b can 

be accomplished with much less work and is satisfactorily accurate, 

it should be the better method. As a matter of fact, this is the case, 

as will be shown by some of the subsequent discussion of this chapter. 

If the relative frequency of occurrence of a normally distributed 

measurement, X, is denoted by y1, we have the following general 

formula for y1: 

(4.21) y= Be et 
2r 0 

Hence, if the » and o are known and the measurement X is known 

to have a normal distribution, we can graph the frequency distribu- 

tion by the usual methods of algebra. For example, if » = 60 and 

o = 10, formula 4.21 becomes 

1 a 
(4.22) = 

V Or (10) 

Table 4.22 was prepared from this formula, and Figure 4.23 then 

was constructed from the pairs of values (X, y,) in that table. It 
will be left as an exercise for the student to verify the values given 

for y; by using Table VI (end of book) to obtain e~”, where w = 

(X — 60)?/200. Thereafter, division by 10 gives the numbers in 

Table 4.22, under the heading 4. 

The following information can be obtained easily from Figure 

4.23: (a) The normal distribution curve is symmetrical about a 

vertical line through the point where X = » = 60; (b) the median 

X, the modal X, and the arithmetic mean of the X’s are equal and 

each is equal to 60; and (c) after (X — 60) becomes at least twice 

the size of the standard deviation, either positive or negative, the 

corresponding ordinates, y;, are very small. In fact, when (X — 60) 

becomes three times the size of the standard deviation, the corre- 

sponding y; is practically zero. Hence, it follows that for a truly 
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normal distribution the useful range of the X’s is about six times the 

size of the standard deviation. The reader should recall that this 
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Figure 4.23. The normal frequency distribution curve for a population with 
» = 60 and o = 10. 

approximate relationship between the range and the standard devia- 

tion was used in Chapter 2 when the normal frequency distribution 

was mentioned first. 

TABLE 4.22 

CoorDINATES OF PoINTs SATISFYING ForMULA 4.22 ror A NORMAL 

FREQUENCY DISTRIBUTION WITH » = 60 AND o = 10 

Xx Yi x Yi 

30 .000 65 1035 

ayD) .002 70 .024 

40 .005 1D .013 

45 .013 80 .005 

50 024 85 .002 

55 0635) 90 .000 

60 .040 

Most students have asked (or heard someone else ask) an in- 

structor: ‘Do you grade on the curve?” The curve which the stu- 

dent has in mind is the normal frequency distribution curve; but it 

appears from the discussion above that there is a different normal 
curve for each combination of » and o. This is correct; but the stu- 

dent who is asking such a question is chiefly interested in his per- 

formance relative to the other persons who took the same examina- 

tion. He hopes that a grade of 40 on one test is as good as a grade 

of 70 on another test if its relative rank among all grades on that 
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examination is the same in both instances. In other words, what is 

of interest is the general form of the frequency distribution of a set 

of grades and a system for comparing one person’s grade with all 

the other relevant grades. The discussion which follows is intended 

to show how we can reduce all formulas for particular normal fre- 

quency distributions to one general—and simpler—formula which 

preserves all the information which we usually desire from such a 

formula. 

Multiply through formula 4.21 by o and then make the following 

substitutions of variables: let y = oy; and let A = (X — p)/o. The 

result of these substitutions is the following formula for the standard 

normal frequency distribution: 

ce, — 2/2 
(4.23) y Wie e A 

What has been done by means of these substitutions can be described 

graphically as follows: (a) Both the vertical and the horizontal axes 

have been marked off in multiples of the standard deviation, o; and 

(b) the peak of the curve (which is above the point where X = p = 

md = MO) has been placed above the point where A = 0. Hence 

the X’s which are less than » now correspond to negative values of X, 

those which are greater than » now correspond to positive 2’s. 

The first two columns of Table III give the numbers needed to 

construct the graph of equation 4.23. Figure 4.24 was constructed 

by means of this table. Figures 4.23 and 4.24 are essentially the 

same curve; the only difference lies in the way the vertical and 

horizontal axes are scaled. In Figure 4.23 » would be O under the 

point where X = 60, would be +1 under the point where X =70 

because 70 is one times the standard deviation larger than 60, the 

mean. The A would be —1 under the point where X = 50 because 

50 is one times the standard deviation smaller than the mean, 60. 

The other corresponding values of » and X can be determined in 

the same manner. 

An illustration of the application of standard normal frequency 

distributions to a generally familiar situation can be obtained from 

the batting averages of baseball players. The conditions which might 

affect batting averages may change from season to season or from 

league to league so that such averages for the different situations are 

not directly comparable. For example, the ball may be livelier one 

season than during another; or perhaps the pitching may generally 
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be poorer one season than another. Hence an average of .350 during 

a season with a lively ball and generally mediocre pitching might not 

represent a better batting performance than an average of .320 at- 

tained with a less lively ball and more effective pitching. 

These matters should be reflected in the general level of batting 

averages and in the consistency with which players’ averages grouped 

about the general average. That is, the mean and the standard 

deviation of the batting averages should be taken into account. This 

is precisely what is done when standard normal units are employed. 

40 
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Figure 4.24. Graph of the standard normal frequency distribution whose for- 

mula is given by equation (4.23). 

There also seems to be evidence indicating that batting averages 

can be assumed to be reasonably normal in their distribution. 

Batting averages for some of the better batters from the National 

and American leagues (undifferentiated here but kept separate when 

the standard normal units were computed) are presented in an 

ordered array in Table 4.23, first as they usually appear and then in 

terms of standard normal units. - 

Some interesting conclusions can be drawn from Table 4.23, al- 

though they might be disputed upon the basis of other evidence and 

other points of view. For example: (a) The best batter listed for 

1940 (Deb Garms) ranks fifteenth in standard normal units, con- 

sidering all 4 years together. (b) The batter with the best average 

of all (Ty Cobb)—when the level and dispersion of batting averages 

within a league and year are taken into account—had an actual 

average of .385, which was bettered by five other batters unless 
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TABLE 4.23 

ORDERED BatTTinc AVERAGES FOR INDICATED YEARS BEFORE AND AFTER 

CONVERSION TO STANDARD NorMAL UNITS 

(Includes higher ranking batters who were in at least 75 games during the 
season. ) 

Actual Average Standard Normal Units 

1910 1920 1930 1940 1910 1920 1930 1940 

385 .405 .401 855 3.43 i les 2.45 1.96 
364 388 393 302 2.85 2.12 2.24 1.88 
.340 . 382 386 348 2.19 2.57 2.06 1.78 
.331 .376 .383 344 1.94 2.41 1.98 1.68 
325 300 .381 342 erie 2.25 1.93 1.63 
322 369 379 .340 1.69 2.23 1.88 1.58 
321 .360 379 340 1.66 1.99 1.88 ie58 
320 "309 374 337 1.63 1.86 alge Hs) Tbk 
312 ool Bays 326 1.41 175 1,73 123 
309 340 368 O22 1.33 1.47 1.60 AS 
.308 .339 367 .320 1.30 1.44 1E57 1.08 
. 306 338 366 .319 1725 1.41 1.55 1.06 
305 .338 366 .318 1:22 1.41 1.55 1.03 
304 334 359 rold 1.19 ligt tion 1.01 
302 .333 359 sol? 1.14 1.28 As 7) 1 Om 
50 OU .333 room .316 ie 1.28 leon 0.98 
300 i332 356 .316 1.08 1.26 1.29 0.98 
300 328 515)5) .316 1.08 15 1.26 0.98 
.298 .328 304 .314 1.02 Tas 1.24 0.93 
.298 .328 350 313 1.02 TS AS} 0.90 

standard normal units are employed. In these units, his average 

is a decided stand-out, being 0.26 unit ahead of the runner-up. 

(c) In general, there is reason to believe that the batters in the year 

1940 were not up to the standards of the other years shown in Table 

4.23, especially those of 1920 and 1930. 

PROBLEMS 

1. Graph the normal frequency distribution with » =4 and o =2 directly 

from equation 4.21. 

2. Graph the normal distribution of problem 1, using formula 4.23. 

3. Graph the normal curve which approximates the binomial frequency dis- 

tribution with n = 8 and p = 1/2. Do likewise for the binomial with n = 8 and 

p = 1/4, and note the decrease in the goodness of the approximation. 
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4. Graph as in problem 38, with n = 12 instead of 8, and comment on the 

effect of increasing the size of n. 

5. Graph the frequency curve for a normal population with »=10 and 

o = 2, and estimate roughly from the graph the proportion of all the measure- 

ments in this population which are greater than or equal to 12. 

6. Make a frequency distribution table for the birth weights of male guinea 

pigs as recorded in Table 2.61, compute the w and o, and then graph the normal 

curve with the same w and o. How does the graph compare with the frequency 

distribution curve made directly from your distribution table? 

7. Perform the operations of problem 6, using the records for the female 

guinea pigs in Table 2.61. 

8. Perform the operations of problem 6, using the 4-day gains of male guinea 

pigs as listed in Table 2.62. 

9. Perform the operations of problem 6, using the 4-day gains of female 

guinea pigs as given in Table 2.62. 

10. Graph the binomial frequency distribution for n = 16 and p= 1/2 and 

then plot the corresponding normal distribution on the same axes, adjusting 

the height to fit the binomial. Also construct for each value of r a rectangle 

of base r — 1/2 to r+ 1/2 and height = Cy, ,°p"q16—". Then indicate on your 

graph the area under the normal curve which is approximately equal to 

P(8=r=11), the probability that r will have a value from 8 to 11, inclusive. 

11. Perform the operations of problem 10, with p = 3/5. 

12. Choose any available source and compare the batting averages in the 

National League for 1940 and 1950, using the leading 25 players in each year 

and converting the batting averages to standard normal units. 

4.33 DETERMINATION OF THE PROPORTION OF A NOR- 

MAL POPULATION OF MEASUREMENTS INCLUDED 

BETWEEN ANY SPECIFIED LIMITS 

In Chapter 2 the student was given the opportunity to learn how 

to construct an r.c.f. distribution, how to graph it, and how to deter- 

mine from this graph the limits on X which would include any 

specified proportion of the data so summarized. Furthermore, the 

inverse process also was discussed, namely, the determination of the 

proportion of the data which lies within specified limits. It is de- 
sirable to be able to obtain the same sort of information for nor- 

mally distributed groups of measurements. The basis for such a 

procedure was given in the preceding section. 

There is, however, one major difference between the process taught 

in Chapter 2 and that which is necessary to handle the standard 
normal frequency distribution. In the latter situation there is no 

distribution table with class intervals and cumulative frequencies 

determined by means of certain arithmetic procedures. Instead the 

r.c.f. distribution must be derived from the formula for the normal 
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distribution function. The mathematical procedures needed in this 

process are beyond the level of this course; but the reader can under- 

stand that the r.c.f. curve of Figure 4.31 plays the same general role 

in the analysis of normal data that the r.c.f. curves did in Chapter 2. 
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Figure 4.31. Relative cumulative frequency distribution for the standard nor- 

mal frequency distribution described by formula 4.23. 

Relative cumulative frequency 

The following problems will illustrate the uses to which Figure 

4.31 can be put. 

Problem 4.31. Determine the limits on \ for the third quartile of a standard 

normal population of measurements. 

The limits required are obviously the median and Qs, respectively. 

If we read horizontally from .50 on the vertical scale over to the 

normal r.c.f. curve and then downward to the horizontal scale, we 

find that A = 0, as is to be expected. Doing likewise for .75 on the 

vertical scale, we find that A = 0.68; therefore, the limits on the third 

quartile are A = 0 to A = 0.68. Since these limits apply to any 

standard normal distribution, the limits of the third quartile for any 

particular normal distribution in terms of a measurement, X, can be 

obtained from the relation: X = (X — p)/c. 

Problem 4.32. What is the probability that a measurement chosen at random 

from a normal population with ~« = 50 and « = 5 will be found to lie between 

50 and 52? Between 48 and 50? Between 60 and 65? 

To reduce this specific normal distribution to the standard normal 

distribution, substitute » = 50 and o = 5 into A= (X — p)/o so 



Sec. 4.3 FRACTION OF X’S WITHIN GIVEN LIMITS 97 

cate —n(ke 90) /on i Xx =) 50) 'X = O0-rand if X = 52," = 0:40, 

To answer the specific question asked regarding probabilities it is 

necessary now to extend somewhat the concept of probability pre- 

viously employed herein. 

When the possible events correspond to positions along a con- 

tinuous scale of measurement, the number of possibilities (previously 

denoted by NV) is infinite. Moreover, the likelihood of occurrence 

changes along the scale. It no longer is useful to ask for the prob- 

ability that X will have a specific size along this scale on any future 

trial. Instead, an event HE will consist of X lying within certain limits. 

The probability that a randomly chosen X will fall between the 

limits XY = a to X = b now will be defined to be the proportion of 

all the X’s in the population which are included in that interval. 

Graphically, this will be the proportion of the whole area under the 

frequency distribution curve which lies between X = a and X = b. 

Therefore, in problem 4.382, we need to know what proportion of this 

normal population hes between A = 0 and A = 0.40. From Figure 

4.31 it is learned that 50 per cent of this population has values less 

than 0 and about 66 per cent has values less than 0.40; therefore, 

about 16 per cent of the numbers in a normal population have X’s 

between 0 and 0.40. It follows that P(50 = X =—52) = .16. 

It is concluded from the symmetry of the normal curve that 

P(48 = X =50) = .16 also. Furthermore, P(60 = X =—65) = .025 

because 2.5 per cent of the X’s have sizes within the lmits 60 to 65. 

As a final illustration of the use to which Figure 4.31 can be put 

consider a problem of grading “on the curve.” 

Problem 4.33. Given that a large group of grades in psychology conform to 

a normal distribution with « = 75 and o = 7, suppose it is required to put letter 

grades on these scores in the proportions: 7A:206:46C:20D:7F. What are the 

numerical limits on each letter grade? 

It is useful first to translate the proportionality above into a dif- 

ferent form as follows. Starting with the lowest grade, F (which 

will be represented at the left-hand end of the scale of A), we have the 

following facts: 

.07 of the grades are to be F; 

.27 of the grades are to be D or F; 

.73 of the grades are to be C, D, or F; and 

.93 of the grades are to be B, C, D, or F. 
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It is learned from Figure 4.31 that, for a normal population, 

.07 of the X’s correspond to A= —1.48; 

.27 of the X’s correspond to A= —0.65; 

.73 of the X’s correspond to A= -+0.41; and 

.93 of the X’s correspond to A= +1.50. 

In terms of the X’s, we have the following facts obtained from the 
relation: A = (X — »)/o: 

07 of the X’s are = 65—; 

.27 of the X’s are = 70+; 

.73 of the X’s are = 78—; and 

.93 of the X’s are = 86—-; 

therefore, the required numerical limits on the letter grades are as 

follows: 

A. =:80 ons B= 78:10 85° “C.= () to 7/* D' = 6Go-towmu- 

F = below 66. 

The preceding applications of Figure 4.31 have given approximate 

answers to the questions asked, and these answers are as accurate 

as the graph used and our ability to read values from it will allow. 

It seems rather obvious that a more accurate and, if possible, more 

convenient method is desirable. A method of this sort is available 

through the use of statistical tables. They perform essentially the 

same service as Figure 4.31. Although their derivation is not appro- 

priate to this book, the reader can simply keep in mind the fact that 

the information obtained from Table III is the same as that which 

can be derived directly from Figure 4.31, but is in a more accurate 

and convenient form. 

It will be left as an exercise to rework problems 4.31 to 4.33, inclu- 

sive, using Table III in place of Figure 4.31 as was done above. 

It is worth while to investigate a set of data from Chapter 2 to 

see if it seems to be following a normal frequency distribution, at 

least approximately. Actually it is not feasible at this level of statis- 

tics to decide this matter rigorously; but some useful information 

can be obtained nonetheless. — 

Consider first the ACE scores of Table 2.01, their frequency dis- 

tribution in Table 2.42, and the graph of Figure 2.41. Obviously, 

some approximation is introduced by using such a summary—espe- 

cially one with only 12 class intervals—but the approximate distri- 

bution will serve the purpose here. The graphs of Figure 2.41 would 
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resemble those of Figures 4.23 and 4.31 rather closely if the former 

were smoothed curves instead of broken-line graphs. Hence, it 

appears, superficially, that the population of ACE scores follows a 

normal distribution fairly well if the more general and important 

features are the only ones considered. To be more definite, consider 

the following information: 

(a) For the ACE scores, » = 96, approximately, and the median 

is 97. These averages are equal in a normal distribution but the 

discrepancy is not at all large. 

(b) The following table shows the corresponding proportions 

within stated, and important, intervals on X: 

PERCENTAGE OF THE POPULATION INCLUDED 

Interval on X ACE Normal Difference 

jose 0.00 37.6 38.3 Se 
pe 1.0¢ 67.1 68.5 —1.2 
wt 1.50 85.3 86.6 —1.3 
be + 2.00 95.2 95.4 —Ou2 
+ 2.50 90:2 98.8 +0.4 
p+ 3.00 99.8 SEF “0.2 

Although the deviations from normal expectancy are somewhat 

systematic, there being a small deficiency in the middle and a smaller 

excess in the tails of the distribution, the ACE distribution still 

seems to be approximated by the normal quite well. 

If, then, it is assumed that the ACE scores do essentially conform 

to a normal distribution, the substitution » = (X — 96) /26 would 

convert the scores of Table 2.01 into standard normal measurements. 

The graph of their frequency distribution essentially would be Fig- 

ure 4.23, the r.c.f. curve would be given approximately by Figure 

4.31, and Table III would present the distribution in tabular form. 

The statistical analysis of these data then might be more easily and 

efficiently accomplished than would otherwise be the case, and little 

or no important information would be lost in the process. 

PROBLEMS 

1. If a binomial frequency distribution has p = 1/4 and n = 80, calculate 

P(r > 25) by means of the normal approximation to this binomial distribution. 

2. Suppose that all the residents of a certain city definitely have made up 

their minds about a particular civic issue, and that 55 per cent favor one specific 

decision. What is the probability that on a random sample of 100 interviews 
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less than 50 will favor this decision, that is, it will seem that the residents are 

against this decision when they actually favor it? Ans. .13. 

3. Suppose that an event H#, occurs with a relative frequency p = 1/2, and 

that m random observations are to be made under these conditions. How large 

must n be before the number of occurrences, 7, of H, will fall within one per 

cent of its mathematical expectation with probability equal to .10? That is, 

you must choose n so that P(n/2 — n/200=r=n/2 + n/200) = .10. 

4. Suppose that a basketball team has established in previous games that it 

is safe to assume that the probability on each shot by a team member that a 

goal will be scored is .35. What is the probability that in a game in which they 

take 60 shots from the field they will hit less than 18 if the idealized assump- 

tions just stated are good? Ans. .17. 

5. Suppose that a pair of unbiased dice are to be rolled 50 times. What is 

the probability that a 6 or a 7 or an 8 will appear on 20 to 25, inclusive, of these 

throws? 

6. According to certain records the average length of growing season at Man- 

hattan, Kansas, is 172 days. If the standard deviation about this mean is 13 

days, and if lengths of growing seasons in this area are normally distributed, 

what is the probability that the next growing season will be long enough to 

mature a crop which requires 190 days to complete its development? Ans. .084. 

7. Suppose that when wood blocks of a certain type, 2 by 2 by 8 inches, are 

tested for strength with the proper engineering equipment, their strengths are 

normally distributed with mean equal 13,000 pounds and standard deviation 

equal 3600 pounds. How many blocks out of 100 tested would you expect to 

have strengths below 6000 pounds? Between 10,000 and 15,000 pounds? 

8. If you are told that the heights of 10,000 college men closely follow a 

normal distribution with » = 69 inches and o = 2.5 inches: 

(a) How many of these men would you expect to be at least 6 feet in height? 

Ans. 1150. 

(b) What range of heights would you expect to include the middle 50 per 

cent of the men in the group? Ans. 673 to 70:7. 

9. Assuming that the wages of certain laborers in the building trades are 

normally distributed about a mean of $1.80 per hour with a standard deviation 

of 30 cents: 

(a) What proportion of the laborers receive at least one dollar per hour? 

(b) What range includes the middle two-thirds of these laborer’s wages? 

10. Suppose that tests have indicated that certain silk fabrics have breaking 

strengths which are normally distributed about a mean of 27 pounds, with 

o = 8; whereas, materials with a mixture of silk and rayon have u = 37 pounds 

and 6 = 9. How likely is it that a piece of silk selected at random will be at 

least as strong as the average for the silk and rayon mixture? How likely is 

it that a randomly chosen piece of the silk-rayon mixture will be no stronger 

than the average for silk? Ans P= lit: 

11. Suppose that the persons whose ACE scores are in Table 2.01 are to be 

given letter grades on the assumption that these scores are normally distributed | 

with w = 95.7 and o = 26.1. If 10 per cent are to get A’s and 22 per cent D’s, 

compute the score limits on each letter grade. 
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12. Suppose that 52 per cent of the voters in a certain city are in favor of 

a particular one of the possible sites for a new high school. If 100 voters are 
to be selected at random, what is the probability that less than 50 per cent 

will vote in favor of this site? If the poll is so taken that 60 per cent of those 

who favor that site will not participate in the poll, what now is the probability 

that less than 25 per cent of a sample of 100 will vote for the site in question 

which 52 per cent of the voters actually favor? Ansa lnel2: 

44 USE OF THE NORMAL DISTRIBUTION TO 

APPROXIMATE PROBABILITIES FOR A 

BINOMIAL FREQUENCY 

DISTRIBUTION 

Another important use to which the normal r.c.f. distribution can 

be put has been suggested previously, namely, the approximation of 

the summation of C,, -p’q"—* from r = a to r = b, when n is at all 

large and p is close to 1/2. It has been indicated that this sum is 

approximately equal to that area under the normal curve between 

the points X; = a — 1/2 and X,=6+1/2. Moreover, it has been 

shown that the area under the normal curve between any two points 

along the X-axis can be obtained quite easily from an r.c.f. curve 

or from Table III. 

To illustrate this process and to indicate its accuracy, suppose 

n=20 and p=q=1/2, and that it is required to determine 

P(r==12). For this binomial distribution, » = np = 10 and o = 

Vnpq = V5; hence the normal distribution with these parameters 

will be employed in the approximation. Also, X; = 11.5, and X_. = 

20.5. In terms of standard normal units, 

Ay (11.5 — 10)/2.24 +0.67, and 

he = (20.5 — 10)/2.24 = +4.69. 

By means of Table III and some interpolation it is found that ap- 
proximately 25 per cent of a standard normal population has num- 

bers between these A-limits; hence P(r = 12) = .25, approximately. 

Using the last column of Table VII from r = 12 on down, and 

using a divisor of 21° = 1,048,576, the exact probability—to 4 deci- 

mals—that r will have some size from 12 to 20, inclusive, is found 

to be .2517. Certainly the normal approximation of .25 is excellent 

for most purposes, and the labor saved is considerable. 
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PROBLEMS 

1. Given a large number of college grades which follow a normal distribution 

with » = 65 and o = 10, what proportion of the grades would you expect to lie 

in the interval from 50 to 70, inclusive? 

2. Referring to Figure 4.31, how probable is it that 3 random selections from 

this population will each have \’s = 2? Ans. P = .000027. 

3. What proportion of the measurements in a normal population would you 

expect to lie beyond X = 1.1 if »=0.5 and o = 0.25? 

4. What proportion of the data described in problem 3 lies at least 0.15 unit 

from the arithmetic mean if the numbers are in an array? Anise 200% 

5. Certain frost data collected in the neighborhood of Manhattan, Kansas, 

over a 69-year period indicates that the average date of the last killing frost 

in the spring is April 24, with a standard deviation of 10 days. Assuming a 

normal frequency distribution and assuming that the date of the last killing 

frost cannot be predicted from a current year’s weather, what is the probability 

that the last killing frost next spring will come on or after May 1? 

4.5 STUDYING THE NORMALITY OF A FREQUENCY 

DISTRIBUTION BY RECTIFYING THE r.c.f. CURVE 

A method was given in a preceding section for detecting gross non- 

normality by calculating the proportions of a population lying within 

such intervals as » + ko and comparing these with those proportions 

which are typical of a perfectly normal population of measurements. 

A graphic method will be presented in this section which will make 

it quite easy to compare the whole of a population with a standard 

normal population. The graphic method has these advantages: (1) 

Like other graphs, it utilizes the eye-mindedness of many persons. 

(2) It compares all the distribution with a standard normal instead 

of comparing a few segments such as p + 0.50, p + lo, etc. How- 

ever, this graphic procedure has the disadvantage that it may encour- 

age a hasty acceptance of the assumption that the given population 

is sufficiently near normal for the purposes at hand. More rigorous 

tests of normality exist in more mathematical textbooks, which 

can be consulted if the situation demands that additional care. It 

will be seen when the Central Limit Theorem is discussed in a later 

chapter that a considerable amount of non-normality can be toler- 

ated in sampling studies; hence a precise—and laborious—test for 

normality is not often employed. In such situations a graphic test 

may be sufficiently reliable. 

The process of rectifying a curve y = f(x), which is the basic 

procedure of this section, is one of changing the scale of measure- 
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ment of either, or both, x and y so that the new graph of y = f(x) 

becomes a straight line. That is, a curved line is straightened out by 

a change of scale. 

Because the reader is assumed to be familiar with logarithms, the 

description of a method for rectifying a normal curve will be pre- 

ceded by a similar discussion regarding logarithmic and exponential 

curves. If Y = logio X, as in Table 4.51 for selected X’s, the pairs 

of values (X, Y = logio X) plot on the curve of Figure 4.51. 

TABLE 4.51 

Some Parrs or NuMBERS WHICH SATISFY THE EQuaTION Y = LOG, X 

xX Y x sé xX y 

1 0.00 100 2.00 500 2.70 
5) 0.48 150 2.18 600 2.78 
8 0.90 200 2.30 700 2.85 

10 1.00 250 2.40 800 2.90 
40 1.60 300 2.48 900 2.95 

50 1.70 390 2.54 1000 3.00 
70 1.85 400 2.60 

4 

3 

Y 
2 

1 

100 200 300 400 500 600 700 800 900 1000 
x 

Figure 4.51. Graph of Y = log,, X for X in the interval 1 =X =1000. 

It is obvious that as the size of X increases, the size of Y = logio 

X increases less and less for equal increases in X. For example, 

when X changes from 500 to 600, log X changes by 0.08; but when 

X changes from 900 to 1000 (another increase of 100), log X 

changes by only 0.05. It is typical of straight-line (linear) mathe- 

matical relationships that Y changes the same amount for equal 

increases in X. In other words, Y changes uniformly with increas- 

ing X. If log X is put on a uniform scale, as in Figure 4.52, and 
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the corresponding X’s matched with their logarithms, the X-scale is 

what is called a logarithmic scale. Figure 4.53 shows the effect of 

graphing Y = log X against X when YX is on a logarithmic scale. 

| | | | | | | | | | | 
Uniform scale, logX:0.0 01 O02 03 04 O5 06 O07 O8 09 1. 

Corresponding X: 1 2 3 4 5 6 7 8) 910 

Figure 4.52. Matching of the logarithmic and the arithmetic scales of a 

measurement, X. 

1 10 100 1000 

X on logarithmic scale 

Figure 4.53. Graph of Y = log,) X when X is scaled according to the logy) X 

as derived from Figure 4.52. 

As can be seen, the graph is a straight line, and, for any equal dis- 

tance along the horizontal axis, the Y changes by the same amount. 

It is noted that the X-axis falls into parts of equal length: one for 

numbers from 1 to 10, one for numbers from 10 to 100, and another 

for X’s between 100 and 1000. This corresponds to numbers whose 

logarithms have characteristics of 0, 1, and 2, respectively. Graph 

paper with one scale logarithmic and the other arithmetic will be 

called semi-log paper. When it has three repeated sections along 

one axis (X-axis in Figure 4.53) it is called three-cycle semi-log 

paper. The three cycles correspond to any three successive char- 

acteristics of logarithms, that is, to numbers which fall between any 

three successive powers of 10. 

Figure 4.54 illustrates the use of semi-log paper to rectify an 

exponential curve. In this case Y = 2e3*, but any base for the 

power could be used. Clearly logio Y = logio 2+ 3X logio e; or 
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logio Y = 1.80X + 0.30, approximately. This will be a straight 

line if Y is measured on a logarithmic scale, as in Figure 4.54. Table 

4.52 gives the values used in plotting Figure 4.54. 

TABLE 4.52 

VALUES OF 2e?* ror SELECTED X’S 

ng = 2¢8X XG Y = 2¢8% 

0 2.00 1.15 63.00 

0.25 An23 125 85.04 

0.50 8.96 1.50 180.03 

0.75 18.98 1.75 381.14 

0.85 25.61 2.00 806.86 

1.00 40.17 

1000 

100 

Y 

10 

1 
0 02 0.4 06 08 1.0 1.2 14 1.6 18 2.0 

x 

Figure 4.54. Graph of Y = 2e8¥ on semi-log paper. 
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With the foregoing introduction to the method of rectifying 

curves the same general process will be applied to the normal r.c.f. 

curve. As noted earlier, one of the questions which may arise in prac- 

tice is whether or not a given type of numerical measurement does fol- 

low a normal frequency distribution. Although the graphic proce- 

dure to be illustrated is definitely not a rigorous test for normality, 

it may be sufficient for practical purposes. 

The vertical scale to be employed will have what is called a nor- 

mal r.c.f. scale marked off in whole percentages. The horizontal 

scale will be an arithmetic (or uniform) scale for the A used previ- 

ously in discussions of the standard normal frequency distribution. 

Figure 4.55 illustrates the process of obtaining the vertical scale in 

a manner which is analogous to that illustrated earlier for semi-log 

paper. It was constructed with the aid of Table III by plotting the 

normal r.c.f. as a percentage (top scale) directly over the cor- 

responding A, and then interpolating for the “integral r.c.f. per cent” 

found on the middle scale of Figure 4.55. This middle scale is the 
one to be used here in studying the approximate normality of fre- 

quency distributions. 

Normal r.c.f. 23 15.9 50.0 84.1 OT 

eecereeliite dh AST ub ted hel) duit aie eeSealentog 
eral 7% 1 935 10 20 30 4050 60 70 80 90 9597 99 vertical axis) 

Standard | | | | | | | | | | (Scale for 
normal units, A —2 -1 0 +1 +2 horizontal axis) 

Figure 4.55. Determination of the scales for a normal-arithmetic graph. 

As is to be expected after the discussion of semi-log graph paper, 

it is not necessary to go through the work back of Figure 4.55 be- 

cause graph paper already exists on which we can do this graphing. 
Figures 4.56A and B were constructed on normal-arithmetic paper 

to illustrate the way the normality or the non-normality of a dis- 

tribution affects a graph on such paper. Four distributions are 

employed in these illustrations: 

(a) Truly normal distribution of Table IIT; 

(b) ACE scores of Table 2.01; 

(c) the data on farm acreages in Table A (below) ; and 

(d) the definitely non-normal distribution of Table 4.53. 
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TABLE 4.53 

A Fictitious NoN-NORMAL FREQUENCY DISTRIBUTION 

Class Interval f r.c/f. r Class Interval OL RON B rd 

55-59.9... YY 100507379 10-1405 60 80.1 0.61 

DU-04.92.. 92 '99.8 3.5 5- 9.9.. 80 69.5 0.25 
£G-49:90... 5. 9925) %3-2 0- 4.9 100 55.5 —0.11 
40-44.9... 8 98.6 2.8 = oto — 0.0..1 . -90,237-9. —0.48 

Sp-d09. 3 10 9972227438 —10 to— 5.0..1 80 22.0 —0.84 
a0-34.9... 12 95.4. 2.07 —15 to —10.0..1.°°30") 7.9) —7221 

Zier. lone Soros 1.70 —=20'to =—15.00.1° 10)- 2i6ae— edz 
20-24.9... 20 90.7 1.34 —25 to —20.0..1 5 0.9 —1.94 
1-10 ON... 40). 87.1. 0:98 — 

568 

pw. = 6.6, approximately; and o = 13.73. 

99 

(A) @ Normal (Table II!) dg x Farm acreages 

95 @ACE scores ® Table 4.43 
90 

80 

Percentage 
ho Soo3a6 
w Oo 

Soe i Wo, so eo, Leo Sie 

Figures 4.56. Some graphs of r.c.f. distributions on normal-arithmetic paper. 

It should be evident from Figures 4.56 that the following are true: 

(a) The frequency distribution from Table III yields a perfectly 

straight line when r.c.f. as a percentage is plotted against ’ on a 

normal-arithmetic graph paper. 

(b) The frequency distribution of the ACE scores apparently is 

quite near to normal because the points of their r.c.f. graph on 
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normal-arithmetic graph paper appear to deviate only slightly from 

a straight line. 

(c) The distribution of the farm acreages in Ness County, Kan- 

sas, is essentially normal except that the lower end of the distri- 

bution is missing, that is, the distribution is truncated. 

(d) The fictitious distribution of Table 4.53 clearly is not nor- 

mal because the points of the r.c.f. graph definitely do not follow 

a straight line on normal-arithmetic paper. 

It should be noted with respect to the conclusions above that only 

gross (and hence certainly serious) non-normality will show up 

under this sort of scrutiny. A look at the frequency distributions 

associated with (b) and (c) above shows that there certainly is 

some lack of normality. Figures 4.56 show this clearly; but whether 

or not the relative departure from a straight line is negligible will 

depend on the particular circumstances. Discussion to be given 
in Chapter 6 will be helpful in this decision. 

PROBLEMS 

1. Plot the following pairs of values of X and Y as points on a graph, using 

semi-log paper with Y measured on the logarithmic scale. Then determine the 

slope of the straight line through the points and relate it to the way Y changes 

per unit increase in X. 

Xx: a 2, 3, 4, 5, 6. 

V2 2596 , 18, 54, 162, 486. 
’ 

2. Plot Y; = logy X and Y2 = 5 logio X on the same sheet of arithmetic graph 

paper and also on the same sheet of semi-log paper. What effect does the coefh- 

cient 5 have on these graphs? 
—(X—-1)2 
eb 3. Plot the r.c.f. curve for y = ae 

paper. 5V 2m 

4. Plot the following tabular r.c.f. distribution on normal-arithmetic paper and 
comment on any lack of normality revealed by your graph. 

on normal-arithmetic graph 

Class Class Class 

Interval T.0.f. Interval os is Interval oafe 

80-82.99... 1.00 65-67 .99... .33 50-52.99... .09 
77-79 .99... .90 62-64.99... 26 47-49 .99... 07 
74-76.99... 74 59-61.99... 20 4446.99... .05 
71-73.99... .50 56-58 .99... .16 41-43 .99... .02 

68-70.99... .40 53-55 .99... 13 

5. Make an r.c.f. distribution for the fly counts of problem 1, section 2.4. 

Plot this distribution on normal-arithmetic paper, and discuss any apparent 

non-normality of this distribution. 
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6. Perform the operations required in problem 5 for all the birth weights of 

female guinea pigs listed in Table 2.61. 

7. Perform the operations required in problem 5 for all the birth weights of 

male guinea pigs listed in Table 2.61. 

8. Perform the operations required in problem 5 for all the 4-day gains of 

female guinea pigs listed in Table 2.62. 

9. Perform the operations required in problem 5 for all the 4-day gains of 

male guinea pigs listed in Table 2.62. 

10. Perform the operations required in problem 2 for logarithms to the 

natural base e rather than 10, and comment on the effect of this change on the 

graph. 

REVIEW PROBLEMS 

1. If you are among 1000 persons, each of whom purchases a one-dollar lot- 

tery ticket for a prize of $1000, what is the expected value of your ticket in 

the mathematical sense? 

2. Determine the expected frequencies of sums of 3, 4, 5, and 6, respectively, 

when three unbiased dice are thrown simultaneously 1000 times. 

Ans. 46, 13.9, 27.8, 46.3. 

3. If 25 pennies and 15 dimes are placed in individual envelopes, thoroughly 

mixed, and presented to you for the selection of one envelope, what is the 

probability that you will get a dime? What is your mathematical expectation 

on such a draw? 

4. How many two-digit numbers can you make up by selecting any number 

from 1 to 9, inclusive, for each digit? How many numbers could you form if 

none is to contain the same digit twice? Ans. 81, 72. 

5. Suppose that a turtle is hatched at point A and then wanders over a uni- 

form terrain in search of food. If he never wanders more than 1000 yards 

radially from spot A, and if he moves over the area in such a way that he is 

equally likely to be on any preassigned areas of a specified size, what is the 

probability that he will be within a circular area of 100 square yards whose 

center is 300 yards from, and northeast of, the spot A? 

6. Table A (below) and Figure A present the distributions of the various sizes 

of farms in Ness County, Kansas. If a stratoliner were to drop a package by 

parachute so that it will be sure to land on Ness County, but the pilot cannot 

tell where, what is the probability that it will fall on a farm of more than 

1000 acres if 10 per cent of the county is not in farm land and that 10 per cent 

is uniformly distributed over the county? Ans. 30. 

7. If 100 farmers are to be selected from Ness County without knowledge of 

the areas of their farms, and if one supposes one farmer per farm, what is the 

mathematically expected number of representatives from farms covering less 

than 500 acres? What fraction of the county’s farm acreage do they represent? 

8. Determine graphically the lower limit of the sixtieth percentile and of 

the third decile for the data of Table A. Ans. About 520 acres; 260 acres. 

9. Table B presents a summary of the years of schooling had by all legal 

residents of Kansas who were 25 years of age or older on April 1, 1940. Con- 

struct what appears to you to be a good graphic presentation of these data. 
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10. If a roving reporter were to go all over Kansas, impartially asking persons 

their opinions on a certain educational matter, what proportion of his inter- 

views would you expect to be with persons who have had at least two years 

of college education if he talked only to persons who were at least 25 on 

April 1, 1940? What percentage would have no college education? 

Ans. 9 per cent, 88 per cent. 

11. If an insecticide is known to be 99 per cent lethal to a certain species of 

insect, what is the probability that less than 5 will survive if 150 selected at 

random are sprayed with this spray? 

12. Suppose that a particular variety of apple grown under specified condi- 

tions produces yields (per tree) which are normally distributed with » = 8 

bushels and o = 2.5 bushels. What is the probability that a randomly chosen 

tree will be found to yield less than 5 bushels? That two such trees will each 

be found to yield less than 5 bushels? Ans. 12, .014. 

13. Obtain records like those in Table B from the latest census, make an 1.c.f. 

graph for those data, and determine the median years of schooling. Compare 

with the median for 1940 and draw any appropriate conclusions. Use college 

years as 18, 14, 15, 16, and 17. 

14. Plot the r.c.f. distribution of Table A on normal-arithmetic paper and 

comment on the apparent normality, or lack of it, for this distribution of farm 

sizes. 

1.00 1.00 

90 

> oO 

Refers to left-hand scale 

Proportion of total acreage 
w oO 

Relative cumulative frequency 
c J a 

oO 

——-—-— Refers to right-hand scale 

iy -) 

0 
1 201 401 601 801 1001 1201 1401 1601 1801 2001 

Acres 

Figure A. Two types of relative cumulative frequency distributions for the 

sizes of farms in Ness County, Kansas, in 1940. 
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TABLE A. DistripuTion or Farm ACREAGES IN THE WHOLE OF 

Ness County, KANSAS 

(Data furnished by W. H. Pine, Department of Economics and Sociology, Kansas 

State College.) 

Acreage Frequency, Frequency, Percentage of 

Interval i MCs Total Acreage 

Over 2000 28 1.00 1.00 

1801-2000 7 .98 .88 

1601-1800 14 .97 .86 

1401-1600 21 .96 steht 

1201-1400 28 .94 .78 

1001-1200 35 .92 5 

801-1000 77 .89 .67 

601— 800 194 .83 staf 

401— 600 236 .67 Rou 

201— 400 320 -48 .21 

1— 200 274 22 .06 

Total 1233 

pw = 550 acres md = 420 acres 

TABLE B. Years or ScHOOLING COMPLETED BY Kansas RESIDENTS AT LEAST 

25 YEARS Op oN Aprit 1, 1940 

Years Number, 

Completed if 

None 11,975 

Grade 1 2,136 

2 5,507 

3 14,833 

4 29,745 

5 33,628 

6 45 , 722 

7 54,326 

8 388 ,512 

High School 

Year 1 62,173 

2 61,935 

3 31,315 

4 173,580 

College 

Year 1 29,113 

2 32 374 
3 12,973 

4 35,347 

At least 5 12,580 

Total 1,037,774 
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(Gi ele Va ga Ol i s Se) 

Sampling from 

Binomial Populations 

When a population of numerical measurements involves so much 

data that it is either impossible or unwise to attempt to analyze the 

whole of it, sampling must be relied upon to furnish the desired 

information. As a matter of fact, most of the statistical analyses 

now performed involve sampling data. A multitude of examples 

could be sited to illustrate the need for sampling, but the following 

will suffice for the purposes of this discussion. 

(5.01) Public opinion polls. Only a small percentage of the per- 

sons eligible for interview actually are questioned about the matter 

under study. The sole objective of the study is to estimate the pro- 

portions of the citizens favoring the various points of view. If the 

question to be asked has only a yes or a no answer the results of the 

poll will constitute a sample from a binomial population, and we 

would be attempting to estimate p. 

(5.02) <A study of the toxicities of two insecticides conducted by 

spraying wmsects of a certain species with the insecticides and count- 

ing the dead insects. This is another case of sampling a binomial 

population; but the purposes of the investigation may be different. 

The following question is to be answered: Is one of the sprays more 

toxic to these insects than the other? Statistically, the question 

becomes: Is it reasonable to suppose that the two sets of data ob- 

tained with the two sprays are samples from the same binomial 

population? Of course, such a study also may include the estima- 

tion of p as mentioned in (5.01). 

(5.03) Testing the breaking strengths of concrete columns, of 

wood or of metal beams, and of other engineering materials. Break- 

ing strengths are measured on a continuous scale of numbers; hence 

their populations have continuous frequency distributions. Problems 

113 
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of this sort include the estimation of true average breaking strengths, 

and comparisons of the strengths of different materials. 

(5.04) Studies involving two variables such as prices of selected 

stocks and the volume of production of finished steel, ACE score 

and grade average in college, stand counts of wheat and the yield of 

a plot, etc. In such investigations it would be necessary to estimate 

from sampling data the relationship between the two variables, ex- 

press it mathematically, and then use it in accordance with the pur- 

poses of the investigation. 

It can be seen from the examples above that two general types of 

statistical problems must be considered in sampling studies. One is 

to derive from the sample observations some numbers which can 

be used satisfactorily in place of one or more unknown population 

parameters. These numbers which will be derived from the sample 

are called sampling estimates of the parameters. They are change- 

able from sample to sample and, being dependent upon chance events, 

are subject to the laws of probability. 

The other general problem is to test hypotheses regarding pop- 

ulations against actual sample evidence. For example, if the popula- 

tions of the breaking strengths of two types (different shapes, for 

example) of concrete columns each follow a normal frequency dis- 

tribution with the same variance, o”, these populations can differ 

only in their means py, and p2. That is, it is supposed that the en- 

gineers in charge are satisfied that the two types of columns have 

the same uniformity of performance from test to test, but it is yet 

to be decided whether they have the same average strength. If so 

(that is, if w1 = pe), the populations of breaking strengths are iden- 

tical normal populations. It then becomes a problem of deciding 

from samples taken from each population whether or not yp; is in 

fact equal to ps. It usually is convenient statistically to assume 

that y1 does equal p2, and then to see how reasonable this hypothesis 

is in the light of sample observations. 

It should be clear—intuitively, at least—that decisions based on 

samples may be in error, and that we do not know in any particular 

case if our sample is so unusual that it is misleading us. How, then, 

can sample evidence become a satisfactory basis for making decisions 

about populations? The answer lies in the fact that, while no one 

can say whether a particular decision is right or wrong, it is possible 

to determine the relative frequency with which correct decisions will 

be made over the long-run of much experience if we are following 
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certain rules for acting upon the basis of sampling evidence. It 

follows that the probability of making a correct decision from any 

specified future sample (say the next one we are going to take) also 

can be stated. 

To illustrate some of the preceding discussion, suppose you are 

about to engage in a coin-tossing game in which “heads” is the 

event which is of particular interest to you. Assume, also, that you 

are not satisfied that the coin is unbiased but are not going to worry 

about bias unless the probability of heads is as low as 1/3. Before 

playing the game you are going to flip the coin 15 times and then 

come to a decision regarding the bias of the coin. What rules for 

action should you adopt and how effective will they be in detecting 

bias as bad as p = 1/3? It is being assumed that you are not enter- 

taining the possibility of bias toward too many heads. 

As long as the coin has two sides and one is heads, the other tails, 

any result from 0 to all 15 heads can occur on 15 flips regardless of 

bias in the coin. However, it should be clear that the relative fre- 

quencies of occurrence of the 16 possible results are dependent upon 

the size of p. For p = 1/3, for example, such a result as 15 heads 

on 15 throws is an extremely rare occurrence. The actual rarity, 

in terms of probability, can be derived from the binomial series for 

(q +p)”, with p, g, and n given. 

If p = 1/2 and n = 15, the binomial series is 

(1/2 + 1/2)!° = .000 + .000 + .003 + .014 + .042 + .092 + .153 

r: 0 i 2 3 4 5 6 

=>). 196 ==:.196,-— .153'4- 092 + 042 +014 =F 003 

r: i 8 9 10 11 12 13 

+ .000 + .000. 

T 14 15 

When p is unknown and a sample has produced r = 0, 1, 2, or 3 heads 

on 15 random flips, you probably would be very reluctant to accept 

the hypothesis, Ho(p = 1/2) because the total probability of the 

occurrence of one of these 4 mutually exclusive events is but .017, 

or about 1 chance in 59. Although it is true that one of those 4 

results can be obtained when the coin is unbiased—and you knew 

this before you tossed the coin 15 times—you are now faced with 

the necessity to decide if the coin is biased or not, and you must do 
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so upon the basis of the sample’s evidence. If you decide to reject 

the hypothesis that » = 1/2 whenever the observed number of heads 

is one of the 4 cases just listed, you will unjustly reject Ho 1.7 per 

cent of the time because that is how frequently such cases occur by 

chance when p does equal 1/2. Nevertheless, some rules for action 

must be adopted or else nothing can be decided from samples. Hence, 

it will be supposed that the following rules will be followed after 

15 sample tosses of the coin in question: 

(a) If r=0, 1, 2, or 3 heads, you will reject Ho(p = 1/2) and 

assert that the coin is biased against heads. 

(6) If r= 4, you will accept Ho and play the game on the assump- 

tion that the coin is not biased against heads. 

These two rules can lead you to correct conclusions and actions, 

and they also can cause you to make one of two kinds of errors: 

(1) The hypothesis Ho(p = 1/2), which is being tested by sam- 

pling, may be rejected when it is true. This will be called an error 

of the first kind. In the above example, the probability that such 

an error would occur was noted to be .017 under the rules a and 6. 

(2) The Ho may be accepted when it is false. This will be called 

an error of the second kind. It should be clear that the likelihood 

of committing an error of this kind depends on what possibilities— 

or alternative hypotheses—there are. 

It is customary to set up the hypothesis Ho in such a way that 

it is considered more serious to make an error of the first kind than 

it is to accept a false hypothesis. When this is done the probability 

of committing an error of the first kind (to be designated by «) is 

kept low—usually «< .10—and the rules adopted for acting upon the 

basis of sampling evidence are chosen so that for a given « the prob- 

ability that an error of the second kind will be made (to be desig- 

nated by 8) is as small as possible under the circumstances. 

Referring back to the coin-tossing problem, we see that # = .017. 

Also, the person who was trying to decide from 15 throws if the coin 

was seriously biased would not care if p had some size between 1/2 

and 1/3, but did wish to detect a p as low as 1/3. Hence the alterna- 

tive hypothesis whose truth could lead to errors of the second kind 

includes all p’s at or below 1/3. For the sake of simplicity it will be 

assumed that the only alternative hypothesis to Ho(p = 1/2) is 

Hy(p = 1/8). 
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The 8 can be determined from the following series: 

(2/3 + 1/3)!5 = .002 + .017 + .060 + .130 + .195 + .214 + .179 

r: 0 1 2 3 4 5 6 

+ 115 + .057 + .022 + .007 + .002 + .000 + .000 

Fe 7 8 9 10 1 12 13 

+ .000 =  .000. 

Tes 14 15 

Hence if p actually is 1/3 so that the hypothesis of no bias should 

be rejected, the probability is .002 + .017 + .060 + .130 = .209 that 

Hy will be rejected. Or the probability that Ho will not be rejected 

when it should be—an error of the second kind—is B = 1 — .209 = 

.791. Obviously, the rules a and b would not be good ones if it is 

serious to fail to detect the bias indicated by p = 1/3. However, if 

the most serious mistake is to accuse someone of employing a biased 

coin when he is innocent, rules a and 6 may be quite satisfactory. 

In practice we seldom can compute ~ as simply as above. Usually 

the a is set at an appropriate level and then standard tests are em- 

ployed without actually knowing the 8. However, it can be said 

here that the tests to be discussed in this, and the next, chapter have 

been chosen with the idea of making the 8 as small as possible under 

the circumstances and for the chosen «. 

As the heading of this chapter indicates, the subsequent discussion 

will be confined to samples from binomial populations. Later chap- 

ters will take up the normal and the two-variable situations. 

5.1 OBTAINING THE SAMPLE 

Before a method for obtaining the sample is devised, the popula- 

tion which is to be sampled must be defined clearly. It is recalled 

from Chapter 4 that a binomial population is possible only if the 

units in some definable group have attributes which may be described 

by just two classes. Moreover, the fractional part of the population 

falling into each class must stay fixed. For example, all the farmers 

in Finney County, Kansas, on July 1, 1953, could be classified un- 

ambiguously into two classes as regards membership in some co- 

operative association: those who do belong to some cooperative and 

those who do not belong to any such association. The units would 
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be the individual farmers’ designations as member or as non-member. 

The fraction of the total number of farmers in that county who were 

classed as members could be the parameter p of Chapter 4. Then 

1 — p would be the fraction who were classified as non-members on 

the stated date. 

It is entirely possible for those same farmers to be the basis for 

other populations. Their answers for or against a proposed new 

federal farm policy could constitute another binomial population 

of interest, their per-acre incomes during a specified period could 

be another (non-binomial) population, and the sizes of their families 

on July 1, 1953, could be still another (non-binomial) population 

which might be of interest to some group of persons. 

The chief criterion of a good definition of a population which is 

about to be sampled is that it make entirely clear in all important 

respects the larger group of units to which the conclusions drawn 

from the sample will pertain. 

Given a well-defined population, the sample obviously must be 

taken in such a manner that the impression it produces through 

statistical analyses will have the greatest possible chance to be 

accurate and dependable. Naturally the facilities and economic re- 

sources available for the sampling may be limiting factors; but it 

will be assumed in the discussion to follow that those resources and 

facilities are at least good enough to justify undertaking the sam- 

pling study at all. For purposes of illustration, suppose that we wish 

to determine public opinion in a large city regarding a political issue 

of current interest, and that our resources allow us to interview only 

one person per each hundred in the population. How should this 

one per cent sample be taken? If we were to visit the few major 

business districts we could obtain our allotted number of interviews 

more quickly and with less cost because more persons are concen- 

trated in these small areas during business hours; but we have no 

assurance that the opinions of the persons we would meet there are 

the same as those we would find in the outlying districts, for example. 

We might consider using the telephone directory until we thought 

of the fact that some residents do not have telephones. If we are 

interested only in the opinions of registered voters—as is easily pos- 

sible—we could use an official listing of those persons. It is possible 

that for some questions which might be asked we could take a random 

sample of names from this list and interview them as our sample. 

Such a random sample could be taken by numbering the entries con- 

secutively from one to the number of voters on the list and then 
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drawing numbers at random until a sample of the desired size was 

obtained. Such a procedure would make it true that every possible 

sample of the size n had been equally likely to be drawn at the outset 

of the sampling, and this is necessary in random sampling. 

In many circumstances the procedure of sampling just outlined 

would be unsatisfactory. A city might be made up of racial and 

economic groups of such diverse opinions on the matter being studied 

that it would not do to leave their representation in the sample to 

pure chance, as in the random sampling just described. It would be 

necessary to sample each group in accordance with its proportionate 

part of the city’s total registration of voters. 

It is noted that the sampling discussed above has supposed that the 

sample will be taken by means of personal interviews. Any such 

systems as calling persons on the telephone or mailing questionnaires, 

which depend on voluntary and selective responses, or on their being 

at a certain place at a certain time, are almost certain to produce 

biased samples. The cause of their not responding, and hence not 

being in the sample, may be associated with the type of response 

they would have given. 

The theory and techniques of sampling in such a way that the 

conclusions which can be drawn therefrom will be accurate and re- 

liable are very extensive and cannot be covered here. The remarks 

above merely point out a few of the more important and general 

considerations. However, the reader can be warned to be critical 

of any conclusions drawn from samples until he is satisfied that the 

samples were taken in such a way that they should be representative 

of the population about which conclusions have been drawn. If one 

brand of cigarettes is said to be the favorite of a certain professional 

group, we should at least wonder if that group was properly sampled. 

Or, if someone returns from a foreign country and asserts that the 

residents of that country hold certain points of view regarding a 
matter of world-wide interest, we should wonder if he did an ade- 

quate job of sampling public opinion in that country. Or, as a final 

example, if someone seeks to obtain a sample by means of a mailed 

questionnaire, we should wonder if those who do not respond have a 

different opinion, say, from that generally expressed by those who 

did return their questionnaires. If so, what population did those 

who returned their questionnaires represent? 
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PROBLEMS 

1. Suppose that you were sent out to ascertain the public opinion in a cer- 

tain community regarding the necessity for flood control of a certain type in 

that area. How would you obtain your sample so that it would be representa- 

tive of the whole community? 

2. Referring to problem 1, would it make any difference in the manner in 

which you took your sample if it were taken in July of 19386 during a severe 

drouth or in July of 1951 right after a record flood? Justify your answer. 

3. Suppose that a roving reporter goes into a city with the intention of 

ascertaining public opinion on a matter of foreign policy. He is going to walk 

about the streets asking persons at random a specific question requiring one 

of three answers: Yes, No, or No Opinion. Will it make any difference what 

hours of the day, between 7 a.m. and 6 p.M., he does this? Would the day of 

the week matter? Would the type of city—industrial, college site, farming 

community, rich suburb, and the lke—have anything to do with the answers 

to these questions? 

4. Suppose that a company which is manufacturing candies develops a new 

product whose originators believe is especially good. Which of the following 

possible ways of testing the public’s reaction to this new confection would you 

prefer to use? Why? 

(a) Sit back and see how the sales go. 

(b) Have some trained persons take samples out to the public and ask peo- 

ple to taste the candy, to record their reactions, and to give these records to 

the field representatives directly. 

(c) In each of the first 10,000 packages manufactured, place a stamped and 

addressed card requesting that the purchaser record his opinion of the candy 

and mail the card to the company. 

(d) Ask a panel of expert candy tasters to decide the matter. 

(e) Do as in d, first, then a. 

(f) Do as in d, first, then b. 

(g) Do as in d, first, then c. 

(h) Have all the firm’s employees record their opinions of the candy and 

decide from these records if mass production is wise. 

(i) Combine h and a. 

(7) Combine h and b. 

(k) Combine h and c. 

(1) Combine others above. Specify. 

(m) Specify another method if you have one you prefer. 

5. Suppose that some engineering concern wishes to test the strength of two 

types of structural beams, each produced and recommended by a different com- 

pany. Which of the following sampling procedures would you recommend if 

the engineering group has two laboratories, each with its operating personnel, 

available for the tests? 

(a) Ask each company to send a specified number of beams for testing and 

have each laboratory test half of each company’s product. 
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(b) As in a, but have one laboratory test all one company’s beams, the sec- 

ond laboratory testing all the second company’s beams. 

(c) Go into the public market and purchase the necessary number of beams 

of each type, and then do as in a. 

(d) As in c, but replace a by b. 

(e) Specify other ways. 

6. An agronomist wishes to run critical yield, protein, and test weight studies 

on a proposed new variety of wheat before the variety is released to the public. 

He proposes to use a standard and widely planted variety for comparison with 

the new one. Plenty of land is available for this study, but it is quite non- 

uniform in soil qualities, moisture content, and exposure to weather. Which 

of the following outlines for such a study would you prefer, and why? 

(a) Plant the new variety on the east half of the available land, the standard 

variety on the west half (or vice versa, as decided by flipping a coin), harvest 

and measure wheat from each half, determine test weight and protein content 

on the yield from each half separately. 

(b) Divide the available area into 20 equal-sized plots and plant 10 plots to 

each variety, choosing the variety for a plot by drawing the names from a hat. 

Then determine yield, protein, and test weight separately from each plot’s 

wheat. 

(c) Do as in b, except that the plots are grouped into 10 pairs and each pair 

has both varieties planted side by side. 

(d) Save the land for some other purpose, send out samples of each wheat 

to 10 farmers, and ask them to report the yields and test weights and send in 

samples for protein analysis. 

5.2 CALCULATION OF POINT AND INTERVAL ESTI- 

MATES OF p FOR A BINOMIAL POPULATION 

It was indicated in Chapter 4 that a binomial frequency distribu- 

tion can be defined when individuals are identified only as belonging 

to one of two possible classes of attributes such as male or female, 

dead or alive, acceptable product or unacceptable product, and the 

like. Moreover, the proportions falling into the two classes of at- 

tributes are constantly p:(1 — p). 

If nm members of a binomial population are selected at random, 

the particular individuals drawn are the result of chance occurrences. 

Hence, we may find that any number from r = 0 to r = n of those 

individuals possess the attribute A, say, even though a fixed propor- 

tion, p, have that attribute in the whole population. The possible 

outcomes of such a sampling vary from r = 0 to r= n and form a 

binomial frequency distribution with mean p = np and with standard 

deviation o = /npq, as was shown in Chapter 4. The reader is 

reminded that the probability that exactly r of the m members of 
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the sample will possess an attribute with probability of occurrence 

= p for any specified future trial from the population is given by 

the formula: C,,,:p"(1 — p)"~". 

The point of view in the preceding paragraph is that of Chapter 4 

in which the size of p was assumed to be known. More commonly, p 

is not known and we have only a sample estimate of its size. This 

estimate is r/n, which varies under repeated sampling from 0 to 1. 

Even though r/n is a variable quantity, useful and reliable conclu- 

sions can be drawn from samples taken from a binomial population, 

as will be shown shortly. Three types of such conclusions will be 

considered in this chapter: (a) Given a sample, what can we say 

about the size of p? (b) Given a sample from a binomial distribu- 

tion, how well does it agree with a predetermined hypothesis con- 

cerning the magnitude of the p for that population? (c) Given two 

random samples, did they probably come from the same binomial 

population? The present section is concerned with question a. 

When the true proportions of the two types of members of a 

binomial population are not known, they can be estimated by means 

of a sample, as suggested above. This estimation can take either 

of two forms: (a) a point, or specific, estimate of p, which would be 

used in lieu of the p, or (b) an interval estumate which would have 

a preassigned probability of bracketing the size of p. This latter 

process is called placing a confidence interval on p. The confidence 

we can have that the bracket, or interval, does actually include the 

unknown parameter is described by the confidence coefficient. 

Statistical research indicates that the best point estimate of p is ob- 

tained from # = r/n, the observed fraction of the sample which pos- 

sess the particular attribute that is being studied. Some of the reasons 

for this decision are: 

(5.21) The # has an expected value E(p) = E(r/n) = E(r)/n = 

np/n = p for any particular sample size, n. That is, the long-run av- 

erage size of # is exactly equal to the true population parameter p. It is 

customary to call point estimates unbiased estimates if their mathemat- 

ical expectation is the parameter which is being estimated. We gen- 

erally prefer to employ unbiased estimates, like #, unless some more 

important property is missing. 

(5.22) The estimate # = r/n has a variance = pq/n because the 

variance of r is npg—as shown in Chapter 4—and the effect of dividing 

the r by n is to divide the variance by n”, as was shown in the section 

of Chapter 2 which dealt with the coefficient of variation. This vari- 
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ance, pq/n, of the estimate # will be quite small for a sample of almost 

any useful size because the p and the q are each less than unity. This 

indicates that # will not vary greatly from sample to sample, especially 

if the sample size is fairly large. As a matter of fact, the size of the 

variance of # can be made as small as desired by taking the n suff- 

ciently large. Hence, this estimate, fj, is considered to be a very 

efficient estimate of p. 

In view of the fact that # is almost always in error to some degree 

in spite of the fact that it is the best point estimate possible, there are 

many circumstances in which an interval estimate of p is desirable. 

The interval estimate also is more difficult to compute and to inter- 

pret; hence it will be considered in some detail. 

The situation is this: » members of a certain binomial population 

have been drawn at random so that each member of the population 

had an equal opportunity to be in the sample, and r of them have 

been found to have the specified attribute A. Given the proportion 

r/n observed in the sample, what useful limits can we place on the 

true proportion, p, of A members in the whole population, and what 

confidence can we have in those limits? It is customary to call such 

interval estimates confidence limits, or to say that these limits con- 

stitute a confidence interval. The degree of confidence which we can 

place in such limits on p is measured by the probability that the 

sample has given an interval which actually does include p. As might 

be expected, this probability is the relative frequency with which the 

sampling process used will produce an interval which does include p. 

It will be convenient to use the symbol Cly;, for example, to designate 

the confidence interval which has—at the start of the sampling proc- 

ess—95 chances out of 100 of including the parameter which is being 

estimated. 

Suppose that a relatively small manufacturing concern is produc- 

ing roller bearings which are to be shipped to a larger company 

manufacturing farm machinery. There will be certain specific stand- 

ards, such as maximum or minimum limits on diameter, which the 

bearings must meet before they are considered to be acceptable 

products. Hence, any large batch of bearings could be grouped into 

two subgroups marked as ‘‘acceptable” and “unacceptable,” respec- 

tively, if every bearing were to have its diameter measured with 

perfect accuracy. It will be assumed here for simplicity of discus- 

sion that the company which is to receive the bearings requires that 

each shipment must be 90 per cent “acceptable” or it can be re- 

jected. The concern which is producing the bearings will have to 
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inspect its products by means of samples because it is inconceivable 

that every bearing should be carefully measured. 

Assume that a sample of 10 bearings has been inspected and that 

all 10 were found to be acceptable. Is this sufficient evidence that 

the shipment probably is up to the standard? In this connection, 

consider a binomial population with p only .80; that is, it is well 

below the standards set above. The probability that every member 

of a sample of 10 will be acceptable is (.80)!°, which is .11; hence 

there is about 1 chance in 9 that this definitely substandard batch 

of bearings will show none unacceptable on a sample of but 10. Ob- 

viously, if p were less than .80, p!° would be less than .11; and, con- 

versely, if p were larger than .80, p!° would be greater than .11. 

Therefore, it should be clear that the result, 10 acceptable bearings 

out of 10 inspected in a sample, could be obtained from any one of 

a whole range of possible binomial populations corresponding to 

values of p ranging from 0 to 1. As a matter of fact, the sample 

discussed above could be drawn at random from any binomial pop- 

ulation with as many as 10 acceptable bearings among the individ- 

uals. Of course, with n = 10, a sample with r also equal 10 is more 

likely to come from a population with p near 1 than from a popula- 

tion with =p near 0. 

The above discussion re-emphasizes the fact that we cannot attain 

certainty in conclusions drawn from samples: there always must be 

some risk that the sample has led to a false conclusion. We choose 

a risk of error which we can afford to take and express it in terms 

of the confidence coefficient described earlier. If it be supposed that 

an event which is as unlikely to occur as 1 time in 20 can be ignored, 

what confidence interval (ClI9;) can we set on p as a result of the 

above sample in which r = 10 acceptable bearings out of 10 observed 

in the sample? 

We use what will be called a central 95 per cent of all possible r’s 

by determining a range on r which is such that not more than 2% 

per cent of all samples with the same n and p will fall beyond each 

end (separately) of the range so determined. For example, in the 

series below for (1/4-+ 3/4)! the first five terms—to the left of 

the brace—add to .0197, which is less than 2% per cent, or .0250. If 

the sixth term from the left is added, the sum exceeds .0250. There- 

fore, among all possible samples of 10 observations from a binomial 

distribution with n = 10 and p = 3/4 the sample number, 7, will be 

below 5 for a bit less than 2% per cent of all such samples. At the 

other end of the series for (1/4 + 3/4)?° no term is less than or equal 

to .0250; hence, the “central 95 per cent” will be occupied by samples 
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for which r = 5, 6, 7, 8, 9, or 10. Consequently, if you have drawn 

a sample with n = 10 and p is unknown, it is quite unlikely that p 

was as large as 3/4 if it was found in the sample that r = 0, 1, 2, 3, 

or 4. As a matter of fact, you could just form the habit of assuming 

that p never is as large as 3/4 whenever r is 0, 1, 2, 3, or 4 and you 

would be wrong less than 5 per cent of the time because samples of 

that sort occur less than 5 per cent of the time when n = 10 and p is 

as large as 3/4. 

To answer the question posed earlier, we consider the following 

reasoning. If n = 10, the probability series for p set successively 

equal to 2/3, 3/4, .69, and .70 (for reasons which will appear soon) 

are obtained as in Chapter 4 and lead to the following conclusions: 

(1/3 + 2/3)!° = .0000 + .0003 + .0031 + .0163{+ .0569 + .1366 

(sum = .0197, is <.0250) 

Te: 0 1 2 3 4 o 

+ .2276 + .2601 + .1951 + .0867}+ .0173 

is <.0250 

re 6 7 8 9 10 

(Note that the “‘central 95 per cent’? does not include the observed 

number of occurrences, r = 10.) 

(1/4 + 3/4)'° = .0000 + .0000 + .0004 + .0031 + .0162{+ .0584 

(sum = .0197, is <.0250) 

pe 0 1 2 3 4 5 

+ .1460 + .2503 + .2816 + .1877 + .0563}none ex- 

cluded 

i 6 7 8 9 10 

(The central 95 per cent does include the sample result, 7 = 10, but 

still might do so with a smaller p; hence p = 3/4 may be too large 

to be the lower end of the 95 per cent confidence interval. Therefore, 

p = .70 will be tried.) 

(.3 + .7)!° = .0000 + .0001 + .0014 + .0090{ + .0368 + .1029 

(sum = .0105, is <.0250) 

1s 0 1 2 3 4 5) 

+ .2001 + .2668 + .2335 + .1211 + .0282} none excluded 

ie 6 vf 8 9 10 
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(The central 95 per cent still includes the observed number, r = 10, 

and it again is possible that p could be smaller and still keep r = 10 

in the central 95 per cent. Hence, try p = .69.) 

(.31 + .69)'° = .0000 + .0002 + .0018 + .0108{+ .0422 + .1128 
(sum = .0128, is <.0250) 

< 

r: | 0 1 2 3 4 5 

+ 2093 + .2662 + .2222 + .1100}+  .0245 
is <.0250 

r: 6 7 8 9 10 

(The central 95 per cent now just barely excludes the observed num- 

ber, r = 10; therefore, the smallest value of p which has been con- 

sidered here and which still keeps r = 10 within the central 95 per 

cent is .70. However, it is clear that if three decimal places were 

used, the lower end of the confidence interval would be nearer to 

.69 than to .70; hence, .69 is taken as the lower end of the 95 per 

cent confidence interval.) 

To determine the upper end of the 95 per cent confidence interval, 

it is necessary to find out by a similar procedure how large p can 

become and still leave the observation, r = 10, in the central 95 per 

cent of the binomial population with n = 10. Obviously, p can go all 

the way to 1.00, or 100 per cent, and still not exclude the case when 

r = 10; hence, p = 1.00 is the upper limit of the 95 per cent confi- 

dence interval when r has been found to be 10 when n = 10. There- 

fore, it is concluded that if with n = 10, r is observed to be 10 also, 

the 95 per cent confidence interval on the true percentage in the 

population is 69=p=1.00. At the same time, the person doing 
the sampling is aware that there are 5, or less, chances in 100 that 

his sample has been sufficiently “wild,” or unusual, that it has pro- 

duced a confidence interval which fails to include the true propor- 

tion, p, of acceptable products in the population which was sampled. 

The work done above is illustrative of the principles involved but 

is too laborious to be repeated each time a confidence interval is 

needed, especially when n > 10. Therefore, advantage is taken of 

some work done by C. J. Clopper and E. 8. Pearson, published in 

Volume 26 of Biometrika. Table 5.21 was obtained by reading from 

their graphs the 95 and 99 per cent confidence intervals on p for 

n = 50,100, and 250. If nis smaller than 50, the confidence intervals 

are so wide that they are of doubtful value in practice. However, 
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TABLE 5.21 
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THE 95 AND 99 Par CENT CONFIDENCE LIMITS ON p FOR SAMPLES OF 50, 
100, AND 250 TAKEN FROM BINOMIAL POPULATIONS 

(L = lower limit) 

(Based on graphs by C. J. Clopper and E. 8. Pearson, Volume 26 of Biometrika.) 

n = 50 n = 100 n = 250 

95% 99% 95% 99% 95% 99% 

r/n L U L U L U L U L U L U 

.000 a) 8 0 10 0 4 0 5 0 2 0 2 

.025 0 12 0 15 0 8 1 9 1 5 1 6 

.050 1 16 0 19 2 tit 1 13 3 9 2 10 

.075 2 19 1 22 3 14 2 17 4 11 4 13 

.100 3 DP, 2 26 5 18 4 20 6 15 5 16 
B25 5 25 3 29 6 21 5 23 8 lk if 19 
.150 6 28 4 32 8 24 7 26 11 20 9 22 
Hid 8 31 6 35 10 26 8 29 13 23 11 25 
.200 10 34 ah 38 12 29 10 32 15 26 13 Dil 
225 173 Biff 9 41 15 Bye 12 35 18 29 15 30 
.250 14 39 11 44 17 35 14 38 20 Bill 18 33 
P25 16 42 12 47 19 38 16 40 DD, 34 20 35 
.300 18 45 15 49 21 40 18 42 24 36 22 38 
fa25 20 47 vs 52 Do 42 21 45 27 39 25 40 
.3850 2? 50 18 54 26 45 23 48 29 41 27 43 
Roto 24 52 21 57 28 48 25 51 31 44 30 46 
.400 26 te 23 59 30 50 Dit 54 34 46 32 49 
.425 29 57 25 62 32 53 30 56 36 49 34 51 
.450 31 60 27 64 35 5D 32 58 39 51 37 54 
475 33 62 29 66 Y/ 58 34 61 41 54 39 56 
.500 35 65 31 68 40 60 ay 63 44 56 41 58 
2525 38 67 34 71 42 62 39 65 46 59 44 60 
.550 40 69 36 73 45 65 41 68 48 61 46 63 
sayfa) 43 72 39 75 47 67 44 70 51 64 49 65 
.600 45 74 41 77 50 69 46 73 54 66 Pill 68 
.625 48 76 43 79 52 72 49 75 56 69 54 70 
.650 50 78 46 81 5H 74 51 Tel 59 71 56 783 
.675 2, 80 48 83 yf Wh 54. 79 61 73 59 75 
.700 55 82 51 85 60 79 57 81 64 76 62 77 
E20 58 84 54 87 62 81 60 83 66 i 65 80 
.750 60 86 56 89 65 83 63 85 69 80 67 82 
HHS) 63 88 59 91 67 85 65 87 71 82 70 84. 
.800 66 90 62 92 70 87 68 90 74 85 7 86 
825 68 92 65 94 73 90 71 9] 77 87 75 89 
.850 Wl 94 68 95 76 91 74 93 80 89 78 91 
875 75 95 71 97 79 93 76 95 82 9] 81 93 
.900 78 96 74 98 82 95 80 97 85 93 84 95 
.925 81 98 Cad 99 85 97 83 98 89 95 87 96 
.950 84 99 81 99 88 98 86 99 91 97 90 98 

1.000 92 | 100 89 | 100 96 | 100 95 | 100 98 | 100 97 | 100 
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Table 5.21a has been added to show, through the preceding discus- 

sions, Just how the numbers in Table 5.21 could be got. Obviously, 

if nm were as large as 50 the work illustrated above would become 

tremendously laborious. 

In Table 5.21 the observed fraction, r/n, was used instead of r 

because it was convenient to do so. 

TABLE 5.2la 

95 Per Cent CONFIDENCE LIMITS WITH n = 10 

r L U r L U r L Gi 

0 0) ay 4 11 7h) 8 44 97 

1 0 46 5 18 82 9 54 100 

2 2 57 6 25 89 10 69 100 

3 6 66 7 34 94 

The use of Table 5.21 will be illustrated by some examples. 

Problem 5.21. Suppose that a random sample of 250 primers for cartridges 

has been taken from a large batch and has been tested by actual firing. If 6 

of the primers fail to fire, place a 99 per cent confidence interval on the true 

percentage of duds in the whole batch, and interpret these limits. 

For this sample r/n = 6/250 = .024, which is so near to the value 

of .025 listed in Table 5.21 that interpolation is unnecessary. There- 

fore, the required confidence interval is read from the table as 1 to 6 

per cent duds in the whole batch. If future action regarding these 

primers is based on the assumption that at least 1 per cent but not 

more than 6 per cent of them are duds, a risk of only 1 in 100 is 

being run that the sample has been misleading. If 6 per cent is more 

than the allowable proportion of duds, this sample indicates that the 

batch may be substandard. Whether the primers would be rejected 

or additional evidence obtained would depend upon the particular 

circumstances. 

Problem 5.22. Suppose that a concern which manufactures roller bearings 

must meet a standard of 95 per cent acceptable according to certain prescribed 

measurements. If a sample of 250 yields 3 unacceptable bearings, is the ship- 

ment up to the required standard or not? 

In this instance r/n = .012, so the 95 and 99 per cent confidence 

intervals are found to be 0 to 3, and 0 to 4, respectively, by interpola- 

tion in Table 5.21. Therefore we could conclude that the shipment 

has less than 5 per cent unacceptable with considerable confidence 
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because even the upper limit of the 99 per cent confidence interval 

on the true proportion of duds is below 5 per cent. 

The procedures demonstrated above are not suggested as sufficient 

quality control measures in themselves, but they do illustrate prin- 

ciples which are basic to acceptance sampling. 

PROBLEMS 

1. Suppose that 100 bolts have been taken at random from a large group 

and that 2 have been found to be defective. What is the 99 per cent confidence 

interval on the true proportion of defectives in the group sampled? 

2. Suppose that a sample of 250 Germans showed that 101 had type O blood. 

Place 95 per cent limits (to nearest per cent) on the percentage of such Ger- 

man persons having type O blood. Ans. 34 to 46. 

3. The little fruit fly, Drosophila melanogaster, has been used so extensively 

in genetic research that a great deal is known about the genes which it carries 

on its chromosomes. Among these genes are some which produce what are 

called recessive lethals because they kill the potential offspring at an early 

stage of development if both chromosomes carry the gene for that particular 

lethal. Mating studies are able to show if only one chromosome of a fly carries 

a particular lethal-producing gene. Suppose that a sample of 250 flies is found 

to include 10 which are carrying one particular lethal. What can you say about 

the true proportion of lethal-carrying flies in this population? 

4. Suppose that two different strains of fruit flies have been developed in a 

laboratory upon the basis of the numbers of eggs that the females laid per day. 

Suppose also that a particular recessive lethal, 1,, has been discovered in both 

strains; and that samples of 250 flies from each strain gave these results: strain 

A had 18 lethals, strain B had 32 flies carrying lethals among the 250 examined. 

What can you conclude about the true proportion of lethal-carrying flies in 

each strain? Are these two proportions probably equal? 

5. Suppose that 50 apples have been selected at random from a tree which 

has a very large number of apples. If 5 apples were found to suffer from a 

certain blight, what percentage of blight do you estimate for the whole tree if 

you wish to run a risk of only 1 in 20 that your answer is wrong as a result of 

an anomalous sample? Do likewise for a risk of only 1 in 100 being in error. 

6. Suppose that 100 eggs are selected at random from a large shipment, and 

that 5 are found to be stale. What would you set as the upper limit on the 

percentage stale in the whole shipment if you can afford a risk of sampling 

error of only 1 in 100? Ans. 18. 

7. If a sample of 250 gun barrels in a large shipment has been examined for 

defects and none found to be defective, place 99 per cent confidence limits on 

the true proportion of defective barrels in the whole shipment. Would a 

sample of 250 be large enough if the shipment must contain one per cent, or less, 

defective? 

8. If 250 one-pound cartons of butter are to be selected from a carload at 

random and examined for mold particles, what is the maximum number which 

can be found to contain too much mold before you should conclude that 5 per 



130 SAMPLING FROM BINOMIAL POPULATIONS Ch. 5 

cent, or more, of the cartons probably contain too many mold particles? Use 

a 99 per cent confidence interval as the basis for your answer. Ans. 21. 

9. Suppose that 100 cattle selected at random from a very large group have 

been tested for tuberculosis. If 15 were found to be reactors, place an upper 

limit on the proportion of reactors in the whole group if 95 per cent confidence 

in the answer is considered adequate in these circumstances. 

10. The United States Department of Agriculture publication, Agricultural 

Statistics, 1946, indicates that among United States herds of cattle which are 

infected with Bang’s disease at all, an average of 12 per cent of the cows have 

the disease. Suppose that a large herd which has some incidence of the dis- 

ease is to be tested by taking a random sample of 50 cattle. How many out 

of the 50 must be free of the disease before the owner can be assured (at the 

99 per cent level of confidence) that his herd is above average in freedom 

from Bang’s disease? Ans. 46. 

11. Calculate directly from the binomial series (q+ p)4 the 75 per cent con- 

fidence interval on p if 3 out of 4 items sampled are found to be acceptable in 

the sense employed earlier. Obtain the answer to the nearest whole per cent. 

12. Verify the entry in Table 5.21a for r = 5. 

18. Suppose that an entomologist wishes to know what percentage of the 

corn plants in a large field have been infested to some degree by the southwest 

corn borer. He thinks that the percentage is somewhere between 20 and 80, 

but he wants to reduce that uncertainty to an interval of not over 15 percent- 

age points. If he is willing to accept a risk of 5 in 100 of drawing an erroneous 

conclusion, how large a sample must he take? 

14. Suppose that you are helping to administer a farm management associa- 

tion and wish to learn what percentage of the members use a certain procedure 

recommended for poultrymen. Suppose, also, that a random sample of 250 

interviews reveals that 200 in the sample do use the recommended practices. 

What can you say about the true percentage using this practice in the whole 

association? Ans. Clp;: 74-85% 
Clog: eee tee practices. 

5.3 TESTING PREDETERMINED HYPOTHESES 

REGARDING p 

In some fields of investigation the probable magnitude of p can 

be deduced from what appear to be reasonable theoretical considera- 

tions, as was illustrated in the discussions of the A-B, and other, 

blood groups. As another illustration, the theory of sex inheritance 

might lead geneticists to conclude that male and female offspring of 

human beings should be produced in equal proportions. If so, p = 1/2 

when children are classified merely as male or female. Abundant 

statistical evidence now exists to show that more than one-half the 

children born in the United States are male; therefore, the original 

hypothesis that p = 1/2 is known to be false. However, mankind 

cannot afford to wait many years until the collection of a great 
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volume of data makes it possible to determine, virtually without 

error, the truth or falsity of many of the hypotheses which play im- 

portant roles in everyday life and in scientific investigations. In 

these circumstances samples can be taken and made the basis for 

satisfactory conclusions. 

The statistical methods needed for a test of a predetermined hy- 

pothesis regarding some binomial population are intended to decide 

whether or not it is reasonable (as defined by an accompanying prob- 

ability statement) to suppose that a given sample actually has been 

drawn from the binomial population which is specified by the hy- 

pothesis being tested. In order that such a decision can be made, a 
basis must be established for comparing a particular sampling result 

with results to be expected from sampling if the hypothesis being 

tested is strictly correct. How should this be accomplished? Actu- 

ally, the problem is a very complex one whose full solution cannot 

be attempted at the reader’s present stage of statistical development; 

but some useful and informative rationalizations can be presented. 

Strange as it may seem, a large part of the complexity of this 

problem comes from the fact that there are so many possible solu- 

tions that the more difficult job is to choose the best one. This was 

indicated in the introductory part of this chapter. In that intro- 

duction a rather simple example was considered and a hypothesis 

was Judged for reasonableness by means of the binomial expansion 

(q+ p)". It was possible with the aid of that expansion to say 

that if p = 1/2 only 1.7 per cent of a large number of random sam- 

ples would have r as small as 0, 1, 2, or 3. The rarity of such occur- 

rences was made the basis for rejecting Hy(p = 1/2). Although the 

risk of falsely rejecting Ho when p actually is 1/2 is only .017, the 

likelihood of falsely accepting Ho when p actually is 1/3 was seen 

to be high; nearly four chances out of five. It was stated in con- 

nection with that example that the choice of the best procedure for 

making decisions from samples depends on this latter probability 

of an error of the second kind because the probability of an error of 

the first kind usually is fixed in advance. 

In the example just reviewed, a sampling frequency distribution 
was employed, and events which fell in the lower frequency intervals 
—that is, the extreme sizes of r—constituted what is called the 
region of rejection. On the scale of measurement of r, the points 0, 

1, 2, and 3 comprised the region of rejection. The general problem 
of choosing best tests of hypotheses regarding population parameters 
consists of finding functions of the sample observations and of the 
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population parameters for which the best regions of rejection can 

be defined. The best region of rejection, among several choices, is 

the one which for a given « will make B the smallest; that is, for a 

fixed probability of rejecting a true hypothesis it will give the lowest 

probability of accepting a false hypothesis in consideration of the 

other possible hypotheses. 

Statistical research has shown that a good function to use in the 

solution of the problem set up for this section is one which is called 

chi-square, and is denoted by the symbol x”. Its magnitude depends 

upon the numbers of individuals, or other units, observed in the 

sample to fall into each of the possible classes of attributes. It also 

depends upon the numbers which are expected mathematically to 

fall in those classes, which in turn depends upon the predetermined 

hypothesis regarding the population parameter p. For example, sup- 

pose that we have sufficient reason to believe that one-half the off- 

spring of guinea pigs should be males. The predetermined hypothesis 

now is that p = 1/2. If asample group of progeny selected at random 

from a whole population of actual or possible progeny is found to 

have 38 males and 32 females, is it reasonable to believe that this is 

a sample from a population for which p = 1/2? The mathematically 

expected number of males out of 70 offspring is H(r) = (1/2) (70) = 

35; hence the number of males in the sample is 3 greater than ex- 

pectation. It follows automatically that there are 3 fewer females 

than expected mathematically. 

The function x? will be defined by the following formula: 

(observed number in class — expected number)? 
(5.31) x? = i 

expected number in class 

where the summation includes two terms, one for males and one for 

females. It is apparent from this formula that if the observed num- 

bers in the two classes agree well with those numbers which are 

expected mathematically considering the assumed magnitude of p, 

x” will be relatively small; but if the numbers observed to fall in 

each class notably disagree with those expected from the predeter- 

mined hypothesis, x” will be relatively large. The decision that x? 

is relatively large or small is based upon the proportion of all such 

sample values of x? which would be at least that large af the hypoth- 

esis being tested were, in fact, true. 

For the illustration above, x? = (38 — 35)?/35 + (32 — 35)?/35 

= 0.51. The remaining question is: Is it reasonable to suppose that 
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x’ got so large as this purely as the result of the chance occurrences 

of sampling? As was done earlier, attention will be called first to 

some actual sampling experiences, and then a mathematical table 

will be employed to obtain the required information more quickly 

and more accurately. Table 5.31 summarizes the results obtained 

from 652 samples from a population for which p was known to be 1/2. 

Figure 5.31 is the graph of the r.c.f. distribution presented in Table 

5.31. 

TABLE 5.31 

OBSERVED FREQUENCY AND 1.c.f. DISTRIBUTIONS FOR x? WHEN THE Two 
Cuiasses, MALE AND FEMALE, DETERMINE THE POPULATION, AND p = 1/2 

Class Interval f Cts fe Class Interval f MeCats 

= 5.50 9 1.000 2.00-2.49 50 .885 

5.00-5.49 6 .986 1.50-1.99 48 .808 

4.50-4.99 4 .977 1.00—1.49 70 ATES 

4.00-—4.49 7 .971 0.50—-0.99 101 .627 

3.50-3.99 10 . 960 0.00-0.49 308 pai 

3.00—3.49 2 945 -— 

2.50—-2.99 Di. . 926 Total = 652 

1.00 

90 

80 

70 

.60 

.50 

40 

.30 

.20 

.10 
Relative cumulative frequency 
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Figure 5.31. Sampling distribution of x2 with one degree of freedom, as deter- 

mined from 652 samples taken from a binomial population with p = 1/2. 

If we read upward from y? = 0.51 to the graph of Figure 5.31 and 

then horizontally to the vertical scale, it appears that about 52 or 53 

per cent of all such sampling values of x? would exceed 0.51. Ob- 

viously, then, 0.51 is not an unusual sampling size for x’, provided 

the hypothesis upon the basis of which the expected numbers were 

calculated is exactly correct. Hence it is entirely reasonable to sup- 

pose that this sample of male and female guinea pigs deviated from 
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a 50:50 sex ratio purely as a consequence of the chance element in 

all sampling. On the other hand, if the sampling x? had been 15, 

say, we see from Figure 5.31 that sampling variation almost never 

produces such a large value of x. We would then conclude that the 
sex ratio was not 50:50. It is clear that such conclusions as these 

are valid only if a representative sample has been drawn. If just 

a few guinea pigs in one particular laboratory have been the basis 

for the sample, the conclusions drawn would not apply, without more 

sampling evidence, to guinea pigs in general. 

As a matter of fact, Figure 5.31 can be used as above for samples 

of various sizes just as long as there are only two classes of attributes 

involved. Under these circumstances, y? is said to have one degree 

of freedom. In this connection it should be noted that when the 

expected number has been calculated for one of the two classes, the 

other number follows automatically so as to keep the sum of the 

expected numbers equal to the sum of the observed numbers. Like- 

wise, if there are 3 too many males compared to expectation there 

must be 3 too few females; that is, there really is but one basie dif- 

ference between the observed numbers and the expected numbers. 

Basically, that is the reason there is only one degree of freedom for 

the ee 

Table V makes it possible to determine more easily and accurately 

the probability that a sample y? will exceed the observed value when 

the Ho is correct. Actually this mathematical distribution is not 

exactly right for the x? as defined in this chapter, but the loss of 

accuracy is negligible for most sample sizes which would cause peo- 

ple to have faith in the conclusions drawn therefrom. 

Problem 5.31. It was stated in Chapter 3 that the A-B blood groups were 

considered to be inherited in a simple Mendelian manner so that AO xX AO 

should produce offspring three-fourths of whom test to be type A and one- 

fourth are type O. Suppose that among a random sample of 400 children from 

such parents, 312 are A and 88 are O; that is, 78 per cent are A and 22 per cent 
are O. Does this sampling evidence justify rejection of the hypothesis that 
75 per cent should be A, or, in more symbolic terminology, should the hy- 
pothesis H)(p = 3/4 for A) be rejected? 

The expected numbers are 300 A and 100 O; therefore, y? = 
(12)?/300 + (12)?/100 = 1.92, with 1 D/F. By Table V it is found 
by interpolation that P = .17. By any usual standards Ho(p = 3/4 
for A) is accepted, especially if the hypothesis seems to be well 
founded theoretically. In some circumstances we would wish to 
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place a confidence interval on p. For example, the 95 per cent con- 

fidence interval could be obtained (from a larger table than 5.21 on 

page 127). Such an interval would include p = 3/4, because that hy- 

pothesis was accepted far above the 5 per cent level, but would also 

include other possible values of p. If this interval included other 

defensible hypotheses about p, they also would be acceptable as far 

as this sample evidence is concerned. Larger samples then could 

be taken with the hope of so narrowing the confidence interval that 

only one theoretically defensible hypothesis would be acceptable 

upon the basis of the sampling evidence. 

PROBLEMS 

1. According to Table 2.61, 50 female and 59 male guinea pigs were born 

during the period from January to April, inclusive. If these guinea pigs can 

be considered as a random sample of all guinea pigs as regards the sex ratio, 

is the observed difference in numbers of each sex sufficient to cause you to 

reject the hypothesis that the sex ratio actually is 1:1, if you wish to set the 

probability of committing an error of the first kind at .05? 

2. Use the data for May to August, inclusive, to answer the question of 

problem 1. Ans. No, P(x? = 1.12) = 30. 

3. Solve as in problem 1 for the data for September to December. 

4, Table 2.62 contains data from those guinea pigs which survived long enough 

to produce 4-day gains. Do the data for January to July, inclusive, indicate that 

the sex ratio is 1:1 for guinea pigs in that more select population which lives 

at least 4 days? Ans. Yes, P > 53. 

5. Solve as in problem 4 for the data for August to December. 

6. According to genetic theory, if a so-called heterozygous red-eyed fruit fly 

is mated with a white-eyed fruit fly, one-half the offspring are expected mathe- 

matically to be white-eyed. The reasoning is analogous to that given earlier 

for a mating of O and AB blood types. Suppose that among 500 offspring of 

such fruit flies, 240 are white-eyed. Does the x?-test indicate that such a sam- 

ple result would occur rarely (P < .05) while sampling from a binomial pop- 

ulation with p = 1/2, or not? Ans. No, P= .27. 

7. If you assume (as is reasonable from Figure 5.31) that x2 must be at least 

3.8 in problem 6 before the hypothesis that p = 1/2 should be rejected, how 

small can the number of white-eyed flies be among 500 offspring before that 

would occur? 

8. Suppose that it were agreed that you should not seriously doubt the 

hypothesis that p= 1/2 unless x? exceeds a value x 92 which is such that 

P(x? = x9”) = .01. How small can the number of white-eyed flies among 500 

become before you would reject the hypothesis that p = 1/2? 

Ans. 221 or 222. 

9. Suppose that a sample of 100 college students showed that 40 opposed a 

certain proposal regarding student government. Does that result contradict 

the hypothesis that 48 per cent of the student body oppose the proposed change? 
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10. Use a confidence interval approach to answer the question in problem 9, 

and discuss the difference between the two methods. 

Ans. Cly;: 30-50 per cent opposed. CIy9: 27-54 per cent opposed. 

Both include 48 per cent. 

11. Suppose that a poll of Topekans (Kansas) shows that one candidate re- 

ceived 135 votes to 115 for the other candidate for a certain public office. Use 

both the x?-test and confidence intervals to determine the probable winner, 

if the election is to be held very soon so that no appreciable change in opinion 

is expected. 

5.4 TESTING THE HYPOTHESIS THAT TWO RANDOM 

SAMPLES CAME FROM THE SAME BINOMIAL 

POPULATION 

The type of problem to which the tests described in this section 

apply arises when two groups of observations have been taken under 

somewhat different circumstances. The question to be answered is: 

Did the difference in circumstances produce two distinct binomial 

populations as far as can be told from these samples? For example, 

consider a simulated test of two house-fly sprays, one made from 

lethane the other from pyrethrum. Suppose that 500 house flies 

have been placed in each of two wire cages, identical in all respects. 

The lethane spray is applied to one cage, the pyrethrum spray to the 

other, with the following results: 

Spray Dead Alive Sums 

Lethane 475 25 500 
Pyrethrum 450 50 500 

Totals 925 75 1000 

Actually, the lethane spray killed 95 per cent of the flies in its 

cage, whereas the pyrethrum killed only 90 per cent. However, if 

both cages had been sprayed with the same spray, different per- 

centages would have been killed in the two cages in all probability. 

How rarely would they have been as different as they were found 

to be in this experiment? The y?-test introduced in section 5.3 can 
be employed successfully in the solution of this problem. However, 

there is no predetermined hypothesis regarding the magnitude of p 

like that available before. Hence some other method must be used 

to calculate the expected numbers needed in the y?-test. 

There is no theory regarding insecticides which will furnish an 

expected proportion “dead” in the population; but it was observed 
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that among the 1000 flies sprayed 92.5 per cent were later classified 

as dead. If these two sprays are equally toxic to the house flies, they 

should tend to kill equally many flies per 500 sprayed. Therefore, 

the probability of death can be taken as .925 on the general hypoth- 

esis that the two sprays are equally toxic. This is equivalent to 

the hypothesis, Ho(p1 = pe). Then the expected number dead out 

of 500 in a cage is H(r) = .925(500) = 462.5. That leaves 37.5 as 

the expected number of survivors for each spray since 500 flies were 

sprayed with each spray. We then can extend formula 5.31 to obtain 

the following: 

x? = (475 — 462.5)?/462.5 + (450 — 462.5)?/462.5 

+ (25 — 37.5)?7/37.5 + (50 — 37.5)?/37.5 = 9.01. 

This x? has only one degree of freedom as before because there is 
only one chance difference between the observed and expected num- 

bers. Note that only one expected number need be calculated before 

all the rest follow automatically from the border totals of the table. 

Figure 5.31 and Table V clearly indicate that x? rarely would attain a 

size of 9.01, or more, purely from sampling variations; therefore it is 

concluded that the lethane spray is superior to the pyrethrum spray, 

that is, the hypothesis that p, = pez is rejected, where p; = true pro- 

portion which would be killed by lethane and ps is the same for 

pyrethrum over many trials. 

The technique just described also can be used to decide if two 

random samples supposedly drawn from the same binomial popula- 

tion actually are from a common population. For example, suppose 

that two separate random samples were taken on the toxicity of a 

lethane spray, with the following results: 

Dead Alive Sums 

Sample 1 480 20 500 
Sample 2 380 20 400 

Sums 860 40 900 

If p remained constant during this sampling it is best estimated as 

p = 860/900 = .956 or 95.6 per cent. In the absence of any logical 

predetermined hypothesis, the hypothesis Ho(p; = ps) is tested, 

where p; = true probability of death during the taking of the first 

sample, and similarly for py and the second sample. If the prob- 

ability of death for any randomly designated fly stays fixed, py = po. 
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As usual, the expected number killed during the first sampling is 

computed to be E(r) = .956(500) = 478, which deviates from the 

observed number by only 480 — 478 = +2. It follows that the other 

observed numbers also differ from their expected numbers by 2 in 
one direction or the other. Hence 

_ (+2)? | (=2)? | (=2)? | (42)? 
478 382 22 18 

with 1 D/F. It is learned from Table V that P = .52; hence Ho is 

accepted readily, and it is considered that the two samples were 

taken under conditions which kept the probability of death constant. 

It is not always true that the population can be kept the same under 

repeated sampling; hence it is well to check this matter before dif- 

ferent conditions (such as use of different insecticides) are purposely 

introduced so that their effects can be studied. 

2 
xX = 0.422, 

Problem 5.41. Suppose that two sample polls of votes for two candidates 

for a public office are taken, one from among residents of cities with at least 

25,000 population, the other from among residents not in any incorporated 

town or city. If the results were as given below would you accept the statement 

that place of residence was unrelated to voting preference in this election? If 

so, the two samples are from a common binomial population. 

Votes for 

A B Sums 

Rural 620 380 1000 

Urban 550 450 1000 

Sums 1170 830 2000 

Over both the rural and urban samples 58.5 per cent voted for A. 

If both samples are from the same binomial population, = .585 is 

the best available estimate of p, the true fraction who favor A. Hence 

the hypothesis Ho(p, = pu) will be tested by means of the x” distri- 

bution. The expected number of rural residents out of 1000 who favor 

A is .585(1000) = 585. It deviates from the observed number by 

620 — 585 = +35; hence 

2 = (35)?| : z + : + =| = 10.09 1 D/F 
a 585 | 585 | 415 415 AS 

It is apparent from Table V that Ho should be rejected because 
P = .002. It is concluded that p, actually is > p,; that is, the resi- 
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dents of rural areas favor candidate A more strongly than do the 

urban residents because the observed results are very unlikely to 

be a sampling accident. 

PROBLEMS 

1. Lerner and Taylor, University of California, published the following data 

on chick mortality in the Journal of Agricultural Science, Volume 60: 

Number Progeny Which 

Sire Died Lived 

G14 22, 65 

G36 44 35 

G52 17 45 

H8 22 39 

How would you rate these sires as regards low progeny mortality after taking 

account of sampling variability? 

2. Compute yx? for the following practice data and obtain from Table V the 

probability that sampling variation alone would produce a x? at least this 

large. Also explain how information of this sort is used to test a hypothesis 

about a binomial population. 

Answered 

Yes No Sum 

First Sample 187 118 300 

Second Sample 213 187 400 

Sum 400 300 700 

Ans. P(x? > 5.16) & .002. 

3. Given the following x2’s, each with one degree of freedom, classify each 

as probably due to chance alone, or not, if an event which is as unlikely to 

occur as 1 time in 20 is considered to be purely a chance occurrence: 3.9, 7.1, 

0.95, 2.1, 15.2, 8.7, and 1.2. 

4. Within what approximate limits do the lower 75 per cent of all sampling 

values of x2 with one degree of freedom lie when the hypothesis being tested 

is correct? Ans. 0 to 1.31. 

5. For a population of x2’s each with one degree of freedom, the mean = u 

=1, and the standard deviation = ¢ = V2. Approximately what proportion 

of the population of x? with 1 D/F (see Table V) hes in each of the following 

ranges: “+ lo, w+ 20, and » + 30? How do these proportions compare with 

the corresponding ones for a normal distribution, as shown in Table III? What 

information does this set of comparisons give about the shape of the chi-square 

frequency distribution curve when x? has one degree of freedom? 
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6. Samples from records of male and female White Rock chicks up to 8 

weeks of age raised at Kansas State College during 1945 gave the following data: 

Sex Died Lived 

Male 46 227 

Female 30 290 

Use the x2-test to decide if there probably is a fundamental difference in chick 

mortality due to sex. Ans. P(x? = 7.85) =.007. 

7. The following data are derived from a publication by Atkeson et al. (Jour- 

nal of Economic Entomology, 37:428-35) on the effectiveness of 5 sprays in 

killing flies around dairy barns: 

Number of Flies 

Spray Killed Not Killed 

A 22 84 

B 49 90 

C 89 28 
D 39 63 
E 44 24 

Which sprays do you consider as essentially equal in killing power, considering 

sprays which do not differ beyond reasonable sampling variation as being tied? 

5.6 THE ,?-TEST WHEN MORE THAN ONE DEGREE 

OF FREEDOM IS REQUIRED 

There are many problems in sampling which require the use of 

the sampling distribution of a x? with more than one degree of free- 

dom, but only a few will be considered in this book. For example, 

suppose that both parents have the specific blood types AO and 

Rhrh, in the symbols of Chapter 3. Each parent produces four types 

of gametes: ARh, Arh, ORh, and Orh, with equal frequencies it is 

believed. Hence it can be deduced that such parents will produce 

offspring of four blood types: ARh+, ARh—, ORh+, and ORh-—, 

with associated probabilities 9/16, 3/16, 3/16, and 1/16, respectively. 

Therefore, if a large number of such parents is obtained for a random 

sample we can test the hypothesis suggested by the above argument, 

namely, Ho(9 ARh+ :3 ARh— :3 ORh+:1 ORh—). To illus- 

trate, suppose that out of 1600 such families in a random sample, the 

children were classified as follows with respect to the A-B and Rh 

blood groups: 885 ARh+, 310 ARh—, 292 ORh+, and 113 ORh-. 

Do these observed numbers deviate enough from the corresponding 
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theoretical numbers 900, 300, 300, and 100, respectively, to justify 

the rejection of Ho? In these circumstances 

, (885 — 900)? (310 — 300)? ~=(292 — 300)” _—_ (113 — 100)? 
2 = + $a 

900 300 300 100 
= 2.49, 

by analogy with previous problems when ,? had only one degree of 

freedom. How many degrees of freedom does this x? have, that is, 

how many of the deviations from theoretical expectations can be 

considered due to chance? The observed numbers and the expected 

numbers each must add to 1600, hence there cannot be more than 

3 degrees of freedom. As this is the only such restriction, there are 

just 3 degrees of freedom. Naturally a sampling chi-square which 

results from 3 chance deviations usually will be larger than one based 

on fewer degrees of freedom because more “room” must be left for 

sampling fluctuations. It is seen in Table V that a y” with 3 degrees 

of freedom will exceed the observed value, 2.49, about one-third of 

the time when Hp is correct; that is, P = .33. Therefore, the hy- 

pothesis Ho(9 ARh+ :3 ARh— : 3 ORh+ : 1 ORh—) is quite ac- 

ceptable in view of this sample evidence. 

Another circumstance which produces a x? with more than one 

degree of freedom is encountered when the same hypothesis is tested 

more than once by means of successive but independent random 

samples believed to have been taken under the same conditions. It 

may not be reasonably possible to obtain a convincingly large sample 

during any one experiment or survey so that some means of ac- 

cumulating statistical evidence from two or more studies is needed. 

This problem can be solved with the aid of the following theorem. 

Xx 

Theorem. If two or more sample chi-squares are obtained from 

independent random samples, the sum of these chi-squares fol- 

lows the chi-square distribution for a number of degrees of 

freedom equal to the sum of those for the chi-squares so added. 

Obviously, the process to which the above theorem refers would 

make no practical sense unless each y? were obtained while the same 

hypothesis was being tested. It also is important to be assured that 

all the samples have been drawn from the same binomial population, 

regardless of the truth of the hypothesis Ho» because nothing is ac- 

complished by such a study if several different populations are in- 

volved. We are trying to test one predetermined hypothesis which 

supposedly applies to a fixed set of conditions. To illustrate these 
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ideas, suppose that some respected group of persons has conjectured 

that 60 per cent of the voters in a certain area will vote yes on a 

given economic question, and that this conjecture is to be tested by 

means of three samples taken in the three districts in the area in- 

volved. It will be assumed that these districts contain equally many 
voters. 

Before the hypothesis that p = .60 for the whole area is tested, 

it is of interest to determine if the three districts are the same bi- 

nomial population with respect to yes and no votes on the economic 

question which is to be asked the voters. Hence it is supposed that 

a poll of 200 randomly chosen voters in each district gave these 

results: 

Number Voting 

District Yes No Sum 

1 105 95 200 

2 100 100 200 

3 125 15 200 

Sum 330 270 600 

If the whole of each district has the same fraction, p, of yes votes, 

the best estimate of p is Pp = 330/600 = .55 or 55 per cent. If this is 
used as the probability that a randomly chosen voter in a given 

district will vote yes, the expected number of yes votes in each dis- 
trict is .55(200) = 110. That leaves 90 as the expected number of 

noes; hence 

(105 — 110)? (75 — 90)? 
ae oe ee 

110 

It is seen that the observed number of yeses in the first district is 5 

below expectation; hence the number of noes is 5 above expectation, 

and only one chance difference between observation and theoretical 

expectation exists. The same can be said for district 2; but since we 

know that the yes vote in district 2 was 10 below expectation and 

that in district 1 is 5 below expectation, it follows that the number 

of yeses from district 3 must have been 15 above expectation. Hence 

only two chance deviations are involved basically, and this x? has 2 

degrees of freedom. 

The specific hypothesis being tested is that the true proportions 

of yes votes in the three districts are equal. Table V indicates that 

it is rather uncommon during sampling experience for a x? with 2D/F 

to become as large as the 7.07 observed for these samples if the hy- 

2 x = 707. 
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pothesis used is correct. In fact P(y?= 7.07) = .03. If we have 

decided in advance to reject a hypothesis when P < .05, Ho(p1 = 

Pp» = p3) would be rejected, and we would say that the true fraction 

of yes votes is not the same in all three districts. It is clear that after 
such a decision it would not be valid to conduct a separate survey 

in each district and then combine the evidence from these samples 

on the assumption that we have three independent 7's testing the 
same hypothesis, as is supposed in the theorem stated earlier in this 

section. 
It appears from the samples given above that p; does equal ps, 

but that pz is greater than p; or pe. This hypothesis could be tested 

by the method just illustrated; but for the purposes of this discussion 

districts 1 and 2 will be used to test the original conjecture that 

p = .6 for the area covered by districts 1 and 2. 

For district 1, the expected number of yes votes is H(r) = .6(200) 

= 120 votes. Therefore, x? = (15)?/120 + (15)?/80 = 4.69 with 

1 D/F so that P = .030 by Table V. On the basis of this sample 

evidence Ho(p = .6) is rejected at the 3 per cent level. 

For district 2, the same expected numbers are used because 200 

votes were recorded in this sample also. Therefore, x? = (20)?/120 + 

(20)2/80 = 8.33 with 1 D/F so that P = .003. This time Ho(p = .6) 

is rejected more decisively. 

By the theorem of this section, x? = 4.69 + 8.33 = 13.02, with 

2 D/F so that P = .002 by Table V. Therefore Ho(p = .6) is re- 

jected at the 0.2 per cent level upon the basis of the evidence in the 

two 200-vote samples. 

The chi-square distribution with more than one degree of freedom 

may be useful when the data are classified in a two-way table of r 

rows and c columns. For example, a random sample of Republicans 

and Democrats in a certain city might each be grouped on the basis 

of three income brackets as follows: 

Annual Income 

Party Under $5000  =$5000-$9999 $10,000 and Over Sums 

Republican 200 50 8 258 
Democrat 120 20 3 143 

Sums 320 70 11 401 

This will be described as a 2 by 3 contingency table. Earlier in this 

chapter 2 by 2 contingency tables were analyzed by means of the 

chi-square distribution. 
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It is likely that a person might wish to answer the following ques- 

tion with the aid of the data in the above table. Is the announced 

party affilation of a voter in this city associated with that voter’s 

economic status? Or, in statistical terminology, the question can be 

rephrased as follows: Let p; be the proportion of Republicans in this 

city with incomes under $5000, p2 be the same for Republicans with 

incomes in the middle income group, pz the same for those Repub- 

licans in the highest income bracket; and let p;’ = the corresponding 

proportions in the population for the Democrats in this city. The 

subscript 7 takes the values 1,2, and 3. Then we wish to test the 

more complex hypothesis: Ho(p; = pi,1 = 1, 2, 3). As usual, Sp; = 

Sp; —Tiora =: 2. ands. 

The p; and p,’ are unknown and will be estimated from the sample 

observations on the assumption that Ho is correct. These estimates 

of parameters will be obtained as before: j,; = #,’ = 320/401; fo = 

po’ = 70/401; and p3 = ps3’ = 11/401. It follows that the expected 

number of Republicans in the lowest income stratum is (320/401) 

(258) = 205.9. The other expected numbers are computed in a 

similar manner and are shown in parentheses in the following table: 

Annual Income 

Party Under $5000 $5000-$9999 $10,000 and Over Sums 

Republican 200(205.9) 50(45.0) 8(7.1) 258(258.0) 

Democrat 120(114.1) 20(25.0) 3(3.9) 143(148.0) 

Sums 320(820.0) 70(70.0) 11(11.0) 401(401.0) 

(200 — 205.9)? (120 — 114.1)? (3 — 3.9)? yo pest ee len a peal 
pence i A atthe 2 yet Ree: 

How many degrees of freedom does this sampling chi-square have? 

In the process of estimating the p; and the p;’ the expected numbers 

in a column were required to add to the same sum as the observed 

numbers for the same columns. This causes the deviations from 

expectation in a column to be the negatives of each other. For exam- 

ple, 200 — 205.9 = — (120 — 114.1). Therefore, both these devia- 

tions of observation from expectation cannot be chance occurrences. 

There are, then, at most three chance deviations among the six which 

go into the computation of the chi-square. Furthermore, the expected 

numbers of Republicans in the three income classes must add to 258, 
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the total number of Republicans in the sample. A similar statement 

holds for the Democrats, but this is not an independent requirement 

because the six expected numbers have been forced to total 401 by 

making the column totals add to the observed numbers 320, 70, and 

11. Hence the number of chance differences between the observed 

numbers and those expected mathematically upon the basis of Ho is 

reduced to 2. This, then, is the number of degrees of freedom. 

In general, the number of degrees of freedom for a chi-square cal- 

culated for an r X c contingency table is (r —1)(c —1). In the 

example above, r = 2 and c = 3; hence, (r — 1)(c — 1) = 22. 

Having decided that the x? of 2.35 has 2 D/F, it remains to deter- 

mine from Table V if this is an unusual size for a sample chi-square. 

Table V shows that P(y? = 2.35,2 D/F) = .31, approximately; there- 

fore it is entirely reasonable that this x? occurred while sampling 

from a population for which the hypothesis, Ho, is true. With this 

sampling result at hand, we would accept the proposed hypothesis. 

PROBLEMS 

1. Suppose that of 300 salmon which went up a fish ladder in a certain river 

185 were chinooks, 65 were silver salmon, and 50 were humpbacks. At another 

ladder farther south suppose that the following numbers were recorded: 

chinooks, 150; silvers, 80; and humpbacks, 20. Do these samples (if satisfac- 

torily random, and such is assumed) support the belief that the proportions of 

these three species are the same at the two locations which were sampled? 

2. Referring to prablem 1, what matters would cause you to consider them 

as truly random samples? What factors might cause you to think they were 

not? 

3. Suppose that three independent samplings at one fish ladder led to the 

following records: 

Number Which Were 

Not 

Sampling Chinook Chinook Sum 

First 60 745) 85 

Second 70 30 100 

Third 52 18 70 

Sum 182 033 255 

Is the hypothesis that the percentage of chinooks stayed the same during the 

time of the sampling an acceptable one according to these data? 

4. Suppose that some entomologists investigated yellow, short-leaved, and 

spruce pines in a certain forest to see how many were being seriously attacked 
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by insects. Assume the following data were obtained from random samples 

of 250 of each species: 

Seriously Not 

Species Damaged Damaged Sum 

Yellow 58 192 250 

Short-leaved 80 170 250 

Spruce 78 172 250 

Do the insects studied attack one of these species more than another? Or is 

the assumption that the percentage of seriously damaged trees is the same for 

all these acceptable? Ans. Chi-square = 11.47, 2D/F, P = 03. 

Reject the assumption. 

5. For each species of pine studied in problem 4, test the hypothesis that 

one-third of the trees in each species population are seriously damaged. Then 

combine these tests by adding the chi-squares, and draw appropriate conclusions. 

5.6 CONTROL CHARTS 

Sampling techniques appropriate to binomial populations have 

some important applications in industry in addition to those con- 

sidered previously in this chapter. During a manufacturing process 

designed to produce marketable goods it is important to check fre- 

quently upon the quality of these products. Quality control charts 

provide a simple but effective means for watching both the general 

level of quality and the consistency with which this level is being 

maintained. No attempt will be made herein to discuss all the 

various methods in use because books devoted solely to industrial 

statistics or to quality control are available on this subject. How- 

ever, it can be seen rather easily that some of the topics presented 

earlier in this book are fundamental to this subject. The subsequent 

remarks in this section are intended to point out some of these funda- 

mentals. 

Consider first a manufactured item which could be classified as 

either defective or non-defective with respect to predetermined stand- 

ards of production. Clearly, a binomial frequency distribution must 

be involved with some unknown proportion, p, of defective products 

being manufactured. The number of items inspected and classified 

as defective or non-defective is the n in the previous discussions of 

sampling from binomial populations. As indicated earlier the stand- 

ard deviation of a proportion derived from a sample of n observations 

is Vp(1 — p)/n. If the manufacturing process is running smoothly 

with p = .05, say, and then something occurs to increase the fraction 

defective to .15, this occurrence will reveal itself in two ways: (a) the 
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observed fraction defective will tend to increase rather soon, although 

it might not do so for several samples; and (b) the variability among 

samples will increase if p changes toward 1/2, and this is the case 

cited above. Both these points are illustrated by means of Table 

5.61 and Figure 5.61. 

TABLE 5.61 

SAMPLES WITH n = 50, p STARTING AT .05 AND INCREASING .002 PER SAMPLE 
FROM THE TWENTY-SIXTH TO THE SEVENTY-FIFTH SAMPLES, INCLUSIVE, AFTER 

Wuaicu Ir REMAINS AT .15 

Sample Fraction Sample Fraction Sample Fraction 
Number Defective Number Defective Number Defective 

1 .10 35 10 68 28 
2 .06 36 .10 69 14 

3 .08 On 02 70 08 
4 10 38 .06 ra! 12 

5 04 39 .10 72 12 
6 .06 40 04 (es) 14 

a .06 4] .06 74 16 
8 ail) 42 14 75 12 
9 .06 43 .16 76 22 

10 04 44 a2 Cth 20 
11 06 45 .06 78 12 

12 00 46 08 79 14 

13 06 47 10 80 14 

14 06 48 .06 81 12 
15 04 49 04 82 14 

16 04 50 04 83 10 
17 04 51 .08 84 20 
18 02 52 14 85 12 

19 02 53 .12 86 14 

20 08 54 04 87 04 
21 06 55 2 88 16 

22 10 56 .08 89 18 

23 04 57 16 90 18 
24 06 58 10 91 14 

25 04 59 18 92 16 

26 02 60 14 93 08 

27 06 61 04 94 18 
28 04 62 08 95 20 
29 02 63 10 96 24 

30 08 64 10 97 16 
31 04 65 15 98 10 

32 10 66 12 99 06 
33 00 67 12 100 14 
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Table 5.61 and Figure 5.61 were obtained in the following manner: 

(a) p was fixed at .05 by combining 950 green and 50 red beads in 

a receptacle, and considering the red beads as defective manufactured 

items; (b) 25 samples with n = 50 were drawn and the fraction de- 

fective was plotted over the order number of the sample; (c) start- 

ing with the twenty-sixth sample and continuing through the seventy- 

fifth, two green beads in the receptable were replaced by two red 

beads after each successive sample was drawn and recorded; and 

(d) starting with the seventy-sixth sample, no additional changes 

were made. In brief, p = .05 for the first 25 samples; p increased 

UCL .30 
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Figure 5.61. Control chart for Table 5.61. 

.002 per sample (to simulate slippage or excessive wear) for the next 

50 samples so that it finally was .15 for the last 25 samples. 

The horizontal lines in Figure 5.61 marked UCL (upper control 

limit) were obtained from p + 3V/p(1 — p)/50 with p = .05 until 

the seventy-sixth sample, and p = .15 thereafter. Unless something 

has occurred unknowingly to change the size of p the fraction defec- 

tive rarely will go above the UCL; hence, when the observed fraction 

defective frequently exceeds this limit, it is suspected that the manu- 

facturing process has broken down to some degree. It can be seen in 

Figure 5.61 that when the “machine” had “slipped” and p began to 

increase, the fraction defective soon started an upward trend. 

Shortly, it exceeded the UCL which had been set on the supposition 

that p = .05. Then when p ceased to increase and a new UCL was 

figured with p = .15, the fraction defective again stayed below the 

UCL. Generally, there also is a lower control limit (LCL), but in 

this situation it would have been negative and was taken as zero, as 

is customary. 

In practice when the percentage of defectives is unknown the frac- 

tion defective observed on at least 25 samples is used in place of p 
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in the procedure described above. As more samples accumulate a 

better estimate of p can be computed and used. 

It may be that the quality of a manufactured item is judged by 

means of a measurement such as length, diameter, weight, or a volume 

which is likely to be a member of a near-normal population rather than 

a binomial population. The principles involved are the same but now 

& and s; (see Chapter 6 for definitions) must be used instead of esti- 

mates of p and its standard deviation. In such situations the upper 

and lower control limits are given, respectively, by: 

E+ 3V (22?) /n(n — 1). 

Aside from this change, the control charts are constructed and inter- 

preted as before. Of course, sample means, %;, are plotted against 

order of draw. 

In view of the fact that the s; is somewhat tedious to compute, it has 

been found to be both satisfactory and economical to use control limits 

which employ the range as the measure of variation instead of the 

standard deviation. This procedure and the necessary tables are given 

and discussed in publications on quality control or on industrial statis- 

tics, and will not be given here. 

PROBLEMS 

1. Another group of samples taken under conditions described for Table 5.61 

gave the following results. Make a control chart similar to Figure 5.61 and 

draw appropriate conclusions. 

Sample Fraction Sample Fraction Sample Fraction 

Number Defective Number __ Defective Number _—_— Defective 

1 .02 liz .04 33 .06 

2 .00 18 .06 34 .08 

3 .06 19 .02 35 .10 

4 .06 20 .08 36 .04 

5 .08 Pat .00 37 .04 

6 .06 22 .00 38 .02 

a .08 23 .06 39 .08 

8 .06 24 .02 40 .08 

9 .02 25 .02 41 .00 

10 .06 26 .04 42 .10 

11 .06 27 .02 43 .10 

12 .02 28 .06 44 .08 

13 .02 29 .00 45 .16 

14 .06 30 .00 46 .14 

15 .00 31 .04 47 .10 

16 .02 32 06 48 .16 
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Sample Fraction Sample Fraction Sample Fraction 

Number Defective Number Defective Number Defective 

49 .12 67 .06 85 all 

50 .16 68 .16 86 14 

51 .02 69 .12 87 12 

52 12 70 .10 88 22 

53 12 71 .08 89 .08 

54 .14 72 a2 90 .18 

55 .04 73 .18 91 .10 

56 .08 74 .06 92 .12 

57 .14 75 .10 93 .18 

58 .12 76 .24 94 .06 

59 .10 77 .10 95 .10 

60 .08 78 .14 96 .06 

61 12 79 .18 97 .06 

62 .12 80 .16 98 .10 

63 .06 81 .18 99 .22 

64 .08 82 .18 100 .06 

65 .14 83 .14 

66 .08 84 .08 

2. Calculate an estimate of p from the first 25 samples of problem 1, for the 

next 25, and for the last 25 samples. Discuss the effect their differences would 

have on the control chart. 

3. Use the estimate of p from the first 25 samples of problem 1 to recompute 

the UCL for Figure 5.51. 

4. Draw 50 successive samples of 50 each from the laboratory population on 

fraction defective (furnished by the instructor) and construct a control chart 

from those observations. 

5. Perform the operations required in problem 4 for a near-normal population 

furnished by the instructor. 

REVIEW PROBLEMS 

1. Which of the following bridge hands are you the more likely to receive 

on one future random deal? 

(a) A, K, 10, 4, 3, and 2 of hearts; A, Q, and 10 of diamonds; K, 10, and 3 

of spades; and the ace of clubs. 

(b) No card larger than a 6. 

2. Suppose that a coin is so biased that it turns up heads 3 times for each 2 

times that it shows tails, on the average. What is the probability that on 8 flips 

there will be fewer heads than tails? Ansa. 

3. Suppose that you have taken the bid in a bridge game and that you and 

the dummy have all the trumps except Q, 8, 5, and 2. What is the probability 

that you would get out all the trumps on successive leads of the A and K of 

trumps? 



Ch. 5 REVIEW PROBLEMS 151 

4. The prices of barley in the North Central States during 1945 are given 

below in cents. (Agricultural Statistics, 1946, USDA.) Compute two different 

averages of these prices and discuss their meanings and their limitations. 

State: Ohio Indiana _ [Illinois Michigan Wisconsin Iowa Minnesota 

Price: 106 111 111 118 119 103 107 

State: Missouri N. Dakota 8. Dakota Nebraska Kansas 

Price: 116 102 103 96 97 

5. Determine and interpret the coefficient of variation for the prices of 

problem 4. 

6. Calculate the mean deviation for the prices of problem 4 and discuss its 

meaning. Ans. AD = 6.32. 

7. If the egg weights for Rhode Island Red hens are considered to be nor- 

mally distributed with » = 60.5 grams and o = 4.0 grams, what range of egg 

weights would you expect to include the middle 90 per cent of all weights? 

8. The following table (taken from A. S. Weiner, Blood Groups and Trans- 

fusions, Thomas, with the consent of the author and the publisher) records the 

results of a study of the inheritance of the P factor. 

Number Children’s 

Parents’ of Blood Types 

Type Families = P+ pP— Total 

P+ X P+ 249 677 79 756 

P+ X P- 134 286 179 465 

P— X P- 34 (4) * 94 98 

* Definite doubt established regarding legitimacy. 

Recalling that P+ is genetically PP or Pp, and that P— is only pp, test 

statistically the agreement between the above data on children’s blood types 

and the numbers expected if P+ is assumed to be Pp twice as frequently as it 

is PP. Consider the (4) * entry as zero. 

Ans. P,(x? = 0.33) > 53; P(x? = 5.57) = 018 

on P+ * P+ and P+ & P-, respectively. 

9. Make up a set of numbers which has an arithmetic mean of 10 and a 

standard deviation of 2. 

10. Is there any evidence in the table of problem 8 for or against the assump- 

tion that P+ = Pp twice as frequently as P+ = PP? Explain. 

11. Suppose that a large, deep pool in a mountain stream contains a great 

many trout of just two kinds, rainbow and brook. You wish to learn what 

percentage are rainbows. Two methods of sampling have been suggested thus 

far. 

(a) Fish the pool until 50 trout are caught, and then use this sample evidence 

as the basis for estimating p. 

(b) Devise a trap into which the trout will go and be caught, and secure a 

sample of 50 this way. 
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Assuming that b can be done, which method of sampling, if either, do you 

recommend as statistically best? Why? Can you suggest a better method 

than either of these? 

12. Referring to the situation of problem 11, suppose that the true proportion 

of rainbow trout is .40 and that 8 per cent of the rainbows in this area are 

known to be afflicted with a certain disease. What is the probability that a 

trout caught at random is a rainbow trout without the disease? Ans. P = 87. 

13. Referring again to problem 11, assume that 60 per cent of the trout in 

another stream in this same region are brook trout. If on a random sample of 

50, 22 are brook trout and the other 28 are rainbows, would you accept or reject 

the hypothesis that p = 60 for brook trout in this stream? Explain. 

14. Suppose that there are two mountain streams which run quite close to- 

gether in a certain area but whose head waters are far apart. You wish to 

know if the trout populations of these two streams are the same, in a certain 

well-defined area, as regards proportions of the four species: rainbow, cutthroat, 

brook, and dolly varden trout. Given the following random sampling data, 

what would you conclude? 

Number of Trout 

Rain- Cut- Dolly 

bow Brook throat Varden Sum 

Stream 1 73 68 49 10 200 

Stream 2 70 85 80 15 250 

Sum 143 153 129 25 450 

Ans. Chi-square = 5.65 3D/F, P = .13 

15. Referring to problem 14, compute and interpret the CI); on the true per- 

centage of brook trout in stream 2. 
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GHeAP TER. 6 

Introductory Sampling Theory 
for a Normal Population 
Involving Only One Variable 

When the population being sampled has a normal frequency dis- 

tribution with unknown parameters p and o, the problems of estima- 

tion and of testing hypotheses by means of samples are fundamentally 

much the same as those considered in Chapter 5 for binomial pop- 

ulations. Two differences are immediately apparent. (a) There now 

are two unknown parameters instead of one, as for the binomial pop- 

ulation, and (b) the measurements, Y, have a continuous scale of 

measurement and a continuous frequency distribution. These dif- 

ferences between the normal and the binomial types of populations 

will appear in the discussions below as the causes of some changes 

in the mechanics of estimation and of testing hypotheses; but the 

reader should not lose sight of the fact that the problems and their 

solutions are much the same as in Chapter 5. 

6.1 OBTAINING THE SAMPLE 

The process for obtaining good samples from a normal population 

is similar to that discussed in Chapter 5 for randomization and the 

avoidance of biases. Here, as there, the population to be sampled 

must be clearly defined, and the measurement to be taken on the 

units of this population must be stipulated precisely. 

After the population is specified and the units (persons, prices, 

pigs, plots of land, pots of plants, families, etc.) have been designated 

unambiguously, it is necessary to devise a method for obtaining the 

particular units which are to constitute the sample. The sampling 

situations which come within the scope of this chapter should be 

handled by completely randomized samples. To illustrate, suppose 

that a person who is interested in the production of raw rubber wishes 

153 
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to estimate the percentage rubber in a certain variety of guayule 

grown under specified environmental conditions. Suppose also that 

he wishes to select and to analyze 25 plants as a basis for this esti- 

mate. The population parameter which is to be estimated is the true 

average percentage of rubber in plants of the given variety. Assum- 

ing that there is a large number of guayule plants from which to 

select a sample, how should the particular 25 of the sample be chosen? 

If the 25 tallest, sturdiest, or most thrifty-looking plants were to be 

chosen they surely would not be representative of the population. 

If a person were to stroll about among the available plants and choose 

25 in what he considered a random manner, he might unconsciously 

bias the sample. A better way to choose the sample is to assign 

location numbers (such as row and plant-in-row numbers) to the 

plants and then effectively “just draw 25 numbers out of a hat.” He 

can use tables of random numbers and similar devices if he chooses. 

The main point is to see that every plant in the population had at 

the start an equal and independent chance to be included in the 

sample. 

If two varieties of guayule were compared for percentage of rub- 

ber, it might be best to start with a suitable area of land staked off 

for tree spacings and then assign the varieties at random to the 

various planting positions. This would make it true that each 

variety initially had an equal chance for any good, or bad, land 

among the possible planting positions. 

The subject of this section is very broad and complex partly be- 

cause there are many different sampling situations and a consequent 

need to devise different sampling procedures to fit these different cir- 

cumstances. However, as in Chapter 5, only enough is said here to 

give the reader some general ideas and, perhaps, induce him to do 

more reading on this subject if he is interested. At the least, the 

reader can be critical in accepting sampling results presented as 

information, advertising, or propaganda. 

6.2 THE STATISTICAL DISTRIBUTION OF SAMPLE 

MEANS, ¢,, DRAWN FROM A NORMAL POPULATION 

Each sample drawn from a normal population of numerical meas- 

urements will nearly always differ from any other sample from the 

same population in one or more details. Yet certain features of 

samples from a population, as a group, will tend to conform to a 

predictable pattern. For example, if 10 observations are to be taken 
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on a normal population with » = 60 and o = 10, no one can say 

what the arithmetic mean of the sample will be; but a good estimate 

can be made of its probable size because sample means from such a 

population will have a frequency distribution over the long run of 
experience. Therefore, it should be expected that probability state- 

ments like those previously discussed herein can be made. 

The sample mean, to distinguish it from the unchanging population 

mean, will be designated by <;, where the subscript refers to the 7th 
sample. 

The frequency distribution of an approximately normal population 

with » = 60 and o = 10 is presented in Table 6.21. Six hundred and 

forty-eight random samples, each containing 10 measurements, were 

drawn from that population. The arithmetic means of these samples 
were then computed. The frequency distribution for the 648 sample 

means also is given in Table 6.21, with the calculated mean (#) and 

standard deviation (s;’) of the @; being given at the bottom of the 

table. 
TABLE 6.21 

A FREQUENCY DISTRIBUTION TABLE FOR A NEAR-NoRMAL POPULATION OF 

MEASUREMENTS X;, WITH » = 60 AND o = 10; AND THE FREQUENCY DistRI- 

BUTION OF 648 SAMPLE MnmaAns, Z;, TAKEN FROM THAT POPULATION WITH 10 
MEASUREMENTS PER SAMPLE 

Distribution of Population Distribution of Sample Means 

Class Interval af TC). Class Interval f ACE 

86.1 —90.0 if 1.00 69.1—71.0 0 1.00 
82.1 —86.0 13 1.00— 67.1-69.0 ik 1.00 
78.1 —82.0 ol .99 65.1-67.0 27 .99 
74.1 -78.0 64 .97 63.1-65.0 63 .95 
70.1 —74.0 113 .92 61.1-63.0 140 .85 
66.1 —70.0 169 .85 59.1-61.0 161 .63 
62.1 —66.0 218 74 57.1-59.0 136 .39 
58.1 -62.0 241 .59 55.1-57.0 (2, .18 
54.1 -58.0 222 .43 53.1-55.0 34 .06 
50.1 —54.0 176 .28 51.1-53.0 8 .O1 
46.1 —50.0 120 .16 49.1-51.0 0 .00 
42.1 —46.0 69 .08 — 

38.1 —42.0 34 .04 Total 648 
34.1 -38.0 15 202 
30.0*—34.0 8 .O1 

Total 1500 

i — GO a—A0 # = 59.98 Se) 1.14. 

* This interval was extended by 0.1 to include the remaining measurement 
in the population. 
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The frequency distribution in the right-hand part of Table 6.21 is an 

approximation to an infinite population of €; which would result if this 

sampling with n = 10 observations were continued indefinitely. Any 

one random sample from the normal population described above neces- 

sarily would be a member of the population of ;. 

As an illustration of the preceding discussion, suppose that an agri- 

cultural economist is interested in learning if the per-acre income on a 

certain type of farm employing good (recommended by an agricultural 

experiment station, for example) farming practices is greater, on the 

average, than that for farmers not following those practices. He takes 

a sample of n farms on which the recommended practices are employed 

and calculates the mean per-acre income. The same is done for a 

comparable random sample of farms on which these recommendations 

are not followed. Some measurement of the consistency of income on 

each of the two groups of farms also would be needed. If the newer 

practices are worth recommending to replace those currently in use, 

they must produce a new population of per-acre incomes with a larger 

mean, a smaller variance, or both. To obtain information on these 

points, the economist must have adequate information regarding the 

manner in which sample means are distributed; that is, where their 

region of concentration will be, and how they will tend to be dispersed 

about that region of concentration. Hence, the first objective of this 

chapter will be to provide that sort of information about #’s drawn 

from the same normal population of numerical measurements—such 

as per-acre incomes. 

Figure 6.21 presents the graphs of the frequency distributions shown 

in Table 6.21. The larger curve is for the near-normal parent popula- 

tion of X’s, while the smaller curve is taken as a good approximation 

to the distribution of the population of #’s obtained from samples of 

ten observations taken from the population of X’s. 

It appears from Figure 6.21 that the two frequency distributions are 

much alike in general form, and seem to be approximately normal 

about the same mean. The major difference lies in the fact that the 

&; exhibit much less variability than the X’s of the population from 

which the samples were taken. This is to be expected because one 

important reason for combining a number of individual X’s into one 

sample is to achieve a smoothing out of the individual differences 

among those X’s. 

It should be noted from the bottom of Table 6.21 that the mean of 

the Z; is 59.98, which is quite near to 60, the size of this population 

mean, uw. Also, the standard deviation of the 648 sample means is 

3.14, which is a bit less than one-third of o. As a matter of fact, 3.14 
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Frequency 

0 
30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 

Xorx 

Figure 6.21. Frequency distribution curve for a normal variate, X, and also 

for the sampling mean, z#, for samples with n = 10. 

is very nearly equal to o/Vn = 10/V10 = 3.16, to two decimals, 

where the symbol is used to denote the number of observations 

taken in the sample. 

The preceding discussion has suggested three features which are 

exhibited by a large number of sample means obtained from a normal 

population of numerical measurements. These features are: 

(a) Although it is impossible to predict the actual content of a 

particular future sample it may be possible to predict the type of fre- 

quency distribution which the sample means will follow, for example, 

a normal distribution. 

(b) The average sample mean will be of essentially the same magni- 

tude as the mean of the population sampled. 

(c) The sample means, Z;, will display less variability than the X’s 

of the population. It is logical that the variability of the sample 

means—from sample to sample—should decrease as the size of the 

samples increases. It was suggested that a factor 1/+/n is involved 

here. 

The following theorem is given without proof because that proof is 

inappropriate to this book. The theorem is stated here for the purpose 

of replacing the indefiniteness of statements (a), (b), and (c) above 

with precise information which can be used in practice. 

Theorem. If a population of numerical measurements, X, con- 

forms to a normal frequency distribution with mean, y, and stand- 
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ard deviation, o, and if a very large number of random samples of 

n observations each is drawn from that population: 

(a) The population of %; thus formed will have a normal fre- 

quency distribution. 

(b) The mean of the #; will be u also. 

(c) The standard deviation of the @; will be ¢/+/n. 

Note from this theorem that, if the X’s are normally distributed we 
automatically know the form of the distribution of the sample means 

and hence can write down specifically the formula for their distribu- 

tion curve, namely; 
1 G=p»)2 

= ak: aa 202/n 

se V 2(a/Vn) : 

Formula 6.21 can be transformed into the standard normal formula of 

Chapter 4 by means of the substitutions 

y=yr:0/Vn and d= (& — n)/(c/Vn) 

whereupon Table III can be employed as shown earlier. 

If ten measurements are taken per sample and the parent population 

has a mean of 60 and a standard deviation of 10, as above, the mean 

of the z’s is also 60, and the standard deviation is 10/+/10 = +/10 
= 3.16. Table 6.21 and Figure 6.21 furnish approximate verification 

of these statements from actual experience. 

If n = 15 and the samples are drawn from a normal population with 

uw = 60 and o = 10, the mean of the resulting population of <; also 

will be 60, and the standard deviation will be 10/4/15. On 200 such 
samples, their mean was 60.22 and their standard deviation was 2.53 

instead of the expected 60 and 2.58, respectively. ‘Two hundred is a 

relatively small number of samples from which to seek empirical verifi- 

cation of mathematical theory, but these results do agree quite well 

with the theorem given above. 

(6.21) 

Problem 6.21. If chemical determinations of the percentage of protein in 

samples of a certain variety of wheat are known to have a normal frequency 

distribution with w = 14 and o = 2, what is the probability that five random 

samples will have a mean per cent protein above 16? 

In the following discussion, o; will be used to denote the standard 

deviation of the population of sampling means. In this problem, n 

= 5, pu = 14, andc,; = 2/+/5 = 0.90. Therefore, \ = (16 — 14)/0:90 

= 2.22; and P(A > 2.22) = .013, approximately. In other words, 

only about 13 times in 1000 sets of 5 observations like these would you 
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have the mean per cent of protein at or above 16. The rarity of such 

an occurrence might cause you to doubt the accuracy of the protein 

analyses and cause you to ask that they be done over. 

PROBLEMS 

1. Given that a certain population of measurements is normally distributed 

about a mean of 30 and with a standard deviation of 8. If a sample of 16 

members is to be drawn at random, what is the probability that its mean will 

be below 28? 

2. Under the conditions of problem 1, what is the probability that a sample 

of 9 numbers taken from that population will have an arithmetic mean below 

28? Ans. .23. 

3. Solve problem 2 with the standard deviation changed to 12. 

4. If in some particular area the daily wages of coal miners are normally 

distributed with » = $15 and o = $1.50 what is the probability that a representa- 

tive sample of 25 miners will have an average daily wage below $14.25? 

Ans. .006. 

5. Suppose that a thoroughly tested variety of corn has been found to yield an 

average of 35 bushels per acre with a standard deviation of 6, and that these yields 

have a normal frequency distribution. If a random sample of 25 yields for a new 

variety gives = 40, show that there is good reason to believe that the yields of 

the new variety are from a population with a mean higher than the 35 bushels per 

acre for the population of the older variety. 

6.3 ESTIMATION OF THE UNKNOWN MEAN AND 

VARIANCE OF A POPULATION FROM THE 

INFORMATION CONTAINED IN A SAMPLE 

If the parameters » and o are unknown for a particular normal 

population which is being sampled (and they usually are or there 

would be no occasion for sampling) it becomes necessary to estimate 

them from the X’s taken in the sample. How should this be accom- 

plished? Although this really is a mathematical problem whose 

solution lies beyond the scope of this book, certain desirable re- 

quirements for sampling estimates of » and o? can be considered. 

First, it seems logical that an acceptable estimate should have a 

mean equal to the corresponding population parameter after many 

samples have been taken. Even though only one sample of n measure- 

ments is to be taken, we usually would like to know that the # and’ s” 

we shall obtain as estimates of » and o” are from populations whose 

means are » and o”, respectively. Sampling estimates which satisfy 

this requirement are called wnbiased estimates, as noted in Chapter 5. 
The second—and more important—requirement which we should 

impose on a sampling estimate is that it be as reliable as possible in 
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the sense that it have a relatively small variance from sample to 

sample. For example, suppose two methods of estimating p» each will 

produce an unbiased estimate but, over many samples, one has a 

variance of 100 whereas the other has a variance of only 25. The 

latter estimate obviously is more consistently near p» in size, and 

hence less allowance need be made for sampling error in this estimate. 

This second estimate would be considered a more efficient estimate 

than the one whose variance was 100. 
The estimate of u, which already has been mentioned, and whose 

symbolic definition is 

__ >(X) 
7 

n 
(6.31) ’ 

gives an unbiased and highly efficient estimate of ». It has been 

pointed out earlier in a theorem that the variance of < under repeated 

sampling is only one nth of the population variance, when a normal 

population is being sampled. (As a matter of fact, the variance of z 

is o?/n for any population if o? is finite.) Hence the % is widely used 

as an estimate of uy. 

The variance o” will be estimated by means of the formula 

D(X — #)” 

n—1 
(6.32) s? 

This estimate is unbiased and is considered to be about as efficient as 

any estimate of o? as long as the sample is not extremely small. The 

usefulness of this estimate in practice will be illustrated repeatedly in 

subsequent discussions. 

By comparison with the methods used in Chapter 2 to compute o 

or o”, it is seen in formula 6.32 that two changes have been made. 

The uw is replaced by @ and the denominator is now (n — 1) instead 

of n. Logically, the must be used because u is unknown; but it also 

must be recognized that the differences, (Y; — £), are more dependent 

upon chance events which occur in the process of sampling than were 

the quantities, (X; — wu). The Z itself is subject to sampling error 

whereas the y» is a fixed number for a given population. This matter 

is taken into account in sampling theory. One step in this direction 

is to associate with each estimated variance a number of degrees of 

freedom. The estimate s* of formula 6.32 is said to be based on n — 1 

degrees of freedom because only (n — 1) of the n differences (X; — #) 

are actually chance differences. This follows from the fact that 

D(X — £) = DX — Le = n= — n& = 0. Hence, given any n — 1 of 
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the deviations of the sample X’s from their mean, Z, the other devia- 

tion can be computed without any risk of error. If the true mean, yu, 

were known, the n (X; — u)’s would all be quantities whose specific 

sizes depended on chance, and o” could be estimated with n degrees 

of freedom, which is one more than s” has. Also, the estimate made 
with » known would be more reliable than s*, a fact which is asso- 

ciated with its greater number of degrees of freedom. 

As soon as a satisfactory method is available for the estimation of 

o”, it follows that the standard deviation of @—which is o/+/n and 
is symbolized as ¢;—also can be estimated from the following quantity: 

(6.33) o— s/Vn = VX(X — 2)7/n(n — 1), 

which is calculated from the observations taken in the sample. It 

still is true—as for all sampling estimates—that s; is variable from 

sample-to-sample. 

Although Z is the best specific estimate of the population mean, un, 

it is preferable to calculate from the sample an interval in which we 

can expect the true mean to le, with a measurable degree of confi- 

dence in this expectation. The so-called point estimate, <, is almost 

never exactly right, but an interval can be defined in such a way that 

we can attach a measure of confidence to the statement that u lies in 

this interval. This problem can be solved by means of a ratio which is 

analogous to the (X — u)/o which was studied in Chapter 4. That 

ratio involves only one variable, X, and follows the normal distribu- 

tion. So also does the ratio (€ — w)/oz. Hf the standard deviation, 

o, is not known—which is the usual sampling situation—the corre- 

sponding ratio 

(6.34) t = (@ — p)/8z 

involves a variable denominator and is not normally distributed. Its 

degree of departure from normality depends on the size of the sample, 

n, because the denominator is much less variable for the larger samples. 

Mathematicians have derived a formula for the frequency distribu- 

tion of the ratio, t, for a sample of any size. Although that derivation 

is not appropriate to this book, sampling experience will provide an 

approximation to this distribution, and then mathematical tables will 

be provided which give the same information more accurately and 

more easily. 

Table 6.31 presents the frequency and the r.c.f. distributions of 580 

sampling ¢’s obtained from random samples drawn from the near- 

normal population of Table 6.21. All samples contained n = 10 
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observations. The ¢’s were computed from formula 6.34, using u = 60 

and the #’s obtained from the samples. For example, if the @ = 58.2 

and s; is calculated from formula 6.33 to be 2.61, ¢ = (58.2 — 60)/2.61 

= —0.69. 
TABLE 6.31 

OBSERVED FREQUENCY DISTRIBUTION OF 580 t; OBTAINED FROM SAMPLES OF 

10 MemBers Each DRAWN FROM A NORMAL POPULATION WITH pw = 60 AND 
op = 0) 

Class Interval ih "Cf. Class Interval A TCs 

> 3.60 1 1.00 —2.80 to —2.01 il7/ .04 

2.80 to 3.59 4 1.00— —3.60 to —2.81 3 OL 

2.00 to 2.79 16 .99 <—3.60 iL .00 
1.20 to 1.99 54 .96 —— 

0.40 to 1.19 127 87 Total 580 

—0.40 to 0.39 187 .65 
—1.20 to —0.41 115 POO Arithmetic mean = +0.015 

—2.00 to —1.21 55 ale Standard deviation = 1.10 

Figure 6.31 presents the frequency and the relative cumulative fre- 

quency distribution curves corresponding to Table 6.31. The r.c.f. 
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Figure 6.31. Frequency distribution of 580 sample values of ¢ drawn from a 

normal population with uw = 60, o = 10, and n= 10. 

curve of Figure 6.31 furnishes information concerning the population 

of t; for n = 10 which is entirely analogous to that to be had from 

Table III for normal frequency distributions. Figure 6.31 shows 

that: (a) The point where f = 0 on the horizontal axis divides the 

population of t’s into two equal portions, each containing 0.50, or 

50 per cent, of the whole population (as with the normal distribution 
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at A = 0). (b) Approximately 95 per cent (as nearly as can be told 

from the graph) of the ¢; are less than or equal to +2 in magnitude. 

(c) The middle 80 per cent of the t’s with n = 10 fall within the 

limits —1.5 to +1.5, approximately. Such information will be seen 

to be needed in arriving at the interval estimate for » described above. 

It should be noted that conclusions (b) and (c) of the preceding 

paragraph referred only to samples with n = 10. The general effect 
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Figure 6.32. Relative cumulative frequency distributions for ¢ when n = 5 

(solid line) and for n = 25 (broken line). 

of the magnitude of n on the frequency distribution of the t’s is 

illustrated in Figure 6.32 for n= 5 and n= 25. The larger the 

sample size, the less dispersed are the t’s. In fact, after n becomes 

as large as 25 it is difficult to detect much difference between 

the r.c.f. curve for ¢ and that for a normally distributed measure- 

ment. Also, if m1; is smaller than ne, the ogive for samples with n, 

observations will be above that for samples with nz observations for 

negative ¢t’s and below it for positive t’s. This is just a graphic verifi- 

cation of the fact that the ¢’s are more dispersed for the smaller- 

sized samples. 

In line with the earlier discussion of degrees of freedom for the 

estimate of the standard deviation, the t is said to have the same 

number of degrees of freedom as the standard deviation in the 

denominator of this ratio. The t’s considered so far have one less 

degree of freedom than the size of the sample, that is, n — 1. 
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Table IV provides an r.c.f. distribution of the sampling ratio, f, 

for most of the commonly used sizes of samples. This table is in the 

form of those r.c.f. distributions discussed in Chapter 2. This form 

is different from that found in most statistical tables, but the form 

of Table IV fits the purposes of this book better than the traditional 

table. However, the values in the more usual table can be derived 

from Table IV quite easily. For example, by Table IV the prob- 

ability that a random sampling ¢ will have a size below —2 from a 

sample of 15(14D/F) is seen to be .033. Because the t-distribution 

is symmetrical about ¢ = 0 the probability that a t computed with 

14 D/F will exceed 2 numerically is twice .033, or .066. This is the 

probability given in the usual table for t = 2 and 14 degrees of free- 

dom. To obtain such a number as .066 for P in those tables we must 

interpolate because they give the sampling t’s which correspond to 

specified values of P. 

Table IV will be employed in subsequent discussions instead of the 

r.c.f. curve because it is both more accurate and more convenient to 

do so. However, the reader should remember that the two methods 

are basically the same. The use of tables for the t-distribution is 

especially advantageous because there would have to be a different 

r.c.f. graph for each number of degrees of freedom. 

Suppose, now, that the true population mean, p, is not known. In 

spite of our ignorance of the size of » it remains true that sampling 

values of ¢ will conform to the ¢-distribution. For example, for 

n = 10(9 degrees of freedom), it will be true that 92 per cent of the 

t’s will lie between —2 and +2 (see Table IV). Or, put in terms of 

a mathematical inequality, it remains true that the following state- 

ment is correct for 92 per cent of a very large number of samples 

with n = 10: 

£ — 

(6.35) Bx en Seatr2- 
Sz 

Approximate empirical verification of the truth of this inequality is 

found in Table 6.31 above. 

In view of the information just given, the following can be said: If 

we are about to take a random sample of 10 numerical measurements 

from a normal population, the probability is .92 that the ¢ for this 

sample will satisfy inequality (6.35) because 92 per cent of all samples 

with 9 degrees of freedom do lie within the limits —2 to +2. When 

the » is not known this statement still is true but we can compute the 

t only zn terms of the yp. To illustrate, suppose that a random sample 
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of 10 observations taken from a normal population has given z = 8 

and s; = 2. Then t = (8 — »)/2, a function of ». Before the sample 

was taken it could be reasoned that there were 92 chances in 100 that 

the ¢ to be obtained would have some size between —2 and +2. Like- 

wise, after the sample is taken, the assumption that the ¢ does lie 

within these limits runs a risk of 8 in 100 of being wrong as a result of 

sampling variation. 
What does the assumption that the ¢ obtained from the sample 

satisfies the inequality (6.35) require of » now that t = (8 — p)/2? 

The quantity (8 — »)/2 must be at least as large as —2 but no 

larger than +2; therefore, (8 — ») must be at least as large as —4 

but not larger than +4. It follows that » must be some number 

from 4 to 12 unless an 8-in-100 event has occurred. We never actu- 

ally know in practice if such a t has been got; but we do know that 

the odds against it are 92:8. 

The probability, .92, associated with the expression (6.35) is called 

the confidence coefficient for the confidence interval 4 to 12 because it 

measures the confidence we can put in the inference that » hes within 

these limits. This usage is identical with that of Chapter 5. That 

is, a method for basing decisions on sampling evidence has been 

presented; and, although we know it is not infallible, we know what 

risk of error we run when we use the method. 

Obviously, other confidence coefficients besides .92 could be used. 

For example, 95 and 99 per cent confidence limits are quite common. 

They require the use of the following inequalities for 9 degrees of 

freedom: 

£ 

BOR ee < +2.26 for 95 per cent confidence limits, Clg5. 
8z 

i 

—o3.20. s < +3.25 for 99 per cent confidence limits, Clo. 
x 

These two inequalities and that of (6.35) can be put into a more con- 

venient form simply by multiplying through each (all three members) 

by s; and then transferring the @ to the outer members of the inequali- 

ties. The final results for 92, 95, and 99 per cent confidence intervals 

are as follows for 9 degrees of freedom: 

(6.36) (4 — 2s;) <u < (€ + 2s;) for a Clo; 

(6.37) ( — 2.26s;) < w < (& + 2.26s;) for a Clg5; 

(6.38) ( — 3.2583) < uw < ( + 3.25s;) for a Clog. 
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The latter two are used quite commonly for estimates with 9 degrees 

of freedom; the first inequality is used here chiefly for convenience of 

illustration. 

As an application of the above-described methods, suppose that you 

wish to learn what the average life of a certain type of light bulb is. 

Suppose that ten sample bulbs of this type are left burning until all 

have burned out, and the time it took each to burn out is recorded. The 

TABLE 6.32 

OUTLINE OF SoME SAMPLES FROM A NEAR-NoRMAL POPULATION, WITH p = 60 
(Samples were taken by statistics classes from the population of Table 6.21.) 

Sample Confidence Limits on 

Number E s t 80% 90% 95% 

i 58.4 6.04 —0.86 55.7-61.0 54.8-61.8  54.0-62.7 

2 60.9 12.64 0.24 55.466.5 53.6-68.2 51.5-70.4 

Ceca 10 Mc, ) ie nr 1 0 Ja Yee YT A ee eee ere eee? On O Od OO 

4 56.4 5.81 —1.96 53.8-59.0* 53.0-59.8* 52.2-60.6 
5 59.0 11.09 —0.27 54.2-63.9 52.6-65.4 51.1-67.0 
6 53.4 10.33 —2.02 48.9-57.9* 47.4-59.4* 46.0-60.8 
7 52.9 6.13 —3.66 50.2-55.6* 49.3-56.5* 48.5-57.3* 
8 67.7 10.21 2.38  63.2-72.2* 61.8-73.6* 60.4-75.0* 
9 54.0 10.52 °“-1.80 49.4-58.6* 47.9-60.1 46.5-61.5 

10 54.1 8.75 —2.13 50.3-57.9* 49.0-59.2* 47.8-60.4 

301 Beat 15098! 0.70 
302 GIES (12K67 60845 
303 63.2 7.69 1.32 
304 61.6 8.04 0.63 
305 58.4 10.69 —0.47 
306 64.6 13.39 1.09 
307 64.5 6.33 2.25 * * 
308 55.9 7.65 —1.69 * 
309 60.0 15.197. 0 
310 55.5 12.95 —1.10 

SUMMARY OF 578 CONFIDENCE INTERVALS 

Limits Did Limits Did Not 
Confidence Include yu Include yu 

Coefficient Number % Number % 

.80 460 79.6 118 20.4 

.90 517 89.4 61 10.6 
95 559 96.7 19 3.9 
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following results will be assumed to have been obtained: # = 1400 

hours and s; = 70 hours. The inequalities above become the follow- 

ing after simplification: 1260 < uw < 1540, 1242 < w < 1558, and 1172 

< uw < 1628 hours, respectively, if the computations are rounded to 

the nearest whole hour. If you act on the assumption that the true 

average life of this type of bulb is between 1260 hours and 1540 hours, 

you run a risk of 8 in 100 that the sample has misled you. However, 

if the widest limits, 1172 to 1628, are used, the risk of an erroneous 

assumption is only 1 in 100. 

Table 6.32 has been included to illustrate further and to clarify 

the idea of confidence intervals. It contains some sampling results 

obtained from a normal population with » = 60, and then =10. A 

summary of 578 samples is shown at the bottom of the table. Not 

all the sampling results are given; just enough to satisfy the pur- 

poses of this discussion. The asterisks indicate those intervals which 

fail to include pz. 

Some of the points which are illustrated by Table 6.32 are the 

following: 

(a) The confidence coefficients are long-run relative frequencies 

which are verified only after a large number of samples. If atten- 

tion were confined to samples 4 to 10, the confidence coefficients 

would seem to be wrong; but over the set of 578 confidence intervals, 

they are verified quite satisfactorily. 

(6) The determination of a confidence interval is doubly depend- 

ent on chance: once as regards the mean, and again regarding the 

magnitude of the standard deviation. For example, samples 306 and 

307 had essentially the same mean but the standard deviations were, 

by chance, so different that even the 80 per cent limits from sample 

306 included the true mean, 60. Only the 95 per cent confidence 

interval from sample 307 includes p. On the other hand, samples 

303 and 308 have practically the same standard deviation, but the 

sample means are so different that the 80 per cent limits from sample 

308 failed to include the true mean. 

(c) The confidence interval is wider for the larger confidence co- 

efficients, that is, the more certain we choose to be in our conclu- 

sions, the more room we must leave for sampling variations. 

Problem 6.31. Suppose that a highway commission is mterested in the 

strength of concrete which it wishes to make for highway projects, and that it 

concludes that the 7-day tensile strengths of standard samples will be the best 
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criterion of quality. Suppose also that ten of the standard testing models gave 

these results: 

& = 439.0 pounds per square inch, s = 47.0 pounds per square inch. 

What valid and useful conclusions could they draw concerning the true average 

tensile strength of this concrete? 

Although the true average strength, p, is a hypothetical strength 

rarely possessed by an actual sample, it does provide a useful de- 

scription of the tensile strength of a type of concrete. Before a con- 

fidence interval can be put on p» a confidence coefficient must be 

chosen. Such matters as the seriousness of committing an error, and 

the added cost of demanding narrower limits, are involved in this 

decision. However, for purposes of illustration it will be assumed 

that a risk of 1 in 20 of obtaining a confidence interval not including 

mw 1S appropriate to these circumstances. Then, using inequality 

(6.37) because n = 10 and 95 per cent limits are sought, we obtain 

the following: 

439 — 2.26(14.9) < w < 439 + 2.26(14.9) 

because s; = 47.0/+/10 = 14.9 pounds per square inch. When this 

inequality is simplified it is found that the 95 per cent confidence inter- 

val is 

405 pounds per square inch < yw < 475 pounds per square inch, 

to the nearest 5 pounds. Therefore, the true average tensile strength 

of this concrete will be considered to be somewhere between 405 and 

475 pounds per square inch; but, at the same time, it will be kept 

in mind that there is 1 chance in 20 that this sample has been “wild” 

and hence has led to an incorrect conclusion. 

If the reader thinks a bit about the material in this section as 

compared to the corresponding section in the preceding chapter on 

binomial populations, it should become apparent that these two sec- 

tions have a great deal in common. In both, a sampling distribution 

was studied, and we were concerned with the relative frequencies 

with which certain sampling phenomena would occur. In particu- 

lar, we were interested in the relative frequencies with which inter- 

vals determined from samples would include the unknown population 

parameter. This probability is the confidence coefficient. 
There also are some differences which could be pointed out. A 

major one is that owing to the discontinuity of the binomial frequency 

distribution, the confidence coefficient is the lower limit on the rela- 
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tive frequency with which the confidence interval will include the 

parameter. Basically, however, the methods of these two chapters 

involve the same kind of statistical inference. 

It may have occurred to the reader to wonder why the confidence 

interval is taken in the center of the sampling distribution. Al- 

though it is true that 92 per cent of all sampling t’s with 9 degrees 

of freedom will have sizes between —2 and +2, it is also true that 

92 per cent of all sampling t’s with 9 degrees of freedom will lie be- 

tween —5 and +1.54 (see Table IV). Therefore, the inequality 

£ — 

rec eo < +1.54 
83 

also will be true for 92 per cent of all samples with 9 degrees of free- 

dom. Why not use this inequality as the basis for computing the 92 

per cent confidence interval instead of the one suggested earlier? 

Suppose the inequality above is used on the example used previously 

in which @ = 8 and s; = 2. The 92 per cent confidence interval now 

is from 5 to 18 instead of the shorter interval, 4 to 12, obtained previ- 

ously. It always will be longer when a non-centrally located interval 

on tis used. It should be clear that the shorter the confidence interval 

for a given confidence coefficient, the better the interval estimate. 

Why be more indefinite than is necessary? 

PROBLEMS 

1. Verify the 80, 90, and 95 per cent confidence intervals given in Table 6.32 

for samples 1 and 2. 

2. Compute 99 per cent confidence limits on uw for samples 8 and 9 of Table 

6.32 and interpret them. Anise plea Se 643 2) 648s 

3. Given that = 35 and s = 10 for a sample of ten observations compute and 

interpret the 95 per cent confidence interval on uw. Do the same for n = 15 and 

n = 20 and compare them. What is the implication regarding the relation be- 

tween the size of the sample and the width of the confidence interval, every- 

thing else being equal? 

4. Given that the t was computed to be —2.08 for sample number 525, Table 

6.32, determine whether or not the 90 per cent confidence interval includes uz. 

Do likewise for 95 per cent limits. 

Ans. ClIg9 does not include « = 60; ClI,, does. 

5. Use Figure 6.31 to determine the 86 per cent confidence interval on pw 

from sample 6 of Table 6.32. 

6. Suppose that an improved method of cultivating wheat has produced an 

average of 5 bushels per acre more yield than an older method on a sample of 

21 plots. Also assume that the standard deviation on this sample is s = 5 

bushels per acre. What are the 95 per cent confidence limits on the true aver- 
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age additional yield produced by the new method? Suppose that the new 

method costs $5 per acre more to use than the older method. What can you 

say about the probable economic advantage obtained from the new method if 

wheat is currently bringing $2.25 per bushel? 

Ans. Clo: 2.65 = 4 =7.35 bushels. Gain = 96 cents per acre. 

7. Suppose that in problem 6, s had been 10 bushels per acre. Show how this 

increase in sampling variability among the 21 plots changes the answers to the 

questions asked in problem 6. 

8. Suppose that in problem 6, the sample had involved but 10 plots. Show 

how this decrease in the size of the sample changes the answers to the questions 

asked in problem 6. 

9. Suppose that chemical analysis shows that the mean per cent protein for 16 

wheat samples is 14.28 and that the estimated standard deviation for the popula- 

tion of #’s being sampled is sz = 2.00. What conclusions can you draw from the 

99 per cent confidence interval on the true mean py? 

10. If basal metabolisms determined for a random sample of 25 sixteen-year- 

old Kansas girls produced = 45.80 calories per square meter per hour, with,s = 

0.50, what are the 80 per cent confidence limits, and what information do they pro- 

vide in setting up a standard for sixteen-year-old Kansas girls? 

Ans. Clo: 45.67 < uw < 45.93 calories per square meter per hour. 

11. Suppose that during a recent period of strong prices twenty-five 450-pound 

choice steer calves were purchased, October 15th, wintered on silage and one pound 

of cottonseed meal per day, and then sold on April 15th as choice stocker steers. 

If the average net income per animal was @ = $25 with s = $10, place a 90 per 

cent confidence interval on the true average net income per animal for the popu- 

lation so sampled. A similar sampling of choice 600-pound yearling steers pro- 

duced a 90 per cent confidence interval of $105 to $130 net income per steer. What 

conclusions can you draw regarding the most profitable choice for a cattleman to 

make between these two systems? 

6.4 A STATISTICAL TEST OF A HYPOTHESIS 

THAT A GIVEN SAMPLE CAME FROM A 

NORMAL POPULATION WITH A 

SPECIFIED MEAN 

The general problem of deciding whether or not a particular sample 

came from a normal population whose mean, p», is specified but 

whose standard deviation can be estimated only by means of s has 

received consideration earlier in this chapter. In practice, the speci- 

fication of » is based upon a hypothesis about the population under 

study. For example, if a new method of cultivating wheat does not 

produce higher average yields the population of differences in yield 

between the new and old methods grown in a series of paired plots 

of land will have a true mean p» = 0 because, on the average, there 

is no advantage to the new method. If the hypothesis that » = 0 

is found from statistical analysis to be unreasonable in view of the 
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sampling results, that hypothesis should be rejected. However, if 

the evidence in the sample is in reasonable accord with that hypothe- 

sis, it should be accepted. This is the idea behind the methods to 

be presented in this section, and also of all so-called tests of signifi- 

cance. 
A generally satisfactory solution to the problem of this section can 

be obtained from the ¢-distribution when normal or near-normal popu- 

lations are being sampled. As the reader already knows, t = ( — yp)/s; 

and has n — 1 degrees of freedom if the sample contains n observa- 

tions. When the wu is specified by the hypothesis to be tested, the ¢ 

can be calculated. Thereafter,“we can determine from Table IV how 
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Figure 6.41. Illustration of the effects on the ¢-distribution of a false hypothesis 
regarding uy. 

uncommon such a ¢ is when the samples are drawn from the supposed 

population. For example, if n = 14 and ¢ turns out to be 0.90 on the 

assumption that u = 0, we learn from Table IV that about 38 per cent 

of all sampling ¢’s with 13 degrees of freedom are numerically larger 

than 0.90. Therefore, this value of ¢ is not at all unusual and hence 

we would have no reason to doubt the hypothesis that » = 0. But, 

suppose that ¢ had been 3.0. It is seen in Table IV that only about 

one ¢ in 100 from samples of this size ever gets as large as 3, numeri- 

cally. Hence, we might reasonably doubt that yu really is zero because 

t rarely attains such a size when the hypothesis being tested is true. 

To illustrate the above discussion graphically, suppose that the true 

mean, pw, of a normal population of measurements actually is 2 but 

owing to some error in reasoning y is considered to be 0. What effect 

does this have on the frequency distribution of ¢? For this situation, 

t really is (@ — 2)/s; but because of the error regarding u the values of 

t are calculated from the formula t = Z/s;. In view of the fact that 

t; = ( — 0)/s; is just 2/s; units larger than tg = ( — 2)/s3, we are 

actually sampling population B of Figure 6.41, but we think that we 

are sampling from population A. The discrepancy should, and would, 
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show up through an excess of large ¢’s beyond the proportions pre- 

dictable from Table IV. To be more specific, suppose that attention 

is centered upon a particular ¢ such that p per cent of the ¢-distribution 

lies to the right of this point. Such a point is indicated in Figure 6.41 

as tp. It is noted from this figure that a much larger fraction of the 

true t’s (figure B) lie to the right of ¢, than is true for the population 

resulting from the calculations with the false value for uw. This dis- 

crepancy between the hypothetical and the actual situation will show 

up in the sampling. Obviously, the greater the discrepancy the more 

easily it is detected by sampling. 

In practice it is not feasible, efficient, or economical to continue to 

draw samples from a population until the evidence for or against a 

certain hypothesis is so overwhelming that there is virtually no doubt 

of its truth or of its falsity. Instead, it is common to take what is 

considered an adequate number of observations on the population, 

choose the risk we shall take of rejecting a true hypothesis, and then 

reject the hypothesis being tested if t goes beyond that predetermined 

limit. To illustrate, suppose that a sample of 15 observations is to 

be taken under conditions which specify the population being 

sampled, and that it is decided that it is appropriate to take 1 

chance in 20 of rejecting a true hypothesis. For 14 degrees of free- 

dom, a t which is at, or above, 2.15 numerically (see Table IV) will 

occur about 1 time in 20 when the choice of p» is entirely correct. If 

we decide to regard all t’s which are outside the interval —2.15=t = 

+2.15 as being the result of a false hypothesis regarding », we run 

a risk of 1 in 20 of rejecting a true hypothesis as a result of sampling 

variations. 

Problem 6.41. Suppose that some educators test two proposed teaching pro- 

cedures in the following way: 

(1) All available records and the opinions of teachers are applied to the 

selection of 20 students who, as a group, do a good job of representing students 

who will be studying the materials upon which the test is to be based. 

(2) Two equally difficult sections of subject matter are carefully chosen. 

(3) The group of 20 students is taught one section by method A, the other 

by method B. 

(4) Two equally difficult examinations, one on each section of the subject 

matter, are formulated by competent teachers and given to the 20 students. 

(5) The average difference, student-by-student, between the two test scores 

is to be used as the measure of the difference in efficiency between the two 

methods of instruction. 
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It will be assumed herein that the following test scores were made under the 

two methods: 

X 

Student Grade on Method —_—_—. 

Number A B (A — B) 

1 90 85 5 

2, 72 73 —1 

3 86 80 6 

4 78 105 3 

is 97 95 2 

6 85 81 4 

a 64 50 14 

8 69 65 4 

9 76 70 6 

10 79 70 9 

11 81 78 3 

12 83 83 0 

13 10s 71 4 

14 85 80 5 

15 72 69 3 

16 100 90 10 

17 88 82 6 

18 HE 65 12 

19 80 70 10 

20 73 65 8 
¢ 

What conclusions can we draw validly from these results? 

In the usual manner it is found that = 5.65 in favor of A, and 
that s; = 0.87. Therefore, t = (5.65 — u)/0.87, with 19 degrees of 
freedom. What is a reasonable hypothesis regarding the magnitude 

of uw in the population of X; = A; — B; assumed to follow a normal 

distribution? The purpose of this study was to determine if one 

method of instruction is better than the other, and, perhaps, assess 

the magnitude of the difference if one exists. If one method is superior 

to the other, u is not equal to zero; however, there appears to be no 

logical way to decide ahead of the test just what the size of u might be. 

The problem therefore is attack by assuming that » = 0 and then de- 

termining statistically just how satisfactory such a hypothesis is. 

If » = 0, t = (5.65 — 0) /0.87 = 6.49, with 19 degrees of freedom. 

It is clear from Table IV that a ¢ of this size is an extremely rare 

occurrence, a fact which leads us to reject decisively the hypothesis 

that » = 0. In other words, method A most certainly is some better 

than method B. If there is any benefit to be derived from an estimate 
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of the magnitude of », now that the hypothesis Ho(u = 0) is rejected, 

confidence intervals can be obtained at any appropriate level of 

confidence. 

PROBLEMS 

1. Suppose that 20 pairs of college students have been so selected that the 

members of each pair can be considered equal in intelligence, scholastic records, 

and in other factors associated with the making of good scholastic records in 

a college. Suppose one member of each pair is enrolled in a class in social 

science which is to be taught by a discussion method emphasizing analysis of 

problems and reflective thinking; whereas the other member of each pair is put 

in a class taught by a more formal lecture-recitation procedure. The subject to 

be studied is the same in each class, and the teachers are considered to be equal 

in teaching abilities. At the end of the teaching period all 40 students are given 

the same examination with the following results: 

Grade Grade 

Pair Discussion Lecture Pair Discussion Lecture 

1 120 110 11 TS 108 

2 79 75 12 103 91 

3 65 70 13 75 70 

4 67 75 14 92 95 

5 80 75 15 105 102 

6 85 80 16 82 78 

if 98 90 17 78 76 

8 110 95 18 87 90 

9 108 92 19 131 120 

10 86 80 20 50 51 

The discussion method appears to be the better for producing good test 

scores, but there is considerable variation. Test the hypothesis that the two 

methods actually are equal on the average (that is, « = 0) and draw appropriate 

conclusions. 
2. A study was made to determine if tomatoes high up on a plant have more 

ascorbic acid (vitamin C) than those lower down on the same staked plant. To 

study this matter, 10 pairs of red-ripe tomatoes were taken from 10 plants, with 

one member of each pair being from the fifth cluster and the other from the 

seventh cluster from the bottom of each plant. Each of the tomatoes from the 

seventh cluster had more vitamin C than the corresponding tomato from the 

fifth cluster by the following respective amounts: 

X: 6.6, 11.6, 10.9, 7.4, 8.8, 10.3, 7.4, 7.8, 5.8, and 4.0 milligrams/100 grams. 

Given that =X = 80.6 and =>X2 = 700.46, compute a 90 per cent confidence inter- 

val on the true average amount by which the ascorbic acid in tomatoes at the 

seventh cluster exceeds that at the fifth cluster on the same plant, and draw 

appropriate conclusions regarding wu. 
Ans. ClIg9: 6.7 =u =9.4 milligrams/100 grams. 
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3. Solve as in problem 2, using the following data from the sixth and eighth 

clusters of 10 plants: 

X: 7.0, 13.3, 86, 6.4, 83, 9.9, 2.6, 9:17 6.6; and 1.6. 

You are given that 2X = 73.4 and =X? = 643.40. 

4. During the winter tomatoes often are shipped green and allowed to ripen 

in the package. Aside from matters of flavor and appearance, it is of interest 

to know what effect this practice has on the vitamin C concentration in the 

fruit. Two tomatoes were picked from each of 18 plants and at the same 

cluster on the plant. One was red-ripe, the other was green (no red or yellow 

coloring). The red-ripe member of each pair was analyzed immediately for 

vitamin C; the other was ripened at room temperatume out of the sun until 

red-ripe before its vitamin content was determined. Then the differences in 

vitamin C between members of pairs was determined with the following results: 

=X = 49.37 milligrams/100 grams, favoring vine-ripened tomatoes, and 

2X2 = 387.5911. 

Determine statistically if there probably is a loss in ascorbic acid which is due 

to picking tomatoes green and letting them ripen on the way to market or on 

the shelf. 

5. Suppose that a sociologist has conjectured that the average rent for two-room 

furnished apartments in a certain section of a city is $90 per month. A sample 

of 20 apartments had = $82.50, with s = $8. Use the ¢-test to determine if the 

hypothesis Ho (u = 90) is acceptable when sampling variance is taken into account. 

6. Suppose that a timber cruiser has judged that the average breast-high diam- 

eter of a certain stand of timber is 2 feet. Is the timber cruiser’s estimate reason- 

able if 31 trees are selected at random with these results: = 2.3 feet and s = 0.8 
feet? 

7. Suppose that a store conducts a study of the comparative net profits from 

roasting ears sold in cellophane packs as compared to the loose ears in the husks. 

The experiment is conducted for the 26 business days of a month. At the end of 

each day, the net profit per ear is figured for each way of selling the corn. The 

average advantage of using the cellophane pack on these 26 daily comparisons was 

2 cents, with a standard deviation s = 0.5 cent. When sampling variation is con- 

sidered, was the average advantage of the cellophane pack enough to justify the 

conclusion that it is really more profitable? 

8. If, in a certain investigation, ¢ = 10.5 and s = 38, how large must n be to 

cause the rejection of the hypothesis: Hp (u = 0) at the one per cent level? 

9. If in a sampling study to which the t-test is appropriate the n is 28 and s = 5, 

how large must # be before the hypothesis Ho (u = 0) will be rejected at the 5 per 

cent level? 

10. Suppose that 27 pairs of plants of a certain species have been selected for 

close similarity and are planted in pairs as close together as is appropriate for 

this species. One member of each pair has had some boron added to the fer- 

tilizer; otherwise the plants are treated identically. If the 30 plants having 

boron outgrew their partners by an average of 3.6 centimeters, with the standard 

deviation of the difference being s = 1.2 centimeters, is this sufficient evidence 

for the statement that the addition of the boron produces some additional 

growth? 
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6.5 A STATISTICAL TEST OF THE HYPOTHESIS THAT 

TWO SAMPLES OF OBSERVATIONS HAVE BEEN 

DRAWN FROM THE SAME NORMAL 

POPULATION OF NUMERICAL 

MEASUREMENTS 

If two samples have been taken under the same conditions but 

with some one important feature changed, we usually wish to learn 

if this change has produced a new population of measurements. For 

example, if two groups of Duroc-Jersey pigs have been fed two dif- 

ferent rations, the experimenter wants to know if the difference in 

ration has produced an important difference in average daily gains. 

That is, has the difference in ration created different populations of 

average daily gains? Fundamentally, the method to be employed 

in the solution of this problem is the same as that described in the 

preceding section, but the mechanics of the procedure need to be 

altered to fit the new sampling situation. 

The following symbols will be employed: 

d; = £1; — Xo; = the difference between the 7th sample mean from 

samples from group | and the corresponding sam- 

ple from group 2, and 

sq = the standard deviation of the d;. 

Before the general method for attacking the problem just posed is 

described, some actual sampling experiences will be presented in tabu- 

lar form, and discussed. Table 6.51 shows a summary of 403 d; ob- 

tained from pairs of samples, each with n = 10 drawn from the near- 

normal population of Table 6.21. It is recalled that the standard 

deviation of that population is o = 10. 

TABLE 6.51 

FREQUENCY AND 1.c.f. DISTRIBUTIONS FOR 403 SAMPLE VALUES OF d; WITH 

n = 10 Drawn FrRoM A NBAR-NORMAL POPULATION WITH “ = 60 AND o = 10 

Class Interval f TG. Class Interval ij CO fe 

16.5-19.4 1 1.000 — 45 to — 1.6 88 spy 

13.5-16.4 2, .998 — 7.5to — 4.6 33 . 124 

10.5-13.4 3 .993 —10.5 to — 7.6 15 .042 

7.5-10.4 14 985 —13.5 to —10.6 1 .005 

4.5- 7.4 36 .950 —16.5 to —13.6 1 .002 

1.5- 4.4 80 861 — 

—1.5- 1.4 129 .663 Total 403 

Arithmetic mean of d; = +0.06; standard deviation = 4.43. 
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The frequency distribution in Table 6.51 displays one notable con- 

trast to that of the z’s of Table 6.21, namely, the d; are more variable. 

As a matter of fact, the standard deviation of the d; is greater than that 

of the <; by a factor of about 1.4 in this instance in which n = 10. It 

can be shown mathematically that the factor theoretically is +/2, 

which = 1.414, approximately; hence the empirical results of Table 

6.51 agree quite well with the theory. 

The following theorem summarizes some of the above information 

and makes it more precise: 

Theorem. If a very large number of pairs of independently drawn 

samples of n observations is taken from a normal population with 

standard deviation = oa, then: 

(a) The population of differences d; = #:; — €; will conform 

to the normal distribution. 

(b) The arithmetic mean of the population of d; is 0. 

(c) The standard deviation of the population of d; is 

GOV 2/1 

For the situation summarized in Table 6.51, og = 10V/2/ 10 = 4.47, 

an amount which agrees quite well with the 4.43 shown in that table 

as the observed standard deviation for 403 d’s. 

In practice, the standard deviation, o, nearly always is unknown 

so that an estimate must be made from the sample. When a pair of 

samples has been taken it has been determined by mathematical 

analysis that the best procedure to follow is this: Lump together, 

or pool, the sums of the squares of the a; in each sample taken sepa- 

rately and divide that sum by 2(n — 1) before taking the square 

root. In symbols, the following is the recommended estimate of co: 

(7.2 PED, ron =. (ee ) +B") 
2(n — 1) 

where D(x,7) = the sum of squares of the deviations of the X’s of the 

first sample from their mean; and likewise for L(x»). 

When the theorem above is applied, we obtain the following formula 

for the sampling estimate of «7: 

2 >) 2 

(6.52) 9 = sV2/n = fea ae a) 
n(n — 1) 
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It turns out from mathematical analysis that the sampling ratios 

t; = (d; — u)/sa; follow the same sampling distribution as the t previ- 

ously discussed, if » = the true average d;; hence Table IV can be 

used here provided we employ 2(n — 1) degrees of freedom for ¢ in- 

stead of the (n — 1) used before. 

The way is now open to solve the type of problem proposed at the 

beginning of this section. To illustrate, suppose that 20 steers of the 

same breed, weight, and previous history are divided into two equal 

lots by some impartial means such as drawing numbers from a hat. 

Thereafter, one group is fed a ration 50 per cent of which is peanut 

meal and 50 per cent is a standard ration. The other group of steers 

is fed only 20 per cent peanut meal, the remainder being the same 

standard ration. After an adequate period of time, the average daily 

gains of the steers were obtained as follows, with A standing for the 

group of steers whose diet contained 50 per cent of peanut meal: 

Group 
A 

te 5 dul 1.66 Ib 

1.68 1.82 

1.42 1.71 

1.45 1.78 

ay 1.69 

1.58 a7 

1.56 1.75 

1.61 1.61 

1.54 1.90 

1.48 1.72 
seer ——— x 7 Y 

Veale 7? E1580 var KS I. 

D(a12) = 0.0531, (x22) = 0.0608. 

ea, [0.0531 + 0.0608 
VAI 160 =a) 

= V0.001266 

0.036, approximately. 

t = (0.20 — p)/0.036 = 5.56 if vw = 0. 
t has 18 degrees of freedom. 

ll 

We learn from Table IV that less than one-half of one per cent 

of the sample t’s with 18 degrees of freedom are numerically as large 

as 5.56; therefore, the hypothesis that » = 0 is rejected and the two 

samples are regarded as having been drawn from different normal 
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populations of average daily gains. It is concluded that the steers 

on a diet containing 50 per cent peanut meal will, on the average, 

produce lower gains than those on only 20 per cent peanut meal. 

Ordinarily the experimenter would wish to carry the statistical 

analysis farther than this by means of confidence intervals. If the 

steers on 20 per cent peanut meal do not gain enough more to pay 

for the added expense of using more of the standard ration which 

costs more than the peanut meal, it still may not pay to use the diet 

B. If 95 per cent confidence limits are chosen here, they are deter- 

mined by the usual methods from 

—2.10 < (0.20 — u)/0.036 < +2.10; or 

O12 <n 0:28. 

Therefore, it can be concluded with considerable confidence (asso- 

ciated with odds of 19 to 1) that the average advantage due to feed- 

ing 20 per cent peanut meal instead of 50 per cent is at least 0.12 

pound of gain per day but not over 0.28 pound. Given the current 

price of steers of the sort under study, we can decide which ration 

is economically preferable. Obviously, other factors would be con- 

sidered in practice, but they are separate considerations. 

Although it seems preferable in studies such as those illustrated in 

this section to have equally many observations in each group, this 

is not always an attainable goal. If the sample sizes are unequal, 

say n; and nz instead of n each, the above methods are applicable 

but the formulas are changed to fit these new circumstances. For- 

mula 6.51 is replaced by 

D(a? D(x? 
(6.53) ee og a a 

Mm +n. — 2 

formula 6.52 is replaced by 

2 y 2 

(6.54) sg = sV1/n, + 1/n2 = pecuez Ie) (1/nmy + 1/ng). 
my + ng — 2 

Formulas 6.51 and 6.53 are fundamentally the same in all important 

respects; each is an estimate based on the deviations (X,; — #,) and 

(Xg; — £) in both samples. Likewise, formulas 6.52 and 6.54 are 

fundamentally alike; each comes from the theorem of mathematical 

statistics that the variance of the difference between the means of pairs 

of random samples is the sum of the variances of the two means con- 
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sidered separately. The reader should verify the fact that if in for- 

mulas 6.53 and 6.54 n, = ng = n, these formulas become 6.51 and 

6.52, respectively. 

Many other applications of the ¢-distribution, and accompany- 

ing statistical techniques, could be cited; but the fundamental prin- 

ciples are essentially the same as those already explained. 

PROBLEMS 

1. Suppose that 5 experimental concrete cylinders of each of two types of 

concrete have been tested for breaking strength, with the following results in 

hundreds of pounds per square inch: 

Type 1: 40, 50, 48, 46, and 41; and 

Type 2: 65, 57, 60, 70, and 55. 

Use the ¢t-distribution to determine if the difference in average breaking strength 

between the two types of concrete can be assigned reasonably to mere sampling 

variation. 
2. Suppose that two groups of 10 steers have been fed two different rations 

(one to each group) and that the steers are of the same age, breed, and initial 

weight. Given the following computations determine the 99 per cent confidence ~ 

interval on the true difference between the means of the average daily gains 

under the two rations: 

Ration A Ration B 

ny = 10 no = 10 

Z1 = 1.90 lb/day Fo = 1.55 Ilb/day 

s = 0.20, 18 D/F; t = 3.92 

Ans. Clg: 0.1 < | u1 — wa | < 0.6 Ib/day. 

3. Suppose that an experiment has been set up at an engineering laboratory 

to determine the difference in average breaking load between oak and fir beams 

of the dimensions: 2 inches x 2 inches x 28 feet. The data from tests on 10 

beams of each wood are as follows, in pounds: 

Oak: 725, 1015, 1750, 1210, 1435, 1175, 13820, 1385, 

Fir: 1205, 810, 1110, 530, 765, 1075, 1475, 950, 

Oak: 1505, and 1340. Sum = 12,860: DX? = 17,243,550. 
Fir: 1020, and 1070. Sum = 10,010: DX? = 10,625,400. 

If you can afford a risk of an error of only 1 in 100 what confidence limits do you 
set on the true difference in average breaking load for these two materials? 

4. Draw 5 pairs of samples, each with n = 10, from the laboratory population 

furnished you by the instructor, and compute t = d/sq for each pair of samples. 

Then obtain from Table IV the probability that a numerical value of ¢ that size 

or larger would be obtained while pairs of samples are drawn from the same normal 

population. 
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5. An experiment designed to find out if supplemental lighting with incan- 

descent lights will increase the vitamin C content of greenhouse tomatoes pro- 

duced the following results in milligrams per 100 grams for tomatoes on the 

bottom two clusters of the plants: 

No extra light: 25.92, 28.08, 21.27, 22.53, 26.27, 22.57, 22.57, 30.19, and 20.35. 

; DX = 219.75, DX? = 5454.8279. 

Incandescent: 20.30, 29.21, 20.50, 21.50, 23.71, 29.34, 26.32, 15.55, and 29.56. 

DX = 215.98, DX? = 5378.5612. 

Use the t-test to decide whether or not the incandescent lights changed the 

average ascorbic acid concentration in the greenhouse tomatoes. 

6. Given the following two sets of simulated data, assume first that the obser- 

vations are paired (vertically) and compute and interpret the t. Then assume 

that the observations are not paired and again do a ¢-test. Compare these 

results and the hypotheses tested. 

ee Son t2.28 59°75 46 39 68" 533) Xk = 525.4 2X? = 33/360: 

B: 80 65 24 58 65 40 38 60 42; 2K = 472. DX? = 27,198. 

Ans. (a) t = 4.97, 8 D/F, reject Ho(u = 0). 

(b) t = 0.78, 18 D/F, accept Ho(u4a = up). 

7. The antibiotic, aureomycin, has been found to be a growth stimulant for 

certain animals. The discovery is illustrated by the following two sets of data 

obtained at Kansas State College under the direction of Dr. E. E. Bartley of 

the Department of Dairy Husbandry. The measurement of growth used is the 

total gain during a 12-week period, expressed as a percentage of birth weight. 

No Aureomycin Had Aureomycin 

77.6 125.6 

81.3 135.5 

109.2 122.9 

124.1 144.8 

101.4 103.3 

106.0 142.9 

81.7 ——. 

70.6 2X9 = 775.0 

54.8 t2 = 129.17 

43.3 =(X2”) = 101,298.36 

119.2 

100.0 

DX1 = 1069.2 

r= 89.10 

D(z") = 6954.96 

Obtain the 95 per cent confidence interval on the true difference between the 

two means w, and wy and tell what information this interval makes available. 

8. Suppose that 31 rainbow trout and 31 brook trout are taken at random 
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from a mountain stream and are measured for length. The rainbows averaged 

9.2 inches, with s = 2 inches; the brook trout averaged 8.7 inches, with standard 

deviation = 2.1 inches. Test the hypothesis Hy(u, = uy) and draw appropriate 

conclusions. 

9. If from a certain study, # = 32.7 and Z. = 35.9, and the pooled estimate of 

ois s = 7.5. Both samples contained 12 observations. Test Ho | ui — w2| = 1. 

10. Suppose that 15 samples of each of two varieties of tomatoes have been 

analyzed for vitamin C, with these results: 

Variety 1 Variety 2 

Z1 = 28.5 2 = 30.4 

(x12) = 50 X(x2”) = 60 

Test the hypothesis that the true average ascorbic acid concentration in these 

two varieties is the same. 

6.6 USE OF THE SAMPLE RANGE INSTEAD OF THE 

STANDARD DEVIATION IN CERTAIN TESTS OF 

STATISTICAL HYPOTHESES 

The most difficult computational part of the t-test is the determina- 

tion of either s; or sg, as the case may be. Another method of testing 

hypotheses can be used in some situations without the need to com- 
pute these standard deviations at all. It uses the sample range as its 
measure of variation. The loss of precision is not serious for small 
samples, becomes greater as the size of the sample is increased, and 
renders the method useless for large samples. The trouble is that the 

sampling variability of the range is almost as low as that of the stand- 

ard deviation for small samples but increases quite rapidly with n. 

The ratio 

(6.61) G = (& — 2)/R, 

where R = sample range can be used in a manner analogous to the . 

t-test procedure. When G has been calculated, Table IX gives the 
probability that such a sampling | G | will occur by chance for samples 
of size n if the hypothesis regarding p is exactly right. Thereafter the 

reasoning is just as it was in section 6.4. 

When two random samples, each of size n, have been drawn from 

what is assumed to be the same normal population, the ratio 

(6.62) G22 es 
mean range 

where mean range = arithmetic mean of the ranges of the two samples 
can be used on problems like those in section 6.5. Table X now is used 
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instead of Table IX. Again the tables give P(| G | > Go), where Go 

is the observed numerical size of G. 
To illustrate the application of formulas 6.61 and 6.62 reference is 

made to the problems solved in sections 6.4 and 6.5. First consider 

problem 6.41. The sample mean is = 5.65 and the range is 15; 

therefore, for’ Ho(u = 0): G = (5.65 — 0)/15 = 0.377, with the sam- 

ple size = n = 20. By Table IX, the probability that G would be so 

large if u actually were zero is much less than .001; hence the hypothesis 

that u = 0 is rejected decisively, as it was from the ¢-test. 

The next example is from section 6.5 and involves two diets fed to 

steers. In fact, #, = 1.54 and Zz = 1.74, R, = 0.26, Re = 0.29, and 

hence the average sample range = 0.275. Then 

G = 0.20/0.275 = 0.727, with each n = 10. 

By Table X a G larger than 0.727 would occur by chance less than 

0.1 per cent of the time if both samples were from the same normal 

population. The hypothesis is rejected; that is, the second diet, 

which produced the higher average gain in the sampling is considered 

to produce higher average gains than the first diet. 

Given the tables and formulas above, we can derive confidence 

intervals on » as before when n is small. This interval would not 

be expected to be identical with one obtained from the ¢-distribution 

for the same confidence coefficient; but it has been shown that, on 

the average, the two intervals are very close to the same length as 

long as n is small. (Specifically, K. 8. C. Pillai has shown in the 

September, 1951, number of the Annals of Mathematical Statistics 

that the ratio of the average lengths of the Cly;’s by the two meth- 

ods still is 0.97 when n = 20.) To illustrate, consider again the 

problem of section 6.4 just used above to illustrate the G-test when 

there is one set of m observations. In this problem the two confi- 

dence intervals are obtained as follows: 

5.65 — p 
—2.1 < ——— < 42.1 

0.87 

and the 95 per cent confidence interval is 

3.82 < uw < 7.48. 

Using the ratio G, we have 

5.65 — pw 
—0:126 < aa < +0.126 
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and hence the 95 per cent confidence interval is 

SOs (aD, 

which is very much like that derived from the t-distribution. 

PROBLEMS 

1. Solve problem 1, section 6.4, with the G-test instead of the ¢-test. 

2. Solve problem 38, section 6.5, by means of the G-test. 

Ans. G = 0.289; P= .064; accept H, tentatively. 

3. Draw 25 samples, each with n = 10 from a near-normal population, and 

compute the G for each sample. How many of these G’s fall beyond 0.186 in 

numerical size? How do your results check with Table 1X? 

4. Suppose that a college is attempting to learn if instruction of a certain 

type improved in one year a student’s ability to think analytically. Also as- 

sume that tests exist which reliably measure such ability, and that these tests 

are given at the beginning and at the end of the school year. If the following 

differences between the last and the first score of each student were obtained, 

would the G-test cause you to accept or to reject the hypothesis that the teach- 

ing procedures employed failed to improve analytical thinking? 

X= 6010: —4,.—6. 8 1.7; =10, 0,3, 5, —1, 84. 0, —3, 7s 7andis 

Ans. G = 0.125; P = .05; reject Ho(u = 0). 

5. Make up, and solve, a problem like problem 4, which has the same ¢ but for 

which G is twice as large. Half as large. 

6. Suppose that information is sought analogous to that in problem 4, but 

there are two separate classes of 15 students being taught by each method. The 

two classes are supposed to be equal at the start of the teaching period. Given 

the following gains (+) or losses (—) in score during the year, draw appro- 

priate conclusions by means of the G-test and Table X: 

Method I: 10, 3, —2, 5,0, —8, 14, 1, —12, 5, 5, 9, 7, —1, and 9. 

Method II: —2, 5, 5, 4, 0, 7, 6, —1, 4, 10, 8, 11, 10, 0, and 13. 

Ans. G =0.114; P> 10; accept Ho(n, 15): 

7. An experiment intended to discover if blue fluorescent lights will increase 

the vitamin C concentration in tomatoes on the seventh and eighth clusters 

from the bottom of the plant gave these results, in milligrams per 100 grams: 

No extra light: 38.57, 39.39, 33.44, 34.32, and 38.01. 

Blue fluorescent: 33.72, 37.85, 39.07, 31.16, and 35.69. 

Test the hypothesis that the blue light does not change the vitamin C con- 

centration, and draw valid conclusions. 

8. Suppose that two methods of computing basal metabolism for the same 

11 subjects produced the following pairs of records, in calories per square meter 

per hour. 
I: 31.42, 30.90, 34.92, 30.59, 30.53, 33.08, 32.61, 30.46, 

II: 30.73, 31.44, 32.82, 31.80, 29.16, 32.96, 32.32, 30.76, 

I: 30.55, 33.19, and 29.22. 2X, = 347.47. 

II: 27.65, 32.54, and 29.30. 2X2 = 341.48. 
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Use the G-test to decide if one method tends to produce higher metabolism 

records than the other, and explain your decision in terms of sampling phe- 

nomena. Ans. G = 0.100; P > .10; accept Ho(u, = uy). 

9. Some varieties of wheat produce flour which typically takes longer to mix 

into proper doughs than others. Decide by the G-test if Kharkof actually has 

(as appears from the samples) a longer mixing time than Blackhull: 

Kharkof: 3.00, 1.88, 1.62, 1.50, 1.75, 1.38, 1.12, 1.88, 2.50, 1.62, 2.88, 2.50, 3.88, 

and 2.75. Mean = 2.16. 

Blackhull: 1.25, 2.38, 1.62, 1.50, 1.25, 1.38, 2.25, 2.12, 1.84, 2.38, 2.25, 1.50, 2.00, 

and 1.62. Mean = 1.84. 

10. Compute the 90 per cent confidence intervals for the two varieties of 

problem 9 and compare them. Draw appropriate conclusions. 

Ans. Clg: — 0.04 = | wy —uy | = + 0.69. 

6.7 THE CENTRAL LIMIT THEOREM AND NON- 

NORMAL POPULATIONS 

The statistical methods which have been discussed in this chap- 

ter are based on the assumption that the populations involved are 

normal. In practice this requirement rarely is met rigorously; hence 

we may wonder if the subject matter of this chapter is chiefly of 

academic interest because it does not fit actual conditions. This is 

not the situation because of the truth of the central limit theorem. 

This theorem states essentially that if any population of numerical 

measurements has a finite mean and variance, » and o”, respectively, 

the frequency distribution of the sampling mean, Z, will be essentially 

a normal distribution with mean = uw and variance = o7/n if the n is 

very large. As a matter of fact, the necessary size of n depends on the 

degree of non-normality of the original population. Tables 6.714, B, 

C, and D summarize a decidedly non-normal population of counts of 

flies on dairy cattle, and show some observed distributions of #’s for 

samples with n = 9, 16, and 25. Figure 6.71 displays these same dis- 

tributions visually. It is rather obvious that none of these sample 

sizes is very large, and therefore the distributions of are still notice- 

ably non-normal. However, the meaning of the central limit theorem 

is illustrated. 

It can be seen from Tables 6.71 and from Figures 6.71: 

(a) That the parent population is extremely non-normal. 

(b) That even with only nine observations per sample, the distri- 

bution of Z has gone a long step towards fulfilling the ideal expressed 

by the Central Limit Theorem. 
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(c) As n was increased, the distribution of , and its mean and vari- 

ance, approached more and more closely to those features which the 

Central Limit Theorem assures us will be attained if is sufficiently 

large. 

The foregoing discussions are not intended to make us ignore the 

non-normality of distributions met in practice, but they do indicate 

that a great many moderately non-normal distributions can be studied 

by means of the techniques explained in this chapter. 

In this chapter the ratio (€ — u)/s; was said to follow the ¢dis- 

tribution with the same number of degrees of freedom that s; has as 

a sampling estimate of o;. Actually any ratio (w — u)/s will follow 

TABLE 6.71A 

Summary oF Counts oF Fires on Darry CATTLE TETHERED IN A FIELD AT 

Kansas Srate CoLttece AFTER THEY WERE SPRAYED WITH AN EFFECTIVE 

Fry REPELLENT 

Normal 7.c.f.; 

Class Interval i rc.f. Samepwando Difference 

168-175 1 1.000 1.000 0 

160-167 0 1.000 1.000 0 
152-159 1 1.000 1.000 0 
144-151 0 .999 1.000 — .001 
136-148 0 .999 1.000 — .001 

128-135 0 .999 1.000 —.001 

120-127 1 .999 1.000 — .001 

112-119 3 .999 1.000 — .001 
104-111 6 .998 1.000 — .002 

96-103 2 .995 1.000 — .005 

88- 95 7 994 1.000 — .006 
80- 87 8 .992 1.000 — .008 
72— 79 10 .988 1.000 — .012 

64— 71 11 . 984 .999 —.015 

56- 63 of .980 .999 — .019 
48- 55 26 .968 . 994 — .026 

40- 47 59 .957 .976 — .019 
32— 39 102 . 934 . 932 + .002 

24— 31 206 .893 .837 + .056 

16— 23 392 .812 .687 + .125 

8 15 771 .656 .500 +.156 

0- 7 869 348 309 + .039 

x(f) = 2506 

uw = 15.37, o2 = 257.28 
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DISTRIBUTION OF MEANS OF RANDOM SAMPLES WITH n = 9 DRAWN FROM 

THE POPULATION OF TABLE 6.71A 

Normal r.c.f., 
<& Interval f r.cf.  Samewanda Difference 

36-38.99... & 1.000 1.000 0 

33-35.99... 8 .997 1.000 — .003 

30-382.99... 4 .990 1.000 — .010 

27-29.99... ial .986 .998 — .012 

24—26.99... 30 .975 .988 — .0138 

21-—23.99... 73 .947 . 954 — .007 

18-20.99... 139 817 . 866 +.011 

15-17.99... 221 744 eal + .043 

12-14.99... 268 £533 .480 + .053 

9-11.99... 211 .278 . 266 + .012 

6— 8.99... 74 .076 5 idl} — .037 

3- 5.99... 6 .006 .037 — .031 

S(f) = 1048 

fin 2s, oz 1 — Orr e 

By Central Limit Theorem (if n is large enough) wz = 15.37 
oz = 28.59 

TABLE 6.71C 

DISTRIBUTION OF MEANS OF RANDOM SAMPLES WITH n = 16 DRAWN FROM 

THE POPULATION OF TABLE 6.71A 

Normal r.c.f., 
& Interval ip ref. Samepando Difference 

32-33.99... 2 1.000 1.000 0 
30-31.99... 1 .998 1.000 — .002 
28-29.99... 6 .997 1.000 — .003 
26-27.99... ile .991 .999 — .008 
24-25.99... 13 .979 . 994 —.015 
22-23.99... 40 . 966 .978 — .012 
20-21.99... 74 .928 .938 —.010 
18-19.99... 106 .856 .855 + .001 
16-17.99... 162 .754 .719 + .035 
14-15.99... 209 .597 .540 + .057 
12-13.99... 206 2395 504577 + .043 
10-11.99... 145 .196 .195 + .001 

8- 9.99... 51 .056 .091 — .035 
6— 7.99... a .007 .035 — .028 

Z(f) = 1035 

fiz — 15066 os — i 1 foe 

By Central Limit Theorem (if n is large enough) wz = 15.37 
oz => 16.08 

187 
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TABLE 6.71D 

DISTRIBUTION OF MEANS OF RANDOM SAMPLES WITH n = 25 DRAWN FROM 

THE POPULATION OF TABLE 6.714 

Normal r.c.f., 
& Interval vf Da B Same wanda Difference 

26.00-27.49 3 1.000 1.000 0 

24.50-25.99 3 .997 1.000 — .003 
23.00—24.49 16 . 994 .997 — .003 

21.50-22.99 22 .978 . 990 — .012 

20.00—21.49 43 .956 .968 — .012 

18.50-19.99 85 .914 .917 — .003 

17.00-18.49 121 . 830 .821 + .009 

15.50-16.99 180 JAG .673 + .037 

14.00-15.49 188 .5a2 .492 + .040 

12.50-13.99 168 346 .313 + .033 

11.00—12.49 133 ih .169 + .010 

9.50-10.99 41 .048 077 — .029 
8.00— 9.49 5 .007 .029 — .022 

6.50— 7.99 2 .002 .009 — .007 

=(f) = 1010 

Mz = 15.51, oz" = 10.07 

By Central Limit Theorem (if n is large enough) wz = 15.37 
oz” = 10.29 

the ¢-distribution as long as w is normally distributed with mean uy, 

and s is calculated as described earlier. Hence if w is a sample mean 

drawn from a non-normal population which satisfies the few require- 

ments of the Central Limit Theorem, and if n is large enough, the 

ratio (w — w)/s can be considered quite accurately to follow a ¢-dis- 

tribution. Thereafter the methods introduced in this chapter for 

estimating parameters and for testing hypotheses regarding parameters 

become applicable. 

One word of warning is in order, however, before this subject is left. 

In any particular sampling situation, the standard deviation, o;, needs 

to be estimated from the sample. This is done by means of sz. What 

happens to the quality of this estimate when the parent population is 

radically non-normal? Under such circumstances the beginner is 

advised to seek the advice of a statistician. 
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REVIEW PROBLEMS 

1. Who was Student, and how was his work connected with the development of 

present-day methods of statistical analysis? 

2. Calculate the arithmetic mean and the standard deviation for a set of num- 

bers, Y;, given that DY = 900 grams, and LY? = 55,465 grams”, where the Y’s 

are the weights of female rats at 28 days of age. There are 20 rats in the sample. 

Ans. 7 = 45 grams. s = 28.1 grams. 

3. Compute the 80 per cent confidence interval for problem 2 on the true 

mean 28-day weight of such rats, and draw appropriate conclusions. 

4. What would be the general change in the confidence interval of problem 3 

if 95 per cent limits instead of 80 per cent limits had been computed? What 

would be the effect if the 2Y2 had been smaller, the remainder of the numbers 

staying the same? 

5. Graph the binomial frequency distribution of the numbers of sums of 6 

thrown with two unbiased dice on sets of 8 throws. 

6. Compute for problem 5 the probability that on any particular future set 

of 8 throws at least 3 sums of 6 will be thrown. Ans. 087. 

7. Take any newspaper which lists prices of bonds and determine the median 

price and also the range. 

8. Calculate the coefficient of variation for problem 2, using 7 in place of w and 

s in place of o, and tell what sort of information it provides about the weights of 

the rats in the sample. Ans. CV = 62.4 per cent. 
9. Draw 10 samples of 12 members each from the laboratory population and 

compute ¢ and G for each sample, using the correct hypotheses regarding uw. 

10. Determine the upper limits of the 20th and 85th percentiles for the fre- 

quency distribution of Table 6.31 and state what information they give. 

Ans. Upper limit of 20th percentile = 0.90 by interpolation, = 0.86 by Figure 

6.31. Upper limit of 85th percentile = 1.12 by interpolation, = 1.10 by 

Figure 6.31. 

11. If 100 t; were to be drawn at random from among those summarized in 

Table 6.31, what is the expected number of them falling between ¢ = 0 and 

E= 1507 
12. Following are some experimental results from tests of the breaking 

strengths of the wet warp of rayon and wool fabrics in pounds: 

Rayon: 29.5, 31.0, 28.7, 29.1, 28.4, 28.9, 30.9, and 29.0. 
Wool: 25.3, 28.9, 19.2, 25.1, 21.1, 31.4, 25.6, and 19.0. 

Does the difference in average breaking strength lie beyond the bounds of 

reasonable sampling variation according to the t-test? Solve problem also by 

the G-test, and compare the conclusions. 2Xp = 235.5, 2X2, = 6939.33. 

DX y = 195.6, 2X2, = 4921.48. 
Ans. t = 3.10, 14D/F, P = .008; reject Ho(u, =H). G = 0665, n= 8, P= 

002; reject Hy(u, = Mg). 

13. Suppose that twelve 2 inch x 12 inch x 8 inch wood blocks were tested 

for strength with the following results in thousands of pounds: 6.5, 17.0, 

10.0, 15.1, 13.5, 16.4, 19.8, 7.7, 11.5, 14.5, 12.7, and 12.9. Place 95 per cent confi- 

dence limits on the true average strength of such blocks, and interpret these 

limits. 
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14. You are given the following hypothetical data from an experimental study 

of the average daily gains (in pounds) of two groups of 10 steers each: 

For group A: Z4 = 2.35, s’?4 = 12. 

For group B: #g = 1.75, Dx*g = 180. 

Is the difference in mean average daily gain, d = 0.60 pound, beyond the bounds 

of reasonable sampling variation; that is, is it statistically significant? 

Ans. t = 0.34; 18 D/F, P & .63; accept Ho (u1 = ue). 

15. Suppose that you have taken the bid in a bridge game and that you and 

your partner have all the trumps but J, 10, 7, 4, and 3. Before you have led 

at all, what do you compute as the probability that you would get all the 

trumps out within 3 leads? 

16. Suppose that you have been told that when 6 unbiased coins were tossed 

at least 3 of them showed heads. What is the probability that exactly 4 of the 

coins turned up heads. Ans. P(r = 4 heads) = 15/42. 

17. Suppose that a large jug contains the following numbers of each de- 

nomination of paper currency, and that you are to withdraw a bill without look- 

ing and keep it: 50 one-dollar bills, 25 five-dollar bills, 10 ten-dollar bills, 5 

twenty-dollar bills, 2 fifty-dollar bills, and 1 one-hundred-dollar bill. What is 

your mathematical expectation on such a game? 

18. If 2 cards are drawn simultaneously from a bridge deck, what is the 

probability that one will be a spade, the other a heart? Ans. 13/102. 

REFERENCES 
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CHA Pan By R: -7 

Linear Regression 

and Correlation 

It often is advantageous to consider two types of numerical meas- 

urements simultaneously because they are related to each other. For 

example, the following table records the mean monthly temperatures 

from January to July at Topeka, Kansas, along with the month of 

the year: 

Month of the Year: Jan. Feb. Mar. Apr. May June July 
Mean Temperatures (degrees 

Fahrenheit) 38.0 41.7 54.0 66.0 74.4 83.8 88.7 

If the month to which each temperature applies were to be ignored, 

these temperatures simply would be seven numbers which might fall 

in the following random order (obtained by drawing them at ran- 

dom): 88.7, 54.0, 66.0, 38.0, 83.8, 74.4, and 41.7. In this form the 

numbers seem to be quite variable about their arithmetic mean, 

63.8°F. However, when considered in conjunction with the month 

as the second variable, these temperatures follow an orderly pattern. 

This point is illustrated graphically in Figures 7.01A and B, in which 

temperatures are first plotted against the random order in which they 

were drawn, and then against the month to which they apply. 

Figure 7.01A merely re-emphasizes the remarks made above about 

the excessive variability about the mean, 63.8, and suggests that such 

an average would be of doubtful utility because the temperatures are 

too inconsistent. But it appears from Figure 7.016 that the mean 

temperatures for the first six months of the year increased in quite 

an orderly manner from month to month, with little deviation from a 

linear upward trend. Hence, a better analysis of these data can 

be obtained by taking proper account of the second variable, time. 

A straight line is drawn into Figure 7.014, 63.8 units above the 

horizontal axis, to represent the arithmetic mean of the tempera- 

tures whose individual magnitudes are indicated by the ordinates of 

192 



Ch.-7 LINEAR REGRESSION AND CORRELATION 193 

the points on the graph. The amounts by which the monthly mean 

temperatures are above or below the mean of all the temperatures 

are shown as vertical distances above or below the horizontal line. 

90 

foe) Oo 

SN oO 

63.8° 

Temperature 
oO fe) (2) oO 

e 

pS oO 

Ww oO 

1 2 3 4 5 6 

Order of draw 

A 

N 

Temperature 

fea) SN [oe] ive} oO (=) oO oO 

o oO 

40 

30 
Jan. Feb. Mar. Apr. May June = July 

Month 

B 

Figure 7.01. Mean monthly temperatures at Topeka, Kansas, plotted first at 

random and then according to the corresponding month. 

As far as Figure 7.01A is concerned these deviations are simply the 

consequences of unexplained variations in temperature. However, 

when each temperature is associated with the month to which it 

belongs (as in Figure 7.016) it is apparent that all but a small 

amount of the variability among these temperatures is associated 

with a definite tendency to increase rather uniformly with suceceed- 
ing months of the season. 
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The trend line drawn into Figure 7.01B was determined just “by 

eye”; but it usually is preferable to have a standard method of de- 

termining where the line should be drawn. This matter will be dis- 

cussed in the following four sections. 

7.1 SCATTER DIAGRAMS AND TYPES OF TREND LINES 

A number of the statistical methods with which the reader is al- 

ready familiar can be employed in the analysis of data involving two 

variables. One additional matter must be studied, however, namely, 

the relationship between the two variables. A little graphic analysis 

usually is worth while before the numerical analyses are undertaken. 

There are many ways in which one variable, Y, can change with 

respect to another variable, X, as successive pairs of observations 

are taken with the X, say, increasing in magnitude. The size of Y 

may tend to increase as X increases; Y may tend to decrease as X 

increases; or some of both may occur over the range of values studied. 

In addition there are numerous ways in which Y can increase as X 

increases; and similarly for the other possibilities just mentioned. 

To illustrate, consider the following tables of pairs of values for X 

andy: 

(A) (B) (C) (D) (E) (F) (G) 
MY My XY. xX xy Ee W xX Y¥ 

17 #150 125 OO 075 -3 85 1 25 1.0 40 
312 239 240 05 080 -2 52 2 80) (i525 
5 14 3 2 3 28 10 120 -105 3 322 20 44 
720 4 21 4 42 15 2.60 005 4 600 25 20 
922 5 9 5 22 20 3.80 1.0.7 5 1272 3.0 35 

11 30 2 eno 2 4.8 3.5 28 
3.0 10.40 3 8.9 4.0 47 

4.5 26 
5.0 34 

It is helpful to a mathematical study of the relationship between 

two variables if the pairs of corresponding numerical measurements, 

X and Y, are represented by points on a graph, as they were in ele- 

mentary algebra. This has been done in Figures 7.11A, B, ..., G 

for the data immediately above. 
Such graphs are called scatter diagrams. It is noted from these 

figures that the points may not exactly fit any simple curve, but they 

sometimes do exhibit a general pattern which may make it possible to 

study the relationship between Y and X. It is necessary here to 
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think in terms of general rather than precise curves as was done in 

algebra, where all points which belonged with a certain graph fell 

exactly on that graph. Data to which statistical analysis is applied 

are not so well behaved as that. It will be necessary later to learn 

how to decide which curve to choose as best describing the relation- 

ship between X and Y suggested by a scatter diagram; and it will not 

be expected that all the points will fall perfectly on the line finally 

chosen. 

The following information can be derived from a careful inspection 

of Figures 7.11: 

From (A): Y definitely tends to increase uniformly (linearly) as 

X increases. On the average, Y increases about 13/6 units for each 

unit increase in X. 

From (B): Y decreases in proportion to the increase in XY. Again 

the relationship can be briefly described as linear. More specifically, 

Y tends to decrease about 10 units for each unit increase in X. As 

a result the slope of the straight line which indicates the linear trend 

is said to be —10. 

From (C): Y has no apparent relation to XY; hence the XY measure- 

ment may as well be ignored in the statistical analysis of the meas- 

urements, Y. 
From (D): Y increases with X, but the increase is not uniform. In 

fact, Y increases more rapidly for large X’s than for the smaller X’s. 

This relationship between Y and X is called curvilinear. In this in- 

stance, it follows the non-linear mathematical law: Y = 0.5e%, 

where e is the base for natural logarithms. 

From (FE): As the measurement represented by X increases from 

—3 toward 0, the corresponding measurement, Y, tends to decrease 

in a non-linear manner. Thereafter, Y increases non-uniformly. As 

a matter of fact, the points on this scatter diagram tend to follow 

the curve, Y = X?. 

From (F): Y tends to increase non-uniformly with X, as in (D), 

but the curve rises more sharply here. 

From (G): There is no apparent relationship between X and Y, 

as im (Ci), 

Another point should be noted regarding the scatter diagrams of 

Figures 7.11. If the concomitant measurement, X, were to be ignored 

during an analysis of the data of Y corresponding to any of the sit- 

uations except (C) and (G), a considerable portion of the variability 

of the Y’s about their means would represent unnecessary variation 

in this sense. We know from (B), say, that if X = 1, the corre- 
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sponding Y is necessarily about 40 units larger than if X = 5 because 

there is definitely a downward trend of Y as X increases. If the XY 

were ignored, all that observed difference of 40 units must be as- 

signed to errors of measurement and/or to sampling accidents when, 

in fact, only about one unit should be so assigned. Methods will be 

presented later on in this chapter by which the apparent variation 

among the Y’s can be reduced by taking account of the statistical 

relation between X and Y. However, nothing extensive will be done 

with non-linear trends. 

PROBLEMS 

1. Construct a scatter diagram for the following pairs of measurements, and 

draw in by eye a straight line which seems to you to best depict the trend of 

Y with X. Is the assumption that Y and X are linearly related a good one in 

your opinion? 

DG 2 4 6 8 10 12 14 16 18 20 

Y: 100 140 200 235 280 325 370 415 450 # 500 

2. From the following sampling data estimate how much Y changes, on the 

average, for each unit increase in X. 

X: 36 43 50 40 42 45 40 45 39 48 

Hee eies>: 0 190i Vibs LGh «180 Tes 75 1:60. 1:93 

Ans. About 0.04. 

3. Make a scatter diagram of the following pairs of observations and draw 

in a freehand line to summarize the way Y changes with X: 

Ay 2 1 2.2.5; 3.455460; 5,100; 6,145 7.230 8.35.0: 

4. Would you approve of the assumption that the carotene and the nitrogen- 

free extract contents of pasture grasses are linearly related if assured that the 

following pairs of such values form a representative sample for pasture grasses 

of a given sort? Justify your decision. 

X(NFE): 50 48 53 51 49 53 51 48 

Y (Carotene): .44 .26 .20 .24 44 23) .26 .34 

5. The following are means and corresponding standard deviations obtained 

from samples of 10 observations, each drawn from an approximately normal popu- 

lation. Construct a scatter diagram and decide what, if any, relationship exists 

between the sampling mean and standard deviation from a normal population if 

these samples are representative of such populations. Plot @ on the horizontal axis. 

£ s L s ay s 7 s 

58.4 6.04 53.4 10.33 63.0 9.33 60.4 11.40 

56 Uf 9.61 60.9 12.64 52.9 6.13 61.2 6.45 

62.0 6.70 56.7 8.03 58.1 8.15 67.7 10.21 

Gl 11.40 55.0 ileanl 53.6 9.83 56.4 5.81 

54.0 10.52 59.3 9.05 57.8 10.92 54.4 10.78 

59.0 11.09 54.1 8.75 60.0 8.17 62.8 8.43 
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6. Grades in elementary statistics and in mathematics of finance for the same 

students are given below. What do you conclude is the relation between a 

student’s grades in these two subjects? Give evidence upon which your con- 

clusion is based. 

X(statistics): 94 83 91 98 80 82 61 81 58 90 85 75 75 70 92 62 

Y (finance): 89 90 91 97 85 87 41 88 60 85 86 838 87 72 97 64 

7. The following are weights of the larvae of honey bees at different ages: 

Set A. X (days): 1 2 3 4 5 6 

Y (milligrams): Za) 4.3 Doml 93.1 148.7 295.5 

Set B. X (days): il 2 3 4 5 6 

Y(log milligrams): 0.30 0.63 1.36 1.96 2.17 2.47 

Construct scatter diagrams for each set separately and decide for which, if 

either, the assumption of a linear relation between X and Y appears to be justi- 

fied. If either set produces a satisfactorily linear trend, estimate the slope of 

the best-fitting freehand line and state what information it provides. Should 

you make some allowance for the fact that you used a freehand line in a posi- 

tion with which others might disagree? 

8. Make a scatter diagram for the following pairs of observations. Draw in 

a freehand line which appears to you to be the best-fitting straight trend line, 

and derive from this line an estimate of the Y which should correspond, on the 

average, to X = 0, 4.5, and 7.5: 

xX: 1 2 3 4 9) 6 v4 8 9 10 

Ve 21 20 1% 15 14 14 12 9 6 5 

Ans. About 23.3, 15.1, and 9.7, respectively. 

7.2 A METHOD FOR DETERMINING LINEAR 
REGRESSION (OR TREND) LINES 

It is quite customary to use the term regression line to describe 

the line chosen to represent the relationship between two variables 

when this decision is based on sample points, as in a scatter diagram. 

The origin of the term regression probably les in genetic studies of 

the tendency for offspring of parents who are well above, or below, 

the group average to go back, or “regress,” toward that group aver- 

age. The term trend line will be used interchangeably with regres- 

sion line, even though the former is frequently associated with dis- 

cussions of time series. 

Previously, in this chapter, freehand lines have been used to depict 

the average change of one variable with respect to another. Such 
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a procedure, however, obviously is somewhat subjective because it 

depends quite a bit upon personal opinion. One of the chief purposes 

of numerical measurement and statistical analysis of such measure- 

ments is to free decisions based on relatively precise numbers from 

distortions which might result from the exercise of personal tastes 

and opinions. It is for this reason that it is desirable to be able to 

describe such a line by a method which will produce the same result 

no matter who uses it. 

The types of relationships between two kinds of numerical meas- 

urements which were discussed in the preceding section are illustra- 

tive of sampling experiences involving errors of observation and 

measurement. The dots of the scatter diagram usually fail to fall 

exactly on any simple curve for one of two reasons: (a) Sampling 

errors or chance variations cause the values of Y, say, to be partially 

inaccurate. (b) There are real variations from the general trend of 

Y and X which, however, are of minor importance compared to the 

general trend and should be smoothed out in order that the general 

trend may be studied more effectively. The data of Table 7.21 and 

the corresponding scatter diagram of Figure 7.21 help to illustrate 

these points. The data in the table are considered to be a population 

of pairs of observations, that is, a bivariate population. For con- 

venience these data have been grouped by 16-week weights (X) to 

the nearest pound in the scatter diagram of Figure 7.21. 

The bivariate population of Table 7.21 possesses several character- 

istics which are of statistical interest and importance. These fea- 

tures are exhibited by Figure 7.21, from which it is learned: (a) 

There is a general upward trend of the 28-week weight, with increas- 

ing 16-week weight of the same bird. (6) Within each 16-week- 

weight class there is a frequency distribution of 28-week weights, 

and this distribution is relatively symmetrical about the mean 28- 

week weight for the class. (c) The means of the six 16-week-weight 

classes lie perfectly on a straight line with a slope of 1/2. Thus the 

true linear regression line passes through the points representing 

the true average Y’s for the given X’s. The slope of this true trend 

line is denoted by the Greek letter 8B (beta). 

In a study based on samples the 8 is unknown, as is the exact loca- 

tion of the true linear trend line, and only the n pairs of sample 

measurements are available as a basis for making decisions about the 

linear trend line. For example, a random sample of 30 pairs (X, Y) 

was drawn from the bivariate population of Table 7.21, with the 
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TABLE 7.21 

Chavé 

ParrRS OF OBSERVATIONS OF THE 16-WEEK WEIGHTS AND CORRESPONDING 

28-WEEK WEIGHTS OF TURKEYS RAISED ON THE KANSAS STATE COLLEGE 

Pouttry Farm 

(X is the 16-week weight in pounds; Y is the 28-week weight.) 

x ¥ x Y x Y x Y x 

49 13.3 5.4 14.6 5.2 13.4 5.4 14.0 4.6 
Ae A2T 4.8 12.9 4.9 124 5.0 12.6 5.1 
5.2 13.1 5.3 13.5 54 13.6 4.7 14.3 4.9 
5.1 13.7 5.2 13.2 4.6 14.0 4.7 14.8 4.8 
4.9 13.6 5.0 14.0 5.1 13.6 5.2 13.5 5.3 
6.2 13.5 6.5 14.8 6.4 14.3 6.5 13.5 6.4 
6.5 13.0 5.9 13.5 6.1 15.3 5.5 13.0 6.0 
6.4 14.6 6.5 13.8 6.5 13.3 5.5 14.3 6.2 
6.1 13.4 6.3 13.9 6.5 13.7 6.4 14.0 6.4 
6.5 15.4 5.9 14.4 6.5 14.9 5.9 14.8 5.5 
5.0. 1d 5.6 13.2 Bf AS 5.8 13.5 5.9 
6.0 13.6 6.1 13.7 6.2 14.0 6.3 14.0 6.4 
Go. 1441 5.9 12.5 5.6 13.8 Del? 15.2 5.8 
5.9 ~=1S.8 6.0 13.8 GL 10.0 6.2 14.7 6.3 
6.4 15.1 6.6 13.6 Osi 1s.8 6.8 13.7 69 
7.0 14.5 (ee (On 7.3 14.8 7.4 
6.6 14.3 6.7 14.4 6.8 14.4 6.9 14.4 7.0 
Ge TAS 7.2 14.5 7.3 14.5 tl ta ie 
6.7 15.5 7.0 15:9 74, 14.7 7.3 14.7 6.6 
6.6 14.4 Gle 15:3 7.1 «614.9 707) 15.6 7.4 
LO 15:0 7.2 15.5 Ti 2ee log 6.8 15.3 7.3 
Te 13:9 7.0 14.7 6.9 14.8 6.6 15.5 7.0 
6.8 15.1 (5 omnis” 7.3 14.0 az 149 6.7 
6.7 14.8 6.8 15.0 7.3 12.8 7.3 14.3 7.3 
7.0 13.5 7.0) 15.0 6.8 13.9 74 14.1 6.9 
G2 13:3 7.3 15.3 6.6 14.0 6.6 14.8 7.4 
7.3 14.0 6.9 14.0 7.0 14.1 6.8 14.2 7.4 
(3 16.3 7.0 15.8 6.6 14.7 6.8 12.9 7.0 
@:2> 14.8 7.4 14.9 7.5 14.7 7.6 14.7 tol 
7.8 14.7 7.9 14.8 8.0; 15:7 8.1 15.1 8.2 
8.3 1 15.7 8.4 15.7 8.5 15.8 7.5 14.5 8.2 
8.3 15.5 oe 116.38 1.9) 9 (16i6 Sa | it 8.3 
7.5 15.4 0.6, TAG 8.5 14.5 8.5 15.0 7.9 
8.4 15.6 7.5 15.6 0.3.5 16.1 7.8 15.5 Tew 
Toe 16,0 8.3 13.4 8.2 14.9 8.1 144 8.2 
8.3 14.5 8.2 13.5 7.5 16.0 8.0 15.0 7.5 
lo (15:8 7.50 «14.4 1.6°. 15:4 8:0), 16:7 7.9 
8.0 16.4 Soy iG 7. 8.5 15.1 (oe eS 8.5 
7.8 14.8 7.8 15.2 G0 1720 Wey lor 8.1 

13.9 
15.2 
13.7 
14.3 

15.0 
14.1 

14.2 
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TABLE 7.21 (Continued) 
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Pairs OF OBSERVATIONS OF THE 16-WEEK WEIGHTS AND CORRESPONDING 

28-WrEEK WEIGHTS OF TURKEYS RAISED ON THE KANSAS STATE COLLEGE 

Pouuttry Farm 

(X is the 16-week weight in pounds; Y is the 28-week weight.) 

x v, xX 

7.5 13.8 8.5 
8.2 15.6 8.4 
7.6 14.2 8.1 
io 15.5 7.9 
8.0 15.6 8.3 
Sion 16:9 8.0 
8.0 13.6 8.0 
8.0 14.9 8.1 
1.6," 14.1 8.5 
8.1 14.4 8.0 
8.1 15.3 7.5 

9.0 15.5 9.5 
Si) 16.3 9.4 
Sez lod, on 
Sf- 15.7 3.0 
8.6 16.4 9.2 
8.6 15.0 8:7 
9.2 14.0 9.0 
8.7 15.2 9.1 
5.0, 15.9 8.6 
8:0) 15:3 92 
8.8 14.8 9.0 
8.6 14.1 8.7 
87 14:9 8.7 
9.1 14.6 9.2 
S27 16.0 8.8 
9.2 16.8 9.3 
8.6 14.5 8.7 
91 148 9.2 
98 15.4 9.5 
96 15.5 9.8 
Oe 16.4 10.5 
oa 16:2 9.8 
So Loss 10.2 
97 «15:6 9:9 

15.0 
15.2 
14.3 

16.0 
14.3 

16:1 
15.5 
15.5 

15.8 
16.2 

15.8 
16.9 
15.8 

DM Yi x Y 

8.1 14.4 8.3 15.0 
8.2 15.0 7.6 13.3 
oy ey (5 4 8.2 15.3 
Ger 17,0 ide) lao 
84 14.4 Go) P s.2 
8.3 15.0 82° T5.4 
8.5 15.1 8.2 15.4 
7.8 14.0 Oy Elo 
fo9. 14.6 8.1 14.3 
on, AAD 8.2 15.3 
8.1 15.4 7.5 15.0 
19 $155 8.1 16.5 
7.5 14.0 Tove 14,0 
8.9 15.0 8.8 14.4 
9.0 15.8 92) 16:2 
9.0 15.1 8.7 = 16.3 
94 16.5 8.6 15.2 
9.0 16.3 90." 161 
9.2 15.1 8.6 13.9 
Diy 15.2 9.2). lod 
8.6 14.4 8.6 15.0 
8.8 14.5 O91 1538 
92 15.5 8.6 14.6 
Oa pilot 8.7 17.0 
9:0) 15.5 9:0 15.5 
8.8 15.1 8.6 14.9 
8.9 14.8 9.0 14.9 
94 15.9 8.6 16.0 
D0 16:6 Orie 1657 
8.8:) Li2 9130 L726 
8.9 15.0 9.0 15.0 
8.6 17.4 10.1. 16.7 
9.35 15:2 33° 16:0 
9:57) 17-8 10:45 1637 
hay 7 dae) 3167 16:0 

10.0 16.4 10.1 16.5 
10.4 15.9 9.5 148 
10.3 14.9 10.3 15.3 
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results shown specifically in Table 7.22 and graphically as X’s in 

Figure 7.21. The decision regarding linearity of trend and the esti- 

mation of any desired features of the true trend line (such as slope) 

must be accomplished from the information contained in the sample. 

If the trend of one variable with another is linear, the relationship 

between the two kinds of measurements, X and Y, is of the form 

Y = A+ BX, in which, for illustration, Y stands for the 28-week 

weight of a certain breed of turkey and X = the 16-week weight of 

TABLE 7.22 

A RanpoM SAMPLE OF n = 30 Patrs (X, Y) From TABLE 7.21 

xX Ne xX Vi xX ¥ X ¥ 

4.8 12.9 (22 ASS be 9 8.8 14.4 
6.5 14:8 T0e 15.0 8.0 14.9 O.2- l5s7 
6.4 14.4 6.9 14.7 8:1 15.0 9.407 15.8 
Isyee wa hayes) 6.8: lbat 8.01 71378 8.6 14.4 
6.1 13.4 1.2 “I3.38 (e0ea4e9 Onl das3 
6.0 13.6 7.5 14.3 bios TAR 90° 1626 
7.4 14.3 8.5 bal (ire a se, 9.2 °16.8 
(20) 14-5 825 1522 

the same turkey. If all the observed pairs of measurements (X, Y) 

in Table 7.21 satisfy a linear equation perfectly, all the points of 

Figure 7.21 will lie exactly on the same straight line; and the rela- 

tionship between the two variables will be perfectly linear. More- 

over, the equation of the line can be determined from the coordinates 

of any two distinct points. Such obviously is not the case in Figure 

7.21 because errors of measurement and uncontrollable fluctuations 

in the 28-week weights of turkeys which weighed the same at 16 

weeks of age must be averaged out before the trend appears to be 

linear. By contrast with situations met in elementary algebra, where 

the equation is given and all appropriate points lie on the line, the 

present situation starts with the points given from sample observa- 

tions, and the problem is to determine which straight line best fits 

these observations, and, it is hoped, best estimates the true linear 

regression line. 

Assuming that a set of observations really does follow a linear 

trend quite well, how can a specific equation of the form Y = A + BX 

be determined and also defended as the best straight line to be em- 

ployed under the circumstances? The answer to this question de- 

pends upon the interpretation of the word “best.” One interpreta- 

tion, and the one most frequently accepted, can be illustrated by 
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means of the line drawn into Figure 7.22. Some points lie above 

this line, some lie below, at distances whose magnitudes can be 

measured by the lengths of the vertical lines which could be drawn 

connecting the points of the scatter diagram to the regression line. 

In a useful sense, the goodness of fit achieved by any line drawn 

among the points to depict their trend should be measured somehow 

in terms of the amounts by which the proposed line misses the points 

of the scatter diagram. 

Y, 
18 

17 

28-Week weight 

_ ol 

5 6 7 8 ©) 10 XxX 
16-Week weight 

Figure 7.22. A random sample of 30 pairs of observations from the population 

of Figure 7.21 and Table 7.21. Free-hand line to indicate the trend as it might 

appear to the eye ( ). Line determined by the method of least squares 

It will facilitate the discussion to introduce some symbolism before 

presenting the specific methods to be used in the determination of the 
equation of the regression line. For a given value X; of the measure- 

ment X, let the corresponding value of Y be called Y; if it was observed 

with X; when the sample was taken. It will be designated as Y, it it 

is calculated from the equation of the regression line. Also, let the 

general linear equation relating Y;, and X; be written in the form 

(7-20) Y;=a+ b(X; —4),* 

where a and 6 are the two constants which must be determined in 

order to have a specific trend line for a particular scatter diagram. 

* This form and the notation do not agree entirely with some other textbooks, 
but they are used here for convenience. The (X; — 2) is z; so that the subsequent 
formulas and discussions come quite simply from this form of the equation for Y. 

Some authors use other letters than a and b; and several others use b as herein, 

but their a = (above a) — DZ. 
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As stated above, the a and 6 will be calculated in terms of the col- 

lective amount by which a line misses the points of the scatter dia- 

gram. The a and the b also are considered estimates of the popula- 

tion parameters a and # in the true linear regression equation, 

(7.22) NA Oia Aor ft), 

where » = the true mean of the X’s. 

For reasons given earlier for using >(X — )? to measure variation 

about the mean instead of either }(X — @) or >| X — é], it is found 
advisable to use }(Y — Y)? to measure the scatter of the Y’s about 

the trend line. Therefore, the best-fitting straight line has been 

chosen as that one for which the }(Y — Y)? has the least possible 

size. This action makes the standard deviation about the trend line as 

small as possible. The mathematical process of achieving this goal 

produces formulas from which the a and the b can be computed. When 

these values are substituted into formula 7.21 a specific equation of a 

regression line is obtained. This line will have the property that the 

standard deviation about it is as small as it is possible to make it for 

any straight line. In other words, the variability of the Y’s has been 

reduced as much as it can be in consideration of their linear trend 

with X. 

The formulas for a and b are as follows: 

2X; — @)(Y¥i-— gH] _ U(zy) 

(Xp — 2)7 D(x?) 

where 7 = mean of the Y’s in the sample and y = the deviation of a 

Y from the mean, 7. The =(xy)—which the student has not met 

before in this book—is (X; — £)(Y; — 9) + (Xe — %)(Yo —9) +--- 

a (Xn oa De, = Y) = %1Y1 ar v2Y2 at . Star Cine 

For the’ data of Table 7.22, a= 2(Y)/n = 439.0780 =7 14.63, 

b.= LD(zy)/D(a7) = 23.0200/37.912 =-0.6072, and @ = D(X)/n = 

226.8/30 = 7.56. Therefore, since 7 + b(X — £) = bX + (§ — bz), 

(7.24) Y = 0.6072X + 10.04. 

Students in a statistics course are in an unusually fortunate position 

because when they take samples from laboratory populations they can 

see readily how well, or poorly, certain features of their samples agree 

with the corresponding features of the populations being sampled. 

(7.23) a = ¥, and b = 

* Experience shows that beginners in this field tend to think that L(ry) = 

D(x) -2(y). If the reader will recall that D(z) = D(X — #) = O for any set of data 

—and likewise for 2(y)—it becomes apparent that 2(ry) is not the same as D(z) - 

2(y) or it always would be zero. This obviously is untrue. 
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For example, the slope of the above sample estimate of the linear re- 

gression line is calculated to be b = 0.6072, whereas the true slope is 

known to be 8 = 0.5000. In actual practice, only the b is known, and 

it is necessary to measure its reliability as an estimate of 8. This will 

be done later when the necessary techniques have been discussed; but 

it can be stated here that if the sample has been taken with the X’s 

fixed—as suggested in Figure 7.21—so that there is no sampling error 

in X or in Z, the b as defined is an unbiased estimate of the parameter £. 

The value Y which is obtained from formula 7.24 by substituting a 

particular value for X is described as the estimated average Y for that X. 

For example, if X is taken as 5, Y = 0.6072(5) + 10.04 = 13.1, ap- 

proximately. By reference to Figure 7.21 we learn that this estimate 

is somewhat low because the true average Y for turkeys weighing 5 

pounds at 16 weeks of age is 13.5 pounds. If X is taken = 8, Y = 

14.9 pounds, which is nearer to the true average Y of 15 pounds than 

was obtained when X = 5 and the true Y was 13.5 pounds. It will 

be seen in a later discussion that greater accuracy in estimating the 

true average Y is to be expected for X’s near the mean X. There 

often are more sample data near the mean; but also errors in estimating 

the 6 will cause the ends of the trend line to be swung farther from the 

true position than is the middle of the line. In the above example 

the slope was b = 0.6072 instead of 6 = 0.5000; hence the line deter- 

mined from the sample is too steep and therefore too low at the left- 

hand end. This appears to be the major reason why the estimate of 

the true average Y for X = 5 was too small. Of course, the general 

height of the sample line must be in error to some extent, and this 

also contributes to the inaccuracy of any estimate made from the 

sample trend line. 
The method described for obtaining the straight line which fits a 

linear trend best is called the method of least squares because it 

makes the sum of squares of the vertical deviations of the points of 

the scatter diagram from the regression line the least it can be made 

for any straight line. Table 7.23 has been prepared to illustrate 

specifically the meaning of this minimization. Columns 6, 7, and 

8 were obtained from the equation given over the right-hand side 

of the table. This equation represents a straight line which appears 

to the eye to fit the trend of the scatter diagram about as well as 

the line obtained by the method of least squares, as can be verified 

from Figure 7.22, which shows both lines. 

It should be noted that the total of the fifth column of Table 7.23 is 

less than that of the eighth column. This will always be true no mat- 

ter which straight line is used to obtain Y; as long as the equation is 
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TABLE 7.23 

ILLUSTRATION OF Some FEATURES OF THE MertTHop oF Least SQUARES 

Usine Data or TABLE 7.22 

Method of Least Squares Freehand Straight Line 
~.Y = 0.6072X + 10.04 Y; = 0.88X + 7.92 

XxX Ve Y Y—Y (Y-— ff)? Y; Y—Y; (Y —Y;,) 

(1) (2) (3) (4) (5) (6) (7) (8) 
4.8 12.9 12.95 —0.05 0.0025 12.14 --0.76 0.5776 
6.5 14.8 138.99 +0.81 0.6561 13.64 +1.16 1.3456 

6.4 14.4 138.93 +0.47 0.2209 13.55 +0.85 0.7225 

5.5 18.5 18.388 -+0.12 0.0144 12.76 +0.74 0.5476 
6.1 18.4 18.74 —0.34 0.1156 13.29°> --OA 1 0.0121 

6.0 18.6 13.68  —0.08 0.0064 13.20 +0.40 0.1600 

7.4 14.3 14.58 —0.23 0.0529 14.438 —0.13 0.0169 

a0 14.5 14.29 +0.21 0.0441 14.08 -+0.42 0.1764 

fo isco 9 14.41 —1.11 1.2321 14.26 —0.96 0.9216 

(Owais 0) 14°29) 0771 0.5041 14.08 +0.92 0.8464 

6.9 14.7 14.28 +40.47 0.2209 13.99 +0.71 0.5041 

6.8 15.1 14.17 +0.93 0.8649 13.90 +1.20 1.4400 

feeeelacs 14/41 —1.11 1.2321 14.26 —0.96 0.9216 

7.5 14.38 14.59 —0.29 0.0841 14.52 —0.22 0.0484 

8.6 15.1 15.20 -—0.19 0.0361 15.40 —0.30 0.0900 

Sapelor2: 15220 0 0 15.40 —0.20 0.0400 

(29° 15.9 14.84 +1.06 1.1236 14.87 +1.03 1.0609 

8.0 14.9 14.90 0 0 14.96 —0.06 0.0036 

8.1 15.0 14.92 +0.08 0.0064 15.05 —0.05 0.0025 

8.0 18.8 14.90 —1.10 1.2100 14.96 —1.16 1.3456 

7.6 14.9 14.65 +0.25 0.0625 14.61 +0.29 0.0841 

725) 14.1 14-59 ~—0.49 0.2401 14.52 —0.42 0.1764 

7.5 18.9 14.59 —0.69 0.4761 14.52 —0.62 0.3844 

8.8 14.4 15.38  —0.98 0.9604 15.66 —1.26 1.5876 
SEZ bah 15.63 E0207 0.0049 16.02 —0.32 0.1024 

9.0 15.9 15.50 +0.40 0.1600 15.84 +0.06 0.0036 

8.6 14.4 15.26 —0.86 0.7396 15.49 —1.09 1.1881 

Orie T5e3" 15.57. 0.27 0.0729 15.938 —0.63 0.3969 
9.0 16.6 15.50 -+1.10 1.2100 15.84 +0.76 0.5776 

9:2, 16.8 15.638 -+1.17 1.3689 16.02 +0.78 0.6084 

Sums 12.9226 = D(Y = Y)? 15.8926 

not obtained by the method of least squares, and as long as sufficient 

accuracy is kept in the calculations to pick up small differences. 

This is the basis for the statement that the method of least squares 

makes the standard deviation of the Y’s from the trend line as small 

as possible for any straight line, which is a strong argument for the 

use of this line in practice. 
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PROBLEMS 

1. Obtain the linear equation whose graph fits the points of Figure 7.11B best 

in the sense of the method of least squares. Graph the line on the scatter diagram 

and indicate graphically those deviations whose sum of squares is the least possible 

for any straight line. 

2. Do as in problem 1, for Figure 7.114. Also compute D(Y — Y)?. 

Ans. Y = 2.16X + 4.54; 2(Y — Y)? = 9.77. 
3. By what average amount would you expect Y to increase for a unit increase 

in X if the data corresponding to Figure 7.11A constitute a representative sample 

of some two-variable population? 

4. Compare the 2(Y — Y)? and L(Y — 7)? for the data of Figures 7.11B and G. 

What conclusions can you draw? 

5. Use the method of least squares to estimate for the data of Figure 7.11B the 

average value of Y for X = 1.5, 2.5, 3.5, and 4.5, respectively. 

6. Make up two sets of 10 pairs of observations each and such that b is about 2 

in one set and about —3 in the other. 

7. Write down the equation of a trend line with slope = 5 and for which Y = 

10 when X = 4. Graph this line, and then construct a scatter diagram which fits 

the trend and has 3(Y — Y)? = 50. 
8. Do as in problem 7, with slope = —3 and everything else the same. 

9. Assign row and column numbers to the data in Table 7.21. Then draw 

two random samples of 80 pairs each—as in Table 7.22—and obtain the least- 

squares regression line from each sample. Plot these lines on their correspond- 

ing scatter diagrams and discuss their differences. (Round off each X to the 

nearest pound before doing your computations.) 

10. “Cull” the flock of Table 7.21 at 16 weeks of age by eliminating all turkeys 

which weighed under 6 pounds at that time, then do as in problem 9. Would 

B still be 0.5 for this population? 

7.3 MEASUREMENT OF THE VARIATION ABOUT A 

LINEAR TREND LINE DETERMINED BY THE 

METHOD OF LEAST SQUARES 

If measurements are taken on but one normally distributed variable, 

Y, the variability, or dispersion, of the Y; should be measured by 

means of the standard deviation about the mean, and estimated from 

sy = VIO, — ¥)7/(n — 1) because sy” is an unbiased and highly 

efficient sampling estimate of cy”. The variation measured by sy is 

then considered to be sampling variation. However, if for each Y; 

there is an associated measurement, X;, and if the X’s and Y’s tend to 

be linearly related, not all the apparent variability among the Y; 

should be assigned to mere sampling errors. Part of it can be ac- 

counted for in terms of the varying X; associated with the Y;. For 

example, if Y tends to increase about 5 units for each unit increase in 

the magnitude of X the Y associated with X = 10 is expected to be 
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about 15 units greater than the Y for X = 7; hence some of any ob- 

served difference between the Y for X = 7 and the Y for X = 10 can 
be accounted for and need not be considered as sampling error. 

Graphically the preceding remarks mean that if Y and X can be 

considered to be linearly related the standard deviation of the Y; 

should be calculated from the trend line rather than from the horizon- 

tal line: Y = 9. This means that the quantity >(Y — Y)? should be 

employed in this calculation instead of £(Y — 7)”. However, the divi- 

sor in this calculation will not be (n — 1) as it is for sy, above. 
The divisor needed in the computation of the standard deviation 

about the trend line is (n — 2). The reason for this cannot be given 

conclusively without mathematical analysis which is not appropriate 

to this book; but it can be rationalized in the following manner. 

Suppose that a sample of 5 observations on XY and Y simultaneously 

were as follows: 

Xe Deca a 5 £=3 

es = EOF 28 yg =6 

It is readily determined that Y = 0.80X + 3.6; hence the following 
table can be set up for purposes of illustration: 

Xe 4 25 Bi > 4h N65 
m5 AS serge a 
Vee aeAe E50 1G Oi Vs oY. 

(Ye= je 06> 13 0 2 2 

What are the deviations from the trend line for X = 4 and X = 5, 

respectively? The fact that ©(Y; — Y,;) = 0 will be found to account 

for one of these deviations. The fact that b = 0.80 will allow the de- 

termination of the second unknown deviation. 

Let the unknown deviations Y; — Y4 and Y; — Ve corresponding 

to X = 4 and X = 5 be denoted by v and w, respectively. It follows 
that 

X(Y; — Y) =06+ (-12)+0+v+4+w=0, 

which reduces easily to 

Cicail)) v+w = 0.6. 

The slope of a straight line can be computed by determining the 

amount by which Y changes for any chosen change in X, and by taking 

the ratio of the former to the latter. For example, if it is determined 

by measurement on the graph or by substitution into a mathematical 
formula that for the interval from X = 1 to X = 5 the height of the 
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straight line above the horizontal axis increases from 10 to 30, the 
slope of this line is measured by 20/4 = 5. Hence, in the situation of 

the preceding paragraph the slope is given by (Y; — Y4)/(X; — X4). 

But (X; — X4) = 1, and the slope is known to be 0.80; hence (Y; — Y4) 

+ 1= 0.80. In order to transform this equation into one involving v 

and w consider the following two equations: 

Ve a Vo = Ys = Gi 

Ven — oe O80. 

When the left and right members of the second equation are sub- 

tracted from the corresponding members of the first equation, it is 
found that , 

igen) Vr eg 080 

but Y; — Y; = w, Ys — Ys = v, and Ys — Ya = —1; therefore, 

(7.32) v—w=18. 

When equations 7.31 and 7.32 are solved simultaneously it is found 

that v = 1.2 and w = —0.6. Hence, two of the deviations from the 

trend line can be calculated from the size of b and from the fact that 

x(Y — Y) =0. Although there are five actual deviations from the 

linear trend line, only three (any three) of them actually should be 

considered chance deviations from the regression line determined from 

the sample. Hence, in the present problem, n — 2 = 5 — 2 = 3 will 

be used as the divisor of =(Y; — Y,)? in the computation of the stand- 

ard deviation about the linear trend line. 

This divisor, n — 2, is generally called the number of degrees of free- 

dom for the estimated standard deviation about the linear trend line, 
just as the number, n — 1, is the number of degrees of freedom for the 

estimated standard deviation, sy, about the mean. 

With the above discussion as a background, the formula for the 

estimated standard deviation of the Y; about the trend line becomes 

(7.33) Sy-2 = VOuOe om ¥,)?/(n pans 2) ’ 

wherein the symbol, s,., is read “‘s sub y dot x.” 

For the data used as illustration in this section, }(Y; — Y,)? = 3.60, 

n — 2 = 8; hence sy. = V3.60/3 = 1.10. This is a measure of the 
variation among the Y-measurements which remains unexplained even 

after the linear trend with X has been taken into account. When the 

trend with X is ignored, sy = V10/4 = 1.58; so s,.z is 0.48 of a unit 

smaller than sy. In other words, the variability of the Y; (as measured 
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by the standard deviation) has been reduced 100(0.48)/1.58 = 30.4 

per cent by taking the linear relation between the two measurements 

into account statistically. Such success in accounting for part of the 

variation among the measurements, Y;, clearly is important in statisti- 

cal analyses because the only occasion for such analyses arises as a 

result of variability among numerical measurements. 

The standard deviation about the trend line, s,.,, also is specifically 

useful in certain applications of linear trend analysis, two of which will 

be considered. The regression coefficient, b, estimates the average 

change in the Y-measurement for each unit increase in the X-measure- 

ment. Its accuracy as such a measure is of interest, and its accuracy 

is measured by its standard deviation. The standard deviation of b 

is shown in more advanced statistics courses to be 

ye 

\ ‘ V 32? 

For the data of Table 7.22: 2(Y — Y)? = 12.9226, Dx? = 37.9120, 
n = 30, and hence sy., = V 12.9226/28 = 0.679. Therefore, sp, = 

0.679/-37.9120 = 0.110, approximately. 

It can be shown that the ratio, 

(7.35) i = (b — B)/82, 

where 8 = the true regression coefficient which is estimated by 6, 

follows the same ¢-distribution as that summarized in Table IV with 

n — 2 degrees of freedom. Therefore, a confidence interval can be 

computed for B, and it can be interpreted in the manner previously 

shown. For Table 7.22, the 95 per cent confidence interval is ob- 

tained as follows: 

—2.05 < (0.6072 — 6)/0.110 < +2.05 

will be a true inequality for 95 per cent of all samples with 28 de- 

grees of freedom. Hence the 95 per cent confidence interval is found 

to be as follows after some simplification of the preceding inequality: 

(7.36) 0.38 < B < 0.83. 

It would be concluded in practice that the slope of the true lnear 

regression line is some value between 0.38 and 0.83, but it 1s recog- 

nized that there are 5 chances in 100 that the sample has led us to a 

false statement. A more useful statement might be that it is esti- 

mated from (7.36) that a turkey which is one pound heavier than 

another at 16 weeks of age will, on the average, be 0.38 to 0.83 pound 
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heavier at 28 weeks of age. That is, the lighter turkeys at 16 weeks 

tend to catch up some, but they usually remain 0.38 to 0.83 pound 

lighter at 28 weeks for each pound that they were lighter at 16 weeks 

of age. 

Another application of linear trend analysis which makes use of 

Sy-2 is one in which Y is to be estimated for some unobserved value of 
X; for instance, for X = 9.5 pounds at 16 weeks. If X is set equal to 

9.5 in formula 7.24, Y = 0.6072(9.5) + 10.04 = 15.8 pounds at 28 
weeks of age. How reliable is this estimate? <A look at the scatter 

diagram leaves only the impression that this estimate should be fairly 

reliable; hence a more specific measure of its accuracy is needed. The 

standard deviation of Y is given by the following formula: 

(7.37) 8 = 8y.2V1/n + (X — @)?/E2", 

where X is the value used to calculate the Y. This estimate of the 

standard deviation of Y is based on n — 2 degrees of freedom, as ex- 

plained earlier. It will be convenient in subsequent discussions to add 

“with n — 2 D/F” after an estimate of this sort to indicate the num- 

ber of chance deviations upon which the estimate is based. In the 

example considered in this paragraph, 

sp = 0.679V 1/30 + (9.5 — 7.56)?/37.912 = 0.679(.364) 

= (0.247, with 28 D/F. 

This standard deviation applies when the X’s have been chosen in 

advance and are not subject to sampling error. As noted earlier, the 

b is then an unbiased sample estimate of the population parameter, 8. 

Under these circumstances the formula 7.37 can be partially ration- 

alized in lieu of a more rigorous demonstration of its validity. The Y 

for a particular X, say X,, is obtained from Y = 9 + (X; —#b=y9 

+ 2,;b. Hence the variance of Y; is obtained from the variance of a 

sum, 7 + x;b, in which the x; is a fixed number. The variance of 7 for 

this particular X will be one-nth of the variance about the trend line, 

OF S,-2’/n. The variance of b is s,..”/Za”, as noted earlier, and x; is a 
constant; hence the variance of a,b = 2;7-8y-2?/Z(x”). If the variance 
of the sum, 7 + 2;b, is just the sum of the variances of those two terms, 

it follows that 

P Ryan, MORE, eae 
sp? = i a 32) = 8y.0°(1/n + 27 /2(2") 

so that s¢ = Sy-aV 1/n + a;7/Z(x) , as in formula 7.37 for a particu- 
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lar X = X;. It is true that the variance of 7 + 2x;b is the sum of the 

variances of the two terms, but this will not be proved here. 

It can be shown that the ratio 

(7.38) See 
sy 

where uy. 1s the true average Y for the given X, follows the ¢-distribu- 

tion with n — 2 degrees of freedom. This fact makes it possible to place 

a confidence interval on w,., with any appropriate confidence coefficient. 

The meaning of the w,., can be made clearer by reference to Figure 

7.21. For each particular X there is a frequency distribution of the 

corresponding Y’s. This distribution of Y’s has a true arithmetic 

mean, which is the y,.z for that X. 

If we wish to make an interval estimate which applies to an indi- 

vidual rather than to a group mean, we must take account of the 

greater variation exhibited by such individuals as compared to the 

group. For example, suppose that a study has been made of the rela- 

tionship between the ages of Kansas females and their basal metabolism 

rates as expressed in calories per square meter of surface area per hour. 

It is supposed that the age interval chosen is such that a linear relation- 

ship exists between these two variables, and that the least-squares 

equation for Y has been obtained from a sample. Suppose, further- 

more, that the equipment needed to determine the basal rate is not 

available in a certain area, and a Kansas woman 25 years of age wishes 

an estimate of her basal metabolism rate as a matter of interest. The 

best point estimate is the Y calculated for X = 25; but when an inter- 

val estimate is needed—and it is more useful in the present problem— 

account must be taken of the fact that this woman is not supposed to 

be an average person representing all those who are Kansas females 

25 years of age. She is regarded as one particular person who wishes 

an estimate of her own basal rate. In this circumstance the variance 

of Y used earlier in this section is not correct because it includes only 

two sources of variation: one from the mean and one from the sampling 

regression coefficient. In the present problem a third source must be 

included, namely, individual variation about the mean. When the 

particular X has been taken into account, this additional variance is 

just s,..”; hence—again it turns out that this can be added to the 
other two components—we obtain the following formula for the vari- 

ance of the Y for an individual: 

(6 =a)" 

sph = aya? [1 4 + > (22) |: 
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When this change in sf is made in formula 7.37 we obtain the formula 
for s¢ which is employed in the following ¢-ratio: 

Vi ie 
(7.384) ————_ 

ig 

where p,.;, = the true Y-value for the 7th individual for whom X = X;. 
Formula 7.38a and the usual methods make it possible to obtain a 

confidence interval on y,.,, with any specified confidence coefficient. 
It should be both clear and reasonable that such a confidence interval 

will be longer than a corresponding one from formula 7.38 because the 

standard deviation is larger. 

Problem 7.31. You are about to buy one turkey which weighs 6.5 pounds at 

16 weeks of age, and you are going to keep it until it is at least 28 weeks of age. 

What is the 94 per cent confidence interval on its 28-week weight, assuming it 

comes from the population sampled in Table 7.22? 

It was seen in the discussion of Table 7.22 that Y = 0.6072X + 

10.04, which = 13.99 pounds for X = 6.5 pounds. Also, sy., = 0.679 

pound, and 2(x”) = 37.9120; hence by formula 7.39, after taking the 

square root, 

sp = 0.679V 1 + 1/30 + (6.5-7.56)2/37.9120 = 0.700 

is the standard deviation of Y for X = 6.5 pounds at 16 weeks of age. 

Therefore, t = (13.99 — y,.z,)/0.700, and the 94 per cent confidence 

interval is derived from 

—2.19(0.700) < (13.99 — py.2,) < 2.19(0.700). 

It is found that 

Gigs i1Sil2Z.5° SS pyc, = Lob, 

to the nearest one-half pound. 

Notice that the situation just considered clearly is one in which 

the confidence interval for a particular turkey is required. You do 

not have a group of turkeys so that the high 28-week weights of some 

of them can be expected to offset the low 28-week weights of others. 

Therefore, you must face the fact that this particular turkey’s weight 

at 28 weeks of age may be quite low, as well as quite high, for turkeys 

weighing 6.5 pounds at 16 weeks of age. 

Problem 7.32. Suppose that problem 7.31 is changed to state that you have 

bought a rather large flock of 6.5-pound turkeys each 16 weeks of age. Compute 

the CI, appropriate to this new situation. 
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The only change in the computations is that the standard deviation 

of Y now is 

SP = Sy.rWV1/n + 22/3(x2) = 0.679(0.251) = 0.170 pound y 

instead of the 0.700 pound obtained for the individual. It follows 

that the required confidence interval is: 

ClIo4: 138.5 pounds < py., < 14.5 pounds, 

to the nearest one-half pound. This is a narrower interval than is 

obtained for problem 7.31, as should be expected. 

PROBLEMS 

1. Compute sy and s,., for the data for Figures 7.11A and G and relate their 
comparative sizes to the scatter diagrams. 

2. Work problem 1 for Figures 7.11B and G. Does the downward trend of the 

points on a scatter diagram, as contrasted with an identical upward trend, have 

anything to do with the comparison between sy and sy.z? 

Ans. B: sy = 16.0, sy. = 3.1; G: sy = 9.2, sy... = 9.8. 

3. Referring to Figure 7.11H and the associated data, compute and compare 

sy and sy., aS in problem 1. Could you have predicted from the scatter diagram 

that they would be of essentially the same magnitude? Why? 

4. By visual inspection of Figures 7.11C, D, and F what do you conclude about 

the comparative sizes of sy and s,.z for each figure? 

5. For the two sets of data in problem 7, section 7.1, compute the percentage 

reduction in the standard deviation of the Y; achieved if variability is measured 

about the linear trend line rather than about the line Y = g for each set. Discuss 

the two results obtained for the two sets in terms of the curvilinear trend in one set. 

6. Use the data of problem 1, section 7.1, to estimate the average Y for XY = 13. 

Also compute the standard deviation of this estimate, first considering a group 
with X = 13 and then for an individual with X = 13. 

Ans. Y = 345.7 when X = 13; s? = 0.53; 1.01. 
7. Use the data of set B, problem 7, section 7.1, to place 92 per cent confi- 

dence limits on the log(weight) of the 7-day-old bee larvae of the kind repre- 

sented by this sample. Interpret these limits. 

8. Compute the 99 per cent confidence interval on 6 for problem 1, section 

7.1, and draw appropriate conclusions. Ans. Clg,: 21.2'= 6 = 23.0. 

9. The following data express the farm population (as defined for the 1950 

census) as a percentage of the total U. 8. population: 

Year: 1940 1941 1942 1943 1944 1945 1946 1947 1948 

Per Cent: ZS, Zilia 20eO T1858 17oe 17.3" 2729 17-9" “16.9 

1949 1950 1951 

1657 16.0) 15:0 

These are not sampling data, but the fitting of a trend line to these data may 

be useful anyway. For example, if the war years, 1943 to 1945, inclusive, are 
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ignored, the downward trend in percentage farm population is quite closely 

represented by a straight line. Make a scatter diagram of the above data, 

omit 1943, 1944, and 1945 from further consideration, fit a linear trend line by 

the method of least squares, and then read from the line the approximate per- 

centages for the years omitted. Would the discussions of estimates of the 

standard deviation and the formulas given in this book for them be appropriate 

here? Give reasons for your answer. 

10. Referring to problem 9, could you use the equation obtained there to 

predict satisfactorily the percentage farm population for 1953? For 1960? 

Justify your answers. 

7.4 COEFFICIENTS OF LINEAR CORRELATION 

It is not always desirable—or even appropriate—to obtain an equa- 

tion for the linear relation between the two types of measurements 

being studied, as was done earlier in this chapter. It may be better 

to describe the relationship as linear, and to give a standard, unitless, 

measure of its strength, or closeness. This is the purpose of a co- 

efficient of linear correlation. 

Although correlation coefficients are widely used, and often with- 

out attention to the satisfaction of necessary assumptions, it should 

be kept in mind that, strictly speaking, both X and Y must be random 

variables which follow normal frequency distributions. This will be 

assumed to be true in the following discussion of this section. 

It has been seen that the variance of the observed Y’s about the 

least-squares regression line depends on the size of X(Y — Y)?, in 
which Y = 7 + bx. Hence the magnitude of this variance depends on 
S(Y —g — br)? = Ly — bax)? = Uy? — 2bry + b’x”). But the last 
summation can be computed in three parts as follows: 

Vy? — Lbay + bx?) = Vy?) — 2V(zy) + b?Z2?, 

= X(y?) — 2 [| een) 
2(x*) 

Day) Ve 

€ ot eau, 

= >( 2) ne 2[=(xy)F [2(cy)]? ; 
“ALY D(x?) (2?) ’ 

hence, 
Z(x 

(7.41) x(Y — VY)? = Xy?) - Zyl 
D(z”) 
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Therefore, it is clear that the observed variability of the Y’s about the 

regression line will be large or small according to the size of [=(ay)? 

+ D(x?) compared with the size of D(y?). If [S(ay)]?/S(«?) is multi- 
plied by =(y*)/2(y?)—which equals 1 and only changes the form of 
the quantity by which it is multiplied—it follows from (7.41) that the 
>(Y — Y)? can be expressed as follows: 

- [Z(ay)]? 
DY — YP) = Diy? 1-332 | ( ) (y") 322) D0) 

>> 2 

Clearly, the quantity Pe Ae has the following statistical features: B(0) 7) 
(a) Its value cannot be less than zero nor more than one because it 

is essentially zero or positive, and if it exceeded one the sum of 

squares of deviations from the trend line would be negative, which is 
absurd. 

(b) If this quantity is near zero there is about as much scatter of 

the sample points about the trend line as about the horizontal line 

Y= 9; hence there is little or no linear trend. 
(c) If this quantity is near one there is very little scatter about 

the regression line; hence the sample points lie quite close to that line. 

(d) As the size of this quantity varies—for different samples— 

from zero to one the scatter of the sample points about the least- 

squares regression line varies from a completely trendless, shot-gun, 

pattern to a perfect fit to a linear trend line. 

(e) This quantity is unitless so that the features noted above are 

true regardless of the units in which Y and X are measured. 

(f) In its present form this quantity cannot distinguish between 

positive and negative slopes of trend lines, but its square root would 

have the same sign as b and would make this distinction if the square 
root of the denominator were always taken as positive. 

It follows then that the square root noted in f, 

nd (ty) 

V2 (2?) -Z(y?) 
is a unitless number within the range —1 =r = +1 which indicates 

the direction and strength of the observed linear trend. This number, 

r, is called the product-moment coefficient of linear correlation be- 

tween two measurements X and Y. It obviously is subject to sam- 

pling variations and therefore has a sampling distribution. It is a 
sampling estimate of a corresponding population parameter indicated 

(7.42) 
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by the Greek letter p (rho), which succinctly describes the degree of 

scatter of the population points about the true linear trend line as, 

for example, in Figure 7.21. If p = 1, all the points will lie on the 

regression line. Since they do not—in Figure 7.21—there is sampling 

error in the estimation of p, and hence the r varies from sample to 

sample. This is similar to the situation when the true regression 

coefficient, 8, was being estimated from samples. 

If the p is zero, all the sampling estimates 7; will not be zero but 

will have a sampling distribution which is nearly normal in form. 

In such circumstances it can be shown that the following ratio follows 

the t-distribution with n — 2 D/F. Thus 

r rVn — 2 
7.43 {=—— 
oe) de —pP Wir 

n—2 

can be used in the usual manner to test the hypothesis Ho(p = 0). 

As was seen in earlier discussions, Ho will be rejected whenever the 

size of t becomes so great that it is unreasonable—according to some 

predetermined standard—to believe that this t is the product of sam- 

pling variation. 

It is more difficult to place a confidence interval on p than on B 

because r is not nearly normally distributed when p+~0. This 

process of computing a confidence interval on p will be discussed and 

developed somewhat heuristically by means of the empirical data 

found in Table 7.41. These data were obtained by drawing random 

TABLE 7.41 

OBSERVED SAMPLING DISTRIBUTIONS OF Tr AND z = 1/2 Loa, [1 + 7)/(1 — 1)] 
FOR n = 12 AND p = +.749 

r-interval bi z-interval f 

.890-1.000 7 1.70-1.89 1 

.790— .889 32 1.50-1.69 3 

.690— .789 48 1.30-1.49 9 

.590— .689 52 1.10-1.29 22 
A90- .589 23 0.90-1.09 43 
.390-— .489 12 0.70-0.89 56 
.290— .389 8 0.50-0.69 29 
.190— .289 5 0.30-0.49 19 
.090— .189 2 0.10-0.29 7 

—.010— .089 1 —0.10-0.09 1 

Total 190 Total 190 



Sec. 7.4 COEFFICIENTS OF LINEAR CORRELATION 219 

samples of pairs of values of X and Y from Table 7.21 for which 

p = .749. This population was considered to be approximately a 

normal bivariate population. The 190 sampling r’s thus obtained 

are summarized in Table 7.41 along with the corresponding z’s (see 

discussion of z below Figure 7.41). The distribution of r for a p so 

large as this is definitely skewed, as can be seen to some extent in 

Table 7.41 and in Figure 7.41. 

Frequency (f,, or f,) 

—.20 0 .20 40 .60 80 100 120 140 160 = 1.80 
rorz 

Figure 7.41. Sampling frequency distribution of the correlation coefficient, 1, 

and of the corresponding z = (1/2) log, [1+ 7)/(l1—7)]. n= 12. 

It was found by R. A. Fisher that under these circumstances it is 

helpful to use the following function of r: 

(7.44) 2 (eyo: () = (2,30259/2) logy F is 4 
l-—r 1 r 

ied 

because its sampling distribution is essentially normal in all important 

features even when p is definitely # 0. Moreover, its variance is 

given by o,7 = 1/(n — 3). This is not a sampling estimate but the 

true variance of z. It follows that, as a good approximation, the 
quantity y = (2 — z,)/oz, where z, is the z corresponding to p in 

(7.44), is normally distributed. Hence, Table III gives the probabili- 

ties needed in tests of hypotheses regarding p or in the calculation of 
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confidence intervals on p. For example, consider the first sample 

drawn for Table 7.41. Then = 12 andr = .668; therefore, by formula 

7.44, 

x I| 
1.668 

1.1513 logy (~~) = 1.1513 log; 5.024 = 0.807, and 
0332 

1/V9 = 0.333. Cz 

Then, since y = (0.807 — zp)/0.333 is a member of a standard normal 

population, the probability distribution of Table III can be used. If 

a confidence coefficient .95 is chosen, the inequality 

0.807 — z, 
—1.96 < aaron <7 1,060 

requires that 

0.154 < z, < 1.460 

unless a 1 in 20 chance has occurred in this sample. The corresponding 

95 per cent confidence interval on p is obtained by using formula 7.44 

and solving for the p, which now replaces r._ Thus, 

1 Leae 
Zp, = lower limit = 0.154 = — log, (=*) 2OL 

2 Li 
1+ : 
: iyi eo 308 But; log eo = 0.308 lorigce 

— py 
= 0.308(0.4343) = 0.134; and 

Ise Anti-log 0.134 = 1.36 = - ey 
— pi 

Hence 2.369; = 0.36 so that p; = .155. Similarly p2 = upper limit 

of the 95 per cent confidence interval = .898; therefore, the 95 per 

cent confidence interval on p is 

15) Sp .898; 

which is a very wide interval but does include the true p, known in 

this case to be .749. If a relatively narrow confidence interval is 

needed, it is apparent that a rather large sample must be taken. 

Figure 7.41 shows that the sample correlation coefficient varies over 

a considerable range even when p is as large as .749. As a matter of 

fact one sample r out of 190 was negative in spite of the relatively high 

positive correlation. This figure shows also, to a useful degree, the 

at : 1 biter , 
normalizing effect of the transformation z = 9 1B. =k Given 
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a large number of sample correlations, the z-curve would become 

approximately normal in shape, as can be imagined from Figure 7.41. 

Problem 7.41. Finney and Barmore (Cereal Chemistry, Vol. 25 [1948], page 

299) have reported that the linear correlation between the per cent of protein 

in Nebred wheat flour and the loaf volume of bread baked therefrom was 

ry = 94 on a sample of 30 pairs of measurements. What useful information does 

this provide? 

The mere fact that r? = (.94)? = .8836 tells us that 88.36 per cent 
of the original sum of squares of the loaf volumes (Y) about their 

mean, 7, can be associated with the linear increase of that measure- 

ment with increasing protein concentration in the flour (X). Loaf 

volume is an important factor when the quality of bread is judged, and 

it is important to know what affects it. 

It is inconceivable that such a large correlation coefficient would be 

obtained accidentally on thirty random observations; but, to illustrate 

the method, the hypothesis Ho(p = 0) will be tested. It is seen that 

94 94 

A — 8836 0.065 

28 

Such a large ¢ would occur by chance almost never; hence the hy- 

pothesis Ho(p = 0) is decisively rejected. We know without even 

seeing the scatter diagram that the sample points he closely about 

a linear regression line which has an upward trend. It also is ap- 

parent that the loaf volume from Nebred flour meeting the condi- 

tions of this experiment could be predicted quite accurately from a 

knowledge of its protein concentration. 

There are some circumstances under which it is desirable to deter- 

mine if two random samples probably were drawn from the same 

bivariate population as regards one, or both, of 8 and p. For example, 

it might be of interest to learn if one method of raising turkeys pro- 

duces a more consistent relationship between the 16-week and the 

28-week weights so that we could cull at 16 weeks of age with more 

confidence. Such an improvement in the relationship between these 

variables would indicate that the true coefficient of linear correla- 

tion, p, had been increased by the new methods. It also might be 

that superior poultry husbandry could increase the amount by which 

a weight advantage at 16 weeks of age would be followed by a weight 

advantage at 28 weeks of age. In the population considered earlier 

in this chapter, a one-pound advantage in weight at 16 weeks of age 

i= 
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was reduced, on the average, to only a one-half-pound advantage at 

28 weeks of age. Thus B was 1/2. It might be that the size of 8 

could be increased by superior breeding and handling. 

If two samples—from two methods of breeding and raising turkeys, 

for example—have resulted in the computation of b1, be, 71, and rz, 

the testing of the two hypotheses Ho(81 = Bz) and Ho(pi = pz) can 

be carried out as follows: 

For Ho(f1 = 5) 

(a) Pool the =(Y; — Y;)? and the 3(Y; — Y,)? from the two sam- 
ples, pool the degrees of freedom, and calculate 

SY; — Y)? + 2(Y; — Y;)? 
SOO CC 65 eee 

mtn —-4 . 

i 1 
(b) Compute {ee ag 50) 

(c) Multiply the standard deviation from a by the result obtained 
in b. This is the estimated standard deviation of (b; — bg), which 

will be called s»,_»,. 
(d) Compute t = (by; — b2)/s»,—»,, assign it Ny + ng — 4 degrees of 

freedom, and interpret as before with respect to the acceptance or the 

rejection of Ho(8; = Be). 

For Ho(p1 = pe): 

(a) Transform the 7; and the rg to z; and 22, respectively, in the 

manner described earlier in this chapter. 

i 1 
oS 

nm —3 ene 
(b) Compute o,,-, = 

(c) Calculate y = | 2: — 22|/oz,-z, and consider this ratio as a 
normally distributed quantity in deciding whether or not it is so large 

that the hypothesis Ho(p; = pz) should be rejected. 

If it seems appropriate after a hypothesis has been rejected, con- 

fidence intervals can be determined for the difference 8B; — B2, but 

not for pi — p2- 

It is useful at times to have a convenient tabular procedure for 

computing b and r when the data are sufficiently numerous to justify 

the use of frequency distribution tables. Such data rarely would 
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come from sampling studies, but perhaps they occur in practice often 

enough to justify the inclusion here of a method for obtaining the 

r and the b. 
As in Chapter 2, the computations will be carried out in units of 

the class intervals. A two-way frequency distribution table is needed 

because two variables are involved. These matters, and others, are 

illustrated and discussed by means of 280 pairs of observations of 

16- and 28-week weights of female turkeys similar to those studied 

earlier in this chapter. The symbol, X, is used to denote the 16-week 

weights and Y will stand for the 28-week weights, as before. Now 

that two variables are being considered simultaneously, frequencies 

in the X-classes will be symbolized by fx, those for the Y-classes by 

fy. When it is desirable to indicate both the XY and the Y for a class 

of data, fyx will denote the frequency in that “cell” in the two-way 

table. Also, there may be two different lengths of class interval, Ix 

and Iy for X and Y, respectively. With these symbols in mind, the 

following formulas are seen to be analogous to those used previously 

for b andr: 

X(fx-dx”) — (2fx-dx)?/Zfx 

same numerator as that above for b 

and 

T= 

Vv (same as denominator above) (same with Y replacing X) 

The data of Table 7.42 are arranged in a two-way frequency dis- 

tribution table to provide a relatively easy basis for calculating b 

and r from their formulas as given above. 

The following computations are derived from the summaries in 

Table 7.42: 

S(fy-dy”) — (Zfy-dy)?/Zfy = 800.5714, and its square root = 28.65. 

D(fx-dx”) — (Sfx-dx)?/Zfx = 924.5679, and its square root = 30.41. 

D(fxy:dx-dy) — [(2fx-dx)(Zfy-dy)|/Zf = 448.2857. 

PROBLEMS 

1. Calculate the r for the data of problem 1, section 7.1. 
2. Calculate as in problem 1 for the data of problem 2, section 7.1. Given 

DX? = 18,484, 2XY = 727.99, ZY? = 28.6918. Ans. r = +.96. 
3. Compute 2(Y — Y)? for the data of problem 8, section 7.1 by using the for- 

mula: 2(Y — Y)? = (1 — r’)-D(y’). 
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4. In the formula of the previous problem, take =(y?) = 100 and plot the 

left member of this equation on the vertical scale against r on the horizontal 

scale. Take r from —1 to +1 by increments of 0.2. 

5. Reynolds, Bond, and Kirkland (USDA Tech. Bull. 861) give the following 

information on the relation between the cost of hauling logs and the length of 

the haul in miles over high-grade dirt or gravel roads: 

Miles hauled: dm Pl 2 3 4 5 6 7 8 9 

Cost/1000 cu ft ($): 0.35 0.44 0.53 0.62 0.71 0.81 0.90 0.99 1.08 

Miles hauled: 10 11 12 13 14 15 16 17 18 

Cost /1000 cu ft ($): 1.17 1.26 1.86 1.45 1.54 1.63 1.72 1.82 1.90 

Miles hauled: 19 20 

Cost/1000 cu ft ($): 2.00 2.09 

Compute a coefficient of linear correlation between length of haul and cost per 

1000 cubic feet of volume, and draw conclusions. Is this really a proper use of 

correlation analysis? Would a regression analysis be better? 

6. The persons mentioned in problem 5 gave the following data on the cost 

of producing 1000 cubic feet of hardwood logs in relation to the breast-high 

diameter of the logs: 

Diam. (in.): 10 11 12 13 14 15 16 17 

Cost ($): 12.70) © 12563 © 12738: 12,03" 11,62) 1132 11-10" “10.84 

Diam. (in.): 18 19 20 21 22 23 24 25 

Cost ($): 10.68 10.49 10.40 10.28 10.13 10.04 9.96 9.88 

Make a scatter diagram of these data, compute 7, and discuss it in terms of the 

scatter diagram. Given: =z? = 340; SXY = 3019.59; =(y?) = 14.3129. 
Ans. r = —.97. 

7. Compute sy.z and sy for the data of problem 5, with Y = cost per 1000 cubic 

feet. 
8. Calculate as in problem 7 for the data of problem 6. 

Ans. Sy.2 = 0.23; sy = 0.98. 

9. The Yearbook of Labour Statistics for 1943-1944 gives the following average 

daily wages of Chilean copper workers, in pesos: 

Year: 1929 1930 1931 1932 1933 1934 1935 1936 19387 1988 1939 

Wage: 11.89 11.26 11.75 11.33 12.80 13.31 14.77 16.37 21.31 23.20 25.34 

X(ay) = 155.74; DY = 173.33; D(Y)? = 2996.1887. 

Construct a scatter diagram of these data, calculate sy and sy.z, and discuss their 

sizes relative to the graph. 

10. Compute r for the data of problem 9—ignoring the fact that the year is 

not a random variable—and relate the size of the r to the appearance of the 

scatter diagram. Let X = 1 for 1929, 2 for 1930, etc. Ans. r = +.91. 

11. Estimate the average wage for the year 1940 from the data of problem 9, 

using r in the computation of the standard deviation of this estimate. 
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12. Solve problem 1, and then test Hy(p = 0) and draw appropriate conclu- 

sions. Ans. r = 999, y 10, reject Hy decisively. 

13. For the data of problem 6 compute the CI,, on 8, and then interpret this 

interval in a practical way. 

14. For the data of problem 6 compute the ClIgg on p and interpret this in- 

terval. Ans. —.96 = p= — 80. 

15. Suppose that two random samples of 15 observations each have resulted 

in the computation of 7, = .75 and 7, = 65. Test Ho(p,; = pg) and draw appro- 

priate conclusions. Also compute the CI, for each parameter, p, and py, and 

interpret these intervals. Can these interpretations be related to the test of 

Hat 

16. Draw a random sample of 30 observations from Table 7.21, compute the 

CI, on p, and discuss the meaning of this interval. 

17. Draw a random sample of 30 from Table 7.21 and test the hypothesis: 

H,(p = 0). How frequently would this procedure result in the rejection of Hy 

when p ~ 0 (as in this case) at the 5 per cent level of rejection? 

18. Draw two random samples of size 30 from Table 7.21 and test Ho(p, = pg), 
assuming that the first sample is from a bivariate normal population with p = p;, 

and similarly for the second sample and p = py. 

7.5 RANK CORRELATION 

Sometimes it is either necessary or convenient to correlate the 

ranks of X’s with those of their corresponding Y’s. It may be that 

the X’s and the Y’s are only ranks in the first place, or it may be 

merely convenient to use ranks instead of four- or five-digit decimals, 

for example. 

The practice of correlating ranks is both older and broader in its 

applications than is sometimes realized. Karl Pearson apparently 

was of the opinion that the idea of correlating ranks originated with 

Francis Galton during his studies of inheritance. Sometimes C. 

Spearman is credited with doing much to develop rank-correlation 

methods, especially as applied in psychological studies. It is his 

coefficient, r,, which will be discussed specifically below. The works 

of M. G. Kendall, and others, recently have increased the use of 

ranks in statistics to a considerable degree, but no attempt will be 

made herein to give an exhaustive treatment of this subject. The 

interested reader is referred to Kendall’s book, Rank Correlation 

Methods, published by Charles Griffin and Company, London. 

The calculation of the Spearman, or rank-difference, coefficient of 

linear correlation (7,) will be illustrated by means of the following 

pairs of ranks of students in two mathematics courses. Each pair 

gives the respective ranks of that student in statistics (X) and in 

mathematics of finance (Y). For example, the first student listed 
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ranked second in his class in statistics on the final examination, but 

ranked fifth in the final examination in mathematies of finance. 

Student 

(23ers 5 6 7% 8) 9 SOF aD aes 1415 16 

1083.15 S16. so “OP A2e 1s, 383 14 
Or 16.6 15°12) Seton ts) 114 
tee DoS 1) el 2 ee i 0 52s oO 

X (statistics): Zant ae 
Y (finance): ee: as 
Change in rank (d): 3 3 1 1 

It is seen from these data that there is a general but imperfect 
tendency for a student’s grades to rank about the same in both sub- 

jects, that is, a student’s grade in statistics has some relation to his 

grade in mathematics of finance. If the relationship is basically lin- 

ear, it can be measured rather simply and satisfactorily by means of 

the following formula for what is called the Spearman, or rank- 

difference, coefficient of correlation: 

6>(d”) 

where d is the difference between successive pairs of ranks (in the 

above illustration) or, in general, between the ranks of X; and Yj, 2 

varying from 1ton. For the data on ranks in statistics and in mathe- 

matics of finance, 

dj =2—5= -3, dg =7—4= +3,---, dig = 14—14=0; 

hence, 3(d?) = 92, and r, = 1 — 553/15(224) = 0.865. 

If there are ties for ranks, each X (or Y) so tied is given the mean 

of the ranks involved in the tie. For example, if two X’s are tied for 

ranks 1 and 2, each X is given a rank of 1.5; if three Y’s are tied 

among themselves for ranks 1, 2, and 3, each is considered to have 

rank 2. 

It can be shown that r, never has a size outside the range —1 to 

+1, regardless of the types of measurements involved or their sizes. 

It is seen from formula 7.51 that, if each Y has exactly the same rank 

as its corresponding X, all of the d’s are 0 and hence ¥(d?) = 0 and 

rg = 1. If the ranks are perfectly reversed (1 with 16, 2 with 15, 

etc:), 4%, = —1. 

Kendall discusses such matters as confidence intervals for rank- 

correlation coefficients in his book (reference above) as well as intro- 

ducing the coefficient tau (7), which he prefers to the Spearman co- 

efficient, 7;. These matters will not be discussed further here, but 
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the reader again is invited to consult Kendall’s book on this subject 

if interested. 

PROBLEMS 

1. Solve problem 5 of section 7.4, using the Spearman coefficient, r,. 

2. Solve problem 6 of section 7.4, using the Spearman coefficient, r,. 

Ans. r, = —1. 

3. Compute 7, for the data of problem 9, section 7.4, letting X = 1 for 1929, 

X = 2 for 1930, etc., and setting Y = wage. 

4. Compute the rank-difference coefficient of linear correlation for the pairs 

of observations in Table 7.22. Ans. 7, = 68. 

5. Make up a problem for which r, = +1, also for 7, = —1, and r, = 4+ 5. 

Then make up another set for each case different from each of the others. 

6. A sampling study in cereal chemistry gave the following product-moment 

linear correlations: 

Sample 1: nm, = 44, 71 = —0.93 

Sample 2: no = 44, re = —0.81. 

Test Ho(p, =p) and draw appropriate conclusions. 

Ans. y = 2.40; P= 017; reject Hy. 

7. Referring to problem 6, how small could the sample size become and still 

result in the rejection of H, at the 5 per cent point if the r’s stayed the same 

size? 

8. If r; = —.93, as in problem 7, could rz = —.90 ever result in the rejection 

of the Hy of problem 6 at the 5 per cent level for any sized sample? If so, 

what size would n, and n, have to be if they were equal? ANS. 1, = N5.= 229: 

fp 

9. It has been stated that each of the ratios (b — B)/sp and Va yn = 

follows the ¢-distribution with (n — 2) degrees of freedom under random sampling 

with a given n. Show that these two quantities are algebraically identical if 6 

= 0; and hence that testing Ho (8 = 0) is identical to testing Ho (p = 0). 

10. Suppose that the following results were obtained from two samples (in- 

volving different methods of some sort), each containing 20 observations: 

Method 1: 71 = .40, Ho (p1 = 0) accepted. 

Method 2: re = .60, Ho (p2 = 0) rejected, P < .01. 

Yet Ho (p1 = p2) is accepted readily because P > .40. 

Explain how such results are not contradictory. Also, determine what sizes n 

must have in order that each of these three hypotheses will be rejected at the 

5 per cent point if the correlations stay as they are. 

Ans. First Ho, n, = 25; second Hy, n, = 11; third Ho, ny = ng = 109. 

You are given the following two-variable frequency distribution table as the 

basis for solving problems 11 to 15 below. These data are derived from records 

of heights and weights of 9-year-old Kansas girls in certain schools. These data 
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were obtained from the Department of Home Economics, Kansas Agricultural 

Experiment Station, through the courtesy of Dr. Abby Marlatt. 

HEIGHT IN CENTIMETERS (X) 

Weight 
in kilo- 123 127 131 135 139 143 147 15] 

grams to to to to to to to to 

(Y) 126 130 134 138 142 146 150 154 

650-689 1 

610-649 1 

570-609 3 0 

530-569 0 4 

490-529 1 4 2 3 

450-489 1 4 9 4 

410-449 1 3 a 12 6 

370-409 1 5 6 14 13 5 

330-369 1 2 9 23 Al 14 a 

290-329 1 1 17 25 32 13 4 

250-289 1 15 32 19 5 

210-249 5 8 5 2 

Mean 

weight 246.6 259.9 285.4 306.8 336.5 378.7 409.9 458.1 

Standard 

deviation 29.1 Die 35.6 38.6 57.9 109.6 82.8 

11. Plot the mean weights above against the midpoints of the height classes, 

and decide therefrom if the assumption of a linear relationship between these 

two variables seems acceptable. 

12. Ignore any indication of non-linearity of trend and compute r and b by 

the methods of this chapter. What conclusions can you draw from these 

estimates? 

Ans bl—ONidate—e (2 

13. Compute the standard deviation not given in the above table by the 

method of Chapter 2 adjusted so as to take account of the fact that this is 

supposed to be a sample. 

14. Each height class has some kind of one-variable frequency distribution 

of the weights within the height class. Hence the above data constitute 

several samples of weights within height classes. Theoretically, these weight 

distributions within height classes must have equal population variances. Plot 

the standard deviations against the midpoints of the corresponding height 

classes and decide therefrom—if you can—whether or not that is a good as- 

sumption in this case. 

15. For the weight class 290 to 329 kilograms compute the coefficient of varia- 

tion for the heights, taking the point of view maintained in Chapter 2. 
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REVIEW PROBLEMS 

1. Define the term percentile and explain how it can be associated with the 

relative cumulative frequency distribution of a group of measurements. 

2. Calculate the arithmetic mean, standard deviation, and coefficient of varia- 

tion for the following data on the carotene content of pasture grasses, in milli- 

grams per gram: 

X: 0.22 0.13 0.23 036 044 026 0.11 0.23 0.26 

0.26 0.20 0.16 and 0.20 

3. What is the median carotene content for the data of problem 2? The 

mean deviation? 

4. Compute the geometric mean of 32 and 90. Of 2, 7, and 30. Of the X’s 

of problem 2. Ans. 53.8; 7.49; 0.22. 

5. You are given the following information regarding a group of 2000 weights 

(in grams): uw = 800, md = 700, Q, = 500, Q, = 900, extreme weights are 350 

and 1300; and the upper limits of the 15th, 35th, 80th, and 90th percentiles are 

400, 540, 950, and 1050, respectively. Sketch a graph of the r.c.f. curve. 

6. Given the following scores made on an Ohio Psychological Test, construct 

a frequency distribution with equal class intervals and compute uw and a. These 

scores are necessarily integers. 

83 69 30 26 53 60 44 36 68 71 55 52 45 62 42 47 

70 62 28 46 42 45 38 45 75 79 73 105 80 81 68 65 

48 52 38 77 26 71 31 24 51 55 67 41 36 67 106 37 

60 48 74 98 62 33 838 108 74 35 38 35 38 112 66 85 

48 44 100 55 77 78 21 94 35 75 71 69 61 50 70 47 

65 103 100 70 60 30 97 86 54 71 87 68 64 54 45 30 

52 49 78 51 91 63 45 46 90 42 68 34 79 76 39 38 

64 46 34 438 57 76 31 60 34 105 17 31 67 73 53 = 99 

68 54 37 99 43 24 50 58 104 64 54 38 96 53 57 35 
52 73 66 39 59 70 91 88 60 44 82 72 56 76 71 30 

59 50 100 77 129 46 86 88 36 78 61 58 40 37 65 72 

103 63 46 70 48 48 57 838 51 29 51 32 37 100 43 47 

53 41 107 115 64 59 26 48 40 61 37 70 49 62 88 42 

69 49 71 S57 87 63 101 69 50 75 69 48 59 49 96 67 

63 71 75 56 78 40 81 59 74 110 57 28 50 68 63 55 

61 30 95 116 75 71 31 34 77 60 84 68 70 36 65 27 

638 49 41 79 66 73 53 99 98 79 89 27 87 37 48 75 

80 109 43 46 91 77 61 44 58 53 45 87 96 64 84 87 
1146 35 105 438 75 22 37 49 56 60 74 38 38 28 57 29 

57 34 61 27 62 71 53 44 #88 76 61 45 45 41 33 57 

58 83 82° 67 75 29 71 77. 50’ 47 102 83 47. G48 257F 7s 
94 38 388 107 65 25 51 28 53 80 79 55 47 5% 76 49 

92 32 39 89 70 52 34 41 31 77 57 44 56 41 39 42 

81 70 68 69 80 48 46 38 83 65 33 57 14 42 32 78 

51 55 50 52 75 57 65 74 40 63 44 59 38 60 64 35 

50 65 37 76 82 100 48 69 47 54 33 35 61 74 37 37 

35 42 128 35 47 57 59 46 91 80 81 78 74 53 39 66 
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58 63 40 55 46 46 40 388 58 63 382 42 56 30 85 50 

Ae (4543) 55) 93) 3a) 600 72) 54.8" 66) 56° 36° 60) + 92)7:39 

31 81 41 38 28 62 51 86 388 61 48 85 53 82 26 32 

48 46 40 51 54 28 66 72 #48 75 69 69 82 56 30 57 

96 87 63 43 45 38 82 43 62 31 66 80 97 78 36 60 

OieeO7 2659. 400745. 78° 89". 28. Gi 79 53, 82°37 98 56 68 

66 33 36 48 80 72 51 54 30 34 36 77 54 63 66 45 

29 29 59 70 838 45 108 78 37 48 36 33 97 43 58 89 

60 67 55 64 72 99 91 75 46 52 59 39 18 54 91 76 

29 638 95 41 28 45 44 94 57 34 86 36 36 69 55 58 

67 86 82 42 48 62 109 48 81 
Ans. p 59.7; 6 = 21.9. 

7. Construct an r.c.f. curve for the data of problem 6 and obtain from it evi- 

dence regarding the normality of the distribution of these test scores. 

8. In what percentile would a person who made a score of 101 rank in the 

test of problem 6? Ans. 97th. 

9. What are the modal and the median test scores, respectively, for prob- 

lem 6? 

10. Calculate the median for the Ohio test scores of problem 6 by grouping 

them into about 12 classes of equal length. Ans. md = 516. 

11. The Year Book of Labour Statistics for 1943-1944 gives the following per- 

centages of unemployed in the United States and Sweden during 1941, by 

monthly averages: 

WES: 15.8 14.0 12.1 8.8 aie 2A eis VilRC) 

Sweden: ilyfaal 16.4 15.1 1S 1069 92383) 47.8: 25 

WSs 0.5 1-3 Bo 7 5.3 

Sweden: 0283 8.2 10.0 13.0 

In which country was the level of unemployment relatively more stable during 

that year? Justify answer statistically. 

12. The USDA publication, Agricultural Statistics, 1946, lists the following 

tax levies for the 48 states, in dollars per acre: 

Ol 0:89 0.59 2.73 le rl 1.06 2.26 1.05 0.73 

0.76 1.06 0.54 0.96 0.83 1.18 0.33 0.24 0.24 0.37 

0.40 0.33 0.81 0.27 0.16 0.40 0.24 0.18 0.62 0.37 

0343, 940-22" 1.0.45" 0232. 7)'0.33° ~ 0225 ~ 0.15 Ont 0.52 0.06 

0.20 0.04 0.08 0.85 O.17 0.43 0.27 1.00 

Compute the median tax per acre from an array of these data. Also compute 

the range and the midrange. Compare the latter with the median and draw 

any possible conclusions. Ans. md = 40; range = 2.69; MR = 1.38. 

13. Referring to the data of problem 12, in what decile would a state rank 

if its tax rate were 0.40 dollars per acre? What percentage of the states would 

have a higher rate? 

14. Suppose that a sample of 15 differences in yield between two varieties of 

corn grown side by side on 15 pairs of plots has been found to have an arithmetic 
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mean = 10 bushels per acre, with the standard deviation = s = 13 bushels per 

acre. Is one variety superior to the other or not? Give reasons for answer. 

Ans. t = 3.00; 14D/F, P = 01. 

15. Suppose that a large number of tractor gears has been produced and that 

90 per cent of them are classifiable as acceptable. If a sample of 10 gears is 

taken at random from this group, which of the following is more likely to 

occur? (a) The sample will contain less than 90 per cent “acceptable” and 

will, therefore, give a pessimistic picture of the quality of the whole batch. 

Or (b) the sample will contain at least 90 per cent “acceptable” and hence 

will, if anything, overestimate the quality of the batch. 

16. The depth of deterioration (in inches) is used as an index of the mer- 

chantable volume of timber remaining in fire-killed Douglas fir. Kimmey and 

Furniss (USDA Tech. Bull. 851) report a study made in western Oregon and 

Washington on such timber. The following data on old-growth trees were read 

from one of their graphs: 

Years after fire: 5 10 15 20 25 30 35 40 45 

Depth in inches: 2:2 3.6 4.8 6:3 Tat QO: 10.8 12420 sas 

Years after fire: 50 55 60 

Depth in inches: 15.5 17.5 19.8 

What do you conclude from a regression analysis is the average increase in 

depth of deterioration per decade? Given =XY = 5123.0, 2Y2 = 1617.09. 

Ans. 3.0 inches = point estimate; Cly;: 0.25= 6 = 0.35. 

17. Economists sometimes speak of commodities with elastic or inelastic 

prices, meaning generally that a commodity which is slow to change price in 

the face of changes in demand has an elastic price. If you adjust prices for 

inflation and for depression, and if demand is measured by per capita consump- 

tion of a given commodity, the definition of an elastic, or inelastic, price can 

be made more specific. For example, if the slope of the linear trend line re- 

lating adjusted price (Y) to consumption per capital (X) is less than unity, 

the price can be called elastic. If 8 is greater than 1, the price then is called 

inelastic. Given the following data regarding whole milk and cream, would 

the price be classified as elastic according to the above definition after due 

allowance for sampling error? 

Adjusted price 

($/cewt) 1.88 2.06 2.07 2.26 2.36 2.29 2.48 2.19 
Consumption 

per capita (cewt) 3.43 3.50 3.72 3.98 °4.12 4.32 4.20 4.00 

18. In the preceding problem a definition of an elastic price was based upon 

the size of the regression coefficient, 8. What information would it add to 

this discussion to include the size of the correlation coefficient? 

19. Following are adjusted farm beef prices (per hundredweight) and con- 

sumption per capita (hundredweight) for the 10-year period indicated: 

Year: 19387 1938 19389 1940 1941 1942 1943 1944 1945 1946 

Price: 6.67 6.67 7.52 7.79 8.32 8.63 8.62 7.94 8:71 9506 

Con- 

sump- 

tion: 0.55 0.54 0.54 0.55 0.60 0.61 0.58 0.55 0.59 0.61 
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Compute b and r, describe the price as elastic or inelastic, and bring the size of r 

into your discussion as suggested in problem 18. 

20. Given the following data on turkeys, solve as in problem 19: 

Year: 1930 1931 19382 1933 1934 19385 1936 1937 

Price; (cents/Ib)| ¥Y: - 1539" 18.4 14:8 13.8-.1631 20:1: 15.4 17.2 

Consumption (lb) X: 1.8 Mase! 2a 2.4 2.2 2.1 Zoll 2.7 

Year: 19388 1939 1940 1941 1942 1943 1944 1945 

Price (cents/Ib) Y: 17.9 16.5 15.9 18.8 22.2 23.6 25.0 24.2 

Consumption (Ib) X: 2.7 3.0 3.5 3.5 asa tf 30 3.3 4.3 

Year: 1946 1947 

Price (cents/Ib) Y: 22.6 18.7 

Consumption (Ib) X: 4.5 4.5 

Given: 2X2 = 175.38, =XY = 1041.46, =(y?) = 203.7361. 

Ans. Clg5: 1.0 < B < 3.4,7 = .58. 

21. Referring to problems 19 and 20, were the beef or the turkey prices rela- 

tively more stable during the period 1937 to 1946? Give statistical evidence 

for your answer. 

22. The earliness with which chickens obtain their feathers is economically 

important to persons who raise broilers because it affects the rapidity and 

cleanness of dressing. Early feathering, a sex-linked characteristic, is chiefly 

dependent upon one gene locus on the sex chromosome. Its inheritance can 

be described diagrammatically as follows: 

L 

il, = late-feathering female, 
none 

l 

2. = early-feathering female, 
none 

L 

3. 
L or 

L = late-feathering male, 

4. 

l 

5. 1 = early-feathering male. 

If late-feathering females are mated to early-feathering males, what is the 

expected number of: (a) late-feathering females among the offspring, (b) late- 

feathering males, (c) early-feathering chicks of either sex among 1000 offspring? 

Ans. (a) none; (b) 500; (c) 500, all females. 

23. Suppose that the late-feathering males in a flock can be assumed to have 

two-thirds of type Ll and one-third of type LL. If these males are mated to 
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early-feathering females, what is the probability that a fertile egg selected at 

random will hatch into an early-feathering chick, sex disregarded? 

24. Referring to problem 22, suppose parents 2 and 4 are mated. If 4 fertile 

eggs are to be incubated and all can be assumed to produce a live chick, what 

is the probability that at least one early-feathering chick of each sex will be 

hatched so that you could hope to develop a line of early-feathering chickens? 

Ans. 55/128. 

25. Some educators believe that tests can be developed which measure a 

persons general ability to think critically. No particular field of subject matter 

is involved. The following data are test scores derived from such a testing 

program. The students were asked—but not required—to indicate the level 

of their father’s annual income for the preceding year. All samples have n = 20 

and are assumed to be from normal populations. 

Freshmen Juniors and Seniors 

Men Women Men Women 

(1) (2) @) (yy <@) 6) (1) = (2) (3) = (8) 

41 44 34 43 4l 24 39 36 38 31 

31 42 39 44 36 38 3D 42 47 45 

363 39 42 20 32 34 32 26 33 

36 3l 41 26 26 35 25 40 34 29 

26 34 36 33 25 35 Ui 23 45 28 

25 28 35 41 34 20 ol 41 24 39 

34 29 36 41 38 26 44 31 39 25 

24 3D 33 28 42 32 45 32 43 41 

28. 29 PAL 35 33 20 48 35 35 44 

29 34 31 28 34 34 39 40 33 18 

28 38 33 28 28 31 37 36 31 35 

37 27 26 24 34 33 29 ou 27 46 

35 20 28 30 20 22 36 32 28 38 

32 42 35 36 45 24 35 45 29 49 

33 28 30 38 37 35 41 32 32 30 

35 36 32 38 32 29 35 43 33 42 

30 34 30 SI 315 28 26 38 37 40 

49 38 21 45 40 21 39 44 32 37 

38 42 25 40 24 37 on 35 40 36 

34 26 39 37 34 41 43 46 38 113) 

a 33.0) 33:4 32.2 Belt BPA) ABE® 36.2 37.0 34.6 35.0 

(1) = not over $5000. (2) = $5001 to $10,000. (8) = none stated. 

Use any or all of these data for problems 25 to 32 below. 

Do the two samples for freshmen men and women whose fathers earned not 

more than $5000 indicate that freshmen women think more critically than 

freshmen men, if this test is assumed to be reliable? 

26. Referring to problem 25, how do freshmen men compare with junior and 

senior men whose fathers are in the lower income group? Show how the G-test 

helps answer this question. Ans. G = 0.13; P > 10; accept Ho(up = Hy anag)- 
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27. Solve as in problem 26 for the higher income group of fathers. 

28. You might wonder if the group which refused (or neglected) to reveal 

the fathers income are from a different population as regards scores in critical 

thinking. Make a study of this matter for freshmen women by means of the 

G-test. Ans. Low income vs. undeclared: G = 0.26, P < 010. 

High income vs. undeclared: G = 0.09, P» .10. 

29. Do freshmen women from the higher income group belong to a population 

with a lower mean score than that of the freshmen women from the lower 

income group? Use the G-test. 

30. Solve problem 29, using the t-test instead of the G-test. (See other tables 

for these D/F.) Given: =x? for (1) = 804.80; for (2) = 953.80. 

Ajs..t.= 116538 D/h is) 05. 

31. Use the G-distribution to set a 90 per cent confidence interval on the true 

mean score of freshmen men whose fathers make $5000 or less per year. Does 

this interval make it possible to test the hypothesis Hg(u = 0)? 

32. Compute ClIy,9’s on the true means of the populations sampled by columns 

4 and 6 (from left) in the table above, and draw all appropriate conclusions. 

Ans. Col. 4: 33.2 = uw, =37.6. Col. 6: 27.7 =n". =32.1 by G-distribution. 

The following data record the thiamin-content, in micrograms per gram of 

meat (dry fat-free basis) in raw pork loin after various periods of storage (tem- 

perature not over 10°F). (These data made available through the courtesy of 

Dr. Beulah Westerman, Department of Foods and Nutrition, Kansas State 

College.) 

PERIOD OF STORAGE 

(Weeks) 

0 12 24 40 56 72 

126.88 81.47 Olibiy 104578 76.99 93.57 

98.83 69.14 69.58 69.04 79.22 94.25 

106.55 119.44 98.17 84.84 74.28 114.03 

91.73 75.65 81.49 105.20 121.34 99.65 
68.35 65.41 77.05 70.06 83.58 88.49 

95.41 111.89 102.48 111.17 97.14 a, 

UL G7 80.93 oD YA 86.30 97.21 116.62 

78.30 76.94 88 . 62 71.01 72.91 87.38 
118.50 111.26 102.31 100.85 65.03 91.94 

Mean 99.58 88.01 89.23 89.25 85.30 95.90 

range 658.53 54.03 25.38 42.13 56.31 39.43 

33. Compute through the G-distribution the CIgg on the true thiamin con- 

centration (micrograms per gram) in raw, unstored, pork loin produced under 

the conditions maintained during the sampling which produced the above data. 

Draw all appropriate conclusions. 

34. Solve as in problem 33 for raw pork loin stored 12 weeks. 

Ans. Clo): 76.9 = u =99.1 micrograms per gram. 

35. Does cold storage (at, or below, 10°F) of raw pork loin for 12 weeks re- 

duce the thiamin concentration, according to the evidence from the above 

data and the G-test? 
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36. Does the concentration of thiamin in raw pork loin increase between the 

fifty-sixth and the seventy-second week of cold storage (at, or below, 10°F), 

or is the observed average increase of 10.60 micrograms per gram probably just 

a sampling accident? Ans. G = 0.221, n = 9, P> .10; sampling accident. 

37. It appears from the sampling data above that the thiamin concentration 

in raw pork loin decreases during the first 12 weeks of storage, stays about the 

same through the fifty-sixth week of such storage, and returns to about the 

original concentration by the end of the seventy-second week of storage. Is 

this actually the case, according to G-tests, or could the observed results rea- 

sonably be assigned to sampling error? 

The following data are from the same source as those immediately above, 

and were taken during the same general experimentation. They record the 

riboflavin concentration in raw pork loin instead of the thiamin content just 

studied. These data are to be employed in the solution of problems 38 through 

43. 

PERIOD OF STORAGE 

(Weeks) 

0 12 24 40 56 72 

3.42 4.31 5.98 5.17 4.08 5.39 

2.86 3.52 4.84 4.19 3.22 5.02 

2.99 3.47 5.14 4.87 4.03 5.51 

2.24 3.47 4.7 4.55 4.19 5.03 

2.02 3.43 4.52 4.58 3.35 4.25 

2.17 4.07 2.91 4.28 3.35 4.18 

1.69 3.52 3.73 4.33 5.23 4.80 

2.09 3.48 3.61 4.29 4.91 3.51 

1.57 3.84 3.60 5.14 5.80 4.63 

Mean 2.34 3.68 4.34 4.60 4.24 4.70 

range 1.85 0.88 3.07 0.98 2.58 2.00 

38. Make a scatter diagram with Y = mean riboflavin concentration and 

X = weeks of storage. Is the trend in the bivariate population of X’s and Y’s 

probably linear for these times of storage? 

39. Would the above data cause you to accept, or to reject, the hypothesis 

that the riboflavin concentration in raw pork loin is increased by 12 weeks of 

storage at, or below, 10°F? 

40. Can the apparent drop in riboflavin concentration between the fortieth 

and the fifty-sixth weeks of storage reasonably be assigned to sampling acci- 

dents? Ans. G = 0.202, n =9, P> .10; accept Ho) (ugg = Mae) 

41. Use the ¢-distribution to set a 95 per cent confidence interval on the true 

riboflavin concentration in raw, unstored, pork loin of the kind sampled here. 

You are given that ZX = 21.05, and >X?2 = 52.3121. 

42. Solve problem 41 by means of the G-distribution, and compare the result 

with that obtained from the ¢-distribution. 

Ans. From 1G: 1945 =28; from t: 18 =") =239: 
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43. According to the evidence above, 40 weeks might be an optimum storage 

period for increasing riboflavin. The means for 0 and 40 weeks differ by 2.36. 

Use the G-distribution to place a CI); on the true gain due to 40 weeks of 

storage, and draw conclusions. 

44. A recessive lethal will destroy an organism only if carried by both chromo- 

somes of a pair. Suppose that /, is such a lethal, and that the following mating 

has been made: L,/, & L,l,. What is the probability that among the first 10 

offspring none will be killed by this lethal? Ans. 057. 

45. Suppose that a flock of chickens carries the lethal mentioned in problem 

44, and that’ the owner wishes to so select his future breeding stock that this 

lethal will disappear as rapidly as possible from his flock. He knows that some 

of his chickens are carriers, that is, are L,l,. New stock which he raises cannot 

be designated as L,L, or as L,l, until they have produced some (perhaps many) 

offspring. Hence new members of the flock will be mated to known L,1,’s and 
then will be eliminated from the flock if any of their offspring are victims of 

the lethal because this will show that they are carrying that gene. How many 

offspring should the owner see from a chicken without the appearance of the 

lethal before accepting that chicken as being L,L, and hence not a carrier of 

the lethal? Since he never can be absolutely positive, assume that he is willing 

to run a risk of 1 in 50 of reaching such a conclusion erroneously. 

46. Suppose that a trait which is of economic interest to a sheep breeder is 

determined by two genes, R and S, believed to be carried on two different 

chromosomes. It also is believed that R is completely dominant to r and 

similarly for S with respect to s. It is supposed that only those animals showing 

both dominant characteristics are of special interest. If the breeder’s hypotheses 

are correct, the mating RrSs &* RrSs should produce 9/16 of its offspring with 

both the R and the S genes, 3/16 with R but not S, 3/16 with S but not R, and 

1/16 with neither R nor S. Suppose that all four possibilities are distinguishable 

and that the following offspring have been recorded: 

82 are R and S (called RS); 36 are R but not S (called Rs); 28 are S but not R 

(called 7S), and 14 are neither R nor S (called rs). 

Given these results, would you accept the hypothesis stated above, namely, 

H)(9RS:3Rs:3rS:1rs)? Give reasons. 

Ans. x? = 3.644, 3 D/F, P» 11; accept Hp. 

47. What is the probability that both of two Cl,;’s on uw obtained from two 
random samples from the same normal population will include u? Since the 

uw would lie in the overlap of these two intervals (if both did include uw), and 

since this overlap would be shorter than either interval in many cases, and 

never longer, would you do a better job of estimating uw by using two random 

samples and considering this overlap? Would the probability of an error of 

the first kind be reduced if this process were used to test an Hy? Give reasons 

for answers. 

The following numbers are measurements of basal metabolism (in calories/ 

square meter of surface area/hour), and are to be used in answering problems 

48 to 53 below. These data were derived from measurements provided through 
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the courtesy of Mrs. Ada Seymour and the Department of Home Economics, 

Kansas Agricultural Experiment Station. All ages are to the nearest birthday. 

Clo5 on pu 

Age Class n byt mean, £ Sz 

10-11 45 42 .96-44.72 43.84 0.441 

12-14 46 37 .27-39 .33 0.516 

15-16 52 34.59 0.350 

17 65 33 .69-35.11 0.354 

18 90 32.59-33.77 0.295 

19 91 32.05-33.70 

20 73 32 .67-34.00 0.333 

21-25 175 32.82 0.185 

26-29 55 31.66-33.01 0.338 

30-34 73 31.90-82.92 32.41 

35-39 Dit 32. 36-33 .82 33.09 0.362 

40-44 53 32.00-33.38 0.346 

45-49 56 30.75-31 .97 0.304 

50-59 62 30.67-32.03 0.341 

60 and over 33 30 .06-32.12 

48. Fill in the two ClI);’s omitted above and state what information they 
yield. 

49. Graph the ClI,;’s versus age (on the horizontal axis) so as to produce a 

figure from which you could read, approximately, the confidence interval on 

true mean basal metabolism for any age, with a confidence coefficient .95. This 

is to be applied only to Kansans, of course. 

50. Compute the two missing standard deviations in the above table. 

51. Test the hypothesis that Kansas women between the ages of 35 and 39 

have a higher average basal metabolism than those in the age interval from 

30 to 34 years. 

52. According to the “Mayo Foundation Normal Standards,” published in 

July of 1936 in the American Journal of Physiology, the mean basal for 17-year- 

old females is 37.82 calories per square meter per hour. According to the table 

above do the Kansas girls fit that norm, or do they probably have a lower 

average metabolism rate? How confident can you be of your answer when 

allowance is made for sampling error in the above table, but none is allowed 

for the Mayo Standard? 

53. Assuming that the records for those persons in the age group 21 to 25 

years are normally distributed, estimate the range for this sample of 175. 

54. Suppose that 147 freshmen, 18 years of age, have taken a test designed 

to measure their ability to think critically, and have taken this test at the 

beginning and also at the end of their freshmen year. Their progress during 

the year is measured by the difference between these two scores. Given that 

LY = 712 and Sy? = 5567.40, test the hypothesis that freshmen of the sort so 

sampled make some improvement in critical thinking during the year in so 

far as this is measured by the test administered. Consider that ¢ has 30 D/F. 

Ans. t = 9.67, P nearly zero; » ¥ 0. 



Ch. 7 REVIEW PROBLEMS 239 

55. Suppose that two varieties of corn have been grown at the same experi- 

mental farm during the same year, and that the following plot yields, in pounds, 

have been obtained: 

No. 1: 12.1 128 152 140 135 136 143 129 1389 and 14.7 

No. 2: 146 129 156 143 148 134 138 153 160 and 145 

These field weights have been corrected for moisture content so that the variety 

yields per acre can be compared directly with these data. Use the G-test to 

test the hypothesis Hp(u, = “,), where the w’s are the true means of the 
varieties. 

56. The following data simulate those which might be obtained from an 

experimental comparison of the effectiveness of two fertilizers on the yield of 

orange trees in pounds per tree: 

Nitrogen (N): 74 89 90 72 78 76 84 79 81 76 and 8g0 

N+ Potash: 1038 102 97 80 87 92 91 78 8&8 89 and 92 

The two groups of trees (one for N and the other for N+P) were assumed 

with good reason to be on equivalent areas of land before the two fertilizers 

were applied. Test the hypothesis that the addition of potash does not affect 

yield. Ans. G = 0.488, n = 11, P = .002; reject hypothesis. 

57. Referring to problem 56, use the G-test to place a 92 per cent confidence 

interval on the true difference in average yield produced by adding potash 

under these circumstances, and draw appropriate conclusions. 

58. The following numbers are the pounds of tobacco per acre yielded, on the 

average, in the United States during the years indicated. Make a scatter 

diagram and decide if the trend toward increasing yield can be reasonably 

considered as linear if this is taken to be a sample. 

Year: 1932 1933 1934 1935 1936 1937 1938 1939 

Yield: 725 789 852 905 807 895 866 940 

Year: 1940 1941 1942 1943 1944 1945 1946 1947 

Yield: 1036 966 1023 964 1116 1094 1182 1142 

59. Referring to problem 58, again assume that this is a sample from a 

bivariate population and compute, and interpret, the CIgg on £, the true slope 

of the regression line. 

60. Solve as in problem 59, after substituting p, the true coefficient of linear 

correlation, for . Ariss Cli: 1-80 — f—=1.08: 

61. The following data are the numbers of sugar-maple trees tapped each 

year and the resulting pounds of sugar and sirup. If these data can be re- 

garded as a sample, did the production per tree change during this period in 

any orderly manner; and, if so, how? 

Year: 1929 1930 1931 1932 1933 1934 1935 

Trees 

(1000’s): 12,951 18,158 12,092 12,064 12,009 12,099 12,341 

Pounds 

(1000's): 3724 5856 3589 3748 3269 3488 4673 
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Year: 1936 1937 1938 1939 1940 1941 

Trees: 11,500 11,339 11,380 10,313 o gor 9,785 

Pounds: 3122 3276 3475 2881 3031 2384 

Year: 1942 1943 1944 1945 1946 1947 

Trees: 9,847 9,281 8,681 7,336 8 ,000 8,568 

Pounds: 3569 3133 3133 1228 1700 2344 

62. The cumulative and r.c.f. distributions given below are those of the sizes 

of peach orchards in the Sandhills of North Carolina during 1946. (Data from 

Technical Bulletin 91, North Carolina Agricultural Experiment Station.) Do 

the sizes of these orchards follow a normal frequency distribution quite well, 

or is their distribution far from normal? 

Number Number 

of Trees of Trees 

in Cumula- in Cumula- 

Orchard tive f NiCfe Orchard tive f PC. fi 

200-299 12 .03 200-1999 121 37 

200-399 23 .06 200-2999 153 .47 

200-599 47 213 200-4999 188 .60 

200-799 64 ile 200-9999 225 .79 

200-999 79 a22 all orchards 257 1.00 

63. Referring to problem 62, what is the median size of orchard? The lower 

limit of the second quartile? 

The following scores on certain academic aptitude tests and the student’s 

grade point average (GPA) at the end of the indicated year are to be the 

basis for answering the questions in problems 64 to 70, inclusive. These data 

constitute samples from classes taking a natural science comprehensive course 

at Kansas State College. 

FRESHMEN 

ACE-T “ACE-L. ACE-Q GPA ACE-T ACE-L ACE-Q GPA 

66 33 33 0.11 85 48 37 0.56 

101 57 44 0.96 89 53 36 0.68 

85 50 35 lesa 100 53 47 0.56 

96 56 40 ital 122 67 55 1.03 

115 66 48 1.30 117 74 43 230 

110 74 36 2.06 96 64 32 273i 

natal 70 41 0.06 90 58 32 0.93 

62 39 23 1.50 103 63 40 1.58 

74 48 26 0.77 41 26 15 0.04 

116 85 31 2.64 68 42 26 1.04 

102 62 40 1.14 125 74 51 2.24 

iol 69 44 0.81 111 71 40 0.77 

105 62 43 0.48 87 64 23 We 

81 49 32 22, 100 65 35 0.59 

113 61 52 2.59 114 7 43 2.19 

147 101 46 2.54 99 59 40 1.68 
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FRESHMEN (Continued) 

ACE-T ACE-L ACE-Q GPA ACE-T ACE-L ACE-Q GPA 

93 58 3D 0.97 115 60 55 1.39 

59 Bilt 28 0.50 ee 46 31 0.50 

705) 52 23 0.83 89 53 36 P47 

106 63 43 2: 137 81 56 1.38 

37 27 10 0.41 42 30 1174 0.96 

139 72 67 1.97 125 67 38 1.41 

126 80 46 1.83 

JUNIORS 

115 65 50 1.42 132 “al 61 1.00 

100 55 45 0.85 109 58 51 1.95 

107 55 52 aye 129 83 46 1.93 

108 72 36 1.64 87 50 BY 1.79 

115 64 51 0.81 80 45 35 1.35 

83 46 37 0.86 110 70 40 2.08 

121 al 50 Pealel: 96 47 49 1.60 

82 54 28 1.18 122 70 52 1.93 

64. Make scatter diagrams of the total ACE scores (ACE-T’s) on the hori- 

zontal axis and the GPA’s on the vertical for freshmen and also for juniors, 

using the same coordinate system but different symbols for the two classes. 

65. After solving the preceding problem, explain why you agree or disagree 

with each of the following statements: 

(a) For freshmen, you would expect to find a positive and useful linear cor- 

relation between these two variables; but there also are other important factors 

affecting the grade point average of a college student. 

(b) For the juniors represented by this sample, there is little, or no, relation- 

ship between the ACE-T score and the grade point average. 

(c) The freshmen and the juniors fit the same general relationship between 

ACE-T and GPA; the persons with especially low ACE-T scores simply have 

been eliminated by the time of the junior year. 

(d) Given that for freshmen the linear correlation between GPA and ACE-L 

score is .6, whereas that between GPA and ACE-Q is only 4 for these samples, 

it is concluded that whatever is measured by the L-score definitely is more 

important than whatever is measured by the Q-score. 

66. Make a scatter diagram for the ACE-L scores of freshmen against their 

GPA’s. And then do likewise for the juniors, using the same coordinate axes. 

Draw appropriate conclusions. 

67. Solve as in problem 65, parts (a) to (c), but use the results of problem 

66 and change ACH-T to ACE-L wherever used. 

68. Compute the Spearman rank-difference correlation, r,, for each scatter 

diagram of problem 64. Then consider problem 65 in the light of these cor- 

relations. Ans. For freshmen, r, = .59; for juniors, r, = .14. 
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69. Compute the Spearman coefficient of linear correlation for each scatter 

diagram of problem 66 and then solve problem 67 in the light of these results. 

70. Make a scatter diagram for the freshmen and for the juniors, as in prob- 

lem 64, but use the ACE-Q scores. Draw all appropriate conclusions. 
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SQuaREs, SQUARE Roots, AND RECIPROCALS 
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SquaREs, SquaRE Roots, AND RECIPROCALS 
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1/n 

.055 

.055 

.055 

.054 
054 
054 
.053 
.053 
.053 
053 
052 
.052 
.052 
052 
.051 
051 
.051 
.050 
.050 
.050 
050 
.050 
.049 
.049 
.049 
.049 
.048 
.048 
.048 
.048 
047 
047 
047 
047 
047 

n 

bo ow . 

CONAMEWNHODWONAUERWNHOODNAMRWNHOOWMDND 
bo on i=) 

Vn 

65 
66 
67 
68 
69 
.70 
al 
12 
a) 
74 
Bf) 
76 
SOU 
S7As) 
80 
81 
82 
83 
84 
85 
86 
87 
88 

on S i=) 

V 10n 



= 

RWNWEHOODNAMNPWNHOODNAMNRWNHOOMNAMRWNHOOMNAURWNHO OOnnnPP KBR KR P PEEP RPWWWWWWWWWWNNNNNNNNNDND FH RRR RRR Ee 

2 

0086 
0492 
0864 
1206 
1523 
1818 
2095 
2355 
2601 
2833 
3054 
3263 
3464 
3655 
3838 
4014 
4183 
4346 
4502 
4654 
4800 
4942 
5079 
5211 
5340 
5465 
5587 
5705 
5821 
5933 
6042 
6149 
6253 
6355 
6454 
6551 
6646 
6739 
6830 
6920 
7007 
7093 
7177 
7259 
7340 

3 

0128 
0531 
0899 
1239 
1553 
1847 
2122 
2380 
2625 
2856 
3075 
3284 
3483 
3674 
3856 
4031 
4200 
4362 
4518 
4669 
4814 
4955 
5092 
5224 
5353 
5478 
5599 
5717 
5832 
5944 
6053 
6160 
6263 
6365 
6464 
6561 
6656 
6749 
6839 
6928 
7016 
7101 
7185 
7267 
7348 

TABLES 

TABLE II 

MAnrTISsAsS FOR ComMMoNn LOGARITHMS 

4 

0170 
0569 
0934 
1271 
1584 
1875 
2148 
2405 
2648 
2878 
3096 
3304 
3902 
3692 
3874 
4048 
4216 
4378 
4533 
4683 
4829 
4969 
5105 
5237 
5366 
5490 
5611 
5729 
5843 
5955 
6064 
6170 
6274 
6375 
6474 
6571 
6665 
6758 
6848 
6937 
7024 
7110 
7193 
7275 
7356 

5 

0212 
0607 
0969 
1303 
1614 
1903 
2175 
2430 
2672 
2900 
3118 
3324 
3522 
3711 
3892 
4065 
4232 
4393 
4548 
4698 
4843 
4983 
5119 
5250 
5378 
5502 
5623 
5740 
5855 
5966 
6075 
6180 
6284 
6385 
6484 
6580 
6675 
6767 
6857 
6946 
7033 
7118 
7202 
7284 
7364 

247 
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TABLE II (Continued) 

TABLES 

MantTIssas FOR ComMMoN LOGARITHMS 

2 

7419 
7497 
7574 
7649 
7723 
7796 
7868 
7938 
8007 
8075 
8142 
8209 
8274 
8338 
8401 
8463 
8525 
8585 
8645 
8704 
8762 
8820 
8876 
8932 
8987 
9042 
9096 
9149 
9201 
9253 
9304 
9355 
9405 
9455 
9504 
9552 
9600 
9647 
9694 
9741 
9786 
9832 
9877 
9921 
9965 

3 

7427 
7505 
7582 
7657 
7731 
7803 
7875 
7945 
8014 
8082 
8149 
8215 
8280 
8344 
8407 
8470 
8531 
8591 
8651 
8710 
8768 
8825 
8882 
8938 
8993 
9047 
9101 
9154 
9206 
9258 
9309 
9360 
9410 
9460 
9509 
9557 
9605 
9652 
9699 
9745 
9791 
9836 
9881 
9926 
9969 

t 

7435 
7513 
7589 
7664 
7738 
7810 
7882 
7952 
8021 
8089 
8156 
8222 
8287 
8351 
8414 
8476 
8537 
8597 
8657 
8716 
8774 
8831 
8887 
8943 
8998 
9053 
9106 
9159 
9212 
9263 
9315 
9365 
9415 
9465 
9513 
9562 
9609 
9657 
9703 
9750 
9795 
9841 
9886 
9930 
9974 
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TABLE III 

FREQUENCY AND RELATIVE CUMULATIVE FREQUENCY DISTRIBUTIONS FOR THE 

STANDARD NORMAL POPULATION GIVEN FOR THE ABSCISSAS FROM A = —3.00 

To A = +3.00 

Abscissas Ordinates Abscissas Ordinates Abscissas Ordinates 

y Moi A y TC. r y HiCal 

—3.00 .004 .001} —1.14 1208) 127 | =—0-30 381 382 
—2.90 .006 .002} —1.12 218 .131| —0.28 384 =. 390 

—2.80 .008 .003} —1.10 .218 .136} —0.26 386 =. 897 
—2.70 .010 .003} —1.08 223 =.140} —0.24 388 .405 

—2.60 014 =.005} —1.06 .227. ~=.145| —0.22 389° ~=6.. 418 
—2.50 .018 .006} —1.04 .232 .149} —0.20 sol .421 

—2.40 1022, .008} —1.02 204 .154) —0.18 .393 .429 

—2.30 .028 .011} —1.00 241 .159| —0.16 .394 =. 436 
—2.25 .032 .012} —0.98 .247 =.164} —0.14 .095 836.444 

—2.20 .035 .014]} —0.96 .252 = =.169} —0.12 396. .452 

—2.15 .040 .016} —0.94 .256 .174| —0.10 .397 ~=—. 460 

—2.10 .044 .018} —0.92 .261 .179| —0.08 .398 .468 

—2.05 .049 .020) —0.90 .266 .184} —0.06 398  .476 

—2.00 .054 .023} —0.88 a2 Tall .189} —0.04 .399 .484 

—1.95 .060 .026] —0.86 .276 =©.195 | —0.02 .399 .492 

—1.90 .066 .029} —0.84 .280 200 0.00 .399  .500 

—1.85 .072 .032) —0.82 .285 .206| +0.02 .399  .508 

—1.80 .079 .036} —0.80 2950p e22 0.04 3992. 2510 

—1.75 .086 .040} —0.78 294 $218 0.06 .398 .524 

—1.70 .094 .045| —0.76 .299 .224 0.08 5308s) 082 

—1.66 101 .048 | —0.74 1303 © -230 0.10 397 =. 540 

—1.62 107 9 2053) —0.72 308 =. 236 0.12 .396 6.548 

—1.58 114 =.057} —0.70 Pola ae 2A 0.14 00a, 256 

—1.54 2122°) »2062; —068 Olva ets 0.16 .394 §.564 

—1.50 130 =.067| —0.66 Ryall .255 0.18 eS. Gyr 

—1.48 .133 »=—.069} —0.64 FOLOE DO 0.20 .391 .579 

—1.46 om. O72) —0262 829 268 Of22 .389 =. 587 

—1.44 .141 .075| —0.60 oon more 0.24 388 =. 595 

—1.42 .146 = .078} —0.58 sap Aaa 0.26 3886 =. 6038 
—1.40 150 = .081} —0.56 041 .288 0.28 384 =. 610 

—1.38 154 =.084} —0.54 045 =. 295 0.30 .381 .618 
—1.36 158 .087} —0.52 348 .302 ORS2 .379 =. 626 

—1.34 163 .090} —0.50 2002 — .309 0.34 soli Odo 
—1.32 167 = .093|) —0.48 356). 316 0.36 .ot4 .641 

—1.30 171 = .097| —0.46 #359 323 0.38 SOA .648 
—1.28 176 ~=.100| —0.44 362 ~—- 330 0.40 068 .655 

—1.26 180 .104} —0.42 (O00 oot, 0.42 5065) 2603 
—1.24 185 .107} —0.40 f308 2345 0.44 .362  .670 

—1.22 .190 .111} —0.38 JoTl .352 0.46 009) ond 
—1.20 .194 .115} —0.36 314 = 359 0.48 306 =. 684 

—1.18 .199 .119} —0.34 sai aatey/ 0.50 302 @©=—- . 691 

—1.16 .204 =.123} —0.32 Oto) Ore: ORaz .348 .698 
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TABLE III (Continued) 

FREQUENCY AND RELATIVE CUMULATIVE FREQUENCY DISTRIBUTIONS FOR THE 

STANDARD NorRMAL POPULATION GIVEN FOR THE ABSCISSAS FROM A = —3.00 

To A = +3.00 

Abscissas Ordinates Abscissas Ordinates Abscissas Ordinates 
y TJ. r y "C.J. y mes. 

0.54 pe Ep ee 75) 1.04 EVA tii 1.54 122) P0388 
0.56 SO Alte yale 1.06 SPA Sumesctity 1.58 114 We .3043 
0.58 Sool LO 1.08 5223.) 7.860 1.62 107 *~ 2947 
0.60 Bea ph» Maes 110 (218) 4.864 1.66 101 »ees2 
0.62 SOLOS ston 1.12 eos 2869 170 .094 °° 2955 
0.64 aya a arate) 114 .208 .873 Love .086 .960 

0.66 JOnk 204d eG C204 be Ste 1.80 .079 .964 
0.68 pOlidan een Pets .199 .881 1.85 .072 .968 

0.70 sol2y "2758 120 194 .885 1.90 .066 .971 
OZ 208 .764 L322 .190 .888 1.95 .060 .974 

0.74 RUBY Trial) eet 2185.7 4893 2.00 054.71 aoRT 

0.76 220007 2016 1.26 180  .896 2.05 .049 .980 
0.78 .294 .782 1.28 .176 ~—-. 900 2:10 .044 .982 
0.80 .290 .788 30 171 ~-.903 PAIS, .040 .984 

0.82 .285 . .794 le32 ALO fae 907 2220 .035  .986 
0.84 .280 = .800 1.34 16322910 2.25 .032 .988 

0.86 210 = a O00 1336 5 Sigaess Ola 2.30 .028  .989 
0.88 Ql eee Ole 1.38 154 916 2.40 .022 .992 

0.90 2600Peee LG 1.40 150 .919 2.50 .018 .994 
0.92 10) All iy 14608 O22 2.60 014 .995 
0.94 .256'' £826 1.44 AY 2925 2.70 .010 .997 
0.96 i202 |. Sal 1.46 37%. 3928 2.80 .008 .997 
0.98 Ah ae SoO 1.48 1335) 2931 2.90 .006 .998 

1.00 S24 VSS4l. 1.50 p1a0 es 2935 3.00 .004 .999 

2 FIA E Ves) 
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TABLE IV 

251 

RELATIVE CUMULATIVE FREQUENCY DISTRIBUTION OF t SHOWING THE PrRo- 

PORTIONS OF ALL SAMPLING ¢; WITH THE SAME DEGREES OF FREEDOM WHICH 

Are Less THAN THE ft SHOWN IN COLUMN 1 ON THE LEFT 

Degrees of Freedom 

| 

SOP EE NNNNNWWHwW AROS 

SCONWDKRODRBRNODALNOBDOAND NRAWDONRDDWDONROWDONLDONOO 

on NI NI 

TIP ROWWONNNNNE SHEE OoOSOSSOSoS 
.999 
.999 

i) 10 11 12 14 

001 .000 .000 .000 
.001 .001 .001 .001 .000 
.002 .002 .001 .001 .001 
.004 .003 .003 .003 .002 
007 .007 .006 .006 .005 
.010 .009 .009 .008 .007 
014 .0138 .012 .012 .010 
.020 .019 .018 .017 .015 
028 .026 .025 .024 .023 
.038 .037 .035 .034 .033 
053.051 .050 .049 .047 
072 .070 .969 .068 .066 
098 .096 .095 .093 .092 
130, 129 128 3127 .125 
olen h70') 169 169 S167 
222 .221 .220 .220 .219 
.282 .281 .280 .280 .279 
349 .349 .348 .348 .348 
423.423 .423 .422 .422 
.500 .500 .500 .500 .500 
O17 .577 = .577 578.578 
651 .651 .652 .652 .652 
CilSe (9) (20) 27209 72 
5118319 2100) 180-785 
.828 .830 .831 .831 .833 
870 .871 .872 .873 .875 
902 .904 .905 .907 .908 
928 .930 .931 .932 .934 
947 .949 .950 .951 .953 
.962 .963 .965 .966 .967 
972 .974 975. .976 .977 
980 .981 .982 .983 .985 
.986 .987 .988 .988 .990 
-990 .991 .991 .992 .993 
993 .993 .994 .994 .995 
996 .997 .997 .997 .998 
998 .998 .999 .999 .999 

16 

.000 
001 
.002 
004 
.006 
.010 
.014 
.021 
031 
045 
.065 
.090 
.124 
166 
.218 
.278 
347 
422 
.500 
578 
.653 
122 
182 
834 
.876 
.910 
935 
.955 
.969 
979 
986 
.990 
994 
.996 
.998 
999 

18 

.000 
001 
.002 
.004 
006 
.009 
014 
021 
.030 
044 
.064 
.089 
123 
.165 
217 
.278 
347 
422 
.500 
578 
653 
722 
783 
835 
877 
911 
.936 
.956 
.970 
979 
986 
991 
994 
.996 
.998 
999 

20 

.000 
001 
001 
004 
.006 
.009 
013 
.020 
.030 
.043 
.063 
.088 
122 
165 
.217 
.278 
347 + 
422 
.500 
578 
653 
122 
.783 
835 
878 
912 
937 
957 
970 
.980 
.987 
ool 
.994 
996 
.999 
999 

999 .999 .999 .999 1.000 1.000 1.000 1.000 
-999 1.000 1.000 1.000 

1.000 

22 

000 
001 
003 
005 
.008 
013 
019 
.029 
.043 
.062 
.088 
121 
164 
.216 
277 
347 
422 
.500 
578 
653 
723 
784 
.836 
879 
912 
.938 
957 
ara 
981 
987 
.992 
995 
.997 
999 

26 

000 
001 
003 
005 
008 
012 
019 
.028 
.042 
061 
087 
121 
163 
216 
277 
346 
421 
.500 
579 
.654 
123 
784 
837 
879 
913 
.939 
958 
972 
981 
.988 
992 
995 
997 
999 

30 

.000 
001 
003 
004 
.007 
O11 
.018 
027 
041 
.060 
086 
.120 
163 
.215 
207 
346 
421 
.500 
O79 
654 
723 
785 
.837 
.880 
.914 
.940 
.959 
973 
.982 
.989 
.993 
.996 
.997 
999 

1.000 1.000 1.000 

Some FREQUENTLY USED ?’8 CORRESPONDING TO PRE-ASSIGNED PROBABILITIES 
OF OCCURRENCE DURING RANDOM SAMPLING 

Degrees of Freedom 

Pie ty) 8 9 10)>01r «612> 514 16 18 ##%20 22 26 30 

.100 80, 18d; 181 S80 178 76 Wa  1e7d 172. 1:72) 1.71) 170 

.050 2.31 2.26 2.23 2.20 2.18 2.14 2.12 2.10 2.09 2.07 2.06 2.04 

.010 3.36 3.25 3.17 3.11 3.06 2.98 2.92 2.88 2.84 2.82 2.78 2.75 
001 5.04 4.78 459 4.44 432 4.14 402 3.92 3.85 3.79 3.71 3.65 
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TABLE V 

RELATIVE CUMULATIVE FREQUENCY DISTRIBUTION OF x? SHOWING PROPOR- 
TION oF ALL SAMPLING x2 WITH SAME DEGREES OF FREEDOM WHICH ARE 

GREATER THAN THE x? SHOWN ON THE LEFT 

Degrees of Freedom Degrees of Freedom 

x? a 2 3 xe il 2 3 

0.40 .53 6.00 .014 .050 abit 
0.50 .48 6.25 .012 .044 .10 
0.60 .44 6.50 .O11 .039 .090 

0.70 .40 6.75 .009 .034 .082 
0.80 Atl 7.00 .008 .030 .072 

0.90 «o4 E50 .006 .023 L057 
1.00 coe 8.00 .005 .018 .046 
1325 26 so 8.50 .003 .014 .036 
1.50 222 Ag 9.00 .003 .O11 .029 

1:75 .19 42 9.50 .002 .009 .024 
2.00 .16 Sil 10.00 .002 .007 .019 
Degas Ais} foo .50 10.50 .001 .005 1015 

2250) gil .29 47 11.00 .000 .004 .012 
DetD .10 SoD 43 11.50 .003 .010 
3.00 .084 22 239 12.00 .002 .007 
B45) O71 AH) 35 256) .002 .006 

3.50 .061 .18 By? 13.00 .002 .005 
onto .053 .15 .29 13.50 .001 .004 

4.00 .046 ls} .26 14.00 .001 .003 
zs) .039 aly 24 14.50 .0O1 .002 
4.50 .034 10 Al 15.00 .001 .002 
AO .029 .092 .19 15.50 .000 .002 

5.00 a025 .082 al? 16.00 .001 
e25 .022 .073 515 17.00 .001 

5.50 .019 .064 .14 18.00 .000 

Eyer 
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VALUES OF THE FUNCTION, y = (1/V 2m )-e-” 

.073 

TABLES 

TABLE VI 

Ww 

FPWWWWWNNNNNNNNNNHE CSCWODFNOCOMOANOOHWNRH OOO 

y w y 

066 4.2  .006 
060 4.4 005 
054 4.6 004 
049 4.8 003 
044 5.0  .003 
.040 5.2  .002 
.036 5.4 .002 
033 5.6  .001 
.030 5.8 001 
.027 6.0 001 
024 6.2 001 
022 6.4  .001 
020 6.6  .001 
016 6.8 — .000 
013 
O11 
009 
.007 

253 
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TABLE IX 

PROBABILITY DisTRIBUTION OF G = | @ — w|/(RANGE) FOR A SAMPLE OF Sz 
n FROM A NORMAL POPULATION 

Probability that G will be greater than table value 
Sample : 
Size, n 

.100 .050 .020 .010 .002 001 

2 3.157 6.353 15.910 31.828 159.16 318.31 
3 0.885 1.304 2.111 3.008 G27 9.58 
4 0.529 Oar ki 1.023 1.316 2.29 2.85+ 
5) 0.388 0.507 0.685+ 0.843 1.32 1.58 
6 0.312 0.399 0.523 0.628 0.92 1.07 
ff 0.263 0.333 0.429 0.507 Wegill 0.82 
8 0.230 0.288 0.366 0.429 0.59 0.67 
9 0.205 0.255 0.322 0.374 0.50 0.57 

10 0.186 0.230 0.288 0.333 0.44 0.50 
11 0.170 0.210 0.262 0.302 0.40 0.44 
12 0.158 0.194 0.241 0.277 0.36 0.40 
13 0.147 0.181 0.224 0.256 0.33 0.37 
14 0.138 0.170 0.209 0.239 0.31 0.34 
15 0.131 0.160 0.197 0.224 0.29 0.32 
16 0.124 0.151 0.186 0.212 0.27 0.30 
17 0.118 0.144 Oni 0.201 0.26 0.28 
18 OL113 0.137 0.168 0.191 0.24 0.26 
19 0.108 0.131 0.161 0.182 0.23 0.25+ 
20 0.104 0.126 0.154 0.175— 0.22 0.24 

The above table was derived from Table 9, page 66, vol. 34, Biometrika, in 
an article by E. Lord, with the permission of the publishers of Biometrika. 
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TABLE X 

PROBABILITY DISTRIBUTION OF G = | 1 — to | /(MEAN RANGE) FOR Two 

SamMpLes EAcH OF SIZE 2 FROM THE SAME NORMAL POPULATION 

Probability that G will be greater than tabular value 
Sample 
Size, n 

.100 .050 .020 .010 002 

2 2.322 3.427 5.503 7.916 7.81 

3 0.974 12272 1.715— 2.0938 3.27 
4 0.644 0.813 1.047 1.237 Lda 

5 0.493 0.613 0.772 0.896 Pal 
6 0.405+ 0.499 0.621 0.714 0.94 
a 0.347 0.426 0.525+ 0.600 Onis 
8 0.306 0.373 0.459 0.521 0.67 
9 0.275— 0.334 0.409 0.464 0.59 

10 0.250 0.304 Ves ye 0.419 0.53 
11 0.233 0.280 0.340 0.384 0.48 

12 0.214 0.260 0.3815+ 0.355+ 0.44 

13 0.201 0.243 0.294 0.331 0.41 

14 0.189 0.228 0.276 0.311 0.39 

15 0.179 0.216 0.261 0.293 0.36 
16 0.170 0.205— 0.247 0.278 0.34 
17 0.162 0.195+ 0.236 0.264 0.33 
18 0.155-+- 0.187 0.225+ 0.252 0.31 

19 0.149 0.179 0.216 0.242 0.30 
20 0.148 0.172 0.207 0.232 0.29 

O01 

Sto OO Ora OOS (OOO Se er 

The above table was derived from the same article as Table IX, also 
the permission of the publishers of Biometrika. 
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Index 

A-B blood groups, 56 

ACE test scores, 10, 11, 16, 28, 25, 41 

Addition theorem, for the chi-square 

distribution, 141 

for probabilities, 53 

Approximation of binomial distribution 

by normal, 87, 101 

Arley, Niels, 75, 242 

Atkeson, F. W., 140 

Averages, arithmetic mean, 13 

geometric mean, 20 

harmonic mean, 21 

median, 19 

midrange, 12 

mode, 20 

properties of, 12 

Barmore, Mark, 221 

Bartley, E. E., 181 

Batting averages, 47, 93 

Binomial coefficients, 65, 254 

Binomial frequency distribution, 77, 79 

Binomial probability function, 68 

Bivariate population, 198 

Blood factors, A-B, 56 

M-N, 60 

P, 60 

Rh, 60 
Buch, K. Rander, 75, 242 

Central 95 per cent, 124, 125, 126 

Chi-square, empirical distribution for 1 

DYE. N33 
probability distribution table for 1, 2, 

and 3 D/F, 252 

use in testing Ho(p = po), 132 

use in testing Ho(p1 = pe), 136 

use in testing Ho(pi:pe:p3 = 

Pr’: pe! :p3'), 144 
use with contingency tables, 143 

Clp;, 124 

Classes of events, 51 

Class interval, length of, 23, 28 

midpoint of, 28 

Clopper, C. J., 126 

Coefficient of correlation, product-mo- 

ment, 217, 224 

rank, 227 

Coefficient of linear regression, 199, 224 

Compound probability law, 55 

Confidence coefficient, 122, 165, 214 

Confidence interval, based on G-distri- 

bution, 183 

length of, 169 

observed examples of, 166 

on the correlation coefficient, p, 220 

on the mean, pu, 165 

on #1 — pg, 179 

ON py-z, 213 

ON py-x,;, 214 

on the proportion, p, in a binomial 

population, 124, 127 

on the regression coefficient, 8, 211 

Contingency tables, 136, 148 

Control limits, 148 

Correlation coefficient, computation of, 

217, 224 

hypotheses about, 218 

product-moment, 217 

rank, 227 

Cumulative distribution curve, 23, 25 

Cumulative frequency table, 23, 25 

Curvilinear trends, 196, 197 

Decisions based on samples, 114 

Degrees of freedom (D/F), for chi- 

square, 134, 142 

for estimate of correlation, 209, 218 

for estimate of regression, 209, 211 

for estimate of standard deviation of 

regression, b, 211 

259 
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Degrees of freedom (D/F), for estimate 

of standard deviation of X, 162 

for estimate of variance about trend 

line, 210 

for t-test, 163, 178, 211, 218 

Deviations from the mean, 14 

Dice, classes of events, 52 

Difference between two means, 176, 179 

Distribution, binomial frequency, graph, 

78 
cumulative, 23, 25 

normal frequency, curve, 91, 93 

normal frequency, formula, 90, 92 

normal probability, curve, 96 

normal probability, table, 249 

of chi-square, 133, 252 

of correlation, 7, 218 

of difference between means, 71 — 72, 

176 
of mean, Z, 155, 157, 158 

of t, 162, 251 
of z = (1/2) loge [1 +7)/(1 — 7], 219 

standard normal, 92, 249 

Dixon, Wilfrid J., 48, 112, 152, 191, 242 

Dot (Scatter) diagram, 194 

Efficient estimates, 123, 160 

Elastic prices, 232 

Empirical distribution, of chi-square, 133 

of correlation coefficient, 218 

of difference between sample means, 

176 
of sample means, 155, 157 

of t, 9 D/F, 162 

of z, 219 
Error of the first kind, 116 

Error of the second kind, 116 

Estimated average Y for a given X, 204, 

206 
Estimation, of the linear correlation co- 

efficient, 217 

of the linear regression coefficient, 

205, 211 
of the mean of a normal population, 

160 
of the mean Y for a given X, 204, 212 

of the percentage, p, for a binomial 

population, 122 

of the standard deviation, about the 

linear trend line, 210 

INDEX 

Estimation, of the standard deviation, 
of the regression coefficient, b, 211 

of the sample mean, 161 

of X, 160 

point, 122 

unbiased, 122 

Events, dependent, 55 

exhaustive set of, 51 

independent, 54 

mutually exclusive, 53 

Expected gain or loss, 71 

Expected number, 70 

Factorial n, 64 

Finney, K. F., 221 

Fisher, R. A., 5, 219 

Foster, Jackson W., 45 

Frequency curve for, chi-square with 1 

D/F, 133 

cumulative standard normal, 96 

cumulative ¢ with 4 and 24 D/F, 163 

sample correlation coefficient, 10 D/F, 

219 

standard normal, 93 
t with 9 D/F, 162 

Frequency distribution tables, 23 

Freund, John E., 48, 242 

G-test for, one random sample, 182 

two random samples, 183 

Galileo, 3 

Galton, Sir Francis, 3, 226 

Geometric mean, 20 

Gosset, William Seely (“Student’’), 4 

Grading on the curve, 97 

Grant, Eugene L., 152 

Graunt, John, 2 

Guinea pig gains, table, 39 

Guinea pig weights, table, 38 

Hald, A., 112, 191, 242 

Harmonic mean, 21 

Ibsen, H. L., 38 

Independent events, 54 

Inference, statistical, 114 

Interval estimate, of average Y for a 

given X, 213 

of correlation coefficient, 220 

of population mean, 164, 166 
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Interval estimate, of proportion, p, 123 

of regression coefficient, 211 

of true Y for the 7th individual with 

a given X, 214 

Kendall, M. G., 226, 228 

Kenney, John F., 28, 48, 75, 112 

Law of compound probability, 55 

Law of total probability, 53 

Lerner, I. M., 139 

Levy, H., 75 

Lord, E., 256 

Marlatt, Abby, 229 

Massey, Frank J., 48, 112, 152, 191, 242 

Mean, arithmetic, 13, 155 

distribution of, 155, 157 

geometric, 20 

harmonic, 21 

of binomial distribution, 84 

of population, 13 

of sample, 155 

standard deviation of, 161 

variance of, 161 

Mean deviation, 18 

Median, 19 

Median, for binomial distribution, 82 
for normal distribution, 92 

Method of least squares, 205 

Midpoint of class interval, 28 

Midrange, 12 

M-N blood groups, 60 

Mode, 20 

of normal distribution, 92 

Multiplication of probabilities, depend- 

ent events, 55 

independent events, 54 

Mutually exclusive events, 53 

n factorial, 64 

Neiswanger, W. A., 48 

Neyman, Jerzy, 5, 152, 191 

Normal approximation to a binomial 

distribution, 86 

Normal distribution, cumulative (r.c.f.) 

curve for, 96 

curve, 91, 93 

equation for, 90, 92 

estimates of parameters, 159 

Normal distribution, for any mean and 

standard deviation, 90 

mean of, 90 

median of, 90 

mode of, 90 

standard deviation of, 90 

standardized, 92, 93, 96 

Normal-arithmetic paper, construction 

of, 106 

use in study of normality, 106 

Observed confidence intervals on popu- 

lation mean, 166 

Ogive, 26 

Opinion polls, 113, 118 

Ordered array, 19 

p, confidence interval for, 123 

tests of hypotheses regarding, 131 

P factor in bloods, 60 

Parameter, 114, 122, 153, 159, 199, 217 

Pearson, E. 8., 5, 126 

Pearson, Karl, 3, 5, 226 

Pillar. Ke Ss C.183 

Pine, W. H., 111 

Point estimate, #, 122, 123 

x, 160 

Political arithmetic, 2 

Probability, addition formula, 53 

conditional, 55 

determination of, 51 

multiplication formula, 55 

of error of the first kind, 116 

of error of the second kind, 116 

Questionnaire, mailed, 119 

r, computation of, 217, 224 

observed distribution with 10 D/F, 

218, 219 

Random sampling, 48, 156 

Range, 149, 182 

Rank correlation coefficient, 227 

Ranked data, 226 

Rectification of a logarithmic curve, 103 

Region of rejection, 131 

Regression coefficient, computation of, 

205 

interpretation of, 211 

test of significance for, 211 
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Relative cumulative frequency curve, 

for binomial distribution, 81, 82 

for chi-square distribution, 133 

for normal distribution, 96 

for ¢ distribution, 162, 163 

Relative variability, 40 

Rh factor in bloods, 60 

Roth, L., 75 

Sample, 7, 43 
Sampling distribution of, chi-square, 

133, 252 
correlation coefficient, 219 

mean, 155, 157 

t, 161, 162, 251 
Sampling public opinion, 113, 118 

Scatter (Dot) diagram, 194 

Semi-log paper, construction of, 103, 

104 
use, 104, 105 

Seymour, Ada, 238 

Single events, defined, 50 

with equal relative frequencies, 50 

with unequal relative frequencies, 56 

Skewed distributions, 32 

Slope of true regression line, 199, 205 

Snedecor, George W., 152, 191, 242 

Spearman, C., 3, 226 

Staatenkunde, 2 
Standard deviation of, a measurement, 

X, 15 
binomial distribution, 84 

difference between two means, 177 

estimated average Y for a given X, 

212 
estimated particular Y for a given X, 

213 
fraction, r/n, 84 

regression coefficient, 211 

sample mean, 157, 158, 161 

INDEX 

Standard deviation of, Y after linear 

adjustment for X, 210 
2, 219 

Standard normal units, 92 

“Student,” 4 

t, 161, 178, 211, 213, 214, 218, 222 

degrees of freedom for, 163 

observed distribution, 9 D/F, 162 

r.c.f. distribution, 162, 163 

table of probability distribution, 251 

Tallying frequency distributions, 24 

Tau, 7, 227 

Taylor, L. W., 139 

Testing hypotheses regarding, correla- 

tion coefficient, 218, 222 

difference between correlation coeffi- 

cients, 222 

difference between means, 176 

difference between regression coeffi- 

cients, 222 

mean, 170 

regression coefficient, 211 

theoretical proportions in a binomial 

population, 130 

Tippett, L. Hi. C., 152 

Transformation of the correlation coef- 

ficient, 219 

Unbiased estimate, 122, 161 

Variance, 15 

Waugh, Albert E., 48, 112 

Weiner, A. §., 151 

Westergaard, Harald L., 1 

Westerman, Beulah, 235 

Wise, George, 17 

Woodruff, H. Boyd, 45 

z-transformation, 219 
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