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FROM THE AUTHOR'S PREFACE TO THE THIRD
EDITION.

KuMEROUs additions have been made to Section IX., which

treats of multiply connected surfaces. If Riemann's fundar

mental proposition on these surfaces be enunciated in such

a form that merely simply connected pieces are formed by

both modes of resolution,— as is ordinarily, and was also in

§ 49, the case,— then it must be supplemented for further

applications. Such supplementary matter was given in § 52

in the classification of surfaces, and in § 53, V. But if we

express the fundamental proposition in the form in which

Riemann originally established it, in which merely simply

connected pieces are formed by only one mode of resolution,

while the pieces resulting from the other mode of resolution

may or may not be simply connected, then all difficulties are

obviated, and the conclusions follow immediately without

requiring further expedients.

This was shown in a supplementary note at the end of

the book.



AUTHOR'S PREFACE TO THE FOURTH EDITION.

In the present new edition only slight changes are made,

consisting of brief additions, more numerous examples, differ-

ent modes of expression, and the like.

In reference to the above extract from the preface of the

preceding edition, I have asked myself the question, whether

I should not from the beginning adopt the original Riemann

enunciation of the fundamental proposition instead of that

which is given in § 49. Nevertheless, I have finally adhered

to the previous arrangement, because I think that in this way

the difference between the two enunciations is made more

prominent, and the advantages of the Riemann enunciation

are more distinctly emphasized.

H. DUREGE.
Prague, April, 1893.
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ELEMENTS

OF THE

THEORY OF FUNCTIONS OF A
COMPLEX VARIABLE.

>>»ic

INTRODUCTION.

To follow the gradual development of the theory of imagi-

nary quantities is especially interesting, for the reason that

we can clearly perceive with what difficulties is attended the

introduction of ideas, either not at all known before, or at

least not sufficiently current. The times at which negative,

fractional and irrational quantities were introduced into

mathematics are so far removed from us, that we can form

no adequate conception of the difficulties which the intro-

duction of those quantities may have encountered. Moreover,

the knowledge of the nature of imaginary quantities has

helped us to a better understanding of negative, fractional and

irrational quantities, a common bond closely uniting them all.

Among the older mathematicians, the view almost univer-

sally prevailed that imaginary quantities were impossible.

In glancing over the earlier mathematical writings, we meet

with the statement again and again that the occurrence of

imaginary quantities has no other significance than to prove

the impossibility or insolubility of a problem, that these

quantities have no meaning, but may sometimes be profitably

employed, the form of the results being then merely symboli-

1



2 THEORY OF FUNCTIONS.

cal. In this connection it is interesting to observe the de-

velopment of Cauchy's process. This great mathematician,

together with the "Princeps mathematicorum," Gauss, who

had first, and probably very early, recognized the great impor-

tance of imaginary quantities in all parts of mathematics, may
be considered the joint-creator of the theory of functions of

imaginary variables. Yet, both ip. his Algebraical Analysis

and also in the Exercises of the year 1844, he still followed

entirely the views of the older mathematicians. In one place

we read ^: "Toute equation imaginaire n'est autre chose que

la representation symbolique de deux equations entre quanti-

tes reelles. L'emploi des expressions imaginaires, en per-

mettant de remplacer deux equations par une seule, offre

souvent le moyen de semplifier les calculs et d'ecrire sous une

forme abregee des resultats fort compliques. Tel est meme
le motif principal pour lequel on doit continuer a se servir de

ces expressions, qui prises a la lettre et interpretees d'apres

les conventions generalement etablies, ne signifient rien et

n'ont pas de sens. Le signe V— 1 n'est en quelque sorte qu'un

outil, un instrument de calcul, qui peut-etre employe avec

succes dans un grand nombre de cas pour rendre beaucoup

plus simples non-seulement les formules analytiques, mais

encore les methodes a I'aide desquelles on parvient a les

etablir.''

These words indicate very clearly the standpoint of the

older mathematicians, which, as may be seen, was still main-

tained by some at a much later period. In one only of the

mathematical branches have imaginary quantities always been

recognized, namely, in the theory of algebraical equations

;

for here it was far too important to consider all the roots

together, for the imaginary state of any of the latter to inter-

rupt the investigations, Nevertheless, individual men, as

de Moivre, Bernoulli, the two Fagnano, d'Alembert and Euler,

who seemed to turn to imaginary quantities with especial

iCauchy, Exercises d'' analyse et de physique mathematique, Tome III.

p. 361.
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predilection, gradually discovered the distinguishing proper-

ties inherent in these quantities, and more and more developed

their theory. Still, as a whole, these investigations were
looked upon rather as scientific pastimes, as mere curiosities,

and were held to be of value only in so far as they lent them-

selves as aids to other investigations. And there have not

been wanting those who opposed the employment of imaginary

quantities altogether, on account of their supposed impossi-

bility.i

The opinion that imaginary quantities are impossible has

its true origin in mistaken ideas of the nature of negative,

fractional and irrational quantities. For the application of

these mathematical ideas to geometry, mechanics, physics,

and partially even to civic life, presenting itself so readily

and so spontaneously, and in many cases no doubt even

giving rise to some investigation of these quantities, it came
to be thought that in some one of these applications should

be found the true nature of such ideas and their true posi-

tion in the field of mathematics. Now, in the case of imagi-

nary quantities, such an application did not readily present

itself, and owing to insufficient knowledge of the same it was
thought that they should be relegated to the realm of impossi-

bility and their existence be doubted.

But thereby it was overlooked that pure mathematics, the

science of addition, however important may be its applications,

has in itself nothing to do with the latter ; that its ideas, once

introduced by complete and consistent definitions, have their

existence based upon these definitions, and that its principles

are equally true, whether or not they admit of any applica-

tions. Whether and when this or that principle will find an

application cannot always be determined in advance, and the

"lAussi a-t-on vu quelques geometres d'un rang distinguS ne point

gouter ce genre de calcul, non qu'ils doutassent de la justesse de son

r6sultat, mais parce qu'il paraissait y avoir une sorte d'inconvenance h
employer des expressions de ce genre qui n'ont jamais servi qu'^ annon-

cer une absurdity dans I'^nonc^ d'un probleme."

—

Montucla, Eistoire

des Mathematiques, Tome III. p. 283.
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present time especially is ricli enough, in instances in which,

the most important applications— even those of far-reaching

influence on the life of nations— have sprung from principles,

at the discovery of which there was certainly no suggestion of

such results. But so firm had the belief in the impossibility

of imaginary quantities gradually become that, when the idea

of representing them geometrically ^ first arose in the middle of

the last century, from the supposed impossibility of the same,

was inferred conversely the impossibility of representing them

geometrically.^

To understand the position which imaginary quantities

occupy in the field of pure mathematics, and to recognize that

they are to be put upon precisely the same footing as negative,

fractional and irrational quantities, we must go back some-

what in our considerations.

The first mathematical ideas proceeding immediately from

the fundamental operation of mathematics, i.e., addition, are

those which, according to the present way of speaking, are

called positive integers.

If from addition we next pass to its opposite, subtraction, it

soon becomes necessary to introduce new mathematical con-

cepts. For, as soon as the problem arises to subtract a greater

number from a less, it can no longer be solved by means of

positive integers. From the standpoint in which we deal with

only positive integers, we have therefore the alternative, either

to declare such a problem impossible, insoluble, and thus to

1 On th.e history concerning the geometrical representation of imaginary-

quantities, compare Hankel, Theorie der complexen Zahlensysteme,

Leipzig, 1867, S. 81. It deserves to be noted that Abel and Jacobi, in

opposition to the view that only a geometrical representation could secure

for imaginary quantities a real existence, already made unlimited use of

imaginary quantities in their first investigations on elliptic functions, and

this at a time when that representation was all but unknown. Fully

conscious of how essential the consideration of imaginary quantities was,

and how incomplete their investigations would remain without them,

they disregarded entirely the question of their possibility or impossibility.

^Foncenex, "Keflexions sur les quantit^s imaginaires," Miscellanea

Taurinensia, Tome I. p. 122.
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put a stop to all further progress of the science in this direc-

tion; or, on the other hand, to render the solution of the

problem possible by introducing as new concepts such mathe-

matical ideas as enable us to solve the problem. In this way-

negative quantities at first arise through subtraction as the

differences of positive integers, of which the subtrahends are

greater than the minuends. Their existence and meaning

for pure mathematics, then, is not based upon the opposition

between right and left, forward and backward, affirmation and

negation, debit and credit, or upon any other of their various

applications, but solely upon the definitions by which they

were introduced.

Now, although the idea of impossibility is not at all con-

tained in our conceptions of negative quantities, it may happen

that the occurrence of negative quantities indicates the impos-

sibility or insolubility of a problem, namely, when the nature

of the problem necessarily requires positive quantities for its

solution. If, for instance, the following problem be given:

Six balls are to be distributed in two urns, so that one shall

contain eight more than the other; then the following purely

mathematical problem is contained in it : to find two numbers

of which the sum is equal to six and the difference to eight.

Now, if it merely be desired that the numbers shall be mathe-

matical concepts without limiting them to a special kind, and

if, moreover, the conception of negative quantities has been

fixed beforehand by defining them, the solubility of the purely

mathematical problem is quite obvious— the positive number 7

and the negative number — 1 are the quantities which satisfy

the problem. Nevertheless, it is impossible to solve the

problem originally set, for it requires that each of the num-

bers sought shall stand for a quantity, and therefore neces-

sarily be positive. If the impossibility Avere not so obvious as

it is in this simple example, the occurrence of the negative

number — 1 would show conclusively the insolubility of the

problem.

Exactly the same conditions arise in every other inverse

operation. The next inverse operation is division. If we set
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the problem to divide a whole number by another which is

not a factor of the first, there arises the impossibility of

solving this problem by positive or negative integers. The

progress of the science therefore again requires the possibility

of the solution to be brought about by introducing and defining

the quantities necessary to that end. Here these new con-

cepts are rational fractions. But here, too, the case may occur

that the appearance of such quantities proves the impossibility

of solving a particular problem ; and again, as before, when by

the nature of the problem it does not admit of a solution in

terms of the new concepts. Take as an example the following

problem : A wheel in a machine or clock work, which has 100

cogs and revolves once a minute, is to set directly in motion

another wheel, so that the latter shall make 12 revolutions in a

minute ; how many cogs must we give to the second wheel ?

In this case the underlying purely mathematical problem con-

sists merely in dividing 100 by 12; and if the definition of

fractions has once been given, the solution presents no diffi-

culty, the result being 8^. But the occurrence of this fraction

proves at once the impossibility of solving the problem origi-

nally proposed, as the number of cogs on the second wheel to

be determined must be an integer.

The third inverse operation is the extraction of roots.

Given Va = a?,

in which n denotes a positive integer ; the problem to find a

quantity x satisfying this equation can no longer be solved

in terms of whole numbers or rational fractions, as soon as

a is not the wth power of such a quantity. In this case

therefore the necessity again arises of rendering the problem

soluble by the introduction of new concepts. Now, if either

a be positive, or in case a is negative, if n be an odd number,

the new concepts to be introduced are irrational quantities ; but

if a be negative, and n at the same time an even number, the

new concepts to be introduced are imaginary quantities. Now
it is no more an impossibility to define these latter than to
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define irrational quantities, or, to go back still farther, than to

define rational fractions and negative quantities, for in none

of these definitions do we meet with any inherent incon-

sistencies. Should such occur, should properties be put in

combination with one another which we can prove to be incon-

sistent, then, it must be admitted, we should have actually

to deal with an impossibility. Gauss ^ adduces as an example

of such an impossibility a plane rectangular equilateral tri-

angle. And indeed it can be proved that a plane equilateral

triangle cannot at the same time be rectangular. Something

impossible would therefore actually be proposed. If now, in

fact, the occurrence of negative quantities, or of fractions,

indicate sometimes the impossibility of particular problems,

it is easily conceivable that such an impossibility can also

be proved by means of imaginary quantities, as in the follow-

ing example: A given straight line two units long is to be

divided into two such parts, that the rectangle formed by
them shall have the area 4. The purely mathematical con-

tent of this problem is to find two numbers of which the sum
equals 2 and the product 4. If now it be required merely

that these numbers shall be mathematical quantities, without

specifying the particular kind, then, the definition of imagi-

nary quantities having once been given, the solution presents

no difficulty. It leads to the solution of the quadratic equa-

tion,

of which the roots are the imaginary quantities

But if we attempt to satisfy the conditions of the original

problem, that the quantities sought shall represent parts of a

straight line and hence be real quantities, it is impossible

to solve the problem, because the greatest rectangle formed

1 " Demonstratio nova theorematis omnem functionem algebraicam

rationalem integram unius variabilis in factores reales primi vel secimdi

gradus resolvi posse."

—

Inaug. Diss. p. 4, Note.
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by two parts of the line 2 has the area 1, and therefore none

can have the area 4; and this impossibility is indicated in

this case by the occurrence of imaginary quantities. Mon-

tucla^ has chosen this very example in support of his view

that the meaning and origin of imaginary quantities are to

be looked for altogether in the impossibility of a problem,

because these quantities occur when a problem is given which

contains an impossible or absurd condition. We have already

seen that exactly the same can be affirmed of negative quanti-

ties and fractions, and the words :
" Ainsi toutes les fois que

la resolution d'un probleme conduit a de semblables expres-

sions et que parmi les differentes valeurs de I'inconnue il n'y

en a que de telles, le probleme, ou pour mieux dire, ce qu'on

demande est impossible,'' and further on, "Le probleme, qui

conduirait a une pareille equation, serait impossible ou ne

presenterait qu'une demande absurde," can be applied almost

literally to the two examples adduced above, in which the

impossibility of the problem was indicated by a negative

number and by a fraction respectively.

It is evident from the foregoing considerations that imagi-

nary, irrational, rational-fractional and negative quantities,

have all a common mode of origin, namely, by means of

inverse operations, in which their introduction is rendered

necessary by the further progress of the science. They all

have their existence based upon their definitions, no one of

which includes anything impossible ; but it may happen that

the occurrence of each of them proves the impossibility of

solving a given problem, on account of the peculiar character

of the same.

Before we take up the subject proper, some remarks on the

calculations by means of imaginary quantities may be per-

mitted. Here, too, we can start from quantities related to

them. Every time a new concept is introduced into mathe-

matics, it is in many respects absolutely a matter of choice in

what way the operations upon which the former concepts

1 Histoire des Mathematiques, Tome III. p. 27.
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depend shall be transferred to the new. For instance, after

the definition of powers with positive integral exponents has

been derived from the repeated multiplication of a quantity by

itself, the question arises as to what is to be understood by a

power with a negative exponent. In itself the answer is abso-

lutely a matter of choice, for there is nothing which compels

us to understand by it one thing and no other. But if in this

and all similar cases we had proceeded quite arbitrarily, and

had not been guided by any definite principle, the structure of

mathematics would surely have assumed a strange form, and

the survey of it enormous difficulty. Mathematics owes its

external consistency and the harmonious agreement of all its

parts to the adherence to the principle that every time a

newly introduced concept depends upon operations previously

employed, the propositions holding for these operations are

assumed to be valid still when they are applied to the new
concepts. This assumption, arbitrary in itself, it is permissible

to make, as long as no inconsistencies result from it.^ Now
when this principle is adhered to, the definitions which have

been discussed above are no longer arbitrary, but follow as

necessary results of that principle. In the case of powers, for

instance, it is proved that when m and n are two positive

integers, and we assume that m>n, then

a"

Now we arbitrarily assume that this theorem remains true

also when m < ?i ; that is, when m — n =p is a negative num-
ber ; and it follows that we have to put

«- = !,

by which the meaning of a power with a negative exponent is

now definitely determined.

1 This is the same assumption that was called by Hankel the principle

of the permanence of the formal laws. Theorie der complexen Zahlen-

systeme^ Leipzig, 1867, S. 11.
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No further argument is needed to prove that the above

principle is of the greatest importance for mathematics, not-

withstanding the fact that its assumption is by no means

necessary but arbitrary.

We need only realize how the system of mathematics would

be constituted, were that principle not adhered to, in order to

see at once what distinctions we should be forced to make at

each step, and how cumbersome would become the methods

of proof. The generalizations of mathematical principles

brought about by the prevalence of this principle to the widest

extent explain also another phenomenon in the history of

mathematics, namely, that for a long time the views in regard

to the meaning of divergent series differed so radically. As it

had been the habit to accept all mathematical propositions as

holding generally, it required some time for the conviction

to prevail that in the development of series the results hold

only under certain limiting conditions, and that in general on

the introduction of infinity into mathematics, the principle

stated above does not admit of as unconditional applications as

before.

But in transferring mathematical processes to imaginary

quantities, the above principle admits of the fullest applica-

tion, and it has been conclusively proved that thereby no

inconsistencies arise. It is not our purpose here to repeat the

proof; it may, however, be mentioned that that principle,

although in other respects always followed, yet in the case

of imaginary quantities has not always and generally been

accepted. As late as Euler's time mathematicians were not

yet unanimous in regard to the meaning of the product of two

square roots of negative quantities. Euler himself taught,

conformably with the above principle and as now generally

accepted, that, if a and b denote two positive quantities,

V— a ' V— b = Vcib

;

i.e., that the product of these two imaginary quantities is

equal to a real quantity. But this view was not generally
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accepted, and Emerson, an English mathematician, taught on

the contrary that we are forced to assume that

V— a ' V— b =z-y/—ab,

because it would be absurd to assume that the product of two

impossible quantities should not also be impossible; and

Hutton says in his Mathematical Dictionary ^ that in his time

the views of mathematicians were about equally divided on

this point.

One of the remarkable properties possessed by imaginary

quantities, is that all can be reduced to a single one, namely,

the V— 1, for which Gauss has introduced the now generally

accepted letter i.^ By means of it, moreover, we can also

reduce every imaginary quantity to the form

z = x-\- iy,

in which x and y denote real quantities. A quantity of this

form Gauss has called a complex quantity,^ divesting this

term of the general meaning in which it had sometimes been

used before, and according to which it denoted any quantity

composed of heterogeneous parts, and employing the term to

designate a special heterogeneous compound, in which a quan-

tity consists of a real and an imaginary part connected by

addition.

The complex quantities comprise also the real ones, namely,

in the case when the real quantity y has the value zero. If,

on the other hand, the other real quantity be equal to zero,

and z therefore be of the form

z = iy,

the complex quantity is called a pure imaginary. If, in the

quantity z — x-\- iy, either one or both of the real quantities

1 Hutton, Mathematical Dictionary^ 1796.

2 The first place in which this notation is employed is found, Dis-

quisitiones arithmeticae^ Sect. VII. Art. 337.

^"Theoria residuorum biquadraticorum," Comment, societatis Got-

tingensis, Vol. VII. (ad. 1828-32), p. 96.
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X and y be variable, z is called a complex variable. In order

that this shall assume the value zero, it is necessary for both

the real quantities x and y to vanish simultaneously, because

it is not possible for the two heterogeneous quantities, the

real x and the imaginary iy, mutually to cancel each other.

On the other hand, in order that the complex quantity z shall

become infinitely large, it suffices if only one of its two real

components x and y become infinitely large. Likewise, another

interruption of continuity occurs in z as soon as either one of

the real quantities x and y suffers such an interruption. But

as long as both x and y vary continuously, z is also called a

continuous variable complex quantity.

Even the consideration of real variables and their functions

is materially facilitated and rendered most intelligible by the

geometrical representation of the same. In a much higher

degree is this the case with complex variables ; we will there-

fore first examine the methods of graphically representing

imaginary quantities.

SECTION I.

THE GEOMETRICAL REPRESENTATION OF IMAGINARY

QUANTITIES.

1. In order to form a geometrical picture of a real variable,

we conceive, as is well known, a point moving on a straight

line. On this, which we may call the a>axis, or also the

principal axis, we assume a fixed point o (the origin), and

represent the value of a variable quantity x by the distance

op of a point p on the aj-axis from the origin o. At the same

time attention is paid to the direction of the distance op start-

ing from 0, a positive value of x being represented by a distance

op toward one side (say, toward the right, if the a>-axis be

supposed to be horizontal), a negative value of a? by a distance

op toward the opposite side (toward the left). When now x
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changes its value, the distance op also changes, the point

p changing its position on the ic-axis. We can therefore say,

either that every value of x determines the position of a point

p on the a>axis, or that it determines the length of a definite

straight line in either of two directions exactly opposite to

each other.

A complex variable quantity z — x + iy depends upon two

real variables x and y, which are entirely independent of each

other. Hence for the geometrical representation of a complex

quantity a range of one dimension, a straight line, will no

longer suffice, but a region of two dimensions, a plane, will be

required for that purpose. The manner of variation of a com-

plex quantity can then be represented by assuming that a point

p of the plane is determined by a complex value z — x-\-iy in

such a way that its rectangular co-ordinates, in reference to

two co-ordinate axes, assumed to be fixed in the plane, have

the values of the real quantities x and y. In the first place,

this method of representation includes that of real variables,

for when once z becomes real, and therefore y = 0, the repre-

senting point p lies on the ic-axis. Next, the co-ordinates of

the point p can vary independently of each other, just as the

variables x and y do, so that the point p can change its posi-

tion in the plane in all directions. Further, one of the two

quantities, x and y, can remain constant, while only the other

changes its value, in which case the point p will describe

a line parallel to the oc- or y-Sixis. Finally and conversely, for

every point in the plane the corresponding value of z is fully

determined, since by the position of the point p its two rec-

tangular co-ordinates are given, and therefore also the values

of X and y.

Instead of determining the position of the point p repre-

senting the quantity z by rectangular co-ordinates x and y, we
can accomplish the same by means of polar co-ordinates. For,

by putting

x = r cos
<f>

and y = r sin </>,

we obtain z = r (cos </> + ?' sin <^).
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The real quantity r, which, is always to be taken positively,

and which is called the modulus of the complex variable z,

represents then the absolute length of

the distance op (Fig. 1), and cf>, called

the amplitude or argument of z, the in-

clination of that stroke to the principal

axis. Hence we can also say that a

complex quantity r (cos
<f>

-\-i sin <^) rep-

resents a straight line in length and

direction, namely, a straight line of

which the length is equal to r, and which forms an angle
<f>

with the principal axis. The quantity

cos <^ 4- ^ sin
<t>f

which depends upon this angle and therefore only upon the

direction of the stroke, is usually called the direction-coefficient

of the complex quantity z.

Just as we can express by a real number any limited straight

line, without regarding its direction and position in the plane,

or, at most, taking into account only directions exactly oppo-

site to each other ; so we can express by a complex quantity

a straight line which is determined both in length and direc-

tion, but of which the position in the plane is not important.

Two given limited straight lines in a plane can actually differ

completely in three particulars : in length, direction and posi-

tion, i.e., the position of that point at which the line is assumed

to begin. We can, however, leave out of consideration two of

these distinguishing marks, and consider two distances as

equal, if they have only equal lengths ; this is the case in the

representation of distances by real quantities. But in the

representation by complex quantities, we dispense with only

the third distinguishing mark, namely, the position, and call

two distances equal when, and only when, they have equal

lengths and directions.

Since the modulus of a complex quantity determines the

absolute length of the straight line representing that quantity,

it is analogous to the absolute value of a negative quantity
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and serves as a measure in comparing complex quantities with

one another.

2. From the property of complex quantities that a combina-

tion of two or more of them by means of mathematical operations

always leads again to a complex quantity, it follows that, if

given complex quantities be represented by points, the result

of their combination is capable of being again represented by

a point. We will now in the following examine the first four

algebraical operations,— addition, subtraction, multiplication

and division,— and inquire how the points resulting from

these operations can be found geometrically. In this the

complex quantities, and the points representing them, will

always be designated by the same letters ; the origin, which

represents the value zero, will be designated by o.

1. Addition,

Let u = x-{-iy and v = x' -\- iy'

be two complex quantities, and let tc denote their sum ; then

w = 11 -{- V = (x -{- x') -\- i(y -\- y').

The point iv therefore has the co-ordinates x -\- x' and y 4- y'.

It follows that it is the fourth vertex of the parallelogram

formed on the sides ou and ov, or v w^u+v
that by the quantity u-]-v is rep-

resented the diagonal oio of this par-

allelogram in magnitude and

direction (Fig. 2). Since the

straight lines uw and ov are

equal and directly parallel, -v

and since therefore mo is like-

wise represented by the complex quantity v, we arrive at the

identical point tv, if we draw from the end-point u of the first

line ou the second line ov in its given length and direction.

This method of combination, or geometrical addition of straight



16 THEOBT OF FUNCTIONS.

lines, has been applied by Mobius ^ independently of the con-

sideration of imaginary quantities. Accordingly, the sum u-\-v

is the third side of a triangle, of which the two other sides are

represented by u and v. Since, however, in every triangle

one side is less than the sum of the two other sides, and

the lengths of the sides are given by the moduli of the

complex quantities, the proposition follows: the modulus

of the sum of two complex quantities is less than (or equal

to ^) the sum of their moduli

:

mod (u-\-v)-^ mod u + mod v.^

The complex quantity z = x-{- iy itself appears under the

form of a sum of the real quantity x and the pure imaginary

iy\ since the former is represented by a point on the a>axis,

the latter by a point on the ^/-axis, z is in fact the fourth

vertex of the rectangle, the sides of which are formed by the

abscissa x and the ordinate y of the point z.

2. Subtractio7i.

The subtraction of the numbers represented by two points

can easily be deduced from the addition of the same; for,

w=u+v given w' = u~v,

it follows that

therefore the point w' must be so

situated that ou forms the diagonal
w=u-v of the parallelogram constructed

on ov and ovP (Fig. 2). Conse-

quently, we obtain w' by drawing oiF equal and directly

parallel to the straight line vu. Since, however, we pay no

attention to the position of a straight line, but only to its

1 Mobius, " tJber die Zusammensetzung gerader Linien," etc. CrelWs

Journ., Bd. 28, S. 1.

'^ When the moduli of u and v are drawn in the same direction,

mod (u + v) = mod u + mod v. (Translators.)

8 Mod z (modulus of z) is sometimes denoted by \z\. (Tr.)
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length, and direction, the difference u — v is represented by

the straight line vu in length and direction (namely, from

V to u). The construction shows that u falls in the middle

of the straight line ww'. But from

it follows that

therefore the point ^"^^ forms the mid-point of the line

joining the points w and w\

If the point u coincide with the origin, i.e., if u = 0, then

w' = —V. In this case a line is to be drawn from o equal in

length and direction to the line vo-, hence the point — v lies

diametrically opposite to the point v, and equally distant from

the origin.

Subtraction furnishes a means of referring points to another

origin. For it is evident that a point z is situated with refer-

o X
Fig. 3.

ence to a point a exactly as 2 — a is situated with reference to

the origin (Fig. 3).

If we put then

z — a = r (cos <f>
-\-i sin <^),

r denotes the distance az, and <^ the inclination of the line az

to the principal axis. The introduction of z' = z — a, or the

substitution oi z -\- a for z, transfers therefore the origin to a

without, however, changing the direction of the principal

axis.
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3. Multiplication.

We employ here the expression of complex quantities in

terms of polar co-ordinates. Let

u = r (cos 4> + i sin <^) and v = r' (cos <^' + i sin <^')

be represented by two points by means of polar co-ordinates,

and let w be their product ; then

w = U'V = rr' [cos (<^ + <^') + 1 sin (<^ -f <^')].

Consequently, the radius vector of w forms with the principal

axis the angle
<f>

-\-
<f>',

and its length is equal to the product of

the numbers r and r', which

denote the lengths of the radii

vectors of u and v. From this

it follows that the position of

the point w, or u-v, depends

essentially upon the straight

line chosen as the unit of

length, while the positions of

u-\- V and u — v are indepen-

dent of this unit. This is

quite in accordance with the

nature of things, for if in u

and V the unit of length be

increased in the ratio of 1 to p,

p denoting a real number, the

radii vectors of m -f v and u — v are increased in the same ratio

;

the radius vector of U'V, however, is increased in the ratio

of 1 to pi Let us assume then on the positive side of the

principal axis a point 1, so situated that ol is equal to the

assumed unit of length (Fig. 4). Since then from the equation

Fig. 4.

ow r-r'

we obtain the proportion l:r = r': ow,

or o 1 : oit = Oi; : oWy

and in addition Z vow = Zlou,
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the position of the point lo is to be constructed by making the

triangles vow and 1 ou directly similar. Instead of this, we

could, of course, also make the triangles uow and 1 ov directly

similar, which analytically is manifested by the fact that in

the product u-v the factors are commutative. From the

equation
w = u-v

we can deduce another proportion, namely,

1 : u = v:iv;

hence the straight lines o 1, ou, ov, ow are proportional to one

another, even if their directions be considered. In connection

with the preceding, however, it follows that, when straight

lines are compared with one another, not only with regard to

length but also with regard to direction, two pairs of such

lines are proportional, when, and only when, they not only are

proportional in length but also in pairs include equal angles

;

or, in other words, when they are the corresponding sides of

directly similar triangles. Now, if we takel this requirement

into consideration, the last of the above stated propositions

serves to find in the simplest manner which triangles have to

l^e made similar to each other ; for, from the proportion 1 : u

= v:w, it follows by the insertion of the point o that' the

triangles lou and vow must be similarr*''^.,^ ./'
; ..

If in the product u-v one of the two factors, sayv, b6 real,

and if in this case we denote it by a, then the point representing

a lies on the principal axis ; hence it follows from the above

stated construction that the point representing a-u lies on the

line oic and at such a distance from o that its radius vector is

a times the radius vector of u.

Consequently, the geometrical meaning of multiplication is

the following : if a quantity u be multiplied by a real quantity

a, the radius vector of u is merely increased in the ratio of

1 to a ; but if u be multiplied by a complex quantity v, the

radius vector of u is not only increased in the ratio of 1 to

mod V, but it is also turned through the angle of inclination of

V in the direction in which the arguments increase.
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4. Division.

This operation follows immediately from the preceding

results. For if

w'
V

we obtain therefrom the proportion.

w' :l = u:v'j

and hence we have to make the triangles w'ol and uov directly

similar (Fig. 4). The geometrical performance of the division

of w by v therefore consists in changing the radius vector of u

in the ratio of mod v to 1 and, at the same time, in turning it

through the angle of inclination of v in the direction in which

the arguments decrease.

We will now apply the foregoing considerations to two

problems which will be of use to us later.

First : Let z, z' and a be three given quantities, therefore also

three given points j we are so to determine a fourth point w that

w=^-^^^ (Fig. 5). .

z — a

If we put z'—z=u and z—a=v,
we first find the points repre-

senting u and V by drawing ou

equal and parallel to zz', and ov

equal and parallel to az. We
then have w= -, or w:l=u:v:

Fig, 5. v

hence we obtain w by making the Awol similar to A uov.

From this we can also now deduce for the quantity lu an

expression which is derived from the sides zz' and az and

the angle azz' of the triangle azz'. For, if this angle be denoted

by a, then

Zlow = Z vou = 180°— a,

— ou zz^
moreover, 010= ^^2=" =:>

ov az
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therefore the modulus of ic is equal to ^, and the direction-

az

coefficient to (— cos a-\-i sin a), and we have

zz'

/

. • V
to =^ (— COS ot.-\-i sin a).

az

In the special case when oz is perpendicular to ^^ a = 90°,

and we obtain

.zz^

az

Second : In what relation stand two groups, of three points

each, Zf z', z" and w, w', w", if between them the equation

z' — z _ w' — w
z" — z ic'^ — w

hold (Fig. 6) ? We have immediately the proportion

z' — z : z" — z = w' — w : w" — w,

and since the differences denote the differences of correspond-

ing points in length and direction,

it follows directly that the trian-

gles z'zz" and iv'ww" are directly

similar.

We here interrupt these con-

siderations, passing over the con-

struction of powers, as not neces-

sary for our purposes. It may,

however, be noted that in the case of real integral exponents

the construction follows directly from the repeated appli-

cation of multiplication.-^ One other remark may not be out

of place here. If we have an analytical relation between

any quantities and carry out the analytical operations on both

1 For powers of any kind we refer to the article : "Ueber die geome-

trische Darstellung der Werthe einer Potenz mit complexer Basis iind

complexem Exponenten." (Schlomilch's Zeitschrift fur 3Iathematik

und Physik, Bd. V., S. 345.)

Fig.
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sides of the equation geometrically, we arrive at the same

point by two different methods of construction. Hence, every

analytical equation contains at the same time also a geometri-

cal proposition. Thus, for example, it may readily be seen

that the identity

u-\-v . u—v

furnishes the proposition that the diagonals of a parallelogram

bisect each other.^ By means of a geometrical construction

we can also, among other things, render the difference between

a convergent and a divergent series quite evident. As is well

known, the geometrical progression

1 + z -\-z^ -\- z^ -\

has for its sum the value , only when mod z<l. If we

now assume an arbitrary point z and construct in the manner
given above the points 1, 1+z, 1 -\- z -{- z^, 1 -{- z -{- z^ -\- z^, etc.,

and if we join these points successively by straight lines, we
obtain a broken spiral. If then the point z be so situated that

mod 2 < 1, i.e., oz < oT, the points of the spiral approach, on

windings which become more and more contracted, that point

which can also be obtained by the construction of But

if mod 2^1, the windings of the spiral become steadily wider,

and an approximation to a fixed point does not occur.

3. The manner of representing geometrically complex values

by points in a plane already discussed, also gives us a clear

picture of a complex continuous variable. For, if we imagine

a series of continuous, successive values of z = x-\- iy, and

therefore also a series of continuous successive values of x and

y (paired), and if we represent each value of 2 by a point, these

1 We refer those who wish to follow out still further the line of thought

connected with this to the remarkable article by Siebeck: "Ueber die

graphische Darstellung imaginarer Funktionen." {CrelWs Journ., Bd.

65, p. 221.)
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points will likewise form a continuous succession, i.e., in their

totality a line. Hence, if the variable z change continuously,

the point representing z describes a continuous line. Since in

this process the real variables x and y can each vary quite inde-

pendently of the other, the point representing z can also describe

an arbitrary line. It deserves to be especially mentioned here

that for the continuity of the variation of z it is not at all

necessary for the line described by the corresponding point

to be a curve proceeding according to one and the same mathe-

matical law, i.e., for the quite arbitrary relation in which x and

y must stand to each other in every position of the point to

be always expressible by the same equation (or, indeed, by any

equation whatever). In order that the variation of z may be

continuous, it is necessary only for the line to form a continu-

ous trace. A few examples may ^ q
make this clear. Suppose the

variable z begins its variation

with the value 2 = 0, and, after

passing through a series of

values, acquires a real positive

value a, which may be represented by the point a (Fig. 7)

on the ic-axis, the distance oa being equal to a. Now the vari-

able z (to express ourselves more briefly, instead of saying, the

movable point which represents the corresponding value of the

variable z) can pass from o to a on very different paths. Firstly,

it may assume between o and a only real values, in which case

y remains constantly = and x increases from to a. The

variable describes the straight line oa. Secondly, let the vari-

able move along the broken line oBCa formed of three sides of

a rectangle in which oB = h. In this case x is constantly =
from to B, and y increases from to h, so that at B, z=ib;

then let y maintain the acquired value b, and x increase from

to a, so that at C, z assumes the value a-\-ib; finally, from C
to a, let X remain constantly = a and y decrease from b to 0.

Thirdly, the variable z may first move on the principal axis

from o to i a, and then run along a semicircle described round

the point | a as centre with a radius ^ a. This example illus-
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trates at the same time the transference of the origin. On
account of the circular motion round the point | a, the course

of the real variable becomes much simpler, if we put

2 — I a = z' = r (cos <l>-\-i sin <^).

The radii vectors are then measured from the point | a. Now
at the origin 2=0 ; therefore z'=—^a, and consequently r= J a
and

<f>
= 7r. On the way from o to ^ a, <^ remains constantly

= TT, and r decreases from ^ a to \ a, so that at the beginning

of the circle z' = — \a, and therefore z = ^a. Now in describ-

ing the circle, r remains constantly = \a and <}> decreases from

TT to 0, so that at a, z'=-\-\aj and therefore z=a. We have

here assumed, as we shall always do in the future, that

the angle of inclination <^ of a complex quantity increases

from the direction of the positive avaxis toward the positive

2/-axis, and we shall call this way of moving the direction of

increasing angles. From these examples it can be seen that

a very essential difference exists between a variable quantity,

which is allowed to assume only real values and one which

may assume also imaginary values. While by means of two

definite values of a real variable, the intermediate series of

values, which the variable must assume in order to pass from

the first to the second, is completely determined, this is by
no means the case with a complex variable ; indeed, there are

infinitely many series of continuous values, which lead from

one given value of a complex variable to another definite value.

Geometrically expressed, it may be thus stated : a real variable

can proceed only by a single path from one point to another,

namely, on the intermediate portion of the principal axis.

On the contrary, a complex variable, even when the initial and

final values are real, can leave the principal axis and pass from

the one point to the other on an infinite number of lines or

paths. If the initial and final values, one or both, be complex,

I

the same, of course, holds ; and the variable can take arbitrary

paths in passing from the one point to the other.
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SECTION 11.

FUNCTIONS OP A COMPLEX VARIABLE IN GENERAL.

4. In passing next to the consideration ofinnctions of a com-

plex variable, we begin with the elementary idea of a function

of a variable quantity, by which is understood any expression

formed by the mathematical operations to which the variable

is subject ; but we shall have to amplify this idea later. In

former times, the words "function of a quantity" signified

merely what is at present called a power. It is only since the

time of John Bernoulli that this term has been applied in its

extended meaning, signifying not only the raising to a power,

but all kinds of mathematical operations, or any combination

of the latter. In more recent times, however, it has become

necessary to enlarge still further the concept of a function,

and to dispense with the necessity of the existence of a math-

ematical expression for it. For if one variable be expressed

in terms of another, so that the former is a function of the

latter, the essential feature of the connection between the two

appears in the fact that for every value of the. one there is a

corresponding value (or several corresponding values) of the

other. Now it is this correspondence of the values of the func-

tion on the one hand, and of the independent variable on the

other, which we especially keep in view. It is also this which

is made prominent wherever we recognize the dependence of

one quantity upon another, without being able to state the law

of this dependence in the form of a mathematical expression.

To take a familiar example, we know completely the depend-

ence of the expansion of the saturated vapor of water upon

its temperature in such a way that, after the observations made

and tables constructed from them, we can determine, within

certain limits, the expansion of the vapor for every value of

its temperature. But we do not possess a formula derived

from theory, by means of which we could calculate the expan-

sion for a given temperature. Notwithstanding, however, the

lack of such a mathematical expression, we are still justified
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in considering the expansion as a function of the temperature,

because to each value of the latter a definite value of the

former appertains. The case is the same with algebraic func-

tions in the general sense, i.e., with functions which arise by

connecting one variable with another by means of an algebraic

equation. As is well known, equations of higher degrees can-

not in general be solved, and therefore one variable cannot be

expressed in terms of the other. But since we know that to

every value of the latter corresponds a definite number of values

of the former, we may consider the former as a function of

the latter. Besides, functions, whether they admit of being

expressed mathematically or not, possess some characteristic

properties, usually very small in number, by which they can

be determined completely, or at least except as to a con-

stant factor or an additive constant. Hence we can replace

the expression of the function by its characteristic properties.

If now we suppose that, within a certain interval of the

values of the independent variable, a function is determined

only by giving or arbitrarily assuming the value of the latter

which corresponds to each value of the former, yet in such

a way that, in general, to continuous changes of the variable

correspond also continuous variations of the function, then a

distinction occurs, according as only real values are assigned

to the variable in the given interval, or complex values are also

included in the sphere of our discussion. In the former case

— the variable assuming only real values— we can, indeed,

assume quite arbitrarily the values of the function which are

to be attached to those of the variable, and let the one set

correspond to the other conformably with continuity. In this

case we can always find for the function an analytical expres-

sion which shall represent its values within the interval in

question ; for, if not in any other way, this is always possible

by means of the series which proceed according to the sine or

cosine of the multiples of an arc. As is well known, this is

possible even when the function in isolated places suffers an

interruption of its continuity. But when complex values enter

into the discussion, we are no longer at liberty to choose arbi-
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trarily a series of continuous complex values, and consider

them as the values of a function belonging to a continuous

series of values of a complex variable. We shall consider this

point more fully later. In the meantime we wish only to call

attention to the fact that, even when in a complex variable

w=:u-\- iv, the quantities u and v are functions of the real

constituents x and y oi the variable z = x -\- iy, yet w on that

account need not be a function of z. We shall first discuss this

condition somewhat more fully in the following paragraph.

5.' Let us first assume that we have under discussion an

expression representing a function of a complex variable

z = x-\-iy ; then this can be reduced again to the form of a

complex quantity, i.e., to the form

w = u -j-iVj

wherein u and v denote real functions of x and y. But now
every expression of the latter form is not, conversely, at the

same time also a function of z ; for, that this may be so, it is

necessary for the real variables x and y to occur in u + iv,

only in the definite combination x + iy. It is evident that

we can easily form functions of x and y in which this is not

the case, as, for instance, x — iy, x^ -\- y^, 2x-\- iy. These

are, it is true, functions of x and y, but not of x-^iy ; they

are complex functions, but not functions of a complex variable,

— concepts, which must therefore be well distinguished. Thus
the problem arises to inquire what conditions must be satisfied

by a given expression w = ii -\- iv, in which u and v signify real

functions of x and y, in order that the expression may be a

function of z = x -\- iy. To find these conditions, we differ-

entiate w partially as to x and y ; then, if w shall in the first

place be a function of z, we have

Sw _ dw 8z

8x~'
dz 8x

8w dwSz
~
dz By'
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or, since - = 1, - = ^,

^, „ ,, . 8w dw 8w .dw
the following

s^
= ^'s^ = '^-

Hence we obtain, as the necessary condition that w shall be a

function of z, the equation

8w _ .Sw

Conversely, it can easily be proved that this condition is suffi-

cient, i.e., that a function w oi x and y, which satisfies this

equation, will always be a function of z. For, if in the com-

plete differential

dw = ^^dx^^dy,
8x 8y ^'

we substitute i— for -^,
Sx By'

we obtain dw = -^ (dx + idy) = -^ dz.
8x^ ^^ 8x

If, however, by means of z = x -^ iy, the variable x be elimi-

nated from the function w before differentiation, and if the

partial derivatives as to y and z, derived after the elimination,

be distinguished from the former by parentheses, we have

by subtracting this expression for dw from the former, we get

«H|-(l)}*-(g)*-
But since dy and dz are entirely independent of each other,

separately must

\8y) ' \8z) 8x'

From the first of these equations it follows that w, after the

elimination of x, no longer contains y, but is a function of z
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only. Then ( -^j and -^ have the same meaning, and there-
\oz J oz

fore the second equation gives — =— , the same result as

before. Therefore the above relation

is the necessary and sufficient condition to ensure the stated

functionality of w. From this also follow the equations of

condition for the real parts u and v. It u-\- iv be substituted

for Wy we obtain

8w .8'y_ .fSu .8v\

and then by equating real and imaginary parts,

Su_h)^ hi__h)^

Finally, we can establish for each of these functions a single

equation of condition. For, differentiating each of the above

equations partially as to x and y, and eliminating v and u in

turn, we obtain

(3)
?!!f+S^ =Oand^ +^ = 0,^^ 8x'^ 8y' Bx'^Sy' '

so that neither of the functions ^l and v is arbitrary, but each

one must satisfy the same partial differential equation. As
is well known, partial differential equations do not characterize

particular functions but general classes of functions. Thus the

function w of the complex variable z = x -\-iy is given by equar

tion (1), and the real constituent parts of such a function by

(2) and (3).

6. If we still hold to the supposition that the function tv is

given by an expression, an important inference can be drawn

from equation (2). To the increment dz of z corresponds the
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increment — dz of w. By introducing the quantities it, v and
(Jz

X, V into the derived function — we obtain'^
dz

dw _du-\- idv _ Bx

dz~ dx-\- idy ~
~

dx + idy

But now, when the variable z is represented by a point in

the a;?/-plane, this point can move in any arbitrary direction,

and the differential
az = dx-\- idy

represents the infinitely small straight line which indicates

the change of place of z in magnitude and direction. This

infinitely small straight line can therefore be drawn from z in

any arbitrary direction. Now, however, the preceding expres-

sion for — shows that it is not independent of dz, but changes
(XZ

its value with the direction of dz. To make it still clearer, let

us introduce the differential coefficient -^, which indicates the
dx

direction of dz, into the expression for —-
. Dividing numera-

dz

tor and denominator by dx, we obtain

Bu Budy .fBv 8v dy\

dw_Bi'^Byd^'^\8^^8^d^J^ W

dx
i+i^

from which it follows that—, in fact, changes its value with

that of -^, when no relation exists between the four differential
dx

coefficients —, — , — , —. But if we take the equations (2)
Bx' By' Bx' By / \^

into consideration and by means of them eliminate, say, —
and — , we obtain

\Bx BxJ\ dx)dw _ \Bx BxJ\ dx) _ 8m
,

.8v
.

'dz~ 1
,'dy "

Bx Bx'

dx
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thus — becomes independent of — and hence also of dz. If
dz dx

therefore w be a function of the complex variable z = x -\- iy, the

derivative — is independent of dz and has the same value in
dz

whatever direction the infinitely small movement may take place.

If we call the different paths which the variable may take

the modes of variation, we can say that the derivative is inde-

pendent of the mode of variation of the variable z. In the

case of a function of a real variable, the change of the variable

itself does not make any essential difference, because this

change can only consist of an increase or decrease of the

variable. In the case of functions of a complex variable, how-

ever, the different ways in which the variable can change play

an important part, and hence the proposition just established,

that the derivative of a function of a complex variable is

independent of the mode of variation of the variable, is of

great importance. And it is only when — is completely
az

independent, i.e., both of the length and of the direction of this

infinitely small straight line, that the idea of the derived

function becomes as definite as it is in the case of real

variables.

Until now we have been assuming that the function w is

given by a mathematical expression in terms of z. If we now
give up this assumption, we must, in order that the derivative

of the function lo may have a definite meaning, still add the

requirement that it be independent of the differential dz.

The fulfilment of this requirement, however, is sufficient to

characterize iv as a function oi x -{- iy, for from it follow again

our former conditions (1), (2) and (3). If the expression (4) for

— is to be independent of dz, or what is the same thing, of -f,
dz ax

the equation resulting from it,

dw_^_ '^if-^_^_ • ^^^ _
dz Bx 8x V dz 8y hyjdx



32 THEORY OF FUNCTIONS.

must be satisfied for every value of -^. Therefore, we obtain
dx

dw_^. .8v_8w
dz 8x 8x 8x

dw
'd^~~

8u

By

8w

8w .8w
^ 8x'

or, as above,

In accordance with this, Riemann ^ has defined a function of

a complex quantity in the following way :
" A variable comr

plex quantity w is called a function of another variable complex

quantity z, if it so change with the latter that the value of the

derivative — is independent of the value of the differential dz.^*
dz

Or, as it is expressed in another place ^
:

^^ If w change with

X + iy in conformity to the equation ~ = i—•"

8y 8x

It can also be easily proved that, if w? be a function of z, the

derivative— must likewise be a function of z. For. from the
dz

equations

dw 8w 1 8w

dz 8x i 8y

follow
8 fdw\ _ 1 8'w

8x\dzJ i 8x8y

and 8 fdw\ _ 8^w
.

8y\dz) 8x8y'

consequently
8 fdw\ . 8 fdw\
8y\dzj \x\dz;

and therefore —- also satisfies equation (1).
az

1 Grundlagen fur eine allgemeine Theorie der Funktionen einer verdnr

derlichen complexen Gr'dsse. S. 2.

2 "Allgemeine Voraussetzungen," etc., Crelle's Journ., Bd. 54, S. 101.



FUNCTIONS OF A COMPLEX VABIABLE. 33

Further, if w be a function of z = x-\- iy, and if z be a func-

tion of ^ = ^ + iyj, then w is also a function of ^. For, as

above, p. 28,

dw^Y^^^ + idy)=-^dz,

and similarly dz = — (di + idrj)j

consequently dw =~ ^(di-\- idrj)
;

ox o|

thus the partial differential coefficients of to as to ^ and 7} are

B$ 8xB$' Br, \xBi

hence —-= {-—•

and therefore w is also a function of ^ + ir,.

7. The condition just established possesses a definite geo-

metrical meaning, which remains to be discussed.

If, as above,

z = x-\-iy and w = u -\- iv,

X and y are the rectangular co-ordinates of a point in the

2;-plane, and u and v the rectangular co-ordinates of a point w in

the same or in another plane. If, now, w be a function of z,

the position of the point lo depends upon the position of the

point z, and if z describe a curve, w
describes a curve depending upon

the latter ; in short, if w be a defi-

nite function of z, the entire system

consisting of the points w; is in a

definite dependence upon the sys-

tem formed by the points z. Nie-

mann calls then the system of the ^^^' ^'

points w the conformal representation of the system of the

points z. In accordance with the above condition, the two

w
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figure-systems stand in a quite definite relation to each other,

which always holds when «^ is a function of z.

Let 2;' and 2;" (Fig. 6) be two points infinitely near to a third

point z, and let the infinitely small strokes joining them and

running in different directions be

zz' = dz\ zz^ = dz".

Further, let the points which correspond to the points z, z', z"

be Wj w', w", and let the infinitely small strokes joining the

latter be

ww' = dw'j ww" = dw" \

If, now, — is to have the same value for every direction of dz,
CLZ

then dw'_ dw" dw' _ dz'

dz'~W'' ^^
dw^'^dz^''

But the differentials can now be replaced by the differences of

the infinitely near points ; that is,

dz' = z' —z, dw' =w' —w,

and we have
:Z" -^, dw" = w'

w'

w"

— w
— w

z'

z"

— z

-z'

therefore, by § 2, the triangles z'zz" and w'ww" are similar to

each other; i.e., the angles z'zz" and w'ww" are equal to each

other, and the included sides are proportional. But since this

must hold for any pair of corresponding points z and w, the

figure described by the point w is in its infinitesimal elements

similar to that described by the point z, and two intersecting

curves in the ly-plane form with each other the same angle as

that formed by the corresponding curves in the 2;-plane. In

this connection it must be noticed that — is supposed to be
dz

1 We note that, even if— be independent of dz^ yet dw^ which =— dz,
dz dz

in general changes its direction and magnitude with dz.
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neither zero nor infinite. We shall see later that these cases

are exceptions.^ Siebeck terms the dependence of the system

w upon the system z conformation; and on account of the

property that any two pairs of corresponding curves include

equal angles, isogonal conformation.^ The simplest isogonal

conformations are similarity and circular conformation^ (intro-

duced into geometry by Mobius). In the former, w = az -\- b
;

in the latter, w = ^
, wherein a, b, c, d denote constants.

cz -{- d
Collinearity and affinity are not isogonal conformations ; these

do not admit of being represented by functional relations

between two complex variables.

The simple function w = z^

may serve as an example.

We obtain here w = x^ — y^ -\-2 ixy,

and hence u = x^ — y"^, v = 2xyf

-=2x, - = 2y,

8y
^' By

which verify the equations of condition (2). Let now z de-

scribe, for instance, the 2/-axis, so that a; = 0, then z = iy and

w = — 'if; hence w describes the negative part of the principal

axis and only this, so that, when z goes from a through o to

b, w moves from a' to o, and then back again to b'; a' and b'

coincide when ao is assumed equal to ob (Fig. 8). Let z fur-

ther describe a circle with radius r round the origin, so that

when
z = r(cos <!>-{- i sin <^),

r remains constant ; then

w = r^(cos 2 </) 4- ^ sin 2 <^),

1 Cf . § 40.

2 Known also as isogonal or orthomorphic transformation. (Tr.)

8 Called also bilinear or homographic transformation. (Tr.)
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and w also describes a circle round the origin with radius r^.

But since the angle 2<^ of the w-plane corresponds to the

angle <^ of the 2;-plane, to describes its circle twice as rapidly

as z. . For instance, if z describe a semicircle from a to 6 in

the direction of increasing angles, w describes a complete

circle from a' to the point b' (which coincides with a'). But

the angles, which the straight line and the circle form with

each other in z and in w, are both right angles. If we let z

describe a straight line cd passing through the point 1 and

parallel to the 2/-axis, w will describe a parabola. This result

can be easily obtained,— since in this case x is constant and

equal to 1,— by substituting the value of x in the equations

u = oiy^ — y^ and v = 2 xy and eliminating y ; thereby we obtain

the equation v^ = 4,(1 — u) between the co-ordinates u and v

of the point w, which shows that the locus of iv is a parabola,

with its vertex at 1, its focus at o, and of which the param-

eter, the ordinate at the focus, is 2. By examining the

tangents at the points of intersection c' and d', which cor-

respond to c and d, it is easily verified that the parabola

cuts the circle in the w-plane under the same angle as the

straight line cd cuts the circle in the 2;-plane. But finally,

in order to illustrate an exception by an example, let z de-

scribe the principal axis ; then z remains real, hence tc is posi-

tive and therefore describes the positive part of the principal

axis. But the latter forms with the negative part of the
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principal axis, which corresponds to the ?/-axis in the 2;-plane,

an angle of 180°, while the x- and 2/-axis in the 2;-plane form an

angle of 90°. Therefore, in the vicinity of the origin the

similarity of infinitesimal elements does not occur, and, in

fact, at this point the derivative — = 22 becomes zero.
dz

SECTION III.

MULTIFORM FUNCTIONS.

8. The introduction of complex variables also throws a

clear light on the nature of multiform (many-valued) functions.

For, since a complex variable may describe very different

paths in passing from an initial point Zq to another point Zi,

the question naturally suggests itself, whether the path de-

scribed cannot affect the value w , which a function, starting

with a definite value Wq corresponding to Zq, acquires at the

terminal point Zi', we have to inquire whether the curves

described by w, starting from ivq, which correspond to those

described between Zq and z^ must always end in the same

point Wi, or whether they cannot also end in different points.

Now, in the first place, it is clear that, in the case of uniform

(one-valued) functions, the final value tVi must be independent

of the path taken ; for, otherwise, the function would be capa-

ble of assuming several values for one and the same value of

z, which is not possible with uniform functions. This reason,

however, does not apply in the case of multiform functions.

Such a function has, in fact, several values for the same value

of z, and hence the possibility, that different paths may also

lead to different points or to different values of the function,

is not excluded at the outset. Let the variable z in w= V2,

for instance, pass from 1 to 4 by different paths, and j^the
function w start with w = -{-1 corresponding to 2; = 1 ; then it

is possible that some of the paths shall lead from ^o = + 1 to

(^-k ^

V : X-Z -^^
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w = -\-2, and others, on the contrary, from w = -\-ltow = — 2.

This is, indeed, actually the case in this example. For let

z = r(cos <f>-\-i sin <^), then w = Vr(cos ^<fi -\-i sin -|- <^), in which

by -y/r, since it is the modulus of w, is to be understood the

positive value of the square root of r. Since w is to start

with the value + 1, the initial values of the real variables are

r = 1 and <^ = 0. If 2: describe a path between 1 and 4, which

does not enclose the origin,— for instance, the straight line

from 1 to 4,— then <^ arrives at the point 4 with the value

zero, while r acquires here the value 4 ; hence along such a path

w receives the value + 2. If, on the other hand, the path de-

scribed by z between 1 and 4 go once round the origin, then

at the point 4, <^ acquires the value 2 tt, and J <^ the value ir,

while again r = 4; hence w acquires in this case the value

-2. (Cf. also§ 10.)i

Here we must first of all direct our attention to those points,

at which two or more values of the function w, in general

different, become equal to one another. Such a point is, for

instance, 2 = for lo = V^ ; at this point the values of w, in

general of different signs, become equal to zero.

Let us next consider the function defined by the cubic

equation
TJC^ — w -\- z = 0.

If, for brevity, we put

and the two imaginary cube roots of unity

_1+^V3 _ -l-iV3 _ o

2
""'

2
""'

Cardan's formula gives for the three roots of the above

1 We have in view in these considerations the (irrational) algebraic

functions, and hence always assume that the number of values which

the function can assume for the same value of the variable z is finite.
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equation, which may be denoted by w^, W2, %, the following

expressions :

W2 = ap-\- a^q,

Wq = a^p + aq.

For each value of z, w has in general the three values

Wi, W2, Wg. But the last two of these become equal when

p = q, which occurs when
2

z = •

V27
At this point we have

If now, in further discussion of this example, we assume

that the variable z changes continuously, or that the point

representing it describes a line, then each of the three quan-

tities, Wi, iCo, Wg, likewise changes continuously, or the three

corresponding points describe three separate paths. But when
2

z passes through the point z = —z=j both functions, W2 ^^^ ^3>

V27
assume the value V|; hence the two lines described by Wg

and Wg meet in the point V|. At the passage through this

point therefore W2 can go over into w^, and w^ into w,, without

interruption of continuity ; indeed, it remains entirely arbitrary

on which of the two lines each of the quantities Wg and w^ shall

continue its course. In this place a branching, as it were, of

the lines described by the quantities W2 and w^ takes place;

hence Eiemann has called those points of the z-plane, at which

one value of the function can change into another, branch-poi7its.

2
In our example therefore z = is a branch-point (not

w=^/v\^ Figures A and B are added in explanation. In

Fig. A the three lines ti\, W2, Wg are drawn for the case when
z describes a straight line parallel to the y-axis and passing

through the branch-point e =—= (Fig. B). Therein, however.
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the line Wi is represented, for clearness, on twice as large a

scale as the remaining lines and, to save space, it is drawn

nearer to the ordinate axis than it really runs. The lo-points

which correspond to the 2;-points are denoted by the same

letters with attached subscripts 1, 2, 3. The picture of the

Fig. a. Fig. B.

branching is rendered still clearer by following the path of

only one of the quantities, say w^. This describes the line

6303^3, and approaches the point gg = 63 = VJ, as z approaches

the point e —
V27

along the line bed-, should z now pass

through this point, w^ could continue its course from
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on either of two paths, namely, 63/3^3^3 or e^f-g^^ of which one

as well as the other can be considered the path corresponding

to the continuation efgli of z\ the way open to w^ is in fact

divided at e^ = 63 into two branches. When z goes from 6 to ^

through the branch-point e, then W3, starting from 63, can arrive

at ^2 j^st as well as at /ig ; and the same is true of Wg starting

from he,. In case the path of z leads through the branch-point,

the final value of the function remains therefore uadeter-

mined. If, on the contrary, z describe a path from 6 to ^,

which does not pass through a branch-point, the final value of

the function may, it is true, differ according to the nature of

the path, but it is for each definite path of z always completely

determined. The figures A and B illustrate this also. If z

move from h through d, and next along the broken line through

mtof and h, then w^ moves from 63 through ds, and next along

the broken line through m^ to /g and h^; Wg moves from 62

through c?2? ^2? /2 to 7^2 ; ^^3 acquires then the definite value ^3,

and w^ the definite value ^2- These final values will be differ-

ent, but again definite, when z goes round the branch-point e

on the other side along the dotted line through p. In this case

W3 goes from 63 through ^3, and then along the dotted line

through pg to /a and /ig ; and W2 goes through ^2, P2, fs to ^3. In

this case the successive values of the function, and therefore

also the final values, are different from the former, but again

they are completely determined.

As a general rule, only those points of the 2;-plane, at which

several values of the function (elsewhere unequal) become

equal, are also branch-points. An exception to this is to be

mentioned immediately.

A similar branching of the function takes place at those

points, at which iv becomes infinite and therefore discontinuous.

Thus, for instance, the point z = is a branch-point both for

]_

Vz
determined by the equation

%
(z — h){w — cf = z — a or iv = c +\-

the function iv = —p and for w = -y/z. Further, in the function
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in which a, b, c denote three complex constants, and therefore

three points, 2: = a is a branch-point, at which all three values

of the function become equal to w = c. Moreover, a,t z = b all

three values of w become infinite. The three functions suffer

here an interruption of continuity, and hence it can remain

undetermined on which path each is to continue its course,

because, when the function makes a spring, it can just as well

spring over to the one as to the other continuation of its path.

Therefore 2; = 6 is likewise a branch-point. Also, as a general

rule, those points at which w becomes infinite or discontinuous

are branch-points. Exceptions to this, however, may occur;

there are cases in which points are not branch-points, although

at them the values of the functions are either equal or infinite.

This, for the present, can only be illustrated by examples. In

the functions

VI — z^ and
Vl-22

2 = 4-1 and z = — 1 are branch-points ; on the contrary, in

(z — d)-y/z and :—7='

(z — a)-Vz

z = a is not a branch-point, although the values of the func-

tions at this place are in the first case both zero, and in the

second case both infinite. For, when z passes through the

point a, then 2; — a as well as V^ has a perfectly definite, con-

tinuous progress -, z — a, because it is uniform, and V^, because

+ s/a cannot, without interruption of continuity, suddenly pass

over into — V<x. Hence the rational functions of these quan-

tities have at this point a definite continuation for every path

described by z, and there is no branching. Accordingly, the

branch-points are to be looked for only among those points

at which an interruption of continuity occurs, or at which

several values of the function become equal ; but whether

such points are actually branch-points must still be expressly

determined.
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9. The preceding considerations have shown that, when the

variable z starting from an arbitrary point Zq describes a path

to another point z^ which leads through a branch-

point of a function w, the latter acquires differ-

ent values at Zi according as it is allowed to

proceed on one or another of its branches.

Therefore, in the case of such a path of z, the

value of 10 at Zi is undetermined. If, on the

contrary, z describe any other path, not leading

through a branch-point, w acquires at z^ a defi-

nite value, and it will now be shown that two

paths, both of which lead from Zq to z^, assign

different values to w at z^, only when they enclose

a branch-point. To that end we first prove the following

proposition

:

Let the variable z in passing from Zq to Zi describe two infinitely

near paths, z^mzi and z^nz^ (Fig. 9), which in no place approach

infinitely near a point at which either the function w becomes

discontinuous or several values of the function become equal, then

the function w, starting from Zq ivith one and the same value,

acquires at Zi the same value on both paths.

To prove this proposition, we first remark that the different

values which a multiform function has at one and the same

point z can differ by an infinitely small quantity, only when
the point z lies infinitely near a point at which several values

of the function become equal. (Cf. Figs. A and B, p. 40. In

that example the lines described by the values of the function

approach each other only at the point e, while at all other

points z they are a finite distance apart.) Since now, according

to the hypothesis, the two paths, z^mz^ and z^nz^, nowhere ap-

proach such a point, the different values which lu can have at

any point of the two paths differ by a 'finite quantity. There-

fore the values which the function w acquires at ^i on the two

paths, z^mzi and z^nz^, must either be equal to each other or

differ by a finite quantity. But the latter alternative cannot

occur. For, if we suppose that two movable z-points describe

the two infinitely near paths, z^mzi and z^nzi, in such a way
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that they remain always infinitely near each other, and if we
denote the value of the function along the one line by w^, and

that along the other by w^, then w^ and w„ along both lines can

differ only by an infinitely small quantity, because by the

hypothesis w starts from Zq with the same value on both paths,

and on both changes continuously, and because, further, in

passing from a point of one line to an infinitely near point of

the other, the continuity is not broken. Now, if w^ and

w^ differed by a finite quantity at Zi, at least one of these

functions would have to make a spring in some place, which

is excluded by the hypothesis that the two paths, ZqViZi and

ZqUZi, shall approach no point at which an interruption of con-

tinuity occurs. Consequently w^ and w„ cannot differ from

each other by a finite quantity, and hence, according to the

above, they are equal to each other.

This having been established, if we now suppose a series

of successive paths lying infinitely near to each other, all

between the points Zq and z^, and so constructed that no one

of them approaches a point at which either discontinuity

occurs or function-values become equal, then the function

acquires on all these paths the same value at Zi. From this

follows the proposition : If a path between ttvo points, Zq and z^

can he so deformed into another path by gradual changes, that

thereby no one of the above defined critical points is passed over,

then the function acquires at Zi the same value on the second path

as on the first. This conclusion holds also in the case when
two points, Zq and z^, coincide, and when therefore the variable

describes a closed line. The above condition is then changed

into this : the closed line is not to include any of the critical

points mentioned. Hence, if we let the variable z starting

from Zq describe a closed line and return again to %, the func-

tion acquires here the same value that it had at the beginning,

if the closed line include no point at which either discontinuity

occurs or function-values becopae equal.

Such closed lines described by the variable z are highly

important in the investigation of the influence which the path

followed by the variable z, on its way to any point, exerts on
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the value which the function w acquires at that point. If a

closed line include none of the points already so often men-

tioned, the function, as has been shown, does not change its

value ; but if it enclose such a point, the function may, or may
not, change its value. Further, if two paths be described

by the variable between two points, which

enclose no point of that kind, these lead to

the same function-value. Hence we have to

consider only paths which enclose such a

point. Now let a (Fig. 10) be a point of this

kind, and assume two paths bdc and bee,

which enclose a but no other similar point.

Let w start from b with the value Wq and

acquire at c the value W along the path bdc.

Then if we let the variable z, before it enters ^ ,„' Fig. 10.

on the other path bee, describe a closed line

bghb round the point a, the path bghbee can be deformed into

bdc without passing over the point a; therefore w acquires

at c likewise the value TT along this path, if it start from b

with the value Wq. We have therefore the following

:

along bde, w changes from ivq to W,

" bghbee, w " " w^ " W.

If we first assume that w changes its value by the description

of the closed line bghb and goes into iv^, we have

:

along bghb, w changes from Wq to Wi,

and hence " bee, w " " w^ " W.

Accordingly w acquires at c the value W along bee^ when it

starts from b with the value w^ ; therefore, if it start from b

with the value Wq, it cannot acquire the value W, but must

be led to another value. If, on the contrary, w do not change

its value on the closed line bghb, Ave have

:

along bghb, w changes from Wq to Wq,

and hence " bee, w " " w^ " TF;
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therefore in that case w, starting from b with the value Wq^

acquires the value TFalso along the path bee.

From this follows : If two paths enclose one of the points

a in question, they lead to different or to the same function-

values, according as the function w does or does not change

its value in describing a closed line round the point a.

We are now in a position to define branchpoints more pre-

cisely. A point a, at which either a discontinuity occurs or

several function-values become equal, is to be called a branch-

point when, and only when, the function changes its value in

describing a closed line round this (and no other similar) point.

Nevertheless, in this connection, it is to be noted that it is

not necessary for all the function-values to change. In order

that the point in question may be a branch-point, it is only

necessary for this change to occur in the case of some one of the

function-values under consideration. For the case can occur

that, in the circuit round a branch-point, only a part of the

function-values change, while the others remain unchanged.

The example considered on p. 38 ff. furnishes such a case. Let

the variable z, in Fig. B, describe the closed line dpfmd, which

2
encloses the branch-point e = , then it is evident from

V27
Fig. A that Wg goes over into Wg, and w^ into Wgj while Wi,

however, does not change its value but describes likewise a

closed line. Thus the proposition enunciated at the beginning

of this paragraph, that two different paths connecting the

same point assign different values to a function, which starts

from the initial point with the same value, only when they

enclose a branch-point, is proved; and for closed lines, we
can enunciate the proposition: A multiform function can

pass from a value corresponding to a point Zq to another value

corresponding to the same point in a continuous way, when
the variable z starting from Zq describes a closed line which

encloses a branch-point.

Closed lines, which enclose two or more branch-points, can

likewise be reduced to such closed lines as contain only one

branch-point. For, if we draw from a point Zq a closed
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line round each branch-point and let the variable describe the

same in succession, then this path can be deformed, without

passing over one of the branch-

points, into a closed line which,

starting from Zqj encloses all the

branch-points. (Fig. 11, where

a and b denote two branch-

points.) We draw such closed

lines round the individual branch-

points most simply, by describ-

ing round each one a small circle,

and connecting each of these circles with Zq by a line, which
must then be described twice, going and coming.

10. We will next illustrate the preceding considerations

by some examples, and at the same time show by them how
the function-values pass into one another on describing closed

lines round a branch-point.

Ex. 1. w= Vz.

In this z = is a branch-point. If we let the variable start

from the point z = l and describe the circumference of a

circle round the origin, this is a closed line which encloses

the branch-point. If the function w = Vi start from the point

z = l with the value w = -f 1, and if we put

z = r (cos
<t>

-\-i sin <^),

then at the point z = 1, r = l and <^ = 0. If z next describe

the circumference of the circle in the direction of increasing

angles, r remains constant and equal to 1, and <{> increases

from to 2 TT. If therefore the variable return to the point

z = 1, then
z = cos 2 TT -f I sin 2 tt,

and therefore

w = y^ = cos TT + 1 sin TT = — 1

;

thus the function does not now have at the point z = l the

original value + 1, but acquires the other value — 1. The very
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same takes place, when the variable describes any other closed

line once round the origin starting from 2 = 1; for this path

can be deformed into the circle by gradual changes without

thereby passing over the origin. In general, if w start with

the value Wq from any point Zq, for which

2^0 = ro (cos <^o + i sin <^o),

and therefore Wq = r^ (cos \<jiQ-\-i sin i <^o)^

and if z describe a closed line once round the origin in the

direction of increasing angles, then, on returning to Zq,

z = rQ [cos (<^o + 2 tt) 4- * sin (<^o + 2 tt)],

and therefore w = r^ [cos (^ </)o + tt)+ i sin (| <^o + ")]

= — Wo-

lf the variable describe the closed line twice, or if it describe

another closed line which winds round the origin twice, then

the argument of z increases by 47r, there-

fore that of tu by 2 tt, and consequently the

function then assumes again its original

value.

Now let the variable go from the point

2 = 1 to an arbitrary point Z, first along a

line 1 eZ (Fig. 12), which does not enclose

the origin, and along which the angles <^

Fig. 12.
increase. Along this path r and <^ may

acquire at Z the values E and 6, and lo the value W, so that

TF=i2^(cosi^ + *sini^).

But if the variable move upon the other side of the origin from

Ito Z along a line 1 dZ not enclosing the origin, the angle <^

decreases and acquires at Z the value ^ — 2 tt. Hence at Z
in this case

z = Ii [cos (27r ~ (9) - ^sin (27r - O)],

and w = M^ [cos (tt — ^0)— i sin (tt — ^0)']
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Finally, let z first describe a closed line Ibcl round the origin

starting from 1, and next the line 1 dZ, then
<f>

first increases

from to 2 TT and next decreases by the angle 2 tt — ^, so that

<l>
acquires at Z the value 2ir-\-0 — 2'jr = 0; in this case w,

after the description of the line Ibcl, starts from 1 with

the value — 1 and acquires at Z the value + W along 1 dZ.

Ex. 2. In the function

ic (z-l)V^

2 = is a branch-point, and this function behaves with respect

to this point like the preceding. Let us consider therefore

the point z = l, for which likewise w = 0. Let the variable z

describe round it a circle with radius r, starting from the point

a = 1 + r on the principal axis (Fig. 13). If we put

then w

z — l = r (cos <^ + i sin <^),

r (cos <^ + ^ sin <^)Vl + r cos <^ ir sin <^.

Since r remains constant, and <^ increases from to 27r,

the factor r (cos <^ + ^ sin <^)

does not change its value.

In order to study the behav-

ior of the second factor, let

1 + r cos <^ = p cos if/,

T sin cf> = psiuij/;

then p denotes the straight

line oz, and i{/ the inclination

of the same to the principal

axis, and

w = r (cos cf> -\-i sin <^) p^(cos ^ i/^ -h ^ sin i if/).

Now, if the circle do not enclose the origin, ij/ passes through

a series of values commencing with and ending with the value

again ; hence w does not change its value. But if the circle

be so large that the origin, which is a branch-point, also lies

within it, i(/ increases from to 2 tt, and therefore in that case

Fig. 13.
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the original value w = rp^ passes into — rp-. The statement

is therefore confirmed, that only the point 2 = is a branch-

point, and not the point z — \.

We can consider the given function (2 — 1)V2 as derived

from

w' = ^{z-V){z-h)z

by making 6 = 1. A line enclosing the point z = \ can then be

regarded as a line which at first enclosed the two points z = \ and

2=6, and in connection with which these two points were sub-

sequently made to coincide. Now z = \ and z = h, as well as

2J = 0, are branch-points of the function wK A closed line

which, starting from a point z^^ makes a circuit round both

points 1 and h can be replaced by closed lines, each of which

encloses only one of these points. If now w ' start from Zq with the

value ivq', on encircling the point b it passes into —Wq', and then

on encircling the point 1, — Wq' passes into Wq' again. The
function returns therefore to Zq with its original value. This

continues to hold when b approaches the point 1, and when
these branch-points coincide the common point obviously ceases

to be a branch-point. It is evident that this may be general-

ized as follows: When once in connection with two branch-

points only two function-values, and these two the same, pass

mutually one into the other, these branch-points neutralize

each other on coinciding, and there arises a point which is no

longer a branch-point.

Ex. 3. Let w
^. b'

in which a and b denote two complex constants. In this exam-

ple we have two branch-points, z = a and z = b. If we first

let z describe a closed line round the point a starting from an

arbitrary point Zq, but not enclosing the point b, and if we
accordingly put

z — a = r (cos
<f>

-\- i sin <^),

while 00 — a = ro (cos <^o + * sin <^o)?

then the initial value of w, which may here be denoted by Wj, is
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^t^^-
ro^(cos^<^o + ^sin-|<^o)

[a—b-i-Vo (cos <^o + i sin <^o)]^

After the closed line is traversed once in the direction of

increasing angles, <^o has increased by 2 tt, and hence the result-

ing' value of IV, which will be denoted by Wz, is

Wo
rp^ [cos (jc^o + Itt) + isin (^c^o + Itt)]

[a — 6 -f ro (cos <^o + ^ sin <^o)]

'

Therein the denominator, and therefore the quantity V^ — 6,

cannot have changed its value, because for it z = a is not a

branch-point, but only z = b', therefore z has described a closed

line which does not include the branch-point of this expression.

Let

cos Itt H- i sin Itt = " ^ + ^ v3 ^ ^^

so that a is a root of the equation a^ = 1 ; then, since

cos (^ </>o -f l^r) -f ^ sin {\ <^o + |t)

= (cos 1 <^o + ** sin \ <^o) (cos | tt -f i sin | tt),

we can also write Wg = «^i-

Now let the variable again describe a closed line round the

point a ; then w leaves z^ with the value w^ = awj, and there-

fore acquires, after the completion of the circuit, the value

After a third circuit lo finally acquires the value a^Wi, i.e.,

the original value w^ again, since ct^ = 1. If we had originally

started from z^^ with the value Wg instead of W], we should have

obtained the values w^ and w^ after one and two circuits re-

spectively ; but if Wg had been the original value, this would

have changed into iv^ and w^ successively.

Similar results are obtained when z is made to describe a

closed line including only the point h. We then put

z — b — r (cos <^ -j- ^ sin <^),
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and let w start from Zq with the value w^, this value denoting

the following expression

:

^ ^ [b — a-\-rQ (cos <^o + i sin <^o)]^

ro^(cos-|-</»o + *sin-i-<^o)

After one circuit by z in the direction of increasing angles, the

value of w becomes

[6 — g + n (cos <^o + i sin ^o)]^

ro^[cos (^ <^o + I ^) + i sin (i <^o + 1 tt)]'

in which now the numerator cannot have changed its value,

because its branch-point a has not been enclosed in the circuit.

We therefore now obtain for w the value

!^ = a^Wi, i.e., the value w^.
a

After a second circuit we obtain

-^=awi, I.e., Wz'y
or

finally, after a third circuit, the original value is restored, since

Wi

It is thus evident that the function-values for repeated cir-

cuits round a branch-point interchange in cyclical order. When
z moves round the point a in the direction of increasing angles,

the values

change after the first circuit respectively into

^2, Wg, Wi,

and after the second circuit into

after a third circuit therefore the original values

W]. Wo, Wo
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are restored. In like manner, for circuits round the point b

in the direction of increasing angles, the values

Wi, IV2, W3

pass into Wg, Wi, W2,

and into W2, w^, w^

and acquire, after the third circuit, the original values

Wi, W2, w^.

Let us next inquire what takes place when z describes a

closed line including both points, a and b. Such a line can

always be deformed, without

passing over one of these points,

into another which consists of

successive circuits round them
(Fig. 11). Let then z first de-

scribe a circuit round the point

b starting from Zq, return to Zq,

and then describe a circuit ^ ,,
Fig. 11.

round the point a. By this

path IV acquires, on the second return to Zq, the same value as

when z describes a closed line round both branch-points (§ 9).

If w start from Zq with the value w^, it acquires the value

Wi— = iCo after the circuit round b, and then after the circuit

round a the value awr^ = Wi ; the function reverts therefore to

its original value. If we consider in this connection, instead

of the given function, the following

:

w' = V (2 — d)(z — 6),

in which, as is easily seen, the factor a is multiplied into the

original function-value after each circuit round the point 6;

then to'i changes into aw'i = iv'2 on making the circuit round &,

and on making the circuit round a, w'^ changes into aw'2 = w'^.

A circuit round both points therefore changes i(;'i into iv'^; hence

a second circuit will change w 3 into w'2, and a third w'2 into w'l.
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Ex. 4. The function

'fe^^z-b

which is the root of the equation of the sixth degree,

(z - hfvf - 3(2 - h)\z - c)w^ - 2{z - d)(z - h)^^

+3(2 - h)\z - c)V - 6(2 - a){z - h){z - c)w

j^(z - af-{z - h)\z - cf = 0,

has the branch-points a, b, c. If, for sake of brevity, we sub-

stitute

V2 — a = t, V2 — b = u, V2 — c = v,

and give to a the same meaning as in the preceding example,

we can write the six function-values as follows

:

u
w,= L-v,

u u

Wq= a^-+ V,
u

itWQ=ar V.
u

Let us first consider circuits of the variable round the point

a; for these t passes into at, aH, ^, •••, while u and v remain

unchanged; therefore

tCl W2 W^ W^ W^ Wq

change after the first circuit into W2 w^ w^ w^ Wq w^
" " " second " " w^WiWz WqW^w^
" " " third " " W1W2W2 w^WsWq.

Round this branch-point, therefore, only the values Wi, Wg, w^

permute by themselves, and w^, iv^, Wq by themselves.

For circuits round the point 6, t and v remain unchanged,

and u changes into au, a\ u,"-. Therefore

change after the first circuit into

" " " second " "
u u u third " "

Wl W2 W3 W4 w^ We

W3 Wi W2 Wq W4 W^

W2 IVs Wi W5 Wq W4

Wl W2 W3 W4 W5 Wq.
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Here the same function-values permute as for the point a,

but in reverse sequence.

Finally, on making circuits round the point c, t and u are

unchanged, and v changes into — v, -|- v, •••. Hence here

Wi W2 W3 W4 W^ Wq

change after the first circuit into w^ w^ Wq Wi w^ w^
" " " second " " tyiWgWs w^w^Wq

In this example, therefore, we have first two branch-points,

round which the three values Wi, w^, w^ permute in cyclical

order, but never with one of the three remaining; likewise,

W4, W5, ivq permute in cyclical order here, but never pass into

one of the first three values. We then have one more branch-

point c, at which the three pairs WiW^^ WzW^^ f^s^e, each by

itself, interchange their values, without a value from one pair

ever entering another.

If we let z describe a closed line including two branch-points,

we can again replace such a one by two successive circuits,

each round one point. If the points a and b be enclosed, we
have the same condition as in the preceding example. We
will therefore follow only circuits round a and c, and tabulate

the results below.

Circuits. EouND a. EOUND C. EouND Both,

1 Wi changes into W2 102 into 106 lOi into los

2 W5 " " 106 106 " f^3 105 " 103

3 103 " " WJl lOi " IO4 Ws " W4

4 IO4 " " IO5 IO5 " 102 Wi " IO2

6 IO2 " " IO3 Ws " W6 W2 " 106

6 106 " " 'W4 Wi " lOi 106 " W^l

Therein w acquires its original value only after six consecu-

tive circuits round the points a and c.

11. The preceding considerations show that, given a multi-

form function, we can pass continuously from one of the values
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which, the function can assume for the same value of the vari-

able to another, by assigning complex values to the variable

and letting it pass through a series of continuously successive

values, which ends with the same value with which it began

(geometrically expressed, by letting the variable describe a

closed line). It has been further shown that a definite and

continuous series of values of the variable (a definite path),

also, always leads to a definite function-value, except in the

single case when the path of the variable leads through a

branch-point, a case, however, which can always be obviated

by letting the variable make an indefinitely small deviation in

the vicinity of the branch-point.^ This naturally suggests the

desirability of avoiding the multiplicity of values of a multi-

form function, in order to be able to treat such a function as if

it were uniform. According to the preceding explanations, it is

necessary for this purpose only to do away with the multiplicity

of paths which the variable can describe between two given

points. Now Cauchy has already remarked that this could be

effected, at least to a limited extent, by demarcating certain

portions of the plane in which the variable z is supposed to be

moving and not permitting the latter to cross the boundary of

such a region. For, since a function, starting from a point Zq

of the variable, can assume different values at another point Zi^

only when two paths described by the variable enclose a

branch-point (§ 9), it is always easy to mark off a portion of

the 2:-plane within which two such paths from Zq to Zi are not

possible, or, by drawing certain lines which start from branch-

points, and which are not to be crossed, to make such paths

impossible. Within such a region the function remains uni-

form, since it acquires at each point Zi only a single value along

all paths. The function is then called monodromic (after

Cauchy) or uniform, one-valued (after Eiemann). Although

this method is of great advantage, for instance, in the evalua-

1 If we regard the position of the path of the variable, in case it lead

through a branch-point, as the limiting position of a path not meeting the

branch-point, then to this assumption corresponds again a definite func-

tion-value.
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tion of definite integrals, nevertheless by means of it only a

definite region of values, or, as Riemann calls it, a definite

branch of the multiform function, is separated from the rest

and considered by itself. In order to be able to treat an alge-

braic function in its entirety and yet as if it were a uniform

function, Riemann has devised another method, which will be

set forth in the following.

Riemann assumes that, when a function is w-valued, when
therefore to every value of the variable n values of the function

correspond, the plane of z consists of n sheets or leaves (or that

n such sheets are extended over the g-plane), which together

form the region for the variable. To each point in each sheet

corresponds only a single value of the function, and to the n
points lying one immediately below another in all the n sheets

correspond the ?i different values of the function which belong

to the same value of z. Now at the branch-points, where sev-

eral function-values, elsewhere different, become equal to one

another, several of those sheets are connected, so that the par-

ticular branch-point is supposed to lie at the same time in all

these connected sheets. The number of these sheets thus con-

nected at a branch-point can be different at each branch-point,

and is equal to the number of function values which change

one into another in cyclical order for a circuit of the variable

round the branch-point. In the last example of the preceding

paragraph, wherein the function is six-valued, we shall assume

the ;2:-plane as consisting of six sheets. Round each of the

branch-points a and b the values Wi, w^, w^, on the one hand,

and W4, W5, Wq, on the other, change one into another ; hence we
assume that at each of these points the sheets 1, 2, 3, on the

one hand, and the sheets 4, 5, 6, on the other, are connected.

Round the point c, however, firstly, lij^ and w^ ; secondly, W2 and

W5 ; thirdly, Wg and Wq, change respectively one into the other

;

hence at the point c, first the sheets 1 and 4, then the sheets

2 and 5, and finally the sheets 3 and 6 are connected. Now
for the purpose of exhibiting the continuous change of one

value of the function into another, so-called branch-cuts ^ are

1 Sometimes called cross-lines. (Tr.)
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introduced. These are quite arbitrary lines (except that one

cannot intersect itself), which either pass from a branch-point

to infinity, or join with each other two branch-points. We do

not suppose the sheets to be connected along these branch-cuts

as they naturally lie one above another, but as the function-

values interchange round the respective branch-points. If, for

instance, in the last example of the preceding paragraph, we
draw a branch-cut from a to 6 (Fig. 14), we then, in making a

circuit round the point a in the direction of increasing angles,

connect the sheet 1 with the sheet 2 along the branch-cut, then

2 with 3, and finally 3 with 1 again. Let us call the right side

of the branch-cut ah, that which an observer has on his right,

when he stands at a and looks toward h. Then if z go from a

point Zq in sheet 1 {w with the value w^ and make a circuit

round the point a in the direction of increasing angles, on

crossing the branch-cut from right to left, it passes from the

first sheet into the second and is still in the latter when it

returns to Zq, or rather to the point g lying immediately below

Zq in the second sheet, so that w acquires the value w^ If

the description be still continued, z passes, after crossing the

branch-cut a second time from right to left, into the third sheet

and is still in the same when it arrives at the point h situ-

ated in this sheet below Zq ; w has now acquired the value w..

Finally, when z crosses the branch-cut a third time, we assume

that the right side of the third sheet is connected along the

branch-cut with the left side of the first sheet through the

second sheet, so that z crosses from the third sheet to the first

sheet and then returns again to Zq.
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Not until now is the line actually closed, and has w acquired

again its original value. In Fig. 14 the lines are denoted by

the numbers of the sheets in which they run, and, in addition,

those in the second and third sheets are thickly dotted and

thinly dotted respectively. The points Zq, g, h, which ought

really to be one directly below another, are, for the sake of

clearness, drawn side by side.

A similar course must be imagined in the case of all branch-

points, and since from each such point a branch-cut starts, the

variable cannot make a circuit round the branch-point without

crossing the branch-cut, and thereby passing in succession

into all those sheets which are connected at the branch-point.

How the branch-cut is to be drawn in each case depends

upon the function to be investigated, and can generally be

chosen in different ways. In our example a and h may be

connected by such a cut, because with circuits round the point

h in the direction of increasing angles the function Wi changes

into w^ and this into Wg (Fig- 14), and hence at h the same

sheets are connected as at a, and in the same way ; namely,

the right side of 1 with the left of 2, the right side of 2 with

the left of 3, and the right side of 3 with the left of 1.^

Let us continue with this example and investigate the cir-

1 If we wish to exhibit this method of representation by a model, a diffi-

culty arises, first, because the sheets of the surface interpenetrate, and

in the second place, because frequently at branch-points several sheets,

which do not lie one immediately below another, must be supposed to

be connected. But for the purpose of illustration, it is for the most part

necessary only to be able to follow certain lines in their course through

the different sheets of the surface. This can be easily effected in" the

following way : First cut in the sheets of paper placed one above another,

which are to represent the surface, the branch-cuts, and then only at

those places where a line is to pass over a branch-cut from one sheet

into another join the respective sheets by pasting on strips of paper.

Then we can always so contrive that, when the line is to return to the

first sheet, from which it started, we have the necessary space left for

the fastening of the strip of paper by means of which the return passage

is effected. By these attached paper strips union of the separate sheets

into one connected surface is accomplished ; and it is then no longer

necessary to connect the sheets with one another at the branch-points.
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cuits discussed in the preceding paragraph round a and h, and

round a and c. For a circuit round a and h the branch-cut

is not crossed at all, so that z remains in the first sheet ; in

fact w resumes its original value at Zq after such a circuit.

(Cf. Ex. 3, § 10). To examine the circuit round the points a

and c, let us draw from c to infinity a branch-cut, and let here

the sheets of every pair 1, 4 ; 2, ^) 3, 6 pass respectively into

each other.

For the passages of the function-values taking place here,

we have found the following table (p. 55) :

Circuits. Bound a. KOUND C. Round Both.

1 wi changes into w^ Wz into ws Wi into Ws
2 W5 " " W6 W6 " ^03 «75 *' 103

3 W3 " " Wi Wi " W4 Ws " W4

4 W4 " " Wn ICb " W2 W^ " W2

5 1C2 " " W3 Ws " iCe 102 " W^

6 We " " WJ4 W4 " Wi Wq " lOi

Fig. 15.

These passages are represented in Fig. 15, by designating

each line by the number of the sheet in which it runs. The

points properly lying below the initial point 1 are represented
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side by side, for the sake of clearness, and the last point 1 is

to be supposed to coincide with the first.

This region for the variable z, consisting in our example of

six sheets, forms a single connected surface, since the sheets

are connected at the branch-points and pass into one another

along the branch-cuts. In this surface lo is a perfectly uni-

form function of the position in the surface, since it acquires

the same value at every point of the latter, along whatever

path the variable may arrive at the point. If z describe

between two points two paths, which enclose a branch-point,

then one of the two must necessarily cross a branch-cut and

thereby pass into another sheet, so that the terminal points

of the two paths are no longer to be considered coincident,

but as two different points of the ^-surface, at which different

function-values occur. But if z describe an actually closed

curve, i.e., if the initial and the terminal points of the curve

coincide in the same point of the same sheet, then also the

function acquires its initial value. Only when the variable

passes through a branch-point can it pass at will into any one

of the sheets connected at that point, and in that case it

remains undetermined which value the function assumes (§ 8).

12. Now in order to prove that we can also, in general,

transform an n-valued function into a one-valued by means of

an n-fold surface covering the z-plane, the single sheets of

which are connected at the branch-points and along the branch-

cuts in the manner explained above, we first assume the 2;-plane

to be still single, and let the variable z, starting from an arbi-

trary point Zq, describe a closed line, which makes a circuit

once round a single branch-point and does not pass through

any other branch-point. At Zq the function possesses n values

;

let us assume them to be written do^vn in a certain sequence.

Now after the variable has described the closed line and re-

turned again to Zq, each of the above n function-values will

have either passed into another or remained unchanged. Since

the variable z is again at the point Zq, these new values of the

function cannot differ from the former in their totality ; but
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if we suppose them to be written down in the sequence in

which they have arisen in succession from the former, they

will occur in an arrangement different from the previous one.

Any one arrangement of n elements, however, can be derived

from another arrangement by a series of cyclical permutations.

By a cyclical permutation of the pih. order we understand one

in which from the existing n elements we take out p arbitrarily

and in the place of the first of these put a second, in the place

of the second a third, etc., and finally in the place of the j9th

the first. Such a cyclical permutation of the pth order has the

property, that after p repetitions of it, and not sooner, the

original arrangement is restored ; for, since the place of each

element is taken by another, that of the pth element, however,

by the first, each element can reappear in its original place

only after all the p — 1 other elements have occupied the same

place; then, however, each element actually returns to its

original place. Now, to prove that each arrangement can be

derived from another by a series of cyclical permutations, we
assume that any one arrangement arises from another by sub-

stituting one element, say 3, for another, say 1. The place of

3 is then taken either by 1, in which case we have already a

cyclical permutation of the second order, or by some other ele-

ment, say 5. The place of the latter is then again taken either

by the first, 1, in which case we have a cyclical permutation of

the third order, or again by another which is different from those

already employed, 1, 3, 5. Its place can be taken either by the

first, whereby a cyclical permutation would be closed, or again

by another; finally, however, the cyclical permutation must

terminate, because altogether there is only a finite number of

elements, and the first element 1 must be found in some place

of the second arrangement. In this way then a series of ele-

ments is disposed of. If we next begin with some one of the

elements not yet employed, we can repeat the former procedure

until all the elements have been exhausted, and we thus obtain

a certain number of cyclical permutations which, employed

either successively or also simultaneously, produce the second

arrangement from the first. If an element have not changed
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its place in the second arrangement, such a permanence can be

regarded as a cyclical permutation of the first order. Let us

illustrate the above by an example. Suppose the elements

123456789 10 11

have passed into the arrangement

3 11 5 2 7 10 1 9 6 8 4;

it is evident that the row
13 5 7

has changed into 3 5 7 1;

these therefore form a cyclical permutation of the fourth

order. If we next proceed from 2, it is evident that the row

2 11 4

changes into 11 4 2;

therefore we have a second cyclical permutation, of the third

order. The next element not yet employed is 6. Then the

row 6 10 8 9

changes into 10 8 9 6,

and we have a third cyclical permutation, of the fourth order.

Now all 11 elements are exhausted, and consequently the

second given arrangement is derived from the first by the

three cyclical permutations obtained above.

If we now return to our function-values, it follows that,

whatever arrangement of them may have arisen from the cir-

cuit of the variable round the branch-point, it can be produced

by a series of cyclical permutations of the function-values. If

the variable be made to describe a circuit round the same

branch-point a second time, each function-value undergoes the

same change that it experienced the first time. For this

second circuit, therefore, the cycles remain the same as for the

first, and so, too, for each subsequent circuit. Thus the values
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of the function (unless they all form a single cycle, which case

can also occur ; cf. Ex. 3, § 10) are divided at each branch-point

into a series of cycles, so that in each cycle only certain

definite values of the function can permute among themselves

with the total exclusion of all values contained in another

cycle (cf. Ex. 4, § 10).

If a single value of the function do not change for the cir-

cuit of the variable round the branch-point, the same can be

regarded, as has been remarked above, as forming by itself

a cycle of the first order. If the variable be now made to

describe some quite arbitrary closed line, the latter can be

deformed into a series of circuits round single branch-points

(§ 9). Therefore the arrangement arising through this closed

line can also be produced by the cyclical permutations occur-

ring at the branch-points.

If, now, the 2-surface be supposed to consist of n sheets, the

preceding justifies the assumption that, at each branch-point,

certain sets of sheets are supposed to be connected, which con-

tinue into one another along the branch-cuts in the way above

stated. Then the variable, by describing a circuit round a

branch-point, passes in succession into all those sheets belong-

ing to the same group, and into none but those, and finally it

returns into that sheet from which it started.

To find for an n-valued algebraic function the E-iemann

n-sheeted surface, let ns first determine its branch-points and

choose some definite value Zq of z, which, however, must not

itself be a branch-point. We must then let z describe a cir-

cuit in the single 2;-plane once round each separate branch-

point, always starting from Zq and returning again to it, and

we must ascertain how the function-values occurring at Zq

are divided at each branch-point into the above-mentioned

cycles, and how, within these, they permute with one another.^

1 On this point cf. Puiseux, " Recherches sur les fonctions algebriques,"

Liouville, Journ. de Math. T. xv. (In the German by H. Fischer, Puiseux''

s

Untersuchungen ilber die algebraischen Funktionen. Halle, 1861.) Konigs-

herger, Vorlesungen uber die Theorie der ell. Funktionen. Leipzig, 1874.

I. S. 181.
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This having been ascertained, if in the 7i-sheeted surface the

points of the n-sheets which represent the value Zq be desig-

nated in succession by z°, z°, ••., 2„°, so that the subscript

indicates the sheet in which the point is situated, then we
can first arbitrarily distribute the values of the function at

Zq among the sheets ; i.e., v^e can assume in an arbitrary but

definite way which of these values of the function shall belong

to each of the points z°, z°,"',z^°. We will denote these

values in order by w°, w/, •••, w„°. Let us next draw from
each branch-point a branch-cut to infinity, and for each of the

latter let us so determine the connection of the sheets that it

shall exactly correspond to the cycles previously ascertained.

If, therefore, in the single 2-plane, for a single circuit round a

certain branch-point, w^ be changed into w^°, w° into w°, etc.,

then in the %-sheeted surface the connection of the sheets is

so determined that for a single circuit round the same branch-

point, the variable passes from 2/ to 2^°, from z° to z,^, etc.

If a single function-value w^ suffer no change thereby, the

corresponding sheet fx is connected with no other sheet, so

that the sheet /a continues into itself along the branch-cut, it

being therefore unnecessary to draw the branch-cut in this

sheet.

If, as has been assumed, a branch-cut extend from each

branch-point to infinity, the connection of the sheets can be

determined at each branch-point independently of the others.

This, however, does not exclude the possibility of sometimes

connecting two branch-points by a branch-cut, or of making
several branch-cuts extend from one branch-point; but this

may occur only when the previously ascertained way in which

the function-values permute at the respective branch-points

permits such an arrangement. Thus, in the example of a six-

valued function considered in the preceding paragraph, a branch-

cut can be drawn from each of the three branch-points a, b, c

to infinity; but the way in which the values of the function

permute round a and b also admits of a and b being connected

by a branch-cut.

These determinations having once been established, the
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function-values for each, value of z are distributed among the

n sheets in a definite way. To prove this, since in the single

2;-plane the different values which the function can have at one

and the same point z are produced only by the different paths

to z, it is only necessary to show that, if in the w-sheeted sur-

face starting from a certain point, say Zi°, and with the definite

value Wi°, we reach the same arbitrarily chosen point z^ along

any two different paths, we are always led to the same function-

value (by the two paths). In this proof different cases must

be distinguished.

(1) Let us first assume that the terminal point of a path

starting from Zi° is one of the points representing the value Zq,

say z^°. Then the corresponding path in the single 2;-plane

forms a closed line. This can be deformed into a series of

(closed) circuits round single branch-points without changing

the final value of the function. Corresponding to this in the

n-sheeted surface, the variable also makes circuits round single

branch-points and after each circuit goes to whichever of the

points Zi°, Z2°, • • •, 2„° it can reach. The points at which it arrives

in this manner may be designated in. order by Zi°, z° z^°, •••,

z°, z°. According to the principles established above concern-

ing the arrangement of the function-values, and since here only

single circuits round any one of the branch-points are taken

into consideration, it follows that w assumes in succession the

values w°, w°, w^°, •••, ic/, w^°. Now a similar deformation

can be made in the case of any other path starting from Zi° and

terminating in z^°, although then the variable will generally

pass into other sheets than before. Let us assume that the

circuits lead the variable in succession from Zi° to zj", z^, - • -, Zj°,

and finally to 2;;^°, then the corresponding series of function-

values is w°, wj", Wf,°, '", iv^°, and since the last circuit, accord-

ing to the assimiption, leads from 2;/ to z^°, w/ must finally also

change into w^°. This may be illustrated by an example.

In the six-sheeted surface represented in § 11 we can reach

for instance 2:3° from z° by two circuits round the point a, by

which we come first from Zi° to ^2°? and then to z.°. But among
others we can also choose the following way : from z° round
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a to Z2°, then round c to Zs°, then round a to Zq°, and finally-

round c to 2:3°. For the first path w assumes the values w°, w^,

w^ ; for the second, w°, W2, w^°y Wq°, w^, but the final value is

the same for both paths. It must be emphasized as a special

case that, if the variable return by any one path to its starting-

point Zi, the function also resumes the original value w°.

(2) We next consider two paths A and B connecting the

same points and running entirely in one and the same sheet

;

therefore, if for instance, we assume again z° as the starting-

point, entirely in the sheet 1. Then, if the two paths enclose

no branch-point, no special discussion is required, since the cor-

responding paths in the single s^plane also enclose no branch-

point, and therefore lead to the same value of the function

(§ 9). It is to be noted that this case can occur, if the paths

considered enclose branch-points, only when from neither

of the enclosed branch-points a branch-cut extends to infinity

;

for, otherwise, at least one of the paths would have to cross

the branch-cut and could not run entirely in the same sheet.

The case under consideration can therefore only occur when
several branch-points are enclosed by the two paths, and when
each branch-cut connects two branch-points with each other. If

then, in the single 2;-plane, we let circuits round all the enclosed

branch-points precede one of the paths, say B, we obtain a new
path C leading to the same function-value as does A. But if

these circuits be made in the n-sheeted surface, they again lead

back to Zi, because each branch-cut connects two branch-points,

and therefore, for the successive circuits round the latter, the

branch-cut must be crossed twice in opposite directions; we
thus always come back to the sheet 1, and therefore finally

also to z°. Then, according to what has been proved in the

preceding case, the function also acquires again at z° the value

w°. Since, however, the path C, which consists of the circuits

and the path B, leads to the same value as does A, and since

the function starts on the path B with the value w°, therefore

this alone must also lead to the same value as does A.

(3) Finally, let us assume as the terminal point of the paths

to be examined any point z^^ lying in any arbitrary sheet A. Let
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the initial point, as before, be 2:1°. For such a path we can, in

the first place, without changing the final function-value, sub-

stitute another path, which first leads to z^ and then, running

entirely in the sheet A, to z^ ; for, in the corresponding paths in

the single 2;-plane, the terminal portion of the second can always

be so chosen that this can be deformed into the first without

necessarily crossing a branch-point. If we now make the

same deformation in the two different paths, both first lead to

z°', here the function according to (1) acquires along both

paths the value ^6\°. The portions of the two paths still remain-

ing rim entirely in the sheet A, commence at the same point 2;/

and with the same value of the function w^^ ; therefore, both

according to (2) also lead to the same value of the function at z^.

We have thus proved that after the above determinations,

chosen quite arbitrarily, have been made, the function acquires

at each point of the surface a definite value independent of the

path and becomes a one-valued function of the position in the

surface. Thereby we have removed the multiformity of alge-

braic functions,^ and in what follows we shall now always

assume that the region of the variable consists of as many
sheets as are required to change the multiform function under

consideration into a uniform one, and we shall consider two

points as identical, only when they also belong to the same

sheet of the surface.

Accordingly we shall call a line actually closed, only when
its initial and terminal points coincide at the same point of the

same sheet. On the other hand, should a line end in a point

situated in another sheet above or below the initial point, we
shall sometimes call such a line apparently closed.

13. To the above considerations let us add a few remarks.

In crossing a branch-cut, one sheet is continued into another,

1 Though we can also ascribe branch-points to such functions as log z^

tan-^2;, etc., we should then be obliged to assume that an infinite number

of sheets of the surface are connected in a branch-point. For this reason

the functions mentioned will be considered later from the point of view

of functions defined by integrals.
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as has been set forth above, in such a manner that, when the

variable moves in it, the function changes continuously. It

follows from this, which is to be well heeded, that the function

in the same sheet must always have different values on the two
sides of a branch-cut. Let us assume, for example; that a sheet

K is continued beyond a branch-cut into another sheet A, and
let z^ and z^ be two points representing the same value of z,

and lying in k and X respectively and infinitely near the branch-

cut. Further, let 2'^ be the point which lies in k on the other

side of the branch-cut directly opposite z^ and infinitely near

the same. Then the variable, in order to pass from z^ to z^^

must first move round the branch-point to z'^, from which point

it immediately comes to z,^ by crossing the branch-cut. Accord-

ingly 2;'^ and z^ are in continuous succession ; z^ and z^^, however,

are not. If w^, w'^, w^ denote the function-values corresponding

to z^, z\, z^ respectively, then w^^ is continuous with w\, but not

with w^, and if we disregard the infinitely small difference

between il\ and w'^, we can say w'^ = w^ ; but since w^ is differ-

ent from w^, w^ and w^^ are also different from each other.

Take, for instance, the function w = V2. The surface then

consists of two sheets, which are connected at the branch-point

2 = 0. Here w^ = — w^ (cf. § 10, Ex. 1) ; therefore w'^ = — w^.

In this example, therefore, the values of the function in the

same sheet have opposite signs on the opposite sides of the

branch-cut.

Riemann calls the branch-points also winding-points, because

the surface winds round such a point like a screw surface of

infinitely near threads. Then, if only two sheets of the surface

be connected at such a point, it is called a simple hranch-pointy

or a winding-point of the first order; if, however, n sheets of

the surface be connected at it, it is called a branchpoint or

winding-point of the (n — l)th order. Now, for many inves-

tigations, it is important to show that a winding-point of the

(n — l)th order may be regarded as one at which n — 1 simple

branch-points have coincided. If we assume, for example,

71 = 5, then at a branch-point in which 5 sheets are connected,

the variable passes after each circuit into the next following
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sheet, and a curve must make 5 circuits round a branch-point

before it arrives again in the first and becomes closed. By
this property such a point is characterized. But the same

also takes place if we assume 4 simple branch-points a, b, c, d

in which the following sheets are connected in succession:

at a

1 and 2

b

1 and 3

c

1 and 4

d

1 and 5.

In Fig. 16, aa', bb\ cc', dd' are the branch-cuts, and the figures

refer to the numbers of the sheets in which the lines run.

If the curve, starting from ^o (Fig. 16), cross the section aa',

it passes from 1 into 2 and remains in 2 for the entire circuit,

because this sheet is not con-

nected "wath another at any of

the points b, c, d. Thus, for

the first circuit the curve passes

from 1 into 2. If aa' be crossed

a second time, the curve passes

from 2 into 1, and then at bb'

from 1 into 3. Then, however,

it remains in 3 until its return

to Zq, the second circuit there-

fore carrying it into 3. Only at

bb' it again passes from 3 into

1, and then at cc' from 1 into

4. In this way each new cir-

cuit carries the curve into the next following sheet ; therefore,

after the fifth circuit the curve returns into the first sheet and

becomes closed. It is thus seen that the passages take place

here in the same way as in the case of a winding-point of the

fourth order. Therefore, by making the four simple branch-

points, as well as the branch-cuts, approach one another and

finally coincide, we obtain a branch-point of the fourth order.

This simple example shows at the same time that the number

of circuits which a curve must make round a region in order to

become closed, exceeds by 1 the number of the simple branch-

points contained in this region, since the winding-point of the
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fourth order is equivalent to four simple branch-points. It

will be shown later that this relation holds generally.

14. For the complete treatment of the algebraic functions

it is still requisite for us to take into consideration infinitely

large values of the variable z. In the plane in which z is

moving, this variable can move from any given point, e.g., from

the origin, in any direction to infinity. But if we now suppose

the plane to be closed at infinity, like a sphere with an infi-

nitely large radius, we can imagine that all those directions

extending to infinity meet again in a definite point of the

sphere, and accordingly the value 2; = oo can then be repre-

sented by a definite point on the spherical surface. The same
representation may be obtained by conceiving that the 2;-plane

is tangent at the origin to a sphere of arbitrary radius. Let

us suppose the point of tangency to be the north pole of the

sphere. Then any point z of the plane can be projected on

the surface of the sphere by drawing a straight line from the

south pole s of the sphere to the point z, and cutting with this

line the surface of the sphere. But if the infinitely distant

points of the 2;-plane be projected in this manner on the surface

of the sphere, the projections all fall in the point s, by which

point therefore the value 2; = 00 is represented in that case.

If, now, the 2;-plane consist of ?i-sheets, the spherical surface

can be supposed also to consist of n-sheets, and we can assume

that the points of the ?i-sheets representing the value z = cc lie

directly one above another. Then it is also conceivable that

several sheets are connected at the point 00 , and that the latter

is a branch-point. Given a function w =f(z), in order to decide

whether z = cc is a branch-point, we need only substitute

z = — If, then, f(z) change into <^ (u), each branch-point z = a

of f(z) furnishes for <^ (u) a branch-point u =-, and, conversely,
a

^
each branch-point u = b of cl>(u) furnishes a branch-point 2; = -

for f(z) ; therefore z = co is or is not a branch-point of f(z),

according as i^ = is or is not a branch-point of </> {u). We
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can also let the variable z describe a circuit round the point oo

on the surface of the sphere, and we can ascertain whether or

not f{z) thereby undergoes a change in value, and what the

nature of this change is, if for this purpose we examine the

function <^ (?/.), while the variable u describes a circuit round

the point u = 0.

In the case of a surface closed at infinity, a branch-cut can

no longer be drawn extending indefinitely to infinity, but if such

a cut extend to infinity, it now terminates in the definite point

2 = 00 . Thence arises a difficulty which has to be removed

(which, however, may be shown to be only apparent). For,

let a, ft, c, ••• be the finite branch-points of a given function

/(«), and let us assume that these points are connected by

means of branch-cuts with the point z = cc . If, now, the

values of the function w°, w^, •••, w„°, occurring for any defi-

nite value Zo) be distributed arbitrarily among the points z^,

2^2°? •••? ^nj a-s has been set forth on page 65, and if the con-

nection of the sheets along the branch-cuts be determined in

accordance with the character of the function /(z), then noth-

ing arbitrary must be assumed for the point z= cc , but the

manner in which the sheets are connected along the branch-

cuts which end in this point is already determined by the

former assumptions. The question, however, then arises

whether this actually conforms to the nature of the function

f(z)j i.e., whether thereby that change (or eventually non-

change) of value is produced which f{z) really experiences for

a circuit round the point z = ao . If this were not the case, it

would be impossible so to construct the Riemann spherical

surface that the given function should be changed into a one-

valued one without neglecting the infinitely large value of z.

But, now in the simple spherical surface a closed line Z,

which encloses the point z — ^ and no other branch-point, is

at the same time one which encloses all finite branch-points a,

6, c, •". Since the latter can be resolved into closed lines

which enclose the branch-points a, h, c, •••, singly, the same

change of values takes place for f(z) in describing the line Z
as if the points a, b, c, ••• were enclosed singly in succession.
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This, however, in the n-sheeted surface, as has been shown
above, is at the same time the change which also occurs when
the branch-cuts leading from a,b,c, • • • to infinity are crossed in

succession. Accordingly, there arises, in fact, no contradiction,

but it is always possible to represent uniformly an algebraic

function by a many-sheeted Riemann spherical surface, without

neglecting the infinitely large value of z.

Eor the purpose of illustrating the above, we shall introduce

a few examples, in which, for the sake of brevity, the same
designations will be used as have been employed in § 10 and

§ 11.

Ex. 1. The function already considered

m =4 +v^

changes by the substitution z = ~ into
u

, , s 1 — au . VI — cu.

M-bu V^
hence u = 0, and therefore also 2; = oo, is a branch-point, and it

is evident that at this point the same sheets are connected as

at the point c. We shall therefore draw one branch-cut from

a to b, and a second from c to infinity. But it is also possible

to draw three branch-cuts from a, b, c to infinity, as we have

done in the general treatment of this subject. From the con-

siderations made in Ex. 4 of § 10, it follows that the passages

along the branch-cuts are as follows

:

123456
along a 00 •

" bco'"

coo

231564

123456
312645

123456
456123*

If therefore for a single circuit round the point oo these three

cuts be crossed successively, we then pass in succession first
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from 1 to 2, then to 1, and finally to 4, in accordance witli what

should really occur.

Ex.2.
2^

changes into
<i>

(u) = ^(i _ au) (1 - bu) ;

therefore z = oo is not a branch-point, but only the points 0, a

and 6.

From each of these points can be drawn a branch-cut to

infinity. But if the surface be assumed to be closed at infinity,

then the three branch-cuts meet

at the point oo (Fig. 17). The
sheets of the surface pass into

one another along the part a oo

in a way different from that

along the part b oo, namely, as

the numbers indicate in the

figure. Round the branch-

point 0, in the direction of

increasing angles, / (z) changes

into

pio. ir.
«/(2);

2 3 1

AJJ.3

V

therefore 1 into 2, and hence also 2 into 3 and 3 into 1. If we
now describe a circuit round the point oo, then, on crossing oo,

1 changes into 2, and on

crossing 6 oo, 2 into 3, and ^ \ j,^-^

finally on crossing aoo, 3 2_

intol. Here therefore after ^--^

the first circuit we return to

the first sheet, the function

does not change its value,

and thus the point oo is

really not a branch-point.

It would also have been possible in this case to connect the

points a and 6 by a branch-cut drawn in the finite part of the

23 1

Fig. 18.
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surface (Fig. 18). But then there must be given on this line a

point c, at which separation takes place, so that along ac the

sheets are connected in a different way from that along be. If

then the second branch-cut be drawn from to c, then for the

circuit round the point c the function remains unchanged, so

that c is not a branch-point. The matter can here be considered

in a manner analogous to the treatment of the second example

of § 10, namely, as if the point c had arisen from the coinci-

dence of three branch-points d, e,f, which had mutually neu-

tralized one another, so that the given function may be supposed

to have been derived from the following

3z-a
^
z--h

^
(z -ffi

by putting

d z

d = e=f= c.

The branch-cuts can here also be chosen in a third way by

drawing one from a to 0, and another from to b.

Ex. 3. The function

f(z) = ^(z-a)(z-b)
changes into

^(„)=.^SE«MEM;

therefore 2; = oo is a branch-point. We can here draw a branch-

cut from a to 00 , and another one from 6 to 00 (Fig. 19), and

connect the sheets as indicated

•in the figure. Then a circuit 1

round the point oo leads first

across b 00 from 1 to 2, and then

across a 00 from 2 to 3; thus

one circuit leads from 1 to 3,

so that the function changes

and 2; = 00 is actually a branch-

point. It is to be noted that

if the direction of motion

here, too, be that of increasing fig. 19.
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angles, the circuit, viewed from oo , must be made in the oppo-

site direction. For, if we put

it follows that

u = r (cos
<l>
— i sin <^),

-(cos 6 + zsin<i).
r

/ \
12

12

Therefore, if u describe a circle round the origin with a small

radius and in the direction of decreasing angles, then z describes

a circle with a large radius and

_^ in the direction of increasing

? angles. In this case <l>(u), for

one circuit, changes into a^<f> (u),

and consequently /(2;) into a^fiz)-,

i.e., we pass from 1 to 3, as in-

dicated in the figure.

We can here also connect the

points a and 6 by a branch-cut

running in the finite part of the

plane, assume on it a point o.^

separation c, and draw from this another branch-cut to oo (Fig.

20). The function then does not change for a circuit round

the point c.

Ex. 4. Let us next take up the example previously given

on page 38, in which the function w is defined by the cubic

equation

2-

21
18

Fio. 20.

W^ — W -\- Z = 0.

By letting here as above

3y

whereby pq = ^, (1)

the three values of the function are expressed by

W2= ap-\- a^Qj

Ws = a/^p -j- aq.
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We have here first the two branch-points z = and

2 .

^^
2 = ^, at each of which two sheets of the surface are con-

V27
nected ; and next 2 = oo is also a branch-point, since by letting

2 = -, we get

P =\ T,.

2

27"

for u = 0, p is thus = oo , and therefore by (1) q = 0. Accord-

ingly, at = GO all three values of the function become infinitely

large, so that all three sheets are connected. Although, at first

sight, it seems as if the first two branch-points must have

exactly the same relation, so that at both the same sheets are

connected, yet this is not the case. To see this, it is only neces-

sary to follow the real values of z, since the first two branch-

points are real and the point 2 = oo can also be assumed on the

principal axis ; and the expressions for the roots w must be

reduced to the forms which are given to them in the irreduci-

ble case of the cubic equation. We write therefore

and let

Then we get

jLf 2 /27? .

2

V27

2 o
z = cosS-u.

p =^ 4= (cos S-y + isinSv) = — V| (cosv + isinv)
;

the three values of p therefore are

p = -Vi e% = - aVI e% = - a'Vi e%

and, since q is always = — , the corresponding values of q are
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Since, moreover, a=e^ , a? = e ^ can be substituted, we get

= _Vi(/-^)+.-<-T)),

= _V|(e<-T%.-<-^)),

or Wi = — 2V| cos Vj

As long as v remains real, z passes through the real values

2
numerically less than ; the point z therefore describes the

V27
distance between the two simple branch-points; for pure

imaginary values of v, z becomes numerically greater than

2
, and only for complex values of v does z assume imaginary

V27
values. Eor our purpose therefore only the real values of v

need be considered. In this it is to be noted, however, that z

is introduced as a periodical function of v. Therefore, if we
wish to have something definite and make the variable z de-

scribe the distance between the two simple branch-points only

once, we must choose a definite period and consider this alone.

Let us then assume, in order that z may pass through the real

2 2
values H r= to 1=^, that 3v moves from to ir, and there-

V27 V72

fore V from to -• We then obtain the following correspond-
o

ing values of v, z, w^, Wo, w. :
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z Wi W2 %

-^zh -2Vi +Vi +V}
V27

-1 +1

3 V27 VJ +2Vi -VJ

In calculating them, to avoid all ambiguity at the branch-

points, we must start from the value v=- and make it first

decrease to and then increase to -•

2 2
If, for the sake of brevity, the branch-points H == and

V27 V27
be denoted by e and e', it is seen that, though according to the

chosen period of v the two values of the function Wg and Wg

become equal at e, yet after z has arrived at e', this does not

again take place, but now w^ and w^ become equal. Accord-

ingly, at e the sheets 2 and 3, but at e' the sheets 1 and 3,

must be assumed to be connected.

If, according to the above table, the three values — 1, +1,
of w occurring for 2; = be distributed consecutively among

the sheets 1, 2, 3, then, for a circuit round the point e, the

values -f 1 and interchange ; while for a circuit round the

point e' the values — 1 and interchange, which is also con-

firmed by a direct investigation of these circuits. Accordingly,

if the branch-cuts e 00 and e' o) be drawn, the continuation of

the sheets, in crossing them, must be assumed as follows

:

123
along e CO ...^^

u I
123
321

At the point 00, then, all three sheets are connected, into which

we pass successively if we describe a circuit round this point.
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15. If w denote a multiform function of z, but W a rational

function of w and z (or also of w alone), then the 2;-surface for

the function TFis constructed just as is that for the function w.

For, let w^ and w^ denote any two values of w belonging to the

same z, and W^ and W^ the corresponding values of W, then

W^ must change into W^ whenever w^ changes into w^^, since

to each pair of values of z and w corresponds only a single

value of W. The passages of the TT-values depend therefore

upon the circuit described by z in the same manner as do the

w-values.

Therefore the 2;-surface has the same branch-points and

branch-cuts for W as for w, and at each branch-point the

same sheets are connected. For this reason Riemann calls

all rational functions of w and z a system of like-branched

functions.

SECTION IV.

INTEGRALS WITH COMPLEX VARIABLES.

16. The definite integral of a function of a complex variable

can be defined in exactly the same manner as is that of a

function of a real variable.

Let Zq and z be any two complex values of the variable z.

Let the points which represent these values be connected by

an arbitrary continuous line, and assume on it a series of

intermediate points, which correspond to the values z^, z^, "',z,,

of the variable. If, further, f{z) be a function of z which at

no point of the above line tends towards infinity, and if we
form the sum of the products,

/W (2^1 - 2;o) +/(2l) fe - ^l) + ••• +/(2„) {Z - Z^),

then the limit of this expression, when the number of the

intermediate values between Zq and z along the arbitrary line
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increases indefinitely, and when therefore the differences

Zi — Zq, Z2 — z^ etc., diminish indefinitely, is the definite integral

between the limits z^ and z ; therefore

y^fiz) dz = lim [/(2o) («! - z,) +f{z,) (z, -z,) + .'.

+/fe)(^-2„)]. (1)

It is obvious that this definition does not essentially differ

from that usually given for real variables. One difference,

however, consists in this : that, in accordance with the nature

of a complex variable, the path described between the lower

and upper limits, i.e., the series of intermediate values, is not

a prescribed one, but can be formed by means of any continuous

line. Upon the nature of this line, which is called the path of

integration, the integral is in general absolutely dependent.

It is easy to show that, if f(z) do not become infinite at any

point of a path of integration, the integral taken along this

path has also a finite value. For, since (§ 2, 1) the modulus of

a sum is less than the sum of the moduli of the single terms,

it follows from (1) that

mod
I

f(z) dz < lim 5mod [f(zo) (z^ - Zq)]

+ mod lf(z,) (z, - z,)-] + ... + mod [/(z^) (z - 2,)] J.

But if M denote the greatest of the values acquired by the

modulus of f(z), while z describes the path of integration, this

value according to the assumption being finite, then the right

side becomes still greater if M be put in place of the moduli

of the single function-values f{zo), /(^i) •••• Therefore, the

modulus of a product being equal to the product of the moduli

of the factors (§ 2, 3), we get

mod
I

f(z) dz < M' lim {mod (zi — 2:0) + niod (Z2 — z^ + •••

+ mod(2-2„)|.

In this the moduli of the differences Zi — «oj % — ^^i
••• repre-

sent the lengths of the chords Z(^i, Z1Z2, •••. In passing to the
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limit, therefore, the sum of these moduli approaches the length

L of the path of integration ; accordingly

mod jf(z)dz<ML,

and has a finite value, if the path of integration have a finite

length.^

From this definition follow immediately the two following

propositions :
—

1. If Zj, denote any value of the variable along its path, then

rf(z)dz= fy(z)dz-\-rf{z)dz.
•^'o *^'o ^'k

2. Also ^y{z)dz = - ^J{z)dz,

i.e., if the variable describe the path which represents a con-

tinuous succession of its values in the opposite direction, the

integral assumes the opposite sign.

It can further be shown that, whatever may be the path of

integration, the integral

w

is always a function of the upper limit z, when the lower limit

Zq is assumed to be constant. Let

Zo = Xo + iyo, z = x + iy,

I
f(i + irj) (d$ -f- idrji).

This integral breaks up into two parts, so that in the first ^,

and in the second rj, is the variable of integration. Given now
a definite path of integration, then by virtue of it 17 is a function

of ^, and $ a function of rj ; let

1 Konigsberger, Vorlesungen iiber die Theorie der ellipt. Funkt..,

I. S. 63.
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If these be introduced, then, since ^ passes through all values

from Xq to X, and -q at the same time through all values from y^

to y corresponding to ^ in virtue of the path of integration,

w

and this equation holds whatever may be the functions <^ and

\l/
determining the path of integration. By reducing in it /

also to the form of a complex quantity, we are led to only real

integrals, and hence we can apply to the former the rules

of differentiation holding for real integrals. We therefore

obtain

^^=Ax + i<i>(x)^=f{x + iy),

8w

Hence

g =if[.^{y) + W'] = ^f(x + iy).

Bw _ .Bw^

8y~''Bx'

consequently (by § 5) w is a function of z. It then follows,

from the second of the propositions stated above, that w can

also be considered as a function of the lower limit if the

upper one be regarded as constant. Since, further (§ 5),

dw _8w
dz~^'

it follows also that — z= f(z).
dz

-^^ ^

On the other hand, the proposition holding for real integrals,

that, when F{z) denotes a function of zthe derivative of which

is fiz),

^y(z)dz = F(z)-F(zo),

1 This result follows also from the sum (1), by which the integral is

defined, if we separate in it the complex quantities into their constituent

parts.
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cannot without further limitation be applied to complex in-

tegrals, because the values of such integrals, as has already

been remarked, depend not only upon the upper and lower

limits, but also upon the whole series of intermediate values,

i.e., upon the path of integration.

17. In order to examine the influence of the path of integrar

tion upon the value of the integral, we shall commence with

the following considerations. Let

z = x-}- iy

be the variable, accordingly x and y the rectangular co-ordinates

of the representing point. If we have a region of the plane

definitely bounded in some way, which can consist of either

one or several sheets, and if P and Q be two real functions

of X and y which for all points within the region are finite and
continuous, then the surface integral

^-sm-f)'^-
extended over the whole area of the region, is equal to the linear

integral

J(Pdx+Qdy),

taken round the whole boundary of the region.

We shall not only prove this proposition for the simplest

case, when the region consists of only one sheet and is bounded

by a simple closed line, but we shall at the same time take

into consideration those cases also in which the boundary con-

sists of several separate closed lines, which can either lie

entirely outside of one another, or of which one or more can

be entirely enclosed by another. Finally, we shall not exclude

the case when the region consists of several sheets which are

connected with one another along the branch-cuts. Yet we

shall then assume that the region does not contain any branch-

points at which the functions P and Q become infinite or

discontinuous. It is, however, necessary, in order to include
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all those cases, to determine more definitely the meaning of

boundary-direction. If we assume, as is customary, that the

positive directions of the x- and the t/-axis lie so that an

observer stationed at the origin and looking in the positive

direction of the ic-axis has the positive y-axis on his left, then

let us so assume the positive boundary-direction that one who
traces it in this direction shall always have the bounded area

of the region on his left. The same can be expressed thus

:

At each point of the boundary the normal, drawn into the

interior of the area, is situated with reference to the positive

direction of the boundary just as

is the positive y-Sixis with refer-

ence to the positive avaxis. If, for

instance, the boundary consist of

an external closed line and a cir-

cle lying wholly within the same,

so that the points within the cir-

cle are external to the bounded

area of the region, then on the

outer line the positive boundary-

direction is that of increasing an-
Fig. 21.

gles, while on the inner circle it is

the opposite, as is shown by the arrows in Fig. 21. Now in

the linear integral, which we wish to prove to be equal to the

given surface integral, the integration must be extended over

the whole boundary in the positive direction as just defined.

We shall write, then, the integral J in the form

and we can then integrate in the first part as to x and in the

second part as to y. For this purpose we divide the region

into elementary strips, which are formed by straight lines

lying infinitely near to one another and, for the first integral,

running parallel to the a^axis; in case there are branch-"

points, we take care to draw such a line through each of them.

The whole region is thus divided into infinitely narrow trape-
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z'—\/- - _ X \/A^ \ \
/ \ \ \/ ^__^

\ \
1 ^ ' 111 . 1

U---/
/

Fig. 22.

zoid-like strips. In Fig. 22, for instance, in a surface consist-

ing of two sheets and bounded by a closed line which makes
a circuit twice round a branch-

point, several such trapezoid-

like pieces are represented,

the lines running in the sec-

ond sheet being dotted. If

we now select some one of

these elementary strips, be-

longing to an arbitrary value

of y (i.e., in case the surface

consists of several sheets, all

those elementary strips lying

one directly below another in

the different sheets which be-

long to the same value of y), and if we denote the values

acquired by the function Q at those places where the ele-

mentary strips cut the boundary, counting from left to right

(i.e., in the direction of the positive a3-axis), at the points of

entrance by

Qi} Q21 Qzi •••>

and at the points of exit by

then (Fig. 23)

therefore,

1 It must be noted that this equation remains true, even when —

^

8x

becomes infinite or discontinuous at some place over which the integration

extends, if Q suffer no interruption of continuity at this place. If,

namely, f(x) be a function of the real variable x, which for x = a is

continuous, while its derivative, f'(x), is for the same value discontinuous,
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In the integrals on the right y passes through all values

from the least to the greatest ; therefore dy is always to be

taken positively. But if the projections on the y-axis of the

elementary arcs which have been cut out from the boundary

by the elementary strips be designated in the same sequence

as above, at the places of entrance by

dyly dy^ dy^, ...,

and at the places of exit by

dy\ dy", dy">, ...,

we assume on both sides of a two values Xk and x* infinitely near to a.

If, then, in the integral

^f(x)dx

a lie between the limits Xq and xi, and if f{x) remain continuous between

the same, while /(x) is discontinuous only at the place x = a, then

we can put

r^f(x)dx = \im\ rV(x)dx+ C"f(x)dx\

wherein the limit has reference to the coincidence of x* and x* with a.

Now since /(x) is continuous from xo to Xn and from x* to Xi, it follows

that

rV(x)dx = lim [/(x*) -/(xo) + /(xi) -/(Xi)].

Since /(x) is continuous at the place x = a, therefore, in passing to the

limit, /(x;i) and/(xjfc) become equal, or

lim[/(x*)-/(x*)]=0;

therefore, notwithstanding the discontinuity of /'(x) between the limits

of the integral, we have

.7X0

>(x)dx=/(xi)-/(xo).

This case deserves notice here, since it will be shown later that the

derivatives of continuous functions can become infinite at branch-points

(§39).
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and if regard be paid to the positive boundary direction

(Fig 23), then

dy = -dyi = - dy^ = -dys=-"

= -^dy' = -\-dy" = -^dy"'=...;
therefore,

J/lf ^^^2/ =fQidy, -{-fQW -hfq^y, + ..o.

Fig. 28.

In all these integrals y changes in the sense of the positive

boundary-direction ; therefore they all reduce to a single one,

and we have

fri'^y=f^'^'

if the latter integral be extended along the entire boundary in

the positive direction.

In the same manner the second integral

//f'^^82/

can be treated. Here the region is divided into elementary

strips by straight lines running parallel to the y-Sixis, and, as

before, such a line is drawn through each branch-point. If,

therefore, the values which the function P has at the places
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where an elementary strip cuts the boundary be designated, in

order from below upward (i.e., in the direction of the positive

?/-axis), at the places of entrance by

^l> P-2) -fsj '"f

and at the places of exit by

then again

C C^dxdy = - Cp^dx + Cp'dx - CP^x + •••

;

and therein dx is positive. But if

dx^ dx2, dx^j ••-, and dx', dx", dx'", •••

designate the projections of the elementary arcs which are cut

out by the elementary strips, then, considering the positive

direction of the boundary,

dx = -\- dxi = + dx2 = + cZiCg = •••

= -dx' = - dx" = - dx"' = ...,

and therefore

SSt^^^ = - CPidx^ - Cp'dx' - Cp^x^ ,

= - CPdx,

in which the integral is to be extended in the positive direction

round the entire boundary. Combining the two integrals, it

follows, as was to be proved, that

the linear integral to be taken round the entire boundary in the

positive direction.

This proposition, which is hereby proved for the real func-

tions P and Q, can at once be extended to the case when P and

Q are complex functions of the real variables x and y. If we

P""* P=P' + iP", Q=Q'-h iQ",
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wherein P', P", Q', Q" are real functions of x and y, then

//(S-D-=//(f-f)-'

If the proposition be applied to the right side of the equation,

we get

= J(P'dx + Q'dy) 4- if(P"dx + Q"dy) =J (Pdx + Qdy).

We have assumed until now that, within the region under

consideration, there are no branch-points or other points at

which P and Q are discontinuous. Now, in order to include

within our considerations also those regions in which this is

the case, it is only necessary to enclose, and thereby exclude,

such points by arbitrary small closed lines, these new lines

then forming part of the boundary of the region.

18. From the preceding proposition, follows immediately

the following:—
(i.) If Pdx -\- Qdy he a complete differential, then the integral^

I
(Pdx -f Qdy), extended over the whole boundary of a region

within which P and Q are finite and continuous, is equal to zero.

For, if Pdx -\- Qdy be a complete differential,

BP^hQ^
8y 8x

and therefore all the elements of the surface integral, which is

equal to the linear integral, disappear, and accordingly this, as

well as that, is equal to zero.

If now 2v=f(z)

be a function of a complex variable z = x-{- iy, then [§ 5. (1)]

By ^8x Bx
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therefore wdx + iwdy, i.e., w (dx -f idy)f or wdz

is a complete differential, and hence

(ii.)
I
f(z) dz = 0, if this integral he extended round the whole

boundary ofa region within which f(z) is finite and continuous.

From this follows further: If the variable z be made to

describe between the points a and b two different paths acb

and adb (Fig. 24), forming together a closed

line which in itself alone is the complete boun-

dary of a region, and if f(z) be finite and con-

tinuous within this region, then, for the integral

extended round the closed line, we have

Jf(z)dz = 0.

Fig. 24.

In order to designate briefly an integral taken

along a definite path, we shall choose the letter

J" and add to it the path of integration in pa-

renthesis, so that, for instance, the integral

lf(z)dz, taken along the path acb, will be designated by

J(acb). The last equation can be written

J(acbda) = 0.

But (§ 16) J(acbda) = J(acb) + J(bda)

and Jibda) = — J (adb)
;

it follows, therefore, that J(acb) = J(adb).

(iii.) Hie integral
j
f(z)dz, therefore, has always the same

value along two different paths joining the same points, if the two

paths taken together be the boundary of a region in which f(z) is

finite and continuous.

If we have a connected region within which f(z) remains

finite and continuous, of such a nature that every closed line

described in it forms by itself alone a complete boundary of a
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part of the region, then the integral
|
f(z)dz has, along all

paths between the two points, the same value. Let the lower

limit Zf) be constant ; then within such a part of the region the

integral is a uniform function of the upper limit, and if F(z)

denote a function the derivative of which is f{z), then within

this region

'^y(z)dz = F(z)-F{zo),
s:

since in this case the value of the integral is independent of

the path of integration. The great importance of those sur-

faces, in which each closed line forms by itself alone the com-

plete boundary of a region, becomes here quite evident.

Hiemann has called surfaces of such a character simply

connected surfaces. Such is, for instance, the surface within a

circle. If f(z) be continuous everywhere in such a surface,

then, as has been noted.

rf(z)dz

is a uniform function of the upper limit. If, on the other

hand,/(2!) become infinite within the surface of a circle, for

instance, only at one point a, and

if, in order to obtain a part of the

region within which f(z) remains

continuous, a small circle k be de-

scribed round this point, thereby

excluding it, then the ring-shaped

portion of the plane thus obtained

is no longer simply connected; for

a line m, which encloses entirely

Pjg 25
*^^ small circle, does not form by
itself alone the entire boundary of

a part of the region, but only m and 7c together. Accordingly

the integral extended along m and k together has the value

zero ; but if the integral extended along k alone be not equal

to zero, the integral taken along m cannot be zero. Within

such a region, which E-iemann has called multiply connected,
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the dependence of the integral upon the path of integration

continues, and the integral can be regarded as a multiform

function of the upper limit.

^

19. We now drop the assumption that the function f{z) in

the region under consideration is everywhere continuous, and

we proceed to investigate those integrals of which the paths of

integration are boundaries of regions in which the function is

not everywhere continuous. If f{z) be infinite or discontinuous

at any point of a region, then such a point is to be called a

point of discontinuity. It may or may not be at the same time

a branch-point. If there be points of discontinuity in a region

of a plane, we are no longer justified in all cases in concluding

that the integral, extended over the whole boundary of the

region, has the value zero, because the proof of this proposition

rests essentially upon the assumption that /(z) does not become

discontinuous within the region. But the following can be

proved :
—

(iv.) Whatever may he the value of the integral, it does not

change if the region he increased or diminished by arbitrary pieces,

provided only that f(z)

is finite and continuous

within the added or sub-

tracted pieces. For, if in

the first place an added

or subtracted piece be

completely bounded by

one line, as, for in-

stance, A ov B (Fig. 26,

where abcda is the orig-

inal boundary), then, if

f{z) be continuous within

A and B, the integral extended over the boundary of ^4 or JB

must be zero. The boundary of ^ or _B can therefore be arbi-

trarily added to the original one without changing the value

Fig. 26.

1 See Sections IX. and X.
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of the integral. If, however, the added or subtracted piece

'be bounded in part by the original contour, as bfdcb or bcdeb,

then
J(bfd) = Jibed) = Jibed),

iif(z) be continuous within these regions. Therefore the por-

tion of the boundary bed can be replaced arbitrarily by either

bfd or bed without altering the value of the integral. From
this it follows further that a closed line, which either forms

alone the boundary of a region or at least forms part of such a

boundary, can also be replaced arbitrarily by a more extended

or contracted closed line, provided only that no portions of the

surface are thereby either added or subtracted in which f(z)

becomes infinite or discontinuous. For, in order to extend, for

instance, abcda into ghkg, it is only necessary to replace first

bed by bhkd, and then kdabh by kgh. In a similar manner the

validity of the proposition can be proved in all cases. Its

general application, however, even to regions which consist of

several sheets or contain gaps, can be demonstrated in the

following way. If an arbitrary surface T be so divided into

two parts, M and N, that /(z) is continuous in M, and if

the integral j f(z) dz, extended over the boundary of one part,

say M, be designated by J{M), then

J{M) = 0.

If, now, the portions M and N have no common boundary-

pieces, the boundaries of M and N together form the boundary

of T, and therefore

J(T)=J(M)-^J(N)',

consequently also J(T) — JiN).

If, however, certain lines G form part of the boundaries

of both M and N, then the pieces M and N lie on opposite

sides of this line C. If, therefore, the boundaries M and N be

described successively in the positive boundary-direction, i.e.,

so that the bounded region is always on the left, then the lines
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C are described twice, in opposite directions; consequently

the integrals extended along C cancel each other, while the

remaining boundary-pieces of M and N form the entire boun-

dary of T'j therefore

J(T) = J(M)+J{N),

and consequently «^(^) = «^(-^)-

Now, just as, according to this, the part M can be sepa-

rated from the surface T, so, conversely, a surface N can

be extended by the addition of a surface M in which the

function remains continuous, without changing the boundary-

integral.

From this another important proposition can be deduced. K
a closed line (/) form by itself alone the complete boundary

of a region, and if the function f(z) become discontinuous

within it at the points ai, ag, a^, •••, let each one of these points

be enclosed by an arbitrary small closed line, say by a small

circle, which, however, in case one of these points of discon-

tinuity be at the same time a branch-point, must be described

as many times as there are sheets

connected at it; then all these cir-

cles, which may be designated by

(^i), (A2), (As), •••, form, together

with the outer line (/), the boun-

dary of a region in which f(z) is

continuous (Fig. 27, in which the

dotted lines run in the second sheet).

Consequently the integral | f(z) dz,

extended in the positive direction

over the whole boundary, is equal to zero. But if the outer

line (/) be described in the direction of increasing angles,

the small circles (^1), (^2)? (^3)? ••• must be described in

the direction of decreasing angles. If, therefore, the integral

I f(z)dz, extended in the direction of the increasing angles
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along the lines (I), (^i), (A^), (A^), •••, be designated by /, A^
A2, Aq, '", then

and consequently

If now the line (7) be described in a region T, which

contains no other points of discontinuity than the above

tti, Og, ctsj •••, then the integral I, according to the last proposi-

tion, retains its value if it be extended over the boundary of

T; we thus obtain the proposition :
—

(v.) The integral I f(z) dz, extended over the whole boundary

of a region T, is equal to the sum of the integrals along small closed

lines which enclose singly all the points of discontinuity contained

within T, all the integrals being taken in the same direction.

20. By the preceding considerations we are led to the inves-

tigation of such closed paths of integration as enclose only

one point of discontinuity. We must distinguish, however,

whether the point of discontinuity is or is not at the same

time a branch-point. Let us consider first a point a, which is

not a branch-point, and at which f(z) becomes infinite. If the

integral

A=ff(z)dz

be taken along a line enclosing one of the points of discon-

tinuity, this line enclosing neither another point of disconti-

nuity nor a branch-point, then the path of integration can be

replaced by a small circle described round the point a with the

radius r, which can be made to tend towards zero without

changing the value of the integral. If we write

»/ z — a

and let z — a = r (cos
<f>
-\-ism <^),
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then r remains constant, and <^ increases from to 2 tt when z

describes the small circle. Here it is assumed that the point

starts from the point Zq, at which

the line drawn through a in the posi-

tive direction parallel to the princi-

pal axis cuts the circle (Fig. 28).

This is permissible, since the ini-

tial point of the description can be

chosen arbitrarily. Now, in order

to express —— in terms of z and fiq. 28.

z — a

<l>,
we remark with E-iemann, that dz denotes an infinitely

small arc of a circle, starting from any point on the circum-

ference and subtending the angle d<}> at the centre. If the

terminal point of this infinitely small arc of the circle be

designated by z', then

dz = z'-z, J^ = t^l.
z — a z — a

But in § 2, page 21, it has been shown that

z' — Z ZZ^ / . • V*
.
^ ^^ (_cosa + isina),

z-a az

wherein a is the angle azz\ in this case a right angle ; therefore

dz _ .zz^

^ — «' az

The line 'zz' is an arc of a circle with the angle d<^ at the

centre, therefore it equals rd<^, and az is equal to the radius r;

accordingly we get

dz .rdch .-,, I= I—^ = ia<l>^
z — a r

1 From z — a = r (cos + i sin 0)

we also get by direct differentiation, the radius r remaining constant,

d^ = r ( — sin + I cos 0) d<t>

= ir (cos + z sin 0) d<p ;

dz
therefore -^^=—= id0.
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If this result be substituted in the integral, it follows that

If the radius r be made to decrease indefinitely, the points z

of the circumference of the circle approach the point a; z — a

therefore approaches zero, while f(z) becomes infinite. If it

happen that f(z) becomes finite for 2; = a in such a way that

the product (z — a)f(z) tends towards a definite finite limit

p, i.e., if

lim [{z- a)f(z)^,^=p,

wherein it is expressly assumed that this limiting value

always remains the same from whatever side the point z may
approach the point a, then we can assume that, for all points z

in the vicinity of the point a,

(z-d)f(z)=p-\-e,

wherein c denotes a function of r and <^ which becomes infini-

tesimal with r for any value of <^. Then

X2n-
/"Z^

idcf> -f- I dd<f}.

If r, and therefore also c, be made to vanish, then the second

integral also vanishes, and it follows that

A = 2 Trip.

The value of the integral is thereby expressed in terms of

the limiting value of (z — a)f(z), when this is finite and

determinate. This value of A, by (iv.), does not change if the

integration be extended over the complete boundary of a region

within which there are no points of discontinuity except a.

The integral f—

^

*/ 1 +
may serve as an example

Here f(z)

dz _

14.^2 (^_,-)(^_f_,.y
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which becomes infinite for z = i, the point z = i not being a

branch-point (the "function has no branch-points what-

ever).

Further,

/dz
1 -f- z

the integral being extended over a line enclosing the point i in

the direction of increasing angles.

If in a region T there be the points of discontinuity Oj, aj,

Og, •••, which cannot at the same time be branch-points, and if

f(z) become infinite at these points in such a way that the

products (z — ai)f(z), {z — a^f(z), '•- approach determinate

finite limiting values j9i, pg? •••> *'-^-> if

\im[(z-a,)f(z)-]^^=p^

lim [(2 - a2)/(2;)],=a, = V2,

then the integral I f{z) dz, extended over the whole boundary

of T, assumes the value [(v.), § 19].

jf(z)dz = 2 Trt (pi +P2 +i>3 +•••)•

In the preceding example

is infinite also for z = — ?*, and for this point we get

[_i -f- z-jz^-i \_z — %y^-i 2

1

therefore, also, (
-—^ = — tt,

J l-\-z^

taken along a line enclosing — i.

For a line enclosing both points -f i and — i in the direction

of increasing angles, this integral becomes tt — tt = 0.

P
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Now by means of such closed lines as include only a single

point of discontinuity it is possible, within a region containing

no branch-points nor any gaps, to refer to one another the

values of the integrals for the different paths of integration.

If two paths bee and bdc (Fig. 29) enclose only one point of

discontinuity a and no branch-point,^ then the one, say bdc,

can be replaced, by enclosing the point of discontinuity in a

closed line bghb before describing the other path bee. Then
by (iv.), § 19,

J(bg7ib) = J(bdceb) = J(bdc) - J(bee),

therefore J (bdc) = J{bghb) -\- J(bee),

or also J(bee) = — J(bghb) + J(bde)

= J(bhgb) + J(bde).

Fig. 29.

We get a similar result if two paths enclose several points

of discontinuity, but no branch-points. For instance, let the

paths Zffid and z^ed (Fig. 30) enclose two points of discon-

tinuity a and b, and draw from Zq round each of them a closed

line ZafgzQ and z^ikz^. Then

J(Z(Jikzo) + J(zofgzo) = J{z^edez^

— J(z^ed) — J(zQe6[)
;

consequently

J{zQed) = J(zofgzo) -f J(zJikzo) + J(zoed).

1 The assumption that the two paths enclose no branch-point is, in

general, necessary only in order that together they may form a complete

boundary, which may not always be the case if there be branch-points

between them.

DEPARTMENT OF MATHEMATICi

UNIVERSITY OF TORONTO
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Therefore the one path can be replaced, by describing closed

circuits round each of the points of discontinuity before describ-

ing the other path.

The properties of the integral A round a point of discon-

tinuity, if (z — a)f(z) no longer have a determinate finite

limiting value at that point, cannot be discussed until later

(Section VIII.).

21. We next proceed to the case when the point of discon-

tinuity is at the same time a branch-point, in which case it

will be denoted by h, and the value of the integral, for a line

described round it, by B. We assume that at this point m
sheets of the surface are connected. If we wish to have here

a line enclosing the point 6, it must make m circuits round h
;

e.g., let it describe the circumference of a circle m times.

Riemann introduces in this case, in the place of z, a new
variable ^, letting

which therefore receives the value for = 6; and he inquires

how the function f(z), considered as a function of t,, behaves

at the point ^ = 0. For this purpose we first determine what

line is described by I when z describes a closed circle, i.e.,

makes m circuits round the latter.

If we let z — h = T (cos -{-i sin 6),

and therefore ^ = r"* (cos — ^ -1- ^ sin — d\
\ m m J

then r, and consequently also ?-^, remains constant, and there-

fore ^ also describes a circle, namely, one round the origin.

But after z has completed one circuit, so that 6 has increased

1 o
from to 27r, then —6 has increased from to —\ conse-

m m
quently ^ has described the mth part of the circumference.

For the second circuit of z, ^ again describes the mth part of

the circumference, and likewise for each new circuit of z.
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Consequently, after z has made m circuits and returned to its

starting-point, ^ has described the entire circumference of the

circle exactly once. Therefore,

to the m pieces of the region

covered by the radius r during

these circuits, correspond m sec-

tors of the circle, each with the

angle— at the centre. These ioin

one another and form together a

simple circular surface. In Fig.

31, it is assumed that at the point

b three sheets are connected,

which continue into one another

along the branch-cut bb'. The
circular lines running in the three

sheets have been drawn for the

sake of clearness side by side,

and the lines running in the 1st, 2d, and 3d sheets are repre-

sented by a continuous line, a thickly dotted and a thinly

dotted line, respectively. Then

to the surface cde corresponds the sector of the circle c'oe',

Fig. 81.

ti i(

ghc

U li

(( ((

e'og',

g'oc',

and therefore to the whole area of the surface bounded by the

closed line cdefghc corresponds the simple circular surface

c'e'g'c'. It follows therefore that, while z, passing through all

the m sheets, returns to its starting-point only after m circuits,

I does so after the first circuit. The variable ^ therefore does

not leave its first sheet, and consequently the function f(z),

considered as a function of ^, does 7iot have a branch-point at the

place ^=0. Accordingly, if ^ be introduced as the variable in the

integral
j / (2;) dz, extended over a circuit enclosing the branch-

point and the point of discontinuity b, the considerations of

the last paragraph can be applied, because ^ = is not a
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branch-point, but merely a point of discontinuity. Making
i_

the substitution ^ = (2 — 6)"*, suppose f{z) changes into </> (^) ;

then, since dz = m^ ~^d}^,

B = mj^^'4> d) di = mjC'<f> (0^-

If, for the sake of brevity, we put — 6= \{/, and therefore
m

1

^ = r"* (cos if^-\- i sin if/),

then {j/ increases for the whole circuit from to 2^; and,

since as above —= id\l/, it follows that

5 = m r V<^(0*'#-

According to the assumption <^ (Q is infinite for ^ = 0. But

if the tendency to become infinite be of such a nature that one

of the products

approaches a finite limiting value, then

lim[r'<^(0]^^o = 0.

Therefore, if the radius r of the circle described round the

point b tend towards 0, then B = 0.

If we now return to the variable 2;, we obtain the proposi-

tion: If the integral if(z)dz be extended over a circuit enclos-

ing a point of discontinuity, which is at the same time a

branch-point at which m sheets of the surface are connected,

then the integral has always the value zero, whenever one of the

products

(z - bffiz), {z - bffiz), ..., {z - b)~^f{z)

approaches a finite limiting value.

As an example, take

dz

fV (1 - ^^ (1 - l^^z")
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Here f(z) =— .

which becomes infinite for z = 1. This point is at the same

time a branch-point at which two sheets are connected. If

we put /"^ = z 1

we get f(z) — <t> (0 = :

so that ^ = is in fact not a branch-point for <^ (^).

Now we get

lim [(z - 1)V(^)].-i = limf
^

1

^ 1

*V2(1-A;2)
'

therefore lim [(z — l)/(2;)]^^i = 0,

and hence also

dz

/: 0,

V(l - O (1 - A;'^')

when the integral is taken along a circuit enclosing the point

2 = 1. The integral also acquires the same value when the

circuit encloses one of the other branch-points — l,-\--, .

k k
The investigation of the value of the integral B, in case the

conditions of the above proposition are not fulfilled, must be

postponed to a later section (Section YIII.).

SECTIO:^^ V.

THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS.

22. As we shall be obliged to make use of some of the prop-

erties of the logarithmic function in the following pages, we
must interrupt for a short time the general considerations and
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take up first the study of this special function. In this connec-

tion, it seems to us not unprofitable to make the investigation

somewhat more exhaustive than would be necessary for the

intended application, and also to add directly to it the consider-

ation of the exponential function, which follows from the log-

arithmic. Since we shall thus have to deal here with a special

case of the general investigations to be taken up in Sections IX.

and X., this example may also serve to fix the ideas for those

later investigations.

We designate, after Riemann, by the name logarithm a func-

tion f(z)j which has the property that

f(zu)= f(z)-^f(u). (1)

By this equation the function is entirely determined, except as

to a constant, for we shall be able to derive therefrom all its

properties. If, in the first place, we let w = 1, and leave z

arbitrary, it follows that

f(z)=f(z)+f(l);

therefore /(I)= Log 1 = 0.

Again, if be substituted for u, we have

/(0)=/(2)+/(0);

and if we now give z any value for which f(z) is not zero, it

will follow that/(0) = Log = oo ; for a similar reason, Log qo

also becomes infinite. It is further possible to express the

logarithm by an integral ; for, if equation (1) be differentiated

partially as to u, then

zf(zu)=f'(u),

and, when u = l,

zf'(z)= f'(l).

Let us denote the constant /'(I) by m. Upon this constant

depends the value of the logarithm of a number. The loga-

rithms of all numbers which can be obtained by assigning to

the constant m a definite value form together a system of
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logarithms, and the constant is called the modulus of the sys-

tem of logarithms.

From the equation

0/'(2;)=m

follows df(z) =dJjOgz = m-; (2)
z

hence f(z)=m f— +0.
*J z

But since /(I) = 0, the constant C will become 0, if 1 be taken

for the lower limit of the integral, and z be made to assume
real values. We write, therefore, in general

Log. = mr^,
Ji z

and we have thereby expressed the logarithm by a definite

integral. For the purposes of analysis, the logarithms of that

system are the simplest in which the constant m assumes the

value 1. These are called natural logarithms, and will, in

what follows, be designated by the term log z. Therefore

iog.=j; 'dz

z'

and hence Log z = m log z.

If we let z = r (cos <^-\-i sin <^),

we get

dz = (cos
<l> + i sin <ii)dr -\-r (— sin <j> -\-i cos <^) d<^

= (cos <f>-\-i sin <^) (dr + ird<l>)
;

hence —=— + id<f>.

z r

If z pass along any path from 1 to an arbitrary point z, then r

will assume the real values from 1 to r, and <^ those from

to <^; therefore

J'^'dz rdr
, .

,

1 z Ji r

or log z — log r -\- i<f}. (3)
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By this log z is brought to the form of a complex variable ; for,

since r assumes only real and positive values in the integral

J'dr— , therefore log r is also real ; and it is evident that log r
r

is positive or negative, according as r is greater or less than 1

;

for, since r is always positive, the representing point moves

along the positive principal axis, in the first case in the positive

direction, in the second case in the negative ; and therefore in

the first case all elements — are positive, in the latter all are
r

negative.

We see, further, that the logarithm depends upon the path

of integration; for, let <^ denote the value acquired by the

angle, when z moves from 1 to z along a line which does not

enclose the origin, and for which the angles increase, then

<^ — 2 TT will be the value acquired by this angle when the line

moves on the other side of the origin, i.e., in the direction of

decreasing angles, from 1 to 2; and if a line wind n times

round the origin in the direction of increasing angles, then
<f>

acquires at z the value <^ -|- 2 n7r. Accordingly

log 2 = log r -f- i<l> ± 2 mri.

Our general considerations are thus confirmed. The function

- has no branch-points, but has the point of discontinuity 2 = 0.

z

If 2 be made to describe a circuit round the origin, the value of

the integral extended over this line in the direction of increas-

ing angles is 27ri, since

^ = limr2.^1 =1. (§20)

By means of the considerations established at the close of

§ 20, the same result is obtained as above.

Now from this it follows that the function log 2 has at no

point of the plane a fully determinate value, and that at any two

infinitely near points it can, by means of a suitable arrange-

ment of the path of integration, acquire values which differ
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from one another by a multiple of 2 -n-i. In order to limit as

far as possible this indefiniteness, we suppose a line oq (Fig. 32),

'q which does not cut itself, drawn from

the origin and extending to infinity.

Such a line is called after Riemann a

cross-cut. Then, of any two paths lead-

ing from 1 to 2 and enclosing the origin,

one must necessarily intersect the

Fig. 32. cross-cut, and consequently, on all

paths not crossing the cross-cut, log z acquires at each point

z a perfectly determinate value, which also changes every-

where continuously with z. But at the points on the cross-

cut itself the indefiniteness remains. Now, if the infinite

plane in which z moves be designated by T, and be supposed

to be actually cut along the cross-cut oq, then a surface arises

which may be called T'. In the latter the cross-cut cannot be

crossed, and therefore log z is everywhere a uniform function

of z in T'j becoming infinite only for z = and z = ao, but

elsewhere remaining continuous. In the surface T, however,

log z becomes discontinuous on crossing the cross-cut. For, let

Zj and Z2 be two points on the two sides of the cross-cut and

infinitely near each other (say Zi on the right, and Zg on the

left of the direction oq), and let z be made to describe a closed

line l^iZ^cl round the origin in the uncut surface T, starting

from 1 and passing through Zi and Zg j then, according to the

above proposition, the integral

J(lZiZ2Cl) =27rt,

extended along this line. But we have at the same time, since

Zi and 2^2 are infinitely near each other,

J(lZiZ2Cl) = J(lz{) -\- J(Z2Cl) = ^(12;!) - J(1CZ2),

and consequently J(lzi) — J(lcz^ = 2 7ri.

If, then, Wi and Wg denote the values which log z, now regarded

as in T', acquires at Zi and Z2, so that

Wi = J(lzi), i(;2 = J(lcz^,

we have w;, — Wn = 2 iri.
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If the surface T be now supposed to be restored, then logz,

when z moves from Zy to Z2, abruptly changes from Wi into

Wi — 2 TTi, or when z moves from z^ to z^, abruptly changes

from W2 into Wg + 2 iri. This holds at whatever place the path

of integration may cross the cross-cut. Along the entire cross-

cut, therefore, logz is discontinuous, the values of logz being

greater by 2 tti for all points on the right side than for those

on the left. This constant value, by which all values of the

function on the one side exceed the neighboring ones on the

other side, has been called by Kiemann the modulus of peri-

odicity of the function, or of the integral, if the former be rep-

resented by an integral.

23. The exponential function can be derived from the log-

arithmic in the following way. By the symbol a" is to be

understood such a function of w that

log (cC^) = w 'log a.

Now, if e denote the real number for which loge has the

value 1, and accordingly if e be defined by the equation

f.
dr _^

1 r

then it follows that log (e*") = w.

Therefore e'^ is the inverse function of the logarithm; for,

from e"" = z, follows w = logz. From equation (2) (for m = 1)

d log z _dw _1
dz dz z

we get ^ = =^;

dw

de^
consequently -— = c".

If we assume for z a complex quantity having the modulus

1, i.e., if we let z = cos <^ -f i sin </>,
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Fig. 33.

we have, in equation (3), to substitute r = 1, and therefore

log r = 0. Accordingly,

log (cos <j> -\- i sin <^) = i<^,

and consequently cos <^ + ^ sin <^ = e*"^.

The exponential function is periodic ; for, since to a value

of z belongs not only the value w, but also the values w ±2 mriy

therefore

;2 = e«' = e«'±2n7rt^

and accordingly e"' is not

changed if w be increased

or diminished by a multi-

ple of the modulus of peri-

odicity 2 TTi. Let us now
try to represent the 2^sur-

face T on the w-plane W.

For this purpose we take as the cross-cut, for greater sim-

plicity, a straight line passing through o and 1 (Fig. 33). If

z = r (cos <^ 4- ^' sin <^),

then w = log r -\- icf>.

Consequently log r and <^ are the rectangular co-ordinates of

a point w. Then, if z be made to describe a circle with radius

1 round the origin in the

direction of increasing an-

gles from a to b, log r = 0,

and therefore w is a pure

imaginaryandmoves along

the 2/-axis from o to 2 tti

(Fig. 34) . Again, if z move
from a along the left side

of the cross-cut to infinity,

<!> remains = 0, log r passes

from through the posi-

tive values to infinity, and therefore w describes the positive

part of the principal axis. But if z move from a along the

TP
Hi

III

27Ti d' r

A !
!

-^ n C' 111 ^

Fig. 34.
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left side of the cross-cut to o, then w describes the negative

part of the principal axis to infinity. But if z first arrive at h

round the origin on the right side of the cross-cut and then

pass along its right side to cc ov o, w first moves on the

?/-axis from o to 2 tti and then, <j) constantly remaining equal

to 2 77, describes a line parallel to the principal axis, first in the

positive and then in the negative direction. To the two sides

of the cross-cut in T, therefore, correspond in W two different

lines, i.e., to the left side the principal axis AB, to the right a

straight line CD running through 2 iri parallel to the principal

axis (Fig. 34). If z be now made to pass at any place from

the left side c of the cross-cut to the right side d by describing

a circle round the origin, then r, and therefore also logr,

remains constant and <^ increases from to 2 tt. Consequently

w describes a line c'd' parallel to the ^/-axis, beginning at the

principal axis AB and terminating at the parallel line CD.
It follows, therefore, that to all points z in the entire infinite

extent of the surface T\ in which <^ cannot increase beyond

27r, correspond only such points w as lie within the strip

formed by the two parallel lines AB and CD. The function

e'^, or z, thus assumes within this strip all its possible values,

and, indeed, each but once, since to any two different values of

w = log r + i(l> belong also

different values of r and

<^, and therefore also dif-

ferent values of
'a \c

Fig. 33.

e"" = z — r (cos <j>-\-i sin <^).

If we wish to bound

the surface T', this can be

effected, on the one hand,

by describing round the

origin a circle with a very small radius p. To this corresponds

in W, since p remains constant, a line ns running parallel to

the ?/-axis between the two parallel lines AB and CD, and

very far removed from the origin on the negative side. This

moves to infinity when p tends towards zero, i.e., when the
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circle shrinks into the origin. At all points of this line ns,

which has been removed to infinity, e"" has therefore the value

zero. On the other hand, the boundary of T' can be formed

by a circle round the origin with a very large radius B.

To this corresponds in w a straight line mr on the positive

side, which is very far removed and is parallel to the y-Sixis.

If E increase indefinitely, this straight line also moves to

infinity, and at all points on it e"' is infinite. The surface

T' can be assumed closed

at infinity ; then the cir-

cle with the large radiusR
is represented by a small

circle round the point oo,

which shrinks into this

point when B increases

indefinitely. Therefore

the two sides of the cross-

cut extending from o to

oo form alone the boundary of a spherical surface T', and to

the latter corresponds the strip between the parallel lines AB
and CD extending on both sides to infinity.

If we now increase the angle <^ beyond 2 tt, the function w,

or log z, proceeds continuously. Then the cross-cut can be sup-

posed to be like a branch-cut, across which the surface T'as

continued into another sheet. In this second sheet, then, all

relations are the same as in the first, except that at all points

in it <^ is greater by 2 v, and accordingly w by 2 iri, than at the

corresponding places in the first sheet. Therefore we obtain a

second strip between the parallel lines CD and EF, which pass

through 2 iri and 4 Tti. By continuing this mode of treatment

and applying it also to negative values of <^, the plane W is

divided into an infinite number of parallel strips. In each of

them the function e'" assumes all its values once and has the

same values at any two corresponding points of two different

strips. On the positive side of each strip e"' tends towards

infinity, but on the negative side it approaches zero.

Fig. 34.
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SECTION VI.

GENERAL PROPERTIES OF FUNCTIONS.

24. The basis for the following investigations is found in

the exceedingly important proposition proved in § 20 : If the

integral jf(z)dz be extended over the boundary of a region

in which f(z) becomes discontinuous only at a point 2 = a,

which is not a branch-point, and in such a manner that

(z —a)f(z) approaches, for z= a,Si definite finite limiting value

p, independent of the mode of approach to a, then

Jf(z)dz = 2 7rip.

Now, iij^(z) be a function which possesses no branch-points

in a region T, and which remains finite and continuous both in

the interior and along the boundary of T, and if t denote an
arbitrary point in this surface, then the function

<l>(z)m z — t

has in T the properties required in the above proposition. It

becomes discontinuous only for z = t, and sinceriike <^ («), it

possesses no branch-points within T, t can never fall on such a
point; further, f(z) becomes discontinuous for z = t in such a
way that

(^-t)f(z)= <f>(z)

tends towards a definite finite limiting value, namely <^ (t).

Therefore

^cf>(z)dz~ = 2 7ncf> (t),

and consequently

the integral being extended over the boundary of T.

The validity of this equation is conditioned upon the suppo-

sition that the function <^ (t), which is uniform and continuous
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within T, has a fully determinate, finite value at any point t

of this region, the value being always the same, however the

variable may approach this point. It may therefore be here

noted that, in the case of uniform functions, this condition is

not always satisfied^ at special points, but at such points the

function is always at the same time discontinuous. For

instance, since the function e", for z = ao, becomes zero or

infinite, according as the variable z passes to infinity through

negative or through positive values (§ 23), therefore the func-

tion 6", for 2! = 0, acquires the value zero or becomes infinite,

according as z approaches zero through the real negative or

through the real positive values. Likewise the function

1'

c — e'

in which c denotes a constant, assumes for 2 = 0, in the former

case the value c, in the latter case the value zero. At such a

point, however, the continuity also always ceases. For, if in

the above example the variable be made to increase through

the real values, the function, at the passage through the value

2 = 0, is suddenly changed from c into 0.

Tims the requirement that a function be everywhere continuous

in a region, at the same time excludes the occurrence of such

points.

Now, if the above conditions be fulfilled, equation (1) gives

the value of the function <^ at any point t in the interior of T
by an integral, in which the variable z passes through only the

points on the boundary of T; this integral has indeed a finite

value at every point t situated in the interior of T, and

changes continuously with t, as will be proved later. Let the

function <^ (z) be given, not by an expression, but by its values

for the points of a certain region; then it follows from the

1 This multiplicity of values of the function has nothing in common
with that discussed in Section III., which is brought about, in the case of

multiform functions, by a multiplicity of paths. By the introduction of

Riemann surfaces this kind of multiplicity is removed.
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above equation that, if the function be given only for all points

of the boundary of T, it can also be ascertained for all points

in the interior of T, and consequently cannot longer be arbi-

trarily assumed in the interior of T.

For example, if a function <^ (2) have everywhere along the

boundary of T the constant value C, we obtain from (1)

2TriJz—t ^TTlJz—t

But this integral retains its value if the curve of integration be
replaced by a circle described round t. Then we have (§ 20)

dz

fi
-=2 7ri;

and consequently, for every value of t,

<f>(t)=C.

Therefore, if a function be uniform and continuous every-

where in a region T, and if it have the constant value C along

the boundary of T, it is also constantly equal to C everywhere

in the interior of T. It follows, further, from (1), by differen-

tiation as to t, that

^®-2^J (^
«^(2)

<^"(0

V'(t)

(z-ty

cf>(z)_2_ r <^(;

2 7riJ (z —

,dz,

Az,

2.3

27rt
C-^-^dz
(z-ty

<f>^-\t)

2.3...

2'n-i J (z-
<k(z)

ty
:dZ.

(2)

All these integrals extend over the boundary of T, while t

lies in the interior of T; consequently in them z — t never

vanishes. Therefore, if h denote any positive integer, then

1

(z - ty
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is finite for every value of t considered, and changes continu-

ously with t. The same holds if the above fraction be multi-

plied by any value <^ (z) which is independent of t ; consequently

the sum represented by the integral

•<^ (z) dz

(^^^'

in which <^ (2;) has to assume in succession all the values occur-

ring along the boundary of T, also changes continuously with

t. And since these values are finite according to the assump-

tion, the integral has also a finite value (§ 16). Accord-

ingly all the above integrals, as well as those contained in (1),

are finite and continuous functions of t within T^. From
this follows the proposition: If a function have no hrancli-

points in the interior of a region and be finite and continuous

therein, then all its derivatives in the same region are also finite

and continuous.

If in equation (1) the integration be referred to an arbitrarily

small circle round the point t with radius r, and if for this pur-

pose we let

z — t = r (cos -\-i sin ^),

dz .,/,
then

z — t

1 r^^
and hence <^ (^) = -—

( <^ (z) dO.

If we now let

<j>(z) = u-{- iv, <f>(t)=Uo-i- ivo,

we obtain, on separating the real from the imaginary,

Uo = —-i udO, ^0 = -- I vde.
2-77 Jo 27rJo

Hence it follows that the real components of the function <^

are, at the point t, the mean values of all the surrounding

adjacent values of these components. Therefore Uq must be

1 C. Newmann, Vorlesungen uber Biemann's Theorie der AbeVschen

Integrate, S. 91.
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greater than one part and at the same time less than another

part of these adjacent values. The same conclusion holds for

Vq'j and since it also holds at each point of the surface T,

the real components of the function <^ do not have a maximum
or a minimum value at any point in T.

25. By means of equation (1) the function
<f>

can be devel-

oped in a convergent series. Let us describe round an

arbitrary point a of the region T a circle, which is still

wholly within this region, and therefore does not extend quite

to the branch-point or point of discontinuity nearest to a ; and

let us first take this circle as the curve of integration in equar

tion (1). Now, for every point t lying within the circle,

mod (z — a)> mod (t — a)

(Fig. 35), since «, during the integration, passes through only

points on the circumference of the circle ; therefore az > at.

We can also put

1 _ 1 _ 1 1

z — t~z — a— (t — a)~~z — a ^ _t — a
1

z — a

and since mod < 1,
z — a

we can develop this fraction in the convergent series

z — t z — ai z — a (z — ay (z — ay »

If this series be substituted in (1), we get

which is the same as Taylor's series; for, according to (1),

1 riM^=<^(a), (4)
2 TTiJ Z — a
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and, according to equations (2),

1 r <f>
(z) dz _ ^^^^ (a)r <t>(^)dz

iJ (z - ay+^ 2'3-"n

consequently we obtain

(S)

(6)

This method of deriving Taylor's series has the advantage

of showing exactly how far the convergency of the series

extends, namely, to all points t

which are at a less distance from

a than the nearest point of discon-

tinuity or branch-point. In Fig.

35 three such points are marked

by crosses. The above-mentioned

circle described round a, of which

the radius is so chosen that there

is no point of discontinuity or

branch-point within it or on its

circumference, is called the domain

of the point a. The following prop-

osition can then be enunciated: If

a function
<f>

(t) be finite and continuous at a point a which is not

a branch-point, then, for any point t in the domain of a, it can be

represented by a convergent series of ascending powers of t — a;

for, if we let

Fig. 35.

^J,f <l>(z)dz

^^ 2 7riJ (z-ay^''

in which the integration is to be extended either along the

above circle or along any other line surrounding the point a

and enclosing no point of discontinuity or branch-point, then

1)7(3)

<t>(()=p,+p,(t-a)+p,(t-ay>r-; (7)
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in -which, according to page 116, all the coefficients p have

finite values.

Though in the series (3) all integrations must at first be

taken along the circle described round a, yet, since the

functions

-i(^,-^(^,-M_,etc.
z-a' (z- ay' (z - af

remain finite and continuous up to the point a, the integrals

can also be taken along any arbitrarily small circle described

round a, without changing their values. It follows that, if the

function <^ be given by its values in an arbitrarily small finite

region containing the point a, then all those integrals, and,

consequently, all coefficients of the convergent series, are

thereby determined, and therefore the value of the function

for any point within the large circle can be ascertained.

Now let ttj be a point which still lies within this circle, then

<f}(t) will be known both at aj and also in the region immedi-

ately contiguous to a,. Then if a circle be described round a^

which still leaves outside all points of discontinuity and branch-

points (Fig. 35), <l>(t) can be developed in a new series for

all points in this circular region. It is evident that by contin-

uing in this way the function <^(^), which is given only within

an arbitrarily small finite part of a region T, can then be deter-

mined in the whole region T, when this contains neither a

point of discontinuity nor a branch-point.

The same holds if the function <^(^) be given only along an

arbitrarily small finite line proceeding from a. For, if this be

the case, let us denote the continuously successive points of

this line by a, b, c, d, etc. ; then

,^'(a) = lim m-m
h —a

is therefore known, if <j>{a) and <^(6) be known. Likewise

c — b
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by which <Jb'(6) is determined. In this manner the values of

the derivatives <^'(0> foi* ^^1 points a, h, c, d, etc., can be found.

Then

b — a

c — b

etc.,

so that the second derivatives are also known. By continuing

in this way we can determine the values of all derivatives for

the point a, and consequently of all the coefficients of the

series (6). We then obtain, for every point t within the first

circle, an expression for <^(^) in the form of a convergent series.

Accordingly we can continue as above and, starting from a

small region containing the point aj, ascertain the value of <f)(t)

for all points in the second circle, etc. From the above fol-

lows the proposition : A function of a complex variable, ivhich is

given in an arbitranly small finite portion of the z-plane, can be

continued beyond it in only one way. As a special case of this

proposition we emphasize the following : If a function be con-

stant in a finite arbitrarily small portion of the region T, then it is

constant everywhere in T. For, if it always equal (7 in a small

portion of the surface containing the point a, let us take a

circle, described round a and lying within this small region,

as the curve of integration in equations (4) and (5), and let

z — a=r (cos 6 -}- i sin ^) ;

then it follows from (4) that

since <t>(z) possesses the value C at all points on the circum-

ference of the circle. Further, (5) becomes

^'"'(") =1- r »(^) de =^^ r(cos»e-isin«e)de,
2-3—n "2^ Jo (z-a)' 2w r"Jo ^

'
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and this value vanishes, since, for every integral value of n

different from zero,

cosnddd = Oand I sinwddtf = 0.
Jo

Hence, in the series (3), <j>{a) becomes equal to C, and all

other terms disappear ; consequently, for any point of the circle

of convergence, <^{t) is equal to C. If the function be con-

tinued in the manner indicated above, <^(Q remains every-

where constantly equal to C. The same holds if «^(f) be

constant along an arbitrarily small finite line. In this case,

the above notation being employed, the values <^(a), <^(6), <^(c),

etc., are all equal to C, and thus all the derivatives <^'(a), <^"(a),

etc., again vanish, and thereby also all coefficients of the series

(6) except the first, which is equal to C. The same holds

therefore as above.

From this special proposition can again be deduced the

preceding more general one. For, if two functions <f>{t) and

^{t) agree in their values in an arbitrarily small portion

of a region or of a line, then in this portion the function

<^(^) — \l/(t) is constantly equal to zero ; consequently this

function is everywhere equal to zero, i.e., ^{t) is everywhere

equal to <^(^), and therefore the function <^(^) cannot be con-

tinued in two different ways from the portion in which it

is given.

26. We now proceed to represent a function, which suffers

a discontinuity of any kind whatever at a point a (not a branch-

point), by a series in the domain of this point.

Let two circles be described round the point a as centre;

call the smaller C, the larger K. AVe assume that the function

^ (t) does not possess a branch-point, either within the smaller

circle or in the ring formed by the two circles; further, let

<^(^) be continuous everywhere within the ring, but on the

other hand possibly become discontinuous in any way what-

ever within C. Then the two circles, C and K, bound a region

in which <^ (t) satisfies all the conditions under which equation
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(1), § 24, holds. We have therefore, at every point t in the

interior of the ring,

J TTlJ Z — t

wherein, however, the integral must be extended round each

of the circles in the positive boundary-direction, and hence

round the small circle in the direction of decreasing angles.

Therefore we can put

2TrlJ Z — t 2irlJ Z — t

Then the first integral refers to the circle K, the second to C,

and both are to be taken in the direction of increasing angles.

Since, for every point t in the interior of the ring,

mod {t — a)< mod {z — a),

the first integral Ji furnishes the same development as was

derived in § 26. We thus obtain by (7)

J\ =Po -hPi(t - a) +p-2(t - of -^Pz{t - af + •..,

,. =^S^^, (8)

For the second integral J2, on the other hand, all the points

t within the ring lie outside the circle C described by the

variable z ; hence in this case az < at, or

mod (z—a)< mod (t — a) and mod < 1.

t — a
Therefore, if we put

1 1 11
z — t t — a— (z — a) ^ — «i_ z — a

t — a

we can develop this fraction in a convergent series of ascend-

ing powers of , and we obtain
t — ft

1 _ 1 z — a . (z — ay
'"^irt~ t - a {t - ay {t - af



GENERAL PROPERTIES OF FUNCTIONS. 123

If we substitute this value in J.2, we get

or if, fsr the sake of brevity, we let

t-a {t-af (t-ay

Hence we obtain for all points t within the ring the series

(10) cf>(t) =Po-\-Pi(t-a)-\-p,(t - ay +p,{t - ay + ...

(t - ay (t - ay

This development can be applied when a function
<f>

(t) suf-

fers a discontinuity of any kind whatever at a point a, which

is not a branch-point. For, enclosing the point of discon-

tinuity a in an arbitrarily small circle, the hypotheses pre-

viously made are conformed to, if we take this circle as the

curve of integration C for the integrals c^"^, and refer the inte-

grals p„ to a circle K, which is only so large that every other

point of discontinuity occurring (besides a), and every branch-

point, lies outside K. Then series (10) furnishes a finite value

for <^ (t) at every point t lying within K, with the exception of

the point a itself. We remark in this connection that the

integrals c^"^ can also be taken along the circle ^, since they

have the same values for it as for the circle C (§ 19).

From the preceding can be derived also a series which holds

when 4>(t) suffers any discontinuity at the point t=oo, and

when that point is not a branch-point. To this end we let

1 . 1

U r
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whereby <^ (2;) changes into f(u), say, and <^ (t) into f(v) ; then

f(v) is discontinuous for v = 0. Now let z describe a circle K
round the origin, and accordingly let

z=r (cos -{-i sin 6)y

then u = - (cos ^ — ^ sin 0) :

r

hence u likewise describes a circle C/"round the origin, but in the

opposite direction. Since, further, - decreases as r increases,

to the points z lying outside Z correspond the points u lying

within U. Therefore, if we assume the circle Z so large that

it encloses all branch-points, and that <^(^) is discontinuous

outside Z only for t = cc, then f(v) has no branch-point within

U and suffers a discontinuity only for v = 0. Hence ^ we can

use series (10) for the development of f(v), if we put a = 0,

and we obtain

V IT V^

wherein, by (8) and (9),

Both integrals, according to the remark made above, can be

taken round the circle C7", which in this case takes the place of

the circle 7^; they are to be taken, like (8) and (9), in the

direction of increasing angles. If we introduce z and t again

in place of u and v, then

, dz
^- = -^;

therefore — = -z^-^dz, u--^du = --^'

1 We remark that, since w = is not a branch-point according to the

assumption, we can so draw the branch-cuts that none of them meet

the point u = ; then the line U, and therefore also the line Z, bounds a

portion of the surface.
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The integrals, to be taken as to z, are then extended round the

circle Z, but in the direction of decreasing angles, since U was

described in the opposite direction. If we wish to take them

also in the direction of increasing angles, we have to erase the

minus signs, and we then obtain

and hence from (11)

(13) ^(^)=^o+^+^^+^' + -+c'^ + c"i^+c'"^+....

This series represents the value of
<f>

(t) at all points t (except

t = ao) which lie outside such a circle Z, described round the

origin, that all finite points of discontinuity and all branch-

points are situated within the same.

SECTION yii.

INFINITE AND INFINITESIMAL VALUES OF FUNCTIONS.

A. Functions without branch-points. Uniform functions.

2n. In the closer examination of points of discontinuity, to

which we now turn, we shall at first entirely exclude branch-

points from our considerations. These therefore, in general,

relate to uniform functions, yet it may be expressly stated

that they hold also for multiform functions, as long as the

discussion refers to only finite parts of the plane in which

there are no branch-points.

If we let the variable z approach a point a, a function <^ {z)

either does or does not receive the same value for all paths of

approach ; and, in the former case, the acquired value can be

either finite or infinite. Hence there are, for the behavior of

a function <^ (z) at a point a, the following possibilities, and

only these :
—
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(1) The function acquires at a for all paths of approach to

this point one and the same finite value.

(2) The function becomes infinite at a for all paths of

approach.

(3) The function does not acquire at a the same value for

all paths of approach, but can for different paths receive

different values.^ (That this can, in fact, occur has been shown
already by examples [§ 24].)

In the first case, and only in this, is the function continuous at

the point a; in the two other cases it is discontinuous. There

are therefore two, and only two, different kinds of discon-

tinuity, and these are also distinguished by special names.

By a discontinuity of the first kind, or a polar discontiyiuity,^

we understand the case when a function <^ (2;) becomes infinite

at a for every path of approach of the variable to this point.

Such a discontinuity is characterized also by the condition

that ——- is absolutely continuous at z = a, and that therefore

it acquires the value zero for every path of approach to the

point a.

A discontinuity of the second kind, or a non-polar discontinuity,

occurs at a point a when, on the contrary, the value acquired

by the function at a can be different, according to the path

and manner of approach of the variable to the point a. For

instance, if a line map can be drawn through a so that the

function acquires for the path ma a value different from that

for the path pa, then the function springs abruptly from the

former value to the latter, when z passes through a on the line

1 We might also think it possible that the function could become

infinite of different orders at a for different paths of approach. But, in

addition to the fact that this will later be proved to be impossible, such

a case cannot be taken into consideration at present, because the con-

ception of infinity of any definite order cannot yet be introduced. The

question at present is rather only the alternative, whether, if the function

acquire at a the same value for all paths of approach, this value is finite

(zero included), or not.

2 C. Neumann, Vorlesungen ilber Biemami's Tlieorie der AheVsdien

Funktionen, S. 94.



INF. AND INF'L VALUES OF FUNCTIONS. 127

map, and thereby suffers a discontinuity of the second kind.

Such a discontinuity occurs in e' for z = cc, since e* becomes
infinite, zero, or indeterminate, according to the direction in

which z moves away to infinity. For, let z — r (cos
<f> + i sin <^),

then only r becomes infinite, while <^ indicates the direction in

which z moves away to infinity. Then we obtain

wherein the second factor always maintains a finite value.

When r becomes infinite, however, the first factor becomes
infinite or zero, according as cos <^ is positive or negative. If,

on the other hand, cos <^ = 0, then r cos <^, and therefore also

the first factor, is quite undetermined. In the function e*

occurs likewise a discontinuity of the second kind for z = 0.

An important property, manifesting itself at places of dis-

continuity of the second kind, results from the following con-

siderations. If a function <f>(z) be absolutely continuous, and

hence also not infinite at a point a, the product (z — a)<l>(z)

acquires the value zero at a for all paths of approach. We
will now show that the converse also holds, namely, that if

lim(2! — a)(f>(z)=0,

for all paths of approach to the point a (which, as is always

assumed here, is not a branch-point), the function <f>(z) must

be continuous at a. For (z — a)(fi(z) is, according to the

assumption, continuous at a, and hence can be represented by

a series of ascending powers ofz — a converging for all points

z in the domain of a (§ 25). Let

(z — a)<j>{z)= Pq+Pi(z - a) -\-p2(z — ay-\-ps(z — a)^ + • • •.

Therein p^ denotes the value of (z — a)(f>{z) for 2 = a ; and since

this is zero according to the hypothesis, it follows that

{z - a)<\>{z) =pi(z - a) +p2(z - af +p^{z - af + •••,

from which is obtained

K^) =Pi +P2(^ - ct) +1)3(2 - ay + ....
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Accordingly <f>(z) assumes the finite value pi for all paths of

approach to the point a, and it is therefore continuous at a.

We thus obtain the following proposition : The necessary and

diffident condition to ensure that a uniform function <f>(z) is

finite and continuous at a point a is

Urn l(z — a)<f>(z)},^^ = 0.

If we put (z — a)<fi(z) = F(z), we can express this proposition

also in the form : If the function F(z) have the value zero at

a for all paths of approach to this point, then —^ is continuous

at a ; and conversely. ~ ^

From this now follows : If a function <j>{z) sufer a noiv-

polar discontinuity at a point z = a, it must also become infinite

for some manner of approach to a. For, if f^{z) were to acquire

at a for different paths of approach values not only different

but finite, then would

lim l{z - a)<^(^)],^„ =

for all paths of approach, and <^(z) would not suffer any dis-

continuity at a. Since now the function always becomes

infinite for a discontinuity of the first kind, we can express

the preceding proposition also in this way : A uniform function

can he discontinuous, only when at the same time it becomes

infinite; for, in the case of a polar discontinuity this always

occurs, and for a non-polar, at least by one way of approach.

But the fimction must be capable of assuming any arbitrarily

assigned value at a point of discontinuity of the second kind a.

For, if c be such a value, and if ^{z) suffer a non-polar discon-

tinuity at a, so do also <i>(z) — c and , because these^ ' ^^^
^{z)-c'

functions likewise acquire different values for different paths

of approach to a, when this is true of <^{z). Now since these

functions must also once become infinite, <^{z) — c must once

become zero, and therefore <^(^) must be equal to c for some

one way of approach.

We will make this clear by an example, and in this special

case seek to determine also what must be the way of approach
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to ensure that a function acquires an assigned value. To this

end we shall consider the function already instanced (p. 114),

1'

c-e*
in which c denotes an arbitrary constant. This function has a

discontinuity of the second kind at the point z = 0. Since it
1

must also become infinite here, e' must be capable of assuming

the arbitrary value c for z = 0. We will inquire when this

takes place. Not to disguise the general nature of the process

by special circumstances, we will assume c to be complex and

let

c = h-\- ikj

wherein now h and k denote two arbitrarily assigned real

values. Then, if we let

z = r(cos <j> + i sin <^),

r becomes infinitesimal for every way of approach of z to the

origin, while the angle <^, made by r with the a^axis, indi-

cates the direction in which we approach the origin. We now
obtain

and if this shall equal h + ik, the equations

cos <b / '
, \ cos rf) / • , V

IS d) y • I \ 7

must be satisfied. Now —^ for a vanishing value of r, can
r

fail to be infinite, only when <^ simultaneously approaches the

angle -. therefore, if we introduce instead of <^ the angle

i/^ = ^ — <^, which r makes with the 2/-axis, and denote by a

the real value of log ^W- -f /c^, so that a is arbitrarily assumed

cos

or e
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just as h and k are, we have instead of the former equations to

satisfy the following

r \ r J h

But the former will be satisfied at once, by letting if/ and r

tend towards zero simultaneously in such a way that

(2) il/
= ar

always, i.e., by letting the point z approach the origin along

the spiral of Archimedes which is explicitly determined by the

value a, and which is tangent to the ^-axis at the origin.

With this relation existing between if/ and r, ^ now be-
r

comes infinite as r decreases indefinitely, and therefore the

tangent to this curve is capable of assuming every value. But

if we denote by a the definite arc contained between —

-

-^

2
TT k

and -, the tangent of which has the value , so that the

arbitrarily assumed values /* and k can be replaced by the

equally arbitrary quantities a and a, then also

k
tan (« + nir) = — -,

n denoting a positive integer. The second of equations (1) is

satisfied, therefore, if we assume

cos if/

—jr- = a + riTT,

and make r tend towards zero by increasing n indefinitely. If

we substitute l. for r conformably with equation (2), we get
(X

acosil/
xf/=

,

>

for which, since cos if/ differs from 1 only by an infinitesimal

of the second order when if/ and r are infinitesimals of the

first order, we can also write

(3) ^ = —^
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1

Therefore e* acquires the assigned value c = /i + ik, if the

point z approach the origin along the spiral of Archimedes

il;
= ar in such a way that the radius vector rotates towards

the 2/-axis per saXtum, while the angle which it makes with this

axis is given by the fraction (3), of which the numerator is

constantly equal to a and the denominator increases by tt with

every spring.

28. We shall now show that a uniform function, which is

not a mere constant, must become infinite at some point z,

by proving the following proposition : If a uniform function do

not become infinite for some finite or infinite value of the variable,

it is a constant. We can in this case suppose the whole infinite

extent of the plane to be the domain of the origin and by (7),

§ 25, assuming a = 0, put

(1) <^(0=Po+ Pit + P^' + i>3^ 4- • • •,

^ 1 r<f>(z)dzwherein jp„ = -

—

^ I

2iriJ yn+l

We can, moreover, enlarge indefinitely the circle round the

origin, to which this integral refers, without changing the

value of the integral, since a point of discontinuity nowhere

occurs. But if we let

z = r(cos 6 -\-i sin 6),

and thus ^=idO,

we get p^=l rmdo,
2 ttJo 2;"

and if we let all the values of z along the circumference of the

circle become infinite, then p^ vanishes for every value of w,

with the exception of n = 0, since by the hypothesis <^(2)

remains finite round the circumference of the infinitely great

circle. It therefore follows that

Pl=P'l=Pz="' =0,
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and series (1) reduces to its first term Pq, so that the function

acquires the constant value

^'=^£'1'^'^''''

for every value of t.

We can base the proof of this proposition also upon equation

(1), § 24, namely,

^^^ 27rJ Z-t

For, if we take this integral along a circle described round the

origin, we can enlarge that indefinitely, because of the assumed

properties of the function <^ (t). Accordingly, if we let

dz .,/!

z

we obtain <^(0 = J- T ^-*M,, = ^ f'^il,,.^ ^ ^ 2 TTJo Z — t 2 77Jo ^ _t
z

If now the radius of the circle increase indefinitely, all the

values of z in the integral will tend towards infinity ; hence

- vanishes, and the integral reduces to the above constant value
z

independent of t.

From this proposition follows immediately: If a uniform

function be not a constant, it must become infinite for some finite

or infinite value of the variable.

Further follows : A uniform function must assume the value

zero for some value of the variable. For, if <^ (2;) be nowhere

equal to zero, —-- is nowhere infinite ; therefore —-— would

be a constant, and hence also <^ {z).

Finally : A uniform function must be capable of assuming any

arbitrary value k at least once. For, were <^ (z) nowhere equal

to k, <l>(z) — k would nowhere be equal to zero ; therefore it

would be constant, and so too would <^ (2).
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It should be emphatically stated that these propositions no

longer hold absolutely, if complex values of the variable

be excluded. If only real values be considered, the uniform

function cos z, for instance, does not become infinite and does

not assume every arbitrary value, but only the values between

— 1 and + 1. Hence there exists here a certain analogy to

algebraic equations, in which also the fundamental proposi-

tion, that every algebraic equation must have at least one

root, and that every equation of the nth degree has n roots,

is not generally valid when only real values are considered.

29. We turn now to the consideration of the cases in which,

for the function (fi(z), the product (z — a)<\>{z) no longer van-

ishes at the point z = a. Then <^(2;) by § 27 suffers here a

discontinuity. Two possibilities now present themselves:

either there is a power oi z — a with a positive, integral or

fractional exponent /a, for which the product

(z — ay(f>(z)

has a determinate finite limit, or there is no such power.

We shall first consider the former case. If this occur, let

us denote by n the greatest integer contained in /x, so that

where the equality holds when fi itself is an integer. We
then have

lim [(z-a)--^'<l>(z)^,^^=\im [(z-ay+'-^(z-aycf>(z)l^,=0,

because n-\-l — fi is positive. But if we divide by z — a,

then, according to § 27, p. 128,

(z - ay<l>(z)

is a function which remains finite for z = a. If we denote by

c^"^ the finite limiting value of the same for z = a, then

(2J-a)"<^(2;)-c(")
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is a function which vanishes for z = a, and therefore by § 27

(z-ay-'cf>(z)-
z — a

remains finite for z = a. Then, if we denote by c^""^^ the

finite limiting value of the same,

(z - ay-^<j>(z)- -^—- - c("-«
z — a

vanishes for z = a, and therefore

(z — ay z — a

remains finite at the place z = a. If we continue in this

manner, we finally arrive at a function

'^^^^ {z-ay (z-ay-^ (z-ay-^ '" {z-ay z-d!

which is finite, and hence also continuous, for z = a. There-

fore, if we let

^r. c' c" c'" c^") ...

il/(z) denotes a function which is finite and continuous for

z = a; and if for brevity we let

A,m «'
1

""
1

"'"
1

^(z-a)"W ^_„ 1 (^_„)2 1 (2_„y

we obtain

(2) 4,(z)=A + ^(z),

wherein
c(«> = lim l(z - ay<t>(z)l^,,

c("-^> = lim [(z - ay-'<f>(z)--^1 ,

' (z-ay z-ai
etc.



INF. AND INF'L VALUES OF FUNCTIONS. 135

By this means a part A, which becomes infinite only for z = a,

is separated from <f>(z), the additional part \f/(z) remaining

finite for z = a. Now if the finite constant c^"^ do not have

the value zero, i.e., if the term be not wanting in the
(2 -a)'*

^

expression A, we can say : If Urn [(2 — «)"</>(2;)]^^ be neither

zero nor infinite, the function <f}(z) is infinite of the nth order for

z = a. In that case, however, this condition is not satisfied

for any fractional exponent /u,, but lim (z — aY<j>(z) is either

zero or infinite ; for, if /a > n, as we originally assumed, then

lim [_(z - ay<t>(z)-],^, = lim [(z - a^-^iz - a)"<^(2)]^, = 0,

but if fi<n, then

lim [(. - a).^(.)]^ = lin.[^^^^]^^ =»•

Therefore <f>(z) cannot be infinite of a fractional order, and
the proposition follows : If a uniform function become infinite

of a finite order, it can be infinite only of an integral order.

An example may be added to the preceding theory. The
function

is uniform and has the points of discontinuity z = and z = l.

For 2: = we have

c"' = liml^<fi(z)},^ = \im
.(^hi."

therefore c'" is finite and not zero, and hence <f>(z) is infinite of

the third order for z = 0. Now since

we obtain after dividing by z the finite value

c" = limf—-i - 5:1 =2.
lz(z-iy zi^o
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In like manner

and finally

1)^

1 A
I

2 3\ 4-3g

accordingly the separation into the two parts A and i}/(z) is

the following

:

./.x__J,___/3 2 1\ 4^^
"^^^ zXz-iy \z'^z'^^J'^(z-iy

For the other point of discontinuity, z = 1, we have

and therefore <f>(z) is infinite of the second order for z=l.
After division by 2; — 1 we obtain

and then
1 r 1 3 1 3^2 + 22 + 1

23(2-1)2 L(=^-l)2 (2-1)] Z'

Therefore the separation in this case is the following

:

H^)
2^(2

1 ^f 3 1 1 30^ + 2^ + 1

-ly [_
2-1 (2-1)2]"^ z3

In the cases considered, where <t)(z) becomes infinite of the

«th order for z = a, the discontinuity is always a polar; for if

we let

(z-ay<l.(z) = F(z),

F(z) assumes a definite finite value different from zero for all

paths of approach to a, and therefore

1 ^ (^-ciY

<t>(z) F(z)
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acquires the value zero for all paths of approach. Conse-

quently <l>(z) suffers a discontinuity of the first kind (p. 126).

From this it follows further that, when <f>(z) is infinite of the

nth. order for z = a, we can let

^^^ (z- ay'

wherein F(z), for 2 = a, is finite and not zero, and conversely.

This form, which we can give the function <f>{z) in the case

considered, warrants the assumption that an infinity of the nth

order can be looked upon as a coincidence of n points, at each

of which <j>{z) is infinite of the first order, or as an infinity of

multiplicity n. For, if <\>(z) become infinite of the first order

at two points a and h, say, we can conformably with the above

principles let

<•)=,-Ss-
wherein F{z), for z=a, is not infinite, but is so for z = h, and

that of the first order. Therefore we have further,

z — h (z — d){z — b)

wherein .^1(2;) is not infinite or zero at a or at b. Now if the

points a and b coincide, it follows that

(z — ay

and therefore (f>(z), by the above criterion, is infinite of the

second order at a.

We saw above that, when a function <f>(z) is infinite of a

finite order for 2; = a, it suffers here a discontinuity of the first

kind; we will now show that the converse is also true. If

(f>(z) have a polar discontinuity at the point z = a, then -—-
<l>{z)

is continuous, and has the value zero at this place. We can,

therefore, by (7), § 25, let

(^) -T^^ =^i(^ - «)+ i^2(25 - ay + ... -j-p^(z - ay + ...

;

<^(2!)
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for the first term po u^ust be wanting, since it has the value

acquired by -—- at 2; = a, and this is zero. Of the following

coefficients, some may also be zero. Let the first which does

not vanish be p^. Such a coefficient must exist, otherwise

-—— would be constant, and would have the value zero for

every value of z. Therefore let

<t>{z)

wherein p„ is finite and different from zero. Now if we bring

this to the form

-L- = (2 - ayip^ -{-Pn+i(z - a) -f ..•]

and let J= = F(z),

we have <^(g) = . _ ]sJ

but since -^(2;), for z = a, acquires the value — , finite and
Pn

different from zero, then <f>(z) becomes by the above criterion

infinite of the nth order, and therefore of a finite order.

^

Consequently the occurrence of a polar discontinuity at a

point a is always characterized by the property that the

function becomes infinite of a finite order at that point.

From this it follows at once that the case mentioned on

p. 126 (note), that <j>(z) always becomes infinite at a point a for

different paths of approach to this point, but infinite of differ-

ent orders, is in fact not possible, but introduces a contradiction.

In that case would receive the value zero for all paths of

<f>(zl

approach to a. But, as was shown above, <f>(z) becomes infinite

of a definite order determined by that coefficient which is the

first in (3) not to vanish.

1 Konigsberger, Vorlesungen iiber die Theorie der ell. FunkL, I, S. 121.
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We now turn our attention to the second possibility men-

tioned on p. 133, namely, that there is no power oi z — a with

a finite, positive exponent /x, for which the product {z—ay<f>{z)

acquires a finite value for all paths of approach to a. Accord-

ing to the preceding, this can occur only in the case of a dis-

continuity of the second kind. But the series derived (10),

§ 26, holds for the latter, because for that development the

discontinuity occurring at a could be an entirely arbitrary one,

the point a having been excluded by means of a small circle C.

If in (10), § 26, we let

Po-\-Pi(z-a)-{-p2(z-ay-\-"' = xf/(z),

so that xf/(z) represents a finite and continuous function for

z = a, we obtain
III

In this, by (9), §26,

c(«+i) = 1_
C<f>(z)(z - aYdz,

the integral being taken along the circle C described round a.

If we substitute in that integral

dz
z — a = r(cos 6 -\-i sin 0), = idO,

z — a

we have c("+i> = J- C^ <f>(z)(z - ay+'de.
2 7r«/o

Now if, in order in the first place to consider the former

case from this point of view, <f>(z) be infinite of the nth. order

for 2 = a, then (z — ay<t>(z) is finite at a, and therefore

(z — ay+^<fi(z) is zero. Hence, if the radius of the circle C be

made to tend towards zero, c^"+^^ and with greater reason all

succeeding coefiicients, c^"+^\ c^"+^^ •••, vanish. Therefore the

series contained in (4) ends with the term — and changes
(z-ay

into the expression A, found previously under (1). If, on the

contrary, the second possibility already mentioned occur, in

which (z — ay<j>(z) does not have a finite limit for any finite
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value of n, then none of the coefficients c^"^ vanish, and

the infinite series contained in (4) enters in place of the former

expression A. In this case <f>(z) is infinite of an infinitely high

order for z = a, and at the same time, as remarked above, the

discontinuity at a is of the second kind.

Therefore the two kinds of discontinuity are also character-

ized by this, that in the first occurs an infinity of a finite

order, in the second one of an infinitely high order.

We now return to equation (2),

cl>{z)=A + ^(z),

in which A denotes either the finite series (1)

p.' p" nW
+ 7 7:;+-- +

z — a (z — ay (z — aY
or by (4) an infinite series of the same form; {\l/)z, however,

denoting a finite and continuous function at a. This equation

shows that a uniform function ^{z), which becomes infinite at

a pla^e a, is distinguished from a function \Ij(z), which remains

finite there, only by an expression of the form A. Hence it

becomes infinite only as this expression A does. For exam-

ple, if <^(z) be infinite of the first order for z = a, so that

lim \_{z—a)<fi{z)'\^^ is finite and not zero, we can then also say that

f^{z) becomes infinite there just as —— does. Or, if <l){z) be
z — 0/

infinite of the second order for 2 = a, it is then infinite either

c' c" c"
as h -, or only as is. If we have another

z — a {z — ay (2 — ay
uniform function f{z), which likewise becomes infinite of the

nth order for z = a, this can also become infinite only as a

similar expression A does, which can differ from the former

only in the value of the coefficients c. If the latter function

f{z) be given, the coefficients c are thereby also given ; there-

fore ^{z) is known at a place of discontinuity a, if a function

f{z) be given, which becomes infinite at this place just as

<j>(z) does. We can then let

<i>{z)= f{z) + xp{z),

wherein \p (2;), for z = a, remains finite and continuous.
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From the equation <f>(z)= A -{ \l/(z)

follows by differentiation

<t>'(z)='^-h^'(z),

where

dA c' 2 c" 3 c'"

dz (z - af (z - af (z - aY
wc(n)

(z - ay

Now since (by § 24) il/\z) remains finite for z = a, because

\]/(z) is here finite, we have : Tlie derivative <f>'(z) of a uniform

Junction <^{z) at a place z = a, where <f>(z) is infinite, becomes

likewise infinite, and that of an order higher by unity than

<l>(z). At all finite points at which <f>(z) is finite, <j>'(z) also

remains finite (by § 24), and hence the finite points of discon-

tinuity of a uniform function are identical with those of its

derivative <f>'(z).

30. We now proceed to the inquiry, how a uniform func-

tion cf>(z) behaves for an infinite value of the variable z. We
can lead this investigation back to the preceding by putting

z = -, whereby <f>(z) may change into f(u), and then examin-
u

ing f(u) at the point u = 0. Now, in the first place, f(u) is

finite for 2* = (by § 27) when lim [?^/(w)]„^ = 0. Therefore

r<^(2;)~|

<li(z) is finite for z = co when lim\ = 0.

Further, f(u) becomes infinite of the nth. order or of multi-

plicity n (by § 29) when lim [w"/(tt)]„^ is neither zero nor

infinite.

Hence <l)(z) is infinite of the nth order for z = cx^ when

is neither zero nor infinite.
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Moreover, we can (by § 29) in this case put

where A (u) denotes a function which remains finite for w = 0,

and the quantities Q constant coefficients. If A (u), expressed

in terms of z, change into xj/ (z), we obtain from the preceding

equation the following

:

(1) <f>(z)= Q'(z)+ Q"z' -f Q'"^ + . . . + Q(«)^« + ^(2),

wherein {j/(z) remains finite for z = cc. In this case, there-

fore, <f>(z) is infinite just as an integral function of z is.

From equation (1) follows

(2) cl>'(z)= Q'-\-2 Q"z + 3 Q"'z' + ... + nQ^'^h^~' + «A'(^)-

To inquire, in the first place, how the derivative \l/'(z) of the

function \f/(z) (which remains finite at infinity) behaves at

that point, we introduce again the variable u. Since

— _ ./2
du_ 1

dz z"

and iP(z) = A(iO,

we have ip'(z) = - u^X'C^)'

Now \(u) is finite for w = 0, therefore by § 24 \'(u) is also

finite, and consequently

il/'(z) = for z = cc.

Therefore, if a uriiform function be finite at the point z = ao,

its derivative is equal to zero at thai point. For example,

z^'-hz + l

2z'-l '

Then it follows from (2) that (f3'(z) is infinite of an order

less by unity than <f}(z), at z = cc. Therefore, if cji(z) be infi-

nite of the first order only, (fi'(z) remains finite for z = cc.
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The integral function of z occurring in (1) can be derived

also from the series obtained § 2Q (13), which holds when
<j>{z) suffers a discontinuity of any kind at 2; = oo ; it is valid

then for all points z lying outside a circle which encloses all

finite points of discontinuity. If we denote by ip{z) the first

part of that series and put

z z^ z^

this function remains finite for 2; = 00 and assumes the value

Pq. Denoting the other coefficients by Q instead of by c, we
therefore obtain from (13), § 26,

(3) <i>{z)= Q'z -f- q"z' + Q"'2^ + - + ./'(2),

wherein by (12), § 26,

2 7riJ 3'*+^

the integral to be taken along a circle round the origin, outside

which there is no point of discontinuity except z — oo. By
dz

substituting therein — = idO, we obtain

2 TTJo 2;~

Now if (^(2) be infinite of the nth order for 2; = co, then

lim ^^ is finite, and therefore lim ^^

Consequently, if we let the circle of integration enlarge indefi-

nitely, Q^""^^^ Q^"^^^ etc., vanish, and the series contained in

(3) changes into the integral function in (1).

But when <^(z) is infinite of an infinitely high order, and

when therefore it suffers a discontinuity of the second kind,

then in place of the integral function in (1) there enters the

series of integral ascending powers of z in (3).

31. From the preceding investigation we now deduce the

following propositions: If a uniform function become infinite

IS zero.
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for no finite value of z, but only for 2 = co, and that only of a

finite order (multiplicity n), then it is an integral function of

the nth degree. For we have in this case by (1), § 30,

<l>(z)= Q'z + Q"z' + Q'"!^ + ••• + Q^^^^z- + ^(z).

But since if/(z) is a uniform function, which does not become

infinite either for a finite or for an infinite value of z, it is by

§ 28 a constant. Denoting it by Q, we have

<f>(z)= Q+Q'z-h Q"z' + Q"'z' + - + «(">^";

thus <f>(z) is in fact an integral function of the nth. degree.

Conversely, an integral function of the nth. degree becomes

infinite only for z = 00, and that of multiplicity n ; for

li-[^]_ =«'"'.

and this limit is finite and at the same time different from zero,

when <fi(z) is of a degree not less than the nth.

If a uniform function <f>(z) become infinite only for z = 00, but

that of an infinitely high order, then it can be developed in a series

of powers of z converging for every finite value of z. For in this

case the series (3), § 30, holds for all finite values of 2, and \\i{z)

must be a constant for the same reason as before.

32. If a uniform function become infinite only for a finite

number of values of the variable, and for each only of a finite

order (in short, if it become infinite only a finite number of times),

then it is a rational function.

Let a, b, c, •••, k, I, go be the values of z for which <l>{z) becomes

infinite, a, j8, y, •••, k. A, /tx, the respective multiplicities of the

infinities; then we can in the first place let

<f>(z)=Q'z + Q"z' + ... + Q^^h^ + ijfiz),

where i{/(z) is not infinite for z = cc, and therefore is infinite

only for z = a, 6, c, • • •, Z ; accordingly we have

^ I f>
II p (a)

iA(^)=-^ +r^2 + - + 7-^„ + 'Ai(^)>
z — a (z — a) (z — ay
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where now {{/^(z) is infinite only for z = b,c,'-',l. Therefore we
have further

If we continue in this way, we arrive at

where j/^„(2;) is no longer infinite at all and therefore is a con-

stant. Denoting this by Q, we obtain, when we combine the

above expressions.

+-^ + ^^^+...+^
(z-ay (z-ay

II ^ O)
I

^2
I

^2
1 I

<^2

^ z-b {z-by '^ {z-by
+

4- -T"
I

b^
I

J ^»

^ z-l^ (z-iy^ ^ (z-l)^'

hence <f>(z) is in fact a rational function.

Since a rational function can always be brought to the above

form, that is, can be separated into an integral function and

partial fractions, it follows also, conversely, that a rational

function can always become infinite only a finite number of

times.

33. A uniform function <f>(z) is determined, except as to an

additive constant, when for each of its points of discontinuity we

are given a function which becomes infinite at this point just as

<f>(z) does, but which otherwise remains finite and continuous.

Let tti, a2, 03, etc., be the points of discontinuity of <j>(z), and

suppose the value 00 to be included among them. Further, let

fi{^)}f2{^))f3(^)) etc., be the given functions, which become
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infinite at the points Oi, da? «3) etc., respectively, but which are

elsewhere finite and continuous. Then, if (f>(z) is to become

infinite at oti just as fi(z) does, we can let

where ij/(z) is not infinite for z = aj. Now, since fi(z) is finite

for z = ttgj "AC^) iii^st be infinite at that point, and that just as

<j>(z) is. Hence, if <f)(z) is to be infinite at a2 just as f2(z) is, we
can let

where now if/i(z) does not become infinite for Oi and az, but does

for ttg, etc. If we continue in this way, we finally arrive at a

function if/ which is a constant, since it no longer becomes

infinite at any point. Denoting this constant by C, we obtain

<t>(z)=f,(z)-\-Mz)-\-Mz)+ ... + a

34. We say that a uniform function <ji(z) becomes infinitesi-

mal or zero of the nth order for a value of z, when -—— becomes
<^{z)

infinite of the nth order for this value. For this case, by § 29

and § 30,

im,

L *(2)

Now, since the reciprocal fractions must also have finite limits

different from zero, we have as the conditions to ensure that

fji{z) is infinitesimal or zero of the nth order for a finite value

2; = a, and for z = 00:

limr^^^^l

limT ' ""

> is neither zero nor infinite.

lim[_z-<l>(z)-],^

lim,
, _ ,

is neither zero nor infinite.

From these conditions are derived the former ones for the infi-

nite state of cfi(z) by substituting — n for n ; hence we can
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consider an infinite value as an infinitesimal value of a nega-

tive order, or also conversely.

If <f>(z) become zero of the nth order for z = a, and if we let

(z-ay ^
^'

then according to the above F(z) is a function which is finite

and not zero for z = a. From this it follows that we can let

<f>{z) = (z-ayF(z),

and therefore remove the factor (z — a^ from <f>(z). If we
replace nhj —n, we obtain again the condition given on p. 137,

that, if cfi(z) be infinite of the nth order for 2; = a, we can let

and conversely.

If <f>{z) become infinitesimal of the nth. order for 2=00,

then z''<f>{z)=F(z)

is finite and not zero for z = cc, and this equation holds also

for infinite values, if — n be substituted for n. Hence in this

case, for infinitesimal values of cf)(z), we can let

F(z)

and for infinite values

cl>(z) = z-F(z),

wherein F(z) denotes a function which remains finite and not

zero for z = 00.

35. Closely associated with the preceding is the inquiry,

how often in a given region a uniform function becomes

infinite o ,^ n , i • ^ • •, infinite ,

. n -^ • 1 01 the first order, m which an . „ ., . , value
innmtesimal infinitesimal

of the nth order is regarded as an . ^ .^ . , value of the
infinitesimal
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first order of multiplicity n. This number can be expressed

by a definite integral.^ Within a given region T let the uni-

form function (l>(z) become .,>•.. -.at the points a^, ag, a^,

etc., of orders %, Wg, n^, etc., respectively, which are to be taken

positively for infinitesimal, negatively for infinite values. We
will now consider the integral

taken over the whole boundary of T. The function zJ^ be-

comes infinite at all points at which <j>(z) is zero,- and also at

all points at which <^' (2;) is infinite.^ But by § 24, <^' (z) remains

finite at all points at which <f>(z) is finite, and by § 29 becomes

infinite at all points at which <f>(z) is infinite ; hence the points

of discontinuity of <t>'(z) within T are identical with those of

<l){z). Accordingly ^^ ^ becomes infinite at all the points
<l>{z)

Ou ttg, tta, etc., and only at these. Now by § 19 the above inte-

gral, taken along the boundary of T, is equal to the sum of the

integrals taken round small circles described round the points

a. Let A denote one of these integrals corresponding to the

point a, and let ?i denote the order of the . ^ .^ . , value
•^ mnnitesimal
of <fi(z) at that point. Then by § 34 we have ^

<t>(z) = (z-d)y(z),

where ij/ (z), for z = a, remains finite and different from zero.

1 This occurs first in Cauchy's writings, Comptes rendus, Bd. 40, 1855,

I., "M^moire sur les variations integrals des fonctions," p. 656.

2 It is evident from (f>(z) = {z — aY^{z) {n being positive) that (t>'{z)

is finite when (t>{z) is infinitesimal of the first order, and in general that

<t>'{z) is infinitesimal of an order lower by unity than 0(0). [Tr.]

3 Because <p'{z) is infinite of an order higher by unity than 0(0)

(p. 141). [Tr.]

* In the relation given, n (as always now in the considerations follow-

ing) is to be taken positively for infinitesimal, negatively for infinite

values. [Tr.]
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By means of this relation we obtain

the integral to be taken along a small circle described round

a. Since {(/(z) is not zero and i{/'(z) not infinite within the circle

of integration, ):

^
is continuous, and hence by § 18

/ 1{;{Z)

Moreover, by § 20, |
——= 2 iri,

J z — a

and therefore A = 2 Trin.

If we sum up these values for all points a, we obtain

d log <^(2) = 2 Tziini -1- ^2 + W3 + • • •)= 2 Trt'Sw,

the integral to be taken along the boundary of T}

f

1 At this point we have omitted from the text the following ; Therein

Sw indicates how often (p(z) becomes . ^ .^ . , of the first order, if
• o .. ^^ ^ mfimtesimal - a -j.

, mfinite . ^ ^x, ..x. ji
mfinite

we regard an . „ .^ . , value of the wth order as an . „ .^ ,° mfimtesimal infinitesimal

value of the first order of multiplicity n. We therefore have the follow-

ing proposition : The integral

i"
d log <f>(z)

of a uniform function <p{z), taken along the boundary of a region T, is

equal to 2 iri times the number of points within T at which <p(z) is

..... -, of the first order,
mjinitesimal

This statement of the result is evidently misleading, because Sm is the

algebraic sum of the orders of the infinitesimal values of <f>(z) (the infinite

values being regarded as infinitesimal values of negative orders, as often

stated). Thus if 5 be the number of points at which <p(z) becomes zero,

and 3 the number of points at which it becomes infinite (account being

taken in both cases of any multiplicities), then S?i = 5 — 3 = 2. The
statement is correct, however, if only infinitesimal, or only infinite

values, be included in the area T. [Tr.]
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If we let tlie letter n refer to the infinitesimal values, and

denote by — v the orders of the infinite values (since these are

to be taken negatively), we obtain

(1) Cd log <}>{z) = 2 Trt (5n - 5v).

If the function <f>(z) remain finite within T, the term — iSv

drops out of the preceding formula, and it follows that : The

number of points at which a uniform fuiiction <f>(z) is zero of the

first order within a region T, in which <t>(z) is continuous, is

equal to

^./<«log<^(.),

taken round the boundary of T.

36. If we understand by the points a all finite points at which

<f}(z) becomes infinite or infinitesimal, it is still important to

determine the behavior of <^(z) for z = co . Let us assume that

<f>(z) is . ^ . . , of the mth order for 2 = 00, and again let

a positive m refer to an infinitesimal value, a negative m to an

infinite value. If the boundary of T be assumed to be a circle

round the origin, which encloses all the points a, then in the

first place according to the preceding

(1) Cd log <f>(z) = 2 Trt (2w - Si/),

taken round this circle. Now, if a new variable u he intro-

duced in place of z by the relation

1
z = -,

u

then to every point z corresponds a point u, and to the point

z=iao, the point w = 0. Further, if we put

z = r (cos -^i sin B),

we get u = - (cos 6 — i sin 6).
r
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When z describes a closed line Z round the origin, u describes

likewise a closed line U round the origin (because thereby 9

increases from to 2 w), but in the opposite direction. If the

radius vector r be made to increase, $ remaining constant, -
r

decreases, and conversely ; therefore to all points z outside Z
correspond points u situated within U. If we now introduce u

in place of z in the integral

/dlogc^(.)or/igd..
ct>(z)

and denote by f{u) the function thereby resulting from <f>(z)j

we obtain

Cdlogfiu)OT f-^du.

In the integral as to z, the curve of integration Z is a circle

round the origin enclosing all points a ; therefore, in the inte-

gral as to u, the curve of integration is also a circle round the

origin, which, however, is described in the opposite direction.

Hence, if we assume for both integrals the integration in the

direction of increasing angles, we have

Jdlog<t>(z)=-fdlogf(u),

the first integral taken round the circle Z, the second round

the circle U. The circle Z encloses all points a ; therefore <l>(z)

becomes . ^ ., . , outside Z only for z=ao, and hence f(u)
infinitesimal

"^ "^^ ^

within CT" is . ^ . . , only for u = 0. For 2 = co, <^(z) was

. „ . . , of the mth order, so that
miinitesimal

lin.[.»*(.)]^^^=lim[M]

is finite and not zero : accordingly f(u) is also
. ^ . , . , of

XT- xi_ J £ A Tj? 1 / infinitesimal
the mth order for u = 0. If we let
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il/(u) denotes a function wliicli is finite and different from

zero for u = 0, and therefore everywhere within JJ. Now it

follows as above that

/.lo.X«)=™/'J+/^..

wherein the second integral vanishes, and the first, taken in

the direction of increasing angles, is equal to 2 irim. Accord-

ingly we have

Cd log <f>(z)=- Cd log/(w)= - 2 Trim.

If we equate this result to the value of this integral, taken

along the same curve, found in (1), we obtain

(2) 5n — 2v = — m.

If now <f>(z) be zero for z = cc, then m is positive, and we have

m -f 2n = 5v

;

but if <f>(z) be infinite for 2 = oo, then m is negative, and

substituting — /x for it, we obtain

In both equations, the left side shows how often <f>(z) becomes

zero of the first order in the whole infinite extent of the

plane, and the right side, how often this function becomes

infinite of the first order; from this follows the proposition:

A uniform function in the whole infinite extent of the plane is

just as often zero as it is infinite. Whence we immediately

infer : A uniform function assumes every arbitrary value k just

as often as it becomes infinite.

For <f>(z)—k becomes infinite as often as <f>(z) does; hence

<f>(z)—k is zero just as often as <f>(z) is infinite, and therefore

<f>(z) is just as often equal to k.

From this follows immediately the fundamental proposition

of algebra; for an integral function of the nth degree becomes

infinite only for z = cc, and that of multiplicity n ; therefore
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it must also become n times zero, and hence an equation of the

nth degree must have n roots.

37. We can now prove again in another form the proposi-

tion already proved in § 32, that a uniform function, which

becomes infinite only a finite number of times, must be a

rational function.

Let tti, ttg, tts, etc., be the finite values of z for which
a uniform function ^(z) becomes infinite or infinitesimal,

and let n^, rigj %? etc., respectively denote the orders of the

. o • , • 1 values, positive for infinitesimal, negative for infi-
mnnitesimal

nite values. We can then in the first place by § 34 let

<i>{z)= {z-a,Y^^p{z),

where xpiz) is finite and not zero for z = aj, but becomes

. ^ . . , for z = agj <^3) etc. Then
infinitesimal

xl/{z)= {z-a^-2xl,^{z),

<t>(z)
where now . 1/^1(2;)=

(z — ai)«i(2; — a2)«2

does not become . „ . . , for a^ and a2, but does become
infinitesimal

. ^ . . , for 0^3, etc. ; if we continue in this way, we
infinitesimal

arrive at a function

<l>(z) <f>(z)
X(Z):

{z — aiyi(z — a^^^{z — a3)»3 ... n.{z— a)'

which no longer becomes . ^ . . , for any finite value
miinitesimal

of z. From this can now be shown, however, that it cannot

become
. ^ . . , for z = cc. For, since
infinitesimal

(z-ay = z^(l--

we can write Tl(z - ay = z^^ufl - -Y
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But if m denote the order of the
. ^ . . , vahie of d>(z)
infinitesimal

for z = cc, positive for infinitesimal, negative for infinite

values, then by (2), § 36,

2?i = — m,

since here In denotes the same number that was there desig-

nated by In — Sv. Accordingly we have

U(z-aY=z-"'ufl--

z"'cf>(z)
and \(z)— ^-^^

But for z = cc,

limlim f'^(^>,.
= lim^X.),

and this is finite and not zero by § 34, since <f>(z) is ]^ ^^ ®

infinitesimal

of the mth order for z = cc. Therefore X(z) is in fact a

function which remains finite for z = cc; now since it also

does not become infinite for any finite value of z, it must by

§ 28 be a constant. If we denote it by C, we have

<l>(z)=cn(z-ay.

If we retain now Oj, ag? <hj etc., for the finite values of z, for

which <l)(z) becomes zero of orders ni, ng, n^, etc., respectively;

and if we denote by a^, a^ ccq, etc., the finite values, for which

<f}(z) becomes infinite of orders vi, V2, vs, etc., respectively, then

we have

^^M _ e (^ - ^i)"<^ - ^2)"<^ - a^Y' "\
^^^ (z- a^y^iz - a2y^{z - «3)''3 . .

.

Therefore <^(2!) is actually a rational function, and appears

here with numerator and denominator separated into factors,

while in § 32 it was resolved into partial fractions and an

integral function.



INF. AND INF'L VALUES OF FUNCTIONS. 155

From this follows, further : A uniform function is determined

except as to a constant factor, lohen once we know all finite values

for which it becomes injinite and infinitesimal, and also the

orders of the
*^^^* ^

values; and: Two uniform functions,
infinitesimal

ichich a^ree in these values and in their orders, are equal to each

other except as to a constant factor.

B. Functions with branch-points. Algebraic functions.

38. An algebraic function w; of 2 is defined by an algebraic

equation, in which the coefficients of the powers of w are

rational functions of z ; therefore by an equation of the form

(1) wP -fi(z)wP-' -\-f,{z)w^-' - •" -f (- l)%(z)=0,

wherein /i(2;), /2(2;), •••, represent rational functions of z, and in

which the coefficient of the highest power of w is assumed

to be unity. If w^, w^, •••, w^ denote the p roots of this equa-

tion for any assumed value of z, they are then the p values of

the function for the value of z in question.

Of these values at least one must become infinite for some finite

or infinite value of z. For we have

Wi + WgH hw^^=/i(2).

Now, since /i (2), as a uniform function, must by §28 become

infinite for some value of z, so for this value of z at least one

of the summands Wi, Wo, •••, Wp must become infinite.

But we can show further that w can become infinite only for

such a value of z as leads at the same time to an infinite value

of at least one of the rational functions fi(z), f{z), •••. For

we have
W?! + ^2 H h IVp =fi(z)

(2) W1W2 + WjWs H h Wp_-^iVp = f^iz)

WHV2'"lCp=fp(z).
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If we now denote by Wp one of those values of w which be-

come infinite for a certain value of z, we can remove this and

introduce the sums of the combinations of the remaining

values of w.

Letting w^-\-w^-\ h Wj,_^ = <i>^(z)

we then easily obtain

f,(z)=<l>,(z)+Wp

f2(z)=:fj>2(z)-\-lVp<f>,(z)

fp-l(^) = <l>p-l(^) 4-^^-2(2)

Now since w^ is infinite, therefore, by reason of the last equa-

tion, either /^(z) must be infinite, and then the above proposition

is already proved; or, if this be not the case, <f>p-i(z) must

vanish. In like manner it follows from the next to the last

equation, that either fp^i(z) must be infinite or <f>p-'i(z) must be

zero. Continuing in this way up to the second equation, if the

case occur that none of the /-functions from fp(z) to /(z;) is

infinite for the value of z in question, the (^functions must all

vanish from <f>p-i{z) to <^i(2), and therefore it follows from the

first equation that fi{z) must be infinite.

Now since the converse also follows from equations (2), viz.,

that, whenever one of the /-functions becomes infinite, so does

at least one of the ^y-functions, we obtain all the 2;-points at

which the algebraic function w becomes infinite, by looking for

all the 2;-points at which the rational functions fi{z), foiz),-"

become infinite. But since the latter can become infinite at

only a finite number of points, therefore also an algebraic funo-

tion can become infinite at only a finite number ofpoints}

1 Konigsberger, Vorlesungen iiber die Theorie der elUptischen Funk-

tionen, I. S. 112.
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It can now be proved also that an algebraic function cannot

become infinite of an infinitely high order at any point. For,

since the rational /-functions become infinite of only a finite

order (§ 32), let a be a point at which occurs the infinity of

highest order for these functions, and let this highest order be

the (r— l)th. Then, for those /-functions which become infinite

of this highest order, the product

{z - ay-'f{z)

is neither zero nor infinite at 2 = « (§ 29). For those functions,

on the other hand, which are either not infinite at all or infinite

of a lower order at « = a, this product is zero ; and this value

holds for all the /-functions, when in place of r — 1 a higher

exponent occurs. Now, if we introduce in equation (1) another

function W in place of iv, by letting

(3) ,0= ^
(z~ay

we obtain for W the following equation

:

W^-(z- a)%(z) TF^-i +(2 - a)'^f,(z) W^-'

+ (-inz-arf,(z)=0.

But since in this the exponent of 2 — « for every coefficient

is greater than r — 1, these coefficients all vanish for z = a, and

the equation reduces to

for this value of z, so that the values of W corresponding to

z = a are all zero. Now, from (3) follows

W=(z — ayw;

therefore the values of the w-functions have the property that

for them the product (z — ayw vanishes at the point z = a.

But since one or more of them are here infinite, there must

be for them a positive, integral or fractional exponent /m, less

than r, for which the product (z — a)f^w receives a finite value
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different from zero; and in such a case we again say, the

w-functions involved are infinite of a finite order.^

If a denote a point at which none of the /-functions acquires

an infinite value of an order as high as r — 1, but at which,

nevertheless, one or more of them become infinite, the state-

ment holds so much the more. But if an infinite value occur

for z = ccj the substitution 2 = — is made, and then the /-func-
u

tions become rational functions of u ; therefore the previous

reasoning is applicable to the point w = if the w-functions be

also treated as functions of u. Hence we obtain the proposi-

tion : An algebraic function always becomes infinite at a finite

number ofpoints, and at each of them infinite of a finite order.

In the K-iemann surface, in which by § 12 an algebraic func-

tion can be regarded as a uniform function of position in the

surface, we no longer need to examine those points which are

not branch-points, since for them the principles of the preced-

ing section which refer only to the finite parts of the plane

containing no branch-points do not lose their validity.

Hence we have in this place to examine in detail only the

branch-points themselves, and we begin with the investigation

made in § 21, which proved the following proposition : ii z = b

be a branch-point of a function f{z), at which m sheets of the

2!-surface are connected [a winding-point of the (m — l)th order

(§ 13)], and if we let ^
(z-br = t,

by which f(z) changes into <^(^), say, then <^(^) does not have

a branch-point at the place ^ = corresponding to z = b.

Now we can, in the first place, apply to the point ^ = the

criterion of p. 128 for the finiteness of the function, and infer

that <^ (Q remains finite at the place |; = if

therefore we obtain as the necessary and sufficient condition

that f(z) remain finite at the branch-point z=b:

1 Konigsberger, Vorlesungen^ u. s. w., I. S. 177.



INF. AND INF'L VALUES OF FUNCTIONS. 159

Further, the considerations of § 29 show that if <^ (^) become
infinite of the nth order at the point ^ = 0, we can let

a' a" a'" o<")

wherein A (^) remains finite for ^ = 0, and the quantities g
denote constant coefficients. Therefore we have

a' a" «<">

(z — b)"^ (z — 6)« (z — 6)»»

wherein if/(z) equals A(^), say, and remains finite for 2 = 6.

Then
n

lim (z — hYfiz) is finite and not zero, and the order of the infinity

of f(z) is denoted by the fraction —

.

m
At b, m sheets of the ^-surface are connected, hence in this

place m function-values become equal. If these be designated

by w^ W2f •••, w^, the quantities

w,(z - by, w^(z - by, ..., w^(z - by

have each a finite limit different from zero, and therefore the

same is also true of the product

W1W2 "• w„,{z — by.

Hence we can also say: The function w becomes infinite of

multiplicity n at b where m sheets are connected, if each of the

n
values becoming equal at this place be infinite of the order —

.

The principle proved on p. 158 can then be expressed as fol-

lows : An algebraic function always becomes infinite a finite

number of times.

We determine more explicitly the kind of infinity oif(z), by

specifying the expression by which f(z) differs at b from a

function which remains finite at that point. This expression
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proceeds, as the last equation shows, according to powers of
_i

(z — b) »». Thus, we say, for instance, that f(z) becomes
a' a" a' a"

infinite as —-—j^, or as —^—5, or as —-—j-H -^

g^g
(z — b)^ (z — b)'^ (z - by (2; — h)^

Let us now consider the value 2 = oo, which, as we have

already seen, § 14, can be represented by a definite point, and

which can also occur as a branch-point. Let us put

z = - and fiz) = ^{u)
;

then w = is a branch-point of the (m — l)th order for <^(w), if

2; = 00 be such for /(a;). Therefore/ (2;) is finite for 2; = oc, if

liniL-<^(2^)1 =limrM~| =0.

But, if fiz) for 2; = 00 , and hence also <^(w) for w = become

infinite of the order —, then
m

is finite and not zero, and we can let

<^W = 4 +^+.-.4-^ + X(i.);

or /(2;) = g'zr^ + gr"2;« + . . . + ^(«)2- + ^(0), (4)

wherein \\i{z) = \ in) remains finite for 2; = 00. In this case we
say that f{z) becomes infinite of multiplicity n at 2; = 00

.

39. We must now also study the behavior at a branch-point

of the derivative --^, in which w is written for/ (2;). First let
(xZ

US consider only those finite points at which w remains finite.

It has been proved (§ 24) that if w be finite, continuous and
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uniform in a region, i.e., if it possess neither points of discon-

tinuity nor branch-points, then — likewise remains finite and
dz

continuous in the same region. Now, if we express the deriva-

tive by the limiting value to which it is equal, denoting by w^

the value of w corresponding to z = a, we have

dw
dz L 2 - a J.

and can accordingly say that when 2; = a is neither a point of

discontinuity nor a branch-point of w, then

lim

is not infinite.

'-\:-~ti

But we can also determine under what condition this limiting

value is not zero. To that end we have only to consider 2; as a

function of w. If the point w = iv^, corresponding to the point

z = a,he not a branch-point of the function z, then according

to the above

limf ^-^l

is not infinite, and hence the reciprocal fraction

is not zero.

Hence, we obtain in the first place the following proposition

:

If z = a and w = w^ be two finite points corresponding to each

other, and if neither z = a be a branch-point of w, nor w = it\ a

branch-point of z, then

Iz-a J,^
is finite and not zero.

It follows that the derivative— at a finite point (at which
dz

10 also is finite) can become zero or infinite, only when at that
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point a branching occurs, either for w considered as a function

of z, or for 2; as a function of w.

Now, if in place of a a branch-point b enter, at which, how-

ever, w has a finite value Wj„ let

(z-b)'^ = ^,

the z-surface winding m times round b (by § 21) ; then w,

considered as a function of ^, has neither a point of discon-

tinuity nor a branch-point at the place ^ = 0. If we assume

now the case in which ^, also regarded as a function of w, does

not have a branch-point at the place w = Wj,, the hypotheses

of the preceding proposition are satisfied, and therefore

lim
L ^ jc^ i{z-br.

is neither zero nor infinite. But now

(z-6)=r;

therefore 2; is a rational function of ^ and consequently by

§ 15 just such a branched function of w as ^ is. Therefore, if

^ do not possess a branch-point at the place w = iv^, then z,

considered as a function of w, likewise has no such point there,

and hence the proposition follows :
—

(i.) If w have a winding-point of the (m — l)th order at z=b,
hut z, regarded as a function of w, no branch-point at 10 = Wj, then

liryA
"^ — "^b is finite and not zero.

\-(z — 6)'»J^6

If this finite and limiting value be denoted by fc, then also

I z-b _l^.

but limf'-^^') =f?,\z-b J^t dz

^limf ^\ 1 ^limf—V.l
-, dw
nence

dz
I
{w — Wj,y '

|^i,„, L.(;2_&)-



INF. AND INF'L VALUES OF FUNCTIONS, 163

Therefore :
—

(ii.) With the hypothesis ofproposition (i.), — becomes infinite

at b, and in such a manner that

lim\ (w — Wj)*""^

—

and liml (z — b) "* —

are neither zero nor infinite.

-p. 3/- dw 1
Ex. »=V5, -= 3^,for. = 0.

If, on the other hand, ^ or {z — 6)"* possess a branch-point

at w = Wj,, such that fx sheets of the w-surface are connected in

it, the hypotheses of proposition (i.) are satisfied, because ^ as

a function of w has a winding-point of the (/x — l)th order

at Wj, but w; as a function of ^ has no branch-point at ^ = ;

hence lim ^ ?

and therefore also the reciprocal fraction

lim

is finite and not zero. Since now z and ^ are like-branched

functions of w, we conclude :
—

(iii.) If w have a winding-point of the (m — 1)^^ order at

z = b, and z as a function of w, a winding-point of the (ji — 1)^^

order at the corresponding place w = Wj„ then

\- (z- by J^*
lim ^ ^ is finite and not zero.

L (2 _ 5)m Jz^h

If we denote this finite limit by A, then
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and since limf^-^^l =^,
L 2; — 6 J^j dz

also — = lim /r(w;-wj) '^ = lim U^(^ - 6)
-

Therefore :
—

(iv.) With the hypothesis ofproposition (iii.)) — is zero or inii-
dz

nite, according as /x> or <m, and in such a manner that

lim\ (w - wS^"^ and Um\ (z - 6)^—1
L dzjia^j, L dzjz^

are neither zero nor infinite.

Ex. 2«^ = 2^, for 2; = ; m = 3, /w, = 2,

dw;^2_l ^2J..
dz 3^1 Sgji

We have still to examine the value 2 = oo, retaining the

hypothesis that it represents a branch-point at which w is

finite. Let
1

z =
u'

and let w' be the value of w corresponding to 2; = go or w = 0.

If we assume that z = 00 is a winding-point of the (m — l)th

order for w, but that w = w' is a winding-point of the {fx — l)th

order for z, we obtain by (iii.), since z and u are like-branched

functions of w, and also since the branching of w remains the

same :
—

1

(v.) lim\ ^—
^^^^:j^
—^ or lim\ z"'(w — w')'^

is finite and not zero.

If this limit be denoted by h, we have by (iv.)

— = lim h^(w -w')~^\ = lim h^u~^ •
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nut now — = —

;

dz z^du
therefore

^= -limp>-"'')'^1 =-liinr^^l ,

or dw

Consequently :
—

(vi.) With the hypothesis of (v.), — is zero, and in such a

manner that the expressions

'^
^ dz' 't±ii dz dz

{w—w') f^

have limits finite and different from zero.

Ex. (w; - w')2 = 1 ; m = 3, /x = 2
;

da; 2^;! 2^ ^

Finally, let us turn to the consideration of the case when w
itself becomes infinite at a branch-point, and at first let us

assume the latter to be finite and equal to b. Now, if m sheets

are connected at 2 = 6 and /x sheets at w = 00, we can deter-

mine directly from (v.) what expression remains finite and

different from zero. For, if 2 — 6 be there put in place of

to — w', and w in place of z, and if further m and /a interchange,

it follows that

lim w^(z — 6)"* =h

remains finite and not zero. Now since from this results

limU;(2;-6)'« =^,
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SO that this limit is also neither zero nor infinite, it follows

(by § 38) that w is infinite of the order — in this case ; and

the converse at the same time holds. Making the same sub-

stitutions as above in the second of the expressions (vi.), we
see that

1 dz

(z — b)""

and hence also the reciprocal value

dw

is finite and not zero in the limit, and that therefore — is

,
dzm + /A

infinite of the order Hence the conclusion is : If w
u,

become infinite of tJie order — at a winding-point z = b of the

(m — l)th order, then the point ly = oo itself is at the same time

a branch-point of the (ji — l)th order, and conversely; and

-r- becomes infinite of the order •

ciz rn

Secondly, if w become infinite for z = <x> , and if this point

be a winding-point of the (m — l)th order, while w = oo is a

winding-point of the (jx — l)th order, let 2 = - ; then by the

preceding proposition

and hence

-51-
is finite and not zero, and therefore w is infinite of the order

limU- -r- and limH^^

ii. Further,
m

-z

remain finite and not zero.
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Now since

du dz*

therefore lim L^ «. —
L dzj.^

is finite and different from zero, and hence — is either zero or
dz

infinite, according as m > or < /x. E.g., take the equation

(w - w')\z -by = l',

then

w — w' = , z — b = —
(z-by (w-wy

and therefore w is infinite of the order |, for 2 = 6. At the

same time three sheets of the 2-surface are connected at the

place z=:b, and at the corresponding place w = oo five sheets of

the w-suiisiQe. Further

dw __5 1

^^ ^ (z-b/

and therefore the derivative is infinite of the order | for z = b.

For the equations

w = z% and iv — z\

the places z = ao and w = ao correspond. We obtain respec-

tively

dw_S 1 -, dw_5J,
Tz-lJ ^""^

d^-3' '

hence, for 2; = 00 , — is zero in the first case, and infinite in
dz

the second.

40. We can now specify in what way the 2!-surface is repre-

sented on the z^-surface in the vicinity of a branch-point, and

thus dispose of the exceptional case mentioned in § 7.
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If we assume that 2 == 6 is a winding-point of the (m — l)th

order, and w = 10^ d^ winding-point of the (/a — l)th order, we
have, by (3), § 39, for

(z - bf

a definite, finite limiting value different from zero. Therefore

if z' and 2;" be two points lying infinitely near to b in different

directions, w' and w" the points of the zo-surface correspond-

ing to them, then it is the abov6 expression, and no longer, as

in § 7, the expression 'Hzi^ which has the same finite limit
z — b

for both pairs of corresponding points. Therefore

i_ 1

I 1

(z' - bY (z" - bY

— w.y- fz' — by"
or ' ^ V -

[w" wj \z" - b^

If we now put w' — Wj, = p' (cos if/' + i sin i/^'),

w" — Wi, = p"(cos {]/" + i sin xj/'^,

z' — b =r' (cos <fi' + i sin 0'),

z"-b =r"(cos<j!)"-f-isin<^"),

\ve have
f -^, )

(cos ^ ^ + i sin ^^^ ^

]

\P J \ f^ 1^ J

= (-r.) cos^^^ ^^^-^sln ^^ b
\r"J \ m m J

p") "V") '
iM ~ m '

and therefrom
1 1



^ = (JJ'
^' -^" = 2 (<^' -</>'%
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Hence there no longer exists similarity in the infinitesimal

elements in the neighborhood of the branch-point.

In the example cited in § 7,

w = z^,
_

m = 1 and w- = 2 : therefore — = 0, for the branch-point w =
dz

(corresponding to 2; = 0), since ix>m. At the same time we
have

£1

P'

a particular case (§ 7).

An immediate consequence of this is (among others) the

proposition:^ The angle under which two confocal parabolas

intersect is half as large as the angle between their axes. By the

method given in § 7, or also easily in another way, we satisfy

ourselves that to each straight line in z which does not pass

through the origin, corresponds a parabola in w, the focus of

which is at the origin, and the axis of which corresponds

to a straight line in z passing through the origin, and at the

same time parallel to the former. The angle which two

straight lines in z, not passing through the origin, make with

each other is just as large as the angle under which the corre-

sponding parabolas intersect; under the same angle also

intersect the straight lines in z, passing through the origin,

which correspond to the axes of the parabolas in w. But

since the origin is a branch-point of z, and in fact m = 1 and

/A = 2, the axes of the parabolas make with each other an

angle twice as large.

41. It was shown above (§ 38) that a multiform algebraic

function becomes infinite a finite number of times. We now
prove the converse, namely

:

If a function w have n values for each value of z, and become

infinite only a finite number of times, it is an algebraic function.

1 Siebeck :
" Ueber die graphische Darstellung imaginarer Funktionen,"

Crelle's Joimi., Bd. 55, S. 239.
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Let us denote by w^, w^, w^, •••, W7„ the n values of w corre-

sponding to a definite value of z. If we form the product

S =((r — Wi)(cr — W2) • • • (a- — W„),

wherein <t denotes an arbitrary quantity independent of z,

then S is symmetric with regard to Wi, Wg? •••? ^n- ^ow let

z describe any apparently closed line (§ 12), then some or

all of the values Wi, w^, •••, w„ will have changed, but at the

n points of the 2;-surface situated one immediately above

another, w will again have the same values, but in a different

sequence; consequently S, regarded as a function of z, has

not changed. S is therefore one-valued at all points, and

hence is a uniform function of z. In addition, S becomes

infinite only when one or more of the functions w-^, w^, •••, w^ be-

come infinite. Each of the latter, according to the assumption,

becomes infinite only a finite number of times ; hence the same

is true also of S. Therefore /S' is a uniform function which

becomes infinite only a finite number of times ; and hence by

§ 32 it is a rational function of z. If now z = a be a point

of discontinuity of w which is not at the same time a branch-

point, and if w^ be infinite of multiplicity a at this point, then

Wa(z — a)*, and therefore also (o- — Wa)(z — a)*,

is not infinite at a (§ 29). If, further, 2; = 6 be at the same time

a point of discontinuity and a branch-point, and if /a sheets are

connected in it, then fi values of w also become equal. If these

be denoted by Wj, w^, •••,%? and if the number of times that w
becomes infinite at b be denoted by ft then by § 38 the

quantities

w,(z - by, w^iz- by, . .
., w^(z - by,

and therefore also

^ ^ ^

(o- - w,)(z - by, (o- - w,)(z - by,"-, (a- - w^){z - by,

are not infinite. Consequently the product

(a - Wi)(a - W2) ••• (o--'W^)(z-by

also remains finite for z = b.
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Now let ttj, a2, •••, dj^

denote the points of discontinuity which are not branch-points,

and

the points of discontinuity which are at the same time branch-

points ; further, let the respective orders a and /? be designated

by corresponding subscripts. Then if we multiply S by the

product
Z = (z — ai)'^(z — a^'^

the product
x(z

SZ={<T

x(z

X(z

Wi)((T — W^

aiY^iz — tta)"*

61)^1(2-62)^2

' (o- - W„)

'(z-Ky.

remains finite for all values a and 6, and therefore for all

finite values of z. Consequently SZ is a uniform function

which becomes infinite only for z = 00, and that of a finite

order ; therefore SZ is (by § 31) an integral function of z. Now
in the first place in SZ each factor of Z becomes infinite for

2; = 00 ; if 7i denote the number of times that w becomes infinite

for 2 = 00, then the number of times that SZ becomes infinite

for 2; = CO is

and this number is exactly the number of times that w becomes

infinite altogether. For w becomes infinite a times at a point

a, 3 times at a point 6, and h times at the point 2 = 00. If we let

^ + 2a + 2^ = m,

then SZ is an integral function of 2 of the mth degree. Attend-

ing now to the quantity a, we see that SZ is also an integral

function of o- of the nth degree. Therefore, if we suppose SZ
to be arranged according to powers of a-, we can say that SZ is

an integral function of <r of the nth degree, the coefficients of
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which are integral functions of z at most of the mth degree

;

this Riemann was in the habit of expressing by the symbol

This expression vanishes when o- acquires one of the values

Wi, W2, "-, Wn, and hence these are the 71 roots of the equation

^(;,:)=o.

Therefore: An n-valued function, which becomes infinite of

multiplicity m, is the root of an algebraic equation between w and

z, of the nth degree with regard to w, the coefficients of which are

integral functions ofz at most of the mth degree}

SECTION VIII.

INTEGRALS.

A. Integrals taken along closed lines,

42. We proceed now to complete the propositions given in

Section IV., in which, however, we will consider only infinite

values of finite order. According to the principles relating to

infinite values of functions established in the preceding section,

we can express the proposition derived in § 20 in the form

:

If the integral

\f{z)dz
s>

be taken along a closed line enclosing only one point of discon-

tinuity a, which is not a branch-point, and at which f{z) becomes

infinite of the first order, then

Cf{z)dz = 2 iri lim [(2 - a)f{z)\

1 We observe that here the coeflBcient of the highest power of w is not

necessarily unity, as was assumed in § 38.
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We will now investigate the value of this integral, when f{z)

is infinite of the 7ith order at a. By § 29 we have in the domain

of the point a

(1) f(z) = -^+ ^Sl^^+ ...+-^ + ...+ -^+^(z),
z — a {z — ay {z — ay (z — ay

wherein \l/(z) remains finite and continuous for z — a. If we

now construct \f{z)dz in reference to a closed line round the

point a, we can choose for that purpose an arbitrarily small

circle described round a, and we then have first

Cxf/(z)dz = 0,

and in addition
r_c^ ^ ^ ^'c'.
J z — a

Next, letting z — a = r(cos <^ + ^ sin <^),

^^^^^^
j (c-ay+^ ^~7^jo

(cosA:<^-^sinA:<^)c^,^.

But this integral vanishes, because for every integral value of

k not zero

COS k<jid<l) = , I sin fc<^d<^ = 0.

Therefore for every value of 7c different from unity

r_G^dz_
J (z- aY(z - ay

Therefore, in the integration, all terms except the first vanish

from expression (1) and we have

Cf(z)dz = 27ric'.

Accordingly the integral is always equal to zero, if the term

be wanting in the expression which defines the nature of
z — a
the infinite value of /(z)-, but if this term be present, the

integral has the value 2 iric'.



174 THEOET OF FUNCTIONS.

Let us proceed now to the case of a branch-point. If b be

a point of discontinuity at which m sheets of the 2;-surface are

connected, we have in the vicinity of the point b (§ 38)

a' a" o^*"^ «w
(2) /(^)=-^+^^. + -+£r5 + - +-^ + -

(z - &)»» (z - b)"^ (z - b)""

(z — b)""

wherein i{/(z) is finite and continuous for z = b. If we now

construct I f(z)dz, taken round a closed line enclosing the

point b, we can for that purpose choose an arbitrarily small

circle, the circumference of which, however, must be described

m times in order that it may be closed. Again in the first

place

Cxf/{z)dz = 0,

and further, for

z — b = r(cos <l>-\-i sin <^),

J z —b Jo

Finally, k denoting an integer different from m,

"^ (z- b)^ (z- W^(z - b)

But now again

r'%os ^L:zJ^
tf,d<t> = 0, r '""sin ^^^zJUl ^d<l> = 0,

Jo m Jo m

as long as k is not equal to m, and hence, also,

*^ (2-6)»
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Therefore, in the integration of expression (2), all the terms,

with the exception of -^—, vanish, and consequently

Cf(z)dz = 2 m7rt'gf(->.

Therefore, this integral, likewise, always vanishes when the

term -^—- is wanting in the expression which defines the
z —

nature of the infinite value of J{z), and the proposition in

general can be expressed in the form :
—

The integral I f(z)dz, taken round a point of discontinuity

about which the z-surface winds m times, and at which f(z) becomes

infinite of a finite order, has a value different from zero, when,

and only when, the term which becomes infinite of the first order

is present in the expression defining the nature of the infinite

value off(z) ; and this value is equal to 2 miri times the coefficient

of this term. If the point of discontinuity be not a branch-

point, we have only to let m = 1.

43. In the consideration of the infinite value of z, we have

to conceive the infinite extent of the plane, by § 14, as a sphere

with an infinite radius, therefore as a closed surface, and to

imagine the value z = co to be represented by a definite point.

We can then also speak of closed lines which enclose the

infinitely distant point. We will now investigate the behavior

of integrals when they are taken round such closed lines.

These still form closed lines when we imagine the infinite

sphere again extended in the plane, but then that region which

contains the point z = cc lies in the plane outside the line

by which it is bounded.

If another variable u be introduced instead of z, by letting

u — k

and f(z) = <f)(u),

wherein h and k may denote two' points to be chosen arbitrarily,

then to every point z corresponds a point u, and conversely.
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But to the points z = h and u = k correspond respectively

u = cc and z = cc. If we let

z — h = r (cos
<t)

-\-i sin <^),

then u — k = - (cos <^ — * sin <^).

Now, if z describe a closed line Z enclosing the point h, then
<f>

increases from to a multiple of 2 tt ; hence the corresponding

line U, described by ii, also encloses the point k, and indeed in

an equal number of circuits, but it is to be described in the

opposite direction. Further, if z go from the perimeter of Z
outward, then r, or modulus of 2 — 7i, increases ; therefore -, the

r

modulus of u — k, decreases, and hence u goes from the perim-

eter of U inward. Accordingly, to all points z lying without

Z correspond such points u as lie within U. If we now regard

the curve Z as the boundary of the portion of the surface lying

on the outside, the positive boundary-direction for this is

opposite to that for the part of the surface in the interior;

hence Z and U are simultaneously traversed in the positive

boundary-direction of corresponding portions of the surface.

Now f(z) = <f>(u), dz = -
J"

;

therefore we obtain

<f>(u)du

(u - kf

wherein the first integral refers to the curve Z, the second to

the corresponding curve U, taken over both in the positive

boundary-direction. Now, if there be in a closed surface a

curve Z enclosing the point oo, this becomes in the plane a

closed line which bounds the portion of the surface lying on

the outside. The arbitrarily assumed point h can always be so

chosen that it lies within the curve Z; then the part of the

surface containing the point z = co corresponds to the part of

the surface lying within U, and the above equation

/x.)<.=-r^

fm<^^=-m'^{u - ky
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holds, extended along the positive boundaries of these portions

of the surface. Thus the value of the boundary integral

/f(z)dz depends upon the nature of the function , ^^^i .

{u — ky
We now need consider only such curves Z as contain no points

of discontinuity, z = oo excepted ; then <f>(u) becomes infinite

within U at most for u = k. Thus the inquiry comes to this,

whether and how , Jj^^
is infinite for u = k. This expres-

sion is equal to (z — liff{z), and since for ;2 = oo

\im{z-hyf{z) = \imz%z),

it follows that, not so much the nature of the function f(z) at the

point z = CO, as much more that of the function z^f{z), is serviceable

for the evaluation of the boundary integral. But if this principle

be observed, all previous propositions which hold for boundary

integrals are valid also for such closed lines as enclose the

point 00 ; at the same time it is to be kept in view, however,

that when the integral is taken in the positive boundary-

direction of the piece of the surface containing the point oo

,

the value of the integral must have the opposite sign. There-

fore, if zy(z) be finite for z= cc , that is, if lim lzf(z)']^^ = 0,

the integral is zero ; hence it does not sufiice for this end that

f(z) remain finite, the function must rather be infinitesimal of

the second order. Further, if z^f(z) be infinite of the first

order, that is, if lim [zf(z)']^^ be finite and not zero, then

Cf(z)dz = -27ri lim [0/(2)],

the integral being taken in the positive boundary-direction

round the point 00 . In general, the integral has a value dif-

ferent from zero when, and only when, in the development of

f(z), in ascending and descending powers of z, a term of the

form ^ is present.
z
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dz
Ex. 1.

here lim [2/(2;)]^^ = lim - z

therefore the integral, taken along a line enclosing the point

00 , is equal to zero. In fact, each line enclosing the two

points z = — i and = + ?' is at the same time a line enclosing

the point 00 , since the function has no other points of discon-

tinuity, and we have already seen (§ 20) that for such a line

the integral has the value zero.

Ex. 2. If the integral

*dz

f^
be taken along a line round the origin in the direction of

increasing angles, it has the value 2 rri. But the same line is

also one which encloses the point oo, since the function

f(z)= - possesses only the one point of discontinuity z = 0.

z

Now, although in this case f(z) is not infinite for 2 = 00 ,
yet

the integral has a value different from zero, because

\mi[zf(z)]^ = lim(z>l^ ^1.

We therefore obtain

'dz

f-
-27ri;

and in fact the line must be described in the opposite direction

if it bound in a positive direction the part containing the

point Qo

.

Ex. 3. We can from this principle find the value of

f
dz

Vl-z'

extended along a line running in the first sheet, which encloses

the two discontinuity- and branch-points -j- 1 and — 1, these
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being joined by one branch-cut. For such a line encloses at

the same time the point oo , without including any other point

of discontinuity.

In this example

lin.[.y(.)]^ = li™[-^]^ =4;
therefore

J=±27r,

where the sign is yet to be determined. But, on the other

hand, the line which encloses the points + 1 and — 1 can be

contracted up to the branch-cut. If we then agree that the

radical is to have the sign + on the left side of the branch-cut

(taken in the direction from — 1 to -f 1) in the first sheet, and

hence the sign — on the right side of the same, likewise in the

first sheet (cf. § 13), then also

J-l a/1 — 9;2 J+l -x/1 _ ^2 J-l

dz

vr=^ ./+1 vTzij^ ^-' vi

VI

integrated in the direction of decreasing angles (in the posi-

tive boundary-direction round the point oo). Since in this

case all the elements of the integral are positive, J must also

be positive, and hence

*/0 -x/l _ ^2

and therefore also

I

VI -z^

dz IT

Vl-z' 2

With respect to the circumstance that the integral preserves a

finite value, although the function—z^rz=: becomes infinite for

2 = 1, compare the following paragraphs.
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B. Integrals along open lines. Indefinite integrals.

44. We will inquire in this paragraph, whether and under

what conditions a function defined by an integral may remain

finite, when the upper limit of the same either acquires a

value for which the function under the integral sign becomes

infinite, or the limit itself tends towards infinity. We will

inquire further in what manner the function defined by the

integral becomes infinite, if it do not remain finite in these

cases. But at the same time we limit ourselves to such

integrals as contain algebraic functions under the integral

sign.

Let F(t) = r<t>(z)dz

be the integral to be investigated, wherein h denotes an arbi-

trary constant. We here consider only such paths of integra-

tion as lead to the same value of the function ; the next section

will show that the multiformity of a function defined by an

integral, arising from different paths of integration, does not

affect the considerations here employed.

If we assume in the first place that cf>(z) becomes infinite of

the nth. order at a point z = a, which is not a branch-point, we
can, by § 29, let

(1)
^(.)=-A_+_^+... + _^+^(.),

wherein ij/(z) remains finite for z = a. From this follows

Ja ^^ ^ Jnz-a Jk (z- af Jn {z- ay

+£xl;(z)dz.

This last term is a function which also remains finite for

t = a', if we denote it by X{t), and if we suppose included in
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it the constant terms arising from the lower limits h of the

integrals, we then obtain

F(t) = c'\og{t-a)-
n flltl ^(n)

t-a 2{t-af {n-l){t-ay

-fA(0.

Now, if we let the path of integration end in the point t = a,

then the function defined by the integral is distinguished from

a function X{t), which remains finite for f = a, by a quantity

which contains the term log (t — a). We say in this case, F(t)

becomes logarithmically infinite. This case occurs when in the

expression (1) for <j>{z) the term is present. If, on the
z — a

other hand, this term be wanting, the logarithm drops out and

F(t) becomes infinite of an integral order. But, finally, Fit)

remains finite for ^ = a, only when

lim[(2-a)<^(2;)],^„=0;

that is, when ^(z) itself remains finite for z = a.

Next, let us assume that the point of discontinuity a is at

the same time a branch-point. If m sheets of the 2J-surface

be connected at this point, we can, by § 38, let

(2) .^(.) = _^+_^+...+--2_^ +_L_
(z — a)"* (z — ay ^ ^ (2; — a) "»

wherein ^{z) remains finite for z = a. From this we obtain

-j \. g("'~'^^m(t — a)"* + grC") log (t — a)

(t — ay

if, as above, \(t) denote the last term, which remains finite,

including the constants arising from the lower limits h.
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If at most the first m — 1 terms be present in this expression,

F(f) remains finite for t = a. This case occurs when in (2)

also at most the first m — 1 terms are present. Then <f)(t) is at

most infinite of the order , and, therefore,
m

lim l(z - a)<^(2;)],,„ = 0.

Consequently the condition that F(t) may remain finite is here

the same as before, ^ and the general propositions follow :—
(i.) Tlie function defined by the integral

F(t)= r<f>(z)dz

of an algebraic function <f>(z) has a finite value for t = a, when,

and only when,
lim [(z — a)cf>{z)]^^^ = 0.

(ii.) If lim l(z — a)<f>(z)^^^ be finite and different from zero,

then F(t) is logarithmically infinite for t = a.

(in.) If lim [(^ — aYct>(z)\_^ have a finite value different from
zero for an integral or fractional exponent fi, which is greater

than unity, then F(t) is infinite of an integral or fra/itionol order;

and if in the development of <f>(z) the term of the form —L ftg

z — a
present, F(t) is at the same time logarithmically infinite.

45. We have now to examine the value t — co. By the sub-

stitution already so often used

u

we reduce this case to the former. Let

l=r,F(t) = F,(r), <l.(z)=Uy)',

then F(t) =£^(z)dz = -£^^=F,(r).

1 We note in particular : If the function become infinite of multi-

plicity a at a branch-point of the (w — l)th order, and a< m, the integral

remains finite.
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The nature of the function Fi{t) depends, therefore, upon the

nature of the function ^., ^ for the value w = 0. The results

of the preceding paragraph then give :
—

(1) jF\(t) is finite, when

(2) Fi{t) is logarithmically infinite, when

is finite and not zero.

(3) Fi(t) is of an integral or fractional order (or also at the

same time logarithmically) infinite, when, for fi>l,

liin[?^]_^, =limK-<^.(»)]^

is finite and not zero.

Therefore we conclude, for i = oo :
—

(i.) F(t) is finite, when Urn [2<^(2:)]^^=0.

(ii.) F{t) is logarithmically infinite, when Urn [z<f>{z)']^^^ is

finite and not zero.

(iii.) F(t) is of an integral or fractional order (or also at the

same time logarithmically) infinite when lim -^ is finite

and not zero {fx positive and >1).

Examples :—
—^ is logarithmically infinite for t = ±i, but remains
1 4-2;2

finite for t = cc.

JC*
dz *

——^:^ remains finite for ^ = ± 1, and is logarithmically

infinite for t = co.
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j:
dz 1

remains finite for ^ = ± 1 and t = ±

and also for ^ = go ; hence it is finite for every value of t.

i \i?
^22-2

dz remains finite for ^ = ± 1, and becomes in-
z^

finite of the first order for t=ao.

I

—-—==::^=::z= remains finite for ^ = ± 1,

(1 - a'^;^ V(l - ^0 (1 - ^^'^')

and t = ±-, likewise for i = oo, and becomes logarithmically
fc

infinite for t = ± -.

a

SECTIOK IX.

SIMPLY AND MULTIPLY CONNECTED SURFACES.

46. For the investigation of the multiformity of a function

defined by an integral, lf(z)dz, the character of the connec-

tion of the 0-surface, for the function f(z) under the integral

sign, is of special importance. In this relation, we have

already pointed out (§ 18) the marked distinction existing

between those surfaces in which every closed line^ forms by

itself alone the complete boundary of a portion of the surface,

and those in which every closed line does not possess this

property.

We call, after Riemann, surfaces of the first kind simply

connected, those of the second kind multiply connected. A cir-

cular surface, for instance, is simply connected; so is the

surface of an ellipse, and in general every surface which con-

sists of a single sheet and is bounded by a line returning

1 For the present we shall understand by a closed line such a one as

returns simply into itself without crossing itself.
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simply into itself without crossing itself. Multiply connected

surfaces can arise when points of discontinuity are excluded

from simply connected surfaces by means of small circles.

For instance, if we exclude from a circular surface a point of

discontinuity a, by enclosing it in a

small circle k, a surface is formed

which is no longer simply con-

nected ; for, if a closed line m be

drawn round k, this line does not

constitute the complete boundary

of a portion of the surface by it-

self alone, but only in connection

with either the small circle k or the

outer circle n. But, without ex-

cluding any isolated points, we may have multiply connected

surfaces, when, for instance, they possess branch-points, and

hence consist of several sheets continuing one into another

over the branch-cuts.

The investigations which now follow relate both to Kie-

mann surfaces and also to other quite arbitrarily formed

surfaces. Nevertheless, we must exclude such surfaces as

either separate along a line into several sheets, or consist of

several portions connected only in isolated points without

winding round such points, as the Kiemann surfaces do, by

means of branch-cuts. For surfaces of this kind (divided sur-

faces), the properties to be developed would not be valid in

their full extent. But since we have here, nevertheless, to do

with surfaces the structures of which can be extraordinarily

manifold, we must seek to base our investigations as much as

possible upon general considerations.

In the first place, it is important to obtain a definite criterion

by which we can distinguish whether or not a closed line

forms by itself alone the complete boundary of a portion of

the surface. To this end, we remark that two portions of a

surface are said to be connected when, from any point of one

portion to any point of the other, we can pass along a contin-

uous line without crossing a boundary-line; in the opposite
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case, the portions of the surface are said to be distinct. If a

portion A of the surface be completely bounded, it must be

separated by its boundary from the other portion B of the

surface ; otherwise, we could pass from ^ to ^ without cross-

ing the boundary of A, and hence that boundary would not be

complete.

We will assume that the surface to be considered is bounded

by one or more lines, that it possesses an edge consisting of

one or more boundary-edges. We will always assume that

these lines retuiii simply into themselves and nowhere branch. In

the Riemann surfaces, this is always the case, since in these

a boundary-line has only one definite continuation at every

place, even where it passes into another sheet ; but in divided

surfaces this would not always hold. In order that, within

such a surface, a closed line m may form by itself alone the

complete boundary of a portion of the surface, the following

condition is necessary and sufficient. By the line m a

piece, containing none of the original boundary-lines, must be

separated from the given surface. We can now show that this

condition is satisfied, when we can come from any point of

the line m to the edge of the surface, without crossing the line

m, only on one side ; that, on the contrary, when this is possi-

ble on each side of the line m, the latter cannot form a com-

plete boundary.

For, if we suppose the surface actually cut along the line m,

two cases are possible: either the surface is divided by the

section into distinct pieces, or it is not. In the latter case, no

part is separated from the surface, and therefore m cannot form

the boundary of a piece. Since, however, in this case all por-

tions of the surface are still connected, we can come from

either side of m to the boundary of the surface.

If, in the opposite case, the surface be divided by the section

along m into distinct pieces, it reduces to only two pieces, A
and B, because an interruption of the connection has nowhere

occurred along one and the same side of m. Now, either

both pieces A and B can contain original boundary-lines, or

only one of these pieces can. If both contain boundary-lines,
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neither of them is bounded by m alone ; in this case, we can

again come from m to an edge of the surface on each side of

m. If, on the other hand, only the one piece B contain one or

more boundary-lines, and the other piece A not, then m forms

by itself alone the complete boundary of A, and we can come to

the edge of the surface only on one side of m, namely, in B,

not on the other side in A. Consequently a closed line m
does, or does not, actually form a complete boundary by itself

alone, according as we can come from on to a boundary of the

surface only on one side, or on each side of m. (Cf. Fig. 36,

where we can come from an arbitrary point of the line m on

the one side to the part of the boundary k, on the other side to

the part of the boundary n.)

This criterion cannot be immediately applied to completely

closed surfaces, which, as for instance a spherical surface, do

not possess a boundary. But we can assign a boundary to

such a surface by taking at any place an infinitely small circle,

or what is the same, a single point as boundary. (We suppose

a sheet of the surface pricked through with a needle at some

point.) This point, or the circumference of the infinitely

small circle, then constitutes the boundary or edge of the

surface. We shall always, hereafter, suppose a closed sur-

face bounded in this way by a point, which can, moreover,

be assumed in any arbitrary place in the surface. By this

means the above criterion also becomes applicable to closed

surfaces. We may now adduce some examples in illustration

of the preceding.

(i.) A spherical surface is simply connected. For, if we

draw in it any closed line m, and assume anywhere in the

surface a point x as boundary, we can always come to x from

m only on the one side, never at the same time on the other

side ; therefore every closed line ??i forms by itself alone a

complete boundary.

(ii.) If a surface have a branch-point a, at which n sheets

of the surface are connected, and if a portion of the surface be

bounded by a line making n circuits round the point a, and

therefore being closed, the portion of the surface so boimded is
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Fig. 87.

simply connected. For in whatever way we may draw therein

a closed line, we can always come only on the one side of the

same to the edge of the surface.

(iii.) A surface consisting of two sheets closed at infinity,

and possessing two branch-points a and b (Fig. 37), which are

connected by a branch-cut,

is a simply connected sur-

face. We can in this case

draw only three different

kinds of closed lines : such

as enclose no branch-point,

such as enclose one, and

such as enclose two. The
first and last kinds are not

essentially different from

eaxih other; for, according

as we regard such a line m
or ?i as the boundary of the

inner or outer portion of the surfacjB, it encloses either both

branch-points or neither. But such a line as m or ti always

forms a complete boundary, for we can always come from it to

the arbitrarily assumed boundary-point only on the one side.

A finite closed line enclosing only one branch-point, for instance

a, goes twice round the same, because

in crossing the branch-cut it enters the

second sheet, and therefore, in order to

return into the first and become closed,

it must again cross the branch-cut. But

then it likewise forms a complete bound-

ary.

(iv.) The preceding surface becomes

multiply connected, when once it is

bounded in each sheet by a closed line

(h and k, Fig. 38 ; the dotted line runs

in the second sheet) ; for now a line enclosing a and b in the

first sheet does not form a complete boundary, because we can

come from it to the edge of the surface on each side ; namely.

Fig. 38.
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on the one side directly to A:, on the other to h over the

branch-cut.

(v.) A surface consisting of two sheets, closed at infinity, and

possessing four branch-points joined in pairs by branch-cuts ah,

cd, is multiply connected (Fig. 39). For, if we draw a line 7/1,

enclosing the points a and b in the first sheet, we can come from

the same to the arbitrarily assumed boundary-point x on each

side. If X be in the first sheet, say, this is done directly on the

one side, on the other,

however, by crossing

the branch-cut ab. By
this means we arrive

in the second sheet and

can, without meeting

the line m (since this

runs entirely in the first

sheet), come to the

other branch-cut cd

,

^^°- ^^•

crossing it, we return again into the first sheet and so arrive,

as before, at x.

47. Now it is of the greatest importance that we be able

to modify a multiply connected surface into one simply con-

nected by adding certain boundary-lines. As will appear later

(§ 56), this is always possible in a Riemann surface, if it have

a finite number of sheets and branch-points, and if its boimdary-

lines form a finite line-system (in the meaning of § 50). These

new boundary-lines are called, after Eiemann, cross-cuts. That

is, by a cross-cut is understood in general a line which begins

at one point of a boundary, goes into the interior of the surface

and, without anywhere intersecting either another boundary-

line or itself, ends at a point of the boundary. In order that

the meaning and extent of this definition may be made perfectly

clear, let us consider somewhat more in detail the different

kinds of cross-cuts. A cross-cut can connect with each other

two points of the same boundary-line {ab, Fig. 40) ; also, two

points {cd) situated on different boundary-lines. It can also
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end in the same point of a boundary-line in which, it began

(efge), and therefore be a closed line. This is especially the

case, when a cross-cut is to be drawn in a closed surface ; for,

since in such a surface the original boundary consists of only

a single point (§ 46), the cross-cut must b6gin in this point and

also end in it, unless the case to be immediately mentioned

occurs, in which it ends in a point of its previous course. It

has been stated already that the cross-cuts are to be regarded

as boundary-lines, added to the already existing boundary-lines.

Hence, if a cross-cut have been begun, its points are immediately

regarded as belonging to a newly added boundary; and since

it is only necessary for a cross-cut to end in a point of a bound-

ary, it can also end in one of its previous points (abed, Fig. 41).

For the same reason, since each cross-cut already drawn forms

part of the boundary, a subsequent cross-cut can begin or end

at a point of a previous one. (Fig. 41, where ef is a pre-

vious cross-cut, and gh a subsequent one.) Finally, stress is to

be laid upon the following consideration. Since a cross-cut is

never to cross a boundary-line, it is also never to cross a

previous cross-cut. Therefore, if a line joining two boundary-

points cross a previous cross-cut, such a line forms not one,

but two cross-cuts ; since one ends at the point of intersection,

and at the same point a new one begins. Thus, for instance,

in Fig. 42, the two lines ab and cd form not two, but three
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cross-cuts; namely, according as ab or cd was first drawn,

either ab, ce, ed, or cd, ae, eb. In like manner, two cross-cuts

are formed by the line fghi, namely, fghg and gi, or ighg and gf.

In all cases a cross-cut is to be regarded

as a section actually made in the surface,

so that in it two boundary-lines (the two

edges produced by the section) are always

united, one of which belongs as bound-

ary-line to the portion of the surface

lying on one side of the cross-cut, the

other to that on the other side.

The possibility of modifying multiply

connected surfaces into simply connected

surfaces may be brought into consideration

in the first place in some simple cases.

For instance, if a cross-cut be be drawn in

the surface bounded by the lines k and n

(Fig. 43), and if both sides of the same be included in the

boundary (since the surface is regarded as actually cut through

along be), a closed line can no longer be drawn to include

Fig. 42.

Fig. 43. Fig. 44.

k, but every closed line forms by itself alone a complete

boundary. The same condition is obtained in the surface

bounded by the lines h, k, n (Fig. 44) by means of the cross-

cuts ab, cd. We remark that, in the last example, the modi-

fication into a simply connected surface can be effected in



192 THEORY OF FUNCTIONS.

several ways, but always by means of two cross-cuts ab, cd;

for examplCj as in Fig. 45 and Fig. 46.

Fig. 45. Fig, 46.

48. We now proceed to the general investigation of tlie

resolvability of a multiply connected surface into one simply

connected, and to that end we prove some preliminary proposi-

tions.

I. If a surface T he not resolved by any cross-cut ab into dis-

tinct pieces, it is multiply connected.

Let us first assume that the end-points a and b of the cross-

cut both lie on the original boundary of T; by this assumption,

however, we are not to exclude the case in which a and b

coincide. Since, according to the hypothesis, the cross-cut ab

does not divide the surface into distinct pieces, the two sides of

the same are connected, and a closed line m can be drawn from

a point c on the cross-cut which leads from one side of it through

the interior of the surface to the other side.^ Such a closed line

m, however, does not form by itself alone a complete boundary

;

for we can come from c on each side of m along the cross-cut

to the edge of T, that is, to a and b. Therefore T is in fact

multiply connected. The same is true, if the cross-cut, not

resolving the surface, be such a one as ends in a point of its

previous course (cf. Fig. 41, abed). For, in that case, we must

be able to draw from a point c, situated on the closed part of

the cross-cut, a closed line m leading from the one side of the

1 This construction is to be so understood here, and likewise also later,

that the line m would be closed, if the cross-cut did not exist.
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same to the other side.^ But such a closed line m does not

form a complete boundary, since we can come from c on each

side of m along the cross-cut to the edge of the surface, that

is, to a. (In Fig. 41, the two paths are cba and cdba.)

II. It is always 'possible to draw, in a multijjly connected sur-

face, at least one cross-cut which does not resolve the surface into

distinct pieces.

Since the surface is multiply connected, there is in it at least

one closed line m which does not form by itself alone a com-

plete boundary ; thus we can come from each side of this line to

the edge of the surface (§ 46). We can therefore draw from a

point c of the line m two lines, ca and cb, which go on different

sides of the line m through the interior of the surface and end

in the points a and b of the edge (wherein a and b may also

coincide). These two lines then form together a cross-cut ab,

because together they may be regarded as one line which

begins in a point a of the edge and, without anywhere crossing

a boundary line, ends in a point b of the edge. This cross-cut

does not, however, resolve the surface, for we can come along

the line m itself from the one side of the cross-cut to the other

side of the same ; so that these two pieces of the surface are

connected and not distinct.

Note. — The foregoing shows at the same time how we can draw in a

multiply connected surface a cross-cut which does not divide the surface,

when we know in the surface a closed line which forms by itself alone a

complete boundary.

III. A surface consisting of one piece can be resolved at most

into two pieces by a cross-cut.

Either the portions of the surface lying on each side of the

cross-cut are connected, in which case the cross-cut does not

resolve the surface ; or they are not connected, in which case

those portions of the surface lie in distinct pieces. If the

number of the latter amount to more than two, there must

iThis is possible when, for instance, within the closed portion bed, there

is a branch-cut which the line rn can cross, thereby coming into another

sheet in which it does not meet the cross-cut, and when by means of a

second branch-cut it can return to the initial point.
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occur an interruption of the connection in a portion of the

surface lying on one and the same side of the cross-cut ; but

this is not the case, because the cross-cut nowhere crosses a

boundary-line.^

IV. A simply connected surface is resolved by every cross-cut

into two distinct pieces, each of which is a^ain by itself simply

connected.

The first part of the proposition follows immediately from

I. and III. ; for, if no cross-cut would resolve the surface,

the latter could not be simply connected, and it cannot be

resolved into more than two pieces. But it is evident with-

out further proof that each of the pieces formed must be

by itself simply connected ; for, since in the unresolved

surface every closed line forms by itself a complete boundary,

the same also holds of every closed line which runs entirely

within one of the pieces formed.

V. A simply connected surface is resolved by q cross-cuts into

q-\-l distinct pieces, each of which is by itself simply connected.

If, after the surface is first resolved into two distinct pieces

by one cross-cut (IV.), a new cross-cut be drawn, this can run

in only one of the two pieces already formed, because it is not

allowed to cross the first cross-cut (§ 47) ; but it resolves the

portion in which it falls into two pieces, so that the two cross-

cuts divide the surface into three pieces. These again are each

by itself simply connected. If we now draw a new cross-cut,

again only one of the already existing pieces is resolved;

and likewise the number of pieces is increased only by unity

for every succeeding cross-cut. Therefore, at the end, after q

cross-cuts have been drawn, q -\-l distinct pieces are formed

;

and these are each by itself simply connected (IV.).

Cor. From this follows immediately : If there be a system

of surfaces consisting of a distinct pieces, each by itself simply

connected, this is resolved by q cross-cuts into a-{- q simply

connected pieces.

1 In the case of a cross-cut ending in a point of its previous course, the

one side consists of the portions of the surface on the inside contiguous to

the closed part, the other side of the remaining portions of the surface.
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Note. — The foregoing considerations are also applicable to the case in

which the a pieces of which the original system consists are not all simply

connected. In that case, however, the distinction occurs, that there may
now be cross-cuts not resolving the pieces in which they are constructed

;

and finally, as a consequence, that, after the introduction of the q cross-

cuts, less than a-\-q distinct pieces are formed. But more than a+ g pieces

cannot arise. We conclude therefore : If q cross-cuts be drawn in a

system of surfaces consisting of o pieces, the number of pieces arising

thereby is either equal to or less than a + g, but never greater than

a + g.

VI. If a surface he resolved by every cross-cut into distinct

pieces, it is simply connected.

For, were it multiply connected, it could not be resolved by

every cross-cut (II.).

VII. If a surface T be resolved by any one definite cross-cut Q
into tivo distinct pieces, A and B, each oftvhich is by itself simply

connected, T is also simply connected.

We shall show that, under the given hypothesis, every cross-

cut drawn in T must resolve this surface. In the first place,

it is evident that every cross-cut which lies entirely within A
or B, and which therefore does not cross Q, resolves the sur-

face ; for, if such a cross-cut lie entirely within A, for instance, it

resolves A into two distinct pieces (IV.), and that one of these

pieces which is contiguous to Q, together with B, forms one

piece of T, and the other forms a second piece distinct from

the former. If, however, a cross-cut Q' cross Q one or more

times, it is divided by the points of intersection into parts

which form cross-cuts in either A or B, and which therefore

again resolve these portions into distinct pieces (IV.). Thus

we cannot come from the one side of Q' to the other side

either in A or in B. But then this is also not possible in T,

i.e., by crossing Q, because thereby we always come only from

A to B, or conversely. Therefore Q' likewise divides the sur-

face. Since this is resolved into two distinct pieces by every

cross-cut, it is simply connected (VI.).

VIII. If a multiply connected surface be resolved into two

distinct pieces by a cross-cut, at least one of the pieces is again

multiply connected.
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For, if both were simply connected, T could not be multiply

connected (VII.).

IX. If a surface consisting of one piece be resolved by q cross-

cuts into g + 1 pieces, each of which is by itself simply connected^

then it is itself simply connected.

Each of the cross-cuts drawn divides the part in which it

falls into two distinct pieces ; for, if only a single one should

not do this, there would at the end be less than ^ -h 1 distinct

pieces, since a cross-cut can never divide a portion into more

than two pieces (III.). If the given surface were multiply

connected, the first cross-cut could at most cut off one simply

connected piece (VIII.), the other piece remaining multiply con-

nected. If we now assume, in order to emphasize the most

favorable case, that the cross-cut is drawn every time in the

multiply connected portion, so that from this a simply con-

nected piece is detached, at the end a piece would remain which

is not simply connected. In general, by each mode of resolu-

tion, either less than q -\-l pieces would have been formed, or

at least one of these pieces would necessarily be multiply

connected.

49. From these preliminary principles we now proceed to

the following fundamental proposition :
—

If a surface, or a system of surfaces, T, be resolved in one way
by qi cross-cuts Qi into «i distinct pieces, and in a seco7id way by

^2 cross-cuts Q2 into 02 distinct pieces, in such a manner that both

the «! pieces of the first way and also the 0^2 pieces of the second

way are, each by itself, simply connected, then in all cases

gi — «i = 92 — «2-

Proof}—The two systems of surfaces formed from T by

means of the cross-cuts Qi and Q^ may be called T^ and T^

respectively. If we draw either the lines Q2 iii ^i> or the lines

Qi in T2, we obtain in both cases the same system of surfaces,

exactly the same figure. Call this new system of surfaces %.

1 Riemann, Grundlagen^ u. s. w., s. 6.
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The lines Qa form, it is true, q.. cross-cuts in the original

surface T, but not necessarily the same number when drawn

in Ti ; for, since on the one hand the lines Q.2 cease to exist as

cross-cuts in 7\ if they coincide entirely with the lines Qi, and

since on the other hand they may be divided by the lines Qi

into several parts (each part forming a distinct cross-cut), the

number of cross-cuts actually formed in Ti by the lines Qg ^^J
be less, or even greater than q.,. Likewise, also, the number

of cross-cuts formed by the lines Qi in the system T2 may
be different from qi. We will designate the cross-cuts formed

by the lines Q2 ^^ ^1 by Qo', their number by q.2; the cross-cuts

formed by the lines Qi in To by Qi, their number by g/. The

essential feature of the proof consists then in this, that, if

we let

92 = g'2 + w,

then also q^' = qj^-\- m.

To prove this, let us direct our attention to the end-points^

of the cross-cuts, observing that the number of cross-cuts is

half as great as the number of their end-points, and that this

is invariably the case if we only count twice a point at which

the initial point of one cross-cut coincides with the terminal

point of another. Accordingly, the number of end-points of

the ^2 cross-cuts Q2 is 2 gg- But if these be regarded as cross-

cuts Q2 in the system Tj, already resolved by the lines Qi, on

the one hand some end-points of the lines Q2 may cease to be

end-points of the lines Q2, said, on the other hand new points

may occur as end-points of the lines ^2'- (Cf. Fig. 47, wherein

the lines Qi are represented by the heavier lines, the lines Q2

by the lighter. In places where a line Qi coincides with a

line Q2, wholly or in part, they are represented running closely

beside each other.)

(1) An end-point of a line Q2 is always at the same time an

end-point of a line Q2, if it do not fall on one of the lines Qi

(e.g., a or ^), and also in the case when only an end-point of a

1 We will call the initial and terminal points of a cross-cut together the

two end-points of the same.
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line Q2 coincides with an end-point of a line Qi (e.g., c or g).

On the other hand an end-point of a line Q2 is not at the same

time also an end-point of a line Q2', if the line Qo coincide for

a distance from this end-point (or also completely) with a line

Qi (e.g., (Is, Sr, op, po). In such a case the point in question

either ceases altogether to exist as an end-point of a line Q2'

(e.g., o or p), or it is only displaced as such. (While, for in-

stance, the cross-cut ds^, regarded as a line Q2, begins at d,

the same, regarded as a line Q2, begins only at s ; c? is there-

fore an end-point of a line Q2, but not of a line Q2.) Now
this can occur in two cases : either the segments which coin-

cide are both end-pieces of a line Q2 and a line Q^ respec-

tively (e.g., ds), or an end-piece of a line Q^ coincides with a

mid-piece of a line Qi (e.g., 8r, op, po). If, therefore, v be the

number of times that an end-piece of a line Q2 coincides with

an end-piece of a line Q^, and vg be the number of times that

an end-piece of a line Q2 coincides with a mid-piece of a line

Qi, then

is the number of end-points of the lines Q2 which are not at the

same time end-points of the lines Q2'. The number 2 gg of end-

points of the lines Q2 must therefore be diminished by v + va-
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Similar considerations are applicable to the cross-cuts Q^.

An end-point of a line Qi ceases to be an end-point of a line

Qi'y when an end-piece of a line Q, coincides either with an end-

j)iece of a line Q^ (e.g., ds)0T with a mid-piece of a line Q2 (e.g.,

eq). If therefore vi be the number of times that an end-

piece of a line Qi coincides with a mid-piece of a line Qo, then

is the number of end-points of the lines Qi which are not at

the same time end-points of the lines Qx\ therefore the num-

ber 2 qi of end-points of the lines Qi must be diminished by

(2) But now new points appear as end-points of the lines

Q-2 01" Q\i which are not end-points of the lines Q2 or Q^. Let

us again consider first the lines Q2. As new end-points of these

lines appear, in the first place, the displaced points mentioned

above (e.g., r or s) ; then, also, both those points at which a

mid-point of a line Q2 coincides with a mid-point of a line Q^

(e.g., y and rj), and those near which a mid-piece of a line Q2

coincides with a rnid-piece of a line Q^ (e.g., tu). All these

cases can be characterized as those in which the lines Qi and

Q2 either meet or separate in their mid-course. Let /a denote

the number of times that this occurs. The following consider-

ations are to be noted, however, concerning the determination

of this number /m. In the first place, wherever a line Q2 has

common with a line Q^ only a single mid-point (not a segment

;

e.g., at y or r{), this point must be counted twice, because it is

a terminal point of a line Q2 and at the same time an initial

point of a new line Q2. We will, however, stipulate that the

number /a be so determined that its value shall be independent

of whether we put the lines Q2 in relation to the lines Q^, or,

conversely, the lines Q^ in relation to the lines Q^. This

requires us to take the greater number, whenever the one

relation produces a greater number of points to be counted

than the other, for two particular cross-cuts. The points which

are thus counted too often must then be set aside. Now this

case occurs with the cross-cuts Q2 when, and only when, an end-
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piece of a line Qi, coinciding with a line Qo, terminates ^ in that

mid-point of the line Q2 with which a mid-point of another line

Qi coincides (e.g., at e, where fe ends ; here in the determination

of fx, e must be counted twice, because xc and ab have only one

point common at e, and e is at the same time an end-point of ea

and em ; but e occurs on xc only once as an end-point, namely,

of xe, while the segment ec, regarded as a line Q2, begins only

at q, which point must likewise be counted in the determina-

tion of /a). This case occurs therefore when, and always when,

an end-piece of a line Qi coincides with a mid-piece of a line

Q2 ; for, that this may be possible, another line Qi^ must at the

same time pass through the end-point of this line Qi. The
number of times that an end-piece of a line Qi coincides with a

mid-piece of a line Q2 was denoted above by vi. Therefore,

among the points counted in the determination of the number

fi, are vi such points as are not end-points of the lines Q2'.

Therefore the number of new end-points of the lines Q2 which

occur amounts to „

iThis case can also occur when the line Q^ ends in a point of its

previous course. Cf. the third note.

2 Cf . preceding note.

3 There are also cases in which the number fi can be computed in

different ways ; the difference /* — i»i, however, remains the same. In

Fig. 48, two such cases are given. The cross-cut abcdb (a line Qi), end-

ing in a point of its previous course, coincides with ef (as a line ^2) along

the part bd. Now, if we take the first in the sense abdcb, we have two

points fi on each cross-cut, namely, b and

d ; therefore /* = 2, and, bd being at the

same time a mid-piece, Pi = 0. If, on

the other hand, we take the line ^1 in the

sense abcdb, b is to be counted twice, and

we have therefore now /u = 3 ; at the same

time, however, db is an end-piece of the

line ^1 which coincides with a mid-piece

of the line Q2, and therefore 1/1 = 1. The

difference fx.
— viis in both cases the same.

The other example is similar to the pre-

ceding. In this we have the choice of

assuming Ihik as the previous cross-cut
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The reasoning is similar in the determination of the number
of points which enter as new end-points of the lines Qi'. The
ninnber fx remains the same as before, if it be determined in the

manner given above. Among these fi points, however, those

are not end-points of the lin-es Q'l near which an end-piece of

a line Q^ coincides with a mid-piece of a line Qi (e.g., near 8,

which point is to be counted twice ; it enters, it is true, as an
end-point of Bn, but not of 86, because this cross-cut, regarded

as a line Q/, begins only at r). According to the above nota-

tion this occurs v^ times ; therefore the number of points which
enter as new end-points of the cross-cuts Qi equals

Now, according to (1), v + v, end-points are to be subtracted

from the original 2 gs end-points, and, according to (2), fi — vi

new end-points are to be added. Therefore the number 2 q2 of

end-points of the cross-cuts Q.2 is

2^2' = 2^2 -(V + V2)+ (/>t - Vi),

and hence q,' = q,^
^-(v + vi + v.),

z

On the other hand, according to (1), v -f vj end-points are

to be subtracted from the original 2q^ end-points of Qi, and
according to (2), /ix — V2 are to be added. The number 2q^ of

end-points of the cross-cuts Q/ therefore is

and hence g/ = g^ -f-

^-(^ + ^1 + ^^)
.

and hfg as the subsequent one, or gpiik as the previous and hi as the

subsequent cross-cut. The piece pii coincides with the cross-cut mn of

the second kind. If we choose the first order, we have to count three

points, /i, t, and /; therefore /x = 3. At the same time, however, hf is

an end-piece, and therefore v\ — \. On the other hand, with the second

order, only/ and i are to be counted, and therefore /a = 2 ; but at the

same time v^ = 0, because Jh is now a mid-piece.
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Therefore, if we let

we have simultaneously

^2 = ^2 4- m and ^i' = gi + m

;

this result was first to be proved.

Let us, before proceeding further, consider Fig. 47 in detail

in reference to the above-described relations.

h 1 I

In the following table the cross-cuts Qi are enumerated in

the first column, and, in the same row with each, are given

in the second column the pieces into which it is divided if

the surface be regarded as previously resolved by the lines

Q2', the latter therefore are the cross-cuts Qi'. The columns

headed Q2 and Q2 have similar meanings.
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Qi- Qi'- Q2. Q2'.

ab ae, eirij m», n5, rb xc xe, qc

cd eg, gy, ys ez €91, rjOj OZ

ef qf 0-/3 asm, mg, g^
gh gv, vh yg yn, ng

ik 10, pk y^ y8, 57, 7/3

kl ku, a 8u rv

M /S5

ea et, up, pa
op

From this we obtain

Qi = 6, qi

^2 = 9, ga

'-15,

18,

m = 9.

Let us further enumerate the points fi, indicating each point

which is to be counted twice by a 2 set over it

:

2 2 2 2 2 2 2 2 2emnSrgysq V P t U'y

hence /a = 23.

The end-pieces which coincide are

:

class of v"ds, v = l,

" " vi-.eg, vi=l,

" '• v.2"-Sr, op, po, V2 = 3 ;.

therefore „,
-A' -(" + '' + •'^) - 23-

2

-'-9,

as above.

The rest of the proof is now very easily given. According

to the hypothesis, the system 7\ consists of ai distinct pieces,

each by itself simply connected. From this the system ^ is
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produced by the q-i
= q2 + '^ cross-cuts Q2. The latter system

consists of only simply connected pieces (§ 48, IV.). Letting

% denote the number of the latter, it follows from § 48, V. that

S = «! 4- g'2 + ^.

The same system ^ is also produced from 71 by the

cross-cuts Qx. Since, however, according to the hypothesis,

To consists of a^ distinct pieces, each by itself simply con-

nected, it follows also that

S = «2 + ^1 + ^?i-

Therefore, «i + ^2 + '^^^ = «2 + Q*! + ^j

or qc, — «2 = ^1 — «!•

Note. — Having prescribed the conditions to be kept in mind in the

proof of this proposition, we can prove it more briefly in the following

manner : 1 Let us assume, in the first place, that the lines Qi and Q^, have

in common only this, that a line of the one kind simply crosses one of the

other, and in such a way that the point of intersection is not an end-point

of a cross-cut. If such a case occur k times, we have, according to the

above explanation and with the preceding notation,

2^2' = 2^2 + 2^-, 2qi< = 2qx-\-2k,

and therefore qj =zq2 + k, qi' = qi + k.

If, however, both systems lie in any arbitrary relation to each other,

the lines ^1 and ^2 in part crossing one another at arbitrary points, in

part touching one another, or even coinciding with one another wholly or

in part, then an infinitely small deformation of the lines of one system

can cause the coincidence either to be entirely removed or to conform

only to the foregoing hypothesis. If, after such a deformation, k points

of intersection occur, it follows again that

from which the proposition follows as above. If this hold after the

infinitely small deformation, it must also be valid before the same ; for

by this deformation neither the number of cross-cuts nor the number of

pieces into which the surface is resolved is changed.

1 Neumann, Vorlesungen iiber Biemann^s Theorie, u. s. w., S. 296.
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50. The proof of the fundamental proposition given by

Riemann and set forth in the preceding paragraph renders

detailed discussions necessary, if none of the cases which

might possibly occur are to be overlooked.

Neumann's proof is shorter, it is true, but it does not make

use of the property which forms the principal part of the

preceding proof, that in general

9i' = gi + m, 52' = 92 + w.

This property is important in itself, however, and will later

have to be applied. On that account it is, perhaps, not un-

profitable to add still another proof of the fundamental propo-

sition, which is simpler and which yet employs the above

property. Such a proof has been given by Lippich.^ It pre-

supposes, it is true, some knowledge of the properties of

general line-systems, but it is characterized by great simplicity

and leads, moreover, to a new and very important principle.

To give this proof, we must introduce the following preliminary

considerations.^

Digression on line-systems. We will consider a system of

straight or curved lines which in other respects can be quite

arbitrary
;
yet we do assume that no line of the system ex-

tends to infinity, and also that none makes an infinite num-

ber of windings in a finite region. We further assume that

all the lines are connected with one another, or, if this be not

the case, that they form only a finite number of pieces.

From each point of a line we can, following one or more

lines, take either a single path or several paths. Accordingly

we distinguish three kinds of points on the lines : (1) Let a

point from which we can take only one path be called an end-

point; e.g., a, a,, ag, ag, in Fig. 49. (2) Call a point from which

we can proceed by two paths an ordinary point; e.g., b, bi, b^

(3) Let a point from which we can take more than two paths

1 F. Lippich, " Bemerkung zu einem Satze aus Kiemann's Theorie der

Funktionen," u. s. w. (Sitz.-Ber. d. Wien. Acad., Bd. 69, Abth. II.,

Januar 1874.)

2 The continuation of the main investigation follows in § 52.
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Fig. 49.

be called a nodal-point, and let it be called ?i-pie, when n paths
proceed from it, i.e., when n line-segments meet in it. In Fig.

49, c is a triple, d a quadruple,

e a quintuple nodal-point. Now
if a line-system, constituted in

this way, contain either no end-

and nodal-points, or only a finite

number of such points, it will be

called a finite line-system. We
will introduce the following addi-

tional definitions. Let a contin-

uous line, which contains two

end-points and in addition only ordinary points, be called a

simple line-segment, e.g., aha^ ; let a continuous line which con-

tains only ordinary points be called a simply closed line, e.g., A.

If, as will immediately occur, a description of connected

lines of the system be under discussion, it will always be

assumed that therein no line-segment is described more than

once, but that the description is always continued and does

not cease as long as a line-segment, not yet described and

connected with the segment last traced, presents a path for

further motion. Then, on account of the hypothesis made in

regard to the construction of the line-system, the description

must always come to an end sometime. This always occurs

on arriving at an end-point, but at an ordinary point when,

and only when, this was at the same time the initial point.

At all the nodal-points, sections are always to be associated

with the description in such a way that when a nodal-point is

passed for the first time, when, therefore, we arrive at the

nodal-point on one line-segment and leave it on any other, all

the other line-segments meeting there are to be regarded as

cut. Each of these latter, then, acquires an end-point at the

nodal-point, and its connection with the other lines is regarded

as broken at that point. If this method be adhered to, the

description does not stop at a nodal-point Avhen we arrive at it

for the first time, but always ends when we return to it for

the second time.



SIMPLY AND MULTIPLY CONNECTED SURFACES, 207

If a line-system do not contain any nodal-points, a single

end-point cannot occur in it; the end-points, provided there

are any, must rather occur in pairs. For if the stated descrip-

tion begin at one of the existing end-points, it can end neither

in a nodal-point (since there are none), nor in an ordinary

point (since the initial point was not an ordinary point) ; thus

it can end only in an end-point, and, since an end of the

description must sometime occur, there must still be a second

end-point. Therefore, starting from an end-point, we always

arrive at another end-point, and, since in the meantime we
have passed through only ordinary points, we have traced a

simple line-segment. Each existing end-point, therefore, in a

finite line-system containing no nodal-points, is associated with

a second end-point, the two together bounding a simple line-

segment. Since, now, conversely, every simple line-segment

also possesses two end-points, we conclude : If a finite line-

system contain no nodal-points, the number of simple line-segments

constituting it is half as great as the number of existing end-

points.

In the case of an arbitrary finite line-system affected with

nodal-points, we can remove the nodal-points altogether by

means of the sections mentioned above, by regarding all the

line-segments meeting at each nodal-point as cut except two,

which are to be left connected. Then each nodal-point is

changed into an ordinary point and a number of end-points

;

and in fact, if the point be an 7i-ple nodal-point, it is changed

into one ordinary point and h— 2 end-points. Now, since the

two line-segments left in connection at each nodal-point can

be chosen quite arbitrarily, the sections may be effected in

very many different ways. These having been effected, the

line-system no longer contains nodal-points, and therefore the

simple line-segments then contained in it can be found accord-

ing to the preceding principle, by counting the number of end-

points which occur. For instance, if we denote the number of

end-points contained in the original system by e, the number

of triple, quadruple, •••, n-ple nodal-points by k^, k^, •••, k^, we
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have, since each /i-ple nodal-point furnishes h — 2 end-points,

in all

e-^Jc,-\-27c, 4- 3 A;^ +•••+ (n - 2) k^

simple end-points ; therefore the number of simple line-segments

occurring after the sections are effected equals

ile + k, -\-2k,-h3k, -f ...+ (n - 2)kJ}

This number depends, however, upon the originally existing

ead- and nodal-points, and is entirely independent of the way
in which the sections were effected, which, as stated, can be

made in very many different ways. We therefore conclude

:

If all existing nodal-points be removed from a given finite line-

system, after the sections are effected the system contains a series

of simple line-segments, the number of which is constant and inde-

pendent of the way in which the sections were effected.

The line-system may originally contain simply closed lines,

but the sections can always be effected in such a way that

thereby no new simply closed lines are furnished. For this

could only occur when, after all line-segments except three

have been cut at a nodal-point, a particular one of these three

is then cut. But if we choose to cut one of the two other line-

segments instead of that particular one, no simply closed line

will thereby be furnished. If the sections be effected in this

way, and if the system contain originally no simply closed

1 The number
e -1- A;3 4- 2 A:4 -^ 3 /.'5 + • • • -1- (w - 2) A:„

is, according to the above, an even number. If we take from it first the

even number
2^•4-^-4^•6 + •••,

and then the even number
2A:5 + 4^-7-^.•.,

the remaining number
e -\- kz + k^ -^ h -\

must also be even. Thus it follows that: In a finite line-system the num-

ber of end-points and of odd nodal-points together is always an even

number. For instance, it is not possible to draw a line-system containing,

say, two end-points and a quintuple nodal-point (and no more nodal-

points).
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lines, after the sections are effected it consists of only simple

line-segments constant in number.

It is of advantage, in a system containing no simply closed

lines, to conceive the resolution into simple line-segments as

effected by successive descriptions, with which, as already

stated, sections are to be associated at every nodal-point

passed. Then simply closed lines can never occur, not even

in the case of a triple nodal-point, because the description

stops at a nodal-point only when we arrive at it for the

second time. To effect the resolution, we begin the description

at an end-point; then we must once more arrive at an end-

point, which either originally existed or was furnished by a

section at a nodal-point previously passed. We have then

traced a simple line-segment. We next begin the description

again, either at an originally existing end-point or at one

furnished by a section, and obtain a second line-segment, etc.

Should the case occur that there is, on one of the simple line-

segments to be traced, no end-point at which to begin the

description, then there must be a nodal-point in some part of

the system not yet described; for, otherwise, this portion

would contain only ordinary points, and therefore consist of

only simply closed lines, while, according to the hypothesis,

the system does not contain any such lines. In such a case

we get an end-point at a nodal-point by cutting only one line-

segment, and begin the description at this point. In doing

so, if the point be a triple nodal-point, we must certainly be

careful not to cut exactly that line-segment by the section of

which a simply closed line could be furnished. We therefore

obtain the following proposition : A finite line-system, not con-

taining any simply closed lines, is resolved by successive descnp-

tions (with which a section is to be associated at every nodal-point

passed) into only simple line-segments, the number of which is

always the same in whatever way the description, and with it the

resolution into simple line-segments, may be effected.

51. We will now assume that in a given surface there is a

finite line-system L, which satisfies the two following conditions

:
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(1) No end-point is to lie in tlie interior of the surface, but

all end-points which occur are to be situated on the boun-

dary of the surface. (If the surface be closed, it is to be

regarded as having a boundary-point, by § 46.)

(2) All parts of the system L are to be connected with the

boundary of the surface, so that, by following the lines, we
can arrive at the boundary of the surface from any point

situated on L.

Such a line-system can, it is true, contain simply closed

lines, yet every simply closed line, in order to satisfy con-

dition (2), must have at least one point in common with a

boundary-line.

We now first add the boundary-lines to the system L ; then

every point of L situated on the boundary is a nodal-point of

the system modified by the addition of the boundary-lines,

since there meet in it at least three line-segments, namely,

two belonging to the boundary-line, and at least one belonging

to the system L. The same is also true of the boundary-point

assumed in a closed surface, if we conceive this as an infi-

nitely small boundary-line. Let us now effect the sections

at all these nodal-points on the boundary in such a way that

the line segments belonging to the boundary-line are left

connected, but all the line-segments belonging to the system

L are cut. (Thus all the line-segments meeting at a mere

boundary-point must be cut.) If we next exclude again the

boundary-lines, we have changed the system L into another

system, which we may designate by M. Each of the points

situated on the boundary in the latter system is now an end-

point ; and there must be at least one such point, if the system

L is to satisfy condition (2). Further, the system M does

not contain any closed lines, since those which may have

existed in L have been removed by means of the sections.

In other respects, however, the lines of M are the same as the

lines of L.

Therefore, according to the last proposition of the preceding

paragraph, the systemM can be resolved by successive descrip-

tions into none but simple line-segments, constant in number.
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But it is now easy to show that these line-segments constitute

a system of cross-cuts drawn in the surface. For, since from
the preceding considerations there is at least one end-point

situated on the boundary, the first line-segment can be traced

from such a point. The second end-point, at which we then
arrive, cannot by (1) be in the interior, but it is either on the

boundary or it has been furnished by a section at a nodal-point

passed. But in both cases the simple line-segment traced is

a cross-cut ; in the second case it is such a cross-cut as ends
in a point of its previous course. Now there must be still

another end-point (in case there are any lines not yet traced),

which is situated either on the boundary or on the first cross-

cut, since, otherwise, condition (2) would not be satisfied.

Thus we can trace a second simple line-segment, starting from
this point; the second end-point of this segment lies either

on the boundary or on the first cross-cut, or it is furnished

by a section on passing through a nodal-point. This second

line-segment is therefore also a cross-cut. The same process

is repeated as long as there remain lines not yet traced ; there-

fore the line-segments collectively do, in fact, constitute a

system of cross-cuts, and the following proposition, established

by Lippich, follows : Every finite line-system ivhich occurs in a

surface, and which satisfies conditions (1) atid (2), forms a sys-

tem of cross-cuts, completely determined in number, and this

number remains always the same in whatever way these cross-cuts

7nay be successively drawn.

From the definition of cross-cuts (§ 47) it is immediately

obvious that, conversely, every system of cross-cuts forms a

line-system which satisfies conditions (1) and (2).

The proof of Riemami's fundamental proposition, based

upon this principle, is very simple. In it we retain the nota-

tion of § 49. If we suppose first the lines Qi and then the

lines Q2 drawn in the surface T, we obtain a line-system which

consists only of cross-cuts, and which therefore satisfies con-

ditions (1) and (2). According to the preceding proposition

this now forms at the same time a system of cross-cuts, fully

determined in number, and this number may be denoted by s.
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But the number of the cross-cuts Qi was qi ; if these be drawn,

the lines Q., form ^3' new cross-cuts, using the former notation,

and the total number of cross-cuts is thus gi -f- ^2' j therefore

Qi 4- 9-2 = s.

If now, conversely, the cross-cuts Qo be first drawn, the num-
ber of which was q2, and then the lines Qi be added, forming

gi' new cross-cuts, then in all go + ^1' cross-cuts are obtained.

But the line-system which now exists is exactly the same as

before, except that the cross-cuts of which it consists have

been drawn in a different way. Since according to the above

proposition the number of these cross-cuts must nevertheless

be the same, it follows that

therefore, Qi -\- q2 = 92 -h 9i ot q2 —q2 = Qi — Qi-

If we denote the common value of these differences by m, we
have

^'i = 9i + m, q2' = q2-^m.

Having established the first and principal part of the proof,

we proceed exactly as in § 49.

52. Let us now consider the case in which the original sur-

face T consists of a single connected piece, and in which,

further, each of the surfaces T^ and To, obtained by means of

the cross-cuts Qi and Qo, forms a single simply connected sur-

face. In order that this case may occur, it is necessary in the

first place that none of the cross-cuts divide the surface ; there-

fore also, by § 48, II. and IV., that T be multiply connected

and remain multiply connected, for both modes of resolution,

until the next to the last cross-cut has been drawn, and be

rendered simply connected only by means of the last cross-cut.

In such a case Wj = ccg = 1 ; accordingly q2 — l = qi — l, and

hence g2=Q'i- From this result we obtain the following propo-

sition :
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If it he possible by means of cross-cuts to modify a multijdy

connected surface into one simply connected, and if this be possi-

ble in more than one tvay, then the number of cross-cuts by m^ans

of which the modification is effected is always the same.

In addition to this proposition the following is of the greatest

importance

:

If a multiply connected surface can be modified into one simply

connected in any one definite way by means of q cross-cuts, then

this modification is always effected by means of q cross-cuts, in

whatever ivay these may be drawn, provided only that they do not

divide the surface.

Although it has been proved in the preceding proposition

that the number of cross-cuts remains the same if the resolu-

tion into a simply connected surface be possible in a second

way, yet it remains to be discussed whether this resolution can

in fact be effected in a second way ; whether, on the contrary,

for the modification into a simply connected surface, the

cross-cuts must not be drawn in a definite way, according to

a definite rule, so that, if they be not so drawn, the surface

always remains multiply connected and a simply connected

surface is never obtained, however far the drawing of the

cross-cuts may be continued. But we can in fact show that

this case cannot occur. We therefore assume that the surface

T is modified by q cross-cuts Qi, drawn in a definite way, into

a simply connected surface 7\. Then in the first place it

follows from the preceding proposition that, if instead of the

former cross-cuts others be drawn, the surface T cannot be

made simply connected by means of less than q cross-cuts.

Hence, by § 48, II., it is possible to draw q other cross-cuts

Q.2, which likewise do not divide the surface, by means of

which a surface T^ may be formed ; the question then arises,

whether T^, must be simply connected. Let us form, as in

§ 49, a new system of surfaces ® from T^ and To in two ways,

first by drawing the lines Q2 in Tj, and secondly by drawing

the lines Qi in T^. As in § 49, let the number of cross-cuts

which the lines Q2 form in T^ be denoted by q-\- m. Then,
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according to the first part of tlie proof of the fundamental

proposition (§ 49 or § 51), the number of cross-cuts which the

lines Qi form in Tg is likewise q -\- m. Now Tj is, according

to the assumption, a single simply connected surface, which is

transformed hjq-\-m cross-cuts into the system of surfaces

^ ;
therefore H consists of q -\-m-\-l distinct pieces, each by

itself simply connected (§ 48, V.). But the same system is

also produced from To by g -f m cross-cuts ; therefore the sur-

face T,, which consists of one piece, has the property that it

is resolved by g + m cross-cuts into q -\-m-{-l distinct pieces,

each by itself simply connected. Thus, by § 48, IX., T.2 is in

fact simply connected.

Upon this is based a classification of surfaces and the more
exact determination of their connection.

If a surface be multiply connected, a cross-cut can be drawn

in it which does not divide the surface (§ 48, II.). If the case

occur that, after the addition of this first cross-cut, the surface

has become simply connected, then according to the last propo-

sition it is changed into a simply connected surface by every

cross-cut which does not divide it. In this case the surface

is said to be doubly connected.

But if, after the first cross-cut is drawn, the surface remain

multiply connected, a new cross-cut can be drawn which does

not divide it. If this change it into a simply connected sur-

face, the same result is obtained by means of any other two

cross-cuts which do not divide the surface. The surface is

then said to be triply connected.

If the surface be still multiply connected after the addition

of the second cross-cut, a third can then be drawn which does

not divide the surface, and, according as the resolution into a

simply connected surface is effected by means of three, four,

etc., cross-cuts, the surface is said to be quadruply, qumtuply,

etc., connected.

In general, a surface is said to be (q -\- l)-ply connected when

it can be changed by means of q cross-cuts into a simply connected

surface. In that case it is unimportant how the cross-cuts are

drawn, provided only that none of them divide the surface.
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But after the surface becomes simply connected, it is no longer

possible to draw a cross-cut in it which does not divide the

surface (§ 48, IV.).

53. We are now prepared to prove some propositions, in

part relating to the variation or non-variation of the order

of connection,^ in part relating to boundary-lines.

I. The order of connection of a surface is diminished, by unity

by every cross-cut which does not divide it.

For, if the surface be (q -\- l)-ply connected, it follows from

the second proposition of § 52 that, however the first cross-cut

which does not divide the surface may be drawn, the resolution

into a simply connected surface is always effected by means
oi q — 1 cross-cuts; hence the new surface is g-ply connected.

II. If a line be drawn from a point a of the boundary into the

interior of the surface, and if, without returning into itself, it

end in a point c in the interior of the surface, such a line does

not change the order of connection of the surface. (If a section

be made along this line, it is called a slit.)

Call the original surface T and that formed by the intro-

duction of tlie line ac, T'. In the first place it is evident that,

if T be simply connected, T' must also be simply connected

;

for, if every closed line in T form by itself alone the complete

boundary of a portion of the surface, so also does every closed

line in T', i.e., every line which does not cross ac. Therefore

let T be multiply connected, say (g + l)-ply. Then a cross-

cut which does not divide the surface can always be drawn in

T (§ 48, II.), and in fact so that the line ac forms part of the

same. This is always possible ; for, if the cross-cut be drawn

as directed in § 48, II., with the help of a closed line which

does not form by itself alone a complete boundary, it can be

made to run from a point of the latter on each side to the

edge of the surface in an entirely arbitrary way; therefore,

since a lies on the edge, so that ac always forms part of the

same. Let this cross-cut be denoted by OA^b, and let the surface

formed from T by means of it be called T"; then the latter

1 Sometimes called connectivity. (Tr.)
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surface is 5-ply connected (I.). But T" can also be formed

from T by means of the line ch, and this line forms in T' a

cross-cut which does not divide the surface, because it is so

drawn that the contiguous portions of the surface on both

sides of it are connected. Consequently T has the property,

that it is changed into a g-ply connected surface by means of

one cross-cut which does not divide the surface ; therefore T'

is (g + l)-ply connected, just as T was.

Note.— This proposition remains perfectly valid, if the internal point

c be a branch-point.

III. If a single point c be removed from a surface T at any

place, the order of connection is thereby increased by unity.

Let the surface formed by the removal of the point c be

called T\ Connect the point c with any point a of the bound-

ary of T^ by means of a line which does not intersect itself,

thereby forming a new surface V. Then the latter can also

be regarded as a surface formed from T by drawing the line

ac, which starts from a boundary-point a and ends in an

interior point c; therefore the order of connection of T" is the

same as that of T (II.). On the other hand, ac is a cross-cut

in T which does not divide the surface, since we can pass

round c from the one side to the other. Accordingly, by I.,

V is of an order higher by unity than T", and therefore also

than T.

Note. — The preceding does not lose its validity if the point removed

be a branch-point.

IV. If an {actually) closed line, forming by itself alone the

complete boundary of a portion of a surface, be drawn in any

position in a portion which contains either no branch-point or at

most one (of any order [§ 13]), and if the portion bounded by

this line be removed from the surface, the order of connection is

thereby increased by unity.

For the order of connection will not be changed, if the

boundary-line which bounds the piece removed be more and

1 If r be a closed surface, it is assumed that it already possesses a

boundary-point a (§40).
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more contracted. But if it finally shrink into a point, the case

is the same as the preceding. Hence this proposition holds,

if the piece removed contain either no branch-point or only

one. But if it contain more than one, it would no longer be

possible to let the boundary-line shrink into a point.

Cor. In the case of a surface closed at infinity, it is

necessary to assume in some place a boundary-point (§ 46).

This may itself also be a branch-point. If a piece which con-

tains this boundary-point, hut no other branch-point, be removed

from such a surface, the order of connection is not changed. For

we can let the boundary-line which bounds the piece removed
contract into the boundary-point, and thus obtain again the

original surface.

V. Ifa(q-^ ^)-ply connected sy^rface T be resolved by a cross-

cut R into two distinct pieces A and B, each of the latter has a

finite order of connection ; and ifr and s be the numbers of cross-

cuts which determine these orders, then r -\- s = q.

The surface T is reduced to two simply connected pieces by

means of g -f 1 cross-cuts, of which the first q do not divide

the surface. If, however, the dividing cross-cut R be first

drawn, we cannot immediately infer the truth of the above

enunciation from Eiemann's fundamental proposition, because

that proposition already assumes what will here be first proved,

namely, that now also after the addition of a finite number of

cross-cuts simply connected pieces are finally obtained again.

We remark that all the cross-cuts running in A can be so

placed that they meet the cross-cut M either not at all or only

in one of its end-points. For, since B, except for its end-

points, lies entirely in the interior of the surface, and since

therefore a zone free of boundary-lines exists on each side of

it, we can displace along the line E the end-points of all the

cross-cuts which meet E until they coincide with an end-point

of the same. But then every cross-cut which does not divide

A is also a non-dividing cross-cut in T. From this it follows

that the number r of non-dividing cross-cuts possible in A can-

not be greater than q ; for, otherwise, it would also be possible

to draw in T more than q non-dividing cross-cuts, and this is
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contrary to the hypothesis that this surface is (g + l)-ply

connected (§ 52). Therefore r is a finite number, and when
these r cross-cuts have been drawn in A, another non-dividing

cross-cut is no longer possible; thus A has become simply

connected (§ 48, VI.). Exactly the same holds for B. Here,

too, all cross-cuts can be so drawn that they likewise form

cross-cuts in T, and if s be the number of non-dividing cross-

cuts possible in J8, s cannot be greater than q and is therefore

a finite number. By drawing these s cross-cuts B is made
simply connected. jSTow if all these cross-cuts, and E also, be

drawn, we have obtained two simply connected pieces by means

of r -f s + 1 cross-cuts. Therefore, according to Eiemann's

fundamental proposition,

?' + s = g.

Of these q cross-cuts, r run entirely in A, the other s entirely

in JB.

VI. If a {q-\- l)-ply connected surface T he resolved by means

of V non-dividing and s dividing cross-cuts (which may be drawn

in any order) into s + l distinct pieces Aq, A^ A2, •••, A^j and

if the orders of connection of these pieces be determined by the

numbers of cross-cuts ro, ri, ?*2, •••, r„ respectively, then

g = V + ro -f ?'i -f r2 H h ?%.

Since by the last proposition a surface of finite order is

always resolved by a dividing cross-cut into two pieces which

are also of finite orders, these orders will still be finite if a

series of non-dividing cross-cuts be drawn in T before the

division. The same conclusion holds, if each of the resulting

pieces be further resolved in like manner. Therefore t-q, rj, 7*2,

..., r, are finite numbers, none of which is greater than g, in

whatever order we may have drawn the v -f s cross-cuts. Now
if all the pieces A be further changed into simply connected

surfaces by means of their respective r cross-cuts, we have

finally s -\-l simply connected pieces, which are formed by

means of v + s + ro + ri + rg -f • • • -f r^ cross-cuts in all. But

we likewise obtain s + 1 simply connected pieces, if we first
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make T simply connected by means of q cross-cuts and then

by means of s additional cross-cuts resolve it into « H- 1 pieces.

Therefore,

q + s = v + s-\-i\i + ri-\-r2-\ \- r,,

or q = y + n-\-ri-\-r2-\ h r..

VII. If a ((/ H- lyjyly connected surfcuce he resolved by m
cross-cuts into two distinct pieces, one of which, S, is simply

connected, then the other, T\ is (q — m-\- 2)^ly connected, i.e.,

only q —(m — 1) cross-cuts are needed to modify it into a simply

connected surface.

Let X be the number of cross-cuts which change T' into a

simply connected surface Tq'. If these cuts be drawn, we
have two simply connected surfaces, Tq' and S, formed by

means of m + « cross-cuts. But if the original surface be first

modified into one simply connected by means of the appro-

priate q cross-cuts, and if the surface so formed be then divided

into two distinct pieces by means of an additional cross-cut,

we have again formed two simply connected surfaces by means

of q -^1 cross-cuts. Then, by the fundamental proposition

(§ 49),

(rn.{.x)-2=(q-{-l)-2,

and hence x = q —(m — 1).

VIII. If a surface consisting of one piece possess more than

one boundary-line, i.e., if its boundary consist of several distinct

closed lines, it is multiply connected.

If a and b be two points situated on different boundary-lines,

we can, since the surface is connected, draw a line from a to

b through the interior of the surface. This is a cross-cut,

which does not divide the surface, however, for we can come

from one side of the cross-cut to the other side of the same in

the surface by following one of the two boundary-lines. Since

it is thus possible to draw in the surface a cross-cut which

does not divide it, the surface is multiply connected (§ 48, 1.).

IX. From this follows: A simply connected surface always

possesses a single boundary-line, i.e., its boundary can be traced
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in a co7itinuous description. (Or, its boundary consists of only a

single point.)

Therefore, after a multiply connected surface has been modi-

fied into a simply connected surface by means of cross-cuts,

wherein the cross-cuts, as they are drawn, are to be added to

the original boundary as new boundary-pieces, it must be

possible to trace the latter, together with the original boundary,

in a continuous description. Therein each cross-cut simulta-

neously forms the boundary of each piece of the surface con-

tiguous to it on each side. If then the entire boundary be

traced in the positive direction, so that the bounded region

always lies on the left of the boundary, each cross-cut must
be traced twice in opposite directions. (Cf. Figs. 43 to 46,

pp. 191 and 192.)

X. The number of boundary-lines is either increased or dimiiir

ished by unity by every cross-cut.

According to the discussion of § 47 a cross-cut always fur-

nishes two boundary-edges, because it simultaneously bounds

the portions of the surface contiguous to it on each side. Now
there are three kinds of cross-cuts (§ 47)

:

(1) The cross-cut may join two points a and b of the same

boundary-line. The latter is then divided into two parts by

the points a and b ; one part forms with the one edge of the

cross-cut one boundary-line, the other part forms with the

other edge a second boundary-line. Thus two boundary-lines

are formed from one, and the number of boundary-lines is

increased by unity.^

(2) The cross-cut may join two points which lie on different

boundary-lines. Then it unites these into a single one, because

its two edges establish the connection. Thus from two boun-

dary-lines is formed one, and the number of boundary-lines is

diminished by unity.

(3) The cross-cut may begin at a point of the boundary and

1 This result still holds if the points a and b approach each other and

finally coincide.
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end at a point of its previous course. Then one of its edges,

together with the boundary-line from which it starts, forms a

single closed boundary-line. But in addition the inner edge

of its closed portion forms a new boundary-line, so that the

number of boundary-lines is increased by unity.

XI. If a closed surface {ivhich therefore possesses but one

boundary-point) be multiply connected, and if it can be modified

into a simply connected surface by means of a finite number of

cross-cuts, the number of such cross-cuts is always even.

Let the given surface be {q + l)-ply connected, so that q

cross-cuts modify it into a simply connected surface. Since

the surface originally possesses only a single boundary-point,

the number of its boundary-lines is 1. This number is either

increased or diminished by unity by every cross-cut (X.). Let

p be the number of cross-cuts which produce an increase, and

therefore q —p the number which produce a diminution in

the number of boundary-lines; then at the end the number
of boundary-lines is ^ +p —{q—p)- But since the surface is

then simply connected, it possesses only one boundary-line

(IX.) ; accordingly we have

l+p-q^p = l,

and hence q = 2p.

Thus q is an even number.

54. If we know the number of sheets, as well as branch-

points, in a surface closed at infinity, we can determine its

order of connection. For this purpose, as in § 13, we regard

a winding-point of the (m — l)th order as resulting from the

coincidence of m — 1 simple branch-points. If in this sense

g be the number of simple branch-points, n the number of

sheets, and q the number of cross-cuts which modify the sur-

face into one simply connected, we can find a relation between

these three numbers.^

1 Cf . with the following : Roch, "Ueber Funktionen complexer Gros-

sen," Schlomilch's Zeitschr. /. 3Iath., Bd. 10, S. 177.
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Let Aq be the boundary-point to be assumed in the closed

surface. We will also remove from the surface n — 1 other

points Ai, A2, '••, A^-\, one from each of the n — 1 other

sheets ; for greater simplicity let us assume that these n points

lie directly below one another. Now, since the order of con-

nection is increased by unity through the removal of every

such point (§ 53, III.), the order in this case is increased by

n — 1. Therefore q-^ n — 1 cross-cuts are necessary to modify

the surface into a simply connected surface after the removal

of the n — 1 points A^, A2, •••, A^_i. In this {q + n)-ply con-

nected surface let us now draw cross-cuts in the following way.

From each point A let us draw lines to all the branch-points

which lie in the same sheet with A. Then it is evident that

thereby we have actually formed cross-cuts, because we can

pass through a branch-point into all those sheets which are

connected at that point. If two points Aj^ and Aj^ lie in two

sheets which are connected at a simple branch-point a, then

A^a and aAj^ together form a line which leads from one bound-

ary-point A^ through the interior of the surface to a boundary-

point Af,\ thus A^aA^ is a cross-cut. On the other hand, if

a be a winding-point of the (m — l)th order, at which are con-

nected m sheets containing the points A^, Ao, •••, ^„, say, then

first AiaA2 is a cross-cut, but after it is drawn each one of the

m — 2 other lines aA^, aA^, •••, aA^ becomes a cross-cut;

therefore in this case we have in all m — 1 cross-cuts, just as

many as there are simple branch-points united in a. If we
proceed in this way with all the branch-points, we obtain

exactly as many cross-cuts as there are simple branch-points,

i.e., g. But these g cross-cuts resolve the surface into n distinct

pieces, each by itself simply connected; that is, the n sheets

of the surface are separated from one another by them in a

certain manner. For, if p^ and p^ be two points lying one

above the other in any two sheets, we can come from pj^ to pj^

only by crossing branch-cuts and winding round branch-points

;

but the latter is rendered impossible by the cross-cuts con-

structed. Thus every two such points always lie in distinct

pieces. Only the points A furnish exceptions. We can always
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come from any one point A to another point A by crossing a

branch-cut. The m sheets of the surface are therefore sepa-

rated from one another in this way : in every sheet an angular

piece (or also several such pieces), which is formed by two

cross-cuts meeting at the point A^ is separated from the sheet,

and in its place enters a corresponding angular piece of another

sheet. Accordingly the surface consists of n distinct portions.

But each of these is by itself a connected piece ; for, since it

is closed at infinity, its boundary consists solely of the cross-

cuts which meet in the point A. For the same reason, also,

each portion is by itself simply connected, since we can come

from only one side of every closed line drawn in it to that

boundary; thus each closed line forms a complete boundary.

Therefore, after the removal of the n — 1 boundary-points ^„
A2, •••, A„_i, the given surface is resolved by g cross-cuts into

n distinct pieces, each by itself simply connected. But this

surface was {q + ri)-ply connected ; therefore q-\-n — 1 cross-

cuts are necessary to modify it into a simply connected surface.

Now, to divide the latter into n distinct pieces, ?i — 1 additional

cross-cuts are necessary (§ 48, V.) ; accordingly the original

surface is divided into n distinct simply connected pieces by

means of g -f 2(?i — 1) cross-cuts. But the same number was

found above equal to g, and therefore, by the fundamental

proposition (§ 49),

g=q-\.2(n-l) or q = g- 2(n - 1).

Compare with this result the examples given in § 46 to

which it is applicable. In the third, n = 2, g = 2\ therefore

g = 0, and the surface is simply connected. In the fifth

example n = 2, g' = 4 ; therefore q = 2, and the surface is

triply connected.

From the result obtained above we may draw certain con-

clusions. For, since in a closed surface q is always an even

number (§ 53, XI.), g must also be even. Therefore a surface

closed at infinity always possesses an even number of simple

branch-points. With an 7i-sheeted surface the simplest case

would be the occurrence of two branch-points of the (n — l)th
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order; and if this be the case, the surface is simply con-

nected.

A further inference, which follows from the preceding, is

this, that a surface, which serves to distribute the values of

an algebraic function ic so that this becomes a uniform function

of position in the surface (§ 12), always possesses a finite

order of connection, and therefore can be changed by a finite

number of cross-cuts into a simply connected surface. For

the number of sheets n is equal to the number of values which

the function lo possesses for each value of the variable, and is

therefore a finite number. That the number g of simple branch-

points is also finite, follows from the fact that the branch-

points are to be sought for only among those points at which

values of the function become either equal or infinite (§ 8).

The number of the latter points is finite (§ 38). But if

F(w, z)= denote the equation of the nth degree by which w
is defined, the points z at which values of the function become

equal are those which simultaneously satisfy the equations

J'(»,.)=Oand?^M = o.

By the elimination of lo from these equations we obtain an

equation of finite degree in z. Moreover, since at most n values

can become equal at each of these points, and since therefore

at each branch-point n sheets at most can be connected, each

branch-point is of finite order. Accordingly n and g are finite

numbers, and hence q is also finite.

55. From the result of the preceding paragraph we can also

derive a relation between the order of connection of an unclosed

surface extended in a plane, the number of its simple branch-

points and the number of circuits made by its boundary.

We begin with a surface closed at infinity. Let this be

(Q''-l-l)-ply connected ; let g^ be the number of its simple branch-

points and 71 the number of its sheets. Then, according to

the preceding paragraph, we have

q' = g^-2{n-l).
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We will now assume that the boundary-point which is to be

assigned to the surface lies at the point at infinity of one

of its sheets, and first premise that in no sheet is the point at

infinity a branch-point. If we then remove from each sheet

a piece which contains its point at infinity, and which is there-

fore bounded by a line returning simply into itself, the order

of connection of the surface is increased by unity for every

piece removed, with the exception of that which contains the

assumed boundary-point (§ 53, IV,). Thus the order of con-

nection is increased by n — 1. If, therefore, the new surface

be (q + l)-ply connected, we have

q = q' + n-lj

and consequently q = g' — n-\-l.

But after the points at infinity have been removed from the

surface, we can assume its sheets, which were previously to

be conceived as infinitely great spherical surfaces, to be again

extended in the plane. Each sheet then appears bounded by

a line returning simply into itself, which makes a positive

circuit if it be described in the direction of increasing angles.

Consequently, if U denote the number of circuits forming the

boundary, we have U=n. The number of simple branch-

points g contained in the new surface is equal to the previous

number g', since by the assumption no branch-point was re-

moved from the surface. We therefore obtain from the last

equation

q = g-U+l.

This is the relation mentioned above, and it will now be shown

that it does not lose its validity when certain changes are made
in the surface.

Let us first consider the case when m sheets in the original

surface are connected at a point at infinity, when therefore

m — 1 simple branch-points are united in that point. Then

the number of pieces removed is no longer equal to n as before,

but since one of them is bounded by a line which makes m
circuits round a branch-point, and since it thus takes the place
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of m of the previous pieces, that number is equal to only

n — m-\-l. Moreover, that piece which contains the assumed

boundary-point does not cause any increase in the order of

connection ; accordingly that increase amounts to n — m, or

q = q' + n — m,

that is, qz=g' — 2(71 — l)+ n — m
= g' — m-\-l — n-{-l.

When the sheets are extended in the plane the number of cir-

cuits U is again equal to n; for the only change in this respect

is that all the n boundary-lines are no longer distinct, but m
of them are united into a single one, which now, however,

makes m circuits. On the other hand, m — 1 simple branch-

points are removed from the surface with the points at infinity;

therefore now
g = g'-m-\-l.

If we substitute this value of ^' in the last equation, we obtain

again as before

q = g-U.+ l.

We will now modify the n-sheeted surface extended in the

plane by removing places in the interior.

Let us first consider a closed line bounding a portion of the

surface which does not contain a branch-point, and let us

imagine this piece removed. Then, in the first place, q is in-

creased by -h 1 (§ 53, IV.). But the new boundary-line, if

its boundary-direction is to be positive, must be described in

the direction of decreasing angles. Therefore, if we now
understand in general by the number of positive circuits the

positive or negative number U, which results from subtracting

the number of circuits in the direction of decreasing angles

from the number of circuits in the direction of increasing

angles, this number U in the preceding case must be increased

by — 1. At the same time q is increased by H- 1, and thus

the above relation remains unchanged.

For instance, if the surface consist of one sheet, then ^ = ;

if, further, it be bounded by one outer line and 7c smaller
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circles enclosed by the former, then the outer line makes a

circuit in the direction of increasing angles for a positive

boundary-direction, but each of the inner circles a circuit in

the opposite direction; therefore

U=l-k,
and we obtain g = A; — 1 + 1 = A;;

thus the number of cross-cuts is equal to the number of inner

circles.

Secondly, if a piece of the surface be removed which con-

tains a branch-point of the (m — l)th order, the boundary-line

of which therefore makes m circuits, q is again increased by

-h 1 (§ 53, IV.), U at the same time by — m, gr by — (m — 1),

and therefore g — U hj + 1 ; consequently the above relation

again remains the same.

After the modifications introduced hitherto the surface con-

sidered has a configuration such that the outer boundary-lines

enclose all branch-points situated in the finite part of the

surface; it also has gaps in the interior, yet of such a kind

that each of the pieces of surface removed contains either no

branch-point or only one (of any order). We have now to

inquire whether the above relation changes, either when the

outer boundary-lines no longer enclose all finite branch-points,

or when the inner boundary-lines enclose portions of the sur-

face that were removed in which more than one branch-point

was contained. Both conditions lead to the same inquiry;

namely, to the examination of the case when there is removed

a portion of the surface contiguous to an (outer or inner) edge

which contains a branch-point of the (m — l)th order, but no

gaps. The latter assumption can be made without loss of

generality, since the occurrence of gaps has already been dis-

posed of by the preceding considerations, i^ow if such a piece

of the surface is to be removed, then, since it is contiguous to

the edge, its removal must be effected by means of cross-cuts,

and these must be drawn in such a way that the boundary of

the piece removed, consisting of the cross-cuts and the con-

tiguous parts of the boundary, forms a closed line which
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makes m circuits round the winding-point. If none of these

cross-cuts wind round the branch-point, then m cross-cuts are

necessary to that end; otherwise a less number. Since, how-

ever, the piece removed is bounded by a single actually closed

line, it is simply connected (§ 46, Ex. 2). We will now
examine the case in which no cross-cut winds round the branch-

point ; then a simply connected piece of the surface is removed

by means of m cross-cuts, and consequently the order of con-

nection of the surface which remains is diminished by m — 1

(§ 53, VII.). At the same time g is diminished by m — 1

through the removal of the winding-point of the (m — l)th

order. But the number U suffers no change. For, since the

m cross-cuts add no new positive or negative circuits, merely

a different kind of connection of the boundary-line is produced

by the removal of the branch-point, while the circuits of the

same remain unchanged. Thus, since q and g are each dimin-

ished by 711 — 1 and U remains unchanged, the above relation

still holds.

Finally, let us consider the case in which the boundary is

changed by means of cross-cuts which do not divide the sur-

face. In this we turn our attention to the change of direction

which the lines experience, and remark that a line makes a

positive circuit if it experience a total change of direction

equal to 2 tt. If a non-dividing cross-cut be drawn in the sur-

face, this at the same time furnishes two boundary-pieces and

must be described twice in opposite senses in conforming to

the positive boundary-direction. Where the cross-cut meets

, a part of the boundary of the surface,

- the boundary-direction experiences an

abrupt change. Let a be the angle by

which the direction changes (Fig. 50).

(The case can, it is true, occur in which

the cross-cut changes into a part of the
^'^" ^' boundary without an abrupt change of

direction, but this is included in the preceding if we assume

a = 0.) In the description of the boundary-lines, of which

the cross-cut always forms a part, we once more return to the
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former place, since the cross-cut must be described twice;

then the cross-cut is described in the opposite direction, but

the contiguous part of the original boundary in the same

direction as before. From this it follows that the boundary-

direction now experiences an abrupt change equal to tt — a.

Consequently the end-point of the cross-cut produces a total

change of direction equal to ir. (Also in the case when this

ends in a point of its previous course, because then the cross-

cut itself takes the place of the original boundary-line.) The
same change occurs at the other end of the cross-cut. There-

fore the cross-cut causes at its end-points a change of direction

equal to 2tr. On the other hand, the change of direction

experienced by the cross-cut during its course need not be

considered, because this change is neutralized by that of the

subsequent description in the opposite sense. Consequently

each non-dividing cross-cut increases the number of positive

circuits ^ by -f 1 ;
^ at the same time, however, it diminishes

the order of connection by unity (§ 53, I.) and therefore q is

increased by — 1. Consequently the above relation holds in

this case also.

According to the preceding considerations, the equation

q = g — U+1 holds for all surfaces which can be formed by

1 The same conclusion holds when a cross-cut divides the surface into

two distinct pieces. For, since a cross-cut which joins two different

boundary-lines never divides the surface (§ 53, VIII,), a dividing cross-

cut can either merely join two points of the same boundary-line, or,

starting from one boundary-line, end in a point of its previous course.

In both cases two boundary-lines are produced by it from one. (§ 53, X.

(1) and (3). See also Fig. 40 and Fig. 41, p. 190.) If these be traced

in succession in the positive boundary-direction, the original boundary-

line is described once, but the cross-cut twice in opposite directions.

Consequently the above considerations still hold. Therefore if U be the

number of circuits of the original boundary-lines, Ui and U2 the numbers

for the two boundary-lines resulting from the cross-cut, we have

Ui-\- U2 = U+\.
It is evident at once that this formula does not lose its validity, if the two

boundary-lines resulting from the cross-cut have only one point in com-

mon, in which case two pieces of the original boundary-line approach

each other and the cross-cut drawn at this place is infinitesimal in length.
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means of the cross-cuts discussed. For the formation of many-

kinds of surfaces (as, for instance, those represented in Eie-

mann's dissertation: "Lehrsatze aus der Analysis situs,"

u. s. w., Crelle's Journ., Bd. 54, S. 110, last example), it

would be necessary still to consider the case in which a por-

tion of the surface contiguous to an edge and containing a

branch-point is to be removed by means of cross-cuts which

wind round the branch-point ; in another place ^ it was shown

that in this case also the above relation does not lose its

validity. But we cannot always affirm with certainty that

every surface, however bounded, could be produced by means

of such cross-cuts, as long as we do not know in advance the

form of a particular given surface. Therefore we will in pref-

erence add another proof for the general validity of the above

relation.

This is based upon the property, that the boundary-line of

a simply connected surface, extended in the plane and con-

taining no branch-points,

always makes but one cir-

cuit, and that this also holds

when the surface has first

been reduced to this simple

connection by means of

cross-cuts. For in the first

place only one boundary-line

Fio- 51. can ever occur in such a

surface (§ 53, IX.). But if we represent this as a movable

thread, we can show that it can always be deformed into a

circle which is to be described once. For, since the boundary-

line nowhere intersects itself, and also since its displacement

is nowhere prevented by a branch-point, the deformation into

a circle could be made impossible only by the line somewhere

forming a loop which could not be opened by enlarging. But

if this be the case, the portions of the surface which are con-

tiguous to the boundary-line where this forms the loop, and

1 "Zur Analysis situs Riemann'scher Flachen," Ber. d. Wien. Akad.,

Bd. 69, Abth. II., Januar 1874. See here Fig. 1.
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which thus pass one over the other, must later be connected

with each other in their continuations beyond A and B
(Pig. 51). If these portions always remain separated beyond

A and B, the loop can be at once opened by enlarging. But if

A and B be connected, we can, by drawing a cross-cut from a

point of the loop, come from the one side of the same to the

other beyond A and B, since these are connected ; thus the

cross-cut does not divide the surface and this is multiply con-

nected (§ 48, I.). Accordingly every loop which occurs in a

simply connected surface can always be opened, and the

boundary-line therefore be deformed into a circle. If the

latter be described in the direction of increasing angles, it

forms a single positive circuit.

Assume now an arbitrary Riemann surface extended over

a finite part of the plane, and let q, g, U have for this their

former meanings. Then g — U-\-l is always an integer (or

zero). The formula to be proved asserts that this number is

exactly equal to q. We will now not presuppose this, but will

assume
g-U+l = q + k,

and then prove that k must be zero. To this end we first

remove all branch-points from the surface, by enclosing each

one in an actually closed line and removing from the surface

the piece so bounded which contains the branch-point. Then the

last equation still holds ; for, as was previously shown, p. 227,

for the removal of a branch-point of the (m — l)th order, q
changes into q-\-l, g into g — m-\-l, Umto U—m, and hence

g — U into g — U-\-1. Therefore, if q change into q\ U into

IT after the removal of all the branch-points, we obtain, since

g becomes zero,

-C7'-hl = g' + A:.

For the modification of the surface into one simply connected,

g' non-dividing cross-cuts are requisite. If these be drawn, q^

changes into q' — 1 for each one, and, by p. 229, IT at the same

time into (7^ + 1. Consequently the preceding equation still

holds. Hence if LP change into IP' when the surface becomes
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simply connected, and when therefore q' becomes zero, we
have

But now this surface is not only simply connected, but it no

longer contains a branch-point; its boundary-line therefore

makes but one circuit, i.e., U" = -\-l, and consequently k = 0;

which was to be proved.

For a simply connected surface (q = 0) the equation

q = g-U-\-l

changes into U= g -\-l.

Accordingly the proposition, which we found to be valid for

a special case, § 13, holds generally : The number of circuits

of the boundary-line of a simply connected surface is greater by

unity than the number of simple branch-points in its interior.

Yet it is well to notice that the validity of this relation, as

well as of the more general one q = g — U-\-l, depends upon

the surface being extended in the plane.

56. We will now also examine such Eiemann surfaces as

cannot be extended in a plane, inquire under what conditions

their orders of connection are finite, and determine these orders

more exactly. At the same time we first premise that the sur-

face possesses only a finite number of sheets and branch-points,

and assume that none of its boundary-lines pass through a

branch-point.

We begin with a closed surface, which therefore possesses

only one boundary-point a. We will call this a complete surface

and designate it by W. By § 54, the relation

Q=G-2(n-l) (1)

holds for this surface, if G denote the number of simple

branch-points contained in it, n the number of its sheets, and

Q the number of its cross-cuts. Accordingly, Q is a finite

number, if G and n be finite. Hence our further investigations

relate exclusively to the boundary-lines.

The boundary-lines which are to be introduced into a com-

plete surface must be furnished by cuts drawn in the surface.
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Either these do not divide the complete surface, or they divide

it and remove from it single surfiu^e-pieces. Accordingly we
distinguish two kinds of boundary-lines.

By boundary-lines of the first kind we understand such as do

not remove a piece from a complete surface. They are there-

fore characterized by the condition that in the new surface T
two edges, which belong either to different boundary-lines or

to one and the same boundary-line, run everywhere infinitely

near each other. If we consider only the lines along which

the cuts are made, without regarding the edges furnished by

them, these lines form a line-system, and the portions of the

surface T itself which are contiguous to the two sides of each

line belong with that line.

Secondly, it may happen that, when pieces are removed from

W by the cuts introduced, so that gaps occur in T, the edges

belonging to the boundary-lines which are furnished by the

cuts, likewise run for considerable distances infinitely near

one another in isolated places. We will, however, lay partic-

ular stress on those boundary-lines in connection with which

this is not the case, and call them by the distinctive name
houndary-lines of the second kind. Consequently a boundary-

line of the second kind is formed by a closed line, and every-

where on one side of this line there borders a portion of the

surface belonging to T, while on the other side a gap occurs.

Thus in connection with a boundary-line of the second kind

two edges never run infinitely near each other for any dis-

tance ;
^ on the contrary, when in connection with boundary-

lines which divide the surface two edges do so run, a boun-

dary-line of the first kind is connected with a boundary-line

of the second kind. If the boundary-lines of the second kind

be conceived in this way, each boundary-line is either of the

first or of the second kind, or it is a combination of the two.

We will now show that every surface T, which possesses

arbitrary boundary-lines, can be obtained from an appropriate

1 The case in which edges, which belong to boundary-lines of the second

kind, come infinitely near one another at isolated points will be considered

later.
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complete surface by means of cuts. Let us first assume that

T contains only boundary-lines of the second kind. In this case

it can first be made into a complete surface W by the addition

of surface-pieces B, and then be obtained again from this sur-

face by means of cuts. This is at once evident, if each one of

the boundary-lines which enclose the gaps run entirely in one

and the same sheet. If, on the other hand, a boundary-line run

in several sheets, we assume that the supplementary piece B
consists of the same sheets, by imagining each sheet extended

beyond the edge. In a place where the boundary-line passes

from one sheet into another, a branch-cut must occur, or be

capable of being assumed, in T. At such a place we extend the

branch-cut into B, let it end in J8 at a branch-point, and assume

that the connection of the sheets at this point in 5 is just as it

actually occurs in T. This can be effected in every place where

it is necessary independently of every other place, and depends

only upon the particular connection of the sheets in T for each

branch-cut. If a gap be bounded by several boundary-lines,

the same method of procedure is followed for each. We
thereby obtain a surface B everywhere contiguous to the

boundary-lines, which contains no gaps, and which is also

completely bounded by these boundary-lines, since the latter

bound completely the gaps.

If any surface T, which possesses arbitrary boundary-lines,

be under discussion, we imagine all boundary-lines of the first

kind removed, by regarding the lines along which they run as

not drawn. We then supplement the surface, in the manner

outlined above, into a complete surface and cut from this first

the boundary-lines of the second kind. This done, it is at once

evident that the boundary-lines of the first kind, whether they

occur alone or in connection with those of the second kind, can

be cut in the surface.

Thus we can always regard a given surface T as one formed

from a complete surface Why means of cuts. Let the number

of surface-pieces B removed from W by boundary-lines of the

second kind be s. All cuts made in W run along certain lines.

We will now suppose these lines to be drawn in W; then they
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all together form a line-system. It is not necessary for all the

lines of this system to be connected. We will assume that it

consists of r distinct systems A,, L^, •••, L^ Each L forms a

connected line-system complete in itself, but it may at the

same time contain several boundary-lines. Let us assume

the boundary-point a, which is to be assigned to W, on one of

the systems L, and let a boundary-point be also taken on each

of the r — 1 other systems. Then all the systems are exactly

alike in this respect,— that each one is connected with a

boundary-point. We therefore need to examine more closely

only one of these systems ; we will designate it indefinitely by

Lf and the boundary-point on it by a.

Since L is by itself wholly connected, and hence, with an

exception to be mentioned immediately, contains no simply

closed lines, it can be decomposed into simple line-segments

(§ 50). (The exception referred to occurs when L consists of

a single simply closed line, which therefore begins at a point a

and also ends at that point ; but in that case L forms one cross-

cut.) If we denote, as in § 50, the numbers of end- and nodal-

points contained in L by e, k^, k^, k^, •••, then, by §50, L
consists of

^(e + k, -{- 2 k. + Sk, -[-•••)

simple line-segments ; or of

i(e+K)

simple line-segments, if for brevity we let

ks + 2k, + Sk,+ '.' = K
A simple line-segment is a cross-cut, if both of its end-points

lie on an edge ; but if one end-point lie in the interior of the

surface, the simple line-segment is a slit (§ 53, II.). Hence

the system L in general consists partly of cross-cuts, partly of

slits. But the latter need not be considered, because a slit,

which begins at the edge and ends in the interior, can never

divide the surface and does not change the order of connection

(§ 53, II.) ; its effect, on the contrary, consists only in extend-

ing a boundary-line which already exists. Hence it is impor-
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tant to determine tlie number p of cross-cuts contained in L.

To that end we remark that the line-system L, according to

Lippich's proposition, can in fact be regarded as a system of

cross-cuts, but only when conditions (1) and (2) of § 51 are

fulfilled. This is not the case if the end-points of L lie in the

interior of the surface. We can, however, remove these by

cutting off every line-segment which contains such a point at

the nodal-point nearest to it. Then the system which remains,

since it satisfies conditions (1) and (2), consists of only a definite

number p of cross-cuts ; but the line-segments cut off become

slits. We will now always place the boundary-point a, which

can indeed be arbitrarily assumed, either at an end-point or

at an ordinary point. If a be an end-point, only e — 1 line-

segments are to be cut off, since a, as a boundary-point, need

not be removed. To find p, therefore, we must deduct from

the number |(e + K) of all the simple line-segments the

number e — 1 of segments which are not cross-cuts, and we
thereby obtain

p = i(e-\-K)-(e-l)=i{K-e)-\-l.

We obtain the same value if a be an ordinary point. Then all

the e end-points must be removed ; but now, in order to decom-

pose the system which remains into cross-cuts, since all the

line-segments which end at a must be regarded as possessing

end-points at that place, we must, according to the discussion

of § 51, count a as two end-points in addition. Thus the whole

number of simple line-segments is now

and therefore

p=i(2 + e + K)-e = i(K-e)-^l,

as before; and this relation is also valid for the exceptional

case mentioned above.

Consequently each of the r line-systems L contains

1(^-6)4-1
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cross-cuts, and therefore they all in the aggregate contain

cross-cuts.

If we now refer the letters e, A:.,, k^, k^, •••, and K to the end-

and nodal-points of the entire line-system formed by all the

boundary-lines ; that is, if we write e and K instead of Se and

S/t", we obtain for the number p of cross-cuts which are formed

by all the boundary-lines the value

p = i(K-e)-]-r, (2)

Some of these cross-cuts divide the surface; others do not

divide it. According to the assumption s surface-pieces B
were removed from W; thus, including the piece T which

remains, W is divided into s -f 1 pieces. Hence s is the num-

ber of dividing cross-cuts, because no cross-cut can divide a

surface into more than two pieces, and none can cross another.

(Cf. § 48, V.) If, moreover, we denote by v the number of

non-dividing cross-cuts, we have

v-{.s = l(K-e)-\-r. (3)

Now by (1) the relation

Q=G-2(n-l) (4)

held for the surface TT; but r — 1 boundary-points were re-

moved from W, and therefore Q must be increased by r — 1.

This (Q + ^')"P^y (connected surface has now been divided by

V -f s cross-cuts into s + 1 pieces ; accordingly the proposition

proved in § 53, VI. can be applied. If we denote by q the

number of cross-cuts for T, and by g/, gg'? •••? 9.' the numbers

for the s surface-pieces B which were removed, then by VI.,

§ 53, we have
Q-\-r-l=v + q + ^q^ (5)

From this equation and (3) we obtain

q=Q-l- l(K- e) - ^q,' + s.
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We can find from this formula when g is a finite number.

For, since Q, and by YI., § 53, also every q^', is finite, q remains

finite if s, K, e be finite, i.e., if the boundary-lines form a finite

line-system (in the sense of § 50).

If T possess only boundary-lines of the first kind, we can

quite generally determine the number of its cross-cuts. For

in this case the cross-cuts contained in the boundary-lines

are all non-dividing, and therefore Q is first to be increased by
r — 1, and then to be diminished by the number p of cross-cuts

which are contained in the boundary-lines. But the slits,

which can, moreover, only enter as boundary-lines of the first

kind, or as parts of such lines, do not change the order of the

surface. We therefore have

q=Q^-r-l-p,

or by (4) q=G — 2n-\-l-\-r—p',

and finally by (2) g = ^ - 2n + 1 - i(/r-
e), (6)

if at the same time the number of simple branch-points con-

tained in T, which in this case is equal to G, be again denoted

But if T also possess boundary-lines of the second kind, we
will, in order to obtain a definite expression for q, make a

limiting hypothesis ; namely, that all the surface-pieces B
which are removed can be extended in planes.-^

For this surface the relation

q = g-U^l
of § 55 can be applied. If we denote the numbers of simple

branch-points contained in the surface-pieces B by gi, g^, ...,

gj, we have
G = £!' + %'• (7)

1 If a complete surface, say a Biemann many-sheeted spherical sur-

face, be resolved by any cuts whatever into two distinct pieces, it is quite

evident that the cases may occur in which either both pieces or only one

of the two can be extended in a plane ; but it is very probable that the

third case may also occur in which neither can be extended. In the

latter case the following investigation would lose its validity.



SIMPLY AND MULTIPLY CONNECTED SURFACES. 239

If, further, Un be the number of circuits of the boundary-lines

in one of the pieces B, then for this piece

Therefore, if we let F= 2 U„

we obtain for the aggregate of surface-pieces B

If we subtract this equation from (4) and attend to (7), we
obtain

and since from (5)

Q - 2g/ = g + V - r H- 1,

it follows that

g + v-r + l =g-2n-{-2-\-V-s

or q = g — 2n-\-l—(v-{-s — r)+V,

and finally by (3)

q = g-2n-^l-i(K-e)-hV. (8)

If there be no boundary-lines of the second kind, and hence

if V=0, this formula reduces to (6).

The circuits V of the boundary-lines of the second kind are,

according to the preceding, to be counted in the pieces B which

are removed, and in the way specified in § 55, namely : Each
boundary-line is to be so described that the piece B lies on the

left ; and after B is extended in a plane, each circuit is to be

counted as positive or negative, according as it is described

in the direction of increasing or of decreasing angles.

We have yet to call attention to a special condition. It may
happen that boundary-pieces, which belong either to different

boundary-lines of the second kind or to one such line, meet

in single points S. In such cases different conceptions are

possible, both in regard to how a boundary-line shall be con-

tinued beyond a point S, and also in regard to the connection

of the surface-pieces contiguous to S. Now formula (8) re-

mains always valid, if we hold a conception once chosen. Yet,
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in order to remove all difficulties whicli may thereby occur,

and in order to have something definite, we will assume that,

when two boundary-pieces which belong to boundary-lines of

the second kind meet in a point S, they are connected by an

infinitely small cross-cut, i.e., by an infinitely small boundary-

line of the first kind. The advantage is thereby secured, that

every boundary-line of the second kind without exception, if

it be considered by itself, that is, apart from boundary-lines

of the first kind which may possibly meet it, forms a simply

closed line.

Formula (6) holds quite generally for surfaces which contain

only boundary-lines of the first kind. Formula (8) on the

other hand, for surfaces which possess both kinds of boundary-

lines or only those of the second kind, holds only under the

condition that the surface-pieces which are removed can be

extended in planes. But if this condition be satisfied, then

(8) remains equally valid, whether or not T itself can be ex-

tended in a plane. We will emphasize a case in which T can

be so extended, and in which then formula (8) can be again

reduced to the simple relation q = g — U-\-l. If we assume

that the complete surface W is closed at infinity, and if the

case occur in which all the n points at infinity have been

removed from T by means of boundary-lines of the second

kind, which together make n circuits, then T can be extended

in a plane.^ If this case occur, the outer boundary-lines make
n circuits, and the other V—n circuits arise from the inner

boundary-lines. The latter will, according to the hypothesis,

be so described that the pieces B which are removed lie on

the left, and T therefore on the right. But if we reverse the

direction of description, in order to establish again the custom-

ary hypothesis that T lies on the left, each circuit at the same

time changes its sign, and consequently

-(V-n)=n-V

^ This is perhaps the only case in which T itself and also the pieces

which were removed can be extended in planes ; but it may be left un-

decided whether this cannot occur in still other cases.
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is the number of positive circuits for these boundary-lines.

But the case is different with the outer circuits. For a posi-

tive circuit (in the direction of increasing angles), in a piece

which is removed and which contains a point at infinity, forms

a negative circuit in Twhen that surface is extended in a plane.

Therefore, if we also reverse here the circuit-direction, it re-

mains a positive circuit. Thus the outer boundary-lines make
71 positive circuits, the inner boundary-lines n — V such cir-

cuits, and consequently the boundary-lines of the second kind

contribute 2n-V (9)
to U.

This value is increased by +1 by every cross-cut, for boun-

dary-lines of the first kind (p. 229), while every slit leaves it

unchanged ; for a change of direction equal to + tt occurs at

one end of a slit, and a change equal to — tt at the other.

To determine the number of cross-cuts, which are contained

only in boundary-lines of the first kind, we will divide these

into two classes; let the first class include those which are

connected with boundary-lines of the second kind, the second

class all the others. The values of e and K which refer to

these two classes may be denoted by Ci and Ki, and eg and K2
respectively; then

ei 4- 62 = e, ^1 + JTs = K (10)

Let us keep in mind, in reference to the first class, that

when the sections discussed in § 50 are made in a line-system,

.the number of simple line-segments arising is always the same

;

namely,
Ke. + IQ,

even when the sections are so effected that simply closed lines

arise. Hence we can so direct the sections in the line-system

under discussion that all the boundary-lines of the second kind

contained in it become simply closed lines. Then the boundary-

lines of the first kind which are left form •J-(ei -|- Ki) simple

line-segments, and of these, since all the ei end-points lie in

the interior, , / , t^\ 1 / r" \' i(ei + ^1) - ei = J(Ai - ei)

are non-dividing cross-cuts.
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The second class of boundary-lines of the first kind, i.e., those

which are not connected with boundary-lines of the second kind,

may form p distinct systems. If a boundary-point be assumed

on each of the latter, they form by (2)

i(K2 - 62) + p

non-dividing cross-cuts. Since, however, every boundary-point

represents a negative circuit, they furnish

- p + [i(K, - e,) -\-p-\ = i(K, - €,)

positive circuits. Consequently the number 2n — V found

under (9) is to be increased by i(Ki — e^) for the first class

of boundary-lines of the first kind, and by i(K2 — e^ for the

second class. We thus obtain, with attention to (10), the value

for the number U of positive circuits made by the aggregate

of boundary-lines ; by means of this relation (8) is reduced to

From the results of this paragraph we can now enunciate

the proposition

:

Every Riemann surface which possesses only a finite number

of sheets and branch-points, the boundary-lines of which form a

finite line-system {in the sense of § 50), can be modified into

a simply connected surface by means of a finite number of

cross-cuts.

57. We will now conclude these investigations by making

another application, namely, to the determination of the relation

which exists between the number of corners, edges, and faces of

an arbitrary body bounded by plane surfaces.'^

If we denote these numbers in order by e, k, and /, then,

according to a proposition by Euler,

e-k^f=2. (1)

1 F. Lippich, " Zur Theorie der Polyeder," Sitz.-Ber. d. Wien. Akad.,

Bd. 84, Abth. II., Juni-Heft, 1881.
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Fio. 62.

But this relation does not hold for every arbitrarily formed

body with plane faces ; on the

contrary, a number which de-

pends upon the order of con-

nection both of the aggregate

of surfaces, and also of the

individual lateral faces, must

in general be added to the

right side. For instance, the

Eulerian relation does not

hold for the body represented

in Fig. 52, in which a smaller

parallelopiped so rests upon

a larger that the face of the smaller covers a portion of the

interior of a face of the larger. We can at once convince our-

selves of this by an enumeration. For in this case e = 16,

k = 24, /= 11 ; therefore

e — k +/= 3, and not 2,

as the Eulerian relation requires. In like manner this relation

does not always hold if there be a cavity in the body, or if it

be closed after the manner of a ring.

We will now assume that the aggregate of surfaces of the

body is (q + l)-ply connected ; that therefore q cross-cuts

modify it into a simply connected surface. Since this surface

is closed, we must, by § 46, assume a boundary-point. Let this

be denoted by a, and be situated on an edge (Fig. 52). Now
the edges form a line-system in. the surfaces of the body. This

can either be wholly connected or consist of distinct parts.

Let the number of such parts be n, where n can also be equal

to unity. This line-system could, by § 51, have been regarded

as a system of cross-cuts, if it had satisfied conditions (1) and

(2), given in that paragraph. Condition (1) is indeed satisfied,

since the lines possess no end-points in the interior of the sur-

face ; but not (2), since, in case n be not equal to unity, the

lines are not all connected with the boundary-point a. Never-

theless we can cause this condition to be satisfied, by also
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assuming one boundary-point on an edge belonging to each, of

the other n — 1 parts of the system of edges, just as the

boundary-point a was assumed in one of those parts. Let

these points be denoted by a^, a2, •••, a„_i. (In Fig. 52 it is

necessary to assume only one such point, a^.) Then the sur-

face possesses n boundary-points, and every line is connected

with some one boundary-point ; consequently condition (2) is

satisfied. Therefore, by § 53, the line-system which consists

of the edges, now forms a system of cross-cuts, quite definite

in number ; let this number be s.

But now, after n — 1 new boundary-points are taken out of

the surface, its order of connection is increased by ?i — 1.

Thus g -f M — 1 cross-cuts are necessary to change it into a

simply connected surface. If we imagine the surface to be

cut through along the edges, which form s cross-cuts, we
resolve it into distinct pieces; namely, into the individual

bounding-faces of the body, the number of which was /.

These are not, in general, all simply connected. (In Fig. 52

one was not, namely, that one upon which the smaller body

rests.) If we denote by p the total number of cross-cuts

which are necessary to make all the bounding-faces simply

connected, and if we add these cross-cuts, none of which

divides a face, we again obtain / distinct pieces ; these pieces

are now, however, all simply connected. Consequently we
have : The (q + ri)-ply connected aggregate of surfaces of

the body, after the removal of the n — 1 boundary-points, is

resolved hj s-\-p cross-cuts into / distinct pieces, each of

which is by itself simply connected.

But now, on the other hand, we can first change the same

surfaces into one simply connected surface by means of

q -{-71 — 1 cross-cuts, and then resolve this surface into /
distinct pieces by means of /— 1 additional cross-cuts. The

former surface is therefore also resolvable into / distinct

pieces, each by itself simply connected, by means of

(9 + »-l) + (/-l)
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cross-cuts. Consequently, according to Riemann's fundamental

proposition,

(^ + 7l-l) + (/-l)=S+i),

or n-8-\-f=2-\-p-q. (2)

The number n — s which appears in this formula can be

expressed in terms of the numbers e and k of corners and

edges. For at every corner at least three edges meet, and

hence each corner forms a nodal-point of the line-system

which consists of these edges ; and if we denote by eg, e^,

65, ••• the numbers of corners in which 3, 4, 5, ••• edges meet,

we have

If, further, we count all the edges which meet in the indi-

vidual corners, we obtain double the number of all the edges,

since every edge is counted twice. Hence

2k = 3e,-{-4:e,-\-5es+'".

If we now wish to resolve the system of edges into the

s cross-cuts of which it consists, we must make the sections

discussed in § 50 ; then the s cross-cuts appear as s simple

line-segments, the number of which is half as great as the

number of their end-points. Therein, by § 51, each of the n

points a, ai, a^, •••, a„_i, must be regarded as forming two end-

points. Since, in addition, each corner in which h edges meet,

as an ^ple nodal-point, furnishes h — 2 end-points, we obtain

2s = 2w4-e3 + 2e4 + 3e5H .

If the preceding expression for 2 A; be subtracted from this,

we get

2s — 2k = 2n — 2{e^^e^ + es-\ )

= 2n-2e',

consequently n — s = e — fc,

and from (2) e-k+f=^2+p-q. (3)
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This is the desired relation. In the general case, therefore,

the number p — q is added to the number 2 on the right side

of the Eulerian relation (1) ; in this q is the number of cross-

cuts necessary to modify the aggregate of surfaces into a simply

connected surface, and p the number necessary to that end in

all the individual boundary-faces.

The Eulerian relation therefore holds only when p = q. In

an ordinary poiyedron, everywhere convex, this is in fact the

case, because then p = q = 0. For some special cases, and the

way in which the numbers e, k, f must be counted in order

that equation (3) may remain valid, we refer to the dissertation

<}ited above.

SECTION X.

MODULI OF PERIODICITY.^

58. Let J{z) denote an arbitrary algebraic function. Let us

conceive as the region of the variable z a surface consisting

of as many sheets and containing such branch-points as the

nature of this function f(z) requires. We will surround with

small closed lines the points of discontinuity of this function

and thus exclude them. We will assume provisionally that

all the points of discontinuity are enclosed in this way, but we
shall very soon see that certain kinds of points of discontinuity

need not be excluded. We will call the surface so formed T.

This now possesses a finite order of connection, and can there-

fore, if it be multiply connected, be modified into a simply

connected surface by means of a finite number of cross-cuts.

Eor, since the function in question is an algebraic one, this is,

by § 54, at all events the case before the exclusion of the

points of discontinuity. But since an algebraic function pos-

sesses only a finite number of points of discontinuity (§ 38),

1 The special investigation of the logarithmic and exponential functions

given in § 22 and § 23 may serve as illustrations of the general considera-

tions contained in this section. Other examples will be found in § 61.
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therefore by the exclusion of these points only a finite number
of new boundary-lines are added; accordingly by § 56 the

order of connection also remains finite after the exclusion of

the points of discontinuity. Consequently, if the surface T
be multiply connected, we will modify it into a simply con-

nected surface by means of cross-cuts, and designate the new
surface by T. Then every closed line in T forms the com-

plete boundary of a portion of the surface, in which f{z) is

finite and continuous. Hence, if the function defined by the

integral

be formed by integrating from an arbitrary fixed initial point

Zq to a point 2;, along an arbitrary path which lies wholly

within T\ then any two such paths together make a closed

line, and this line bounds completely a portion of the surface

in which f{z) is everywhere continuous; therefore w acquires

at 2, along all such paths, one and the same value (§ 18).

Consequently w is a function of the upper limit «, and remains

uniform everywhere within V}

1 The case in which two paths taken together form a closed line which

intersects itself is no exception to the above. For we can always resolve

such a line into several simply closed lines. (Cf. Fig. 53.) The resolu-

tion is effected in the following way

:

Whenever, in tracing the line from

an arbitrary point ^q, we have returned

to a point already once passed (e.gr.,

o), and thus have traced a simply

closed line {e.g., ahcda), we separate

this and regard the part which follows

{e.g., ae) as the continuation of the

part {ZqO) which preceded the part

separated. If this mode of procedure

be repeated as often as the same con-

dition arises, there is finally left a

line likewise simply closed ; and in

this way the given line is resolved into

several simply closed lines. (In the figure the lines which are separated

are ahcda and efghe., and that which is left is ZQaeifhbdzQ.) The above
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But the case is different when we consiaer the function iv

in the surface T, and when therefore we let the path of inte-

gration cross the cross-cuts. In order to examine this, we
will first direct our attention to the case in which no cross-cut

is divided into segments by a sub-

sequent one which starts from it.

Now both edges of each cross-cut

belong to the boundary of T', so

that these are connected, and we
can draw a closed line 6, running

entirely in the interior of T', which

leads from one edge of the cross-

cut to the other edge of the same.

Let Zi and Z2 (Fig. 54) be two

points lying infinitely near each

other on opposite sides of the
Fig. 54.

cross-cut. We will now inquire whether

w

when the paths of integration still run entirely in T\ acquires

at %x and z^ values that are equal (accurately speaking, differ-

ent by an infinitesimal quantity) or different. But if we
denote the values of w at z^ and z^ by w^ and w^ respectively,

we have

w<,= Cf{z)dz= Cf{z)dz-^ Ca^Yz,
Jz^ Jz^ Jz^

the first integral to be taken along an arbitrary path running

in T\ the second along a closed line h leading from z^ to z^

within T. Thus

^^2
Jz^

integral, extended along the simply closed lines, is now equal to zero, and

therefore it is also zero taken along the given line, since this integral

is equal to the sum of the preceding. Then, if the given path be formed

by two paths leading from ^^ to s, the integral has the same value along

both paths (§ 18).
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Hence w^ and w^ have the same or different values according

as the integral

fA^ydz,

extended along the closed line 6, is zero, or has a value A dif-

ferent from zero. In the first case w remains continuous on

crossing the cross-cut ; in the latter case vj springs abruptly from

Wi to wjg = Wi + A, and is therefore discontinuous. But this

abrupt change is the same at all places of the same cross-cut,

because the value of the integral does not change, if we enlarge

or contract the closed line b in such a way that it begins and

ends at two other infinitely near points on opposite sides of

the same cross-cut (§ 19). This quantity A, which is thus

constant along the entire cross-cut, and by which the function-

values on one side of the cross-cut exceed those on the other,

is called the modulus of periodicity corresponding to this cross-

cut. The case is exactly similar for every cross-cut, because

the two edges of each one are connected, and therefore a closed

line can be drawn from a point on one side to an infinitely

near point on the other side through the interior of T'. Thus
to every cross-cut corresponds a modulus of periodicity, which

remains constant for one and the same cross-cut (yet always

under the hypothesis that no cross-cut is divided into segments

by a subsequent one). But if we now assume that the function

IV proceeds continuously in T also, and hence also over the

cross-cut, it acquires at Zi, on the path Z(^ibz^i, which crosses

the cross-cut, a value greater by the modulus of periodicity

than the value acquired on the path Zf^Si, which does not cross

the cross-cut. For in the former case the value of w at Zi is

regarded as the uninterrupted continuation of W2, while on the

second path w acquires the value Wi, and

^2 = W^l + A.

There occurs here a condition similar to that which we found

to exist in the case of branch-cuts (cf. § 13), and as long as the

surface T consists of only a single sheet, we can also regard

every cross-cut as actually a branch-cut, over which the surface
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continues into another sheet. But we must then suppose that

infinitely many sheets lie one below another, since, for every

new passage of the cross-cut, the value of the function iv is

increased by A, and the original value never occurs again.

If the surface T itself already consist of several sheets, that

mode of representation would indeed be possible, but yet it

would be too complicated, and hence would offer no real

advantage.

The sign of A changes if the closed line b be described in

the opposite direction; but we will always so assume the

modulus of periodicity that it is equal to the integral taken

along the closed line b in the direction of increasing angles.

If we now conceive all possible paths which lead from an

initial point Zq to an arbitrary point z through the interior of

T, then these paths can either cross none of the cross-cuts or

intersect one or more cross-cuts one or more times. Hence w
can acquire at one and the same point z very different values,

according to the nature of this path, and it is therefore a

Fig. 55.

multiform function of the upper limit of the integral. But

since this diversity of values of w at the point z is due solely

to the passages over the cross-cuts, these different values can
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differ from one another only by multiples of the moduli of

periodicity. Hence, it Ai, A^, A^ •" denote the moduli of

periodicity for the single cross-cuts, 7i„ rig, ^3, ••• positive or nega-

tive integers, and iv and w' two different values of w at the

point z, then

iv' = tv -\- riiAi H- nzAi -f n^^ + ••••

An example may make this clear. Fig. 55 represents a

triply connected surface ; let the cross-cuts be ab and cd, and

let the moduli of periodicity for the same be ^1, and A2, re-

spectively, so taken that the passage from one side of the

cross-cut to the other side along a closed line is made in the

direction of increasing angles. If we designate the value

acquired by the function lo on a path by adding the path in

brackets to the letter w, we have

w(zQez) = ic(zoz) + A2,

'^(^ofg^) = «^(V) - ^1 +A
w(zjiz) = w{Zffi) -f A^.

From this it is evident that the function defined by the

integral

dz

possesses a multiformity of a quite peculiar kind ; namely, that

the different values which it can acquire for the same value of

z differ from one another only by multiples of constant quanti-

ties. If we now take the inverse function, i.e., if we regard z

as a function of iv, then this is a periodic function, since it

remains unchanged when we increase or diminish the argument

w by arbitrary multiples of the moduli of periodicity. By this

also the name modulus of periodicity is justified, since we can

say, analogously to the language of the theory of numbers, that

z acquires equal values for such values of w as are congruent

with one another to a modulus of periodicity, i.e., as have a

difference equal to a multiple of the modulus of periodicity.

59. We have hitherto assumed that the cross-cuts are so

drawn that no one of them is divided into segments by a subse-
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quent cross-cut which, starts from it. But if one be so divided,

as for instance in Fig. 56, where the one cross-cut ad is divided

by the second ce into the two segments ac and cd, the modulus

of periodicity Bi of the one segment ac may possibly differ

from that B2 of the other segment cd. For JSj is equal to the

integral lf{z)dz taken along the line bi, B2 is equal to the same

integral taken along 62- If these integrals have different values,

then the moduli of periodicity B^ and B2 are different. Thus

Fig. 50.

the modulus of periodicity does not now remain constant along

an entire cross-cut, but only from one node of the net of cuts

to the next. But now a modulus of periodicity B^ corresponds

to the cross-cut ce, and hence there are three moduli of perio-

dicity, notwithstanding that only two cross-cuts are necessary

to modify our surface into a simply connected surface. But in

such a case there always exist relations between the single

moduli of periodicity. In our example the integral taken along

63 is equal to the sum of the integrals taken along h^ and ftg

(§ 19), and hence

^3 = -Bi + ^2

;

thus we have in fact only two moduli of periodicity which are
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independent of each other, i.e., just as many as there are cross-

cuts.

To prove now in general that there are always only as many
moduli of periodicity independent of one another as there are

cross-cuts, we observe that the cross-cuts in most cases can be

drawn in various ways. But there is always one mode of

resolution in which no cross-cut is divided into segments by a

subsequent cross-cut. This is always effected by beginning

every cross-cut at a point of the original boundary and also

ending it at such a point. If the surface be closed and hence

possess only a single boundary-point (§ 46), we have only to

begin and end each cross-cut at this point.

Now let an (?iH-l)-ply connected surface first be so resolved

into a simply connected surface by means of n cross-cuts that

thereby no cross-cut is divided into segments by another ; we
then have, for this mode of resolution, exactly as many moduli

of periodicity as cross-cuts. Let these be

-^IJ -^2? •••? -^n-

Next let the same surface be resolved in another arbitrary way.

Thereby the single cross-cuts are divided into segments with

different moduli of periodicity, and the number of the latter is

greater than n ; let these be

Now let the variable z describe from any arbitrary point Zq a

closed line which crosses only one cross-cut of the first system,

and let the modulus of periodicity for this cross-cut be Aj^;

then, if Wq and w denote the values of the function at the

beginning and after the completion of the closed line, we have

w = Wq-{- Aj,.

But if we now suppose the surface to be resolved in the second

way, the same closed line may cross several cross-cuts of the

second system ; hence by § 58 the value of w must be obtained

also in the form
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wherein h denotes a positive or negative integer (zero included).

Consequently

Now, conversely, let the variable z describe from Zq a closed

line which crosses only one cross-cut of the second system,

and let the modulus of periodicity of this cross-cut be B^ ; then

the final value of the function is first

Wo-\-B^;

but, if the crossings of the cross-cuts of the first system be

considered, that value is also obtained in the form

Wo + g^Ai + g^A^ H f- g„A^,

wherein g likewise denotes a positive or negative integer (zero

included). From this follows

B;, = giAi + g^A^ -f ••• -}- 9'nA-

Consequently we obtain between the two systems of the

moduli of periodicity A and B the following two sets of

equations

:

(A, = h,'B, -{-hJB, +...JrliJB^

A, = iH'^B, + lh''B, -f . .
. + hJ^B^

and

(1)

(2)

.A = W-^B, + V^^A + - + IC'^'B^

\
B, = gMi + gM^ + ••• + gJA^
B, = g,'A, +g,'A, + .•• +9'«"A

L B^ = g.^'^^A, 4- g^^'^^Ao H- ... + ^,/'">A.

Since now according to the assumption 7n > n, we can

eliminate the w quantities A from equations (2) and thereby

obtain m — n relations between the quantities B. But since

we can also obtain these relations by substituting in (2) the

values of A from (1), they must be homogeneous linear equa-

tions with integral coefficients. Therefore we conclude: If

previous cross-cuts be divided by subsequent cross-cuts into

segments which have different moduli of periodicity, so that
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in all m moduli of periodicity exist, while only n cross-cuts

occur, then there are m — n linear homogeneous equations of

condition with integral coefficients between these m moduli

of periodicity, and of these moduli only n, i.e., just as many
as there are cross-cuts, are independent of one another.

AVe can also, without any calculation, reach the same con-

clusion by a simple consideration. For, after the surface has

been made simply connected by means of cross-cuts, its boun-

dary can be traced in a continuous description (§ 53, IX.). The
cross-cuts and their segments enter in this description in a

definite succession. If, for each cross-cut, the modulus of

periodicity be known for that segment at which we arrive

first in the description, then the moduli of periodicity for the

other segments are given by linear relations. We will show

this only in an example.

In the quadruply connected surface represented by Fig. 57,

let ab, cd, ef be the three cross-cuts which modify the surface

into a simply connected sur-

face. Let the letters p, q, r,

s, t, u, V, X, y, z denote the

values acquired by the func-

tion IV at the corresponding

points which are situated in-

finitely near the cross-cuts. If

we now describe the cross-cuts,

together with the original

boundary, in the direction

aefc •••, let the moduli of

periodicity be known for the

three segments ae, ef, fc, and

be denoted by
Fig. 57.

q —p = s — r= Ai, s — u = x — v = A2, x — y = As;

we then wish to obtain the moduli of periodicity for the

segments eb and/d, and will denote these by

u — t = Xi, z —V— X2.
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To find these, we remark that continuity exists between the

function-values at any two consecutive points which are not

separated by a cross-cut ; that their difference is tlierefore in-

finitesimal. Consequently we can let

Thus we obtam ' ^

Xi = u — t = u — r = {s — r) — {s — u)= Ai — A2,

X2== z - V = y - V = {x - v)-{x - y)= A2 - As,

by which Xi and X2 are expressed in terms of Ai, A^, A^.

60. We have hitherto assumed that all the points of discon-

tinuity are removed from the 2;-surface by means of small

enclosures, so that the function f(z) remains finite in the sur-

face T so formed. But we will now show that it is in fact not

necessary to exclude all the points of discontinuity, and will

inquire for what points the enclosures need not be drawn.

The modulus of periodicity A for a particular cross-cut is, as

was shown in § 58, the value of the integral | f(z)dz, extended

over a closed line h which leads from one side of the cross-cut

through the interior of the simply connected surface T to the

other side of the same cross-cut. But this integral in many
cases may have the value zero. Let us assume that the closed

line h encloses a place removed from the ^-surface which con-

tains a point of discontinuity a (which is not at the same time

a branch-point) of the function f{z). Then by § 42 the integral

I
f(z)dz has a value different from zero only when the term

z — a

is present in the expression which indicates how f(z) becomes

infinite ; in all other cases the integral has the value zero. For

instance, the integral equals zero when f(z) is infinite at a as

(z-af
or as

H h
(z — ay (z — ay
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is infinite, wherein n denotes a positive integer different from

unity. In such a case the function w remains continuous on

crossing a cross-cut ; hence it is not necessary to exclude the

point of discontinuity, and the cross-cut need not be considered.

If we assume, for instance, a simply connected piece of the

2-surface, in which are contained only points of discontinuity

of the kind in question, then the integral
|
f(z)dz acquires the

same value along two paths which enclose such a point of dis-

continuity, because this integral, taken round the point of

discontinuity, has the value zero (§ 18). Hence, in such a

piece of the surface, the function

w rv(2)*

is likewise a uniform function of the upper limit, just as

if the piece of the surface contained no point of disconti-

nuity at all.

This is one kind of point of discontinuity which need not

be excluded. Let us now turn to branch-points. The integral

lf(z)dz, taken along the closed line b, has the value zero

when this line encloses a winding-point of the (m — l)th

order at which f(z) becomes infinite of an order not higher

than (§ 21) ; and, in general, when the term which is

infinite of the first order is wanting in the expression which

indicates how f(z) becomes infinite at the branch-point (§ 42).

In this case, therefore, the discontinuity- and branch-point

need not be excluded, and thus it is likewise unnecessary

to consider the cross-cut. But we remark that, since the

2;-surface now consists of several sheets, it may be multiply

connected without the exclusion of points of discontinuity.

Thus cross-cuts will always in such cases be required in order

to modify the surface into a simply connected surface, and to

these will correspond moduli of periodicity.

Finally, we can also determine in what case the point at

infinity must be excluded. The value of the integral, for a
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line enclosing the point = go, depends upon the nature of the

function
z%z)

for 2; = 00 (§ 43). Thus this point must be excluded when

lim [2/(!2)]«=oo is finite, and not zero;

and in general when, and only when, in the development of

f(z) in ascending and descending powers of z, a term of the

form

9
z

is present.

If now, for a given function f(z), all those points have been

excluded from the 2;-surface which must necessarily be excluded,

and only these, then, within the surface T so formed, the integral

I f(z)dz, taken along a closed line which forms by itself alone the

complete hoxmdary of a portion of the surface, is always equal

to zero.

For the portion of the surface so bounded contains then

either no points of discontinuity at all, or only such as lead

to the value zero for the integral taken along the boundary.

In this it is, of course, assumed that the closed line does not

pass through a point of discontinuity or a branch-point.

61. We will now apply the preceding considerations to some

examples.

1. The Logarithm.

We will recall first the function log z, or the function defined

by the integral

J'^'dz

already discussed in § 22 and § 23. In this f(z) = - is uniform,
z

and hence the ^-surface consists of one sheet. Further, =
is a point of discontinuity, and

lim [2/(2)]^ = \\m[Z'-\ =1.
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Hence this point must be excluded. If we now assume that

the z-surface is closed at infinity, the point 2 = 00 must also be

excluded, because

lim [«/(«)]^=1.

By the exclusion of these two points, the surface T is made
doubly connected, and a cross-cut which connects the circles

enclosing the two points and 00 modifies it into a simply con-

nected surface (Fig. 58).

The modulus of perio-

dicity A is equal to the

value of the integral

-erdz
Jr 00

Fig. 58.

taken along a closed line,

which makes a circuit

round the origin in the

direction of increasing angles, and hence

^ = 2 Trt.

Such a line also encloses the point 00 at the same time, and
for this we obtain (§ 43)

/— = —2 7r?'lim
z

^^11

z J

2 7rt,

if the integration be extended in the positive boundary direc-

tion, and if, therefore, the cross-cut be crossed in a direction

opposite to the former.

Here

2. The Inverse Tangent.

C dzw = \ —
Jo 1'0 ± + 2^

1

l-f-2!2
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is likewise imiform and becomes infinite of the first order, for

z -—i and z = — i-, on the other hand,

Hence we need exclude only the points z = i and z — — i by-

means of small circles (Fig. 59), and we then obtain, assuming

the 2^surface to be closed at infinity, a doubly con-

f-i) nected surface; this is changed into a simply connected

surface by a cross-cut which joins the small circles

round + i and — i. The modulus of periodicity A is

the value of the integral

fdw,

taken along a closed line which makes a circuit round

the point + i in the direction of increasing angles, and
Fig. 59.

j^g^^g^ ^g ^g \i^aNQ already found in § 20,

A —IT.

The same line can be regarded as one which makes a circuit

round the point — i in the direction of the decreasing angles,

and it then furnishes the same modulus of periodicity.

If we now assume that the 2;-surface is not closed at

infinity, but is bounded by a closed line which we then enlarge

indefinitely, the surface T becomes triply connected when the

two points 4- i and — i are excluded. Therefore, two cross-

cuts are in this case necessary to change the surface into one

simply connected. But now, since the integral

dz

/r+ z'

taken along a closed line, has the value + tt or — tt or 0,

according as the line makes a circuit round -{- i ov — i or both,

in the direction of increasing angles (§ 20), the moduli of

periodicity in reference to the two cross-cuts have the values

-f- TT and — TT, or the one has the value ± tt and the other the

value zero, according to the mode of drawing the cross-cuts.
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Hence the function w = arc-tan z also changes here by mul-

tiples of TT.

The inverse function z = tan iv is now periodic with the

period tt. The representation of the ^-surface, assumed to be

closed at infinity, on the w-surface, is here made in a way
exactly similar to that shown in § 23 for the exponential func-

tion ; in place of the circles enclosing the points and oo there

enter here only those which enclose the points + i and — i.

If we assume that the cross-cut which joins these circles runs

along the ordinate axis, the w-surface is divided into strips

bounded by straight lines which run parallel to the ordinate

axis, and which pass through

the points 0, ± v, ± 2 tt,

± 3ir, ... (Fig. 60). In each

of these strips the function

z = tan w acquires all its

values, and, indeed, each but

.

once, because, except as to.

multiples of the modulus of

periodicity, only one value of

w corresponds to each value

of z, the 2;-surface consisting

of only one sheet.

We will now examine this function in the inverse manner,

by commencing with the periodic function. It z = <t>(w)

denote a uniform simply periodic function with the modulus

of periodicity A, that is, a uniform function which possesses

the property that

<f>(w -\-A) = <f>(w),

then the lo-surface can be so divided into strips that the func-

tion acquires all its values in each strip, and has the same value

at every two points situated in different strips which differ by

^ or a multiple of A (Fig. 61). For, if we draw any line

BC which does not intersect itself, the points w -^ A, which

are obtained from the points of the line BC by adding Ay

form a line DE parallel to the line BC. Thus the function
<f>

Fig. 60.
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has the same values along DE as along BC. The same is

true of all lines which run parallel to these at equal dis-

tances. Moreover, if w
be a point in the inte-

rior of the strip BCDE,
then 10 -\- A lies in the

interior of the adjacent

strip DEFG, w-\-2A
in the interior of the

next following strip,

etc. Hence at these

points the function

again has the same

value. Now, since

every two points, w
has the same value,

all its values in each

Fig. 61.

and w -f nA, at which the function

lie in different strips, it must acquire

strip.

We will now assume further that the function z = (f){w)

becomes infinite of the first order at only one finite point lu = r

in one and the same strip; we can then show that it also

becomes zero only once in every strip and hence acquires each

value only once. To this end let the points at which <l>(w)

becomes zero within the strip considered be denoted by

s, s', s", . . ., and let the number of these points be n and assume

that none of them lies at infinity. If we now draw, from two

points w and iv -{- c situated on one of the two lines which bound

the strip, straight lines to the points w -{- A and w -\- c -^ A,

situated on the other bounding-

line (Fig. 62), we obtain a par-

allelogram with vertices iv, w+c,
w -\- c -\- A, w -{- A; and if, as

was assumed, the points r, s,

s', s", ... all lie in the finite part

of the surface, we can always

so choose the points w and w-\-c

. lie within the parallelogram. If we now

jw-^A w+c+A

w-Vc

that r, s, s, s
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take the integral
j
d log <i>iiiS) along the boundary of this par-

allelogram, we obtain by § 35, (1),

j d log 4>(w)= 2 Tri{n — 1),

since <f>{iv) becomes n times zero and once infinite within the

parallelogram. This integral may be divided into four parts,

taken along the four sides of the parallelogram. But we

remark that | d log <^{w) is independent of the path of integrar

tion as long as this does not cross one of the lines rs, rs\ etc.,

each of which connects points at which 4>{w) becomes infinite

or zero (§ 22). If we take it along the straight line which

leads from w -\- Ato w, it acquires the value zero ; for in the

first place it is equal to log <\>{w) — log <f>{w -f- A), and since

none of the lines rs is crossed, not only is <^{w -\- A) = 4>{w),

but also log (^(io -{• A)= log <^{id). [If one line rs were crossed,

we should have log <^{iv -f- ^)= log <^(w) ± 2 iri.'\ For the same

reason the integral which is taken along the straight line leading

from w; 4- c to w 4- c 4- ^ is also zero. But along the two lines

which bound the strip from w to w -\- c, and from w -\- Ato
w -\- c -\- Ay log <i>{w) passes through the same values, and since

these lines are described in opposite directions, the integrals

taken along them cancel each other. Consequently the inte-

gral in the preceding equation, to be taken along the entire

boundary of the parallelogram, is equal to zero, and therefore

n = l.

Hence the function <^(iu) becomes zero only once in the strip

considered. But then it can also acquire any arbitrary value

k only once in the same strip ; for, if we form the function

<fi{w)— k, this is periodic just as <f>(w) is periodic, and it becomes

infinite only once for w = r just as (f>(w) does ;
therefore it also

becomes zero only once in the same strip, i.e., <f}(w) becomes

equal to k only once.

We can now, by § 29, let

(1) ;3=^(«;)=_^+^(,«),
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wherein c denotes a given constant, and \{/(iv) a function which,

no longer becomes infinite in the strip to be considered, but

only in the other strips. From this follows

(2) £=^^(.)=__^^ + ^^H.

Since now {{/'(w) remains finite everywhere in the strip, therefore
dz— also becomes infinite only for w = r, i.e., only where z be-
dw J ^ y J

comes infinite, and this result must hold in like manner for

all the strips. But while z is infinite of the first order, — is

dz ^^
infinite of the second order. Hence, if we regard — as a func-

dw
tion of Zj it is infinite only for 2 = oo, and then of the second

order. Since, moreover, z acquires each value only once in

one and the same strip, there corresponds only one value of w
to each value of z, in one and the same strip. Consequently w
is a function of z which has indeed an infinite number of values

for each value of z, but these values differ from one another

only by multiples of the modulus of periodicity, i.e., by constant

quantities. Accordingly — is a uniform function of z, since
CLZ

the constants vanish in the differentiation. Hence the reciprocal

dz
function — must likewise be a uniform function of z. If we

dw
^^

combine this with the preceding results, it follows that — is
div

a uniform function of z, which becomes infinite only for z= ao,

dz
and here of the second order. Consequently — is an integral

dw
function of z of the second degree (§ 31). Such a function

must by § 36 also twice acquire the value zero. If we denote

by a and b the values of z for which this occurs, and by (7 a

constant, we have

(3) £=C(z-a)(z-b),

and hence

dzw /,C{z-a)(z-b).
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Therefore a simply periodic function, which becomes infinite

of the first order only for one finite point in each strip, is the

inverse function of the preceding algebraic integral.

The quantities a and h cannot have equal values in this

integral, for in that case the function

w
J C{z - af

would be a uniform function of the upper limit (§ 60), and
then z could not be a periodic function.

The constant C can be expressed in terms of c ; for from (3)

we get

dz

C=lim dw

and with help of equations (1) and (2)

C = lim

— c

(w — r)
-2+'A'W

(w — r ) -i«^

or

We then have

o=iimr---+/---;y(-)i =-i

w
J (z — a

— cdz

){z-b)

The modulus of periodicity A is equal to the value of this

integral, taken along a closed line which encloses either the

point a or the point b. If we integrate round a in the direction

of increasing angles, we obtain

A = 2iri lim
c(z ^1 .

- *)J...

2 Trie

b —a_(z — a)(z

for integration round b we should obtain the opposite value.

If we assign the value h to the lower limit, i.e., if z acquire the
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value h at the point w = 0, we have, since ioi w = r and w = s,

2! = 00 and z = respectively,

»/A (z — a)(z — b) Jo

cdz

(z — a)(z— b)

3. The Inverse Sine.

w
-s:

dz

VI-
Here the »-siirface for the function

1
A^)-

VI -z^

consists of two sheets. We have the two branch-points 2 = 4-1

and z — — lf which are at the same time points of dis(?ontinuity.

But these points need not be excluded, since f(z) becomes in-

finite at them only of the order i
; on the other hand the point

z = 00 must be excluded, because

' ^ =^7^
lim/^-

Wl-zV-^ V-1
is finite, and in fact the point oo must be excluded in both

sheets, since it is not a branch-point. For this reason the

connection of the surface in

this example remains the

same, whether we assume

that the two sheets of the

z-surface are closed at infin-

ity, or imagine a closed line

drawn in each sheet as a

boundary, and then enlarge

these lines indefinitely. In

Fig. 63 the latter mode of

representation is chosen on

account of its greater prac-

ticability. The branch-cut

is drawn from — 1 to + 1,
Fig. 63.
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and the lines running in the second sheet are dotted. This
surface, T, is doubly connected, and the cross-cut, in order not

to divide the surface, must cross the branch-cut. It is denoted

by the line adc, the part dc of which runs in the second sheet.

The modulus of periodicity is the value of the integral

/
dz

taken in the direction of increasing angles along a closed line

which encloses the two points — 1 and + 1 ; this line may be

drawn either in the first or in the second sheet. If we assume
that the positive sign is to be attached to the radical at the

points which lie in the first sheet in the immediate vicinity of

the branch-cut, and on the left side of the same taken in the

direction from — 1 to + 1, and if we let the closed line run in

the first sheet, we can contract this line up to the branch-cut,

and we then have

. C~^ ^^ r+^ dz ^ ^
r+i

J+l a/1 — Z2 J-1 Vl —22 J~l

dz

We have seen (§ 43) that we can determine the value of this

integral by regarding the closed line as a line which encloses

the point oo, and consequently we obtain

A = -2Tr.

For a line running in the second sheet we should have obtained

the value H-2 7r; and, in fact, a line which makes a circuit

round — 1 and -|- 1 in the second sheet in the direction of

increasing angles crosses the cross-cut in a direction opposite

to that of a similar line in the first sheet. Hence the inverse

function sin w of the preceding integral is periodic with the

period 2 tt.

In order to determine the mode of representing the z-surface

on the w;-surface, we will let z describe the entire boundary of

T in the positive direction, beginning at a, where w has a

value denoted by w^. If the outer boundary situated in the
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first sheet be described by the variable z, then w goes from w^

to Wa — 2 TT along a line the form of which depends upon the

form of the boundary-line in z (Fig. 64). Now let z go from a

to c along the left edge (directed from a to c) of the cross-cut

ac, and w from lo^ — 2 tt to a value which may be denoted by

iCc- The line along which lo moves may again differ in form

according to the form of the cross-cut ac. Let z next describe

from c the outer boundary of the second sheet ; then w goes

from iv^ to ic^-{-2Tr along a curve

which depends only upon the outer

boundary of the second sheet of the
Wa n-f- ^Wn

2;-surface. Finally z closes its circuit,

by returning along the left edge (di-

rected from c to a) of the cross-cut ca

to the initial point ; then w also re-

turns from w^-\-2ir to w^. The line

h-^Srr along which w last moves must be

parallel to the path (w^ — 2 tt, w^),

because these two lines correspond to

the two edges of the cross-cut, and

because w has values which differ by 2 tt at every pair of infi-

nitely near points on the two edges. If we now enlarge indefi-

nitely the outer boundaries of the surface T, then the lines

{w^, w^ — 2Tr) and (iv^, w^ -j- 2 tt) move away to infinity, and 2;,

or sin w, acquires all its values in one strip, which is bounded

by the parallel lines AB and CD. But in such a strip z

acquires all its values twice ; for, since the ^-surface consists of

two sheets, there correspond two values of ic to each value of

z, not taking into consideration the modulus of periodicity, and

hence z, or sinw, acquires the same value at two different

points w.

If we assume that the cross-cut ac runs along the ordinate

axis, so that on both its edges z = iy (where y is real), we
obtain

= i r ^y
.

Jo vr+T''
w
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thus w is also a pure imaginary or differs from a pure imaginary-

quantity by multiples of the real modulus of periodicity 2 ir.

The zc-plane is then divided into strips

by parallel straight lines, which run

parallel to the ?/-axis and pass through

the points 0, ± 2 tt, ± 4 tt, etc.

In order to determine the relation

between two points w and w' in the

same strip, to which correspond equal

values of z, we let the latter variable

first pass from the point in the first
^^'

'

sheet to the point 0' in the second sheet, situated immedi-
ately below 0, without crossing the cross-cut. This is done
(Fig. 65) by passing along the branch-cut round +1, next along

the other side of the same and then across the branch-cut into

the second sheet. On this path we obtain at 0' the value

,„ dzw
Jo -v/1 — «2 JlVl-z' ^' VlT^^

Consequently, the point w = tt corresponds to the point 2 = 0'

situated in the second sheet. If z now go from to 2 in the

first 2-sheet, w goes from to iv. But if z go in the second

sheet from 0' to z', where z' is situated immediately below z,

then IV starts with the value tt, and because the radical Vl —z^
has the negative sign in this part, it acquires at z' the value

^-f
dzw

but w=r-^
»/o a/1 —

Vl-2'

vf
and consequently

IC -\- 2C' = TT,

or the sum of the two values of w, for which z, or sinw,

acquires the same value, is equal to half the modulus of perio-

dicity, not taking into consideration multiples of the latter.
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4. TJie Elliptic Integral,

dz
IV

J. V(l - z') (1 - J<^z^

Here the 2;-surface consists likewise of two sheets, and has

the four discontinuity- and branch-points +1, — 1, -\--, — -•

k k
None of these points need be excluded, because the function

under the integral sign becomes infinite at each of them only

of the order i The point go also need not be excluded, since

lim [zf{z)-],^ = lim r
^

" ="| ^

Consequently, in this case no point need be excluded. This

is in conformity with the condition that the preceding in-

tegral, as we have already seen (§ 45), remains finite for every

value of 2, and hence can become infinite only by the addition

of an infinitely great multiple of a modulus of periodicity. If

we assume that the 2-surface is closed at infinity, we have to

do with a surface which is not bounded at all (or only by an

arbitrary point), but which is multiply connected. In such a

surface we let the first cross-cut be a line returning into itself

(§ 47). If we assume that the points — 1 and + 1 on the one

hand, and -f - and — i on the other, are connected by branch-
k k

cuts,^ we will take for the first cross-cut a line Qi, which

encloses the two points — 1 and -f 1 in the upper sheet

(Fig. 66). Such a line does not divide the surface, since we

can pass from one side to the other side of the same. The

way in which this passage is made (cf. § 46, v.) indicates

how the second cross-cut ^2 is to be drawn ; namely, from

1 In Fig. 66 it has been likewise assumed that k is real and less than

unity; then the branch-cut drawn from +- to -- passes through co.

k K
But we will first consider A; as a quite arbitrary quantity, and only later

return to the assumption that k is real and less than unity.
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a point a of the first cross-cut across the branch-cut (—1, -f 1)
into the second sheet, then across the other branch-cut back
again into the first sheet, returning in this sheet to the initial

point, but on the other side of the first cross-cut (to a'"). These
two lines now form together a continuous path, in which each

Fig. 66j

of the two cross-cuts is described twice in opposite directions.

The arrows indicate this description in the positive direction.

In this surface T' every closed line forms by itself alone the

complete boundary of a portion of the surface, and hence the

surface is simply connected. Its boundary is formed by
the two edges of the cross-cuts. Thus the original surface

was triply connected.

The modulus of periodicity A^ for the cross-cut qi is the

integral
j dw, taken in the direction of increasing angles

along a closed line which leads from one side of the cross-cut

to the other side of the same, e.g., along q2. This line can be

contracted until it coincides with two straight lines, one of

which leads from - to 1 in the first sheet, the other from 1 to -
k

'

k
in the second sheet. If we then assume that the sign -f is to

be attached to the radical in the first sheet, and if for brevity

we let

V(l-z')(l-k'z') = A(z,k),

we have

JI A (2!, k) J\ A (2;, k) J I A (2, fc)
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The modulus of periodicity A2 for the second cross-cut is in

like manner equal to the integral taken along the line q^ and

this line, as in the former case, can be contracted up to the

branch-cut ; then, as before.

^ r-' dz r+' dz ^ ,y r+'

J+i A(2;, k) J~\ A (2;, k) J-\ .

dz

A(z, k)

or also, as is evident,

•^0
,

A(^, k)'

dz

A(z, k)

The elliptic integral therefore has two different moduli of

periodicity; consequently the inverse function, the so-called

ellij)tic function, which is designated after Jacobi by sin am w,

is doubly periodic.

If we now represent the 2;-surface on the w-surface, we
obtain the following results : If z go from a along the cross-

cut gi in the direction of increasing angles and at the same

time in the positive boundary-direction, and therefore return

to a on the inner edge of the line q^ (in Fig. 66 from a to a'),

then w increases from w to w-\- A2. In this w passes along a

line (Fig. 67) the form of which depends upon the form of the

line qi (to be chosen arbitrarily) ; if z next go along the line

92 in the same direction to a

w^/SA, w^SAx+Ai again {i.e., from a' to a"), w
increases from w -{- A^ to

10 -\- Ai -\- A2, along a line

which changes its form with

that of 52- If 2; then de-

scribe the line q^ starting

from a", always in the posi-

tive boundary-direction, but

now in the direction of decreasing angles (i.e., from a" to

a'"), w goes from w -\- Ai-^ A2to w -\- A^, because it is dimin-

ished by A2. The line along which this movement of w takes

place must be parallel to the line (w, w + A^, because the two

values of w at every two infinitely near points on the two edges

Fig. 67
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of the line q^ differ by the quantity Ai, and hence two different

but parallel lines in w correspond to the two edges of this

cross-cut. Finally, if z go from a'" to a along the cross-cut

q2, then w goes from w +Ai to w along a line which for the

same reason as before must be parallel to the line (w -j- A2,

w + Ai-^ A2). Thus to the two edges of the cross-cut qi cor-

respond the parallel lines (w, iv-\-Ai) and (w -f A^ w-f-^j-f ^2))

and to the two edges of the cross-cut ^2 ^^^ parallel lines

(Wj w + Ai) and (w -f ^2? w -\- Ai-\- A^. Now to all the

points z in the whole infinite extent of the z-surface correspond

only such points w as lie within^ the curvilinear bounded

parallelogram, for a line can be drawn through any arbitrary

point of the z-surface which leads from one side of q^ to the

other side of gi, without crossing a cross-cut ; hence the cor-

responding line w leads from the line (w, w -f A^ through the

interior of the parallelogram to the line {w -f A^, w -\- A^-\- A^.
Consequently z, or sin am w, acquires all its values in this

parallelogram, and indeed each value twice, since the z-surface

consists of two sheets.

Other parallelograms now adjoin this parallelogram on all

sides. For if we let z go from a to a'", for instance, then lo

goes from w to w -{- A^. But if we now let w proceed continu-

ously across the cross-cut gi, then w starts with the value w-\-Ax
;

hence to the side {w -\- A^, w -\- A-i_ -\- A^ is joined a new paral-

lelogram, at the corners of which lo has the values

w -\- Ai, w -{- A^ -{- A2, w -^ 2 Ai-\- A^, w + 2 A^.

Similarly for the three other sides. In this way the whole

w-plane is divided into parallelograms by two sets of parallel

lines. If we assume that k is real and less than unity, the four

points +1, — 1, -f -, lie on the principal axis ; if we now
k k

contract the two cross-cuts, so that they run along the two

edges of the principal axis, the parallel lines become straight

lines, which run parallel to the x- and the 2/-axis respectively.

1 Within, because w remains finite for all values of z.
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In tms case, then, I ,^ ^ ^^ ,., ^ :

' 'Jo V(l - Z%1 - ¥Z^

is real. We usually designate the value of this integral after

Jacobi by K. The other integral

X
1

k dz

V(l-2;')(1-A:'2^

on the other hand, is a pure imaginary. If we let Vl — k^ = k'

and transform the integral by the substitution

'-
k

'

dz'

^'''' -'£vw^'o V(l - 2'2)(1 - k'h'^'

which is designated by — iK'. Consequently the moduli of

periodicity, except as to signs, are

4: K and 2 iK',

We can in this example also determine the relation between

every pair of values of w which correspond to the same value of

z\ i.e., to two points of the z-surface lying one immediately

below the other. To the value 2 = in the first sheet cor-

responds w = 0. In order to come to 0' in the second sheet, we
can conceive the cross-cut ^2 to be so enlarged that it also

encloses the origin as well as the points 1 and — We can pass
tC

within T' from along the branch-cut round the point -|- 1

to the other side of the branch-cut and then across the same

to 0' (cf. p. 269) ; w then acquires at 0' the value

r dz r_d^_^2K
Jo A{z,k) Ji A(z,k)

'

and is therefore equal to the half of one of the moduli of

periodicity. If z now go from 0' to z', where z' lies in the
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second sheet immediately below z, we have, designating the

value of w at 2' by w'.

Jo A(z, A;)

'

but w = f'-^,
Jo A(2,

and, therefore.

dz

w-\-w' = 2K

If we take the integral
j dw along a closed line which

encloses all four branch-points, such a line runs entirely in the

first sheet (Fig. 66), and hence forms by itself alone a com-

FiG. 66.

plete boundary. Consequently, this integral has the value

zero. If we now contract this line up to the principal axis,

on which are the four branch-points, the integral is divided

into the following parts (the lines may be described in the

direction of decreasing angles) :

(1) from - 1 to +1;
(4) f,^^ _1 through 00 to +1;

(2)from+lto-f|;
^

(5) from +-to +1;
(3) from + - through 00 to - i

:

'^

^ ^
^Jc

^
k' (6) from + 1 to - 1.

The radical is to be taken negatively in (6) and (4), because

for these the path of integration lies on the right side of the

branch-cuts (— 1, -|- 1) and
(
+ -,

J
; in all the others it is
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to be taken positively. Consequently (2) and (5) cancel each

other, and (1) and (3) are to be doubled. Since, further,

A;

we obtain C-^^ + f^^ = 0,
Jo A(2, A;) Ji A(2, k) '

and hence C-?^= -K.
k

dz

A(z,k)

From this result follows also the value of the integral

between the limits and oo ; for since this is divided into the

parts ••• 1, 1 ••• -, 00, we obtain
k k

I ^^ =K-iK^ -K=-iK\
A(z,k)

or, since we can add to this value the modulus of periodicity

2 iK'y also

= iK'.I'o A (2;, k)

Thus z becomes infinite within the parallelogram with the

corners 0, 4 /t", 4/^+2 iK', and 2 iK' for w = iK' and

We will also in this example, following the method of

Eiemann, consider the relation between the doubly periodic

function and the elliptic integral in the inverse manner, i.e.,

starting from the doubly periodic function. Let <f>(w) be a

uniform doubly periodic function, and therefore possess the

property that simultaneously

<f>(w -{- A{) = cfii^w) and <f)(tv -f- A2) = <j>(w).

Then the straight lines which represent the complex quantities

Ai and A2 must have different directions. For if they have

the same direction, Ai and A2 must possess a real ratio (§ 2, 3).

This can be either rational or irrational. If it be rational^
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Ai and A2 are commensurable, and hence are multiples of one

and the same quantity B. We can thus let

Ai = mB, A2 = nB,

wherein m and n denote two integers, which are relatively

prime to each other, and we then obtain

<f>(w) = <t>(w + mB) = <f>(w + nB).

Now since in this case there are two integers a and b connected

by the relation

ma — nb = 1,

and since, moreover,

<^(w 4- maB — nbB) = <^(w),

we also have <t>(iv -{- B)= <f>(w),

and hence in this case the function <f>(w) is simply and not

doubly periodic. But if Ai and A2 have a real irrational ratio,

so that they are incommensurable, there are always two integers

m and n for which the modulus of mAi + 71^2 becomes less

than any assignable quantity.^ Since now also

<^(w + mAi + n^g)= <f>(^))

1 If we let —? = a, then, according to the assumption, a is real and

irrational. If we develop the absolute value \a\ of a in a continued frac-

tion, and if we denote two consecutive convergents of the same by - and
/*'

"

-y? then, as is well known, for the,absolute value

{5-i^i}<^-

and hence (/a — j/ 1 a |)<—
v'

But since the denominator of the convergents increases indefinitely, we
can make this expression as small as we please by continuing the develop-

ment sufficiently far. But we have

mAi -f- nAz = J.i (m + no)
;

hence if we let m = /i and n= T v, according as
|
a

|
= i a, we can

make m + na, and therefore also the modulus of mAi -f nA2, as small as

we please.
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the function <}>(w) maintains the same value for an indefinitely

small change of the variable, and hence is a constant. Conse-

quently the ratio of the two moduli of periodicity of a doubly

periodic function must be imaginary, and therefore the straight

lines Ai and A2 must have different directions. Then we can

divide the w-plane into parallelograms by two sets of parallel

lines in such a way that <l>(iv) acquires the same values on any

two parallel lines ; moreover, it then acquires all its values in

each parallelogram, and has the same value at every two corre-

sponding points of different parallelograms.

Since the uniform function <t>(z) must become infinite for

some one value of w (§ 28), it must become infinite in every

parallelogram. Let us, therefore, select any parallelogram

(Fig. 68), and let r, r\ r", etc., be the points of the same at

which <f>{w) becomes infinite. If we form the integral

i <f>(w)div,

taken over the boundary of the parallelogram, then by § 19

this is equal to the sum of the integrals taken round the points

of discontinuity r, r', r", etc. Therefore, if cl>(w) at these

points become infinite in the same way as

+ ..., _£_+..., _^ + ..., etc.,

w — r w — r'

respectively do, we have

C<fi(w)dw = 27^^(c -\-c'-\- c" +•••).

But <l>(w) has the same values on the side CE as on DF, the

same values on CD as on EF, and in the description of the

boundary of the parallelogram the parallel sides are described

in opposite directions ; hence the integrals taken along these

sides cancel each other, and thus

I
<}>(w)dw = 0,

consequently, also c-f-c'-f-c" + '--=0.
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©
Fig. 68.

times.

From this we conclude that <f>{w) must become infinite

than once in each parallelo-

gram, and at least infinite of

the first order at two points or

of the second order at one

point. If n denote the multi-

plicity of the infinite value (or

values) of <t>(io) in each paral-

lelogram, we can first show that

<f>(tv) must acquire each value h in each parallelogram n
For that purpose we will consider the integral

/.logW.)-.]o.J^,

taken along the boundary of the parallelogram. This also has

the value zero, because both (f>(w)— h and (f>'{w) have the same

values on the opposite sides of the parallelogram. But on the

other hand this integral is equal to the sum of the integrals

taken round those points at which <f>'(w) becomes infinite, and

round those at which <f>(tv)— h vanishes. The former are the

same as those at which <f>(w) or <l>(w)— h becomes infinite (§ 29).

Now if in general a be a point at which <f>(w)— h becomes either

infinitesimal or infinite, and that of the pth order (p positive

for infinitesimal values), we can put (§ 34)

<f>(w)—h= (iv — a)^\p{w),

wherein j/'(w), for w = a, is neither zero nor infinite. We then

obtain

Therefore Cd log [<^(w;)-K]=2 TrtSp,

taken round the entire parallelogram, and hence

Si? = 0.
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Now <f>(w)— h becomes n times infinite, just as cfi(w) does; if

m denote the number of times that it becomes zero, we have

2p = m —n = 0,

and hence m = n.

Since, therefore, <fi(w) — h must become zero n times, <^(it?) also

becomes n times equal to h.

We will now consider in the following only the simplest

case, in which <fi(w) becomes infinite twice in each parallelogram

and therefore also acquires every value twice. We will first

assume that <t>{w) becomes infinite of the first order at two

points r and s. Then, denoting <f>(w) by z, we can put

c c

^ ^ w — r w — s ^^ ^'

or, since c + c' = 0,

'^ w — r w — s ^^ ''^ ^ ^

wherein c denotes a given constant, and if/(w) a function which

no longer becomes infinite in the parallelogram under consider-

ation, and therefore only in the other parallelograms at the

points r + mA^ -\- nA^ and s + mAi -f nA2 (wherein m and n

are to have all positive and negative integral values). We will

first determine the relation between the two values of w for

which <^{w) has the same value. For this purpose let

V =^ r -\- s — w.

If we substitute v for w in (4), we get

4>(v) = -^ ^+ V^(2^).
V — r V — s

But since v — r = — (w — s)

V — s = — (w — r),

it follows that <^(^?)= ^— -\
f- U/Ov),

IV — s w — r

and hence (})(w)— cl>(v) = \p(w)— i}/(y).



MODULI OF PERIODICITY. 281

Therefore this difference remains finite in the first parallelogram.

In an adjacent parallelogram <f>(w) becomes infinite at t«=r+-4i
and w = s-{- Ai', hence we can also let

*^W=
^^—

T

^^-^+ "^iW'w — r — Ai tv — 8 —Aj

wherein now i(/i(w) remains finite for all points of the second

parallelogram. If we now substitute

Vi = r -{- s -{-2Ai — Wj

we get w — r — Ai= — (vi — s — A^

w — s — Ai = —(vi — r — A{),

and hence also

consequently <^(w)— <fi(yi)= \l/i{w)— il/i(v^

and remains finite within the second parallelogram. But since

Vi differs from v only by twice the modulus of periodicity Au
it follows that

hence the difference <^(^«)— <^(y)

remains finite in the second as well as in the first parallelogram.

If we continue in this way from parallelogram to parallelo-

gram, we conclude that this difference does not become infinite

in any parallelogram and hence not at all ; therefore it must

be a constant. To fimd the value of this constant, we let

r -\- s

then V = ^ ~r
^ = w,

and since the function <^ is uniform, also

<^(v)= <^(w;).
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Therefore, since the difference <^(w)— <l>(v) has the value zero

for one value of w, it has this value always, and hence

<f>(r -^ s — w)= <f>(w).

Consequently w and r -\- s — w sue the two corresponding values

of w for which the function <t>(w) acquires the same value.

From (4) it follows that

-/>'W = 1^ = - r-^2+r-^2+ -A'W

;

dw (w — ry (lo — sy

therefore, not taking into account the moduli of periodicity,

the derivative <i>\w) is infinite only for w = r and w = s, but

for these it is infinite of the second order. Hence it becomes

infinite four times in every parallelogram and therefore also

acquires each value four times. It is likewise a uniform func-

tion of w ; but it is important to inquire whether it is also a
dz

uniform function of z. Now the derivative — acquires the
dw

same value at every pair of corresponding points of different

parallelograms at which z has the same value. Thus we have

to consider only the points v and w of the same parallelogram.

If we differentiate the equation

as to w, we obtain <^'(^<') = — <^'(v)>

dv ^since — = — 1.
dw

Consequently z does indeed take the same value for v and u,

but — opposite values; therefore — is not a uniform func-
dw dw

tion of z, since it can acquire two different values for the same

value of z. But since these are numerically equal and of

f dz\^
opposite signs, it follows that ( — )

is a uniform function

dz .

^^^^^

of z. Now — is infinite only where z is also infinite, but it
dw

is infinite of the second order while z is infinite of the first
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order ; consequently (— ) is infinite of the fourth order.

Therefore (
—

) is a uniform function of z, which becomes
\dwj

infinite only for 2 = oo and that of the fourth order ; accord-

ingly it is an integral function of the fourth degree. Such a

function is also four times zero. If we denote by a, ^, y, 8,

the values of z for which it becomes zero, and by C a constant,

we have

^^^ (£)'= ^^' " "^^' ~ ^^^' - y)(^ - «)

;

from this is obtained

w /:
dz

^C(z - a)(z - /3)(z - y)(z - 8)

Hence a doubly periodic function which becomes twice infinite

of the first order in every parallelogram, is the inverse func-

tion of an elliptic integral. The constant C can be expressed

in terms of c. For since by (5)

(7=lim

we obtain

VdzV
\divj

C=lim

= lim

(tv — ry (w — s)'

Then

+ «A'WT

+ «AW

-\-(w

] I

^+(M'-r)i/<'(«')T

a){z-li){z-y){z-S)
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This integral admits of the same treatment as the former

dz

fV(l - 22)(1 - JC'Z^

if we put the four branch-points, a,
ft, y, 8, in place of + 1,

— 1, +-, — -; it can also be transformed into the latter.
K k

We now proceed to the case in which the function (f>(w)

becomes infinite only at one point, but of the second order.

In this case we must put

for the term containing (w — r)~^ must be wanting in order that

j
<j>{w)dw, extended over the boundary of the parallelogram,

may have the value zero. We infer in this case, just as before,

that

<f}(2r — w)= <l>(w),

by letting s = r, and hence

<f>'(2r-w)= -<f>'(w).

Therefore— is not a uniform function of z, but again (
~-

dw \dw
is a uniform function of z. In this case

dz 2c

dw (w — ry
+ ^'H;

thus — becomes infinite, of the third order, only where z is

dw -.

infinite of the second order. Therefore—, as a function of z,

is infinite of the order f for 2 = oo, and consequently f—
J

is infinite of the third order. Accordingly in this case we have

(£J=^(^-«>^^-^)(^-^>-
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Therein

C=lim \dwj

^
lim

= lim ( [-2c+(«;-r)VHf )

consequently

rr ^J

4c2 4

(:
!;)-;(•-")<'-»<'-*

and

*^ V(2; — a

-\/cdz

^(z-a){z-^)(z-yy

which is likewise an elliptic integral.

We here close this discussion, because it is not the purpose

of this book to enter more in detail into the .^T^yestigation of

periodic functions; but the cases treated are be regarded

only as examples illustrating the general considerations.



Supplementary Note to Riemann's Fundamental Prop-

osition ON Multiply Connected Surfaces.

Eiemann originally gave to the proposition bearing his name

(§ 49) a somewhat different and more general enunciation,

which presents many advantages, while it removes at once

a difficulty which otherwise requires supplementary exami-

nation.

This differs from the form of the proposition as enunciated

in § 49 in the following manner: If the surface T be first

modified by qi cross-cuts of a first mode of resolution into

a system Tj, which consists of «i pieces, and a second time

by ^2 cross-cuts of a second mode of resolution into a system

Tg, which consists of a^ pieces, then in contradistinction to

the enunciation of § 49 it is only assumed that the «! pieces

of the system T^ are all simply connected, while the ctg pieces

of the system T^ may be arbitrary ; then the property that

^2 — «2 cannot be greater than g^ — Wi holds, and therefore

^2 — «2 < gi - «1-

In the proof of this property, the first main division of the

proof remains exactly the same as in § 49 or § 51. By the

superposition of the two systems of cross-cuts a new system

of surfaces © is produced in two ways, and it is proved that

if the lines of the second mode of resolution, when drawn in

Tj, form q2-\-m cross-cuts in that surface, then the lines of

the first mode of resolution, when drawn in T^, also consist

of qi-\-m cross-cuts. Since, moreover, 7^, according to the

hypothesis, consists of Wi simply connected pieces, therefore

^ consists of

S = «1 + ^2 + W
pieces.
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Now the system ^ is also derived from T^, which consists

of ttg pieces, by q^ -\- m cross-cuts. Therefore the number ®
of pieces of which ^ consists can (by § 48, V., note) be not

greater than ^2 + ^1 + m, but on the contrary

^ 5 «2 + gi + m,

i.e., «! + Q'2 + wi < «2 4- gi -f m;

from this follows immediately

^2 - «2 ^ ^1 — «!,

which was to be proved.

Therefore qo — a^ cannot be greater than ^i — «! ; and if

the case occur, that the numbers a^ and Wg of pieces arising

from the two modes of resolution are equal to each other,

then ^2 cannot be greater than qi.

Conversely, if T2 consist of only simply connected pieces

(in number a,)? while the a^ pieces which form the system

Tj are arbitrary, we have

^1 - «i ^ ^2 - «2-

But if both systems T^ and T^, consist of only simply connected

pieces, then ^2 — «2 cannot be greater than q^ — aj, nor qi — Ui

be greater than ^'2 — «2 j hence in this case

$1 — «i = ^2 — "2?

and this is the principle of § 49.

From the above form of Eiemann's fundamental proposition

is at once derived the second proposition of § 52, upon which

the classification of surfaces depends. It is here assumed that

a multiply connected surface T can be changed into a simply

connected surface 7\ by q cross-cuts drawn in a definite manner,

and it will be proved that this modification is always effected

by means of q non-dividing cross-cuts, in whatever way also

the latter may be drawn. From the above proposition follows,

first, that the surface T cannot be made simply connected by
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less than q cross-cuts ; hence by § 48, II., it is possible to draw

q cross-cuts in such a definite way that T is likewise not

divided. Then a surface Tg, which consists of a single piece,

again arises. But this cannot be multiply connected
; for if it

were, we could still draw in it at least one non-dividing cross-

cut (§ 48, II.) and thus obtain by g + 1 cross-cuts a surface

consisting of one piece, while the simply connected surface Tj

arose through q cross-cuts; but this contradicts the above

proposition in the original Riemann form.

The property proved in § 53, V., also requires no further

proof if this form of the proposition serve as the basis, but

follows at once. The question here is concerning a (g + l)-ply

connected surface T, which is therefore made simply connected

by q cross-cuts and is divided by one additional cross-cut into

two pieces. If a dividing cross-cut B be first drawn instead of

these, by which T is divided into two pieces A and B, and if in

these pieces additional cross-cuts be drawn, we still have two

pieces, if neither A nor B be divided by the new cross-cuts.

But then the number of these new cross-cuts possible in A and

B cannot, according to our proposition, be greater than q, and

is therefore a finite number ; from this the remainder follows,

as in § 53, V.

8b5
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