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PREFACE TO THIRD EDITION.

This little text-book was written some years ago to accom-

pany the lectures in a short preparatory course on the New-

tonian Potential Function, especially intended for students

who were afterwards to begin a systematic study of the

Mathematical Theory of Electricity and Magnetism, with the

help of some of the standard treatises on the subject.

•i In preparing the present edition a few imperative changes

(i have been made in the plates, some sections have been intro-

£ duced, and a large number of simple miscellaneous problems

have been added at the end of the last chapter.

The reader who wishes to get a thorough knowledge of

> the properties of the Potential Function and of its appli-

p cations, is referred to the works mentioned in the list given

below. Most of those that had then been published I con-

• suited and used in writing these notes, and from some which

oj have appeared since the body of this book was electro-

typed I have borrowed material for problems : many other

problems I have taken from various college and university

examination papers. I am indebted also to my colleagues,

Professors Trowbridge, Byerly, E. H. Hall, Osgood, Sabine,

M. Bocher, and C. A. Adams for valuable criticisms and

suggestions.

The slight use which I have made of developments in terms

of Spherical Harmonics and Bessel's Functions is explained

by the fact that students who use this book in Harvard Uni-

versity study at the same time Professor Byerly's admirable

Treatise on Fourier's Series, and Sjjherical, Cylindrical and
Ellipsoidal Harmonics.

iii



IV l'KEFACE TO THIRD EDITION.

In the following pages the change made in a function u

by giving to the independent variable x the arbitrary incre-

ment Ax, and keeping the other independent variables, if

there are any, unchanged, is denoted by Axu. Similarly,

A u and Am represent the increments of u due to changes

respectively in y alone and in z alone. The total change in

u due to simultaneous changes in all the independent variables

is sometimes denoted by Am ; so that, if u =f(x,, y, z),

Axu A ,

Am Am
Au = -^-Ax + -2-'Aij + -f-'Az + e,

Ax Ay Az

where c is an infinitesimal of an order higher than the first.

_, . . , . du du du
-, , -, r

The partial derivatives, —> t—> tt-j are denoted, for conven-r ex oy oz

ience, by Dxu, Dy
u, and Dzu, and the sign = placed between

a variable and a constant is used to show that the former is

to be made to approach the latter as its limit. In those cases

where it is desirable to draw attention to the fact that a cer-

tain derivative is total, the differential notation -7- is used.
ax

It is tacitly assumed that the physical quantities under con-

sideration can be represented in the regions to which the

theorems refer, by continuous point functions, having con-

tinuous derivatives of the orders which present themselves in

the investigation in hand. In a few instances, as the reader

will see, a theorem is predicated of 'analytic functions only,

when so narrow a limitation is not required by the proof

given.
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THE

NEWTONIAN POTENTIAL FUNCTION.

CHAPTER I.

THE ATTRACTION OP GRAVITATION.

1. The Law of Gravitation. Every body in the universe

attracts every other body with a force which depends for mag-

nitude and direction upon the masses of the two bodies and

upon their relative positions.

An approximate value of the attraction between any two rigid

bodies may be obtained by imagining the bodies to be divided

into small particles, and assuming that every particle of the one

body attracts every particle of the other with a force directly

proportional to the product of the masses of the two particles,

and inversely proportional to the scmare of the distance between

their centres or other corresponding points. The true, value of

the attraction is the limit approached by this approximate value

as the particles into which the bodies are supposed to be divided

are made smaller and smaller.

2. The Attraction at a Point. By "the attraction at any

point P in space, due to one or more attracting masses," is

meant the limit which would be approached hy the value of the

attraction on a sphere of unit mass centred at P if the radius of

the sphere were made continually smaller and smaller while its

mass remained unchanged. The attraction at P is, then, the

attraction on a unit mass supposed to be concentrated at P.
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If the attraction at every point throughout a certain region

lias a value other than zero, the region is called " a field of

force" ; and the attraction at any point P in the region is called

" the strength of the field' in, that point.

3. The Unit of Force. It will presently appear that all spherea

made of homogeneous material attract bodies outside of them-

selves as if the masses of the spheres were concentrated at their

middle points. If, then, A; be the force of attraction between

two unit masses concentrated at points at the unit distance

apart, the attraction at a point P due to a homogeneous sphere

of radius a and of density p is k •
„

p
, where r is the dis-

3 r
tance of P from the centre of the sphere. In all that follows,

however, we shall take as our unit of force the force of attrac-

tion * between two unit masses concentrated at points at the

unit distance apart. Using these units, k in the expression

given above becomes 1, and the attraction between two particles

. . . m 1
m2

of mass m x and m2 concentrated at points r units apart is —— •

4. Attraction due to Discrete Particles. The attraction at

a point P, due to particles concentrated at different points in

the same plane with P, may be expressed

in terms of two components at right

angles to each other.

Let the straight lines joining P with

the different particles be denoted by ru

r2 , r3 ,
• ••, and the angles which these

lines make with some fixed line Px,

Fig. 1. by a1} a2 , a3 ,
• • • . If, then, the masses

* These are called "attraction units of force." When the attraction

between two bodies is given in terms of absolute kinetic force units in any

system, the corresponding value of k is sometimes called the "constant of

gravitation." One dyne is equivalent to about 1.543 X 107 c.g.s. attrac-

tion units and one poundal to about 9.63 x 108 f.p.s. attraction units.

For simple illustrative problems the reader may consult the Miscella-

neous Examples at the end of the book.

!*»
I
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of the several particles are respectively mu m2 , m3 , •••, the

components of the attraction at P are

v m1 COSa1 1JU COSa2 . ^^mCOSa r , -,A= - h^ 1 = / ——

—

[1]

in the direction Px, and

F= ?»! sin«! m2 sin a2

»

1

n

in the direction P*/, perpendicular to Px.

The resultant force at P is

+-=Z^a
ra

P=VX 2+F2
, [3]

and its line of action makes with Px the angle whose tangent

. Y
is — •

A'

If the particles do not all lie in the same plane with f, we
may draw through P three mutually perpendicular axes, ana call

the angles which the lines joining P with the different particles

make with the first axis an a2 , a3 ,
•••

; with the second axis,

fin Pit fisi
"

! and with the third axis, y]? y2 , y3 ,
•••. The three

components in the directions of these axes of the attraction at

P due to all the particles are then

v VmcoSa v \^mcos(3 „ V^mcosy r . n

The resultant attraction is

p =Vx2 + r2+z2
, [5]

and its line of action makes with the axes angles whose cosines

are respectively

X Y , Z
P' P' ^ R W

5. Attraction at a Point in the Produced Axis of a Straight

Wire. Let /j. be the mass of the unit of length of a uniform

straight wire AB of length I, and of cross section so small that
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we may suppose the mass of the wire concentrated in its axis

(see Fig. 2), and let P be a point in the line AB produced at a

P A

'̂M'

Fig. 2.

distance a from A. Divide the wire into elements of length

Ax. The attraction at P due to one of these elements, M, whose

nearest point is at a distance x from P, is less than ^—- and
xr

greater than
//Ax

(x + Ax) 2

The attraction at P due to the whole wire lies between

Z^—- and / —-
; but these quantities approach the

x2 Z^(x + Ax) 2

sarae limit as Ax is made to approach zero, so that the attrac-

tion at P is

limit X^/^ = r a + l

H-
dx _ '1

1

a a-\-l
[7]

If the coordinates of P, A, and B are respectively (x, 0, 0)

,

(xl5 0, 0), and (x
x + 1, 0, 0) , this result may be put into the form

J-J l—\
[_Xx — X x

x
— x + 1J

[8]

6. Attraction at any Point, due to a Straight Wire. Let P
( Fig. 3) be any point in the perpendicular drawn to the straight

wire AB at A, and let PA = c, AB = L AM= x. and the angle

ABP= 8. Let ilfJVbe one of the equal elements of mass (//A.')

into which the wire is divided, and call PM, r. The attraction

at I' due to this element is approximately equal to ^-5--, and
r

ads in some direction lying between PM and PN. This attrac-

tion can be resolved into two components whose approximate

values are —^ - in the direction PA. and —- -— in the
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direction PL. The true values of the components in these

directions of the attraction at P, due to the whole wire, are,

then, respectively : c

and

Jo (<r

I

fxcdx

+ x-)i c[y
« 7,

(T -f- it^Jo

cos 8,

1
fJLXClx 'n

o(c" + a?)3 c |_V?+a?_
C (1 _ sin8). [io]

The resultant attraction is equal to the square root of the sum
of the squares of these components, or

R = ^V2(l-sin8) = £ V2(l- cosAPB) = -£sin$APB, [11]

and its line of action makes with PA an angle whose tangent is

1 — sin 8 l-cos.4PP 2 sin2±APB
cos 8 sin APB 2 sin |APB • cos £APB

-= tau±APB.

That is, the resultant attraction at P acts in the direction of

the bisector of the angle APB.
From these results we can easily obtain the value of the

attraction at am' point P, due to a uniform straight wire B'B
(Fig. 4) . Drop a perpendicular PA from P upon the axis of

the wire. Let AB = Z, AB' = V, PA = c, ABP= 8, JJB'P = 8',

BPB'=6. The component in the direction PA of the attrac-

tion at P is [9]
//.

- (cos 8 + cos 8'),
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and that in the direction PL is

£(sin8'-sm8)=p(^~-^y

so that the resultant attraction is

/'

^X

A>='-V2[l+cos(8 + 8')] = -f
: cos^(S + 8') = -Psin^6*. [12]

Fig. 4.

The line of action PK of R makes with PA an angle </> such

that

tancf> = Sin 8 ' ~ Sin 8= tan|-(8'- 8); [13]
cos8 + cos8'

and

.-. BfPK= |- 8' + KS'-S)= | -£(S+8%

5P/r=|-8-i(S'-8) = |-i(S + S').

It is to be noticed that PA" bisects the angle 0, and does not

in general pass through the centre of gravity or any other fixed

point of the wire. Indeed, the path of a particle moving from

rest under the attraction of a straight wire is generally curved
;

for if the particle should start at a point Q and move a short

distance on the bisector of the angle BQB' to Q', the attraction

of the wire would now urge the particle in the direction of the

bisector of the angle BQ'B', and this is usually not coincident

with the bisector of BQB'.
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If q is the area, of the cross section of the wire, and p the

mass of the unit volume of the substance of which the wire is

made, we may substitute for p. in the formulas of this section

its value qp.

If instead of a very thin wire we had a body in the shape of

a prism or cylinder of considerable cross section, we might

divide this up into a large number of slender prisms and use the

equations just obtained to find the limit of the sum of the attrac-

tions at any point due to all these elemental*}' prisms. This

would be the attraction due to the given body.

7. Attraction at a Point in the Produced Axis of a Cylinder

of Revolution. In order to find the attraction due to a homo-

geneous cylinder of revolution at any point P (Fig. 5) in the

axis of the cylinder produced, it will be convenient to imagine

the cylinder cut up into discs of constant thickness Ac, by

means of planes perpendicular to the axis.

Let p be the mass of the unit of volume of the cylinder, and

a the radius of its base. Consider a disc whose nearer face is

at a distance c from P, and divide it into elements by means of

B B

Fig. 5.

radial planes drawn at angular intervals of A0 and concentric

cylindrical surfaces at radial intervals of Ar.

The mass of any element M whose inner radius is r is equal

to pAc- A0[rA>* + |-(Ar) 2
], and the whole attraction at P due to

'\ A0Ac[>A>-+i(Ar) 2
l

• v • • • vM is approximately p
L—

, ,
-^ m a line joining P

with some point of M. The component of this attraction in

the direction PC is found by multiplying the expression just
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: , the cosine of the angle CPS, so that thegiven by —-

attraction at P in the direction PC, clue to the whole disc, is

approximately

= 2 7r/3 Ac[~l — "] [14]

If the bases of the cylinder are at distances c and c + h

from P, the true value of the attraction at P in the direction

PC, clue to the cylinder QQ', is

limit X "*

2 irp Ac 1—
Vc2+ a2

_ Jc V Vc2+ aV

= 2 *rp[7*. +Vc 2 + a2 -V (c + /0
2+ «2

] • [15]

This is evidently the whole attraction at P due to the cylin-

der, for considerations of symmetry show us that the resultant

attraction at P has no component perpendicular to PC.

[14] gives the attraction clue to the elementary disc ABA'B',

on the assumption that the whole matter of the disc is concen-

trated at the face ABC. The actual attraction at P clue to

this disc may be found by putting c = c and h = Ac in [15].

If a, the radius of the cylinder, is very large compared with

h and c , the expression [15] for the attraction at P due to the

cylinder approaches the value 2irph.

8. Attraction at the Vertex of a Cone. The attraction due to

a homogeneous cone of revolution, at a point at the vertex of

the cone, may be found by the aid of [14].

If Fig. 6 represents a plane section of the cone taken through

the axis, and if PM= c, MM' = Ac, and MB = r, the attraction

at P due to the disc ABCD is approximately

-f, Ac 1 ^__
Vc2 + 7-

2
_

= 2 7rp Ac ( 1 — COS a)
,
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and the attraction due to the whole cone is

icS)^ 27^ 1 " COSa)A°
= 2 "P(1 ~ C°Sa) iSo^^
= 2irp{\ -COSa) PL.

. [16]

The attraction at P due to the frustum ABKN is found by

subtracting the value of the attraction due to the cone ABP
from the expression given in [16]. The result is

2*/>(l - cosa) (PL — PM) = 2^(1 - cos a) ML, [17]

and it is easy to see from this that discs of equal thickness cut

out of a cone of revolution at different distances from the vertex

by planes perpendicular to the axis exert equal attractions at

the vertex of the cone.

Fig. 6.

It follows almost directly that the portions cut out of two

concentric spherical shells of equal uniform density and equal

thickness, by any conical surface having its vertex at the

common centre P of the shells, exert equal attraction at this

centre ; but we may prove this proposition otherwise, as fol-

lows :

Divide the inner surface of the portion cut out of one of the

shells by the given cone into elements, and make the perimeter

of each of these surface elements the directrix of a conical

surface having its vertex at P. Divide the given shells into

elementary shells of thickness Arby means of concentric spheri-

cal surfaces drawn about P. In this way the attracting masses

will be cut up into volume elements.

Let ML' (Fig. 7) represent one of these elements, whose

inner surface has a radius equal to r ; then, if the elementary
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cone APB intercept an element of area Aw from a spherical sur-

face of radius unity (Jrawn around P, the area of the surface

element at MM' is rAw, and that at LL' is (r + A/-)
2 Aw. The

attraction at P in the direction PM, due to the element ML', is

approximately
r'AuAr . A

p — = pAwAr,
r

and the component of this in any direction Px, making an

an^le a Avith PM, is approximately pAu^Ar cos a. The attraction

at P in the direction Px, due to the whole shell EDFG, is,

then, ^^,
X= lim ^ p ArAw cos a,

where the sum is to include all the volume elements which go to

make up the shell. If PF=r , PG = i\, PF=r ', PG'= r1\

and ,i = FG = F'G',

X= I pdr I cos adw = p/x
j cosadw.

The attraction at P in the same direction, due to the shell

E'D'F'G', is

X' = p I rtr
| cosadw = pjx I cos adw.

Jr ' J J

But the limits of integration with regard to w are the same in

both fuses
;

.-. ,V= X'. which was to he proved.

If the shells are of different thicknesses, it is evident that

they will exert attractions at P proportional to these thick-

nesses.
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The area of the portion which a conical surface cuts out of a

spherical surface of unit radius drawn about the vertex of the

cone is called ' k the solid angle " of the conical surface.

9. Attraction of a Spherical Shell. In order to find the

attraction at P, any point in space, due to a homogeneous

spherical shell of radii rQ and i\, it will be best to begin by

dividing up the shell into a large number of concentric shells

of thickness Ar, and to consider first the attraction of one of

these thin shells, whose inside radius shall be r.

Let p be the density of the given shell, that is, the mass of

the unit of volume of the material of which the shell is com-

posed. Join P (Fig. 8) with by a straight line cutting the

inner surface of the thin shell at N, and pass a plane through

PO cutting this inner surface in a great circle NLSL 1

', which

Fig. 8.

will serve as a prime meridian. Using N as a pole, describe

upon the inner surface of the thin shell a number of parallels of

latitude so as to cut off equal arcs on NLSL'. Denote by A0

the angle which each one of these arcs subtends at 0. Through

PO pass a numbei of planes so as to cut up each parallel of

latitude into equal arcs. Denote by Ac£ the angle between any

two contiguous planes of this series. By this means the inner

surface of the elementary shell will be divided into small quad-

rilaterals, each of which will have two sides formed of meridian

arcs, of length r-A4, and two sides formed of arcs of parallels

of latitude, of length rs'm$-A(p and r sin(# -f A0)» A<£, where
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6 is the angle which the radius drawn to the parallel of higher

latitude makes with ON. The area of one of these quadri-

laterals is approximately rsintf- A0- A<£, and the thickness of

the shell is Ar, so that the element of volume is approxi-

mately r-'sinfl- A?-- \6 • A<£. Let PM=y, then the attrac-

tion at P, due to an element of mass which has a corner at

M. is approximately ^ — , in the direction PM.

This force may be resolved into three components : one in the

direction PO, the others in directions perpendicular to PO
and to each other; but it is evident from considerations of

symmetry that in finding the attraction at P due to the whole

shell we shall need only that component which acts in PO. This

. . , prsinfl-ArAtfA^- cos ATVli" .„ or .

is approximately c ~
; or, it PO = c,

pi-
2 sin 6(c — rcosfl)ArA0A<ft

\~-\fi~\

The attraction at P due to the whole elementary shell is, then,

approximately (truly on the assumption that the whole mass of

the shell is concentrated at its inner surface)

,

Ar C Cpr2 sin
(
c - r cos 9) de d$ = ArX

;

[19]

and the true value at P of the attraction due to the given shell is

Cxdr. [20]

If in the expression for X we substitute for $ its value in

terms of y, we have, since

y
2 = c

2 + r — 2 crcos 0,

and hence %ydy = 2crsi\\0d9,

X = r/<H £Vi( c"- ? + r) = -j- ) — + 1 )dy
Jo JVo 2 cry <? Jy„ \ y- J

-&[*=*+£]* [21]
c L y ]iiVo
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In order to find the limits of the integration with regard to y,

we must distinguish between two cases :

I. If P is a point in the cavity enclosed by the given shell,

y = r — c and yx
= r + c;

V-c2 + (r + c)
2 ^-c2 + (r-c) 2

~

r +c r—c
X=

/.2

and f Xdr = ;

= 0, [22]

[23]

so that a homogeneous spherical shell exerts no attraction at

points in the cavity which it encloses.

II. If P is a point without the given shell,

cr

and

y =c — r and y1
= c + r;

>2_ C2 + (C+r)2 _ yg_c2+ (C
_ r)i

c-\-r c — r

^TrpT2

PXdr 4 TT-p

Ov
3 }

)

[24]

[25]

From this it follows that the attraction due to a spherical

shell of uniform density is the same, at a point without the shell,

as the attraction due to a mass equal to that of the shell con-

centrated at the shell's centre.

If in [25] we make r = 0, we have the attraction, due to a

solid sphere of radius rx and density p, at a point outside the

sphere at a distance c from the centre. This is

3c2
[26]

10. Attraction due to a Hemisphere. At any point P in the

plane of the base of a homogeneous hemisphere, the attraction

of the hemisphere gives rise to two components, one directed

toward the centre of the base, the other perpendicular to the

plane of the base. We will compute the values of these com-

ponents for the particular case where P lies on the rim of the

hemisphere's base, and for this purpose we will take the origin
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of our system of polar coordinates at P. because by so doing

we shall escape having to deal with a quantity which becomes

infinite at one of the limits of integration. Denote the coordi-

nates of any pointL in the hemisphere by r, 0, </>, where (Fig. 9)

X

/

*N= A, IPL = $, and PL = r.

Fig. 9.

If Vi be the radius of the hemisphere,

PT= PNcosNPT= PX cos XPN- cosNPT= 2 rx sin 6 cos
<f>.

7A" _ IK _ JL cos <£
cos XPL

cos SPZ =

PL r r

PS = KL = ILsin_^

PL r r

sin0 cos<£.

sin#sin<£.

The mass of a polar element of volume whose corner is at

L is approximately p • IL A<£ • PL A6 • A?- or p/~sin$ArA0Ac£,

and this divided by r2 is the attraction at P in the direction PL
of the element, supposed concentrated at L. The components

of this attraction in the direction PX and PY"are respectively

psin0A/-A0A<£cosXPJL and p sin# Ar A0 A<£ cosSPL.

The component in the direction Py of the attraction at P due

to the whole hemisphere is, then,

X7T
s»-n /^2T] sin cos

(J>

2cZ0 I rf<9
J
p sin

2^ sin </>cZr = 1/3^, [27]
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and the component in the direction Px is

2 d(j> I dO
J
p smJ 6 cos <f>dr = f Trpjv [28]

This last expression might have been obtained from [26] by

making c equal to r and halving the result.

11. Attraction of a Hemispherical Hill. If at a point on the

earth at the southern extremity of a homogeneous hemispheri-

cal hill of density p and radius rx the force of gravity due to the

earth, supposed spherical, is g, the attraction due to the earth

and the hill will give rise to two components, g — %pi\ down-

wards, and § irp7\ northwards. The resultant attraction does

not therefore act in the direction of the centre of the earth, but

makes with this direction an angle whose tangent is -

|ip
'

9-ipri

Fig. 10.

Let cp (Fig. 10) be the true latitude of the place and (<f>
— a.)

the apparent latitude, as obtained by measuring the angle which

the plumb-line at the place makes with the plane of the equator.

Let a be the radius of the earth and a its average density. Then

tana = -toi- = H££L

9 -ipri 2 {rraa — pl\)
[29]
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The radius of the earth is very large compared with the

radius of the hill, and a is a small angle, so that approximately

l"\ Pri
-, and the apparent latitude of the place is *

•> a r 2 a<r

If fa is the true latitude of a place just north of the same hill,

its apparent latitude will be ^i + ^-i, and the apparent differ-
2 Clcr

ence of latitude between the two places, one just north of the

hill and the other just south of it, will be the true difference

plus £-J. If there were a hemispherical cavity between the two

places instead of a hemispherical hill, the apparent difference of

latitude would be less than the true difference.

12. Ellipsoidal Homoeoids. A shell, thick or thin, bounded

by two ellipsoidal surfaces, concentric, similar, and similarly

placed, shall be called an ellipsoidal homceoid.

It is a property

of every such
shell that if any

straight line cut

its outer surface

at the points S, S'

(Fig. 11) and its

inner surface at

Q, Q', so that these

four points lie in

the order SQQ'S',

the length SQ will

FlG
-
ll - be equal to the

length Q'S'*
We will prove that the attraction of a homogeneous closed

* The section of the homoeoid made by a plane which passes through
the centre and the secant line, is bounded by two concentric, similar, and
similarly placed ellipses. This figure may be regarded as an orthogonal
projection of two concentric circles cut by a straight line.
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ellipsoidal homceoid, at any point P in the cavity which it shuts

in, is zero.

Make P the vertex of a slender conical surface of two

nappes, A and B, and suppose the plane of the paper to be

so chosen that PQ is the shortest and PM the longest length

cut from any element of the nappe A by the inner surface of

the homceoid. Draw about P spherical surfaces of radii PQ,

PM, PS, and PO, and imagine the space between the inner-

most and outermost of these surfaces filled with matter of the

same density as the homceoid. The nappe A cuts out a portion

from this spherical shell whose trace on the plane of the

paper is QLOT. Let us call this, for short, "the element

QLOT." The attraction at P, due to the element QMOS which

A cuts out of the homceoid, is less than the attraction at the

same point due to the element QLOT, and greater than that

due to the element whose trace is KMNS. But the attraction

at P, due to the first of these elements of spherical shells, is to

the attraction due to the other as the thickness of the first shell

is to that of the other, or as QT is to KS. (See Section 8.)

The limit of the ratio of QT to KS, as the solid angle of the

cone is made smaller and smaller, is unity ; therefore the limit

of the ratio of the attraction at P due to the element QMOS, to

the attraction due to the element of spherical shell whose trace

is QLNS, is unity. By a similar construction it is easy to show

that the limit of the ratio of the attraction at P, due to the

element which B cuts out of the homceoid, to the attraction due

to the portion of spherical shell whose trace is Q'L'N'S', is

unity.

But the attractions at P, due to the elements Q'L'N'S' and

QLNS, are equal in amount (since their thicknesses are the

same) and opposite in direction, so that if for the elements of

the homceoid these elements were substituted, there would be no

resultant attraction at P. In order to get the attraction at P
in an}- direction due to the whole* homceoid we may cut up the

inner surface of the homceoid into elements, use the perimeter

of each one of these elements as the directrix of a conical sur-



18 THE ATTRACTION OF GRAVITATION.

face having its vertex at P, and find the limit of the sum of the

attractions due to the elements which these conical surfaces eut

from the homoeoid. Wherever we have to find the finite limit <>f

the sum of a series of infinitesimal quantities, we may without

error substitute for any one of these another infinitesimal, the

limit of whose ratio to the first is unity. For the attractions at P
due to the elements of the homoeoid we ma}7

, therefore, substi-

tute attractions due to elements of spherical shells, which, as we

have seen, destroy each other in pairs. Hence our proposition.

A shell bounded by two concentric spherical surfaces gives a

special case under this theorem.

13. Sphere of Variable Density. The density of a homo-

geneous body is the amount of matter contained in the unit

volume of the material of which the body is composed, and this

may be obtained by dividing the mass of the body by its volume.

If the amount of matter contained in a given volume is not

the same throughout a body, the body is called heterogeneous,

and its density is said to be variable.

The average density of a heterogeneous body is the ratio of

the mass of the body to its volume. The actual density p at

any point Q inside the body is defined to be the limit of the

ratio of the mass of a small portion of the body taken about Q
to the volume of this portion as the latter is made smaller and

smaller.

The attraction, at any point P, due to a spherical shell whose

density is the same at all points equidistant from the common
centre of the spherical surfaces which bound the shell but dif-

ferent at different distances from this centre, may be obtained

with the help of some of the equations in Article 'J.

Since p is independent of 9 ami <£, it may be taken out from

under the signs of integration with regard to these variables,

although it must be left under the sign of integration with re-

gard to r. *

Equations 1!) to 21 inclusive hold for the case that we

are now considering as well as for the case wheu p is constant,
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so that the attraction at all points within the cavity enclosed by

a spherical shell whose density varies with the distance from the

centre is zero.

If P is without the shell, the attraction is

L. _ rni^dr

or, if p =f(r),

fXclr = T

^j(/(>). r2 dr. [30]

The mass of the shell is evidently

Â
t^4 7rr

2 ./(r)dr==4^r).r2
cZr, [31]

and [30] declares that a spherical shell whose density is a

function of the distance from its centre attracts at all outside

points as if the whole mass of the shell were concentrated at the

centre.

If r = 0, we have the case of a solid sphere.

14. Attraction due to any Mass. In order to find the attrac-

tion at a point P (Fig. 12), due to any attracting masses M\ we
may choose a system of rectangular coordinate axes and divide

Fig. 12.

M' up into volume elements. If p is the average density of one

of these elements (Ai? f

), the mass of the element will be pAv'\

Let Q, whose coordinates are x', y', z', be a point of the ele-



20 THE ATTRACTION OF GRAVITATION.

ment, and let the coordinates of P be #, y, z. The attraction

:it /' in the direction PQ due to this element is approximately

£==5, and the components of this in the direction of the coordi-

l>(f

nate axes are

P^_ CoS «', ^ cos/8', and ^cosy', [32]
PQ 2 PQ- PQ'

where a', /3', y' are the angles which PQ makes with the positive

directions of the axes.

It is easy to see that

, PL x'—x
COS a = = —

,

PQ PQ
and, similarly, that

r,< v'—V i ,
z' — z

COS/3' = £_r2, and COSy'=-—

•

Moreover,

PQ2 = PL2 + LS 2 + SQ> = («'- xy + <y- y)
2+ (z'~ z)\

and this we will call r2 .

The true values of the components in the direction of the

coordinate axes of the attraction at P, due to all the elements

which go to make up M' , are, then,

v_ limit ST^ p^r'(x'— x)

_ r r r p(x'—x)dx'dy'dz'
. p33 -|

~J J J l^-xy+(y<- yy+(z<-zyY'
L aJ

v_ limit ^ pAo'(y'— y)
1 ~ Ai:'=0/ , ^

= CC

C

P (y'-y)dx'dy'dz' r33 -,

~ _ limit ^>Av'(z'— z)

_ rr r p(z'-z)dx'dy'dz'
. r33

n

JJJ lW-x)*+tf-yy+W-z)*}l'
L °J
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where p is the density at the point (x\ y', z'), and where the

integrations with regard to x\ y\ and z' are to include the whole

of M'

.

The resultant attraction at P, due to 3P , is

B =VX 2+Y2 + Z2
', [34]

and its line of action makes with the coordinate axes angles

whose cosines are

The component of the attraction at the point (x, y, z) in a

direction making an angle e with the line of action of R is

Rcose. If the direction cosines of this direction are A', p.', v',

we have
COSe = /\A'+ Mjw'-f- vv\

15. The quantities X, Y, Z, and R, which occur in the last

section, are in general functions of the coordinates x, y, and z of

the point P. Let us consider X, whose value is given in [33A]

.

If P lies without the attracting mass J/', the quantity —^—

'

is finite for all the elements into which 3P is divided. Let L
be the largest value which it can have for any one of these

elements, then X is less than L I j I pdx'dy'dz', or L-M', and

this is finite. If P is a point within the space which the attract-

ing mass occupies, it is easy to show that, whatever plrysical

meaning we may attach to X, it has a finite value. To prove

this, make P the origin of a system of polar coordinates, and

divide M ' up into elements like those used in Section 10. It

will then be clear that

X= f f CP sin2 cos cpdrdddcp, [36]

where the limits are to be chosen so as to include all the at-

tracting mass. Since sin-0cos</> can never be greater than
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unity, X is less than j I I pdrd6dcp, which is evidently finite

when p is finite, us it always is in fact.

The corresponding expressions,

F= ( ( ( psm20sm<pdrd$d<p, [37]

Z = C ( I P sinOcosddrddd<p, [38]and

can be proved finite in a similar manner ; and it follows that

X, T, Z, and consequently R, are finite for all values of x, y,

and z.

As a special case, the attraction at a point P within the mass

of a homogeneous spherical shell, of radii r and rx, and of den-

sity p, is

[39]ivP

where r is the distance of P from the centre of the shell.

16. Attraction between Two Straight Wires. Let AK and

BK' (Fig. 13) be two straight wires of lengths I and V and of

line-densities p. and p' ; and let KB = c. Divide AK into

p.Ax

M M

Fig. 13.

K'

elements of length Ax, and consider one of these MM', such

that AM=x. The attraction of BK' on a unit mass concen-

trated at M would be (Sections 2 and -5), p.' — — • If,
'
r
\_MB MK'_

therefore, the whole element MM' whose mass is pAx were con-

centrated at M, the attraction on it, due to BK', would be

1 1

^ \_MB MK = pp.'Ax —

!

! 1.

J + c-x l + V+c — xj
[40]
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The actual force, due to the attraction of B A"', with which the

whole wire AK is urged toward the right, is

limit

Ax
"—

!

I I
1 + c — x I -\-V -\-c — xj

1

= ««.' log

x — (l + V+c) x— (l + c)

x — l — V — 6

dx

x — l — c

= ^logiBl£lE±£l. [41]

17. Attraction between Two Spheres. Consider two homo-

geneous spheres of masses M and M' (Fig. 14), whose centres

C and C are at a distance c from each other. Divide the sphere

M' into elements in the manner described in Section 9. The
attraction due to M at any point P' outside of this sphere is, as

Mwe have seen, , and its line of action is in the direction

PC.
CP

Fig. 14.

Let P'=(r, 6,<p) be any point in the sphere M\ and let

CP' = y. The attraction of M in the direction PC on an

element of mass p^sintfA?- A0 A</> supposed concentrated at P is

MP r
2 sin 6 ArA(9Ac6 ... . , ... „ . , ;,—-

, and the component of this parallel to the

line C'C is
jtfj?!ljiggLc -rcoB(9)A>-A(9A^

The force ^
3T
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which the whole sphere M' is urged toward the right by the

attraction of M is, then,

r r for1 sin 0(lnWd<l>( c — rcosfl)
[42]

when' t he integration is to be extended to all the elements

which go to make up M' . It is proved in Section 9 that the

M'
value of this triple integral is ——, so that the force of attraction

C"

between the two spheres is ——

18. Attraction between any Two Rigid Bodies. In order to

find the force with which a rigid body M is pulled in any direc-

tion (as for instance in that of the axis of x) by the attraction

of another body M\ we must in general find the value of a

sextuple integral.

Let M be divided up into small portions, and let Am be the

mass of one of these elements which contains the point (x, y, z)

The component in the direction of the axis of x of the attrac

tion at (<c, y, z) due to M' is

fff
p (x'— x) dx'dy'dz'

and this would be the actual attraction in this direction on a

unit mass supposed concentrated at (x, y, z) . If the mass Am
were concentrated at this point, the attraction on it in the direc-

tion of the axis of x would be

Am f f f
P(x'-x)d*'dy'dz>

[43]
JJJr(x'-xy-+(y>-yY-+(z'-z) 2V L J

The actual attraction in the direction of the axis of x of M'

upon the whole of M is, then,

limi

Am-oI^-JI/Wz
p(x'— x)dx'dy'dz'

l(x'-x)*+{y'-y)*+(z'-z)*]i
[44]
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If p' is the density at the point (x, ?/, z) , and if the elements

into which M is divided are rectangular parallelopipeds of di-

mensions Ax, Ay, and Az, the expression just given may be

written

C C ( ( f f p,p (x ' ~~ ^

—

dy dz dx 'dy'dz> ur i

where the integrations are first to be extended over i!f' and

then over M.

EXAMPLES.

1. Find the resultant attraction, at the origin of a system of

rectangular coordinates, due to masses of 12, 16, and 20 units

respectively, concentrated at the points (3, 4), (—5, 12), and

(8, — 6). "What is its line of action ?

2. Find the value, at the origin of a system of rectangular

coordinates, of the attraction due to three equal spheres, each of

mass m, whose centres are at the points (a, 0, 0), (0, b, 0),

(0,0,c). Find also the direction-cosines of the line of action

of this resultant attraction.

3. Show that the attraction, due to a uniform wire bent into

the form of the arc of a circumference, is the same at the centre

of the circumference as the attraction due to any uniform

straight wire of the same density which is tangent to the given

wire, and is terminated by the bounding radii (when produced)

of the given wire.

4. Show that in the case of an oblique cone whose base is

any plane figure the attraction at the vertex of the cone due to

any frustum varies, other things being equal, as the thickness

of the frustum.

5. Find the equation of a family of surfaces over each one of

which the resultant force of attraction due to a uniform straight

wire is constant.

6. Using the foot-pound-second system of fundamental units,

and assuming that the average density of the earth is 5.G, com-

pare with the poundal the unit of force used in this chapter.



26 THE ATT I ;ACTION OF GRAVITATION.

7. If in Fig. 2 we suppose P moved up to A, the attraction

at P becomes infinite according to [7]. and yet Section 15

asserts that the value, at any point inside a given mass, of the

attraction due to this muss is always finite. Explain this.

8. A spherical cavity whose radius is r is made in a uniform

sphere of radius 2 r and mass m in such a way that the centre

of the sphere lies on the wall of the cavity. Find the attraction

due to the resulting solid at different points on the line joining

the centre of the sphere with the centre of the cavity.

9. A uniform sphere of mass m is divided into halves by the

plane AB passed through its centre C. Find the value of the

attraction due to each of these hemispheres at P, a point on the

perpendicular erected to AB at C, if CP'== a.

10. Considering the earth a sphere whose density varies only

with the distance from the centre, what may we infer about the

law of change of this density if a pendulum swing with the same

period on the surface of the earth and at the bottom of a deep

mine? What if the force of attraction increases with the depth

at the rate of -th of a dyne per centimetre of descent?
n

1 1

.

The attraction due to a cylindrical tube of length h and

of radii B and 7^, at a point in the axis, at a distance c from

the plane of the nearer end. is

2 7rp[Vc 2+i21

2-V^+ /Ar+ V(r +/0 2+P 2- V(Cb+/i) 2+#i2
].

[Stone.]

12. A spherical cavity of radius b is hollowed out in a sphere

of radius a and density p. and then completely filled with

matter, of density p . If c is the distance between the centre

of the cavity and the centre of the sphere, the attraction due

to the composite solid at a point in the line joining these two

centres, at a distance d from the centre of the sphere, is

,>"
:

,
//'(- -p)~

_d2 (d±cy
4

13. The centre of a sphere of aluminum of radius 10 and of

density 2.5, is al the distance 100 from a sphere of the same
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size made of gold, of density 19. Show that the attraction

due to these spheres is nothing at a point between them, at a

distance of about 26. G from the centre of the aluminum sphere.

[Stone.]

14. Show that the attraction at the centre of a sphere of radius

r, from which a piece has been cut by a cone of revolution

whose vertex is at the centre, is wpr siira, where a is the

half angle of the cone.

15. An iron sphere of radius 10 and density 7 has an eccentric

spherical cavity of radius 6, whose* centre is at a distance 3

from the centre of the sphere. Find the attraction due to

this solid at a point 25 units from the centre of the sphere,

and so situated that the line joining it with this centre makes

an angle of 45° with the line joining the centre of the sphere

and the centre of the cavity. [Stone.]

1G. If the piece of a spherical shell of radii r and ru inter-

cepted by a cone of revolution whose solid angle is o> and whose

vertex is the centre of the shell, be cut out and removed, find

the attraction of the remainder of the shell at a point P situated

in the axis of the cone at a given distance from the centre of

the sphere. If in the vertical shaft of a mine a pendulum be

swung, is there any appreciable error in assuming that the only

matter whose attraction influences the pendulum lies nearer the

centre of the earth, supposed spherical, than the pendulum

does ?

17. Show that the attraction of a spherical segment is, at its

vertex,

where a is the radius of the sphere and h the height of the

segment.

18. Show that the resultant attraction of a spherical segment

on a particle at the centre of its base is

2^o [3aS_ 3ah + jr-_ (2a - &)!»].
3 (a — h) -
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19. Show that the attraction :it the focus of a segment of a

paraboloid of revolution hounded by a plane perpendicular to

the axis at a distance b from the vertex is of the form

. i a + b
4 ivpa log

a

20. Show that the attraction of the oblate spheroid formed

by the revolution of the ellipse of semiaxes a, b, and eccen-

tricity e, is, at the pole of the spheroid,

—t— i 1 — -i '— sin l
e

e
m

( e

and that the attraction due to the corresponding prolate spheroid

is, at its pole,

4^.(1-^) fj_
1

!_+£_)
e
2 \2e s 1-e )

21. Show that the attraction at the point (c, 0, 0), due to

the homogeneous solid bounded by the planes x = a, x = &, and

by the surface generated by the revolution about the axis of x

of the curve y=f{x), is

-f{»+ =
C~^ TT f"

*»

22. Prove that the attraction of a uniform lamina in the form

of a rectangle, at a point P in the straight line drawn through

the centre of the lamina at right angles to its plane, is

A •
1 «&

4 yu. sin —==== —
,

Va-'-l-^VF+c1

where 2 a and 2 6 are the dimensions of the lamina and c the

distance of P from its plane.

[Answers to some of these problems and a collection of additional prob-

lems illustrative of the text of this chapter may be found near the end of

the book.]
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CHAPTER II.

THE NEWTONIAN POTENTIAL FUNCTION IN THE CASE

OF GRAVITATION.

19. Definition. If we imagine an attracting body M to be

cut up into small elements, and add together all the fractions

formed by dividing the mass of each element by the distance of

one of its points from a given point P in space, the limit of this

sum, as the elements are made smaller and smaller, is called the

value at P of " the potential function due to M."

If we call this quantit\" V, we have

where Am is the mass of one of the elements and r its distance

from P, and where the summation is to include all the elements

which go to make up M.
If we denote by jo the average density of the element whose

mass is Am, and call the coordinates of the corner of this ele-

ment nearest the origin x\ y', z', and those of P, x, y, z, we may
write

Am = pAx'Ay'Az',

and

p dx'dy'dz'

-SSS-l(x'-xy+(y'-yy+{z'-zy-^ [47]

where p is the density at the point (x',y', z'), and where the

triple integration is to include the whole of the attracting mass M.
As the position of the point P changes, the value of the quan-

tity under the integral signs in [47] changes, and in general V
is a function of the three space coordinates, i.e., V=f(x,y,z).
To avoid circumlocution, a point at which the value of the
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potential function is Vq is sometimes said to be "at potential

V ." From the definition of Fit is evident that if the value at

a point /' of the potential function due to a system of masses

.1/, existing alone is Pi, and if the value at the same point of

the potential function due to another system of masses M2 exist-

ing alone is V2 , the value at P of the potential function due to

.1/! and M2 existing together is V= V\ + F>

20. The Derivatives of the Potential Function. If P is a

point outside the attracting mass, the quantity

V (x'- a;) -+ {y'- y) -+ (z f - z)
2

,

which enters into the expression for V in [47], can never be

zero, and the quantity under the integral signs is finite every-

where within the limits of integration ; now, since these limits

depend only upon the shape and position of the attracting mass

and have nothing to do with the coordinates of P, we may dif-

ferentiate V with respect to either a;, y, or z by differentiating

under the integral signs. Thus :

DxV= C C rp fpdx'dy'dzn

-Iff
p(x'— x) dx'dy'dz' rAxi

{.(x'-xy+iy'-yy+iz'-zf^
L J

where the limits of integration are unchanged by the differen-

tiation. The dexter integral in this equation is (Section 14)

the value of the component parallel to the axis of x of the

attraction at Pdue to the given masses, so that we may write,

using our old notation,

DXV=X, [49]

and, similarly, DSV=Y, [50]

BZV=Z. [51]

The resultant attraction at Pis

B =Vx 2 + Y*+z2 =^/(Dxvy + (D
1
,vy + {D,vy, [52]
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and the direction-cosines of its line of action are

:

DXV Q
!DyV ,

DZV r , Q1cosa = —-— , cos B — —M— , and cos y = *
• |53|

B H B r B L J

It is evident from the definition of the potential function that

the value of the latter at any point is independent of the par-

ticular system of rectangular axes chosen. If, then, we wish to

find the component, in the direction of any line, of the attraction

at any point P, we may choose one of our coordinate axes

parallel to this line, and, after computing the general value of

V, we may differentiate the latter partially with respect to the

coordinate measured on the axis in question, and substitute in

the result the coordinates of P.

21. Theorem. The results of the last section may be summed
up in the words of the following

THEOREM.

To find the component at a point P, in any direction PK, oj

the attraction due to any attracting mass M, we may divide the

difference between the values of the potential function due to M at

P' (a point between P and K on the straight line PK) and at P
by the distance PP'. The limit approached by this fraction as

P' approaches P is the component required*

We might have arrived at this theorem in the following way :

If X, T", Z are the components parallel to the coordinate axes

of the attraction at any point P, the component in any direction

PA" whose direction-cosines are A, /x, and r, is

AX+ /x T+ . Z = XDXV+ /xP,V+ vDz V. [54]

Let x, y, z be the coordinates of P, and x + Ax, y -f- A?/,

z + Az those of P', a neighboring point on the line PK.

* If the force is required in absolute kinetic units, the result thus

obtained must be multiplied by k, the proper gravitation constant. The
reciprocal of k is equal to 1.543 x 107 in the c.g.s. system and to 9.63 x
108 in the f.p.s. system.
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If V and V are the values of the potential function at P
and P' respectively, we have, by Taylor's Theorem,

where e is an infinitesimal of an order higher than the first.

pp'

but

ppi -^x r
> ppi -^y r

' pp\ -^z r
* pp

Ax = A • PP', &y = n- PP', Az = v PP',

therefore, p^£ (^pjP) =^/+ f*A ^ + "A^ C56]

and this (see [54]) is the component in the direction PK of

the attraction at P : which was to be proved.

22. The Potential Function everywhere Finite. If P is a

point within the attracting mass, the integrand of the expres-

sion which gives the value of the potential function at P
becomes infinite at P. That V is not infinite in this case is

easily proved by making P the origin of a system of polar

coordinates as in Section 15, when it will appear that the

value of the potential function at P can be expressed in the

form Vp—
\ I ( P r s in # d} ' d& ĉ

i

and this is evidently finite.

[57]

Although VP is everywhere

finite, yet when we express its

value by means of equation [47],

the quantity under the integral

signs becomes infinite within the

limits of integration, when P is

a point inside the attracting

mass. Under- these circum-

stances we cannot assume with-

out further proof that the result

obtained by differentiating with respect to x under the in-

tegral signs is really Dx V. It is therefore desirable to com-

1
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pute the limit of the ratio of the difference (AX F") between the

values of V at the points P'= (x -+- A.r, y, z) and P = (x, y, z)
,

both within the attracting mass, to the distance (Arc) between

these points. For convenience, draw through P (Fig. 15) three

lines parallel to the coordinate axes, and let Q = (x', y', z').

Let PQ = r, P'Q = r', and X'PQ=xj,.

Then
r'

2 = ?- + (Aa;) 2— 2r- Aa-cosi/^,

where cos i/r =
,

and Kv= rrrn_i\ P dx<dy<dZ
>

Ax J J J \r' rj Ax

/•' r
2 + rr vl

J Ax

'
~2rAx cos if/

— (Ax) 2\ p dx' dy' dz\

r' r2 + rr'
2

J Ax
Therefore

D xr limit / Ag V

"///

"///

^ • p da;' dw' dz'
2r

pdx'dy'dz' cos if/

[58]

This last integral is evidently the component parallel to the

axis of x of the attraction at P, so that the theorem of Article

21 may be extended to points within the attracting mass.

It is to be noticed that p is a function of a,*', y', and z', but not

a function of x, y, and z, and that we have really proved that the

derivatives with regard to x, y, and z of

Iff-
F (x'^^ z ')

dx'dy'dz',
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whore F is any finite, continuous, and single-valued function of

a;', y', and z\ can always be found by differentiating under the

integral signs, whether (x, y,z) is contained within the limits of

integration or not.

23. The Potential Function due to a Straight Wire. Let

/x be the mass of the unit length of a uniform straight wire AB
(Fig. 1G) of length 21. Take the middle point of the wire for

the origin of coordinates, and a line drawn perpendicular to the

wire at this point for the axis of x.

Fig. 16.

The value of the potential function at any point P (x. v n

the coordinate plane is, then, according to [47],

VP
J-i [x2+(y'-y)~]* L J

l-y+y/rf+jl-yY
^/x*+{l+ yy-l-y

If r = AP = ^a?+ {l-y)\ and r' = BP= Var' + {l + y)\

whence y
4:1

-, we may eliminate x and y from [59] and

express VP in terms of r and r'.

Thus:

—
ttt-

= ^ log T r o?
'

21)- r-\-v'—2lr* — (r'
[60]

It is evident from [GO] that if P move so as to keep the sum

of its distances from the ends of the wire constant, VP will
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remain constant. P's locus in this case is an ellipse whose

foci are at A and B.

From [59] we get

DXVP
li

x

X

= E
x

X

X2 1

]

j[r+ (l-y)-\

r-(l-y)-
_r[r+ (*-y)] r'[r'-(* + y)]

V-(l-y) r' + (* + y) l

1 — cos 8 — 1 — cos 8'

= —

^

cos 8 4- cos 8}
]

and this (Section 6) is the component in the direction of the

axis of x of the attraction at P.

24. The Potential Function due to a Spherical Shell. In

order to find the value at the point P of the potential function

due to a homogeneous spherical shell of density p and of radii r

and rx , we may make use of the notation of Section 9.

r r r P r sin dr d$ d<j> f f fp r dy dr d<f>

y =fff
2 to rr

i rV\± rdr dy. [61]

If P lies within the cavity enclosed by the shell, the limits of

y are (r — c) and (r + c) , whence

V~2vp(r1*-rft. [62]

If P lies without the shell, the limits of y are (c — r) and

(c + t) , whence

[63]
4 (rf-ttf),

3
H

c

If P is a point within the mass of the shell itself, at a dis-

tance c from the centre, we may divide the shell into two parts
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by means of a spherical surface drawn concentric with the given

shell so as to pass through P. The value of the potential func-

tion at P is the sum of the components due to these portions of

the shell ; therefore

o c

TVP < /
j

r | _4ttp
[64]

3 j 3c

If we put these results together, we shall have the following

table :
—

c < r
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From this it follows, as the reader can easily prove, that the

value of the potential function due to a spherical shell whose

density is a function of the distance from the centre only is

constant throughout the cavity enclosed by the shell, and at

all outside points is the same as if the mass of the shell were

concentrated at its centre.*

25. Equipotential Surfaces. As we have already seen, Fis,

in general, a function of the three space coordinates [ V =
f(x, y, z)~\, and in any given case all these points at which the

potential function has the particular value c lie on the surface

the equation of which is V = f(x, y, z) = c.

Such a surface is called an " equipotential " or " level " sur-

face. By giving to c in succession different constant values,

the equation V = c yields a whole family of surfaces, and it is

always possible to draw through any given point in a field of

force a surface at all points of which the potential function has

the same value. The potential function cannot have two differ-

ent values at the same point in space, therefore no two differ-

ent surfaces of the family V = c, where V is the potential func-

tion due to an actual distribution of matter, can ever intersect.

* If the outer radius of the shell be unchanged while the radius of the

cavity approaches zero, the values of V and DCV at approach as limits

the corresponding values at the centre of a solid, homogeneous sphere of

density p and radius r\. The value of DC
2 V, however, does not approach

as a limit the value of Z»c
'

2 V at the centre of such a sphere.
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THEOREM.

If there be any resultant force at a point in space, due to any

attracting masses, this force acts along the normal to that equi-

potential surface on which the point lies.

For, let V=f{x, y, z) = c be the equation of the equipotential

surface drawn through the point in question, and let the coordi-

nates of this point be x
, y , z . The equation of the plane

tangent to the surface at the point is

(x-x )DXoV+(y-y )Dy V+(z-z )DziV=0,

and the direction-cosines of any line perpendicular to this plane,

and hence of the normal to the given surface at the point

(#<,, 2/o>Zo), are

COS a = ,
[G6A]

^{DXovy+{Dyovy+(DZovy

cos (3 = D«»V [66Bj
V(Z>, F) 2+(Z>yo F)

2+(i^ F) 2

and cosy=- Dz
»
V

[66J
^/(DXovy+(D vy+(DZa vr

But if we denote the resultant force of attraction at the point

(xoi Voi Zo) Dy -K» and its components parallel to the coordinate

axes by X, Y, and Z, these cosines are evidently equal to

X Y Z— , — , and — respectively, so that a, /3, and y are the direction-
R R R
angles not only of the normal to the equipotential surface at the

point (x
, y , z ), but also [35] of the line of action of the re-

sultant force at the point. Hence our theorem.

Fig. 18 represents a meridian section of four of the system

of equipotential surfaces due to two equal spheres whose sec-

tions are here shaded. The value of the potential function due

to two spheres, each of mass M, at a point distant respectively

»*! and n from the centres of the spheres, is

\n rj
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and if we give to V in this equation different constant values,

we shall have the equations of different members of the system

of equipotential surfaces. Any one of these surfaces may be

easily plotted from its equation by finding corresponding values

Fig. 18.

of rx and r2 which will satisfy the equation ; and then, with the

centres of the two spheres as centres and these values as radii,

describing two spherical surfaces. The intersection of these

surfaces, if they intersect at all, will be a line on the surface

required.

If 2 a is the distance between the centres of the spheres,

2MV= gives an equipotential surface shaped like an hour-

glass. Larger values of V than this give equipotential sur-

faces, each one of which consists of two separate closed ovals,

one surrounding one of the spheres, and the other the other.

2M
Values of V less than —1- give single surfaces which look more

a
and more like ellipsoids the smaller V is.

Several diagrams showing the forms of the equipotential

surfaces due to different distributions of matter are given at
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the end of the first volume of Maxwell's Treatise on Electricity

and Magnetism.

26. The Value of V at Infinity. The value, at the point P,

of the potential function due to any attracting' mass M has

been defined to be

y_ limit V^Aw
Am = / , n.

Let ?o be the distance of the nearest point of the attracting

mass from P, then

V<— / Am or — [6/1
nL* r

The fraction — has a constant numerator, and a denominator

which grows larger without limit the farther P is removed from

the attracting masses ; hence, we see that, other things being

equal, the value at P of the potential function is smaller the

farther P is from the attracting matter ; and that if P be moved
away indefinitely, the value of the potential function at P
approaches zero as a limit. In other words, the value of the

potential function at ''infinity" is zero.

About 0, any fixed point near the attracting mass, as centre,

imagine a spherical surface, S, drawn, of fixed radius, r , so

large that S shall just include all the distribution. Then, if

P is any distant point without S, and if OP = r,

M Tr M rM Tr rM<Vn < or — < r VP < •

r + /•„ r — r r + ?-

limit T _ limit f_

r + r
~ r = cc r — r

that the limit of (> • VP), as r increases without limit, is M.

. limit ' limit '
-, T r i , • r- •,

Since
r _ x =

r _ x — =1, f so vanishes at infinity

«• 2I -ifro\^ n v / M
Since — cos sin l

(
— < — Dr VP <

(r + roy V'7 (r-roy
it is easy to see that

tontt
(/

,2/)) V) = _ M and that
Umit

(r2DxV) = _ M cos (ajj r)}

where (x, r) denotes the angle between the axis of x and OP.
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27. The Potential Function as a Measure of Work. The

amount of work required to move a unit mass, concentrated at

a point, from one position, P^ to another, P2 i Dy av1J path, in

face of the attraction of a system of masses, M, is equal to

Fig. 19.

Vi — V2 , where V\ and V2 are the values at Pi and P2 of the

potential function due to M.
To prove this, let us divide the given path into equal parts

of length As, and call the average force which opjioses the

motion of the unit mass on its journey along one of these

elements A B (Fig. 19), F. The amount of work required to

move the unit mass from A to B is FAs, and the whole work

done by moving this mass from Px to P2 will be

limit \^ p2limit i

As=P> FAS -

As As is made smaller and smaller, the average force opposing

the motion along AB approaches more and more nearly the

actual opposing force at A, which is —D
SV: therefore

limit

As "oZ^As= -xrAT
"- rfs=F; - F! -

It is to be carefully noticed that the decrease in the potential

function in moving from Px to P2 measures the work required

to move the unit mass from Px to P2 . If P2 is removed farther

and farther from M, V2 approaches zero, and Vx
— V2 approaches

Vl
as its limit, so that the value at any point P1? of the poten-

tial function due to any system of attracting masses, is equal

to the work which would be required to move a unit mass, sup-

posed concentrated at P
x , from Px

to " infinity" by any path.
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The work
(
IV) that must be clone in order to move an attract-

ing mass M' against the attraction of any other mass M, from

a given position by any path to " infinity," is the sum of the

quantities of work required to move the several elements (A?h/)

into which we may divide M', and this may be written in the

form

limit Va^^T C pdxdijdz

^-JKoZ^/Z/i
C C C C C C pp'dxdydzdx'dy'dz'

J J J J J J [(*' - xf + (y' - yf + (*» - *)
2]i" L°° J

IF is called by some writers " the potential of the mass M'
with reference to the mass M" ; by others, the negative of W
is called " the mutual potential energy of M and 31'."

In many of the later books on this subject, the word "po-

tential " is never used for the value of the potential function

at a point, but is reserved to denote the work required to move

a mass from some present position to infinity. If V is the

value of the potential function at a point P, at which a mass

m is supposed to be concentrated, mF is the potential of the

mass m. If we could have a unit mass concentrated at a point,

the potential of this mass and the value of the jiotential function

at the point would be numerically identical.

Imagine any given distribution of attracting matter which

has the potential function V, divided into elements, of volume

At 1? At2> At3 ,
•••, of density pu p 2 > pz, •••> and of mass Am 1;

Am2 , Aw 3 ,
•••. If the density at every point in the distri-

bution were A times what it now is (X being any positive

constant), the potential function would be XV, and, since the

volume occupied by each element would be unchanged, the

mass of the pAb. element would be XAm . To change X to

X + AX, the mass of every element must be increased and

to the ^>th element must be brought up the mass-increment

AX • Aw.j,. If this quantity were brought up from an infinite

distance, the attraction of the existing distribution would do

upon it an amount of work represented by XV-AX-Amp , so
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that the work done on the additions to the whole mass would

be A A\ • limit^ FAm. The work done by the attractive

forces while A was being changed from A to A x
would be

limit j VAm I A dX. To find the work done by the attrac-

tion for one another of its own parts, while the given distri-

bution is constructed by bringing together its particles from

infinite dispersion, we may put A = 0, A* = 1, and get

where the summation is to extend over the whole distribution.

This quantity, the negative of which (when the matter is

attracting) is sometimes called " the intrinsic energy " of the

distribution, is given by the formula in attraction units of

work. In absolute kinetic work units,

The potential function inside a homogeneous sphere of

radius a and density p, at a distance r from the centre, being

2irp(a2 — -^-r
2

), the intrinsic energy of the sphere is

— I irp (or — f ?-) 4 irpr-dr or „ -rfp-ab or —
«/0 10 O Ob

attraction units of work. If the c.g.s. system has been used
3 Jf2

throughout, this is equivalent to
5ft /15430000)

erSs -

If V and V are the potential functions due to two neighbor-

ing distributions,M and M', if AM and AM' are mass elements

of the two distributions, and P and P' points in AM and AM'
respectively, the mutual potential energy of M and M' may

be found by integrating =j^— over both distributions,

and, since the order of integration is immaterial, the result

may be written —
| VdM' or — Cv'dM.

The intrinsic energy of M and M' considered as a single dis-

tribution is to be found by integrating — £( V + V) over both
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masses. This gives - | CvdM-\ fv'dM' - CvdM' or

the sum of the intrinsic energies of M and M' and the mutual

energy of the two.

If M and M' were made up of matter every particle of

which repelled every other particle according to the Law of

Nature, the intrinsic potential energy ofMwould be + £ I VdM

and the mutual potential energy of J/and M 1 would be

+ CvdM', or + Cv'dM.

28. Laplace's Equation. We have seen that the value of

the potential function, and the component in any direction of

the attraction at the point P, are always finite functions of the

space coordinates, whether P is inside, outside, or at the sur-

face of the attracting masses. We have seen also that by dif-

ferentiating V at any point in any direction we may find the

always finite component in that direction of the attraction at

the point. It follows that DX V, Dy V, DZ V are everywhere

finite, and that, in consequence of this, the potential function

is everywhere continuous as well as finite.

If P is a point outside of the attracting masses, the quan-

tity under the integral signs in [48], by which dx' dy' dz' is

multiplied, cannot be infinite within the limits of integration,

and we can find P>X V by differentiating the expression for

Dx V under the integral signs.

In this case

D
*
v =fff

S(x'~

r

*r ~ r2

p
' dx 'dy'dz

'> c69 ]

and similarly,

D'*v=fff
3(u

' ~f ~ ^
p'^'ty**'* c7°]

A2 v =fff
3(z'~^ 2 ~

7
'2

p' ** dv'* L
71 3
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Whence, for all points exterior to the attracting masses,

Dx
2 V + D 2 V + D 2 V = 0. [72]

This is Laplace's Equation. For the operator

(D 2 + D/ + A2
),

the symbols 8, A, A2 ,
— V 2

, V2
, and V 2 have been used by dif-

ferent authors, and [72] may be written

V2 T=0. [73]

The potential function, due to every conceivable distribu-

tion of matter, must be such that at all points in empty space

Laplace's Equation shall be satisfied.*

29. The Second Derivatives of the Potential Function are

Finite at Points within the Attracting Mass. If the point P
lies within the attracting mass, V and DX V are finite, but the

quantity under the integral signs in the expression for Dx V
becomes infinite within the limits of integration, and we can-

not assume that DX V may be found by differentiating DXV
under the integral signs. In order to find DJ V under these

circumstances, it is convenient to transform the equation for

DX V. Let us choose our coordinate axes so as to have all the

attracting mass in the first octant, and divide the projection of

the contour of this mass on the plane yz into elements (dy'dz').

Upon each one of these elements let us erect a right prism,

cutting the mass twice or some other even number of times.

Consider one of the elements dy'dz' the corner of which next

the origin has the coordinates 0, y', and z'. The prism erected

on this element cuts out elements ds 1} ds2 , ds3 , ds4 , ds2n from

the surface of the attracting mass, and that edge of the prism

which is perpendicular to the plane yz at (0, y', z') cuts into

the surface at points whose distances from the plane of yz are

a1} a3 , a 5 ,
• • a 2n _ u and out of the surface at points whose dis-

tances from the same plane are a 2 , a4 , a 6 , a2n . At every one

* If a function, continuous with its first derivatives within a region, T,

satisfies Laplace's Equation at every point of the region, it is sometimes

said to be harmonic in T.
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of these points of intersection draw a normal towards the inte-

rior of the attracting mass, and call the angles which these

normals make with the positive direction of the axis of x, al}

a2 , a3,
• a.2n . It is to be noticed that a 1} a3 , a5 ,

• • • a2n _! are all

acute, and that a 2 , a4 , a6 ,
• • a2n are all obtuse. The element

dy'dz' may be regarded as the common projection of the sur-

face elements dsu ds2, dsz ,
• ds2n , and, so far as absolute value

is concerned, the following equations hold approximately

:

dy'dz' = ds l cos a x
= ds2 cos a2 = ds3 cos a3 = • • • = ds2n cos a2n.

But dy'dz', dsu ds2 , dss , etc., are all positive areas, and cos a2 ,

cos a4 , cos a6 , etc., are negative, so that, paying attention to

signs as well as to absolute values, we have

dy'dz'= -\-'ds l cos ax
=— ds2 cos a2=

+

ds3 cos a3
=—ds4 cos a4= etc.

Now

Fig. 20

C
74 J

and in order to find the value of this expression by the use

of the prisms just described, we are to cut each one of these

prisms into elementary rectangular parallelopipeds by planes

parallel to the plane of yz ; we are to multiply the values of

every one of these elements which lies within the attracting
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mass by the value of p'DJ ( ) at its corner next the origin

[i.e., at (x'
}
y', «')] ; and we are to find the limit of the sum

of these as dx' is made smaller and smaller. We are then to

compute a like expression for each of the other prisms, and

to find the limit of the sum of the whole as the bases of the

prisms are made smaller and smaller and their number corre-

spondingly increased.

Wherever the function — is a continuous function of x', we
have

».' 7 = \W + p'»* \ = \
d*'p' ~M (- \

hence, if the elementary prisms cut the surface of the attract-

ing mass only twice,

DxV=ffdy'dz>[-£j +fff±Vx<p'dx'dy'dz'; [75]

and
?
in general,

+fff
1
-DJp , dx'd

i/
'dz

l

[76]

[
— COS ax dSi + — COS a2 ds2 + — COS a3 ds3 + • • •

\ 1\ r% rz

+ pj^ cos ou2n ds2n j +j*f*f- DJ p'dx'dy'dz', [77]

where — is the value of the quantit}r — at the point where the

line y — y', z = z' cuts the surface of the attracting mass for

the kth time, counting from the plane yz.

In order to find the value of the limit of the sum which

occurs in this expression, it is evident that we may divide the

entire surface of the attracting mass into elements, multiply
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the area of each element by the value of at one of itsJ
r

points, and find the limit of the sum formed by adding all

these products together ; but this is equivalent to the surface

integral of *

—

'— taken all over the outside of the attracting

mass, so that

DxV=Ce- cosads +fff^dL dx'dy'dz', [78]

where the first integral is to be taken all over the surface of

the attracting mass and the second throughout its volume.

This expression for DXV is in some cases more convenient

than that of [48].

We have proved this transformation to be correct, however,

only when — is finite throughout the attracting mass. If P
1

i

is a point within the mass, — is infinite at P. In this case

surround P by a spherical surface of radius e small enough to

make the whole sphere enclosed by this surface lie entirely

Fig. 21.

within the attracting mass. This is possible unless P lies

exactly upon the surface of the attracting mass. Shutting

out the little sphere, let V2 be the potential function due to

the rest (T2) of the attracting mass ; then, since P is an out-

side point, with regard to 1\, we have, by [78],

Dx v2=f f

j cos « • ds' + f
f- cos a ds+fff^E- dx'dy'dz', [79]

where the first integral is to be extended over the spherical
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surface, which forms a part of the boundary of the attracting

mass to which F2 is due ; the second integral is to be taken

over all the rest of the bounding surface of the attracting

mass ; and the triple integral embraces the volume of all the

attracting mass which gives rise to V2 .

As c is made smaller and smaller, V2 approaches more and

more nearly the potential function V, due to all the attract-

ing mass.

In the integral I — cos a ds', cos a can never be greater than

1 nor less than — 1, so that if p~' is the greatest value of p' on

the surface of the sphere, the absolute value of the integral must

be less than— I ds'or4:irp'e, and the limit of this as e approaches

zero is zero. The second integral in [79] is unaltered by any

change in e. If we make P the origin of a system of polar

coordinates, it is evident that the triple integral in [79] may
be written

f f fDX
'

P
' r sin 6 drd6d<f>, [80]

and the limit which this approaches as e is made smaller and

smaller is evidently finite, for, if r = 0, the quantity under

the integral sign is zero.

Therefore,

^DXV2 = DX V-. f
8- cos a ds +fff^T- dx'dij'dz', [81]

and [79] is true even when P lies within the attracting mass.

Under the same conditions we have, similarly,

and

D
y
V = f£- cos (3 ds +fff^- dx { dy [

dz, [82]

DZV= ft cos y ds + fff^- dx'dij' dz'. [83]

Observing that in these surface integrals r can never be zero,

since we have excluded the case where P lies on the surface

of the attracting mass, and that the triple integrals belong to
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the class mentioned in the latter part of Section 22, we will

differentiate [81], [82], and [83] with respect to x, y, and z

respectively, by differentiating under the integral signs. If

the results are finite, we may consider the process allowable.

Performing the work indicated, we have

D*V=fP'cosy Dz
(~ )ds+fffl)z(^\DJp'-dx'dy'dz',[86]

and by making P the centre of a system of polar coordinates

and transforming all the triple integrals, it is easy to show

that the values of DX V, D
y
2
V, DZ

2 V here found are finite,

whether P is within or without the attracting mass, if the

derivatives of the density are finite. This result* is important.

30. The Derivatives of the Potential Function at the Surface

of the Attracting Mass. Let the point P lie on the surface of

Fig. 22.

the attracting mass, or at some other surface where p is

discontinuous. Make P the centre of a sphere of radius c,

* Lejeune Dirichlet, Yorlesungen ilber die im umgelcehrten Verhaltniss

des Quadrats der Entfernung ivirkenden Krafte.

Riemann, Schwere, Electric itiit, unci Magnetismus.

It is to be noticed that while the integral in the second member of [48]

represents DXV even at points within the attracting mass, the integral, /,

obtained by differentiating this expression for DXV under the signs of

integration represents DX
2V only at outside points. Within the mass 1

is infinite, while I)x-V is finite.



EST THE CASE OF GRAVITATION. 51

and call the piece which this sphere cuts out of the attracting

mass Tx and the remainder of this mass T% . Let Vx and V2 be

the potential functions due respectively to Tx and T2 , then

r=F1 +F85 DXV=DX VX + DX V„

and the increment [A (DX V)~\ made in Dx V by moving from P
to a neighboring point P\ inside Tu is equal to the sum of the

corresponding increments \_A(Dx Vi) an(i ^(-^x^)] niade in

Dx Vy and DXV2 .

With reference to the space T2 , P is an outside point, so

that the values at P of the first derivatives of V2 with respect

to x, y, and z are continuous functions of the space coordinates

and p^ A(DxF2)=0.

Let dw be the solid angle of an elementary cone whose vertex

is at any fixed point in Tx used as a centre of coordinates.

The element of mass will be pr2 dudr. The component in the

direction of the axis of x of the attraction at due to Tx is the

limit of the sum taken throughout Tx of ^ > where a

is the cosine of the angle which the line joining with the

element in question makes with the axis of x. The difference

between the limits of w is not greater than 4 v, and the differ-

ence between the limits of r is not greater than 2 e. If, then,

k is the greatest value which pa has in T1}

It follows from this that if P' is a point within Tx so that

PP' < c, the change made in Dx Vx by going from P to P' is

far less than 16 ttkc ; but this last quantity can be made as

small as we like by making c small enough, so that

p^ A(D
iB
F1) = 0,

whence

p^ A(I)xn= pllni
t A(i)

;c
F1) + p^ A(i)

:c
F2) = 0,

and DXV varies continuously in passing through P. In a

similar manner, it may be proved that D
y V and DZ V are
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everywhere, even at places where the density is discontinuous,

continuous functions of the space coordinates.

The results of the work of the last two sections are well

illustrated by Fig. 17. We might prove, with the help of a

transformation due to Clausius,* that the second derivatives

of the potential function are finite at all points on the surface

of the attracting matter where the curvature is finite, but that

the normal second derivatives generally change their values

abruptly whenever the point P crosses a surface at which p is

discontinuous, as at the surface of the attracting masses. The

fact, however, that this last is true in the special case of a

homogeneous spherical shell suffices to show that we cannot

expect all the second derivatives of V. to have definite values

at the boundaries of attracting bodies.

31. Gauss's Theorem. If any closed surface S drawn in a

field of force be divided up into a large number of surface

Fig. 23.

elements, and if each one of these elements be multiplied by

the component, in the direction of the interior normal of the

force of attraction at a point of the element, and if these

products be added together, the limit of the sum thus obtained

is called the "surface integral of normal attraction over S."

If any closed surface S be described so as to shut in com-

pletely a mass m concentrated at a point, the surface integral

* Die Putentialfunction und das Potential, §§ 19-24.
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of normal attraction due to m, taken over S, is 4 irm ; and,

in general, if any closed surface S be described so as to shut

in completely any system of attracting masses M, the surface

integral over S of the normal attraction due to M is 4 ttM.

In order to prove this, divide S up into surface elements,

and consider one of these ds at Q. The attraction at Q in

the direction QO, due to the mass m concentrated at 0, is

ttb 111/= —- The component of this in the direction of the
Q(f r-

tn ....
interior normal is — cos a, and the contribution which ds yields

v1

to the sum whose limit is the surface integral required is

Connect every point of the perimeter of ds with

by a straight line, thus forming a cone of such size as to

cut out of a spherical surface of unit radius drawn about

an element dm, say. If we draw about a sphere of radius

r = OQ, the cone will intercept on its surface an element

equal to r2
du>. This element is the projection on the spher-

ical surface of ds; hence & cos a = r2
du>, approximately, and

the contribution of the element ds to our surface integral is

?ndw. But an elementary cone may cut the surface more than

once ; indeed, any odd number of times. Consider such a

cone, one element of which cuts the surface thrice in Su S2 ,

and S3 . Let OSu 0S2 , and OS3 be called rx , r2 , and rz respec-

tively, and let the surface elements cut out of S by the cone

be dsi, ds2 , and ds3 , and the angles between the line S3 and

the interior normals to S at Sx , S2 , and Sz be a l5 a2 , a3 . It

is to be noticed that when the cone cuts out of S, the

corresponding angle is acute, and that when it cuts in, the

corresponding angle is obtuse. a x
and a3 are acute, and a2

obtuse. If we draw about three spherical surfaces with

radii r1} r2 , and r3 respectively, the cone will cut out of these

the elements r^dta, r2
2 dw, and r3

2 dm. In absolute size,

dsi = r
x

2
d(ji sec c^, ds2

= r2
2du seca2 , and ds3 = r3

2 do> sec a3 ,

approximately, but ds2 and rVw are both positive, being

areas, and seca2 is negative. Taking account of sign, then,
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ds2
= — r-dto seca2 , and the cone's three elements yield to the

surface integral of normal attraction the quantity

ds
1
COSa l ,

f/s2 COSa2 ,

dss COSa 3\ ,—:—-—= -\ :
1

;— = m (doi — doi + da)) =m do).

>Y ri rz
- J

However many times the cone cuts S, it will yield mda> to

the surface integral required : all such elementary cones will

yield then >»/> dot = m 4 w, if S is closed, and, in general, m®,

where © is the solid angle which S subtends at 0.

If, instead of a mass concentrated at a point, we have any

distribution of masses, we may divide these into elements,

and apply to each element the theorem just proved ; hence

our general statement.

If from a point without a closed surface S an elementary

cone be drawn, the cone, if it cuts S at all, will cut it an even

number of times. Using the notation just explained, the con-

tribution which any such cone will yield to the surface integral

taken over £ of a mass m concentrated at is

dsx COS a x
ds% COS a» ds3 COS a 3 ds4 COS a4

1
1

1 H o
1 o ' '

= m (— du) -f dot — dm + do) — • • •) = vi • = 0,

and the surface integral over any closed surface of the normal

attraction due to any system of outside masses is zero.

The results proved above may be put together and stated

in the form of a

Theorem due to Gauss.

If there be any distribution of matter partly within and partly

without a closed surface S, and ifM be the sum of the masses

ivhich S encloses, and M' the sum of the viasses outside S, the

surface integral over S of the norma/ attraction i\
r toward the

interior, d%ie to both M and 31', is equal to 4 ttM. If V be the

potential function due to both M and 31', tve have

CNds = Cl)n V- ds = ± irM.
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It is easy to see that if a mass M be supposed concentrated

on any closed surface S the curvature of which is everywhere

finite, the surface integral of normal attraction taken over S
will be 2 -n-M ; for all the elementary cones which can be drawn
from a point P on the surface so as to cut S once or some
other odd number of times, lie on one side of the tangent plane

at the point, and intercept just half the surface of the sphere

of unit radius the centre of which is P.

From Gauss's Theorem it follows immediately that at some
parts of a closed surface situated in a field of force, but en-

closing none of the attracting mass, the normal component of

the resultant attraction must act towards the interior of the

surface and at some parts toward the exterior, for otherwise

the limit of the sum of the intrinsically positive elements of

the surface, each one multiplied by the component in the

direction of the interior normal of the attraction at one of its

own points, could not be zero. In other words, the potential

function, the rate of change of which measures the attraction,

must at some parts of the surface increase and at others

decrease in the direction of the interior normal.

32. Tubes of Force. A line which cuts orthogonally the dif-

ferent members of the system of equipotential surfaces cor-

responding to any distribution of matter is called a "line of

force," since its direction at each point of its course shows the

direction of the resultant force at the point. If through all

points of the contour of a portion of an equipotential surface

lines of force be drawn, these lines lie on a surface called a

Fig. 24.

"tube of force." We ma}7 ensily apply Gauss's Theorem to a

space cut out and bounded by a portion of a tube of force and

two equipotential surfaces ; for the sides of the tube do not con-
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tribute anything to the surface integral of normal attraction, and

the resultant force is all normal at points in the equipotential

surfaces. If oj and w' are the areas of the sections of a tube of

force made by two equipotential surfaces, and if F and F' are

the average interior forces on w and a>', we have

Fw+F'u>' = Q [87]

if the tube encloses empty space, and

JFaJ +F'a)'=4 7rm [88]

when the tube encloses a mass m of attracting matter.

33. Spherical Distributions. In the case of a distribution

about a point in 'spherical shells, so that the density is a

function of the distance from this point only, the lines of force

are straight lines whose directions all pass through the central

point. Every tube of force is conical, and the areas cut out of

different equipotential surfaces by a given tube of force are pro-

portional to the square of the distance from the centre.

Consider a tube of force which intercepts an area ij/ from a

spherical surface of unit radius drawn with as a centre, and

apply Gauss's Theorem to a box cut out of this tube b}- two

equipotential surfaces of radii /* and (/• -f A/-) respectively.

Fig. 25.

Let AOB (Fig. 25) be a section of the tube in question.

The area of the portion of spherical surface w which is repre-

sented in section at ad is r
2
^, and the area of that at be is

(?'-f- Ar)
2

i//. If the average force acting on w toward the inside

of the 1 >x is F, the average force acting on «/ toward the inside

of the box will be -(F+ArF), and the surface integral of

normal attraction taken all over the outside of the box is

FVty -(F+ A rF) (/• + Ar)V = -</" A^F-r2

) [89]
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If the tube of force which we have been considering be ex-

tended far enough, it will cut all the concentric layers of matter,

traverse all the empty regions between the layers, if there are

such, and finally emerge into outside space.

If we choose r so that the box shall contain no matter, the

surface integral taken over the box must be zero.

In this case,

-^r(Fr) = 0,

therefore, F= —,, [90]
r

and F=--+u. [91]
r

From this it follows that in a region of empty space, either

included between the two members of a system of concentric

spherical shells of density depending only upon the distance

from the centre, or outside the whole system, the force of attrac-

tion at different poiuts varies inversely as the squares of the

distances of these points from the centre.

Suppose that the box (abed) lies in a shell whose densit}' is

constant ; then the surface integral of normal attraction taken

over the box is equal to 4^ times the matter within the box. In

this case the quantity of matter inside the box is

p *?rl(r+ Ary-i*]± or p^Ar+ e,

where c is an infinitesimal of an order higher than the first.

Therefore,
— 4/<\T(Fr) = 4 tt( p i//?~ Ar + e)

,

limi t A r{Fr) ^_

whence F= - i^ + -|> C92]

and F= - - - \ irpf + p.. [93]
T O
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If the box lies in a shell whose density is inversely propor-

tional to the distance from the centre, we shall have

*-£V,

whence

and

limit A r (F;-
2

) =

F=— 2ttA +

V= — - — 27rA.r + /i.

[94]

[95]

[96]

In general, if the box lies in a shell whose density is/(r), we

shall have

limit K (Fr 2
) __ A „ f(^

whence

WO-)A [97]

[98]

In order to learn how to use the results just obtained to de-

termine the force of attraction at any point due to a given

spherical distribution, let us consider the simple case of a single

shell, of radii 4 and 5, and of density [Ar] proportional to the

distance from the centre.

At points within the cavity enclosed by the shell we must

have, according to [90] and [91],

F=-
o

and V=--+ix;
r r

But the force is evidently zero at the centre of the shell, where

r is zero, so that c must be zero everywhere within the cavity,

and there is no resultant force at any point in the region. The

value, at the centre, of the potential function due to the shell is

evidently

H= f'47rArr7,- = 2M^, [99]

and it has the same value at all other points in the cavity.

In the shell itself it is easy to see that we must have at all

points,

F=?~-Tr\ri and F=---— +/*' [100]
t r 3
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Iii order to determine the constants in this equation, we may

make use of the fact that F and V are everywhere continuous

functions of the space coordinates, so that the values of F and

V obtained by putting r = 4, the inner radius of the shell, in

[100], must be the same as those obtained by making r = 4 in

the expressions which give the values of F and V for the cavity

enclosed by the shell. This gives us

i n-r \ l ( 500 7TA
c—2d6ttX and u =

,r
3

so that for points within the mass of the shell we have

F= *^-,rAr2
, [101]

v

, TT 256 tt\ 7rAr
3

, 500 ?rA rinoland V= — -\ L
102

J
r 6 3

For points without the shell we have the same general expres-

sions for F and F'as for points within the cavity enclosed by

the shell, namely,

F=- and V=-- + m, [103]
r r

but the constants are different for the two regions.

Keeping in mind the fact that F and V are continuous, it is

easy to see that we must get the same result at the boundary of

the shell, where r= 5, whether we use [103], or [101] and [102].

This gives

k == — 369 tt\ and ra = ;

so that for all points outside the shell we have

^= _369_7rA
5

j-104 -j

TUd ' F= ^rA.
[105]

r

These last results agree with the statements made in Section

13, for the mass of the shell is 369 ?rA.

The values, at every point in space, of the potential function

and of the attraction due to any spherical distribution may be
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found by determining, first, with the aid of Gauss's Theorem,

the general expressions for F and V in the several regions;

then the constants for the innermost region, remembering that

there is no resultant attraction at the centre of the system ; and

finally, in succession (moving from within outwards), the con-

stants for the other regions, from a consideration of the fact

that no abrupt change in the values of either i^or V is made by

crossing the common boundary of two regions.

This method of treating problems is of great practical im-

portance.

34. Cylindrical Distributions. In the case of a cylindrical

distribution about an axis, where the density is a function of

the distance from the axis only, the equipotential surfaces are

concentric cylinders of revolution ; the lines of force are straight

lines perpendicular to the axis ; and every tube of force is a

wedge.

If we apply Gauss's Theorem to a box shut in between two

equipotential surfaces of radii /• and / + Ar, two planes perpen-

dicular to the axis, and two planes passing through the axis,

Fig. 26.

we have, if \p is the area of the piece cut out of the cylindrical

surface of unit radius by our tube of force,

at = r-\p, m' = (r -}- Ar) •
if/,

and for the surface integral of normal attraction taken over the

box,
Fw + F'u>' = -ilfA r (r-F). [106]

If our box is in empty space,

A r (/--F) = 0,

so that F= and V= clogr + fx. [107]
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If the box is within a shell of constant density p,

— \j, • A r(r • F) = 4 infi PrAr,

so that F=- — 2-!rpr and V=clogr—Trprs+fi. [108]

35. Poisson's Equation. Let us now apply Gauss's Theorem

to the case where our closed surface is that of an element of

volume of an attracting mass in which p is either constant or a

continuous function of the space coordinates. We will consider

three cases, using first rectangular coordinates, then cylinder

coordinates, and finally spherical coordinates.

R
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— Ax Ay Az
Ay

A i>
and — AxAi/Az —z— , and, if p is the average

Az
density of the matter enclosed bv the box, we have

— AxAyAz
AX A Y A Z
A.r Ay Az

iwPoAxAyAz. [109]

This equation is true whatever the size of the element Ax A?/ Az.

If this element is made smaller and smaller, the average nor-

mal force [X] on PP4 approaches in value the force [i^F] at

P in the direction of the axis of x ; Y and Z approach respec-

tively the limits Z)
y
Fand DZ V; and p approaches as its limit

the actual density [p] at P.

Taking the limits of both sides of [109], after dividing by

AxAyAz, we have

D?V+ D;-V+D;V= - 47T,,,

or V2F=-4 7rP , [110]

which is Poisson's Equation. The potential function due to any

conceivable distribution of attracting matter must be such that

at all points within the attracting mass this equation shall be

satisfied.

For points in empty space p = 0, and Poisson's Equation

degenerates to Laplace's Equation.

II. In the case of cylindrical coordinates, the element of vol-

ume (Fig. 28) is bounded by two cylindrical surfaces of revo-

:rn:

Fig. 28.

lution having the axis of z as their common axis and radii r and

r + A?-, two planes perpendicular to this axis and distant Az
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from each other, and two planes passing through the axis and

forming with each other the diedral angle AO.

Call 7?, O, and Z the average normal forces upon the elemen-

tary planes PP6 , PP2 , and PPS respectively, then the surface

integral of normal attraction over the volume element will be

-A$AzA r(r-B)- ArAzA„0 — A0[/-Ar + ^(Ar) 2]A,Z
= 4t7Po (vol. of box)

; [111]

whence, approximately,

lA r (rR)

r A/-

1A„Q AZZ
r AO Az

-4 TTPO
vol. of box

rArAOAz
[112]

The force at Pin direction PP5 is Dr V, in direction PPt is ArT",

and perpendicular to LP in the plane PLP
X
is -•D

U
V, so that

if the box is made smaller and smaller, our equation approaches

±Dr(r-DfV) +-s
De

2V+DJi V=-4:irp. [1131
tne form

Fig. 29.

III. In the case of spherical coordinates, the volume element

is of the shape shown in Fig. 2'J. Let OP=r, ZOP=8, and
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denote by
(f>

the diedral angle between the planes ZOP and

ZOX. Denote by 11, (-), and <t> the average normal forces on the

laces PP6 ,
/'/';. and PP2 respectively ; then the surface integral

of normal attraction over the elementary box is approximately

- sin0A0 A0 • \ r(fR) — rA0ArA^$ — rA^Ar • A^sintf- 0)

= 4 7rp -(vol. of box)
;

[H4]

, 1 AJrfi) . 1 A** . 1 A
fl
(sin0.©)

whence —

^

-H 5
1

! ° -
/•- Ar rsu\$ A</> rsin6> A0

. vol. of box n 1 -n= — 4-7TP,,--— [Ha]P
" ?~siu0A/-A0A</>

L J

The force at P in the direction PP5 is Dr V, in the direction

PPj is Da, V. and in the direction PPA is --D V; there-
r sin r

fore, as the element of volume is made smaller and smaller, our

equation approaches the form

sin B-I)X rDT V) +^ir

+ D9
(sin0-De V)

sin#

= -4:rpr2 sin0. [110]

This equation, as well as that for cylinder coordinates, might

have -been obtained by transformation from the equation in

rectangular coordinates.

We may devote the rest of this section to the stating of

some general results which will be intelligible only to those

readers who are familiar with the theory and the use of

curvilinear coordinates.

If u, v, w are any three analytic functions of x, y, z which

define a set of orthogonal curvilinear coordinates, and if

K = (Dxy)
2 + {B

yuf + (Djif, V = {Dxvy + (IV) 2 + (A")
2
>

hw
2 = (Dxw)

2 + (JJ,/v)'
2 + (Dz

tv)'
2
, it is possible to show that

Poisson's Equation may be written in either of the forms

Du-
V- K- + D:-V.V + D:- V- hj + DU V- V>u

+ Dv V- Y°-o + DW V- \
2
io = - 4 7rp,



K-
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36. Poisson's Equation in the Integral Form. In [100] X
may be regarded as a function of x, y, z. A//, nnd A.?, which ap-

proaches />, T as a limit when A// and A.:
- arc made to approach

zero, and it may not be evident that the limit, when A.r. A//, and

L.z are together made to approach zero, of the fraction J "
is

A#
DJ*V. For this reason it is worthwhile to establish Poisson's

Equation by another method.

It is shown in Section 29 that the volume integral of the

quantity —Dx [- ), taken throughout a certain region, is the sur-

face integral of. ^cosa taken all over the surface which bounds

the region. In tliis proof we might substitute for - any other

function of the three space coordinates which throughout the

region is finite, continuous, and single-valued, and state the

results in the shape of the following theorem:

If T is any closed surface and U a function of x, y, and z

which for every point inside T has a finite, definite value which

changes continuously in moving to a neighboring point, then

I I \ DJJ • dx dy dz = — l Ucos a ds, [ 1 1 7]

f ( Cd, U- dx dy dz = - Cu'cos fids, [1 18]

C f ( Dt U- dx dy dz = - Cucos yds, [11 9]and

where a, /3, and y are the angles made by the interior normals

at the various points of the surface with the positive direction

of the coordinate axes, and where the sinister integrals are to be

extended all through the space enclosed by T, and the dexter

integrals all over the hounding surface.

If we apply this theorem to an imaginary closed surface which

shuts in any attracting mass of density either uniform or vari-

able, and if for '' in [1 1 7]. [118], and [119] we use respectively
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DX V, Dy V, and D2 V, and add the resulting equations together,

we shall have

fff(D*
2 V + JV V + A2 V) dxchjdz

= - C(DX V COS a + D
y
V cos /? + Dz V COS y) f/s. [120]

The integral in the second member of this equation is evi-

dently (see [56]) the surface integral of normal attraction

taken over our imaginary closed surface, and this by Gauss's

Theorem is equal to 4?r times the quantity of matter inside

the surface, so that

f f f(P/ V+ Dy
- V+ D* V) dx dy dz

= — 4 77- I I | pdxdydz. [121]

Since this equation is true whatever the form of the closed

surface, we must have at every point

D?V+DJV+ D;-V=-AttP .

For if throughout any region V Fwere greater than — 4-n-p, we
might take the boundary of this region as our imaginary surface.

In this case every term in the sum whose limit gives the sinister

of [121] would be greater than the corresponding term in the

dexter, so that the equation would not be true. Similar reason-

ing shuts out the possibility of V'F's being less than —A-n-p.

37. The Average Value of the Potential Function on a Spheri-

cal Surface. If, in a field of force due to a mass m concentrated

at a point P, we imagine a spherical surface to be drawn so as

to exclude P, the surface integral taken over this surface of the

value of the potential function due to m is equal to the area of

the surface multiplied by the value of the potential function at

the centre of the sphere.

To prove this, let the radius of the sphere be a and the dis-

tance [OP] of P from its centre c. Take the centre of the
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sphere for origin and the line OP for the axis of x. Divide the

surface of the sphere into zones by means of a series of planes

cutting the axis of x perpendicularly at intervals of Ax. The

area of each one of these zones is 2-n-adx, so that the surface

7th

integral of — is
r

X
+ a ™2 ira dx [~2 itrna ~Va'z + c

2 — 2 cx~\

-a Vtt2 + C2 - 2 CX
~~

L C J-a

and the value of this, since the radical represents a positive

quantity, is > which proves the proposition.

The surface integral of the potential function taken over the

sphere, divided by the area of the sphere, is often called " the

average value of the potential function on the spherical surface."

If we have any distribution of attracting matter, we may
divide it into elements, apply the theorem just proved to each

of these elements, and, since the potential function due to the

whole distribution is the sum of those due to its parts, assert

that

:

The average value on a spherical surface of the -potential func-

tion due to any distribution of matter entirely outside the sphere

is equal to the value of the potential function at the centre of the

sphere.

If a function, U, of the space coordinates attains a maxi-

mum (or a minimum) value at a point, Q, it is possible to draw

about Q as centre a spherical surface, S, of radius so small

that the value of U at every point of S shall be less (or

greater) than the value of U at Q. It follows, therefore,

from the theorem just stated that

:

The potential function due to a finite distribution of matter

cannot attain either a maximum or a minimum value at any

pjoint in empty space.

We may infer from the first of the theorems just stated

that, if the potential function is constant within any closed

surface, S, drawn in a region, T, which contains no matter, it
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will have the same value in those parts of T which lie outside

S. For, if the values of the potential function at points in

empty space just outside S were different from the value in-

side, it would always be possible to draw a sphere of which

the centre should be inside S, and which outside S should in-

clude only such points as were all at either higher or lower po-

tential than the space inside £ ; but in this case the value of

the potential function at the centre of the sphere would not be

the average of its values over its surface. A more satisfac-

tory proof can be given with the help of Spherical Harmonics.

The value of the potential function cannot be constant in

unlimited empty space surrounding an attracting mass M, for,

if it were, we could surround the mass by a surface over

which the surface integral of normal attraction would be zero

instead of 4 irM.

The average value on a spherical surface of the potential

function [ V~\, clue to any distribution \_M] of attracting matter

wholly within the surface, is the same as if M were concen-

trated at the centre of the space which the surface encloses.

For the average values [ V and F" + ArF ] of V on con-

centric spherical surfaces of radii r and r + Ar may be written

( Vds (or — I Vdw, if dm is the solid angle of an ele-
4irr »/ iirJ

mentary cone with vertex at 0, which intercepts the element ds

from the surface of a sphere of radius r), and— j (V-\-Ar V)dw ;

whence ArVQ =— I A r V- d<a,

and j)rV =— CDrV-da.

Now — I DTV-a2dm is the integral of normal attraction taken

over the spherical surface, whence, by Gauss's Theorem,

BrV = —-—5 , and V = — + 0,
47rr r

since VQ = 0, for r = go.
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38. The Equilibrium of Fluids at Rest under the Action of

Given Forces. Elementary principles of Hydrostatics teach us

that when an incompressible fluid is at rest under the action of

any system of applied forces, the hydrostatic pressure p at the

point (a;, y, z) must satisfy the differential equation

dp = P {Xdx + Ydy + Zdz)
, [122]

where X, Y, and Z are the values at that point of the force

applied per unit of mass to urge the liquid in directions parallel

to the coordinate axes.

For, if we consider an element of the liquid [Ax A?/ Az]

(Fig. 27) whose average density is p and whose corner next

the origin 1ms the coordinates (a;, y, z), and if we denote by px

the average pressure per unit surface on the face PP2PA P^ by

px + &xpx the average pressure on the face P
x
P

ri
P~P6 , and by

Xn the average applied force per unit of mass which tends to

move the element in a direction parallel to the axis of x, we

have, since the element is at rest,

i?x A?/Az + /D X AxAi/Az = (px + &xpx) A#Az,

v Ax px
or /3 A =—l-

.

Ax

If the element be made smaller and smaller, the first side of

the equation approaches the limit pX, and the second side the

limit Dxp, where p is the hydrostatic pressure, equal in all direc-

tions, at the point P.

This gives us Dxp = P X. [1 23]

In a similar manner, we may prove that

D
yp = pY,

and D2p = pZ;

whence dp = Dxpdx + Dyp dy + Dzpdz

= P(Xdx -f Ydy + Zdz)

.

If in any case of a liquid at rest the only external force

applied to each particle is the attraction due to some outside

mass, or to the other particles of the liquid, or to both together,

A'. )', and Z are the partial derivatives with regard to x, //, and
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z of a single function V, and we may write our general equation

in the form

dp = P (DX V- dx + Py
V- dy + I)z V dz) = p d V,

whence, if p is constant,

p = pV+ const., [124]

and the surfaces of equal hydrostatic pressure are also equi-

potential surfaces.

According to this, the free bounding surfaces of a liquid at

rest under the action of gravitation only are equipotential.

EXAMPLES.

1. Prove that a particle cannot be in stable equilibrium

under the attraction of any system of masses. [Earnshaw.]

2. The earth's' potential function expressed in the common,

kinetic, centimetre-gramme-second units is 981 a'
2 / r, for points

above the surface.

3. Prove that if all the attracting mass lies within an equi-

potential surface S on which V = C, then in all space outside

*S" the value of the potential function lies between C and 0.

4. The source of the Mississippi River is nearer the centre of

the earth than the mouth is. What can be inferred from this

about the slope of level surfaces on the earth.''

5. If iu [59] x be made equal to zero, V becomes infinite.

How can you reconcile this with what is said in the first part of

Section 22?

6. Are all solutions of Laplace's Equation possible values of

the potential function in empty space due to distributions of

matter ? Assume some particular solution of this equation

which will serve as the potential function due to a possible dis-

tribution and show what this distribution is.

7. If the lines of force which traverse a certain region are

parallel, what may be inferred about the intensity of the force

within the region ?

8. The path of a material particle starting from rest at a

point Panel moving under the action of the attraction of a given
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mass M is not in general the line of force due to M which passes

through P. Discuss this statement, and consider separately

cases where the lines of force are straight and where they are

curved.

9. Draw a figure corresponding to Figure 17 for the case of

a uniform sphere of unit radius surrounded by a concentric

spherical shell of radii 2 and 3 respectively. *

10. Draw with the aid of compasses traces of four of the

equipotential surfaces due to two homogeneous infinite cylinders

of equal density whose axes are parallel and at a distance of

5 inches apart, assuming the radius of one of the cylinders to

be 1 inch and that of the other to be 2 inches.

11. Draw with the aid of compasses meridian sections of

four of the equipotential surfaces due to two small homogeneous

spheres of mass m and 2ra respectively, whose centres are 4

inches apart. Can equipotential surfaces be drawn so as to lie

wholly or partly within one of the spheres? What value of the

potential function gives an equipotential surface shaped like

the figure 8 ? Show that the value of the resultant force at the

point where this curve crosses itself is zero.

12. A sphere of radius 3 inches and of constant density /j- is

surrounded by a spherical shell concentric with it of radii 4

inches and 5 inches and of density //. r, where r is the distance

from the centre. Compute the values of the attraction and of

the potential function at all points in space and draw curves to

illustrate the fact that V and DrV are everywhere continuous

and that LV'Fis discontinuous at certain points.

13. A very long cylinder of radius 4 inches and of constant

density fx is surrounded by a cylindrical shell coaxial with it

and of radii 6 inches and 8 inches. The density of this shell is

inversely proportional to the square of the distance from the

axis, and at a point 8 inches from this axis is ll. Use the Theo-

rem of Gauss to find the values of V, Dr V, and Dr
2V at differ-

ent points on a line perpendicular to the axis of the cylinder at

its middle point. If the value of the attraction at a distance

of 20 inches from the axis is 10, show how to find ix.
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14. Use Dirichlet's value of DX V, given by equation [78],

to find the attraction in the direction of the axis of x at points

within a spherical shell of radii r and rt and of constant den-

sity p.

15. Are there any other cases except those in which the

density of the attracting matter depends only upon the dis-

tance from a plane, from an axis, or from a central point,

where surfaces of equal force are also equipotential surfaces ?

Prove your assertion.

16. Show that the second derivative with respect to x, of

the potential function due to a homogeneous sphere of density

p and radius a, with centre at the origin, is — * irpr for inside

points, and — $7rpa3 (r2 — 3x 2

)
/rs for points without the sur-

face. Similar expressions give the values of the second deriv-

atives with respect to y and z. Show that the normal second

derivative of V is —
J -wp just within the surface and + f irp

just without. Show that the tangential second derivatives

are continuous at the surface.

17. Two uniform straight wires of length I and of masses m
t

and m2 are parallel to each other and perpendicular to the line

joining their middle points, which is of length yx
. Show that

the amount of work required to increase the distance between

the wires to y2 by moving one of them parallel to itself is

.VF+7-z
y-^/l 2 + y

2 -l\og
y=Vi r,,. . . ..

[Minchin.]

18. Show that if the earth be supposed spherical and covered

with an ocean of small depth, and if the attraction of the par-

ticles of water on each other be neglected, the ellipticity of the

ocean spheroid will be given by the equation,

2
The centrifugal force at the equator

9

19. A spherical shell whose inner radius is r contains a mass

m of gas which obeys the Law of Boyle and Mariotte. F'nd

the law of density of the gas, the total normal pressure on the

inside of the containing vessel, and the pressure at the centre.
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20. If the earth were melted into a sphere of homogeneous

liquid, what would be the pressure at the centre in tons per

square foot? If. this molten sphere instead of being homo-

geneous had a surface density of 2.4 and an average density

of 5.6, what would be the pressure at the centre on the sup-

position that the density increased proportionately to the

depth ?

21. A solid sphere of attracting matter of mass m and of

radius r is surrounded by a given mass M of gas which obeys

the Law of Boyle and Mariotte. If the whole is removed

from the attraction of all other matter, find the law of density

of the gas and the pressure on the outside of the sphere.

22. The potential function within a closed surface S due to

matter wholly outside the surface has for extreme values the

extreme values upon S.

23. If the potential functions V and V due to two systems

of matter without a closed surface have the same values at all

points on the surface, they will be equal throughout the space

enclosed by the surface.

24. The potential function outside of a closed surface due

to matter wholly within the surface has for its extreme values

two of the following three quantities : zero and the extreme

values upon the surface.

25. If w is harmonic in the domain T, the average value

of w on any spherical surface within T is equal to the actual

value at the centre of the surface. If S is a closed surface

drawn in T, and if w is not constant, greater and smaller

values of w are to be found on S than within it.

[Answers to some of these problems and a collection of additional prob-

lems illustrative of the text of this chapter may be found near the end of

the book.]
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CHAPTER III.

THE POTENTIAL FUNCTION IN THE CASE OP

EEPULSION.

39. Repulsion, according to the Law of Nature. Certain

physical phenomena teach us that bodies may acquire, by

electrification or otherwise, the property of repelling each other,

and that the resulting force of repulsion between two bodies is

often much greater than the force of attraction which, ac-

cording to the Law of Gravitation, every body has for every

other body.

Experiment shows that almost every such case of repulsion,

however it may be explained physically, can be quantitatively

accounted for by assuming the existence of some distribution of

a kind of" matter," every particle of which is supposed to repel

every other particle of the same sort according to the " Law of

Nature," that is, roughly stated, with a force directly propor-

tional to the product of the quantities of matter in the particles,

and inversely proportional to the square of the distance between

their centres.

In this chapter we shall assume, for the sake of argument.

that such matter exists, and proceed to discuss the effects of

different distributions of it. Since the law of repulsion which

we have assumed is, with the exception of the opposite diree-

aons of the forces, mathematically identical with the law which

governs the attraction of gravitation between particles of pon-

derable matter, we shall find that, by the occasional intro-

duction of a change of sign, all the formulas which we have

proved to be true for cases of attraction due to gravitation

can be made useful in treating corresponding problems in

repulsion.
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40. Force at Any Point due to a Given Distribution of

Repelling Matter. Two equal quantities of repelling- matter

concentrated at points at the unit distance apart are called

•• unit quantities" when they are such as to make the force of

repulsion between them the unit force.

If the ratio of the quantity of repelling matter within a small

closed surface supposed drawn about a point P, to the volume

of the space enclosed by the surface, approaches the limit p when

the surface (always enclosing P) is supposed to be made smaller

and smaller, p is called the "density" of the repelling matter

at P.

In order to find the magnitude at an}- point P of the force due

to am- given distribution of repelling matter, we may suppose

the space occupied by this matter to be divided up into small

elements, and compute an approximate value of this force on the

assumption that each element repels a unit quantity of matter

concentrated at P with a force equal to the quantity of matter

in the element divided by the square of the distance between P
and one of the points of the element. The limit approached by

this approximate value as the size of the elements is diminished

indefinitely is the value required.

Fig. 30.

Let Q (Fig. 30), whose coordinates are x\ y', z', be the

corner next the origin of an element of the distribution. Let p

be the densit}- at Q and Aa:'A//Az' the volume of -the element;

then the force at P due to the matter in the element is approxi-
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matel)7 equivalent to a force of magnitude £— ^ acting in

PQ

, the direction QP, or a force of magnitude — £——^—— acting

in the direction PQ. If the coordinates of P are aj, y, z\ the

component of this force in the direction of the positive axis of x

— p Ax' Ay'Az' (x' — iv) , ,, , t „
is =—

=

£=——

p

-£

—

. .

7
K0_, 3 , and the force at P paralk-

to the axis of x due to the whole distribution of repelling

matter is

Y= CC C p(x'-x)dx'chj'dz'

J J J l(x?-xy+(y'-yy+{z'-z)*y L aJ

where the triple integration is to be extended over the whole

space filled with the repelling matter. For the components of

the force at P parallel to the other axes we have, similarly,

Y- CCC P (y'-y)dx'dy'dz' r
,x - JJJl(x<-xy+{y>-yy+{z<-zy]? L

"°bJ

and

Z = -CC C p(z'~z)dx'dy'dz'
r

-.

J J J [(x'-xY+(v'-yY+(z<-zY]i L cJ^x<- xy+(y<-yy+(z<-zy]i

If we denote by V the function

p dx'dy'dz'

fff[(x'-xy+(y'-yy+(z'-z) 2

]
2T4'

[126]

which, together with its first derivatives, is everywhere finite

and continuous, as we have shown in the last chapter, it is easy

to see that

X=-DX V, Y=-D
y V, Z = -D,V, [127]

R = ^/(DxVy + (D
y V)

2 + {D2 Vy, [ 12g]

and that the direction-cosines of the line of action of the re-

sultant force at P are

R ' R '

a l

R L1^J
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It follows from this (see Section 21) that the component in

any direction of the force at a point P due to any distribution

M of repelling matter is minus the value at P of the partial

derivative of the function V taken in that direction.

The function Fgoes by the name of the Newtonian potential

function whether we are dealing with attracting or repelling

matter.

In the case of repelling matter, it is evident that the resultant

force on a particle of the matter at any point tends to drive that

particle in a direction which leads to points at which the poten-

tial function has a lower value, whereas in the case of gravita-

tion a particle of ponderable matter at any point tends to move

in a direction along which the potential function increases.

41. The Potential Function as a Measure of Work. It is

easy to show by a method like that of Article 27 that the

amount of work required to move a unit quantity of repelling

matter, concentrated at a point, from Pj to P2 , in face of the

force due to any distribution M of the same kind of matter, is

V., — T
7
!, where F, and V2 are the values at Px and P2

respec-

tively of the potential function due to M. The farther P
Y

is

from the given distribution, the smaller is V\, and the less does

V2
— T

r
i

differ from V2 . In fact, the value of the potential

function at the point P2 , wherever it may be, measures the work

which would be required to move the unit quantity of matter by

any path from '• infinity" to P2 .

42. Gauss's Theorem in the Case of Repelling Matter. If a

quantity m of repelling matter is concentrated at a point within

:i closed oval surface, the resultant force due to m at any point

on the surface acts toward the outside of the surface instead of

towards the inside, as in the case of attracting matter.

Keeping this in mind, we may repeat the reasoning of Article

31, using repelling matter instead of attracting matter, and sub-

stituting all through the work the exterior normal for the in-

terior normal, and in this way prove that

:
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If there be any distribution of repelling matter parti}' within

and partly without a closed surface T, and if M be the whole

quantity of this matter enclosed by 7', and M' the quantity out-

side T, the surface integral over T of the component in the di-

rection of the exterior normal of the force due to bothM and M'
is equal to 4 ttM. If V be the potential function due to M and

M\ we have

fDn V.ds =ML

43. Poisson's Equation in the Case of Repelling Matter. If

we apply the theorem of the last article to the surface of a

volume element cut out of space containing repelling matter,

and use the notation of Article 35, we shall find that in the case

of rectangular coordinates the surface integral, taken over the

element, of the component in the direction of the exterior

normal is

AxAyAz AX A Y A Z' = 47rp .Aa;A?/Az, [130]
Ax Ay Az

where X is the average component in the positive direction of

the axis of x of the force on the elementary surface AyAz, and

where Y and Z have similar meanings. It is evident that if

the element be made smaller and smaller, X, Y, and Z will

approach as limits the components parallel to the coordinate

axes of the force at P. These components are —DX V, —Dy
V,

and —D2 V; so that if we divide [130] by AxAyAz and then

decrease indefinitely the dimensions of the element, we shall

arrive at the equation

V2

F=-47rp. [131]

By using successively cylinder coordinates and spherical co-

ordinates we may prove the equations

-Dr(rDr V) +^Dg

2 V+D/V=-4:7rp, [132]

and sin0- Dr {i
2Dr V) + l>^+ DJs\n6 - De V)

sin#

= -47773^110, [133]



80 THE POTENTIAL FUNCTION

so that Poisson's Equation holds whether we are dealing witb

attracting or repelling matter.

44. Coexistence of Two Kinds of Active Matter. Certain

physical phenomena may be most conveniently treated mathe-

matically by assuming the coexistence of two kinds of "matter"

such that any quantity
f
of either kind repels all other matter of

the same kind according to the Law of Nature, and attracts all

matter of the other kind according to the same law.

Two quantities of such matter may be considered equal if,

when placed in the same position in a field of force, they are

subjected to resultant forces which are equal in intensity and

which have the same line of action. The two quantities of

matter are of the same kind if the direction of the resultant

forces is the same in the two cases, but of different kinds if the

directions are opposed. The unit quantity* of matter is that

quantity which concentrated at a point would repel with the

unit force an equal quantity of the same kind concentrated at

a point at the unit distance from the first point.

It is evident from Articles 2, 14, and 40 that m units of one

of these kinds of matter, if concentrated at a point (a, y, z) and

exposed to the action of m
x , m2 , m3 , ... mk units of the same

kind of matter concentrated respectively at the points (a^, y^z
x ),

(x2 , y2 , z2), (a?3 , ys , z8), ... (xk . ?/,, zk), and of mJ+1, mk+s , ... mi

units of the other kind of matter concentrated respectively at

the points (aj4+1 , yft+1 , zk + 1), (xk+2 , yk+2 , zk + 2), ... (*„, yn , zn)

will be urged in the direction parallel to the positive axis of x

with the force
i=k i = n

t=l i=k+l

where r, is the distance between the points (x, y, z) and

(»« Vi, z
t) •

* With this definition of the unit of quantity, the repulsion and attrac-

tion force unit is identical with the absolute kinetic force unit.
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If we agree to distinguish the two kinds of matter from each

other by calling one kind " positive " and the other kind " neg-

ative," it is easy to see that if every m which belongs to positive

matter be given the plus sign and every m which belongs to

negative matter the minus sign, we may write the last equation

in the form
i= n

X=—m/ lV — '— [13o]—• rf
1= 1

The result obtained by making m in [135] equal to unit}* is

called the force at the point (x, y, z).

In general, m units of either kind of matter concentrated at

the point (x, y, z), and exposed to the action of any continuous

distribution of matter, will be urged in the positive direction of

the axis of x by the force

v CCC p(x'—x)dx'dy'dz'
, riQ /^

in this expression, p, the density at (x',y',z'), is to be taken

positive or negative according as the matter at the point is

positive or negative : m is to have the sign belonging to the

matter at the point (x, y, z) : and the limits of integration are to

be chosen so as to include all the matter which acts on m.

With the same understanding about the signs of m and of p,

it is clear that the force which urges in any direction s, m units

of matter concentrated at the point (x,y, z) is equal to —m -Ds V,

where Fis the everywhere finite, continuous, and single-valued

function

p dx' dy' dz'

///il(x>-xy+(y>- yy+(z<-zyy

and that mV measures the amount of work required to bring up

from " infinity" by any path to its present position the m units

of matter now at the point (x, y, z)

.

If we call the resultant force which would act on a unit of

positive matter concentrated at the point P '-the force at P,"
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it is clear that if any closed surface T be drawn in a field of

force due to any distribution of positive and negative matter so

as to include a quantity of this matter algebraically equal to Q,

the surface integral taken over T of the component in the direc-

tion of the exterior normal of the force at the different points of

the surface is equal to AwQ.

It will be found, indeed, that all the equations and theorems

given earlier in this chapter for the case of one kind of repelling

matter may be used unchanged for the case where positive and

negative matter coexist, if we only give to p and m their proper

signs.

It is to be noticed that Poisson's Equation is applicable

whether we are dealing with attracting matter or repelling mat-

ter, or positive and negative matter existing together.

EXAMPLES.

1. Show that the extreme values of the potential function

outside a closed surface S, due to a quantity of matter algebrai-

cally equal to zero within the surface, are its extreme values

on S.

2. Show that if the potential function due to a quantity of

matter algebraically equal to zero and shut in by a closed sur-

face S has a constant value all over the surface, then this con-

stant value must be zero.

3. Show that if the function w, which is harmonic every-

where outside the finite closed surface S, vanishes at infin-

ity, and if r represents the distance from any fixed point,

limit . 3
, D x

ig finita
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CHAPTER IV.

SURFACE DISTRIBUTIONS. -GREEN'S THEOREM.

45. Force due to a Closed Shell of Repelling Matter. If a

quantity of very finely-divided repelling matter be enclosed in a

box of any shape made of indifferent material, it is evident

from [127] and from the principles of Section 38 that if the vol-

ume of the box is greater than the space occupied by the repel-

ling matter, the latter will arrange itself so that its free surface

will be equipotential with regard to all the active matter in

existence, taking into account any there may be outside the box
as well as that inside. It is easy to see, moreover, that we
shall have a shell of matter lining the box and enclosing an

empty space in the middle.

That any such distribution as that indicated in the subjoined

diagram is impossible follows immediately from the reasoning

of Section 37. For ABC and DEF are parts of the same

Fig. 31.

equipotential free surface of the matter. If we complete this

surface by the parts indicated by the dotted lines, we shall

enclose a space void of matter and having therefore throughout

a value of the potential function equal to that on the bounding
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surface. But iu this case all points which can be reached from

by paths which do not cut the repelling matter must be at the

same potential as 0, and this evidently includes all space not

actually occupied by the repelling matter ; which is absurd.

Let us consider, then (see Fig. o'l), a closed shell of repelling

matter whose inner surface is equipotential, so that at every

point of the cavity which the shell shuts in, the resultant force,

due to the matter of which the shell is composed and to any

outside matter there may be, is zero.

Let us take a small portion w of the bounding surface of the

cavity as the base of a tube of force which shall intercept an

Fig. 32.

ai-ea w' on an equipotential surface which cuts it just outside the

outer surface of the shell, and let us apply Gauss's Theorem to

the box enclosed by w, w', and the tube of force.. If F' is the

average value of the resultant force on o>', the only part of the

surface of the box which yields anything to the surface integral

of normal force, we have

F'a>' = 4 Trm,

where m is the quantity of matter within the box. If we multi-

ply and divide by w, this equation ma}* be written

F>=±1™.J!L. [137]

If w be made smaller and smaller, so as always to include a

given point A, a/ as it approaches zero will always include a

point B on the line of force drawn through A, and F' will ap-

proach the value F of the resultant force at B.

The shell may be regarded as a thick layer spread upon the
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inner surface, and in this case the limit of — may be consid-
er

ered the value at A of the rate at which the matter is spread

upon the surface. If we denote this limit by a, we shall have

If B be taken just outside the shell, and if the latter be very

thin, ^of'n;] evidently differs little from unity; and we see

that the resultant force at a point just outside the outer sur-

face of a shell of matter, whose inner surface is equipotential,

becomes more and more nearly equal to 4-n- times the quantity

of matter per unit of surface in the distribution at that point as

the shell becomes thinner and thinner.

The reader may find out for himself, if he pleases, whether or

not the line of action of the resultant force at a point just out-

side such a shell as we have been considering is normal to the

shell.

It is to be carefully noticed that the inner surface of a closed

shell need not be equipotential unless the matter composing the

shell is finely divided and free to arrange itself at will.

When the shell is thin, and we regard it as formed of matter

spread upon its inner surface, o- is called the "surface density"

of the distribution, and its value at any point of the inner sur-

face of the shell may be regarded as a measure of the amount of

matter which must be spread upon a unit of surface if it is to

be uniformly covered with a layer of thickness equal to that of

the shell at the point in question.

46. Surface Distributions. It often becomes necessary in the

mathematical treatment of physical problems, on the assump-

tion of the existence of a kind of repelling matter or agent, to

imagine a finite quantity of this agent condensed on a surface

in a layer so thin that for practical purposes we may leave the

thickness out of account. If a shell like that considered in the

last section could be made thinner and thinner by compression
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while the quantity of matter in it remained unchanged, the

volume density (p) of the shell would grow larger and larger

without limit, and a would remain Quite. A distribution like

this, which is considered to have no thickness, is called a sur-

face distribution.

The value at a point P of the potential function due to

a superficial distribution of surface density o- is the surface

integral, taken over the distribution, of -, where r is the dis-
r

tance from P.

It is evident that as long us P does not lie exactly in the

distribution, the potential function and its derivatives are always

Unite and continuous, and the force at any point in any direc-

tion may be found by differentiating the potential function

partially with regard to that direction.

If p were infinite, the reasoning of Article 22 would no

longer apply to points actually in the active matter, and it is

worth our while to prove that in the case of a surface distri-

bution where o- is everywhere finite, the value at a point P of

the potential function due to the distribution remains finite, as

P is made to move normally through the surface at a point of

finite curvature.

To show this, take the point (Fig. 33), where P is to cut

the surface, as origin, and the normal to the surface at as
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the axis of x, so that the other coordinate axes shall lie in

the tangent plane.

If the curvature in the neighborhood of is finite, it will be

possible to draw on the surface about a closed line such that

for every point of the surface within this line the normal will

make an acute angle with the axis of x.

For convenience we will draw the closed line of such a shape

that its projection on the tangent plane shall be a circle whose

centre is at and whose radius is £7, and we will cut the area

shut in by this line into elements of such shape that their pro-

jections upon the tangent plane shall divide the circle just

mentioned into elements bounded by concentric circumferences

drawn at radial intervals of Au, and by radii drawn at angular

distances of A0.

If x, 0, are the coordinates of the point P, x', y', z' those

of a point of one of the elements of the area shut in by the

closed line, and a the angle which the normal to the surface

at this point makes with the axis of x, the size of the surface

element is approximately -——— , where u2 = z'
2
-\- y' 2

, and the
Cos a

value at P of the potential function due to that part of the sur-

face distribution shut in by the closed line is

r2
7 C u audit n omFx = i d<H ==• [139]

Jo Jo cos aV (x — x')
2
-f- u

2

The quantity

cru crseca

cos aV(x- x')
2 + u2

M^)'
is always finite, for, whatever the value of the quantity under

the radical sign in the last expression may be when x\ a;', and u

are all zero, it cannot be less than unity, and therefore V\ must

be finite even when P moves down the axis of x to the surface

itself.

If V and V2 are the values at P of the potential functions

due respectively to all the existing acting matter and to that



88 SURFACE DISTRIBUTIONS.

part of this matter not lying on the portion of the surface shut

in by our closed line, we have V=Yx + V->, and, since P is a

point outside the matter which gives rise to V2 , the latter is

finite; so that Vis finite.

The reader who wishes to study the properties of the deriva-

tives of the potential function, and their relations to the force

components at points actually in a surface distribution, will find

the whole subject treated in the first part of Kiemann's Schwere,

Electricitat and Magnetismus.

Using the notation of this section, it is easy to write down

definite integrals which represent the values of the potential

function at two points on the same normal, one on one side of

a superficial distribution, and at a distance a from it, and the

other on the other side at a like distance, and to show that the

difference between these integrals may be made as small as we

like by choosing a small enough. This shows that the value of

the potential function at a point P changes continuously, as P
moves normally through a surface distribution of finite super-

ficial density. If matter could be concentrated upon a geo-

metric line, so that there should be a finite quantit}' of matter

on the unit of length of the line, or if a finite quantity of matter

could be really concentrated at a point, the resulting potential

function wrould be infinite on the line itself, and at the point.

47. The Normal Force at Any Point of a Surface Distribu-

tion. In the case of a strictly superficial distribution on a

closed surface where the repelling matter is free to arrange

itself at will, the inner surface of the matter (and hence the

outer surface, which is coincident with it) is equipotential, and

the resultant force at a point B just outside the distribution is

normal to the surface and numerically equal to Att times the.

surface density at B. This shows that the derivative of the

potential function in the direction of the normal to the surface

has values on opposite sides of the surface differing by 4 ira,

and at the surface itself cannot be said to have any definite

value.
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It is easy, however, to find the force with which the repelling

matter composing a superficial distribution is urged outwards.

For, take a small element <o of the surface as the base of a tube

of force, and apply Gauss's Theorem to a box shut in by the

surface of distribution, the tube of force, and a portion to' of

an equipoteutial surface drawn just outside the distribution.

Let F and F' be the average forces at the points of w and w'

respectively, then the surface integral of normal forces taken

over the box is F' &' — Foi, and this, since the only active

matter is concentrated on the surface of the box (see Section

31), is equal to 2tt(t w, where o- is the average surface density

at the points of the element w. This gives us

co'F= F —- — 2 7TO" o

to

Now let the equipotential surface of which of is a part be

drawn nearer and nearer the distribution ; then

o>'

hm—= 1, lim F' = 47r<r , and F= 27ro-n .

to
"

F is the average force which would tend to move a unit quan-

tity of repelling matter concentrated successively at the differ-

ent points of (d in the direction of the exterior normal, but the

actual distribution on o> is wcr , so that this matter presses on

the medium which prevents it from escaping with the force

2 7ro-
2
co ; and, in general, the pressure exerted on the resisting

medium which surrounds a surface distribution of repelling

matter is at an}- point 2 no2 per unit of surface, where a is the

surface density of the distribution at the point in question.

"VVe may imagine a superficial distribution of matter which is

fixed, instead of being free to arrange itself at will. In this

case the surface of the matter will not be in general equipoten-

tial, but, if we apply Gauss's Theorem to a box shut in by a

slender tube of force traversing the distribution, and by two

surfaces drawn parallel to the distribution and close to it, one

on one side and one on the other, we may prove that the
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normal component of the force at a point just outside the dis-

tribution differs by 4 ira from the normal component, in the

same sense, of the force at a point just inside the distribution

on the line of force which passes through the first point.

It is sometimes convenient to denote the " charge " on a

small area about a point P on a surface distribution by A 1

,

and the rest of the distribution by A", and to consider sepa-

rately the effects of A' and A". If P1 and P2 are points on

the normal to the surface drawn through P and near the

surface on opposite sides of it ; if iVY, Nx
" are the components

in the direction PPX of the forces at Pl due to A' and A"
respectively, and if N2 , N2

" are the corresponding components

at P2 in the direction PP2 , then if Pr
and P2 approach P,

lim [iVV +W + N2
< + 2V2"] = 4 ttct,

where o- is the density of the distribution at P. The force

due to A" changes continuously as Pi moves toward P2 , however

small A' may be, so that

lim #i" = - lim N2
" and lim (iV/ + N2 ') = 4 w<r,

and, by choosing A' small enough, we may make iVy to differ

in numerical value as little as we please from lim N2 or from

2 7TO".

If the surface distribution is equipotential, and if it shuts

in a region of no force, then if Pl is in this region, iV1 '= — iVY',

so that JVi" and N2
" can be made to differ as little as one

pleases in numerical value from 2 ira- by making A' small

enough. Let the element of area covered by A' be w and the

surface density of the charge on it o-, then the force with

which A' is urged in a direction normal to the surface by A"
is wo- • 2 7TO- within an infinitesimal of higher order than w.

That is, whatever the sign of a, the surface distribution may
be said to urge the surrounding medium outwards with a

pressure in force units per unit of area which at P has the

value 2 ira'
1
, as we have already seen.

It is easy to show that even if the surface distribution is

not equipotential the components at Px
and P2 of the force
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in any fixed direction parallel to the surface approach the

same limit as Px and P2 approach P.

At any point P of an equipotential surface covered with a

superficial distribution of density o- the normal second deriv-

ative of V has a discontinuity* of 4 -n-a (
— + — ) where Rx

and R2 are the radii of curvature at P of two mutually per-

pendicular normal sections of the equipotential surface.

48. Green's Theorem. Before proving a very general theo-

rem due to Green,f of which what we have called Gauss's

Theorem is a special case, we will show that if S is any closed

surface and U a function of x, y, and z, which for every point

inside S is continuous, and single-valued,

f f CdxU dx dy dz = C U- Dnx ds, [140]

where the first integral is to include all the space shut in by

S, and the second is to

be taken over the whole

surface, and where Dnx

represents the deriva-

tive of x taken in the

direction of the exte-

rior normal.

To prove this, choose

the coordinate axes so

that S shall lie in the

first octant, and divide

the space inside the

contour of the projection of S on the plane yz into elements of

size dydz. On each of these elements erect a right prism cutting

S twice or some other even number of times. Let us call the

values of U at the successive points where the edge nearest the

Fig. 34

* C. Neumann, Math. Ann. 1880. Th. Horn, Zeitschr. f. Math. u.

Phys. 1881.

t George Green, An Essay on the Application of Mathematical Analy-

sis to the Theories of Electricity and Magnetism. Nottingham, 1828.
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axis of x of any one of these prisms cuts S ; Ulf U2 , U8,
••• U2n

respectively; the angles which this edge makes with exterior

normals drawn to S at these points, au a2 , az ,
• a2n ;

and the

elements which the prism cuts from the surface S ; ds
x , ds2 ,

ds3 ,
• -ds

2/l
. It is evident that wherever a line perpendicular to

the plane yz cuts into S, the corresponding value of a is obtuse

and its cosine negative, but wherever such a line cuts out of S,

the corresponding value of a is acute and its cosine positive.

Keeping this in mind, we shall see that although the base of

a prism is the common projection of all the elements which it

cuts from S, and in absolute value is approximately equal to

an3' one of these multiplied by the corresponding value of cos a,

yet, since dxdy, ds^ ds2 , etc., are all positive areas and some of

the cosines are negative, we must write, if we take account of signs,

dydz = — dsx cos a x
= + ds2 cos a2

= — ds3 cos a3
=

If the indicated integration with regard to x in the left-hand

member of [140] be performed and the proper limits introduced,

we shall have

CCj'DxUdxdydz= f'

jdydz\_- l\+ U2
- Uz+ CT4— ••], [141]

where the double sign of integration directs us to form a quan-

tity corresponding to that in brackets for every prism which

cuts S, to multiply this by the area of the base of the prism,

and to find the limit of the sum of all the results as the bases of

the prisms are made smaller and smaller.

Since we may substitute for dydz any one of its approxi-

mate values given above, we may write the quantity within

the brackets

Ui cos aj dsx 4- U-2 cos a2 ds2 + Us cos a3 ds3 + • • •

,

and this shows that the double integral is equivalent to the sur-

face integral, taken over the whole of S, of IT cos a, whence we

may write

C f CDxU-dxdydz= Cucosads, [142]
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where the first integral is to be taken all through the space

shut in by S, and- the second over the whole surface.

Let P or (x, y, z) be any point of S, a, (3, and y the angles

which the exterior normal drawn at P to S makes with the

coordinate axes, and P' a point on this normal at a distance

A?? from P. The coordinates of P' are

x 4- An • cos a, y + Ah, • cos /?, z 4- An • cos y,

and if W=f(x,y,z) be any continuous function of the space

coordinates,

WP =f(x,y,z),

WP < =/(#+ Ancosa, y -\- A?i cos/3, z + An cosy)

=f(x, y,z) + An cos a • Dxf+ An cos /3 •D
yf

and
+ An cos yA/4- (An) 2

Q,

Ei^^= Cosa-DJ+ cos/3 'D
y
f+cos y .DJ+ An. Q,

whence

lim
Wp,-WP __^ Wp __ CQS aDj+ CQS pDj+ cos yDjm

r-143 -]

If, as a special case, W— x, we have !)„ £ = cos a ; so that

[142] may be written

f f fjDx U- dx cly dz = fjJDn x ds, [144]

which we were to prove.*

Green's Theorem, which follows very easily from this result,

may be stated in the following form :

If U and V are any two functions of the space coordinates

which together with their first derivatives with respect to these

coordinates are finite, continuous, and single-valued throughout

the space shut in by any closed surface S, then, if n refers to

an exterior normal,

* This theorem has been virtually proved already in Sections 29 and 36.
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f C f(DxU- 1>XV+ Dy
U- DyV+ DZ U- D, V)dxdydz

= fu- Dn V- ds - ( f fu- V2
V- dxdydz [145]

= Cv-Dn U-ds - Cffv-V2
U- dxdydz, [140]

where the triple integrals include all the space within S and the

single integrals include the whole surface.

Since DXU> DXV= Dx ( U-

D

X V) - U-D;V,

we have
| J

I DXU-DXV- dxdydz

= C C CDx(U-DxV)dxdydz- C C ( U-

D

X
2 V- dxdydz;

but, from [144],

C C Cdx( U-DxV ) dx dy dz = ClT-Dx V- Dnx . ds,

whence III {PxU-DxV)dxdydz

= Cu>Dx V-D*x>ds- Cj Cu-D*V- dxdydz. [147]

If we form the two corresponding equations for the deriva-

tives with regard to y and z, and add the three together, we shall

obtain an expression which, by the use of [143], reduces im-

mediately to [145]. Considerations of symmetay give [146].

If we subtract [146] from [145], we get

fff( U> V
2F- V- V

2 U)dxdydz

= f( V- DnV- V- Dn U)ds. [148]

In applying Green's Theorem to such spaces as those marked

TQ in the adjoining diagrams, it is to be noticed that the walls

Of the cavities, marked *S" and S", as well as the surfaces,
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marked S, form parts of the boundaries of the spaces, and that

the surface integrals, which the theorem declares must be taken-

Fig. 35.

over the complete boundaries of the spaces, are to be ex-

tended over S' and S" as well as over S. We must remember,

however, that an exterior normal to T at S' points into the

cavity C.

If U and V both satisfy Laplace's Equation, the second

member of [148] is equal to zero.

If within the closed surface S the functions A, U, and V
are continuous, and if the first derivatives of U and V are

continuous (the first derivatives of A. and the second deriva-

tives of U and V being finite),

C C C\(DXU DX V + Dy
U D

y
V + DM Dz

V)dxdydz

=ff\U-DnVdS-fj
%

j*U[Dx (\.Dx V)

+ Dy
(X • D

y
V) + Dz (A • Dz F)] dxdydz [149]

=ff\V.DnUdS-fffv[Dx(\-Dx U)

+ Dy
(\-D

y
U) + Dz (\-D2 U)-\dxdijdz.

Special Cases under Green's Theorem. Applications.

I. If in [145] we put U= 1, we learn that if Fis any function

.

which within and on the closed surface £ is finite and contin-
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uous, together with its derivatives of the first order, the surface

integral of Dn V taken over S is equal to the volume integral

of V- V taken through the space shut in by S. If V happens

to satisfy Laplace's Equation within S, the surface integral

is equal to zero. This result should be compared with Gauss's

Theorem, treated in Section 31.

II. If in [145] we make ?7 equal to V, the potential function

due to any distribution of matter, and assume that, in the

general case, some of this matter is spread superficially on a

surface S (or on a number of such surfaces), we may shut in

S by two other surfaces, Sx
and S2 ,

parallel and very close to

it. We may then apply Green's Theorem to so much of the

space within a spherical surface, with centre at some con-

venient fixed point and radius r large enough to include

the whole distribution, as does not lie between Sx and S2 .

This gives

=

j

V" DH VdS' - Cv-

D

ni
VdSx

-jV- DH VdS2

- C C
'
Cv-\ 2 Vdxdydz,

where the first surface integral is to be extended over the

spherical surface, the second over Sx , and the third over So, it

being understood that n x
represents a normal to Sx taken in

the direction away from S, and ?i 2 a normal to S2 taken in the

direction away from S. Since V is continuous at S, while its

normal derivatives are discontinuous in the manner indicated

by the equation Dn V + Dn> V = — 4 -n-a, the limit of the sum

of the two surface integrals taken over Si and S2 as these

surfaces approach S is 4 tr I Va-ds. The value of the first

surface integral is equal to 4 irr
2 times the average value of

V • Dr V on the surface ; and, if this be written in the form 4?r
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[average value of V(r2Dr V)~], it is evident that the integral

approaches zero as the radius r is made infinite, so that the

field of the triple integrals may embrace all space. Since

V 2F= — 4 7r/o, the whole second member of the equation

represents 4 ir lim > VAm extended over all the distribution,

and this is 8 it times the intrinsic energy of the distribution.

The first member of the equation represents the volume integral

of the square of the resultant force extended over all space.

We may write this result in the form

W p- f C'C&dxdydz. [150]

III. If in [145] we make U = V = u, any function which

within the closed surface S satisfies the equation V2u = 0, we
shall have

f f f[(DxuY+ iPv
uY+ (A^)

2
] dxdydz= Cu Dnu dS. [151]

IV. If in [148] V is the potential function due to two dis-

tributions of active matter, Ml inside the closed surface S and

J/2 outside it, and if U —-> where r is the distance of the point

Fig. 36.

(x, y, z) from a fixed point 0, we must consider separately the

two cases where is respectively without S and within S.

A. If is without S, V2
f -

J
= for points within the sur-

face. Also, V2 V = — 4 irp, so that
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f*f <*-/ r- d,
(;)
«- - 4 ,///; <**%<**

The triple integral is evidently equal to the value at the point

of the potential function due to Mx alone. If we call this Vu
and notice (see [143]) that Dnr at any point of S is the cosine

of the angle 8 between r and the exterior normal to S, we have

fMi dg+fI™l d8r.- lwn [152]

If S is a surface equipotential with respect to the joint action

of Mx and HL, and if we denote by V
s
the constant value of

V on S, we have

and it is easy to show, by the reasoning used in Section 31,

that I
—— dS = 0, whence

i ri> v
i\

B. If is a point inside S, whether or not it is within Mlf

and if S is equipotential with respect to the action of Mx
and

M2 , we will surround by a small spherical surface S' of

radius r' and apply [148] to the space lying inside S and

without the spherical surface. In doing so, it is to be noticed

that >S" forms part of the boundary of the region we are deal-

ing with, and that an exterior normal to the region at S' will

be an interior normal of the sphere.
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Since for all points of the region we are considering Vi - 1=0,

we have

= — 4 7r I I I- dxdydz
;

or, since dS'= rn dw', where dw' is the area which the elemen-

tary cone the base of which is dS' and the vertex intercepts

on the sphere of unit radius drawn about 0,

f^ dS + Vsf
C-^ dS - r'fz>r , V- dw' -fvdw'

= - 4tt f f fe dxdydz. [154]

It is easily proved, by the reasoning of Section 31, that

/cos 8—^ = 4tt,

and it is clear that if r' be made smaller and smaller, the third

integral of [154] approaches the limit zero. If V is the

average value of V on the surface S',

= T'4C VdJ = V Cdm' = V

and as r' is made smaller and smaller this approaches the

value AttVq, where V is the value of V at 0. The value,

when r' is zero, of the triple integral is evidently Vx , and we
have

=^- dS + 4 ttV
s
- 4 ttV = - 4 ttFl

If F2 is the value at of the potential function due to M%

alone, V — Vx + V2 , so that
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1 CD V

If S is not equipotential with respect to the action of M
x

and 3I2 , we have

4 ' v
*
=TAr dS~f r

-
D

» (;)
dS

- f^
154^

V. If in [148] we make U = -> where r is the distance of

the point (x, y, z) from a fixed point 0, and if V— v, any func-

tion harmonic everywhere within the closed surface S, we
shall have

-4^ =fvBn
(iyS-f£fdS} [155J

if is within S, and

f^f dS =fv Dn
fc\ dS, [1B6J

if is outside S.

VI. The closed surface S encloses a region T
v
and excludes

the rest of space, T2 . A function V is continuous and has

finite first and second derivatives everywhere in the field of

Green's Theorem. The first derivatives are everywhere con-

tinuous except at certain surfaces, Sx in T
x
and S2

' in T2 ,

where the tangential derivatives are continuous, and the nor-

mal derivatives discontinuous in the manner indicated by the

equation

D„
}

V + DH V= - 8.

At infinity V vanishes like the Newtonian Potential Func-

tion due to a finite distribution of matter. If U is the recip-

rocal of the distance from a fixed point 0, and if we apply

.Green's Theorem to U and V, using successively as fields, Tx

when is in T2 , Tx when is in T1} T2 when O is in Tu and



green's theorem. 101

T2 when is in T2 , and representing by n a normal to S
pointing into T2 in all cases, we learn that the expression

is equal respectively to

- t,V
Bl +ff

S
- i*- -ffp^ir, [156.]

If there is no surface $' at which the normal derivative

of F is discontinuous, and if F satisfies Laplace's Equation

everywhere within S, the expression

IttJ J
,^M +M,

is equal to zero or to the value of V at according as is

without or within S.

If, now, S is a spherical surface of radius a, and if Ox is

distant Zj from the centre C, the distance from C of 2 , the

inverse point of Ox with respect to S may be denoted by L,

where lx l2 = a'
2

. If rx and r2 represent the distances of any
point P from Ox and 2 respectively, then, if P lies on S,

ri/r2 = h/a,
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Ij
2 = rf + a2 — 2 rxa • cos (rl} ri),

l2
2 = r2

2 + a2 — 2 r2a • cos (r2 , n),

and

In this case,

cos (?\, n) a cos (r2 , n) __ a'
2 — 1-?

rx
2

ly r2
2 art

s

and
_ o=ff^ds+ff

reos

rp
r>hs

(h%s \J Ty %J %J /*2

so that it is easy to eliminate Dn V by multiplying the second

equation by ajlx and subtracting the members from those of

the first equation. The result is

4 7T«»/ ^/ [a2 + l,
2 - 2 aly cos (a, l^J"

This integral determines V at every point within S when

its value is given at every point on S. If Ox is at the centre

of S, I
x
= 0, and i\ = a, so that F0i

= = I j VdS, or the
1 4 ita J */

average value on a spherical surface S, jot a function V, har-

monic within and on S is the value of V at the centre of S.

It follows from this that a function which is harmonic about

a point cannot have at either a maximum or a minimum
value.
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If a function V is constant on any analytic surface S, is

harmonic without S, and if it vanishes at infinity like a New-
tonian Potential Function,

. = * ccw dS

and V is the potential function in outer space due to a super-

ficial distribution on S of surface density — Dn Vj^ir.

VII. A function V has the value zero everywhere on the

closed surface Su and the constant value C on the closed sur-

face S2 , shut in by Sv In the space T, between S1 and S2 , V
is harmonic. If we apply Green's Theorem, in T, to V and

to the reciprocal of the distance from any point in T, we
learn that

where both normals point out of T.

V is, therefore, the potential function due to surface distri-

butions on Sx and S2 numerically equal to Dn V/kir at every

point.

VIII. If the closed surface S shuts in a region T, and if

the functions V and V, which are equal at every point of S,

are finite and continuous with their derivatives of the first

order at every point of T, and if within T, V does and V
does not satisfy Laplace's Equation, then the integral

Qy^fffu.Djy + i^vy + ^jy-yixdj/dz,

extended throughout T is less than the corresponding integral

Q r . ^fffl^n 2 + {D
y V'f + (Bz Vyyxdydz.

If we write V = V + u, u vanishes at every point of S, but

is in general different from zero.
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Qr
=Qv+ Qu+ 2 f f f[Dxu DxV+Dy

u D„V+Dz
u Dz V\dxdyd»

= Qv+ Qu+ 2 f f« •A P«&S - 2 f f fu - *
2

Vdx dydz

= Q V+Qu-

Now, since the integrands of Qu and $ r are made up of squares,

and since neither u nor V are constants, both Qu and Q v are

positive, so that Q r >Q v .

IX. There cannot be two different functions, Wx and W2 ,

which have equal values at every point of Sx and S2 (two

closed surfaces the first of which shuts in the second), and

between these surfaces are everywhere harmonic. If we
suppose, for the sake of argument, that two such functions

exist and call their difference u, it is clear that u is harmonic

between the surfaces and that it vanishes at every point of

both Sx and S2 . If, therefore, in [115] we make U = V — u,

we learn that

fffltW + (
D

v
uT + (D^Y^dxdydz = 0,

where the integral extends over all the space between S
x
and

$2 - Since the integrand cannot be negative, it must be zero at

every point, so that Dxu = Dy
u = Dz

u = and u is constant.

But u = on Su therefore it is identically equal to zero and

Wl
= W2 .

It is easy to show that two functions which have equal

normal derivatives at every point of Sx and $2 , and are har-

monic everywhere between the surfaces, can differ only by a

constant.

X. We may now give an old proof of a theorem, originally

discovered by Green from physical considerations, which is

usually called Dirichlet's Principle by Continental writers,
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but in English books is generally attributed to Sir W. Thom-

son.* This theorem asserts that there always exists one, but

no other than this one, function, v, of x, y, z, which (1) is

continuous, and single-valued, together with its first space

derivatives, throughout a given closed region T
; (2) at every

point of the region satisfies the equation V2 v = ; and (3) at

every point on the boundary of the region has any arbitrarily

assigned value, provided that this can be regarded as the value

at that point of a single-valued function, continuous all over

this boundary.

There is evidently an infinite number of functions which

satisfy the first and third conditions. If, for instance, the equa-

tion of the bounding surface S of the region is F(x, y, z) = 0,

and if the value of v at the point (x, y, z) upon this surface is

to hef(x, y, z), any function of the form

<&(x, y, z)-F(x, y, z).+ f(x, y, z)

would satisfy the third condition, whatever continuous function

<i> might be.

If we assign to the function to be found a constant value C
all over S, v = C will satisfy all three of the conditions given

above.

If the sought function is to have different values at different

points of S, and if for u in the integral

///'\_{Dxiiy + (D
uuf + (puuy\dxdydzt

which is to be extended over the whole of the region, we sub-

stitute any one of all the functions which satisfy conditions

(1) and (3), the resulting value of Q will be positive. Some

one at least of these functions (y) must, however, yield a

value of Q which, though positive, is so small that no other

one can make Q smaller. t Let h be an arbitrary constant to

* W. Thomson, Liouville's Journal, 1847. DirichleVs Vorlesungen,

Bacharach, Abriss der Geschichte der Potentialtheorie.

t A principle which will doubtless lead to a justification of this by no

means self-evident assumption was pointed out by Hilbert in a remark-

able paper read before the Deutsche Mathematiker-Vereinigung in 1899.
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which some value has been assigned, and let to be any func-

tion which satisfies condition (1) and is equal to zero at all

parts of S, then U = v + hw will satisfy conditions (1) and

(3), and, conversely, there is no function which satisfies these

two conditions which cannot be written in the form U= v + hw,

where h is an arbitrary constant, and iv some function which

is zero at S and which satisfies condition (1).

Call the minimum value of Q due to v, Qv , and the value of

Q due to U, Q v, then

Qu=Q v + 2hC C C (Dxv Dxw+Dy
v D

y
w +Dzv D2w) dx dij dz

+ h*fff[(I)xwy + (D
y
wy + {Dztvy-\dxdydz,

which, since w is zero at the boundary of the region, may be

written, by the help of Green's Theorem,

Qu- Qv
= - 2 h C C CiuV2vdxdijdz + 7i

2 2
.

Now, since Qv is the minimum value of Q, no one of the

infinite number of values of Qv — Qv formed by changing h

and w under the conditions just named can be negative; but

if X"hi were not everywhere equal to zero within T, it would

be easy to choose w so that the coefficient of 2 h in the expres-

sion for Qr — Q„ should not be zero, and then to choose h so

that Qu — Q„ should be negative. Hence V 2v is equal to zero

throughout T, and there always exists at least one function

which satisfies the three conditions stated above. Compare

VIII.

There is only one such function ; for if beside v there were

another u = v + hw, we should have, since the coefficient of h

is zero when V 2 y = 0,

and that Qu may be as small as Q v , AO must be zero, whence

either h = or O = 0, and if O = 0, w is zero. Therefore,
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u = v, and there is only one function which in any given case

satisfies all the three conditions given above.

XI. The potential function V, due to a volume distribution

of finite density p in the region T and a superficial distribu-

tion of finite surface density cr on the surface S, is everywhere

continuous, and it so vanishes at infinity that, if r is the dis-

tance from any finite point, each of the quantities

rV, -r2Dr V,

as r becomes infinite, approaches the limit M, whereM is the

amount of matter (algebraically considered) in the whole dis-

tribution. The first derivatives of V are everywhere finite,

and they are continuous except on S, at every point of which

tangential derivatives are continuous, while the normal deriva-

tive is discontinuous in the manner indicated by the equation

D
ni
V + DHV — - ±7r<r,

where n x and n2 are the normals to the surface drawn away
from it on each side. The second derivatives of V are every-

where finite, and they are continuous except at surfaces where

p is discontinuous. At any point on such a surface the tan-

gential second derivatives are continuous, but the normal sec-

ond derivative is discontinuous by an amount equal to 4 -n

times the discontinuity in p reckoned in the direction opposite

to that in which the derivative is taken. Everywhere, except

at surfaces of discontinuity in p, V satisfies Poisson's Equa-

tion, V 2 V = — 4 7rp, and without T, where there is no matter,

this degenerates into Laplace's Equation.

For a given value of p in the given region T, and a given

value of cr on the given surface S, only one function has all

these properties. Assuming that there are two such functions,

V and V, let their difference be the function u. At every

point of S,

D
ni
V + DnJ= Dn V' + Dn2V = - 4^,

so that Dn u + Dn u = 0,
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and even the normal derivatives of u are continuous at every

point of S. At surfaces of discontinuity in p, the derivatives

of u are all continuous and u satisfies everywhere Laplace's

Equation. The limits, as r becomes infinite, of nc and r2Dric

are zero. Since u with its first and second derivatives is

everywhere continuous, we may imagine a spherical surface

of large radius r, drawn about any finite point 0, as centre,

so as to enclose all the attracting mass and apply Green's

Theorem in the form of [151] to u inside this surface. The
numerical value of the surface integral

/u D„u dS

taken over the spherical surface is no greater than the area

of the surface (4 irr*) multiplied by the largest value which

u • Dru has on the surface, or

4 it [greatest value of (ur2Dru)~\.

If, now, the radius of the surface be indefinitely increased,

this expression approaches the limit zero so that the integral

f f f [(Ar«)
2 + (

D
v
uY + iPzuY\dxdydz

taken over all space has the value zero. Since the integrand

is made up of squares which can never be negative, we must

have at every point of space

Dxu — Dy
u = Dzu = 0.

Therefore, u is constant in all space ; and since it is zero at

infinity, it must be everywhere zero, so that V and V are

identical. It is to be understood that T may be made up of

several distinct regions, and that S may consist of several

distinct surfaces.
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49. The Surface Distributions Equivalent to Certain Volume

Distributions. Keeping the notation of IV. in the last article,

let S be a closed surface equipotential with respect either to

the joint action of two distributions of matter, M
x inside S and

J/o outside it, or (when M2 equals zero) to the action of a

single distribution within the surface ; and let V^ V2 , and V
be the values of the potential functions due respectively to MY

alone, to M2 alone, and to M
x
and M2 existing together. If a

quantity of matter were condensed on S so as to give at every

point a surface density equal to -— , the whole quantity of

matter on the surface would be

- CDH V-dS,
7T «/

and this, by § 31, is equal in amount to Mx . Let us study the

effect of removing M
x
from the inside of S and spreading it in

a superficial distribution M^ over S, so that the surface density

at every point shall be — In what follows, it is assumed

that we have two distributions of matter, one inside the closed

surface and the other outside. It is to be carefully noted, how-

ever, that by putting M2 equal to zero in our equations, all our

results are applicable to the case where we have an equipotential

surface surrounding all the matter, which may be all of one kind

or not.

The value, at any point 0, of the potential function due to

the joint effect of M2 and the surface distribution MJ, would be

Vr.-F.-J-fSJ
A itJ r

dS.

If is an outside point, we have, by [153],

v = v2 + v1 ,

so that the effect at any point outside an equipotential surface

of a quantity M
x
of matter anyhow distributed inside the sur-

face is the same as that of an equal quantity of matter dis-

tributed over the surface in such a way that the superficial
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—D V
density at every point is "— , where V is the value of the

4 7T

potential function due to the joint action of Mi and any matter

(M2 ) that may be outside the surface.

If is an inside point, we have,

V =Va + V.-V2 = V„

which shows that the joint effect of M2 and Mx is to give to all

points within and upon the surface the same constant value of

the potential function which points upon the surface had before

M
x
was displaced byMx . If, therefore, Mx and M2 exist without

Mx , there is no force at any point of the cavity shut in by S;

or, in other words, the force due to M
x

alone is at all points

inside S equal and opposite to that due to M2 .

If Mx and M2 exist withoutMx , the cavity enclosed by S is, in

general, a field of force. My acts as a screen to shield the space

within S from the action of M2 .

The surface of Mx is equipotential with respect to all the

active matter, so that there is no tendency of the matter com-

posing the surface distribution to arrange itself in any different

manner upon S.

Since Mx exerts the same force on every particle outside

S that Mx did, and since action and reaction are equal and

opposite, every particle of M2 exerts on Mx
forces the result-

ant of which is equal to the resultant of the forces with

which the same particle urged Mx . The resultant effect,

therefore, of the action of M2 on Mx is the same as the

resultant effect of its action on Mx . Now the whole system

of forces applied to the surface distribution by M2 and by

the repulsions for one another of its own parts is equivalent

to a tension from without of 2 tto-
2 dynes per square centi-

meter applied all over S, and since the internal forces form

a system in equilibrium, the resultant effect of M2 on Mx

is equal to the resultant effect of the tension just mentioned

on M
x

.

If two closed surfaces, Sx and S2 , which mutually exclude

each other, shut in, respectively, the two portions, Mx , M2) of a
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distribution M, and are level surfaces of M's potential function,

it is easy to see that a superficial distribution on Sx of density

o- = — Dn V/A it would act on a particle without Sx just as Mx

does, and that a similar distribution on S2 would act on parti-

cles outside of S2 as M2 does. The action of Mx on M2 is the

same as the resultant effect of the tension 2tto-
2 or (Dn V)

2
/8-ir

considered as acting all over S2 . The surface integral of

— Z>n F/4ir extended over any closed surface has been called

by Maxwell the " electric displacement " through the surface.

50. Vectors. Stokes's Theorem. The Derivatives of Scalar

Point Functions. It is frequently convenient to define a

vector by giving the values (tensors) of its components paral-

lel to the coordinate axes ; and if for our present purposes we
call these "the components of the vector," no confusion will

arise. The expression (Qx, Qy, Qz) denotes a vector, Q, the

components of which parallel to the axes of x, y, and z are

respectively equal to Qx, Qy , and Qz . The direction cosines of

the vector are the ratios of Qx , Qy, Qz to V$x
2 + Qy

2 + Qz
2
.

The letter which represents a vector is often used in scalar

equations to denote merely the tensor. Sometimes, however,

the heavy face letter (Q) is used to denote the vector, while

its tensor is represented by the same letter in ordinary type.

Any three scalar point functions can be considered the com-

ponents of a vector point function. Scalar and vector point

functions are sometimes called " distributed " scalars and

vectors. Where there is no danger of any misunderstanding

a vector point function may be called simply a vector.

The scalar function DXQX + DyQy
-\-

D

ZQZ
is called the diver-

gence of Q, and if this quantity vanishes identically, Q is said

to be a solenoidal vector. The force due to any finite distri-

bution of matter attracting or repelling according to the " Law
of Nature " is solenoidal in empty space. The negative of the

divergence of a vector is called its convergence.

The vector, the components of which taken parallel to the

coordinate axes are the three scalar point functions,

VyQ* - DS Qy, I>zQX ~ PX Qz, DxQy ~ *>yQ*>
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is called the curl of Q; and if these components vanish at every

point of a region, Q is said to be lamellar in that region. If

the vector R is the curl of the vector Q, Q is said to be a

vector potential function of R. The force due to a finite dis-

tribution of attracting or repelling matter is lamellar within

and without the distribution. The curl of any vector is

itself solenoidal. If. two vectors have the same curl, their

difference is a lamellar vector.

The lines of a vector are a family of curves, one of which

passes through every point of space, and each of which has

at every one of its points the direction of the vector at the

point. The differential equations of the lines of the vector Q
are evidently dx/Qx

= dy/Q
y
= dz/Q

z :

after the values of Qx, Qy, and Qz have been substituted, we
have two equations of the form

dx , . dii ,

whence we get, by differentiating,

% = I>A-% + !>,#* + DA,

%-»*+ + D*-* + D*;

and, by eliminating y between the first and third equations,

and x between the second and fourth equations, two equations

of the second order between x and z and between y and z

respectively. The integrals of these last equations are the

equations of the lines of the vector. Sometimes the variables

may be separated at the start, and then the work is much
simplified. The lines of the vector (— x2

, y, z) have the equa-

tions y= Az, x\og(By)= l, and those of the vector (3xz — yz,

xz + yz, z), the equations x = (B+A + Bz) e'
2z

,
y=(A+ Bz) e

2z
,

where A and B are arbitrary constants.

If n represents the exterior normal of any closed surface S,

the integral taken over S of the exterior normal component

of the analytic vector Q is
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Cq cos (n, Q) dS

=
J
Q [cos (x, Q) cos (x, n) + cos (y, Q) cos (y, w)

+ cos (z, Q) cos (s, w)] rf$

=
J
[^x cos (a:, re) + Q„ cos (2/, ri)+ Qz cos («, re)]rf£;

and this is equal to the volume integral of the divergence of

Q taken through the space within S. The integral of the

exterior normal component of any analytic solenoidal vector,

taken over any closed surface, is zero.

An important theorem due to Sir George Gabriel Stokes

may be stated as follows

:

The line integral taken around a closed curve s, of the tan-

gential component of an analytic vector point function Q, is

equal to the surface integral taken over any surface S, bounded

by the curve, of the normal component of the curl of the vector,

the direction of integration around the curve forming a right-

handed screw rotation about the normals, or

j [Qx cos (x, s) + Qy
cos 0, s) + Qz cos (z, s)] ds

//[(D
yQz -

D

zQy
) cos (x,n)

+ (P.Qm - DxQe) cos (y,n)

+ (DxQy
- D

yQx) cos (z, n)-]dS. [158]

To prove this, we may evaluate first so much of the double

integral as involves Qx , that is,

J
C[DZQX cos (y, n) - D

yQx - cos (z, ri)]dS.

Let the area S be divided into quadrilateral elements by
means of equally spaced planes parallel to the planes of zy

and xy respectively, and consider especially one of these

elements, AS, the projection of which on the xz plane is Ax • Az,

so that AS- cos (y, n) = Ax • Az approximately.
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That corner of the element A$ which has the least x and z

coordinates shall be the point P, and that side of the element

which passes through P and is parallel to the plane of yz

shall be represented by Asv Since Asj is perpendicular both

to the normal to S at P and to the axis of x, cos (x, s{) = 0,

and cos (n, Sj) = cos (x, n) cos (x, s{) + cos (y, n) • cos (y, sx)

+ cos (z, n) • cos (z, Si) = 0,

or
cos (z, 11) • cos (z, s x) , .±->—L- A L — _ Cos (y, Sl).

cos(y, n) '

Fig. 38.

Moreover, P>
SlQx= + (P

yQx) cos (y, st) + (D
ZQX) cos (z, sx),

dxdz dx dz dst . 7 cos (z, Si)
and dS = ; r = ; r = dsx dx -. <-.

cos (jy, n) dsx cos (y, n) cos {jy, n)
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Hence,
| |

[DZQX • cos (y, n) — D
yQx

- cos (z, ri)~\dS

C /» [cos(y, n) cos (z, s x)DzQx
— cos (z, n) cos(z, s^DyQ^ds-^dx

J J cos (t/, ?i)

= f \\_DZQX
- cos (s, s^ + !>„&• cos (y, Si)] e^cte

ff^Q, dsx dx.

If we perform the integration with respect to s1 and intro-

duce the limits, it will appear that this integral may be found

by proceeding around the contour s in the direction indicated

in the theorem and determining the line integral of

Qx
— ds = Qx

- cos (x, s) ds,

where ds is an element of s. If we treat in a similar manner
those portions of the double integral which involve Qy

and Qz ,

the theorem will be evident.

According to the definition used in the preceding sections,

the numerical value of the directional derivative of any scalar

point function u, at any point P, in any fixed direction PQ',

is the limit, as PQ approaches zero, of the ratio of u Q
— uP to

PQ, where Q is a point on the straight line PQ' between P
and Q'. The gradient Ku of the function u at P is the direc-

tional derivative of u at P taken in the direction in which

u increases most rapidly. This direction is normal to the

surface of constant u which passes through P.

The directional derivative of any scalar point function

at any point in any given direction is evidently equal to

the product of the values of the gradient and the cosine of

the angle between the given direction and that in which the

function increases most rapidly.

The vector, the components of which parallel to the coordi-

nate axes are numerically equal to Dxu, Dy
ti, Dz

ii, has been
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called the vector differential parameter of u. The numerical

value (tensor) of this vector at any point is the gradient of u

at the point, according to some writers ; others use "gradient

"

to represent the vector itself. The lines of the vector are

curves which cut orthogonally the surfaces of constant u, that

is, the family of surfaces the equation of which is u — c, where

c is a parameter constant for any one surface of the family.

If f(x, y, z) is any scalar point function, any vector func-

tion the lines of which cut the surfaces of constant / normally

must have components R • Dxf, R • D
yf, R • P

zf, where R is

some function of x, y, and z. The curl of this vector has

components DJDy
R - D

yfDzR, DJDZR - DJDXR,

Dyf-DxR — Dxf-Dy
R, and the cosine of the angle between

the vector and its curl is zero, so that these two vectors are per-

pendicular to each other. If a vector has a curl which is not

perpendicular to it at every point, no family of surfaces exists

the members of which cut the lines of the vector orthogonally

at every point of space. Every plane vector point function

has for its curl a vector perpendicular to its plane. The

vector (3 yz, xz, xy) is not lamellar, but it is perpendicular to

its curl : its lines cut orthogonally the family of surfaces

xsyz = c, as do the lines of the lamellar vector (3 x
2yz, x z

z, x3
y),

each component of which is x'
2 times the corresponding

component of the first.

If the ratios of the corresponding components of two vector

point functions are all equal to the same scalar point function,

the vectors have the same lines. Two lamellar vectors may
have the same lines, thus : the lines of every vector of the

form \_f{x), 0, 0,] are parallel to the axis of x, and every such

vector is lamellar, whatever analytic function / may represent.

We may define the numerical value of the normal deriva-

tive at any point P of a scalar point function u, taken with

respect to another scalar point function v, to be the limit, as

PQ approaches zero, of the ratio of uQ — uP to v Q — vP ,
where

Q is a point so chosen on the normal at P of the surface of

constant v which passes through P that vQ
— vP is positive.
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If (w, v) denotes the angle between the directions in which u

and v increase most rapidly, the normal derivatives of u with

respect to v, and of v with respect to u, may be written

hu -cos(u, v)/hv and hv -cos(u, v)/hu

respectively. If h u
= h

v , these derivatives are equal.

The derivative of xyz with respect to x + y + z has at the

point (1, 2, 3) the value 11/3. The derivative at the same

point of x + y + z with respect to xyz is 11 /49.

51. The Attraction of Ellipsoids. If we transform the

equation
o o o

a z
I" p T C

2

to parallel axes, using a point A , which lies on the surface

and has the coordinates (— x ,
— y ,

— z ) as origin, and then

denote by 6 the angle which any radius vector drawn through

A makes with the x axis, the equation of the surface in polar

coordinates takes the form

cos 2 9 sin2 6 cos 2
</> sin 2 6 sin 2

cj>

_ / x cos y sin 6 cos <j> z sin $ sin
<f>

" \ a'
2

b'
2

c
2

If A were at that extremity, A, of the a axis which has the

coordinates (— a, 0, 0), the equation would be

/cos 2 sin2 $ cos 2
<£ sin 2 #sin 2 <£\ 2 cos

^V~^~
+—a*— +—?—y

"^~ :

we will denote the coefficient of i? in this equation by 0,(6, <f>).

Let us compare the x components of the attraction at A and

at A, due to a homogeneous ellipsoid of density p bounded by

this surface. If, with each of these points as origin, a set of

(conical) surfaces of constant 6 with the constant difference

A0, and a set of (plane) surfaces of constant <£ with the con-

stant difference A<£, be imagined drawn, the ellipsoid will be
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divided into elementary " cones " in two ways. , The vertices

of all the cones of one system will be A, and the vertices of all

the cones of the other system will be A . To every cone of the

first system corresponds a cone with parallel axis belonging

to the second system, but whereas every cone of the first

system yields a positive contribution to the x force compo-

nent at A, some of the corresponding cones of the second

system yield negative components to the corresponding force

component at A .

We shall find it convenient to write in parentheses after R
and r' the value of 6 and

<f>
to which they belong, and to note

that r (n- e< Tr + 0) = — r
(0, 0)-

If the values of 6 and
<f>
which correspond to a given cone

of the first system are o and <£ , the values of 6 and
<f>

which

belong to the corresponding cone of the second system may
be either 6 and <£n, or it — and ir + </>„. The contribution of

any cone of the first system to the x component of the force at

A is

r2 sin 6drd6d<f> • —j— = pR^e, <j>)
sin 6 cos 6d0d<p,

and the contribution of the corresponding cone of the second

system to the x component of the force at A is either

pr\g
t<j>
)S'm 8 cos 6 d6d(f> or pr\

7r
-

0< ^, + 7r) sin cos $d$d<p,

as the case may be.

If, now, we group together two cones of the first system

corresponding to (6Q , <£„) and (6 , -k + <£ ) respectively, we
may write the positive contribution coming from this pair in

the form

The values of 6 and <£ for the corresponding cones of the

second system are one of the pairs

(00) 00 5 #0) T + <f> ), (0 , <£„ ; 7T — 9
, O),

(?r — 9 , ir +
<f> ; 6 , ir + <£ ), or (tt — 6 , -k + <£ ; tt — 6 , <f> ).
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The two values of 9 and
<f>

of either of these pairs give equal

and opposite values to

(

?/ sin 6 cos
(f>

z sin sin <£

v

.

Ii I li J
cos 0>

so that the positive contributions of this pair of cones of the

second system is

This contribution to the x component of the force at A is to

the contribution of the corresponding cones of the first sys-

tem to the corresponding force component at A as x to a.

Therefore, the x component at A of the attraction due to the

whole ellipsoid is to the corresponding component at A as xQ

to a.

If, then, we know the values (Xu Yu Z^ of the attraction

due to a homogeneous ellipsoid bounded by the surface

— _i_^! _l — — 1

a2 + b
2

c
2
"

at points on the surface at the negative extremities of the

semiaxes a, b, c, we may find the numerical values of the com-

ponents parallel to the coordinate axes of the attraction at any

point (— x ,
— yw — z ) on the surface from the equations

X = x Xx /a, Y = y Yl
/b, Z = z Z

1
/c.

The attraction Xx at A can be easily found* by adding

together the contributions coming from all the elementary

cones with vertices at A into which the ellipsoid is divided,

that is,

J~7T/2
/»27T

sin 6 cos OdO I By^^dfa or, since
«/o

* See Routh's Analytical Statics, Vol. II, §§ 182-221. Tarleton's

Mathematical Theory of Attraction, §§ 21-24 and 82-105. Schell's

Theorie der Bewegung und der Krafte, pp 690-716.
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2 ab2
c
2 cos

(*, <t>) yi
c
1 cog 2 _j_ a2

c2 gjn2 $ cog 2 ^ _|_ ft
2£2 g jn 2 £ ^2 ^

2 q£2
c
2 cos

u + w cos 2
<£ + w sin2

<j>

Xx
= 8 aiV/a C' sin^ cos 2

,

Jo

"r/2 f/<£

J-»tt/:

o

f/e£

w+ y cos 2 cp-\-iv sin2
<£

Now (

Jo u -\- o cos- </> + w snr
<f>

£ cty

(« + v) + (m + w) f
;» where ^ = tan <p,

sin 6 cos- 6 cW

2 V(w + v) (w + w)

Hence,

J"T/2—P===
o V(6 2 cos 2 + a2 sin 2

0) (c
2 cos 2 + a2 sin 2

0)

or, if s = a2 tan 2
0,

dsXx
= 2 a 2

bcirp )
-

—

Jo + a 2

)
3/

and
(« + a 2

)
3/2 (s + 62

)
1/2

(s + c
2

)
1

X = 2aic7rpa' fJo (s + a2

)
8/2

(s

c/s

(* + a 2

)
3/2

(s + £ 2

)
1/2

(s + c
2

)
1/!

= 2 abcTrpx K = x K ',

ds

[159]

F = 2abcirpy I

J»

Jo

(s + a 2

)
l ' 2 (s + 62

)
8 ' 2

(s + c
2

)
1 ' 2

= 2abcTrp!/ L = y L ',

ds

(s + a 2

)
1/2 + 62

)
1/2

(s + c
2

)
3 ' 2

= 2 abcTrpz M = z M '.

At the positive ends of the axes of the ellipsoid the force

components are — Xv — Yv — Zv If the ellipsoid were made
of matter of density p, repelling according to the " Law of

Nature," the force components at the positive ends of the

axes would be + A'
1; + Yv + Zv
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/"V»2 n .2 g*

If (xu yu Zx) is a point on the ellipsoid — + — -f- -5 = 1,

(Xxu Xyu Xz^) is a c&rresponding point on the similar ellipsoid

jp2 y2 g2
—r-z + -^r- + -tt = 1, and the straight line which joins these
X2a2 XW AV
two points passes through the origin.

It is to be noticed that K '

}
L ', M ' have the same values

for all similar ellipsoids, no matter what their actual dimen-

sions may be, and that the components of the attraction at

corresponding points on two similar homogeneous ellipsoids

of equal density p are to each other as the linear dimensions of

the ellipsoid.

Since the attraction of a homogeneous ellipsoidal homceoid is

zero (Section 12) at all inside points, we may draw through any

point P within a homogeneous ellipsoid bounded by a surface

S , a surface S, concentric with S and similar and similarly

placed, and affirm that the attraction at P is equal to the

attraction of so much of the whole ellipsoid as lies within S.

If OP cuts S in P , the attraction components at P are

X= — 2 abcirpxKw Y= — 2 abcirpyLw Z = — 2 abc-jrpzM
,

or - xK ', - yL ', - zM '

;

therefore, the resultant attractions at internal points on any

straight line drawn through the centre of a homogeneous ellip-

soid are parallel in direction. They are proportional in inten-

sity to the distances of the points from the centre.

The potential function V within a homogeneous ellipsoid

T1 ti t-L

of density p bounded by the surface —
. + '-—, + ^ = 1 is such

J a z (r c
l

that its derivatives with respect to x, y, and z are respectively

equal to — 2 abcirpxKw — 2 abcirpyLw — 2 abcirpzM^ where

K , L , M have the same values at every point of the solid,

so that

V = abc-rrp (G - A>2 - L y
2 - Maz%

in which G is a constant to be determined by computing

abcirpG , the value of the potential function at the centre.
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The polar equation of an ellipsoidal surface of semiaxes a, b, c,

when the origin is at the centre and is the angle which any

radius vector through the origin makes with the a axis, is

a2b2
c
2

1
b2
c
2 cos 2 6 + a2

c
2 sin2 6 cos 2

<f>
+ a'

2
b
2 sin 2 sin 2

<f>

a2b2
c
2

u + v cos 2
<f> -f- iv sin2

<f>

I I r sin 6 ddd<f>dr

sin0</0 I — -^ r^-
i) . c/o m+ v cos 2

<^> + w sin-* <p

.

Using the method of reduction already employed in finding

the value of Xu we learn that

Ga =
ds

(s + a2

)
1/2

(s + b2

)
1/2

(s + c
2

)
1 ' 2

'

G is an elliptic integral of the first kind, K , L , and M are

elliptical integrals of the second kind. If a> b>c,

(s + a2
) >(s + b2

) >(s + c
2
) and K < L < Mw

and, unless s is zero,

(s + a 2)/(s + b
2
) < a2 /b 2 and (s + b 2)/(s + c

2
) < b2/c2

.

The equation for V may be written in the form

Pi- v r„-r r
K abc7rp L abcirp MQ abcirp

so that the equipotential surfaces within a homogeneous ellip-

soid are a set of ellipsoidal surfaces coaxial with the given

ellipsoid and similar to each other. The axes are in the

same order of length as are those of the ellipsoidal mass, but

are more nearly equal. The outer surface of the attracting

ellipsoid is not equipotential.

The differential equations of the lines of force within a

homogeneous ellipsoid are evidently
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dx/xK = dy/yL = dz/zM
,

so that if the reciprocals of A"" , L , M are represented by k, I, m,

The two ellipsoidal surfaces

t + £ + t ==1 ^ + t + ^ ==1
a2 ^ b

2
c
2

' a'2 ^ b'
2

c'
2

are confocal if a 12 = a2 + A, b'
2 = b 2 + A, c'

2 = c
2 + A. We will

assume for convenience that A is positive. A point P' on

the second surface S' is said to correspond to a point P on

the first surface S, ii x' : x = a' : a, y' : y = b' : b, z' : z = c' : c.

If P
x and P2 are any two points on S, and JP/, P2

' the

corresponding points on S', the distance PiP2
' is equal to the

distance Pi'P2 [Ivory's Theorem], as may be seen by substi-

tuting for a', b', and c' in the following equation their values

in terms of a, b, and c.

a%\ 2 ( Vy*\* / c%

To the points on a chord EF of S, drawn parallel to the

x axis, correspond the points on a parallel chord E'F' of S'.

The lengths of these two chords are as a to a'. To the points

in a slender prism Q, of cross-section AyAz, within S, one

edge of which is the line EF, correspond the points in a

slender prism Q', of cross-section Ay'Az', or Ay Az'-b'c'/bc,

within S !

, and one edge of this is the line E'F'.

If Q and Q' are made of homogeneous matter of equal den-

sity, the x component of the attraction at any point P', on

the larger ellipsoid S', due to Q, is [Section 6] equal to

p -^- Az (p^E-ih
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and the x component of the attraction due to Q' at the point

P on S corresponding to P' is

p±y±zb'c'( 1 1

be \PE' PF
The quantities in the parentheses are equal, by Ivory's Theo-

rem, and the two attraction components are to each other as

be : b'c'. If the whole space inside S' is filled with homoge-

neous matter of density p, the x component at any point P',

on >S", of the attraction of so much of the mass as lies within S
be

is equal to the product of — and the x component of the

attraction of the whole mass at the inside point P which lies

on S and corresponds to P'. We have already found an

expression for the last-named force component.

To find, then, the attraction at the outside point P'(x', y', z'),

due to a homogeneous ellipsoid of density p bounded by the

x2
ii
2 z2

surface S, or — + '— + ~r2
= 1, we must first find the positive

ft

x''
2 ?/'2 z'

2

value of A which satisfies the cubic
, x + JO

'

, . + ~i~— = 1?
a2+ \ b 2+ \ c

2+ X
and thus determine the axes of the ellipsoidal surface S'

through P' confocal with S. If we call this value of A, A', the

point P on S which corresponds to P' on S' has the coordi-

nates [

—
? — . >

—
. | > and the x component

\V* 2 + A' V62 + A' Vc2 + A7
of the attraction at P due to an ellipsoid of density p bounded

by S' would be

_ 9 n, , f™ ds
vpX

Jo + a>
2y 2

(s + by*(s + e'
2

f>
2

If we multiply this result by be /b'c', we shall get the result

sought. If we substitute s + A for s in the integral and

remember that x : x' = a : a', we may write the x component

of the attraction of the ellipsoid at the point P in the form

X = - 2 abcvpx'y
(s + a2) 3 /2(s + £2)1/ 2

(s + c2)
i /2

= -2abc7rpx'K = -%mx'K, [160]
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where m is the mass of the ellipsoid. The components parallel

to the axes of y and z of the attraction at P' are, similarly,

. C™ ds

Z =

(s + ay2
(s + 6

2

)
3/2 (s + c

2

)
1 / 2

2 abcirpy'L = — § my' L,

ds
'£
'y (s + a2y 2 (s + b2y*(s + c)

3 ' 2

2 abcvps'M = - | mz'M.

"We know that, if we substitute in the equation

'W-^ +p^ +^-i-ft
the coordinates of any point in space, the largest root of the

equation corresponds to an ellipsoid passing through the point,

and is negative, zero, or positive according as the point lies

within, on, or without S. Following Dirichlet, let us imagine

a function u of the space coordinates, which shall have the

value zero at every point within or on S, and, at every point

outside of S, shall be equal to the positive root of the equa-

tion P(\) = which belongs to that point ; and let us con-

sider the integral

V= nabcp fYl - ~^-
2
- -£- - -^-\rJu \ s + or s 4- 6r s + c

l

J
ds

(s + ay\s + b 2

)
l/2 (s + c

2

)
1 ' 2

'

which evidently vanishes at infinity. For inside points where

u is zero, V is identical with the value just found for the

potential function within a homogeneous ellipsoid of density p.

Since V involves x explicitly and also implicitly through u,

we have, in general, at any outside point,

dsDXV= — 2-irabcpx I

(s + a2

)
s ' 2

(s + b2y/ 2
(s + c

2

)
1 / 2

7rabcpDxu f x2
y

2 z2 \
.

!

\ a2+ u b2
-\-u c

2+ u/'(u+ a2y' 2 (u + b
2y/ 2 (u + c

2y/ 2 \ a2+ it b
2+u c

2+ Uj
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but, from the definition of u, the coefficient of Dxu vanishes

when u is positive, so that the integral alone remains and gives

the value already found for the x component of the attraction

at an outside point due to a homogeneous ellipsoid of density

p bounded by S. At S, DXV is continuous : V gives every-

where, therefore, the value of the potential function due to a

homogeneous ellipsoid of density p bounded by S.

If we note that

/( +—7; +
s + a2 s + b2

s + c
2
J (s + a2y' 2

(s + b2y' 2
{s + c

2y''

-2
~

(s + a2

y
/2

(s + b2

y /2
(s + c

2

y
/2

'

and that the equation F(u) = yields

2 x f x2
y

2 z2

xU =
(a 2 + u) 1 \(a2 + v) 2

+
(b

2 + u) 2 +
(c

2 + u)'

(with similar values for D
y
u and D,u), so that

xDxu yD„u zDzu _ 2
a2 + u b

2 + u c
2

-\- u

for an outside point, and zero for a point within S, it is easy

to see that V satisfies * Laplace's Equation without S and

Poisson's Equation within S, as it should.

52. Logarithmic Potential Functions. When a distribution

of matter attracting or repelling according to the "Law of

Nature " is such that by a proper choice of axes of reference

for a set of orthogonal Cartesian coordinates the density can

be made to depend on two of these coordinates only, the dis-

tribution evidently extends indefinitely far in both directions

parallel to the third axis. Such a distribution is sometimes

said to be " columnar." Any infinitely long cylinder the

density of every filament of which is the same throughout

the whole length of that filament, though different filaments

* Picard, TraitA ftAnalyse, Vol. I. p. 177.
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may have different densities, is a columnar distribution. If

we choose for z axis a line parallel to these filaments, the

components of the force taken parallel to the x and y axes at

any point involve x and y only, and there is no force compo-

nent parallel to the axis of z. Since the z coordinate will not

appear in any of our equations, we may represent a columnar

distribution by its trace in the xy plane, if we keep in mind
the fact that the distribution itself extends to infinity in both

directions perpendicular to this plane.

It is evident from the work of Section 6 that a fine, homo-

geneous filament of cross-section AA
1} made of repelling matter

Fig. 39.

of density pu urges a unit mass at a point at a distance r from
2 p AA

the filament with a force of ———— absolute kinetic force
r

units. It follows that if the trace of a columnar distribution

in the xy plane is an area Au the force components at the

point (x, y, z) parallel to the axes of x and y are

J J (fr-xy+fa-yy' J J (xi-xy+Q/i-y)*'

where px is the density at any point the x and y coordinates of

which are x x and yx respectively, and where the integrals are

to be extended over the whole of A x . The integral

V= +ffpi log [(a* - xy + (Vl - y)
2
] dA x =ff? Pl log rdA1
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extended over A is called from its form the " logarithmic

potential function " belonging to the distribution, and

X= + DX V, Y= + Dy
V.

In the general case the columnar distribution must be con-

sidered to be made up partly of filaments of positive matter

and partly of filaments of negative matter, so that the density

is positive for some values of x and y and negative for others.

Under these circumstances X and Y represent the force com-

ponents which would act on a unit quantity of positive matter

concentrated at the point (x, y, z). It will be convenient to

denote the amount of matter (reckoned algebraically) in the

unit length of a columnar distribution by M. It is evident

that at an infinite distance (in the xy plane) from the trace A 1

of a columnar distribution the logarithmic potential function

becomes infinite, unless M is zero, while the force components

vanish in any case.

It is easy to prove that, if M is zero, V so becomes infinite

at infinity in the xy plane that, if r is the distance from any

finite point in the plane, r V and r2Z>r V have finite limits as

r increases indefinitely. If M is not zero, V becomes infinite

at infinity in such a way that the quantities (V — 2M log r),

(r-Dr V-2 M), (r V- D,. V- 4MHog r), and ( V-r-logr Dr V)

all approach the limit zero when r becomes infinite. That

X, Y, and V are finite at every finite point in the xy plane

outside of A^ is evident ; that no one of them is infinite at any

point within A x can be proved by transforming the integrals

which define them to polar coordinates, using the suspected

point as origin.

If n is the exterior normal of any closed curve s in the xy

plane, and r the distance from any fixed point in the plane,

the line integral of cos (n, r)/r taken around s is equal to

zero, 7r, or 2 tt, according as is without, on, or within s.

From this it follows that the line integral around any closed

curve in the xy plane, of the normal outward component of

the force due to any columnar distribution of repelling matter

the lines of which are perpendicular to that plane, is equal
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to 4 7r times the mass of the unit length of so much of the

columnar distribution as is surrounded by the curve. We
may regard this as Gauss's Theorem applied to columnar

distributions.

If a function u involves x and y and does not involve z, no

confusion need be caused by denoting Dx
2u + Dy

2u by V2u.

Using this notation, Green's Theorem for functions of the two

variables x and y may be written in the form

ff(V,u • Dxw + P„u D
y
w) dA

= Cu Dnw -ds —
j J

u V2w dA

= I to Dnu • ds —
j j

w • Vht • dA,

where the line integrals are to be extended around a closed

curve s in the xy plane, within and on which u and w with

their first derivatives are continuous, and the double integrals

extended over the area shut in by s. If in this equation we

make u — 1 and w the logarithmic potential function V, due

to a columnar distribution, we get

CCv2VdA= fDn Vds,

and this, according to the special form of Gauss's Theorem,

just stated, is equal to

4 77y> dA.is-
Since the form of the curve s may be chosen at pleasure, it

must be true that at every point V 2 V = + 4tt/3. It is desirable

to notice that the plus sign here precedes 4 np, whereas in Pois-

son's Equation, as applied to the Newtonian Potential Func-

tion of a finite mass, the corresponding sign is minus. This

and many other differences of sign that appear in our equa-

tions might have been removed if the opposite sign had been

given to the integral which defines the logarithmic potential
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of a columnar distribution, but if this had been done a

positive mass would have given rise to a negative potential

function, and this might have caused confusion.

If a portion of a columnar distribution consists of a surface

charge on a cylindrical surface, we may conveniently construct

a small quadrilateral in the xy plane by drawing two normals

across the ends of an element of the trace of the cylindrical

surface and two very near curves parallel to the trace element,

one on one side and the other on the other. If, then, we apply

Gauss's Theorem to this quadrilateral, we shall learn that at

every point of the trace the sum of the normal derivatives of

V taken away from the curve on each side is 4 ircr.

If a closed curve s be drawn in the xy plane so as to

include the trace of a portion of a columnar distribution the

lines of which are perpendicular to that plane and to exclude

the trace of another portion, and if Vx and V2 represent the

parts of the potential function V belonging to these two

portions of the distribution, we may apply Green's Theorem

to V and the logarithm of the distance from a fixed point

in the plane. If n represents a normal pointing outward from

s, we shall find that

f
V - COS

r

^ r
^ ds-fDn V.logr.ds

is equal to the value at of 2 tr V2 , if is within s ; and to

the value at of — 2 rr J\, if is without s.

If s happens to be a curve on which V is constant,

s* loer r ds

is equal to the value at of Vu if is without s, or of Vs
— V2,

if O is within s. The reader may compare these results with

those given in equations [153] and [157].

If a function w=f(x, y) has the value zero at every point of

a closed curve s x
in the xy plane and the constant value C

all over another closed curve s2 > shut in by slf and if between

Sx and s2} w is everywhere harmonic, we may apply Green's
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Theorem to to and the logarithm of the distance from a fixed

point in the plane and prove that

where the normals point outward on s t and inward on s
2, is

equal to 0, the value of to at 0, or C, according as is without

*!, between s l and s
2 , or within s

2
. Surface charges, of density

— "
? applied to s x and s., would, therefore, give rise to the

4 7T

potential function w between s 1 and s
2

.

If a function w =f(x, y), harmonic at all finite points, has

the constant value c on a closed curve s in the xy plane and

becomes infinite at infinity in this plane in such a way that

limit (to — 2 /x log r) = 0, or limit (r log r Drw — w) = 0,

where fx is a given constant, then at all points without s, if n
is an interior normal,

'- Z>V
-/- log r ds,

and to is the potential function due to a columnar distribution

of superficial density — Dnw /Air on the cylindrical surface

of which s is the right section. The amount of matter in the

unit length of this cylindrical distribution is fx.

If within the closed curve s in the xy plane, to =f(x, y) is

harmonic, we may apply Green's Theorem to w and the loga-

rithm of the distance r from a fixed point Ou within s, using

as field the region within s and without a small circumference

drawn around Or . This yields

2^ at o
t
=
J [

w Dn log rx - log rx Dnw~\ ds,

where n is the exterior normal to s. If r2 is the distance from

a fixed point 2 , without s, we may prove in a similar way that

= C[w Dn log r2 — log r2 J>„w] ds,
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or 2 irw at 0i
=C[w (Dn log rx

- Dn log r2) + Daw • log (r2/rx)~\ds.

If s is a circumference of radius a with centre at C, and if

0! and 2 are inverse points such that

COi = Lx , C 2
= &2> ^1^2 = a

)

then ri/r2 is constant all over s,

J
Dnwds =j| V2wdxdy = 0,

and 2 ttw at 0]
=

J
w [Z>„ log rx

— Dn log r2] ds.

Moreover 1\ • Dn log rx = cos (rx , n), r2 Dn log r2
= cos (r2, w),

^
2 = a2 + rx

2 — 2 a?'! cos (rl5 ri),

l2
= a2 + r2

2 — 2 ar2 cos (r
2 , w),

and the value on s of i\/r2 is Zi/a, so that

w„to = —— I —» -—- ds
at 0l 2 itJ a^2

taken around the circumference.

If we introduce polar coordinates with origin at the centre

of s and denote the coordinates of Ox by lx and <f> x , we shall have

W&t
°i 2 irJo ^2 + a 2 - 2 a*! cos

(<f,
- ^) L J

This is sometimes called " Poisson's Integral."

At the centre of the circumference where lx = 0,

= - Ctvds.
liraJ

EXAMPLES.

1. If the potential function due to a certain distribution of

matter is given equal to zero for all space external to a given

closed surface S and equal to
<f>

(x, y, z), where <£ is a continu-

ous single-valued function (zero at all points of S), in all space
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within S; there is no matter without S, there is a superficial

distribution of surface density

or = A. [(DAy + (iW + (D^yf

upon £, and the volume density of the matter within S is

[Thomson and Tait.]

2. Show that, if w is constant on the closed surface S and

is harmonic within S, it is constant in the space enclosed by

S) and that if W vanishes at infinity and is everywhere har-

monic, it is everywhere equal to zero.

3. If two functions, w
y
and w2 , which without a closed sur-

face S are harmonic and vanish at infinity, have on S values

which at every point are in the ratio of A to 1, A being a con-

stant, then everywhere w
x
= Xw

2
.

4. The functions u and v have the constant values ux and v
x

on the closed surface S
x
and the constant values u2 and v2 on

the closed surface S2
within Sv Between Sx

and *S2 , u and v

are harmonic. Show that

(U - Mx)
(V2 - V

t) = (V - Wj) («2
- U

Y).

5. Outside a closed surface S, w
1
and w2

are harmonic and

have the same level surfaces. w
x
vanishes at infinity, while

iv2 has everywhere at infinity the constant value C. Assum-

ing that a scalar point function v is expressible in terms of

another, u, if, and only if,

Dxv/Dxu = Dy
v/D

y
u = Dz

v/D
z
ii,

show that w2 is of the form Bu\ + C.

6. Show that there cannot be two different functions, W
and W, both of which within the space enclosed by a given

surface S (1) satisfy Laplace's Equation, (2) are, together

with their first space derivatives, continuous, and (3) are

either equal at every point of S, or satisfy on S the equation

DnW= JJn W', and are equal at some one point.
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7. Show that, given a set of closed mutually exclusive

surfaces, there cannot be two different functions, W and W\
which without these surfaces (1) satisfy Laplace's Equation,

(2) are, with their first space derivatives, continuous, (3) so

vanish at infinity that rW, rW, r2Dr W, r2Dr W, where r is

the distance from any finite fixed point, have finite limits, and

which satisfy one of the following relations : (1) at every

point on the given surfaces W = W, (2) at every point of

every surface DnW= Dn W.
8* At every point of a portion (or the whole) of a closed

surface S (or of a set of closed surfaces) the functions w
x
and

w2 have equal values, and at every point of the remainder of

S these functions have equal normal derivatives. Outside

and on S both functions are harmonic, and they both vanish

at infinity in some manner not more closely defined. Each of

the integrals j D^dS, j
Dntv2dS has evidently the same

finite numerical value when taken over S or over any other

surface which encloses S. Show that n^ and w2
are identical.

If the values of w
1
and tv2 at a point P, the coordinates

of which referred to any fixed point as origin are (r, 6, <f>),

instead of approaching zero as r is made to increase indefi-

nitely, both approach the limit f(0, <£), / being a continuous

function, when, with any values of and
<f>,

r is made infinite,

w
x
and %v2 are identical.

9. The given closed surface S
x
shuts in the given closed

surface S2 . The given function w is harmonic between S
x

and S2 . Show that no other function than w, harmonic be-

tween #! and S2 , has the same value that w has at every point

of Si and the same value of the normal derivative at every

point of $2
. Show also that any such function which has the

same value of the normal derivative at every point of S
x
and S2

that the normal derivative of w has differs from w at most by

a constant. No other function than wv harmonic between S
t

and S2 , has the same value that w has at every point of S2 and

the same value of the normal derivative at every point of Sv
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10. The harmonic function w, which so vanishes at infinity

that, if r is the distance from any fixed finite point, the limits

of r w and r2Dr w are not infinite, has an open zero level sur-

face St as well as a series of closed level surfaces of which one

is S2 . Show that in the region T, between S
r
and S2 , w is

the potential function due to surface distributions on S
1
and

£2 defined by the equation 4 ira = Dn w, where n points out

of T. The whole charge on the two surfaces is zero.

11. Outside the closed surface S, upon which its value is

given at every point, the function w is harmonic except at

certain points, Pv P2 , P3, etc., where it becomes infinite in

such a way that, if rk represents the distance from Pk,

xv — mk/rk is harmonic at Pk,

where mk is a constant belonging to the point Pk . At infinity

w vanishes like a Newtonian potential function. Prove that

w is unique. If w is a Newtonian potential function, what

do you know about the distribution which gives rise to it ?

12. The functions U, W, 0, O with their first space deriva-

tives are continuous, everywhere without a given closed sur-

face S, and they vanish at infinity like a Newtonian potential

function due to a finite distribution of matter. U and W have

the same values at every point of S, but outside S, U, 0, and

O satisfy Laplace's Equation and W does not. The surface

integrals of the normal derivatives of and £1 taken over

S are equal, but has the same value all over S, and O a

continuously variable value. Show that, if the integrations

embrace all space outside S,

fffK*>*v)* + (
DvuY + (D* UY\ dxdv dz

<fff \ (pxwy + (p,wy + (A wy\ dxdydz,

SSS *
(i)x0)2 + {Dy&) * + (2W * *

dxdydz

<fff\(P*ay + (^°) 2 + (A«) 2

|
dxdydz.
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Hence, show that the energy of a given charge spread on a

given surface S is least when the arrangement is equipo-

tential.

13. Everywhere within the closed surface S the two scalar

point functions V and V are continuous with their first deriv-

atives. Over a given portion of S, V and V have equal

values, while over the remainder of S both Dn V and Dn V are

equal to zero. The vectors q and q' have the components

\DX V, XDy
V, XDZ V and \DX V, \D

y
V, \DZV respectively,

where A. is a positive analytic scalar point function. Show

that, if q is solenoidal and q' is not solenoidal, the integral

fffX [(A
°
Vf + {D,J Vf + (A F)2]*

extended over the whole space within aS' is less than the integral

fff X[{I)r V '

r + (I)
»
V '

r + {Dznl dT

extended over the same region.

14. Gravitating matter of given uniform density is confined

within a given closed surface, but its volume is less than that

enclosed by the surface. Prove that its potential energy is a

maximum, if the matter forms a shell of which the given sur-

face is the outer boundary, while the internal boundary is an

equipotential surface.

15. Let £ = /j (x, y) and -q = f2 (x, y) be two analytical

functions of x and y such that the two families of curves

A (
x

> y) = c
> f-2 (

x
> y) = k

are orthogonal. Let V be any function of x and y which,

with its first space derivatives, is continuous, within and on a

closed curve s, drawn in the coordinate plane. Let h$ and h
v

be the positive roots of the equations

V = {DJT + (2>r
f
» V = (P*vY + (Pv-n)

2
-

Prove that s, the surface integral of h$ -h^-DA — y taken all
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over the area enclosed by s, is equal to the line integral taken

around s of Fcos(f, ri), where n is an exterior normal and

(£, n) represents the angle between n and the direction in

which £ increased most rapidly.

Show that the corresponding theorem in three dimensions

may be expressed by the equation

fffWr»s(~y -ffr-G, »)«

16. The operator [(Z>r)
2 + (Z>,,)

2 + (Z>
2)

2
] applied to any of

the quantities x ± y± iz ~v2, x±.iy v2 ± z, etc., yields zero :

is every analytic function of any one of these quantities

harmonic ?

17. The product of two harmonic functions, u, v, is itself

harmonic if, and only if, the level surfaces of u and v are

orthogonal. The product of three harmonic functions, u, v, w,

is itself harmonic if, and only if, the level surfaces of u, v,

and w are mutually orthogonal.

18. The function w of the two variables x and y is har-

monic in the xy plane everywhere outside of the mutually

exclusive closed curves s
x
and s2 . Upon these curves w has

given constant values. At infinity, w becomes infinite in such

a manner that, if r is the distance from any finite point in

the xy plane,

Show that w is the potential function without s
r
and s

2 , due

to superficial distributions defined by the equation 4 wo- =Dnw,

upon the cylindrical surfaces of which s
x
and s2 are the traces.

In the formula just given the normal points outward at s
x

and s2 .

19. The function w of the two variables x and y is har-

monic everywhere in the xy plane except at certain points, Pv
P2 , P3 , etc., where it becomes infinite in such a manner that,

if rk is the distance from Pk , w — 2 fik log rk is harmonic at Pk

where fik is a constant belonging to Pk. Upon a certain open
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curve, s, w has the value zero, and everywhere at an infinite

distance from the origin w so becomes infinite that

limit (r-logr-Drw-w) = 0:
r = CO v ° r '

show that on either side of s, iv may be considered as the

logarithmic potential function due to a distribution of elec-

tricity of density <r = -r— on the infinite cylindrical surface
4 7T

of which s is a right section, and to distributions upon lines

normal to the xy plane which cut the plane at so many of the

P points as lie on the chosen side of s.

20. If the normal component of a vector is zero at every

point of a closed surface S, and if within and on S the vector is

everywhere solenoidal and lamellar, its components are equal

to zero at every point within S. If the normal component of

a vector is given at every point of S, and if everywhere within

S the curl and the divergence have given values, the vector is

determined. If q and q' are vectors the normal components

of which vanish at every point of S, and if within S, q is

solenoidal with curl k, while q' is lamellar with divergence

D, where k and D are given scalar point functions, q + q' is

the unique vector, the normal component of which is zero at

every point of S, and which within S has the curl k and the

divergence D.

21. The normal derivative of u with respect to-v is

(Dxu Dxv + Dy
u D

y
v + Dzu Dzv)/hv\

22. If u = xyz, v = 2 x + i/ + z, the values at (1, 1, 1) of

Dvu and Duv are 2/3 and 4/3.

23. The gradients of u and v are numerically equal at every

point, though not in general coincident in direction, if, and

only if, u + v and u — v are orthogonal functions. If the

gradients of u and v agree everywhere in direction though

not in magnitude, v is expressible as a function of u, so that

v=f(u),hv =f'(u).hu.
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24. If the components parallel to the axes of x and y of

the solenoidal vector (11, v, 0), which has no component parallel

to the z axis, are independent of z, a vector, directed parallel

to the z axis, which has for its intensity any partial inte-

gral (Qz) of u with respect to y which satisfies the condition

DXQZ
= — v, is a vector potential function of the original

vector. Thus : (0, 0, x2
y + y

3 — cc
9
) is a vector potential func-

tion of (x2 + 3y2
, 9 a;

8 — 2 xy, 0). The value at the point

(x, y, z) of the derivative of Qz , taken in a direction perpen-

dicular to the z axis and making an angle a + 90° with the

plane of xz, is DxQz -cos(a + 90°) + DyQz
sin (a + 90°), or

D
yQz cos a — DXQZ

- sin a, or u cos a + v sin a, and this is the

resolved part of the vector (u, v, 0) at the same point in a

direction parallel to the xy plane and making an angle a

with the plane of xz. We learn, therefore, that the numer-

ical value at any point P of the derivative of Qz , taken

in any direction s parallel to the xy plane, is equal to the

component of the vector (u, v, 0) in a direction parallel to

the xy plane and perpendicular to s. Show that the inter-

section of any plane parallel to the xy plane with a cylin-

der of the family Qz
— constant is a line of the vector

(u, v, 0). Show also that D 2QZ + D 2QZ
= - (Dxv

- D
y
u),

the negative of the component parallel to the z axis of the

curl of (u, v, 0).

25. A vector parallel to the x axis of intensity independ-

ent of z and equal to the negative of a partial integral of w
with respect to y, and a vector parallel to the y axis of inten-

sity independent of z and equal to a partial integral of w
with respect to x, are vector potential functions of the vector

(0, 0, w), provided w is independent of z. For example : the

vectors [y
2 - 3 x 2

y +f(x), 0, 0] and [0, x 3 - 2xy + <£(?/), 0]
are vector potential functions of the vector (0, 0, 8x2 — 2y).

26. If the lines of a vector are circles parallel to the xy
plane with centres on the z axis, and if the intensity of the

vector is a function f(r) of the distance r from that axis, a

vector, everywhere parallel to the z axis, of intensity F(r),
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where f(r) — — DrF(r) is a vector potential function of the

original vector. Is this original vector solenoidal ?

27. If the lines of a vector are straight lines parallel to the

xy plane and emanating from the z axis, and if the intensity

of the vector is a function f(r) of the distance r from this

axis, /(r) must be of the form c/r if the vector is solenoidal.

A vector with such lines as these cannot be solenoidal if the

intensity at every point is a given function of the angle which

the line of the vector through that point makes with the xz

plane.

28. The lines of the vector [x -f(x, y), y -f(x, y), 0] are

straight lines parallel to the xy plane and emanating from

the z axis, and its curl is of the form (0, 0, y Dxf — x D
yf).

If f is expressible as a function of the angle tan_1 (y/cc),

y Dxf— x-

D

yf is also expressible as a function of this

angle, but if f is expressible as a function of r = \x 2 + y
2
,

y Dxf— x • D
yf vanishes and no vector of the form

[* •/<>), y •/«, o]

can be a vector potential function of the vector [0, 0, <£(>•)].

If the ratio of y to x be denoted by /*, and if f(f^) =

— I
—-——) the vector [x /(/*), y •/(/*)? 0] is a vector

%J fJ'' \
-L

potential function of the vector [0, 0, <£(//.)].

29. The lines of the vector [— y-f(x, y), x-f(x, y), 0] are

circles parallel to the xy plane with centres on the z axis, and

its curl is of the form (0, 0, 2f+x-Dxf+y-Dyf). Show
that if / is expressible as a function of r, the distance from

the z axis, so is 2/+ x Dxf+ y D
yf and that, if

F(r) = ±fr.<t,(r)dr,

[— y- F(f), x-F(r), 0] is a vector potential function of the

solenoidal vector [0, 0, <f>(r)~]. Show also that if /is expressi-

ble as a function of the angle tan-1 (y /x), that is, as a function

of the ratio, p, of y to x, 2/+ x • Dxf+ y D
yf is expressible
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as a function of fi, and that [— £ y 'f(ft)t $x-f((i), 0] is a

vector potential function of [0, 0, /(/*)].

30. The difference between the values at any two points

A and B of any analytic scalar point function V is equal to

the line integral taken along any path from A to B of the

tangential component of the vector (DX V, Dy
V, DS V).

31. The only families of plane curves which are at once

the right sections of possible systems of equipotential cylin-

drical surfaces in empty space due to columnar distributions

of matter which attracts according to the " Law of Nature,"

and also the generating curves of possible systems of equipo-

tential Surfaces of revolution due to distributions of such

matter symmetrical about the common axis of these surfaces,

are families of concentric conies. Must every such family of

conies be confocal? \_Am. Jour. Math., 1896.]

32. If a vector is determined at every point by means of the

components (R, ®, Z) in the directions in which the columnar

coordinates of the point increase most rapidly, the divergence

of the vector may be written DrB + R/ r + D9®/ r + DZ
Z.

33. The equation

'W-STI + iiSl + jqbr 1-

represents, when a, b, and c are fixed, a family of confocal quad-

ric surfaces of which X is the parameter. If a>b>c, and if

x, y, and z are chosen at pleasure, the cubic in X has three real

roots (u, v, w) ; one between — a2 and — b2
, corresponding to

a parted hyperboloid, one between — b2 and — c
2
, correspond-

ing to an unparted hyperboloid, and one between — c
2 and oo,

corresponding to an ellipsoid, so that through every point of

space three surfaces of the family can be drawn, and it is

easy to see that these cut each other orthogonally. The

direction cosines of a surface of constant X have the values

Dx X/h, Dy
X/h, D

z
X/h, where h 2 = (DXX)

2 + (B
;/
X)

2 + (D,X) 2
.

Dx X = -2x/(a2 + X)

D

K
F, and h2 = - i/DKF.
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Belonging to every point in space are three values of X

(u, v, w), and three values of h (hu , hv, hw), and, if we sub-

stitute u, v, and iv successively for X in the equation F(X) = 0,

we shall get three linear equations in x2
, y

2
, z2 from which

we may obtain expressions for x, y, z in terms of u, v, w.

hu
2 = - 4 [(a2 + u) {b

2 + u) (c
2 + «)] /[O - v

)
~ ™)l

and h 2 and hw
2 have corresponding values which, substituted in

gives Laplace's Equation in terms of the orthogonal curvi-

linear coordinates (u, v, w). Prove that if we assume that a

solution of this equation exists which involves w only and

vanishes when w is infinite, the equation which determines

this solution takes the form

Dw \
[(a 2 + w) (b

2 + w) (c
2 + w)J' 2 -Dw V\ = 0,

(he
so that V=C'-Cf

= c f"rJw (a

(a2 + w) 1/2
(b

2 + tv)
1/2

(c
2 + wy<

dw

w (a 2 + tv)
1/2 (b

2 + w) 1/2 (c
2 + w)U2

Hence, show that a set of confocal ellipsoids are possible

external equipotential surfaces, and that if M is the mass of

the corresponding distribution the potential function is given

by the last equation, in which, since a very large value of w
corresponds to an ellipsoid little different from a sphere of

radius ~vw, C is to be determined by the equation

limit vV7v = M.W = 00

Find the density of a superficial distribution on a surface of

the w family, the potential function of which at all outside

points shall be the function just defined.
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34. The curl of the curl of a solenoidal vector such that the

three functions which give the strengths of its components

parallel to the coordinate axes satisfy Laplace's Equation

vanishes. If the lines of a vector are all parallel to a plane,

and the vector has the same value at all points in any line per-

pendicular to the plane, the vector is perpendicular to its curl.

35. A certain vector, the tensor of which is f(x, y, z), is at

every point directed exactly in the direction of the straight

line which joins the origin with the point in question ; show

that the vector is not necessarily lamellar, but that it is per-

pendicular to its curl. If all the components of a vector are

functions of x and y only, or if all are functions of x only, or

if one component vanishes and the other components are

functions of x, y, and z, the vector may or may not be

perpendicular to its curl.

36. If (Qx , Qy, Qz) are the components of a vector Q,

(Ax, [iu v x) the curl components, (A2 ,
/x2 , v2) the components

of the curl of the curl of Q, and so on,

Xj = DyQz
~ D*Q

y,
A2 = Dx (Div Q) - V2&,

A3 = — V2
Ai, A4 = — V2A2 , and so on.

How are these equations changed if Q is a solenoidal

vector ?

37. If the harmonic function f(x, y, z) represents the x

component of a vector which is both solenoidal and lamellar,

the y and z components must be of the form

Y =JDyf.dx + D^(y, z), Z=JDzf-dx +Dz if,(y, z),

where i(/(y, z) is a solution of the equation

38. A certain vector (X, Y, Z) is not perpendicular to its

curl (Kx, K,r Kz ).
Show that the scalar function F, deter-

mined from the equation

Kx DxF+ Ky
.D

y
F+Kz -DzF=-{KxX+ Ky

Y + KZZ),
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is the scalar potential function of a lamellar vector (L, 3f, iV),

which added to the first vector gives a new vector perpendic-

ular to its curl. Is this equation always integrable ?

39. A vector Q, with components (Qx, Qy, Qz), is continuous

except at a certain surface S. In each of the regions sepa-

rated by S, DxQy
= D

yQM DXQZ
= D

ZQX, DyQz
= DzQy , so that

at every point within these regions the curl of Q vanishes.

Investigate the value of the curl of Q on S when the normal

(or a tangential) component of Q is discontinuous there.

40. Unless V 2/= 0, a vector the x component of which is

f(x, y, z) cannot be both lamellar and solenoidal.

41. Matter spread uniformly in a superficial distribution

on a circular portion of a plane forms a " circular surface

distribution." Two such distributions, each of radius a, are

placed parallel and opposite each other at a distance 8 apart.

If the density of one of these be + cr and that of the other

— cr, and if 8 be made to approach zero and cr to increase in

such a manner that the product of cr and 8 is always equal to

the constant /x, the resulting value of the potential function

is said to be due to a " circular double layer " of radius a, and

density
fj..

Show that the limiting value of the potential

function at a point P on the axis of the double laver and at

a distance x from its plane is ± 2 7r//.(l — x/^/a'2, + x2
), where

the positive sign is to be used if P is on one side of the double

layer, and the negative sign it P is on the other side. Is the

potential function discontinuous at the double layer ? Is the

force discontinuous ?

42. Assuming the surface of the earth as defined by the sea-

level to be a spheroid of ellipticity e, prove that the mass of

the earth in astronomical units is a 2
g (1 + e — | m), where

g is the force of gravity at the equator, aQ the equatorial

radius, and m the ratio of " centrifugal force " to true gravity

at the equator.



ELECTROSTATICS. 145

CHAPTER V.

THE ELEMENTS OF THE MATHEMATICAL THEORY
OF ELECTRICITY.

I. ELECTROSTATICS.

53. Introductory. Having considered abstractly a few of

the characteristic properties of what has been called "the New-
tonian potential function," we will devote this chapter to a very

brief discussion of some general principles of Electrostatics and
Electrokinetics. By so doing we shall incidentally learn how
to apply to the treatment of certain practical problems many of

the theorems that we have proved in the preceding chapters.

In what follows, the reader is supposed to be familiar with

such electrostatic phenomena as are described in the first few

chapters of treatises on Statical Electricity, and with the hypoth-

eses that are given to explain these phenomena.

Without expressing any opinion with regard to the physical

nature of what is called electrification, we shall here take for

granted that whether it is due to the presence of some sub-

stance, or is only the consequence of a mode of motion or of a

state of polarization, we may, without error in our results, use

some of the language of the old " Two Fluid Theory of Elec-

tricity " as the basis of our mathematical work.

The reader is reminded that, among other things, this theory

teaches that :
—

(1) Every particle of a body which is in its natural state con-

tains, combined together so as to cancel each other's effects at

all outside points, equal large quantities of two kinds of elec-

tricity with properties like those of the positive and negative

" matter" described in Section 44.

(2) Electrification consists in destroying in some way the

equality between the amounts of the two kinds of electricity

which a body, or some part of a body, naturally contains, so

that there shall be an excess or charge of one kind. If the



146 ELECTROSTATICS.

charge is of positive electricity, the body is said to be posi

tively electrified ; if the charge is negative, negatively electrified.

Either kind of electricity existing uncoinbined with an equal

quantity of the other kind, is called free electricity.

(3) When a charged body A is brought into the neighborhood

of another body B in its natural state, the two kinds of elec-

tricity in every particle of B tend to separate from each other,

one being attracted and the other repelled by A's charge, and

to move in opposite directions.

In general, a tendency to separation occurs in all parts of the

body, whether it is charged or not, where the resultant electric

force (the force due to all the free electricity in existence) is

not zero. This effect is said to be due to induction.

In our work we shall assume all this to be true, and proceed

to apply the principles stated in Section 44 to the treatment of

problems involving distributions of electricity. We shall find it

convenient to distinguish between conductors, which offer prac-

tically no resistance to the passage of electricity through their

substance, and nonconductors, which we shall regard as prevent-

ing altogether such transfer of electricity from part to part.

54. The Charges on Conductors are Superficial. When elec-

tricity is communicated to a conductor, a state of equilibrium is

soon established. After this has taken place, there can be no

resultant force tending to move any portion of the charge

through the substance of the conductor, for, by supposition, the

conductor does not prevent the passage of electricity through

itself.

Moreover, the resultant electric force must be zero at all

points in the substance of a conductor in electric equilibrium

;

for if the force were not zero at any point, electricity would

be produced by induction at that point, and carried away

through the body of the conductor under the action of the

inducing force.

From this it follows that the potential function V, due to all

the free electricity in existence, must be constant throughout



ELECTROSTATICS. 147

the substance of an}' single conductor in electric equilibrium,

whether or not the conductor be charged, and whether or not

there be other charged or uncharged conductors in the neigh-

borhood. Different conductors existing together will in general

be at different potentials, but all the points of any one of these

conductors will be at the same potential.

"Wherever V is constant, VJ 1"=0, and hence, by Poisson's

Equation, p = 0, so that there can be no free electricity within

the substance of a conductor in equilibrium, and the whole

charge must be distributed upon the surface. Experiment

shows that we must regard the thickness of charges spread upon

conductors as inappreciable, and that it is best to consider that

in such cases we have to do with really superficial distributions

of electricity, in which the conductor bears a rough analogy to

the cavity enclosed by the thin shells of repelling matter de-

scribed in the preceding chapter.

The surface density at any point of a superficial distribution

of electricity shall be taken positive or negative, according as

the electricity at that point is positive or negative, and the force

which would act upon a unit of positive electricity if it were

concentrated at a point P without disturbing existing distribu-

tions shall be called "the electric force" or "the strength of

the electric field at P."

It is evident, from Sections 45 and 4G, that the electric force

at a point just outside a charged conductor, at a place where

the surface density of the charge is o-, is 4 71-0-, and that this is

directed outwards or inwards, according as a is positive or nega-

tive.

In other words, Dn V, the derivative of the potential function

in the direction of the exterior normal, is equal to — 4 7rcr, and

the value of "Fat a point P just outside the conductor is greater

or less than its value within the conductor, according as the

surface density of the conductor's charge in the neighborhood of

P is negative or positive.

It is to be carefully noted that, although the surface of a con-

ductor must always be equipotential, the superficial density of
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the conductor's charge need not be the same at all parts of the

surface. AVe shall soon meet with cases where the electricity

on a conductor's surface is at some points positive and at others

negative, and with other cases where the sign of the potential

function inside and on a conductor is of opposite sign to the

charge.

It is evident, from the work of Section 47, that the resistance

per unit of area which the nonconducting medium about a con-

ductor has to exert upon the conductor's charge to prevent it

from flying off, is, at a part where the density is a, 2ira-
2

.

55. General Principles which follow directly from the Theory

of the Newtonian Potential Function. If two different distribu-

tions of electricity, which have the same system of equipoten-

tial surfaces throughout a certain region, be superposed so as to

exist together, the new distribution will have the same equipo-

tential surfaces in that region as each of the components. For,

if Vi and V2 , the potential functions due to the two components

respectively, be both constant over any surface, their sum will

be constant over the same surface.

Two distributions of electricity, which have densities every-

where equal in magnitude but opposite in sign, have the same

system of equipotential surfaces, and, if superposed, have no

effect at any point in space.

Two distributions of electricity, arranged successively on the

same conductor so that at every point the density of the one

is m times that of the other, have the same system of equipo-

tential surfaces, and the potential function due to the first is

everywhere m times as great as that due to the second.

If the whole charge of a conductor which is not exposed to

the action of any electricity except its own is zero, the super-

ficial density must be zero at all points of the surface, and the

conductor is in its natural state. For if cr is not everywhere

zero, it must be in some places positive and in others negative
;

and, according to the work of the last section, the potential

function V, due to this charge, must have, somewhere outside
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the conductor, values higher and lower than V , its value in the

conductor itself. But this would necessitate somewhere in empty

space a value of the potential function not lying between F" and

0, the value at infinity ; that is, a maximum in empty space if

V is positive, and a minimum if V is negative ; which is

absurd.

A system of conductors, on each of which the charge is null,

must be in the natural state if exposed to the action of no out-

side electricity. For, by applying the reasoning just used to

that conductor in which the potential function is supposed to

have the value most widely different from zero, we may show

that the surface density all over the conductor is zero, so that

no influence is exercised on outside bodies ; and then, suppos-

ing this conductor removed, we may proceed in the same way
with the system made up of the remaining conductors.

If a charge M of electricity, when given to a conductor, ar-

ranges itself in equilibrium so as to give the surface density

o-=/(a;, ?/, z) and to make the potential function V = In-

constant within the conductor, a charge —M, if arranged on the

conductor so as to give at every point the density —a= —f(x,y,z)

would be in equilibrium, for it would give everywhere the poten-

tial function { —°"' = — V , and this is constant wherever FJ,J r
is constant.

Only one distribution of the same quantit}' of electricityM on

the same conductor, removed from the influence of all other

electricity, is possible ; for, suppose two different values of sur-

face density possible, cri=fi(x,y,z) and o-2 =f2 (x,y,z), then

— 0-
2 = — f-,(x, ?/, z) is a possible distribution of the charge —M.

Superpose the distribution — <j2 upon the distribution o-x so that

the totrd charge shall be equal to zero ; then the surface density

at every point is <r1
— o-2 , and this must be zero by what we have

just proved, so that o-j = <r2 .

Since we may superpose on the same conductor a number of

distributions, each one of which is by itself in equilibrium, it is
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easy to see that if the whole quantit}' of electricity on any con-

ductor be changed in a given ratio, the density at each point

will be changed in the same ratio.

56. Tubes of Force and their Properties. We have seen that

a unit of positive electricity concentrated at a point P just out-

side a conductor would be urged away from the conductor or

drawn towards it, according as that point on the conductor which

is nearest P is positively or negatively electrified. If we regard

lines of force drawn in an electric field as generated by points

moving from places of higher potential to places of lower poten-

tial, we may sa}' that a line of force proceeds from every point

of a conductor where the surface density is positive, and that a

line of force ends at every point of a conductor where the sur-

face density is negative. No line of force either leaves or

enters a conductor at a point where the surface density is zero,

and no line of force can start at one point of a conductor where

the electrification is positive and return to the same conductor

at a point where the electrification is negative. No line of force

can proceed from one conductor at a point electrified in any way

and enter another conductor at a point where the electrification

has the same name as at the starting-point. A line of force

never cuts through a conductor so as to come out at the other

side, for the force at every point inside a conductor is zero.

Lines and tubes of force are sometimes called in electrostatics

lines and tubes of " induction."

When a tube of force joins two conductors, the charges Qu
Q2 of the portions Sx , S2 which it cuts from the two surfaces are

Fig. 40.

made up of equal quantities of opposite kinds of electricity.

For if we suppose the tube of force to be arbitrarily prolonged
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and closed at the ends inside the two conductors, the surface

integral of normal force taken over the box thus formed is zero,

for the part outside the conductors yields nothing, since the re-

sultant force is tangential to it, and there is no resultant force

at any point inside a conductor. It follows, from Gauss's

Theorem, that the whole quantity of electricity (Qi-r-Q2 ) inside

the box must be zero, or Q {
= — Q.,, which proves the theorem.

If o-j and a-* are the average values of the surface densities of

the charges on S
t
and S2 respectively, we have <r1 S1

= Q1 and

o-2 S2 = Q2 , whence

«r,= -<r1^ [162]
o 2

The integral taken over any surface, closed or not, of the

force normal to that surface is called by some writers the flow

of force across the surface in question, and by others the induc-

tion through this surface.

If we appl}T Gauss's Theorem to a box shut in by a tube

of force and the portions S^ S2 which it cuts from any two

equipotential surfaces, we shall have, if the box contains no

electricity,

F2S2-F1S1 =0, [163]

where Fl and F2 are the average values, over JS
X
and S2 respec-

tively, of the normal force taken in the same direction (that in

which V decreases) in both cases. In other words, the flow of

force across all equipotential sections of a tube of force con-

taining no electricity is the same, or the average force over an

equipotential section of an empty tube of force is inversely pro-

portional to the area of the section.

Fig. 41.

When a tube of force encounters a quantity m of electricity

(Fig. 41), the flow of force through the tube on passing this
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electricity is increased by 4irm. If, however, the tube encoun-

ters a conductor large enough to close its end completely, a

charge m will be found on the conductor just sufficient to reduce

to zero the flow of force (/) through the tube. That is,

J_
Air

It is sometimes convenient to consider an electric field to be

divided up by a system of tubes of force, so chosen that the flow

of force across any equipotential surface of each tube shall be

equal to 47r. Such tubes are called unit tubes;* for wherever

one of them abuts on a conductor, there is always the unit quan-

tity of electricity on that portion of the conductor's surface which

the tube intercepts. In some treatises on electricity the term

"line of force" is used to represent a unit tube of force, as

when a conductor is said to cut a certain number of " lines of

force."

It is evident that m unit tubes abut on a surface just outside

a conductor charged with m units of either kind of electricity,

if the superficial density of the charge has everywhere the same

sign. These tubes must be regarded as beginning at the con-

ductor if m is positive, and as ending there if m is negative.

If a conductor is charged at some places with positive elec-

tricity and at others with negative electricity, tubes of force

will begin where the electrification is positive, and others will

end where the electrification is nega-

tive.

It is evident that no tube of force

can return into itself.

57. Hollow Conductors. When the

Fig. 42. nonconducting cavity, shut in by a

hollow conductor K (Fig. 42), contains

* They are sometimes called "unit Faraday tubes," to distinguish

them from the more slender tubes of unit induction, of which 4 irm start

from a body which has a positive charge m.
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quantities of electricity (m^ ra2, ra3, etc., or > m) distributed

in any way, but insulated from K, there is induced on the

walls of the cavity a charge of electricity algebraically equal

in quantity, but opposite in sign, to the algebraic sum of the

electricities within the cavity.

Call the outside surface of the conductor S and its charge

M , the boundary of the cavity St
and its charge Mt , and sur-

round the cavity by a closed surface £, every point of which lies

within the substance of the conductor, where the resultant force

is zero. Now the surface integral of normal force taken over

S is zero, so that, according to Gauss's Theorem, the algebraic

sum of the quantities of electricity within the cavity and upon

S
{
is zero. That is,

M
{ + m x + m2 + m8 -f • • . =Mt+ S^ (m) =0, [1 64]

and this is our theorem, which is true whatever the charge on

S is, and whatever distribution of free electricity there may

be outside K. If the distribution of the electricity within the

cavity be changed by moving wij, m2 , etc., to different positions,

the distribution, of M
t
on S\

:

will in general be changed, although

its value remains unchanged.

If K has received no electricity from without, its total charge

must be zero ; that is,

M = —Mt
= y (m)

.

If a charge algebraically equal to M be given to K,

M =M—M
(.

The combined effect of ^ (m),the electricity within the cavity,

and M^ the electricity on the walls of the cavity, is at all points

without Si absolutely null. For, if we apply [153] toS, any sur-

face drawn in the conductor so as to enclose Si}
we shall have DnV

everywhere zero, since the potential function is constant within

the conductor ; this shows that Vx , the potential function due to
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all the electricity within S, must be zero at all points without S ;

but S may be drawn as nearly coincident with, S
{
as we please.

Hence our theorem, which shows that, so far as the value of the

potential function in the substance of the conductor or outside

it, and so far as the arrangement of M and of M', any free

electricity there may be outside K, are concerned, M
t
and j (m)

might be removed together without changing anything. The

potential function at all points outside S- is to be found by con-

sidering only 3/ and 31'.

If Si happens to be one of the equipotential surfaces of ^ (m)

considered by itself, 3f
t
will be arranged in the same way as a

charge of the same magnitude would arrange itself on a con-

ductor whose outside surface was of the shape S„ if removed

from the action of all other free electricity.

The potential function ( V2 ) due to M and M' is constant

everywhere within S ; for if we apply [154 A] to a surface S,

drawn within the substance of the conductor as near S as we

like, we shall have
Vs-V = 0,

which proves the theorem.

The potential function within the cavity is equal to V2 -{-Vi,

where Vx is the potential function due toM
t
and > (m). Of these,

V2 is, as we have seen, constant throughout K and the cavity

(Section 31) which it encloses, while Vx
has different values in

different parts of the- cavity, and is zero within the substance of

the conductor.

Suppose now that, by means of an electrical machine, some

of the two kinds of electricity existing combined together in a

conductor within the cavity be separated, and equal quantities

(q) of each kind be set free and distributed in any manner

within the cavity.

The value of Vx within the cavity will probably be different

from what it was before, but V2 will be unchanged ; for the
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quantity of matter in the cavity is unchanged, being now, alge-

braically considered,

y (w.) +g— g=/
v (m)

i

so that ilf] is unchanged, although it may have been differently

arranged on #<, in order to keep the value of V\ zero within

the substance of the conductor. If now a part of the free

electricity in the cavity be conveyed to S
t
in some way, the sub-

stance of the conductor will still remain at the same potential as

before. For, if I units of positive electricity and n units of

negative electricity be thus transferred to S
t , the whole quantity

of free electricity within the cavity will be ^ (m) — / + n, and

that on S
t
will be 3I

t + 1 — n : but these are numerically equal,

but opposite in sign, and the charge on S
(
, if properly arranged,

suffices, without drawing on M to reduce to zero the value of

V\ in A". Since M„ and M' remain as before, V2 is unchanged,

and the conductor is at the same potential as before. So long

as no electricity is introduced into the cavity from ivithout A",

no electrical changes within the cavity can have any effect out-

side S
t
.

Most experiments in electricit\r are carried on in rooms, which

we can regard as hollows in a large conductor, the earth. V2 ,

the value of the potential function in the earth and the walls of

the room, is not changed by anything that goes on inside the

room, where the potential function is V= Vi + V2 . Since we

are generally concerned, not with the absolute value of the poten-

tial function, but only with its variations within the room, and

since V2 remains always constant, it is often convenient to dis-

regard V2 altogether, and to call Vi the value of the potential

function inside the room. When we do this we must remember

that we are taking the value of the potential function in the

earth as an arbitrary zero, and that the value of Vx at a point in

the room really measures only the difference between the values

of the potential function in the earth and at the point in ques-

tion. When a conductor A in the room is connected with the
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walls of the room by a wire, the value of V\ in A is, of course,

zero, and A is said to have been put to earth.

58. Induced Charge on a Conductor which is put to Earth.

Suppose that there are in a room a number of conductors, viz. :

Ax
charged with M± units of electricity, and A 2 , A3 , A4 , etc.,

connected with the walls of the room, and therefore at the po-

tential of the earth, which we will take for our zero. If the

potential function has the value j>\ inside A^ every point in the

room outside the conductors must have a value of the potential

function lying between^ aud 0, else the potential function must

have a maximum or a minimum in empty space. If pi is posi-

tive, there can be no positive electricity on the other conductors
;

for if there were, lines of force must start from these conductors

and go to places of lower potential ; but there are no such places,

since these conductors are at potential zero, and all other points

of the room at positive potentials. In a similar wa}r we may
prove that if jh is negative, the electricity induced on the other

conductors is wholly positive.

Now let us apply [154B] to a spherical surface, drawn so as

to include A
l
and at least one of the other conductors, but with

radius a so small that some parts of the surface shall lie within

the room. If we take the point at the centre of this surface,

we shall have

4ttV2 = - fDrV'ds+\ fvds. [165]

If Jf is the whole quantity of electricity within the spherical

surface, there must be a quantity —M outside the surface, either

on the walls of the room or on conductors within the room.

The value at of the potential function, V,, due to the elec-

M
tricitv without the sphere, is less in absolute value than ,

a
for it could only be as great as this if all the electricity outside

the sphere were brought up to its surface.

By Gauss's Theorem,

*DT V-ds = -47rl\f,/'
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therefore, ( Yds = 4 ira \_M+ aV-J. [166]

Now, ifMx is positive, the integral is positive, for all parts of

the spherical surface within the room yield positive differentials,

and all other parts zero, so that the second side of the equation

is positive. But al^is of opposite sign to J/, and is less in

absolute value ; hence, M is positive, and the total amount of

negative electricity induced on the other conductors within the

spherical surface by the charge on Au is numerically less than

this charge, unless some one of these conductors surrounds A x ;

in which case the induced charge comes wholly on this conduc-

tor, while the other conductors, and the walls of the room, are

free. Some of the tubes of force which begin at Ax end on the

walls of the room, provided these latter can be reached from

Ax without passing through the substance of any conductor.

59. Coefficients of Induction and Capacity. If a number of

insulated conductors, A2 , A3 , AA , etc., are in a room in the pres-

ence of a conductor Ax charged with Mx units of electricity, the

whole charge on each is zero ; but equal amounts of positive and

negative electricity are so arranged by induction on each, that

the potential function is constant throughout the substance of

every one of the conductors.

Let the values of the potential functions in the system of con-

ductors be px, jhi P31 Pa etc. Since each conductor except A
x
is

electrified, if at all, in some places with positive electricity, and

in others with negative electricity, some lines of force must

start from, and others end at, every such electrified conductor,

so that there must be points in the air about each conductor at

lower and at higher potentials than the conductor itself. But

the value of the potential function in the walls of the room is

zero, and there can be no points of maximum or minimum poten-

tial in empty space ; so that p\ must be that value of the poten-

tial function in the room most widely different from zero, and

/>.,, ps , p^ etc., must have the same sign as p t
.

The reader may show, if he likes, that both the negative part
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and the positive part of the zero charge of any conductor, ex-

cept Ax , is less than Mx .

Letj9u be the value of the potential function in a conductor

Ax charged with a single unit of electricity, .and standing in

the presence of a number of other conductors all uncharged

and insulated. Then if Pu, pX3 , pXi , etc., are, under these cir-

cumstances, the values of the potential functions in the other

conductors, A2 , A.A , At , etc., the potential functions in these

conductors will be Mxpm Mx pK , Mxpu ', etc., if Ax be charged

with Mx
units of electricity instead of with one unit. This is

evident, for we may superpose a number of distributions which

are singly in equilibrium upon a set of conductors, and get a

new distribution in equilibrium where the density is the sum of

the densities of the component distributions, and the value of

the resulting potential function the sum of the values of their

potential functions.

If A
x
be discharged and insulated, and a charge M2 be given

to A2 , the values of the potential functions in the different con-

ductors may be written

M2p2X , MzPw, M^pza, M2p2i , etc.

If now we give to A x
and A2 at the same time the charges M

x

and M2 respectively, and keep the other conductors insulated,

the result will be equivalent to superposing the second distribu-

tion, which we have just considered, upon the first, and the con-

ductors will be respectively at potentials,

M
x pu + M, pn , Mxpn + Jf,j>„, M

x pu +M2p^ etc. [1 G7]

If all the conductors are simultaneously charged with quanti-

ties Mi, M2 , Ms , M±, etc., of electricity respectively, the value

of the potential function on Ak will be

Vk
= M

xpXk+ M2p2k + Ms.pSk + ••• +MkPkk +Mnpnk , [168]

Writing this in the form Vk= ak +

M

kpkk , we see that if the

charges on all the conductors except A k
be unchanged, ak will be

constant, and that every addition of — units of electricitv t.i
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the charge of Ak raises the value of the potential function in

it by unity. If we solve the n equations like [168] for the

charges, we shall get n equations of the form

Mk = Vl qlk+ V2 q, k + n ft» + — + Vk qm+-+Vn qnk , [169]

where the g's are functions of the p's.

If all the conductors except ^lt are connected with the earth,

Mk = Vk qkk , and qkk is evidently the charge which, under these

circumstances, must be given to Ak in order to raise the value

of the potential function in it by unity. It is to be noticed that

I

1

qkk and — are in general different.

P&*

The charge which must be given to a conductor when all the

conductors which surround it are in communication with the

earth, in order to raise the value of the potential function with-

in that conductor from zero to unity, shall be called the

capacity of the conductor. It is evident that the capacity of a

conductor thus defined depends upon its shape and upon the

shape and position of the conductors in its neighborhood.

60. Distribution of Electricity on a Spherical Conductor.

Considerations of symmetry show that if a charge M be given

to a conducting sphere of radius r, removed from the influence

of all electricity except its own, the charge will arrange itself

uniformly over the surface, so that the superficial density shall

be everywhere o- =
477-r

2

The value, at the centre of the sphere, of the potential function

M
due to the chargeM on the surface is— , and, since the potential

function is constant inside a charged conductor, this must be

the value of the potential function throughout the sphere. If M
M

is equal to r, — = 1 ; hence the capacity of a spherical conductor
r

removed from the influence of all electricity except its own, is

numerically equal to the radius of its surface.
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61. Distribution of a Given Charge on an Ellipsoid. It is

evident from the discussion of hoina'oids in Chapter I. that a

charge of electricity arranged (on a conductor) in the form of

a shell, bounded by ellipsoidal surfaces similar to each other

(and to the surface of the conductor), and similarly placed,

would be in equilibrium if the conductor were removed from the

action of all electricity except its own. We may use this prin-

ciple to help us to find the distribution of a given charge on a

conducting ellipsoid.

Let us consider a shell of homogeneous matter bounded by

two similar, similarly placed, and concentric ellipsoidal surfaces,

whose serai-axes shall be respectively «, b, c, and (1 + a) a,

(l+a)6, (l-f-a)c. If any line be drawn from the centre of

the shell so as to cut both surfaces, the tangent planes to these

two surfaces at the points of intersection will be parallel, and

the distance between the planes is ^a, where p is the length

of the perpendicular let fall from the centre upon the nearer of

the planes.

If p is the volume density of the matter of which the shell is

composed, the mass of the shell is 3/=|-«k'[(l-f a) 3 -l]p,

and the rate at which the matter is spread upon the unit of sur-

face is, at any point, a- = p8, where 8 is the thickness of the

shell measured on the line of force which passes through the

point in question. Eliminating p from these equations, we have

M8 P1 r.^-1
<T = l'O

47ra&c[a+a2 + ^a :j

]

L J

If, now, in accordance with the hypothesis that the thickness of

the electric charge on a conductor is inappreciable, we make a

smaller and smaller, noticing that 8 differs from pa by an infini-

tesimal of an order higher than the first, we shall have for a

strictlv surface distribution,

er =J^- [171]
4-n-abc

L J

If the equation of the surface of the ellipsoidal conductor is

^ _i_ y
2

_i_
*
2 — 1

a? o- <r
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we have

and

I _. IE. 4.Z _i_Z
p \a4

6
4

c
4

'

This last expression shows that, as c is made smaller and

smaller, o- approaches more and more nearly the value

M
a * 17"^ 7' [172]

and this gives some idea of the distribution on a thin elliptical

plate whose semi-axes are a and b.

For a circular plate, we may put a = b in the last expression,

which gives

M
[173]

47raV«2 -r2

for the surface density at a point r units distant from the centre

of the plate.

The charge M distributed according to this law on both sides

of a circular plate of radius a raises the plate to potential

Y= M f"
dr =—

a Jo -

v/a2_,J2 2
a

'

so that the capacity of the plate is

—

•

[174]
7T

62. Spherical Condensers. If a conducting sphere A of radius

r (Fig. 43) be surrounded by a concentric spherical conducting

shell B of radii r, and r and charged with m units of electricity

while B is uncharged and insulated, we shall have

(1) the charge m uniformly distributed upon 8, the surface

of the sphere
;

(2) an induced charge — m (Section 57) uniformly distributed

upon S
t , the inner surface of B ;
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(3) a charge + m (since the total charge of B is zero) ue'

formly distributed on &„, the outer surface of B.

Fig. 43.

the potential function in B is V

The value at the centre of the sphere of the potential function

due to all these distributions is VA = -) , and this is

r i'i r

the value of V throughout the conducting sphere. The value of

m
r

'

If now a charge 3/ be communicated to B, this will add itself

to the charge m already existing on S , and the charge on 8
f
will

be undisturbed. The values of the potential functions in the

conductors are now

m m m +M , „ m 4-MVA = - - +—I—-, and VB =—
r i\ r r

If now B be connected with the earth so as to make VB = 0,

the charges on S and S
i
will be undisturbed, but the charge on

in m
r r

t

If A were uncharged, and B had the charge M, this charge

would be uniformly distributed upon S , for, since the whole

charge on S is zero, the whole charge on S
(
must be zero also.

It is easy to see that S and S
t
must both be in a state of nature.

for if not, lines of force must start from S and end at Sn and

others start at S
{
and end at S, which is absurd.

S will disappear. VA is now equal to
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If A were put to earth by means of a fine insulated wire

passing through a tiny hole in J3, and if B were insulated and

charged with M units of electricity, we should have a charge x

on S, a charge — x on S
t , and a charge M -\-x on S . To find

"7' 'V 15 JjT
x, we need only remember that VA = -{ 1 = 0, whence

x may be obtained.

If B be put to earth, and A be connected by means of the fine

wire just mentioned, with an electrical machine which keeps its

prime conductor constantly at potential Vx , A will receive a charge

y and will be put at potential Vx
. To find y, it is to be noticed

that there is a charge — y on Stt and no charge on S , which is

y y
put to earth. VA = - — — = Fi, whence y may be obtained.

If r = 99 millimeters and r
t
= 100 millimeters, y = 9900 Fj.

If a sphere, equal in size to ^4 but having no shell about it,

were connected with the same prime conductor, it too would

receive a charge z sufficient to raise it to potential Fi, and z

would be determined by the equation V1
=-- If r = 99, we have

r
z = 99 Vi ; hence we see that A, when surrounded by B at

potential zero, is able to take one hundred times as great a

charge from a given machine as it could take if B were removed.

In other words, B increases A's capacity one hundred fold.

A and B together constitute what is called a condenser.

Fig. 44.

If A of the condenser AB, both parts of which are supposed

uncharged, be connected by a fine wire (Fig. 44) with a sphere



164 ELECTROSTATICS.

A' which has the same radius as A, and is charged to potential

Vi, A and A' will now be at the same potential [F2], and A will

have the charge x, and A' the charge y. The total quantity of

electricity on A' at first was rVi, so that x -\-y = rV\, and

y x x x
J

r r r
L

r

whence x and y may be found.

The reader ma}' study for himself the electrical condition of

the different parts of two equal spherical condensers (Fig. 45,

,

Fig. 45.

of which the outer surface S of one is connected with an elec-

tric machine at potential V\, and the inside of the other, S', is

connected with the earth. The two condensers, which are sup-

posed to be so far apart as to be removed from each other's

influence, illustrate the case of two Leyden jars arranged in

cascade.

63. Condensers made of Two Parallel Conducting Plates.

Suppose two infinite conducting planes A and B to be parallel

to each other at a distance a apart ; choose a point of the

plane A for origin, and take the axis of x perpendicular to the

planes, so that their equations shall be x = and x = a. Let the

planes lie charged and kept at potentials VA and VB respectively.

It is evident from considerations of symmetry that the potential

function at the point P between the two planes depends only

upon P's x coordinate, so that

1^7=0, D,V=0, ZVF=0, D2
2 V=0.
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Laplace's Equation gives, then,

Dx*t=0,

whence DXV=C, and V=Gx + D.

If x = 0, V= VA ; and if x = a, V= VB ; so that

V=(Vs-VA)l +VA , and DxV= Vb~ Va
-

The lines of force are parallel between the planes, and the

surface densities of the charges on A and B are

A — B and B
~—^ respectively.

4 7TO 4 7Ttt

If we take a portion of area S out of the middle of each plate,

there will be a quantity of electricity on SA equal to —^— ^

,

4:TTCt

and an equal quantity of the other kind of electricity on SB .

The force of attraction between SA and SB will be 2 -n-a
2

• S, or

s {vB -vAy
8 it a2

Ii SB be put to earth, the charge that must be given to SA in

order to raise it to potential unity is

S
AttOL

In other words, the capacity of SA is inversely proportional to

the distance between the plates.

In the case of two thin conducting plates placed parallel to and

opposite each other, at a distance small compared with their

areas, the lines of force are practically parallel except in the

immediate vicinity of the edges of the plates ;* and we may infer

v4

vB

Fig. 40.

See Maxwell's Treatise on Electricity and Magnetism, Vol. I. Fig. XII.
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from the results of this section that the capacity of a condenser

consisting of two parallel conducting plates of area S, separated

by a layer of air of thickness a, when one of its plates is put to

s s*

earth is very approximately for large values of -•
4 ira a

64. Capacity of a Long Cylinder surrounded by a Concentric

Cylindrical Shell. In the case of an infinite, conducting cylinder

of radius r{ ,
kept at potential Vt

and surrounded by a concentric

conducting cylindrical shell of radii r and >•', kept at potential

V , we have symmetry about the axis of the cylinder, so that

D4, V= 0, and Laplace's Equation reduces to the form

A.
2.F+-^- = 0,

whence, for all points of empty space between the cylinder and

its shell, fT ri . T >. iV= C + I' logr.

But V= Vi when r= r,, and V— V when r= r ,

Klog-°+F log-

hence V= - -S [175]

log-

and DrV=iy--^- 1
-

r r

Fig. 47.

The surface densities of the electricity on the outer surface

of the cylinder and the inner surface of the shell are respectively
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V — V V — V-
ll !j^ and —-?

r
-L

r v
4 7T?\. log — 4 7T>- log —

'

i

i

so that the charge on the unit of length of the cylinder is

— -) and the charge, on the corresponding portion of the

2 log":

inner surface of the shell is the negative of this. We may

find the capacity of the unit length of the cylinder by putting

V = and V
t
= 1, whence capacity =

21o?7

If r in this expression is made very large, the capacity of

the cylinder will be very small.

In the case of a fine wire connecting two conductors, r
{
will

be very small, and there will be no conducting shell nearer

than the walls of the room, so that the capacity of such a

wire is plainly negligible.

65. Charge induced on a Sphere by a Charge at an Outside

Point. The value at any point P of the potential function due

to m x units of positive electricity concentrated at a point

Au and m 2 units of negative electricity concentrated at a point

A2 , is

V = — — — » where i\ = A
X
P and r2

= A2P.
7\ r2

It is easy to see that if m x is greater than m2 , so that

m
1
= Xm2

where X > 1, V will be ecpial to zero all over a certain sphere

which surrounds A 2 .

If (Fig. 48) we let A XA 2
= a, AtO= Bu A 2 = 82 , OD = r,

it is easy to see that

a
A2

'/ a
2

a 2\2

ss 2 _ Si
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a ! _ r2 r2 _ fi
2

and a = ^__J_ = ?_=A. [176]

If PR represents the force /x due to the electricity at A^ and

PQ the forcef2 due to the electricity at xl2 , the line of action of

the resultant force F (represented by PL) must pass through

the centre of the sphere, since the surface of the sphere is equi-

potential.

Fig. 48.

The triangles A YPO and A2PO are mutually equiangular, for

they have a common angle A
x
OP, and the sides including that

angle are proportional (r2 = S
1
82). Hence, from the triangles

QPL and AiPA2 , by the Theorem of Sines,

/i = f-2 = F
sina

x
sina2 sin(a2

— ax)

n r2 _ a

[177]

[178]
sin a2 sin aj sin (a2 — aa)

whence F=-^ = \ =—-1 - [1 / 9]
r2 r2 r{ r{

Now, according to Section 49, we ma}' distribute upon the

spherical surface just considered a quantity m2 of negative elec-

tricity in such a way that the effect of this distribution at all

points outside the sphere shall be equal to the effect of the

charge — m2 concentrated at A 2 . and the effect at points within

the sphere shall be equal and opposite to the effect of the charge

mx concentrated at Ax . Since F is the force at P in the direc-
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tion of the interior normal to the sphere, we shall accomplish

this if we make the surface density at every point equal to o-,

where

4w = -F= ~ nAWl = ~W ~ r2
>
m

*

; [180]
Ti rrf

and if we now take away the charge at A2, the value of the po-

tential function throughout the space enclosed by our spherical

surface, and upon the surface itself, will be zero. If the spheri-

cal surface were made conducting, and were connected with the

earth by a fine wire, there would be no change in the charge of

the sphere, and we have discovered the amount and the distri-

bution of the electricit}' induced upon a sphere of radius r, con-

nected with the earth by a fine wire and exposed to the action

of a charge of m x units of positive electricity concentrated at a

point at a distance S
x
from the centre of the sphere.

If now we break the connection with the earth, and distribute

a charge m uniformly over the sphere in addition to the present

distribution, the potential fuuction will be constant (although

no longer zero) within the sphere, and we have a case of equi-

librium, for we have superposed one case of equilibrium (where

there is a uniform charge on the sphere and none at Ax) upon

another. The whole charge on the sphere is now

M = m — tiu = m —

,

Si

and the value of the potential function within it and upon the

surface,

rr_ M ,m x _m
r Sj r

If the conducting sphere were at the beginning insulated and

uncharged, we should have M= 0, and therefore

- , and V= —- [181]
4 7lT\&

1
I'* J (^

If we have given that the conducting sphere, under the influ-

ence of the electricity concentrated at Ax is at potential Fi, we
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know that its total charge must be V±r -*-> and its surface

density
1 / f** r*\ m \

=M r^^M- [i83]

It is easy to see that the sphere and its charge will be

attracted toward A x with the force

m
x
r ( m^i2 V

x

8, V(V-r2
)
2

8
i

[183]

and the student should notice that, under certain circumstances,

this expression will be negative and the force repulsive.

If m
x
= nu, the surface of zero potential is an infinite plane,

and our equations give us the charge induced on a conducting

plane by a charge at a point outside the plane.

The method of this section enables us to find also the

capacity of a condenser composed of two conducting cylindrical

surfaces, parallel to each other, but eccentric; for a whole set

of the equipotential surfaces due to two parallel, infinite

straight lines, charged uniformly with equal quantities per

unit of length of opposite kinds of electricity, are eccentric

cylindrical surfaces surrounding one of the lines, A2 , and leav-

ing the other line, Au outside. We may therefore choose two

of these surfaces, distribute the charge of A x on the outer of

these, and the charge of A 2 on the inner, by the aid of the

principles laid down in Section 49, so as to leave the values

of the potential function on these surfaces the same as before.

These distributions thus found will remain unchanged if the

equipotential surfaces are made conducting.

The reader who wishes to study this method more at length

should consult, under the head of Electric Images, the treatises

of Cumming, Maxwell, Mascart, Tarleton, and Watson and

Burbury, as well as original papers on the subject by Murphy
in the Philosophical Magazine, 1833, p. 350, and by Sir

W. Thomson in the Cambridge and Dublin Mathematical

Journal for 1848.
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66. The Energy of Charged Conductors. If a conductor of

capacity C, removed from the action of all electricity except its

own, be charged with M
x
units of electricity, so that it is at

M
potential V\ =— , the amount of work required to bring up to

the conductor, little by little, from the walls of the room, the

additional charge AM, is A TF, which is greater than Vx
• AM or

-1
• AM, and less than ( \\ + AMV) • AM or

J/
i + AiV/". AJf.

u G

If the charge be increased from Mx to M2 by a constant flow,

the amount of work required is evidently

r^MdM= Ml-Ml = 2

JMl G 2 2 ^
2 1J L J

The work required to bring up the charge M to the conductor

at first uncharged is then

M 2 CV2 MV
2 2 2

[185]

This is evidently equal to the potential energy of the charged

conductor, and this is independent of the method by which the

conductor has been charged.

If, now, we have a series of conductors A
{ , A2 , A3 , etc., in the

presence of each other at potentials Fi, V2 , V3 , etc., and having

respectively the charges Jf1? M2 , Jf3 , etc., and if we change all

the charges in the ratio of a; to 1, we shall have a new state of

equilibrium in which the charges are xMx , xM2 , xM3 , etc. ; and

the values of the potential functions within the conductors are

xVi, xV2 , xV3 , etc. The work (A IF) required to increase the

charges in the ratio x + Ax instead of in the ratio x is greater

than

(Jf, Ax) (xVx) + (M2 Ax) (xV2 ) + (M2 Ax) (xV2) + etc.

,

or x Ax\_M^ Vx +M2V2+M3V3 + etc.]

,

and less than

(x + Ax) Aa; [Mx Vx +M2V2+M3Vs + etc.] ;
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hence the whole amount of work required to change the ratio

from — to — is

W2 - W1
= 2

2

]

[J^ ^ + 3f2 F2 + 3/3 F3 + etc.]. [186]

If in this equation we put xt
= and a;2 = 1, we get for the

work required to charge the conductors from the neutral state

to potentials Vu V2 , V3,

W = \IMX VX + M2 V2 +MaVa + -. •]= 4-V(JMT), [187]

a particular case of the general formula stated in Section 27.

The work required to make any combination of changes- of

charge on any system of fixed conductors is evidently equal

to the difference between the intrinsic energies of the system

in its original and final states. If Vk , Vk represent the initial

and final potentials on the kth. conductor, and ek and ek the

original and final charges,

E'-E^t^Vte-t^ V,et

Since the final energy is independent of the manner in which

the changes are produced, we may suppose that the changes

take place gradually and at the same relative rate for all the

conductors, so that at any instant the charge of each conductor

has received the same fraction of its whole increment or

decrement that every other conductor has received, it being

understood that in the general case some charges will be in-

creased and others decreased. At the instant when the change

accomplished is to the whole change as x : 1, the charge of the

kth conductor is ek + x(ek
— ek ), and the value of the poten-

tial function in this conductor is Vk + z(Vk
— Vk). In order

to increase x by A.x, the charge must be increased by the

amount Ax (ek ,
— ek), and to bring this up from infinity an

amount of work equal approximately to

(ek'-ek)[Vk + x(Vk'-Vk)l*x
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must be done, and for the whole system the corresponding

work is V" (<?*' - ek) [ Vk + x ( Fk ' - Vk) ] Ax. To find the work

required to bring about the whole change, this expression

must be integrated with respect to x between the limits

and 1. This process yields

E< - E=^JVk + F,') (ek
> - ek),

and by comparing this with the result stated above we learn

that Ave may also write

E'-E =^(Vk'-Vk)(ek ' + ek).

We learn incidentally that ^ ek Vk = j %FA
.', and we see

that if all but two (A x , A 2) of any system of conductors are

either put to earth or are insulated and without charge,

elV1 + ejVt = 61 Vl + e% V%
'.

If ex
= 1, e2 = 0, e x

= 0, e2 — 1, F2 = Vx , and if Vx
= 1,

V2
= 0, V\ = 0, V2 = 1, e/ = e2 , so that a unit charge given

to A x , while A 2 is uncharged and insulated, raises A2 to the

same potential that A x would have if it were uncharged and

insulated while A z had a unit charge ; and the same quantity

of electricity is induced on A 2 when it is put to earth, while

Ax is charged to potential unity as would be induced on A x if

it were put to earth and A2 charged to potential unity. Using

the notation of Section 59, this shows that prk = pkr and that

qrk = qkr ; we may write, therefore,

e =^ e^ erPrh = *S V^L VrQrk

k r T r

= \(pW +pW + Pss^
2
H r- pnnen

2

)

= * (SnVi* + Q-22 V2
2 + gm Vi + - • + ?„„ F„

2

)

+ ?i2 F F2 + q lz Vx
V,^ 1- ?23F2 F,
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If the conductors are fixed so that the />'s and y's are con-

stant, we may learn from differentiating this last equation that,

if all the charges but ek are kept constant, E>
e
E = Vk , and if

the values of the potential function in all but one of the

conductors (the A'th) are unchanged E v E = ek .

If the system changes its configuration, the p's and ^'s are

in general changed, and we learn that if the charges are kept

constant during the change,

A'E =^ek^e rAprk ;

but that if by suitable changes in the charges the potentials

are unchanged, ^-^ ^-^
A"E = ±2^Vk2^Vr Aqrk .

k r

In the latter case, A Vk, or > A(erprk) = 0, so that ^ ekA Vk,OT

or 2 A 'E + 2 A"E 4- "V^ e rAprk Ae* = 0.

If, therefore, <£ is any coordinate, which defines the con-

figuration,

a';!',,gf) = - 2S£.(^) , « ** +v = o-

A system of conductors with constant charges when left

to itself tends to obey the urgings of the reciprocal forces

between its parts, and therefore to diminish its intrinsic

energy. If, in this case, the single coordinate
<f>

is free to

change and is increased by A<£, the energy after the change

is E + A'E, where A'E is really negative. The mechanical

work done by the forces is — D^E- A<£. If, now,
<f>
had been

changed as before by the same small increment, A<£, while the

potentials were kept constant by bringing up to each con-

ductor from without the necessary quantity of electricity, the

energy after the change would have been E + A"E, where
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&"E is really positive. The energy has therefore increased

by an amount practically equal to the former loss. Practi-

cally the same amount of mechanical work has been done as

before, and enough energy has been introduced from without

to do this work and to add an equivalent amount besides this

to the potential energy of the system. The contribution,

therefore, from outside sources is about 2 <\"E. These state-

ments applied to a small change in <£ are based on the exact

equation D^'E = — D^'E, proved above.

67. If a series of conductors Au A 2 , A 3 , etc., are far enough
apart not to be exposed to inductive action from one another,

and have capacities C^, C2 , C3 , etc., and charges Jf1?M2 , M3 , etc.,

so as to be at potentials Vi, V2 , Vs , etc., where Jl/
1=C1

P'1 ,

M2 = C2V2 , M3 = C3V3 , etc., we may connect them together by

means of fine wires whose capacities we may neglect, and thus

obtain a single conductor of capacity

The charge on this composite conductor is evidently

Ml + 31, +M3 + .- =V(-M-) ;

and if we call the value of the potential function within it V, we
shall have ^-^ ^-^

whence V= °lVl + C'V* + CaV
* + '"

, [188]

a formula obtained, it is to be noticed, on the assumption that

the conductors do not influence each other.

The energy of the separate charged conductors before being

connected together was

\ C/! L 2 G3 J
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and the energy of the composite conductor is

c\ + c2 + c3 +

= i(j/1 +jf2 +ji3 + ---) 2

= *L2*
W

J
f [190]

C'i + (72 + 6 3 + • •
•

7(6'")

which is always less than E, unless the separate conductors

were all at the same potential in the beginning.

68. Specific Inductive Capacity. In all our work up to

this time we have supposed conductors to be separated from

each other by electrically indifferent media, which simply

prevent the passage of electricity from one conductor to

another. We have no reason to believe, however, that such

media exist in nature. Experiment shows, for instance, that

the capacity of a given spherical condenser depends essentially

upon the kind of insulating material used to separate the

sphere from its shell, so that this material, without conduct-

ing electricity, modifies the action of the charges on the con-

ductors. Insulators, when considered as transmitting electric

action, are sometimes called dielectrics.

Given two condensers of any shape, geometrically alike

in all respects, with plates separated in the one case by a

homogeneous dielectric, A, and in the other case by another

homogeneous dielectric, B, the ratio of the capacities is

found to be the same whatever the shape or dimensions of

the condensers when these same two dielectrics are used. If

this ratio is unity, the dielectrics are said to have the same

electrical inductivity or the same specific inductive capacity.

If the ratio of the capacities of the first and second con-

densers is n, A is said to have an inductivity n times as great

as that of B. The electrical inductivity of dry air at the

standard pressure and temperature being chosen as a standard,

the electrical inductivities of all other known substances are
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positive quantities which in the case of any one specimen,

though somewhat dependent upon conditions of temperature

and pressure, may be considered independent of the electrical

stress to which the substance may be exposed. The letter /x

is often used to represent the inductivity of a medium. It is

generally assumed, for the sake of definiteness, that outside all

the material media upon which we can experiment, the ether

extends indefinitely in all directions and the inductivity of

the ether is assumed to be sensibly the same as that of air

under standard conditions. We cannot expect that a non-

homogeneous dielectric will have the same inductivity through-

out, so that in the general case we must assume that /i is a

function of the space coordinates. The vector formed by

multiplying the force by the scalar quantity -/— is sometimes
4 IT

called the displacement. The force is occasionally called

the electrical intensity, or the electromotive intensity.

We may best sum up the results of experiments upon the

behavior of dielectrics in electric fields by stating some gen-

eral equations which may be used in solving any problem.

We shall find it convenient to write down first, for the sake

of comparison, the simplified forms of these equations which

we have shown to be characteristic of the electric field about

any distribution of electricity when air is the only dielectric.

If X, Y, Z are the force components parallel to the axes,

and if V is the potential function, so that

X = -DX V, Y=-D
y
V, Z = -DZ V,

we know that when p,= 1,

(1) DxX+Dy
Y+D

z
Z= + ±TrP ,

except at surfaces where p is discontinuous.

(2) The surface integral of the normal (outward) com-

ponent of the force taken over any closed surface is equal

to At times the amount of matter (algebraically reckoned)

within the surface ; or
J
NdS= kirM.
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(3) At a charged surface all the tangential components of

the force are continuous, but the normal components are dis-

continuous in the manner indicated by the equation

Nx + iV2 = + 4 7TO-,

where JV^ and N2 represent the normal force components taken

away from the surface on both sides. If the charged surface

is not equipotential, the lines of force which cross it are in

general refracted ; for, if <^ is the angle which a line of force

in reaching the surface makes with its normal,
<f> 2

the angle

which the same line makes with the normal on leaving the

surface on the other side, and, if Tx and T2 are the tangential

components of the force, T1 = — Nx tan <f>u T2 = N2 tan <p2 ,

and since T
x
= T2 , iV"2 tan <f> 2 + Nx tan <£ x

= 0, or, since the

normal component is discontinuous,

(4 TTo- - JVi) tan
<f>2 + Nx tan $ x

= 0.

(4) V so vanishes at infinity that rV and r2Dr V have

finite limits.

If we now introduce a new vector (called the induction)

equal to the product of the scalar point function ti and the

force, we may write down a set of equations, very like those

which we have just enumerated and equivalent to them when
(i = 1, which will give the force components and the potential

function in terms of the charges when /x is different from

unity and (in the general case) determined by different

analytic functions of the space coordinates in different por-

tions of space.

In general,

(i) z>,G**) + D,0ir) + AG*s) = + 4«/> [191]

at every point in space, except at surfaces where either p or /x

is discontinuous. Since in all cases X= —DX V, Y = — D
V
V,

Z = — Dz V, this equation may be written

Dm (pDx V) + Dy (jjj), V) + D, (^Dz V) = - 4 »p . [192]
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In a dielectric of uniform inductivity it becomes

/XV2 V — — 4tT/3.

(2) The integral, taken over any closed surface, of the out-

ward normal component of the induction is equal to 4 * times

the amount of matter within the surface, or

CfiNdS=4,TrM. [193]

(3) If the surface of separation between two different dielec-

trics which are in contact with each other has a charge of

superficial density, cr, all the force components tangent to the

surface are continuous. If n v
and fi2 are the inductivities of

the two media, the normal component of the induction is dis-

continuous in the manner indicated by the equation

fx^i + fx2N2 = + 1 tc,

or HD>h
V + fxo I>„

2
V = - 4 7TO-. [194]

If this surface has no charge, <x = 0, and the normal component

of the induction is continuous, though the normal force com-

ponent is discontinuous: evidently, the law of refraction of

the lines of force is, in this case, tan
<f> l

: ^ = tan
<f> 2

: jx2 .

Whether or not o- is zero, iVx tan <£ x + iV2 tan <f>.2
= 0. At a

charged surface where the dielectric is continuous,

fJL (Nt + Nt) = 4 7TO-.

(4) V is everywhere continuous, and it so vanishes at infin-

ity that r Fand r<lDr V have finite limits. The first derivatives

of V are everywhere continuous, except at charged surfaces

and surfaces where the inductivity is discontinuous : here the

tangential derivatives of V are continuous and the normal

derivatives have the properties just discussed. The lines of

force and the lines of induction are coincident. It is well

to notice that what we have here called the induction and

what is usually called induction in perfectly hard magnets

are different special cases, as will be shown later on, of a
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much more complex vector which appears in some general

problems.

It is easy to prove with the help of [149] a series of theo-

rems concerning the potential function analogous to those

already found for the case where /x = 1. For instance : if the

closed surface Sx shuts in the closed surface So, there cannot

be two different functions, V and V, which (1) between Si and

S2 satisfy the equation

Dx QjlI>xw) + VyfaDyW) + D'z Q,Dew) = 0,

where fi is a given, everywhere positive, analytic function of

the space coordinates, (2) are continuous in that region with

their first derivatives, and (3) are equal at every point of Si

and S2 . Assuming, for the sake of argument, that two such

functions exist, we may call their difference u and note that

u and its first derivatives are continuous between Sx
and S2 ,

and that u vanishes at every point of these surfaces. Since

u satisfies the equation

Dx (jxDxu) + Du (t,Dyu) + Dz frD.u) =

between St
and S2 , we may conveniently make \ = {jl, U= V=u

in [149], for both integrals in the second member of the equa-

tion vanish, and we learn that

J"J"JV[(7)^)
2 + (DyUy + {Dzuf\dxdydz =

when extended over the region in question. Since fi is posi-

tive, and the integrand can never be negative,

Dxu = Dy
u = D

zu = 0,

and u is a constant. But u = on Si and S2, hence V and V
are identical.

If, while satisfying conditions (1) and (2), V and V are

required to have equal normal derivatives at every point of S
l

and S2 , it is easy to prove in a similar manner that one can

differ from the other only by a constant.
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With given values of the volume density in given regions

of space, and with given values of the superficial density on

given surfaces, the force components and the potential func-

tion are, in general, different when fx = 1 and when fx is dif-

ferent from 1, and, if the dielectric is heterogeneous with

surfaces of discontinuity in /x, not equipotential surfaces, the

forms of the lines of force are very different in the two cases.

If the dielectric of a given condenser, the plates of which

are the surfaces S
x
and S2, is air, and if these plates have given

charges, V must satisfy Laplace's Equation between S
x
and S

2,

while at every part of the condenser plate Dn V= — 4 to-. If,

now, a homogeneous dielectric of inductivity /x be substituted

for the air, the new potential function V satisfies Laplace's

Equation between S
Y
and S2

(since jx is constant and p is zero),

4 7TO"

and at every point of S
1

or S2 , DnV = Now V/ix

satisfies all these last conditions, and since two functions

which do so can at most differ by a constant, we may write

V'= V/fL+C.

The force in any direction at any point in the dielectric is

1/fi as great in the second case as in the first. If S
Y
and S2 ,

instead of having given charges, had been kept at the given

potentials V
1
and V2 , the density of the charge at any point

of either plate would have been /x times as great in the second

case as in the first, while the potential function (and the

force) would have had the same value at every point, which-

ever dielectric was used. The capacity of the condenser is,

in this case, equal to

pfi>m rd8l /4:*(k

ra -rd.

The generalized form [192] of Poisson's Equation, when
expressed in terms of the orthogonal curvilinear coordinates

u, v, w as independent variables, becomes
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ix [A,t

2
• I) 2 V + hv

2 D* V + hj DJ V + Du V- V2u

+ I)„V- Y2
v + Dm V- V2uq

+ (Du V-Dxu + D,.V- Dxv + Dw V- Dxw)

(DufJ, Dxu + Dvfi- Dxv + Dwfi- Dxta)

+ (Du V-DtJ
u + Dv V- Dy

v + Dw V- Dy
w)

(DllfJL Dy
u + I)vfx- Dy

v + Dwfi- Dy
iv)

+ (Du V Dm + Dv V- Dzv + Dw V- Dz
w)

(DuIjl Djt + Dvfx D
z
v + Dw(i Dzw) = - 4 irp.

If
fj.

is a function of one of the coordinates, u, only, the

family of surfaces on which tt is constant are possible equi-

potential surfaces due to a distribution of electricity in this

dielectric, provided the special form of the equation just

stated, obtained by putting

Dvt,
= Dwti = Dv

V=Dw V=p = 0,

that is, provided the equation

involves only u. Now Z>„/a//a is, by hypothesis, a function

of u only, so that the condition is that the ratio of V 2« to hj2

shall be independent of v and w, and this is the condition

(Section 35) that must be satisfied when the dielectric is air,

in order that the surfaces upon which u is constant may be

possible equipotential surfaces.

It is easy to see that if the space between two equipoten-

tial surfaces in air about a distribution of electricity be filled

with a dielectric the inductivity of which is either constant

or else a function only of the parameter of the original equi-

potential surfaces, the new equipotential surfaces will coincide

with the old ones, though the value of the potential function

fin any particular surface will generally be changed.

If in [149] we make U= V, the potential function due to any
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distribution of electricity, and if we make A = /a, we may apply

the equation to all space after we have enclosed by pairs of new
surfaces all surfaces of discontinuity of p., p, or D

n V, and

learn that the intrinsic energy of the distribution is equal to

hfff* [(I)x V)2 + {Dv r)2 + (A F)2] dxdyd*

extended over all space.

When the potential function, V, due to a given distribution

(p, o-) of electricity with any given set of dielectrics has been

found, we may ask what distribution (p', o-') of electricity

would have given this same potential function if all the

dielectrics had been displaced by homogeneous air. The dis-

tribution (p', a-') is called the apparent charge to distinguish

it from the distribution (p, a) which is sometimes called the

real or the intrinsic charge. From the apparent charge when
found, V might be calculated by means of the familiar integrals

When V is given, the quantity p' is determined at all points

where the equation has a definite meaning by V 2V—— £irp'

and the quantity cr' at all surfaces where the normal derivative

of V is discontinuous by the equation iVj + N2
= 4 -n-a'.

Now DxQiDx V) + Dw
QiD

w
T) + Z),G*.Z>,F)=-4«p,

or p,W+{DX V Dxp.+Dy
V D

y
p.+D

z V Dztx)=- ±ttP ,

or -±*w'+(Djr Dxp.+Dy
V D

y
p,+D

z V D
z p.)=-±irP,\lW-]

and this defines p. In every region where p. is constant p'= p/p..

In the most general case of a surface where the normal

derivative of V is discontinuous, there is a discontinuity in p.

at the surface and a charge, a, on the surface so that

PiNi + fitN2 = 4 7TO-, iVi + N2 = 4 TTo-',

whence a' = ^ +^ ~ ^ = ^ + ^ (f
~ *>

. [197]
P2 4 7T/X2 p-i 4 TT^!
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In a particular instance there may be a surface charge with

no discontinuity in the dielectric, in which case a' = a/p ; or

there may be discontinuity in the dielectric with no real

surface charge, in which case

O-' = JVx (/X2 — /Ai)/4 7r/A2 = iV2 (fix
— /X2)/4 IT^.

The difference (p' — p, a-' — <r) between the apparent charge

and the intrinsic charge is sometimes called the induced

charge.

The solving of one or two simple problems will suffice to

illustrate the use of the general equations which determine

the potential function when the dielectric is not homogeneous.

I. " A condenser consists of two concentric conducting

spherical surfaces of radii a and b separated by a dielectric

the inductivity of which at a distance, r, from the common
c -\- r

centre, 0, of the spherical surfaces is The inner plate,

of radius a, has a charge E. The outer plate is at potential

zero. The potential function in the dielectric is evidently a

function of r only ; what is its value ?"

Since the induction through any closed surface is equal to

4 7r times the intrinsic charge within,' we may imagine a

spherical surface drawn in the dielectric with centre at and

radius equal to r and then assert that, if F is the force,

4 tt)-
2 -—

• F = 4 itE so that F = - Z> V =
r(c + r)

H i, (r _|_ r\

and V — ~ log—: -• The capacity of the condenser is
c r (b + c)

i j

c -*- losr —t; r * The apparent surface density on the inner5 a (b + c)

plate is a' = E/[_4:ira(a + c)], the intrinsic surface density is

Ef^-ira2
, and the density of the charge induced at the inner

surface of the dielectric is — Ec/[_± 7ra
2 (a + c)].

II. " A condenser consists of two large, plane, conducting

plates parallel to each other and separated by three slabs, s
x ,
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s2, ss , of dielectric of thickness a, b, and c respectively, and of

inductivity 1, p., and 1. What is the capacity of the con-

denser per u*hit area of one of its plates ?
"

Take the axis of x perpendicular to the faces of the plates

with the origin in the first plate, which shall be kept at

potential zero. It is evident that the potential function is a

function of x only, so that Dx
2 V = in each slab of dielectric

and V must be of the form Lx + M. Denote the functions

which give the potential in the three slabs by

V1
= L 1x + 3f

l , V2 = L 2x + 3T2 , Fs = Lsx +Ms.

When x = 0, Vt = 0. When x - a, - DX VX + p.DxV2 = 0,

and Vi = V2 . When x = (a + b), - nDx V* + DXVZ = 0, and

V2
= Vz . We have, therefore, Vx

= L xx,

Vi — ^ (x + ap — a) / jx, V3 = L
x (^x + b — bfi) //x.

When x = 0, DxV = — 4 -kg- = Lu and, if V3 = 1 when

x = a +b + c, we get o- =
47T (/A« + fxC + b)

and this is the capacity per unit area of the first plate.

69. Polarized Distributions. Imagine two homogeneous

bodies, P and N, of equal but opposite densities, p and — p,

of the same dimensions, and occu-

pying at the same time the same

space, in which, of course, the

resultant density is zero. If P be

moved without rotation through

a small distance h, in some direc-

tion, there will be a space of no

density common to P and N, a

space of density p where P extends F1G . 49.

beyond iV, and a space of density

— p where JV extends behind P. The thickness of the shell of

matter, measured on the exterior normal to the space of no

density, is Aw. If, now, h be made to approach zero, and p
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be imagined to increase without limit so as to keep the product

ph always equal to a given constant I,

l^l An/h = cos (h, n),

and we have in the limit merely a superficial distribution, of

density a = I cos (h, n), on the boundary of the space originally

occupied in common by P and N. Since the direction of h is

fixed in space, and n is an exterior normal, the distribution

consists partly of negative matter and partly of positive matter

in equal amounts. The surface density is equal to zero at

points of contact of the distribution with tangents parallel to

the direction of h.

If this distribution be divided up into filaments parallel to

h, it is clear that the charges on the ends of every filament

are equal and opposite, and that each is equal in amount to

ql, where q is the cross-section of the filament in question.

It is easy to see from this that if the distribution were

placed in a uniform field of force of intensity F, this field

would exert upon any such filament of length I a couple of

moment F-sm(h, F) qll, and upon the whole distribution a

couple of moment F-smfJi, F) I times the volume of the

space enclosed by the distribution. / is, therefore, numeri-

cally equal to the moment of the couple, per unit of volume,

per unit field perpendicular to the direction of h. The dis-

tribution just described is said to be a uniformly polarized

distribution, i" is called the intensity of the polarization.

If, for instance, P is a sphere of radius a with centre at 0,

and if r2 = x 2 + y'2 + z2
, the potential function, V(x, y, z),

due to its own mass, has, as we know, the value 2 irp (a2 — ^ r2

)

at inside points, and the value 4npa 3 /3r at outside points.

After P has been displaced through a distance h parallel

to the x axis, the potential function at any point (x, y, z),

either in the space common to P and N or outside both,

has the value Vix — h, y, z) — V (x, y, z). If the point

is within both P and N, the value of this quantity is

2 -n-ph (2 x — h) / 3, but if the point is without both P and
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N, the value is 2iza zph (2x — A)/ 3 >-
3
. The limits of these

expressions (AttIx/o and 4,va5Ix/3r3

) give the values of the

potential function within and without a sphere uniformly

polarized to intensity / parallel to the x axis. Within the

sphere the equipotential surfaces are planes perpendicular to

the x axis, the field is uniform, and since X= — DX V, the

lines of force are parallel

to the negative direction

of the x axis. Consider-

ations of symmetry show

that the lines of force

without the sphere are

curves lying in planes

through the axis of x.

From the expression for

V at outside points we
learn that if 6 is the

angle which the radius

vector drawn from the

origin to any point

makes with the x axis,

the equipotential sur-

faces of revolution with-

out the sphere may be

considered as generated

by plane curves which

belong to the family

cos 6 J' r- — c. Curves of

this family lying in a

plane are cut orthogo-

nally by curves in the same plane which have the equa-

tion r= k-s'm 2
6, and this evidently gives the lines of force.

Fig. 50 shows the forms of these lines and the direction of the

force. It is to be noted that this direction changes abruptly

at the surface ; on the x axis without the sphere the force is

directed from left to right, whereas within the sphere it is

Fig. 50.
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directed from right to left. This discontinuity is wholly

explained, as a little simple computation will show, by the

fact that at any superficial distribution of density o- every

tangential component of the force is continuous, but the

normal component is discontinuous by4 7rcr.

The potential function belonging to a uniform field of force

of intensity X , the lines of which are parallel to the x axis, is

— XqX, and if into such a field a sphere of radius a, uniformly

polarized to intensity i" parallel to the x axis, is brought, and

if we define the constant ^ by the equation X = Airlx/S, the

Fig. 51.

potential function, referred to the centre of the sphere as

origin, will have the value 4:ttIx(1 — x)/3 at points within

the sphere, and the value 4 irlx\_a3 /3(x 2 + y
2 + z2

)
3/2 — x/3]

at outside points. The field within the sphere is now a uni-

form field of intensity 4 7rl(x — l)/3 directed parallel to the

x axis : if ^ = 1, this force vanishes. The equipotential sur-

faces of revolution without the sphere could be generated by

the revolution about the x axis of a family of curves the

equation of which in the xy plane is 4 trlx [«
3 /3 r3 — x/3] = c,

where r2 = x2 + y
2

- The equation of the family of curves

which cut these orthogonally may be written,

2irly2
(2 a 3

/3 r
3 + x /3) = m,
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and this represents the lines of force. These lines may be

easily plotted for any value of %, by assuming in succession a

series of values of r and computing the corresponding values of

y. Figs. 51 and 52 show two characteristic forms which

the lines may have. In the first % = + 1> in the second

X = — 3. Some slight theoretical interest attaches to the

case for which ^ = — 2, and the reader may care to plot

for himself the corresponding curves. He should indicate

the direction of the force at various points by arrows.

The value, at inside points, of the potential function due

to a homogeneous ellipsoid of density p, with axes coincident

Fig. 52.

with the coordinate axes, is given on page 121. If we call

this p • Ci (x, y, z), we may write

n (x, y, z) = abcTr(G — KQx
2 - L if — M z 2

),

where G , K , L , M have the same values at all points of the

mass. If, now, we consider an ellipsoidal distribution, uni-

formly'polarized to intensity /, in a direction s, it is easy to see

thatthe value of the potential function within the distribution is

— I[DXQ cos (x, s) +D,
I
D, cos (y, s) + DZ Q, cos (z, s)]

or 2 abcTrI\K^x cos (x, s) + L y • cos (y, s) + M z • cos (z, *)],

and that, if we regard the polarization as a vector and denote

its components by A, B, and C, the force components are

— 2 TrabcAK ,
— 2 irabcBL^, - 2 nabcCM .

The field within the distribution is, therefore, uniform, and

it has a direction defined by cosines which are to each other

as iT -cos (x, s) : L -cos (y, s) : M - cos (z, s). It is to be

noticed that this direction does not coincide with that of the
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polarization unless K = L = MQ (so that the ellipsoid is

really a sphere), or unless the direction of polarization coin-

cides with that of one of the principal axes of the ellipsoid.

In certain cases the elliptic integral

K = f
ds

and the corresponding integrals L and M can be easily

evaluated. If, for instance, a = b = c, these quantities evi-

dently have the common value 2/3 a 3
.

If the ellipsoid is a figure of revolution, we may find the

values of K , L , M with the help of the integrals

/
ds

(s + l*)(s + m*) 1 '*

1 . /(* + m2
)
1 ' 2 - (to2 -*2

)

1 / 2

- locr

'

(m2 - Vf' 2 & \(s + to2

)
1 ' 2 + (to

2 - l
2

f'
2

2 _, (s + to2
)
1 / 2

°r
(I

2 - to2
)
1 ' 2

'

(I
2 - to8

)

1/*'

/
ds

(
s + i

2

y
2
(s + m2y/2

»/1 /"(a + to2)
1 /2

j f_ <fo

/

Z
2 - to2 V 5 + P J (s+ I
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In the case of a prolate ellipsoid where a> b, b = c, and

e = Va2 - &
2
/«,

£o = ^o = ^i
1/1 1 . l-e\
^Vr^72

+ 2-
e

- l0g
r+-e/

2 /l . 1+e A
Ko = —A 5- -log 3 --1 )>
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and the force components within the ellipsoid are

-*-^(£-*^

\e2 2 e
a h

l + ej

If, while & is constant, a be increased without limit, e

approaches the limit unity, (1 — e'
2
) -log[(l + e)/(l — e)]

the limit zero, and the ellipsoid becomes an infinitely long

cylinder of revolution, for which the force components are

0, -2ttB, -2ttC.
In the case of an oblate ellipsoid where a < b, b = c, and

e = Vi 2 - a 2 /b,

2/1 sin-VK =

1 /sin"" 1
^

and the force components within the ellipsoid are

(
-

• sin- 1
^

-2^/' Vl ~ f2
-sin-1

g

'(
* ^ -sin-^

If, while b and c are constant, a is made to approach zero, e

approaches the limit unity, the limiting values of the force

components are — 4 -n-A, 0, 0, and we have the case of a circu-

lar disc, in which, if the direction of polarization lies in the

plane of the disc, the resultant force is zero.
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If the imaginary body P, instead of being of the same
density throughout, had consisted of two homogeneous por-

tions of densities p x
and p2 , to the left and to the right of

their surface of separation, S; if the density of N had been

at every point equal and opposite to that of P, and if the

limits of pji and p.,h had been the constants I
x
and /,, the

resulting surface distribution, on the boundary of the space

occupied originally by N and P conjointly, would have had

the density o- = I
x
cos (h, n) to the left of the original posi-

tion of S, and the density a = I
2
cos (h, ri) over the rest of

the surface. There would have been on S a surface density

a = I
x
cos (Ji, Wj) + /

2
cos(A, n

2), where n
x
and n

2
represent

exterior normals to the regions in which P had the densi-

ties p x
and p2 respectively. This distribution is therefore

equivalent to two distributions uniformly polarized in the

direction of h, and laid together so as to have the common
surface S.

If, again, the density of P had^been given by the expression

P = Po -f{n, y, z),

where p is a constant and f an analytic function of the space

coordinates, then, if P had been displaced parallel to the x

axis, there would have been, (1) a region common to P and

N in which the density would have been

po[f(x - h
, V, z) -/(*» y, *)] or — Poh-Dxf+ e

2

where e is an infinitesimal of the same order as h, (2) a region

of density pof(x — h, y, z) where P extended beyond N, and

(3) a region of density paf(x, y, z) where jV extended behind

P. If the limit of p h had been the constant A , and if

A -f(x, y, z) had been denoted by A, the resulting distri-

bution would have had a surface density a = A cos (x, n) over

the boundary of the space originally occupied by N and P
and a volume density p — — DXA inside this boundary. This

kind of distribution is called a non-uniform polarization of

intensity A, the direction of the polarization being that

of the x axis. We know from Green's Theorem that the
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surface integral of A cos (x, n) taken over any closed surface

is equal to the volume integral of + DXA taken through the

space bounded by the surface, so that the whole amount

of matter, algebraically considered, in the distribution just

discussed is zero.

If such a distribution as this were placed in a uniform field

of force of intensity F, perpendicular to the x axis, it would

encounter a couple of moment

M= F C Cx a- dS + F C C Cx P dr

= F C Cx A cos (x, n)dS-F C C Cx- DXA dr

= F§§j[D x{xA) - x DJ.-] dr

A dr.
'Iff-

Here, again, the volume integral of the intensity of the polar-

ization is a measure of the moment of the couple which

would be exerted upon the distribution, if it were placed in a

uniform field of unit strength perpendicular to the x axis.

The intensity of the polarization at any point in a polarized

distribution has been called the moment per unit volume of the

distribution at the point. If a distribution polarized in the

manner just described parallel to the x axis were placed

in a uniform field (X , Y , Z ), not perpendicular to the x

axis, it would experience a couple the components of which

would be

'- z°fffAlh>
T°fffAdr-

If p V(x, y, z) is the potential function at (x, y, z) due to

P in its original position, the potential function at (x, y, z)

due to N and P, after P has been displaced parallel to the

axis of x through the distance h, is

Po [ V(x - h, y, z) - V(x, y, «)], or - Po h Dx V + e 2
,
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where e is an infinitesimal of the same order as h. As h is

decreased and p so increased that pji is always equal to A
,

the potential function at (x, y, z) due to the resulting distri-

bution becomes — A • Dx V. Thus, if P is a sphere of radius a,

the density of which is proportional to the distance from its

centre, we have p = p r, V = 7r/D (4a 3 — r
z
) /3 if r < a, and

V = irp
()
a i
/ )' if r> a. The polarization in the resulting

distribution is A r, where A is a constant to be chosen at

pleasure ; the potential function has the value jcA^cr within

the polarized sphere, and irA^x /
'r8 without it ; the moment

of the sphere is irA^a*.

Imagine six coincident bodies, Plf Nu P2 , N2 , Ps , Nz, of

densities Pof (x,y, z), — p fi(x,y,z), p f,(x,y,z), -
Pof2

(x,y,z),

Pofz(x, y, z), - Pof3 (x, y, z) respectively. Imagine Pu P2 , P3

displaced through distances h parallel, respectively, to the axes

of x, y, and z, then imagine h to decrease and p to increase

in such a way that p h is always equal to a constant M. If

Wi (
x

, V> *)> W°- (-r ) V, z), Mfs& V, *) be denoted by A, B, and

C respectively, the resulting distribution has a surface density

o- = A cos (x, n) + B cos (y, n) + C cos (z, n) on the boundary

of the space originally occupied by the six bodies, and a volume

density p = — (DXA + Dy
B -f BZ C) in the region enclosed by

this boundary. A, B, C are usually considered to be the

components taken parallel to the coordinate axes of a vec-

tor, I, so that a- — I cos (n, I) and p = — (Divergence of /).

The whole amount of matter in the distribution is zero. / is

called the polarization, and the direction of / at any point

is the direction at that point of the polarization. The lines

of the vector I are defined by the equations

dx/A = dy/B = dz/C,

and are called the lines of polarization. If through every

point of a curve, s, in a polarized distribution, we draw a

line of polarization, we shall get (unless s is itself a line of

polarization) a polarization surface; if s is closed and the

polarization surface tubular, the latter is called a tube of
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polarization. The product of the cross-section of a very

slender tube of polarization at any point, and the value

at that point of I, is sometimes called the strength of the

tube. The matter in a slender tube of polarization con-

stitutes a polarized filament. If the vector / is solenoidal,

the distribution is wholly superficial, and the strength

of every tube of polarization is constant throughout its

length. Uniform polarization is a special case of solenoidal

polarization.

It is evident that the generally polarized distribution just

mentioned may be regarded as formed by the superposition

of three distributions polarized parallel to the axes of x,-y,

and z respectively, and it is easy to see that a uniformly

polarized distribution in a uniform field (X , F , Z ) will be

acted on by a couple the components of which are the prod-

ucts of the volume of the distribution and the quantities

BZ - CY , CX - AZ , A Y - BX .

A short, extremely slender, right prism, uniformly polar-

ized in the direction of its length, forms a simple kind of

polarized element. If 21 is the length of such an element, q

its cross-section, and / the intensity of its polarization, 2 qll

may be called the moment of the element, for it represents the

moment of the couple which would act upon the element if it

were placed perpendicularly across the lines of a unit field.

This product of the volume of the element and / we may
denote by M. We know that the field of force due to the

element is mathematically accounted for by a superficial

negative charge, — ql, on one end of the prism and an equal

positive charge on the other end. Let Q be any point distant

r
r
from the negative end and r2 from the positive end of the

axis of the prism, and r from its centre. Let (r, I) be the

angle between the direction of polarization and the line drawn
from the centre of the axis to Q ; then, since

V = r2 + I
2 + 2 rl cos (/•, I) and r

2

2 = r2 + I
2 — 2 rl cos (r, F),
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the value at Q of the potential function due to the element

is ql(l/r2
— l/i\) or

ql(r* — ?'
2
2

)

/

i\r
2
(r, + r2) or 2 rM cos (r, I) j

r

x
r
t
(r

x + r
2).

The limit, M- cos(r, I)/r2
, of the expression just found is

called the potential function due to a uniformly polarized

element, or to a space

doublet. It will appear

from the work which fol-

lows that a similar result

might have been obtained

from the use of a gener-

ally polarized element of

any form. The lines of

force due to a polarized

element are shown in

Fig. 53 ; they are the

same as the external lines

of force in Fig. 50.

Before we attempt to

find an expression for the

potential function due

to a generally polarized

finite distribution, it is

well to notice that if

the vector / is discon-

tinuous at any surfaces,

the distribution may be

considered as made up

of a number of contin-

uously polarized portions abutting at these surfaces : we
may confine our attention, therefore, to continuously polar-

ized distributions. If a given distribution of this kind has

the volume density p' in a region T' and a surface density

cr' on the closed surface S' which bounds T', the potential

function at the point (x, y, z) due to the distribution is

Fig.
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where r is the distance from the point (x 1

,
y', z') in the volume

or surface element to the point (x, y, z). HI' is the value

of the polarization at (x', y', z'), and if we substitute the

values of p' and o-' in terms of I' and its components A', B', C,

we have

// [A' cos (x', n) + B' cos (?/, n) + C cos (z\ n)~\ qi

SIS

dS'

DXA' + D„.B' + DZ,C>
dr'.

Sinoe BV^.^' ^'-^
1* J 7* *P

we may write

with similar expressions for the other terms of the triple inte-

gral, all the double integrals are cancelled, and we have

v=- CCCA Dx ' r + B '

•
D

"
r + c'

•
Dz ' r

d.

'

-sss
^ f (x - x') + £'Q - y') +C'(z- z')

,

rs

A' cos (x 1

, r) 4- i?' cos (>/', ?•) + C'cos (V, r)
,

The quantity under the integral signs in this last expression
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is, as we have just seen, the potential function clue to an

element at (x', y', z'), in which the polarization is /'.

If the polarization is solenoidal, the volume integral of p'

is equal to zero and a surface integral alone remains.

We have seen that a polarized distribution is completely

defined when the form of its boundary, S, and the values of

the components of the vector /within it are known, and that

its potential function has the same value (at least at outside

points) as that due to an ordinary distribution of matter made

up of a certain volume distribution within S and a certain

superficial distribution on S. What we usually call a polar-

ized distribution is supposed to be quite different, however,

in its physical nature from this ordinary distribution, which

may be said to be mathematically equivalent to it. A simple

illustration will make the character of this difference clear.

If a number of small cubes, all uniformly polarized parallel

to one edge, with common intensity 7, were placed together,

with their directions of polarization parallel, to form a larger

cube, P, superficial distributions of equal and opposite den-

sities would come in contact, and the resulting distribution

would appear to consist only of a positive charge uniformly

spread on one face of the larger cube and an equal negative

charge spread uniformly on the opposite face. That is, the

potential function, at outside points, due to P, would be the

same as that due to an indifferent body, P', of the same

dimensions as P, charged with a superficial distribution of

density + / on one face and a superficial distribution of den-

sity — / on the opposite face. If, however, we define the force

at a point within a distribution to be the force which would

urge a unit mass concentrated at the point, if an infinitesimal

cavity were excavated at the point to allow of its introduc-

tion, the intensity of the force at a given point within P'

might be very different from that of the force at the corre-

sponding point in P. The first would be due merely to the

surface charges already mentioned, whatever the shape of
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the cavity, while if an excavation were made in P by remov-

ing one of the very small uniformly polarized cubes of which
it is made up, the surface charges on the adjacent cubes would
appear, and, however small the cavity might be, these, would
be found to modify the force very appreciably. We must
regard such polarized distributions as occur in nature as made
up of polarized molecules, so that if any portion be broken off,

across the lines of polarization, from a body in which the

polarization is defined by the vector 7, each portion is a

polarized distribution defined by the same vector as before at

every point, so that a surface distribution appears on each of

the new faces formed by the fracture. Every magnet appears

to be a polarized distribution of magnetic matter, and prob-

lems in magnetism, as the reader who has some knowledge
of magnetic phenomena will see, can be conveniently attacked

by the analysis of this section.

If into a field of electric force a conductor or a mass of

dielectric different in nature from that which it displaces be

introduced, the field becomes changed in a manner completely

explainable on the assumption that the conductor, or the

dielectric, has become electrically polarized, and that the

surrounding dielectrics are now and were polarized. Indeed,

results of experiment compel us to assume that space which

seems to be empty of ponderable matter is still occupied by

a medium, the ether, capable of transmitting electrical forces.

We must assume, also, that every medium with which we are

acquainted, whether it be solid, liquid, gaseous, or ethereal, is

susceptible to electrical and to magnetic forces, so that if a

mass of any isotropic medium be placed in a field of electric

(or magnetic) force, it becomes polarized by induction in such

a manner that the direction of the electric (or magnetic)

polarization coincides at every point with the direction of

the resultant electric (or magnetic) force due to all the

apparent electrical (or magnetic) matter in the universe,
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including that which belongs to the polarization of the

medium itself. The ratio of the intensity of the polariza-

tion induced at any point of a medium by the resultant force

at the point is called the susceptibility of the medium at the

point under the given circumstances. Every medium has

both an electrical susceptibility and a magnetic susceptibility,

and these may be represented by very different numbers.

The susceptibility of a medium to magnetic influences often

depends upon the intensity of the inducing force; we may
consider, however, that, if a medium is homogeneous, its elec-

trical susceptibility (k) has the same value throughout. A
medium in a field of force may have an intrinsic polarization

as well as the polarization induced in it by the field. A steel

magnet in the earth's field illustrates this possibility.

A given region may be at once a field of magnetic force and

a field of electric force, so that any medium, when placed in

this region, becomes both magnetically and electrically polar-

ized. Since the two polarizations are similar, we need speak

in what follows only of one, if we keep in mind the fact

that two quite independent polarizations may coexist. We
shall represent susceptibility by k and inductivity by /u., with

the understanding that different numerical values must be

assigned in general to these quantities according as we are

dealing with electrical or magnetic phenomena.

In the most general case of either electrical or magnetic

polarization we may imagine that an isotropic medium has

(1) an intrinsic volume charge of density p , Avhere p is a

scalar point function, (2) superficial intrinsic charges over

certain surfaces, and (3) an intrinsic polarization I , with

components A , Bm C , which may or may not be everywhere

continuous. In addition to this it has (4) an induced polar-

ization which, as we have seen, has the direction of the

resultant force coming from all the apparent charges in

existence, including those which come from the intrinsic and

induced polarization of the medium itself. We may assume

for our present purposes that k depends upon the character
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of the medium, but not upon the intensity of the resultant

force (A, F, Z). The whole apparent volume density, accord-

ing to the statements just made, is, in the general case,

P = Po -[:
DxA + Dy

B + Dz C„]

- [Dx (kX) + Dy
(k F) + Dz

(kZ)\

and this is equal, according to Poisson's Equation, to

- V 2 F/4 ir, or to (BXX + Dy
Y + DZ

Z) /4 w.

If we denote 1 + 4 irk by p., this equation may be written in

several interesting forms, and may be regarded as a general-

ized Poisson's Equation.

Dx (p.X) + Dy
(p.Y) + Dz

(pZ)

= 4* [>, - (DXA + B
y
B 4- DsC )-\,

Dx (pX+ 4 ttJ ) + Dy (p Y + 4 ttB ) + A (/xZ + 4 ttQ = 4 7rPo,

Z)x [X+4tt(AA:+ J )]+^[F+47r(£F+i? )]

The vector, the components of which are (/a A' + 4 7r^ ),

(/iF + 4 7ri? ), (pZ + 4 7rC ), or, what is the same thing,

(X + 4 tt^), (F + 4 7ri?), (Z + 4 tt C), where J, ^, C are the

components, (kX + A ), (kY + i? ), (/o^+ C ),of the resultant

polarization arising from the superposition of the intrinsic

and the induced polarizations, is called the generalized induc-

tion. At a charged surface, the sum of the normal compo-

nents of the generalized induction, pointing away from the

surface on both sides, is evidently equal to 4 7nr . The sum
of the normal components of the force, pointing away from

the surface on both sides, is equal to 4 wa, while every tan-

gential component of the force is continuous at the surface.

If in a homogeneous medium incapable of being polarized

inductively, where there is an intrinsic polarization I (with

components A , B , C ), but no intrinsic body or surface

charges not accounted for by the polarization, the polarization

within the medium coincides everywhere in direction with the
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force due to all the active matter in existence, including the

polarization masses, and if the intensities of the polarization

and force have everywhere the constant ratio A, the divergence

of the polarization is evidently equal to X times the diver-

gence of the force, and Poisson's Equation becomes

DXX + Dy
Y+ I)Z

Z = - 4 ttA (DxX + I)
u
Y +D

Z
Z),

so that the force and the polarization must be solenoidal.

The converse of this theorem is evidently not true.

Inductive bodies which are incapable of being intrinsically

polarized are sometimes said to be electrically or magneti-

cally soft. Most isotropic substances seem to be electri-

cally soft. Bodies which can be intrinsically polarized, but

which are assumed to be incapable of being polarized by

induction, are sometimes said to be electrically or magneti-

cally hard. ISTo absolutely hard media are known to exist,

but the magnetic susceptibilities of some permanent magnets

are comparatively small.

The generalized Poisson's Equation becomes

Dx (j, X) + Dy
Y) + I)z (nZ) = ± vp,

in the case of a body which has no intrinsic polarization,

and the generalized induction becomes the simple vector

(ixX, fj.Y, /xZ) discussed in the last section. This vector coin-

cides in direction with the resultant force at every point.

At a charged surface which also separates two media of

different inductivities, the tangential components of the

force are continuous, but the product of the tangential

component of the force and the inductivity is clearly not

continuous. The normal component of the force is discon-

tinuous by 4 7r times the apparent density of the charge on

the surface, while the normal components of the induction

are discontinuous by 4 ir times the density of the intrinsic

charge on the surface. In general, therefore, in soft media,

neither the tangential nor the normal components of the

induction are continuous, but the directions of the force and
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induction coincide with each other close to the surface on

both sides of it.

If k is independent of the intensity of the resultant force,

the volume density, - \_Dx {kX) + I)
y
(JcY) + DZ {1;Z)\ due to

the induced polarization in a homogeneous medium, may be

written — k (I)XX+ Dy
Y-\-DzZ), or k-V2

V, and this van-

ishes at all points where there are no intrinsic body charges.

We must, therefore, consider homogeneous dielectrics about

charged bodies to be solenoidally polarized.

If a mass, M, of a soft homogeneous medium of induc-

tivity (x.v be introduced into a given field of force in an

indefinitely extended homogeneous medium of inductivity ft

which contains no " real " charges at a finite distance from

M, the two media become solenoidally polarized, there is an
" apparent " charge, e', at the surface S, of M, and the poten-

tial function V is now the sum of the given potential func-

tion V , which defined the field when the place occupied by

M was filled with medium of inductivity /x.2 , and the potential

function V, which might be computed from the expression

Limit %(de' /r), since it is equal to the potential function in a

medium of unit inductivity due to a real charge, e'. If n
x
and

n2 are normals to S drawn respectively into and out of 31, we
have at every point of S,

/i, • D
ni
V+ ft • D

ll2 V=0, D,
n
V + D„

2
V = 0,

and, if A = yu,j /ft,

in which \ is positive, and, since V is given, the last term of
the first member is a given function, f(x, y, z). V is con-
tinuous at S, it is harmonic within and without S, and it van-
ishes canonically at infinity ; it is easy to show that all these
conditions determine V (and, therefore, e') uniquely. For if

we assume that two different functions may satisfy the condi-
tions, and if we denote their difference by u, u must vanish
canonically at infinity, be continuous at S, and satisfy Laplace's
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Equation within and without S. On S, ^ Dn
v + fi.2 Dnnu = 0.

If, now, we apply [149] to u, choosing for A of that equation

the value /x
:
in the space within S and the value /a2 in the space

without S, it is evident that u must have everywhere the

value zero. It is to be noted that changes in /x, and /i2, which

did not affect their ratio, would not affect V.

If the strength of the given field had been greater in the

constant ratio m than it was, the potential function V", due to

the apparent charge on S, would have been larger in the same

ratio, for [149] shows that the difference between the two

functions V" and mV (both of which vanish canonically at

infinity, are continuous at S, are harmonic within and without

S, and at S satisfy an equation of the form

A • D,
n
V" + Dn2 V" + m .f(x, y, z) = 0),

is identically zero.

If, when a hard body, M, solenoidally polarized intrinsi-

cally, is placed in a field of force in a homogeneous soft

medium of inductivity unity, the directions of the polariza-

tion and of the resultant force are found to coincide within

M, and, if the ratio of the intensities of these vectors is equal

at every point of M to the constant k, the potential function

within and without M is the same as if M were a homogene-

ous, perfectly soft medium of susceptibility k and induc-

tivity 1+4 irk, polarized inductively by the original field.

To prove this we have only to compare the properties of the

potential functions in the two cases. Let S be the bounding

surface of 31, let >?, and »., represent respectively interior and

exterior normals to £, and let Vn be the potential function

due to the original field; then V is harmonic within S, and

on S, where V is continuous. Z>
ni
Fn + D„ Vn = 0. Let I' be

the polarization in the hard body if, and F the polarization

which would be induced if S were filled by a soft medium of

inductivity 1 + 4 irk, and let V and V" be the correspond-

ing potential functions. The components of T and F in any
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direction at any point within S are respectively equal to

— k times the derivatives, at the point, in the given direc-

tion, of V + V and V + V". The density a' of the real

charge of S in the case of the hard body is — 1' cos (»,,- 7')

or k D
ni
(V + V) and the density a-" of the charge which

would be induced on S, if M were displaced by the soft

medium, is - 7" • cos (n,, I") or k D
>n (
VQ + V"). On S,

An ( V% + V) + D„
2 (
V + V) = - 4 ttA- D,

n
(

F

+ ro,

and (1 + 4 *k) D
ni (
V + V") + £>„ (

F

+ P') = 0,

or (1 + 4 nk) Dn V + D„
2
V'=-iirk- D,

n
V

,

and (1 + 4 irk) D,
n V" + 7>„

2
V" = - 4 irk D,

n
VQ .

If, now, u = F' — F", ?< is harmonic within and without $,

it vanishes canonically at infinity, and it is continuous on S,

where (1+4 irk) D u + D„
2
u = 0. It is easy to prove, with

the help of [149], that under these circumstances u must be

identically equal to zero, so that V and V" are identically

equal.

- We know from work done earlier in this section that when
a uniformly polarized sphere is placed in a uniform field of

force of intensity Xw so that the direction of the polarization

and this field coincide, the resultant field within the sphere is

a uniform field of intensity X — AttI/3 in the direction of

the polarization, and that the ratio of the polarization and the

force is the constant k = 3 7/ (3X — 4 7r7), or 3 /4 -k (x
— 1),

so that 7=3X [(1 +4 7rA-)-l]/4 7r[(l +4ttA-) + 2]. We
infer from this that if a sphere of soft medium of inductivity

/a were placed in a uniform field of force of intensity X in

a soft medium of unit inductivity, the sphere would become

uniformly polarized to intensity 3J„(fi — 1) /4 7r(
J

a + 2) and

that the uniform field inside the sphere would have the

direction of the outside field and the intensity 3Z" /(/x + 2).

Since in such a case as this the ratio of the inductivities of

the inner and outer media is alone important, we may say
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that, if a soft sphere of inductivity ^. 1
were placed in a

uniform field of intensity X in a soft medium of inductivity

(A,,, the sphere would become uniformly polarized to intensity

3 X (^ /fj.2
— 1) /4 7T (^ /V2 + 2),

or 3 X
{) (/*i

—
/*,) /4 7T (/*! + 2 /a2),

and that the intensity of the uniform resultant field within

the sphere would be 3X
t) / (^/^ -f- 2) or 3 /x^ZJ, / (^ + 2 /u.2)

.

That part, X
() (fj.x

— y.,) / (^ + 2 /j.2) , of the field within the

sphere which is due to the polarization alone, is negative, if

fi {
> fji2 , and is then called the self-depolarizing force.

If we note that in the analysis accompanying Figs. 51 and

52, x was defined by the equation X — 4 7r/^/3 and that

consequently x = (jH-i/th +" %) /(Pi/f-z ~ 1)> we may aPPty to

our present subject all the work there done. These figures

represent the lines of force for the cases ii1 //u,2
= oc and

/"•i//x2
= 4 respectively; the first corresponds to a perfect

conductor in a uniform electric field, or (approximately) to a

sphere of very soft iron in a uniform magnetic field in air.

The theory of the polarization by induction of a soft sphere

in a uniform field was first given by Lord Kelvin, and this

theory, with diagrams for /x, / jx2
= 2.8 and xi, / /x2

= 0.48, may
be found in his Reprint of Papers on Electrostatics and Mag-
netism. Very interesting figures, drawn for equal intervals

of the function m and corresponding to y^/ p.2
== 3, p*\/m = co,

are given on pages 373 and 374 in Professor Webster's Theory

of Electricity and Magnetism.

If an ellipsoid, made of inductively hard material and uni-

formly polarized [/ = (A, B, C)], be placed in a uniform field

of force (X , Y , Z ), the resultant field within the ellipsoid

will evidently be uniform and its components will be

X — 2 7rabcAK , Y — 2 irabcBL , Z — 2 nabcCM
;

the directions of the polarization and the field will not agree,

however, unless these components are as A : B : C, which will

be the case if
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A = kX /(l + 2 7rabckK ),

B=k F /(l + 2 7rabckL ),

C = kZ / (1 + 2 irabckM ),

where k is any constant. If the intrinsic polarization of the

ellipsoid satisfies these conditions, the ratio of the intensities

of the polarization and the field is k. We infer from this

that if a homogeneous ellipsoid of inductively soft material

of susceptibility k be placed in a uniform field of force in a

medium of unit inductivity, the ellipsoid will become uni-

formly polarized and that the components of the polarization

will have the values just given. The resultant field within

the ellipsoid will have the components

X /(l + 2 7rabckK ), F /(l + 2 irabckL,), Z /(l + 2 irabckM^)

and the self-depolarizing force the components

— 2 TrabcK A, — 2 TrabcL B, — 2 irabcM C.

These results may be expressed in terms of the inductivity /x

of the ellipsoid by writing (p. — l)/4 ir for k, and if, then,

the ratio ^ / [i2 be substituted for p, the formulas will corre-

spond to the case of a soft homogeneous ellipsoid of induc-

tivity /i, in a field of force in a homogeneous medium of

inductivity fi2 .

If we remember the expression already found for the

moment of the couple which a uniform field exerts upon a

uniformly polarized distribution in it, we shall see that in

the present case the components of this couple are

4 irate (BZ - Cr ) / 3, 4 irabc (CX - AZ
) / 3,

and 4 -n-abc (A Y - BX
) J 3,

or

8 TrWWk2YZ (M - L
) /3 (1 + 2 irabckM,) (1+2 wabckL ),

8 Tr*a
2
b
2
c
2k2ZX (K - MQ) /3 (1 + 2 wabcklQ (1 + 2 irabckM ),

8 7r
2a%'2c 2

A;
2X r (i - A" )/3(l + 2 vabckL ) (1 + 2^abckK

) ;
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and it is to be noted that, according to the reasoning of page

122, if a > b > o, K < L < 3I . If the lines of the field in

the air make an acute angle with the plane of xz and are

perpendicular to the z axis, Z
i)
= and X and Y are positive,

the axis of the couple is the axis of z, the moment is positive

(even for such negative values of k as occur in nature), and

the ellipsoid tends to turn so that its long axis shall have

the direction of the field.

For perfectly hard, intrinsically polarized bodies the gen-

eralized Poisson's Equation becomes

Dx(X+±TrA ) + I)
y
(Y+4:VB)+Dz (Z+ 4:1rC )= 4: vp

,

and if p — 0, as in the case of a hard magnet, the induction

(X+±ttAw Y+£ttBw Z + ±ttC,)

is solenoidal. Unless the intrinsic polarization happens to

have the same direction as the resultant force, or vanishes,

the lines of force and the lines of induction do not coincide.

In some cases, the directions of the force and of the polariza-

tion are exactly opposed, and the lines of force and of induc-

tion are opposite in .direction. Outside a hard magnet, where

the intrinsic polarization is nothing, the lines of force and of

induction are identical. At the surface of the magnet, where

there is no intrinsic charge except that which belongs to the

polarization, the normal component of the force is discontin-

uous, while the normal component of the induction is con-

tinuous. It is convenient, therefore, to regard the lines of

induction as closed curves. The lines in Fig. 50 represent

both lines of force and lines of induction, but it is to be

noticed that inside the sphere, where X= — 4 77-7/3, the direc-

tion of the lines of force is from right to left, while the direc-

tion of the lines of induction (since 1= + 8 7r//3) is from

left to right. The straight line of force through the centre

of the sphere is discontinuous in direction at the surface,

while the corresponding line of induction is continuous. The
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tangential components of the force are continuous at the sur-

face of a magnet, those of the induction discontinuous. The
normal component of the induction just within the surface is

{X+ 4 irA ) cos (x, n) + (T+ 4 ttB ) cos (y, n)

+ {Z + 4 7r C ) cos (z, ?i),

or the normal component of the force plus 4 7r times the

density on the surface belonging to the intrinsic polarization.

If we make a small cavity inside a generally polarized hard

body, the force at any point of the cavity is the original value

of F (that is, the negative of the gradient of the potential func-

tion at the point), minus the contribution due to the volume

charge removed, plus the force due to the new surface charges

which appear on the walls of the cavity. If the volume of

the cavity be made smaller and smaller, the contribution due

to the volume charge removed can be made as small as we
like, while the effect of the surface charges may remain finite.

Let the cavity be of the form of a piece of a slender tube of

polarization lying between two near orthogonal surfaces. In

this case there will be surface charges on the ends of the

cavity, but none on the side walls. These charges, of density

± 7", will be such as to drive a particle of positive matter in

the centre of the cavity to that end of the cavity towards

which the polarization is directed. If we reflect that a surface

distribution of finite sL;e, which has at the point P the density

<r, repels a unit point charge infinitely near P with a force of

2 7TO-, but that an element of the surface at P, infinitely small

with respect to the distance of a point charge from P, has no
perceptible effect upon this point charge, it will be easy to

see that, if the cross-section of the cavity is infinitely small

compared with its length, the force due to the surface charges
on the ends approaches zero as the whole cavity is made
smaller, and the force at the centre of the cavity is F. If,

however, the length of the cavity is infinitely small compared
with its cross-section, the force due to the charges on the

ends is 4 -n-cr, or 4 wl, so that the whole force is F + 4 ttI, or
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the induction at the point before the cavity was cut. If the

infinitely small cavity were spherical, the force at its centre

would be F+ 1 ttL

It is to be carefully noticed that we have no means of

determining an absolute inductivity for any medium, but only

the ratio of the inductivity of the medium to the inductivity of

some other medium taken as a standard. The unit quantity

of electricity is defined to be that quantity which concentrated

at a point at a distance of one centimetre from an equal

quantity would repel it with a force of one dyne, when the

dielectric is the ether. In any other homogeneous dielectric

of inductivity /x times that of the ether, e of these units of

electricity concentrated at each of two points distant r centi-

metres from each other would repel each other with a fore e

of e
2

1 jxr~ dynes, so that, if this medium had been used as a

standard, the unit of electricity would have been larger in the

ratio of V/a to 1 than it now is. If a charged conductor is

enveloped by an infinite, homogeneous dielectric, we may assume

the apparent charge on it to be its real charge and neglect the

polarization of the dielectric (and we do this when the dielec-

tric is the standard substance which we assume to have unit

inductivity, and hence no susceptibility) ; or we may suppose

the dielectric to be polarized, and consider the apparent

charge to be the algebraic sum of the real charge on the

conductor and the charge belonging to the polarization induced

on the dielectric. This we do when the dielectric is not the

standard substance, assigning to it a susceptibility based on

that of the standard substance which is the zero of our scale.

A simple illustration will tend to make the rather complex

relations which would attend a change in the choice of a

standard substance more intelligible.

A spherical conductor of radius a has a charge, E< and is

surrounded by three spherical shells of homogeneous dielectric,

concentric with it. the last reaching to infinity. The radii of

the spherical surfaces which separate the first (inner) dielectric
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from the second, and the second from the third, are b and

c respectively, and the inductivities of the dielectrics, referred

to some standard substance, are fi 1} /a 2 , and fx 3, or 1 + 4 irk^

1 + 4 7rA- 2 , and 1 + 4 irk z . If we apply Gauss's Theorem suc-

cessively to spherical siirfaces concentric with the conductor

and lying in the first, second, and third media, we learn that

the force (— Dr V) at a distance r from the centre has, in the

three media, the values E/ fixr
2
, E/fx2r

2
, E/ jx3r

2
. The con-

ductor acts like a medium of infinite susceptibility. The

induced polarizations in the three media are directed radially

outward, and their intensities are k^E/^r2
, k2E/fi2r% k zE//A3r

2
.

The densities of the apparent charges at the surface Sx of the

conductor and at the surfaces of separation S2 , S3 of the

dielectrics, regarded as manifestations of the polarizations, are

(j\ = E/± ira'
2 — kxE/nxa

2 = E/kira2^ on Sy ,

o"'2 = k\EI fx. xb
2 — koEJ fJiM

2 = E (ju-! — jU. 2)/4 Trb~fxijx2 on $2 ,

and a-'3
= k 2E/ /xoC

2 — k 3E/

^

3c
2 = E^ — fx3)/

'4 7rc
2
yu, 2jn 3 on Ss .

These same densities might also be found by the aid of the

ordinary characteristic equation of the potential function at

an apparently charged surface, Dn,V + Dn.V = — 4 71-0-'.

If instead of using the old standard we make the outer

dielectric of this problem the standard, the unit of electrical

quantity will be larger in the ratio of V^ to 1 than it was

before, and the old charge on the condenser will be E/^/fx3

expressed in the new units. The strength of a field at any

point being the force in dynes which would be experienced

by a unit of positive matter placed at the point, the number

which expresses the strength of a given field in the new units

is V^ times the number which expresses the strength of the

same field in the old units. The inductivities of the three

dielectrics are now [x x /ix3 , *t2 //*3j 1? anci- their susceptibilities

are

Oi - /* s)/4ir/*s or (&i - k 3)/(l + 4ttA- 3),

0*2 - /*s)/4*7*3 or (k2
- k 3)/(l + 4tt& 3), and 0.
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The strengths of the fields in the three dielectrics are

JBJ-vjis/ftif^, J?Vix 3 /n2r
2

, EVfi.3 /fi3 i-
2

;

the intensities of the polarizations are

^Oi - /*s)/4 tt V/x3 nir*, E(fi2
— /* 8)/4 7T V^3 fi 2r

2
, ;

and the apparent charges on Su S2, S3 have the densities

E V^ /4 ttci
2^, E(ni — p-2) ^Vz 14 TT&'V l/J-2,

and E (/jl.2
-

/j.3 ) V/* 3 /4 ircVsfts-

The sum of the apparent charges on /S1? #2, #3 is now Ef^/fiz ,

the real charge on the conductor expressed in the new units,

and the sum of the induced charges is zero. In the case first

treated, where the outer medium was supposed to be polarizable,

the sum of the apparent charges on Sx , S2, S3 was E/fi 3 , and

this, being expressed in the old units, is equivalent toE/~\fx3

in the new. The sum of the induced charges was the difference

between E//a3 and E or E(l — /i. 3)//x 3 ; in this case, however,

we must imagine the outer surface " at infinity " of the outer

medium to have an induced charge in total amount equal

to the integral of the normal component of the polarization

(ksE/(i3r
2
) over the surface, or 4 ttJc 3E / fi 3 , and this is equal

to E(/x3
— 1)//a3 , so that here, again, the whole amount of the

induced charge is, of course, zero. It is to be noted that this

finite charge at infinity does not affect the electrical field in

any way. We have seen that when the outer medium is

taken as a standard the inner medium has a susceptibility

(/*!
—

fi3)/4:7rfi3, and this is sometimes called the susceptibility

of a medium of inductivity fx x
with respect to a medium of

inductivity //. 3 . No medium has yet been found to be less

electrically susceptible than the ether. Some bodies are less

magnetically susceptible than the ether, so that their suscepti-

bilities are negative on the usual scale. These bodies are

said to be diamagnetic.

If a body of inductivity /xu bounded by the surface S, is

placed in a large mass of a medium of inductivity /x2 , the outer
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surface of which is so far removed from the place of observa-

tion that the apparent charge on it contributes little to the

field of force, the fact that the outer medium is really polarized

may be lost sight of ; and if we attribute the apparent charge

on S wholly to the polarization of the inner medium, instead

of regarding it as the difference between the charge of one

sign due to the polarization of the inner medium, and the

charge of the opposite sign due to the polarization of the

outer medium, the apparent susceptibility of this medium
will be (fii — /u.2)/47r/u.2 . If (jl2 is greater than fiu this will be

negative and the inner medium will seem to be polarized in

a direction opposite to that of the force.

If in any given case the direction of the vector I is every-

where perpendicular to the direction of its curl, it is possible

to cut a polarized distribution by a set of surfaces, u = c,

everywhere normal to the line of polarization. If surfaces of

this family be drawn for small constant differences, Am, of the

scalar point function u, the distribution will be divided into

shells, each of which is polarized normally to its surface. If

Arc. is the thickness of one of these shells at a given point and

I the average intensity of polarization on a line of polariza-

tion drawn through the shell at the point, I An is called the

strength of the shell at the point. Since Dnu = hu , the value

of the gradient of u, the strength of a shell of infinitesimal

thickness can be written I-du/hu . A shell is said to be

simple if I/hu has the same numerical value all over it;

otherwise the shell is said to be complex.

If A, B, C are the intensities of the components of the

vector /, the fact that the lines of I coincide with the nor-

mals to the surface u = c gives the scalar equations

A/I = Dxu/hu, B/I= D
y
u/h u, C/I= D

z
u/hu ;

and with the help of these the vector

[D
y
C - D,B, D

Z
A - DX C, DXB - D

(

,A\
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which is the curl of 7, may be written in the form

lDzu.By
(I/hu)-Dy

u-Dz(I/hu),

Dxu Dz (////„) - Dzu • Dx {I/hu),

D
y
u Dx (I/hu) - Dxu D

V(I/K)] .

If, now, the scalar quantity I/hu has the same numerical

value over eveiy surface of constant u, it must be, if not

everywhere constant, a function of u only, so that

Dx (1/ h„) : Dxu = Dy (// h u) : D
yu = Dz {If hu) : Dzu,

and if these relations are satisfied, the components of the curl

of I vanish, and the polarization is lamellar. Every lamel-

larly polarized distribution may be divided up into simple

.. P

Fig. -'A.

polarized shells ; if the polarization is not lamellar, but if the

directions of this vector and its curl are everywhere perpen-

dicular to each other, the distribution, as we have seen, may
be divided up into shells, but these will not be simple.

The potential function due to a polarized element of moment
M has at a point, P, distant r from the element, the value

Mcos.a/r2
, where a is the angle which a line drawn from the

element to P makes with the direction of polarization in the

element. If a very thin simple shell be divided up into ele-

ments of length equal to the thickness (Arc) of the shell and

of cross-section equal to an element (A#) of one surface of

the shell, the moment of each element is AS- I\n, and if

IAn, the constant strength of the shell, be denoted by <£, the
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potential function due to the shell has at any point, P, the value

limit <£ / cos(r, n) A$/r2 = $oj, where u> is the solid angle

subtended at P by the boundary of the shell. This value is

positive if, in looking out from the vertex P within the conical

surface which passes through the boundary of the shell, one

sees the positive side of the shell. If, while the strength of

the shell is unchanged and the boundary fixed, the shell itself

be imagined deformed in any way, the value at P of the poten-

tial function due to the shell will be unchanged so long as P
is on the same side of the shell. The potential function due to

a closed simple shell of any form is zero at every outside point

and ± 4 7r^> at every inside point, where the positive sign is to

be used if the positive side of the shell is turned inwards.

If P and P' are two points close to each other on opposite

sides of a simple, very thin shell, S, of strength 3>, and if

VP and VP . are the values of the potential function at P and P',

due to S, we may imagine the shell closed by an additional

shell also of strength 4> which shall add to the potential func-

tions at each of the near points P and P' the quantity x. If

P is within the closed shell, P' will be outside, so that

V + x = 0, V + x = ± 4 tt®, or . V - V = ± 4 tt$.

The potential function due to an infinitely thin, open or closed,

simple polarized shell is, therefore, discontinuous at the shell

by ± 4 7r times the strength of the shell.

The potential energy of a magnetic north pole of strength m
at a point, P, near a simple, finite magnetic shell is ± ?»3>a>,

and if P is on the positive side of the shell, m&u ergs will be

done by the field on the pole if it be carried to infinity by any
path. If the pole be carried around the edge of the shell from
a point very near the shell on the positive side to a point very

near the first but on the negative side, the work done on the

pole by the field will be 4 win® ergs.

In general,

>m cos (n, r)
m3>co — 4>$f

)lC0*p r)
ds,
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where r is the distance from dS to P, and n is the normal to

the shell on the positive side. If the directions of both r and

n were considered reversed, the value of the integral would be

unchanged, but it would then more clearly represent the sur-

face integral, taken over the shell, of the normal component

towards the negative side of the shell of the force due to mag-

netic pole at P. If, instead of a single pole at P, there is any

collection of poles at different points or, indeed, any magnetic

distribution, M, the mutual potential energy of the shell and

this distribution is equal to<l> times the flux of magnetic force

due to M in the negative direction through the shell.

A simple magnetic shell in a magnetic field, Hm due to

matter outside the shell tends to move so as to decrease the

Fig. 55.

mutual potential energy of the shell and the field, and this

quantity, as we have just seen, is equal to the negative of the

product of the strength of the shell and the number N of

lines (unit tubes) of force due to the field which cross the

shell in the 'positive direction. The shell, therefore, tends to

move so as to make N as great as possible. If the shell be

displaced parallel to itself through a very short distance, du,

in any direction, the limit of the ratio of the loss of energy

(+ <S>-dN) caused by the displacement to du (i.e., & DUN)
measures the force U, which tends to move the shell in this

direction.

If we suppose that the shell in being displaced does not

encounter any of the magnetic matter which gives rise to the

field, II will be a solenoidal vector within the cylinder
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generated by the shell, so that the integral of the normal out-

ward component of HQ taken over the surface of the cylinder

will be zero. The shell in its initial and final positions forms

the ends of the cylinder, and these together contribute dN
to the surface integral, so that the convex surface must con-

tribute — dN. If ds is an element, measured in the positive

direction about the shell, of the curve which bounds the shell

in its original position, and if dS is the element of the convex

surface of the cylinder generated by ds,

dS = ds du sin (du, ds)
;

the magnetic induction through this element due to the

magnetic matter outside the shell is

H cos (n, If
()) sin (du, ds) du • ds,

and this integrated with respect to s is equal to — dN, or

to — TJdujQ. Therefore,

U = — <J> I H - cos (n, H ) • sin (du, ds) • ds,

and the component in any direction (u) of the whole force on

the shell may be expressed as a line integral taken around the

curve which bounds the shell. The integrand vanishes at any

point where u is parallel to J£ or to ds, but if at any point u

happens to be perpendicular to the plane of H and ds, the

integrand becomes If sin (Hw ds), the component of the field

perpendicular to ds. If, with this fact in mind, we choose at

every point on the curve a direction, p, perpendicular to the

plane of H and ds, so that

cos (p, ds) = and cos (p, H ) = 0,

and remember that cos (n, ds) = 0, cos (u, n) = 0, we may
easily prove that

Hq cos (n, Jf ) sin (du, ds) = Hn sin (Hw ds) cos (p, u).

This shows that U may be mathematically accounted for by

assuming that every element of the curvilinear boundary of

the shell is urged in a direction perpendicular to the field and
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to the element, by a force numerically equal to the product

of the length of the element, the strength of the shell, and

the component perpendicular to the element of the field, JI
iy

If the field is due to a single magnetic pole of strength m
at a point, P, distant r from els, the force on the element

would be ?»,<!>• sin (r, els) els/r2, and the force exerted by the

shell on the pole would be accounted for by assuming that

every element, els, of the boundary of the shell contributed

an elementary component, m<& • sin (r, els) els/r2
, in a direction

perpendicular to the plane of P and els.

Vector Potential Functions of the Induction.

Every vector, K, which, except in a given finite region, T,

is everywhere continuous, solenoidal, and lamellar, has in

simply connected space outside T an easily found scalar poten-

tial function, W, which satisfies Laplace's Equation. We may
assign to W at pleasure a numerical value at any given point,

0, and define the value of W at any other point, 0', to be the

line integral of the tangential component of K taken along

any path from to 0' which does not cut T. The partial

derivatives with respect to x, y, and z of W thus defined

outside T are evidently equal at every point to the compo-

nents of A' parallel to the coordinate axes, and, since K is

solenoidal, V 2W = 0. If K so vanishes at infinity that the

limit of the product of its intensity and the square of the

distance (r) from any finite point is finite, the limit of

r2 DrW is finite, and if we assign to W the value zero at

any point at infinity, its value everywhere at infinity will

be zero. If K is continuous and if it vanishes at infinity in

the manner just described, and is known to be everywhere

solenoidal and lamellar, it must vanish everywhere; for, if

we apply [151] to the harmonic function W within an infinite

sphere, it will appear that W, which vanishes at infinity, is

identically equal to zero. The vector which represents the

force in the case of a charged spherical conductor is solenoidal
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and lamellar within and without the conductor, and it vanishes

properly at infinity, but it is discontinuous at the surface of

the sphere. It is usually convenient to assume that the

integral of the normal component of a vector, taken over any

closed surface at which the vector and its first derivatives are

continuous, is equal to the integral of the divergence taken

through the space within the surface, even though at some

inner surface the vector is discontinuous. On this assumption

the vector just mentioned is not solenoidal on the surface of

the conductor, for it has there divergence equal in total

amount to 4 -k times the charge.

The line integral of the tangential component of a vector,

taken around a closed curve on which this component is con-

tinuous, is generally used as a measure of the integral of the

normal component of the curl of the vector taken over a cap, S,

bounded by the curve, even though at some curve on S the

vector ceases to be continuous.

A vector cannot be considered lamellar at a surface where,

though its normal component is continuous, some of its tangen-

tial components are discontinuous.

If two continuous vectors, U and U', which so vanish at

infinity that r2U and r'
2 U' have finite limits, have at every

point in space equal curls and divergences, and are lamellar

and solenoidal outside certain given finite regions, they are

identical ; for the difference between these vectors is every-

where lamellar and solenoidal, and it vanishes at infinity in

such a manner that the product of its intensity and the

square of the distance from any finite point is finite. This

theorem may be extended to the case where U and V, though

not everywhere continuous, have identical discontinuities.

If Nj, i x , rju £t represent the numerical values at the point

(x x , ?/i, z
x) of the divergence and the curl components of the

A^ector Z7, which outside a given region is everywhere continu-

ous, lamellar, and solenoidal, and which so vanishes at infinity

that r2U has a finite limit ; if

r2 =
(Xl

- xf + 0a- yf + (*,- zf;
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and if

--hiss*** *.-hSSP*>

in which the integrations are to he extended over all space, or

at least over all space where U is not lamellar and solenoidal

;

we know from the theory of the Newtonian potential function,

where similar integrals have been studied, that, if N, ft -q, £

are the divergence and the curl components of U at (x, y, z),

V2F = N, V 2FX = - ft V 2F
y
= - V, V 2F

Z =-l
The divergence of the vector F, which has the components

Fx, Fv, Fz , is equal to

/// [ft • Dx (1 /r) + m D
y (1 /r) + & • Dz (1 /r)] dru

and, since Dx (l/r)= — DXi
(1/r),

and -
ft

• D
Xi (1 fr) = DJ,fr-D^ (ft fr),

we may write this by the help of Green's transformation in

the form

fffi^A + D«Sli + *>M /r • dn

[ft
• cos (x, n) + 7)! cos (y, n) + £x

• cos (z, «)] /r dSv//I
where the second integral is to be taken over the outer boundary

of space. The integrand of the triple integral vanishes every-

where, because the vector (ft -q, £), being the curl of another

vector, is itself solenoidal. The field of the double integral is

in a region where U is lamellar, so that the integral itself

vanishes and F is seen to be solenoidal for all values of x, y,

and z.

Prom these results it appears that the vector which has for

its components (DXE plus the x component of the curl of F),

(D
y
E plus the y component of the curl of F), (DZE plus the
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z component of the curl of F) has everywhere the same curl

and the same divergence as U and vanishes like it at infinity,

so that it is identically equal to IT. DXE, Dy
E, DZ

E are

the components of a lamellar vector, and the curl of F is

solenoidal, so that the vector U, which is not everywhere

either solenoidal or lamellar, is everywhere expressible, as

was first shown by Helmholtz,* as the sum of a solenoidal

and a lamellar vector. The equations

Ux = DXE + Dy
Fz
- DZFV , U

y
= D

y
E + DZFX - DXFZ ,

Uz
= DZ

E + DxFy
- D

y
Fx

give any vector, U, which is known to vanish properly at

infinity, when its curl components and its divergence are

known. If U is solenoidal, E vanishes and F is a vector

potential function of U. Every lamellar vector has a scalar

potential function the component of the gradient of which, at

any point, in any direction, gives the intensity of the compo-

nent of the vector at that point, in that direction. The com-

ponent at any point, in any direction, of the curl of a vector

potential function of a solenoidal vector gives the intensity of

the component of the vector at the given point, in the given

direction. Heaviside gives the name "circuital" to a vector

which is solenoidal but not lamellar, and the name "diver-

gent " to a vector which is lamellar but not solenoidal.

If pi is a function of x1} yu zu and if r2 stands for the

expression (x — a^) 2
-f (y — ?/j)

2 + (z — z{)
2
, the familiar inte-

gral ( I ( d&i d>/i dz x , extended over all space, is a function

of x, y, z, which Prof. J. Willard Gibbs in a remarkable paper f

has denoted by the symbol Pot p. Using this notation, we
may write

4,1
-
JE = -PotN, 4^ = Pot & 4 irF

y
= Pot v,

4wi^=Pot£;

* Crelle's Journal. Bd. LV, 1858.

t Elements of Vector Analysis, § 92. See also Heaviside's Electrical

Papers, XXIV.
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and if we represent by Pot curl U the vector which has for

its components Pot £, Pot rj, Pot £, we have the vector equation

4 ttF= Pot curl U, and if U is solenoidal, 4 -kU= curl Pot curl U.

If U is solenoidal, 4 -n-U = curl curl Pot U = Pot curl curl U,

and curl Pot U is a vector potential function of 4ttU, or

Pot U is a vector potential function of a vector potential

function of 4 it U. In the case of any polarized distribution

whatever, provided there is no intrinsic volume density p , the

induction is solenoidal and has a vector potential function.

II. ELECTROKINEMATICS.

70. Steady Currents of Electricity. When a charged body

A is brought up into the neighborhood of a previously

uncharged, insulated conductor B, the two kinds of elec-

tricity which, according to our provisional theory, exist in

equal quantities in every particle of B tend to separate

from each other and, as . a consequence, free electricity

appears on J5's surface, some parts of this surface becoming

charged positively and other parts negatively. If A is brought

into a given position and fixed there, the distribution on the

surface of B quickly attains and keeps a value determined by

the fact that the whole interior of B must be a region at con-

stant potential, or, in other words, that the resultant force at

any point within B due to the free electricities on its surface

must be equal and opposite to the force at that point due to all

the free electricity outside B. If, now, A with its charge is

moved to a new position, the old distribution on B's surface will

not in general screen the interior of B from the action of A's

charge, and a new separation of electricity within B and a new

arrangement or combination of the charge on the surface is

necessary before a new state of equilibrium can be established.

If A be moved continuously in any manner, there will be a con-

stant attempt on the part of the separated electricities to set
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up a state of equilibrium, and hence at every point of B there

will be, in general, some electrical change going on continually.

If two conductors A and B at different potentials be con-

nected by a fine wire, the whole will form a single conductor,

which can only be in a state of equilibrium when the value of

the potential function due to all the free electricity in existence

is constant throughout its interior, and there will be such a

transfer of electricity through the wire as will establish this

state of equilibrium in a very short time. If, however, by any

device we can furnish unlimited quantities of electricity to A
and B in such a way as to keep them at the same potentials as

at thp beginning, there will be a continual attempt to establish

electric equilibrium within the compound conductor consisting

of A, B, and the wire, and, as a result, there will be a continual

transfer of electricity through the wire.

The transfer of electricity from one place to another through

a conductor is a veiy common phenomenon. Sometimes, as we

have seen, electricity traverses the conductor for a short time

only ; sometimes, however, the transfer goes on indefinitely,

and, so far as we can judge from its attendant phenomena, at

a constant rate, so that just as much of a given kind of elec-

tricity crosses any surface within the conductor in any one

second as in any other : such a continuous steady trail; fer as

this is called a " steady current."

The existence of a steady current in a conductor implies a

force tending to drive electricity through the conductor ; that is,

it implies, at least in the absence of moving magnetic masses

and of electric currents in the neighborhood of the conductor,

free electricity somewhere in existence which gives rise to a

potential function not constant throughout the conduclor. No
part of a conductor through which a steady current is flowing

can accumulate free electricity as the time goes on, for such an

accumulation increasing with the time would be accompanied

by changes which must show themselves outside the conductor.

We are led to assume, then, that if any closed surface be drawn

inside a conductor which carries a steady current, just as much
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electricity of a given kind enters the region enclosed by the

surface in any interval of time as leaves it during that interval.

We have seen that at every point inside a conductor where

there is a resultant electric force there will be an electric sepa-

ration which will go on as long as the force exists. Experi-

ment seems to show that the rate of separation of quantities of

electricity is proportional to the magnitude of the force. Let

P be a point of a small plane area w inside a conductor, and

let F be the average value during the interval from t to t-\-At

of the component of the electric force normal to this area ; then

in what follows we shall assume that the amount of positive

electricity which crosses this surface, in the sense in which the

force points, during the interval is k • w • F • At, where k is a con-

stant depending only upon the material of which the conductor

is composed and upon its physical condition. The average

value of this flux per unit of time per unit of surface is, there-

fore, k • F. If, now, w and M are made to grow smaller and

smaller in such a manner that P is always a point of <->, F ap-

proaches as a limit the negative of the value at P of the deriva-

tive, taken in the direction in which F acts, of V, the potential

function due to all the free electricity in existence ; so that at

any instant the value at a point, P, in any direction, w, of the

rate of flow of positive electricity across a surface normal to w,

per unit of this surface per unit of time, is the value at P
of - k • Dn V.

It follows from this that if any tube of force be drawn in a

conductor which carries a steady current, there is no flow

through the sides of the tube. Consider a region shut in by a

tube of force and by two equipotential surfaces inside a con-

ductor through which a steady current is flowing. Let t^ and w2

be the areas of the equipotential ends of the region, and let F
t

and F2 be the average values of the normal force, taken in the

same sense in both cases, over these ends. Applying Gauss's

theorem to this region we have F2 <o2
— F

l
<o

1
= 4ttQ, where Q is

the amount of free electricity, algebraically considered, within

the region. If the conductor is homogeneous, the amount of
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positive electricity which enters— or the amount of negative

electricit}' which leaves — the region by one end per unit of

time is fci^ • w1 , and the amount which leaves it at the other end

is kF2 • w2 . These amounts are equal, so that F2w2
— F^ = ;

hence, Q = 0, and there is no free electricity at any point within

a homogeneous conductor which carries a steady current. The
free electricity which gives rise to the potential function the

rate of change of which is proportional to the flow of electricity

within the conductor, must then lie either outside the conduc-

tor, or on its surface, or both. It would not be difficult to

prove that there must be a distribution of electricity on parts

of the surface of every conductor which carries a steady current

and is in contact in some places with an insulating medium
;

but the fact that a wire through which such a current is passing

may be moved about so as to change its position with respect

to outside bodies without changing the amount of the current

will suffice to make it probable that a part, at least, of the free

electricity that we have been considering moves with the wire.

Since the density of the free electricity within a conductor

which carries a steady current is zero, the potential function

V, inside the conductor, must satisfy Laplace's Equation

;

that is, v2 I
r=0. It is easy to see, since there can be no

accumulation of free electricity in any conductor which bears

a steady cm-rent, that the amount of electricity which comes

up on one side to the common surface of two such conductors

which are in contact must be equal to that which goes away
from this surface on the other ; that is, at every point of

the surface, kx
• DnVx = Jc2 - DnV2 , where fcx and k2 are the spe-

cific conductivities of the two conductors, and Dn Vi and DnV2

the values at the point, taken in the same sense in both cases,

of the derivatives of V in the direction of the normal to the sur-

face, one on one side of the surface, and the other on the other.

It is to be noticed that the boundary between two such con-

ductors may or may not be an equipotential surface. At every

point of the common surface of a conductor and an insulating

medium 1c • DnV=0 or Dn V=0; hence the equipotential sur-
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faces within the conductor cut the surface where the conductor

abuts on the insulating medium at right angles.

71. Linear Conductors. Resistance. Law of Tensions. Let

us consider the case of a linear conductor, that is, one in which

all the lines of force are parallel to each other and to the sides

of the conductor, so that every tube of force has a constant

cross-section throughout that part of its length which lies in the

given conductor. It will appear later on that any right cylin-

drical conductor, whatever the form of its cross-section, will be

a linear conductor, if every point of one of its ends be kept

at one constant potential, and every point of the other end at

another. It will also be evident that such wires as are ordinarily

used for making electrical connections are, to all intents and

purposes, except perhaps at the very ends, linear conductors,

whether these wires are straight or curved. Let the ends of a

homogeneous long uniform straight wire of constant cross-

section q, and of length I, be kept respectively at potentials

V and V". Take the axis of the wire for the axis of x, and

the origin at that end of the wire at which the potential func-

tion due to all the free electricity in existence is V ; then every

line of force inside the wire is parallel to the axis of x ; and

since there is no force in any direction perpendicular to the

axis of x, DyV= l5 Dz V=0, and Laplace's Equation, which

must be satisfied by V inside the wire becomes Dx
2V=0,

whence V= Ax + B ; or, since V=V when x = 0, and V= V"
when x = £,

v= (V»-V>)x lV,

The steady current c which traverses the wire carries across

every right section in the unit of time — kq • Dx V units of posi-

tive electricity in the positive direction of the axis of x. That is,

where k is the specific conductivity of the material out of which

c= -kq.DxV= f

f(V'-V"),
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the wire is made. The quantity l/kq is called the resistance

of the wire, kq/l its conductivity. The quantity k is a

function of the temperature. In the case of a pure solid

metal at any ordinary temperature a rise of 1° C. will

increase 1/k by about 0.004 times its own value. This

fractional increase is much smaller in the case of some

alloys: for "manganin" at room temperatures it is not more

than 0.00001.

The analysis of this section assumes that the homogeneous

linear conductor is at the same temperature throughout and

that it is not surrounded by a changing magnetic field.

It is an important physical principle, first enunciated in a

slightly different form by Ohm, that if a fixed portion of the

surface of a given homogeneous conductor be kept constantly

at potential f\, and another fixed portion at potential V2 , while

the rest of the surface of the conductor is in contact with an

insulating medium, the ratio of Vy
— V2 to the steady current

which traverses the conductor,— as measured by the quantity

of positive electricity per unit of time which either enters the

conductor through the surface V = Vx or leaves it through the

surface V = V2 ,
— is a quantity independent of Vx and V2 .

This ratio is called the resistance of the conductor under the

given circumstances. The resistance of a conductor depends

not only upon its shape, the material of which it is composed,

and the temperature and other physical conditions of this

material, but also upon the shape, size, and position of those

portions of the surface which are kept at the potentials Vx and

V2 . The resistance of so much of a tube of force drawn in a

conductor which bears a steady current as lies between the

equipotential surfaces V = V1 and V = V2 is the ratio of V1
— V2

to the amount of positive electricity per unit of time which

enters the portion of the tube which we have been considering

through the surface V— Vu or leaves it through the surface

V— V2 , or crosses any section of the tube in the direction indi-

cated. Any electric change which, under the same conditions

of temperature and pressure, will leave this tube of force still
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a tube of force and its equipotential ends still equipotential,

however the value of the potential function may be changed,

will, according to this law of Ohm, leave the resistance the

same. Other things being equal, the resistance of a tube of

force increases with the length of the tube and diminishes as

the section of the tube is made greater.

Suppose that we have a series of linear conductors joined

end to end in a closed ring, so that the end of the nth conductor

is in contact with the beginning of the first. Let Vm ' and Vm "

be the values of the potential function at the beginning and end

of the rath conductor, and rm the resistance of this conductor.

Since the same current c must traverse every conductor of the

series, we have

and, if we add them together, we shall get

. _,
( *V - *V') + ( *V - *V') + ( *V - v*") + •••+( *V - vH

")

where V2
' — Vx

" is the difference between the values of the

potential function on opposite sides of the surface common to

the second and first conductors, V3
' — V2

" the corresponding

difference for the third and second conductors, and so on

around the ring. If the sum of these differences is not zero, the

circuit is said to be the seat of an electromotive force.

We may here assume that when any two conductors, at

the same temperature throughout, but made of different mate-

rials, are placed in contact with each other, a discontinuity*

of the potential function suddenly appears at their common

* Although the language of the old "Two Fluid Theory 1
' is used in

this chapter, the reader is strongly urged to make himself acquainted with

the physical theories now commonly used in accounting for electrical

phenomena. See Dr. O. J. Lodge's papers " On the Seat of the Electro-

motive Force in the Voltaic Cell," printed in the Philosophical Magazine

for March, April, May, and October of 1885, and his " Modern Views of

Electricity," a series of contributions to Nature, begun in 1886.
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surface. The amount of this discontinuity, which remains con-

stant after it has once been established, is the same for all

points of the common boundary of the two conductors, and is

independent of their size and shape, of the extent of surface in

contact, and of the absolute values of the potential function on

either side of the boundary. We shall represent the sudden

fall in the value of the potential function encountered by pass-

ing from a conductor made of material A to a conductor made
of material B across any point of their common surface b}' the

symbol A
\
B. A certain class of substances, to which all

metals belong, has the property that if I>, Jlf, and N are any

three of these substances, all at the same temperature,

L
|
M+M\ N=L

|
N.

This class is said to obey " Volta's Law of Tensions." If a

number of conductors made of different kinds of metals all at

the same temperature be placed in line, the first in contact with

the second, the second with the third, and so on, the algebraic

sum of the jumps of the potential function encountered ingoing

from the first conductor to the last through all the others is

exactly the same in amount as the single jump which would

occur at the common surface of the lirst and last conductors if

they were put directly in contact with each other. Some other

substances besides metals obey the Law of Tensions, but most

liquids and solutions, whether in contact with each other or with

metals, do not obey this law.

The sum of the jumps in the potential function encountered

in passing from copper to zinc by way of an iron conductor is

the same, if the whole be at one temperature, as the jump

encountered in passing directly from copper to zinc. But this is

not equal to the sum of the jumps met with in passing from

copper to zinc through sulphuric acid.

Cu
|
Fe + Fe

|
Zn = Cu

|
Zn,

but Co
|

(H2S04 ) + (H,S04) |
Zn^Cu

|
Zn.

The numerator of the expression just found for the intensity

of the current which traverses a closed chain of linear conduc*
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tors is evidently the algebraic sum of the "jumps" in the

potential function encountered by travelling in the direction

in which the current is supposed to move, from the first

conductor to the last through all the others, and reckoning

the jump at any boundary positive if the value of the poten-

tial function is increased as one crosses the boundary. If all

the conductors which form the circuit are metallic and all at

the same temperature, whether or not they are all made of the

same kind of metal, this numerator is zero, and it follows that

in order that a steady current may traverse a circuit of con-

ductors, one at least of the conductors must disobey the Law
of Tensions.

The same formulas apply to a circuit composed of conduc-

tors of any form if each of the common surfaces of contigu-

ous conductors is equipotential.

Every slender tube of force in a homogeneous conductor

which carries a steady current is also a tube of flow and

constitutes a current filament. We shall hereafter apply

the term linear only to conductors which have very small

cross-sections.

72. Electromotive Force. We have seen that if a number

of homogeneous conductors made of different materials be

connected in series to form a heterogeneous conductor K,

there will be discontinuities in the electrostatic potential

function within K at the common surfaces of adjacent con-

ductors. If an equipotential surface A near one end of A' be

kept at potential VA , and an equipotential surface B near the

other end of K, at potential VB , and if the algebraic sum of

the discontinuities of potential between A and B, counting a

step up as positive, is E, the current in K from A to B will be

(VA — VB + E) /r, where r is the resistance between A and B.

In such a case as this, VA — VB is called the electrostatic or

external electromotive force, and E the internal or intrinsic elec-

tromotive force. If K forms a closed circuit, all the electro-

motive force may be regarded as internal. In this connection
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it should be said that, although physicists are not all in

agreement as to the magnitude of the discontinuity of poten-

tial at the surface of contact of any two given dissimilar

conductors, there is no difference of opinion as to the alge-

braic sum of these discontinuities in the case of any closed

circuit.

If one end of a hetero-

geneous cylindrical con-

ductor K, of given
resistance r, formed of

homogeneous cylindrical

conductors in series, be

kept at a given poten-

tial V\ and the other end

at the given potential V2 ,

the value of the potential

function will depend very

much upon the constitu-

tion of K. Three different

cases are illustrated in

Fig. 56, in which abscis-

sas represent resistances

and ordinates the corre-

sponding values of V.

In these figures A is sup-

posed to be an electro-

lyte, while L, M, N are

metals : Vt = 2, V2 = 0.5,

^1^=0.8, A\M= 1.8,

N\M=0. The current

strength (indicated by the slope of the line which gives

the value of V) is evidently different in the different

diagrams.

Fig. 57 represents Fin a long chain made of two metals P,

Q, and an electrolyte R, such that R |
P is small, R

I Q still

smaller, and P
| Q zero. Here the ends are at the same

Fig. 56.
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^^

potential, and there are no great potential differences any-

where in the chain, but the current (as indicated by the

slope of the V line) is large, as is the sum of the small

discontinuities which go to make up the electromotive force

in the chain.

A galvanic battery may be regarded as a chain of three

or more generally non-linear conductors, at least one of which

disobeys the Law of Tensions. The algebraic sum of the

jumps in the potential function encountered by starting at

that pole of a galvanic battery at which the

potential is less, and passing to the other

pole through the battery, is the electromotive

force of the battery. The difference of poten-

tial between copper wires attached to the open

poles of the battery, measures this electromotive

force. Chemical action goes on inside every

Fig. 57. battery when its poles are closed ; some of its

solutions are decomposed, and the products of

this decomposition often appear at the boundaries of the liquid

conductors inside the battery and decrease the electromotive

force by changing the amount of jump in the potential func-

tion at each of these boundaries. For this reason the electror

motive force of a battery in action may be much less than

when the poles are open.

If two points, P and Q, in a network of conductors which

carry a steady current, be connected by an additional wire

conductor, K, containing a battery of such electromotive force,

e, and so directed as to prevent any current from passing

through K, e measures the difference of potential between P
and Q. It is easy to show that when the poles of a battery

are closed by a conductor of resistance R, the difference

between the values of the potential function at the ends of

this conductor is RE / (B + R), where E is the electromotive

force of the battery under the given circumstances, and B
the resistance of the conductors which make up the battery

itself. The steady current which flows through the circuit
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carries E / (B + R) units of positive electricity across every

cross-section per unit of time. With a given battery the

intensity of the current can be changed very much, of course,

by increasing or decreasing the resistance of that part of the

circuit which lies outside the battery.

In the centimetre-gramme-second system of electrostatic

[E.S.] absolute units, the unit of electric quantity is that

quantity of electricity which, if it could be concentrated

at a point in air, would repel a like quantity concentrated at

a point 1 centimetre from the first with a force of 1 dyne.

This unit is found inconveniently small, however, when one

has to deal with such steady currents as are usually met
with in practice, and the coulomb, which is equal to about

3 x 109 of these absolute units, is the practical unit of

quantity most frequently used.

The absolute E.S. unit of current carries the absolute unit

of electricity past any point in its course each second. A
current of a coulomb per second (equivalent to 3 X 10 9 of

these absolute current units) is called an ampere.

The absolute E.S. unit of resistance is 9 X 10u times as

large as the practical unit called the ohm. The latter is the

resistance of a column of pure mercury 1 square millimetre

in section and 106.3 centimetres long, at 0° C. The resist-

ance at 0° C. of a wire of pure copper 1 millimetre in diameter

and 1 metre long is about 0.01642 ohm.

The absolute E.S. unit of difference of potential is

equivalent to 300 practical units. The practical unit,

called the volt, is such that if the two ends of a wire of

1 ohm resistance were kept at 1 volt difference of poten-

tial, the steady current which traversed the wire would

carry past any cross-section 1 coulomb of electricity per

second.

A condenser which requires 1 coulomb of electricity to

charge it, so that the difference of potential between its

poles is 1 volt, is said to have a capacity of 1 farad. A con-

venient unit of capacity is the microfarad or the millionth
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of a farad. It is equivalent to 900,000 absolute E.S. units

of capacity. The capacity of a conducting sphere 9 kilo-

metres in radius would be 1 microfarad, that of the earth

something over 700 microfarads. The capacity of a nautical

mile of such ocean telegraph cable as is usually laid may be

taken to be about £ microfarad.

73. Kirchhoff s Laws. The Law of Divided Circuits. From
what has been proved in the preceding sections about conduc-

tors which carry steady currents, follow two theorems of much
practical importance, called Kirchhoff's Laws.

I. If several wires which form part of a network of conductors

carrying a steady current meet at a point, the sum of the inten-

sities of all the currents which flow towards the point through

these wires is equal to the sum of all those which recede from

it ; or, in other words, the algebraic sum of all the currents

which approach the point through the wires which meet there

is zero.

II. If, out of any network of wires which form a complex

conductor and carry a steady current, a number of wires which

form a closed figure be chosen, and if, starting at any point,

we follow the figure around in either direction, calling all cur-

rents which move with us positive, and all discontinuities of

the potential function which lift us from places of lower

potential to places of higher potential positive, the algebraic

sum of the products formed by multiplying the resistance of

each conductor by the current running through it, is equal to

the algebraic sum of the jumps in the potential function

which we encounter in going completely around the figure.

The first of these laws is an immediate consequence of the

fact that there can be no growing accumulation of free elec-

tricity anywhere in a circuit which bears a steady current.

To prove the second law, let av a
2 , a s ,

• a n be n linear con-

ductors, which, taken in order, form a closed figure, itself a

part of a complex conductor which carries a steady current.

In passing from a
x
to an through all the other conductors, let.
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Vj and Vj" be the values of the potential function at the

beginning and end of the yth conductor, and let r
5
and Cj be

respectively the resistance of this conductor and the value of

the current running through it. Then, from the definition of

the term "resistance," we have the following equations :

Y\ — ' 1 — L
\
r
\ >

V

2

y 2 — °2'2 )

V ' — V " = r r • ...V '— V" = or •

or, adding them all together,

<Vi + c2r2 + c3rz + • • • + cnrn
= V2'-T\" + V3

' -¥," + ¥*' r3
" + --- + r1 -Fn ",

which is the statement of this

law.

If electricity is free to pass

from a point P to another point

P' by two wires of resistance 1\

and 7*2, respectively, and if a

steady current be flowing from

P to P', the current will be

divided between the two wires

in the inverse ratio of their

resistances or in the direct ratio

of their conductivities. For, if

V and V be the values of the potential function at P and P',

we have V— V — c,r, and V—V = c9r9 , whence c, : c, = r9 : r,.

Fig. 58.

Moreover,

or,

Cl + c2=(F-

V-V 1

V) ^
c
: + c2 1 1- + -

The expression in the second number of the last equation

is, by the definition of the term, the resistance of the com-

pound conductor formed of the two which join P and PK
It is evident that the conductivity of this conductor is the
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sum of the conductivities of the two wires of which it is

composed.

If n conductors be joined up in parallel to form a compound
conductor, the conductivity of the latter is the sum of the

conductivities of the constituents, and its resistance is the

reciprocal of the sum of the reciprocals of their resistance.

If four conductors the resistances of which are p, q, r, and

s form a quadrilateral (Fig. 58) one pair of vertices of which

are connected by a wire of resistance g and the other pair by a

conductor of resistance b containing a battery of electromotive

force E, we have an arrangement of much practical importance,

which is often called Wheatstone's Net. If we denote the

strength of the current through the cell, in the direction indi-

cated by the arrow in the figure, by C, and the currents in

the other conductors by Cp , C
q , Cr , Cs , and C

g
respectively,

Kirchhoff's Laws yield the equations

c =cp +cq
=cr+c8 , cp =cg

+c,.,

C
Q
=CS -Cf„ p.Cp -q-Cq + g-C

g
= 0,

ff-Cg -r-Cr + s-C, = 0, b-C + q-C
q + s-Cs

= E.

If we substitute the values of C, Cp, Cg
obtained from the first

three equations in the last three, we shall get a system of

three linear equations involving the three unknown quantities

C
g , Cr, Cs , which can be easily solved. These equations are

(p + !/+q)C
g + p.Cr -q-Cs

=0,

9 .Cg
-r.Cr + s-C

$
=0,

- q- C
g + b Cr + (b+ q+ S) C

s
= E,

and if we denote the determinant of the coefficients,

—
\
pjr (q + s) + qs (p + r) + b (p + q) (r + s)

+ g[b(p + q + r + s) + (q + s)(p + r)-]\

or —
\ rjr (b + q + s) + qb (g -f r -(- s)— ps 2 + qrs

+ gbs +p (g + r + s) (b + q + s)\, by - A,
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it is easy to see that

Cg = E(qr-ps)/A,
Cr
= E (gq + sp + sg + sq) / A,

C
s
= E (gp + rp + rg + rq) / A,

C
P = E ('/>' + 99 + sg + sq) / A,

Cq
= E (gr+ gp + rp +ps) / A.

C — E (gq + sp + sg + sq +pg + rp+ rg + ?'?) / A.

The resistance (R) of the net pqrsg, computed from the equa-

tion C=E/ (b+R), is

Iff (g + g) (y + ?') +ffr (g + *) + yg (P + »')]

|>(j» + ? + »- + *) + 0>+?) (» + *)]

If no current passes through the resistance g, we have

gr =j»s, Cp = Cr, Cq
= C

s , and, as we may see by multiplying

out and cancelling,

Cr /Cs
=(q+s)/(p+r), C,./C=(q + s)/(p + q + r + s),

and CJ C= (p + r) / (p + q + r + s).

It is evident, from an inspection of the Kirchhoff equations

belonging to the three cases, that if the resistances of the

linear conductors which go to make up a given network are

fixed, and if C\, C2 , C3 ,
• • are the currents in the different

members when these members contain the electromotive forces

Ev E2 , E3 ,
• and C

x
', Cj, C3 , -, the corresponding currents

when the electromotive forces are EJ, E2
', Es ', • • •, C

x + C
x
',

C2 + C2 , Cz + C3 , would be the currents if the electromo-

tive forces were E
x +EJ, E2 + E.J, E3 + E3

', . . ..

Let P and Q, any two points in a network of linear con-

ductors some or all of which contain electromotive forces, be

at potentials VP . VQ respectively, and let the resistance of

the whole network when the current enters at one of these

points and goes out at the other be r , then if P and Q be

connected by an additional wire W of resistance r, the cur-

rent in this wire will be ( VP — VQ) / (r -\- r) in the direction

from T to Q. For if (1) W contained an electromotive force

(VP — FQ) directed from Q to P, the rest of the network
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being unchanged, no current would pass through W, and the

other currents would not be altered by the introduction of W
;

and if (2) W contained the electromotive force
( VP — VQ)

directed from P to Q, and if all the other electromotive forces

in the original network were annihilated, leaving the resist-

ances unchanged, a current (VP — VQ ) / (r + r) would flow

through W from P to Q : the given arrangement can be

regarded as formed by superposing case (1) upon case (2).

74. The Heat developed in a Circuit which carries a

Steady Current. Given, in a region not exposed to magnetic

changes, a chain of n conductors, each in itself homogeneous,

and at a uniform temperature throughout ; let a portion A of

the surface of the first be kept, by means of some external

agency, at potential VA , and a portion B of the surface of

the last at a lower potential VB , while the rest of the outer

surface of the chain abuts upon non-conducting media. Sk)k+1}
the surface of separation between the Mb. and the (k -f- l)th

conductors, may or may not be equipotential, but if these

conductors are of different materials, we must expect to find

at all points of this surface a uniform discontinuity, Ek<k + l ,

of potential. In following down from A to B an infinitesimal

tube of flow which carries the steady current AC, we start at

potential VA , leave the first conductor at potential i\", enter

the second conductor at potential V2
', leave it at V2

", enter the

third conductor at P3 ', and so on. Every second in the kth.

conductor, AC absolute units of electricity are lowered from

potential Vk
' to potential Vk

" and A C (
Vk

' — Vk") units of

work (representing loss of electrostatic energy) are done by

the electrostatic field upon the electricity which moves with

the current : this energy appears as heat in this conductor.

The work thus done in the whole chain is

ac( vA - r," + jv - v2
" + ry - p," + • • • + v: - VB),

or, since Vk+l ' — Vk
" = E

k> t+v

AC(VA -VB +EUi + E^ + --- + En_ x>n) = AC(VA -VB + E).
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This energy all appears as heat in the conductors which form

the chain.

At the surface Sk.A.+v AC units of electricity are raised

every second from potential Vk " to potential Vk. +1 '. The
work thus done every second is &C-JEk>s. +1 , and, by virtue

of similar processes at all the surfaces of discontinuity, the

electrostatic energy is increased in this way every second by

ACE. The net loss in electrostatic energy in the chain per

second is, therefore,

(VA -V£)AC,

which is otherwise evident. Taking into account all the cur-

rent filaments which go to form the steady current C, we see

that an amount of energy equivalent to C(VA — VB -\- E)
appears as heat in the conductors which form the chain, and

that an amount of electrostatic energy equal to EC is fur-

nished to the chain. If the chain is closed and if, going

around it in the direction of the steady current C, we denote

by E the algebraic sum of the discontinuities of potential,

counting a step up as positive, we shall find that the energy

EC appears as heat in the conductors and that since the

circuit is at the same temperature throughout, this is fur-

nished by chemical action in the chain. If ?' is the total

resistance of the chain, C = E/r and EC= C2
r. This result

represents ergs or joules, according as E, C, and r are meas-

ured in absolute electrostatic units or in volts, amperes, and
ohms : a joule is equivalent to 10 7 ergs.

If the chain contains a battery of electromotive force E in

the direction of the steady current C, and if there are in the

chain outside the battery discontinuities of potential which,

reckoned against the current, amount algebraically to E',

E=E -E', C = (E,-E')/r,

and the energy used in heating the chain is (E — E') C= C2r

:

when we wish to regard the battery as the source of this

energy, it is convenient to write the last equation in the
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form E C = C 2r -f- EC, and to say that of the whole energy,

E C, furnished by the battery, C 2
r, which appears as heat in

the conductors which form the circuit, is used in maintaining

the current, a,ndE'C, in overcoming the counter-electromotive

force E'. If a cell of electromotive force E be joined up with

a number of metallic conductors all at the same temperature

to form a simple circuit of total resistance r, the current will

be C = E /r, and the whole energy, E C = C 2
r, furnished

each second by the battery, will appear as heat in the circuit.

If, however, while the total resistance of the circuit remains

unchanged, the battery be called on to do each second an

amount IF of outside work of any kind (such, for instance, as

that involved in decomposing an electrolyte in the external cir-

cuit), the steady current will have a value C smaller than C
,

the whole energy E C furnished each second by the cell will

be a fraction of E C , and the portion of it C 2
r, which appears

as heat in the circuit, a smaller fraction of C 2
r. The differ-

ence between E C and C 2r will be equal to W, and this

equation determines C.

If a given steady current C is to be conveyed partly by a

conductor of resistance r
x
and partly by a parallel conductor

of resistance r2 , and if the portions carried by these conductors

are d and C2 respectively, the amount of heat developed per

second in the conductors will be u — C 2
i\ + C2 r2 . If Cx , and

consequently C2, be changed so as to keep their sum equal to

the constant C, u will, in general, change, and we shall have

Dc u = 2 Cft + 2 C2
r
2
DC C2

= 2 ( Cir, - C2ra) :

u, which is sometimes called the dissipation function, will,

therefore, be a minimum if the current is divided between rx

and r2 as it would be if the conductors were connected at the

ends. It is easy to prove that if a given steady current be

led into a given network of metallic conductors, at a uniform

temperature, from without, the distribution of this current in

the network will be such as to make the dissipation function

as small as possible. If, for instance, a steady current C be
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led into the network represented by ABDF in Fig. 58 at the

point A and out again at B, we have

Cr
= 6 C s , Cp = C

y
+ 6 G

s , C
g
= 6

S
G

y ,

and t< is equal to

P (c
g + c- csy + q (cs -cgy + r(C- csy + *. cs

2 + ?• c/.

If we equate to zero the partial derivatives of u with respect

to Cg
and C

g , we shall get two necessary conditions for a

minimum : the equations thus obtained are

(p + g + q) Cg
- (p + q) Cs = -^C,

-(P + J>C; + Cp+ J + r + •) (7. «(p + r) C,

whence

C
g/C = (qr — ps) / (gq + sp + sg + sq + pg + rp + rg + r^),

/ C = (gp+rp+rg+rq) / (gq-\- sp+sg+sq+pg+rp+rg+rq),

etc., which are equivalent to equations already found.

If the conductors r
1}

r
2, r3 ,

• • • rn which form any network,

complete or not, aud carry currents Cv C2 , C3 ,
••• Cn , contain

electromotive forces Ev JS2 , Es,
• En which have the direc-

tions assumed for the currents, the currents are such as to

make, not the dissipation function, but

W=u- 2(Ci^i + C2E2 + C3E3 CnEn)

a minimum. In the case of the complete Wheatstone's Net,

W = b (Cr + C.)
2 + p (Cg + C p)

2 + q (Cs
- C

g)
2 + g C

g

>

+ r.C
1

2 + s.C
s

2 -(Cr + C
s
)E,

and the equations formed by equating to zero the partial

derivatives of W with respect to C
g, C

s , and Cr yield the

values for the currents given in the last section.

75. Properties of the Potential Function inside Conductors

which carry Steady Currents. If at any time t, positive elec-

tricity is passing through a linear conductor in one direction

at the rate P, and negative electricity in the other direction
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at the rate X, the current strength is P + N in the first direc-

tion. Since there is no free electricity inside a homogeneous

conductor which carries what we have called a steady current,

it is customary to assume, when one uses the language of the

" Two Fluid Theory," that such a current consists of a flow

of positive electricity in one direction at every point, and an

equal flow of negative electricity in the opposite direction.

We shall avoid much circumlocution, however, and we shall

introduce no error into our numerical computations if we
speak as if the whole current were due to the motion of posi-

tive electricity. If the value of the potential function within

a conductor which bears a steady current is given, all the cir-

cumstances of the flow in the conductor are fixed. Positive

electricity flows into the conductor from without through all

parts of the surface where the derivative of the potential

function, taken in the direction of the exterior normal, is posi-

tive, and out of it through all parts of the surface where this

derivative is negative. At all points where the conductor

abuts on an insulating medium, the derivative is zero : it may
be zero at other points also. There can be no closed equi-

potential surface lying wholly inside a conductor which carries

a steady current, unless there is some constant source of posi-

tive or of negative electricity within this surface, for the

whole flow of electricity algebraically considered, per unit of

time, through such a surface from within outwards, is equal

to k times the surface integral of the intensity of the com-

ponent of force in the direction of the exterior normal, and

this is not zero. There must then be such a constant source

of free electricity within the surface as shall furnish just as

much per unit of time as the current carries away.

Although it is not very easy to prove analytically that—
given a homogeneous conductor and certain portions A, B of

its surface which are to be kept at potentials VA , VB , while at

all other portions the value of the derivative of the potential

function taken in the direction of the exterior normal is to

be zero— there exists a function which (1) satisfies these
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surface conditions, and which (2) inside the conductor satis-

fies Laplace's Equation, and with its first space derivatives is

continuous and single-valued, it is nevertheless clear from

physical considerations that one such function exists, namely,

the potential function inside the conductor when A, B are kept

at the given potentials and the rest of the surface is exposed

to an insulating medium. For practical purposes we need to

prove that this is the only function which satisfies the given

conditions. Suppose for the sake of argument that two such

functions, V and W, exist, and call their difference u. The

function u, then, satisfies condition (2) and is itself equal to

zero, or else has its derivative in the direction of the exterior

normal equal to zero at every point of the surface. Applying

Green's Theorem in the form of Equation 151 to u, we find

that the quantity (Dxu)
2 + {D

y
u) 2 + (Dz

u) 2
, which can never

be negative, must be zero at every point within the conductor,

so that Dxti, Dyu, and Dzii must vanish and u be a constant

throughout the space within the surface. Now at portions

of the surface itself, u is zero, hence it must be equal to zero

everywhere inside the conductor, and V= W. If by any

means, then, we find a function which satisfies the surface

conditions and the general space conditions characteristic of

the potential function inside a certain conductor carrying a

steady current under given surface conditions, this function is

itself the potential function.

Any surface supposed drawn in a conductor which carries

a steady current in such a way that the derivative of the

potential function taken normal to this surface is zero shall

be called a surface of flow.

If a conductor which under given surface conditions carries

a steady current be cut in two by means of a surface of flow,

and if the two parts be separated while the surface conditions

on what was the bounding surface of the old conductor remain

the same as before, and the fresh surfaces now abut on an

insulating medium, the state of flow at every point inside each

part of the conductor will be just the same as before, for the
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values of V and Dn V on the surface of the new conductors are

what they were before separation, and V must have its old

values at all inside points.

When a conductor is cut in two by a surface of flow the

fresh surfaces exposed receive a statical charge of free elec-

tricity, and the charges on what was the bounding surface

of the original conductor are in part changed so that it is

only ivithin the parts of the old conductor that the effect

of the separation is nil after the currents have become again

steady.

If two mutually exclusive closed surfaces S
l
and S2 , kept,

respectively, at uniform potentials V1
and V2 , are the elec-

trodes of an infinite homogeneous conductor K, of specific

conductivity k, which fills all space outside these surfaces

and is at potential zero at infinity ; if, moreover, the steady

flow outward through S
t
or inward through S

2
is equal to C,

the current vector in K is everywhere equal to what the elec-

trostatic force would be if K were air and if Sx
and S

2
had

charges C/^irk and — C/kirk so distributed as to bring them

to potentials Vx
and V2

respectively.

In most of the preceding discussion we have tacitly assumed

the separate conductors considered to be homogeneous, and we
shall continue to do so in the following sections unless the

contrary is stated. We have to consider briefly, however, in

the remainder of this section isotropic conductors which have

in different parts different specific resistances.

If the specific conductivity h of an isotropic conductor

which carries a steady current can be represented by a posi-

tive scalar point function, and if the components, parallel to

the coordinate axes, of the vector q which represents the

current strength, are u, v, and w, we may state the fact that

there is no growing accumulation of free electricity in any

portion of the conductor bounded by the surface S by the

equation
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I I q cos (q, n) dS = I I q [cos (x, n) • cos (x, q)

+ cos (//, n) cos (jy, q) 4- cos (z, n) cos (z, q)~\ dS

=
| J

[m cos (a;, w) + w cos (y, n) + w cos (z, ri)~\ dS

= f f f[Dxu + Dv
v + D2w~\dxdijdz = 0.

Here the double integrals are to be extended over the whole

of S, and the triple integrals over all the space included by S.

Since S is arbitrary, the integrand of the triple integrals must

be equal to zero at every point within the conductor, so that

Dxu + Dy
v + Dzw = [198]

and q is a solenoidal vector.

At every point within the conductor,

u = - kDx V, v = - kD
y
V, w = - kDz V,

so that

Dx (k -DXV)+ Dy
(k -D

V
V)+ Dz

(k -D
Z
V)= 0, [199]

or k-V 2 V + (Dxk-DxV + Dv
k-D

y
V+Dz

k-Dz V)=Q. [200]

If k is constant, V satisfies Laplace's Equation, and in this spe-

cial case, as we already know, none of the free electricity which

gives rise to the potential function V is within the conductor.

Given an analytic, scalar, positive point function k and a

closed analytic surface S, it is easy to prove by the help of

[149] that there cannot be two different functions, Vx and V2 ,

which (1) with their first derivatives are continuous within S
and at every point in this region satisfy the equation

Dx (k.JDx V) + Dy
(k.D

y
V) + Dz (k.Dz V)=0,

(2) on the given portions Sx and S2 of S have at each point

equal values, and (3) on the rest of 8 have at every point

equal normal derivatives.

The differential equations of the current lines are

dx dy _ dz

U V IV
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At a surface of separation between two conductors which

carry a steady current the normal components of the current

and the tangential components of the electrostatic force are

continuous. If
X and 2 are the angles which the resultant

electrostatic forces Fx
and F2 make with the normal on the

two sides of such a surface at any point,

k xFx cos X
= k 2F2 cos 62 and Fx sin $ x

= F2 sin 8.2 ,

whence, by dividing the members of the first of these equations

by the corresponding members of the second, —-— = —-

—

-,

K\ k 2

an equation which shows how the current lines are refracted

at the surface. At a surface of separation between copper

and manganin where the ratio of the conductivities is about 30,

6 X
= 27° 42' when 6, = 1°, and B x

= G9° 09' when 2
= 5°.

If n x and n 2 represent normals drawn from any point of the

surface of separation between two conductors which are carry-

ing a steady current into the first and the second conductor

respectively,

k
x
D

n Vx + k 2DnJ=0. [201]

76. Method of finding Cases of Electrokinematic Equilib-

rium. If w is a single-valued, generally continuous solution

of Laplace's Equation, Aw + B, where A and B are constants,

is another such function which has the same level surfaces

as w. If an area be chosen on one of these surfaces, it is pos-

sible to draw through every point of its perimeter a line,

defined by the equations dx /

D

xw = dy / D^iv = dz /

D

z
w, which

shall cut orthogonally all the level surfaces of w which it

meets. All these lines form a tubular surface such that the

normal derivative of w at every point of it is zero. If T is a

portion of space bounded by such a tube and by portions, S', S",

of two of w's level surfaces on which it has the values w' and

w" respectively, iv is identical with the potential function that

would govern the flow within any homogeneous conductor of

the form T if the surface S' and S" were kept at potential w'
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and w", while the rest of the boundary was a surface of flow.

Moreover, Aw + B, where A and B can be chosen at pleasure,

must be the potential function within a homogeneous conduc-

tor of the form T, if the surface S' and S" were kept at poten-

tials Aw' + B, Aw" + B respectively, the rest of the boundary

being a surface of flow. By using different pairs of level sur-

faces of w and tubes of different forms, it is possible with

the help of this one function to study the laws of steady flow

inside conductors of many different shapes and to obtain

results some of which may happen to be practically inter-

esting. For instance, w = - + d, where c and d are constants

and r the distance from a fixed origin to the point (x, y, z),

gives the value of the potential function inside a conductor

bounded by two spherical surfaces of radii a and b having

as their common centre when these surfaces are kept respec-

tively at potentials—\- d and - + d. In this case the whole

amount, per unit of time, of positive electricity which enters

the conductor through the surface r = a crosses every equi-

potential spherical surface within the conductor and leaves it

by the surface r = b is 4-n-ck, where k is the specific conduc-

tivity of the material out of which the conductor is made.

The resistance of the conductor is, by definition,

c _ c

a b b — a

4 irck 4 irkab

a quantity independent of c and d.

It is evident that any conical surface the vertex of which is

will be in this case a surface of flow, and that the function

w = - + d governs the flow in any piece cut out of the spheri-

cal shell just considered by such a surface. It is easy to see

that if w is the solid angle of the cone, the resistance of the

b — a
portion of the conductor cut out will be -•
r kwab
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Again, the equation V — cl 1 + d, where r
x
and r

2
are

Vl V2/

the distances of the point (x, y, z) from the fixed points O
x

and 2,
gives us the potential function inside an infinite

conductor bounded in part by the surfaces — a and
V

l
V2

= b, when the first is kept at potential ac + d, the
r

i
r2

second at potential be + d. In this case the surface V = d

is a plane bisecting at right angles the straight line 0^.
Larger and smaller values of V than this give closed surfaces,

each of which surrounds one of the points and leaves the

other outside. For very large values of V, if c is positive,

the equipotential surfaces are very small, nearly spherical

surfaces surrounding Ov
To find the amount of positive electricity which enters

the conductor under consideration, per unit of time, through

the surface V = ac + d, where ac shall be positive, we must

integrate over this surface — kDnV or — kc\ Dn ( — ) — Dn
—

According to Green's Theorem, the resulting integral is exactly

the same as that taken over any other closed surface, large or

small, which surrounds O
x
and leaves

2
outside. Let us

consider, then, a spherical surface of radius e < O
x 2

whose
centre is at Ov The required integral in this case is — 4 v^k
times the average value of Dr V taken over the spherical

surface ; or, since r
x
for all points on this surface is equal to e,

4 Trt
2kc — — average value .of Dr ( —

J
•

If, now, e be made smaller and smaller, DA —
j
always has

some finite value for every point on the surface of the sphere

surrounding Ov and the expression just given approaches the

limiting form 4 irkc. Hence, 4 irkc units of positive electricity
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enter the given conductor through the surface V = ac + d in

every second, whether this surface is large or small. The

resistance of the conductor between the surfaces V = ac -f- d

a — b '

and V = be -\- d is, by definition of the term, ——— •

4 -rrk

If a and b are made very large and equal, with opposite

signs, the two surfaces through which electricity enters and

leaves the conductor become very nearly coincident with

spherical surfaces of radius c = — drawn about O
x
and

2

respectively. The resistance of the conductor in this case is

-—:— Considerations of symmetry show that any plane which

contains the line 0^^ is a surface of flow. If we cut the

conductor in two by such a plane, we shall have an infinite

conductor with two nearly hemispherical electrodes sunk in

its plane surface. The resistance of this part of the whole

conductor is -— , a quantity independent of the distance apart

of the electrodes. This is nearly the case of two poles of a

battery sun'k in the earth.

Again, the expression

V=clog^-\-d,

where r
x
and r2 are the distances of a point P in space from

any two parallel straight lines, A and B, is a solution of

Laplace's Equation which, with its derivatives, vanishes at

an infinite distance from these lines and which is constant

all over any one of a double system of circular cylindrical

surfaces (Fig. 59), some of which surround one of the given

lines and some the other. This function, then, when c and d

are properly determined, is the potential function within an

infinite lamina, either thick or thin, when that lamina is per-

forated perpendicularly to its plane by two circular cylindri-

cal holes, the curved surfaces of which are kept at given
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constant potentials. 2 irkc units of positive electricity per

unit of time per unit of thickness of the lamina enter the con-

ductor through one of the cylindrical surfaces, and the same

amount leaves it by the other surface. The resistance of the

lamina is then the difference between the values of the poten-

tial function at the electrodes divided by 2 -n-kc times the

thickness of the lamina.

These examples will serve to show how we may discover an

indefinite number of cases of kinematic equilibrium by assum-

ing some function, in general finite and continuous, which

Fig. 59.

satisfies Laplace's Equation, and then taking as a conductor

one inside which the given function is everywhere finite, and

which is bounded by surfaces over each of which either the

function is constant or its normal derivative zero.

If we transform Equation 199 to orthogonal curvilinear

coordinates defined by the scalar point functions u, v, iv,

where w satisfies Laplace's Equation, and assume V to be

expressible as a function of w only, we shall obtain (see

page 182) the equation I),,
2 V+ Dw V Dw k / k = 0. If the

specific conductivity of a body occupying the space T men-

tioned at the beginning of the section were not constant but

a given function of w, this equation would determine V.
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m. ELECTROMAGNETISM.

77. Electromagnetism. Straight Currents. If a steady

electric current be sent through a long straight wire, the space

in the neighborhood of the current becomes a field of magnetic

force. If the medium about the conductor is homogeneous,

the direction of the field is such that a small magnetic needle

freely suspended by its centre tends to set itself perpendicular

to the wire and to the perpendicular dropped from the point

of suspension upon the wire, so that " if a person be imagined

as swimming in the current which flows from his feet to his

head, and if he face the needle, the north pole will be turned

towards his left hand." The field is symmetrical about the

wire and, according to the rule just given, its direction at any

point is normal to the plane drawn through the point and the

wire, so that the lines of force are circumferences forming

right-handed whirls about the current. To investigate the

law of the change of the intensity of the force with the dis-

tance from the wire, we may imagine a rigid frame free to

turn about the vertical wire as a hinge, and suppose a magnet

to be rigidly attached to this frame. It will be found that

in this case the frame will have no tendency to rotate under

the action of the electromagnetic forces, so that the sum of

the moments about the wire, of the forces which the field

exerts upon the magnet, must be zero. If >\ and r2 are the

distances of the poles from the wire, and if F(r) is the inten-

sity of the field at a distance r from the wire, the equality of

moments shows that, however the magnet be placed on the

frame,
r 1 -F(r1)=r2 .F(r2),

or, in general, r F(r) = a constant, k. The value of k is

found to be dependent upon the strength, C, of the current in

the wire, and can be used to define this strength. We may
write, therefore, F(r) = A C /r, where A is a constant depend-

ing upon the units in which C is measured. If we use the
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absolute electromagnetic c.g.s. units, defined below, in deter-

mining C, it will presently appear that A is 2.

If we take the plane of the paper for the xy plane, and

imagine the wire which carries the current to cut the paper

normally at the origin, then, if the current comes from below,

the components of the field at the point (x, y) are

X = - 2 C sin (x, r)/r and Y = 2 C cos (x, r)/r,

or X = - 2 Cy/ (x2 + y
2
) and Y = 2 Cx/(x2 + if).

Here D
y
X = DXY and the magnetic force is, in general, a

lamellar vector, so that it has a potential function which, since

the lines of force are closed, must be multiple-valued. This

potential function is evidently

± 2 C tan-1 (y/x) + constant, or ± 2 C6 -f- constant,

and it satisfies Laplace's Equation. The plus or the minus

sign is to be chosen according as we wish to use the derivative

of the potential function taken in any direction, or its nega-

tive, as a measure of the component of the field in that direc-

tion. The line integral of the tangential component of the

force taken around any curve in the xy plane which sur-

rounds the origin is 4 77- (7, so that we infer from Stokes's The-

orem that at the origin the magnetic force is not lamellar. If

a magnetic pole of strength m be moved

around any closed path, the work done on

it by the magnetic field will be ktrmC if

the path link right-handedly once with

the wire, or zero if the path do not link

with the circuit. These results are found

to be independent of the inductivity of the

homogeneous medium about the wire.

Since DXX+ D
y
Y=0, the force in

the medium about the wire is solenoidal,

and the whole flux of force from within outward through any

closed surface is zero. If two straight lines parallel to the

wire are distant a and b centimetres from it respectively,
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the flux of force (Fig. 60) through the unit length of any cylin-

drical surface bounded by the lines is 2 C-log(b/a). Since

we have assumed that a finite quantity of electricity is carried

by a conductor of zero cross-section, it is not surprising that this

useful analytic result becomes infinite if either a or b is zero.

If two infinitely long straight wires parallel to the z axis

carry equal steady currents of strength in opposite directions,

Fig. 61.

and if they cut the xy plane at the points Au A%, which have

the coordinates (a, 0), (— a, 0) respectively, the scalar potential

function, Q, of the field has at the point (x, y, z) the value

2 C- tan- 1 O/O- a)]- 2 C-ta,nr 1 [y/(x + a)'],

or 2 6'- tan- 1 [2 ay/(x2 + if - a 2
)].

The conjugate function, <I>, is + 2 C • log fa / r^) , where rx and

r2 are the distances of the point (x, y, z) from A x and A2
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respectively. The lines of force and the traces in the xy
plane of the equipotential surfaces are shown in Fig. 61.

DJD, = — D
v®, Dy

Q, = Djb, and the derivative of O at any

point in the xy plane taken in any direction in the plane is

equal to the derivative of 3> at the same point taken in a direc-

tion in the plane at right angles to the first. If, then, a

curve c is the trace in the xy plane of a cylindrical surface S,

the generating lines of which are parallel to the z axis, and if

n represents a direction in the plane perpendicular to e, the

line integral of I)nQ, taken along c represents the flux of mag-

netic force across S per unit of its height, perpendicular to the

xy plane. This integral is equal to the line integral of the

tangential derivative of 4> along c or to the difference between

the values of <I> at the ends of the curve. If this difference

is nothing, the corresponding flux is nothing ; if 3> is constant

all along c, this curve is a line of force.

From the results just obtained, it is evident that if two

straight lines parallel to the z axis cut the xy plane in the

points B x , B2 respectively, the flux of magnetic force through

a cylindrical surface bounded by these lines, per unit of its

length, parallel to the z axis, is

This represents the flux of force per unit of its height, through

a circuit s2 , consisting essentially of two infinitely long straight

wires, parallel to the z axis, cutting the xy plane at Bu B2

when the steady current C traverses the circuit st , consisting

essentially of the two wires already mentioned, which cut the

xy plane at Ax and A 2 . Symmetry shows that this expression

would also give the flux through s1} due to a steady current

C in s 2 .

If an infinitely long cylindrical conductor, the generating

lines of which are parallel to the z axis, and which is sur-

rounded by a homogeneous medium, carry a steady current in

the direction of its length, and if the current density at the
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point (x\ y', z') be q', a function of x' and y' but not of z', the

intensity of the magnetic field H within or without the con-

ductor can be obtained by imagining the conductor made up

of separate current filaments, each of which has a field like

that about a fine straight wire, unaltered by the presence of

the others. If L, M, N are the intensities of the components

of H parallel to the coordinate axes, L and M are functions

of x and y while N is zero.

r r 2 q'(y — y')dx'dy' r f*2 q' (x — x')dx'dy'

~~J J (x-xy+(y-y'f
J

~J J (x- xy+(ji-yiy'

where the double integrals extend over the section of the con-

ductor made by the xy plane. If the whole amount of cur-

rent in the conductor is C, and if u represents the distance

of the point (x, y, z) from the axis of z, and <£ the angle

tan_1 (y/«), uL and uM approach the limits — 2 C • sin <£ and

2 C-cos<j> when u increases without limit. The line integral

of the tangential component of the field, taken around any

curve, which surrounds the conductor, is equal to the corre-

sponding integral taken around a circle in the xy plane of

infinite radius, with centre at the origin. The value of this

last integral is obviously 4 7rC. Except for points in the

mass of the conductor, the integrands of the expressions for

L and M are continuous functions of x and y for all values of

x' and y' within the limits of integration, and D
y
L — DXM and

DJ, + Dy
M = 0.

At all points in empty space near the conductor, therefore, the

field is solenoidal and lamellar and there is a potential function

±j
%

j
%

2q'tSLii- l
[(y' - y)/(x< - x)-]dx'dy<,

which satisfies Laplace's Equation.

In the special case where the conductor is in the form of a

right circular cylinder (or of concentric shells bounded by
cylindrical surfaces of revolution), and where the current den-

sity is a function only of the distance from the z axis, which
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coincides with the axis of the conductor, the field is evidently

symmetrical, and the direction of the force at any point is

perpendicular to the perpendicular to the axis drawn through

the point. Everywhere in empty space in the vicinity of the

conductor a potential function, Q, exists, and, since DrQ, — 0,

Laplace's Equation degenerates into Z>
e
2
fl = 0, or Q — aO + b.

The work done by the field when a magnetic pole of strength

m moves around a circumference, the axis of which is the z

axis, is evidently equal to ±4irCm, where C is the sum
of the currents in all the current filaments which the path

encloses. Since the line integral of Z)
s
.O taken around any

such path in empty space in right-handed direction around

the current is 2 ira, a is equal in absolute value to twice the

whole current carried by so much of the conductor as lies

within the path. If the direction of the z axis is such that,

if the eye is in the positive x axis looking at the origin, a

counter-clockwise rotation of the positive axis of y through

90° would make it coincide with the positive z axis, and if

O = — 2 CO + b, the force at any point not in the mass of the

conductor, in any direction, is the derivative of fi at that point

taken in the direction in question, and the resultant force is

— D
e
Q I r or 2 C / r. This is the same as if all the current

nearer the z axis than the point in question were flowing

through a fine wire coincident with the axis of z. If the

infinitely long cylindrical conductor is a uniform tube, the

axis of which is the z axis, 12 = aQ + b in the empty space

within the tube, and, since (on account of symmetry) the

resultant force a/r must vanish on the z axis, a is zero and

the intensity of the field within the tube is everywhere zero.

We may easily find the intensity of the electromagnetic

force at any point P within an infinitely long, round con-

ductor carrying, in the direction of its length, a steady cur-

rent with intensity the same at all points equally distant

from the axis of the conductor, if we imagine a cylindrical

surface, S, of revolution coaxial with the conductor drawn

through P. The magnetic force at P, due to so much of the
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current as lies outside S, is nothing; the force due to so much
of the current as lies within S is evidently the same as if this

portion of the current were concentrated in the axis. If, there-

fore, a straight conductor in the form of an infinitely long

cylinder of revolution of radius a carries a steady current C in

the direction of its length, and if the intensity (q) of the cur-

rent is a function only of the distance (>•) from the axis of the

conductor, the intensity of the magnetic force (77) is 2C/r

without the cylinder and — I xqdx within. The flux of

induction per unit length of the cylinder across so much of

any plane through the axis as lies within the conductor is

Q = 4 7T i [1.
— I xq dx.

«/o r Jo

If q does not involve ?*, the current is uniformly distributed

through the conductor, the strength of the field within the

cylinder is 2 Cr /a2
, and Q is equal to //,C. If the axis of the

cylinder is the z axis, the force components at any inside point

distant r from the axis are L = — 2 Cy / a
2
, M= 2 Cx/a2

, so

that 77 is solenoidal, as it would be if q were any analytic

function of r. Since 77 is not lamellar within the conductor,

it is at the outset clear that there can be no scalar poten-

tial function Q, there; it is well to notice, however, that, if

the derivative of a scalar function, Q, at any point in any

direction were required to show the force at that point in the

given direction, it would need to satisfy, within the conductor,

the two incompatible conditions,

D,.Q = 0, (D
e
n) /> = - 2 Cr / a

2
.

Since H is solenoidal even at inside points, we may ask

whether its components are not the components of some vector,

Q, which may be regarded as a vector potential function of

77, and it is clear that a vector of intensity — irqr2
, directed at

every point parallel to the z axis, satisfies all the conditions,

as do many other vectors. The component, at any point

within the conductor, in any direction, of the curl of the
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vector (0, 0, — -n-qr
2
) shows the component of the magnetic

force H at the point in the given direction. The abscissas

of Fig. 62 represent distances from the axis of the conductor,

Fig. 02.

and the ordinates the corresponding values of the resultant

magnetic force in the case just considered.

If a uniformly distributed current C be brought up normally

through the plane of the paper by an infinitely long cylinder

of revolution and down through a similar cylinder parallel to

the first, the lines of force without the cylinders are of the

same shape as those shown in Fig. 61. The curve in Fig. 63

shows the intensity of the field at points in a straight line

which cuts the axes of the cylinders perpendicularly.

If two infinitely long, coaxial, cylindrical surfaces of revo-

lution carry symmetrically equal and opposite currents, each

of strength C, parallel to their common axis, the space between

the surfaces is a field of electromagnetic force of strength

2C/r, where r is the distance from the axis. There is no

force within the inner surface or without the outer one.
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In the case of a long, straight wire of radius a surrounded

by a coaxial tube of radii b and c, and carrying uniformly

distributed a steady current C which returns through the

tube, the electromagnetic force is evidently zero on the axis

of the wire and continuous at every distance r from the axis.

If Wx and w2 are the intensities of the current in the wire

and in the tube respectively, C= u\ira 2 = w^n- (c
2 — b2

), and

if we apply the formulas just proved, we shall learn that

the strengths of the fields within the wire, between the wire

and the tube, in the body of the tube and without the tube,

are given by the expressions 2 jr^r, 2 ira
2Wx/r, 2 wiv2 (c

2—r2)/r,

and 0.

It is to be noted that the strength of the magnetic field due

to a given electric current is, in the homogeneous medium
which surrounds the current, wholly independent of the per-

meability of this medium, whereas the field due to a given

magnet would be inversely proportional to the inductivity.

If the fields of a given circuit and a given magnet were the

same in one homogeneous medium, they would not be the

same in another homogeneous medium of different magnetic

inductivity. The induction due to a current circuit in a homo-

geneous medium filling all space is proportional to the induc-

tivity, as is the energy in the medium. The induction due to

magnetic matter surrounded by a homogeneous medium is

independent of the inductivity of the medium. The action

of a distribution of magnetic matter in an infinite homogene-

ous medium on a circuit carrying a steady current is not

altered by changing the inductivity of the medium.

78. Closed Circuits. Experiment shows that if a steady

current of strength C runs in a simple linear circuit of any

form, there is a magnetic field in the neighborhood of the

conductor and the lines of the field are all linked right-

handedly with the circuit. If a unit magnetic pole be carried

round any closed path which does not link with the circuit,
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Fig. 64.

the work done by the field on the pole is zero, whatever the

character of the medium near the circuit, so that a potential

function exists in the so-called empty space about the wire.

This potential must be multiple-valued, since the lines of force

are closed. If the pole be carried round a closed path which

links once with the circuit, the work done on the pole by the

field is ± 4 7r C, whether the medium
intersected by the path is homogeneous

or not. We infer, therefore, that no

scalar potential function exists in the

wire which carries the current.

It follows from the experiments of

Ampere that the field of magneticforce,

due to a steady current of C electromagnetic units flowing

in a closed linear circuit in a homogeneous medium, is iden-

tical with the field of magnetic induction due to a simple

magnetic shell (Fig. 64) of strength C bounded by the circuit.

This statement defines the electromagnetic unit of current.

The magnetic force, clue to a current of C electromagnetic

units flowing in a closed linear circuit in a homogeneous

medium of inductivity /x, is the same in magnitude and direc-

tion at any point P as the force due

to a simple magnetic shell of strength

Cfi. bounded by the circuit. The shell

may be of any form, provided that it

does not pass through P and that its

positive side is such that the current

surrounds right-handedly the direc-

tion of polarization. To make the

potential function single-valued, we
may cover the circuit by a cap or dia-

phragm, fix at pleasure the value Cl

of the potential function at some one point in the field, and

define the value at any other point Q to be the line integral of

the magnetic force taken from to Q along any path which

does not cut the diaphragm.

Fig. 65.
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At any point P on the axis of a circular current of radius

a, at a distance x from the plane of the circuit, the circuit

subtends the solid angle

<o = 2tt(1 -cos0)=2 7r(l-:r/V« 2 + 3;
2

)

If the strength of the current in the circuit is C, the magnetic

force at P is directed along the axis of the circuit (Fig. 65)

and is numerically equal to the negative of the derivative with

respect to x of Ca>. The intensity of the force is, therefore,

2 7ra
2C/(x z + a~) 3/2

and at the centre of the circuit, where x = 0, it is 2irC/a.

This result evidently agrees with the awkward statement

sometimes used to define the electromagnetic unit of current.

" If one centimetre of a linear circuit

which carries the unit current be bent

into an arc of one centimetre radius,

the strength of the field at the centre

of the arc, due to this portion of

the circuit, will be one dyne." The
ampere, which is the practical unit

of current intensity, is one-tenth of

the unit just defined.

If for convenience we denote the

quantity a/x by u and its recip-

rocal by v, the potential function (Cw) just found may

be written in either of the forms 2irC\l — 1/V1 + u2
\

or

2 irC\l — v/Vl + v'
2
\, and, according as x is greater or less

than a, we may use one or other of the developments

Fig. 66.

>2"
2-H" 4 +

1-3

2-4-6

2irC:<il V +
2
V

2

13
v5 +

f

If, then, Pu P2 , P 3 ,
• • • represent zonal harmonics expressed in

terms of cos a, and if ux and i\ represent a/r and r/a, the
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value of the potential function at a point distant r from the

centre of the circuit, in a direction (Fig. 66) making an angle

a with the x axis, is given according as r is greater or less than

a by one or other of the developments

2 7rC|l-i' 1 P1 +^ 1
3 -P3 -^|^ 1

5 -A + --}-

If an infinitely long straight wire which carries a steady

current, C, forms part of a plane closed circuit, all the other

parts of which are at infinity, and if the plane of the circuit

be used as the xz plane and the wire as the z axis, the solid

angle subtended at the point (x, y, z) by the circuit is

2(tt — 6), where tan 6 = y/x. The force components at the

point are, then, the negatives of the derivatives with respect

to x and y respectively of 2 C(ir — 6 ), that is, — 2 Cy/(x2 + y
2
)

and + Cx / (x2 + y'2
), as we already know.

79. The Law of Laplace. Mechanical Action on a Con-

ductor which carries a Current in a Magnetic Field. It will

be evident from the discussion on page 218 that the strength

of the magnetic field, H, due to a steady current of C electro-

magnetic units in a rigid linear circuit may also be computed,

whatever the inductivity of the homogeneous surrounding

medium, on the assumption that every element ds of the cir-

cuit (Fig. 67) makes a contribution numerically equal to

C sin(r, ds) ds / r2
,

to the force at a point P, where r is the distance of ds from P.

The direction of the contribution is normal to the plane of P
and ds, and such that a north magnetic pole at P tends to

whirl right-handedly about a straight line drawn through ds

in the direction of the current. For a simple illustration of
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the use of this rule, which is sometimes called " Laplace's

Law," let P be a point at a distance r from an infinitely

long straight wire which carries a current C, and let s be

the distance of ds from the foot of the perpendicular dropped

from P upon the wire. If the angle (r, ds) be denoted by 6,

s = r ctn 0, ds = — r esc2 dd, r = r esc 6. All the elements

of the current conspire to produce at P a magnetic force per-

pendicular to the plane of P and the wire. The magnitude

of this force is

<C
sin ds C r°- I si

o o rt

sin BdO = "

r

as before.

If a circuit is not plane, the different elements of the

current will contribute to the magnetic force, at a point P,

elementary forces which do not all

have the same directions. In this

case it is necessary to compute sepa-

rately the components L, M, N of H.

If the coordinates of the beginning

of ds are xl} yu zu and those of the

end x x + dx
x , yx + dyx, z x + dzu while

those of P are x, y, z, the direction

cosines of r and ds are (x x
— x)/r,

(!/i-l/)/ r> (*i
—

*)/»j and dxjds,

dyx /ds, dz x /ds, and, if the direction

cosines of dH, the contribution to the force at P made by the

current element ds, are I, m, h, then, since this direction is

perpendicular to r and to ds,

l(xx —x) + m(y1 — y)+ n (z x
- z) = 0,

ldx x + mdy1 + ndz x
= 0,

I
2 + m 2 + n2 = 1.

If we represent the expressions
(>J\

— y)dz x — (z x — z)dyx ,

(*! - z) dxx
- (xx

- x) dz x ,
(x x

- x) dyx
- (yx

- y) dx x by 8', 8",

Fig. 67.
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8"' respectively, and S'
2 + S" 2 + 8'"2 by 8, we learn from these

equations that I = 8'/ 8, m = 8"/ 8, n = 8'"/
8,

cos (rj, ds) = [(a^ — a;)^ + (/A — y)^i/i + («i — z)dz 1]/rds,

and sin(r, ds)= 8/rds.

If, then, the components of dH are cZL, cOf, eLV, we have

the equations dL = C8'/r3
, dM= C8"/r3

, dN = CS'"/?'8 , and

from these, by integration over the circuit, the force at P may

be computed.

Since action and reaction are equal and opposite, a unit

magnetic pole at P would exert upon the element ds of the

conductor which carries the current a mechanical or " pondero-

motive" force the components of which would be — C8'/r3
,

— C8"/rs
,
— C8'"/r3

. These components, written in terms of

the components

Lm = (x, - x)/r*, Mm = (yi
- y)/r*, Nm = (z x

- z)/r\

of the magnetic field at ds due to the pole at P, are

G\Nmdyx-Mmdz^ C(Lmdz 1 -Nmdx 1), C(Mmdxl -

L

mdVl),

and, since so far as this force is concerned the origin of the

magnetic field is immaterial, these expressions give the com-

ponents of the mechanical force which act upon the element

ds of a circuit carrying a steady current C in any magnetic

field which at ds has the components Lm , Mm , Nm.

If the magnetic field at ds 1
— an element of a linear circuit

s x
which carries a steady current d— is due to a steady current

C2 in another circuit s 2 , the element ds.2 of the second circuit

at the point (x2 , y2 , z 2) contributes to the magnetic field at dsx

at the point (xx , yu z^) components numerically equal to

[202]

%*l-
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so that the x component of the mechanical force exerted upon

the circuit element ds l by the circuit element ds 2 is

C CdX* — ~~^ IC(yi ~ 2/2) dx„ - (»! - x2) dy2
~\ dyi

— \_{x x
— Xo) dz 2

- {zx — z2) dx2 ~\ dz x \,

or Cx C2 • D
Xt (1 fr) \_dx x dx2 + di/1 dy2 + dz x • dz2

~\

- Cx C2dx2 \BXr {\lr)dx, + Dn {l/r)dUx + DZi
(l /^dz,],

\j-\\s 2ClS\ClSf> . 7 .

or [cos (x, r) cos (dsu ds2)

— cos (a;, ds2) cos (r, ds{)~]> [203]

where r is the distance of ds2 from dsv

The x component, X1} of the whole mechanical force exerted

upon the rigid circuit s x by the rigid circuit s 2 is to be found

by integrating the expression just found over both circuits.

The resulting integral will evidently not be changed if we
add to the integrand any quantity which disappears when
integrated about either circuit, and this fact makes it possi-

ble to find many other expressions * for the mechanical force

exerted upon an element of one circuit by an element of

another, which will account mathematically for the observed

forces between two rigid closed circuits.

According to Ampere's analysis, the resulting action between

the two elements ds x , ds2 is an attraction in the line joining

them of intensity

1 2
„

1—
- [2 cos (dsu ds 2)

— 3 cos (r, dsx) • cos (r, ds2)~\.

* For exhaustive treatments of this important subject the reader should

consult Ampere, Gilbert's Ann., 1821 ; Ampere, M£m. de VAcadimie,

1823, 1827; W. Weber, Ges. Werke ; Grassmann, Fogg. Ann., 1845;

F. E. Neumann, Abh. Berl. Akademie, 1845 ;
Wiedemann, Lehre von der

Elektricitat ; Maxwell, Treatise on Electricity and Magnetism, §§ 502-527
;

Webster, Theory of Electricity and Magnetism, §§ 217-221. For conven-

ience of reference I have followed Professor Webster's order, and in part

his notation in the brief treatment of the Electrodynamic Potential given

in Section 80. See Problem 307, page 452.
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On this assumption two elements in the same straight line

repel each other with a force CiC2 ds 1
ds.2 /r

2
, while two parallel

elements perpendicular to the line which joins them attract

each other with a force 2 CiCt ds l ds 2 /r'
1

. These expres-

sions, like those which precede, hold good whether the ele-

ments dsv ds2 belong to the same circuit or to two different

circuits.

If two infinitely long straight wires (s1?
.<? 2), parallel to each

other at a distance a apart, carry in the same direction the

steady currents C1} C2 respectively, the mechanical force

exerted onsxby s2 is evidently CX C2 j I [cos (a-, r)/r2
~\ds l -ds2,

or (2 C1C2 /a) |
dsu so that every unit length of s x is attracted

towards s2 with a force of 2 Cx C2 /a dynes.

If each of two closed circuits (su s2) which carry steady cur-

rents, Cx , C2 , consists essentially of two infinitely long wires

parallel to the z axis, if the currents come up through the xy

plane in the two circuits at the points (0, a), (c, b) respectively,

and go down at the points (0, — a), (c, — b), the first circuit

experiences a force tending to urge it in the direction of the

x axis, and the intensity of this force per unit length of both

wires of sx is 4 cC^ |l/[(a - b)
2+ c

2
] - l/[(a + 6)

2+ c
2

]
|.

It is evident from the discussion of the properties of mag-

netic shells in air given on page 217 that the mechanical action

on a rigid linear circuit carrying a steady current C in a

magnetic field (caused either by permanent magnets or by other

currents or by both) may be mathematically accounted for on

the supposition that every element ds of the circuit is urged by

a force equal to C ds times the component (F), perpendicular

to ds, of the total magnetic induction. The direction D of

this elementary force is perpendicular to the plane of C and F
in the sense shown in Fig. 68.
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The same assumption will account for the phenomena

observed when a deformable circuit is placed in a magnetic

field.

According to this theory the component in any direction' u

of the force on the element ds is Cds B • sin (B, ds) cos a, where

a is the angle between u and the normal to

the plane of B and ds, and this is numeri-

cally equal to the volume of a parallelopiped,

adjacent edges of which are represented in i >q
magnitude and direction by Cds, B, and a unit /
length in the direction it. This volume may n

*

also be represented by Cds -sin (u, ds) B', „
fi

„

where B' is the component of the induction B,

normal to the plane of u and ds, and this expression for the

force component is occasionally useful.

If (I, m, n) are the direction cosines of the element ds and

if the components of the induction B are Bx, By, Bz ,

sin (B, ds) = \(m-Bz -n- By)
2 + {n-Bx — l- Bzf

+ (l.B
v
-m. Bxf\l/ \ B:- + B* + B/\i

and the resultant electromagnetic force on the circuit element

ds has the value

C
\
(m • Bz

- n B
y)

2 + (
n Bx - I Bz)

2 + (
I • B

y
- m Bx)

2 \i ds.

If ds is an element of a current filament of cross-section w in a

massive conductor in which the current vector is q or (u, v, w),

we have qv> = C, um = IC, vw = m C, w<a = nC, and the electro-

magnetic force may be written

<o
\
(v • Bz

- w B
yf +(w.Bx -u-Bzy+(u-Bv

-v- Bx)
2 ^-ds.

The components parallel to the coordinate axes of the electro-

magnetic force per unit volume of the conductor are, therefore,

(v •Bz
- w • B

y),
(w Bx -u- Bz), (u -B

y
-v- Bx).

If the element ds be moved parallel to itself through the

distance die, the mechanical work done on it by the forces of
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the field can be represented numerically by the volume of a

parallelopiped, conterminous edges of which are Cds, B, and

du ; this volume is numerically equal to C times the number

of lines of induction of the field cut by the element during the

translation. If an observer be imagined to lie in the element

in such a way that the current enters at his feet and goes out

at his head, and if he faces in such a direction that he can

look along the lines of force, the work done by the translation

will be positive if these lines appear to pass him from left to

right, that is, if the displacement is to his left. It is easy to

see, moreover, that if the element ds be revolved about any

axis through a small angle, the work done upon it may be

represented by C times the number of lines of induction cut

by the element during the displacement ; we may infer, there-

fore, that the electromagnetic work done by the field upon any

portion s of a circuit during any displacement is measured by

the product of the current strength and the number of lines

of induction cut by s. The direction in which a rigid closed

linear circuit carrying a steady current C in a magnetic field

of any kind will tend to move may be inferred from the fact

that the circuit will behave in this respect like the equivalent

magnetic shell.

It is easy to see from the discussion on page 216 that the

mutual potential energy of an external field and the mag-

netic shell mechanically equivalent to a given circuit,— that

is, the mechanical work that must be done to bring the shell

already formed into the field,— is equal to — CN, where N
is the whole number of lines (unit tubes) of induction of the

field which the current surrounds right-handedly. The cir-

cuit will tend to move, therefore, so as to make N as large as

possible. If, for instance, a plane circuit of area A carries a

steady current C in a uniform field of induction of intensity

B, any motion of the circuit parallel to itself would not

change the induction through it, and there is no tendency to

any such motion ; if the normal to the plane of the circuit

makes an angle 6 with the direction of the field, a couple,
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of moment C A B • sin 6, acts on the circuit and tends to

decrease 0.

If into a magnetic field F which has the components

X , Y , Z a linear circuit carrying a steady current be intro-

duced, and if the electromagnetic field due to the current alone is

FB or (Xi, ¥u Zx), the whole field is (X + A\, Y + Y1} Z + Z
x),

and the whole magnetic energy in the field is

QO

or i^ffft1
(
X°

2 + Y * + Z^) dT

oo

+hfff 11^* + Fi2 + V) dT

The first integral is the magnetic energy of the original

field, the second that of the field of the circuit alone, and the

third the magnetic energy due to the introduction of the circuit

when formed into the field. We may now show that this last

term, which may be written

hrSSS^ '
Fl

'
C°S^ Fl) dT

>

is equal to the product of the strength of the current and

the flux of induction of the original field in the positive direc-

tion through the circuit. Since all the equipotential surfaces

of the field Fx are bounded by the circuit, we may cap the

circuit by a whole series * of such surfaces and write the

* A. Gray, Treatise on Magnetism and Electricity, Vol. I, p. 293.
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total induction through the circuit due to the outside field in

the form

M = Cj*tx (IX + m F + nZ ) dS =ff^ cos (F , F,) dS,

where the integration is to be taken over any one of these

caps and where I, m, n are the direction cosines of the normal

to the cap.

If a unit magnetic pole were carried around any line of force

sx of the field Fx , the work done on it would be Att times

the current C in the circuit, so that AttC = i F1 -dsx . If we

multiply each side of this last equation by M, we have

C C Cfx (IX + mY + nZ ) dS

=^fff*Fo cos (F , F,) dS J>x ds1 .

Since the caps are equipotential, F
t
ds x has the same value for

all lines of force between any two caps, and since the induction

fx.F is solenoidal, the first integral factor of the second mem-
ber has the same value for all the caps. We may find the

value of the second member, therefore, by imagining space

divided up into elements which are portions of tubes of force

of the field JF\ bounded by equipotential surfaces of this field,

multiplying the volume of each element by the value in it of

/jlF - Fi- cos (F , Fx), and finding the limit of the sum of all

these quantities divided by 4 ir. The value of the volume

integral must be, however, independent of the shapes of the

elements, and we have, in general,

C C ffi (IX + mY + nZ ) dS

= ^-ffff* -Fo-Fi- cos (i^ F,) dr.
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The magnetic energy in the medium is often called the "elec-

trokinetic energy." That portion of the electrokinetic energy

which is due to the introduction of the circuit already established

into the given field is evidently the negative of the mutual poten-

tial energy, corresponding to work done against mechanical

forces, of the equivalent magnetic shell and the field.

If a portion s of a circuit electrically connected through

mercury cups with the rest of the circuit, which is fixed, be

rotated and finally brought back to its original position, elec-

tromagnetic work will be done on s if it cut lines of the field in

positive direction during the motion, but the whole circuit may
be represented by

the same magnetic

shell at the begin-

ning and at the end

of the process, and

the mutual poten-

tial energy of the

circuit and the

field is unaltered by

the displacement.

Under these circumstances, as will appear in the sequel, cur-

rents are induced in s by the motion.

If in the case of the circuit shown in Fig. 69 the conductor

AB is free to slide on the rails DA, GB in such a way as to be

always parallel to DG, it will move in the direction indicated

by the detached arrow, the circuit will be made to embrace in

the positive direction a greater number of lines of induction,

and the electrokinetic energy will be increased. If the motion

take place without external help, the necessary energy must be

furnished at the expense of chemical action in the battery.

Let E be the electromotive force of the battery, r the resistance

of the circuit at any instant, and C the current which then

passes through it : the energy furnished by the chemical action

in the battery during the time dt will be ECdt, and of this a

Fig.
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Fig. 70.

part, at least, C 2rdt, appears as heat in the conductors which

make up the circuit. If AB be held still, C will have such a

value, C , that EC = C 2
r. If, however, AB be moving toward

the right, the current will be smaller than C , EC will be

a fraction of EC
,

C 2
r a smaller frac-

tion of C 2
r, and

EC will, therefore,

be greater than

C'
2
r. The difference

(EC - C 2r) dt now
represents the work

done during the

time dt in moving

AB : a part of this work is used in overcoming friction on the

rails, a part in communicating kinetic energy to AB, and a

third part in increasing the energy of the medium. If for

convenience we denote (EC — C'2r) dt by C dp, we shall have

E — D
tp = Cr, and the current is the same as if there were

in the circuit an electromotive force D
tp opposed to that of

the battery. If an external force were applied to AB tending

to move it to the right, the velocity might be increased so much

that the current would be reduced to zero

or caused to flow in the opposite direction.

If, however, AB were forced to move to

the left by external forces, the current in

the circuit would become greater than C
and would have the same direction as E.

Fig. 70 illustrates a case where the

resultant magnetic field is, as before,

normal to the plane of the circuit, though

the field lines thread the circuit in the

negative direction ; in this case AB will tend to move toward

the left.

Fig. 71 represents Faraday's metal disc, mounted on a

metallic arbor and free to turn about a horizontal axis. At

Fig. 71.
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any instant the current flows in the disc from the centre to

the brush P and the conductor which carries the current is

urged to turn in the direction indicated by the arrow. The

energy in the medium is not increased by the motion of the

disc, and the work done by the battery is spent in heating

the conductors in the circuit, in overcoming friction and the

resistance of ohe air, and in increasing the

kinetic energy of the disc. If the field is

uniform, if S is the area of one face of the

disc, and if the media are of unit induc-

tivity, the work done on the disc each turn

is CHS, and if it is making n turns per

second, we have EC = C2r + CHSn. If

the disc be used as a motor to overcome

resistance of some kind, and if the energy

required per turn is f(n), CHS —f(n), and

from these two equations n and C may be

found, if / be a known function.

In the arrangement shown in Fig. 72

a rigid wire free to turn about the axis of

a fixed vertical magnet makes electrical

contact with the magnet at its middle.

The current from a battery flows through

a circuit made up of the wire, the mag-

net, and a supplementary fixed conductor

forming a prolongation of the axis of the

magnet. In this case the wire will turn continuously in the

direction indicated. It is easy to show that a fixed magnetic

field cannot cause continued rotation of a complete rigid circuit

about a fixed axis.

Fig. 72.

80. The Electrodynamic Potential. If while a linear cir-

cuit, s2 , which carries a steady current, C2 , remains fixed, a

neighboring linear circuit, s1} which carries a steady current,-

Cu is deformed or moved without being stretched, so that

every element dsi is unchanged in length but the coordinates
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of the beginning of the element receive increments 8xu 8^, Szx,

which are analytic functions of x x, yx, z u the work clone by the

forces which s2 exerts upon sx is approximately equal to

or to

i I {dXx
h.i\ + d Yx 8y x + dZx hz

x ),

c^SJy^ C
1 1 >•) •^ + *>* C

1M to + A» (iA) • *h ]

[dxx
dx 2 + dij

x
dij2 + dz

x dz2
~\

- C1Cifi
f[DXi

(l/r) dxx + I),Jl/r) dyx + DZi (1 /r) dzx]

\_dx 2 • Bx x
-+- dy2 &>/i + dz2 • Szx

"j.

The first factor under the integral signs in the second

integral of the last expression is equal to D (1/r) -dsx, and

if we integrate the whole integrand by parts with respect to sx,

we get

\_(dx 2 6X X + dy2 • 0y X + dz 2 6Z X) / r\ taken between limits

—
I
(dx2 d8x x + dy2 d8yx -f dz 2 d8z

x)
/ r,

where the expression in brackets, having the same value at

both limits, can be omitted. The expression for the elemen-

tary work done on sx during its displacement is, therefore,

c^SJy^ (1/r) Sxi + D* (1/r) 8yi + A *
(1/r) s" i]

[dx
x
dx2 + dy x dy2 + Azx

dz 2
~]

+ CXC2 C f(dx 2 d8x x + dy2 d8yx + dz2 dSz x)
/r,

and this is obviously equal to the variation of the integral

CXC2 \ I (dxx dx, + dyx
dy 2 + dz x dz 2)/r,
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caused by the elementary displacement. This last integral

written in the form

Ci Co C f[cos (dSl ds2 ) / r] dSl ds2 [204]

gives what is often called F. E. Neumann's Expression for

the Eleetrodynamic Potential. The increase in the value of

this function caused by any finite displacement of s x
evidently

represents the work done on s
x by the field due to s2 during

the displacement : this work depends only upon the original

and final configurations. The Eleetrodynamic Potential corre-

sponds to that portion of the electrokinetic energy which is clue

to the mutual proximity of the circuits. Its negative is eejual

to what is sometimes called the mutual potential energy due to

the mechanical forces acting between the circuits. It is impor-

tant to notice that although the ponderomotive forces which

urge a rigid circuit carrying a given current, C, in a magnetic

field can be correctly found from the expression for the mutual

potential energy of the field and a magnetic shell of strength

C bounded by the circuit, this may be regarded from one

point of view as merely a convenient mathematical device. If

the shell were to move under the action of the field alone

and acquire kinetic energy and overcome external resistance,

this work would be done at the expense of the mutual poten-

tial energy of the field and the shell. If, C being kept

constant, the circuit were to move under the action of the

field in exactly the same way, the work would be done at the

expense of the generator which maintains the current. In

other words, there is no sensible mutual potential energy of

the field and the circuit, the exhaustion of which measures the

work done by the forces of the field during any displacement

of the circuit.

The integrand in the expression given by Neumann can be

increased at pleasure by any quantity which disappears when
integrated around either s x or s 2 . Such a quantity is X DHDS

r,

or A.[cos(r-, ds{) cos (r, ds%)
— cos (dsu ds 2)~\/r, where X is any
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constant. The corresponding form of the Electrodynainic

Potential is

C\C2 i i \\ cos (r, dsx) • cos (r, ds2)
\(l/r) dsx ds2

+ CiC2 f f |(1 — X) • cos (dsu ds 2) • (1 /r)\ ds1
. ds

2 .

A form sometimes convenient is obtained by putting A, = 1.

In the case of two vertical, coaxial, circular wire circuits

of radii rx and r2 , at a distance a apart (Fig. 73), we may

Fig. ir,.

denote by
(f> l

and fa the angles which radii, drawn from dsu

ds 2 respectively to the centres of their circuits, make with the

vertical and put x 1
= i\ cos <£u x 2

= r2 cos fa, y 1
= rx sin fa,

y2 = r2 sin <j>2 , r2 = a2 + y\
2 + r2

2 — 2 i\r2 cos (<£ —
<f>2). The

expression

P = d Co I j ((Za
1

! • c/a^ + dyx dy2 + dz x dz2)
jr

then becomes

oioim pi*f .

*»(»-*)*»
•«/o */o Va2 + ^i

2 + r2
2 — 2 «va cos (fa — fa)

or C^C2i\r2 I («M<£2 .
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That the definite integral Q is not a function of <j> 2 follows

from the fact that the definite integral which represents its

partial derivative with respect to
<f>2

is the limit of the sum

of elements which destroy each other in pairs : we may there-

fore give to <j> 2 in the expression for Q any convenient value

(say zero) and write P = 2ir C^C^r^r^Q. We may conveniently

transform the integral which represents Q by putting

26 = ^-^,^ = 4, nr2/[a* + (r, + r2)
2
],

and get

X £ TTfC O i O 2

"/2 (1-2 sin2
6) dd

Vl-/fc2 sin2 '

9
K- T E

where K and E are the complete elliptic integrals of the first

and second kinds. The numerical values of these integrals

for various values of k are to be found in " A Short Table of

Integrals" (Ginn & Company, Boston). It is to be noted that

if in this analysis we imagine finite currents to be carried

by conductors of zero cross-section, and i\ and r2 to be equal,

then, if a approaches zero, k approaches unity and P grows

large without limit. The derivative of P with respect to a

gives in general the mutual attraction of the two circuits.

If the external field about a linear circuit s1} carrying a

circuit Ci, is due to a current C2 in another linear circuit s2 ,

we have two different expressions for the mutual potential

energy of the magnetic shells which correspond to the two

circuits. These are — C^N, where N is the number of lines

of induction due to C2 which thread s x
positively, and the

negative of the Electrodynamic Potential of the two circuits.

When C\ and C2 are both unity the Electrodynamic Potential

measures the magnetic induction through either circuit when

the unit current traverses the other.

The number of lines of magnetic induction which thread

either of two simple linear circuits, made of non-magnetic

material and removed from the neighborhood of other currents



278 ELECTROMAGNETISM.

and permanent magnets, when the unit current passes through

the other circuit, is called the coefficient of mutual induction

or the mutual inductance of the two circuits. The numerical

value of this coefficient depends upon the character of the

media in the neighborhood of the circuit.

If two exactly similar linear circuits, s x and s2 , carrying

steady currents of unit intensity, lie side by side, and if one of

them (.s 2) be imagined to move up towards coincidence with

the other, the value of the integral which represents the Elec-

trodynamic Potential approaches the form

-SI
cos (dsu ds 2) ds x ds2

r

where the integration is to be extended twice over the same

circuit. If the circuits are supposed to be mere geometrical

lines, the value of this integral will be in general infinite
;

if, however, s x and s 2 are made of wires of small but definite

cross-sections, the finite limit, as s
2
is moved into close contact

with 5„ of the flux of magnetic induction caused by the unit

current in s 2 through a diaphragm bounded by s x is practically

the flux through the diaphragm due to the unit current in s^

The number of lines (unit tubes) of magnetic induction

which thread a simple fine wire circuit made of non-magnetic

material, which carries a steady current of unit strength when
there are no other currents and no permanent magnets in

its neighborhood, is very nearly equal to what is called the

coefficient of self-induction or the self-inductance of the simple

circuit, under the circumstances. The numerical value of this

coefficient, which we shall soon be able to define more accu-

rately, depends very much upon the nature of the media about

the circuit.

81. Coefficients of Induction. If two fine wire closed cir-

cuits of non-magnetic material, exactly alike in size and shape,

and carrying in the same direction steady currents of intensity

C and C" respectively, are placed as nearly as possible in
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coincidence, the coefficient of mutual induction of the two is

practically the same as the coefficient of self-induction (L) of

either, and the work required to separate the two circuits to

an infinite distance from each other is C'C'L. If, then, a

fine wire closed circuit which carries a steady current C be

supposed made up of infinitely slender closed circuit filaments

lying freely in contact, it is easy to get an expression for the

work that must be done in removing these filaments one after

another out of the field. If at some stage in the process the

remaining filaments carry altogether the current C — C", the

work required to remove another filament carrying the cur-

rent dC" would be (C — C")dC" L, and this integrated with

respect to C" between and C yields £ C 2L, which is an

expression for the intrinsic energy of the original collection of

filaments. Again, if a current C be set up and kept steady

in any closed circuit in a medium of any kind which contains

no permanent magnets and no other currents, the medium
becomes polarized by induction and is a field of force. The

electrokinetic energy is equal to the volume integral taken

over all space of fj.C'
2B 2 /8tt, where R is the intensity of the

field due to a unit current in the conductor. It is easy to see

that this reduces in the case of a linear circuit to •£- C 2 times

what we have called the coefficient of self-induction of the

circuit, and we are led to define the coefficient of self-induction

of a circuit, made up of conductors of any form surrounded by

media the susceptibilities of which are independent at every

point of the intensity of the force at the point, as twice the

energy in the magnetic field when the circuit carries a current

of one electromagnetic unit and there are no other currents

and no permanent magnets in the neighborhood.

If, for instance, a uniformly distributed current C be carried

lengthwise in a homogeneous, infinitely long cylinder of revolu-

tion, of radius a, and be brought back in a thin cylindrical shell

of inside radius b and outside radius c, coaxial with the cylin-

der, there is no field without the shell ; the intensity of the

field is 2 Cr/a2 within the cylinder, 2 C/r between the cylinder
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and the shell, and 2 C(c2 — r2)/r(c2 — b") in the shell itself.

Neglecting the space occupied by the thin shell, which would

contribute little to the result, the whole energy in the field per

unit length of the cylinder is

8
L 4C

2 p2^^ + f± 4:C , f
b

2v/r . dr.
TT a* Jo O 7T Ja '

If the medium between the shell and the cylinder has the

uniform inductivity /a2 , this energy is ^ /xiC
2 + fi2C 2 log b /a.

The coefficient of self-induction of the circuit per unit length

is, therefore, when the shell is thin, ^ ^ + 2 /x2 \ogb/a.

The coefficient of self-induction, in electromagnetic absolute

c.g.s. units, of a circular ring of circumference I, made of non-

magnetic wire of radius r and surrounded by air, is, according

to Kirchhoff, 2 I [log (l/r) — 1.508], and that of a square circuit

of perimeter I, made of similar wire, 2 Z [log (//r) — 1.910].

Regarding the coefficient of self-induction from the point of

view of the energy in the field, it is possible to prove that the

coefficient of a part of a circuit consisting of a straight wire of

length I and radius r is approximately 2 I [log (2 l/r) + % /x — 1],

where fx is the magnetic permeability of the wire. For addi-

tional examples, the reader is referred to Winkelmann's Hand-
bitch der Physik, Vol. Ill, Maxwell's Treatise on Electricity

and Magnetism, Vol. II, and to Gray's Absolute Measurements

in Electricity and Magnetism, Vol. II.

If X
1}
Yu Zx

are the components of the electromagnetic field

which a unit current flowing in a given circuit s x of self-induc-

tance L
x
would cause if the surrounding space contained no

other currents and no permanent magnets, and if this space is

already the seat of a magnetic field X, Y, Z, caused either by

currents or by permanent magnets, or by both, then if a steady

current Cx be set up and maintained in su the electrokinetic

energy is

— ffftxlic^ + xy+ic^-h Yy+iCiZi + zyid*.
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The integrand can be split up into three terms,

pCf[xx
* + ys + z?\ p[x* + y* + z*i

and 2 fx Cx \XXX + F, F + ZX
Z\

and the corresponding integrals represent respectively \ CX

2L X ,

the energy of the original field, and that part of the electro-

kinetic energy due to the introduction of the current into the

field. If the external field is due to a steady current C2 in

a second circuit s2 of self-inductance L2 , the second integral is

\ C2
2L2 , and if the third be written CX C2M, the whole energy

becomes ^ CX L X + MCXC2 + ^ C2 L2 . The quantity M, which

in the case where s x and s 2 are linear is the coefficient of mutual

induction of the two circuits, serves to define this coefficient

in the case of circuits which are not linear, surrounded by

media which have susceptibilities independent of the strength

of the field.

If n circuits which have self-inductances L
x , L2 , Lz

,-- and

carry currents C
x , C2 , C3, exist together in a soft medium,

and if the mutual inductance of the pth and kth. circuits is Mpk ,

the electrokinetic energy T is equal to

$(L
X
C> + L

2C? + LzCi + • • • + Ln C>)

+MxsC1Ca+MlsClCs + -.-+MlaClCn+M2SC2C8+.:
.,

where the values of the inductances depend upon the configura-

tion of the system. If this configuration is determined by

a number of generalized coordinates q x , q2 , q3,
• • •, the electro-

dynamic force, in the Lagrangian sense, which tends to increase

any one of these coordinates (leaving the rest unchanged) is

the partial derivative of T with respect to this coordinate.

If every circuit is rigid, the Z's are constant during any change

of configuration.

82. Maxwell's Current Equations. Various Current Sys-

tems. We may infer from experiment that if a unit magnetic

pole be moved about a simple, closed path in any steady electro-

magnetic field, whether the medium in which the part lies is
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homogeneous or not, the work done on it by the field is equal

to 4:ttC, where C is the whole current which passes in positive

direction through any surface or diaphragm which caps the

path. If u, v, iv are the components of the current intensity,

the flux through the cap may be written in the form

I
J
[u cos (x, n) + v • cos (//, n)+ w • cos (z, n)]dS,

and if L, M, N are the components of the magnetic force

H, the line integral of H taken around the path is equal,

according to Stokes's Theorem, to

f fl(PwNr
— I>*M) •

cos
(
x

>
n
) + (

D
*L ~ D*N) ' cos (^ n

)

+ {DJI - Dy
L) cos (z, n)~\dS.

It follows that the integral

//i[(4«- DyN + DJU) cos (x, ?i)

+ (4 ttv - DZL + DXX) cos (y, -n)

+ (4 ww - DJI+ Dy
L) cos (z, »)] dS

must vanish whatever the shape of the cap and, therefore,

that at every point

4 iTii = DyN - DZM,

4 ttv = DZL - DJ?,

4 irw = DJI - DyL. [205]

These are Maxwell's Current Equations, which can be stated

in the single vector equation

4 irq = curl of //.

This has been called by Heaviside " the first circuital equa-

tion " of the electromagnetic field. It states that 4 tt times

the resolved part of the current intensity at any point within

a conductor, in any direction, is equal to the resolved part in

the given direction of the curl o
#
f the magnetic force. The

equation holds even in a non-homogeneous medium.
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Maxwell's Equations, with the characteristic volume and

boundary differential equations which the magnetic induction,

as we have seen, must always satisfy, completely determine a

steady magnetic field in given media, when the current q is

known.

In any homogeneous soft medium the magnetic force If is

solenoidal, and we may infer from the work of Section 69

that it has a vector potential function Q equal to Pot q. We
have, therefore, H = curl Q, 4 -wq = curl H, and, if the compo-

nents of H and Q are L, 31, N and Qx, Qy, Qz
respectively,

^fff^> *.-f{PP- *-SSmS*&
L = D

yQz
-DzQy, 3f=D

zQx -DxQz , N=DxQy
-D

yQx .

When in a steady field H is known, Maxwell's Equations,

or their equivalent, give the current vector q directly. If, for

example, the magnetic force is zero everywhere without an

infinitely long cylindrical surface A B

S of any shape, while within S the K—I I K*

field has the uniform strength N, F „,

and is directed parallel to the gen-

erating lines of the surface, q is zero within and without S.

To show that S itself is a current surface, let KK' be a por-

tion of a generating line drawn in the direction of the field

within, and let AB and CD be lines each of length I parallel

and close to KK', one within and the other without S, drawn

so that AC and BD are normal to the surface. The line inte-

gral of the magnetic force taken around the perimeter of

the rectangle ACDB is numerically equal to ZiV", so that, by
Stokes's Theorem, the surface integral of the normal upward
component of the curl taken over the area of the rectangle is

IN, and this is equal to 4 it times the steady flow of electricity

through the rectangle. There is, therefore, a uniform flow of

electricity in S perpendicular to its generating lines equal to

N/4: 7r per unit length of the surface.



284 ELECTROMAGNETISM.

This is practically the case of an electromagnetic solenoid,

that is, an infinitely long cylindrical surface wound uniformly

(and as nearly perpendicularly to the axis of the cylinder as

possible) with turns of fine wire. If there are u turns on each

centimetre of length of the cylinder (Fig. 75) and if each

turn carries a steady current C, N/Aw = nC, ox N= A-n-nC.

This result is independent of the magnetic inductivity of

the homogeneous soft medium within the cylinder. The

induction in the medium is ^-n-n^C, and the intensity of its

polarization (magnetization) is ^irnkC or 7iC(/x — 1). The

coefficient of self-induction per unit length of the solenoid

is 4:Trn2fiA, where A is the area of the cross-section of the

cylinder.

If a part of the space within the solenoid be taken up with

a homogeneous soft medium of permeability (jlu and the rest

by an infinitely long

-Mffl—jil—> cylinder of another

-p 7>
. homogeneous soft

medium of permea-

bility fin, the lines of which are parallel to those of the sur-

face upon which the wire is wound, the lines of force are

unchanged in form, the induction in the first medium is 4 -n-n^C

and in the other 4 irn^C. If A x and A2 represent the portions

of the cross-section A of the solenoid occupied by the two

media, the self-inductance of the solenoid per unit length is

4 w?i
2
(filA l + fj.2A2).

The coefficient of mutual induction of two infinitely long

solenoids S1} S2 , one of which has n x turns and the other n 2

turns per unit of its length, is zero, unless one, say S2, is within

the other. In this case the coefficient has the value kim x
n 2A 2

per unit length Of the two, where A2 is the area of the cross-

section of S2 .

If two infinitely long, cylindrical surfaces, whatever their

shapes may be, have parallel generating lines, and if one of
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these surfaces is within the other, the space between the

surfaces will be a uniform field of magnetic force of strength

iV, directed parallel to the generating lines, and the regions

without the outer surface and within the inner one will be

fields of no force, if a uniform current of strength N/k-n- per

unit length flows in each surface perpendicular to the gen-

erating lines and if the directions of flow around the two

surfaces are opposed.

If the two infinite parallel planes x = a, x = b carry uniform

currents parallel to the y axis, of strength N/Air per unit

width of the planes parallel to the z axis, and if the directions

of the two currents are opposite, the region between the planes

is a uniform field of force of strength JV parallel to the z axis.

There is no force without the space included between the

planes. The current in each plane evidently gives rise to a

uniform field of intensity \N on both sides of the plane.

If a ring surface be formed by revolving about the z axis

an area in the xz plane, and if electricity be supposed to flow

symmetrically on the surface, in closed paths which lie in

planes through the z axis, and coincide with perimeters of

cross-sections of the ring formed by such planes, the field has

the same intensity at ail points of any one of the family (/)

of circumferences, the centres of which lie in the z axis and

have that line for their common axis. If, using columnar

coordinates (r, 0, z), we denote the force components at any

point, taken in the directions in which these coordinates increase

most rapidly, by R, 0, Z, these components are independent

of 0. Since the amount of work which would be done on a

magnetic pole if it were carried around any closed path with-

out the surface,— whether or not it linked with the surface,—
or around any evanescible path wholly within the surface,

would be zero, we are led to guess that the field outside the

ring is everywhere zero, and that the lines of force within the

ring are circumferences of the / family. If a unit magnetic
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pole were carried about one of these circumferences of radius r,

the work done on it would be ± 2 7r>-0, and this is equal in abso-

lute value to 4 irE, where E is the whole amount of electricity

which flows about the ring per second. We learn, therefore,

that ® = 2E/r. We may now prove that if there is no field

without the ring surface, and if the only component

within is ® = 2 E/r, the currents which give rise to

/ the field must be those assumed above. The com-

\ i ponents of the field within the ring, taken parallel

\ j to rectangular axes, are — 2Ey /r2
, 2 Ex/r2

, 0, so

\ / that the force is lamellar within and without the

surface of the ring. To find what currents flow in

the surface itself, we may use a circumference s of

radius r, in which a plane perpendicular to the z axis inter-

sects the surface, draw two arcs parallel and very close to s,

one on either side, so that one is within the surface and the

other without it, and complete a narrow closed contour by

drawing two radii (Fig. 76) which make with each other

any convenient angle 4>. Only

one side of the contour yields any

contribution to the line integral

(2 E(f>), taken about it, of the tan-

gential component of the force.

This integral measures the work

done on a unit magnetic pole car-

ried around the contour, and is

equal to -1-rr times the strength of

the current across the portion of s,

of length >•</>, which the contour

encloses. If the whole flux across

s is E, the flux across this arc is <j>F/2tt, and we have the

equation, 2 E<f> = ±ir$F/Itt, or E= E.

The case here considered is approximately that of a ring of

revolution wound uniformly with fine wire (Fig. 77) in turns

which lie nearly in radial planes through the axis of the ring.

If there are n turns on the ring, and if each turn carries the
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steady current C, E=nC, and the force within the ring is

2nC/r, whatever the inductivity of the homogeneous soft

medium within the ring. The induction in the medium is

2fi.nC/r, and the intensity of its magnetization is 2knC/r.

It is to be noted that the reasoning here employed might be

applied unchanged if the inductivity of the medium were a

function of r and z, but not a function of 6 ; this would be the

case, for instance, if into air space within the ring were intro-

duced a soft iron ring coaxial with this space.

A slender magnetic filament within the ring surface, of

length I and cross-section S, carries 2 fxES/r, or 4 TrnC/ (I / fiS)

lines of induction. The line integral of the magnetic force

taken along a magnetic filament in

a soft medium is sometimes called

the magnetomotive force in it, and

the ratio of this quantity to the

flow of induction in it the reluc-

tance of the filament. In the case

before us 4irnC is the magneto-

motive force, and 1/fiS the reluc-

tance. This last expression bears

a close resemblance to the formula

for the electric resistance of a wire

of length I, cross-section S, and

specific conductivity fx.. The reciprocal of the reluctance of a

magnetic filament in a soft medium is sometimes called its

permeance.

If wire were wound part way around a soft iron ring, in the

manner described above, most of the lines of induction woidd
still be confined to the iron, though a few would emerge into

the air at the ends of the coil.

If a radial gap be cut in a soft iron ring completely wound
with wire, the field is no longer symmetrical about the axis of

z, and the character of the problem is changed. The line

integral of the tangential force taken around a circumference

inside the ring, of radius /• (Fig. 78), with centre on the z axis

Fig. 78.
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and plane perpendicular to that axis, is still AirE or 4:7rnC,

but the portion of the path in air now contributes far more

than its due proportion to the result, and the path in the iron

much less than before. We know that at any surface of discon-

tinuity in the inductivity of a soft medium the normal com-

ponent of the induction is continuous, so that if the normal

component of the force in the iron, just where the path is about

to emerge into the gap, is H, that in the air near by is fiH, where

fi is the inductivity of the iron. Although the lines of force

within the iron are no longer exactly circular, they are nearly

so, and the line integral of the force about the circumference

just mentioned is very approximately Hr (2 tt — <f>) + fillr<f>, or

4:imC; and H= 2 nC/\r[l + <£(> - 1) /2 tt]*, where <£ is the

angle' subtended by the gap at the axis of the ring. If, in the

case of the core used, /x = 1201, and if only one per cent of

the ring be cut away, the induction in the iron will be reduced

to about one-thirteenth of its old value ; the reluctance of the

path will be increased thirteenfold.

If the lines of force in a steady electromagnetic field are all

circles with centres on the z axis and planes perpendicular to

this axis, and if the intensity of the force in a direction linked

right-handedly with the z axis is/Vcc2 + if or f(r), it is evi-

dent that L = - y -f(r)/r, M= x •/(/•)/ r, 7V= 0,so that u = 0,

v = 0, ±ttw = DXM- D
yL=f(r) +f(r)/r = Dr [r •/(?•)]//-.

According to this, if in any portion of the field f(r) = 0, in

that portion w is 0; if f(f) = c, w = c

/

4 -n-r ; if /(>•) = c/r,

w = 0; and if f(r) = cr, w = c/2tt. If, on the other hand,

while u and v are zero, w is given as a function of r, f(r)

can be obtained from the equation f(r) =— I rwdr; when,

therefore, iv is equal to the constant ww f(f) — I-kw^t 4- d/r.

If the cylindrical surface r= b separates two regions in a field

of this kind where the laws of force intensity fi(rj, fo(r)

in the inner and outer of these regions are different, and if

A (*)
—A (^)

= ^j i* * s easy to see
>
wftn tne ne^P °f Stokes's
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Theorem, that the surface r — b is itself a current surface in

which there is a total flux parallel to the z axis across any

right section of % kb.

Up to this time we have considered only media which have

inductivities independent of the magnetizing force. The per-

meabilities of the so-called magnetic metals do not in general

satisfy this condition, and we may note in passing that some

of our definitions have to B

be restated when there are

masses of such media near

a circuit.

If fine wire, carrying a

steady current, be wound
uniformly upon a cylin-

drical rod of soft iron,

the length of which is at

least 400 times its diam-

eter, the induction at the

middle of the rod is sen-

sibly the same as if the

rod were infinitely long,

and if this induction be

measured (in a manner

to be described in a later

section), the permeability of the iron may be determined.

Curves D, E, F of Fig. 79, in which the abscissas represent

the magnetizing force H in units, and the ordinates the corre-

sponding induction B = fx.IT in thousands of units, show the

results of experiments upon specimens of very soft malleable

iron, soft cast iron, and very hard steel, respectively. It is

evident that so far from being constant, the permeability and

the susceptibility of each of these specimens increase to a

maximum at a value of H corresponding to a point where a

tangent from the origin touches the curve, and then decrease.

In the case of the curve I), for instance, the permeability, corre*

-d

Efe=i

Fig. 79.
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sponding to a value OM of the magnetizing force, is MP / OM,
that is, the slope of the straight line OP joining the origin with

the point on the curve which has OM for its abscissa.

When the conductors which make up a simple linear circuit

which carries a steady current C, and the soft media about

it, have inductivities independent of the magnetizing force,

and there are no other currents and no permanent magnets in

the field, the coefficient of self-induction of the circuit may
be defined indifferently as the ratio of the total induction

through the circuit to C or as twice the ratio of the integral of

fi.II
2/8 ir, taken over the field of the current, to C 2

. In this

case the magnetizing curves of all the substances in the field

are straight lines, and these definitions lead to the same value

whatever C is. If the magnetizing curve of

any medium in the field were, like that of soft

iron, not straight, the definitions would not

agree, and each would yield different values

for different values of C.

Mechanically soft iron or steel cannot be

regarded as magnetically soft, for if a piece

of either of these metals be magnetized by

F 80
induction, this magnetization does not wholly

disappear when the magnetizing force is

removed. If the magnetizing force be made to change contin-

uously from a given negative value to an equal positive value

and back several times, the induction goes through a cycle

which may be represented graphically by a curve somewhat

like that shown in Fig. 80, in which the abscissas represent

magnetizing forces, and the ordinates the corresponding values

of the induction. Such diagrams make plain the fact that

the induction in a piece of soft iron or steel is not a definite

function of the magnetizing force, and that the energy in the

medium, as defined by the volume integral of 1/8 tt times

the product of the numerical values of the induction and the

magnetizing force, may have, for the same, force, very different

values, depending on the previous history of the metal. When
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the induction has passed through such a cycle as that indicated

in Fig. 80, the energy in the field returns to its old value,

but it is easy to prove that an amount of work represented

by 1/4 it times the area of the cycle per unit volume of the

substance had to be done on the metal during the cycle, and

that this appeared as heat. The reader will find the subject

which has been just touched upon here admirably treated

under the head of " Hysteresis " in Ewing's Magnetic Induction

in Iron and Other Metals, and in Fleming's The Alternate

Current Transformer.

IV. CURRENT INDUCTION.

83. Electromagnetic Induction. If one of two circuits

(sv s2), so situated that their coefficient of mutual induction

is not zero, contains a galvanic cell and a key, and the other

(s2), which is permanently closed, a galvanoscope, a momen-

tary current appears in s2 when the key is depressed so that

a current circulates in s
1

and another momentary current,

opposed in direction to the first, runs

through s2 when the key is opened again.

A current in either s
t
or s2 gives rise to a

magnetic field and causes lines of magnetic

induction to thread s
2

: the direction of the

transient current in s2 in each of the cases

mentioned is such that the lines which

it threads through s
2
oppose the sudden

change in the flux of induction through s2

which the change in the current in s
x
tends

to cause. Thus, if the relative position of

the two circuits and the direction of the current in s
1
are

correctly indicated in Fig. 81, the transient induced current in

s2 will flow from B to A when the key is depressed and from

A to B when the key is again opened. In general, if a rigid,

closed circuit s is in a magnetic field caused either by perma-

nent magnets or by electric currents in neighboring circuits,

Fig. 81.
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or by both together, and if the positive flux Q of magnetic

induction through any cap or diaphragm bounded by s be

changed in amount, either by moving s or by changing the

field in any way, a temporary current is induced in s in a

direction which tends to oppose the change in Q. The phe-

nomenon is quantitatively explained, when s is unchanged in

form, by assuming that, superposed upon such electromotive

forces as the circuit may already contain, a temporary electro-

motive force numerically equal to the time rate of change of

Q is induced in s in the proper direction.

Transient currents are usually induced also in any circuit in

a magnetic field when the circuit is deformed or extended in

any way. These currents, like those already considered, are

mathematically accounted for on the supposition that there is

M induced in every circuit element ds, which

moves in a magnetic field so as to cut across

the lines of induction during the motion, an

electromotive force numerically equal to the

time rate at which the element cuts these lines.

This electromotive force is directed from the

feet to the head of an observer who, lying

in the element and looking along the lines of force, sees these

lines move past him from right to left. The induced cur-

rent at any instant in either direction around the circuit is

equal to the ratio of the algebraic sum of the electromotive

forces induced at that instant, in that direction, to the whole

resistance of the circuit. If in Fig. 82 OC represents the

direction of a circuit element at the point 0, OM the direction

in which the element is moved, and OF the direction of the

whole field at 0, the induced electromotive force will have the

direction OC, not CO. The direction of the current, induced

by the motion, in the direction OM, of a circuit element at

in a magnetic field which has there the direction OF, may be

found by choosing that direction, OC, in the element which will

cause the three directions OC, OM, OF to be related like those

of the x, y, z axes of a Cartesian system. It is to be noticed

Fig. 82.
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that the direction of the current induced in an element is

such that the mechanical action of the field upon the element

carrying this current alone would hinder the motion ; a circuit

element carrying a current in the direction OC in a field

having the direction OF in Fig. 83 would be urged in a

direction ON perpendicular to the plane of FOC and would

move in the direction MO, if free to do so, rather than in

the direction OM. The reader will do well to compare, in

this connection, Figs. 68 and 82.

If (a, b, c), (a, (3, y) are the components of two vectors, I

and X, the vector which has the components (eft — by, ay — ca,

ba — a/3) is sometimes called their vector product and the

quantity — (aa -f- b/3 + cy) their scalar product. The vector

product of I and X has a direction perpendicular

to the plane of these vectors : its tensor is the

product of their tensors and the sine of the

angle between their directions. The electro-

motive force induced in or impressed upon an

element ds of a linear conductor moving in a

magnetic field is evidently equal to the product

of ds and the component in its direction of the vector product

of the induction and the velocity of the element.

If (Bx , By, Bz) are the components of the induction,

(f, rj, those of the velocity of the element relative to the

field, and if the induction does not change with the time,

the absolute value of the electromotive force induced in the

element is

[(Bz .

v-By .Qco8(x,s)+ (Bx.£-Bz .{)co8(i/,s)

+ (B,.£-BX
-

V) cos (*, *)] ds. [206]

The whole electromotive force induced in the conductor is the

integral of this expression : if the conductor is not closed

this electromotive force gives rise to a statical distribution

of electricity on the ends of the conductor, and hence to a
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difference of electrostatic potential which tends to destroy

itself by causing a current in the conductor in the direction

opposite to the impressed electromotive force.

If the induction (Bx, By, Bz) of the magnetic field in the

neighborhood of a fixed linear circuit changes with the time,

the induced or impressed electromotive force e in the circuit

is equal to the negative of the surface integral, taken over

any cap S bounded by the circuit, of

\_D
t
Bx cos (x, n) + Dt

B
y

cos (y, n) + D
t
Bz

• cos (z, %)].

If, then, a vector can be found of which the vector

(D
t
Bx , D t

B
y , Dt

Bz )

is the curl, then the line integral, taken around the circuit, of

the tangential component of this new vector— increased, if we

please, by any lamellar vector— will be equal in absolute value

to the induced electromotive force. If (Fx, Fy , Fz) is any vector

potential (Section 69) of the induction, (D
t
Fx, Dt

F
y , Dt

Fz) is a

vector potential function of (D
t
Bx , Dt

B
y, Dt

B
z), and if — if/ is

the scalar potential function of any lamellar vector, the inte-

gral, taken around the circuit in positive direction, of

- [(D
t
Fx + Djf,) cos (x, s) + (D,F

y + Dy$) cos (y, s)

+ (D
t
F

z +I)z+) cos (*,,)] [207]

will be equal to e. This value of the whole electromotive

force induced in the circuit will be obtained if we assume

that every circuit element ds is the seat of an electromotive

force equal to the product of ds and the tangential component

of the vector - \_D
t
Fx + Dxij,, D

t
F

y + D^. D
t
Fz + Djfi].

If a closed linear circuit s in a magnetic field be deformed

or moved according to any law so that during the time dt the

coordinates (x, y, z) of the beginning of an element ds receive

increments (Bx, 8y, By) which are analytic functions of x, y, z,

and dt, and if, during the interval dt, the scalar point func-

tions which represent the magnitudes of the components of

the magnetic induction in the field change from the values
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Bx, By , Bz to the values BJ, BJ, BJ, the flux of induction

through the circuit has been increased by the amount

d* = C ({BJ cos (x, n) + BJ cos(y, n) + BJ cos (z, n)~\dS'

—
J J

\_BX cos (x, n) + B
y

cos (y, n) + Bz
• cos (z, ri)~\dS,

where S' and S are any surfaces which cap the circuit in its

final and initial positions respectively. In moving, the circuit

traces out a narrow surface S", each element ds of the circuit

generating the surface element dS", and we may take for the

cap S' the surface made up of S and S". We have therefore d<&

= dt f C[D
t
Bx cos (x, n)+D

t
B

y
cos (y, n)+D

t
Bz cos (z, n)~\dS

+ f C[BX
' cos (x, n) + B

y
' • cos (y, n) + BJ cos (z, n)]dS".

In the second integral, cos (z, n) dS" measures the area of the

projection of dS" on the xy plane and is, therefore, equal to

± (&x dy — 8y dx) plus terms of higher order ; the sign being

positive, if the direction in which ds moves, the positive direc-

tion of the element, and that of the normal to dS" are arranged

like the x, y, z axes of a Cartesian system. We may substitute

in the integrand Bx, By , Bz , $ dt, v dt, £ dt for BJ, BJ, BJ,

§x, 8y, hz, without changing the value of the integral, and then

write

D
t
$ =

j
[P . cos (x, s)+ Q- cos (y, s) + R cos (z, s)] ds,

where P = - D
t
Fx
- Dx$ + BzV -By Z,

Q= - Bt
F

y
- D^ + Bx £- Bz -£, [208]

B= -DIF,-Dj, + Bll
.$-Ba

-

V.

P, Q, R are said to be the components of the induced electro-

motive force at the element ds.

We may note in passing that we cannot generally assume

that the motion of the electricity in a circuit which is the seat
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of an induced current is governed by a potential function due to

an electrostatic distribution on the surfaces of the conductors,

or elsewhere. If a magnet, the axis of which coincides with

the axis of a plane circular ring of wire, be made to approach

or to recede from the plane of the ring, a transient current

is induced in the wire, but no imaginable electrostatic distri-

bution would furnish the multiple-valued potential function

needed to account for the current.

If a circuit at a distance from other circuits and perma-

nent magnets carries a changing current C, the ratio of the

numerical value of the intensity of the electromotive force

induced by the change of the current in the circuit to D
t
C

is sometimes used as a definition of the self-inductance of

the circuit. The mutual inductance of two circuits may
be defined in a similar manner. It is evident that all the

definitions of self and mutual inductance which we have

mentioned are equivalent when all the media in the neigh-

borhood of the circuits concerned have susceptibilities inde-

pendent of the intensity of the field. The definitions of

this section are often used when there are masses of soft

iron or other magnetic metals near the circuits, or when the

circuits themselves are made of soft iron conductors.

If a number of circuits s
l7 s2, sn , carrying currents C1}

C2,
• • Cn , have self-inductances L

x , L2 , Ln , and if the mutual

inductance of sk and s
t
is Mk„ the total electrokinetic energy

T is of the form

5- Z/j Of + -% L2 Co" + ••£ LnCn

+ MltCxCt + MlzC,Cs + + M2SC2C3 + M2iC2Ci + • • •

+ M3iC3C4 + + Mn_lin CB_i Cn ,

where the i's and the J/'s are independent of the C's and are

to be considered as functions of a set of geometrical coordi-

nates equal in number to the degrees of freedom of the system.

If pk denotes the electrokinetic momentum of sk , that is, the

partial derivative of T with respect to Ck, if rk represents the
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resistance of sk, and Ek the internal electromotive force in this

circuit, -~ measures the intensity of the induced electromo-

tive force, and ^Ek 7^ = rkCk .k
dt

If the relative positions of two rigid circuits sv s2 , which

carry currents C
x , C2 , and are surrounded by a soft medium

in which there are no other conductors, be altered by changing

under their mutual action the geometrical coordinate q by the

amount dq in the time interval dt, leaving the other coordinates

which determine the configuration unchanged, the electrokinetic

energy T= %L
X
C

X

2
-f- MC1

C2
-+- \L2C2

will receive the increment

dT= L
x
C

x
dC

x
+ L2 C2 dC2 +M (

C2 dC
x
+ Cx

dC2) + C&- dM.

The electrodynamic force (in the Lagrangian sense) which

tends to bring about this change of configuration is the partial

derivative of T with respect to q,- taken under the assiimption

that the other coordinates and the currents are constant : the

work done during the change by this force is dW = C\C2
' dM.

Within the circuits we have

E
x
C

x
dt- C\ d (Z, C\ + MC2)

= C\2r dt,

E2C2
-dt- C2

d (L2 C, + MC\) = C2% dt,

so that the work done against the inductive electromotive

forces by the applied electromotive forces (besides the amount

C
1

2
?\ + C2 r2 dissipated in heat) is

C\ d{L
x
C

x
+ MC2) + a d(L2Cs + MC\),

or

L
X
C

X
dC\ + L2 C, dC

2 + M(C2 dC
x + C

x
dC

2) + 2 C
X
C2 dM,

or dW+dT.

If, starting from rest, the circuits come again to rest and the

currents regain their steady values before the end of the

interval dt, we have

dC\ = 0, dC2
= 0, and dW+ dT = 2 CX

C2 dM= 2 dW.
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The principles just laid down enable us to infer that, if

the conductor AB of length I in either of the circuits repre-

sented by Figs. 84
Cj and 85 be moved

parallel to itself

along the rails CB,

DA, in the direc-

tion indicated by

the arrow attached

to it, with constant

velocity v, and if

the field have the direction shown, an electromotive force

will be induced in AB in the direction pointed out by the

arrow by its side.

If the component

of the total induc-

tion normal to the

plane of the circuit

have the constant

value H all along

AB, and if r be the

resistance of the

whole circuitAB CD, the induced current will be IHv/r in abso-

lute units. The volt, ohm, and ampere are equal respectively

to 10 8
, 109

, 10
-1 times the absolute elec-

tromagnetic c.g.s. units of electromotive

force, resistance, and current strength
;

if in this example, therefore, 1 = 1 metre,

v = 1 metre per second, and H = 1, the

induced electromotive force will be 10,000

units, or 10 _4 volts.

If a Faraday's disc (Fig. 86) which has

a radius a be rotated in a uniform field,

in which the component of the induction normal to the face

of the disc is H, with uniform angular velocity w in the

direction indicated, the number of lines of induction cut per

Fig.
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second by OP is £ a2Hu). If r be the resistance of the circuit,

the current in it is aiH(o/2r and the disc is a very simple

form of constant current generator.

Fig. 87 represents a circuit a part of which consists of a

rigid wire free to turn in the air about the

axis of a magnet. This wire makes elec-

trical contact, by means of brushes, with

the magnet at its mid-section and with a

conductor which forms an extension of

the axis of the magnet. If the wire be

rotated with uniform angular velocity <o,

and if m be the strength of one pole of the

magnet, the "electromotive force induced

in the circuit will be 2 wu.

If a thin coil (Fig. 88) closely embracing

a magnet be suddenly slipped from one

position to another, the electromotive force

induced in the coil is proportional to the

amount of induction which emerges from

the surface of the magnet between the

two positions.

Fig. 87.
84. Superficial Induced Currents.

Although a mathematical treatment of the

currents induced in a massive conductor of any form, in

a magnetic field varying in a given manner, is beyond the

scope of this elementary text-book, we may give a very simple

proof (taken essentially from Prof. J. J.

tN J J .D Thomson's admirable Elements of Elec-

-p, R„
tricity and Magnetism) of the fact that

the currents due to a sudden, finite change

in the field lie at the first instant wholly on the surface of

the conductor.

Let n linear circuits, the resistances of which are r1} r2 , r3 , •,

and the self-inductances L
x , L2 , Ls ,

•-, lie near each other in

a magnetic field so that the coefficient of mutual induction of
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the ith and jth. circuits is Miy Let the flux of the external

field through the circuits be N
x , N2 , Ns, , and assume that

the currents are originally zero and that no one of the cir-

cuits contains any battery or other generator. If, then, the

external field experiences a finite change during the extremely

short time interval t and thereafter remains constant, the

flux through the A*th conductor becomes changed from Nt

to iVt '. Transient currents, Cv C2, Cs , •, flow through the

circuits and at the end of the time t attain the values

Ci, GY, C3
', •••. During the given interval we have in the

first conductor, which will serve as a general example,

L
x
B

t
C\ +^ (Jf14 • DtCk) 4- 2>^i + rxGx

= 0,

and if this be integrated with respect to the time between

and t, the last term of the result will be less than )\C^t, which

is negligible, so that the result may be written in the form

L
x

C\' + %{Mlk Ck ') + iV = Nv The second member repre-

sents the whole induction flux through the first circuit before

the change and the first member the whole flux at the end of

the time t, so that the currents generated by the sudden change

in the field are such as to keep unchanged the whole flux.

Imagine a compact mass of metal divided into such cir-

cuits as we have just considered and it will be evident that

the flux through every circuit in the metal is the same just

after the sudden change in the field as it was before. The

work done in carrying a magnetic pole about any closed path

in the metal is unaltered by the change : it is zero before

the change and zero after. No such path can enclose any

current filament and, therefore, all the induced currents are

initially on the surface, though afterwards transient currents

are excited within the metal. It is easy to infer from this

that, if the external magnetic field is a very rapidly alternat-

ing one, the induced currents never penetrate very far into

the mass of the conductor. For references to the literature of

this important subject, the student may consult Winkelmann's
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Handbuch der Physik, Vol. Ill, p. 403. Various problems are

discussed at length in J. J. Thomson's Recent Researches in

Electricity and Magnetism. We shall confine our attention in

the three sections which follow to circuits made up of long

slender conductors like wires.

85. Variable Currents in Single Circuits. When a simple

inductive circuit of resistance r, containing a constant elec-

tromotive force E, is suddenly closed, the current in the

circuit grows gradually in strength and in a short time prac-

tically attains a maximum value C = E/r, after which it

remains constant. While the current is increasing in inten-

sity, the electromagnetic energy in the surrounding medium
— if there are no permanent magnets and no other currents

in the neighborhood— increases also from

zero to \LC 2
, and electrostatic charges

are established which account for the

electrostatic potential differences in the

conductors which make up the circuit. pIG> 39

After the current has attained the value

C the energy (C E watts or CQE • 107 ergs per second) given

up to the circuit by the generator in it is used in heating

the conductors in the circuit, and EC = C 2
r. Before the

current C has become steady CE is only a fraction of C E,

and the rate C2
r, at which energy is used in heating the cir-

cuit, is a still smaller fraction of C 2r ; hence CE — C2r is

positive, and in the time interval dt the energy (CE — C2r)dt

joules is used partly in increasing by dw the energy of the

electrostatic distribution on the surface of the conductors and

elsewhere, and partly in increasing by d(^LC2
) or LCdC the

electrokinetic energy in the medium. Unless something in

the nature of a condenser is attached to the circuit, dw is

usually of no practical importance, and we may write

(CE - C 2
r) dt = LC>dC, or Cr = E - L D

t
C,

or LD
t
C + Cr = E, or C= E/r + A-e~ rt/L

.

*
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It appears from the equation Cr = E — L D
t
C that the

counter-electromotive force cannot be greater than E while

the current is positive ; Dt
C, therefore, is not greater than

EIL and, unless L — 0, the current cannot jump at the

instant to a finite value. We must assume, then, that C =
when t = 0, so that C = E{1 - e~ ,/T

) /r, where r = L/r. The

quantity (1 - e~'
/T

) has the values 0, 0.3935, 0.6321, 0.7769,

0.8647, 0.9179, 0.9502, 0.9817, 0.9933, 0.9975, 0.9991 when

the ratio of t to t has the values 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,

4.0, 5.0, 6.0, 7.0. The difference C - C or - Ee~' /T /r, which

we may call the induced current, has the value — C at the

beginning and sinks to 1/eth of this value in t seconds, which

is sometimes called the

relaxation time of the

circuit. The induced

electromotive force has

the value — Ee~ t/T and

becomes insignificant in

a short time after the

circuit is closed. The

between and oo, of

c

Fig. 90.

integral, with respect to the time

the induced current, is — ELJ r2
.

If, now, the electromotive force in the circuit be suddenly

changed to E', we have at any time t seconds after the change

E'C-dt=C2r-dt + LCdC or C = E'/ r + (E - E')e~ t/T /r.

The induced current is now the second tei m in this expression

for C and the induced electromotive force is never larger than

E-E'. The quantity e~" T has the values 1, 0.6065, 0.3679,

0.2231, 0.1353, 0.0821, 0.0498, 0.0183, 0.0067, 0.0025, 0.0009

when the ratio of t to t has the values 0, 0.5, 1.0, 1.5, 2.0,

2.5, 3.0, 4.0, 5.0, 6.0, 7.0. It- is to be noted that if L is

expressed in terms of the practical unit (the henry) of self-

induction, which is equal to 109 absolute units, /• must be

measured in terms of the ohm, which is equal to 10n absolute

units of resistance. The relaxation time of a circuit, which

is sometimes called also its time constant, is usually a fraction
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of a second. The ordinates of the curve in Fig. 90 represent

the strength of the current in the circuit just described, on

the assumption that the electromotive force is kept constant

for 5 t seconds after the circuit is closed and is then suddenly

annihilated.

If, starting with no current in the circuit, the electromotive

force have the constant value E for the time interval a, then

the value zero during the interval b, then the value E again

during an interval a, then the value zero during an interval b,

and so on, and if we denote e~a/T and e~ b/T by a and /?, the

current at the end of the «th period of interruption, n{a + b)

seconds from the beginning, will be

E /3(l - a) (1 + a/3 + a-(3
2 + + a""^" 1

)
/r,

and the limit of this, as n increases, is

C = EQP(l-a)/r(l-aj3).

Starting with this value C , the current during the next

period a, while thp electromotive force is equal to Em would

be E (l — e~ t/T
)
/r -f- C e~ t/T

, and during the next interval b,

when the electromotive force is zero,

E (l -a)e-" T/r+ C ae- t/T
.

At the end of this interval the current is again C and the

state is final.

If E in the equation L D
t
C + r C = E is a given function

of the time, L-C= e~UT (A+ Ce t/T -E-dt).

If the resistance of an inductive circuit containing a con-

stant electromotive force E and carrying a steady current

C = E/r be suddenly changed from r to r\ we have at

any time after the change EC-dt= C2
r' dt' + LC -dC, or, if

C" = E/r', C= C +(C - C')e- r
't/L

. The induced electro-

motive force is now r'(C — C')e~ r
',/L

, and if r' is large this
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may be at first enormous. Although it is very difficult in

practice to increase the resistance of a circuit thus instan-

taneously, the rate of change in r may easily be made very

rapid, and the spark which is often visible when a circuit is

broken bears witness to the fact that the induced electromotive

force is sometimes- large.

If the terminals of a battery of internal resistance r and

electromotive force E be connected by a

.A, coil of resistance r
x
and self-inductance L v

9 I in parallel with a non-inductive resistance

J Jf r
2
(Fig. 91), and if C, Cv C2

represent the

„ „ n strengths of the currents in the battery
Fig. 91.

,

&

and in the two branches of the external

surface respectively,

C = d + C2, Cr + C
2
r
2
= E, E - L

x -

D

t
Cx
= Cr + C

x
rv

or dr + C2 (r + >•,) = E, and C\ (r + >-,) + C,r = E - L
x
D

t
C\.

If the value of C2
from the equation before the last be

substituted in the last equation, we get

L
x
D,C

y + C\R/(r + r
2)
= Er2/(r + r2),

where It = rr\ + rr
2 + /y2 , so that C\ = Er

2 f Ii + A e~ kt
,

where Tc=B/Ll (r+ >•„). C
2
=(E- C

x
r) [ (r + rs).

If the main circuit be suddenly closed when t = 0, we have

C
x
= Er.,(l -e~ k,)/R.

If, after the circuit has been closed for some time and C
x
has

attained the value B, the battery be suddenly detached, C1

and C2 become suddenly equal numerically,

L
r

- DA +0,(^ + ^=0,

and Cj = Be~ n
", where m — ()\ + r

2)
/

L

v .
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If the poles of a constant battery of resistance b are con-

nected by two coils in parallel (Fig. 92) which have resist-

ances rv r2 and self-inductances L
x , L2 , we have

Lx Dt
C

x
+{b + r

1
)C

1 + b- C2
= E,

b-C
x + L2

- I)
t
C, +(b + r.2) C2

= E,

or {L
x
D

t
+ b + r

x) Cl + b-C2
= E,

b-C
x
+(L

2 -Dt
+ b + r

2) C2
= E.

X
Fig. 92.

If we perform the operations (L2 Dt
+ b + r

2) and b upon
the two equations respectively, and subtract one result from

the other, we shall get the equation

L
x
L2 D;- C, + [A (b + r.

2) + L2 (b + r,)]D
t
C

x

+ {br
l + br

2 + r
1
r2)Cl

= r
2
E;

whence C
x
= r2E/ (h\ + br2 + rxr2) + A-eM + B- e^,

where X. and fx, are the roots of the quadratic

L
x

• L
2
x2 + [L

x
(b + r2) + L

2 (b + r,)] x + (Jr, + br2 + r^) = 0.

Fig. 93 represents a Wheatstone's Net which has self-

inductance in all members except that

which contains the cell. Using, as

far as. it goes, the notation of Section

73, let us call the coefficients of self-

induction of the branches which have

the resistances p, q, r, s, g; Lp , Lq , Lr,

L
s , Lg

respectively. Let ps = qr, so

that, when the current has become steady, there is no flow

through g, while the current

P = C(q + s)/(p-\-q + r + s)

flows through^? and r, and the current

Q = C(p + r)/(p + q + r + s)

Fig. 93.



306 CURRENT INDUCTION.

through q and 5. If, now, the branch b be suddenly broken,

transient currents Cp, C
q , Cr, Cs , Cg , which have the initial

values P
, Q , Pu , Qw zero respectively, and the final value

zero, will flow through the members of the rest of the net.

Kirchhoff's Laws give at every instant

p. C
p
4- Lp -Dt

Cp + <j.C„ + L
g
.D

t
C

g
-q-C

q
- L

q
.D

t
C

q
= 0,

r- Cr + L,,D
t
Cr -a.C. - L

s
-D

t
C

s
- g C

g
- L

g
-D

t
C
g
= 0,

cp -cg
-c,. = o.

If we multiply each of these equations by dt, integrate between

t = and t = oo, and write

P= C*C
p
-dt=- Cc

q
-dt, R= Ccr -dt = - Ccs

-dt,
«/o */(J t/0 «/0

G= Cc
g
-dt,

we shall get the equations

Cp + q)P + gG = Lp •P - L
q

• Qw

(r + s)B- 9G = Lr -P -LsQ ,

P - R - G = 0.

Whence,

C[(r+8)Lp-(P+q)Lryg+8)+C[(p+q)L,-(r+8)L,-](p+r)G
(p+q+r+s) [g(p+q+r+s)+ (p+q) (*"+«)]

or, since ps = qr,

G _^
Cps(Lp /p - L,./r + LJs - L

q /q)

g(p + q + r + s) + (p + q)(r + s)

If X
7
and Z

s
are both zero (Fig. 94), it is possible to choose r

and p subject to the condition ps = qr,

so that there shall be no transient

current through g, and in this case

Lp /

L

r
— p/r. If L

q
, Lr , Ls

are all

zero, and if the steady current C and

Fig. 94. the quantity Cr oe measured, Lp can

-©-
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be found. This method of determining coefficients of self-

induction is described at length by Lord Rayleigh in the

Philosophical Transactions for 1882.

If at the time t the positive plate of a condenser of capacity

K, which is being charged by a battery of constant electromo-

tive force E(Fig. 95), has a charge Q; if r is the resistance of

the "circuit," L its coefficient of self-inductiou, and C = D
t Q,

the charging current, we have

E - Q/K - L-D
t
C = rC or L D 2Q + r-D

tQ+ Q/K = E.

The general solution of this equation for Q is the sum of any

special solution (for instance, KE) and the general solution

of the equation formed by equating the first member to zero.

If, therefore, A
x
= — r/2 L -+• B and A2 = — r/2 L — B, where

B2 = r'
2 /4 L2 — 1/KL, the solution required

is of the form KE + aeKl ' -+- beAlt
, where a and

b are constants to be determined from the

initial conditions. If the absolute value of

the quantity under the radical sign in the „
. „ , . . Fig. 95.

expressions for \
x
and A.,— taken positive,

whatever its real sign may be — is m 2
, the value of the radi-

cal will be m or mi according as r is greater or less than

4:L/K. If at the time zero, when Q=Q , the circuit be

suddenly closed,

Q = KE + (Q -KE)(\.
2
.e^-\

1
-e^')/(\2

-\
l ).

The current has the value X^CQo - KE) (e
A]f - e^-')/(\2

- A,),

and if A, and A2 are real, it has the same sign for all values

of t. If, however, \ and A2
are imaginary, the expression

given above for Q may be more conveniently written in the

form KE + (Q — KE) e~ r ' r2L (cos mt + r/2 Lm sin mt), and

the sign of the second term is alternately positive for tt/m
seconds and negative for ir[m seconds, so that the current

is sometimes positive and sometimes negative. The curves

5
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in Fig. 96 exhibit Q and C in terms of t in a case where

r2 > AL/K, Q = 0, and the condenser is being charged; the

curves in Fig. 97 correspond

to a case where E = and

the condenser is discharging

Fig. 9(5. Fig. 97.

itself through the circuit. In each case the absolute value

of the current starts at zero, attains a maximum, and then

Fig. 98.

decreases. Fig. 98 shows Q in terms of t when E = and

the condenser is discharging itself through a circuit such
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that r2 < 4L/K; the curve, the ordinates of which are EK
minus the ordinates of this curve, shows Q at any time while

the condenser is being charged by the battery. The shape of

the curve may be seen by looking at Fig. 98 through the

back of the leaf and upside down.

If we differentiate the equation E — Q/K— L-D
t
C — rC

with respect to t, we get L D*C + r D
t
C + C/K= D

t
E = 0,

and we might determine C directly from this last equation.

If a condenser of capacity K, originally charged to poten-

tial Q /K, be discharged through a circuit (Fig. 99) which

consists of a non-inductive resistance rx and

an inductive resistance r2, arranged in mul-

tiple arc, and if the currents at the time t

through the branches of the external circuit

be Cj and C2 respectively, C
x + C2

= — D
t Q.

If we take into account the induced elec- pIG . 99.

tromotive force, we may apply Kirchhoff's

Laws directly to this circuit and learn that Q/K — C^ = 0,

and that

Q/K- L
2
-D

t
C2
- C2r2 ,

or Q/K+L
2 -Dt

(D
tQ + C

x
)+r2 (DtQ + C

x) = 0.

If the values C±
= Q / K>\, Dt

Gx
= D

tQ/Kr1}
obtained from

the first of these equations, be substituted in the last one, it

becomes L, D
t

2Q + D tQ (L
2 / Krx

+ r
2) + Q (r, + r

2) / K>\ = 0,

and the solution of this is of the form aeM + be"-', where A

and fi are the roots of the equation

L2x
2 + (L2 /K)\ + r2)x + 0'! + r2)IKrx

= 0.

After a and b have been determined in accordance with the

given conditions, Cx and C2 can be found directly. The equa-

tion C2r2
= Q/K— L2

- D
t
C2 shows that, if C2

is positive,

D
t
C2 cannot be greater than Q / KL 2 , and that C2 cannot jump

suddenly from zero to a finite value as soon as the condenser

circuit is closed : the initial value of C2 is therefore zero,
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while that of Cx is Q / K?\, and under the conditions of this

problem

Q=Q [OJKr, + 1) e" - (AA>x + 1) e*'] / Krx (p.-\),

Ox = Go[(fJ&i + l)«w - (AjKt, + l)^]/IV(f« - A),

Ct = - Qo(^>\ + 1) (AA>, + 1) (e" -O /A'VO - A).

If A and ix. are real, 6^ decreases from the value Q / K>\ to zero,

C2 starts at zero, increases (accompanied by a self-induced

counter-electromotive force L 2 Dt
C2 , so that C2r2 < C

x
r

x) until

it attains a maximum at the time

t = (log A - log /*)/(/*- A),

at which time D
t
C2 vanishes and C

x
r

x
= C2r2 , and then con-

tinually decreases, accompanied by a self-induced positive

electromotive force, so that C2r2 > C
x
rv If we integrate Cx

with respect to the time from t — to t = oo , and remember

that A + ix. = — (L2 + Kr
x
r2) /L2

Kr
x ,
and that

Xfi=(r1 +r2)/L2Kr1}

we shall obtain the whole flow Q r2 / (r, + r2) through rx. This

is the same (whether or not A and tx. are real) as if r2 had no

self-inductance ; but if the circuit be broken before the dis-

charge is complete, a greater portion of the electricity will

have gone through r
x
than would be the case if L2 were zero.

If the condenser connections have a considerable resistance

b, the differential equation becomes

KL2
{b + rx) D?Q + [L

2 + K(br
x + br

2 + r
x
r
2)] DtQ

+ (n + r2)Q = 0.

If the resistance of a circuit made up of a generator of

electromotive force E = fit), a condenser of capacity k and

necessary leads, is r, if its self-inductance is L, and if we
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denote D
t
E by E, we have L D

t

2C + >•• D
t
C + C/K= E'.

IiE = ^/r2K2 - 4 LK, and

a = (rK -B)/2 LK, /3 = (rK + R)/2 LK,

the general solution of this equation is

C = (K/K) (eF fe-V E' dt - e
at Ce~at E' dt)

+ A-e~at + B- e-v.

If the poles of a battery of constant electromotive force E
and internal resistance b are connected by a

coil of resistance i\ and self-inductance L x,

in parallel with a condenser of capacity K
(Fig. 100), we have
V 6 "

Fig. 100.

L
x
D

t
C

1
+(b + rj Cl + b-C2

= E,

and E- Q/K= bC
x + (b + r

2 ) C2,

or b-D
t
C

l
+(b + r

2) Dt
C2 + C2/K = 0.

If we perform on the first and last of these equations the

operations [(b + r
2
)D

t
+ 1 / K~\ and b respectively, and sub-

tract one result from the other, we shall learn that

KL
x
(b + r

2)D?Cx + \_L
X
+K(br

x + br
2 + r.r^D.C,

+ (b + r1)Cl
= JZ,

and that C
x
is the sum of E/(b + r

x) and the general solution

of the equation formed by putting the first number equal

to zero.

If the arms p and r in the Wheatstone Net contain con-

densers of capacity K
p , Kr respectively, the steady current

through q and s will be C = E/ (b + q + s), and the charges

of the condensers will be CqK
p
and CsKr . If, now, the bat-

tery circuit be suddenly broken, transient currents will appear
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in the remaining members of the net and the condensers will

be discharged. The whole flow through p will be — CqK
'

,

and that through r will be — CsKr . At any instant during

the discharge Cp = Cr + C
g , and if we multiply this equation

by dt and integrate between and oo, it will appear that

the whole flow through g is C(sKr
— qKp). This will be zero

if q/s = Kr/Kp .

86. Alternate Currents in Single Circuits. In many prac-

tical applications of electricity it is necessary to deal with

inductive circuits which contain periodic electromotive forces.

In the simplest case the electromotive force is harmonic of

m
Tig. 101.

the form Em • sin (pt — a), or the form Em cos (pt — a) ; the

amplitude is then Em ; the period, T = 2w/p', the frequency,

n = p/2 it ; and the phase lag, a.

Two harmonic electromotive forces, of the same period,

A sin (pt — a), B • sin (pt — /?), which conspire in a simple cir-

cuit, are equivalent to a single simple harmonic electromotive

force C sin (pt - y), where C 2 = A2 + B2 + 2 AB cos (a - /3)

and tan y = (A sin a + B sin /?) /(A cos a + B cos /?). If a

parallelogram be constructed with adjacent sides equivalent

on any scale to A and B, and with the included angle equal to

(a — /3), a diagonal of the parallelogram will represent C,

and the angles which this diagonal makes with adjacent sides
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of the parallelogram will be equal to (a — y) and (y — (3)

respectively.

If, starting at the time t = from the position P , a point P
be made to move uniformly with angular velocity ^> in counter-

clockwise direction around the circumference of a circle with

centre and radius Em , if Q be a fixed point in the plane

of the circumference such that P OQ = a, and if y be any

straight line in the plane perpendicular to OQ, the projec-

tions of OP on OQ and on y will be equal, at any time t, to

Fig. 102.

Em • cos (pt — a) and Em • sin (pt — a) respectively. If OQ be

used as an axis of real quantities, QOP will represent the

argument, and the length of OP the modulus of the complex

quantity Em • e
{pt ~ a)

' ; the real part and the real factor of the

imaginary part of this quantity will be represented by the

projections of OP on OQ and on y.

If while P is moving in the circumference, ?/ moves parallel

to itself away from with constant velocity a /T or ap / 2 ir,

the projection of P upon y will trace out a sinusoid (Fig. 101)

the length of the base of which is a. We shall frequently find
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it convenient to imagine diagrams as generated in this way.

If in Fig. 102 the lines OA, OB, OC revolve uniformly in

the plane of the diagram about with angular velocity p, if the

angle AOB =
ft,

and if the lengths OA, OB are equal to the

amplitudes of two simple harmonic quantities a = am sin pt,

b = bm - sin (pt + ft), the projections of A, B, and C on y give

the curves a, b, and c ; every ordinate of the sinusoid c is the

sum of the corresponding ordinates of the sinusoids a and b.

If in Fig. 103 the independent lines OA, OB, OC revolve

about in the plane of the diagram with the same constant

D angular velocity p, the lengths of the pro-

jections of these lines upon any fixed line

(z) in the plane will represent harmonic

quantities of the same frequency (p/2ir),

but with phase differences equal to the

angles between the lines projected. The

sum of these harmonic quantities may be

represented by the projection upon z of

QD, which is equivalent to the geometric

sum of OA, OB, OC, if QD revolve about

Q with angular velocity p, starting to move at the same time

with the original lines.

If a circuit s which has a resistance r and a self-induct-

ance L contains an electromotive force Em cos pt, we have

L • D
t
C + rC = Em cos pt, if ttie capacity of the circuit is neg-

ligible. The complete solution of this equation is the sum of

any special solution and the complete solution, Ae~ rt/L
, of the

equation formed by writing the first member equal to zero.

To find the special solution needed, we may consider first the

equation L • D
t
C + rC= Em (cos pt + i smpt) = Em e

pli
,
which

is in some respects simpler; if any solution of this new equation

has the form u + vi, u is a solution of the given equation.

Since the first member of the new equation is linear in terms

of Cand B,C, and since D
t
eJ'

n =ple p,i
, it is clear that a spe-

cial solution of this equation, of the form Be pti
, must exist
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Substituting this form in the equation, to determine B, we
learn that the solution is

Em e*«/(r + Lpi), or Bm (r - Lpi)e*«
J
'if + Ly),

of which the real part is Em (r cospt+Lp sin pi) /(r2
-\-

L

2

p
2
), or

cos (pt — a), where tan a = Lp/r.
E„

Vr2 + L2p
2

The current in s is, therefore,

Ae~ rt/L + Em - cos (pt a)/Vr» + Zy,

but after a comparatively short time the first term becomes

negligible, and then the current becomes harmonic with the

same period, 2 ir /p, and the

same frequency, p/2ir, as the

electromotive force, but with a

retardation in phase of a. The

amplitude is Em f Vr'-' + L-p2
.

The radical Vr2 + L2
p2 = Z is

called the impedance of the cir-

cuit and Lp = x its reactance,

or inductive resistance, under

the given circumstances ; the

self-induction of the circuit

reduces the amplitude of the

current in the ratio of r to Z. The relation between the elec-

tromotive force and the current strength may be represented

by corresponding ordinates of two curves like those shown in

Fig. 104.

The counter-electromotive force of self-induction, sometimes

called the back electromotive force of self-induction, is equal to

— L- D
t
C, or v

m
cos (pt — a— | ir) ; it lags 90° behind the

Z
current in phase. The electromotive force necessary to over-

come self-induction is the opposite of this ; it has the same
numerical value, but its phase is 90° in advance of that of the

Fig. 104.
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Fig. 105.

current. If we denote the amplitude, Em j Z, of the current by

Cm, the amplitude of the electromotive force necessary to over-

come self-induction will be LpCm . Cr is called the apparent

electromotive force or the instantaneous energy component of

the electromotive force; its ampli-

tude is rCm . The amplitude of the

applied electromotive force Em cos pt

Lp is ZCm.

If a right triangle be drawn (Fig.

q 105) the legs of which represent r

and Lp on any scale, the hypotenuse

will represent Zon the same scale and

the angle between the r and Z sides will be a ; this triangle

is the triangle of resistances. A triangle OPQ (Fig. 106)

similar to this, the sides of which are equal to rCm , LpCm,

and ZCm, may be called the triangle of electromotive forces. If

the figure OQPR be made to rotate positively about with

constant angular velocity p, the projections at any time of

OQ, OP, OR upon any line in the plane of the diagram parallel

to the original position of OP will give the electromotive

forces at that instant.

The activity or the energy spent in the circuit, during any time

interval, at the expense of the generator is the time integral,

taken over that interval, of EC = Enf • cos pt • cos (pt — a) • / Z.

The mean value of the activity for any num-

ber of whole periods is EJr /2 (r2 + L2p2
), *R

and this is the same as if a steady current

of intensit}^ Emf "v2(>-2 + L'2p'2) had passed

through the circuit during the interval

;

for this reason Em / V2 (r2 + L2
p

2
) is said

to be the virtual or effective current. The

mean values for any number of whole

periods of the current and of the square of the current are

zero and EJ/2Z 2
; the effective current is, therefore, the

square root of the mean square of the current, and this is

sometimes called the quadratic mean. The effective applied

Fig. 106.
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electromotive force is Emf\2i
and the effective apparent elec-

tromotive force is Emr / "v2 • Z. The apparent electromotive

force would yield the current C if applied to a circuit of ohmic

resistance r and inductive resistance zero. The activity, or

" power in the circuit," is equal for any number of whole

periods to the product of the effective current and the effective

apparent electromotive force. For this reason the effective

apparent electromotive force is frequently called the effec-

tive energy component of the electromotive force. The first term

Em
2r cos 2 (pt — a)/Z 2 of the second member of the equation

EC = C2r + LC • D
t
C shows the rate at which heat is being

dissipated in the circuit ; the second term,

— Em2Lp • sin (pt — a) • cos (pt — a)/Z 2
,

the rate at which power is used in increasing the energy

of the electromagnetic field. It is evident that the average

value of this last quantity for any number of whole periods

is zero. The effective impressed electromotive force is often

called simply "the electromotive force." Such voltmeters and

ammeters as are commonly used in alternating circuits usually

indicate effective electromotive forces and currents ; their read-

ings must be multiplied by V2 to obtain the maximum values

of these quantities.

It is often convenient, as Prof. C. A. Adams has pointed

out, to regard the values, at any instant of the impressed elec-

tromotive force and of the current, as the projections, on the

real axis, of the radii vectores which join the origin to the two

points on the complex plane which represent at that instant

the quantities Em - e
pti

, Em - e
pti

/ (r + Lpi). This last expres-

sion is the simple solution already found for the differential

equation L D
t
C + r- C = Em - e

pH
.

If in the problem just considered we reckon the time from

an epoch \ T earlier, we shall have

E=Em - sva.pt, C= Em sm(pt-a)/Z'
t
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these quantities may be regarded as the projections on the axis

of imaginaries of the moduli of Em e
pti and Em e 1' 1

'

/ (?• + Lpi).

The quantity (>• + Lpi) has been called the complex imjjedance,

but some writers give this name to r — Lpi.

If a linear plane circuit of area A, resistance r, and self-

inductance L, in a uniform magnetic field in air of intensity H,

be made to rotate about an axis perpendicular to the lines of

the field with angular velocity p, and if at the time t = the

plane of the circuit is parallel to the field, the flux of the field

through the coil at the time t is AH sin pt, and the current C
satisfies the equation L I)

t
C + Cr = — pAH cos pt, so that

after a few seconds C — — HAp cos {pt — a) / Z. The whole

flow of electricity through the circuit during a positive half

revolution is 2HA/Z. The mechanical action between the

circuit and the field is equivalent to a couple the moment
of which is C times the rate of change with respect to pt

of the flux AH sin pt through the coil. This moment is

CHA cos pt, or — H2A 2p cos pt (cos pt —a)/Z, its average

value is — H 2A 2pr/2Z 2
, and the work done against it in a

single revolution is H 2A 2rnp /Z 2
. External work must be

done to turn the coil against the resistance of this couple, and

the equivalent of this work is all used in heating the circuit.

If the rate of rotation is so rapid that the ratio of r to Lp
is small, a is nearly equal to % w, and C is nearly equal to

— HA sin p)t/L; CL is the flux through the circuit of the

lines of its own field, HA sin pt is the corresponding flux of

the lines of the external field, and in this case the sum of the

two is nearly zero.

If two points A and B in an inductive circuit be joined by

an additional (non-inductive) conductor which carries an elec-

tromotive force of such a value at every instant and so directed

that no current ever passes through the extra conductor, the

electromotive force may be taken as a measure of the differ-

ence of potential between A and B. If between A and B in a
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simple circuit which carries the current Cm sin (pt — a) there

is an ohniic resistance r and a self-inductance L, the difference

of potential between the points is evidently

V?-2 + Ly Cm sin (pt - 8),

where tan 8 = (r • sin a — Lp cos a) / (r • cos a + Lp • sin a). If

the terminals of an alternating current voltmeter were attached

to A and B, the instrument would measure CmZ/ V2.

If a circuit which carries a current Cm • cos])t contains three

coils in series which have resistances ru r
2 , r3 and inductances

Lu L2, L 3 , we may lay off on a horizontal line in succession

(Fig. 1 07) the lengths OA = r, Cm , AB= r2Cm , BQ = rzCm. Erect

at Q a vertical line and lay off on it the lengths

QD = L
1
pCm , DF=L2pCm, FP = L 3pCm .

Then OP will represent the amplitude of the difference of

potential between and P, and QOP will be the angle of

advance of its phase over that of

the current. The lines a, b, c rep-

resent similarly the amplitudes of

the differences of potential of the

ends of the separate coils, and the

angles which these lines make with

the horizontal the phase differences

between these potential differences

and the current. Starting at the time zero, let the triangle

OQP revolve about 0, in the plane of the diagram, with con-

stant angular velocity p, and let the initial position of OQ
be denoted by OQ

()
. Let the points of intersection of the

lines a, b and b, c be denoted by G and H, and the projections

of A, B, Q, D, F, P, G, 7/" upon OQ by corresponding accented

letters
;
then the lengths at any time of the lines OG', G'ff',

ff'P' represent the instantaneous values of the " electromotive

forces " applied to the several coils, and the lengths of OA',

A'B', B'Q' the corresponding apparent electromotive forces.
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15
If the terminals of a generator of electromotive force

Em - cos pt and internal resistance r are connected by two

conductors in parallel (Fig. 108) of resist-

ance r
x , r2 and of self-inductance Lu L2

respectively,

L
x Dt

Cx + (r + rx ) Cx + rC, = Em cos^,

L2 -Dt
Cs + rC

t + (r + r
2) C2

= Em cospt.

If r is negligible,

Ci = Em • cos (pt — a x ) / V/'i
2 + L x

2p2 = A cos (pt — a
x),

and

C2
= Em COS (pt — a2) / V?v + L.?p- = B • COS (^ — a2),

where tan a x
= Lxp/r1} tan a, = L2p Jr2 .

C
x
+ 6 2

= Cm -COS(^-a),

where Cm2 = A2 + P2 + 2 AB cos (a
t
- a2)

and tan a = (A sin a
t + B • sin a2) / (A • cos a

x
4- B • cos a2).

If in Fig. 109, OP = Em and QOP = a„ 0$ = Jr
x ,
$P =

AL
xp, and ^4 can be represented by a length laid off from

ovl OQ. A similar construction, represented by the dotted

lines, may be made for B. The diagonal OR of the par-

allelogram, two sides of which are

the lines which represent A and B,

represents Cm . If OR cuts the semi-

circumference in G, OG represents the

product of Cm and the resistance of

the divided circuit.

If a simple harmonic difference of

potential Em • cos pt be applied to two

points A and B which are connected by n

simple conductors of resistances r„ r
2 , r3,

Lv L2 , Ls,--, and impedances Z
x , Z2, Z3 ,

the n fractions of the form r
K
./

Z

2 be denoted by F and that of

the fractions of the form pLk/Zk
2 by G, the n conductors are

Fig. 109.

self-inductances

and if the sum of
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equivalent to a single conductor of resistance R = F/(F2 + G2

)

and of reactance X = G / (F
2 + G2

). The sum of the currents

in all the conductors is Em • cos (pt — a) / V.K2 + X2
, where

tan a = X/E.

If a non-inductive circuit of resistance r containing a con-

denser of capacity k and a generator of electromotive force

E = Em - sin 7^ be suddenly closed at the time t = 0, and if Q
is the charge on the positive plate of the condenser at the time

t, E — Q/k = rC, or, since C = D
t Q,

r-D
t
C+ C/k=pEm -cospt.

From this it follows that

C = Ae~ {/ rk + Em • sin {pt + 0) / Vr2 + m2
,

and Q =B- Arke- t/rk+Em sin (pt + /? - \ii)Jp Vr2 + m2

where m = 1 /^A;, and tan /3 = 1/rpk.

The exponential terms soon become negligible, and if we
assume that Q is zero at the outset, we shall have eventually

C= Em -sin(pt + P)/V? +

of pEmk • cos (pt — 8) / Vl + k2p
2
^, where tan 8 =prk

;

Q = Em -sin (pt + p-t*) Ip Vr
2 + m2

.

Here the phase of the current is in advance of that of the

applied electromotive force E by the angle (3 and in advance

of Q by 90°. The electromotive forces

of the condenser and generator conspire

in direction when pt lies between mr

and n-n- + a, where n is any integer and
|

a = 90° —
ft ; these electromotive forces ^

are opposed when pt lies between nir + a

and (n + 1) it. The electromotive force

(Q/k) necessary to overcome that of the condenser lags behind

that of the generator by a. The apparent electromotive force
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is rC. The sum of the squares of the amplitudes (rCm and

raCm) of rC and Q/k is EJ, the square of the amplitude of E;

if, therefore, we draw a right triangle of which rCm and mCm

are legs, the hypotenuse will be equal to Em, and the angle

adjacent to the first leg will be /3. If such a triangle OPQ
(Fig. 110) be made to rotate in counter-

EL clockwise direction, with constant angu-

\*) —|— —i— lar velocity p about 0, the projections

I I I
of OQ, OP, and OB upon any line per-

j>IG in pendicular to the initial position of OP
will give the apparent electromotive

force, the applied electromotive force, and the electromotive

force necessary to overcome that of the condenser.

If a condenser of capacity kx furnished with leads of resist-

ance 7\ be joined in parallel (Fig. Ill) with a condenser of

capacity k2 furnished with leads of resistance r2, and if the

compound condenser thus formed be connected up with a

generator of internal resistance r and electromotive force

Em • sin pt, we have

(r + rx)Dt
C1 + r-D

t
Ci +C1/ k, =pEm cos pt,

r-D
t
Cx + (r 4- ra)Dt& + C2/k2 = pEm cos pt.

If r = 0, we have eventually

Cx
= pEmk x cos {pt - ai) / Vl -f- kfpW,

C2 = pEmk2 cos (pt - a.,) / Vl + k?p>W>

where tan a! = prxk x , tan c^ = p>r2k 2 .

^If a circuit of resistance r contains (Fig. 112) (\\
a generator of electromotive force Em sin pt, ^p
a coil of self-inductance L, and a condenser of

capacity k in series, and if Q is the charge

on the positive plate of the condenser at the time t, C — D
tQ

and Em sinpt - Q/k — L.DtC= Cr,

or L-D
t

2C+r-D
t
C+ C/k =pEm -cospt.
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The real part of any solution of the equation

r r> in i „ t\ n \ n / 7. . , 1?L D 2C + r-D
tC+ C/k =p^V

(and one evidently exists of the form Be pti
) will be a spe-

cial solution of the equation just formed. It is easy to find

B by substituting Be pti in the new equation, and to prove

that Em sin (pt - a) / B, where B2 = r2 + (/>!/ - 1/kp) 2 and

tan a = (p
2kL — 1) /jp&r, is the result required. To obtain

the complete solution of the equation for C we should need

to add to this special solution the complete solution (found

in the last section) of the equation formed by writing the

first member equal to zero ; this solution is exponential in

form, with negative indices increasing in absolute value with

the time, so that after a few seconds the current may be repre-

sented by the equation C = Em sin(/;£ — a)/ R. It is to be

noticed that the capacity of the condenser tends to offset in

some respects the effect of the self-induction of the coil. Since

B2 = r2 +p 2 (L - l/p2k) 2 and tan a =p(L -l/p2k)/r, it is

clear that the current in the circuit is the same as if the con-

denser were removed and the self-inductance decreased by

\ I

p

2
k. The maximum current is obtained when both self-

inductance and capacity are absent, or when both are present

and such that Lkp2 = 1. If Q = ()„ when C has its maximum
value, the difference of potential (Q / k) between the plates of

the condenser is Q /k — Em - cos {pt — a)/p)Rk, and if the

denominator of the harmonic term is less than unity, this term

will have an amplitude greater than that of the impressed force.

If we make k infinite in these expressions, they become

applicable to the case of a simple inductive circuit containing

no condenser. The radical 7?, which is called the imptedance of

the circuit, becomes Vr2 + L2p2 when k is infinite.

When an inductive circuit contains a generator of electro-

motive force Em • sin pt and an electrolytic cell with polariz-

able electrodes, we may assume that when the frequency is
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fairly large the counter-electromotive force in the cell at any-

instant is approximately equal to 1/k times the quantity of

electricity which has passed through the cell in the direction

which the current then has, since the last reversal. On this

hypothesis the cell acts like a condenser; h depends only

upon the electrolyte used and upon the size

J l_| 1
B

> and material of the electrodes. Experiment

shows that if similar platinum electrodes of

moderate size be used, the capacity, per square

Fig 113
millimetre of the surface of either electrode,

will be about 0.049, 0.089, 0.183, 0.049 micro-

farads, according as the electrolyte is a dilute solution in

water of K2SOi, KCl, KBr, or KL

If between A and B in a simple circuit (Fig. 113) which

carries the current C = Cm - sin (pt — a) there is a resistance r,

a self-inductance L, and a condenser of capacity k in series with

the self-inductance, the difference of potential between these

two points is rC+ L- D
t
C +Q/k. If Q = Q when C = Cm ,

this is Q 1 k + Cm Vr2 + (Lp - 1 /plzf sin {pt - 8),

rp sin a + (1 [k — Lp2
) cos a

where tan 8 =
, /T 2 -. /7 x •

— •

rp cos a + (Lpr —1/k) sin a

If the ends of a coil of resistance 1\ and self-inductance L x ,

which is joined up with a generator of resistance r and electro-

motive force Em sin jjt, be connected by
E

i

1

leads of resistance r2 with the terminals /^N
k
—I—

of a condenser of capacity k», the coil and ^p
the condenser are in parallel (Fig. 114),

and

i, • J)
t
Cx + (r + rx) Cx + rC2 = Em sin pt,

r-D
t
C

l + (/• + r2)Dt
C2 + C2 /k 2 =pEm cos pt.

t
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If r is negligible,

Cx = Em sin (pt - a)/V^TlS
and C2 = pEmk2 cos (pt - (3) / V 1+ k&W,
where tan a = L xp / r\, and tan f3

= przk2.

In many practical problems r2
is extremely small, so that

(2 is negligible.

If the terminals of a generator of electromotive force

E = Em • sin pt, of self-inductance L, and

of resistance r, be connected (Fig. 115)

to the ends of a coil of resistance ?\ and

self-inductance Lu and if the coil ends

are attached by leads of resistance r
2 to

the coatings of a condenser of capacity

k2 , we have FlG
-
115 "

[(£ + L
x
)D

t + (r + »-,)] Ct + (L D
t + r) C2

= Em sin pt,

+ [L D
t

2 + (r + r3)A+ 1 / *J C2 = pEm cos jp*.

If L = 0, we have the case last considered.

If the terminals of a generator of resistance r and elec-

tromotive force Em sin pt are connected

JL TnT *p*J (Fig. 116) by two conductors in parallel

\*J
^\ _jC having resistances rv r2 , capacities k

x , k2,

I

'

I ZH and self-inductances Lv L2
respectively,

Fig. 11G. but no mutual inductance,

L^Pfd + (r + r1)DfCi + r-X>,w + Ci/*i =pEm -Goapt,

L2 -Dl

2C2 + r.D
t
C1 + (r + r.

2)._D t
C2+ C2/k2

=pEm -cospt.

If we apply the operator [Z 2 -D (

2 + (/• + ?'
2)D, 4- 1/^2] to

the first of these equations and the operator [r • D
t
~] to the



326 CURRENT INDUCTION.

second and subtract one result from the other, we shall have

eliminated C2 and may solve for C
x
in the usual manner.

In a case which sometimes occurs in practice, r is negligible

and
C

x
= Em sin (jpt - a

x
)/Rv C, = Em sin (jpt - a,) /R2 ,

where

R* = r * + (PL, - l/klP)*, R? = v.? + (PL2
- l/k

2pf,

tan a
x
= (^^A-jZj — l)/pk

x
rv tan 02 = (p

2k2
L

2
— l)/pk2

r
2 .

The reader will find the subject of this section fully dis-

cussed in Bedell and Crehore's Alternating Currents, Franklin

and Williamson's Elements ofAlternating Currents, Steinmetz's

Alternating Current Phenomena, Heaviside's Electrical Papers,

and in many other books.

87. Variable and Alternate Currents in Neighboring Cir-

cuits. If the coefficients of self-induction of two neighboring

circuits su s2 ,—which contain constant generators the elec-

tromotive forces of which are Ex
and E

2
respectively,— are

L x , L2 , and their coefficient of mutual induction M, if the

resistances of the circuits are ru r2 , and the currents which

pass through them at the time t are Cu C2 , then

L x Dtd + M D
t
C2 + r1 C1 = Eu

M- E
t
Cx + L2 -Dt

C2 + r2C2
= E2 .

It is to be noticed that, since the electrokinetic energy

\L X C? + MCX
C2 + \L 2C2\

or iii[(Ci + MC2 /L xy + Ci(L x
L2
- M*)/W]>

must always be positive whatever the values or directions of

the currents, if they exist at all, L
X
L

2
— IP can never be nega-

tive. If we substitute in the differential equations just found

C
x
and C2 for C

x
and C2 , where

C! = C
x
- EJr,, C2

' =C2
- E2 /r2 ,

we get

L
x
D

t Ci' +M D
t
C2

'+ r, C
x

'= 0,M D
t
C

x
'+ L

s
D

t
C2

'+ r2C2
'= 0,
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or, symbolically written,

(L
l
-D

t + r
l
)C

1
'+{3I.D

t
)C2

' = 0,{M-D
t
)C

i
'+(LrDt + r

2)C^=0.

If we perform the operation (L
2
Dt + r

2) on the first of these

equations and the operation (J/- D
t) on the second and sub-

tract one of the resulting equations from the other, we shall

eliminate C2
and get the homogeneous linear equation

(L
x
L2
- M^D'Cj! + (r

2
L

x + r
xLZ)Dt

C{ + i\r
2Cl= 0.

The general solution of this equation is of the form A
x
eKt + B^ 1

,

where A and /a are the two roots of the equation

(L
X
L2
- ZP)x* + (r

2
L, + nL2

)x + r
Y
r
2
= 0,

that is,

- (r2L x + r
Y
L2) ± V( r

2L x + riL3 )

2 - 4 >y2
(L

X
L

2
- 3P)

2 (L
X
L

2
- M*)

If we eliminate C
x
from the original equations, we shall learn

that C2
= A

2e
xt + B2e*

t where A and /a have the values just

given. Both A and /i are negative, since L
X
L2
— M is positive,

and both are real, since the expression under the radical sign

may be written (L
x
r
2
— Z

2
ri)

£
"+" ^)\>'

2M2
. The coefficients

A
x , A2 , Bv B2

in the expression for C
x , C2

are not all inde-

pendent, for we find when we substitute these expressions in

either of the original equations that the ratios A2
/Av B2/Bx

must have the fixed values

- MX/(L2X + r2) or - (L
X
X + r

x) /MX

and — Mfi/ (L2fx + r
2) or — (L

xfi
-j- r

x ) /Mp

respectively. If we denote these ratios by a and /?, we have

C, = E1
/r

l + A xe
Kt + B^\ C2

= E2
/r2 + a A

x
e
Kt + BB^', where

A, fx., a, B depend only upon the forms of the circuits and

the materials of which they are made and A
lf
Bx

are to be
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determined from the conditions of the particular problem

under consideration.

If E2 = (Fig. 117), and if s, be suddenly closed at the

- [miM
1

time t = 0, C\ and C2 are initially zero,

|| J A
1
+ B

l
= -Ex /rv A

1
a + B

l /3
= 0,

Fig. 117. A = (SEx
/r

x (a- 0), B
x
= aEx/rx(fi-a),

C
x
= Ex/rx {l - \ e« [(r.A - r

x
L.

2) /R + 1]

+ ie»'[(r2L l
-r

1
L

2)/B-iyi ,

and

C2
= E

l
M{e>" - e^)/R,

where R stands for the radical in the expressions for A and p.

The time integral of C2
from to c© is evidently

ExM(ji - \)/n\R or - E
x
M/r

xr2 ,

and is the same whichever circuit contains the given electro-

motive force and is used as the primary. Fig. 118 shows the

currents in s
}
and s2 under these

circumstances, when

Ei = 2, L l
= %, L2

= ~<

L ,

J!f=l/V8,r1
= l,r2 = l.

If E2
= 0, and if sx, which has

been closed for some time, has

its resistance suddenly changed,

when t — 0, from r to rx, we have

initially C
x
= E

x
/r and C2

= 0,

so that

A1 + B1
=Ex (r1 -r )/r rx,

Aia + B
xP=0, Fig. 118.

A
1
= /3E

1 ( r -rx)l r r
x
(a - /?) , B

x
= aE

x
(r

x
- r ) / r

(j
r

x
(a - /3)

,

and C2
= E

x
(r

x
- r

)
(e»< - e») a - /3/r r

x
(a - /?).
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The integral of C2
with respect to the time, from to go, is

E
x
M(r

x
— r

)
/r r

x
r
2 , and the limit of this, as r

x
grows larger

without limit, is E
x
M/r r

2 . C2
attains its maximum value at

the time (log X //a) /(/a — A.) : this fraction approaches zero

when r
x
increases without limit. If r

x
is infinite, we have

C
x
= 0, C2

= Ae~ r2t/L
2 : the time integral of C2 , between

and co, is AL2
/r2 , from which we

infer that A = ExMJrJL¥
If, then, 1\ is infinite, that is, if

the circuit is suddenly broken, the

current in the secondary jumps

instantly from zero to the value

E
x
M/r L2 and then decreases

after the manner shown in Fig.

119, which is drawn to scale on

the assumption that in practical

units E
x
= 2, L2

= \, M=l/ V8, r = l. The whole area

between the time axis and the curve which represents the

current in s2 is the same in Fig. 119 as in Fig. 118, though

the shapes of the curves are very different.

If E2
= 0, and if E

x
= Em • cos pt, we have

Fig. 119.

and

L
x
D

t
Cx + M- D

t
C2 + rxCx

= Em • cos^

M- D
t
Cx + L2 Dt

C2 + r
2C2 = 0.

If C
y
= x, C2

= y represent any special solution of these

equations, the complete solution may be found by adding

x and y to the values of C
x
and C2 , found earlier in this sec-

tion, which completely solve the equations formed by equating

to zero the first members. These last quantities, however, are

exponential in form with indices intrinsically negative ;
after

a few seconds they are negligible, and we need use only the

final forms of x and y. The real parts (u
x , u2) of any solution,

of the form C
x
= u

x + v
x
i, C2

= u2 + v
2
i, of the equations

L
1.Dt

C
1
+M.D

t
C2+ r

1
C

x
=Emet> ti,MD

t
Cx+ L2 -Dt

C2+ r
2C2

= 0,
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form a solution of the original equations. Applying the opera-

tor (L2 Dt
+ r

2) to the first of these new equations and the

operator (JI- D
t) to the second and subtracting one result from

the other, we get

(L
X
L

2
- 1\P)D?C\ + (rxL2

4- r2L x
)D

t
C

x
+ r^G,

= Em (L2
pi + r,)e )J",

an equation which evidently has a solution of the form B e
pti

,

and if we substitute this expression in the equation, we learn

that

B=Em (r2+L2
pi) J for,+ tfM*- p2L

x
L

2+ (r
2
L

x
+ r

x
L2

)pi].

The real part (x) of Bep,i
is, therefore,

Em • VX2y + r* • cos (jot + 8 - ff)

Vfrr, - (L
X
L2
- JlP)p*J + (r

2Lx + r
x
L2)^

where tan 8 = L
2p / r2 and

tan 6 = (r
2L x

+ r^p/lr^ - (L
X
L2
- M2)p2

~\ -/

or x = A cos (pt — a), where, if

L = L
X
- jr-L2]//(L2Y- + rf)

and r = ;[
-f-

3Pp-r2 / (L2
2jr + ?y),

A = Em / vUp2 + r, and tan a = Lp /r.

The primary, therefore, behaves like a single circuit (at a

distance from all others) of resistance r, greater than rv and

of self-inductance L, less than L
x

. The presence of the

secondary circuit makes the lag in the primary less than it

would otherwise be.

The corresponding value (jj) of C2 can be found by substi-

tuting x in one of the original equations : it is

MpA cos (pt — 0) I ^/L2
2]r + r2

2
,

or MpA • cos (jjt -f 7T — /3) / vL.rp2 + r2
2
,
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where tan (/3— a) = r2/L2p. The lag in phase of the secondary-

circuit behind the primary is n + a — {3, or \ v + tan -1 (L2p/r2).

The lag of the secondary current behind the electromotive

force is tan" J

[p
2 (L

XL2
- M 2

) - ?y2] / [p (r2Lx + rxL$\. The
average rate for any number of whole periods at which the

generator furnishes energy to the

primary is the average value of

EmA cos pt • cos (pt — a), which is

i EmA cos a or EJr/2 (L 2p2 + r2
)

;

this is greater when the secondary

is closed than when it is open. The
average rate for any whole number

of periods at which energy is used in Fig. 120.

heating the secondary is the average

value of C2 r2 or r
2
M2pPA1 /'2 (L

2
2 p"1 + r

2
2
); the ratio of this to

the power used in the primary is called the efficiency of the

transformation and is equal to r2M2
p

2/r(L2
2p2 -hr^). The

electromotive force induced in the secondary is

-L2Dt
C2
- M-D

t
Cv

The problem here considered is in principle that of the alter-

nate current transformer (Figs. 120 and 121), and it is fre-

quently the case in practice that the ratio

of r
2 to L2p is very small. Under these

circumstances L, r, the amplitude of C2,

and (3 — a are nearly equal to

L
x
- M2/L2 , rx

+ r
2M2/L2

2
, MA/L2 , and

respectively. Both circuits are usually

wound on a soft iron core (often a ring)

Fig. 121. of great permeability, and L
X
L

2
— M2

is

very small compared with either L
x
or L2 ;

in this case the lag of the primary is negligible, while, for

high frequencies, that of the secondary is nearly two right

angles. If L
X
L

2
— M2

is practically nothing, the transformer

is said to have no magnetic leakage. The ratio of Lx to L2
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is usually nearly equal to that of the square of the number
of turns (»i

2
/»2

2
) °f tlie circuits on the core, and under these

circumstances B is approximately equal to n
xAJn.2 . For

exhaustive treatments of the problem of this section, which

is of much practical importance, the reader is referred to such

books as Fleming's The Alternate Current Transformer ; J. J.

Thomson's Elements of Electricity and Magnetism ; Cipher's

Treatise on Electricity and Magnetism ; and Steinmetz's Alter-

nating Current Phenomena.

88. The General Equations of the Electromagnetic Field.

When a fixed, metallic, linear circuit s of specific conductivity

X = l/o", at a uniform temperature throughout, carries an

induced current, positive electricity is urged around s in the

direction of the current by " something of the nature of an

electrostatic field," though we do not need to assume that this

is always due to electrostatic charges. If we denote the com-

ponents of the field, at every point within or without the

conductors which form the circuit by X, Y, Z, the line integral

of [X • cos (x, s) + F-cos 0/, s) + Z-cos(z, «)], taken around s

in the direction of the current, is the internal electromotive

force and is equal to the negative of the time rate of change

of the positive flux of magnetic induction through the circuit.

If the circuit be covered by a cap S, if ri denotes the direction

of the normal to S drawn towards the positive side, and if

Bx , By, Bz are the components of the magnetic induction B,

then, on the assumption that Stokes's Theorem may be applied

to the vector (X, Y, Z), we shall have

ff[(D„Z- DZ Y) cos(z, n) + (D
z
X- BxZ)cos(y, n)

+ (DXY- Dy
X) cos (z, w)] dS

= -
J J

\_D,BX cos (x, n) + D
t
B

y
cos (y, n)

+ Dt
Bz - cos (z,n)]dS,

so that the expression

\_{D
y
Z- TJZ F+Dt

Bx) cos (x, n) + (DZX- DxZ+Dt
By)

cos(y, n)

+ (DXY- DV
X+ D

t
Bz) cos (z, n)~\
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integrated over any cap bounded by s, whatever the forms of

the latter, yields zero. We are led to assume, therefore, that

at every point within or without any such circuit

- D
t
Bx = DV

Z- DZ Y,

-D
t
B

y
= D

z
X-DxZ,

-D
t
Bz
= DxY-Dy

X, [209]

and to say that the negative of the vector the components of

which are the time derivatives of the component of the induc-

tion is equal to the curl of the electric field.

If £, r], £ are the components of the curl of the magnetic

induction B, and if the components Fx, Fy , Fz
of the vector

F are defined by the equations 4 irFx = Pot £, 4 -n-F
y
= Pot tj,

4 ttFz = Pot £, F is a vector potential function of B. By its

aid we can transform the integral

—
J J \pt

Bx cos (x, n) + D
t
B

y
cos (y, n) + D t

Bz cos (z, ri)]dS,

in which the integrand is the component normal to S of the

curl of D
t
F, into a line integral taken about s of the tangen-

tial component of D
t
F. We have, therefore,

J
[X- cos (x, s) -+- Y- cos {y, s) + Z'• cos (z, s)] ds

= — C\_D
t
Fx cos (x, s) + Dt

F
y

cos (y, s) + D t
Fz

cos (z, «)] ds,

and the integrands can differ only by the tangential com-

ponent of some lamellar vector (Gx, Gy , Gz), which adds nothing

to the integral taken completely around s. Since this is true

whatever the shape of s, we assume that at every point

X=-D
t
Fx +Gx , Y=-D t

F
y
+G

y , Z=-D t
F

z +Gz .

When the magnetic field is constant and the components of

D
t
F vanish, X, Y, Z are equal to - DX V, - Dy

V, - Dz V, and
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the phenomena will be accounted for if we follow Maxwell
and write X=- D

t
Fx - DX V, Y= - D

t
F

v
- D

y
V,

Z=-D
t
Fz -Dz V. [210]

The reader should compare these equations with [208].

"Within the conductors which form s, the components

(u, v, iv) of the conduction current (q) satisfy Maxwell's cur-

rent equations

4 ttu = D
y
N - DJT, 4 ttv = DZ

L- DXN,

4 ttw = DXM - D
y
L, [211]

where L, M, N are the components of the magnetic field, and

u = XX, X = <ru, Y = av, Z = <tu\

According to Poisson's hypothesis, a dielectric consists of

perfectly conducting molecules separated from each other by

perfectly insulating spaces, the specific inductive capacity (A")

depending merely upon the ratio of the volumes of the spaces

occupied by the molecules and the intervening spaces. From
this point of view, there is a transfer of electricity through

every molecule when the dielectric is being polarized, one

portion of the surface of the molecule becoming positively

electrified by induction and another portion negatively elec-

trified. Every change in the polarization is accompanied by

the passage of electricity through the mass of the molecule,

and we are to assume that during the change every molecule

acts electromagnetically like a current element. Whatever

our theory, the appearance of the induced charges which

account mathematically for the phenomena observed when a

dielectric becomes polarized, involves the displacement of

electricity, and corresponding electromagnetic effects. In his

famous paper on " A Dynamical Theory of the Electromag-

netic Field," published in the Philosophical Transactions of

the Royal Society in 1864, Maxwell assumed that whenever the

polarization of a soft dielectric in which the electric induction

has the components 4>x, ®y , <E>2 is being changed, electromagnetic
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phenomena are to be looked for equivalent to those which

would accompany the presence of currents, called displacement

currents, in the dielectric defined at each point by the vector

(P/bJlir, &
t
%/4:Tr, Dt*J4kir)

or (K-D
t
X/±TT, K-D

t
Y/±Tr, K-D.Z/Att).

According to this assumption,

u' = D&x /4: 7T + AX, v' = D
t
%/A 7T + A Y,

w' = D
t
<Pz /±7r + \Z,

where u', v', w' are the components of the total current, and

we may write the current equations in the generalized form

4W = D
t
®x + 4 iru = D

y
N - DXM,

4 nv' = D
t% + 4 irv = DZL - DXN,

4 irw' = D&z + 4 ttw = DXM - D
y
L, [212]

in which u, v, w represent the components of the conduction

current alone. In conductors the displacement currents are

negligible, in a perfectly insulating dielectric the conduction

currents vanish ; both are supposed to coexist in dielectrics

which are slightly conducting. Within a conductor, since the

curl of the magnetic force is solenoidal, Dxu -\- D
y
v + Dzw = 0.

If at least that portion of the magnetic induction near the

current which changes with the time, is induced in soft media,

and if fx. is the magnetic inductivity at the point (x, y, z),

we have D
t
Bx = /x • D

t
L, D,B

y
= fx D t

M, D
t
Bz
= fx,

• D
t
N, and

[209] becomes

- tL-D
t
L = D

y
Z - DZ Y, -fi-

D

t
M= DZX - DXZ,

- n D
t
N=DXY- Dy

X, [213]

or, if the media are homogeneous,

- ix\ D
t
L = D

y
w - Dz

v, - fx\ D t
M= Dzu — Dxw,

-^Dt
N=Dxv-Dy

u. [214]
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If we differentiate the equations of [212] with respect to

t and substitute the values of D
t
L, L>

t
M, D

t
N from [214]

in the results, we shall get for homogeneous media three

equations of the form

fxX (K- D 2X+ 4 7T • D
t
u) = V2w - Dx(Dxii + Dy

v + Dzw) = V2
u,

that is,

/*\(K- D 2X -|- 4 7T • D
t
u) = V 2

u, fj.X( K- D 2 Y + 4 *• • Dp) = V 2
i>,

pk(K- B 2Z + 4 7T • DpS) = V 2u: [215]

Where there is no conduction current these become

fiKDt

2X= \ 2X, fiK- D 2X = \ 2 Y, fxKD 2Z=^ 2Z. [216]

If we substitute in the equations [214] the values of u, v,

and w from [211], we shall obtain for homogeneous media

the equations

4 TrfjiX D
t
L = Y 2£, 4 TrfiX Dt

M= VW,

±7r
l
jX'DtN=V*N. [217]

The energy of the field is W + T where

w^hfffK <-

xt+Y* +z*> dT
>

x



MISCELLANEOUS PROBLEMS.

1. The astronomical unit of mass in any length-mass-

time system is the mass which, concentrated at a fixed point,

would cause by its attraction unit acceleration in any particle

at the unit distance. The astronomical unit of mass concen-

trated at a point at a unit distance from a particle of mass

equal to the absolute unit would attract it with a force of one

unit. Show that the astronomical unit of mass in the c.g.s.

system is 15,430,000 grammes, while in the f.p.s. system it is

963,000,000 pounds. Show also that the mass which, concen-

trated at a point distant 1 centimetre from a particle of

equal mass, would attract it with a force of 1 dyne, is only

3928 grammes. Prove that the earth's mass (Problem 9) in

astronomical c.g.s. units is 3.98 x 1020
. Show that a mass of

1 kilogramme must be raised about 3 metres at the earth's

surface in order to reduce its weight by 1 dyne.

2. Prove that two equal marbles, each of 4 grammes mass,

must be placed with centres a little over 1 centimetre apart, if

the attraction between them is to be 1 microdyne, and find the

attraction [5535 for] of an iron cylinder of revolution, of 10 cen-

timetres radius, 1 metre long, upon a marble of 100 grammes
mass, with centre in the axis of the cylinder and distant 10

centimetres from the nearer base. If the specific gravity of

iron is 7.5, the radius of each of two equal iron balls which,

placed in contact, attract each other with a force of one

gramme's weight is 88.5 centimetres. If the mass of each of

two equal homogeneous spheres with centres 1 mile apart

were 415,000 gross tons, the attraction between them would
337
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be about 1 pound's weight. The force of attraction between

two equal particles 1 foot apart and each of mass n times as

great as that of a cubic foot of water, would be equal to the

weight of about ?i
2/(7.94 x 10 6

)
pounds.

3. Assuming that a force equivalent to the weight of a

mass of 1 gramme is equal to 4 2
7r

2
(98.95)

4 centimetre-gramme

attraction units, find the radii of two equal homogeneous

spheres which, made of matter of density 6, would attract each

other with a force of 1 gramme's weight. if they were placed

in contact with each other. [98.95.]

4. Assuming that 1 dyne is equal to 15,430,000 absolute

c.g.s. attraction units and that 1 poundal is equal to 13,825

dynes, show that if two equal homogeneous spheres of density

p, when placed in contact, attract each other with a force of

4/7
/dynes, the radius of each is about (43.3) ^'— cm., and that

r

two equal homogeneous spheres of the density of water when

in contact will attract each other with a force of 1 dyne, 1

gramme's weight, 1 poundal, or 1 pound's weight, according

as the radius of each in centimetres is 43.3, 242.2, 469.4,

or 1118.5.

5. Show that, having found the value of the attraction

unit of force in any length-mass-time system in terms of the

absolute unit of force in this system, you may find the value

of the attraction unit of force in any other system the ratios

of the fundamental units of which to those of the old system
o

IXT
are X, //,, and r, by multiplying the found value by —-•

A

6. Show that if two homogeneous spheres of mass m x
and

m2 , starting from rest with centres at a distance a apart, move

toward each other under their mutual attraction, and if at any

time t, x represents the distance between the centres,

- k (m
x + m2) _ _ [2 k (m, + w 2) (a - x)

' x2 * ax
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= \ o z /

a
a. 7

\^x(a-x) + a cos- ] \/- [

=4
2 k (inx + m2)

< Vx (a — x) + a tan

Hence prove that if the spheres are each one foot in diam-

eter and of density equal to the earth's mean density, and if

their surfaces are \ of an inch apart at the start, they will

come together in about five minutes and a half. In this con-

nection we may note that if M is the mass of the earth, R its

radius, p its mean density, and k the gravitation constant for

the particular units used,

hM
,

3 ff

9 = ~^r and p
=

R2 r 4 irRk

If the first sphere is fixed while the second, of mass m2 , is

free to move,

D *x = ZL*p±, DtX = _ J2km l (a-x)
t

X' % ax

t = \7Ti
—

"i
Vx- (a — x) + a cos

- 1\- > •

* 2 Jem,!
[

' a
J

If in this case the radius of the fixed sphere is r, and if m2

is comparatively small and a infinite, the velocity with which

the second sphere reaches the surface of the first is some-

times called the final velocity for bodies falling to the fixed

J2 km, /

sphere. Its value is \———, or V2f- r, where / is the force
r

of gravitation at the surface of the fixed sphere.

Show that if the diameter of the sun is 109.4 times that

of the earth and its mass 331,100 times the earth's mass,

the final velocity for bodies falling into the sun is 55 times the

final velocity for bodies falling into the earth. The radius

of the earth being 6.37 X 10 8 centimetres, show that the

final velocitv for bodies falling to the earth under the attraction
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of the earth only is nearly 11,180 metres (or about 7 miles)

per second.

7. Show that if a meteor falls upon a planet with velocity

equal to that which it would acquire if it fell from rest at an

infinite distance from the planet under the planet's attraction,

its kinetic energy will be proportional to the product of the

radius of the planet and the force of gravity on its surface.

8. Given that a failing body reaches, the earth's surface

with a velocity v , compute the height through which it has

fallen from rest, first, on the assumption that the force which

urged it was constant, and, secondly, on the assumption that

the force varied inversely as the square of the distance of the

body from the earth's centre, and prove that the difference

between the reciprocals of the answers you obtain is equal to

the reciprocal of the earth's radius.

9. Given the radius of the earth in centimetres (6.37 X 10 8

),

the mass of the earth in grammes (G.14 X 1027
), the radius of

the sun (6.97 X 10 10
), the mass of the sun (2.03 X 10 33

), and

the mean distance between the centres of the earth and sun

(1.49 X 10 13
), find the time when the sun and earth would come

together, if both were arrested in their paths. Prove that the

acceleration due to gravity is at the sun's surface about 27.6 g.

10. A body of mass vi falls from rest near the surface of

the earth and is retarded by the resistance of the air, which

is Xv2 dynes when the velocity is v. Show that if s represents

the space passed over up to the time t, and if //, = X/m and

c^g/p, 2nct = log[(c + v)/(c-v)l2ps = loglc*/(e*-v*)],

v2 = c
2 (l — e~ 2,xs

), and /is = log cosh (net).

Show that if the body were thrown upward with initial

velocity v , we should have tan (/xct) = c(v — v) / (c
2 + v v).

If in the case of the falling body v is the actual velocity

and v' the velocity which would be required by falling

through the same distance in vacuo,

v*/v'* = i _ | v'*/c* + 1 "'

V

c4 - sV^A6 + • • • •



MISCELLANEOUS PROBLEMS. 341

11. Show that the periodic time of a planet moving about

a fixed sun of mass m in a circular orbit of radius r is

2 irri/^Jkm, where 1/k is the ratio of the absolute unit

of force in the given length-mass-time system to the corre-

sponding attraction unit ; and, assuming that the diminu-

tion of gravity at the equator due to the earth's rotation is

about 5^th of the whole, and that the mean distance of the

moon from the earth's centre is about 60 times the earth's

radius, compute the length of the month.

12. When a particle moves in any plane curve, the tangen-

tial and interior normal acceleration components are D
t
v and

v2
J p, while the acceleration components, taken along and per-

pendicular to the radius vector which joins any fixed point in

the plane used as the origin of a system of polar coordinates,

to the particle, are D 2
i
— r(D

t$)
2 and D

t
(r

2
• D

t0) Jr respec-

tively. If the resultant acceleration is always directed

towards the origin, D
t (?

aD
t
d) = and r 2

•D
t
6 = h, so that the

areas of the sectors swept over in any two time intervals by

the radius vector are to each other as the lengths of the inter-

vals : if p represents the perpendicular let fall from the origin

upon the tangent to the path, vp = rDfi = h.

The acceleration towards the origin is

and, if u represents the reciprocal of r, this may be written

h2u2 (u + De
2
u).

Since v2 = h 2 [u2 + (p9u)%

| Bt
(r)

2 = h2D
t
u (u + Dd

2 u) = -R-

D

t
r.

In the case of a planet describing a plane orbit about a

fixed primary centred at the origin

R = jj.Sc
2 = h2u2 (u + De

2u) ; or D 2z + z = 0,

2 2

where z = u — y^ > so that u = j^ + C sin (6 — X).
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This is the equation of a conic section referred to a focus as

origin : if e is the eccentricity and ra the distance of the focus

from the directrix, C = — 1/ra and h 2

/ /a
2 = em. The angle \p

between the radius vector, drawn from the origin to any point

on the orbit and the tangent at the point, is given by the

equation, ctn \jr=—r-C- cos {6 — A). Assuming that, when
is zero, \p = a, r = a, and v = v , show that h = v a sin a, and

1 — e
2.= (2 fx? — v 2a) h2/ a/i

4
. Discuss separately the three

cases where v 2
is respectively less than, equal to, and greater

than 2 ti
2

J'a, and find the lengths of the semiaxes of the orbit.

Show that, if a = 90° and if v sa = /x
2
, the orbit will be circu-

lar; show also that, if T is the periodic time of the planet

and a the semiaxis major of its orbit, yu.
2T 2 = 4 7r

2a3
.

13. Assuming that the equation

* = X

~

Jn
C<t> =\--F (sin \ a, 4>),

^'J
Jo Vl-sin^asin2 ^

V
y

where sin
<f>

sin ^ a = sin \ 0, and a is the angular amplitude

on one side of the vertical, gives the time occupied by a

simple pendulum of length a in going from the vertical

position to a position in which the thread makes the angle

with the vertical ; and that the complete time of swing is

^ fl

[1 + \ sin2
\ a +^ sin4 i a + ] ;

assuming also that a rigid body swinging about a horizontal

axis under gravity moves like a simple pendulum of length

k 2
/ h where h is the distance of the centre of gravity from the

axis and k is the radius of gyration ; show how a pendulum

may be used to measure the force of gravity at a point.

If the earth were a homogeneous sphere, would a clock

which at a given temperature keeps correct time on the

earth's surface lose or gain at the same temperature at the

bottom of a deep mine ? Assuming that if gK and g are

the accelerations due to gravity at sea level, in latitude A and
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at the equator respectively gK = g (1 + .005226 sin2
A) and

g = 978.1 ; show that the lengths of the seconds pendulum

at the north pole, in latitude 45°, and at the equator, are about

99.6 centimetres, 99.3 centimetres, and 99.1 centimetres.

A pendulum which beats seconds on the earth's surface

gains n seconds per day in a mine h metres deep. Show that

if pQ is the mean density of the earth and p the density of the

surface stratum,

rA

86400 4 • 10 7
2-

Po

approximately.

14. Assuming that the earth is a homogeneous sphere, of

radius 6.37 X 108 centimetres and of

mass 6.14 X 102r grammes, rotating

uniformly about its axis in 86164

seconds, so that the velocity of a point

on the equator is about 463 metres per

second, show that the angular veloc-

ity of the earth is 0.00007292 or

about (13713)
-1 radians per second,

and that the downward acceleration at

the equator is by 3.39 centimetres per FlG 122
si

second per second, or about t^tx' less than the acceleration, G,

Show also (Fig. 122) that the acceleration of grav-

cos2 A

at the poles

ity towards the earth's centre at the latitude A is6r( 1

sin A cos A
the deviation of the plumb line tan"

289 - cos2 A

G

289

and the

horizontal component of apparent gravitation ^— sin A cos A.

15. If in the case of any homogeneous spherical body

rotating uniformly about its axis, the polar gravity accelera-

tion and the equatorial gravity acceleration be gp and gt
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respectively, the acceleration of gravity towards the earth's

centre in latitude A is (gp sin 2 A + <je
cos'2 A) and the deviation

of the plummet from the geometrical vertical is

tan- I
**'' '****"**

[ gp sin- A + ge
cos J A

16. A bicycle and its rider weigh together 75 kilogrammes.

Show that if the machine were driven first eastward and then

westward in this latitude at a velocity of 10 metres per second,

the difference between the pressures on the ground in the

two cases would be about 16.5 grammes.

17. The centre of a planet of radius a moves around a sun of

mass M in a circular orbit of radius r. Compute the pressures

exerted on the surface of the planet by two equal particles, each

of mass m, situated respectively on the points of the planet

nearest and farthest from the sun. Show that the difference

between these pressures is small compared with the difference

between the attractions of the sun upon these particles.

What is the difference between the apparent weights of a

body of mass m on the earth's equator about September 21, at

noon and at midnight ?

18. Two rods AB and CD, both of line density p, are placed

parallel to each other. Show that the force on either in the

direction of its length is

f AC + AD + CD ^ BC+BD+CD
^

\ g AC + AD- CD
°g BC + BD- CD J

The component of the mutual attraction perpendicular to the

rods is 2p
2 (BC — BD — AC + AD) / r, where r is the perpen-

dicular distance between them.

19. The sides of a triangle are formed of three thin uni-

form rods of equal density. Prove that a particle attracted

by the sides is in equilibrium if placed at the centre of the

inscribed circle. [M. T.]
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20. Every particle of three similar, uniform rods of infinite

length lying in the same plane, attracts with a force varying

inversely as the square of the distance : prove that a particle

subject to the attraction of the rods will be in equilibrium, if

it be placed at the centre of gravity of the triangle enclosed

by the rods. [M. T.]

21. The attraction of the straight rod AB at a point P
is the resultant of two forces, each equal to /, acting at P
towards the extremities of the rod,

where f=2m- AB/[(AP + BPf - A1F\.

Find the value of/ when P lies on an ellipse the foci of which

are the extremities of the rod. [Routh.]

22. If the direction at the point of the attraction of every

portion of a uniform plane curvilinear wire bisects the angle

subtended at by that portion, the wire is either straight

or has the form of a circumference with centre at 0. [Routh.]

23. If the law of attraction be the inverse square, two

curvilinear rods in one plane exert equal attractions at the

origin if the densities at points on the two rods on any radius

vector drawn through the origin are proportional to the per-

pendiculars from the origin on the tangents. [Routh.]

24. Prove directly from the formula for the attraction of a

slender straight wire, that the attraction at a point P, due to

an infinite homogeneous cylinder of any form, is twice that of

so much of the cylinder as is cut off by a double cone formed

by the revolution about a line through P, parallel to the

generating lines of the cylinder, of a line which cuts this line

at P at an angle of 60°.

25. A uniform wire AB in the form of a circular arc has

its centre at 0. Prove that the component of the attraction,

at any point P, in a direction perpendicular to the plane

containing P and the normal at to the plane of the arc, is

a/i(r1

-1 — r2
~~ 1

)/ h, where i\ = AP, r = BP, h is the projection

of OP on the plane of the arc, and /x the line density of the wire.
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26. Prove that the attraction in the direction PO at a point

P on the circumference of a circle the centre of which is 0,

due to an infinitely long, straight filament of given density

passing through a point Q in the circumference and perpen-

dicular to its plane, is the same wherever the point Q is. If

the filaments of a homogeneous columnar distribution of given

mass per unit length are so arranged that the cross-section is

a circle passing through a point P, the attraction of the

distribution on P will be a maximum. [Tarleton.]

27. A water tower in the shape of a cylinder of revolution

is 100 feet high and 10 feet in diameter. The mass of the

tower and contents is 8400 pounds per foot of height. With-

out the help of pencil or paper, guess, to within one per

cent of the truth, the value in f.p.s. attraction units of the

horizontal component of the attraction due to the tower at a

point at its foot just outside it.

28. Prove that at a point on the edge of an infinite homo-

geneous cylinder of semicircular cross-section, the components

of the attraction across the plane face perpendicular to the axis,

and normal to the face, are iralcp. and 2 akp. respectively, and

show that gravity is diminished by the fraction — at

the middle of the surface of a long straight canal of semi-

circular section, a being the radius of the semicircle, r the

radius of the spherical earth, p' the density of water, p that

of the surface stratum of the earth, and p the earth's mean

density. The corresponding quantity in the case of a canal

of rectangular cross-section of depth a and breadth 2 a. is

7T + 2 • log 2 3a p- P
'

it 4 r p

29. An infinitely long homogeneous prism has a rectangular

cross-section of lenerth a and breadth b. Assuming that

/log (a 2 + x 2
) dx = x log (a2 + x2

) — 2 x + 2 a tan-1 (x /a),
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show that at any point on one of the edges the components of

the attraction along the sides a and b of the cross-section

through the point are

kP \2a tan- 1 (b/a) + b log [(a 2 + lr) /6
2

] \

and kp

\

2 b tan- 1 (a/b)+a- log

[

(a2 + b
2

)

/

« 2
] <

.

If the ratio of b to a is large, the first of these quantities is

nearly equal to irapk. Show that the apparent latitude of a

point on one edge of a long, deep, narrow crevasse of breadth

a, running east and west, is altered by the angle 3pa/4:p r,

nearly, by the presence of the crevasse. [Thomson and Tait.]

30. Assuming that the attraction of a homogeneous cylinder

of revolution, of density p, radius a, and height h, upon a unit

particle at the centre of one of its ends, is

f a 1-1 a 3 1-1-3 «5 1
2 *kPa \1 -— +— - - - ^Tq ' v + ' "

"

J

_
f"

h 1-1 A3 1-1-3 A5 1
or 2**^1-— + 2Ti-^-2^6'^ + ••_]'

according as a is small or large compared with h, and con-

sidering that the mean surface density of the earth is 3 times

and the mean density of the whole earth 5.5 times the density

of sea water, obtain Siemens's expression, ? for the dimi-

nution of gravity at a point on the ocean where the depth is h.

Is the intensity of gravity at the centre of the mouth of a ver-

tical mine shaft 20 feet in diameter appreciably less than

before the shaft was dug ? Show that if h = a, the attraction

due to a cylinder of revolution, at the centre of one of its

ends, is 2irkpa(2 — V2). The attraction due to the earth

07'2

at a point P at a height h above the surface, is —--—r— > or

g ( 1
j

approximately, where r is the radius of the

earth. If p is the earth's mean density, g = f Trkp r. If P is
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at the centre of a wide plateau of height h made of matter of

density p, the additional attraction due to the plateau is about

2 Trkph, or 3 'jph/2 p r, so that if p = £ p , the whole attraction

is nearly ^(l-—
31. A vertical solid cylinder of height a and radius r is

divided into two parts by a plane through the axis. Show
that the resultant horizontal attraction of either part at the

centre of the base is

2 pa • log

32. A right circular cylinder is of infinite length in one

direction and is homogeneous. Prove that if the finite extrem-

ity be cut off perpendicularly to the generators, the attraction

on a unit particle placed at the centre of this end is >

where M is the mass per unit of length. If the cylinder be

elliptic, of the same density and mass per unit of length as

before, and of eccentricity e, then the attraction will be n

times the former value, where

2
/i ^i C2 dd

n = - (1 — e
2
)* I .

=•
*- v J

Jo Vl -e2 sin2

33. A homogeneous, right circular cylinder of density p

stands on the plane z = 0, and is infinite in the positive

direction of the axis of z. Show that the z component of

its attraction at a point P of its base is kpl, where I is the

perimeter of an ellipse having the base for the auxiliary circle

and P for one focus.

34. Show that the attraction at any outside point P, due

to a uniform plane lamina of any shape, yields a component

normal to the lamina, equal to the product of the solid angle

subtended at P by the lamina, and a quantity which does

not depend upon P's position.



MISCELLANEOUS PROBLEMS. 349

35. Show that the component perpendicular to its axis, of

the attraction of a thin, homogeneous, circnlar, cylindrical

sheet of height 2 h and radius a, has at any point on one

of the circular bounding edges of the cylinder the value

/ I /
==> where k2 = •

Tra Va2 + A2Jo Vl - *'2 sin2
^

a + 7i

36. An infinitely long plane sheet of constant width has

a small thickness 8 and is made of homogeneous matter of

density p. This strip cuts a plane perpendicular to its long

edges in the line AB : show that the attraction of the strip at

any point P in this plane has a component 2 kp8 log (PB / PA)
parallel to AB, and a component 2 kp8 Z. APB perpendicular

to AB.

37. Every diameter of a certain circle subtends a plane

angle 2 at a certain point P on the axis of the circle ; show

that the circle subtends at P the solid angle 2tt(1 — cos 6).

38. Compare the attractions, at the vertex of a homoge-

neous oblique cone which has a plane base, due to the whole

cone and to so much of it as lies between the vertex and a

plane which bisects at right angles the perpendicular drawn

from the vertex to the base.

39. Prove the truth of the theorem which Newton states

in the following words : " Si corporis attracti, ubi attrahenti

contiguum est, attractio longe fortior est, quam cum vel

minimo intervallo separantur ab invicem : vires particularum

trahentis in recessu corporis attracti, decrescunt in ratione

plusquam duplicata distantiarum a particulis. Si particula-

rum, ex quibus corpus attractivum componitur, vires in recessu

corporis attracti decrescunt in triplicata, vel plusquam tripli-

cata ratione distantiarum a particulis, attractio longe fortior

erit in contactu, quam cum trahens et attractum intervallo vel

minimo separantur ab invicem." [Phil. Nat. Princ. Math.,

Seetio XIII.

]
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40. Two homogeneous solids made of the same material

are bounded by similar surfaces. Show that the intensities

of their attractions at two points similarly situated respec-

tively with regard to them, are in the ratio of the correspond-

ing linear dimensions of the solids. Hence prove that the

attractions at points on a given diameter inside a solid homo-

geneous ellipsoid are proportional to the distances of these

points from the centre.

41. Prove that the attraction, at very distant points, of any

system which has an axis of symmetry, may be represented as

emanating from two equal poles of the same sign situated on

the axis.

42. Show that the component, at the origin, in the direc-

tion of the x axis, of a given particle m, is the same wherever

on the surface m • cos (x, r)/r2 = c, where c is a given constant,

the particle lies. If it is anywhere without the surface, the

component will be less than if it were anywhere within.

Hence prove that the attraction of a given mass M for a point

on its surface will be greatest if the boundary of M, referred

to the given point, is a surface of the family cos 6 — \ r
2

.

43. If the earth be considered as a homogeneous sphere of

radius r, and if the force of gravity at its surface be g, show

that from a point without the earth, at which the attraction is

g, the area 2irr2
( 1 — \ ) on the surface of the

earth will be visible.

44. The laws of attraction for which the attraction of a

homogeneous shell on any external particle is the same as if

the shell were concentrated at its centre, are the "law of the

inverse square " and the " law of the direct distance."

45. Whatever may be the law of attraction, the intensity

of the force exerted by the smaller of two concentric solid

homogeneous spheres at any point on the surface of the larger,

is to the intensity of the force exerted by the larger at any
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point on the surface of the smaller, in the ratio of the square

of the radius of the smaller to the square of the radius of the

larger. [Minchin.]

46. Prove that if / be an external point and C the centre of

a sphere, the sphere on IC as diameter, the sphere with centre

I and radius IC, or the polar plane of 7, will divide the sphere

into two parts which exert equal attractions at I, according

as the law of attraction is the inverse square, the inverse cube,

or the inverse fourth power of the distance. [St. John's

College.]

47. Two sectors are cut from a homogeneous shell bounded

by two concentric spherical surfaces of radii rx and r2 , by a

conical surface of revolution of half angle and with vertex

at the centre of the shell. The attractions at a point P
without the shell on the axis of the cone, on its inner side,

at a distance c from 0, due to the portions of the shell which

lie respectively without and within the cone are Fx and F2 .

Show that Fx is equal to the difference between the values

when r = r2 and r = rx of a quantity A, and that F2 is equal

to the difference between the corresponding values of a

quantity B where

A = —12 [£ r3 - o>4 (i r2 - f c
2 + c

2 cos 2 6 + ± re cos 6)

+ c
s cos $ sin2 log (wi + r — c cos 0)]

,

B2 = —^ [J r3 + <ol (£ 7* - § c
2 + c

2 cos 2 + 1 re cos 6)

— c
3 cos sin 2 6 • log (wi + r — c cos 0)]

,

and o) = c
2

-f- r
2 — 2 cr cos 0.

The attractions of the halves of the shell farthest from P
and nearest to it are

^ [(r2
3 - V) - (r2

2 - 2 c
2
) Vr2

2 + c
2

+ (rr
a - 2 c

2
) V V + c

2
],
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2kirp
and =-^ [(r2

8 - rf) + (>-2
2 - 2 c

2
) V r2

2 + c
2

-(/•
1

2 -2 t
-2
) V/v + c

2
]

respectively. If the mass of the whole shell is ilf and if the

shell is thin, the attractions at P due to the sectors are

kM f ^ r—c cos $\ , &Jf / . ?• — c cos
and tt-^ 1 +

2 c
2 \ PL J 2 c

2

V PL

where L is any point on the common rim of the sectors.

48. Prove that the attraction due to a homogeneous hemi-

sphere of radius r is zero at a point in the axis of the hemi-

sphere distant f r approximately from the centre of the base.

49. A segment of height h, cut from a homogeneous sphere

of density p and radius a by a plane distant a — h from the

centre of the sphere, attracts a unit particle on the axis of

the segment at a distance b, greater than the radius, from

the centre of the sphere, with a force

2tt&p h + 0/
1

N9 1 (2 c
2 + 3 ac) c-(2c2 + 3ac + ah + eh)

L o(c + a)-
2

L

Vc2 + 2 eh + 2 ah V , where c = b — a.

If c = 0, this becomes 2-n-kph < 1 — -A/— j*
• Assuming this

to be true, show that the attraction of a homogeneous hemi-

sphere upon a particle at its vertex is to the attraction of the

circumscribing cylinder of the same density as 529 to 586,

nearly. Show that the attraction, at its vertex, of a slice

2 miles thick cut from the earth, and the attraction of

an infinite disc of the same thickness and density upon a

point at the centre of one of its faces, differ by about one

per cent of either.

50. Show that if the earth were made up of two homogeneous

solid hemispheres of densities p and p' separated by the plane
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of the equator, the deviation of the plumb line from the zenith

at any point of the equator would be tan"

51. Show that the attraction at the origin due to the homo-

geneous solid bounded by the surface obtained by revolving

one loop of the curve r2 = a2
• cos 2 6, is ^ irakp.

52. A mountain of the form of a surface of revolution with

vertical axis and elliptic outline stands on a horizontal plane

which contains the centre of the ellipse. Find the horizontal

component of its attraction at a point of the base. Show that

if the mountain is 2 miles high and 4 miles broad at the base,

and if the density of the mountain and of all the matter in its

neighborhood is half the mean density of the earth, the plumb

lines close to its base on the north and south sides will make
with each other an angle greater by about 51 seconds of arc

than the corresponding difference of geocentric latitude.

53. The attraction at the point (0, 0, — b) of so much of the

homogeneous paraboloid x2 + y
2 = Xz as lies between the

planes z = 0, z = h is

2 irkp \h - V(6 + Kf + hX + b - % X • log (2 b + £ X)

+ $X-\og(-^(b + hy+hX + b + h + ±\)\.

54. If a body M be divided into two rigid portions, A and

B, the resultant action of each portion upon itself is nil, and

the attraction between A and B is the same mathematically

as the attraction between M and B. To find, therefore, the

attraction between two equal homogeneous hemispheres so

placed as to form a sphere, we may integrate through either

hemisphere the product of the density and the component

normal to the flat face of the hemisphere, of the attraction due

to the whole sphere. Show that the result is 3 kM2/16 a2
.

55. Show that the . resultant attraction between the two

parts into which a homogeneous sphere is divided by a plane
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is equal to the mass of either part multiplied by the intensity

of gravitation at its centre of mass.

56. Prove that the pressure per unit of length on any

normal section of a spherical shell of mass M and radius a,

due to the mutual gravitation of the particles, tends to the

limit kM 2 / 16 -n-a
3

, as the thickness of the shell is indefinitely

diminished. [M. T.]

The mass of the unit length of an infinite homogeneous

cylinder of revolution of radius a which is divided into two

parts by a plane through its axis is M. Show that the pres-

sure between the two parts due to their mutual attractions is

4 kM 2/3 ira per unit length of the cylinder.

57. If R and £ denote the components of attraction of a

gravitating system symmetrical with respect to a straight

axis, taken along and perpendicular to the axis, then

DzR + DrS+S/r=0,

where r and z are columnar coordinates. [St. John's College. J

58. If the point of application of a force F move by the

path s from the point A to the point B, the force is said to

do work during the journey, equal in amount to the line inte-

gral taken along s of the tangential component of F. If the

components of F parallel to the coordinate axes are X, Y, Z,

and if dx, dy, dz are the projections on these axes of an

element ds of the path, we have the expressions

W= C F- cos (s,F)ds
JA

= I F [cos (x, s) cos (x, F)

+ cos (y, s) cos (y, F)+ cos (z, s) cos (z, F)] ds

— I [X-cos(cc, *•)+ Y-cos(y, s)+ Z-cos(z, s)] ds

= f Xdx + Ydy + Zdz.
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If a function fl exists such that

x= dxq, y= D
y
n, z=D

zn ; w= C dn = n£ -nA :

such a function is called a potential function or a force

function of the given force. The work done by a force which

has a potential function, when its point of application moves

completely around any closed path, is zero, and such a force

is said to be conservative. The work done by a conservative

force as its point of application moves from A to B is inde-

pendent of the path s.

Prove by actual integration along the different paths, that the

work done by the force X= 3 x2 + 2 y, Y= 4 y
3 + 2x, Z = 0,

when its point of application moves from the origin to the

point (2, 2, 0), is 32, whether the path be a straight line, or

the parabola y
2 — 2 x in the xy plane, or a combination of a

straight line from the origin to (2, 0, 0) and another straight

line from this point to -

(2, 2, 0). Show that the derivative

with respect to x of any function of the form x3 + 2 xy +f(y),
where f is arbitrary, will yield X, and that, by a proper

choice of /, the derivative with respect to y can be made equal

to Y; so that a force function exists. Prove by actual inte-

gration along the paths that the work done by the force

X=3x2 + 2y, Y=4:y3 + x, Z = 0,

as its point of application moves from the origin to (2, 2, 0),

is not independent of the path. In this case no potential

function exists, since it is impossible to give such a-form to

/, in the general expression [xz + 2 xy+f(y)~], which has X
for its partial derivative with respect to x, that the partial

derivative of the expression with respect to y shall be Y.

Since the order of successive partial differentiations of any

analytic function is immaterial,

DzDfi = Dy
Dx![l, DxDSl = DzBxn, Dy

D
zQ = DzDy

£l

or D
y
Z = Dz Y, I)Z

X = DXZ, Dx Y = M.
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Show that this necessary condition for the existence of a

force function is also a sufficient one.

59. Prove that if we have matter attracted to any number

of fixed centres with forces proportional to any function of

the distance, or if we have matter every particle of which

attracts every other particle according to any function of the

distance between the particles, there exists a potential func-

tion the derivative of which in any direction at any point

gives the intensity of the force which would solicit a unit

quantity of matter concentrated at the point to move in the

given direction.

60. If r represents the distance of any point Q on a sur-

face S from a fixed point P, and if a is the angle between PQ
and the normal to S at Q, drawn always from the same side

/COS ft—
Y~ dS, taken over any portion of the sur-

face, gives in absolute value the solid angle subtended at P
by this portion, and, in the case of a closed surface, this value

is 4 7r, 2 ir, or 0, according as P is within, on, or without S.

Prove that the volume of the solid enclosed by any surface S

is the absolute value of
-J | r cos a dS taken over the surface,

whether P is within or without S. Show that it is possible

to find an analogous expression, £ I r cos a ds, for the area

enclosed by a plane curve, and explain in this case the

notation.

61. Show that the absolute value of the component parallel

to the axis of x, of the force at a point P, within or without a

homogeneous solid body of any form, due to the attraction of

/OOS ( CC' 7h) * 6?>S—'
, where n is an interior normal,

taken all over the bounding surface ; and prove that the

component parallel to the axis of x of the force, at a point

P, due to the attraction of a homogeneous infinite cylinder
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with generating lines parallel to the axis of z, is of the form

2 fx j
cos (x, n) • log r ds, where the integral is to be extended

around the contour of the section of the cylinder made by a

plane through P perpendicular to the axis of z.

62. The space within a closed surface S is filled with homo-

geneous matter of density p. Prove that the value at the

point P, of the potential function due to the distribution, is

\ p I cos a dS, where a is the angle which the normal to the sur-

face, drawn inward at any point Q on it, makes with QP.

63. Two distributions of gravitating matter possess a com-

mon closed equipotential surface. Prove that if all the

matter of both distributions be within this surface, the

potentials at the surface due to the two distributions are to

each other as the masses.

64. Prove that if two different bodies have the same level

surfaces throughout any empty space, their potential func-

tions throughout that space are connected by a linear relation.

That the level surfaces should be the same, it is only neces-

sary that the resultant forces due to the two bodies should

coincide in direction.

65. Show that if two distributions of matter have in

common an equipotential surface which surrounds them

both, all their equipotential surfaces outside this will be

common.

66. Show that if we have matter every particle of which

attracts every other particle with a force proportional to the

nth. power of the distance, the attraction at any point within

a quantity of the matter will be infinite if w + 2<0.
[Minchin.]

67. Show that if u, v, and w are any three solutions of

Laplace's Equation,

y
2 (uvw) = u y2 (viv) + v • y2 (w) + w • y

2 (uv).
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68. Show that the potential function due to a solid hemi-

sphere of radius a and density p, at an external point P
situated on the axis at a distance £ from the centre, is

the upper or lower sign being taken according as P is on the

convex or plane side of the body.

69. A sphere with centre at the origin has a radius r and a

density given by the law p — ax + by + cz. Prove that the

value at any external point (x, y, z), at a distance P from

the origin, of the potential function due to the sphere, is

4 tt?-
5 (ax + by + cz) / 15 P3

.

70. An infinite cylinder of radius a has a cylindrical cavity

of radius b cut out of it. The axes of the cylinders are

parallel but not coincident, and the surfaces do not intersect.

Show that the equipotential surfaces are cylinders the equa-

tions of which are :

(i) ra ~ r
b
2 = Ci within the cavity;

(ii) r 2 — 2 b2 log j = C2 within the mass
;

(iii) a2 log ( —
j
— b

2 log ( j J
= C3 in outside space

;

where ra and r
b
are the distances from the axes of the cylinder

and cavity respectively.

71. From a homogeneous sphere of density p and radius a

is cut an eccentric spherical cavity of radius b. The distances

of any point P from the centre of the sphere and the centre

of the cavity are r x and r2 respectively. Show that VP , the

value of the potential function at P, is given by the first,

second, or third of the subjoined equations,

r 2 - r 2 = -A. 1 VP + 2ttp b
2 - 2 *p a2

2 irp
[_
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n H .

according as P is within the cavity, within the mass, or with-

out the mass. Indicate by a rough drawing the form of a

line of force within the cavity.

72. Show that the lines of force due to a uniform straight

rod are hyperbolas which have the ends of the rod for foci.

73. Show that formula [59] might be written

VP = fi- log (ctn ! PBA ctn £ PAB).

74. A number (n) of equal, infinitely long, homogeneous,

straight filaments, all parallel to each other, cut the xy plane

normally in points which lie uniformly distributed on a cir-

cumference of radius a with centre at the origin. One of

these points is at the point (a, 0). Show that the value of the

potential function at the point (r, 0) is

m • log^" — 2 a"r" cos n9 + a? n
).

75. If the law of attraction were that of the inverse nth

power of the distance, we should have

^=(,-2)///^
If the density had the same sign throughout a distribution of

matter, the potential function could not be constant in any

region of empty space unless n were equal .to 2.

76. In the case of matter every particle of which attracts

every other particle with a force proportional to the product

of their masses and a function (/) of the distance, we have

V 2 V = frf[2/(r)/r+/'(r)]p dr. Show that V cannot

satisfy Laplace's Equation unless /(r) = K/r2
.
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77. If instead of the polar coordinates r, 0, <j>, the independ-

ent variables are r, p., (f>,
where p, = cos 6, Poisson's Equation

becomes

Dr (r
2

• Dr V) + Z>M [(1 - p
2
)DM F] +D\ V/ (1 - p.

2
) = - 4 ^Pr\

78. If instead of the spherical coordinates r, 6, <f>,
the coor-

dinates ii, w,
<f>

be used, where u = 1/r, and w; = log tan ^ ^,

Laplace's Equation becomes

sin2
(2 tan- l e

w
) tr . D„2 F + Z*^ 2 F + Dw

2 V = 0.

79. Show that if matter be distributed symmetrically about

an axis, and if 4 a, 4a' be the latera recta of the two confocal

parabolas, with this line as axis, which meet at any point,

Laplace's Equation may be written in the form

Da(aDa V) + Da.(a'Da.V) = 0.

80. Prove that at the surface of an attracting body, Dx
2
V,

Dy^V, Dz

2 V&ve discontinuous in such a manner that if n repre-

sents an interior normal drawn to the surface, the values of these

quantities at any point just within the attracting mass are

smaller than at a neighboring point just without, by the

quantities 4 irp cos 2
(x, n), 4 irp cos 2

(//, n), 4 -n-p cos2
(z, n),

respectively.

81. A portion of a spherical surface is occupied by a thin

shell of matter of uniform density cr, which attracts according

to the Newtonian Law. Prove that the value, at any point on

the remaining portion of the surface, of the potential function

due to this distribution of matter, is aa-w, where a is the

diameter of the sphere and w the solid angle subtended at the

point by the contour of the portion of the surface occupied

by matter.

82. Show that in so far as a transformation from one set of

rectangular axes to another is concerned, D 2 V-\- D
y
2 V+ D 2 V

and (DX V)
2 + (D

V
V) 2 + (DZ V)

2 are differential invariants.
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83. The potential function at all points external to the

#2 + y
2 + 22 = a2sphere

a 5
(cur

2 + ft/
2 + y~

2 + 2 a'yz + 2 £'x8 + 2 y'xy)/r\

Show that if there be no matter in this region, a, jS, and y must

satisfy a certain relation. Show that if inside the sphere the

density be uniform, the value there of the potential function

will be
c + Xx2 + ^f + vz 2 + 2 a'yz + 2 /3'zx + 2 y'ay,

where c, A, /x, and v are known. Find the condition that under

these circumstances the equipotential surfaces inside the

ic
2

//~ ,~ 2

sphere should be ellipsoids similar to — 4- fr + — = 1.
a- b~ <r

84. Prove that if C^> (r) . dr = x (/•) and Cr- X (r)dr = if/(r),

r r

and if <£, x, and if/ vanish at infinity and are finite for finite

values of r ; mm 1

x (
r) represents (1) the work done under an

attracting force mm' c/> (f)
in bringing a particle of mass m'

from infinity to a point distant r from another mass m
;

(2) the component, parallel to the rod, of the attraction of a

particle m on a straight slender rod of line density m', if the

end of the rod is at a distance r from m and the other end at

infinity. Show also that 2 7rcrra- ^ (z) represents (1) the work
done in bringing from infinity to a point distant z from a thin

lamina of surface density <r, a particle of mass m; (2) the

attraction of a particle m, placed at a distance z from the plane

surface of an infinite solid of constant density o\

85. Show that if s represents a direction which makes the

angles a, (3, y with the coordinate axes,

A2 V= Dx
2 Fcos 2 a + D* V cos 2

/3

+ Z>
2

2 Fcos 2
y + 2 DxDy

Fcos a cos p

+ 2 D
U
DZ Fcos /3 cos y + 2 2)^ Fcos y cos a.
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86. When the line of action of the attraction of a body at

every point of external space passes through a point fixed

in the body, the body is said to be centrobaric and is called

the baric centre. The lines of force in external space are

straight lines passing through 0, and the equipotential surfaces

are spherical surfaces with centre at the baric centre. Show
that the whole external field must under these circumstances

be the same as that due to a mass equal to that of the body,

concentrated at 0. Show that if at internal points also the

line of action of the force always passes through 0, the density

of the body is a function only of the distance from 0. The

centre of gravity of a finite centrobaric distribution is the

baric centre. A distribution cannot be centrobaric unless

every axis drawn through its centre of gravity is a principal

axis. If for any finite space outside it a body is centrobaric,

it must be centrobaric for all the rest of outside space. A
distribution which consists of a spherical distribution and a

distribution the potential function due to which at all outside

points is zero is evidently centrobaric.

87. Show that if is a fixed origin within or near a

distribution IV of attracting or repelling matter, if P' is any

point of M' and P any point without M' more distant from

than any point of M' is, and if P = (x, y, z), P' = (x'
} y\ z'),

OP = r, OP' = r', POP' = cf> ; the value at P of the potential

function due to M' is equal to

= 1- — I j ( r' cos
<f>

dm'

+ -^ f r f(2 r'
2 - 3 r'

2 sin2
<£) dm' + • • • •
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Show that if A, B, C, and / are the moments of inertia of M'
about the coordinate axes and about OP respectively,

A+B+C= ffC2r'*dm' and 1= C C Cr 12
• sin 2

</> • dm',

and that if is the centre of gravity of 31', the second term

of the development vanishes so that

Fp = 31' /r + (A + B + C - 3 1)/2 rs +

If 31' is centrobaric and if is the baric centre, V is a func-

tion of r only and the coefficients of r in the general develop-

ment are to be considered as constants.

88. If the law of attraction is expressed by any function,

<f>'(r), of the distance, the intensity of the attraction of any

homogeneous solid, estimated in a given direction, at any

point P, is expressed by the surface integral I <£(?•) • cos X dS,

where r is the distance from P of any point on the surface

bounding the solid, dS the element of this surface, and A. the

angle made by the normal to the element with the given

direction. [Minchin.]

89. The function / (xpy) can satisfy Laplace's Equation

only if p = 1, or — 1, or 0.

90. The invariable line which joins the centres (A ,B ) of two

homogeneous spheres, A and B, moving under their mutual

attraction, revolves with uniform angular velocity, u>, about

the centre of gravity, C, of the two. One of the spheres, A,

does not rotate, but every line in it remains parallel to itself

during the revolution. Show that every particle of A moves

in a circle of radius equal to the distance of ^4's centre from

C, and is at every instant at the end of a diameter parallel

to B A . Under these circumstances a loose particle at D on

A's surface must in general be constrained to keep it moving

in its path.
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If we denote the radius of A by a, the distances B A , CJ.

by d and r, and the mass of B by M, the resultant force on a

particle of mass m resting on A at D [Fig. 123] has the

intensity ??ia>V = kmM/d 2 and a direction DT parallel to

A B , while the attraction of B upon the particle has the inten-

sity kMm I

B

JJ and the direction DB . Show that if a is

fairly small compared with d, a constraining force equal to

3 alcMm (sin 2 6) / (2 d 3
), where $ = CAD, must be exerted on

m in a direction perpendicular to A D to prevent its sliding

on ^4's surface.

Assuming A to be the earth, of mass M' and radius a, and

B, the moon, of mass -g\ 31', with centre distant 60 a from

Fig. 123.

the earth's centre, prove that the maximum horizontal lunar

tide-generating force on the earth's surface is to the force

of terrestrial gravitation as 1 to 11,500,000, nearly. Find

approximately the " vertical tide-generating force " at the

points on the earth's surface nearest and farthest from the

moon.

[The student is strongly advised to read in this connection

Prof. G. H. Darwin's charming Lowell Lectures on the Tides.]

91. Supposing that a sphere of water is brought together

by the mutual attractions of its particles from a state of

infinite diffusion, and that the amount of work done by these

forces is sufficient to raise the temperature of the sphere



MISCELLANEOUS PROBLEMS. 365

1° C. Show that the radius of the sphere is about one-

fortieth of the radius of the earth, if the earth's radius be

637 x 10 6 centimetres, and if one water-gramine-centigrade-

degree be equivalent to 4.2 x 10 7 ergs. [Minchin.]

92. The value at any point (x, y, z) of the potential func-

tion due to any system of attracting matter at a finite distance

is V, the forces due to the attraction of this matter at any

point (x 1

,
y', z') is F', the value at this point of the potential

function V, and the density p'. Show that

(4 Trp'V- F^dx'dy'dz'

hSSS l(x' - xy + (//' - yy + («' - zff

where the integration takes in all space.

93. Prove that the rise of sea level in a shallow sea caused

by the attraction of a homogeneous hemispherical mountain

of radius c rising from it with its base at sea level, is approxi-

mately p'c
2/2 pa, where p' is the density of the mass of the

mountain, p the mean density of the earth, and a its radius.

94. A fixed gravitating sphere is partly covered by an ocean

extending over the northern side of a parallel of colatitude A.

A distant fixed gravitating body M is situated on the north

axis of this small circle. Prove that if the self-attraction of

the ocean be neglected, M will cause a rise of water at the

north pole approximately equal to k sin2
-^-A, where k is what

the rise would be if the whole sphere were covered.

95. Show that if a finite distribution consists of m units of

positive matter and m units of negative matter, anyhow dis-

tributed, it is possible to draw, with any given finite point as

centre, a spherical surface so large that the whole flow of

force through it, reckoned arithmetically, shall be as small as

we please. Prove that the lines of force are all closed.

96. Imagine any point P in empty space near a distribution

of repelling matter to be taken as origin of a system of orthog-

onal Cartesian coordinates with axis of z coincident with the
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normal to the equipotential surface which passes through P.

J
7 will then be given by an equation of the form V =f(x, y, z),

where Dxf, Dyf vanish at P, and — D
zf is the force F in the

direction of the z axis. If Q is a point near P on the sec-

tion of the surface V = VP made by the xz plane, and if we
denote the coordinates of Q by (Ace, 0, A,-), the radius of

y f A*2 \
curvature at P of this section is kJ^LcX ^— ), and A z is in

general of higher order than Ax.

VQ = VP + Ax.Dx V+\z-Dz V

+ \ Ax2
• Dx V+ terms of higher order.

F
Since VQ

= VP , and DX V vanishes at P, DX V = — • Prove

F #1

similarly that P
y

2 V= — and then, by Laplace's Equation, that

Illustrate these results by an example.

97. If a distribution of active matter is symmetrical about

a straight line (the axis of x) and if /• represents the distance

of any point from this axis, the potential function involves

r and x only and the equipotential surfaces are surfaces of

revolution. Consider one of these surfaces, Sw on which V
has the value Vw and let the "flux of force " through so much
of S as lies between some fixed plane (x = crn)

perpendicular

to the x axis, and the plane x = x, be represented by the

function 2 tt/x, then if ds is the element of the generating

curve of S between x and x + Aa?, and if r is the distance of

ds from the x axis, the area of the strip of S between x and

x + Ax is approximately l-wr- ds, the flux of force through it

is — 2 irr Dn V • ds, and this flux is the change made in 2 -n-fx. by

increasing x by Ax. We may write, therefore, D
afx
= — r- Dn V,
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and, if a is the angle which the exterior normal to ds makes

with the x axis,

D
sfj.
= Dxfx, sin a — Drfi cos a, Dn V= Dx V cos a + Dr V • sin a,

and the equation becomes

sin a (DxfJL
- r Dr V) - cos a {Drlx + rDx V) = 0.

If this equation is to hold everywhere on every equipotential

surface, the coefficients of sin a and cos a must vanish and /x

is determined (apart from an additive constant to be chosen at

pleasure) by the equations D^/x — r Dr V, Dr\x.
= — r • Dx V.

Show that the values of fx corresponding to the three

familiar potential functions — XQx, Mx/(r
2 + x 2

)-, M/Q-2 + #2
)
J

are £X r2, Mr2/(r2 + x 2

f, and - Mx/(r2 + x2

f. Discuss the

physical meanings of these results.

The function /u. defined above is sometimes called " Stokes's

Flux Function." It is clear that the level surfaces of the

functions V and /a, both of which are symmetrical about the

x axis, cut each other orthogonally and that the generating line

of any level surface of /a is a line of force. Although any func-

tion of ft equated to a constant would serve to represent the

forms of analytic lines of force, a special advantage arises from

the use of /x itself from the fact that if ^ and ll2 are flux

functions corresponding to two different potential functions,

Vx and V2 , due to two distributions of matter, Mx and M2 ,

symmetrical about the x axis, fx t + fx 2 is & nux function of

V\ + V2 , the potential function due to Mt and J/"2 existing

together. If generating lines of the ll x
surfaces be drawn

in a plane, for the numerical values a, a + 8, a + 2 8,

a + 3 8, a + 4 8, etc., and the lines of the /x2 surfaces for the

values b, b + 8, b 4- 2 8, & + 3 S, b + 4 8, etc., 8 being any con-

venient interval, the intersections of the curves \x. x
= a + «S,

^2 = & + (»i — w) 8 will be poiuts on the generating lines of

the surface li x + fx2
= a + b + wiS. If, then, we fix m for a

moment and give to n in succession different integral values,
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we may get points enough to enable us to draw the line

/i! + /a2
= a + b + m8 with sufficient accuracy. This graphi-

cal method of drawing lines of force (or equipotential surfaces)

has proved in the hands of Maxwell and others extremely

fruitful. Draw accurately several of the lines of force due to

a charge 20 and a charge — 10 concentrated at points 4 inches

apart.

98. (a) Show that if P, P' are any definite pair of inverse

points distant respectively r and r' from the centre of a

spherical surface S of radius a, the ratio PQ /P'Q is equal to

the constant a/r' wherever on S the point Q may be. Hence

show that if V is the potential function due to a heterogeneous

surface distribution on S,

VP , = VP (a/r') and D,..(VP) = -as -Dr VP - /r' 3 - a V/r' 2
.

(b) Prove that r3 ' 2
• Dr VP + r'

3 ' 2
• Dr . VP . = - (a VP VP)

l/1
.

[Kouth.]

(c) Prove that as both r and r' are made to approach a,

limit (Br VP + Dr
, Vp) = - V/a. [Stokes.]

99. If P, P' are any definite pair of inverse points with

respect to a right section of an infinitely long cylindrical sur-

face of revolution, and if Q be any variable point on the

circumference, P'Q/PQ is equal to the constant r'/a. Show

that if the cylinder be covered with a superficial distribution

the density of which varies from filament to filament of the

surface, VF .
— VP = 2 log {r'/a) M, where M is the amount of

matter on the unit length of the surface.

100. V is the potential function due to a volume distribu-

tion of density p in the region T and a surface distribution of

density o- on the surface S. V is the potential function due

to a volume distribution of density p' in the region T' and a

surface distribution of density a-' on the surface S'. Using all

space as the field of Green's Theorem, apply [14<5] to these

functions and interpret the resulting equation as giving an

expression for the mutual energy of the distributions.
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101. If two systems of matter (ifcfand M'), both shut in by

a closed surface S, give rise to potential functions
(
V and V),

which have equal values at every point of S, whether or not

S is an equipotential surface of either system, then V can-

not differ from V at any point outside S, and the algebraic

sum of the matter of either system is equal to that of the

other.

102. Prove that the level lines of the function u = F2 (x, y, z)

on the surface F1 (x, y, z) = have direction cosines which are

to each other as

(JW
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Show that if the distribution is a solid homogeneous repell-

ing cylinder of radius a and density p, Dr V = 2 irpr and

V = irp [r2 — «2 + 2 a2 log a], if r is less than a. If r is greater

than a, Dr V = 2 vpa2/r and V = 2 7rpa? log r. Show also that

if the distribution is merely a surface charge of density o- on

a cylindrical surface of radius a, V= 4 7ra<r log a within the

cylinder, and F" = 4 irao- log r without.

104. If F is the gravitational potential function belonging

to a given distribution M of attracting matter, and if k is the

constant of gravitation, the force of gravitation at any point

in any direction s, measured in dynes, is the value at that point

oik- 1), For Ds
V , where F = kV; and V2 V = - 4 Tnfy. Prove

that if .3f be made to rotate about the axis of z with constant

angular velocity w, if O = % o)
2 (x2 + y'2

), and if V = F + i),

the apparent force at any point in any direction s is Z>s F"' and

V2V = — 4 7T&p + 2 or. Prove also that if $ represents the

surface of M, and n a normal to the surface drawn inwards,

if v is the volume of the distribution, and if p is its mean

density,

— 4 irkvp + 2 u>
2v-//Z> FW&

[E. S. Woodward, " The Gravitational Constant and the Mean

Density of the Earth," Astronomical Journal, 1898.]

If M represents the earth, a the semiaxis major, and e the

eccentricity of the generating ellipse of the earth's spheroid,

<f>
and X the latitude and longitude of dS, we have

v = | ira
s Vl — e

2
, d£ = a? (1 — e

2
) cos <p d<f> d\ / (1 — e

2 sin2
<£)

2
,

and the acceleration DnV is given in centimetres per second per

second by the equation DnV = a+ /? sin
2
<£ + y cos 2

<£ • cos 2 A,

where a = 978, (3 = 5.19, and y is a constant, so that

f fjDn F' • d£ = aS + /8 f fsin2 <pdS.
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Show that if x = e sin <£,

„ 2a 2 (l-e2
) f e dx f 2 *

, „,, , „

and

= 4^(1+^^ + ^^ + ...),

and, assuming that log e
2 = 3.83050, log « = 8.80470, obtain

Professor Woodward's equation, kp
{)
= 3G797 x 10 -n .

For a discussion of the value of p , see Prof. J. H. Poynting's

Adams Prize Essay on " The Mean Density of the Earth."

105. If u is single-valued and harmonic at all points of a

region but one (the exceptional point being an interior point

P), and if u becomes infinite for all paths along which the

point (x, y) approaches P, then u can be written in the form

u = a -log r -+ v, where v is single-valued and harmonic at all

points of the region. [Bocher.]

106. If the superficial density of a mass distributed on a

spherical surface is inversely proportional to the cube of the

distance from a fixed point A, the distribution is centrobaric.

If A is inside the surface, it is the baric centre ; if A is outside,

its inverse point is the baric centre.

107. If the superficial density of a columnar distribution on

a cylindrical surface of revolution varies inversely as the

square of the distance from a given line parallel to the axis

of the cylinder, there is a baric line within the distribution

parallel to the axis. Where is this line ?

108. A certain distribution 31 has two mutually exclusive

closed equipotential surfaces, St
and S2 , upon which V has the

different constant values C\ and C2 . Will the potential func-

tion in space without St and S2 be the same for the original

distribution and for distributions on St and S2
of surface
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density o- = — Dn F/4 v together with so much of M as lies

without the surfaces ?

109. The straight-line tangents at a point to a tube of force

which ends there, evidently form a cone of definite solid angle.

A number of points, Pu P2 , P& etc., have charges, mlt m2 , ms ,

etc. Show that if at any one of these points there end two

tubes the solid angles of the cones of which are o> and a/, the

flow of force in the one tube is to the flow of force in the other

as w : w'. Show also that if a tube starts with solid angle <ak

at a point Pk where the charge is mk, and ends with solid angle

<Dr at a point Pr where the charge is mr , <okmk is numerically

equal to wrmr .

110. All the masses of a certain distribution lie within two

closed surfaces S
x
and S2 , which exclude each other and are

equipotential. All the lines of force which abut on a con-

tinuous portion A of S
x
also abut on S2. All the lines of

force which abut on #j outside of A are open, while none of

the lines which abut on S
2
are open. Show that one of the

equipotential surfaces is made up of two lobes, one of which

includes S2
alone and the other both S

x
and S2 . Separating

the closed lines of force from the open ones is a surface

which passes through the point where the lobes of the sur-

face just mentioned are connected. All the equipotential

surfaces are closed.

111. The potential function due to a certain distribution of

matter has a value at any point Q which depends only upon

the distance, r, of Q from a fixed point 0. This value is

27r(2c + 6
2 -a2

), §Tr(Gc + 3b*-r*-^-\

b
3 — a3\ . /3c2 + &

3 — a'
c H , or 4

3r /' V 3r

according as < r < a, a < r < b, b < r < c, or r > c. What is

the distribution ? [p = 0, p = 1, p = 0, a = 1, p = 0.]
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112. The lines of force due to two similar, homogeneous,

infinitely long, straight filaments of repelling matter, parallel

to the z axis and cutting the xy plane at the points (a, 0),

(— a, 0) are hyperbolas of the family x2 — 2 Xxy — y
2 = a 2

.

113. (a) Prove that when there is symmetry about the axis

P (cos 6)
from which 6 is measured, /*"'

• Pm (cos 0) and
,

,

> where

Pm(cos 6) is the coefficient of a'" in the development, in ascend-

ing powers of a, of (1 — 2 a cos 6 + a2

)

-5
, are particular solu-

tions of Laplace's Equation in polar coordinates ; that is, of

r Dr\r V) + -i- .

D

e(sin 6-De V) = 0.
v sin 6

Hence show that any expression of the form

A + A xr P^cos 6) + A 2r
2 P2 (cos 6) ^ h Ani» Pn (cos 6)

B Pt-P^cosfl) P3 -P2 (cosfl) Pm • P,„(cos 0)+ — + -^-^ '- +^—

H

-+••• + .m+

1

where A , B , Au Bu A
2 , B2 , etc., are arbitrary constants,

satisfies the equation. The P's here introduced are some-

times called Legendre's Coefficients, sometimes Zonal Surface

Spherical Harmonics.

(b) Show that P (fi) = 1,

AO*) = ih

P2 (/.)= 1(3^-1),

P,(/*) = 1(5^-3/,),

P4 (/A) = i(35^-30 /
,
2
-f-3),

p^) = £(63 ^ - 7(V + 15,*).

(c) Show that when 0=0, Pm (cos 0) or Pm (l), the coefficient

of am in the development of (1 — a)
~l

, is equal to 1.

114. Prove that if in any case of symmetry about a line,

a convergent series a + a xz + a^z2 +a 3z
z + • • represents the
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value of the potential function at a point Q distant z from the

fixed point 0, both and Q being on the line ; then the series

a P (cos 0) + OjrP^cos 6) + o^Ps(cos 0) + « 3 >'lP3 (cos 6)-\ ,

formed by writing instead of,-.'" in the former series?-'" • P,
H (cos0),

will represent in polar coordinates with as origin and the

given line as axis from which is measured, a finite, single-

valued function which satisfies Laplace's Equation and for all

points on the given line on the positive side of 0, where 8=0
and r = z, has the same values as the given series. Given the

radius of convergence of the first series, within what limits

can we safely use the second series ? If any portion of the

given line traverses a region of empty space, does the new

series represent the potential function at all points in this

region within the limits of convergency of the series ?

115. Prove that if in any case of symmetry about a line, a

convergent series — + ~f+ ~f H represents the value of the

potential function, the series

a xP (cos 0) g.gP^cos 0) a3P2 (cos 0)
5 r " s • " '

}

r r r
1 . P (cos 0)

formed by writing instead of—-—. in the former series, "
_,_.
—

-,

will represent, so long as the new series is convergent, a finite,

single-valued function which satisfies Laplace's Equation and,

for all points on the line on the positive side of 0, has the

same values as the given series.

116. Prove that the potential function due to auniform circular

ring of mass M, of radius a, and of small cross-section, is equal to

Mf _1 a2 -P
2 (cosfl) 1-3 «4 -P4 (cosfl)

r \
2

'

r2
+

2 •

4

'

r*

if a<r, and equal to

M/ _ 1 r2 -P2 (cosfl) 1^3 r4 -P4 (cosfl)

« V 2

'

a2 2 •

4

"

a* )
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if a > r, where the centre of the ring is the origin, and the axis

of the ring the axis from which 6 is measured.

117. Prove that the potential function due to a uniform

circular disc of mass M, of radius a, and of small thickness, is

equal to

2 31 fl a2 1 a4 .P2 (cos6) 1-3 a« P4 (cos 0)

a2 \2 '

r 2 2
• 2

!

'

r3 2 3
• 3

!

'

r5

if a < r, and to

2M( _, „
,
1 r^P.Ccosfl) 1 r*-P4(cos0) ,

\—^-r.P1(cos^)+-- -*
^2! £ +

"V
if a > r, when the centre of the ring is the origin.

118. Show that the expression ±.(ji
2 — c

2 + y
2

) /y of equa-

tion [21], page 12, is numerically equal to the length, k, of

the chord of the sphere, formed by a radius vector drawn from

P to a point L on the surface, distant y from P. The sign is

to be taken negative or positive, according as L is or is not

visible from P. Hence find an expression, iraatk^ ± k^)/c?,

for the intensity of the attraction of an " annulus " of a thin

spherical shell lying between two parallels of latitude, at any

point P on the axis.

119. A thin spherical shell of radius a attracts an internal

particle P at a distance c from its centre. If the shell be

divided into two parts by a plane through P perpendicular

to the radius, the resultant attraction of each part at P is

2 Tro-a [_a — Va2 — c
2

] /c
2
. [Todhunter's History of Attraction.]

120. The equation of the surface of an infinitely long homo-

geneous cylinder of density p, the lines of which are parallel

to the z axis, being r=f(6), a filament of the cylinder of

cross-section rdrdO contributes to the components (X, Y) of

the attraction at the origin the amounts 2 p cos dr d$ and

2 p sin 6 dr- dO respectively. If the cross-section of the

cylinder is an ellipse of semiaxes a and b and if the origin

is on the surface and distant y , x respectively from the
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principal planes, the equation of the surface may be written

in the form

r = 2 (Px cos 6 + a2
y sin 0) J (b2 cos 2 + a2 sin 2

0).

Assuming that

r ** =_i_ [x _ JL. tan-i f-JE . tan ^1

,

J «I + b tan- a; a — b\_ * a \ a /J

prove that in this case

X= 4 Trpbx /(a + b), Y — 4 7rpa?/ /(a + b)

and that the resultant force has the intensity 4Jf/(a + J),

where Jf is the mass of the unit length of the cylinder.

Prove also, by a method analogous to that of Section 12,

that the attraction due to a homogeneous shell bounded by

two concentric, similar, and similarly placed elliptic cylin-

drical surfaces is zero within the shell, and that the attraction

components (X, Y) at any point within a solid homogeneous

elliptic cylinder are proportional to x and y respectively.

121. If two confocal ellipses (s and s') have semiaxes (a, b)

and (a 1

, V), a point (x, y) on s is said to correspond to a point

(x', y') on s', if x/x' = a/a' and y/y' = b Jb'. Show that if

Px and P2 are any two points on 5 and P/ and P2', the corre-

sponding points on s', PiP2
' = P^Pi- Hence prove (Section 51)

that, if two homogeneous, solid, confocal, elliptic cylinders of

the same density be divided into corresponding thin strips by

planes parallel to the xz plane, the x component of the attrac-

tion of any strip of the first at a point P' on the second, is to

the x component of the attraction of the corresponding strip

of the second at a point P on the first corresponding to P',

as b is to b'. The two components of the attraction of the

whole of the first cylinder at P' are to the same components

of the attraction of the second cylinder at P, as b to b' and as

a to a'.
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122. It follows from the results stated in the last two

problems, that if the components at an outside point Q' of

the attraction due to a solid homogeneous elliptic cylinder of

density p bounded by the surface s (Fig. 124) be X and Y', if

a surface s' confocal to s be drawn through Q', and if X and Y
are the components, at Q on s which corresponds to Q' on s',

of the attraction of a cylinder of density p bounded by s'
;

X/X= b/b', Y' J Y = a /a', where a and b are the semi-

axes of s, and a' and b' those of s'. Show that X, Y are the

components at Q of the attraction due to a cylinder of

Fig. 124.

density p, bounded by a surface s" drawn through Q, similar

to s'. Show also that, if the coordinates of Q are x, y,

X' = ±Trpbx/(a' + b'), Y' = 4:7rpai//(a' + b').

Prove that, if a = 5, b = 3, x' = 4, and y' = ^° ; x = J
3 -,

y = v5, a' = 6, 6'=V20, so that, approximately, A"' = 12p,

T = 13 • 42 • p.

123. Two parallel planes, the direction cosines of the nor-

mals to which are (I, m, n), touch two confocal ellipsoidal

surfaces at the points Pu P x
' respectively. The semiaxes of
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the surfaces are (a, b, c) and (a + da, b + db, c + rfc) where,

since they are confocal, d(a2
) = d(b2

) = d(c2
). Show that if

p and j9 + dp are the lengths of the perpendiculars dropped

from the origin on the tangent planes, p 2 = d2l2 + b
2ni2 +- c

2
/i

2
,

and p-dp = I
2 -d(a2

) + ?>r • d(i2
) + n2 ^(c2) = d(a?), so that dp

is inversely proportional to p. If the surfaces bound a homo-

geneous shell, this is called a thin focaloid. Show that the

thickness of the shell at the point P differs from dp, if at

all, by an infinitesimal of higher order, and that a superficial

distribution on an ellipsoid with surface density inversely

proportional to p is equivalent to a thin focaloid bounded

internally by the surface. The thickness of a thin homoeoid

at any point is directly proportional to p.

124. Show that if the potential function due to a distribution

of matter has the value zero at all points outside the ellipsoid

Lx2 + My2 + Nz* = 1 and the value /i (1 - Lx 2 - JIx 2 - Nz2
)

at all inside points, the distribution consists of a homogeneous

ellipsoid of density /x (L + M+ N) / 2 it and a superficial

stratum on it of surface density —fi/2'irp, where p is the

length of the perpendicular dropped from the origin on the

tangent plane. Since the surface distribution is equivalent

to a thin focaloid, it is clear that the potential function due

to a homogeneous ellipsoid has at outside points the same

values as the potential function due to a thin focaloid of the

same mass coincident with the surface of the ellipsoid. Prove

from this that confocal ellipsoids of equal mass have equal

potential functions at points outside both.

125. Two homogeneous, solid, confocal ellipsoids of masses

Mx and M2 attract any particle outside both with forces which

have the same direction and are to each other as Mx to M2 .

[Maclaurin.]

126. Show that it follows from the reasoning on pages 123

and 124 that the components, taken parallel to the axes, of

the attraction of a homogeneous ellipsoid S at any point P'

on the surface of a homogeneous confocal ellipsoid *S" of the
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same density, are to the corresponding attraction components

due to S' at the point P on S which corresponds to P', as

the areas of the principal sections of S and S' perpendicular

to these components. [Ivory.]

127. We know from the equations of page 191 that, in the

case of a prolate ellipsoid uniformly polarized in the direction

of the long axis, the depolarizing force is

-4^i-^--log— -1|

Prove that if the ratio of a to b is large, this is nearly equal to

— 4 irA(b2/a2

)
[log(2 a/b) — 1], and that when a/b = 4, this

approximate result is in error by about 4 per cent.

Show that if we denote the depolarizing force in an ellipsoid

of revolution uniformly polarized in the direction of the x axis

by XA, A has the values 12.57, G.63, 5.16, 4.19, 2.18, 0.95, 0.25,

0.0054, 0.0016, 0.0004, according as a/b is equal to 0, i,
f, 1,

2, 4, 10, 100, 200, 400.

128. If the quantity c on page 121 be supposed to increase

without limit, the limits of the expressions for X and Y are

the force components within a homogeneous elliptic cylinder

of semiaxes a and b. Making use of the integral

/:
dx 2(x + py

(x + ay(x + (3y (a-(3)(x + a) 1

show that these limits are 4 irbpx / (a + b) and 4 irapy/ (a + b).

Using the form of integral given on page 124 in the seventh

line from the bottom, show that if c be made to increase

without limit, the limit of X is — £-Trpbx/(a' + b
1

) and that

the corresponding limit of Y is — 4:irpa//

/

(«' + b').

Show that the equipotential surfaces within an infinitely

long, solid, homogeneous, elliptic cylinder, the semiaxes of

which are a and b, are elliptic cylindrical surfaces, the ratio

of the semiaxes of any one of which is Va/ Vy.
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129. Using the integrals given on page 190, show that if

a = b > c and if A2 = (a2 — c
2)/c2

, we may write the expres-

sions for the attraction components within a homogeneous

oblate ellipsoid of revolution, in the form

(- 3 Mx/2X?<?) [tan- 1 a - a/ (1 + A2

)],

(- 3 My/2X*<?) [tan" 1 A - X/(l"+ A2

)],

(- 3 Mz/X3
c
3)(X - tan" 1

A).

130. Show that if in the case of the prolate ellipsoid of

revolution where b — c <a, we put X = ea/c, the components

of attraction at the inside point (x, y, z) may be written

(3 Mx/Xs
c
3

)
[A/ Vl + A2 - log (A + Vl + A2

)],

(3 My12 X
3
c
3

)
[log (A -f Vl + A2

) - A VT+ A2

],

(3 Mz/2 AV) [log (A + Vl + A2
)
- A Vl + A2

].

131. If these force components be denoted by X, Y, Z, the

quantity (X/x + Y/y + Z/ z) is numerically equal to — 4 wp

within any ellipsoid of revolution. This is true in the case

of every ellipsoid, as Poisson's Equation shows.

132. If a = a2
, ft
= b

2
, y = c

2
, and if G has the value given

on page 122,

o.-DG, + P-D$
G + y -DyG = - i G

and 2 (a - p)DD
&
G = D

a
G - D

8
GQ.

The potential function V satisfies the equation

V = irPabc(G + 2x2
- Da G, + 2 f DBGQ + 2z2

- D
y
G )

at every point within a homogeneous ellipsoid.

If (a 1

, b', c') are the semiaxes of an ellipsoidal surface through

a point (x, y, z), confocal with the ellipsoid E which has the

semiaxes (a, b, c), and if the result of substituting a', b', c' for

a, b, c in the expression for G be denoted by G', the value of
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the potential function due to E at an external point may be

written

IM \ G' + 2 a2
. D

t
G' + 2 ,f . DmG> 4 2 z2

• 2>n G'|

where Z = a'
2
, ??i = b'

2
, n = c'

2
. [Tarleton.]

133. Show that if X, Y, Z are the components of the body

forces applied to a mass M of liquid revolving with uniform

angular velocity w about the axis of z, and if p denotes the

pressure at the point (x, y, z),

dp = (X 4- wrx) dx + (Y+ oi
2
y) dy + Z dz,

so that at a free surface

(X + co
2
.*-) tfa; -f (Y+ «2

y)% + Z rf» = 0.

134. If the liquid be homogeneous and exposed to its

own attraction only, and if the bounding surface be the ellip-

soid b2c2x2 -+ u 2
c
2

y
2 4- a 2

b2z2 = a2b2tr, we have X= — f MK x,

Y=.— | ML y, Z = — § MM z, and at the free surface

b2
c
2xdx 4" a2rydy 4- a 2

b
2zdz = 0,

so that

(co
J - | JfXi) /6

2
c
2 = (a,

2 - | ML )/a2
c
2 = - | 3IM /a 2b2 .

Show that this condition is satisfied for a given value of w by

an oblate ellipsoid of revolution (Example 129) for which X

satisfies the equation, A = tan [(3 A 4- 2 <o
2A3/4 71-p) / (3 4- A2

)] ;

but that a prolate ellipsoid of revolution is not a possible

form of the bounding surface. [Besant's Hydromechanics,

Vol. I; Laplace's Mecanique Celeste, Vol. III.]

135. Prove that if V be the potential function due to any

distribution of matter over a closed surface S, and if a' be

the density of a superficial distribution on S, which gives rise

to the same value, V, of the potential function at each point

of S as that of a unit of matter concentrated at any given

point 0, then the value at of the potential function due to

the first distribution is
J
V a- • dS.
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136. Show that the derivative of the function x 2 + xy + z2

at the point (1, 2, 3) in the direction denned by the cosines

(h h h ^2) is s(5 + 6V2). Find the augle between the

vector differential parameter of this function and the direction

just defined, at any point of the plane 3 x + y + 2 z ~v2 — 0,

at every point of the line x -\- y = 0, x = 2 z, and at the origin.

Show that it is not possible to find a scalar function the level

surfaces of which cut orthogonally the lines of the vector

(x + y, z, y). Show that the normal derivative of the function

x2 + y + z with respect to the function x + y + z is zero at

every point of the plane x = — 1. Prove that if u and v are

the distances of the point (x, y, z) from two fixed points,

K = K = 1-

137. A harmonic function which has a constant gradient

different from zero cannot vanish at infinity like the Newtonian

Potential Function due to a finite mass.

138. [/(as, y, «), 0, 0], [*(*), 0, 0], [*(y,-«), 0, 0], the first

of which is neither lamellar nor solenoidal, the second lamel-

lar but not solenoidal, and the third solenoidal but not lamellar,

are examples of vectors the lines of which are parallel straight

lines, though the intensities are not constant. Prove that if

in any region the lines of a vector which is both lamellar and

solenoidal are parallel straight lines, the intensity of the vector

is everywhere in that region the same.

139. (2 x /?-, 2 y/r, 2 z/r) and (sin y, V3, cos y), the first of

which is lamellar but not solenoidal and the second solenoidal

but not lamellar, are examples of vectors with constant inten-

sities, which have lines which are not straight lines parallel

to each other. Prove that if the lines of a lamellar point

function which has a constant tensor are parallel straight

lines, the vector is solenoidal. Prove also that if the lines of

a solenoidal vector point function which has a constant tensor

are parallel straight lines, the vector is lamellar.

140. The vectors (x + 2 zy, y + 3 xz, xy), (2 zy, 3 xz, xy+ 2z)

have everywhere equal divergences and curls and their tensors
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are equal all over the surface x2
-f- y

2 — 4 z2 + 6 xyz = 0. It

is evident, therefore, that such vectors as these are not deter-

mined when their curls and divergences are given. What
additional information would determine an analytic vector

which does not vanish at infinity ? The scalar potential

function of a certain vector has the value unity from r = to

r = 1, where r2 = x2 + y
2 + z2 ; and the value 1/r from r = 1

to r = oo . Is the vector everywhere solenoidal and lamellar ?

Can you determine an everywhere lamellar and solenoidal

vector which has the value 13 at infinity?

141. If at any surface the normal component or a tangential

component of a vector is discontinuous, must we suppose that

there is divergence at the surface ? Illustrate your answer by

a simple numerical illustration.

142. S is a portion of an analytic surface bounded by the

closed gauche curve s. S' is a surface which divides space into

two portions in each of which the components of a vector Q are

represented by analytic functions. At S', some of the com-

ponents of Q parallel to the surface are discontinuous. S' cuts

S in the curve s' which divides S into two portions, Sx and £2.

Two curves in Si and S2 respectively drawn parallel to s' and

very close to it shall be called sx
' and s2

'. Kn shall be the con-

tinuous component, in the direction of the normal to S, of the

curl of Q. That portion of s which with sx
' embraces practi-

cally the whole of Si shall be called s x ; that portion of the

remainder of s which with s
2

' embraces nearly the whole of

S2 is to be denoted by s2 . Apply Stokes's Theorem to Sx as

bounded by sx and s x
' and to S2 as bounded by s2 and s2

', and

show that the line integral of the tangential component of Q
around s is not in general accounted for by the surface

integral of Kn over S, unless we assign to Kn on s' a value

such that its line integral along the line is finite. What is

this value ? On page 113 Stokes's Theorem is predicated only

of analytic vectors. Justify the uses made of the theorem

on page 219 and in Sections 82 and 88.
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143. Assuming that the surface integral of the normal out-

ward component of any vector taken over any closed surface S,

within and on which the vector is analytic, is equal to the

volume integral of the divergence of the vector taken through-

out the space within the surface, show that if in spherical

coordinates R, ©, 4> are the components of a vector Q, taken

in the directions in which r, 6, <f>
increase most rapidly, the

divergence of Q is given by the expression

Dr (fR) J r* + De (sin • ©) / r sin 6 + 2tyl> / r sin 6.

144. Assuming that, if £, rj, £ are three analytic functions

which define a system of orthogonal curvilinear coordinates,

and if ht, h
v , h$ are the gradients of these functions, the sur-

face integral, taken over any closed surface S, of U-cos (£, n)

(where U is any function analytic within and on S, and (£, ?i)

is the angle between the exterior normal to S at any point on

S, and the direction at that point, in which £ increases most

rapidly) is equal to the volume integral extended through the

space enclosed by S, of h§ h
v

h$ •d[U/h
v

h^] /d£, show that, if

Qt> Qv Q$ are the components in the directions in which $, -q,

and £ increase most rapidly, of an analytic vector Q, the

normal component of Q integrated all over S gives

Write down an expression for the divergence of an analytic

vector in terms of £, rj, £, and, assuming that in the case of

spherical coordinates hr = 1, h e = 1/r, h^ = 1/r sin 0, show

that this yields the result stated in the last problem.

145. Let P be a fixed point and P a movable point in the

unlimited region T, without a given surface S, and let P P
be denoted by r. Show that if a function G' can be found

which (1) on S has the value — 1 /r, which (2) is harmonic

at P and at every other point of T, and which (3) vanishes

at infinity like the Newtonian Potential Function of a finite

dr.
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mass, G' is unique. Show also that if G = G' -\-l/r, and

if xv is any function harmonic in T, which vanishes at infinity

like a Newtonian Potential Function and has the value ivQ

at P , 4:ttw = I iv-Dn GdS, where n represents an exterior

normal to S. Some writers call G " Green's Function " for

the given S and the given P ; others reserve this name

for G'. Attach a physical meaning to G. Define a Green's

Function for space inside a closed surface S.

Show that if S is a plane and if r' is the distance of P
from the image, in the plane, of the pole P , the function G
is 1/r — 1/r'.

146. Show that the expression I 1 2

p

Y
-log (r/r ) -dAv

where r is any constant, might be used for the logarithmic

potential function of a columnar distribution of repelling

matter.

147. Show that in general the surface density of a charge

distributed on a conductor is greatest at points where the

convex curvature of the surface of the conductor is greatest.

148. Show that if I, m, n are scalar point functions which

define a set of orthogonal curvilinear coordinates in an electric

field in air where the potential function is V, and if L, 31, N
represent the force components taken at every point in the

directions in which the coordinates increase most rapidly,

L=-hr Dt
V, M= - hm -DmV,N=- hn Dn V, and Laplace's

Equation can be written

D
L
(L IK hn) + Dm (M//h • hn) + D„ {N/h, hm) = 0.

149. Prove that if a distribution of electricity over a closed

surface produces a force at every point of the surface perpen-

dicular to it, the potential function is constant within the

surface.

150. Two conducting spheres of radii 6 and 8 respectively

are connected by a long fine wire, and are supposed not to be
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exposed to each other's influences. If a charge of 70 units of

electricity be given to the composite conductor, show that 30

units will go to charge the smaller sphere and 40 units to the

larger sphere, if we neglect the capacity of the wire. Show
25

also that the tension in the case of the smaller sphere is ",

2o07T

per square unit of surface.

151. The first of three conducting spheres, A, B, and C, of

radii 3, 2, and 1 respectively, remote from one another, is

charged to potential 9. If A be connected with B for an

instant, by means of a fine wire, and if then B be connected

with C in the same way, C's charge will be 3 6. [Stone.] If,

in the last example, all three conductors be connected at the

same time, C ;

s charge will be 4 • 5.

152. A charge of M units of electricity is communicated to

a composite conductor made up of two widely separated ellip-

soidal conductors, of semiaxes 2, 3, 4 and 4, 6, 8 respectively,

connected by a fine wire. Show that the charges on the two

ellipsoids will be -JM and fM respectively. Compare the

values of 2 71-0-
2 at corresponding points of the two conductors.

153. Can two electrified bodies attract or repel each other

when no lines of force can be drawn from one body to the

other ?

154. Two conductors, A and B, connected with the earth are

exposed to the inductive action of a third charged body. Do
A and B act upon each other ? If so, how ?

155. A spherical conductor A, of radius a, charged withM
units of electricity, is surrounded by n conducting spherical

shells concentric with it. Each shell is of thickness a, and is

separated from its neighbors by empty spaces of thickness a.

Show that the limit approached by VA as n is made larger and

larger is (M/a) log 2.

156. The superficial density has the same sign at all

points of a conducting surface outside which there is no free

electricity.
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157. An insulated and uncharged spherical conductor of

radius 4 centimetres contains an eccentric spherical cavity

the radius of which is 2 centimetres. At the centre of the

cavity is a point charge of 10 units. Show that the charges

on the inner and outer surfaces are uniformly distributed and

that the value of the potential function at all points within

the cavity is 10 /t— 2.5.

158. A spherical conductor of 10 centimetres radius is sur-

rounded by a concentric conducting spherical shell of radii

12 centimetres and 15 centimetres. The sphere is at potential

zero and the shell at potential unity. Show that the charges

are — 60, 60, and 15.

159. Prove that the electrical capacity of a conductor is

less than that of any other conductor in which it can be

geometrically enclosed.

160. Show that two exactly similar conductors symmetri-

cally situated on opposite sides of a plane, so that one is

the optical image of the other in the plane, repel each other

if raised to the same potential.

161. Prove that the following statements are true : If any

conductors, some or all of which are charged, are exposed to

one another's influences but are far removed from all other

charged bodies, the charge on one, at least, of the conductors

must have the same sign throughout. If two charged con-

ductors, uninfluenced except by each other, have equal and

opposite charges, the surface density at every point of one

has one sign and the surface density at every point of the

other the opposite sign. A charge, — 1, concentrated at any

point P produces a distribution of one sign throughout upon

a conductor C which carries a total charge of 1 + /x, /x being

any positive quantity whatever. If two conductors influenced

only by each other are at potentials of the same sign, the

distribution has the same sign throughout upon that one of

the conductors the potential of which is the greatest in abso-

lute value. If two conductors influenced only by each other
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are at opposite potentials, the distribution in each has the

same sign everywhere that the potential function has. A
charged conductor is always attracted, in the absence of

other charged bodies, by every other conductor, in its neigh-

borhood, which is put to earth. [Duhem.]

If n is the number of unit Faraday tubes, per square centi-

metre, which pass through any small portion of an equipoten-

tial surface of an electric field in air, the strength of the field

on this small area is 4ttw.

162. If when a unit charge is placed on a conductor C in

the presence of conductors Cv C2 , kept at potential zero, the

charges on these are — ev — e2 ; then if C be discharged and

insulated and C\, C2 be raised to potentials Vv V2, the potential

of C will be ^'Pi + ejjPj.

163. A soap bubble of surface tension T has a charge Q.

Show that its diameter is Ql / (2irT)i.

164. Prove that the capacity of n equal spherical condensers

when arranged in cascade is only about -th of the capacity of

one of the condensers ; but that if the inner spheres of all the

condensers be connected together by fine wires, and the outer

conductors be also connected together, the capacity of the

complex condenser thus formed is about n times that of a single

one of the condensers.

165. A conductor the equation of the surface of which is

^ + l! + - = l
25 16 9

is charged with 80 units of electricity ; what is the density

at a point for which x = 3, y = 3 ?

If the density at this point be a, what is the whole charge

on the ellipsoid?

166. A charged insulated conductor A is so surrounded by

a number of separate conductors B, C, D,--, which are put

to earth, that no perfectly straight line can be drawn from
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any point of A to the walls of the room without encountering

one of these other conductors. Will there be any induced

charge on the walls of the room?
t

167. Assuming that in the case of a conductor surrounded

by dry air, 800"7r dynes per square centimetre is the greatest

pressure that a charge on the conductor can exert at any

point upon the air without breaking down the insulation,

show that a spherical conductor must have a diameter of at

least 0.126 centimetres in order to hold, in dry air, one elec-

trostatic unit of electricity.

168. Prove that two pith balls each 4 millimetres in diame^

ter and 3 milligrammes in weight, suspended side by side by

vertical silk fibres 10 centimetres long, cannot be so highly

charged with electricity that the fibres shall make an angle

of 60° with each other.

169. Discuss the following passage from Maxwell's Elemen-

tary Treatise on Electricity

:

" Let it be required to determine the equipotential surfaces

due to the electrification of the conductor C placed on an insu-

lating stand. Connect the conductor with one electrode of the

electroscope, the other being connected with the earth. Elec-

trify the exploring sphere,* and, carrying it by the insulating

handle, bring its centre to a given point. Connect the elec-

trodes for an instant, and then move the sphere in such a path

that the indication of the electroscope remains zero. This

path will lie on an equipotential surface."

170. A condenser consists of a sphere A of radius 100 sur-

rounded by a concentric shell the inner radius of which is 101,

and outer radius 150. The shell is put to earth, and the sphere

has a charge of 200 units of positive electricity. A sphere B
of radius 100 outside the condenser can be connected with the

condenser's sphere by means of a fine insulated wire passing

*A very small conducting sphere fitted with an insulating handle.
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through a small hole in the shell. B is connected with A
;

the connection is then broken, and B is discharged ; the con-

nection is then made and broken as before, and B is again

discharged. After this process has been gone through with

five times, what is A's potential ? What would it become if

the shell were to be removed without touching A?

[2(1 01)
4

/ (102)
5

, 2 (101)7(102)5
.]

171. If the condenser mentioned in the last problem be

insulated and a charge of 100 units of positive electricity

be given to the shell, what will be the potential of the sphere ?

of the shell ? If we then connect the sphere with the earth

by a fine insulated wire passing through the shell, what will-

be the charge on the outside of the shell? What will be the

potential of the shell ? If next A be insulated, and the shell

be put to earth, what will be A's potential ? What will be

its potential if the shell be now wholly removed ?

[2/3, 2/3, - 4040/41 ; 60/41, 2/205, - 2/205, - 202 /205.]

172. A conductor is charged by repeated contacts with a

plate which after each contact is recharged with a quantity

(E) of electricity from an electrophorus. Prove that if e is

the charge of the conductor after the first operation, the

ultimate charge is E e / (E — e).

173. If one of a system of n conductors entirely surrounds

all the others, 2 (ii — 1) of the coefficients of potential have the

common value p. If the outside conductor be put to earth, it

loses a quantity Q of electricity. Show that the energy loss

is %pQ2
.

174. A conductor is formed of two infinite planes inter-

secting at right angles and is connected with the earth. A
long straight wire, parallel to the intersection of the planes,

at distances b and a from them, has an electric charge e

per unit length. Show that the electrification of the first
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plane at a distance x from the line of intersection of the

— 4 abex/ir\_(a2 + b2 + x2

)
2 — 4 a2x2

\

175. The energy, per unit of surface, of a plane parallel

plate condenser in which the superficial charge density is

<r is 2 Tr(T
2a when the distance between the plates is a. Show

that if the distance be decreased to a — Aa the energy is

2 tt<t
2 (a — Ao)

if the charge remains constant, and

2 7r<r
2a 2

/ (a - Ao)

if the potential remains constant. Hence prove that the rates

of change of the energy are equal in value but opposite in sign

in the two cases.

176. The foot of the perpendicular dropped from any pointP
upon the line A

X
A

2
shall be marked M. At A

x
is a point charge

m
1
and at A2 a point charge — m

2 , ml
being greater than m2 .

A
X
P = r

x , A.2P = r
2 , AyM = x, IIP = y, AX

A2 = a, m
l
/m 2

= / /x
2

.

Show that the surface integral of normal force parallel to

the x axis over an infinite plane through M perpendicular

to A
X
A2 is 2 7r (m-L — m2) if x >a; 2 -n- (n^ -f- m2) if < x < a

;

and 2 it (m2
— m{) if x < 0. The induction outward through

an infinite spherical surface with centre at any finite point is

4 irfrn^ — m
2). Show that the value at any point on a spherical

surface of radius rv with centre at Av of the normal outward

component of the force is m^/ r? — m2 cos (rv r2) /r2
2
, and this

is positive for every point of the surface if r
x
> ap / (fi — 1).

It follows from this that no line of force can come from

infinity to the charge on A2 ; but 4 irm2
of the 4 ^w^ lines

which start from A
x
reach A 2 . Show that all the lines of

force which cross the two planes drawn perpendicular to

A
X
A

2
through A

x
and A 2

cross them from left to right. The

inductions across these planes are 2 irm2 and 2 trm^ Through

M, any point of A
X
A2 , imagine a plane drawn perpendicular to
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A
X
A2 and let a circumference be drawn on this plane with M as

centre and MR as radius. Let the angles which A
X
R and A

2
R

make with the line from A
x
to A., be w

l
and w2 , then the induc-

tion through the circle is 2nr\m
l (1 — cos w

: ) + ?/?,
2 (cos w2

— 1)]

or 2ir[_m
1
(l — cos toj) + m2 (1 + cos w2)] according as A

X
M is

greater than a, or positive, and less than a. If in the last case

the radius be so chosen that the circle shall include all the

Fig. 125.

lines which converge to A 2 , we must equate the induction to

4 7rm
2

. This yields m
1
cos w

l
— ra2 cos w2

= ra
x
— ra

2 , which may
be regarded as the equation of the surface of separation

between the lines which go from A
x
to A2 and those which go

to infinity.

2 ir[m
x (1 — cos wj) + m2 (l + cos <o

2)] = C is the equation of

a surface of revolution which includes everywhere C lines
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of force. Since every meridian curve of this surface is itself

a line of force, the equation just written may be regarded as

the general equation of the lines of force. If m
x
= m

2 , the

lines are sometimes called " magnetic lines." In this case

the equation becomes cos wj — cos w2
= const., and the lines

have the forms of the curves which pass through the points

N, S in Fig. 125.

Show that if /a = 1, if JK is the resultant force at any point

P, and if Q is the point where the line of action of R cuts A
X
A

2 ,

R/[sin (rv r
2)] = m/\rf sin (R, r2)] = m/[r

2
2 sin (R, r

x)] or,

since sin (A
X
PQ) = (sin PQA

X)
(A

X Q) /r1}

and sin (A
2PQ) = (sin PQAJ (QA2)

/

r

2 ,

r*/r* = A,Q/A*Q.

If Q is fixed, P must move so that r
x
/r2 is constant : its locus

is, therefore, a circle. [See Mascart et Joubert, §§ 168 and

169, and also Nipher's Electricity and Magnetism, Ch. III.]

177. Two condensers A and B have capacities Cx and C2 .

A is charged by a certain battery and then discharged ; it is

then charged and its charge is shared with B ; finally A and B
are both discharged. Show that the energies of the different

discharges are to each other as

(C1 +(72)
2 :C2 (C1 +Q:C1

2 :C1 C2 .

[Clare College.]

178. An earth-connected circular disc 5 centimetres in radius

is suspended horizontally from one arm of a balance, and an

insulated plate is placed parallel to it and 1 centimetre below

it. When the lower plate has been electrified there is found

to be an attraction equal to the weight of 1.274 grammes
between the two. Show that, assuming the electricity to

be uniformly distributed, the potential of the lower plate is

about 6000 volts.
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179. S is an equipotential surface clue to a distribution of

matter of which it encloses a portion Mv and excludes a por-

tion M2
. Let Mx be distributed on S according to the law

4 7TO- = — Dn V: then superpose on the system thus formed the

negative of the original system, so as to have the surface S at

zero potential due to the distribution on it and to the negative

of Mx within it. What will now be the value of the poten-

tial function without S? At a distance S2 from the centre

of a spherical cavity of radius r, in a conductor which is at

potential zero, is a point charge of m2
units. Find by aid of

the formulas given in Section 65 the density of the charge

on the wall of the cavity.

180. If a conductor C, which entirely surrounds a system

of charged and insulated conductors, be at first insulated and

at potential V, and then put to earth, the potentials of all the

interior conductors will be diminished by V. If this system

be now discharged, the loss of energy is the same as if C had

not been put to earth but had had the interior conductors put

into connection with its inner surface. [M. T.J

181. Show that r/Sths of the unit Faraday tubes proceeding

from an electrified particle, at a distance 8 from the centre of

a conducting sphere of radius r, which is put to earth, meet

the sphere, if there are no other conductors in the neighbor-

hood, and that the rest go off to infinity.

182. If a. charge m
x

is placed at a point A
x
distant 8

X
from

the centre of a conducting sphere of radius r (Section 65)

kept at potential zero, the charge induced on the surface has

the density o- = — mx (8^ - r2
) /4 v rr? at a point distant ?-,

from A v and the total amount of the induced charge is

— m
x
r/8v The attraction between the point charge and the

induced charge is m
x

2r8
l /(81

2 — r2

)

2
. If now a charge M be

distributed uniformly over the sphere so as to raise its

potential to M/r or V , the new density will be

o- = [ Vi3 - »i (Si
2 - r2

)] /4 tt rr*,
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the new charge E = V r — mir/8u and the attraction

F ~ [mfr 8, / (3r - rf - »h V r/V],

or mfr ^/(S^ - r2

)
2 - mxEJl? - m? r/8*.

This attraction is zero when 8
l
satisfies the equation

E 8
1 (Sf - r»)

2 = m
l
r3 (2 S x

2 - r2).

If ilf=+w1r/8 1 , the total charge on the sphere will be

zero. In this case V = ??t
1
/S 1 , and the force of attraction is

mxV(2 S x

2 — 7s) / (Sx
2 — r2

)
2 S^ : this expression is always posi-

tive. The density on the sphere is zero, if anywhere, on a

circumference determined by the equation

E + nh r/8, = vh r(8,- - ?-°)/r
1

3
.

and A2
are inverse points with respect to a spherical

surface S of radius VSf — r2, the centre of which is Av If,

therefore, T is any point on S, A 2
T-8

l
= OT- s/8

x
— r2 and,

if M = m
x
r I VSj

2 — r2
, the potential function has the same

uniform value on S and on the conductor. The intersection

of the two surfaces is a line of no force and no density.

The potential function due to m, alone is the same as that

due to m, and the charged sphere, at all points on the spherical

surface OP / A 2
P =M 8

X
/'m

1
r : if E=0, this is the plane which

bisects A 2 at right angles.

The mutual potential energy of the point charge m
1
and the

distribution on the sphere is

- f "V-dS, = m.E/8, - ± m.W /8* (8* - r2).

Show that if a charged conducting sphere of radius 10 centi-

metres is at potential V in the presence of a point charge of

12 units at a distance of 20 centimetres from the centre of

the sphere, the whole charge on the sphere is 10
( V — f).
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Show also that V is 2/15, 6/5 V3, or 3.6 according as the

density of the surface charge is zero, at the point of the sur-

face farthest from A t , at a point just visible from A x , or

at the point nearest A x . Show that if the whole charge on

the spherical surface is 14/3 there is no attraction between

the point charge and the surface charge ; and that if the

sphere was originally uncharged and insulated, its potential

was constantly equal to 12 /S
t
as the point charge gradually

approached its present position from infinity.

Show that the integral of (8/ — 1
s
) /rf taken over the sur-

face of the sphere is 4 wr* /§v How much of the charge on

the sphere is visible from A
Y
?

Find the surface density on a spherical conductor at poten-

tial zero under the action of two equal external point charges

situated at equal distances on opposite sides of the centre.

Consider separately the case where the point charges have

opposite signs.

183. An insulated conducting sphere of radius r charged

with m units of positive electricity is influenced by m units

of positive electricity concentrated at a point 2r distant from

the centre of the sphere. Give approximately the general

shape of the equipotential surfaces in the neighborhood of

the sphere.

Give an instance of a positively electrified body the poten-

tial of which is negative.

184. Prove that if the spherical surfaces of radii a and b,

which form a spherical condenser, are made slightly eccentric,

c being the distance between their centres, the change of elec-

. n P . , e 3 abc • cos 6
trification at any point of either surface is -—— —

t» j->
J l

4:7r(b — a)(bs — a3

)

where 6 is the angular distance of the point from the line of

centres, and where the difference between the values of the

potential function on the two surfaces is unity.

185. Show that if an insulated conducting sphere of radius a

be placed in a region of uniform force (A" ), acting parallel to
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the axis of x, the function — A' x (1 — a3 /?*8) + C satisfies all

the conditions which the potential function outside the sphere

must satisfy, and is therefore itself the potential function.

Show that the surface density of the charge on the sphere

3 x X
is -——j and prove that this result might have been obtained by

making ^ infinite in the formulas near the top of page 206.

186. If qn , q22 are the coefficients of capacity of two of a

set of conductors, and if q12 is their coefficient of mutual

induction, the capacity of the compound conductor formed by

joining these two conductors by a fine wire is qn + 2 q12 + q22>

if all the other conductors be put to earth. If pn , p22 , p12

are the coefficients of potential of the two conductors, and

if all the other conductors of the series are uncharged and

insulated, the capacity of the compound conductor is

On +P22 - <

Zpv2)/{PnP2»-p-n
2
)-

If the distance b between the centres of two conducting

spheres of radii av a2 is large compared with the diameter of

either, pn = l/av p22
= 1 /

a

2 , and p V2
is approximately 1/b,

so that if ev e2 are the charges of the spheres and Vlt V2
their

potentials, V
l
= e

1
/a

l + e2 /b, V2
= e

x
/b + e2 /a 2

. Show that,

approximately,

qn = aib
2 /(b2 — a

x
a

2), q12
= — a

x
a

2
b /' (b2 — a

x
a2),

q22
= a

2
b2 /{lr — a

x
a

2).

187. If on the radius vector OP drawn from a fixed point

O to another point P a new point P' be taken, such that

OP OP' = a2
, where a is a constant chosen at pleasure,

P and P' are said to be inverse points, is the centre of

inversion, a sphere of radius a with centre at is the sphere

of inversion and a the radius of inversion. One of a pair of

inverse points is without the sphere of inversion and the

other within, unless both coincide. The straight line which
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joins the points of contact of tangents to the sphere drawn

from an outside point P' passes through the inverse point P.

If P, P' and Q, Q' are pairs of inverse points, the triangles

OPQ and OQP' are similar. If one (P) of a pair of inverse

points moves along a curve, or over a surface, or through a

space, the other (P') will generate the inverse curve, surface,

or space. A plane at a perpendicular distance b from

inverts into a spherical surface of radius a2/ 2 b, passing

through 0. A spherical surface of radius c with centre at a

distance b from inverts into another spherical surface of

radius a?c/(b2 — -c
2
) with centre at a distance a2b /' (b

2 — c
2

)

from 0. If a 2 = b
2 — c

2
, the spherical surface inverts into

itself, though the inverse of the old centre is not the new

centre. The centre of inversion inverts into the region at

infinity.

Prove that if the origin be the centre of inversion, a point

P or (x, y, z), distant r from the origin, inverts into a point

P' or (V, y', z'), distant ?•' from the origin, where rr' = a2
,

x/r = x'/r', y I r = y'/r', z/r = z'/r', x = a2x'/r' 2
, y = a 2y'/r' 2

,

z = a2
z' fr'

2
, x' = a 2x /r2

,
y' = a2

y/

)

2
, z' = a2z

/

r2 . An element

of arc ds at P inverts into an element of arc ds' at P', such

that ds = r2 • ds' /a2 = a? ds' /r' 2
. An element of area dS at

P inverts into an element of area dS' at P f

, such that

dS = r4 -dS' /a 4 = a4 -dS' /r' 4
. An element of volume dr at

P inverts into an element of volume dr' at P', such that

dr = r6 dr' /

a

6 = <z
6

• dr' J
r' c

\ The angle between two curves

which intersect at P is equal to the angle between the inverse

curves which intersect at P'. If P and P' be drawn in

different diagrams, in which the rectangular Cartesian coordi-

nates are x, y, z and x', y', z' respectively, $ = a2x' /r' 2
,

rj = a?y' /r' 2
, t, = a2

z' /r' 2
, define a set of orthogonal curvi-

linear coordinates in the second diagram, and the Cartesian

coordinates of P in the first diagram are equal to the curvi-

linear coordinates of P' in the second diagram. Any func-

tion F (x, y, z) has the same numerical value at P that the
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function F(a2x'/r' 2
, a 2

i/'/r' 2
, a2z'/r' 2

) = ^ (x', y', z') has at P\
Prove that

(D 2 + D 2 + D})F(x,y,z) aiP

= (r"/«0W + D/ + A'
2

) KA') atP-.

If i'
7

is zero on any surface or throughout any space in the

first diagram, a^rfr' is zero on the corresponding surface or

throughout the corresponding space. If F has the constant

value c on the surface S, a\p jV has the value ac/r', which is

not constant on the corresponding surface S'.

If F is the potential function due to a volume distribution

of density p in a region T, together with a superficial distri-

bution of density a- on a surface S and a point charge e at a

point Q, (aifz/r
1

') is the potential function due to a volume

distribution of density p' = asp/r' s in the region T\ corre-

sponding to T, together with a superficial distribution of

density a' = a3<r/r' 3 on the surface S', which corresponds to S,

and a point charge e' = r'e/a at the point Q', which is the

inverse of Q. The inverse of a point charge e at the centre

of inversion is a charge at infinity, which raises all finite

points to potential e/a. If F is the potential function of a

distribution a, p which keeps a certain surface S at potential

zero, (ai{//r') will be the potential function of a distribution

o-', p' which keeps the corresponding surface S' at potential

zero. If F is the potential function of a distribution cr, p

which keeps the surface £ at potential c, (aif/ /r') will be the

potential function of a distribution o-', p' which keeps S' at

the potential ac/r': if, however, we add to the distribution

a-', p' a point charge — ac at the origin, the new potential

function will keep S' at potential zero.

188. Show that if a point charge e be anywhere between

two infinite planes which form a diedral angle of 60°, these

planes would form a surface of potential zero due to the

original charge and five images in the planes. Find the den-

sity of the charge on two planes which form an angle n/n,
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if they are kept at potential zero in presence of a point

charge between them. Invert the system with respect to the

charged point.

189. A homogeneous sphere of density p and radius c has

its centre at a point C distant d from an outside point 0.

The value of the potential function at a point P outside the

sphere is %irpc3/CP. Show that if the distribution be inverted,

using as centre, the new distribution is a heterogeneous, cen-

trobaric sphere of mass $irpc?a/d, the baric centre of which

is the inverse point of C. [Routh.]

190. A point charge + e lies on the x axis at a distance + b

from the origin between two conducting plates, x = 0, x = 2 c,

both of which are kept at zero. Show that the images of the

point charge in the planes are an infinite series of point

charges numerically equal to e but alternately positive and

negative at points on the x axis. The coordinates of the nega-

tive images are — b, — (4c+ &), — (8c+ 6), • ••,(4c— b), (8c — b),

(12 c — b), . . ., and those of the positive images are (4 c + b),

(8 o + b), (12 c + b), • • • , - (4c - b), - (8c - b), - (12c- b), -.

Show that the force at any point between the planes might be

computed from these images and the original point charge.

Indicate a method for determining the density of the induced

charges on the plates. State clearly the result of inverting

the system, using the original charged point as centre of inver-

sion, and each of several different values for a.

If in this problem the charge e is at a point midway

between the plates, and if this point be chosen as origin, b = c,

and there are positive images at points the x coordinates of

which are 0, 4 c, 8 c, 12 c, • • , — 4 c, — 8 c, — 12 c, • • •, and nega-

tive images at points the x coordinates of which are — 2 c,

— 6 c, — 1 c, , 2 c, G c, 10 c, • • • . Show that if the system

be inverted, using O as centre of inversion and c as radius of

inversion, and if the inverse of the charge at O be omitted,

the result is a conductor formed of two spherical surfaces

of radius r — ^c, in contact at potential V = —e/c under
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positive charges equal respectively to £ e, \e, ^ e, • • -, at

points the x coordinates of which are ± \ c, ± \ c, ± T
x^ c, •

;

and negative charges \ e, \ e, t
l e, , at points the x coordi-

nates of which are ± ^ e, ± £ c, ± t
l c, . The total charge

in each of the spheres is

- Wl- * + *-*) = -*«- 1°g2= F r.log2,

and their mutual repulsion, ^ F"
2 (log 2 — \).

191. If two spherical conductors each of radius a have

charges eu e2 , and are at a great distance apart, the energy of

the system is (e^ + fig
8
) /2 a. If the two are brought up into

contact, the whole charge of the compound conductor thus

formed is (e
x + <?

2), it is at potential (e x + e2) / 2 a log 2, and

the energy of the system is (e x + e2)
2 /4a- log 2. Show that

the work done against the mutual repulsions of the two charges

during the approach of the spheres is about

[(0.722) e xe,
- (0.139) (e,

2 + e2
2)]/a,

and discuss separately the special cases

ei = 0, «i = e2, 6i = 5 e2 , ex = f e2.

192. Show that if a point charge be situated at a point 0,

between two concentric spherical surfaces, it is possible to

find a series of electric images which together with the origi-

nal charge would keep each of the surfaces at potential zero.

What would be the result of inverting the system, using O as

centre ?

193. A certain condenser consists of a closed conducting

surface St surrounded by another closed conducting surface S2,

separated from the first by a homogeneous dielectric. When
the condenser is charged, the lines of force between S

x
and S.2

are the same as if S
2
were removed and Si freely charged.

What do you know about Si and S2 ?

194. The semiaxes of a conducting prolate ellipsoid of

revolution are 10, 8, 8. Find, by help of the formulas of Sec-

tions 6 and 23, the external field when the conductor has a



402 MISCELLANEOUS PROBLEMS.

free charge of 60 units, and show that the surface density at

the equator is then 3/ 16 77-.

195. A prolate conducting spheroid of major axis 2 a and

minor axis 2 b, has a charge of electricity E. Prove that the

attraction between the two halves into which it is divided by

its diametral plane is E 2 -\og(a/b )/4(a2 — b
2
). [St. John's

College.]

196. If a particle charged with a quantity e of electricity

be placed at the middle point of the line joining the centres

of two equal spherical conductors kept at zero potential, the

charge induced on each sphere is

— 2 em (1 — m + 2 m 2 - 3 m 3 + 4 m* •),

where m is the ratio of the radius of either of the spheres

to the distance between their centres.

197. A conducting sphere of small radius a is situated in

the open air at a considerable height h above the ground.

Show that its electrical capacity is increased by the neighbor-

hood of the ground in the ratio of 1 + ( —y ) to 1, very nearly.

198. A negative point charge, — e2 , lies between two posi-

tive point charges e
1
and e3 on the line joining them and al

distances a and b from them respectively. Show that if

e. Bo e2X
3

1 . „ fa + b^ 2

where 1< X2 < '

b a a + b \a — b

there is a circumference at every point of which the force

vanishes.

199. Two spherical conducting surfaces of radii a and J>

form a condenser. Prove that if the centres be separated

by a small distance d, the capacity is approximately

ah C abd'2 ^

b-a\ ~ (b - a) (b3 - a3

) J

ah
When d = 0, the capacity is

b — a
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200. A small insulated conductor, originally uncharged, is

connected alternately with two insulated conductors A and B
at a considerable distance apart. Prove that if e and e ' are

the original charges of A and B, ex
and e

x
their charges after

the carrier has touched A and then touched B, the charge of B
when the carrier has touched A and B each n times is

ab — ej! - e '

,

e ' — e,'

ab-1 (ab - 1) a'
1- 1^- 1

where a = e /el
and b = (e + e ' — e

t)
/e

x
'.

The charges of A, B, and the carrier, are ultimately in

the ratios

«i Oo — «i + eo' - ei') : «i'(«o - ei) : Oo - 6i) («o ~ ei + eb' - ^i').

201. If a series of conductors were constructed which

might be made to coincide with the closed level surface

of a harmonic function w which vanishes at infinity like a

Newtonian Potential Function, the capacities of any two of

these conductors would be to each other in the ratio of the

reciprocals of the values of w on the corresponding surfaces.

If two of the surfaces for which to = w
x
and to = w

2 < u\ be

constructed of metal, and if charges E
x
and E2 be given them,

the energy is

2i CiC2
"* c2 r

where Cx
and C2 are the capacities. The energy becomes

\(E
X + E2)

2
/ C2

if the two are connected.

202. An insulated conducting sphere of radius r, bearing a

charge m, is introduced into a field of force due to a fixed

distribution M of electricity. Show that if the value of the

potential function due to M at the centre of the sphere is

C, the value of the potential function within the sphere is

C + m/r.

203. Compute the force at the point (x, y, z) due to a par-

ticle of mass — m at the point (a, 0, 0) and a particle of mass
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+ m at the point (— a, 0, 0), and show that if m and a be

made to increase indefinitely in such a manner that the ratio

of m to a2
is always equal to the constant A, the field becomes

ultimately a uniform field of intensity X = 2 A.

204. It is evident that the value at any point P in the xy

plane, of the potential function due to two slender, infinitely

long, homogeneous, straight filaments (of mass m and — m
respectively per unit length) which cut the plane perpendicu-

larly at the points A and B, is 2 m log (AP /BP), and that the

equipotential surfaces are circular cylinders [one is a plane]

such that A and B are inverse points with respect to every

one of them. If the radius of any one of these cylindrical

surfaces the axis of which cuts tbe xy plane at C be denoted

by r (Fig. 126), and if AP = r1} BP = r
2 , AC = 8n BC = 82 ,

8
1
/r = r/82

= rx j r2 , and

the triangles BCP and

ACP are similar if P
lies on the cylinder. The

resultant force F at P
has the direction of the

normal to the cylinder,

the repulsion due to the

Fig. 126. filament which cuts the

plane at A is 2 m/?-,, and

the attraction due to the filament which cuts the plane at

B is 2 m /r2 . If the angle APB be denoted by a, the Principle

of the Parallelogram of forces applied at P yields

F/sm a = 2 m/[r2 sin (r, ?-j)] = 2 m/[r
x
sin (r, r2)],

and the Theorem of Sines applied to the triangle APB yields

AB /sin a — Tj/sin (r, i\) = r2 /sin (r, r2),
so that

F= 2 mAB[i\ -7-2 = 2 mlxAB/r>r? = 2 m8
2AB/rr*

= 2m (V - r2

) Jr r* = 2m (r2 - 32
2

) Jr r2\
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The value of the potential function on the cylinder is

2 m log 8L/r= 2 m log r/B
2 .

If, now, the mass of the filament which cuts the plane

at B be spread on the cylindrical surface so that the surface

density at every point is

o- _ _ F/4: 7T or - m (Sf - r2

) /2 vr r*,

the potential function outside the cylinder will be unchanged.

If, finally, a mass m' per unit length be spread uniformly over

the cylinder, the value of the potential function within

and on the surface will be 2 m log (c^/V) + 2 m' log r, and, by

a suitable choice of m'
}
this may be given any value. The

whole charge on the unit length of the cylindrical surface is

m' — m = 31, the value of the potential function on the sur-

face is Vs = 2 m log (Sj /r) + 2 (M+ m) log r, and the surface

density at a point distant r
x
from the straight line which cuts

the paper perpendicularly at A is

(M + m) / 2 Trr - m (V - r2

) /2 Trr • r^.

At any point () without the cylinder the value of the potential

function is

2 m log (AQ/BQ) + 2(31+ m) log C£.

Show that the force of attraction between the charge on the

cylinder and the unit length of the filament through A is

2 m [wSj / (V - r2

) - (M + m) J 8J.

This force vanishes if Sf/r2 = (31+ m) / 31. Show also that

if the cylinder is at potential zero in the presence of the fila-

ment through A, 31'= — m log (^/r).

If we superpose upon this distribution a second consisting of

a homogeneous filament of mass — m per unit of length and

cutting the paper perpendicularly at A and a similar filament

of mass + m per unit length cutting the paper at B, and notice
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that the potential function due to the new distribution has

the value — 2 m log (8] / r) at every point of the cylindrical

surface, we shall see that the potential function due to the

two distributions has at any point Q outside the cylinder

the value 2 m' log (CQ) = 2 (J/+ m) log CQ and at any point

within the value

2 m) log r + 2 m log \/ r — 2m log (r
x j r2)

= 2 (M + m) log r + 2 m log \r2 /rrv

On the cylindrical surface the potential function has the

constant value 2 (M + m) log r, and the surface density at any

part of it is, as before, (M+ m) /2 irr — m (S/
2 — r2

) /2tm\
2
, or

(J/ + vi)j2-kv + »i(8.2
2 — >•-)/ 2 tt )/:/. What is the physical

meaning of the special case where ilf+ m = ?

205. Let <£ (x, y) be a logarithmic potential function due

to a body distribution of density p through an infinite

cylinder the right section of which made by the xy plane

is the region T, together with a superficial distribution of

density o- on an infinite cylindrical surface the right section

of which is the curve s in the xy plane. Let a=fi (x, y)

and /8 =f2 (x, y) be any two conjugate functions analytic in

the region considered, and form arbitrarily the new function

$ (x, y) = <f> \_fxfx, y),f2(x, y)] by substituting for x and y in
<f>,

a and j3 respectively. To avoid confusion call the rectangular

Cartesian coordinates in the plane in which T and s are

drawn a and (3, instead of x and y, and draw a new xy plane

in which to study the new function <£. In this second figure

the curves in which a=fl
(x,y), fi=f2 (x,y) are constant

form a set of orthogonal curvilinear coordinates. A point

P which in the first diagram has Cartesian coordinates

(a , /3„) is said to be transformed into a point P' in the new

diagram, the curvilinear coordinates of which are (o^, (3 ). The

Cartesian coordinates of P' are (x
, y ), where /, (x

, yd) = a
,

ft (^o? 2/o) = A)- It is evident that $ (x, y) has the same
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numerical value at P' that <p (a, /?) has at P. The points

which lie on the curve s in the old diagram are transformed

into points which lie on a curve s' in the new diagram, so that

the curve s is transformed into the curve s' and, similarly, the

region T into the region T'. It is evident from the proper-

ties of conjugate functions that two curves which cut at an

angle 6 at a point P in the old diagram transform into two

curves which cut each other, in general, at the same angle

at the point P'. Show that 3> is the logarithmic potential

function due to a body distribution through the infinite

cylinder of which T' is the cross-section, together with a sur-

face distribution on the cylindrical surface of which s' is the

trace. Show also that if It
2 represents either of the two equal

quantities (Dx a)
2 + (D

y
a) 2

,
(DxfZ)

2 + (£>y(3)
2

, the numerical

relations, at corresponding points in the two diagrams, of the

corresponding elements of arc and area, of the corresponding

values of the volume and surface density, etc., etc., are truly

given by the equations

ds = h els'; clA = h2 clA'; ph2 = p'
; <rh = a'

;

tp = $ ; A<£ = A4> ; h D
s<p
= Z>

s,$, h?A2
<p = A2

3>

;

h Dn<p = Dn& ;
pdA = p'clA' ; ads = o-'ds'.

206. Given in a plane two circles of radii a and b respec-

tively, which have no points in common, it is possible to find

two points (Qv Q2) on the line which joins their centres

(A, B), such that if ?\ and r
2
represent the distances from

$i and Qo of any moving point, both circles belong to the

family of curves represented by the equation rxJr^ = c. Show

that if AB = d, and if the circles are mutually exclusive, Ql

and Q2
are between A and B, and

AQ
l
=(a2 + d2 -b2 - B)/2d, BQ2

= (b
2 + d2 -a 2 - B)/2d,

where R2 = (a2 - b 2 - d2

)
2 - 4 b

2d2
. If one of the circles lies

within the other and if a > b, Qx
and Q2

lie beyond B on the
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line AB, Q y
is within both circles, and Q., outside both. In

this case,

AQ
X
= (a2 - b

2 + d2 - E')/2 d, BQ2
= (a2 - b2 -<P + R') /2 d,

where R'2 = (b2 — a2 — d2

)
2 — 4 crd 2

. In the second case the

four points of contact of tangents drawn from Q.2 to the two

circles lie on a straight line through Qlm What is the corre-

sponding fact in the case first treated ? Consider the special

case where « = 5 = |rf.

Prove that the values of AQ
X , BQ2 given in the subjoined

table are correct and draw to scale a diagram for each of the

four examples.

a
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between and 1 correspond to circles which lie to the left

of the y axis, and positive values of c greater than 1 to circles

on the right of the y axis.

When c > 1, c = (a + a) fr, and a = + Va2 — r2
,

but when c < 1, c = — (a + «) /r, a = + Va2 — r2

.

On two circumferences of the system, of equal radii, on oppo-

site sides of the y axis, rx f~r2 has reciprocal values.

Using these formulas, prove that the charge per unit length

on a long cylindrical wire of radius 0.5 centimetre, kept at

potential unity at an axial distance of a = 600 centimetres

from an infinite plane kept at potential zero, is 0.06424 units.

In this case c is about 2400, a about 599.9998, and A, 0.128.

Show also that if r = 0.5 and a = 10 ; a = 9.988, c = 39.975,

A = 0.271, but that if r = 0.5 and a = 1 ; a = 0.866, c = 3.732,

A = 0.759. It is to be noticed that 300 volts are equivalent

to 1 electrostatic unit of potential difference, 1 microfarad to

900,000 electrostatic units of capacity, 1 ohm to 1/(9 X 10 11

)

electrostatic units of resistance, 1 ampere and 1 coulomb to

3 X 109 corresponding electrostatic units.

In general, if an infinite conducting cylinder of revolution

kept at potential V be placed with its axis parallel to an

infinite conducting plane at a distance a from it, the charge

per unit of length is ^ F /log^—-— , and the surface
r

density is inversely proportional to the distance from the plane.

208. A condenser is formed by two long conducting circular

cylinders, one of which is entirely inside the other. Prove

that if r and r' are the radii, d the distance between the

axes, and la the distance between the limiting points of

the coaxial system to which the cylinders belong, the inverse

of the capacity per unit length is

r'(r'
2 — i

s — d2 + 2ad)
2 log —V15 5 =

7,
—£ * TSt. John's College.!
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209. Electricity is distributed in equilibrium over the

surface of an infinitely long right cylinder, the cross-section

of which is x* + ;/ = a4
. Prove that the attraction at any

external point (r, 6) is inversely proportional to

f
,s\-i

r4 + 2 a* cos 4 + —
r

and that its direction makes with the axis of x an angle

frtan-
1

(

r*~ ft

]
tan2flY- [Clare College.]

210. A long, right circular cylinder of radius a is placed

with axis parallel to a plane at potential zero. Show that

the mutual attraction per unit length of the cylinder between

it and the plane is E'2/^ c'
2 — a 1

, where c is the distance of

the axis of the cylinder from the plane and E the quantity

of electricity on the unit length of the cylinder. [M. T.]

211. Av Q, A 2 , three points in order on a straight line, such

that A
rQ = m, QA.2 = n, have charges

e
x
= A. Vra (m + n), e = — A. Vwi?t, e.2

= X Vw (m + n)

respectively. The charges e , e2 produce potential zero on a

spherical surface S
x
of radius a = V?n (m + 11) with centre at

Av and the charges ev e produce potential zero on a spherical

surface S2 of radius b = V?i (m + n) with centre at A 2 . Sx
and

S2 cut each other orthogonally and together form the equi-

potential surface A due to eQ , ev and e.2 . Show, by a method

analogous to that of Section 65, that the resultant force at any

point P of Sv due to en and e.2 , is directed towards A
x
and is

numerically equal to Xb3/a-A2P , so that the whole force at

P has the direction A
X
P and the intensity

Find a similar expression for the whole force at any point of

the surface £2 . Show by the help of Section 31 that the surface

integrals, taken over the larger segment of S
y , of the normal
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components of the forces due to ev e , and e2 respectively are

2 jre
l
(l -\- m / a), 2 7re , 2 Tre2 (l — n/b). Prove that if e , ev

and e2 were distributed on the surface composed of the larger,

segments of S
x
and S2 according to the law <r = F/Att, the

surface would be at potential X, and there would be no density

at the circle of intersection of SY
and S2 . The charge under

these circumstances on the larger segment of S
1
would be

\ [ej(l + ?H./a)+<? + e2 (l — n/b)'],

or If X (a + b + m — ~vmn — n),

or %Xb[l +S+(S2 -S- 1)/Vl + S
2

],

where 8 = a/b. If b is very large compared with a, the larger

segment of S
x
becomes nearly hemispherical ; its charge is

about 3Xa 2 /4:b and its mean density 3X/§Trb. The mean

density on S2 when the ratio of a to b is small is nearly equal

to X (4 b
2 — 3 a2

) /16 nP. If a / b = 0, we have a hemispherical

boss on an infinite plane ; the ratio of the average densities of

the charges on the boss and the plane is 3/2.

212. A point charge e at (4 b, 0, 0) and a point charge — e

at (— 4 b, 0, 0) keep the plane x = at potential zero. Show
that if the system be inverted, using the point (— 2 b, 0, 0) as

centre of inversion and 2 b for radius of inversion, we obtain

a spherical surface of radius b, with centre at (— b, 0, 0), kept

at potential zero by the charge — e at the point (— 4 6, 0, 0),

and the charge \e at (— f b, 0, 0) : this is the problem of

Section 65. If the centre of inversion were (— 4 b, 0, 0) and

if a were 4 b, we should obtain by inversion a spherical sur-

face of radius 2 b, with centre at (— 2 b, 0, 0) at potential zero,

under a charge i e at its centre, and an infinite charge at infinity

which lowers the potential function at all finite points by e/4 b.

If this last were omitted, the value of the potential function on

the spherical surface would be e/Ab, as is otherwise evident.

Invert a spherical surface uniformly charged with density o-,

using any point not its centre as centre of inversion.
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213. If z = w + e
w

; x =
<f>
+ e* cos i/r, y = ^ + e* sin </f, the

slopes of curves of constant <£ are given by the equation

dy I dx = — (1 + e* cos i//) /e* sin ^,

and the slopes of curves of constant \\i by the equation

dy Idx = e* sin ^r/(l + e* cos i//).

Show that : (1) The curve ^ = is the axis of x, and on it

x =
<f> -f- e* ; large positive values of # and <£ correspond, and

large negative values correspond. (2) If \p — tt, y — it and

x —
<f>
— e4> : the maximum value of a; is — 1, so that the

curve i{/ = tt is so much of the line y = v as lies to the left

of x = — 1. (3) The curve ip = — n is so much of the line

y = — tt as lies to the left of x = — 1. (4) The curve
<f>
=

has the slope — ctn i
ij/ and passes through the points (— 1, it),

(- 1, - tt), (1, 0), (0, Itt + 1), (£, £* + £ V3). (5) The curve

<f>
= — m, where m is any positive quantity, lies to the left

of
<f>
= 0, between the lines y = — tt, y = -\- tt: it has the slope

—(em + cos i^)/sin ij/, which is infinite when y = or y = — -k or

y = ir, and has the minimum value Ve2m — 1, so that for values

of »i greater than 3 the line is hardly distinguishable from a

straight line parallel to the axis of y, at a distance of (e
_m — ra)

to the left. (6) The curve <£ = + m, where m is a positive

quantity, lies to the right of the curve
<f>
= 0, it cuts the axis

of y perpendicularly and meets (but does not cross) the lines

y = — tt, y = tt from without. The curves for which
<f>

has

the values 1, 2, 3, 4, 5, 6, 7 meet y = tt at points the abscis-

sas of which are - 1.72, - 5.39, - 17.08, - 50.60, - 143.4,

— 397.5, — 1090 respectively. (7) If so much of the planes

y = + tt, y = — ir as lie to the left of x = — 1 be considered

conducting and be charged to potential + tt and — tt respec-

tively, \j/ represents the potential function in the air near

them. In this case the charge on either side of a strip of

either plane between the planes x = — x
x , x = — x2

is equal,

per unit length of the strip parallel to the z axis, to the
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difference on that side of the plane between the values of
<f>

for x = — x-l and x = — x
2 , divided by 4 n. On a strip of the

plane y = ir, between x — — 1 and x = — 50.6, there is, per

unit height of the strip, a charge 1/ir on the upper side

and of 50.6/ 4 7r on the under side: the charge on correspond-

ing portions of y = — w being "equal and opposite to these.

[Helmholtz, Crelle's Journal, Vol. LXX.]
State carefully some problem in electrostatics which might

be solved by the use of the function z = A \_cw + e
cw

].

A condenser consists of two very thin, large, plane, metal

sheets of the same area parallel to each other at a distance

of 1 millimetre. The dielectric is air and the difference of

potential between the plates is 1 electrostatic unit (300 volts).

Show that the density of the charge 2 millimetres from the

edge is about 5/2 * per square centimetre on the inside of

the plate.

Discuss at length the function

_ ??"(! - n) 1 -

sin (W)

where n is any real constant between and \ [Harris, Ann.

of Math., 1901], and state some problems of electrostatics

which can be solved by its aid.

214. Three closed surfaces 1, 2, 3 in order are equipotential

surfaces of an electrostatic field in air. If an air condenser

were constructed with the faces 1, 2, its capacity would be A, but

if the faces were 2, 3, its capacity would be B. Show that if

a condenser were constructed with faces 1, 3 while a homoge-

neous dielectric of inductivity /x filled the space 1, 2, and a

second dielectric of inductivity /a' the space 2, 3, the capacity

of this condenser would be C, where 1/C= 1 / /jlA + 1/fx'B.

215. A condenser is formed of two concentric spherical con-

ducting surfaces of radii a and c, separated by two dielectric

shells bounded by a spherical surface of radius b concentric

with the conducting surfaces. Prove that if in one shell

Z = —
I P.C1 -")'" _ p~r
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fi = m/r2 and in the other m' / r2, the capacity of the condenser

is mm' /\_m' (b — a) + m (c — &)].

216. If the space between two closed equipotential surfaces

in air be filled with a dielectric the inductivity of which is

either uniform or a scalar point function the level surfaces of

which coincide with the equipotential surfaces of.the field, the

potential function without the shell will be unchanged, but its

value within will be increased by a constant.

217. An infinite dielectric is bounded by an infinite con-

ducting plane which is maintained at a potential A>'
2
, where ;•

is the distance from a point in the plane. Prove that if the

inductivity of the dielectric varies as the distance z from

the plane, the potential at any point is k(u2 — s2
), where u

is the distance from an axis drawn through perpendicular

to the conducting plane.

218. A distribution of matter M consists of two portionsM1}

in a homogeneous medium of inductivity /x t , and M2 , in a

homogeneous medium of inductivity /x2 surrounding the other

medium and reaching to infinity. An equipotential closed

surface Sx surrounds Mu excludes M2 , and lies wholly in

the first medium, a second closed equipotential surface S2

surrounds Mu excludes M2 , and lies wholly in the second

medium. Prove that if r is the distance from a fixed point 0,

if normals are drawn outward on S2 and inward on S^ and if

d,Ti and dr« are elements of space within S^ and without S2

respectively,

and 4 tt^ V = -
fj.2ff^~^dS2 + 4 tt f Cj £ dr2

if is without S„. and

-„//a!^+4.///A-^r.



MISCELLANEOUS PROBLEMS. 415

and 4 vm ( V - VSl)
= - ^ff^dS, + 4*fff* drlt

if is within Sv

Show from these equations that if S, the surface of separa-

tion of the two media, is equipotential, III —~ is equal

to fi2 V if is without S, and to ^ V + (^ — fxj) Vs if is

within S. Give physical interpretations to these last results.

How is the force at any outside point affected by the sub-

stitution of one homogeneous dielectric for another in the

whole region bounded by S?
219. The open surface S is a surface of zero potential due to

a distribution 31^ in an infinite homogeneous medium of induc-

tivity fi x on the right of S, and to a distribution M2 in an

infinite homogeneous medium of inductivity //.., on the left of

S. S is the common boundary of the two media. Show that

if r is the distance from a fixed point 0, I I I ^— =^ V or

fi2 V, according as is to the right or to the left of S.

220. The function W so vanishes at infinity that r2Dr W,

where r is the distance from any finite point, is not infinite.

The normal derivative of W is given at every point of an

infinite plane. Prove that if W is harmonic everywhere in the

space on one side of the plane, it is determined in that region.

Prove also that if W is harmonic in the region on one side

of the plane except at the given points -Pi, P2 , P3 ,
• • • , P„, at

each of which it becomes infinite in such a manner that, if rk is

the distance from Pk , and if mk is a constant belonging to this

point, W — —- is harmonic at Pk, W is determined in the

region in question.

221. Two homogeneous media of inductivities ^ and /x2 have

a plane surface of separation but are otherwise unbounded.

In the first medium at a point P at a distance a from the
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common surface S of the two media is a charge c = /^e.

At Q, any point on S, the force due to this charge has the

normal component eaf (PQ) S
, or 8, pointing into the second

medium. If Nx and iV2 are the normal components of the

whole force at Q pointing into the two media, and if <x' is

the apparent density of the surface charge on the plane

at Q,
Ny = 2 7TO-' - 8, N2

= 2 7TO-' + 8,

and /^JVi + /*2iV2 = 0, iVx +N2
= + 4 v<r'

;

whence -#i = 8 [0*i — /i2) / 0*i + /*a) — 1]>

and N2
= 2 ^8 / (^ + ju,2).

Prove that JS\ might be caused by an apparent charge

(/Ltj — fx2) e j (jk
x + /a2) at P', the image of P in the plane,

together with an apparent charge e at P and that N2 might

be due to an apparent charge 2 jx
x
e /(/x

x + /x2) at P. Hence

show by the aid of the theorem stated in the last problem

that the potential functions due to these apparent charges are

identical (one in the first medium, the other in the second)

with the values of the actual potential function in the case

described in this problem. The charge at P is urged towards

the dielectric with the force -,— •
— —

4 a1

fa + /*!

222. Using the notation of Section 62, let the plate A of a

spherical condenser be charged with m units of positive elec-

tricity and separated from the plate B, which is put to earth,

by a spherical shell of radii r and r
t
made up of a given

dielectric. Let us first ask ourselves what the effect of the

dielectric would be if it consisted of extremely thin concentric

conducting spherical shells separated by extremely thin insu-

lating spaces. It is evident that in this case we should have

a quantity — m of electricity induced on the inside of the

innermost shell, a quantity + m on the outside of this shell,

a quantity — m on the inner surface of the next shell, a
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quantity -\- m on the outside of this shell, and so on. If

there were n such shells in the dielectric layer, and n + 1

spaces, and if 8 were the distance from the inner surface of

one shell to the inner surface of the next, and AS the thick-

ness of each shell, the value, at the centre of A, of the poten-

tial function due to the charges on these shells would be

= m [vh~^iiAS + 8 >- + 2S /--AS + 28

+ ••• +
8 + wSJ

= — m\8 —

r + ?<8 r - AS + «S

•+8)(>-AS+ S) (/-+2 8)(>—AS+2S)

This quantity lies between

ir=n— 1

\2 'G = - mxsg^-J^, andiZ"= -^8^—

^

g)S

but these differ from each other by less than e = m\8 l

,, , ,J r2r 2

so that — ??iA I —7, which is easily seen to lie between

G5 and If, differs from VA ' by less than e. If, then, 8 is very

small in comparison with r and ?•,-, VA ' differs from mX( — •

by an exceedingly small fraction of its own value.

This shows that the effect, at the centre of A, of such a

system of conducting shells as we have imagined would be

practically the same as if a charge — mX were given to the

inner surface of the dielectric, and a charge + m\ to its outer

surface, while the charges on the surfaces of the thin shells

within the mass of the dielectric were taken away. That is,

the value of the potential function in A would be

m (1 — A) (

,

) instead of mi
;

]•
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Such a system of shells introduced into what we have hitherto

supposed to be the electrically inert insulating matter between

the two parts of a spherical condenser would increase the

capacity of the condenser in the ratio of 1 to 1 — A. It

is to be noticed that X is a proper fraction : A = and A = 1

would correspond respectively to a perfect insulator and to a

perfect conductor.

If the coatings of a parallel plate air condenser be in the

planes x = 0, x = a, and if the first have a uniform superficial

charge of density — a and be kept at potential zero, the

potential function in the air between the plates is evidently

Atto-x. Show that if a number of plane plates of metal of

small thickness AS be uniformly distributed between the coat-

ings parallel to the yz plane so as to be separated from each

other by air spaces of thickness (1 — A) 8, the capacity of the

condenser will be increased in the ratio of /x to 1, where

/u. = l/(l — A). Show also that if 8 be made infinitesimal

and A a function of x, we have between the coatings in the

limit, fiDx V = 4 ttct, or Dx (/xDx V) = 0, the differential equa-

tion which V would satisfy in a real dielectric of inductivity

varying with x. Treat again, on the assumption that A

varies with r, the case of the spherical condenser considered

above.

223. The potential function V due to an electrical or mag-

netic distribution in an inductive medium, may be computed

according to the Newtonian Law by taking into account both

the intrinsic and the induced charges. If p and cr are the

intrinsic volume and surface densities, and if the integrations

extend all over the space where p and <r are different from

zero, the potential energy of the distribution is usually written

hfff Vp° dT + ^ff Va°dS>

or hfffti {Dx vy

+

{Dy vy + (Avn dT -
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Why should not the apparent volume and surface densities

be used in finding the energy by the equation

E=hfff Vp dT + hffVadS?

Answer this question fully, using an illustrative numerical

example to explain your assertions.

Assuming that the energy of an electrostatic field would be

mathematically accounted for on the supposition that every

volume element of space at which the intensity of the field

is F contributes F2/8 tt times its volume to the whole amount,

show that if a tube of force be cut into cells by a set of equi-

potential surfaces drawn at equal potential intervals, these

cells contain equal amounts of energy. Show how to divide

all space up into unit energy cells. Discuss the mechanical

action on a charged conductor in an electric field on the

assumption that there is tension along the Faraday tubes

which abut on the conductor, such that the normal pull on

the conductor per square centimetre of its surface is F2/8 tt.

Discuss the pressure at right angles to the Faraday tubes in a

dielectric.

224. The space between two concentric spherical surfaces,

the radii of which are a and b and which are kept at potentials

A and B, is filled with a heterogeneous dielectric, the induc-

tivity of which varies as the nth. power of the distance from

their common centre. Show that the potential function at

any point between the surfaces is

(Aan+1- Bbn+l\/(an+l- b
n+l)- an+lbn+l (A - B) /r

n+1 (an+1- bn+1).

225. A condenser is formed of two concentric spherical con-

ducting surfaces separated by a dielectric. This dielectric

consists of three shells bounded by spherical surfaces of radii

r
\i

r2> r8» and r4 , concentric with the conductors. The induc-

tivities of the inner and outer shells are equal to fiu and that



420 MISCELLANEOUS PROBLEMS.

of the intermediate shell is ll
2. Show that if C is the capacity

of the condenser,

C \ i\ r2 r3 i\ J ix i \rs rs J ll
2

226. The plates of a condenser are two confocal prolate

spheroids and the inductivity of the dielectric is A/p, where

p is the distance of any point from the axis. Prove that the

capacity of the condenser is

7r^/[log (a, + ft,) - log (a + b)2,

where a, b and a
ly

b
x

are the semiaxes of the generating

ellipses.

227. The plates of a condenser are the closed metallic sur-

faces S
x
and S2 . When S

x
is at potential zero and S2 at

potential V2, the potential function in the air between them

is given by the equation V= f(x, y, z). The tube of force

based on a portion (S^) of S
1
abuts on a portion (S2 ) of #2.

If the air in this tube were displaced by a homogeneous dielec-

tric of inductivity ll, and if the charges on S
x

' and S.,' were

increased in the ratio ll, while the charges on the remainder

of Si and S2
were unchanged, would the force at every point

be unchanged ? Would there be a discontinuity in the sur-

face density of the apparent charge on S
y
at the boundary

of S,'?

228. How many square centimetres of tin foil must be used

in making a single parallel plate condenser of one microfarad

capacity, if the two sheets of foil are to be separated from

each other by paraffined paper the thickness of which is one-

fifth of a millimetre, and the specific inductive capacity 2 ?

[72,000 7r.] Would the required amount be the same if the

condenser were made up of a pile of sheets of foil alternating

with paper, the odd sheets forming one terminal and the

even sheets the other ?
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229. Show that the generalized Poisson's Equation,

Dx {txDx V) + Dv
^D

y
V) + DZ (^DZ V) = - 4^P,

is equivalent to

^Ktr) +<^)
^f)i—

if i, 77, £ are any orthogonal curvilinear coordinates.

In the case of spherical coordinates, where hr — 1, hg = 1/r,

Ka = 1/r sin 6, the equation is

sin2
• Dr ([jl ?-Dr V) + sin 6 D9 (/* sin 0D6 V)

+ D^(
f
xD

4
,V) = -4:wr2 sin2

6,

and, in columnar coordinates, where hr
= 1, he = 1/r, A. = 1,

it is r Dr (//. rDr V) + De (^ D V) + r2 • 2)
2 (^ Z>, V) = - 4 Trpr

2
.

230. Show that if the poles of a battery, made up of a given

number of equal cells, are to be connected by a resistance R
greater than the sum of the resistances of all the cells, the

greatest current will traverse B when the cells are joined up

in series ; but that if B is very small, the cells should be joined

up in multiple arc. If B is such that by arranging the cells

in a certain number of parallel rows and joining up the num-

bers of each row in series, the resistance of the whole battery

can be made equal to B, this arrangement will give the maxi-

mum current.

231. A battery is joined up in simple circuit with a resistance

B and a galvanometer of resistance G. After the deflection of

the galvanometer has been noted, an additional wire (or shunt)

of resistance S is placed across the poles of the battery, and the

resistance B is decreased (to r) until the galvanometer deflec-

tion is the same as before. Assuming that the electromotive
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force of the battery remains constant, show that the resistance

„ , , . S (M — r) ,-.„. -.

of the battery is —77- -• [Thomson.]
Gr -+- T

232. Using the potential function V — c log r -\- d, where r

is the distance from a fixed axis, show that the resistance of a

conductor bounded by two concentric circular cylindrical sur-

faces of radii a and b, and by two planes, distant h from each

other, perpendicular to the axis of the cylindrical surfaces, is

2 -kIi k

Apply the result to the problem of finding the resistance of

the liquid in a cylindrical galvanic element.

233. Using the potential function, V= clog(r
1
/r2), where

rx and r2 are the distances from two parallel fixed axes,

show how to find (see Fig. 59 and Problem 207) the resist-

ance of a conductor bounded by two parallel planes and by

two somewhat eccentric circular cylindrical surfaces which cut

the planes orthogonally. In the case of an element in which

the zinc electrode is a cylindrical rod and the copper elec-

trode a cylindrical shell surrounding it, is the resistance of the

liquid greater or less when the zinc is eccentric to the copper

shell than when it is concentric with it ?

234. If two points, A and B, of a network of conductors

which are carrying steady currents, be connected by an extra

conductor W, A and B are said to be at the same potential if

no current passes through W. A is said to be at a higher

potential than B if a current tends to pass through W from

A to B. In this case the difference of potential between A
and B is defined to be the electromotive force (in volts) of a

galvanic cell which introduced into W with its positive pole

towards A would just prevent any current from passing

through W.
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Three cells of electromotive force 2 volts, 1 volt, and 1 volt

respectively, and internal resistances of 1 ohm, 2 ohms, and

4 ohms are joined up in series with a resistance of 1 ohm.

Show that the potential differences between the terminals of

the separate cells are + §, 0, and — 1 respectively. If the

external resistance were 9 ohms, the corresponding potential

differences would be + J, -f- %, 0.

235. The terminals of a compound condenser formed of

three simple condensers, of capacity 2 microfarads, 3 micro-

farads, and 6 microfarads respectively, joined up in series,

touch the ends of a linear conductor of 22 ohms resistance

through which a current of 3 amperes is flowing. What are

the charges on the single condensers ? Show that if with-

out loss of the charges the condensers be disconnected and

joined up in parallel with their positively charged plates in

connection, the difference of potential between the terminals

of the new compound condenser will be 18 volts. What
charge will each of the simple condensers have ? [66; 36, 54,

108.]

236. Prove that if a condenser of capacity k farads be

charged to potential Q /k and then discharged through a

large non-inductive resistance, r ohms, the charge Q of the

condenser t seconds after the beginning of the discharge is
— t

Q e
kr

; and show that not one ten-thousandth part of the

original charge remains after 10 &r seconds.

Show also that the energy that has been expended up to

the time t in heating the wire is

2k
j(l-e *-) joules.

237. The terminals of a condenser of k farads capacity

are attached permanently to the poles of a constant battery

of electromotive force E volts by leads of large resistance,

r ohms. After the condenser has become fully charged its
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terminals are suddenly connected together without removing

the battery by a conductor of large resistance, R ohms.

Assuming that the solution of a differential equation of the

form D
ty + ay = b is y = b /a + Be~at

, show that at the

time t the charge on one of the condenser plates is

O-jTTr(* + "-").

where q — (B + r) /rRk.

238. A galvanic battery is composed of two galvanic cells,

the electromotive forces of which are e
x
and e2 an(i the inter-

nal resistances b± and l>2 ,
joined up in multiple arc. The

poles of the battery are connected by an external resistance

of r ohms. Show that if C
x
and C2 are the strengths of the

currents flowing through the cells,

<h = [«A + r(fix - %)] + [»A + r(fr + &2)],

C2 = [ejh + r (e2 -«,)]-*- [&A + »*(*i + *2)].

239. A galvanometer of 9 ohms resistance is to be furnished

with two shunts, such that when the first alone is used t
l

of the current shall pass through the instrument, and that

when both are used in parallel, 29/30 of the current shall

pass through them. Prove that the resistance of the second

shunt must be 9/20.

240. A storage battery is used to send a current through a

cluster of incandescent lamps arranged in multiple arc. The

resistance of each lamp when hot is 100 ohms. When 10

lamps are used the current through each is 1 ampere, but

when 20 are used this current is only |-|- of an ampere.

Find the resistance of the battery and its connections and

show that the electromotive force of the battery is 110 volts.

241. If a number of cells of different electromotive forces

but of equal internal resistances are joined up in multiple

arc, the battery thus formed is equivalent, so far as its ability
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to send currents through outside resistances is concerned, to

a single cell the electromotive force of which is the mean of

the electromotive forces of the cells in the battery. Find the

resistance of this equivalent cell and show that it would be

more " effective " when doing a given amount of external

work than the battery. How much work is done in the

battery per second when the external circuit is broken?

242. A certain uniform cable 50 kilometres long has, when
in good condition, a resistance of 450 ohms. The operator at

one end finds that the resistance is 270 ohms or 350 ohms

according as the other end is grounded or insulated. Suppos-

ing the ground connections at the two stations to be good, so

that the resistance of the earth is negligible, and assuming

that there is a single fault in the cable, show that this fault

is 16.67 kilometres from the first station and that its resist-

ance is 200 ohms.

243. A cable 500 kilometres long with stations A and B at

its extremities has a single fault, but is not so much injured

that signals cannot be sent through it. With cable insulated

at B, the operator at A grounds one terminal of a large bat-

tery and attaches the other terminal to the cable. After this

has been done the operators find that the difference of poten-

tial between the cable and the ground is 200 volts at A and

40 volts at B. The cable at A is then insulated, and one

terminal of a large battery at B is grounded while the other

is attached to the cable. The difference of potential between

the cable and the ground is then 300 volts at B and 40 volts

at A. Show that the fault has a resistance equivalent to

that of 47.62 kilometres of cable and is at 190.5 kilometres

from A. Explain some way of measuring the potential differ-

ences in this case.

244. "In a network PA, PB, PC, PD, AB, BC, CD, DA,
the resistances are

a
> fi> y> 8> y + 8, 8 + a, a -f- f3, ft + y
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respectively. Show that if AD contains a battery of elec-

tromotive force E, the current in BC is

X (a(3 + yS) E
2 XV +(j88 -ay) 2

'

where A = a + /? + y + S,

and fi = (3y + ya + a/3 + aS + /3S + yS."

245. Show that if the edges of a parallelopiped be formed

of uniform wire such that the resistances of three contermi-

nous edges are a, b, and c respectively, and if a current enters

at one angle and leaves at the opposite angle, the resistance

of the network is ^ [(a + b + c) + abc/(ab + be + ca >].

246. (a) A tetrahedral framework is made of uniform wire,

opposite edges being equal and of lengths a, b, c. If a cur-

rent enters and leaves the framework at the ends of an edge

of length a, the strengths of the currents in the pairs of edges

of length a are in the ratio

b(a + c) + c(a + b) : b (a + c) — c(a + b).

[Jesus College.]

(b) Show that the resistance of the whole framework is that

of a length of the wire equal to \\ab
J
'(a + c) + ac / (a + &)].

[St. John's College.]

247. Show that if n telegraph poles, each of resistance R,

be joined in pairs, each to all the others, with wires of resist-

ance r, and if an electromotive force E be inserted in one of the

wires, the current in that wire is E{R(n — 2) + r}/r(nR + r).

248. An electric distributing conductor 6 miles long gives

out continuously 50 amperes of current per mile of its length.

The end of the conductor remote from the generator is insu-

lated, while the nearer end is kept at 1000 volts potential.

Show that if the resistance per mile of the conductor is
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1 ohm, the voltage at a point on the line x miles from the

generator is v = 50 .r
(

'— — 6
) + 1000. Find the rate at which

a given portion of the line is delivering power.

249. A Wheatstone's bridge in proper adjustment consists

of four conductors, AB, BC, CD, DA, which have respec-

tively the resistances p, q, s, and r. The galvanometer is

connected with A and C and the battery with B and D. The

electromotive force of the battery is E, and the resistance of

the battery with its connecting wires is b. Prove that the

heat developed per unit time in the conductor AB is the

E 2ars
equivalent of the energy =—, —-— —-•

250. A generator of constant electromotive force E and

of constant internal resistance B is used to charge a storage

battery which now has an electromotive force e and an inter-

nal resistance b. Show that if the poles of the storage bat-

tery be connected by a conductor of resistance r, a current

C = (Be + IE) * [(B + b) r + Bb~]

will go through this conductor.

251. The conductors AB, BC, CD, and DA have the resist-

ances p, q, r, and s respectively. A is connected with C by

a battery of internal resistance b and electromotive force e.

B is connected with D by a battery of internal resistance V
and electromotive force e'. Prove that if the current in AC
is zero,

e\b\p + q + r + s) + (p+ s)(q + r)
\ + e'(pr - qs) = 0.

252. A conductor of given dimensions made of given material

has two given portions Sx and S2
of its surface kept at constant

potentials while the rest of its surface is a current surface.

Show that if V is the potential function within the conductor,

when Si is kept at potential C\ and S2
at potential C,, and
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if V is the potential function, when Si is kept at C/ and
S at C

'

°2 dU ^2 > r , r , r ,r r r i

y, W ^2 Y J_ ' l WW
_

Ci — 62 W — C 2

253. One end (0) of a straight wire of radius a and length

I is kept at potential V , and the other end (Q) at potential

Vx . The specific conductivity of the wire is k and its resist-

ance per unit length is w, so that the reciprocal of w is equal

to ttotk. The wire is surrounded by an insulating sheath, the

outside of which is in contact with sea water at potential

zero. The rate of leakage per unit length of the wire or

cable through the sheath at a place where the potential of

the wire is V is 2 ira\ V. The reciprocal of 2 -n-aX is denoted

by W and is called the " insulation resistance " of the cable

per unit length. The rate of flow of electricity into a portion

of the cable of length Ax, included between two right sections,

the nearer of which is distant x from and is at potential

V, is — Kira
2Dx V. The rate of flow of electricity out of this

element through the sheath and from the farther end is

- K7ra
2 (Z)/+ &XDX V) + 2Tra\VAx. When the current

is steady the element neither gains nor loses electricity

and Kira?A.xDx V — 2 rrak Vi\x = 0, so that at every point

Dx
2 V— /3

2 V= 0, where
fi

2 = tv/W. The general solution of

this equation is of the form V= Ae&x 4- Be~$x
, and if we

determine A and B so that V= V when x = 0, and V= Vx when

x = I, we get V=[Vi sinh (fix) + F sinh p (I - a-)] /sinh (fit).

Show that if the current which enters the cable at is I

and that'which leaves it at Q is Iv and if / denote the current

in the core at a point at a distance x from 0,

1= [ V cosh (3(l-x)-V1 cosh (^)J /[VZWsmh (/#)]

= I [ V cosh p(l-x)-Vl
cosh (px) ] / [ V cosh (pi) - FJ,

/1 = [F - Fx cosh (/?/)] /[V^TF sinh (/3/)]

= 4, [ ^o - Vx cosh (#)]/[ F cosh (pt) - Vil
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Show also that if the end of the cable at Q be insulated

y
and left to itself, V, = r—~— > but if it be put to earth,

cosh (/?/)

V= V sinh (S(l — x) /sinh (/3/). If in this latter case the

cable were infinitely long, we should have V = V e~?x and

/= I^-Px = roe-P*/VZW.
The whole core resistance of a certain cable 1000 miles long

is 2000 ohms. When one terminal of a battery (the other

terminal of which is put to earth) is attached to one end of the

cable and the other end of the cable is grounded, the current at

the sending end is to the current at the receiving end as 1.1276

to 1. Show that the insulation resistance of the cable per mile

is 8 megohms. In the Atlantic cable of 1889, w = 1.54 ohms
per kilometre, and W= 9,085,000,000 ohms per kilometre.

254. The conduction resistance of a certain cable 1000 miles

long is 10 ohms per mile, whilst the insulation resistance is

10 megohms : if the sending end be at a given potential and

the receiving end to earth, find the whole charge of the cable

when a steady current passes through it. Show that if the

cable have a leakage fault at the middle point the resist-

ance of which is equal to that of a length of a miles of the

cable, the strength of a steady current at the receiving end

will be lowered in the ratio 1:1+ —— • TM. T."l
a e + 1

255. Prove that if any finite set of algebraic operations be

performed upon the complex variable z = x -\- yi taken as a

whole, and if the result [?# = f(z)~\ be written in the form

4>(x, y) + i-*J/(x, y), where <£ and
\f/,

which are said to be con-

jugate to each other, are real functions of x and y:

(a) Both <£ and if/ satisfy Laplace's Equation.

(b) Dx <f>
= D^ and Drf = - Dx^.

(c) At any point P, the derivative of <£ taken in any direc-

tion PQ in the plane xy is equal to the derivative of if/ taken

in a direction PB. at right angles to PQ, and such that the

angle QPB corresponds to a counter-clockwise rotation.



430 MISCELLANEOUS PROBLEMS.

(d) The equations <f>(x, y) = c, \p(x, y) = c' represent two

families of curves which cut each other orthogonally.

256. Prove that

:

(a) If cf> and \\i are any two conjugate functions of x and y,

that is, if <j> + i\f/ is a function of the complex variable x + yi,

taken as a whole, then, conversely, x and y are two conjugate

functions of
<f>
and if/.

(b) If
<f>
and ij/ are any two conjugate functions of x and y,

and if a and ft are any two other conjugate functions of x

and y, and if for x and y in the expressions for <£ and \j/ we

substitute the expressions for a and /?, we shall get two new

conjugate functions of x and y.

(c) If
(f> 1

and i/^x, (f> 2 and fc are any two pairs of conjugate func-

tions,
<f>!
± cj> 2 and \j/x

± i//2 are conjugate functions of x and y.

257. Prove that in any case of steady uniplanar flow of

electricity— that is, flow which at every point is parallel to

a given plane, and of such a character that its intensity and

direction are the same at all the points of any line drawn per-

pendicular to the given plane— there exists a function con-

jugate to the potential function. This function is called the

" flow function."

258. Show by the ordinary rules for treating imaginary

quantities that, if z = x + yi, z 2
, vs, log z will yield respec-

tively the following pairs of conjugate functions : A(x2 — y
2

),

B f)— 2 Axy ; Ar h- cos-, Ar* sin -
; A log r, Ad ; where r2 = x2 + y

2

if

and 6 = tan-1 -. State some problems of steady flow within
x v J

conductors which these conjugate functions will help to solve.

259. Show that, with certain broad limitations, either one

(say <£) of any pair (<£. if/) of conjugate functions of x and y may
be taken as the potential function in empty space due to an

electrostatic distribution the density of which is a function of x

and yonly, and which, therefore, must be constant at all points

on any indefinitely extended line drawn perpendicular to the
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plane of xy. Show also that in the case of the same distribution

the other function \p will be constant along any line of force.

260. Show that either one (say </>) of any pair (<£, if/) of con-

jugate functions of x and y may be taken as the potential func-

tion inside a conductor which carries a steady current flowing

at every point in a direction parallel to the plane of xy, and the

same in intensity and direction at all points of any line drawn

perpendicular to this plane. Show that in this case the other

function \p will be constant along any line of flow, and that the

two equations
<f>
= c, if/

= c' represent respectively, if c and c'

are parameters, cylindrical equipotential surfaces and cylin-

drical surfaces of flow. If ds is the element of any curve AB
in the plane xy, and if D„<£ is the derivative of <j> taken in the

direction of the normal to ds which points towards the right as

one goes along the curve from A to B, the integral — k j I)
H <f>

ds

gives the amount of positive electricity which crosses per unit

of time from left to right so much of a right cylindrical surface

erected on AB as is enclosed by two planes parallel to the

plane of xy and at the unit distance from each other. Since

B>n<f>= Ds yj/, the integral just considered is equal to — k(iffB — ^/A ),

and — k times the difference between the values of \p on two

right cylindrical surfaces of flow gives the amount of flow

across the unit height of so much of any cylindrical surface

which cuts the plane of xy at right angles as is included

between the given surfaces of flow.

261. Prove that

:

(a) If rx , r2, r3 ,
• •, r

n
are the lengths of the radii vectores

drawn from any point P to any n parallel axes, and if 8U

62 , 6Z ,
• , 6n are the angles which these radii vectores make with

a fixed line in the plane of xywhich is perpendicular to the axes,

<I»
= A 1 logr, + A2 logr2 + A z logr3 + \- A n log rn ,

$ = A XQ X + AA + A z63 + + A nBn

are conjugate solutions of Laplace's Equation.
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(b) The equation ij/ = c' represents for each value of c' a

cylindrical surface which passes through all the axes.

(c) For very large values of c, the equation
<f>
= c represents

as many closed cylindrical surfaces, each surrounding one of

the axes, as there are positive terms in the expression for </>.

(d) For very large negative values of c, the equation
<f>
— c

represents as many closed cylindrical surfaces, each surround-

ing one of the axes, as there are negative terms in
<f>.

(e) If %A = 0, no one of the cylindrical surfaces \p = c' ends

at infinity.

(/) The value of I Dn <f>
ds taken around any closed curve

in the plane xy which surrounds the j\X\ axis and no other is

equal to the change made in ij/ by going around the curve, and

this is 2ttAj.

((/) However the axes may be distributed and whatever

values may be assigned to the A's,
<f>

represents the potential

function corresponding to a uniplanar flow of electricity *

within the substance of an infinite conducting lamina, either

thick or thin, when cylindrical holes, on the curved surface of

each one of which <j> is constant, are cut through the lamina

so as to remove all the axes, and if the curved surfaces of

these holes are kept at potentials equal to the values of
<f>
on

them. This is practically the case of a very large thin sheet

of metal touched at certain points by the ends of wires con-

nected with the poles of batteries.

(Ji) If in the value of
(f>

there is an even number (2 m) of

terms, half of which are positive and half negative, and if,

moreover, all the A's are numerically equal, we have the case

in which m similar pieces of wire connected with the positive

pole of a battery touch a thin sheet of metal in m places, and

in similar pieces of wire connected with the negative pole of

* See papers by Foster and Lodge in the Philosophical Magazine for

1875 and 1876.
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the battery touch the metallic sheet in m other places. In

this case, if Px and P2 are any two points in the metal, the

resistance of so much of the sheet as lies between the equipo-

<Pp
— <pp

tential surfaces on which P, and P2 lie is ,.

2
.
—=-^i when 8 is2

2 irAnkS

the thickness of the lamina, and k its specific conductivity.

(i) If
<f>

consists of two terms the coefficients of which are

numerically equal but opposite in sign, we have the case of a

thin sheet of metal touched at two points by the two poles of

a battery. Here the curves in the plane xy, for which \p is

constant, are circles (Fig. 59) the centres of which are on the

line which bisects at right angles the line which gives the

points where the battery electrodes touch the sheet.

Show that this value of
<f>

enables us to find the resistance

of a thin circular disc touched at two points on its circumfer-

ence by the poles of a battery, and hence, by superposition,

the resistance of such a disc touched by any number of pairs

of battery poles at different places on the circumference.

State other problems which an inspection of Fig. 59 shows

can be solved by the aid of the value of
<f>.

(j) If
<f>

is made up of an infinite number of terms with

coefficients all numerically equal, but alternately positive and

negative, and if the corresponding axes cut the plane of xy in

a straight line so that the distance between any axis and the

next is b, certain of the lines of force in the plane of xy will

be straight lines which cut at right angles the line on which

the traces of the axes lie. Show that by aid of this
<f>
we can

find the resistance of a lamina of breadth b, and of infinite

length when touched at two points opposite each other, one

on one edge, and the other on the other. Draw from general

knowledge a diagram which shall give the shape of the lines

of flow and the equipotential lines in such a lamina.

262. (a) Show that if in a thin conducting plate of indefi-

nite extent there are two sources and a sink, each of strength
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numerically equal to m, situated respectively at points A, B,

C, which lie in order upon a straight line, one of the lines of

flow consists in part of a circumference of radius VCA CB
drawn around C as a centre, so that the flow inside the

circumference would be unchanged if the part of the plate

outside it were cut away. In other words, if a circumference

be drawn in a thin conducting plane plate of indefinite extent,

the " image " in this circumference of a source, of strength m,

situated at a point P in the plane, is made up of a sink, of

strength m, at the centre of the circle, and a source of the

same strength at Q, the inverse point of P with respect to

the circumference.

Show that if a sink be regarded as a negative source, and if,

inside a circumference drawn in a thin plane conducting plate

of indefinite extent, there are sources at the points Al} A2 ,

A 3 ,
•-, A k , of strengths algebraically equal to mi} m.,, m8,

••,mk respectively, and sources of strengths algebraically

equal to — m1}
— m

2 ,
— m3 ,

••, — mk , at the corresponding

inverse points, then, if m
Y
+ ?n

2 + m3
-\-

•
• • -\-

m

k = 0, there

is no flow of electricity across the circumference.

If at a fixed point P in a thin plane plate (Fig. 127) there

is a sink of strength numerically equal to m, and at another

point P' in the plate an equal source, and if P'

be made to approach P as a limit and the prod-

uct m PP' be kept always equal to a given con-

stant fx, we have as a limit a " plane doublet " *

of strength /a, the axis of which is PX, the limit-

ing position of the straight line drawn from P
to P'. We shall find it convenient to represent sources and

sinks respectively by black and unshaded circles, and doublets

by circles half black and half unshaded. The black portion

* Kirchhoff, Pogg. Ann., 1845, p. 497. W. It. Smith, Proc. Ed. Roy.

Soc, 1869-70. Foster and Lodge, Phil. Mag., 1875. Minchin's Uniplanar

Kinematics, p. 213. Peirce, Proc. Am. Acad, of Arts and Sciences, 1891.
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of a doublet circle indicates the directions in which there is

a flow away from the point where the doublet is situated

;

the unshaded portion indicates the directions from which

there is a flow towards this point. The axis of a doublet

bisects both the black and unshaded portions of the doublet

circle. Show that if P be used as origin and PX as axis

of abscissas, the velocity potential function due to the doublet

is
<f>
= ixx -

, and the flow function is \p = Ml
If

x2 + >f
'

x2 + f
x + yi = z, these are respectively the real part and the real

factor of the imaginary part of the function The

equipotential lines and the lines of flow are circles (see

Fig. 128) touching the axes of y
and x respectively at the origin.

A "plane quadruplet" is

formed of two equal and oppo-

site plane doublets in the same

manner that a doublet is formed

out of a source and an equal

sink. An " octuplet " is formed

in a similar way of two equal

and opposite quadruplets, and

so on. We may use the word
" motor " to denote in general a

source, a sink, a doublet, a quad-

ruplet, or any other combination of sources or sinks at a

single point.

(b) The upper circle in Fig. 130 shows the plane quadru-

plet formed by combining the two plane doublets indicated in

the lower part of this diagram. Show that the flow function due

to a quadruplet of this kind at the origin is — 2 kxy / (x2 + y
2

)
2
,

while the flow function due to such a quadruplet as that

shown in Fig. 131 will be k (x2 — if) [ (x2 + y
2

)
2
. One of

these quadruplets is evidently equivalent to the other turned

Fig. 128.
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through 45°. Find the flow function due to an octuplet of

the kind shown in Fig. 132 at the origin.

(c) Show that the lines of flow due to a plane doublet may
be regarded as the lines of force due to a columnar magnet of

infinitely small cross-section.

(d) Show that the functions

112 6
logz, -> -j —j -)•••)

Z 22 Z? Z*

each of which is the derivative with respect to z of the one

which precedes it, yield a series of pairs of conjugate func-

tions which represent in order the velocity potential functions

and the flow functions due to a source at the origin, to a plane

C O .9 ®
•+-© C" 3 Q " <x-~-

e

Fig. 129. Fig. 130. Fig. 131. Fig. 132.

doublet at the origin, to a plane quadruplet at the origin, to a

plane octuplet at the origin, and so on.

(e) Show that if two plane doublets L and M exist together

at a point 0, and if the directions of the two straight lines OA,

OB show the directions of the axes of L and M respectively,

and the lengths of OA and OB the strengths of L and M on

some convenient scale, then the direction of the axis of the

resultant of L and M will be given by the direction, and the

strength of the resultant by the length, of the diagonal of

the parallelogram of which OA and OB are adjacent sides.

Plane doublets, then, can be compounded and resolved by com-

pounding and resolving their axes like forces or velocities.

263. If a charge + m concentrated at a point Q be made to

approach on any analytic curve a point charge — m at a fixed

point P on the curve, and if as Q approaches P, m is made to

increase in such a manner that the product of m and PQ is
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always equal to the constant /x, the limiting value of the poten-

tial function of the system is said to be due to a space doublet

of strength fx at the point P, and the axis of the doublet is

said to be the limiting position of the secant PQ. Show
that if r is the distance of any point P' from P and if 6 is

the angle between the axis of the doublet and PP', the value

at P' of the potential function due to the doublet is /x cos 6/r2
.

The force components along and perpendicular to r are

2fi cos 0/r3 and fx sin 6/r3
. The potential function (Section 69)

due to a doublet at the origin with axis coincident with the

x axis is lvx /V
3

.

The potential function due to a mass —m at the point (b, 0, 0),

a mass + m at the point (b + 8, 0, 0), a mass — ma/ (b + 8) at

the point (a? / (b + 8), 0, 0), and a mass ma/b at the point

(a2 /b, 0, 0), where b and 8 are smaller than a, has the value

zero on the spherical surface x2 + if -f- s
2 = a2

. Prove that if,

while a and J are constant, 8 be made to decrease indefinitely

and m to increase in such a manner that their product shall

always be equal to the given constant fx, the limiting value

of the potential function will be

ix (x- b)/[(x - b) 2 + if + z*f + afx [5 (a
2 + t/

2 + s2
)

- a2
:r] /[(bx- a2

)
2 + &2

(>
2 + z2

)]
f

.

If 5 = 0, this expression becomes fxx (cc
z — rz

) / a
3
/-
3
, where

r2 = x2 -\- y
2

-\- z2
. What problem in electrostatics can be solved

by the aid of this last function ? Is the image of a doublet

in a spherical surface another doublet ?

264. A straight wire of radius a which forms the core of a

cable of length I lies in the axis of x with one end at the

origin and the other at the point
(J,

0, 0). The whole of the

outside of the insulating covering of the cable and the core

at the point (I, 0, 0) are kept at potential zero, while the core

at the origin is at the potential V . Show that if c is

the capacity per unit length of the cable considered as a
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condenser, k the ratio of the conductivity per unit length

of the core to c, and h the rate of loss of electricity by leak-

age through the insulation per unit length of the cable when
the difference of potential of the core and the outside of the

cable is unity, the value of the potential function V in the

core satisfies the equation

D
t
V=k-D 2V-- V, and if V = we~ ht/c

, Dt
iv = k DJiu

Show also that in the final state, when V satisfies the equa-

tion D 2 V= hV/kc and is equal to V when x = 0, and to

zero when x = I, the value of V is given by the expression

[ Vl
• sinh j3x + I'e • sinh (3(1- a-)] /sinh (31, where (3

2 = h /kc.

Prove that any quantity of the form A
s

- e~ xt cos(?uc — S),

where \ = kn2
, satisfies the equation D

t
w — k Dx

2w, and that

if 8 = \ir, n = sir 1 1, where s is an integer, and

u4s
= — 2 ckirs • cos sir • J (hi2 + cks2

ir
2
) ;

the expression

w
x
= y A

s
e~ Kt sin nx vanishes when x = or x = I,

8=1

and, when t = 0, is equal to — sinh [3(1 — x) /sinh f3l. Hence

prove that the expression

V= 7
r
[sinh (3(l-x) /sinh pi - w1e-

ht,c
'\

gives the value of the potential function in the cable, if,

when the whole core is at potential zero and the farther end

permanently grounded, the point x = is suddenly raised to

potential VQ at the time t = 0, and kept there. The current

(C) at any point is given by the negative of the derivative of

the potential function with respect to x, divided by the resist-

ance p of the core per unit length, so that

p C = V [/3- cosh (3(l-x) /sinh (31

+ (stt / l)ire
~ h" cy s • A

s
e- xt cos nx~\.
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If the insulation is so good that h may be neglected,

V= V [(l -x) jl -2- cos sir •^(«"w sinrca;)/^],

rent is

( V /pl) (1 -f 2 • cos sir f e~ xt cos nx).

and the current is

265. The terminals of a battery of electromotive force E
volts and internal resistance b ohms are suddenly connected,

through a non-inductive conductor of resistance r—b ohms,

with the coatings of a condenser of k farads capacity. Show
that after t seconds the condenser is charged to potential

difference E volts, where E = EQ (1 — e~'
//cr

) = E()
T, and that

the charge on the positive plate is Ek units. If t = t
l kr,

T = 0.095 ; if t = £ kr, T= 0.181 ; if t = \ kr, T = 0.393 ; if

t = kr, T= 0.632 ; if t = 2kr, T= 0.865 ; if t = 3kr, T= 0.950 ;

4

ift = 5 kr, T = 0.993, and if t = 7 kr, T = 0.999.

Show that if the condenser just mentioned had been leaky,

its dielectric having a resistance of only R ohms, the charge

on the positive coating after t seconds would have been

^^ (1 - e
-^r + Ii^ krR

), and the final charge E kR/(r + R).

266. The coatings of a perfect condenser of 2 microfarads

capacity which are connected together by a non-inductive

resistance R of 2500 ohms are attached to the terminals of

a constant battery. After the condenser has become fully

charged, a bullet moving at a velocity of v metres per second

cuts first one of the battery leads at a point A and, 2 metres

farther on in its course, the resistance R at a point B. While

the bullet is moving from A to B the condenser loses 1 — 1/e

of its charge through R. Show that, e being the base of the

natural system of logarithms, v = 400.

267. If Sx and S2 , the plates of a condenser separated by a

poorly conducting medium of inductivity p. and of conductivity

X, are at potentials Vx
and V2 respectively, and if V denotes
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the potential function in the dielectric, the capacity of the con-

denser and the strength of the current that flows through the

dielectric, when the difference of potential of the plates is

unity, are

li [fVnV- ^i]/4tt (F2
- Fi) and A [J~D„ V- dS^/(V2

- V,).

Show that if the condenser be charged to such a potential

that each plate requires Q units of (positive or negative)

electricity and then, left to itself, the charge on one of the

plates after t seconds is given numerically by the expression

268. A Leyden jar loses 0.000001 of its charge per second by

conduction through the glass. The specific inductive capacity

of the glass is 8. Show that the resistance of a cubic centi-

metre of the glass is roughly 14 X 1017 ohms, having given

that one electrostatic unit of resistance is equivalent to

9 X 10" ohms. [M. T.]

269. A submarine telegraph cable 1885 miles long is formed

of a copper conductor — inches in diameter surrounded by a

gutta-percha coating ^ inch in diameter. The specific inductive

capacity of gutta-percha being 4.2, show that the capacity of

the cable is equal to that of a sphere of the same size as the

earth. [St. John's College.]

270. The outer coatings of two condensers A and B are put

to earth and their inner coatings are connected through a

galvanometer the resistance of which is 4000 ohms. The

capacity of A is 3 microfarads, that of B is 1 microfarad, and

the two condensers are charged to potential 1 volt. The

inner coatings of A and B are then put to earth simultane-

ously through resistances of 1000 and 2000 ohms respectively.

Show that the whole amount of electricity which will flow

through the galvanometer is one-seventh of the charge of the

smaller condenser. [St. John's College.]
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271. The outer coatings of two condensers A and B are

put to earth and their inner coatings are connected together

through a galvanometer of g ohms resistance. The capaci-

ties of the condensers are C and c respectively. Both are

charged initially to potential V and then have charges Q
and qQ. Show that if the inner coatings of the condensers are

put to earth simultaneously through non-inductive resistances

R and r, and if

X~rRC, X' = rRc, fx = cr(g + R), fi' = CR(g + r),

m = CcrRg, k? = 4 XX'+ (> - /a')
2

;^- XX' = CcrRg (g + r + R),

and the charge on A after t seconds will be

Q e-^+ ^ t/2m [(k + p + il' -2m/CR)ek" 2m

+ {k-)x-fx' + 2m/CR)e-kt/2m~\/2k.

Show also that the whole quantity of electricity which passes

through the galvanometer during the discharge is

Q (CR-cr)/C(g + r + R).

272. Prove that the potential and stream line functions due

to electrodes placed at certain points of a spherical current

sheet can be deduced directly from the solutions for the plane

current sheet which is its stereographic projection. If E^ and

E
2
be two electrodes on a complete spherical sheet, show that

the stream lines are small circles through E
x
and E

2 and the

equipotential curves small circles the planes of which pass

through the line of intersection of the tangent planes at E
l

and E2.

273. Verify the statement that the value of the potential

function at any point P of a solid homogeneous sphere of

specific resistance k, when a current of intensity C flows

between two electrodes A and B at opposite ends of a

diameter, is

Ck f 1 1 1 AN+ API
27r[_AP BP AB g BN+BPJ
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where N is the foot of the perpendicular from P on the

diameter AB. [M. T.]

274. The two concentric spherical surfaces which bound a

shell are kept at different constant potentials. Prove that if

the conductivity of the shell is a function of the distance

from its centre, the potential function within it satisfies the

equation Dr(i^k-

D

r V) — 0. Show that if w = l/r, this is

equivalent to the equation given on page 250.

275. Prove that if a quantity of electricity equivalent to Q
absolute electromagnetic units be discharged through a ballistic

galvanometer which has a suspended system the magnetic

moment of which is 31, the moment of inertia i", and the

reduced complete time of swing T
,

where G3I is the couple exerted upon the suspended system

in its position of equilibrium when a steady current of 1

unit passes through the galvanometer coil.

276. When a bar magnet of magnetic length 2 1 and moment

31 is placed in Gauss's A position with its centre at a dis-

tance d from the centre of a magnetic needle of length 2 A,

the needle is deflected through an angle a, such that

2Jytanq _ (/- I d—l d + l d + l

31 j\
3

v2
3 r3

3 r4
3

where rx
2 = (d — I — X sin a)

2 + A 2 cos 2
a,

r2

2 = (d — I + A sin a) 2 + A2 cos2
a,

r3
2 — (d + I — X sin a) 2 + X2 cos2

a,

r4
2 = (d + I + X sin a)

2 + X2 cos 2
a.

Show that if I = 4 centimetres, d = 40 centimetres, X = 0.5

centimetre, a= 20°, andH= 0.2, this formula makes m = 285.43,

whereas the approximate formula,

M = (<P- py tan a> yields m = 285.40.
Ji 2d
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277. A magnetometer is set up with the centre of its needle

vertically above a point in the axis of a horizontal metre rod

n centimeters from the centre. The rod is perpendicular to

the meridian. A homogeneous, short bar magnet is placed in

Gauss's A position with its centre first 50 — d centimetres

from one end of the rod and then 50 — d centimetres from the

other end, d being greater than n. If the deflections of the

magnetometer needle in the two cases are Sx
and 82 respec-

tively, the relative error made by computing M/H by means

of the formula

d3 (tan 8
Y + tan 82 ) /4 is [(1 + 3 e

2)/(l - e
2

)
3
] - 1,

where e = n/d.

278. The track upon which the carriage of the short deflect-

ing magnet slides in an apparatus for determining M/H in

Gauss's A position makes an angle with the east and west

line instead of being exactly perpendicular to the meridian.

Show that if the centre of the deflecting magnet is at a dis-

tance d from the centre of the needle, and if the deflection

changes from 8
Y

to — 8_> when the deflector is turned end

for end, „ . „ „ . „M d3 sin 8, d3 sin 8.,

H 2 cos (8, + 6) 2 cos (82 - 6)

ctn 8, — ctn 82
where tan 6 —

A

279. In order to obtain the temperature coefficient of a cer-

tain magnet, of moment M1} it is placed in a water bath at

a short distance from a magnetometer needle, its axis being

perpendicular to the magnetic meridian at the centre of the

needle. The needle is brought back to its zero position by a

compensating magnet placed on the opposite side of the

magnetometer at a distance d from it, its axis being also

perpendicular to the meridian at the centre of the needle.

The moment of the compensating magnet is MQ} its magnetic
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length 2l
Q

. When the magnet M
x
is heated a given number

of degrees, its moment decreases to My , and the magnet-

ometer needle is deflected over n divisions of the scale. The

scale distance being a, prove that

My M Aad '

where the deflection n is small.

Show that if ay is the angle through which M would deflect

the needle if My were absent,

1L — My' tan a . n——

—

—- = > where tan a = 77- •

My tan ay 2, a

280. Two magnets, m
x
and m

2 , are placed, with their

axes parallel to each other but opposite in direction, in

Gauss's B position with respect to a magnetometer. The

centre of m
x

is north of the magnetometer and the centre of

ra2 south of it. The distances (dy and dz) of the centres of

my and m2 from the centre of the magnetometer needle are

such that the needle is undeflected. Show that if fiy and fi2

are the strengths of the "poles" of ra
t
and m2 , and if 2l1} 2l2 ,

and 2 A are the "lengths" of m1} m2 , and the needle respec-

tively, fXy is to fi2 as

d t +
\ii + (d2 -\yy [i

2
2 + (d2 + \yy

is to ly <j
-——— —— +

281. A fixed bar magnet of magnetic length SN= 2 L and

of pole strength M, and a magnetic needle of magnetic length

sn=2l, of pole strength m, are in the same plane, with their

centres (C, c) at a distance r from each other. The angles

NCc and scC are equal to $ and
<f>

respectively. The lines
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ns, SN meet when produced in F. The perpendicular dis-

" tances of N, C, and S from ns are

r sin
<f>
— L sin (<£ + $), r sin <£, and r sin

<f>
+ L sin (<£ + 3>),

so that the length of the perpendicular dropped from c upon

iVrc is I sin (FnN) or Z [r sin $ — L sin (<£ + <&)]/2V?i. The

lengths of the perpendiculars dropped from c upon Sn, Ns,

and iSIs are

I [>• sin <£ + £ sin (<£ + *)]/<&!, / [r sin <£ - £ sin (<£ + <S»)]/iVjs,

and 2 [> sin
<f>
+ L sin (<£ + $>)] /$s.

Show that the sum of the moments, taken about c, of the

forces which tend to decrease
<f>,

is

D = Mm J= += L J r sin </>
- i sin (</> + $) I

r sin <j> + L sin (<£ + <f>) )>

or .3f?nZ <j /• sin <£-> r sin <£ ==5 + ==5 — ==
,S.s-

— L sin (<£ + <&)

i + i
+ ^.+ ill

_Nn Ns
3

Sn Ss
8

J J

Show also that Nn = r + L2 + P + 2 rZ cos <j>
— 2 rL cos <J>

2 £ cos <j>
— 2 L cos $-2I£eoB (* + •), or A_ = 1 [^ +

^cos
JW r3 |_

X2 -2ZZcos(^> + 4>) + /
3"|~ i

+
r

and that, if both I and X

are small compared with r so that only the first powers

of l/r and L/r need be kept, the approximate value

^[
1 +

3 (L cos <£ — I cos <J>)

]
may be used for Nn~3

. Treat-

ing Ns, Sn, and Ss in the same way, prove that if M and
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m are the magnetic moments of the magnet and the needle

respectively, we may nse for D the approximate value

M m [3 cos <I> sin cf>
— sin

(<f> + <J>)] / r3.

A better approximation can be obtained by keeping higher

powers of the ratios I/rand L /r. It is to be noticed that

3> = and $ = 90° correspond to Gauss's " Principal Positions."

282. Prove that the magnetic force at a large distance in

the prolongation of its axis, due to a bar magnet of moment
M, lies between 2 M/i\z and 2 M/r^, where ru r2 are the

distances from the two ends of the magnet.

283. If I, m, n are the direction cosines of the axis of a

small magnetic needle free to turn about its centre in a mag-

netic field, and if L, M, N are the components of the couple

which acts on the needle, D
t
L + DmM+ DnN= 0.

284. The accurately flat north end of one of two exactly

similar, uniformly polarized, perfectly hard bar magnets is

placed in close contact with the south end of the other, so

that the two form a long, uniformly polarized, straight bar.

What force is necessary to separate the magnets lengthwise ?

Compute the work necessary to separate into short elements

a long, uniformly polarized, magnetic filament.

285. Has a polarized rigid distribution an axis in the sense

that a straight bar magnet has a magnetic axis? Consider

first a bent, solenoidally polarized, magnetic filament.

286. Show that if a polarized electrical distribution were

enclosed in a thin " metallic skin connected with the earth,"

there would be induced upon the inner surface of the skin a

charge, E, of total amount zero. Show also that the effect of

the given distribution together with the charge on the inner

surface of the skin would be nothing at outside points, and

the effect at outside points of the given distribution the same

as that of a charge on the skin equal to the negative of E.

This charge is sometimes called " Green's Distribution" and

sometimes "Poisson's Surface Distribution."
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287. A solid soft-iron sphere is placed in a uniform magnetic

field. Show that about three times as many lines of force

pass through any closed curve within the sphere as through

an equal and parallel curve at an infinite distance.

288. In the case of a certain sphere of radius a polarized

parallel to the axis of z, I = A rn
~ s

, where r is the distance

from the centre, and the function, f, mentioned on page 192,

is r"
-3

. Show that the values of the potential function within

and without the sphere are

4:TrA xr*~ 3/n and 4 TrA anx /
'nr3 respectively.

Show that at the surface of the sphere the normal component

of the induction is continuous, and the tangential components

in general discontinuous. The tangential components of the

force are continuous, and the normal component in general

discontinuous, by the amount 4 ircr.

289. An uncharged conducting sphere of radius a is in a

uniform field of force F, and consists of two hemispheres in

contact with the plane of division perpendicular to the field.

Show that if the hemispheres are separated, each will have a

charge 3a2J/4ir.

290. The field inside a shell bounded by two concentric

spherical surfaces of radii a and b and uniformly polarized in

the direction of the x axis, has the potential function zero. Out-

side the shell the potential function is 4 Trxl(b3 — a3)/3r3
.

291. Show that - 3Xx/(jl + 2) + C, for values of r less

than a, and — Xx + a?Xx (p. — 1) / [r
3
(p. + 2)] -f- C, for values

of r greater than a, represent the potential function within

and without a sphere, of radius a, with centre at the origin,

composed of a homogeneous dielectric of inductivity fx, placed

in a uniform field in air of intensity X.

292. If a cylindrical surface which circumscribes an oval

body P touches it in a curve which is the perimeter of a

right section of the cylinder of area Q, and if P be uniformly

polarized in the direction of the axis of the cylinder to
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intensity I, the amount of matter in the positive distribution

on P's surface is Q • I. If an ellipsoid the semiaxes of which

are a, b, c, be uniformly polarized to intensity I in the direction

of the axis a, the moment, M, of the distribution is ^irabcl and

the amount of matter, m, on either the positive or negative

half is irbcl. The distance of the centre of gravity of either

the positive or negative part of the distribution from the

centre of the ellipsoid is M/2 m or f a. In what sense is

the "magnetic length" of a uniformly polarized sphere £ a?

293. In the case of any purely polarized distribution bounded

by a surface S, the volume and superficial densities are

accounted for by a vector I, of components A, B, C, such that

within S, p = — Divergence 2, and on S, a = /• cos (n, I). Show

that the polarization might be equally well represented by

any vector which differs from I by a solenoidal vector O every

line of which, if it meets S at all, lies wholly on S. Is the

induction within a hard magnet definite ?

294. Matter is distributed on the ends of a cylinder of

revolution of length I and radius a. The density within

the cylinder and the superficial density on its curved surface

are everywhere equal to zero. On one end a quantity 2 va 3

of matter is distributed with density o- = a?/r, where r is the

distance from the axis; on the other end a quantity — 2iraz

is distributed with density a = — 3r. Can you affirm that

the cylinder is not polarized solenoidally ?

295. Show that if, in the case of a polarization symmetrical

about the axis of z so that the lines of the vector I lie in planes

which pass through this axis, Z be the component of I parallel

to the axis of z and B the component perpendicular to the

axis, p = — [DrR + B/r -f DZ
Z~\. Consider the volume den-

sity in, and the superficial density on, a cylinder of revolution

of length I and radius a, the axis of which coincides with the

axis of z, when B = (r — a)f(z), and

Z= f (r)
-f\

(r - a)f\z) + (2r- a)f(z)/r\ dz.
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Assuming both f and if/ at pleasure, draw the lines of polari-

zation for the simple case which you have chosen.

296. A solenoidal vector, the components of which par-

allel to the columnar coordinates r, $, x are (a — r)f (x), 0,

(2 r — a)f(x)/r, represents the polarization within a magnet

bounded by the cylindrical surface r — a and the planes x = 0,

x = b. Determine the surface density a and draw two of the

lines of polarization when f(x) = x. Show that o- is zero

when/(cc) = s'm(Trx/b).

297. Show that a vector the components of which in the

directions of the columnar coordinates r, 6, x are

[/'<*) -F(r)l 0, -f(x)iF>(r)+F(r)/r-],

is solenoidal, and use this form to determine two or three

different polarizations within a bar magnet for which both

p and a- shall be everywhere zero.

298. Prove that an infinitely long cylinder of revolution of

radius a, the axis of which coincides with the z axis, when
polarized uniformly in the direc-

tion of the x axis, gives rise to the

potential function — 2 irla2x/r2 at

outside points. This is identical

with the potential function due

to a plane doublet of strength

2 irla2 at the origin. Within the

cylinder the resultant force has

the intensity 2 7r/and the direction

of the negative x axis, while the

induction has the intensity 2nrl

and the direction of the positive

x axis. The lines of induction

and the lines of force have the same direction without the

cylinder and opposite directions within. The lines of force

are shown in Fig. 133. Show that the normal component of

the induction is continuous at the surface of the cylinder.

Fig. 133.



450 MISCELLANEOUS PROBLEMS.

299. A solenoidally polarized distribution inside which the

lines of polarization are straight and parallel need not be

uniformly polarized.

300. Prove that the mutual potential energy of any two

small magnets at a distance apart large compared with their

linear dimensions is

Mx Mn (cos <f>
— 3 cos 1 cos 6

2) / r3
,

where M1} M2
are the moments of the magnets,

<f>
the angle

between their directions, and V 2
the angles which these

directions make with a line drawn from the centre of the

first to the centre of the second.

301. Show that for a simple magnetic shell in the form of a

circle, the direction of the vector potential at any point is per-

pendicular to a plane through the point and a normal to the

plane of the shell through the centre. [St. Peter's College.]

302. Prove that if m is the pole strength of a slender,

straight, uniformly magnetized magnet AB, a vector poten-

tial may be found which has at any point P the value

— (cos PAB + cos PBA), where p is the length of the per-

pendicular dropped from P on AB, produced if necessary.

Show that the direction of this vector potential is perpen-

dicular to the plane PAB. [M. T.]

303. Show that if V is the value of the potential function,

and F that of the vertical component of the magnetic force

at the earth's surface, the earth's field in outside space may
be considered as due to a surface distribution of density

— F/2tt — V/4: -n-a, where a is the earth's radius.

304. A magnetic needle is placed near an infinite plane face

of a mass of soft iron. Show that the reaction of the iron on

the needle may be represented as due to a negative image of

the needle in the plane face, reduced in intensity in the ratio

of (fx — l)/(/i- + 1), where ll is the permeability of the iron.

[St. John's College.]
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305. A magnetic element SJVof pole strength a and moment b

lies in a magnetic field which has the potential function V.

Show that if I, m, n are the direction cosines of the axis of

the element, the mutual potential energy of the element and

the field is \E=a{ Vs- Vs) = b(l-DxV+ m D
y
V+ n Dz V).

If the element is a rectangular parallelopiped, dx dy dz, taken

from a magnetized body in which the polarization is /,

b=Idx dy dz, \E=(A-DXV+B-DV
V+ C-D

z
V)dx dy dz,

and the mutual energy of the field and the magnet is the

integral of this last expression. If the magnet is a simple

shell of strength <£,

E = ^ff(l Dx V+ m D
y
V+ n Dz V) dS, or

— 3> I
J

\_X- cos (x, n) + Y- cos (y, n) + Z cos (z, n)~\ dS,

where the integration is to be extended over one face of the

shell.

306. A simple plane circular magnetic shell of radius r lies

in the yz plane, with its centre at the origin, in a magnetic field

symmetrical about the x axis. The intensity of the x compo-

nent of the field is F (x), where F is a continuous function,

such that F (go) = 0. Show that the force which urges the

shell is equal to 7ra
2$ • DX F. The centre of the rigid shell is to

move along the x axis to infinity while the plane of the shell

is parallel to the yz plane. Compute the work done on the

shell by the field during the motion. Has the field any com-

ponent perpendicular to the x axis ? Compute the work done

on the shell by the field, with the help of the method discussed

at the top of page 218. Show that a vector which has the com-

ponents F(x), yC/(>f+z>) -\y F> (x), zCf{tf+z*) -\z- F\x),

is solenoidal and is symmetrical about the x axis.

307. Show that if A', B', C are the components of magneti-

zation at the point (x 1

,
y', z') in any magnet, M', and if p

denotes the reciprocal of the distance between (x 1

,
y', z') and
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(x, y, z), the components at (x, y, z) of the ordinary vector

potential of the magnetic induction are

fff(B'.Dz,p-C'.D,P)dr',

fff(C'.Bx,p-A'.Dz p)dr',

fff(A' DvP ~ & DxP) dr'.

The scalar potential function of magnetic force is in the

same notation

J/JV Dx . p + B> I)
y :p + C" D, p) dr'.

If 31' is a simple shell of strength <£', the x component of

the vector potential function can be written in the form

<J>'

J J
\Dz.p cos {y, n) — D

y,p cos (z, ri)]dS'. [Maxwell.]

308. Show that if r is the distance from a fixed point, the

line integral around any closed curve s of the tangential

component of the vector (1/V, 0, 0) is equal to the surface

integral, taken over any cap S bounded by s, of

Dz (1 Jr) cos 0, 7i) - D
y (1 /r) cos (z, n),

where n is a positive normal to the cap. Obtain two similar

equations with the help of the vectors (0, 1/r, 0), (0, 0, 1/r),

and prove that the components of the vector potential function

of the force due to a magnetic shell of strength 3> in air are

$ I [cos (x, s) /r] ds, <I> I [cos (y, s) /r\ ds,

<& I [cos (z, s) • /r~\ ds,

taken around the perimeter of the shell.

If (L, 31, N) are the curl components of a vector (Fx , Fy, Fz),

the latter is a vector potential function of the magnetic field.
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Show that the mutual potential energy of a magnetic shell of

strength <£' and the field is - <£' C(Fx dx' + Fy
dij + Fz dz'),

taken around the shell in positive direction. If the external

field is caused by another shell of strength <!>, we have

Fx = * ([cos (x, s) I r] ds, F
y
= <$>( [cos (y, s) • J r\ ds,

Fz = & ( [cos (z, s) I r] ds,

where the integrals are to be taken around the perimeter s of

the second shell, and the mutual potential energy of the two

shells is

— <£<£' I I [cos (x, s) cos (x, s') + cos (y, s) cos (y, s')

+ cos (z, s) • cos (z; s')] [ds ds' /r]

or — 4><£' I I [cos(tZs, ds')/r~\ ds-ds'.

The integral by which — <!><£' is multiplied has been called

the " geometric potential " of the two curves.

309. Prove in two different ways that the energy of the

surface distribution o- = I-cos(n, I), on a sphere of radius a

uniformly polarized to intensity 7, is 8 7r
2/2a3

/ 9. In what

sense is this the energy of the distribution? Give a sum-

mary of the reasoning of Lord Kelvin in his paper " On the

Mechanical Values of Magnets."

310. If a polarized distribution is placed in a field of force

which has a potential function V, the mutual potential energy

of the field and the distribution as a whole is

f f VI- cos (n, I)dS- f f f V(DXA + Dy
B + DZ C) dr,

where the first integral is to be extended over the surface of

the distribution and the second through its volume. Show

that this energy is equivalent to

f C C'(A-DxV'+ B •D
yV+ C-Dz V)dr.
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311. A sphere of radius a uniformly polarized to intensity

/ is placed in a uniform field of force of intensity X. Show-

that if the directions of the field and the polarization coincide,

the mutual potential energy of the sphere and the field is

— 4:7ra
3IX/3. What would be the energy if the direction

of the field and polarization were opposed ? It would be zero

if these directions were perpendicular to each other.

312. If V is the potential function due to a volume distri-

bution of density p x in a region Tu and a surface distribution

of density o^ on a surface Su and if U is a continuous function

4tt C C CuPl .dTl + ±Tr C C Ucr^dSy

=fff(DxU-DxV+Dy
U.DyV+Dz

U.Dz V)dT

^U-D.V-dS,//'
where the volume and surface integrations in the second

member are to be extended respectively through and over a

spherical surface of radius r so large as to include Tx and Sx .

If U vanishes at infinity, the last surface integral vanishes

when r is infinite. Use this equation to compute the mutual

potential energy (— % ira
zIX) of a sphere of radius a, uni-

formly polarized to intensity / in the direction of the x axis,

and a uniform field (X, 0, 0), in which it lies. In this case the

value of the last term in the second member is — 32 7r
2a3IX/9.

313. At a distance of 10 centimetres from the middle point

of a wire 140 centimetres long, the magnetic force due to a

current in the wire would be within one per cent of that

which would be produced if the wire were infinite.

314. Show that the magnetic force within a square circuit

(of side = 2d) at a point midway between two sides, at a dis-

tance x from the centre of the square, is

2C
[
Vfl 2 + (a-g) a ^/a2 + (a + xy

a\ a — x a + x
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Draw a curve which shall represent this force as a function

of x. What if x is greater than a ? Show that the force at

a point distant y from the plane of the circuit in the axis of

the circuit is

\y
2 + a2 V2a 2 + /j

Show that if a current of A amperes be sent through a

tangent galvanometer which has a square coil consisting of

n turns of wire,

5 a,H tan S
A

2 V2

315. If a circuit carrying a steady current C is a regular

polygon of 2 n sides, and if a is the radius of the inscribed circle,

the magnetic force at the centre is (4 n C/ a) sin (77-/2 n).

316. The plane of the ring of a tangent galvanometer which

consists of a single turn of fine wire is the vertical plane of

the magnetic meridian. Show that if a current of A amperes

be sent through the ring, the strength of the field at a point

irr
2AP in its axis at a distance z from the centre is —— — >

5 (z* + H)«

where r is the radius of the ring. Hence prove that if the

centre of the galvanometer needle is at P, the deflection will

be given by the equation A = [ 5 (z2 + r2) -fftan a] /-n-r.

317. Show that at a point on the axis, at a short distance

(z) from the centre of a tangent galvanometer coil of radius

a, the intensity of the electromagnetic field due to a steady

current passing through the coil is to the intensity of the

/ 3z2\
same field at the centre as ( 1 — 7r~, ) to 1, nearly.

V 2 a-;

318. Show that if around a ring formed of a piece 2 b centi-

metres long of a thin metal tube of inside radius a and of

outside radius a + 8, a steady current of strength 2bhC uni-

formly distributed through the conductor could be sent, the
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strength of the resulting electromagnetic field at the centre

of the axis of the coil would be — . What would this
-y/b'

2 + a2

intensity become if the tube were to shrink indefinitely in

length while the whole current around it remained unchanged ?

Assuming that when x is small

(l + a;)-^l-ia;+|x2 -
T̂ M ,

b2

deduce from your results the usual correction, — -—
-, for the

— Ob"

breadth of the coil of a tangent galvanometer.

319. The vertical coil of a tangent galvanometer makes a

small angle 8 with the east and west line through the centre

of its needle. If a steady current, of such strength that it

would cause a deflection of 45° if the plane of the coil were

in the meridian, be now sent through the coil, it will cause a

deflection of ^8.

320. The centres of the rings of a two-coil tangent galva-

nometer are 20 centimetres apart and the mean radius of each

of the coils is 20 centimetres. The centre of the needle

is on the common axis of the coils halfway between their

centres. When the instrument is properly set up in a cer-

tain place a steady current of half an ampere sent through

both coils in series causes a deflection of 45°. Show that if

there are 20 turns in each coil, H= I677-/IO (5)-.

321. A tangent galvanometer has two equal vertical coils, each

of mean radius r, placed at a distance apart of 2 r (V4 — 1) .

The short compass needle is placed midway between the coils

on their common axis. Show that the needle deflection caused

by any current which passes in the same direction through

both coils in series will be the same as if the same current

passed through only one coil, while the centre of the needle

was at the centre of this coil.

322. Show that if the vertical coil of a tangent galva-

nometer makes an angle 8 with the meridian, and if a current
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of C amperes be sent through it first in one direction and then

in the other, causing deflections of 8^ and S2 respectively, then

TrfiC _ sin 8 X
sinS2

5rH~ cos (0 - 8j)
~ cos (0 + 82)

'

and tan $ = £(ctn S2 — ctn 8{), where r is the mean radius of

the coil and n the number of turns of wire on it.

323. From a thin, flat sheet of copper of thickness 8 is cut

a ring of inside radius a — d and outside radius a — d. If a

steady current of strength 2 C8d could be made to circulate

around this ring, what would be the strength of the electro-

magnetic field at the centre of the ring? What would this

strength become if the ring were to shrink to a fine wire ring

of radius a concentric with the original ring without change

of the current strength ? Assuming that when x is small

deduce from your results the usual correction (one-twelfth of

the square of the ratio of the depth of the coil to its mean
radius) for the depth of the ring of a tangent galvanometer.

324. A certain galvanometer coil is wound upon a large

square frame. When the vertical plane of the coil makes an

angle $ with the meridian a certain current C sent through

the coil deflects the short needle through an angle £ towards

the coil. Show that C would cause the same deflection if the

coil were in the meridian.

325. On the axis of a fixed circular ring of wire which car-

ries a steady current C is a molecular magnet of moment m.

Show that if the axis of the magnet makes an angle $ with

the axis of the ring the moment of the couple which tends to

diminish 6 is (2 irmC sin 3
<£ • sin 6) /a, where a is the length of a

radius of the ring and
<f>

the angle subtended at the molecule

by the radius.
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326. A perfectly flexible wire fastened at two fixed points

carries a current of given strength. Prove that in a uniform

field of magnetic force it will tend to assume the shape of a

helix. [M. T.]

327. A very long straight wire which carries a steady cur-

rent C is at right angles to the plane of a circular ring of

radius a which carries a current C. The ring is free to turn

about the diameter which intersects the straight wire. Prove

that the couple tending to turn the ring is 2irCC'a2 /r or

2ttCC't, according as a is less or greater than r, the distance

of the wire from the centre of the ring. [Trinity College.]

328. A plane ring can move about a diameter parallel to an

infinite straight wire, the distance of which from the centre

of the ring is equal to the radius of the latter. Show that

when currents CC are sent through the two circuits the

couple tending to turn the ring is

4 7rCCa(cos
<f>
— cos? <f>/ V2 cos <£),

when a is the radius of the ring and cf> the acute angle which

the normal to its plane makes with the perpendicular to the

straight wire drawn from the centre. [31. T.]

329. If a layer of n' turns of wire carrying a steady current

of unit strength and forming a coil k' be wound uniformly on

such a ring coil, k, as that shown in Pig. 77, the induction due

to the current in k' has at every point within the coil the value

2 fxn' J r. The integral of n times this quantity taken over a

cross-section of the ring R on which k is wound gives the

mutual inductance of the two coils. Show that if R may be

regarded as formed by revolving a circle of radius a about a line

in its plane, distant b from its centre, the value of the integral

is 4 irfinn' (b — Vi2 — a-). If R were formed by the revolution

of a rectangle with sides of length b parallel to the axis and a

perpendicular to it, the value of the integral would be

o i i, i
c -\- a [2

2 nn')ib log <—

,

c — a/2
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where c is the distance of the centre of the section of the

ring from the axis. Show that the self-inductance of k

might be found for the two cases just mentioned by putting

n equal to n' in the expressions for mutual inductance, and

imagining k' to move into coincidence with k.

330. A thin tubular conductor of circular section has a

radius a and carries a steady current C; prove that the

mechanical action between the different portions of the

current produces a transverse tension in the tube, of intensity

C 2 /ira. [St. John's College.]

331. The ponderoraotive forces which act upon a portion

A
X
A

2
of a circuit which carries a steady current of strength

C in the field of a magnetic pole of strength m at the point 0,

have a resultant moment M about any straight line OZ drawn

through 0. Let PP' represent an element As of the circuit

;

let OP= r, OP' = r+ Ar, ZOP = 0, ZOP' = + A0, (r, s) = 8,

and denote the angle between the planes ZOP and POP' by </>.

The fundamental equation of spherical trigonometry yields

cos (6 + Aff) = cos 6 • cos POP' + sin 6 • sin POP' cos
<f>,

and it is evident, since A# is not greater than POP', that the

limit of the ratio of (cos A# — cos POP') /sin POP' is zero,

so that cos <£ is approximately equal to — sin A0 /sin POP'.

The Theorem of Sines applied to the plane triangle POP'
yields the equation PP' / OP' = sin POP' /sin OPP'. Prove

that the moment about OZ of the elementary force exerted

by the pole upon As may be written,

AM= mC sin 8 cos <£ • sin 6 As/r,

and that for purposes of integration this is equivalent

to — mC sin 8 dO, so that M = mC (cos 6.2
— cos 6X), where

X
= ZOA

x , 62
= ZOA

2
. If 6

X
= $2 , as in the case of a closed

circuit, M is zero. Consider the possibility of rotation about

a straight line, of a closed circuit bearing a steady current C
under the action of any number of magnetic poles on the line.
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332. In the case of a solitary linear circuit s carrying a

current C in its own magnetic field, all the lines of force are

closed curves threading the current, and the line integral of

the force taken around any one of these curves is A-n-C. The

equipotential surfaces fill all space ; each of them is a cap

bounded by the circuit, and the surface integrals of the induc-

tion taken over these caps are all equal. Use the reasoning

of page 270 to show that since

4ttC= CHds, andj9= CCB-dS,

4ttC> = C f Ch- B-dT,A ttC(p + dp>)= C C Cff(B + dB)dr
00 00

4 VC dp= C f CH- dBdr,

where dp is the increment of the induction flux through the

circuit, due to a small increase in the current. Show from the

equation E — dp/dt = rC that, besides the energy dissipated

in heat, the generator in a solitary circuit must furnish an

amount of energy C dp while the current in the circuit is

changed from C to C + dC, and that the difference dW
between this quantity and the increment dT of the electro-

kinetic energy shows the amount of energy which is used in

some other way than in increasing this energy.

Prove that

dW= ^- ffT[2 H- dB - (H- dB + B • dH)] dr

and use this expression to compute (see page 291) the energy

loss due to hysteresis during a cycle of magnetization.

333. The distance between the axes of two infinitely long,

straight, round, non-magnetic wires (Av J 2 ) of radius a and

parallel to each other is b. One wire carries a steady current

C, uniformly distributed, in one direction, and the other wire

an equal current, uniformly distributed, in the other direction.
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If the cross-section of each wire be divided into n elements of

equal area, every element, dS, is the section of a filament which

carries a current CdS/-n-a
2

. Imagine a circuit made up of a

certain filament F
Y
in Av distant i\', r

x
" from the axes of the

wires, and a filament F
2 in A2 distant r

2 , r
2
" from these axes.

The flow of induction through this circuit due to A
x
is

I -^-dr + I —-dr or 2 CUa2 - r
1

' 2)/2 a2 + log (r27a)]
%/rj' Cb %/

a

T

and that due to A 2 is 2 C[(a2 - r
2

" 2
)/2 a2 + log^/'/a)]. If

the filaments are symmetrically situated, r
2

' = 7-/', r-i = r2
" and

the induction through the circuit is

4C[(a2 - r
1

' 2)/2a2 + log «'/«)].

The electrokinetic energy of a set of circuits is equal to

one-half the sum of the products formed by multiplying the

induction through any circuit by the current in that circuit.

The contribution which the elementary circuit just mentioned

would make to the electrokinetic energy T is, therefore, one-

half the product of the induction through it and the current

which it carries, so that

T=—CC\1- r^/2 a2 - r
2

" 2/2 a 2 + log (r
2'/a)

+ \og{r<'/a)\dS,

where the integration is to be extended over all such elementary

circuits, that is, over the cross-section of either wire. We
may write for dS, either r/ • d)\' • dd

1
or r2

" dr
2
" d62 , at pleasure,

and we may use the first of these for the first, second, and

fifth terms of the integrand, and the second form for the other

terms. The limits of 6 will be and 2 ir, and those of r/ and

r^', 0*and a. Assuming that, if m>n,

X log (m -f n cos 6) d$ = tv log \\ (m 4- Vm2 — n2

) \,
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show that T= C2
[£ + log(£r/a2

)] and that it makes no differ-

ence how the separate filaments of A
x
and A2 are combined

into elementary circuits. Show also that the inductance, per

unit of its length, of the circuit made up of the wires, is

2 log (b
2
/ a

2
) + 1. Prove that if the wires had inductivities

/i-! and [i2 and radii av a2, we should have

L = 2 /a log/^ojo*) + * 0*i + ti*

where fi. is the inductivity of the surrounding medium. [For

a discussion of the inductance of the circuit when the cross-

sections of the long parallel wires are of any form, the reader

is referred to A. Gray's Absolute Measurements in Electricity

and Magnetism, Vol. II, p. 288, and to Drude's Physik des

Aethers, p. 207.]

334. Obtain Heaviside's expressions {Electrical Papers,

p. 101) for the coefficients L1}
L2 , M, of self and mutual

induction for two parallel wires of length I, radii av a
2 , and

inductivities fiv /x2 , suspended parallel to each other and to

the earth at heights hv h2
and at a horizontal distance d

apart, if the current is supposed to return through the earth

in a thin sheet, and if h
t
and h2 are small compared with I.

These expressions are

LJl =^ + 2 log (2 hja,), L2/l = \fx, + 2 log (2 h2/a2),

ir// i
<? + ^i +W

335. Show that if K and fx represent the dimensions of

electric and magnetic inductivities respectively, the dimen-

sions of ^ in terms of L, M, T, K are L~2T2K~\ while those

of K in terms of L, M, T, fi are L~'2T 2

fj,~
x
. Show that the

dimensions of electric quantity in the two systems are

L%MhT~ 1Xi
, LiMi

l
Ti

; those of magnetic quantity LhM4K~\
LlMhT~ X

fx
h

; those of electric field strength L~ iMhT~ 1K~ i
,

LhMhT~ 2

fx
h

) those of magnetic field strength L^MlT~ 2Kh
,
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Z,-iM*T~ l
fjL~

h
; those of electric potential LhMhT~ lK~ h

,

l}MhT~\ h
; those of magnetic potential L*MlT~ 2

K*,

Z*af*T~y-*; those of conductivity LT~ l

K, L^T/T 1

; those

of electric current L^3fiT~2Ki
, Z*Jf*T

_
y~*> those of

capacity LK, L~ T"H-~ ; those of inductance IT T K~~ , Z/i

;

those of magnetic moment Ii*M*K~*
}
l}M*T~ /**; those of

electric surface density L' hMkT' lK h
, L~hUh

fjT
k

-

336. A rigid plane wire of any shape is free to turn about

a point in its plane distant a and b from the nearer and

farther ends of the wire. The plane of rotation is perpen-

dicular to the lines of a uniform field of induction of intensity

B. Show that if the wire forms part of a circuit which

carries a current C, the moment about of the forces which,

acting on the wire tend to set it in motion, is \BC{b2 — a2
).

If the wire rotates with angular velocity w, it cuts the lines

of the field at the rate ^ wB (b2 — a2
).

337. A copper disc perpendicular to the lines of a uni-

form magnetic field is spun in its own plane about a fixed

point and is continuously touched at two points by the

fixed electrodes of a galvanometer. Show that the current

in the galvanometer is proportional to the difference of areas

swept out by the radii vectores from to the points touched.

[M. T.]

338. A magneto-electric machine, driven at a constant rate,

sends current through the coil of another magneto-electric

machine used as a motor. When the second machine is held

still, a power JFis used in the circuit. Prove that the maximum
power obtainable from the second machine is % W, and that

then the first machine absorbs % W from the engine which

drives it. [M. T.]

339. Show that (1) if a conductor be moved along a line of

magnetic induction parallel to itself, it will experience no

electromotive force
; (2) if a conductor carrying a current be

free to move along a line of magnetic induction, it will experi-

ence no tendency to do so
j (3) if a linear conductor coincide
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in direction with a line of magnetic induction and be moved

parallel to itself in any direction, it will experience no electro-

motive force in the direction of its length
; (4) if a linear

conductor carrying an electric current coincide in direction

with a line of magneti;* induction, it will not experience any

mechanical force. [Maxwell.]

340. Discuss the following statements of different writers :

" When an electromotive force E is suddenly applied to an

inductive circuit of resistance R, the counter-electromotive

force of self-induction is initially equal to E and the current

caused by E is initially zero." '•' When the current is rising

a portion of E, \\i.,RC, is employed in maintaining according

to Ohm's Law the current C already established ; the other

portion of E, viz., L D
t
C, is employed in increasing the electro-

magnetic momentum LC" "At the beginning the whole of

the electromotive force acts to increase the current." " If a

current is established in a coil and the coil left to itself, short

circuited without any electromotive force to maintain the

current, then as the decaying current reaches a value C the

electromotive force RC is equal to — L -D
t
C."

" The reactance does not represent the expenditure of

power, as does the effective resistance, r, but merely the

surging to and fro of energy. While the effective resistance,

r, refers to the energy component of the applied electromotive

force or the electromotive force in phase with the current, the

reactance, x, refers to the wattless component of the electro-

motive force or the electromotive force in quadrature with

the current."

341. Compare the differential equation of motion of a body

of mass L, moving with velocity C, under the action of an

impressed force E, which tends to increase the velocity, and

a resistance rC, proportional to the velocity, with the equa-

tion which the current in an inductive circuit must satisfy.

Why should LC in the electrical case be called the "electro-

magnetic momentum " ?
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342. Given that

I sin pt • sin (pt + a) • dt

= [_(2pt — sin 2pt) cos a — cos 2pt • sin a] /4^?,

show that the average value for any number of whole periods

of the product of two simple harmonic functions of the same

period is half the cosine of their phase difference. Show that

the activity, or " power," of a harmonic alternating current

is equal to the product of the effective current, the effective

electromotive force applied to the circuit, and the cosine of

their difference of phase.

343. Two coils, the resistances of which are r
1}

r2 and the

inductances Lv L2 , are in series in a simple circuit carrying a

harmonic current. Is the impedance of the two taken together

equal to the sum of their impedances ?

344. The ends of the coil of an electromagnet are subject

to a rapidly alternating electromotive force. Show that the

energy expended in the battery when a given amount of heat

is produced in the wire will be greater than would be the

case if the electromotive force were constant in direction

and magnitude.

345. Show that if a number of linear circuits s1} s
2 , ss , •,

carrying currents Cu C2 , C3,---, exist together, and if the total

flow of induction through sk be denoted by pk, the electro-

kinetic energy, T, may be written \^Ckpk and pk
— \Dc

k
T.

The quantity pk is sometimes called the electrokinetic momen-

tum of sk. Compare this result with the equation, pk= Dck
T,

given on page 296.

346. Show that the total flux of electric current induced in

a thin circular coil of radius a and resistance R, made up of

n turns of wire, when the coil is turned through two right

angles in the earth's uniform magnetic field H, is 2 ira^nH/ B.

Show also that if a sphere of soft iron of the same radius a

be pushed completely into the opening in the coil, the flux is

increased in the ratio of 3 fx/(fx + 2). [St. John's College.]
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347. A, B, C are three points in order in a simple circuit

carrying an alternating current ; between A and B is a non-

inductive resistance B, and between B and C an unknown

inductive resistance. The effective difference of potential, as

measured by a voltmeter between A and B, is E1} that between

B and C is E2 , and that between A and C, Ez. Draw a diagram

for this problem something like that shown in Fig. 107 and

prove that the phase of the impressed electromotive force

between A and C is in advance of the phase of the current by $,

where cos 6 = (Ej 2 + E3
2 — E2

2
)/2 EXEZ , and that the activity in

the circuit between A and C is (Ei> + E3
2 - E2

2

)
/2E. What

is the impedance between B and C ? What is the " Three

Voltmeter Method " of measuring the power in an alternating

circuit ?

348. A 100-volt lamp the resistance of which is 100 ohms

is to use current from the mains of an alternating system

of frequency 50, which have an effective potential differ-

ence of 200 volts. Show that it is better to use in series

with the lamp a choking coil of negligible resistance but of

such self-inductance [v3/ir] as shall reduce the current to

the proper strength rather than a simple 100-ohm resistance

coil. Show that while the saving is 100 watts, the lag of

current, when the choking coil is used, is 60°.

349. The poles of a condenser of 5 microfarads capacity

are joined by a resistance of 100 ohms the self-inductance

of which is 0.5 henry. The current in the simple circuit is

25 sin 500 t. Show that the maximum impressed electro-

motive force is about 4500 volts and the maximum potential

difference between the plates of the condenser 10,000 volts.

350. A condenser of 2 microfarads capacity charged to 100

volts, is to be discharged through a circuit of resistance 10

ohms and self-inductance 0.05 henry. Show that the dis-

charge will be oscillatory, with a period of about 0.002 second.

After ten oscillations the amplitude will have about 0.135 its

original value.
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351. An alternating electromotive force of frequency 200

and effective intensity 200 volts, applied to a certain inductive

circuit of 5 ohms resistance, causes an effective current of 10

amperes to flow through the circuit. Show that the current

lags behind the electromotive force by about 75° 30'. What
would be the effect of introducing a condenser of 41 micro-

farads capacity into the circuit ?

[For examples of resonance the reader is referred to

Professor Pupin's papers in the American Journal of Science,

1893.]

352. A condenser is discharged by means of a circuit which

contains a hoop revolving in a magnetic field. Show that the

discharge current satisfies an equation of the form

L-D?C + RDt
C+ C/K= M- sin pt

Show also that the cases KB?<±L, KR2 >±L, KLp2 = 1

should be discussed separately. [St. John's College.]

3o3. An alternating electromotive force the maximum value

of which is 1414 volts and the frequency 200 /V is applied to

the extremities of a circuit of resistance 300 ohms and of

inductance 1 henry. Show that the reading of an ammeter

in the circuit is 2.

354. An alternate current the frequency of which is

10,000/2 7T passes through a telephone of self-inductance 0.01

henry. The resistance of the circuit, which is otherwise non-

inductive, is 10 ohms. Show that if the resistance of the cir-

cuit were increased seventeenfold, the current would be reduced

about one-half. What would be the effect of introducing into

the circuit a condenser of capacity 1 microfarad?

355. A simple harmonic electromotive force, the maxi-

mum value of which is 400 volts, is applied to an inductive

circuit, the resistance of which is 2 ohms ; the counter,

electromotive force has an average value of 200 volts. Show

that the power supplied to the circuit is about 26.8 horse

power.
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356. Show that the equations given on page 307 for the

discharge of a condenser charged to potential Q /k may be

written in the forms

C=—2Q - e
- rl/2L

- sin mt- /^4kL- /cV2
,

Q = 2Q . e
- rt <"2L

- VkL sin (mt + a) • / V4 JeL - k 2r%

where ra2 = (4 hL - k2r2
)/<± k2L\

and tan a = 2 Lm/r.

357. Two conducting circuits A CB and ADB in multiple arc

(Fig. 108) carry the current M cos pt from A to B. Prove

that if r and s are the resistances of the two branches and L,

their inductances, and if p is large, the heat generated per

second in ACB is to the heat generated per second in ADB as

rs to (LY + Is) •

358. ABCD is a Wheatstone net. A coil of inductance L
is inserted in AD, and the points A and D are connected to

the terminals of a condenser of capacity K. Show that if

RK2 = L, where R is the resistance of the arm AD, no elec-

tricity will pass through a galvanometer in the arm BD when

the circuit is closed. [M. T.]

359. Two similar alternators, each of internal resistance r

and self-inductance L, driven on a single shaft, are joined up

in series with an exterior non-inductive resistance 2 r ; the

electromotive forces of the generators are Em sin (pt + 6),

Em sin(^ — 6), and their sum is 2 Em cos 6 sin j-tt. Show
that the current in the circuit is

Em cos 6 sin (pt - 8) /V(/- + ru)
2 + Ly,

or G • cos 8 • sin (pt — 8), where tan 8 = Lp / (r + ?•„). Of the

Avhole power, EmG • cos 2 6 cos 8, in the circuit, the first machine

furnishes the quantity, ^ EmG • cos 6 cos (6 + 8), and the second

machine the greater quantity, •£ Em G- cos 6 cos (6 — 8). Dis-

cuss the case where these quantities have opposite signs.



MISCELLANEOUS PROBLEMS. 469

Show that if the machines were driven at practically the

same speed by independent motors, the first would tend to

increase its lead until the electromotive forces were opposed.

360. If two similar alternators, each of internal resistance r

and inductance L, and driven at the same speed, be joined up

in parallel to form a single generator used to send a current

through an outside non-inductive resistance R, if C
x
and C2

are the currents which pass through each of the machines,

and if their electromotive forces are e x
= e • sin (pt + a),

e2 = eQ sin (pt — a) ; we have

e l -L- Dt
Gx
= d (r + R) + C2R,

and e 2 -L-Dt
C2 = C2 (r + R) + ClR;

or (r+R+L-D
t
)Cl +RC2

= e l ,

and RCX + (r + R +L D
t) C2

= e 2 .

If we apply the operation (r +R + L D
t) to the first of the

last pair of equations and the operation R to the second, and

subtract one resulting equation from the other, we shall get

[(r+R+L-D
t)

2 -R 2]C\=(r +R+L-D
t
)e 1 -Re 2 ; a simi-

lar equation for C2 is easily found. Write down values for

Ci and C2 . Show that the leading alternator is doing more

work than the other and that there is a general tendency

towards synchronism. An interesting discussion of this prob-

lem may be found in Perry's Calculus for Engineers.

361. If a magnetic field which changes with the time has the

components X=m -sin.pt, Y=?i-sinj)t, Z = 0, the effect is

the same as if a field of constant uniform intensity Vm2 + n?

were rotating with constant angular velocity p.

362. If an alternating current C be divided at the point A
between two conductors of ohmic resistance rlf r2 , in which the

current strengths are Cx and C2 , C 2 =0^ + 2 CX C2 + C2
2 and

Mean value of C 2 = Sum of mean values of C 2
, C2

2
, and 2 CX C2 .

Show that the current in the main circuit, as measured by the

indication (/) of an ammeter in it, is not equal to the sum of
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the currents (71} In), similarly measured, in the two branches.

If one of the branches (r
x ) of the divided circuit is non-inductive,

the instantaneous difference of potential between its ends is

rxCx
and the instantaneous rate of expenditure of power in

the other branch is rx Cx
C2 \ the average activity in this latter

branch is rx times the average value of CX C2 . Show that the

power expended in r2 is \r
x
(P — I 2 — I2

2
). What is the

" Three Ammeter Method " of measuring power ?

363. Show that if u -f vi is a solution of the equation

L-D
t
C + rC=E

()
-e i (? t + a

\

v is a solution of the equation

LD
t
C + rC = E sin (pt + a).

Prove that the complete solution of this last equation is

Ae~rt/L + E • sin (jot + b)/ Vr2 + Up2
,

Avhere tan b = (r sin a — Lp • cos a) / (r • cos a + Lp • sin a).

364. Show that if u and v are solutions of the equations

L D
tC + rC =E

x
sin (pxt + ax),

L D C + rC =E2
sin (p2t + «,)

respectively, u + v is a solution of the equation

L D C + rC = E
x

sin (p x
t + a

x) + E2
sin (p2t + a2),

and write down the complete solution of this last equation.

Write down also an expression for the current in an inductive

circuit to which n simple harmonic electromotive forces of

given periods are applied.

365. Show that if u + vi is a solution of the equation

r-D
t
C + C/k= pE ei <*>t+a~>,

u is a solution of the equation

r-D
t
C+C/k =pE cos (pt + a).
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Prove that the complete solution of this last equation is

Ae~ t/kr + kpE sin (pt + /3)/Vl + r1^2k2
,

where tan (3 = (rpk sin a + cos a) / (rpk cos a — sin a).

366. Show that if u and v are solutions of the equations

r • D
t
C + C/k = A

x
cos (p Y

t + a,),

r • D
t
C + C/& = A2

cos (>2£ + a2),

u -\- v will be a solution of the equation

r D
t
C + C/k = A

x
cos (pt

t + a
x) + ^4 2

• cos (p2
t + a

2),

and write down the complete solution of this last equation.

Write down also an expression for the current in a non-

inductive circuit of capacity k to which n simple harmonic

electromotive forces of given periods are applied.

367. If <£ stands for the operation D„
<f>

2 for the operation

D
t

2
, and so on, the result of applying the operation

Oo +Pi<t> +P^2
+2h<P -\ )

to e
kt

is equal to the product of e
kt and

Oo +Pik + pJ^ +p3
ks

-\ ).

Show that if we denote the result of applying the operation

Z= Cpo + Px4> +P*P + • ••)/(?<> + qi<f> + ?2<£
2 + •••)

to e
kt by u, so that u satisfies the equation

Oo + qi<f> + qrf
2

-\— ) m = (p +Pi<t> +p*4>* ^— )
ekt

>

a special value of u is the product of e
kt and the fraction

(Po + Pik + p2k
2

-] )/(?o + qik + q2k
2 + •••).

Show how the complete value of u might be found and

why the special solution alone is needed in many practical

problems.
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Compare the results of applying the operation Z and the

operation (A + B(f>) / (C + -D<f>), where

d — (Po— P*k
2 + Pik* ), B= (px — psk

s + pjc4
),

C=(q — q»k2 + qik* ), D=(q l
- qzk

2 + q 5k* ),

to M-shi(kt + e).

Show that (a + b<f>) [M • sin(&£ + a)]

= M^la2 + 62
/c

2
• sin [fo + a + tan" 1 (bk/a)~\

or MVaF+l^k2 sin (A* + 8),

where tan 8 = (bk cos a + a sin a) / (a cos a — bk sin a),

and that a special value of

a -\- bcf>

c + d<f>

[2f- sin (kt + a)]

is J/
V£

=+^!£ . s in [W + a + tari
-i (iA;/a) - tan" 1 (dk/ej].

V c
2 + tf

2&2

This symbolic notation is treated at length in Forsyth's

Treatise on Differential Equations and in Perry's Calculus

for Engineers.

368. Prove that if <£ stands for the operation Dv

(a+b<f>+C(j>
2)[M-sin(kt+a)]=M^(a—ck-f+b-/c;--sm(kt+a.+\),

where tan A. = bk/ (a — ck2

),

and that a special value of

(I + m<f> + n<t>-)-^\_M- sin (kt + a)]

is M- sin (kt + a — /*) / V(Z + nk2
)
2 + wi2*2

,

where tan /x = mk/(l — nk2
). Hence show that a special

value of

I + m<j) + n<j>- J
l K /J

, r ^J(a - ck2

)

2 + Iffl
is J.f /

7
• sm (A* + a + A — u).

•y/Q—nky+ irfk2
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369. If
<f>
were an algebraic quantity, the expression

1

<f>

2 + (a + b)
<f> + ab

would be equivalent to

1/1 1

b — a \
<f> + a <j> + b

Are these two operations equivalent when
<f>
= D

t
and when a

special value suffices ?

370. If an electromotive force E = Em sin^tf be applied to

a circuit consisting of a coil of resistance r and inductance L,

in series with a condenser of capacity A", we have the equation

E-LD
t
C — Q/K=rC, where C = D

t Q. Show that this

equation can be written in the form

C = (r+L<f> + 1 /A» -
'E = K<j>E/ (1 + rk<j> + Lktf)

and write down its solution in the form needed for practical

use. Treat in the same manner several of the equations of

Section 86.

371. Two circuits, sx and s2 , have resistances r1} r2 , induc-

tances Lu L2 , capacities Kx, K2 , and a mutual inductance M.

They contain variable electromotive forces E1} E2 and carry

currents Ci} C2 . Show that if

^ = ^+^ + 1//^,

B2
= r

2 + L
2 <t> + 1/K

2 ct>,

where
<f>

represents the operation D
t ,

C
x
= {R2EX

- M<f>E2) I (R X
B2
- M2

tf),

C2
= (R

X
E

2
- M<f>E{) J (Ry

R2
-M2

tf).

If the capacities of the circuits are negligible, we are to put

R
l
= r

x + L^, R
2
= r2 4- L

2 <f>
in these results.

If E2
= 0, Kx

= oo, K2
= oo

;

C, = (r
2 +L2 <j>) Ex / [rxr% + (r

2
L

r + r
x
L

2) 4> + (L,L
2
-M2

) </>
2
],

and C2
= - Jf^ / [?-,r

2 + (r^ + r
:
L

2) cf> + (2^ -M2

) <£
2
].
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Write down the solutions of these equations and compare

them with the results given in Section 87.

372. Show that if C
x , C2

are the currents in the primary and

secondary of a transformer, and if the secondary circuit has

no capacity and contains no internal applied electromotive

force, M$C
X + (r2 + £,,<£) C, = or C2

= -M<f>C\/(r2 +L2<j>),

and if C
x
= Cm sin (pt — a),

C2
= 2n— sin (pt — a + - — ta,n~ 1L

2
p/r

2).

Vz,2/ + r2

2 z

If, as is often the case in practice, r2 is small compared with

L
2p, we have, approximately,

C2
= —MCm • sin (pt - a) • JL2

=MCm sin (pt — a — tt) • /L
2

.

In the general case C2 and C
x
are not zero at the same instant.

373. An electrodynamometer consists essentially of two

coils, one fixed and the other movable. The movable coil is

furnished with an index which moves on a fixed scale, and

the readings are to be considered equal to the product of the

strengths of the steady currents Cu C2
in the two coils. If,

however, these currents alternate rapidly, the readings are

proportional to the average value of CXC2. Assuming that

I sin pt • sin qt dt

= sin (p - g-) t • / 2 (p — q) - sin (p + q) t /2 (p + q),

sin2
_p^ dt = (pt — sin.pt cos pt) / 2p,

and that C
x
= m • sin pt, C2 = n • sin qt, show that the reading

is zero when p and q are not equal. What is it when p = q?
Plot a curve which shall show the readings for different values

of a, when C
x
= m sin pt, C2

= n- sin (pt — a), assuming that

/

/sin pt • cos p>t dt = — cos 2 pt • /kp.

If a = £ tt, the reading is zero.
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374. A function z=f(t) may be represented in polar

coordinates at any instant by a point P, the distance of which

from the origin is equal to the numerical value of z, while

the vectorial angle XOP is equal to jit, where p is any con-

venient constant. The plane path traced out by P during any

time interval shows the march of z during the interval. If z

is either a-cos(pt — 8) or a-sin(pt — 8), the path of P is a

circumference of diameter a passing through the origin : the

vectorial angle of the centre of the circumference is 8 in the

first case and 8 + \ tr in the second.

If z is known to be a simple sine or a simple cosine func-

tion of frequency p J2 tt, it is completely determined when the

vector OPw which represents the diameter of the circumfer-

ence, is given. If the plane of the diagram were the ordinary

complex plane, P would represent the complex quantity

z = x +jy , where a* and y are the horizontal and vertical

projections of the diameter of the circumference, and j the

imaginary unit ; and it is often convenient, as Steinmetz has

shown in a series of remarkable papers, to represent the har-

monic function z by the quantity zQ . With this understand-

ing of the meaning of the sign of equality, we may write in

general z = x + ?/„./: the modulus of z is given by the equa-

tion \z\ = \x 2 + y
2

.

Show that if C -\-J • C" represents the current

C = Cm - sin (jti— 8),

where tan 8 = Lp/r, in a simple circuit of resistance r, induc-

tance L, reactance x = Lp = 2 irnL, and impedance Z; the

" electromotive force consumed by the resistance " is

rC=r(C'+j-C"),

the " electromotive force produced by the reactance " is

jxC=jxC -xC",
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and the electromotive force required to overcome the reactance

is xC" —jxC, so that the applied electromotive force E is

(rC + xC") +j(rG" - xC") = ej + ex -j = (r - jx) C,

and the impedance is (r —jx).

Write down an expression in complex form for the impe-

dance of a simple circuit made up of a number of coils of

resistances ru r2, r3,
• , and inductances Lu L2 , L3 in series.

Show that if an electromotive force, Em - cos pt, be applied to

a simple circuit of resistance r and inductance L which con-

tains a condenser of capacity k, the impedance Z has the form

r — j(x — x'), where x = Lp and x' = 1/kp.

375. A long straight wire parallel to the x axis, of resist-

ance r and self-inductance L per unit length, is covered by a

thin layer of insulation the outside of which is kept at poten-

tial zero. The capacity of the cable per unit length is k, and

the rate of leakage through the insulation of a point where

the wire is at potential V is X V per unit of length. Show
that if C is the current in the wire,

DxC+\V+k-Dt
V=0, DxV+L.Dt

C+rC=0;
or, DJV - Lk D?V- (L\ + rk)

D

t
V - rXV= 0,

DX
2C - Lk -DfC- (L\ + rk) D

t
C - r\C = 0.

[Heaviside, Electrical Papers, Vol. I, XX ; Poincare,

Comptes Rendus, 1893 ; Picard, Compites Rendus, 1894

;

Boussinesq, Comptes Rendus, 1894 ; Bedell and Crehore,

Alternating Currents ; Webster, Electricity and Magnetism, ;

Pupin, Transactions of the American Mathematical Society,

1900 ; The Electrical World and Engineer, October, 1901,

and February, 1902.]

376. Two circuits sv s2 , which have self-inductances Lv L2,

and a mutual inductance M, carry currents Cv C2
in a magnetic

field due to these currents only. The first circuit, which is

rigid, contains a generator of constant electromotive force E
l ;

the second, which is deformable, contains no generator, so that
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E
l
-d (L

x
C

x + MC2)
/dt = r

1
Cv - d (MC

l + L2C2) / dt = r2C2 .

Show that if one (x) of the generalized coordinates which

define the conformation of the second circuit receives the

increment dx during the time dt, so that L
2 , M, Cv C2 are

changed while L
x
remains constant, the work dW done by the

electromagnetic forces is \ C2
dL

2 + C
l
C2

- dM, and the change

dT in the electrokinetic energy is

£ C* dL2 + L
1
Cl
-dC

l
+ MC

}
dC2

+ MC2 dCl + C
lC2 -dM+ L

2C2 dC2 .

Show that the equation (— dp2
— r2 C2 -dt) yields

r2C? • dt + C2
L

2 dC2 + C2
2 dL2 + MC2 -dCx + C

X
C2

- dM= 0,

and that the energy (Cfrdt + C-^dp^ furnished during the inter-

val dt by the generator in the first circuit is equal to dW -f dT
plus the energy dissipated in heat in the two circuits. If C2

is originally zero, the expressions for g? IF and dT&ve much sim-

plified. In any given case dx /'dt is virtually determined by the

mechanical equation of motion of the moving parts of s
2 ; its

value will evidently be greater or smaller, other things being

equal, according as the electromagnetic forces are assisted or

opposed by external forces. L2 , M are to be regarded as

given functions of x and other variables which do not here

enter, and dL2 /dt, dM/ dt can be written DJL^dx / dt) and

DxM(dx/dt). The mechanical equation and the first two

equations of this problem form a set which completely deter-

mine x, Cv C2 as functions of the time.

If a circuit s is threaded by J/4> lines from a magnetic

shell of strength <&,E-dt — d(M$ + LC) = rC-dt and, in the

general case, M, <£, L, and C are all functions of the time.

377. If
fj,

is the mass of the slider AB in Fig. 69, and if

a constant force X be applied to AB towards the right, if

DG = I, GB = x, v = D
t
x, we have

H.-Dt
v = i C- DJj + cm + X,

E • dt - d{LC + Hlx)= rC • dt.
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Show that if we can neglect the effect of the field clue to the

current in DABG, and if the change in r during the motion is

inappreciable,

C = \_E/r + X/HQe-"- X/Hl,

v = [rX/JEFP + E/HV] (1 - e~*),

where X = H2
l
2 /p.r.

If X is positive, the current changes sign when

H2Pt = fjir log[(EHl + rX)JrX\

378. A condenser made of two circular pieces of tin foil,

each 28.58 centimetres in diameter, separated by a plate of

plane glass of inductivity 6, { of a centimetre thick, is dis-

charged by means of a piece of non-magnetic wire 1 metre

long, bent into the form of a nearly complete circle. The

resistance of the circuit is 0.001 ohm, and its self-induction

1000 electromagnetic absolute units. Assuming that the

farad is equivalent to 9 x 10u electrostatic absolute units of

capacity, show that the discharge will be oscillatory with a

period of about 2.3 x 10 -7 seconds. The time constant,

2L/R, is 0.002 second. The amplitude would be reduced

to yoVo °f its initial value in about 0.014 second, and to

Tsuhjsjsjs °f this value in about 0.028 second.

379. A spherical shell of copper of small uniform thickness

and of radius a is in a magnetic field of uniform intensity H.

Show that the work required to withdraw it instantaneously

from the field is \ H 2a 3
. [M. T.]

380. An alternating electric current C cos pt is made to flow

along a straight wire of uniform circular section. Prove that

the current strength at a distance r from the axis of the wire

is given by the real part of Cka- <T (kr) e
pti /[2 na2J1 (ka)~\,

where a is the radius of the wire, p its specific resistance, and

k = (1 - t) V2^/ -yfp. [M. T.]
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381. If a; is a function continuous within the extremely short

time interval T, and if r represents any instant during the

x-dt'xs small and I dt i x dt much smaller.

A wire circuit of conductivity C and self-inductance L is

situated in the field of a magnetic system which undergoes

a disturbance of impulsive character such that at the end it

has returned to its initial state. Prove that if M denote the

change in the induction through the circuit due to the field at

any instant during the disturbance, and if N is the time inte-

gral ofM taken throughout the whole time of disturbance, then

the induced current at any subsequent time t is Ne~t/CL
/ CL2

.

[M. T.]

382. Show that if the branches p, q, r, and s of the Wheat-

stone net have self-inductances L
p , Lq , Lr , Ls , and contain con-

densers which have capacities k
p, kq , kr , ks , and if the current C

in the main circuit is a given function of the time, the currents

in the other branches are to be found from the equations

Cr + 6, = C, Cp = 6 r + C
g , Cq

= C s
— C

g,

Lp .D?Cp +p.Dt
Cp

+ Cp/kp -Lq
.D?C

q
-q-D

t
C

q-CJkq+ g.Dt
C

g
= 0,

Lr .D?Cr + r.D
t
Cr

+ Cr/k r
- L

s
-D

t

2Cs
-s. D

t
Cs
- Cs

/k
s
- g .

D

t
C
g
= 0.

(1) Prove that if CJ is the current in any branch, x, when
C = F(f), and CJ' the current in the same branch when
C =f(t), CJ + CJ' will be the current when C = F(t) +f{t).

(2) Show that if c/+ i CJ' is the value of Cx obtained

from these equations when C = F(t) + i-f(t), CJ would cor-

respond to C = F(t) and CJ' to C =f(t).

(3) Show that if C ^ A • ekt, the equations are satisfied,

when the coefficients are properly determined, by the values

C
p
= Ap -e», C

q
= A

q
-e», Cr = Ar .e", Cs = A s -e», C

g
= A

g
-e»,
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and that if bx = 1 + \kx (x + X Lx),

(ppkq + b
q
kp) Ap + <j\k

p
k

q
A

u
= b

q
kpA,

(brkt + b„kr)Ap - ( brk, + btkr + ff\kTk,) Ag
= bJcrA.

Find A
g

.

(4) Show that if the condensers are all removed, if

C = A e
xt

,

and if

ax = x + X- Lx ; Ag
= A(a r -aq

- ap as)/[(ap + a
q)

(ar + a.)

+ ff(ap + a
q + ar + a,)].

(5) If X = mi, C = A (cos ra£ + i sin ra£), ^ has the form

M -\- JSfi, BJ\d C
g
the form

(M+ -ZVi) (cos wi + i sin ratf) = (M- cos ra£ — iV- sin m£)

+ i(Jf • sin mt + iV- cos mt).

If the condensers are all removed, and if C = A cos mt, what

is the condition that no current shall pass through (/?

383. Show that if (1) the

branches p, q, r, and s of the

Wheatstone net have self-

inductances Lp , L
q , Lr , Ls , and

are in parallel with branches

of negligible resistance having

capacities kp , kq , kr, ks,
if (2) the

current C in the main circuit

(Fig. 134) is a given function

of the time, and if (3) the cur-

rents in the branch x of the net and in the condenser circuit

parallel to it are denoted by ( '.,. and CJ respectively, the currents

are to be determined with the help of the equations

x.Cx=-Lx .Dt
Cx+Qx/kx OTCJ=kx(x-DtCx+Lx.D*Cx)>

Cr + CJ + CS + CJ = C, Cp + Cp'=Cg
+Cr +Cr

',

C
q + C

q
' = C, + C8'-Cg,

p- Cp + 9 . C
g
- q,. Cq

= -Lp .Vt
Cp +Lq

-D
t
C
q,

Fig. 134.
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and r-Cr -s.Cs
-g.C

g
= - Lr

- D
t
Cr +LS

- D
t
C,

If the results of applying the operations

[1 + kx (x-D t + Lx -D?)\ [x +Lx -D t
-] to Cx

be denoted by <£(CX), ty(Cx) respectively, these equations yield

the five equations which follow :

<t>(Cr) + <f>(Q = C,

0(C
9
)-^(Q+C, = p,

+ (Cr)-+(Cs
)-<j.C

g
= 0,

*(Cp)- + (Cq)+ g.Cg = 0.

Show that if C = A e
Kt

, these equations are satisfied, when the

coefficients are properly determined, by the values Cp = Ap e
Kt

,

C
q
= A

q
- e

Kt
, Cr

= A r e
Kt

, Cs
= A, e

kt
, Cg

= A
g

e
Kt

, and that if

ax = x +LX -X, bx = l + kx\(x +Lx -\),

. A (g,arft;A ~ q> ff>AA)

If A is real, and if A. = mi, where m is real,

C = A (cos mt + i • sin mt),

A
g

is of the form M+ Ni, and Cg
of the form

(M -f Ni) (cos mt + i • sin mt)

or (M • cos mi — N- sin mi) + i (M- sin mi + iVcos mt).

The real part of C
g

is of the form Vitf 2 +i\f2 -cos (mi — S),

where tan 8 = — N/M. Prove that this would be the value of

C
g
if the value of C were A • cos mt.

Show that if C = A cos mt, if the condensers are all

removed, and if L
q
= L

s
= 0, C

g
will be zero for all values

of m if Lp/Lr = q/s = j) /r.

Prove that if C = A cos mt, if the inductances are neg-

ligible, and if Jc
q
= k

s
= 0, Cg

will be zero for all values of m
if kp/kr = s/q = r/p.
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Prove that if all the L's and k's except k
p
and L

s are zero,

C
g
will be zero if, and only if, Ls

= qrk„ = pskp .

Show how to find the value of C
g

if C = A • sin mt.

384. An infinite mass of metal has one plane face, which

is the yz plane. At the time zero, uniform currents parallel

to the z axis are induced in the plane by .a sudden change in

the magnetic field, which after the change remains constant.

It is evident that u and v will remain zero and that w is a

function of x only, so that (Section 88) 4 tt/xX D
t
w = DJw and

iv = A ' e
u
ft*, where u = — tt/xXx

2

J t. Show that w will have

its maximum value at a distance x
u
from the plane face at a

time t= 2 ir/jLkxQ
s and that this value is A/(x V2 ir/xXe). When

t is large, w has nearly the same value for all moderate values

of x. Assuming that for copper /xX — 1/1600 and for iron

1/10, show that the maximum current will be attained at a

depth of 16 centimetres in copper and 1.26 centimetres in

iron after 1 second.

385. An infinite conductor has one plane face (the yz plane),

but is otherwise unlimited. Periodic currents parallel to the

z axis and independent in intensity of y and z are induced in

this conductor by some cause on the negative side of the yz

plane. Since u and v are zero, w must (Section 88) satisfy the

equation 4 ttX(jl • D
t
w = D*w, and of this ecpiation Ce" e~ nx

,

where I = k 2i/±TrX/x, n2 = k2
i, n = k(l + i)/v2, is a special

solution. The real part of a complex solution of this equation is

itself a special solution ; and if we assume that w = Cm cos pt,

when x = 0, we learn that

w = Cme
xV-"^t>

. cos (pt — x V2 irXfip),

a simple harmonic expression the amplitude of which is

Cme~
inx

,J-f
, where /is the number of alternations per second.

Show that this amplitude has 1/mth of its surface value at

the depth log m/ (2 it Va./a/). Show that if the frequency is

100, the amplitudes 1 centimetre from the surface will be

0.208 Cm in the case of copper, and 0.0000000024 Cm if the
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conductor is made of iron. Show also that if the frequency is

10,000 the amplitude in the case of copper at a point 1 centi-

metre from the surface would be 0.00000015 Cm .

386. Show that if V, V, W are the components of a vector

taken at every point in the direction in which the orthogonal

curvilinear coordinates u, v, w increase most rapidly, the

components of the curl of the vector are

ku
= kk\dv(wi hw) - dw ( vi hv)i

Kv
= hj„ [Dw ( V/ hu) - Du( W/ h„.)l

Kw = huhv \_DU ( VI K) - I)
v ( VI h

tt)l

A very interesting proof of Stokes's Theorem in curvilinear

coordinates has been given by Prof. A. G. Webster in the

Bulletin of the American Mathematical Society for 1898.

387. The whole induction flux through a linear circuit, sk,

is equal to the line integral, Ik, of the tangential component

of a vector potential of the induction taken around the

circuit, so that the electrokinetic energy, T, of a set of

circuits su s2 , s 3 , , which carry currents Cx , C2, C3 ,
•• -, is

i^ C\Ik = i]T C\.f[Fx cos (x, sk) + Fy
cos (y, sk)

+ F2 -cos(z, sk)~]dsk .

If the linear circuits are the filaments of a massive conductor

in which the components of the current are u, v, w, and if Sk is

the area, at any place, of the cross-section of the filament sk ;

Ck cos (x, sk)= u Sk , Ck
• cos (y, sk)= v Sk , Ck cos (z, sk)= w-Sh .

Show that we may write

T=±jjf(Fx -u + Fy
.v + Fz .w)dT ,

where the integration is to be extended over all space where

currents exist.



AiJSWEKS.

ADDITIONAL ANSWERS TO PROBLEMS.

CHAPTER I.

, 1N „ 113032 v 96501 , „ n ...
,

(1) X = , Y= , whence R = 0.541+;v '
274625 274625

'

= 40° 29'+.

(2) R = m\, cosa = —-, cos/3 = —-, cosy= — , where
a2X FX c-\

=
\fe +B+?

(5) If 2 1 be the length of the wire, and if the axis of the

wire be taken for the axis of abscissas with the origin at the

middle point, the required equation is

2 c
2
?/

2— 1 = I- — x- — y
^

[ (I - x)*+ yrf. [(Z + xy+ tftf

(6) If the radius of the earth be taken as 3960 miles, and

the mass of a cubic foot of water as 62.5, one poundal is equiv-

alent to 952 million attraction units approximately.

(8) If c be the distance of the point P from the centre of the

sphere, the required attraction is m — , if P

without the solid ; — , if P is within the cavity, and
8r2

is

m_r _ r3 "1

8^[_
C

(c + r)
2

j
if P is a point in the mass of the solid.

(9) The attraction of a hemisphere of radius R at a point P
faciug the flat side of the hemisphere and lying on the perpen-

dicular to this side erected at the centre is

484
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M
2a2R [R5 - 2 a3+ (2 a2 - Rr) ViFTa1

] , where a = OP.

The attraction of the other hemisphere ma}7 be found by sub-

tracting this quantity from the attraction due to the whole

sphere of which this hemisphere is a part. See § 9.

(10) (a) That the density varies inversely as the distance

from the centre.

(»)
4:7rR'

~2 2R
r 981m• 327wJ

(12) Here d is supposed to be greater than a.

(15) The attraction is 34.9, and its line of action makes an

angle of 1°49' with the line joining the centre of the sphere

with the point in question.

CHAPTER II.

(7) That the force is constant.

(9) F _1 = |^(18-c2
); VU2 =^Pflo+%

T. 2 /„_ 14 „\ T. 2 40

(11) Yes; 1.46 -.

(12) If 3>r, V=w(^-2lpj;

if 5 >r>4, F=^(f-£-^);
T ^ K IT 405
if r>0, V=TTfJL

r

(15) No.

(20) (1) About 1,830,000 tons of 2000 pounds each.
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Activity, 316, 465.

Alternate currents in inductive

circuits, 312, 329, 464-482.

Ampere, 265.

Ampere, the, 233, 298.

Apparent charges, 183.

Apparent electromotive forces, 317.

Attraction.

centrobaric bodies, 362, 371.

cones, 8, 25, 349.

curved wires, 25, 345.

cylinders, 7, 26, 337, 346, 347,

348, 358, 368, 369, 376, 377.

cylindrical distributions, 60, 72.

cylindrical shells, 26, 349.

discrete particles, 2, 25.

ellipsoidal homceoids, 16.

ellipsoidal surface distributions,

141, 160, 378.

elliptic cylinders, 376, 377, 379.

focaloids, 378.

given mass, 19, 350.

hemispheres, 13, 15, 26, 352, 353,

358.

hollow spheres, 26, 27.

paraboloids, 28, 353.

similar solids, 350.

solid ellipsoids, 117, 378.

special laws of, 351, 359, 361.

spheres, 13, 18, 26, 27, 350, 358.

spherical distributions, 56, 72,

368, 375.

spherical sectors, 351.

spherical segments, 27, 352.

Attraction.

spherical shells, 10, 11, 18, 26,

27, 35, 58, 350, 352.

spheroids, 28, 380, 381.

straight wires, 3, 4, 25, 26, 34,

71, 344, 345, 346, 359.

thin plates, 22, 28, 347, 348, 349.

two rigid bodies, 24, 350, 353.

two spheres, 23, 337, 338, 339.

two wires, 23, 73, 344.

Ballistic galvanometers, 442.

Bocher, 371.

Capacity, 159, 161, 307, 309, 321.

(See Condensers.)

Centrobaric distribution, 362, 371.

Charged conductors, 146, 148, 157,

167, 171, 385, 386, 387, 388,

389, 390, 393, 394, 395, 396,

397, 402, 403, 410.

Coefficients of potential, induction,

and capacity, 157, 390, 397.

Columnar coordinates, 63, 141, 354,

421.

Condensers, 161, 164, 166, 176,

184, 307, 388, 389, 390, 393,

396, 401, 402, 409, 413, 418,

419, 420, 439, 440, 441, 466,

407, 478, 479, 480.

Conditions which determine func-

tions, 104, 107, 133, 134, 135,

136, 137, 138, 180, 203, 245,

371, 382, 415.

486
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Conductivity, 227.

Cones, 8, 25, 349.

Conjugate functions, 412, 429, 430,

431, 432, 433.

Convergence, 111, 138.

Coulomb, the, 233.

Coulomb's Equation, 89, 130, 179,

183.

Curl, 111, 138, 139, 143, 382,383,483.

Current induction, 291.

Currents in cables, 428, 429, 437.

Curvilinear coordinates, 65, 136,

137, 141, 182, 384, 385, 421, 483.

Cylinders, 7, 26, 346, 347, 348, 358,

369, 376, 377.

Cylindrical distributions, 60, 72,

368, 369, 371, 375, 404, 408,

409, 410.

Darwin, 364.

Depolarizing force, 206, 379.

Derivatives of the potential func-

tion, 30, 31, 32, 36, 40, 45, 50,

72, 73, 91, 360, 361, 366.

Derivatives of scalar functions, 115,

116, 138, 382.

Dielectrics, 146, 176, 199, 413, 414,

415, 416, 418.

Dimensions of physical quantities,

210, 338, 462.

Dirichlet, 50, 104, 125.

Displacement currents, 335.

Dissipation function, 240.

Divergence, 111, 138, 141, 382,

383, 384.

Divided circuits, 235.

Double layers, 144, 214.

Doublets, 196, 434, 436.

Effective electromotive forces, 317.

Electrical displacement, 177.

Electrical images, 167, 170, 400,

401, 404, 410, 411.

Electrical intensity, 177.

Electrodynamic potential, 273, 275.

Electrodynamics, 262, 267, 271,

273, 276, 297, 454-459.

Electrodynamometer, 474.

Electrokinematic equilibrium, 222,

241, 245, 246.

Electrokinematics, 222, 246.

Electrokinetic energy, 271, 281,

296, 461, 465, 477, 483.

Electrokinetic momentum, 297,465.

Electromagnetic fields due to closed

linear circuits, 259, 454, 455,

456-459.

Electromagnetic fields due to

straight currents, 251, 255,

454.

Electromagnetic units, 233, 298.

Electromagnetism, 251.

Electromotive force, 230.

Electromotive force, triangle of,

316, 319, 320, 321.

Electrostatic potential functions

within conductors which carry

currents, 241, 246.

Electrostatic units, 233.

Electrostatics, 145.

Ellipsoidal conductors, 160, 401,

402.

Ellipsoidal homceoids, 16.

Ellipsoidal shells, 16, 378.

Ellipsoidal surface distributions,

141, 378.,

Ellipsoids, 117, 378, 380.

Elliptic cylinders, 376, 377, 379.

Energy, 43, 97, 183, 269, 280, 364,

368, 391, 401, 418, 453, 454.

Energy of charged conductors, 171,

176, 183, 391, 394, 401, 418.
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Equations of the electromagnetic

field, 332.

Equilibrium of fluids, 70, 73, 74,

365, 381.

Equipotential surfaces, 37, 71, 72,

73, 122, 141, 357, 369, 371,

372, 403.

Ewing, 291.

Farad, the, 233.

Faraday's disc, 272, 298.

Faraday tubes, 152.

Field components, 21, 30, 177, 255,

265, 283, 332.

Fleming, 291.

Flow of force, 151, 365.

Focaloids, 378.

Galvanometers, 455, 456, 457, 458.

Gauss's Theorem, 52, 66, 78, 129,

151, 177.

Gibbs, 221.

Gradients, 115, 137, 138, 384, 385,

421, 483.

Gravitation, 1.

Gravitation constant, 2, 370.

Gravity, 15, 342, 343, 344, 347, 370.

Gray, 269.

Green's distribution, 109, 446.

Green's Function, 384.

Green's Theorem, 91, 129, 384.

Hard and soft media, 202, 204, 208.

Harmonic Functions, 45, 100, 103,

104, 105, 135, 137, 143, 382, 415.

Heat developed in circuits which

carry currents, 238, 272, 297.

Heaviside, 221, 282, 462.

Helmholtz, 221.

Hemispheres, 13,15,26,352, 353,358.

Hilbert, 105.

Hollow conductors, 152.

Hysteresis, 289, 460.

Impedance, 315, 318, 465, 476.

Induced charges, 146, 153, 156, 167,

184, 201, 394, 395.

Induced currents, 292, 298, 299,

302, 326, 463, 464.

Induced electromotive force, 292,

295, 297, 302.

Induced polarization, 203, 204, 207.

Inductance, 278, 458, 461, 462, 476.

Induction, 146, 152.

Induction coils, 326.

Induction flux, 151, 260, 292.

Induction vector, 178, 201, 202.

Inductivity, 176, 200.

Intrinsic charges, 183.

Intrinsic energy of a distribution,

the, 43, 97, 183.

Inversion, 397, 399, 400, 401, 411.

Joule, the, 239.

Kelvin, 105, 206.

Kirchhoff, 234, 280.

Kirchhoff's laws, 234.

Laplace's Equation, 44, 65, 71,

245, 357, 359, 360.

Laplace's Law, 262.

Law of gravitation, 1.

Law of nature, 75, 145.

Linear conductors, 226, 230, 421.

Linear differential equations, 302,

304, 307, 309, 311, 314, 470,

471, 472, 473, 474.

Lines and level surfaces of vectors,

112, 123, 140, 382.

Lines and surfaces of flow, 243,

246, 247, 249.
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Lines and tubes of force, 55, 71, 72,

73, 122, 150, 187, 188, 251, 260,

288, 359, 367, 372, 373, 391, 394.

Logarithmic potential functions,

126, 385, 406, 407.

Magnetic energy, 269.

Magnetic induction, 260, 287.

Magnetic lines, 391.

Magnetomotive force, 287.

Magnets, 199, 442, 443, 444, 445,

446, 450, 451, 453.

Maximum and minimum theorems,

103, 135, 136, 240.

Maxwell, 334.

Maxwell's Current Equations, 281.

Mechanical action on a conductor

which carries a current in a

magnetic field, 262, 264, 267.

Motion under gravitation, 71, 338,

339, 340, 341-344.

Mutual energy, 42, 269, 273, 276,

368, 395, 401.

Mutual energy of distribution and

field, 451, 452, 453, 454.

Mutual inductance of two circuits,

276, 278.

Neumann, 273.

Newton, 349.

Non-homogeneous conductors, 244,

245.

Normal force, 89.

Ohm, the, 233, 298.

Ohm's Law, 227.

Paraboloids, 28, 353.

Pendulums, 26, 342.

Permeability, 176.

Perry, 469, 472.

Planetary motion, 341.

Poisson, 334, 446.

Poisson's Equation, 61, 66, 79, 129,

147, 178, 182, 201, 202, 360, 421.

Poisson's Integrals, 102, 132.

Polarization, 185, 192, 198.

Polarization moments, 186, 193.

Polarization vector, 186, 194.

Polarized cylinders, 448, 449.

Polarized ellipsoid, 189, 207.

Polarized shells, 214, 450.

Polarized spheres, 187, 447.

Potential difference, 231, 318, 422,

466.

Potential function

as measure of work and energy,

41, 78.

average value on spherical sur-

face, 67.

definition, 29, 354.

derivatives of, 30, 31, 32, 36, 40,

44, 45, 50, 61, 72, 73, 89, 91,

130, 179, 183,360, 361,305,366.

properties and characteristics of,

32, 40, 44, 67, 68, 78, 80, 86,

107, 179.

special cases, 34, 35, 36, 58, 60,

71, 72, 74, 80, 82, 125, 197,

355-365, 375.

Poynting, 371.

Pupin, 467, 476.

Rayleigh, 307.

Reactance, 315.

Real charges, 183.

Reluctance, 287.

Repelling matter, 75, 76.

Resistance, 227, 247, 249, 422, 426,

433.

Resonance, 323, 467.

Ring magnets, 286.
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Self-inductance, 278, 296, 300-331.

Solenoidal and lamellar vectors,

111, 138, 139, 140, 143, 144,

221, 382, 383.

Solenoidal polarization, 198, 203,

204, 449, 450.

Solenoids, 284.

Solid angles, 11, 49, 53, 215, 261,

349.

Space derivatives of scalar func-

tions, 115, 138, 382.

Specific inductive capacity, 176.

Spheres, 13, 18, 23, 26, 27, 350, 358.

Spherical condensers, 161, 184, 389,

390, 413, 419.

Spherical conductors, 159, 161. 167,

394, 396, 401-403.

Spherical coordinates, 63, 384, 421.

Spherical distributions, 56, 72, 184,

210, 368, 372, 375.

Spherical segments, 27, 352.

Spherical shells, 10, 11, 18, 27, 35,

58, 350, 360, 375.

Spheroids, 28, 144, 370, 379, 380.

Steady currents in linear circuits,

222-241, 421-429, 441, 454-459.

Steinmetz, 475.

Stokes's flux function, 367.

Stokes's Theorem, 113, 219, 252,

282, 295, 332, 383, 483.

Strength of field, 2, 147.

Superficial induced currents, 299,

479, 482.

Surface distributions, 83, 85, 88,

109, 146-176, 385-420.

Surface pressure, 90.

Susceptibility, 200, 281.

Theorems involving surface and

volume integrals, 47, 54, 66,

93, 94, 95, 97, 98, 100, 101,

102, 103, 104, 113, 132, 135,

136, 137, 144, 220, 356, 357, 384,

414, 415, 452, 453, 454, 460.

Thomson, J. J., 299.

Thomson's Theorem, 104.

Tide-generating forces, 363, 364.

Transformers, 331, 474.

Triangle of resistances, 316.

Two-fluid theory, 145.

Uniform polarization, 186, 188.

Uniformly polarized distributions,

186, 189, 205, 207.

Units, 233, 298, 462.

Units of force, 2, 25, 31, 80, 210,

337, 338, 462.

Variable currents, 423, 437, 439,

440, 441.

Variable currents in inductive cir-

cuits, 301, 326.

Vector lines and surfaces, 112, 123.

140, 382.

Vector potential functions, 112,

139, 140, 218, 294, 452, 453.

Vector product, 293.

Vectors, 14, 111, 139.

Volta's Law of Tensions, 229.

Volt, the, 233, 298.

Webster, 206, 265, 483.

Wheatstone's net, 236, 241, 305,

306, 311, 427, 479, 480.

Wires or rods, 3, 4, 23, 25, 26, 34,

71, 73, 344, 345, 346, 359.

Woodward, 370.

Work, 41, 78, 354, 355, 401.

Zonal harmonics, 261, 373, 374, 375.
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Laplace, Bessel, and Lame are studied in some detail.

MATHEMATICAL THEORY OF INVESTMENT
By Ernest Brown Skinner, University of Wisconsin

The mathematical material that will prove most useful to the modern educated
business man. The book treats the theory of interest, both simple and compound,
the theory of bond values, depreciation, sinking funds, the amortization of debts
by various plans, inheritance taxes, old-age pensions, and life insurance.

MATHEMATICAL THEORY OF HEAT CONDUCTION
By L. R. Ingersoll, University of Wisconsin, and O. J. Zobel

A text in Fourier's Series and Heat Conduction, presenting along with the

theory a large number of practical applications of special value to geologists and
engineers. These include problems in the tempering of steels, freezing of con-

crete, electric and thermit welding, and similar questions. The book presents
an excellent first course in mathematical physics.
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