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PKEFACE.

This book is almost entirely made up of lecture-notes

which from time to tiroe during the last four ^-ears I

have written out for the use of students who have begun

\ with me the study of what I have ventui-ed to call, after

^ Neumann, the Newtonian Potential Function.

V The notes were intended for readers somewhat familiar with

the principles of the Differential and Integral Calculus, but

unacquainted with many (^ the methods commonly used in

. y ^PP^'^^o Mathematics to the study of physical problems.

**^ These students, I learned, found it difficult to get from any

single book in English a treatment of the subject at once

elementary enough to be within their easy comprehension,

\i^ and at the same time suit<Bd to the purposes of such of them

^ as intended eventually to pursue the subject farther, or

wished, without necessarily making a , '/V^?vtlty of Mathe-

V matical Physics, to prepare themselves to study Experi-

pV mental Physics thoroughly and understandingly, "What is

here printed seems to have been of use to some of those

who have read it in manuscript, and it is hoped that it may

now be helpful to a larger number of students.

Since these notes are professedly elementary in character,

I feel that no apology is needed for what may seem to be

the rather prolix way in which some of the subjects are

treated, or for au arrangement of matter which would be
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unsuitable in a book intended for a different class of readers.

I have not hesitated to use a long proof whenever this has

seemed to me more easily comprehensible than a short and

mathematically neater one, and I have often given more than

one demonstration of a single theorem in order to illustrate

different methods of work. Although I have used freeh*

the notation * of the Calculus, I have assumed on the part

of the reader only an elementary knowledge of its principles.

The short treatment of Electrostatics in Chapter v. is in-

troduced to show how the theorems of the preceding chapters

may be used in solving phj-sical problems ; but it is hoped that

a person who has mastered even the little here given will be

able to understand, with the aid of some good treatise on

Experimental Ph^'sics, most of the phenomena of Electro-

statics. It is also hoped that those readers who mean to study

the subject of Electricity from the mathematical point of

* In this book the change made in a function u by giving to the

independent variable x the arbitrary, finite increment Ax, and keeping the

other independent variables, if there are any, unchanged, is denoted by

Ax". Similarly, Ayti and a^m express the increments of u due to changes

respectively in 1/ alone and in z alone. The total change in u due to

simultaneous changes in all the independent variables is sometimes

denoted by Au; so that if u=/{x, y, z),

A,u . ,
A„H ^ , AzM ^ ,Au = —^^ • Ax H !^ • Ay -\ Az-\- e.

Ax Ay Az

where « is an infinitesimal of an order higher than the first.

The partial derivatives of u with respect to x, y, and - are denoted by

DxW, Dgii, and D^it, and the sign = placed between a variable and a con-

stant is used to show that the former is to be made to approach the

latter as its limit. In those cases where it is desirable to draw attention

to the fact that a certain derivative is total, the differential notation

— IS used.
ax
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view will find what they have learned here useful when

they take up standard works on the subject.

My sincere thanks are due to H. N. Wheeler, A.M., who

has read much of the manuscript of the following pages and

all of the proof, and to Dr. E. II. Hall, who has examined

parts of Chapters iv. and v. and helped me with various

suggestions. I am indebted to other friends also, and among

them to Mr. "VY. A. Stone for the use of some of his problems.

The reader who wishes to get a thorough knowledge of

the properties of the Newtonian Potential Function and of

its applications to problems in Electricity is referred to the

following Avorks, which, with others, I have consulted and used

in writing these notes.

Betti : Teorica delle Forze Newtoniane e sue Applicazioni all'

Elettrostatica e al Magnetismo.

Clausius : Die Potentialfunction und das Potential.

Cumming : An Introduction to the Theory of Electricity.

Chrystal: Tlie article "Electricity" in the Ninth Edition of the

Encyclopaedia Britannica.

Dirichlet: Vorlesungen liber die ini umgekehrten Yerhiiltniss des

Quadrats der Entfernung wirkendeu Kriifto.

Gauss : Allgemeine Lehrsiitze in Beziehung auf die ini verkehrten

Yerhaltnisse des Quadrates der Entfernung Avirkenden Anzieh-

ungs- und Abstossungskriifte. Also other papers to be found

in Yolume Y. of his Gesammelte Werke.

Green : An Essay on the Application of Mathematical Analysis to

the Theories of Electricity and Magnetism.*

Mascart: Traite d'Electricite Statique. Also Wallentin's translation

of the same work into German, with additions.

*A copy of the original edition of this paper is to be found in tlie

Library of Harvard University, Gore Hall, Cambridge. Tiie paper has

boon reprinted by Ferrers in "'I'lie Mathematical Papers of George (ireen,"

and by Thomson in Crelle's Journal.
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Mascart et Joubert:. Lemons sur I'Electricite et le Magnetisme.

Also Atkinson's translation of the same work into English, with

additions.

Mathieu: Theorie du Potential et ses Applications h I'Electro-

statique et au Magnetisme.

Maxvrell: An Elementary Treatise on Electricity. A Treatise on

Electricity and Magnetism.

Minchin : A Treatise on Statics.

C. Neumann : Untersuchungen iiber das Logarithmische und New-

ton'sche Potential.

Riemann: Schwere, Electricitat und Magnetismus, edited by Hatten-

dorff.

Schell : Theorie der Bewegung und der Krafte.

Thomson : Keprint of Papers on Electrostatics and Magnetism.

Thomson and Tait : A Treatise on Natural Philosophy.

Todhunter : A Treatise on Analytical Statics.

Watson and Burbury: The Mathematical Theory of Electricity

and Magnetism.

"Wiedemann : Die Lehre von der Electricitat.
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NEWTONIAN POTENTIAL FUNCTION.

3j<Ko

CHAPTER I.

THE ATTKAOTION OP GRAVITATION.

1. The Law of Gravitation. Every body in the universe

attracts every other body with a force which depends for mag-

nitude and direction upon the masses of the two bodies and

upon their relative positions.

An apj)roximate vahie of the attraction between any two rigid

bodies may be obtained by imagining the bodies to be divided

into small particles, and assuming that every particle of the one

body attracts every particle of the other with a force directly

proportional to the product of the masses of the two particles,

and inversely proportional to the square of the distance between

their centres or other corresponding points. The true value of

the attraction is the limit approached by this approximate value

as the particles into which the bodies are supposed to be divided

are made smaller and smaller.

2. The Attraction at a Point. By "the attraction at any

point P in space, due to one or more attracting masses." is

meant the limit which would l)e approached by the value of the

attraction on a sphere of unit mass centred at P if the radius of

the sphere were made continually smaller and smaller while its

mass remained unchanged. Tlie attraction at P is, then, the

attraction on a unit mass supposed to be concerUrcUed at 7*.
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If the attraction at every point throughout a certain region

has a value other than zero, the region is called "a field of

force "
; and the attraction at any point P in the region is called

" the strength of the field" at that point.

3. The Unit of Force, It will presently appear that all spheres

made of homogeneous material attract bodies outside of them-

selves as if the masses of the spheres were concentrated at their

middle points. If, then, k be the force of attraction between

two unit masses concentrated at points at the unit distance

apart, the attraction at a point P due to a homogeneous sphere

of radius a and of density p is k
Sr^

where r is the dis-

tance of P from the centre of the sphere. In all that follows,

however, we shall take as our unit of force the force of attrac-

tion between two unit masses concentrated at points at the unit

distance apart. Using these units, k in the expression given

above becomes 1, and the attraction between two particles of

mass mi and wi2 concentrated at points r units apart is —^-?-

4. Attraction due to Discrete Particles. The attraction at a

point P, due to particles concentrated at different points in the

same plane with P,' may be expressed in terms of two com-

ponents at right angles to each other.

f-r-^^

Fig. 1.

Let the straight lines joining P with the different particles be

denoted by ?-i, n, r^, •••, and the angles which these lines make

with some fixed line Px by aj, aj, ag, •••. If, then, the masses
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of the several particles are respectively wij, mg, Wg, •••, the

components of the attraction at P are

^T- mjcosai m^cosag
,

X^mcosa r-n

in the direction Pa;, and

Y_ ?»i sin ny 7)12 sin ag _ ^ ^ . _
^^^ sin a p„-,

in the direction P//, perpendicular to Pic.

The resultant force at P is

P=VX^'+FS [3]

and its line of action makes with Px the angle whose tangent

. Y
18 — •

A"

If the particles do not all lie in the same plane with P, we
ma}- draw through P three mutually perpendicular axes, and call

the angles which the lines joining P with the different particles

make with the first axis a^, a,, ag, •••
; with the second axis,

A' ^21 A' "'
'i
^^^ with the third axis, yi, yg, yg, •••. The three

components in the directions of these axes of the attraction at

P due to all the particles are then

,- _"V ^mcosa . -r^_\^m cos^
, y _\^mcosy r-.-.

The resultant attraction is

and its line of action makes with the axes angles whose cosines

are respectively

X Y Z^\ -, and -. [61

5. Attraction at a Point in the Produced Axis of a Straight

Wire. Let /x be the mass of the unit of length of a uniform

straight wire AB of length I, and of cross section so small that
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we may suppose the mass of the wire concentrated in its axis

(see Fig. 2) , and let P be a point in the line AB produced at a

e--.,^_
^'^"'

^ 'M'

^^' Fig. 2.

distance a from A. Divide the wire into elements of length

Aa;. The attraction at P due to one of these elements, M, whose

nearest point is at a distance x from P, is less than ^^—- and

greater than -

—

^ -•
^

{x-]-Axy

The attraction at P due to the whole wire lies between

Z^— and / —^
; but these quantities approach the

ar Zm^{x + Axy
same limit as Ax is made to approach zero, so that the attrac-

tion at P is

Ax
nit \^ fjiAx _ r^+^jxdx^limit , . _ . . _^

"1 1

a a-\-l
[7]

If the coordinates of P, A^ and B are respectively (x, 0, 0)

,

(x'l, 0, 0), and {x^ + 1, 0, 0) , this result may be put into the form

[8]

6. Attraction at any Point, due to a Straight Wire. Let P
(Fig. 3) be any point in tlie perpendicular drawn to the straight

wire AB at A, and let PA = c, AB = I, AM= x, and the angle

ABP= 8. Let MN be one of the equal elements of mass {fiAx)

into which the wire is divided, and call PiT/, r. The attraction

at P due to this element is approximately equal to ^^-^-^ and
r

acts in some direction lying between PM and PN. This attrac-

tion can be resolved into two components whose approximate

values are -^ '—— in the direction PA, and -^ '—— in the
(c^ + a;-)?

'

(c^+ar^)?
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direction PL. The true values of the components in these

directions of the attraction at P, due to the whole wire, are,

then, respectively

:

and

f ^"^^ -^r ^
7:=^ cos 8, [9]

X(^. = ^[vP^]=^i--«). [10]

Fig. 3.

The resultant attraction is equal to the square root of the sum

of the squares of these components, or . ,

/^ /^ "^H,
e

i? = c:V2(l-sin8) = ^V2(l-cos^P^) =-^s\n^APB,[\\'\ v:

and its line of action makes with PA an angle whose tangent is

1 -sin8__l-cos^P^_ 2sin^i^P^
cos 8 sin APB 2 sin IAPE • cos |APB

tan ^^Pi?.

That is, the resultant attraction at P acts in the direction of

the bisector of the angle APB.
From these results we can easily obtain the value of the

attraction at any point P, due to a uniform straight wire B'B
(Fig. 4) . Drop a perpendicular P^l from P upon the axis of

the wire. Let AB = I, AB' = V, PA = c, ABP= 8, .IjB'P = 8',

BPB'=6. The component in the direction P-.1 of the attrac-

tion at P is [9]
u
-(cos 8 +cos8'),
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and that in the direction PL is

(sin 8'— sin 8),

so that the resultant attraction is

c I- - V • /J c
i2=^V2[l+cos(8 + 8')] = ^cosi(S + S') = ^sini-^. [12]

7^

The line of action PK ot R makes with PA an angle <!> sucli

that

tan<^ = sin S' — sin 8

cos 8 + cos 8'
tani (8'-8); [13]

and

.•.5'P^=|-8'+i(S'-8) = |-i(8 + S'),

^P/r=|-8-i(8'-8) = |-i(8+8').

It is to be noticed that PK bisects the angle 9, and does not

in general pass through the centre of gravity or any other fixed

point of the wire. Indeed, the path of a particle moving from

rest under the attraction of a straight wire is generally curved
;

for if the particle should start at a point Q and move a short

distance on the bisector of the angle BQB' to Q', the attraction

of the wire would now urge the particle in the direction of the

bisector of the angle BQ'B', and this is usually not coincident

with the bisector of BQB'.
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If Q* is the area of the cross section of the wire, and p the

mass of the unit volume of the substance of which the wire is

made, we may substitute for /a in the formulas of this section

its value qp.

If instead of a very thin wire we had a body in the shape of

a prism or cylinder of considerable cross section, we might

divide this up into a large number of slender prisms and use the

equations just obtained to find the limit of the sum of the attrac-

tions at any point due to all these elementary prisms. This

would be the attraction due to the given body.

7. Attraction at a Point in the Produced Axis of a Cylinder

of Revolution. In order to find the attraction due to a homo-

geneous cylinder of revolution at any point P (Fig. o) in the

axis of the cylinder produced, it will be convenient to imagine

the cylinder cut up into discs of constant thickness Ac, by

means of planes perpendicular to the axis.

Let p be the mass of the unit of volume of the cylinder, and

a the radius of its base. Consider a disc whose nearer face is

at a distance c from P, and divide it into elements by means of

b' b

Fig. 5.

radial planes drawn at angular inten'als of M and concentric

cylindrical surfaces at radial intervals of Ar.

The mass of any element 3/ whose inner radius is r is equal

to pAc.A^[rAr + ^(Ar)-], and the whole attraction at 7^ due to

M is approximately ^^^gf^^J'^ ? (^'•)'
J in a line joining P

with some point of 3/. The component of this attraction in

the direction PC is found by multiplying the exjxession just
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given by
Vc^^-;

:, the cosine of the angle CPS, so that the

attraction at P in the direction PC, due to the whole disc, is

approximately

L^ (0^4- 7^)3 Jo Jo (c^ + r^^

= 2 7r/3 Ac

(c2 + r^)3

1-
Vc^+' >}

[14]

If the bases of the cylinder are at distances Cq and Cq + h

from P, the true value of the attraction at P in the direction

PC^ due to the cylinder QQ', is

limit

Ac
nit\^

27rpAc 1-
_

' Vc2+

:

= 27rp I 1— dc
Vc2+ a^.

= 27rp[7i+V^7+^-V(co + /0'+a']. [15]

This is evidently the whole attraction at P due to the cylin-

der, for considerations of symmetry show us that the resultant

attraction at P has no component perpendicular to PC.

[14] gives the attraction due to the elementary disc ^P^l'JB',

on the assumption that the whole matter of the disc is coijcen-

trated at the fape ABC. The actual attraction at P due to

this disc may be found by putting Co = c and 7i = Ac in [15].

If ix, the radius of the cylinder, is very large compared with

h and Co, the expression [15] for the attraction at P due to the

cylinder approaches the value 2Trph.

8. Attraction at the Vertex of a Cone. The attraction due to

a homogeneous cone of revolution, at a point at the vertex of

the cone, may be found by the aid of [14].

If Fig. G represents a plane section of the cone taken through

the axis, and if PM= c, MM' = Ac, and MB = ?•, the attraction

at P due to the disc ABCD is approximately

)Ac 1—
V?T^

= 2 7rp Ac (1— cos a)

,
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imit ^^£limit

Ac
Ac

and the attraction due to the whole cone is

2 Trp ( 1 - cos a) Ac = 2 7r/3 ( 1 - COS a) ^jf^qT^^

= 27rp{l-COSa) -PL. [IG]

* The attraction at P due to the frustum ABKN is fouud by

subtracting the value of the attraction due to the cone ABP
from the expression given in [IC]. The result is

27rp(l - COSa) {PL — PM) = 2'rrp{\- COSa)ML, [17]

and it is easy to see from this that discs of equal thickness cut

out of a, cone of revolution at different distances from the vertex

by planes perpendicular to the axis exert equal attractions at

the vertex of the cone.

Fig. 6.

It follows almost directly that the portions cut out of two

concentric spherical shells of equal uniform density and equal

thickness, bj- any conical surface having its vertex at the

common centre P of the shells, exert equal attraction at this

centre ; but we may prove this proposition otherwise ^ as fol-

lows :

Divide the inner surface of the portion cut out of one of the

shells by the given cone into elements, and make the perimeter

of each of these surface elements the directrix of a conical

surface having its vertex at P. Divide the given shells into

elementary shells of thickness Ar by means of concentric spheri-

cal surfaces drawn about P. In this way the attracting masses

will be cut up into volume elements.

Let ML' (Fig. 7) represent one of these elements, whose

inner surface has a radius equal to r ; then, if the elementary
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cone APB intercept an element of area Aw from a spherical sur-

face of radius unity drawn around P, the area of the surface

element at MM' is ?-^Aw, and that at LL' is (r + Ar)^Aw. The

attraction at P in the direction PM, due to the element ML', is

approximately
r^AwAr . .

P 5— = p AwAr,
?-

and the component of this in any direction Px, making an

angle a with PJf, is approximately /a Aw Ar cos a. The attraction

at P in the du'ectiou Px, due to the whole shell EDFG, is,

then, ^^X= lim 2 p ArAw cos a,

where the sum is to include all the volume elements which go to

make up the shell. If PF=r^, PG = n, PF'=:r^, PG' = ry',

and fji = FG = F'G',

X=
I

\lr
I
COHadoi=p[x I COSadw.

The attraction at P in the same direction, due to the shell

E'D'F'G', is

X' = p \ dr i cosadw = pfx | cos adw.

But the limits of integration with regard to w are the same in

both cases ;
.•. X= X', which was to be proved.

If tlie shells are of different tliicknesses, it is evident that

they will exert attractions at P proportional to these thick-

nesses.



THE ATTRACTION OF GRAVITATION. 11

The area of the portion which a conical surface cuts out of a

spherical surface of unit radius drawn about the vertex of the

cone is called " the solid an^le " of the conical surface.

9. Attraction of a Spherical Shell. In order to find the

attraction at P, an}- point in space, due. to a homogeneous

spherical shell of radii Vq and ?*i, it will be best to begin by

dividing up the shell into a large number of concentric shells

of thickness Ar, and to consider first the attraction of one of

these thin shells, whose inside radius shall be r.

Let p be the density of the given shell, that is, the mass of

the unit of volume of the material of which the shell is com-

posed. Join P (Fig. 8) with by a straight line cutting the

inner surfoce of the thin shell at JV, and pass a plane through

PO cutting this inner surface in a great circle XLSL', which

Fig. 8.

will serve as a prime meridian. L'sing JV as a pole, describe

upon the inner surface of the thin shell a number of parallels of

latitude so as to cut off equal arcs on XLSL'. Denote In' A.$

the angle which each one of these arcs subtends at 0. Through

PO pass a number of planes so as to cut up each parallel of

latitude into equal arcs. Denote by A(^ the angle between any

two contiguous planes of this series. By tliis means the inner

surface of the elementary shell will be divided into small quad-

rilaterals, each of which will have two sides formed of meridian

arcs, of length r-AO, and two sides formed of arcs of parallels

of latitude, of length rsin^-A<^ and rsin(0 + AO)'A<f>, where
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6 is the angle which the radius drawn to the parallel of higher

latitude makes with ON. The area of one of these quadri-

laterals is approximately 7*^sin(?- A^- At^, and the thickness of

the shell is Ar, so that the element of volume is approxi-

mately 7-^sin^- Ar- A^ • A<^. Let PM—y, tlien the attrac-

tion at P, due to an element of mass which has a corner at

M, is approximately ^ —, in the direction PM.

This force ma}- be resolved into three components : one in the

direction PO, the others in directions perpendicular to PO
and to each other ; but it is evident from considerations of

symmetry that in finding the attraction at P due to the whole

shell we shall need only that component which acts in PO. This

. , , p?"sin(9- A9-A^A(i-cos7t'P3/ .„ „^
IS approximately ^ ——

; or, it PO = c,

p?^sin^(c — 7-cos^)ArA^A<^ p.„-|

f

The attraction at P due to the whole elementary shell is, then,

approximately (truly on the assumption that the whole mass of

the shell is. concentrated at its inner surface),

Ar f fP^ ^"^ 0(c-r cos 0) (19d4 ^ ^^ y
; [19]

and the true value at P of the attraction due to the given shell is

Xdr. [20]

If in the expression for X we substitute for 6 its value in

terms of i/, we have, since

y^ z=z <r + y- — 2 crcos^,

and hence . 2ydy = 2crs,\i\6d9,

Jo Jy, 2ry- & Jy, \ ly J

=g:^'^'-<^+^^ '

[21]
•f L y At.-
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In order to find the limits of the integration with reg&rd to y,

we must distinguish between two cases :

I. If P is a point in the cavity enclosed by the given shell,

y^ = r— G and yj = r4-c;

(? \_ r-\-c r — c
= 0, [22]

and pXdr= 0; [23]

SO that a homogeneous spherical shell exerts no attraction at

points in the cavity which it encloses.

II. If P is a point without the given shell,

2/o = c — r and y^ = c + r ;

X — ^^

r

^— c^ + (c+^')' _ y^— (r+(c — r) -

c^[_ c-]-r c — r

and C'Xdr = -^ (?f- r^^) .

./r„ 3 C"

From this it follows that the attraction due to a spherical

shell of uniform density is the same, at a point without the shell,

as the attraction due to a mass equal to that of the shell con-

centrated at the shell's centre.

If in [25] we make ?u=0, we have the attraction, due to a

solid sphere of radius Vi and density p, at a point outside the

sphere at a distance c from the centre. This is

ATrpr"
[24]

[25]

4 Trpr^

3c2
[26]

10. Attraction due to a Hemisphere. At any point P in the

plane of the base of a homogeneous hemisphere, the attraction

of the hemisphere gives rise to two components, one directed

toward the centre of the base, the other peqiendicular to the

plane of the base. AVe will compute the values of these com-

ponents for the particular case where P lies on the rim of the

hemisphere's base, and for this purpose we will take the origin
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of our S3'stem of polar coordinates at P, because by so doing

we shall escape having to deal with a quantity which becomes

infinite at one of the limits of integration. Denote the coordi-

nates of any pointi in the hemisphere by r, $, ^, where (Fig. 9)

XPN= </>, IPL = 6, and PL = r.

Fig. 9.

If Ti be the radius of the hemisphere,

FT= PiV^cosNPT= PX cos XPN- cosNPT= 2 ri sin 6 cos ^.

cosXPL IK IK IL cos 4> . .— = =-— ^ = sin^cos<
PL r r

ctT>T P/S KL IL sin 4> • n • acos SPL =— = = ^ = sin^ sm ^.PL r r

The mass of a polar element of volume whose corner is at

L is approximately p-ILA4>- PLM- Ar or pr^sin^ArA^A^,

and this divided by r^ is the attraction at P in the direction PL
of the element, supposed concentrated at L. The components

of this attraction in the direction PX and Pyare respectively

psin^ArA^Ac^cosXPi and p sin^ArA^A^ cos^SilL.

The component in the direction Py of the attraction at P due

to the whole hemisphere is, then,

JTT
y-»n- ^2 r, sin 6 COS (^

2d<j>
I
d$

I
psin^^sin</)dr = |pri, [27]
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and the component in the direction Px is

XjT
/^n ^•2ri Bindco8<^

2(Z<^| d^l psin-6cos</)dr=|7rpri. [28]

This last expression might have been obtained from [2G] by

making c equal to r and halving the result.

11. Attraction of a Hemispherical Hill. If at a point on the

earth at the southern extremity of a homogeneous hemispheri-

cal hill of densit}' p and radius r^ the force of gravity due to the

earth, supposed spherical, is gr, the attraction due to the earth

and the hill will give rise to two components, g — ^pTi down-

wards, and f Trprj northwards. The resultant attraction does

not therefore act in the direction of the centre of the earth, but

makes with this direction an angle whose tangent is
^ "" '—

^Ppar,

Fig. 10.

Let 4> (Fig. 10) be the true latitude of the place and (c^ — a)

the apparent latitude, as obtained by measuring the angle which

the plumb-line at the place makes with the plane of the equator.

Let a be the radius of the earth and o- its average density. Then

tana= t^P^i = ^LPh

9-ipri 2(7rao--pri)
[29]



16 THE ATTi:ACTION OF GRAVITATION.

The radius of the earth is very large compared with the

radius of the hill, and a is a small angle, so that approximately

a = -^-^, and the apparent latitude of the place is <^ ^-^ •

2acr 2 acr

If
<f>i

is the true latitude of a place just north of the same hill,

its apparent latitude will be ^^ + -^-^ , and the apparent differ-
2ao-

ence of latitude between the two places, one just north of the

hill and the other just south of it, will be the true difference

plus ^. If there were a hemispherical cavity between the two
aa-

places instead of a hemispherical hill, the apparent difference of

latitude would be less than the true difference.

12. Ellipsoidal Homoeoids. A shell, thick or thin, bounded

by two ellipsoidal surfaces, concentric, similar, and similarly

placed, shall be called an ellipsoidal homoeoid.

Fig. 11.

It is a property of every such shell that if any straight line

cut its outer surface at the points S^S' (Fig. 11) and its inner

surface at Q, Q', so that these four points lie in the order

SQQ'S', the length SQ will be equal to the length Q'S'.

We will prove that the attraction of a homogeneous closed
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ellipsoidal homoeoid, at any point P in the cavity which it shuts

in, is zero.

Make P the vertex of a slender conical surface of two

nappes, A and B, and suppose the plane of the paper to be

so chosen that PQ is the shortest and PM the longest length

cut from any element of the nappe A by the inner surface of

the homceoid. Draw about P splierical surfaces of radii PQ,
PM, PS, and PO, and imagine the space between the inner-

most and outermost of these surfaces filled with matter of the

same density as the homoioid. The nappe A cuts out a portion

from this spherical shell whose trace on the plane of the

paper is QLOT. Let us call this, for short, " the element

QLOT." The attraction atP, due to the element QMOS which

A cuts out of the homoeoid, is less than the attraction at the

same point due to the element QLOT, and greater than that

due to the element whose trace is KMNS. But the attraction

at P, due to the first of these elements of spherical shells, is to

the attraction due to the other as the thickness of the first shell

is to that of the other, or as QT \s, to KS. (See Section 8.)

The limit of the ratio of QT to KS, as the solid angle of the

cone is made smaller and smaller, is unity ; therefore the limit

of the ratio of the attraction at P due to the element QMOS, to

the attraction due to the element of spherical shell whose trace

is QLNS, is unit}^ By a similar construction it is eas}' to show

that the limit of the ratio of the attraction at P, due to the

element which B cuts out of the homoeoid, to the attraction due

to the portion of spherical shell whose trace is Q'L'N'S', is

unity.

But the attractions at P, due to the elements Q'L'N'S' and

QLNS, are equal in amount (since their thicknesses are the

same) and opposite in direction, so that if for the elements of

the homoeoid these elements were substituted, there would be no

resultant attraction at P. In order to get the attraction at P
in any direction due to the whole honKcoid we may cut up the

inner surface of the homwoid into elements, use the perimeter

of each one of these elements as the directrix of a conical sur-
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face having its vertex at P, and find the limit of the sum of the

attractions due to the elements which these conical surfaces cut

from the homcEoid. Wherever we have to find the finite limit of

the sum of a series of infinitesimal quantities, we may without

error substitute for anj- one of these another infinitesimal, tlie

limit of whose ratio to the first is unit}*. For the attractions at P
due to the elements of the homceoid we may, therefore, substi-

tute attractions due to elements of spherical shells, which, as we

have seen, destroy each other in pairs. Hence our proposition.

A shell bounded by two concentric spherical surfaces gives a

special case under this theorem.

13. Sphere of Variable Density. The density of a homo-

geneous body is the amount of matter contained in the unit

volume of the material of which the body is composed, and this

may be obtained by dividing the mass of the bod}^ b}- its volume.

If the amount of matter contained in a given volume is not

the same thi'oughout a body, the body is called heterogeneous,

and its density is said to be variable.

The average density of a heterogeneous body is the ratio of

the mass of the body to its volume. The actual density p at

any point Q inside the body is defined to be the limit of the

ratio of the mass of a small portion of the body taken about Q
to the volume of this portion as the latter is made smaller and

smaller.

The attraction, at any point P, due to a spherical shell whose

density is the same at all points equidistant from the common
centre of the spherical surfaces which bound the shell but dif-

ferent at diflferent distances from this centre, may be obtained

with the help of some of the equations in Article 9.

Since p is independent of B and c^, it may be taken out from

under the signs of integration with regard to these variables,

although it must be left under the sign of integration with re-

gard to ?•.

Equations 19 to 24 inclusive hold for the case that we

are now considering as well as for the case when p is constant.
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SO that the attraction at all points within the cavity enclosed by

a spherical shell whose density varies with the distance from the

centre is zero.

If P is without the shell, the attraction is

or, if p=/(r).

Xdr = )
-

rdr.

The mass of the shell is evidently

limit V^*"! „
/*'*»

[30]

[31]

and [30] declares that a spherical shell whose density is a

function of the distance from its centre attracts at all outside

points as if the whole mass of the shell were concentrated at the

centre.

If ro = 0, we have the case of a solid sphere.

14. Attraction due to any Mass. In order to find the attrac-

tion at a point P (Fig. 12), due to any attracting masses J/', we

may choose a system of rectangular coordinate axes and divide

Fio. 12.

M' up into volume elements. If p is the average density of one

of these elements (Ar'), the mass of the elenu-nt will be p\v'

.

Let Q, whose coordinates are x\ y\ z\ be a point of the ele-
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ment, find let the coordinates of P be x, y, z. The attraction

at P in the direction PQ due to this element is approximately

—2? ^^cl the components of this in the direction of the coordi-

nate axes are

e^cosa', ^cos^', and^'cosy', [32]
pq- PQ^ PQ-

where a', y8', y' are the angles which PQ makes with the positive

directions of the axes.

It is easy to see that

, PL x'—x
cos a' =—- =

PQ PQ'
and, similarly, that

a, y'—V A I
z' — z

cos B' = -—-r , and cos y' =
^ PQ ^ PQ

Moreover,

PQ' = PL' + LS' +W = {^'-^y-\-(y'-yr+iz'-z)\

and this we wiU call ?*^.

The true values of the components in the direction of the

coordinate axes of the attraction at P, due to all the elements

which go to make up M', are, then,

y^_ limit ^ pAf'(a;'— a;)

_ C C C .
p{x'—x)dx'dy'dz'

. pgg -.

-JJJ[{x'-xy+{y'-yf+(z'-zy-^i' ^
^^

r7-_ limit ^ pi^^v' (y'— y)

= CC C p(y'-y)dx'dy'dz' p3 .

JJJll^x'-xy-+{y'-yy+{z'-zy:\i' L "J

7 _ limit X^ pA?;'(2'— z)

^ r r r p(z'-z)dx'dy'dz'
. i-g^

-,

JJJlix'- xy-h (y'- yy+ (z'- zy]i' ^
"-



THE ATTRACTION OF GRAVITATION. 21

where p is the density at the point {x', y\ z'), and where the

integrations with regard to x\ y', and z' are to include the whole

of M'.

The resultant attraction at P, due to M- , is

i2 =VX2+F2 + ^'; [34]

and its line of action makes with the coordinate axes angles

whose cosines are

The component of the attraction at the point {x, y, z) in a-

direction making an angle c with the line of action of R is

Rcose. If the direction cosines of this direction are A', yx', v',

we have
cos€ = AA'+ .M/x'+ w'.

15. The quantities X, Y, Z, and i2, which occur in the last

section, are in general functions of the coordinates x, y, and z of

the point P. Let us consider X, whose value is given in [33^^]

.

x' — X
If P lies without the attracting mass 3f', the quantity —
is finite for all the elements into which J/' is divided. Let L
be the largest value which it can have for anj- one of these

elements, then X is less than i I
| |

pdx'dy'dz', or L-M', and

this is finite. If P is a point within the space which the attract-

ing mass occupies, it is easy to show that, whatever physical

meaning we may attach to X, it has a finite value. To prove

this, make P the origin of a system of polar coordinates, and

divide 31' up into elements like those used in Section 10. It

will then be clear that

X= C C Cp sin^Ocos 4, drdddct>, [3G]

where the limits are to be chosen so as to include all the at-

tracting mass. Since sin^^cos<^ can never be greater than
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unit}', X is less than III pdrdOdcf), which is evidently finite

when p is finite, as it always is in fact.

The corresponding expressions,

Y= C C Cpsm-esmcf>drded<f>, [37]

and Z = C C CpsinOcosedrdedcfi, [38]

can be proved finite in a similar manner ; and it follows that

X, y, Z, and consequently H, are finite for all values of x, y,

and z.

As a special case, the attraction at a point P within the mass

of a homogeneous spherical shell, of radii ?o and Vi, and of den-

sity p, is

where r is the distance of P from the centre of the shell.

16. Attraction between Two Straight Wires. Let AK and

BK' (Fig. 13) be two straight wires of lengths I and I' and of

line-densities p, and p.' ; and let KB = c. Divide AK into

A f^f^^ K B [1'

M M'

Fig. 13.

elements of length Ax, and consider one of these MM', such

that AM=x. The attraction of BK' on a unit mass concen-

'J.
1_~

MB MK
therefore, the whole element MM' whose mass is pAx were con

centrated at M, the attraction on it, due to BK', would be

trated at Jf would be (Sections 2 and 5), p.' If,

p.p.'Ax = u,p.'Ax^^ MB MK' ^^ l + c-x l + l'-h

1- [40]
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The actual force, due to the attraction of BK\ with which the

whole wire AK is urged toward the right, is

limit

Ax^i^^\t.'^x r
—

^

^—

1

~^'^X \x - {I + V+ c)~ X - {I + c)/

= /A/x' lojr
x — l — V — c

x — l — c

'=^;x'log(i±^K^^±^. [41]

17. Attraction between Two Spheres. Consider two homo-

geneous spheres of masses M and J/' (F'ig. 14), whose centres

C and C are at a distance c from each other. Divide the sphere

M' into elements in the manner described in Section 9. The

attraction due to M at any point P' outside of this sphere is, as

M
we have seen,

^
, and its line of action is in the direction

P'C.

Fro. 14.

Let P'=(r, 0,<l)) be any point in tlie sphere 3/', and let

CP' = y. The attraction of 3/ in the direction P'C on an

element of mass pr sin^Ar A^A<^ supposed concentrated at P is

—

^

, and the component of this parallel to the
if

line C'C is
^/•p>-^sin^(c-rcos^)ArA^A<^

^ ^^^ ^^^^^ ^.^^

f
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which the whole sphere M' is urged toward the right by the

attraction of M is, then,

W C C rp^s^Q^^^<^^^^0(c — ^•cos^) [-.„-,

where the integration is to be extended to all the elements

which go to make up M'. It is proved in Section 9 that the

M'
value of this triple integral is —^, so that the force of attraction

C"

MM'
betweea the two spheres is —-

—

18. Attraction between any Two Rigid Bodies. In order to

find the force with which a rigid body M is pulled in any direc-

tion (as for instance in that of the axis of a;) by the attraction

of another body M', we must in general find the value of a

sextuple integral.

Let 31 be divided up into small portions, and let Am be the

mass of one of these elements which contains the point (x, ?/, z)

.

The component in the direction of the axis of x of the attrac-

tion at (a;, y, z) due to M' is

///i
p(x'— x)dx'dy'dz'

[(x'-xy+{y'-yy-\-{z'-zyy

and this would be the actual attraction in this direction on a

unit mass supposed concentrated at (cc, y, z). If the mass Am
were concentrated at this point, the attraction on it in the direc-

tion of the axis of x would be

. r r r p(x'—x)dx'dy'dz' |- . „-|

VJj[{x'-xr+iy'-yy+(z'-zy]f ^ ^

The actual attraction in the direction of the axis of x of M'
upon the whole of Jf is, then,

limit VAm . r r C p(x'-x)dx'dy'dz' p^^n
a;«=0^ J JJl(^a>'-xy-\-{y'-yy+{z'-zy^i' ^

"^
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If p' is the density at the point (x, y, z) , and if the elements

into which 3f is divided are rectangular parallelopipeds of di-

mensions Ax, Ay, and Az, the expression just given ma}- be

written

C C C C C C p'p(^'-^)(^^ (^^y ^^ dx'dy'dz' p..-,

J J J J J J l(x'-xy+{y'-yy-{.{z'-zr^^ ^
''^

where the integrations are first to be extended over 31' and

then over M.

EXAMPLES.

1. Find the resultant attraction, at the origin of a s^ystem of

rectangular coordinates, due to masses of 12, IG, and 20 units

respectively, concentrated at the points (3, 4), ( — 5, 12), and

(8, —6). What is its line of action ?

2. Find the value, at the origin of a system of rectangular

coordinates, of the attraction due to three equal spheres, each of

mass m, whose centres are at the points (a, 0, 0), (0,6,0),

(0, 0,c). Find also the direction-cosines of the line of action

of this resultant attraction.

, 3. Show that the attraction, due to a uniform wire bent into

the form of the arc of a circumference, is the same at the centre

of the circumference as the attraction due to any uniform

straight wire of the same density which is tangent to the given

wire, and is terminated by the bounding radii (when produced)

of the given wire.

4. Show that in the case of an oblique cone whose base is

any plane figure the attraction at the vertex of the cone due to

any frustum varies, other things being equal, as the thickness

of the frustum.

5. Find the equation of a family of surfaces over each one of

which the resultant force of attraction due to a uniform straight

wire is constant.

6. Using the foot-pound-second system of fundamental units,

and assuming that the average density of the earth is o.G, com-

pare with the poundal the unit of force used in this chapter.
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' 7. If in Fig. 2 we suppose P moved up to A^ the attraction

at P becomes infinite according to [7], and yet Section 15

asserts that the value, at any point inside a given mass, of the

attraction due to this mass is always finite. Explain this.

» 8. A spherical cavity' whose radius is r is made in a uniform

sphere of radius 2 r and mass m in such a way that the centre

of the sphere lies on the wall of the cavity. *I<'ind the attraction

due to the resulting solid at different points on the line joining

the centre of the sphere with tlie centre of the cavity.

9. A uniform sphere of mass m is divided into halves by the

plane AB passed through its centre C. Find the value of the

attraction due to each of these hemispheres at P, a point on the

perpendicular erected to AB at (7, if CP = a.

10. Considering the earth a sphere whose density varies only

with the distance from the centre, what may we infer about the

law of change of this density if a pendulum swing with the same

period on the surface of the earth and at the bottom of a deep

mine ? What if the force of attraction increases with the depth

at the rate of -th of a dyne per centimetre of descent ?

n

11. The attraction due to a cylindrical tube of length li and

of radii Rq and i?i, at a point in the axis, at a distance Cq from

the plane of the nearer end, is

2Trp[Vco2+i2i^-Vco^+i?o''+V(c„-f/0'+iV-V(Co+/0'+i?i'].

[Stone.]

12. A spherical cavity of radius h is hollowed out in a sphere

of radius a and density p, and then completely filled with

matter, of density p^. If c is the distance between the centre

of the cavity and the centre of the sphere, the attraction due

to the composite solid at a point in the line joining these two

centres, at a distance d from the centre of the sphere, is

J 13. The centre of a sphere of aluminum of radius 10 and of

density 2.5, is at the distance 100 from a sphere of the same

4
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size made of gold, of density 19. Show that the attraction

due to these spheres is nothing at a point between them, at a

distance of about 26.6 from the centre of the ahiminum sphere.

/ [Stone.]

14. Show that the attraction at the centre of a sphere of radius

r, from which a piece has been cut by a cone of revolution

whose vertex is at the centre, is Trpr sin-a, where a is the

half angle of the cone. [Stone.]

15. An iron sphere of radius 10 and density 7 has an eccentric

spherical cavity of radius 6, whose centre is at a distance 3

from the centre of the sphere. Find the attraction due to

this solid at a point 25 units from the centre of the sphere,

and so situated that the line joining it with this centre makes

an angle of 45° with the line joining the centre of the sphere

and the centre of the cavit}'. [Stone.]

'16. If the piece of a spherical shell of radii Tq and rj, inter-

cepted by a cone of revolution whose solid angle is w and whose

vertex is the centre of the shell, be cut out and removed, find

the attraction of the remainder of the shell at a point P situated

in the axis of the cone at a given distance from the centre of

the sphere. If in the vertical shaft of a mine a pendulum be

swung, is there any appreciable error in assuming that the only

matter whose attraction influences the pendulum lies nearer the

centre of the earth, supposed spherical, than the penduluuj

does ?

17. Show that the attraction of a spherical segment is, at its

vertex,

^M^-Uv
where a is the radius of the sphere and h the height of the

segment.

.

'^ 18. Show that the resultant attraction of a spherical segment

on a particle at the centre of its base is

_2_5^ [Sa'-S oh 4- fr- (2 a - h) i /ii]

.

3(a — /i)-
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' 19. Show that the attraction at the focus of a segment of a

paraboloid of revolution bounded by a plane perpendicular to

the axis at a distance 6 from the vertex is of the form

A 1 ci + b
4 irpa log——

^ 20. Show that the attraction of the oblate spheroid formed

by the revolution of the ellipse of semiaxes a, &, and eccen-

tricity e, is, at the pole of the spheroid,

47rp& (
,

(l-e')h . _i
)—r- T 1 ~" ^ ^^^ ^ r ?

e- ( e )

and that the attraction due to the corresponding prolate spheroid

is, at its pole,

e' l2e " 1-e 3

^ 21. Show that the attraction at the point (c, 0, 0), due to

the homogeneous solid bounded b}' the planes x = a, x = b, and

by the surface generated by the revolution about the axis of x

of the curve y =f{x) , is

-i 22. Prove that the attraction of a uniform lamina in the form

of a rectangle, at a point P in the straight line drawn through

the centre of the lamina at right angles to its plane, is

4/i,sm ^—z=^— »

where 2 a and 26 are the dimensions of the lamina and c the

distance of P from its plane. [See Todhunter's Analytical

Statics.'\
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CHAPTER II.

THE NEWTONIAN POTENTIAL FUNCTION IN THE CASE

or GRAVITATION.

19. Definition. If we imagine an attracting body M to be

cut up into small elements, and add togetbei" all tbe fractions

formed by dividing tbe mass of eacb element by tbe distance of

one of its points from a given point P in space, the limit of tbis

sum, as tbe elements are made smaller and smaller, is called tbe

value at P of " tbe potential function due to J/."

If we call tbis quantity F, we bave

limit ^Am r,--,
Am

wbere Am is tbe mass of one of tbe elements and r its distance

from P, and wbere tbe summation is to include all tbe elements

wbicb go to make up 3f.

If we denote by p tbe average density of the element whose

mass is A?)t, and call tbe coordinates of tbe corner of tbis ele-

ment nearest tbe origin x', y\ 2', and those of P, x^ y, z, we may
write

Am = p^x'\y'\z\
and

V^CC C pdx'dy'dz' . ,

JJJl(^x'-xY+{y'-yy+{z'-zr-]\' ^ ^

where p is tbe density at tbe point {x\ y', z') , and where the

triple integration is to include tbe whole of the attracting mass M.

As tbe position of tbe point P changes, the value of the quan-

tity under tlie integral signs in [47] changes, and in general V
is a function of the three space coordinates, i.e., V=f{x,y,z).

To avoid circumlocution, a point at which the value of the
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potential function is Vq is sometimes said to be " at potential

Vq." From the definition of Fit is evident that if the value at

a point P of the potential function due to a system of masses

Ml existing alone is Vi, and if the value at the same point of

the potential function due to another system of masses Mo exist-

ing alone is V^, the value at P of the potential function due to

Ml and Mo existing together is F= Fi + F^.

20. The Derivatives of the Potential Function. If P is a

point outside the attracting mass, the quantity

which enters into the expression for V in [47], can never be

zero, and the quantity under the integral signs is finite every-

wliere within the limits of integration ; now, since these limits

depend only upon the shape and position of the attracting mass

and have nothing to do with the coordinates of P, we may dif-

ferentiate F with respect to either x, y, or z by differentiating

under the integral signs. Thus :

=SSf

dx'dy'dz''

p(x'—x)dx'dy'dz' p.^.-,

[{x'-xy+{y'-yy+{z'-zy]i' L J

where the limits of integration are unchanged by the differen-

tiation. The dexter integral in this equation is (Section 14)

the value of the component parallel to the axis of x of the

attraction at P due to the given masses, so that we may write,

using our old notation,

AF=X, [49]

and, similarly, DyV=Y, [50]

D,V=Z. [51]

The resultant attraction at P is

E=Vx' + Y'+z'=-y{D,vy+{D,vy + {D^vy, [52]
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and the direction-cosines of its line of action are

:

a = -^, cos/3 = -^, and cosy = -^. [o3]

It is evident from the definition of the potential function that

the value of the latter at any point is independent of the par-

ticular system of rectangular axes chosen. If, then, we wish to

find the component, in the direction of any line, of the attraction

at any point P, we may choose one of our coordinate axes

parallel to this line, and, after computing the general value of

V, we may differentiate the latter partially with respect to the

coordinate measured on the axis in question, and substitute in

the result the coordinates of P.

21. Theorem. The results of the last section may be summed
up in the words of the following

THEOREM.

To find the component at a point P, in any direction PK, of

the attraction due to any attracting mass M, tee may divide the

difference between the values of the potential function due to M at

P {a point beticeen P and K on the straight line PK) and at P
by the distance PP'. The limit approached by this fraction as

P' approaches P is the component required.

"VVe might have arrived at this theorem in the following wa^- :

If X, I", Z are the components parallel to the coordinate axes

of the attraction at any point P, the component in any direction

P/i" whose direction-cosines are A, /x, and v, is

kX+fjLV+yZ= XD,V+ fJiD^V+ .'/), V. [54]

Let X, y, z be the coordinates of /*, and x -f Ax, y +- Ay,

z-\-Az those of P', a neighboring point on the line PK.
If V and V are the values of the potential function at P and

P' respectively, we have, by Taylor's Theorem,

V'=V-hAx-DJ^+Ay-D,V+AZ'D,V+e,

where £ is an infinitesimal of an order higher than the first.
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'''^=^-^-r+^,i>.r+^,.D.r+-^,; m

n XD,V-hf^D,V+vD,V, [56]

jjpi pp, ppi y pp, '
' pp

but Aa; = A-PP', ^y = iL'PP\ ^.z = vPP\

therefore, ^^Ti,(i^

and this (see [54]) is the component in the direction PK of

the attraction at P : whicli was to be proved.

22. The Potential Function everjrwhere Finite. If P is a

point within the attracting mass, the sum whose limit expresses

the value of the potential function at P contains one apparently

infinite term. That V is not infinite in this case is easily

proved by making P the origin of a system of polar coordinates

as in Section 15, when it will appear that the value of the

potential function at P can be expressed in tlie form

Vp= C C CprB\nedrdedfi>; [57]

and this is evidently finite.

Although Vp is everywhere finite, \e.i when we express its

value by means of the equation [47], tlie quantity under the in-

tegral signs becomes infinite within the limits of integration,

z

^

)M
\

x'

1 T
"M X

Fig. 15.

when P is a point inside the attracting mass. Under these cir-

cumstances we cannot assume without further proof that the

result obtained by differentiating witli respect to x under the

integral signs is really D^V. It is therefore desirable to com-
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pute the limit of the ratio of the difference (A,F) between the

values of V at the points P'=(a;4-Aa;, y, z) and P=(x, y, 2),

both within the attracting mass, to the distance (Aa;) between

these points. For convenience, draw through P (Fig. 15) three

lines parallel to the coordinate axes, and let Q = {x', y', z').

Let PQ = r, P'Q = r', and X'PQ = i/..

Then
r"^ = 9-^4-(Aa;)-— 2 r • Ace • cos i/^,

where cos ij/ = -,

and ^^rrr(l_r\ pdx'dy'dz>

Ax J J J \7-' rj Ax

pdx'dy'dz'

r' r^ -\- rr'-) Ax

^2rAa;cosi/^ —(Ax)^ pdx'dy'dz'

r' r^ + rr''^ J Ax
Therefore

j\ TT limit f^rV

=///e

-SIP

-Iff

——— • p dx' dy' dz'
2

pdx' dy' dz' cos if/ r- - qt^-^ L^^J

This last integral is evidently the component parallel to the

axis of X of the attraction at P, so that the theorem of Article

21 may be extended to points within the attracting mass.

It is to be noticed that p is a function of x', y', and z', but not

a function of x, y, and z, and that we have really proved that the

derivatives with regard to x, y, and 2 of

fff^^^f''\l=o'dy'dz;
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where i'' is any finite, continuous, and single-valued function of

x', y\ and z', can always be found by differentiating under the

integral signs, whether {x,y,z) is contained within the limits of

integration or not.

23. The Potential Function due to a Straight Wire. Let

f/.
be the mass of the unit length of a uniform straight wire AB

(Fig. 16) of length 21. Take the middle point of the wire for

the origin of coordinates, and a line drawn perpendicular to the

wire at this point for the axis of x.

Fig. 16.

The value of the potential function at any point P {x, y) in

the coordinate plane is, then, according to [47],

F, =x
txdy'

I [^-^{y'-yn-
T = /^ logl^x'+i^y'-yy+y'-yl

l-y+ ^/x'+(l-yy

If r = AP = ^/x'+{l-yy, and r' = BP= Vx' + {l + yy,

whence y
-r"
U , we may eliminate x and y from [59] and

express Vp in terms of r and r'.

Thus:
j^ , (r-\-2iy-r"- 1 r-\-r'+2l r^mFp = w log ^

—

= «.log

—

—-^ [60]

It is evident from [60] that if P move so as to keep the sum

of its distances from the ends of the wire constant, Vp will
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remain constant. P's locus in this case is an ellipse whose

foci are at A and B.

From [59] we get

X

X

X

X

x" a?

|_r[r + (Z-2/)] r'[r'-(Z + 2/)]J

r-(l-y) / + (Z+y) -|

r r' J

1 — cos8—1

cos S + cos 8'
,

— cos 8'

}
and this (Section G). is the component in the direction of the

axis of X of the attraction at P.

24. The Potential Function due to a Spherical Shell. In

order to find the value at the point P of the potential function

due to a homogeneous spherical shell of density- p and of radii Tq

and ri, we may make use of the notation of Section 9. L'^;;^

r r r pr^sm$drded(f> _ r r rprd>/drd4>

If P lies within the cavity enclosed by the shell, the limits of

y are (r — c) and {r + c), whence

F=27rp(r,^-V). [G2]

If P lies without the shell, the limits of y are (c — r) and

(c -f- ^*)
9
whence

[63]
.'} c

If P is a point within the mass of the shell itself, at a dis-

tance c from the centre, we may divide the shell into two parts
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by means of a spherical surface drawn concentric with the given

shell so as to pass through P. The value of the potential func-

tion at P is the sum of the components clue to these portions of

the shell ; therefore

o c

= 2,,{n^-|}
4tp 3

[64]

If we put these results together, we shall have the following

table :
—

c>n ro<c< o\ ri<c

V= 2irp{r^-—ri)
'-^^''-i—Tc'-'

^TTofr^

3c
(9f-r„'^)

3 \(f
i£P (to
3 c-

Hn'~ri)

-+1

If we make F, D^F", and D^V the ordinates of curves whose

abscissas are c, we get Fig. 17.*

Here LNQS represents V, and it is to be noticed that this

curve is everywhere finite, continuous, and continuous in direc-

tion. The curve 0-45(7 represents D^V. This curve is every-

where finite and continuous, but its direction clianges abruptly

when the point P enters or leaves the attracting mass. The

three disconnected lines OA, DE, and FG represent DJ^V.

If the density of the shell instead of being uniform were a

function of the distance from the centre [p =/(*') ]i ^^ should

have at the point P, at the distance c from the centre of the

V= ^\f{r).r.dridy. [65]

* See Thomson and Tail's Treatise on Natural Philosophy.
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From this it follows, as the reader can easily prove, that the

value of the potential function due to a spherical shell whose

density is a function of the distance from the centre only is

Fig. 17.

constant throughout the cavity enclosed b}' the shell, and at all

outside points is the same as if the mass of the shell were con-

centrated at its centre.

25. Equipotential Surfaces. As we have already seen, Fis, in

general, a function of the three space coordinates [l'=/(-P,y,2;)],

and in any given case all these points at which the potential

function has the particular value c lie on the surface whose

equation is F= /(.., y, .) = c.

Such a surface is called an " equipotential " or '' level " sur-

face. By giving to c in succession dififerent constant values,

the equation V= c yields a whole family of surfaces, and it is

always possible to draw through any given point in a field of

force a surface at all points of which the potential function has

the same value. The potential function cannot have two differ-

ent values at the same point in space, therefore no two different

surfaces of the family V=c, where Fis .the potential function

due to an actual distribution of matter, can ever intersect.

1.05460
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THEOREM.

If there he any resultant force at a point in space, due to any

attracting masses, tJiis force acts along the normal to that equi-

potenticd sujface on which the point lies.

For, let V=f{x, y,z) = c be the equation of the equipotential

surface drawn through the point in question, and let the coordi-

nates of this point be x^, y^, Zq. The equation of the, plane

tangent to the surface at the point is

(x-Xo)D^,V-^(y-yo)Dy^V+{z-Zo)D,,V=0,

and the direction-cosines of any line perpendicular to this plane,

and hence of the normal to the given surface at the point

cos a = ^^
, [66r\

and cosY= ^^"^^
• [660]

But if we denote the resultant force of attraction at the point

(^0? Voi ^0) l>y -K? ^^(^ its components parallel to the coordinate

axes by X, Y, and Z, these cosines are evidently equal to

X Y Z— , — , and — respectively, so that a, /?, and y are the direction-
R R R
angles not only of the normal to the equipotential surface at the

point (a^o, y^, Zq) , but also [35] of the line of action of the re-

sultant force at the point. Hence our theorem.

Fig. 18 represents a meridian section of four of the system

of equipotential surfaces due to two equal spheres whose sec-

tions are here shaded. The value of the potential function due

to two spheres, each of mass M, at a point distant respectively

Ti and r^ from the centres of the spheres, is

vn ro
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and if we give to V in this equation different constant values,

we shall have the equations of different members of the system

of equipotential surfaces. Any one of these surfaces may be

easily plotted from its equation by finding corresponding values

Fig. 18.

of 9*1 and To which will satisfy the equation ; and then, with the

centres of the two spheres as centres and these values as radii,

describing two spherical surfaces. The intersection of these

surfaces, if they intersect at all, will bo a line on the surface

required.

If 2(1 is the distance between the centres of the spheres,

2 VV= —^ gives an equipotential surface shaped like an hour-
a

glass. Larger values of V than this give equipotential sur-

faces, each one of which consists of two sei)arate closed ovals,

one surrounding one of the spheres, and the otlier the other.

2 3/
Values of V less than give single surfaces which look more

a
and more like ellipsoids the smaller T'' is.

Several diagrams showing the forms of the equipotential

surfaces due to different distributions of matter are given at
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the end of the first volume of Maxwell's Treatise on Electricity

and Magnetism.

26. The Value of V at Infinity. The value, at the point P,

of the potential function due to any attracting mass M has

been defined to be

Y_ limit "^Am
*^ A»i=0/ v~^'

Let Tq be the distance of the nearest point of the attracting

mass from P, then

F<i'VAm or —. [67]

M
The fraction — has a constant numerator, and a denominator

''"
.

which grows larger without limit the farther P is removed from

the attracting masses ; hence, we see that, other things being

equal, the value at P of the potential function is smaller the

farther P is from the attracting matter ; and that if P be moved

away indefinitely, the value of the potential function at P
approaches zero as a limit. In other words, the value of the

potential function at '•' infinity " is zero.

27. The Potential Function as a Measure of Work. The

amount of work required to move a unit mass, concentrated at

a point, from one position, Pj, to another, Pj, by any path, in

face of the attraction of a system of masses, M, is equal to

Vi — V21 where V\ and V2 are the values at Pi and P^ of the

potential function due to M.
To prove this, let us divide the. given path into equal parts

of length As, and call the average force which opposes the
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motion of the unit mass on its journey along one of these

elements AB (Fig. 19), F. The amount of work required to

move the unit mass from ^1 to J5 is FAs, aud the whole work

done by moving this mass from Pi to P., will be

limit "V ^J Ti

.

As As is made smaller and smaller, the average force opposing

the motion along AB approaches more and more nearly the

actual opposing force at A, which is —D^V: therefore

,^'"V* V'FAs = - f^'A V- ds = F, - Fo.

It is to be carefully noticed that the decrease in the potential

function in moving from P, to P., measures the work required

to move the unit mass from Pi to P.,. If P., is removed farther

and farther from 3/, Vo approaches zero, and Fj— T^, approaches

Vi as its limit, so that the value at any point Pj, of the poten-

tial function due to any system of attracting masses, is equal

to the work which would be required to move a unit mass, sup-

posed concentrated at Pj, from Pi to " infinity" by any path.

The work (IF) that must be done in order to move an attract-

ing mass M' against the attraction of any other mass J/, from

a given position by any path to '' infinity," is the sum of the

quantities of work required to move thft several elements (Awi')

into which we may divide M' , and this may be written in the

form

C C C C C C pp'dxd>/dzdx\h/'dz' j-^^-.

^J J J J J J w^)'^!r->'y^+w^^'¥' '

W is called by some writers "the potential of the mass M'
with reference to the mass J/" ; by others, the negative of W is

called '-the mutual potential energy of 3/ and 3/'."

Ill many of the later books on this subject, the word



42 THE NEWTONIAN POTENTIAL FUNCTION

"potential" is never used for the value of the potential func-

tion at a point, but is reserved to denote the work required to

move a mass from some present position to infinitj*. If V is

the value of the potential function at a point P, at which a

mass m is supposed to be concentrated, mV is the j^otential

of the mass m. If we could have a unit mass concentrated

at a point, the potential of this mass and the value of the poten-

tial function at the point would be numerically' identical,

28. Laplace's Equation. Wc have seen that the value of the

potential function and the component in any direction of the

attraction at the point P are always finite functions of the space

coordinates, whether P is inside, outside, or at the surface of

tlie attracting masses. "We have seen also that by differentiating

V at an}' point with respect to an}'^ directioij we may find the

always finite component in that direction of the attraction at

the point. It follows that D^V, DyV, D^V are everywhere

finite, and that, in consequence of this, the potential function

is everywhere continuous as well as finite.

If P is a point outside of the attracting masses, the quantity

under the integral signs in [48], b}' which dx'dy'dz' is multi-

l)lied, cannot be infinite within the limits of integration, and we

can find D/F by differentiating the expression for D^V under

the integral signs.

In this case

D^V= C C C^i^'-^y-r"^ dx'dy'dz', [69]

and similarly,

DfV= ff n(y'-yy-^p dx'dy'dz', [70]

i)/V =ffP
^^'~

^Y
~ '^ pdx'dTj'dz'. [71]

Whence, for all points exterior to the attracting masses,

D/F+I>/F+Z>/F=0. [72]

This is Laplace's Equation.
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The operator (/>/ + Z>/ + D-) is sometimes denoted by the

symbol V-, so that [72] may be written

\-V=0. [73]

The potential function, due to every conceivable distribution

of matter, must be such that at all points in empty space

Laplace's PZquation shall be satisfied.

29. The Second Derivatives of the Potential Function are

Finite at Points within the Attracting Mass. If the point P
lies within the attracting mass, Fand D^V are finite, but the

quantity under the integi'al signs in the expression for D^V
becomes infinite within the limits of integration, and we cannot

assume that D^V may be found by differentiating D^V under

the integral signs. In order to find Z^/F" under these circum-

stances, it is convenient to transform the equation for D^V.

Let us choose our coordinate axes so as to have all tlie attract-

ing mass in the first octant, and divide the projection of the

contour of this mass on the plane yz into elements {dy'dz').

Upon each one of these elements let us erect a right prism,

cutting the mass twice or some other even number of times.

Consider one of the elements cly'dz' whose corner next the

origin has the coordinates 0, ?/', and z'. The i)rism erected on

this element cuts out elements ds^, d.%. ds.^, ds^, •• ds.-,,^ from the

surface of the attracting mass and that edge of the prism which

is perpendicular to the plane yz at (0, //', z') cuts into the

surface at points whose distances from the piano of yz are

«,, Oj, Or,, ••• 02n-n ^"d o"t of the surface at i)oints whose dis-

tances from the same plane are a.^, 04 Og, ••• «.„. At every one

of these points of intersection draw normals towards the int^ior

of the attracting mass, and call the angles which tliese normals

make with the positive direction of the axis of x, ai, a._,, a^. ••. «-,„.

It is to be noticed that «,,n3, 05, ••• h2„_i are all acute, and that

Co, 04, Qg, •• ao„ are all obtuse. The element dy'dz' miiy be re-

garded as the common projection of the surface elements
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dsi, ds2, dsg, ••• dson, and, so far as absolute value is concerned,

the following equations hold approximately :

dy'dz'== dsi cosaj = ds2 cosaa = ds^ cosog = ••. = ds2„ cosa2„.

But dy'dz',dSi,ds2,dSs, etc., are all positive areas, and cos a,,

cosa4, cosag, etc., are negative, so that, paying attention to

signs as well as to absolute values, we have

dy'dz'= -\-dsi cosai= —ds^ cosa2= +dsQ co3a3= —ds^ cosa4= etc.

Fig. 20.

Now

F=J/p("'-">f"'''''''"'=J/dy'&'/pJ.'(- i) dx', [74]

and in order to find the value of this expression by the

use of the prisms just described, we are to cut each one

of these prisms into elementary rectangular parallelopipeds by

planes parallel to the plane of yz ; we are to multiply the

values of every one of these elements which lies within the

attracting mass by the value of p DJ ( ] at its corner next

the origin [^.e., at (x',y\z')'] ; and we are to find the limit of

the sum of these as dx' is made smaller and smaller. We are

then to compute a like expression for each of the other prisms,

and to find the limit of the sum of the whole as the bases of the
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pi-isms are made smaller and smaller and their number eorres-'

pondingly increased.

Wherever the function ^ is a continuous and finite function

of x', we have

hence, if the elementary prisms cut the surface of the attracting

mass only twice,

D,V=ffdy'dz' -'L\+JJj*l^DJpdx'di/'dz'; [75]

x'= fl,

and, in general,

J J L^i r-2 n '-4 r,„j

-h C C f\l)J p dx' dy' dz' [76]

Zl Pi P'> Ps
\ — COSaiCZSj-l -COSa.,dS2-^ COSOgfiSgH

+ ^'cosa2„c7s2„
j +J J J -DJpdx'dy'dz', [77]

Pk P
where — is the value of the quantity - at the point \Yhere the

7\ " r

line y = y'i z — 2' cuts the surface of the attracting mass for the

A:th time, counting from the plane rjz.

In order to find the value of the limit of the sum which occurs

in this expression, it is evident that we may divide the entire sur-

face of the attracting mass into elements, multiply the area of each

element by the value of ^ ^°'
at one of its points, and find the

r

limit of the sum formed b}' adding all these products together

;

but this is equivalent to the surface integral of ^- taken all
r

over the outside of the attracting mass, so that

AF=J'^cosacZs +j^j-^dx'dy'dz\ [78]



46 THE NEWTONIAN POTENTIAL FUNCTION

where the first integral is to be taken all over the surface of the

attracting mass and the second throughout its volume. This

expression for D^Vis in some.cases more convenient than that

of [48].

We have proved this transformation to be correct, however,

onlv when ^ is finite throughout the attracting mass. If P is a
r

point within the mass, ^ is infinite at P. In this case surround
r

P by a spherical surface of radius e small enough to make the

whole sphere enclosed by this surface lie entirely within the

attracting mass. This is possible unless P lies exactly upon

the surface of the attracting mass. Shutting out the little

sphere, let V2 be the potential function due to the rest (T^) of

the attracting mass : then, since P is an outside point with re-

gard to T2, we have, by [78],

DxV2= j -cosa- ds'-\- I -cos ads +
I

I
I

—^

—

dx'dy'dz', [79]

where the first integral is to be extended over the spherical

surface, which forms a pai't of the boundary of the attracting

Fig. 21.

mass to which V2 is due ; the second integral is to be taken

over all the rest of the bounding surface of the attracting mass
;

and the triple integral embraces the volume of all the attracting

mass which gives rise to F2.

As e is made smaller and smaller, V2 approaches more and

more nearly the potential function V, due to all the attracting

mass.

In the integral I - cos a ds', cos a can never be greater than 1

nor less than — 1 , so that if p is the greatest value of p on the
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surface of the sphere, the absolute value of the integral must be

less than -J ds' or Airpe, and the limit of this as e approaches

zero is zero. The second integral in [79] is unaltered by any

change in e. If we make P the origin of a system of polar

coordinates, it is evident that the triple integral in [79] may be

written C C C .

I j \D^p'r&va.QdrdOd<^, [80]

and the limit which this approaches as e is made smaller and

smaller is evidently finite, for, if r = 0, the quantity under the

integral sign is zero.

Therefore,

limit
^^^^ ^^y^ ^P_

^^^^^^ ^Jffl^ax'dy'dz', [81]

and [79] is true even when P lies within the attracting mass.

Under the same conditions we have, similarly,

and

D^V=f^-cosfids -^jff^ dx'dy'dz', [82]

D,V=f^co8yds+fjf^ dx'dy'dz'. [83]

Observing that in these surface integrals r can never be zero,

since we have excluded the case where P lies on the surface of

the attracting mass, and that the triple integrals belong to the

class mentioned in the latter part of Section 22, we will differ-

entiate [81], [82], and [83] with respect to x, ?/, and z respcc-

tiveW, b^' differentiating under the integral signs. If the results

are finite, we may consider the process allowable.

Performing the work indicated, we have

D^'V=fpcosa-Dj^\ls+ffyDA\D:p.dx'dy'dz\[S4]

DJ'V= fpcoBft-DAys + ffjDJ^\D;p-dx'dy'dz\lSr>^

Z>/F=Jp cos y .A f-\ls+fffD, (^-^ • DJp . dx' dy'dz'. [8(i:\
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and by making P the centre of a system of polar coordinates

and transforming all the triple integrals, it is easy to show that

the values of D^V^ D^V^ D^V here found are finite whether

P is within or without the attracting mass. This result* is

important.

30. The Derivatives of the Potential Function at the Surface

of the Attracting Mass. Let the point P lie on the surface

of the attracting mass, or at some other point or surface where

p is discontinuous. Make P the centre of a sphere of radius e,

and call the piece which this sphere cuts out of the attracting

mass Ti and the remainder of this mass 71- Let Fi and V^ be

the potential functions due respectively to 7\ and T^, then

and the increment [A(Z)^F')] made in D^V by moving from P
to a neighboring point P', inside Ti, is equal to the sum of the

corresponding increments [A(Z)^Fi) and A(Z>j.F2)] made in

D,Vi and D,V2.

With reference to the space Tj, P is an outside point, so that

the values at P of the first derivatives of V2 with respect to x,

y, and z are continuous functions of the space coordinates and

p'^™i*oA(AF,) = 0.

Let do) be the solid angle of an elementary cone whose vertex

is at any fixed point in Ti used as a centre of coordinates.

Fig. 22.

The element of mass will be pi^dtadr. The component in the

direction of the axis of x of the attraction at due to Tj is the

* Lejeune Dirichlet, Vorlesungen iiher die im umgekehrten Verhciltniss des

Quadrats der Entfernung wirkenden Krdfte.

Riemann, Schwere, Electricitdt, und Magnetismus.
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limit of the sum taken throughout jTi of ^

—

—:^— , where a is
/"

the cosine of the angle which the line joining with the element

in question makes with the axis of x. The difference between

the limits of o is not greater than 47r, and the difference be-

tween the limits of r is not greater than 2 c. If, then, k is the

greatest value which pa has in T^,

It follows from this that if F' is a point within 7\ so that

PP'< c, the cliange made in D^Vi by going from P to P' is far

less than ICttkc ; but this last quantity can be made as small as

we like by making 6 small enough, so that

whence

limit A / 7~K T7-\ limit * /t-, tt-n r
limit . / t-v tt-n n

PP,^Q^(D,V) = pp/^o ^(AFi) + pp>^o ^(AFs) = 0,

and 2),V varies continuously in passing through P. In a similar

manner, it may be proved that D^V and D^V are everywhere,

even at places where the density is discontinuous, continuous

functions of the space coordinates.

The results of the work of the last two sections are well illus-

trated 1)3" Fig. 17. We might prove, with "the help of a trans-

formation due to Clausius,* that the second derivatives of the

potential function are finite at uU points on the surface of the

attracting matter where the curvature is finite, but that these

derivatives generally change their values abruptly whenever the

point P crosses a surface at which p is discontinuous, as at tlie

surface of the attracting masses. The fact, however, that this

last is true in the special case of a homogeneous spherical sliell

suflSces to show that we cannot expect the second derivatives

of V to have definite values at the boundaries of attracting

bodies.

* Die Potcntiiilfunction und das Potential, §§ 19-24.
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31. Gauss's Theorem. If any closed surface T drawn in a

field of force be divided up into a large number of surface

elements, and if each one of these elements be multiplied hy the

component, in the direction of the interior normals of the force

of attraction at a point of the element, and if these products be

added together, the limit of the sum thus obtained is called the

'' surface integral of normal attraction over T."

If any closed surface T be described so as to shut in com-

pletely' a mass m concentrated at a point, the surface integral

of normal attraction due to ?3i, taken over T, is 4ir?n; and, in

general, if any closed surface T be described so as to shut in

completely any system of attracting masses M, the surface in-

tegral over T of the normal attraction due to M is 4 tvM.

Fig. 23.

In order to prove this, divide T up into surface elements,

and consider one of these ds at Q. The attraction at Q in the

direction QO, due to the mass m concentrated at 0, is —^^- =—
The component of this in the direction of the interior normal is

7)1'— cosa, and the contribution which ds yields to the sum whose

limit is the surface integral required is -^— . Connect

every point of the perimeter of ds with by a straight line,

thus forming a cone of such size as to cut out of a spherical

surface of unit radius drawn about an element dw, say. If we

draw about a sphere of radius r = OQ, the cone will intercept

on its surface an element equal to r^-d(o. This element is the
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projection on the spherical surface of ds ; hence dscosa = r-dw,

approximately, and the contribution of the element ds to our

surface integral is vidi). But an elementary cone may cut the

surface more than once ; indeed, any odd number of times. Con-

sider such a cone, one element of which cuts the surface thrice

in Si, So, and S-j. Let OSi, OSo, and OSo be called ?-i, r,, and

rg respectively, and let the surface elements cut out of T by the

cone be dsi, ds.,, and dsg, and the angles between the line S^O
and the interior normals to T at S^, S2, and S^ be aj, ag, a,. It is

to be noticed that when the cone cuts out of T, the corresponding

angle is acute, and that when it cuts in, the corresponding angle

is obtuse, oj and «3 are acute, and ao obtuse. If we draw about

three spherical surfixces with radii rj, ?'2, and rg respectively,

the cone will cut out of these the elements Vi'do}, r.fdu), and

r-idw. In absolute size, ds^ = Vidoi secoi, ds., = r.?doi secaj, and

ds3= ?*3^dwsecci3, approximately, but ds., and r^d<a are both posi-

tive, being areas, and secao is negative. Taking account of

sign, then, cZsj = —J^cZw sec ao, and the cone's three elements

3-ield to the surface integral of normal attraction the quantity

/ dSiQOSa, , d.So cos ao , dSoCOSn.\ .J 7 I 7 \ 7

(
7n— -^ = -|

]
— m(doi — dio + dw) = m dw.

\ 'V >V 'V' /

However many times the cone cuts T, it will yield mdw to the

surface integral lequired : all such elementary cones will yield

then m / dot = m47r if T is closed, and, in general, m0, when

is the solid angle which T subtends at 0.

If, instead of a mass concentrated at a point, we have any

distrilnition of masses, we ma}- divide these into elements, and

apply to each element the theorem just proved ; hence our gen-

eral statement.

If from a point without a closed surface T an elementary

cone be drawn, the cone, if it cuts T at all, will cut it an even

number of times. Using the notation just explnined, tho con-

tribution which any such cone will yield to the surface integral

taken over T of a mass m concentrated at is
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/ dSi cos ai . dS2 COS 02 ,
dSgCOStta

,
dS4COSa4

V n" ^2^ rg^ r/

= m( — doi + dw — dw + cZo) — •••) = ??i.O = 0,

and the surface integral over any closed surface of the normal

attraction due to any system of outside masses is zero.

The results proved ahove may be put together and stated in

the form of a

Theorem due to Gauss.

If there he any distribution of matter partly within and partly

without a dosed surface T, and if 31 he the sum of the masses

which T encloses^ and M' the sum of the masses outside T, the

surface integral over T of the normal attraction N toward the

interior, due to both M and M', is equal to AttM. If V be the

potential function due to both 31 and 31', we have

Jy*=/.
D F-cZs = 47r3f.

It is easy to see that if a mass 31 be supposed concentrated

on the surface of any closed surface T whose curvature is every-

where finite, the surface integral of normal attraction taken

over Twill be 27r3r', for all the elementary cones which can be

drawn from a point P in the surface so as to cut Tonce or some

other odd number of times lie on one side of the tangent plane

at the point, and intercept just half the surface of the sphere of

unit radius whose centre is P.

From Gauss's Theorem it follows immediately that at some

parts of a closed surface situated in a field of force, but en-

closing none of the attracting mass, the normal component of

the resultant attraction must act towards the interior of the

surface and at some parts toward the exterior, for otherwise

the limit of the sum of the intrinsically positive elements of the

surface, each one multiplied by the component in the direction

of the interior noraaal of the attraction at one of its own points,

could not be zero. In other words, the potential function,

whose rate of change measures the attraction, must at some
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parts of the surface increase and at others decrease in the direc-

tion of the interior normal.

From this it follows that the potential function cannot have a

maximum or a minimum value at a point in empty space ; for

if al such a point Q the potential function had a maximum value,

we could surround Q by a small closed surface, at every point

of which the potential function would increase in the direction

of the interior normal, and this would be inconsistent with the

fact that the surface integral of normal attraction taken over

the surface, which would contain no matter, must be zero.

Similarly it may be shown that the potential function cannot

have a minimum value at a point in empty space.

If the potential function be constant over a closed surface

which contains none of the attracting mass, it has the same

value throughout the interior ; for if this were not the case,

some point or region Q within T would have a value greater or

less than the surrounding region, and we could enclose Q. bj- a

closed surface to which we could apply the course of reasoning

just used to show that V cannot attain a maximum value at a

point in empty space.

32. Tubes of Force. A line which cuts orthogonally the dif-

ferent members of the system of equipotential surfaces cor-

responding to any distribution of matter is called a '-line of

force," since its direction at each point of its course shows the

direction of the resultant force at the point. If tlirough all

points of the contour of a portion of an equipotential surface

lines of force be drawn, these lines lie on a surface called a

Fig. 24.

"tube of force." We may easily apply Gauss's Theorem to a

space cut out and bounded by a portion of a tube of force and

two equipotential surfaces ; for the sides of the tube do not con-



54 THE NEWTONIAN POTENTIAL FUNCTION

tribute anything to the surface integral of normal attraction, and

the resultant force is all normal at points in the equipotential

surfaces. If w and w' are the areas of the sections of a tube of

force made b}' two equipotential surfaces, and if F and F' are

the average interior forces on w and w', we have

i^(u+F'o)' = [87]

if the tube encloses empt}" space, and

Fa>+i^'o>'=47rW [88]

when the tube encloses a mass m of attracting matter.

33. Spherical Distributions. In the case of a distribution

about a point in spherical shells, so that the density is a

function of the distance from this point only, the lines of force

are straight lines whose directions all pass through the central

point. Every tube of force is conical, and the areas cut out of

different equipotential surfaces by a given tube of force are pro-

portional to the square of the distance from the centre.

Consider a tube of force which intercepts an area i/^ from a

spherical surface of unit radius drawn with as a centre, and

apply Gauss's Theorem to a box cut out of this tube by two

equipotential surfaces of radii r and (?' + Ar) respectively.

Fig. 25.

Let AOB (Fig. 25) be a section of the tube in question.

The area of the portion of spherical surface w which is repre-

sented in section at ad is r^i/', and the area of that at he is

(r + ^rY\p. If the average force acting on a> toward the inside

of the box is F, the average force acting on w' toward the inside

of the box will be — (7^+A,JP), and the surface integral of

normal attraction taken all over the outside of the box is

Ft^^ - {F+ ^,F) (r -f- Ar)V = -"A * \{F' r") - [89]
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If the tube of force which we have been considering be ex-

tended far enough, it will cut all the concentric layers of matter,

traverse all the empty regions between the layers, if there are

such, and finally emerge into outside space.

If we choose r so that the box shall contain no matter, the

surface integral taken over the box must be zero.

lu this case,

therefore, F= -. [90]

and r=-^_ + yM. [91]

From this it follows that in a region of empty space, either

included between the two members of a system of concentric

spherical shells of density depending only upon the distance

from the centre, or outside the whole system, the force of attrac-

tion at different points varies inversely as the squares of the

distances of these points from the centre.

Suppose that the box (abed) lies in a shell whose densit}' is

constant ; then the surface integral of normal attraction taken

over the box is equal to 4:7 times the matter within the box. In

this case the quantity of matter inside the box is

Pi^[ir + ^ry-r']± or p,//y-"A/- + e,

•iTT

where c is an infinitesimal of an order higher than the first.

Therefore,
- ./. A, (Fr) = 4 77 ( p (/'J- Ar + c)

,

whence F=- i^^' + ^, [1)2]
3 r-

and F= - - - 1 -pr^ + h- [93]
r o
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If the box lies iu a shell whose density is inversely propor-

tional to the distance from the centre, we shall have

limit M^)__^_/A'
Ar=o—rr--^-4-(f)^. [94]

whence F=-2TrX-{-^, [95]

and V=---27rXr + a. [901
r

In general, if the box lies in a shell whose density is /(r) , we

shall have

iSo^^ = -4-/W>^, [97]

whence F=-^-~ Cf(r) 1^ • dr. [98]

In order to learn how to use the results just obtained to de-

termine the force of attraction at any point due to a given

spherical distribution, let us consider the simple case of a single

shell, of radii 4 and 5, and of density [Ar] proportional to the

distance from the centre.

At points within the cavity enclosed by the shell we must

have, according to [90] and [91],

F=^, and F=--+ya;
f r

But the force is evidently zero at the centre of the shell, where

r is zero, so that c must be zero everywhere within the cavity,

and there is no resultant force at any point in the region. The
value, at the centre, of the potential function due to the shell is

evidently

r\ . o J
2447r\ rof,-,

/u, = I 4tTrX'rar= , [99]

and it has the same value at all other points in the cavity.

In the shell itself it is easy to see that we must have at all

points,

F=^-7rXr and F=---— +/x'. [100]
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In order to determine the constants in this equation, we may
make use of the fact that F and V are everywhere continuous

functions of the space coordinates, so that the values of F and

V obtained by putting r = 4, the inner radius of the shell, in

[100], must be the same as those obtained by making r = \ in

the expressions which give the values ofF and V for the cavity

enclosed by the shell. This gives us

c' = 2567rX and /x' = ^^^^,

so that for points within the mass of the shell we have

F= IMz^_^Xr2, [101]
r-

and F= — + „ • [102]
r o 6

For points without the shell we have the same general expres-

sions for F and V as for points within the cavity enclosed by

the shell, namely,

F=~, and V=-- + m, [10:3]
1^ r

but the constants are different for the two regions.

Keeping in mind the fact that F and V are continuous, it is

eas}' to see that we must get the same result at the boundary of

the shell, where r= 5, whether we use [103], or [101] and [102].

This gives
^• = -3G9-A. and m = 0;

so that for all points outside the shell we have

p^_'}(^^^ [104]
r

and F= ^-^^^- [105]
r

These last results agree with the statements made in Section

13, for the mass of the shell is 300 -A.

The values, at every point in space, of the potential function

and of the attraction due to any spherical distribution may be
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found by determining, first, with the aid of Gauss's Theoreni,

the general expressions for F and V in the several regions
;

then the constants for the -innermost region, remembering that

there is no resultant attraction at the centre of the system ; and

finally, in succession (moving from within outwards), the con-

stants for the otlier regions, from a consideration of the fact

that no abrupt change in the values of either F or V is made by

crossing the common boundary of two regions.

This method of treating problems is of great practical im-

portance.

34. Cylindrical Distributions, In the case of a cylindrical

distribution about an axis, where the density is a function of

the distance from the axis only, the equipotential surfaces are

concentric cylinders of revolution ; the lines of force are straight

lines perpendicular to the axis ; and every tube of force is a

wedge.

If we apply Gauss's Theorem to a box shut in between two

equipotential surfaces of radii r and r + Ar, two planes perpen-

dicular to the axis, and two planes passing through the axis.

Fig. 26.

we have, if xp is the area of the piece cut out of the cylindrical

surface of unit radius by our tube of force,

(o = r-{f/, to' = (r + A?-)-i/^,

and for the surface integral of normal attraction taken over the

box.
FiD + F'o>' = -xj/'A,(r'F).

If our box is in empty space,

A,(r-F) = Q,

so that F= and V= clogr
-\- fi.

[lOG]

[107]
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If the box is within a shell of constant density p,

— ij/ - A,(r • F) = 4 TTi/' prAr,

so that F=j^ — 2irpr and V=c\ogr — Trpr^+fx. [108]

35. Poisson's Equation. Let us now apply Gauss's Theorem
to the ease where our closed surface is that of an element of

volume of an attracting mass in which p is either constant or a

continuous function of the space coordinates. We will consider

three cases, using first rectangular coordinates, then cylinder

coordinates, and finally spherical coordinates.

B f^

^/ P,/
/P~A

P^

N X

Lv
/

Fig. 27.

I. In the first case, our element is a rectangular parallelopiped

(Fig. 27). Perpendicular to the axis of x are two equal sur-

faces of area Ay-A^, one at a distance x from the plane yz^ and

one at a distance x + Aa; from the same plane. The average

force perpendicular to a plane area of size AyA2, parallel to the

plane yz^ and with edges parallel to the axes of y and z, is evi-

dently some function of the coordinates of the corner of the

element nearest the origin.

That is, if P= (.r, ?/. 2), the average force on PP^ parallel to

the axis of x is X=/(.r, ?/, 2), and the average force on r^P- in

the same direction is f{x -f- A.r, //, 2) = X -f- A^ X, so that PP^

and PiP- yield towards the surface integral of interior-normal

attraction taken over the element, the quantitv — A.rAvAz- '^ •

A.r

Similarly, the other two pairs of elementary surfaces yield
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— Aa;A?/Az^— and — Aa^AyAz^^— , and, if po is the average
A?/ Az

density of the matter enclosed by the box, we have

"A,X— AxAyAz
Ax.

A,T_^A^Z'
Ay Az

A-n-p^AxAyAz. [109]

This equation is true whatever the size of the element Ao; Ay As:.

If this element is made smaller and smaller, the average nor-

mal force [X] on PP4 approaches in value the force l^D^V] at

P in the direction of the axis of a; ; Y" and Z approach respec-

tively the limits DyVsLndD^V; and p^ approaches as its limit

the actual density [p] at P.

Taking the limits of both sides of [109], after dividing by

AxAyAz, we have

or v'F=-47rp, [110]

which is Poisson's Equation. The potential function due to any

conceivable distribution of attracting matter must be such that

at all points within the attracting mass this equation shall be

satisfied.

For points in empty space p = 0, and Poisson's Equation

degenerates to Laplace's Equation.

II. In the case of cylindrical coordinates, the element of vol-

ume (Fig. 28) is bounded by two cylindrical surfaces of revo-

FiG. 28.

lution having the axis of z as their common axis and radii r and

r + A?-, two planes perpendicular to this axis and distant Az
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from each other, and two planes passing through the axis and

forming with each other the diedral angle A^.

Call R, 0, and Z the average normal forces upon the elemen-

tary planes PPci PP21 and PP3 respectively, then the surface

integral of normal attraction over the volume element will be

- AeAzX{r-E) — ArA2 Ag© - A^ [rAr + |-(Ar)=']A^Z

= 47rp, (vol. ofbox)
; [111]

whence, approximately,

1 A,(rJg) 1 A,Q
Ar r Aer

A,Z . vol. of box ri 1 .on= -^^Po . .^.— [112]
Az rArAOAz

The force at Pin direction PPr, is D^F, in direction PP4 is D^ V,

and perpendicular to LP in the plane PLP^ is - • 1)^ F, so that

if the box is made smaller and smaller, our equation approaches

the form
1^^(,.. j^^^^.^

1 £,^2^_^^^2^^_4^p. ["113]
T IT

Fig. 29.

III. In the case of spherical coordinates, the volume element

is of the shape shown in Fig. 29. Let OP=r, ZOP=e, and
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denote by
(f>

the diedral angle between the planes ZOP and

ZOX. Denote by M, ©, and ^ the average normal forces on the

faces PPg, PP^-, and PP2 respectively ; then the surface integral

of normal attraction over the elementary box is approximately

— sin^A^A*^ • A,('rB) — rA(9ArA^$ — r A<^ Ar • Ag(sin(9 • 0)

= 47r/3o-(vol. of box)
;

[H^^]

whence J_. Mr^J?) +_!_. A^ + _L_. A.(sin^.Q)

r^ Ar rsin^ A<^ rsin^ A6

. vol. of box ri 1 --I

'^'*

?-2sin^ArA^A</) *-
-^

The force at P in the direction PP5 is Z),F, in the direction

PPi is —; Drf, V, and in the direction PP4 is --DgV; there-
r sm r

fore, as the element of volume is made smaller and smaller, our

equation approaches the form

sin 6

= -4:7rpr'sme. [IIG]

This equation, as well as that for cylinder coordinates, might

have been obtained by transformation from the equation in

rectangular coordinates.

36. Poisson's Equation in the Integral Form. In [109] X
may be regarded as a function of x, ?/, z, Ay, and Az, which ap-

proaches Z>^F'as a limit when Ay and Az are made to approacli

zero, and it may not be evident that the limit, when Ax, Ay, and

Az are together made to approach zero, of the fraction -^-^ is

D^V. For this reason it is worth while to establish Poisson's

Equation by another method.

It is shown in Section 29 that the volume integral of the

quantity —DA-\, taken throughout a certain region, is the sur-
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face integral of ^eosa taken all over the surface which bounds
r

the region. In this proof we might substitute for - any other

function of the three space coordinates which tlu-oughont the

region is finite, continuous, and single-valued, and state the

results iu the shape of the following theorem

:

If T is an}' closed surface and U a function of x, y, and z

which for every point inside T has a finite, definite value wliich

changes continuously in moving to a neighboring point, then

I I
i D^U ' clx dy dz = — I Ucos ads, [H"]

r r Cd^ U- dx dydz=- Cucos /Sds, [11 8]

and r r Cd, U' dx dy dz = - Cucos yds, [119]

where a, /S, and y are the angles made by the interior normals

at the various points of the surface with the positive direction

of the coordinate axes, and wliere the sinister integrals are to be

extended all through the space enclosed by T, and the de:xter

integrals all over the bounding surface.

If we apply this theorem to an imaginary closed surface which

shuts in any attracting mass of density either uniform or vari-

able, and if for t" in [11 7], [UH], and [119] we use resi)ectively

D^V, D^V, and D^V, and adil tlie resulting equations together,

we shall have

fff(I^K'V+ DiV+ I);V)dxdydz

= -C{D, Vcosa + D, Vcos(3 + D,Vcosy) ds. [ 1 20]

The integral in the second member of this equation is evi-

dently (see ['')<>]) the surface integral of normal attraction taken

over our imaginary closed surface, and this by (iauss's Theorem

is equal to -iTr times the quantity of matter inside the surface,

so that
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= — 477
I I

\ pdxdydz. [121]

Since this equation is true whatever the form of the closed

surface, we must have at every point

D,2F+ Z>/F+ Z>/F= - 47rp.

For if throughout any region V Fwere greater than — 47rp, we
miglit take the boundary of this region as our imaginary surface.

In this case every term in tlie sum wliose limit gives the sinister

of [121] would be greater than the corresponding term in the

dexter, so that the equation would not be true. Similar reason-

ing shuts out the possibility of V"F's being less than — 47rp.

37. The Average Value of the Potential Function on a Spheri-

cal Surface. If, in a field of force due to a mass m concentrated

at a point P, we imagine a spherical surface to be drawn so as

to exclude P, the surface integral taken over this surface of the

value of the potential function due to m is equal to the area of

the surface multiplied by the value of the potential function at

the centre of the sphere.

To prove this, let the radius of the sphere be a and the dis-

tance [_0P~\ of P from its centre c. Take the centre of the

sphere for origin and the line OP for the axis of x. Divide the

surface of the sphere into zones by means of a series of planes

cutting the axis of x perpendicularly at intervals of Ax*. The

area of each one of these zones is 2Tradx, so that the surface

integral of — is

/+" m'JTradx _ _ [

2 -n-m a-\/o? + c? — 2 ex

» \/a?+ (?-2cx L •
c

and the value of this, since the radical represents a positive

quantity, is— , which proves the proposition.
c
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The surface integral of the potential function taken over the

sphere divided by the area of the sphere is often called "the
average value of the potential function on the spherical sur-

face."

If we have any distribution of attracting matter, we may
divide it into elements, apply the theorem just proved to each

of these elements, and, since the potential function due to the

whole distribution is the sum of those due to its parts, assert

that

:

The average value on a spherical surface of the potential

function due to any distribution of matter entirely outside the

sphere is equal to the value of the potential function at the

centre of tlie sphere.

It follows, from this theorem, that if the potential function is

constant within any closed surface S drawn in a region T, which

contains no matter, so as to shut in a part of that region, it will

have the same value in those parts of T which lie outside aS".

For, if the values of the potential function at points in empty

space just outside S were different from the value inside, it would

always be possible to draw a sphere enclosing no matter whose

centre should be inside S, and which outside *S' should include

only such points as were all at either higher or lower potential

than the space inside »S' ; but in this case the value of the poten-

tial function at the centre of the sphere would not be the average

of its values over its surface.

The value of the potential function cannot be constant in im-

limited empty space surrounding an attracting mass 3/, for, if

it were, we could suiTOund the mass by a surface over which the

surface integral of normal attraction would be zero instead of

47r3/.

The average value on a spherical surface of the potential

function [F], due to any distribution [3/] of attracting matter

wholly within the surface, is the same as if M were concen-

trated at the centre of the space which the surface encloses.

For the average values [T", and Kj + A^T',] of V on con-

centric spherical surfaces of radii r and /' -f Ar may be written
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j Vds (or — I Vdu), if dw is tlie solid angle of an ele-

mcntary cone with vertex at O, which intercepts the element ds

from the surface of a sphere of radius 7'), and —
(
(F+A,F)d(o

;

47r»/

whence A^F^ =— JArF-doj,
4:TrJ

and D,Vo =— CD,V-do>.
4:7rJ

Now — i D^V- a?d(a is the integral of normal attraction taken

over the spherical surface, whence, by Gauss's Theorem,

D,Vq = ---—, and Fo =— +0,
47rr r

since "F) = 0, for r=oo.

38. The Equilibrium of Fluids at Rest under the Action of

Given Forces. Elementary principles of Hydrostatics teach us

tliat when an incompressible fluid is at rest under the action of

any system of applied forces, the hydrostatic pressure p at the

point (a;, y, z) must satisfy the differential equation

dp = p{Xdx-\-Ydy-\-Zdz), [122]

where X, Y", and Z are the values at that point of the force

applied per unit of mass to urge the liquid in directions parallel

to the coordinate axes.

For, if we consider an element of the liquid [Ao^AyA^]

(Fig. 27) whose average density is p^ and whose corner next

the origin has the coordinates (a?, y, z) , and if we denote by p^

the average pressure per unit surface on the face FP^PiPs, by

p^ + A^p^ the average pressure on the face PiPuP^Pf,^ and by

Xn the average applied force per unit of mass which tends to

move the element in a direction parallel to the axis of x, we

have, since the element is at rest,

p^ A?/ A2! + pu Xo AxAyAz==( i\ -\- A^p,) Ay Az,

\r A^p^
or po-X.o = -f^.Ax
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If the element be made smaller and smaller, the first side of

the equation approaches the limit pX, and the second side the

limit D^p, where p is the hydrostatic pressure, equal in all direc-

tions, at the point P.

This gives us D^p = pX. [1 23]

In a similar manner, we may prove that

D^p = pY,

and D^p = pZ;

whence dp = D^p dx + D^p dy -\- D^pdz

= p{Xdx + Ydy + Zdz) .

• If in any case of a liquid at rest the only external force

applied to each particle is the attraction due to some outside

mass, or to the other particles of the liquid, or to both together,

X, Y, and Z are the partial derivatives with regard to x, y, and

2 of a single function F, and we may write our general equation

in the form

dp = p{D,V- dx + D,V' dy + D,V- dz) = p'dV,

whence, if p is constant,

p = pF+ const., [124]

and the surfaces of equal hydrostatic pressiu-e are also equi-

potential surfaces.

According to this, the free bounding surfaces of a liquid at

rest under the action of gravitation only are equipotential.

EXAMPLES.

1. Prove that a particle cannot be in stable equilibrium under

the attraction of any system of masses. [Earnshaw.]

2. Prove that if all the attracting mass lies without an equi-

potential surface S on which V= c, then F= c in all space

inside S.

3. Prove that if all the attracting mass lies within an equi-

potential surface S on which V=C, then in all space outside S
the value of the potential function lies between C and 0.
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4. The source of the Mississippi River is nearer the centre of

the earth than the mouth is. What can be inferred from this

about the slope of level surfaces on the earth?

5. If in [59] X be made equal to zero, V becomes infinite.

How can j^ou reconcile this with what is said in the first part of

Section 22?

6. Are all solutions of Laplace's Equation possible values of

the potential function in empty space due to distributions of

matter ? Assume some particular solution of this equation

which will serve as the potential function due to a possible dis-

tribution and show what this distribution is.

7. If the lines of force which traverse a certain region are

parallel, what may be inferred about the intensity of the force

within the region ?

8. The path of a material particle starting from rest at a

point P and moving under the action of the attraction of a given

mass 3/ is not in general the line of force due to Jf which passes

through P. Discuss this statement, and consider separately

cases where the lines of force are straight and where they are

curved.

9. Draw a figure corresponding to Figure 17 for the case of

a uniform sphere of unit radius surrounded by a concentric

spherical shell of radii 2 and 3 respectively.

10. Draw with the aid of compasses traces of four of the

equipotential surfaces due to. two homogeneous infinite cylinders

of equal density whose axes are parallel and at a distance of

5 inches apart, assuming the radius of one of the cylinders to

be 1 inch and that of the other to be 2 inches.

11. Draw with the aid of compasses meridian sections of

four of the equipotential surfaces due to two small homogeneous

spheres of mass m and 2m respectively, whose centres are 4

inches apart. Can equipotential surfaces be drawn so as to lie

wholly or partly within one of the spheres? What value of the

potential function gives an equipotential surface shaped like

the figure 8 ? Show that the value of the resultant force at the

point where this curve crosses itself is zero.



IN THE CASE OF GRAVITATION. 69

12. A sphere of radius 3 inches and of constant density fx is

surrounded by a spherical sliell concentric with it of radii 4

inches and 5 inches and of density fir, where r is the distance

from the centre. Compute the values of the attraction and of

the potential function at all points in space and draw curves to

illustrate the fact that V and Z),F are everywhere continuous

and that DJ^ Vis discontinuous at certain points.

13. A very long cylinder of radius 4 inches and of constant

density /a is surrounded by a cylindrical shell coaxial with it

and of radii 6 inches and 8 inchefe. The density of this shell is

inversely proportional to the square of the distance from the

axis, and at a point 8 inches from this axis is fx. Use the Theo-

rem of Gauss to find the values of F, D^V, and D,^V at differ-

ent points on a line perpendicular to the axis of the cj'linder at

its middle point. If the value of the attraction at a distance

of 20 inches from the axis is 10, show how to find /*.

14. Use Dirichlet's value of Z>^F, given by equation [78],

to find the attraction in the direction of the axis of x at points

within a spherical shell of radii r^ and rj and of constant den-

sity p.

15. Are there any other cases except those in which the

density of the attracting matter depends only upon the distance

from a plane, from an axis, or from a central point, where sur-

faces of equal force are also equipotential surfaces? Prove

your assertion.

16. Prove that if a mass Mi be divided up into elements, and

if each one of these elements be multiplied by the value at one

of its own points of the potential function Vo due to another

mass Mo, the limit of the sum of these infinitesimal products will

be equal to the limit of the sum extended over Mo of the product

of the masses of its elements by the corresponding values of the

jjotential function due to Mi. That is, show that

fv,-(lMi= CVi-dMo,

where the sinister integral is to embrace all Mi and the dexter

all Mi. [Gauss.]
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[Minchin.]
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17. Two uniform straight wires of length I and of masses mi

and m2 are parallel to each other and perpendicular to the line

joining their middle points, which is of length ?/i. Show that

the amount of work required to increase the distance between

the wires to 2/2 by moving one of them parallel to itself is

y_VFT?-nog ^^' + ^'~^

y

18. Show that if the earth be supposed spherical and covered

with an ocean of small depth, and if the attraction of the par-

ticles of water on each other be neglected, the ellipticity of the

ocean spheroid will be given by the equation,

The centrifugal force at the equator- - •

19. A spherical shell whose inner radius is r contains a mass

m of gas which obeys the Law of Boyle and Mariotte. Find

the law of density of the gas, the total normal pressure on the

inside of the containing vessel, and the pressure at the centre.

20. If the earth were melted into a sphere of homogeneous

liquid, what would be the pressure at the centre in tons per

square foot ? If this molten sphere instead of being homo-

geneous had a surface density of 2.4 and an average density of

5.G, what would be the pressure at the centre on the supposition

that the density increased proportionately to the depth?

21. A solid sphere of attracting matter of mass m and of

radius r is surrounded by a given mass M of gas which obeys

the Law of Boyle and Mariotte. If the whole is removed from

the attraction of all other matter, find the law of density of the

gas and the pressure on the outside of the sphere.

22. The potential function within a closed surface S due to

matter wholly outside the surface has for extreme values the

extreme values upon S.

23. If the potential functions V and F' due to two systems

of matter without a closed surface have the same values at all

points on the surface, they will be equal throughout the space

enclosed by the surface.
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24. The potential function outside of a closed surface due to

matter wholly within the surface has for its extreme values two

of the following three quantities : zero and the extreme values

upon the surface.

25. Prove that if R is the distance from the origin of coordi-

nates to the point P, and if Vp is the value at P of the potential

function of any system of attracting masses within a finite dis-

tance of the origin, the limit as R is made infinite of Vp-P is

equal to M, the whole quantity of attracting matter.
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CHAPTER HI.

TEE POTENTIAL PUNOTION IN THE CASE OP

EEPULSION.

39. Repulsion, according to the Law of Nature. Certain

physical phenomena teach us that bodies ma}' acquire, by

electrification or otherwise, the property of repelling each other,

and that the resulting force of repulsion between two bodies is

often much greater than the force of attraction which, ac-

cording to the Law of Gravitation, every body has for every

other body.

Experiment shows that almost every such case of repulsion,

however it may be explained physicall}', can be quantitatively

accounted for by assuming the existence of some distribution of

a kind of" matter," every particle of which is supposed to repel

every other particle of the same sort according to the " Law of

Nature," that is, roughly stated, with a force directly propor-

tional to the product of the quantities of matter in the particles,

and inversely proportional to the square of the distance between

their centres.

In this chapter we shall assume, for the sake of argument,

that such matter exists, and proceed to discuss the effects of

different distributions of it. Since the law of repulsion which

we have assumed is, witii the exception of the opposite direc-

tions of the forces, mathematically identical with the law which

governs the attraction of gravitation between particles of pon-

derable matter, we shall find that, by the occasional intro-

duction of a change of sign, all the formulas which we have

proved to be true for cases of attraction due to gravitation

can be made useful in treating corresponding problems in

repulsion.
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40. Force at Any Point due to a Given Distribution of

Repelling Matter. Two equal quantities of repelling matter

concentrated at points at the unit distance apart are called

" unit quantities" when they are such as to make the force of

repulsion between them the unit force.

If the ratio of the quantity of repelling matter within a small

closed surface supposed drawn about a point P, to the volume

of the space enclosed by the surface, approaches the limit p when

the surface (always enclosing P) is supposed to be made smaller

and smaller, p is called the "density" of the repelling matter

at P.

In order to find the magnitude at an}- point P of the force due

to an\' given distribution of repelling matter, we may suppose

the space occupied by this matter to be divided up into small

elements, and compute an approximate value of this force on the

assumption that each element repels a unit quantity of matter

concentrated at P with a force equal to the quantity of matter

in the element divided by the square of the distance between P
and one of the points of the element. The limit approached by

this approximate value as the size of the elements is diminished

indefinitely is the value required.

Fig. 30.

Let Q (Fig. 30), whose coordinates are x', ?/', z\ be the

corner next the origin of an element of the distribution. Let'p

be the density at Q and A.i-'Ay'A2' the volume of the element

;

then the force at P due to the matter in the element is ai)proxi-
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D A^ \fj \y.
mately equivalent to a force of magnitude f———^ acting in

the direction QP, or a force of magnitude — ^

—

—

^

acting

in tlie direction PQ. If tlie coordinates of P are cc, y, z, the

component of this force in the direction of the positive axis of x

IS ——

;

f-
——f -^^

—

, ,

^ ,,-,,, and the force at P parallel

to the axis of x due to the whole distribution of repelling

matter is

X=-CC C pix'-x)dx'dy'dz' r. -,

JJJl{x'-xy--\-{y'-yy-\-{z'-zr]e L aJ

where the triple integration is to be extended over the whole

space filled with the repelling matter. For the components of

the force at P parallel to the other axes we have, similarly,

r=-CC C p(y'-y)dx'dy'dz' .

J J J l(^x'-xy+{y'-yy+iz'-zyy L Bj

and

7-^ CC C p(z'-z)dx'dy'dz' pjg. I
JJJ[{x'-xy+ (y'- yy+ (z'- zyji •- ^^

If we denote by V the function *

///
pdx'dy'dz'

l(x'-xy+(y'-yy+{z'-zy:\i2Ti'
[126]

which, together with its first derivatives, is everywhere finite

and continuous, as we have shown in the last chapter, it is easy

to see that

X=-AF, Y=-D,V, Z = -D,V, [127]

E=y/{D,vy+iv,vy+{n,vy, [i28]

and that the direction-cosines of the line of action of the re-

sultant force at P are
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It follows from this (see Section 21) that the component in

any direction of the force at a point P due to any distribution

M of repelling matter is minus the value at P of the partial

derivative of the function F taken in that direction.

The function Fgoes by the name of the Newtonian potential

function whether we are dealing with attracting or repelling

matter.

In the case of repelling matter, it is evident that the resultant

force on a particle of the matter at any point tends to drive that

particle in a direction which leads to points at which the poten-

tial function has a lower value, whereas in the case of gravita-

tion a particle of ponderable matter at any point tends to move
in a direction along which the potential function increases.

41. The Potential Function as a Measure of Work. It is

easy to show by a metliod like that of Article 27 that the

amount of work required to move a unit quantity of repelling

matter, concentrated at a point, from Pj to P.,, in face of the

force due to any distribution M of the same kind of matter, is

Fa — Fi, where Vi and V2 Jire the values at P^ and P., respec-

tively of the potential function due to M. The farther P, is

from the given distribution, the smaller is Fi, and the less does

V2 — Fi differ from Fo. In fact, the value of the potential

function at the point Po, wherever it may be, measures the work

which would be required to move the unit quantity of matter by

any path from '' infinity" to Pj.

42. Gauss's Theorem in the Case of Repelling Matter. If a

quantity m of repelling matter is concentrated at a point within

a closed oval surface, the resultant force due to m at any point

on the surface acts toward the outside of the surface instead of

towards the inside, as in the case of attracting matter.

Keeping this in mind, we may repeat the reasoning of Article

31, using repelling matter instead of attracting matter, and sub-

stituting all through the work the exterior normal for the in-

terior normal, and in this way prove that

:
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If there be any distribution of repelling matter partly within

and partly without a closed surface T, and if M be the whole

quantity of this matter enclosed by 2', and M' the quantity out-

side T, the surface integral over T of the component in the di-

rection of the exterior normal of the force due to bothM and M'
is equal to 4 ttM. If V be the potential function due to M and

Jf', we have ^D^V-ds^^^M.

43. Poisson's Equation in the Case of Repelling Matter. If

we apply the theorem of the last article to the surface of a

volume element cut out of space containing repelling matter,

and use the notation of Article 35, we shall find that in the case

of rectangular coordinates the surface integral, taken over the

element, of the component in the direction of the exterior

normal is

AxA?/A2;
A.X , A.,r , A,Z" = 47rpo.Aa;A?/A2, [130]
Ax A?/ Az

where X is the average component in the positive direction of

the axis of x of the force on the elementary surface A?/A2!, and

where Y and Z have similar meanings. It is evident that if

the element be made smaller and smaller, X, Y, and Z will

approach as limits the components parallel to the coordinate

axes of the force at P. These components are —D^V, —D^V,
and —D^V', so that if we divide [130] by Ax^y^z and then

decrease indefinitely the dimensions of the element, we shall

arrive at the equation

V'F=-47r/3. [131]

By using successively cylinder coordinates and spherical co-

ordinates we may prove the equations

^A(ri),F) + ii)/F+ Z)/F=-47rp, [132]

and sme-Dr{)^DrV)-\-^^^+Dg(sin6-DgV)

= -47rpr2sin^, [133]



IN THE CASE OF REPULSION. 77

80 that Poisson's Equation holds whether we are dealing with

attracting or repelling matter.

44. Coexistence of Two Kinds of Active Matter. Certain

physical phenomena may be most conveniently treated mathe-

matically by assuming the coexistence of two kinds of "mattei*"

such that any quantity of either kind rei)els all other matter of

the same kind according to the Law of Nature, and attracts all

matter of the other kind according to the same law.

Two quantities of such matter may be considered equal if,

when placed in the same position in a field of force, they are

subjected to resultant forces which are equal in intensity and

which have the same line of action. The two quantities of

matter are of the same kind if the direction of the resultant

forces is the same in the two cases, but of different kinds if the

directions are opposed. The unit quantity' of matter is that

quantity which concentrated at a point would repel with the

unit force an equal quantity of the same kind concentrated at

a point at the unit distance from the first [)oint.

It is evident from Articles 2, 14, and 40 that m units of one

of these kinds of matter, if concentrated at a point (x, y, z) and

exposed to the action of vh, m.,, mj, ... m„ units of the same

kind of matter concentrated respectively at the points (a'l, ?/i,2i),

{x.i, Pi, Z.2)
, (Xs^ys, z^;), ... ix,,y,, z,), and of ?«*+„ m,^2, ... m„

units of the other kind of matter concentrated respectively at

the points (a-^+i, y^^^, ^t + i), (•i'*-^2i y*+2^ ^k + s), ••• (^r.^ 2/n^2„),

will be urged in the direction parallel to the positive axis of x

with the force

X= -«g?!ki^ + ,„2?!!il?LpiJl, [134]

where r,- is the distance between the points {x, y, z) and

(a:,., ?/,., 2,)

.

If we agree to distinguish the two kinds of matter from each

other by calling one kind " positive " and the other kind '' neg-

ative," it is easy to see that if every m which belongs to positive
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matter be given the plus sign and every m which belongs to

negative matter the minus sign, we may write the last equation

in the form

X= _mV*?^Y^- [135]

The result obtained by making m in [135] equal to unity is

called the force at the point (x, y, z).

In general, m units of either kind of matter concentrated at

the point {x, y, z) , and exposed to the action of any continuous

distribution of matter, will be urged in the positive direction of

the axis of x by the force

V CCC p(x'—x)dx'dy'dz' no^n

in this expression, p, the density at {x',y',z'), is to be taken

positive or negative according as the matter at the point is

positive or negative : m is to have the sign belonging to the

matter at the point (x, y, z) : and the limits of integration are to

be chosen so as to include all the matter which acts on m.

"With the same understanding about the signs of m and of p,

it is clear that the force which urges in any direction s, m units

of matter concentrated at the point (x,y,z) is equal to —m-D^V,
where Fis the everywhere finite, continuous, and single-valued

function

p(x'—x)dx'dy'dz'

///i[(x'-xy-^{y'-yy+{z'-zy^i'

and that mV measures the amount of work required to bring up

from " infinity" by any path to its present position the m units

of matter now at the point (cc, y, z)

.

If we call the resultant force which would act on a unit of

positive matter concentrated at the point P "the force at P,"

it is clear that if any closed surface T be drawn in a field of

force due to any distribution of positive and negative matter so

as to include a quantity of this matter algebraically equal to Q,
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the surface integral taken over T of the component in the direc-

tion of the exterior normal of the force at the different points of

the surface is equal to 47rQ.

It will be found, indeed, that all the equations and theorems

given earlier in this chapter for the case of one kind of repelling

matter may be used unchanged for the case where positive and

negative matter coexist, if we only give to p and m their proper

signs.

It is to be noticed that Poisson's Equation is applicable

whether we are dealing with attracting matter or repelling mat-

ter, or positive and negative matter existing together.

EXAMPLES.

1. Show that the extreme values of the potential function

outside a closed surface S, due to a quantity of matter algebrai-

cally equal to zero within the surface, are its extreme values

on S.

2. Show that if the potential function due to a quantity of

matter algebraically equal to zero and shut in by a closed sur-

face S has a constant value all over the surface, then this con-

stant value must be zero.
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CHAPTER IV.

SUKrAOE DISTEIBUTIONS.-GEEEN'S THEOEEM.

45. Force due to a Closed Shell of Repelling Matter. If a

quantity of very finely-divided repelling matter be enclosed in a

box of any shape made of indifferent material, it is evident

from [127] and from the principles of Section 38 that if the vol-

ume of the box is greater than the space occupied by the repel-

ling matter, the latter will arrange itself so tliat its free surface

will be equipotential with regard to all the active matter in

existence, taking into account any there may be outside tlie box

as well as that inside. It is easy to see, moreover, that we

shall have a shell of matter lining the box and enclosing an

empty space in the middle.

That any such distribution as that indicated in the subjoined

diagram is impossible follows immediately from the reasoning

of Section 37. For ABC and DEF are parts of the same

Fig. 31.

equipotential free surface of the matter. If we complete this

surface by the parts indicated by the dotted lines, we shall

enclose a space void of matter and having therefore throughout

a value of the potential function equal to that on the bounding
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surface. But in this case all points which can be reached from

hy paths which do not cut the repelling matter must be at the

same potential as 0, and this evidently includes all space not

actually occupied by the repelling matter ; which is absurd.

Let us consider, then (see Fig. 32), a closed shell of repelling

matter whose inner surface is equipotential, so that at every

point of the cavity which the shell shuts in, the resultant force,

due to the matter of which the shell is composed and to an^-

outside matter there may be, is zero.

Let us take a small portion w of the bounding surface of the

cavity as the base of a tube of- force which shall intercept an

Fig. 32.

area w' on an equipotential surface which cuts it just outside the

outer surface of the shell, and let us apply Gauss's Theorem to

the box enclosed b\' ia, w', and the tube of force. If F' is the

average value of the resultant force on w', the only part of the

surface of the box which yields anything to the surface integral

of normal force, we have

F'oi' = 4 7r?M,

where m is the quantity of matter within the box. If we multi-

ply and divide by w, this equation ma}- be written

F'=^^I^.^. [137]

If o) be made smaller and smaller, so as always to include a

given point A^ <o' as it approaches zero will always inchide a

point B on the line of force drawn through A, and F' will ap-

proach the value F of the resultant force at B.

The shell may be regarded as a thick layer spread upon the
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inner surface, and in this case the limit of ~ may be consid-

ered the vahie at A of the rate at which the matter is spread

upon the surface. If we denote this limit by o-, we shall have

^=4— iT'of"! [138]

If B be taken just outside the shell, and if the latter be very

thin, Jl^'o [~'i]
evidently differs little from unity; and we see

that the resultant force at a point just outside the outer sur-

face of a shell of matter, whose inner surface is equipotential,

becomes more and more nearl}^ equal to 47r times the quantity

of matter per unit of surface in the distribution at that point as

the shell becomes thinner and thinner.

The reader may find out for himself, if he pleases, whether or

not the line of action of the resultant force at a point just out-

side such a shell as we have been considering is normal to the

shell.

It is to be carefully noticed that the inner surface of a closed

shell need not be equipotential unless the matter composing the

shell is finely divided and free to arrange itself at will.

When the shell is thin, and we regard it as formed of matter

spread upon its inner surface, o- is called the "surface density"

of the distribution, and its value at any point of the inner sur-

face of the shell may be regarded as a measure of the amount of

matter which must be spread upon a unit of surface if it is to

be uniformly covered with a layer of thickness equal to that of

the shell at the point in question.

46. Surface Distributions. It often becomes necessarj- in the

mathematical treatment of physical problems, on the assump-

tion of the existence of a kind of repelling matter or agent, to

imagine a finite quantity of this agent condensed on a surface

in a layer so thin that for practical purposes we may leave the

thickness out of account. If a shell like that considered in the

last section could be made thinner and thinner by compression
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while the quantity of matter in it remained iinehanged, the

volume density (p) of the shell would grow larger and larger

without limit, and o- would remain finite. A distribution like

this, which is considered to have no thickness, is called a sur-

face distribution.

The value at a point P of the potential function due to

a superficial distribution of surface densit}- o- is the surface

integral, taken over the distribution, of -, where r is the dis-
r

tance from P.

It is evident that as long as P does not lie exactly in the

distribution, the potential function and its derivatives are always

finite and continuous, and the force at any point in any direc-

tion may be found by differentiating the potential function

partially with regard to that direction.

If p were infinite, the reasoning of Article 22 would no

longer apply to points actually in the active matter, and it is

worth our while to prove that in the case of a surface distri-

I)ution where o- is ever^'where finite, the value at a point i^ of

the potential function due to the distribution remains finite, as

P is made to move normally througli the surface at a point of

finite curvature.

To show this, take the point (Fig. 33), where P is to cut

the surface, as origin, and the normal to the surface at as
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the axis of x, so that the other coordinate axes shall lie in

the tangent plane.

If the curvature in the neighborhood of is finite, it will be

possible to draw on the surface about a closed line such that

for every point of the surface within this line the normal will

make an acute angle with the axis of x.

For convenience we will draw the closed line of such a shape

that its projection on the tangent plane shall be a circle whose

centre is at and whose radius is U, and we will cut the area

shut in b}' this line into elements of such shape that their pro-

jections upon the tangent plane shall divide the circle just

mentioned into elements bounded by concentric circumferences

drawn at radial intervals of Am, and b}' radii drawn at angular

distances of A^.

.If X, 0, are the coordinates of the point P, x', y', z' those

of a point of one of the elements of the area shut in by the

closed line, and a the angle which the normal to the surface

at this point makes with the axis of x, the size of the surface

element is approximately -—

—

—, where u^ = z'^-^ y'^, and the
cosa

value at P of the potential function due to that part of the sur-

face distribution shut in by the closed line is

y^ = rj^ r^ <^d^^
. [139]

Jo Jo C08a^/{x — x'y-i-u^

The quantity

au (T sec a

cos a -V {x — x'y + V? M^
is always finite, for, whatever the value of the quantity under

the radical sign in the last expression may be when a;, x', and u

are all zero, it cannot be less than unity, and therefore Vi must

be finite even when P moves down the axis of x to the surface

itself.

If V and V2 are the values at P of the potential functions

due respectively to all the existing acting matter and to that
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part of this matter not lying on the portion of the surface shut

in by our closed line, we have F=Fi + F2, and, since P is a

point outside the matter which gives rise to F, the latter is

finite ; so that V is finite.

The reader who wishes to studj' the properties of the deriva-

tives of the potential function, and their relations to the force

components at points actually in a surface distribution, will find

the whole subject treated in the first part of Riemanu's ScJiwere,

Electrkitat and Magnetismus.

Using the notation of this section, it is easy to write down
definite integrals which represent the values of the potential

function at two points on the same normal, one on one side of

a superficial distribution, and at a distance a from it, and the

other on the other side at a like distance, and to show that the

difference between these integrals may be made as small as we

like by choosing a small enough. This shows that the value of

the potential function at a point P changes continuously, as P
moves normally through a surface distribution of finite super-

ficial density. If matter could be concentrated upon a geo-

metric line, so that there should be a finite quantity of matter

on the unit of length of the line, or if a finite quantity of matter

could be really concentrated at a point, the resulting potential

function would be infinite on tlie line itself, and at the point.

47. The Normal Force at Any Point of a Surface Distribu-

tion. In the case of a stiietly superficial distribution on a

closed surface wliere the repelling matter is free to arrange

itself at will, the inner surface of the matter (and hence the

outer surface, which is coincident with it) is equipotential, and

the resultant force at a point B just outside the distril)ution is

normal to the surface and numerically equal to 4:7 times the

surface density at B. This shows that the derivative of the

potential function in the direction of the normal to tiie surface

has values on opposite sides of the surface differing by 4 -cr.

and at the surface itself cauuot be said to have any definite

value.
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It is easy, however, to find the force with which the repelling

matter composing a superficial distribution is urged outwards.

For, take a small element o) of the surface as the base of a tube

of force, and apply Gauss's Theorem to a box shut in by the

surface of distribution, the tube of force, and a portion w' of

an equipotential surface drawn just outside the distribution.

Let F and F' be the average forces at the points of w and w'

respectively, then the surface integral of normal forces taken

over the box is F'w' — Fw, and this, since the only active

matter is concentrated on the surface of the box (see Section

31), is equal to 27ro-ow, where ct-q is the average surface density

at the points of the element to. This gives us

F=F'--2Tr(T.0*

Now let the equipotential surface of which w' is a part be

drawn nearer and nearer the distribution ; then

lim— =1, lim i^' = 47roro, and F=2Tra-.

F is the average force which would tend to move a unit quan-

tity of repelling matter concentrated successively at the differ-

ent points of <3i in the direction of the exterior normal, but the

actual distribution on w is wo-p, so that this matter presses on

the medium which prevents it from escaping with the force

27ro-o^o); and, in general, the pressure exerted on the resisting

medium which surrounds a surface distribution of repelling

matter is at any point 27ro^ per unit of surface, where cr is the

surface density of the distribution at the point in question.

We may imagine a superficial distribution of matter which is

fixed, instead of being free to arrange itself at will. In this

case the surface of the matter will not be in general equipoten-

tial, but, if we apply Gauss's Theorem to a box shut in b}- a

slender tube of force traversing the disti-ibution, and by two

surfaces drawn parallel to the distribution and close to it, one

on one side and one on the other, we may prove that the



GIIEEN S THEOREM. 87

normal component of the force at a point just outside the dis-

tribution differs by A-n-a from the normal component, in the same

sense, of the force at a point just inside the distribution on the

line of force which passes through the first point.

48. Green's Theorem. Before proving a very general theorem

due to Green,* of which what we have called Gauss's Theorem

is a special case, we will show that if T is any closed surface

and U a function of .r, y, and z, which for every point inside T
is finite, continuous, and single-valued,

r r Cd,U- dxdydz = Cu- D^x-ds, [140]

where the first integral is to include all the space shut in by T,

and the second is to be taken over the whole surface, and where

Dn X represents the partial derivative of x taken in the direction

of the exterior normal.

To prove this, choose the coordinate axes so that T shall lie

in the first octant, and divide the space inside the contour of the

Fir,. ?A.

projection of T on the plane yz into elements of size dydz. On
each of these elements erect a right prism cutting T twice or

some other even number of times. Let us call the values of U
at the successive points where the edge nearest the axis of x of

* George Green, An Essni/ on the Application of Mnthanntical Analysis /<>

luc Theories of Electricitj ami .}fa'jnetism. Nottingham, 1828.
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any one of these prisms cuts T, Ui, U^i U3, ... f72„ respective!}'

;

the angles which tiiis edge makes with exterior normals drawn

to T at these points, ai, aj, ag, ... ao„ V and the elements which

the prism cuts from the surface T, ds^, ds.j, ds., ...rZsg^. It is

evident that wherever a line perpendicular to the plane yz cuts

into T, the corresponding value of a is obtuse and its cosine

negative, but wherever such a line cuts out of T, the correspond-

ing value of a is acute and its cosine positive.

Keeping this in mind, we shall see that although the base of

a prism is the common projection of all the elements which it

cuts from T, and in absolute value is approximately equal to

an}' one of these multiplied by the corresponding value of cos a,

yet, since dxdy, dSj, dsg, etc., are all positive areas and some of

the cosines are negative, we must write, if we take account of signs,

dydz = — dsi cos ai = +ds2Cosa2 = — cZs3Cosa3= •••.

If the indicated integration with regard to x in the left-hand

member of [140] be performed and the proper limits introduced,

we shall have

C C CD,irdxdydz=C Cdydz[- U^-h U^- U^+ U, ], [141]

where the double sign of integration directs us to form a quan-

tity corresponding to that in brackets for every prism which

cuts T, to multiply this b\- the area of the base of tlie prism,

and to find the limit of the sum of all the results ns the bases of

the prisms are made smaller and smaller.

Since we may substitute for dydz any one of its approxi-

mate values given above, we may write the quantity within

the brackets

C7i cos tti dsi + Ui cos ag d,% + U^ cos og ds.^ + • • •

,

and this shows that the double integral is equivalent to the sur-

face integral, taken over the whole of T, of ?7cosa, whence we

may write

. C C CD,U-dxdydz= Cucosads, [142]
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where the first integral is to be taken all through the space shut

iu by r, and the second over the whole surface.

Let P{x, y, z) be an^ point of 7", a, /8, and y the angles

which the exterior normal drawn to P at T> makes with the

coordinate axes, and P' a point on this normal at a distance

A/j from P. The coorclinates of P' are

x + An-cosa, ?/ + A?( -cos/S, z -f- An • cos y,

and if W=f{x,y,z) be any continuous function of the space

coordinates,

Wp =f{x, y,z),

Wp'=f(x-{- An cos a, ?/ + An cos/3, z-f-Ancosy)

=f{x, y, z) + An cosa • D^f+ An cos^ • D^f

and -f-AncosyZ>,/+(An)2Q,

IL^-JL£=cosa.DJ-\-cosl3'DJ+cosy-DJ+An.Q,

whence

Urn ^,^/^ =£>„ Wp = cosaDJ+eosf3DJ-\-cosyDJ. [143]

If, as a special case, W=x, we have Z>„x=cosa; so that

[1-12] may be written

C C Cd,U- dxdydz = CuD^ix-ds, [144]

which we were to prove.*

Green's Theorem, which follows very easily from this result,

uiaj' be stated in the following form :

If U and V are anj' two functions of the space coordinates

which together with their first derivatives with respect to these

coordinates are finite, continuous, and single-valued throughout

the space shut in by au}' closed surface 7*, then, if a refers to

an exterior normal,

* This theorem has been virtually proved already in Sections 29 and ;k5.
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= Cu-D,V-ds- C C Cu-V-V-dxdydz [145]

= Cv-D„U'ds- C C CV'V'U'dxdydz, [14G]

where the triple integrals include all the space within T and the

single integrals include the whole surface-

Since DM-D,V=D,(U-D,V)-U-D,'V,

we have | I i D^U'D^V-dxdydz

= C C CDXU-D,V)dxdydz- C C Cu-D^'V-dxdydz;

but, from [144],

CC Cd,{ U-D^V)dxdydz = Cu-D^V- D^x-ds,

whence
1 I I

{DJiJ-D^V)dxdydz

= Cu-D,V-D„x-ds- C C Cu-D,^V'dxdydz. [147]

If we form the two corresponding equations for the deriva-

tives with regard to ?/ and z, and add the three together, we shall

obtain an expression which, by the use of [143], reduces im-

mediately to [145]. Considerations of symmetr^^ give [146].

If we subtract [146] from [145], we get

f ff{U-v'V-V'V'U)dxdydz

= C{U-D^V-V'D„U)ds. [148]

In applying Green's Theorem to such spaces as those marked

Tq in the adjoining diagrams, it is to be noticed that the walls

of the cavities, marked S' and S", as well as the surfaces,
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marked S, form parts of the boundaries of the spaces, and that

the surface integrals, which the theorem declares must be taken

Fig. 35.

over the whole boundaries of the spaces, are to be extended

over S' and S" as well as over S. We must remember, how-

ever, that an exterior normal to T^ at S' points into the cavity C.

49. Special Cases under Green's Theorem. I. If in [148]

V be the potential function due to any distribution either of

repelling matter or of positive and negative matter existing

together, whether this matter is within or without T, and if

U=l, we have

v'F=-47rp,

and 47rCCCpdx(1ydz= C[-D„Vyis. [149]

The triple integral on the left-hand side of the equation is the

whole amount of matter (algebraically considered, where we have

both positive and negative matter) within T. and the dexter is

the surface integral taken over T of the force in the direc-

tion of the exterior normal; so that [14'J] expresses Gauss's

Theorem.

II. If in [145] we make 6'' equal to T^ and let this represent

as before the potential function due to any distriliution of actual

matter within or without T, we shall have

f f CR-dxdydz = Cv- D„ Vds + A7rf f j'p Vdxdydz, [laO]

where 7i is the resultant force at the point (j-, »/, 2).
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III. If in [145] we make U=V=u, any function which

within the closed surface T satisfies the equation v^w = 0, we
shall have

f f r[(^=rW)'+ (D„uy+{D,uy^ dxdydz = Cu -D^u- ds. [151]

IV. If in [148] Fis the potential function due to two distri-

butions of active matter, Mi inside the closed surface T and M^

outside it, and if U= - where r is the distance of the point

(x, y, z) from a fixed point 0, we must consider separately the

two cases where is respectively without T and within T.

A. If is without T, V^
(
-

j
= for points within the sur-

face. Also, V F= — 47rp, so that

f^ds -Jv- D, (i) ds = -iTrfff^-dxdydz.

Fig. 36.

The triple integral is evidently equal to the value at the point

of the potential function due to Mi alone. If we call this Fi,

and notice (see [143]) that I)„r at any point of T is the cosine

of the angle 8 between r and the exterior normal to T, we have

JD^cls-f^ds=-i.n [152]

If r is a surface eqnipotential with respect to the joint action

of Ml and M.,, and if we denote by F, the constant value of V
on r, we have

I —=— ds — V,l ——- ds = — 4 TT Fi,
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and it is easy to show, by the reasoning used in Section 31,

that
I

'

ds = 0, whence
J r-

Fi = -— f^^ds. [153]
4:'7rJ r

B. If is a point inside T, whether or not it is within 3/,,

and if T is equipotential with respect to the action of M^ and

3/;, we will surround b}' a small spherical surface s' of

radius r', and apply [148] to the space lying inside T and with-

out the spherical surface. In doing so, it is to be noticed that

s' forms part of the boundary of the region we are dealing with,

and that an exterior normal to the region at s' will be an interior

normal of the sphere.

Fig. 37.

we have

Since for all points of the region we arc considering V*[ -
|
= 0.

\ have

= -4 Trjyj"^ dxdydz
; [154]

or, since ds'=r'-d<i}\ where dui' is the area which the elementary

cone whose base is ds' and vertex intercepts on the sphere

of unit radius drawn about 0,
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. It is easily proved, by the reasoning of Section 31, that

rcosS

J
cos 6 , ,

and it is clear that if r' be made smaller and smaller, the third

integral of [155] approaches the limit zero. If V' is the average

value of Fon the surface s',

jV'da)=F'rda; = "F'47r;

and as r' is made smaller and smaller, this approaches the value

AttVoi where Vq is the value of Fat 0. The value, when r' is

zero, of the triple integral in [155] is evidently Fi, and we
have

'^!Lrds + 47rF.-47rFo = -47rFi. [156]
r/

If F2 is the value at of the potential function due to M^
alone, Fq = Fi + F2, so that [156] may be written in the form

F, - F2 = - /- C^^ds. [157]

If T is not equipotential with respect to the action of M^ and

Jfj, we have

4 TT V2^C^ds-fVD„ f-\ ds. [158]

V. If in [148] we make U=-, where r is the distance of

the point (x,y,z) from a fixed point 0, and if V=v, a function

which within the closed surface T satisfies the equation V'^'y = 0,

we shall have

4 TTV = CvD„ f-^ ds - r^ ds, [159]

if is within T, and

C^ ds = Cv D„ (^ ds, [160]

if is outside T.
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50. Th3 Surface Distributions Equivalent to Certain Volume
Distributions. Keeping the notation of IV. in tlie last article,

let r be a closed surface equipotential with respect either to

the joint action of two distributions of matter, J/i inside T and

J/2 outside it, or (when 3/, equals zero) to the action of a

single distribution within the surface ; and let Fj, V^, and V
be the values of the potential functions due respectively to M^
alone, to My alone, and to My and M^ existing together. If a

quantity of matter were condensed on T so as to give at everv
—D V

point a surface deusitv equal to '^—, the whole quantity of
47r

matter on the surface would be

- CD„V'ds,
IT J4:

and this, by [H9], is equal in amount to 3/j. Let us study the

effect of removing M^ from the inside of T and spreading it in

a superficial distribution J/,' over T, so that the surface density

— 1) V
ut every point shall be '—— In what follows, it is assumed

that we have two distributions of matter, one inside the closed

surface and the otiier outside. It is to be carefulh" noted, how-

ever, that by putting 3/o equal to zero in our equations, all our

results are applicable to the case where we have an equipotential

surface surrounding all the matter, which may be all of one kind

or not.

The value, at any point 0, of the potential function due to

the joint effect of Mo and the surface distribution J//, would l)e

4 ITJ r

If is an outside point, we have, by [153],

Vo = V, + V,.

so that the effect at any point outside an equipotential surface

of a quantity My of matter anyhow distrilmted inside the sur-

face is the same as tliat of an equal quantity of matter dis-

tributed over the surface in such a way that the superficial
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density at ever}- point is ^^—"- , where V is the value of the

potential function clue to the joint action of Jfj and any matter

{M2) that may be outside the surface.

If is an inside point, we have, by [157],

Vo=V,-hV,-V2 = V„ [161]

which shows that the joint effect of M2 and 3/i' is to give to all

points within and upon the surface the same constant value of

the potential function which points upon the surface had before

Ml was displaced by M^'. If, therefore, Jf/ and 3/2 exist without

Ml, there is no force at any point of the cavity shut in by T;

or, in other words, the force due to Mi alone is at all points

inside T equal and opposite to that due to 3/2-

If Ml and M^ exist without Mi, the cavity enclosed by T is, in

general, a field of force. Mi acts as a screen to shield the space

within T from the action of Mo.

The surface of Mi is equipotential with respect to all the

active matter, so that there is no tendency of the matter com-

posing the surface distribution to arrange itsfelf in any different

manner upon T.

51. The potential function F, due to any distribution of

matter whose volume density p is everywhere finite, satisfies the

following conditions

:

(1 ) V and its first space derivatives are everywhere finite and

continuous, and are equal to zero at an infinite distance from

the attracting mass.

(2) If a is the distance from the origin of coordinates to the

point P,

where M is a definite constant.

(3) Except at the surface of the attracting mass, or at some

other surface where p is discontinuous, .

vV=-47rp,
where p is to be put equal to zero outside of the attracting mass.
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It is easy to show from Green's Theorem that for a given

value of p as a function of a*, ?/, and z, only one function which

will satisfy these three conditions exists.

Suppose, for the sake of argument, that there are two such

functions, Fand F', and put u = F— F'. It is evident that u

satisfies conditions (1) and (2), and that V"(m) = except where

p is discontinuous. Parallel to each surface of discontinuity,

and very near to it, draw two surfaces, one on each side, so as

to shut in the places where V« is not zero, and draw a spherical

surface about the origin, using a radius R large enough to

eiK'lose all the surfaces of discontinuity.

If now we apply [lol] to that part of the space inside the

spherical surface and not shut in by the barriers which we have

drawn, and if we notice that each pair of parallel barriers to-

gether yields nothing to the surface integral, we shall have

^^j\_{D,uy + {D,uy + {D,uy-\dxdydz^ju. D^u.ds,

where the dexter integral is to be extended over the spherical

surface only.

If dia is the solid angle of the infinitesimal cone which inter-

cepts the element ds from the spherical surface, we have

I
u X>„ u ds = H-

I
u Dji u do

Now since ?« satisfies condition (2) above, it is easy to show

that if we make li grow larger and larger, this surface integral

approaches the value zero as a limit, for u approaches the value

^^ and Dj,u the value ~ ^
. so that the wliole integral ap-

proaches the value ^^^^

—

—— , which, when A' i.s made infinite,

approaches the value zero.
,

If we em])race all space in our sphere, we shall have

///<(Z),?0- + (/>,")' + (^x«)'] dxdiidz = 0,

whence D^ n = 0, Z>, u = 0, Z>, m = 0.
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Therefore u is constant in all space, and since it is zero at

infinity, mnst be everywhere zero, so that V= V.

^3^ 52. Thomson's Theorem or Dirichlet's Principle. We will now
prove a theorem* which is usually called Dirichlet's Principle

by Continental writers, but which in English books is generally

attributed to Sir W. Thomson. This theorem, in its simplest

form, asserts that there always exists one, but no other than

this one, function, v, of x, y, z, which (1) is finite, continuous, and

single-valued, together with its first space derivatives, through-

out a given closed region L
; (2) at every point of the region

satisfies the equation v'v = 0; and (3) at every point on the

boundary' of the region has any arbitrarily assigned value, pro-

vided that this can be regarded as the value at that point of a

single-valued function which has derivatives finite, continuous,

and single-valued all over this boundary.

Tliere is evidently an infinite number of functions which

satisfy the first and third conditions. If, for instance, the equa-

tion of the bounding surface S of the region is -F'(.^^ y, z) = 0,

and if the value of v at the point (a;, y, z) upon this surface is to

hef{x,y,z), any function of the form

<^(x, y, z) 'F{x, y, z) -\-f{x, y, z)

would satisfy the third condition, whatever finite function $
might be.

If we assign to the function to be found a constant value C
all over S, v^C will satisfy all three of the conditions given

above.

* Green, An Essay on the Application of Mathematical Analysis to the

Theories of Electricity and Magnetism. Gauss, AUgemeine Lelirsutze in Dezie-

huntj auf die im verkehrten Verhdltnisse des Quadrats der Entfernung wirkcnden

Anziehunys- und Abstossungsh-iifle. Thomson, Reprint of Papers on Electro-

statics and Magnetism. Dirichlct, Vorlesungen iiher die im umgekehrten Ver-

hdltniss des Quadrats der Entfernung ivirkenden Krafte. Also, Thomson and

Tail's Natural Piiiitisnpliy, and several papers by Dirichlet in Crelle's Jour-

nal and in the Comptes Rendus.
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If the sought function is to have different values at different

points of S, and if for u in the integral

Q =/jy[(^^«)' + (^^v«)' + (^x^)'] dxdydz,

which is to be extended over the whole of the region, we substi-

tute any one of all the functions wliich satisfy conditions (1)

and (3), the resulting value of Q will be positive. Some one at

least of these functions (y) must, however, yield a value of Q
which though positive, is so small that no other one can make Q
smaller. Let h be an arbitrary constant to which some value

has been assigned, and let vj be any function which satisfies

condition (1) and is equal to zero at all parts of S, then

U=v-\-hic will satisfy conditions (1) and (3), and conversely,

there is no function which satisfies these two conditions which

cannot be written in the form U=v -\-hw^ where h is an arbi-

trary constant, and tv a function which is zero at S and which

satisfies condition (1).

Call the minimum value of Q due to v^ Q,, and the value of Q
due to U, Qui then

Qu= Q„+'2h C C C{D^v-D^w +D^v-D^w + D,v • D,v:)dxdydz

+ h' fff[{D^icy--h {D.ioy + [D^icy-] dxdydz,

which, since to is zero at the boundary of the region, may be

written, by the help of Green's Theorem,

Q^.- Q„ = - 2 /« r f Cw v' ( I') dxdydz -\- h-n\

Now since Q^ is the minimum value of Q, no one of the infi-

nite number of values of Qc-— Qv formed by changing h and iv

under the conditions just named can be negative ; but if V'u

were not everywhere equal to zero within L, it would be easy

to choose ?o so that the coefficient of '2h in the expression

for Qu— Q„ should not be zero, and then to choose /* so that

Qu~Qy> should be negative. Hence V^v is equal to zero through-
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out i, and there alwa3's exists at least one function whicli satis-

fies the three conditions stated above.

Tliere is onl}' one such function ; for if beside v there were

another m = v -f- ^^'^i we should have, since the coefficient of h is

zero when V^(w) = 0,

and, that Q„ may be as small as Q„, liQ, must be zero, whence

either /i = or O = 0, and if O = 0, w is zero. Therefore,

u = v, and there is only one function which in any given case

satisfies all the three conditions given above.

By applying the same reasoning to the space outside a closed

surface S and inside a spherical surface of large radius R which

is finally made infinite, it is easy to j^rove that there always exists

in the space outside a closed surface aS' one and only one function

V which (1) has a given value at every point of S, (2) satisfies

the equation v'^v = 0, (3) together with its first derivatives, is

finite and continuous outside S., and (4) is such that the limit,

as R becomes infinite, of Rv is a definite, finite constant.

These theorems help us to prove other theorems, of which two

are of considerable interest for us.

I. If a function v=f{x,y,z), together with its first space

derivatives, is finite and continuous in all space outside a sur-

face S, and outside this surface satisfies the equation V'f = 0,

and if v-\/x^ + y^ + z^ approaches a definite, finite, constant

limit as .the point (cc, y, z) moves away from the origin to in-

finity, then this function may be considered to be the potential

function of a surface distribution of matter upon S.

In order to prove this, we will first apply [160] to v', the

function which has on S the same value as v, which inside 8 is,

with its first derivatives, finite and continuous, and which satisfies

the equation V'v'= ; and use the space inside S as our region.

This gives

where n refers to the exterior normal of S.
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If we now apply [150] to the function v, using as a field tlic

space outside S and within a spherical surface *S" of large radius

i?, drawn about the point as centre, we shall have

where n is made to refer to the same normal as before by a

change of sign in the first two integrals. If now we combine

the two equations just obtained, and make R infinite, so that the

last two integrals of the second equation shall vanish, we shall

have
ds

r

which is the value at an outside point of the potential function due

to a superficial distribution of surface density — (D„v'~D„v)

spread upon S.

It is to be noticed that the letter r refers to a point without

S in each of the last three equations. Instead of one closed

surface we might have several, as it is eas}- to prove by intro-

ducing as many Dirichlet's functions as there are surfaces.

We will state the second theorem, leaving the proof, wl^ch is

almost identical in form with the one just given, for the reader.

II. If a function v'=F(x,y,z) satisfies the equation V'i''=

throughout the space enclosed by a closed surface S, and within

this space, together with its first derivatives, is everywhere

finite and continuous, it may be considered to be the potential

function within this space of a surface distribution on .S'.

The superficial density of tliis distribution will be found to 1)0

4 —

where v is the function which has the same value on S that *•'

has, and outside S satisfies the equation vX'") = ^^"^1 the other

conditions given above.

It follows, from these theorems, that we may assign any con-

tiuuouslv arranged arbitrarv values to the potential function at
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the different points of a closed surface S, make these values the

common values on the surface of the functions v and v', and

assert that a distribution of matter on >S' of surface density

o- = —\DnV' — DnV) would give rise to a potential function

having the chosen values on S. In this case v and v' would be

the values in regions respectively without and within S of the

potential function due to this surface distribution. It is, then,

always possible to distribute matter in one and onl}' one way

upon a given closed surface so that the value of the potential

function due to the matter shall have given values all over the

surface.

EXAMPLES.

1. Prove that there always exists one, but no other than this

one, function, v, which, together with its first space derivatives,

is finite, continuous, and single-valued everywhere within a given

region L, has values at the boundary of the region equal to

those of an arbitrarily chosen, finite, continuous, and single-

valued function, /(ic, y, 2), and satisfies at every point in L the

equation

D,{K- D^v) + D^{K- D^v) + D,(K- D,v^ = 0,

where K is a function positive within L.

2. If the potential function due to a certain distribution of

matter is given equal to zero for all space external to a given

closed surface 8 and equal to «^(a;, y^ 2;), where <^ is a continu-

ous single-valued function zero at all points of >S', for all space

within S ; there is no matter without S., there is a superficial dis-

tribution of surface density

cr = J-[(A<A)^ + (^.^)=' + (^.<^)T
47r

upon aS, and the volume density of the matter within S is

[Thomson and Tait.]
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CHAPTER V.

ELEOTEOSTATIOS.

53. Introductory. Having considered abstractly a few of

the characteristic properties of what has been called "the New-
tonian potential function," we will devote this chapter to a very

brief discussion of some general principles of Electrostatics.

By so doing we shall incidentally learn how to apply to the treat-

ment of practical problems many of the theorems that we have

proved in the i)receding chapters.

In what follows, the reader is supposed to be familiar with

such electrostatic phenomena as are described in the first few

chapters of treatises on Statical Electricity, and with the hypoth-

eses that arc given to explain these phenomena.

Without expressing any opinion with regard to the physical

nature of what is called electrification^ we shall here take for

granted that whether it is due to the presence of some sub-

stance, or is only the consequence of a mode of motion or of a

state of polarization, we may, without error in our results, use

some of the language of the old ''Two Eluid Theory of Elec-

tricity " as the basis of our mathematical work.

The reader is reminded that, among other things, this theory

teaches that :
—

(1) Every particle of a body which is in its natural state con-

tains, combined together so as to cancel each other's etfects at

all outside points, equal large quantities of two kinds of elec-

triciti/ with properties like those of the positive and negative

" matter" described in Section 44.

(2) Electrification consists in destroying in some way the

equality between the amounts of the two kinds of electricity

which a body, or some part of a body, naturally contains, so

that there shall be an excess or chanje of one kind. If the
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charge is of positive electricity, the body is said to be posi-

tivel}' electrified ; if tlie charge is negative, negatively electrified.

Either kind of electricity existing uncoinbined Avith an equal

quantity of the other kind, is called free electricity.

(3) When a charged body A is brought into the neighborhood

of another body B in its natural state, the two kinds of elec-

tricity in every particle of B tend to separate from each other,

one being attracted and the other repelled by ^'s charge, and

to move in opposite directions.

In general, a tendency to separation occurs in all parts of the

body, whether it is charged or not, where the resultant electric

force (the force due to all the free electricity in existence) is

not zero. This effect is said to be due to induction.

In our work we shall assume all this to be true, and proceed

to apply the principles stated in Section 44 to the treatment of

problems involving distributions of electricit}-. We shall find it

convenient to distinguish between conductors., which offer prac-

tically no resistance to the passage of electricity through their

substance, and nonconductors, which we shall regard as prevent-

ing altogether such transfer of electricity from part to part.

54. The Charges on Conductors are Superficial. When elec-

tricity is communicated to a conductor, a state of equilibrium is

soon established. After this has taken place, there can be no

resultant force tending to move any portion of the charge

through the substance of the conductor, for, by supposition, the

conductor does not prevent the passage of electricity through

itself.

Moreover, the resultant electric force must be zero at all

points in the substance of a conductor in electric equilibrium

;

for if the force were not zero at any point, electricity would

be produced by induction at that point, and carried away

through tlie body of the conductor under the action of the

inducing force.

From this it follows that the potential function V. due to all

the free electricity in existence, must be constant throughout
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the substance of an}* single conductor in electric equilibrium,

wlietber or not the conductor be charged, and whether or not

there be other charged or uncharged conductors in the neigh-

borhood. Different conductors existing together will in general

be at diflferent potentials, but all the points of any one of these

conductors will be at the same potential.

"Wherever V is constant, V'I'=0, and hence, by Poisson's

Equation, p = 0, so that there can be no free electricity within

the substauce of a conductor in equilil)rium, and the whole

charge must be distributed upon the surface. Experiment

shows that we must regard the thickness of charges spread upon

conductors as inappreciable, and that it is best to consider tliat

in such cases we have to do with really superficial distributions

of electricity, in which the conductor bears a rough aualogv to

the cavity enclosed by the thin shells of repelling matter de-

scribed in the preceding chapter.

The surface density at any point of a superficial distribution

of electricity shall be taken positive or negative, according as

the electricity at that point is positive or negative, and the force

which would act upon a unit of positive electricity if it were

concentrated at a point J* without disturbing existing distribu-

tions shall be called '"tlie electric force" or "the strength of

the electric field at P."

It is evident, from Sections 4.j and 40, that the electric force

at a point just outside a charged conductor, at a place where

the surface density of the charge is o-, is 47r<r, and that this is

directed outwards or inwards, according as a- is positive or nega-

tive.

In other words, D^V, the derivative of the potential function

in the direction of the exterior normal, is equal to — 4 Tnr, and

the value of Fat a point P just outside tlie conductor is greater

or less than its value within the conductor, according as the

surface density of the conductor's charge in tlie neighborhood of

P is negative or positive.

It is to be carefully noted that, although the surface of a con-

ductor must always be equipotential, the superficial density of
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the conductor's charge need not be the same at all parts of the

surface. We shall soon meet with cases where the electricity

on a conductor's surface is at some points positive and at others

negative, and with other cases where the sign of the potential

function inside and on a conductor is of opposite sign to the

charge.

It is evident, from the work of Section 47, that the resistance

per unit of area which the nonconducting medium about a con-

ductor has to exert upon the conductor's charge to prevent it

from flying off, is, at a part where the density is cr, 27rcr-.

55. General Principles which follow directly from the Theory

of the Newtonian Potential Function. If two different distrilju-

tions of electricity, which have the same system of equipoten-

tial surfaces throughout a certain region, be superposed so as to

exist together, the new distribution will have the same equipo-

tential surfaces in that region as each of the components. For,

if Vi and V», the potential functions due to the two components

respectively, be both constant over any surface, their sum will

be constant over the same surface.

Two distributions of electricity, which have densities ever}'-

where equal in magnitude but opposite in sign, have the same

system of equipotential surfaces, and, if superposed, have no

effect at any point in space.

Two distributions of electricity-, arranged successively on the

same conductor so that at every point the density of the one

is VI times that of the other, have the same system of equipo-

tential surfaces, and the potential function due to the first is

everywhere m times as groat as that due to the second.

If the whole charge of a conductor which is not exposed to

the action of any electricity except its own is zero, the super-

ficial density must be zero at all points of the surface, and the

conductor is in its natural state. For if o- is not everywhere

zero, it must be in some places positive and in others negative
;

and, according to the work of the last section, the potential

function F, due to this charge, must have, somewhere outside
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the conductor, values higher and lower than T\,, its value in the

conductor itself. But this would necessitate somewhere in empty
space a value of the potential function not lying between Vq and

0, the value at infinity ; that is, a niaxinuun in empty space if

T'o is positive, and a minimum if T'o is negative ; which is

absurd.

A system of conductors, on each of which the charge is null,

must be in the natural state if exposed to the action of no out-

side electricity. For, by applying the reasoning just used to

that conductor in which the potential function is supposed to

have the value most widely different from zero, we m.ay show

that tlie surface density all over the conductor is zero, so that

no influence is exercised on outside bodies ; and then, snp[)os-

ing this conductor removed, we may proceed in the same way

with the system made up of the remaining conductors.

If a charge M of electricity, wljen given to a conductor, ar-

ranges itself in equilibrium so as to give the surface density

o- =/(.i', !/' z) and to make the potential function Fq = j
'^—

^

«
' r

constant within the conductor, ^ cliarge —JF, if arranged on the

conductor so as to give at every point the density —<t= —f{x,i/,z)

would be in equilibrium, for it would give everywhere the poten-

tial function I ~J^1^—L = — 1"^, and this is constant wherever I'^

J r
is constant.

Only one distribution of the same quantity of electricity ^[ on

the same conductor, removed from the influence of all other

electricity, is possible ; for, suppose two different values of sur-

face density possible, (Ti=/i{x, y,z) and 'r^ =^> (.r, »/, :;), then

— <r2= —f:>{x.y,z) is a possible distribution of the charge —^f.

Superpose tlie distribution — a-, u[)on the distribution o-, so tliat

the total charge sliall be equal to zero ; then tlie surface <liMisity

at every point is n-i— o-o, and this must be zero by wliat we liave

just proved, so that o-. = o-,.

Since we may superpose on the same conductor a numlK-r of

distributions, each one of which is by itself in equililirium. it is
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easy^ to see that if the whole quantity* of electricity on any con-

ductor be changed in a given ratio, the density at each point

will be changed in the same ratio.

56. ^Tubes of Force and their Properties. We have seen that

a unit of positive electricit}' concentrated at a point P just out-

side a conductor would be urged away from the conductor or

drawn towards it, according as that point on the conductor which

is nearest P is positively or negatively electrified. If we regard

lines of force drawn in an electric field as generated by points

moving from places of higher potential to places of lower poten-

tial, we may sa}- that a line of force 2^^oceeds from every point

of a conductor where the surface density is positive, and that a

line of force ends at every point of a conductor where the sur-

face density' is negative. No line of force either leaves or

enters a conductor at a point where the surface density- is zero,

and no line of force can start at one point of a conductor where

the electrification is positive and return to the same conductor

at a point where the electrification is negative. No line of force

can proceed from one conductor at a point electrified in anj- way
and enter another conductor at a point where the electrification

has the same name as at the starting-point. A line of force

never cuts through a conductor so as to come out at the other

side, for the force at every point inside a conductor is zero.

Lines and tubes of force are sometimes called in electrostatics

lines and tubes of " induction."

"When a tube of force joins two conductors, the charges Qi,

Q2 of the portions JSi, S^ which it cuts from the two surfaces are

Fig. 38.

made up of equal quantities of opposite kinds of electricity.

For if we suppose the tube of force to be arbitrarily prolonged
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and closed at the ends inside tlie two conductors, tlie surface

integral of normal force taken over the box thus formed is zero,

for the part outside the conductors yields nothing, since the re-

sultant force is tangential to it, and there is no resultant force

at any point inside a conductor. It follows, from Gauss's

Theorem, that the whole quantity of electricity (Q, -{-Qj) inside

the box must be zero, or Q, = — Q.,, which proves the theorem.

If o-j and 0-2 are the average values of the surface densities of

the charges on Si and S., respectively, we have (riSi = Qi and

0-2-82 = ^25 whence

o-2 = -rri^ [162]

The integral taken over any surface, closed or not, of the

force normal to that surface is called by some writers the Jlow

of force across the surface in question, and by others the induc-

tion through this surface.

If we apply Gauss's Theorem to a box shut iu by a tube

of force and the i)ortions S^ S., which it cuts from any two

equipotential surfaces, we shall have, if the box contains no

electricity,

F.S2-I\Si = 0, [163]

where Fi and F.^ are the average values, over S^ and So respec-

tively, of the normal force taken iu the same direction (that in

which T^ decreases) in both cases. In other words, the flow of

force across all equipotential sections of a tube of force con-

taining no electricity is the same, or the average force over an

equipotential section of an empty tube of force is inversely pro-

portional to the ax'ea of the section.

Fir.. .",9.

"When a tube of force encounters a quantity m of electricity

(Fig. 39), the flow of force through the tube on passing this
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electricity is increased by 47rm. If, however, the tube encoun-

ters a conductor large enough to close its end completely, a

charge ni will be found on the conductor just sufficient to reduce

to zero the flow of force (7) through the tube. That is,

/m = -•

It is sometimes convenient to consider an electric field to be

divided up by a system of tubes of force, so chosen that the flow

of force across any equipotential surface of each tube shall be

equal to 47r. Such tubes are called unit tubes; for wherever

one of them abuts on a conductor, there is always the unit quan-

tity of electricity on that portion of the conductor's surface which

the tube intercepts. In some treatises on electricity tlie term

"line of force" is used to represent a unit tube of force, as

when a conductor is said to cut a certain number of " lines of

force."

It is evident that m unit tubes abut on a surface just outside

a conductor charged with m units of either kind of electricity,

if the superficial density of the charge has everywhere the same

sign. These tubes must be regarded as beginning at tlie cou-

ductor if m is positive, and as ending there if m is negative.

If a conductor is charged at some places with positive elec-

tricity and at others with negative electricity, tubes of force

will begin where the electrification is positive, and others will

end where the electrification is negative.

It is evident that no tube of force can return into itself.

Fig. 40.

57. Hollow Conductors. When the nonconducting cavity,

shut in by a hollow conductor K (Fig. 40), contains quantities
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of electricity (mj, wig, ^3, etc., or ^ vi) distributed in any way,

but insulated from A", there is induced on tlie walls of the cavity

a charge of electricity algebraically equal in quantity, but oi)po-

site in sign, to the algebraic sum of the electricity within the

cavity.

Call the outside surface of the conductor S„ and its charge

3/0, the boundary of the cavity *S',- and its charge J/,, and sur-

round the cavity by a closed surface <6', every point of which lies

within the substance of the conductor, where the resultant foice

is zero. Now the surface integral of normal force taken over

S is zero, so that, according to Gauss's Theorem, the algebraic

sum of the quantities of electricity within the cavity and upon

Si is zero. That is,

3/. + ,„^ _|_ ^n, + mg + ••• = .1/. +V (/h) = 0, [1G4]

and this is our theorem, which is true whatever the charge on

S„ is, and whatever distribution of free electricity there may
be outside A". If the distribution of the electricity within the

cavity be changed by moving ?»i, yn.j, etc., to ditTerent positions,

the (lifitriJmtinn of 3/, on *S', will in general be changed, although

its value? remains unchanged.

If K has received no electricity from without, its total charge

must be zero ; that is,

3/:, = -3/.='V(m).

If a charge algebraically equal to M be given to A',

3/„ = 3/-3/..

The combined effect of ^ (m ), the electricity within the cavity,

and J/j, the electricity on the walls of the cavity, is at all points

without Si absolutely null. For, if we ajiply [l-">;5] toS, any sur-

face drawn in the conductor so as to enclose >',. we shall have />,.!

'

everywhere zero, since the poti'utial function is constant within

the conductor ; this shows that Vi, the potential function due to
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all the electricity within S^ must be zero at all points without S
;

but /S may be drawn as nearly coincident wilh aS,- as we please.

Hence our theorem, which shows that, so far as the value of the

potential function in the substance of the conductor or outside

it, and so far as the arrangement of M„ and of 3/', any free

electricity there may be outside K, are concerned, Mj and ^ (?«,)

might be removed together without changing anything. The

potential function at all points outside Si is to be found by con-

sidering only J/ and M'.

If Si happens to be one of the equipotential surfaces of ^ (m)

considered by itself. Mi will be arranged in the same way as a

charge of the same magnitude would arrange itself on a con-

ductor whose outside surface was of the shape Si, if removed

from the action of all other free electricity.

The potential function ( V2) due to M„ and M' is constant

everywhere within S„ ; for if we apply [157] to a surface S,

drawn within the substance of the conductor as near Sg as we

like, we shall have
F.-Fo = 0,

which proves the theorem.

The potential function within the cavity is equal to V2 + F"i,

where Vi is the potential function due to 3fi and ^ {m). Of these,

V2 is, as we have seen, constant throughout K and the cavity

(Section 31) which it encloses, while Vi has different values in

different parts of the cavity, and is zero within the substance of

the conductor.

Suppose now that, by means of an electrical machine, some

of the two kinds of electricity existing combined together in a

conductor within the cavity be separated, and equal quantities

(q) of each kind be set free and distributed in any manner

within the cavity.

The value of Vi within the cavity will probably be different

from what it was before, but V^ will be unchanged ; for the
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quantity of matter in the cavity is unchanged, being now, alge-

braically considered,

^(m) +g-9=2^(m),

so that J/j is unchanged, although it may have been differently

arranged on Si, in order to keep the value of Vi zero within

the substance of the conductor. If now a part of the free

electricity in the cavity be conveyed to S^ in some way, the sub-

stance of the conductor will still remain at the same potential as

before. For, if I uuits of positive electricity and n units of

negative electricity be thus transferred to S^, the whole quantity

of free electricity within the cavit}' will be y (m) — Z + ?i, and

that on Si will be 3/^ + ? — ?i : but these are numerically equal,

but opposite in sign, and the charge on Si, if properly arranged,

suffices, without drawing on J/„ to reduce to zero the value of

Vi in K. Since M„ and M' remain as before, V., is unchanged,

and the conductor is at the same potential as before. So long

as no electricity' is introduced into the cavity from loithoiit K,
no electrical charges within the cavity can have any effect out-

side Si.

Most experiments in electricity are carried on in rooms, which

we can regard as hollows in a large conductor, the earth. V>i,

the value of the potential function in tlie earth and the walls of

the room, is not changed by anything that goes on inside the

room, where the potential function is F= T^i + T'o. Since we

are generally concerned, not with the absolute value of the poten-

tial function, but only with its variations within the room, and

since T^. remains always constant, it is often convenient to dis-

regard F2 altogether, and to call F, the value of the potential

function inside the room. When we do this we must remember

that we are taking the value of the potential function in the

earth as an arbitrary zero, and that the v.aluo of T', at a point in

the room really measures only the difTerence between the values

of the potential function in the earth and at the point in ques-

tion. AVhen a conductor A in the room is connected with the
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walls of the room by a wire, the value of Vi in A is, of course,

zero, and A is said to have been put to earth.

58. Induced Charge on a Conductor which is put to Earth.

Suppose that there are in a room a number of conductors, viz. :

Ai charged with M^ units of electricity, and A2, Aj, A^, etc.,

connected with the walls of the room, and therefore at the po-

tential of the eai'th, which we will take for our zero. If the

potential function has the value pi inside Ai, everj' point in the

room outside the conductors must have a value of tlie potential

function l^'ing between 2h ^^^^ 0, else the potential function must

have a maximum or a minimum in empty space. If pi is posi-

tive, there can be no positive electricity on the other conductors
;

for if there were, lines of force must start from these conductors

and go to places of lower potential ; but there are no such places,

since these conductors are at potential zero, and all otlier points

of the room at positive potentials. In a similar wa}' we may
prove that if 2h is negative, the electricity induced on the other

conductors is wholly positive.

Now let us apply [158] to a spherical surface, drawn so as

to include Ai and at least one of the other conductors, but with

radius a so small that some parts of the surface shall lie within

the room. If we take the point at the centre of this surface,

we shall have

47rF2 = i CDrV'ds + -^ fvds. [165]
etc/ Ct \J

If M is the whole quantity of electricity within the spherical

surface, there must be a quantity —J!f outside the surface, either

on the walls of the room or on conductors within the room.

The value at of the potential function, F^? due to the elec-

M
tricity without the sphere, is less in absolute value than

,

a
for it could only be as great as this if all the electricity outside

the sphere were brought up to its surface.

By Gauss's Theorem,

'AF.ds = -47ri¥,/^
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therefore, Cvds = 4 Tra [3/+ a F,]

.

[166]

Now, if Ml is positive, the integral is positive, for all parts of

the spherical surface within the room j'ield positive differentials,

and all other parts zero, so that the second side of the equation

is positive. But a Vo is of opposite sign to 3/, and is less in

absolute value ; hence, M is positive, and the total amount of

negative electricity induced on the other conductors within the

spherical surface by the charge on yl,, is numerically less than

this charge, unless some one of these conductors suiTounds ^1,

;

in which case the induced chargo comes wholly on this conduc-

tor, while the other conductors, and the walls of the room, are

free. Some of the tubes of force which begin at A^ end on the

walls of the room, provided these latter can be reached from

Ai without passing through the substance of an}- conductor.

59. Coefficients of Induction and Capacity. If a number of

insulated conductors, A2, A-,,, ^li, etc., are in a room in the pres-

ence of a conductor A^ charged with Mi units of electricity, the

whole charge on each is zero ; but equal amounts of positive and

negative electricity are so arranged by induction on each, that

the potential function is constant- throughout the substance of

every one of the conductors.

Let the values of the potential functions in the system of con-

ductors be />!, 2hi Psi Pii etc. Since each conductor except Ai is

electrified, if at all, in some places with positive electricit}', and

in others with negative electricity, some lines of force must

start from, and others end at, every sucii electrified conductor,

so that there must be points in the air about each conductor at

lower and at higher potentials than the conductor itself. But

the value of the potential function in the walls of the room is

zero, and there can be no ])oints of maximum or minimum poten-

tial in empty space ; so tliat pi must be that value of the poten-

tial function in the room most widely different from zero, and

P2, ^3, Pi, etc., must have the same sign as ;>,.

The reader may show, if he likes, that both the negative part
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and the positive pai"t of the zero charge of any conductor, ex-

cept Ai, is less than J/j.

Letpu be the vahie of the potential function in a conductor

A^ charged with a single unit of electricit3-, and standing in

the presence of a number of other conductors all uncbarged

and insulated. Then if Pui Ihsi Pui etc., are, under these cir-

cumstances, the values of the potential functions in the other

conductors. A.,, A-^, A^, etc., the potential functions in these

conductors will be M^p^zi -M,pi3, J/ij^u, etc., if ^li be charged

with Ml units of electricit\- instead of with one unit. This is

evident, for we may superpose a number of distributions Avhich

are singly in equilibrium upon a set of conductors, and get a

new distribution in equilibrium where the density is the sum of

the densities of the component distributions, and the value of

the resulting potential function the sura of the values of their

potential functions.

If Ai be discharged and insulated, and a charge JL be given

to Ao, the values of the potential functions in the different con-

ductors may be written

Mop.2i, M,p22, M.psa, M^Pn, etc.

If now we give to A^ and Ao at the same time the charges Jfj

and M., respectively, and keep the other conductoi's insulated,

the result will be equivalent to superposing the second distribu-

tion, which we have just considered, upon the first, and the con-

ductors will be respectively at potentials,

Mi2'>n-\- ^J^-iP2i^ ^^iPi2 + ^2Pz>, MiPis + M2P2^, etc. [1G7]

If all the conductors are simultaneousl}' charged with quanti-

ties Jfj, 3/21 3fo, 3/4, etc., of electricity respectively, the value

of the potential function on yl^ will be

V, = J/,Pu + 3f,2),, + 3/3P3, + ... + M,p,, + 3/,. 7),.,, [108]

Writing this in the form V^ = af^ + MkP„„, we see that if the

charges on all the conductors except ^^ be unchanged, a^will be

constant, and that every addition of — units of electricitv to

Pa
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the charge of A^ raises the vahie of the potential function in

it by unity. If we solve the n equations like [168] for the

charges, we shall get n equations of the form

^V, = F, 5i,+ V, q,, 4- F3 ^3, + ... + F,ry,, + ••• + F„ ?„„ [169]

where the 5's are functions of the />'s.

If all the conductors except ^^ are connected with the earth,

3/4 = Vk fjuc, and Q-ji is evidently the charge which, under these

circumstances, must be given to A^ in order to raise the vahie

of the potential function in it by unity. It is to be noticed that

q^. and — are in general different.

The charge ^hich must be given to a conductor when all the

conductors which surround it are in communication with the

earth, in order to raise the value of the potential function with-

in that conductor from zero to unity, shall be called the

capacity of the conductor. It is evident that the capacity of a

conductor thus defined depends upon its shape and upon the

shape and position of the conductors in its neighborhood.

60. Distribution of Electricity on a Spherical Conductor.

Considerations of symmetry show that if a charge 3/ he given

to a conducting sphere of radius r, removed from the influence

of all electricity except its own, the charge will arrange itself

uniformly over the surface, so that the superficial density shall

be evervwhere (r = ——

•

The value, at the centre of the sphere, of the potential function

due to the charge 3/ on the surface is 1-, and, since the potential
/

function is constant inside a charged conductor, this must be

the value of the potential function throughout the sphere. If 3/

is equal to r, -— = 1 ; hence the capacitv of a spherical conductor
r

removed from the influence of all electricity except its own. is

numerically equal to the radius of its surface.



118 ELECTROSTATICS. '

61. Distribution of a Given Charge on an Ellipsoid. It is

evident from the discussion of bomoeoids in Chapter 1. that a

charge of electricity arranged (on a conductor) in the form of

a shell, bounded by ellipsoidal surfaces similar to each other

(and to the surface of the conductor), and similarly placed,

would be in equihbrium if the conductor were removed from the

action of all electricity except its own. We may use this prin-

ciple to help us to find the distribution of a given charge on a

conducting ellipsoid.

Let us consider a shell of homogeneous matter bounded by

two similar, similarly placed, and concentric ellipsoidal surfaces,

whose semi-axes shall be respectively a, &, c, and (l+a)a,

(1 -\-a)b, (1 +a)c. If any line be drawn from the centre of

the shell so as to cut both surfaces, the tangent planes to these

two surfaces at the points of intersection will be parallel, and

the distance between the planes is pa, where p is the length

of the perpendicular let fall from the centre upon the nearer of

the planes.

If p is the volume densit}' of the matter of which the shell is

composed, the mass of the shell is Jf=|^7ra&c [(1 + a)''— l]p,

and the rate at which the matter is spread upon the unit of sur-

face is, at any point, cr = p8, where 8 is the thickness of the

shell measured on the line of force which passes through the

point in question. Eliminating p from these equations, we have

o- = 11 ^0
I

iTrabcla+a' + ia'^ ^ -^

If, now, in accordance with the hypothesis that the thickness of

the electric charge on a conductor is inappreciable, we make a

smaller and smaller, noticing that 8 differs from pa by an infini-

tesimal of an order higher than the first, we shall have for a

strictly surface distribution,

cr = -^-. [171]
i-n-abc

If the equation of the surface of the ellipsoidal conductor is

^ 4- 2/' 4_
^'^ _ 1

a' ¥ (f
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we have

and

1= K

c _ I
•> ( ^ i_lf

a- ¥

This last expression shows that, as c is made smaller and

smaller, o- approaches more and more nearly the value

M
[172]

Airah Ji_4_i:'
\ a-' 6-

and this gives some idea of the distribution on a thin elliptical

plate whose semi-axes are a and h.

For a circular plate, we may put a = 6 in the last expression,

which gives

M
ATva^/n-

[173]

for the surface density at a point r units distant from the centre

of the plate.

The charge 3/ distributed according to this law on both sides

of a circular plate of radius a raises the plate to potential

a Jo ^/(j-'_ ,-' 2 a

so that'the capacity of the plate is

2a
[174]

62. Spherical Condensers. If a conducting sphere A of radius

r (Fig. 41) be surrounded by a concentric splierical conducting

shell B of radii r, and r„ and charged with m units of electricity

while B is uncharged and insulated, we shall have

(1) the charge m uniformly distributed upon aS, the surface

of the sphere

;

(2) an induced charge — m (Section 57) uniformly distributed

upon aSj, the inner surface of B ;
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(3) a charge +m (since the total charge of B is zero) uni-

formly distributed on S^^ the outer surface of B.

Fig. 41.

The value at the centre of the sphere of the potential function

nyy aij /yy^

due to all these distributions is F^= '-

-\ , and this is

the value of V throughout the conducting sphere. The value of

771

the potential function in B is V^ = ~^-
' o

If now a charge M be communicated to B, this will add itself

to the charge m already existing on S„, and the charge on Si will

be undisturbed. The values of the potential functions in the

conductors are now

__ m m m-\-M . _.. m-\-M
V^ = 1

—— , and V^ = —~^

If now B be connected with the earth so as to make Fg = 0,

the charges on S and Si will be undisturbed, but the charge on

So will disappear. V^ is now equal to
r Ti

If A were uncharged, and B had the charge M^ this charge

would be uniformly distributed upon S^^ for, since the whole

charge on S is zero, the whole cliarge on Si must be zero also.

It is easy to see that S and ^^iraust both be in a state of nature,

for if not, lines of force must start from S and end at >S„ and

others start at Si and end at S, which is absurd.
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If A were put to earth by means of a fine insulated wire

passing througli a tiny liole in B, and if B were insulated and

charged with M units of electricity, we should have a charge x

on S, a charge — x on Si, and a charge M-\-x on S^. To find

'V OC ^ A/"

X, we need only remember that V^ = '

1 1 = 0, whence
X may be obtained. * " "

If B be put to earth, and A be connected by means of the fine

wire just mentioned, with an electrical machine which keeps its

prime conductor constantly at potential Vi, A will receive a charge

y and will be put at potential F^. To find ?/, it is to be noticed

that there is a charge — y on -&',, and no charge on S„, which is

y ?/

put to earth. F^ = ^ — ^^ = T^i, whence y may be obtained.

If r = 99 millimeters and r,= 100 millimeters, y = 9900 Vf

If a sphere, equal in size to A but having no shell about it,

were connected with the same prime conductor, it too would

receive a charge z sufficient to raise it to potential Fj, and z

would be determined by the equation Fi= -• If r = 99. we have
r

z = 99 Vi ; hence we see that A, when surrounded by B at

l)otential zero, is able to take one hundred times as great a

charge from a given machine as it could take if B were removed.

In other words, B increases ^I's capacity one hundred fold.

A and B together constitute what is called a condenser.

Fig. 42.

If A of the condenser AB, both parts of which are supposed

uncharged, be connected by a fine wire (Fig. 42) with a spliere
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A' which has the same radius as A, and is charged to potential

Vi, A and A' will now be at the same potential [F2], and A will

have the charge x, and A' the charge y. The total quantity of

electricity on A' at first was rVi, so that x -\-y =rVi, and

y X X X
I ^ r r Ti r„

whence x and y may be found.

The reader may study for himself the electrical condition of

the different parts of two equal spherical condensers (Fig. 43)

,

Fig. 43.

of which the outer surface S^ of one is connected with an elec-

tric machine at potential Fi, and the inside of the other, S\ is

connected with the earth. The two condensers, which are sup-

posed to be so far apart as to be removed from each other's

influence, illustrate the case of two Leyden jars arranged in

cascade.

63. Condensers made of Two Parallel Conducting Plates.

Suppose two infinite conducting planes A and B to be parallel

to each other at a distance a apart ; choose a point of the

plane A for origin, and take the axis of x perpendicular to the

planes, so that their equations shall be cc = and x = a. Let the

planes be charged and kept at potentials V^ and Vb respectively.

It is evident from considerations of symmetry that the potential

function at the point P between the two planes depends only

upon P's X coordinate, so that

D„F=0, i),F=0, i>/F=0, DJ'V=0.
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Laplace's Equation gives, then,

whence D^V=G, and V=Cx + D.

If ic = 0, V= Vj, ; and if a; = a, F= V^ ; so that

V=(Vs-V,)l-]-V,, and Z),F=i^^.

The lines of force are parallel between the planes, and the

surface densities of the charges on A and B are

— and —~ respectively.
47ra A-Tra

If we take a portion of area S out of the middle of each plate,

there will be a quantity of electricity on S^ equal to ^ ' -~^',

and an equal quantity of the other kind of electricity on S^.

The force of attraction between -S,, and iS^ will be 2Tra'''S, or

Hit Cv"

If Sn be put to earth, the charge that must be given to S^ in

order to raise it to potential unity is

Aira

In other words, the capacity of S^ is inversely proportional to

the distance between the plates.

In the case of two thin conducting plates placed parallel to and

opposite each other, at a distance small compared with their

areas, the lines of force are practically parallel except in the

immediate vicinity of the edges of the plates ;* and we may infer

Vb

Fig. 44.

* See Maxwell's Treatise on Electricity and Maynttism, Vol. I. Fig. XII.
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from the results of this section that the capacity of a condenser

consisting of two parallel conducting plates of area S, separated

by a layer of air of thickness a, when one of its plates is put to

earth is very approximately for large values of - •

Aira a

64. Capacity of a Long Cylinder surrounded by a Concentric

Cylindrical Shell. In the case of an infinite, conducting cylinder

of radius r^, kept at potential F; and surrounded by a concentric

conducting cylindrical shell of radii r„ and r', kept at potential

Vo, we have symmetry about the axis of the cylinder, so that

D^ V— 0, and Laplace's Equation reduces to the form

whence, for all points of empty space between the cylinder and

its shell, T7- n , T\A' V= C -\-D\ogr.

But V= Vi when r = ri, and F= Vo when r= r^,

FJog^^+ FJog^
hence F= '> [1^3]

log^°

and nF=i^»-^^-
To r

Fig. 45.

The surface densities of the electricity on the outer surface

of the cylinder and the inner surface of the shell are respectively
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—

I

— aiul 2 L.,

4 Trr, log _? 4 n-r„ log

so that the charge on the unit of length of the cylinder is

V — V—

:

2, and the charge on the corresponding portion of the

21og:."

inner surface of the shell is the negative of this. "We may find

the capacity of the unit length of the cylinder by putting F„ =

and Vi= I, whence capacity = -

2 loir !}

If r„ in tins expression is made very large, the capacity of the

cylinder will be very small.

In the case of a fine wire connecting two conductors, r^ will

be very small, and there will be no conducting shell nearer than

the walls of the room, so that the capacity* of such a wire is

plainly negligible.

65. Specific Inductive Capacity. In all our worlc up to this

time we have supposed conductors to be separated from each

other by electrically indifferent media, which simply prevent

the passage of electricity from one conductor to another. We
have no reason to believe, however, that such media exist. in

nature. Experiment shows, for instance, that the capacity of

a given spherical condenser depends essentially upon the kind

of insulating material used to separate the si)heie from its

shell, so that this material, without conducting elet'tririty.

modifies the action of the charges on the conductoi's. Insu-

lators, when considered as transmitting electric action, arc

sometimes called dielectrics.

Whatever may really be the physical natures of the sub-

stances, such as glass, parafline, el)onite. etc., which we com-

monly use as insulators, it has been shown that their behavior

would be fairly well accounted for on the supi)osition that they
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are made up of truly insulating matter in which are imbedded,

at little distances from one another, small, conducting par-

ticles. It is evident that every such particle, if lying in a

field of force, would be polarized ; that is, one part would be

charged positively by induction, and the part most remote

from this would be charged negatively, and that these induced

charges would have some influence in determining the A'alues

of the potential function at points in the dielectric and in the

conductors adjacent to it.

Using the notation of Section 62, let the part A of a spheri-

cal condenser be charged with m units of positive electricity

and separated from the part B, which is put to earth, by a

spherical shell of radii r and r^ made up of a given dielectric.

Let us first ask ourselves what the effect of the dielectric would

be if it consisted of extremely thin concentric conducting spheri-

cal shells separated by extremely thin insulating spaces. It is

evident that in this case we should have a quantity —m of elec-

tricity induced on the inside of the innermost shell, a quantity'

-\-m on the outside of this shell, a quantity —m on the inner

surface of th6 next shell, a quantity +m on the outside of this

shell, and so on. If there were n such shells in the dielectric

layer, and ?t + 1 spaces, and if S were the distance from the

inner surface of one shell to the inner surface of the next,

and XS the thickness of each shell, the value, at the centre of

A, of the potential function due to the charges on these shells,

would be

F.
1 1 _ > 1 1

r + 8 r— A5 + S r + 2S r — AS + 28

r 1+ ••• +
r 4- n8 r — AS + nS

r 1

= — wi AS ' + , .....' ^..„.. +^
_{r+8) (r-AS+8) (r+2S) (r-A3+ 2 S)

This quantity lies between
*=?i

G = — m\8y :; and II=: — mX8/
L^ir + JcBy ^Ar + iay
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but these differ from each other by loss than e = m\8 ^'
~
— , so

J
"^r .-(,1-^)5 (J^

''^I'i— , which is easily seen to lie between
r ar

G and H^ differs from F^' by less than t. If, then, 8 is very

small in comparison with r and r,, V2 differs from mxi )

by an exceedingh* small fraction of its own value.

This shows that the effect, at the centre of ^-1, of such a

system of conducting shells as we have imagined would be

practically the same as if a charge —m\ were given to the

inner surface of the dielectric, and a charge -j-mA to its outer

surface, while the charges on the surfaces of the thin shells

within the mass of the dielectric were taken away. That is,

the value of the potential function in ^1 would be

m(l— A)( ) instead of m {

Such a system of shells introduced into what we have hitherto

supposed to be the electrically inert insulating matter between

the two parts of a spherical condenser would increase the capa-

city of the condenser in the ratio of 1 to 1 — A. It is to be

noticed that A is a proper fraction : A = and A = 1 would

correspond respectively to a perfect insulator and to a perfect

conductor.

As Dr. E. II. Hall has suggested to me, tlie result given

above might be easily obtained b}' computing* the amount of

work done in moving a unit particle of ek-ctricity (.supposed

to be concentrated at a point, and not to disturl) existing dis-

tributions) from A to B. It is easy to see that the force at

anj' point in the mass of one of the thin conducting shells

would be zero, and that the force at any point in tlie space

between two shells would be exactly the same as if there were

no shells in the dielectric. "We have no reason to think that

there are any such differences between the values of the force

at contiguous points in the dielectric as this would indicate,

and the conception of the tliin shells has been introduced only

* Mascart et Joubert, Le<;ons sur I'Electricity, § 124.
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because the effect of these shells can be more easily computed

thau that of a number of discrete particles.

When, however, the dielectric between the parts of a spheri-

cal condenser is supposed to contain not a system of continuous

shells, but a number of separate conducting particles, these are

often regarded as forming a series of concentric layers, and it is

assumed that the sum of the charges induced on the inner

sides of the particles in the innermost layer is — X'm, where

X' is a proper fraction, larger or smaller in different dielectrics

according as the particles are nearer together or farther apart,

and that the inner surfaces of all the other layers have each

the same charge, and the outer surface of every layer the cor-

responding positive charge + A'm. The effect of this kind of

dielectric, if made to replace a perfect insulator in our calcu-

lations, would be to increase the capacity of the condenser in

the ratio 1 to 1 — /x, where fi = X'X, and it is evident that the

same effect might be produced by a charge — jxm on that

surface of the dielectric which touches A^ and a charge -j- fxm

on that surface which is in contact witli B.

Experiment shows that dielectrics used to separate and to

surround charged conductors behave, in many respects, as if

every surface in contact with a conductor had a charge opposite

in sign to that of the conductor, and in absolute value /x times

as great, [x being less than unity, and constant for any one

dielectric. That is, if the dielectric separating from each other

a number of conductors be displaced by another, the capacities

of all the conductors will be changed in the same ratio, depend-

ing only upon the natures of the two dielectrics.

The ratio of the fraction , in the case of any dielectric to

the same fraction in the case of 'air, for which /x is very

nearly the same as for what we call a vacuum, is called the

S2)ecijlc inductive capacity of the dielectric in question. This

ratio is greater than unity for all solid and liquid dielectrics

with which we are acquainted. The specific inductive capacity

of a perfect conductor would be infinite.
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The following very clear statement of the effect produced by

changing the dielectric which envelops the parts of a condenser

made of two plates, is due to Dr. Hall, and is copied with his

permission

:

" The fundamental fact concerning static electrical induction

as observed b}' Faraday is this,* that if the two plates of a

condenser, separated by air, receive respectiveh" e^ and — e.2

units of electricity when charged to a certain difference of

potential, e.g., by connection with the poles of a battery of

man}' cells in series, the same two plates would, if any other

medium were substituted for the air, other conditions remaining

unchanged, receive respectively 7v>i and — Ke.j units of electric-

ity, K being some quantity greater than unity. This quantity

iris called the specific inductive capacity of the second medium.
" Now, since the difference of potential between A and B is

the same in these two cases, the 'electromotive intensity,* f i.e.,

the force exerted upon unit quantity of electricity, is the same

in the two cases at any given point lying in the region through

which the change of dielectric extends. If we were to attempt

to determine the surface densities of the charges of the conduc-

tors by means of the equation J

dv dy

the values obtained would be the same for both cases. These

would be the actual values of the surface densities if air were

used, but would evidently not be the actual surface densities

for the other case. For this latter case, tlie values thus found

are called the ^apparent' surface densities, and bear to the

true densities the ratio 1 to K.

""We must not conclude from this that A and B with charges

Kci and — Ke., respectively in the second medium would act,

* ^faxweH's Treatise on Klertrln'ti/ and Mnfjneti.<m, Art. 52.

+ ^^a.\^vol^s Treatise on Efftririti/ and ^farJnelism, Art. 44.

J ^[axwcll's Treatise on E/ertriciti/ and Magnetism, First Edition, Art. 83.

See, also, Section 47 of tliis book.
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in all electrical respects, like the same bodies with charges Bi

and — e.2 in air. Two spheres, A and i?, in air, with centres at

distance r from each other, and having charges e^ and —e^

respectively, would attract each other with a force -i-^, whereas

the same two spheres with actual charges Kbi and — Ke^ in a

medium of specific inductive capacity K would attract each

other with a force* —l-^. This seems at first inconsistent
r

with the fact that the electromotive intensity at any point, as

stated above, is the same in both cases. The electromotive

intensity at any point, however, meaus the force that would be

exerted upon unit actual quantity of electricity at that point,

not the force that would be exerted upon unit apparent quan-

tity. S6 the average force exerted by A's, charge upon B's

charge in either of our two cases is —^ for each actual unit of
IT

B's charge. Hence, the total force exerted by A upon B is

-i-? for the first case, and —
-J-^

for the second case, as stated

before."

66. Charge induced on a Sphere by a Charge at an Outside

Point. The value at any point P of the potential function due

to nil units of positive electricity conceutrated at a point A^, and

m2 units of negative electricity concentrated at a point -dg,. is

mi maF= where ?'i
= A^P and r^ = A2 P.

It is easy to see that if mj is greater than ??i2i so that mi= Amg

where A > 1 , F will be equal to zero all over a certain sphere

which surrounds A^.

If (Fig. 4G) we let AiA,,= a, AiO = 8^, A^O^S^, OD = r,

it is eas}- to see that

A- — 1 K-— 1 {X.^ — 1)^ 62

* Maxwell's Treatise on Electricity and Magnetism, Art. 94.
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and a = ^-^^-'^. [;i76]

If PR represents the force /i due to the electricity at A^, and
PQ the force /, due to the electricity at A., the line of action of

the resultant force F (represented by PL) must pass through
the centre of the sphere, since the surface of the sphere is equi-

potential.

Fig. 46.

The triangles AiPO and A2PO are mutually equiangular, for

they have a common angle AyOP, and the sides including that

angle are proportional (1^ = 6182). Hence, from the triangles

QPL and A^PAo, by the Theorem of Sines,

FA A
sin tti sinuj

n r.2

sin(a2

. , -. [178]
smoo smai sni (tto — aiy

whence F= -^^ = 5. = .—J. [1 < 9]

Now, according to Section oO, we ma}- distribute upon the

spherical surface just considered a quantity vu of negative elec-

tricity in such a way that the effect of this distribution at all

points outside tlie sphere shall be equal to the effect of the

charge — ???2 concentrated at A.,, and the effect at points within

the sphere shall be equal and opposite to the effect of the charge

wix concentrated at Ai. Since F is the force at P m the direc-
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tion of the interior normal to the spliere, we shall accomplish

this if we make the surface density at every point equal to cr,

where

and if we now take away the charge at A^^ the value of the po-

tential function throughout the space enclosed by our spherical

surface, and upon the surface itself, will be zero. If the spheri-

cal surface were made conducting, and were connected with the

earth by a fine wire, there would be no change in the charge of

the sphere, and we have discovered the amount and the distri-

bution of the electricity induced upon a sphere of radius r, con-

nected with the earth by a fine wire and exposed to the action

of a charge of mx units of positive electricity concentrated at a

point at a distance S^ from the centime of tlie sphere.

If now we break the connection with the earth, and distribute

a charge m uniformly over the sphere in addition to the present

distribution, the potential function will be constant (although

no longer zero) within the sphere, and we have a case of equi-

librium, for we have superposed one case of equilibrium (where

there is a uniform charge on the sphere and none at A-^ upon

another. The whole chax'ge on the sphere is now

M = m — mo = m —,
8,

and the value of the potential function within it and upon the

surface,

r 8i r

If the conducting sphere were at the beginning insulated and

uncharged, we should have 3f=0, and therefore

^ = JBl(l--^'-'\ and F=^. [181]

If we have given that the conducting sphere, under the influ-

ence of the electricity concentrated at Ai is at potential Vi, we
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know that its total charge must be Fj r — ^^ , and its surface

density

It is easy to see that the sphere and its charge will be at-

tracted toward Ai with the force

and the student should notice that, under certain circumstances,

this expression will be negative and the force repulsive.

If iHi = ??i2i the surface of zero potential is an infinite plane,

and our equations give us the charge induced on a conducting

plane by a charge at a point outside the i)lane.

The method of this section enables us to find also the capacity

of a condenser composed of two conducting cylindrical siufuces,

parallel to each other, but eccentric ; for a whole set of the

equipotential surfaces due to two parallel, infinite straight lines,

charged uniformly with equal quantities per unit of length of

opposite kinds of electricity, are eccentric cylindrical surfaces

surrounding one of the lines ^1., and leaving the other line Ai

outside. AVe may therefore choose two of these surfaces, dis-

tribute the charge of A^ on the outer of these, and the charge

of A.y on the inner, by the aid of the principles laid down in

Section 50, so as to leave the values of the potential function

on these surfaces the same as before. These distributions thus

found will remain unchanged if the equipotential surfaces are

made conducting.

The reader who wishes to study this method more at length

should consult, under the head of Electric Images, the works of

Gumming, INIaxwell, Mascart, and Watson and Hurbury, as well

as original papers on the subject by ^Iuri)hy in the Philosophical

Magazine, 1833, p. 350, and by Sir W. Thomson in the Cam-

bridge and Dublin Mathematical Journal for 1848.
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67. The Energy of Charged Conductors. If a conductor of

capacity C, removed from the action of all electricity except its

own, be charged with Mi units of electricity, so that it is at

M
potential Vi =—-\ the amount of work required to bring up to

the conductor, little by little, from the walls of the room, the

additional charge Am, is A W, which is greater than Vi • AJf or

^ . AJf, and less than ( Vy + A^F) • AM or ¥l±A^. AJf.

If the charge be increased from Mi to M2 by a constant flow,

the amount of work required is evidently

r^^MdM^M..^-Mi^^C
Jm, C 2 2 ^ ' '

^
'- -

The work required to bring up the charge M to the conductor

at first uncharged is then

M^^Cr^^MV^
[185]

20 2 2 - -

This is evidently equal to the potential energy of the charged

conductor, and this is independent of the method by which the

conductor has been charged.

If, now, we have a series of conductors ^,, Ao, A^^ etc., in the

presence of each other at potentials V^ F2, F, etc., and having

respectively the charges Mi, Mo, M^, etc., and if we change all

the charges in the ratio of ic to 1, we shall have a new state of

equilibrium in which the charges are x3fi, xMo, xM^, etc. ; and

the values of the potential functions within the conductors are

xVi, XV2, .tFj, etc. The work (A TF) required to increase the

charges in the ratio x + Ax instead of in the ratio x is greater

than

{Ml Ax) {x Vi) -\- (Mo Ax) (x V2) + (3/2 Ax) (x Fi,) + etc.

,

or X Ax[3Ii Vi + M.2 V^ + M^Vz + etc.]

,

and less than

{x + Ax)AxlMiVi+M2V2-\-M^Vi-^Qtc.'] ;
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hence the whole amount of work required to change the ratio

from — to -^ is

1 1

W, - W,= ?t^' [3/^ Yi +M, V^ +M^Vs + etc.] . [186]

If in this equation we put Xj = and a^, = 1 » we get for the

work required to charge the conductor from the neutral state to

potentials Fi, F2, F3,

68. If a series of conductors Ai, A21 A^, etc., are far enough

apart not to be exposed to inductive action from one another,

and have capacities Ci, C2, C3, etc., and charges J/,, J/,, J/,, etc.,

so as to be at potentials Fi, Fq, V,, etc., where 3/i=C,Fi,
M2 = C2F2, ^1/3= C3F3, etc., we may connect them together by

means of fine wires whose capacities we may neglect, and thus

obtain a single conductor of capacity

The charge on this composite conductor is evidently

' j/i + 3/2 + 3/3 + - =^(^^n ;

and if we call the value of the potential function within it F, we

shall have .^^ .^-^

F-2^(C) =2^(30;

whence F= -^>,^;r T^Tr, ' L ^ ^^J
Li -h O2 +• L'.-i + •••

a formula obtained, it is to be noticed, on the assumption that

the conductors do not influence each othor.

The energy of the separate charged conductors before being

connected together was

TF=i(3/i F:+3/2F2 + J/3 1-3+ ••••)= V^^^+^' + -^^+-)

—

Y

[189]= ^I
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and the energy of the composite conductor is

Ci+a + Ca-f ...

^[Zw.

Z(^)

[190]

which is always less than E unless the separate conductors were

all at the same potential in the beginning.

EXAMPLES.

1. Show that in general the surface density of a charge dis-

tributed on a conductor is greatest at points where the convex

curvature of the surface of the conductor is greatest.

2. A hollow in a conductor is at the uniform potential V^

when a charge is communicated to a conductor within the cavity

sufficient to raise this conductor to potential Vo if it were in

empty space. Give some idea of the changes brought about by

this charge.

3. Show that a field of electric force consists wholly of

non-conductors bounded, if at all, by conducting surfaces.

4. Prove that if a distribution of electricity over a closed

surface produce a force at every point of the surface perpendic-

ular to it, this distribution will produce a potential function con-

stant within the surface.

5. Two conducting spheres of radii 6 and 8 respectively

are connected by a long fine wire, and are supposed not to be

exposed to each other's influences. If a charge of 70 units of

electricity be given to the composite conductors, show that 30

units will go to charge the smaller sphere and 40 units to the

larger sphere, if we neglect the capacity of the wire. Show

also that the tension in the case of the smaller sphere is -—

-

2oo7r

per square unit of surface.
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6. An uncharged sphere A, of radius r, occupies the centre

of the otherwise empty, equipotential cavit}, enclosed by a

spherical shell B of radii Vi and r„, so large that the eflfect inside

the cavity of the charge induced on B by a charge m, communi-

cated to A from without, may be neglected. If the value of the

potential function within the cavity before A was charged was

C, at what potential is A now? Ans. C + ^^—.

r

7. The first of three conducting spheres, ^1, B, and C, of

radii 3, 2, and 1 respectively, remote from one another, is

charged to potential 9. If ^1 l)e connected with B for an

instant, by means of a fine wue, and if then B be connected

with C in the same way, C's charge will be 3-G. [Stone.] If,

in the last example, all three conductors be connected at the

same time, Cs charge will be 4-.").

8. A charge of M units of electricity is communicated to a

composite conductor made up of two widely-separated ellipsoidal

conductors, of semiaxes 2, .3, 4 and 4, G, 8 respectively, con-

nected by a fine wire. Show that the charges on the two ellip-

soids will be -3/ and - Jf respectively. [Stone.]
;") 5

9. Can two electrified bodies repel each other when no lines

of force can be drawn from one l)od\- to tlie other?

10. Two conductors, ^l and 7i, connected with the earth are

exposed to the inductive action of a tiiird charged body. Do
A and B act upon each other? If so, how?

11. Show that two equal conductors similarh- placed with re-

spect to each other always rei)el each other if raised to the same

potentials and insulated ; Vuit tiiat if the volume of the i)oten*^ial

function witliin the conductors differ never so little from each

other, they will repel each other at great distances, Imt at very

near distances (supposing no spark to i)ass) they will iittraet

each other. [C'ummings.]

12. The sui)erficial density has the same sign at all points of

a conducting surface outside which tliere is no free electricity.

13. Show that r-^8 of the unit tubes of force proceeding
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from an electrified particle, at a distance 8 from the centre of a

conducting spliere of radius r, which is put to earth, meet the

sphere if tliere are no other conductors in the neighborhood,

and that tlie rest go off to "infinity."

14. A charged insulated conductor A is so surrounded by a

number of sepai-ate conductors B, C, i), •••, wliich are put to

earth, that no straight line can be drawn from any point of A
to the walls of the room without encountering one of these other

conductors : will there be any induced charge on the walls of

the room? See Section 37.

15. Two uniform straight wires of equal density, each two

inches long, lie separated by an interval of one inch in the

same straight line. Find the equation of the equipotential sur-

faces due to these wires, and find what must be the density of a

superficial distribution of matter on one of tliese surfaces which

at all outside points would exert the same attraction as the

wires do.

16. An insulated conducting sphere of radius r charged with

m units of positive electricity is influenced by m units of posi-

tive electricity concentrated at a point 2r distant from the cen-

tre of the sphere. Give approximately the general shape of the

equipotential surfaces in the neighborhood of the sphere.

Give an instance of a positively electrified body whose poten-

tial is negative,

17. A conductor, the equation of whose surface is

^ + ^+^1=1,
25 16 9

is charged with 80 units of electricity ; what is the density at a

point for which a; = 3, y — S?

If tlie density at this point be a, what is the whole charge on

tlie ellipsoid?

18. Prove that the capacity of n equal spherical condensers

when arranged in cascade is onlv about -th of the capacitv of
n

one of the condensers ; but that if the inner spheres of all the



ELECTROSTATICS. 139

condensers be connected together by fine wires, and the outer

conductors be also connected together, the capacity of the com-
plex condenser thus found is about 71 times that of a single

one of the condensers.

19. Prove that if the charges of a system of conductors be

increased, the increment of the energy of the .system is equal to

half the sum of the products of the increase in the charge first

conducted into the sum of the values of the potential function

within it at the beginning and the end of the process, or to half

the sum of the products of tlie increment of the value of the

potential function in each conductor into the sum of the original

and final charges on that conductor. [Maxwell.]

20. Prove that if the charges of a fixed system of conductors

be increased, the sura of the products of the original charge and

the final potential of each conductor is equal to the sum of the

products of the final charge and the original potential. [Max-
well.]

21. Discuss the following passage from Maxwell's Elementarif

Treatise on Electricity :

'• Let it be required to determine the equipotential surfaces

due to the electrification of the conductor C placed on an insu-

lating stand. Connect the conductor with one electrode of tlu'

electroscope, the other being connected with tlie earth. Elec-

trify the exploring sphere,* and, carrying it by the insulating

handle, bring its centre to a given point. Connect tlie elec-

trodes for an instant, and then move the s|)here in such a path

that the indication of the electroscope remains zero. This path

will lie on an equipotential surface."

22. Pi'ove tliat the coetlicients of potential (/)) and induction

{(j) treated in Article /)i> iiave the following properties :

(1) The order of the suffixes of any p or any 7 can be invtMted

without altering the value of the coetlicient. or. in otlier words.

* A very small couducting sphere fitted with au insulating handle.
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(2) All the jp's are positive, but p,,. is less than either p^ or p^^.

(3) Those c/s whose two suffixes are the same are positive ;

the others are negative. That is, g^j and Qu are positive ; but

^y is negative and is, moreover, numerically less than either of

the others.

23. Prove that the following theorems (Maxwell's Elemen-

tary Treatise on ElectHcity) are contained in the statements of

the preceding problem :

(1) In a system of fixed insulated conductors, the potential

function in Aj, due to a charge communicated to Ai is equal to

the potential function in Ai due to an equal charge in A^.

(2) In a system of fixed conductors connected, all but one,

with the walls of the room, the charge induced on A^ when Ai

is raised to a given potential is equal to the charge induced on

Ai when A^ is raised to an equal potential.

(3) If in a S3"stem of fixed conductors, insulated and origi-

nalh' without charge, a charge be communicated to A^ which

raises it to potential unity and Ai to potential n, then if in the

same system of conductors a charge unity be communicated

to Ai, and A^ be connected with the earth, the charge induced

on A,, will be — w.

24. A condenser consists of a sphere A of radius 100 sur-

rounded by a concentric shell whose inner radius is 101 and

outer radius 150. The shell is put to earth, and the sphere has

a charge of 200 units of positive electricity. A sphere B of

radius 100 outside the condenser can be connected with the

condenser's sphere by means of a fine insulated wire passing

through a small hole in the shell. B is connected with A ; tlie

connection is then broken, and B is discharged ; the connection

is then made and broken as before, and B is again discharged.

After this process has been gone through with five times, what is

yl's potential? What would it become if the shell were to be

removed without touching A'i

25. Suppose the condenser mentioned in the last problem in-

sulated and a charge of 100 units of positive electricity given to
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the shell. What will be the potential of the sphere? of the

shell ? If we then connect the sphere with the earth b}' a fine

insulated wire passing through the shell, what will the charge on

tlie shell be? "What will be the potential of tlie shell? If next

A be insulated, and the shell be put t«i earth, what will be A's

potential ? What will be its potential if the shell ])e now wholly

removed ?

26. A spherical conductor of radius r is surrounded by a con-

centric conducting spherical shell of radii 7?, and 7?,,, and the

outer surface of this shell is put to earth. If the inner conduc-

tor be charged, show the effect at all points in space of moving

the conductor so that it shall be eccentric with the shell. How
is the capacity of the system changed by this ?

27. Prove that if the spherical surfaces of radii a and b,

which form a spherical condenser, are made slightly eccentric,

c being the distance between their centres, the change of elec-

trification at anv point of either surface is
'-—'-

,

' ^ 47r(6-a)(6^-a^)

where is the angular distance of the point from the line of

centres, and where the difference between the values of the

potential function on the two surfaces is unity.

28. Show that if an insulated conducting sphere of radius a

be placed in a region of uniform force (X), acting parallel to

the axis of x, the function —X 1-- + C satisfies all the

conditions which the potential function outside the sphere must

satisfy, and is therefore itself the potential function. Show
SxX

that the surface density of the charge on the sphere is ——.

[Watson and Burbury.]
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MISCELLANEOUS PROBLEMS.

1. Prove that the attraction due to a homogeneous hemi-

Bphere of radius r is zero, at a point in the axis of the hemisphere
3

distant -r approximately from the centre of the base.

2. Show that the attraction at the origin due to the homo-

geneous sohd bounded by the surface obtained b^' revolving

one loop of the curve r^=.o? • cos 2^, is \ -n-a.

3. If the earth be considered as a homogeneous sphere of

radius r, and if the force of gravity at its surface be gr, show

that from a point without the earth, at which the attraction is

99 — 1 I 1} I 1 \
gf, the area 27rr^( 1 — •

)
on the surface of the earth

n \ *^ /

will be visible.

4. A spherical conductor A, of radius ci, charged with M
units of electricity, is surrounded by n conducting spherical

shells concentric with it. Each shell is of thickness a, and is

separated from its neighbors by empty spaces of thickness a.

Show that the limit approached b}' V^ as n is made larger and
M

larger is — (nat. log 2) , and that for a finite number of shells
a

K^ =— I — ax. [Stone.]
a Jo l+x

5. If two systems of matter {M and 3f'), both shut in by a

closed surface S^ give rise to potential functions
( V and V) ,

which have equal values at every point of S, whether or not 8
is an equipotential surface of either system, then V cannot

differ from V at any point outside S, and the algebraic sum of

the matter of either system is equal to that of the other. [See

Section 52, and Watson and Burbury's Mathematical Theory of

Electricity and Magnetism., § 60.]

6. Show that if two distributions of matter have in common
an equipotential surface which surrounds them both, all their

equipotential surfaces outside this will be common.
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7, Prove that if V be the potential function due to any dis-

tribution of matter over a closed surface >S', and if a-' be tiie

density of a superficial distribution on /S, whicli gives r.se to

the same value of the potential function at eacli point of S as

that of a unit of matter concentrated at any given point 0,

tlien the value at of the potential function due to the first

distribution is
|

V-a-' • dS.
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PeircR's Three and Four Place Tables of Loga-

rithiiiic and '/'ri^oitomftric Functions. By Jami-.s Mri.i.s ]'i:ii;cK,

University I'rofessur of Mathematics in Harvard University. Quarto.

Cloth. Mailing Trice, 45 cts. ; Introduction, 40 cts.

Four-place tables require, in the long run, only half a.s mucli lime

# five-place tables, one-thiid as much time as si.x-place tables, and

ane-fourth as much as those of seven places. They are sufficient

for the ordinary calculations of Surveying, Civil, Mechanical, and

Mining Engineering, and Navigation; for the work of the Physical

or Chemical Laboratory, and even for many computations of Astron-

omy. They are also especially suited to be used in teaching, as they

illustrate principles as well as the larger tables, and with far less

expenditure of time. The present compilation has been prepared

with care, and is handsomely and clearly printed.

Elements of the Differential Calculus.

With Numerous Examples and Aj^plications. De>ij;ned for Use as a

College Text-Book. I3y \V. E. Bveki.v, I'rofessor of Mathematics,

Harvard University. 8vo. 273 pages. .Mailing Price, $2.15 ; Intro-

duction, $2.00.

This book embodies the results of the author's experience in

teaching the Calculus at Cornell and Harvard Universities, and is

intended for a text-book, and not for an exhaustive treatise. Its

peculiarities are the rigorous use of the Doctrine of Limits, as a

foundation of the .subject, and as preliminary to the adojnion of the

more direct and practically convenient infinitesimal notation and

nomenclature; the early introduction of a few simple formulas and

methods for integrating: a rather elaborate treatment of the use of

infinitesimals in pure geometry ; and the attempt to excite and keep

up the interest of the stutient by bringing in throughout the whole

book, and not merely at the end, numerous applicitions to practical

problems in geometry and mechanics.

James Mills Peirce, Pmf. c/lis general without being superficial;

Math., HtivarJ Ihnv. (From tlie Har-\ linuied to le.idinij topics, and yet with-

vard R'e::isfi-r) : In mathematics, as in in its limits; tliorough. accurate, and
other tir.inches of study, the need is practical; adapted to the communica-
now very much felt of teaching which tion of some degree of power, as well
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as knowledge, but free from details

which are important only to the spe-

cialist. Professor Byerly's Calculus

appears to be designed to meet this

want. . . . Such a plan leaves much
room for the exercise of individual

judgment ; and differences of opinion

will undoubtedly exist in regard to one
and another point of this book. But
all teachers will agree that in selection,

arrangement, and treatment, it is, on
the whole, in a very high degree, wise,

able, marked by a true scientific spirit,

and calculated to develop the same
spirit in the learner. . . . The book
contains, perhaps, all of the integral

calculus, as well as of the differential,

that is necessary to the ordinary stu-

dent. And with so much of this great

scientific method, every thorough stu-

dent of physics, and every general

scholar who feels any interest in the

relations of abstract thought, and is

capable of grasping a mathematical
idea, ought to be familiar. One who
aspires to technical learning must sup-

plement his mastery of the elements

by the study of the comprehensive
theoretical treatises. . . . But he who is

thoroughly acquainted with the book
before us has made a long stride into

a sound and practical knowledge of

the subject of the calculus. He has
begun to be a real analyst.

H. A. Newton, Prof, of Math, in

Vale Coll., A'i-io Haven : 1 have looked
it through with care, and find the sub-

ject very clearly and logically devel-

oped. 1 am strongly inclined to use it

in my class next year.

S. Hart, receni Prof, ofMath, in

Trinity Coll., Conn.: The student- can
hardly fail, I think, to get from the book
an exact, and, ;it the same time, a satis-

factory expian.ition of the principles on
which the Calculus is based ; and the

introduction of the simpler methods of

integration, as they are needed, enables

applications of tliose principles to be
introduced in such a way as to be both

interesting and instructive.

Charles Kraus, Techniker, Pard-
iibitz, Bohemia, Austria : Indem ich

den Empfang Ihres Buches dankend
bestaetige muss ich Ihnen, hoch geehr-

ter Herr gestehen, dass mich dasselbe

sehr erfrcut hat, da es sich durch
grosse Reichhaliigkeit.besonders klare

Schreibweisc und vorzuegliche Behand-
lung des Stoffes auszeichnet, und er-

weist sich dieses Werk als eine bedeut-

ende Bereicherung dermathematischen
Wissenschaft.

De Volson Wood, Prof, of
Math., Stevens' Inst., Hoboken, N.J.

:

To say, as 1 do, that it is a first-class

work, is probably repeating what many
have already said for it. I admire the

rigid logical character of the work,
and am gratified to see that so able a
writer has shown explicitly the relation

between Derivatives, Infinitesimals, and
Differentials, The method of Limits

is the true one on which to found the

science of the calculus. The work is

not only comprehensive, but no vague-

ness is allowed in regard to definitions

or fundamental principles.

Del Kemper, Prof of Math.,

Hampden Sidney Coll.. I 'a.: My high

estimate of it has boen amply vindi-

cated by its use in the class-room.

R. H. Graves, Prof of Math.,

Univ. of J^'orth Carolina : I have al-

ready decided to use it with my next

class ; it suits my purpose better than

any other book Cn the same subject

with which I am acquainted.

Edw. Brooks, Author of a Series

ofMath. : Its statements are clear and
scholarly, and its methods thoroughly

analytic and in the spirit of the latest

mathematical thought.
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Syllabus of a Course in Plane Trigonometry.

By \V. K. 1!vi:ki.v. 8vo. 8 pages. Mailing Price, lo cts.

Syllabus of a Course in Plane Analytical Geom-
etry. JJy \V. E. Bverly. Svo. 12 pages. Mailing Price, lo cts.

Syllabus of a Course in Plane Analytic Geom-
etry {Advanced Course.) By W. E. Byerly, Professor of Mathe-
matics, Harvard University. Svo. 12 pages. Mailing Price, 10 cts.

Syllabus of a Course in Analytical Geometry of
Three Dimensions. By W. E. BVEKI.Y. Svo. 10 pages. Mailing

Price, 10 cts.

Syllabus of a Course on Modern Methods in

Analytic Geometry. By W. E. Byerly. Svo. S pages. Mailing

Price, 10 cts.

Syllabus of a Course in the Theory of Equations.

By \V. E. Byeri.y. Svo. S pages. Mailing Price, 10 cts.

Elements of the Integral Calculus.

By W. E. Byeri.y, Professor of Matliematics in Ilarv-ard University.

Svo. 204 pages. Mailing Price, $2. 15; Introduction, S2.00.

This volume is a sequel to the author's treatise on the DitTercntial

Calculus (see page 134), and, like that, is written as a tc.xt-book.

The last chapter, however, — a Key to the Solution of Differential

Equations, — may prove of service to working mathematicians.

H. A. Newton, Prof, of Math.,

Yale Coll.: We shall use it in my
optional class next term.

Mathematical Visitor : The
subject is presented very clearly. It is

liie first American treatise on the Cal-

culus that we have seen which devotes

any space to average and probability.

Schoolmaster, London : The
merits of this work are as marked as

those of the DifTercntial Calculus by

the same author.

Zion's Herald : .\ text-book every

way worthy of the venerable University

in which the author is an honored

teacher. C.imbriiige in Massachusetts,

like Cambridge in England, preserves

its reputation for the breadth and strict-

ness of its malheinaticai requisitions,

and these form the spinal column of a

liberal education.
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>4 Short Table of Integrals.

To accompany BYERLY'S INTEGRAL CALCULUS. By B. O.
Peirce, Jr., Instructor in Mathematics, Harvard University. i6 pages.

Mailing Price, lo cts. To be bound with future editions of the Calculus.

Elements of Quaternions.

By A. S. Hardy, Ph.D., Professor of Mathematics, Dartmouth College.

Crown, 8vo. Cloth. 240 pages. Maihng Price, ^2.15; Introduction,

$2.00.

The chief aim has been to meet the wants of beginners in the

class-room. The Elements and Lectures of Sir W. R. Hamilton

are mines of wealth, and may be said to contain the suggestion

of all that will be done in the way of Quaternion research and

application : for this reason, as also on account of their diffuseness

of style, they are not suitable for the purposes of elementary instruc-

tion. The same may be said of Tait's Qiiaterniotts, a work of

great originality and comprehensiveness, in style very elegant but

very concise, and so beyond the time and needs of the beginner.

The Introduction to Quaternions by Kelland contains many exer-

cises and examples, of which free use has been made, admirably

illustrating the Quaternion spirit and method, but has been found,

in the class-room, practically deficient in the explanation of the

theory and conceptions which underlie these applications. Tlie

object in view has thus been to cover the introductory ground :iiore

thoroughly, especially in symbolic transformations, and at the same

time to obtain an arrangement better adapted to the methods of

instruction common in this country.

PRESS NOTICES.

Westminster Review : It is a

remarkably clear exposition of the sub-

,

ject.

The Daily Review, Edinburgh,

Scotland : This is an admirable text-

book. Prof. Hardy has ably supplied

a felt want. The definitions are models

of conciseness and perspicuity.

The Nation : For those who have

never studied the subject, this treatise

seems to us superior both to the work
of Prof. Tait and to the joint treatise by

Profs. Tait and Kelland.

New York Tribune : The Qua-
ternion Calculus Is an instrument of

mathematical research at once so pow-
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erful, flexible, and elegant, so sweeping

in its range, and so minutely accurate,

that its discovery and development has

been rightly estimated as one of the

crowning achievements of the century.

The time is approaching when all col-

leges will insist upon its study as an

essential part of the equipment of young
men who aspire to be classified among
the liberally educated. This book fur-

nishes just the elementary instruction

on the subject which is needed.

New York Times : It is especially

designed to meet the needs of begin-

ners in the science. ... It has a way
of putting things which is eminently its

own, and which, for clearness and force,

is as yet unsurpassed. ... If we may
not seek for Quaternions made easy, we
certainly need search no longer for

Quaternions made plain.

Van Nostrand Engineering
Magazine : To any one who has

labored with the very few works ex-

tant upon this branch of mathematics,

a glance at the opening chapter of

Prof. Hardy's work will enforce the

conviction that the author is an in-

structor of the first order. The book
is quite opportune. The subject must

soon become a necessary one in all

the higher institutions, for already are

writers of mathematical essays making
free use of Quaternions without any
preliminary apology.

Canada School Jotomal, 7b-

ronto : The author of this treatise has

shown a thorough mastery of the Qua-
ternion Calculus.

London Schoolmaster : It is in

every way suited to a student who
wishes to commence the subject ab

initio. One will require but a few

hours with this book to learn that this

Calculus, with its concise notation, is a

most powerful instrument for mathe-

matical operations.

Boston Transcript : A text-book

of unquestioned excellence, and one

peculiarly fitted for use in American
schools and colleges.

The Western, St. Louis: This

work exhibits the scope and power of

the new analysis in a very clear and
concise form . . . illustrates very finely

the important fact that a few simple

principles underlie the whole body of

mathematical truth.

FKOM COLLEGE PROFESSORS.

James Mills Peirce, Prof, of
Math., Harvard Coll. : I am much
pleased with it. It seems to me to

supply in a very satisfactory manner
the need which has long existed of a

clear, concise, well-arranged, and logi-

cally-developed introduction to this

branch of Mathematics. I think Prof.

Hardy has shown excellent judgment

in his methods of treatment, and also

in limiting himself to the exposition

and illustration of the fundamental

principles of his subject. It is, as it

ought to be, simply a preparation for

the study of the writings of Hamilton

and Tait. I hope the publication o.'

this attractive treatise will increase the

attention paid in our colleges to the

profound, powerful, and fascinating cal-

culus of which it treats.

Charles A. Young, Prof, of
Astronomy, Princeton Coll. : I find it

by far the most clear and intelligible

statement of the matter I have yet

seen.
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Elements of the Differential and Integral Calculus.

With Examples and Applications. By J. M. Taylor, Professor of

Mathematics in Madison University. 8vo. Cloth. 249 pp. Mailinj;

price, $1.95; Introduction price, $1.80.

The aim of .this treatise is to present simply and concisely the

fundamental problems of the Calculus, their solution, and more

common applications. Its axiomatic datum is that the change of a

variable, when not uniform, may be conceived as becoming uniform

at any value of the variable.

It employs the conception of rates, which affords finite differen-

tials, and also the simplest and most natural view of the problem of

the Differential Calculus. This problem of finding the relative

rates of change of related variables is afterwards reduced to that of

finding the fimit of the ratio of their simultaneous increments ; and,

in a final chapter, the latter problem is solved by the principles of

infinitesimals.

Many theorems are proved both by the method of rates and that

of limits, and thus each is made to throw light upon the other.

The chapter on differentiation is followed by one on direct integra-

tion and its more important applications. Throughout the work

there are numerous practical problems in Geometry and Mechanics,

which serve to exhibit the power and use of the science, and to

excite and keep alive the interest of the student.

Judging from the author's experience in teaching the subject, it

is believed that this elementary treatise so sets forth and illustrates

the highly practical nature of the Calculus, as to awaken a lively

interest in many readers to whom a more abstract method of treat-

ment would be distasteful.

Oren Root, Jr., Piof. of Math.,
Hamiltitn Coll., N.Y.: In reading the

manuscript I was impressed by the

clearness of definition and demonstra-
tion, the pertinence of illusiration, and
the liajipy union of exchision and con-

densation. It seems to me most admir-
ably suited for use in college classes.

I jjrove my regard by adopting this as

our text-book on the calculus.

C. M. Charrappin, S.J., SI.

Louis Univ. : I have given the book a

thorough examination, and I am satis-

fied that it is the best work on the sub-

ject I have seen. I mean the best

work for what it was intended,— a text-

book. I would like very much to in-

troduce it in the University,

{Jan. 12, 1885.)
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