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PREFACE.

It has been my endeavor in this book to lead by easy stages a

reader, entirely unacquainted with the subject, to an appreciation

of some of the fundamental conceptions in the general theory of

algebraic numbers. With this object in view, I have treated the

theory of rational integers more in the manner of the general

theory than is usual, and have emphasized those properties of

these integers which find their analogues in the general theory.

The same may be said of the general quadratic realm, which has

been treated rather as an example of the general realm of the

nth degree than simply as of the second degree, as little use as

was possible, without too great sacrifice of simplicity, being made

of the special properties of the quadratic realm in the proofs.

The theorems and their proofs have therefore been so formulated

as to be readily extendable, in most cases, to the general realm

of the 11th. degree, and it is hoped that a student, who wishes to

continue the study of the subject, will find the reading of works

on the general theory, such as Hilbert's Bericht iiber die Theorie

der Algebraischen Zahlkorper, rendered easier thereby. The

realm k (V— I ) has been discussed at some length with two

objects in view ; first, to show how exactly the theorems relating

to rational integers can be carried over to the integers of a higher

realm when once the unique factorization theorem has been estab-

lished; and second, to illustrate, by a brief account ofr-Gauss' work

in biquadratic residues, the advantage gained by widening our field

of operation. The proofs of the theorems relating to biquadratic

residues have necessarily been omitted but the examples given will

make the reader acquainted with their content. The realms

&(V— 3) and &(V2 ) have been briefly discussed in order to

introduce the reader to modifications which must be made in our

conceptions of integers and units. In &(y— 5), the failure of

the unique factorization law is shown and its restoration in terms

of ideal factors is foreshadowed.
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References have been given more with a view to aiding the

student in continuing his study of the subject than to pointing out

the original source of a theorem or concept.

The author has adopted the term " realm " as the equivalent of

korper, corpus, campus, body, domain and field, as it has the

advantage, he believes, of not having been used in any other

branch of mathematics. It is suggested by Gauss' use of the

term " Biirgerrecht " in connection with his introduction of the

integers of k(y/— i) as his field of operation (see p. 218).

Many numerical examples have been given, especially in cases

involving ideals, and it is hoped that through them the student

may attain some familiarity with the methods of reckoning with

algebraic numbers. The fact that the earlier discoveries in the

theory of numbers were made inductively inspires the belief that

such discoveries may also be made in the higher theory, if a

sufficient amount of numerical material be at hand.

The following is a list of the principal authorities that have been

consulted, the abbreviations used in citation being given. The

lectures of Professor Hilbert, mentioned above, the use of which

he kindly allowed me. Bachmann: Die Lehre von der Kreis-

theilung; Elemente der Zahlentheorie ; Niedere Zahlentheorie

;

Allegmeine Arithmetik der Zahlenkorper. Borel et Drach: Le-

cons sur la Theorie des Nombres et Algebra. Cahen: Elements

de la Theorie des Nombres, cited as Cahen. Cayley: Encyclo-

paedia Britannica, 9th ed., Vol. XVII, pp. 614-624. Chrystal:

Algebra. Dirichlet-Dedekind : Vorlesungen iiber Zahlentheorie,

4th ed, cited as Dirichlet-Dedekind. Gauss : Disquisitiones Arith-

meticae, Works, Vol. I; Theoria Residuorum Biquadraticorum,

Commentatio Prima, Commentatio Secunda, Works, Vol. II.

Hilbert: Bericht iiber die Theorie der Algebraischen Zahlkorper,

Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. IV,

cited as Hilbert: Bericht. Kronecker: Vorlesungen iiber Zahlen-

theorie. Laurent: Theorie des Nombres, Ordinaires et Alge-

briques. Mathews : Theory of Numbers, cited as Mathews ; also

Encyclopaedia Britannica, Supplement, Vol. XXXI. Minkowski

:

Geometrie der Zahlen ; Diophantische Approximationen. H. J.
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S. Smith : Report on the Theory of Numbers, Collected Mathe-

matical Papers, Vol. I, pp. 38-364, cited as H. J. S. Smith. Tsche-

byscheff : Theorie der Congruenzen. Weber : Algebra. Wertheim

;

Elemente der Zahlentheorie ; Anfangsgriinde der Zahlenlehre.

In conclusion, I wish to express my most sincere thanks to

Professor Hilbert for having given me my first interest in the

subject of the theory of numbers by his lectures, which I attended

in the winter semester, 1897-98, at Gottingen, for his continued

interest in my work, and for his great kindness in writing an

introduction to this book. I desire also to acknowledge my
indebtedness to Professor James Harkness of McGill Uni-

versity for many helpful suggestions, and to the late Professor

J. Edmund Wright of Bryn Mawr College and my colleague

Professor W. H. Jackson for valuable assistance with the proof

sheets.

Legh W. Reid.

Haverford College.
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Page 2.J, line 5, for "fx
n

read "p."

Page 172, line 5, for 'V3
=— 4— p" read "

fis= 2.
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P o "

o I
read p-\
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Page 356, line 29, for "(7, 3+V~ 5) " read "(7,

3-V-5)."
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INTRODUCTION. •

Die Zahlentheorie ist ein herrlicher Bau, erschaffen und auf-

gefiihrt von Mannern die zu den glanzendsten Forschern im

Bereiche der mathematischen Wissenschaften gehoren: Fermat,

Euler, Lagrange, Legendre, Gauss, Jacobi, Dirichlet, Hermite,

Kummer, Dedekind und Kronecker ; Alle diese Manner haben in

den begeistersten Worten ihrer hohen Meinung uber die Zahlen-

theorie Ausdruck gegeben und bis heute giebt es wohl keins

Wissenschaft, von deren Ruhme ihre Jiinger so erfiillt sind, wie

von der Zahlentheorie. Man preist an der Zahlentheorie die

Einfachheit ihrer Grundlagen, die Genauigkeit ihrer Begriffe und

die Reinheit ihrer Wahrheiten; man ruhmt sie als das Vorbild

fur die anderen Wissenschaften, als die tiefste unversiegbare

Quelle aller mathematischen Erkenntniss und als reiche Spenderin

von Anregungen fur andere mathematische Forschungsgebietc

wie Algebra, Funktionentheorie, Analysis und Geometric Dazu

kommt, dass die Zahlentheorie vom Wechsel der Mode unab-

hangig ist und dort nicht wie oft in anderen Wissensgebieten,

bald die eine Auffassung oder Methode iibermassig sich auf-

baus§ht, bald zu anderer Zeit unverdiente Zuriicksetzung erfahrt

;

in der Zahlentheorie ist oft das alteste Problem noch heute

modern, wie ein echtes Kunstwerk aus der Vergangenheit.

Und dennoch ist jetz wie friiher wahr, woruber Gauss und

Dirichlet klagten, dass nur eine geringe Anzahl von Mathe-

matikern zu einer eingehenden Beschaftigung mit der Zahlen-

theorie und zu einem vollen und freien Genusse ihrer Schonheit

gelangt. Zumal ausserhalb Deutschlands und unter der heran

wachsenden mathematischen Jugend ist arithmetisches Wissen

nur wenig verbreitet.

Jeder Liebhaber der Zahlentheorie wird wunschen, dass die

Zahlentheorie gleichmassig ein Besitz aller Nationen sei und

gerade besonders unter der jungen Generation, der die Zukunft

xvii
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gehort, Pflege und Verbreitung finde. Das vorliegende Buch

steckt sich dieses Ziel : Moge es dasselbe erreichen, indem es nicht

nur dazu beitrage, dass die Elemente der Zahlentheorie Gemein-

gut aller Mathematiker werden, sondern, indem es auch zugleich

als Einfuhrung und Erleichterung zum Studium der darin ge-

nannten Originalwerke diene, sowie zur selbstandigen Betha-

tigung der Zahlentheorie anrege. Bei der liebevollen Vertiefung

des Verfassers in die Zahlentheorie und bei dem hingebenden

Verstandniss, mit dem der Verfasser in das Wesen derselben

eingedrungen ist, durfen wir auf die Erfullung dieses Wunsches

bauen.

David Hilbert.

Gottingen, io, Marz, 1907.

TRANSLATION.

The theory of numbers is a magnificent structure, created and developed

by men who belong among the most brilliant investigators in the domain
of the mathematical sciences : Fermat, Euler, Lagrange, Legendre, Gauss,

Jacobi, Dirichlet, Hermite, Kummer, Dedekind and Kronecker. All these

men have expressed their high opinion respecting the theory of numbers in

the most enthusiastic words and up to the present there is indeed no
science so highly praised by its devotees as is the theory of numbers. In

the theory of numbers, we value the simplicity of its foundations, the

exactness of its conceptions and the purity of its truths ; we extol it as

the pattern for the other sciences, as the deepest, the inexhaustible source

of all mathematical knowledge, prodigal of incitements to investigation in

other departments of mathematics, such as algebra, the theory of func-

tions, analysis and geometry.

Moreover, the theory of numbers is independent of the change of

fashion and in it we do not see, as is often the case in other depart-

ments of knowledge, a conception or method at one time given undue

prominence, at another suffering undeserved neglect; in the theory of

numbers the oldest problem is often to-day modern, like a genuine

work of art from the past. Nevertheless it is true now as formerly, a

fact which Gauss and Dirichlet lamented, that only a small number of

mathematicians busy themselves deeply with the theory of numbers and

attain to a full enjoyment of its beauty. Especially outside of Germany

and among the younger mathematicians arithmetical knowledge is little

disseminated. Every devotee of the theory of numbers will desire that it

shall be equally a possession of all nations and be cultivated and spread

abroad, especially among the younger generation to whom the future
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belongs. Such is the aim of this book. May it reach this goal, not only

by helping to make the elements of the theory of numbers the common
property of all mathematicians, but also by serving as an introduction to

the original works to which reference is made, and by inciting to inde-

pendent activity in the field of the theory of numbers. On account of

the devoted absorption of the author in the theory of numbers and the

comprehensive understanding with which he has penetrated into its nature,

we may rely upon the fulfilment of this wish.





CHAPTER I.

Preliminary Definitions and Theorems.

§ i. Algebraic Numbers. Algebraic Integers. Degree of an

Algebraic Number.

It will be assumed in this book that the complex number system

has been built up and that the laws to which the four fundamental

operations of algebra are subject have been demonstrated to hold

when these operations are performed upon any numbers of this

system.

We shall occupy ourselves with certain properties of a special

class of these numbers, known as algebraic numbers, these prop-

erties flowing in the greater part from the relation in which two

numbers stand to one another when one is said to be a divisor of

the other. We proceed to define an algebraic number.

A number, a, is said to be an algebraic number when it satisfies

an equation of the form

xn
-f a 1 xn~x + • • • + On_t x + an= o i)

where alt a2 ,
• • •, On are rational numbers. We shall call an equa-

tion of form i) a rational equation. The simplest algebraic

numbers are evidently the rational numbers. An algebraic num-

ber is said to be an algebraic integer or briefly an integer, when

it satisfies an equation of the form i) whose coefficients, alt a2 ,

• • •, an , are rational integers. The simplest algebraic integers are

the positive and negative natural numbers. An algebraic number,

a, evidently satisfies an infinite number of rational equations, for

if a satisfy i), it also satisfies any equation formed by multiplying

i) by an integral function of x of the form

#• + b x xm
~x + • • • + bm_x x + bm ,

where b lt
- •, bm are rational numbers, and this equation will be of

the form i). There will be however among all these rational
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equations satisfied by a, one and only one of lowest degree, /.

For suppose that a satisfied two different rational equations of the

/th degree, / being the degree of the rational equation of lowest

degree satisfied by a, and let these equations be

x l

-f a^x 1-1 + • • • + ai= o 2)

x i + biX i-i + --. + bi= o 3)

Then a will satisfy the equation formed by subtracting 3) from

2) ; that is, (ax
— b^x 1

-1
-f-

•• • + a\ — bi= o > 4)

Unless 4) be identically zero, a satisfies a rational equation of

degree lower than the /th, which is contrary to our original sup-

position. Therefore 4) is identically o, and 2) and 3) are the

same equation. Hence a satisfies only one rational equation of

the /th degree.

This equation is irreducible ; that is, its first member can not

be resolved into factors of lower degree in x, with rational coeffi-

cients ; for if

x 1 + aiX 1-1 + . . . + a,= (xn + blXn-i + . . . + bh )

X (^ + <vtr*-
1 + --- + ck ),

where blt
•••, bh , c x ,

•••, cfc are rational numbers, a would satisfy

one of the rational equations

xh + b^-1
-f- 1- bh= o ; xk + c^v*-1 + • • • + ck= o.

This is, however, impossible since both of these equations are of

lower degree than the /th. Hence the rational equation of lowest

degree, which a satisfies, is irreducible. If / be the degree of

this equation, a is said to be an algebraic number of the /th

degree.

Theorem i. If a be an algebraic number

,

fx (x ) =x l + axx l
-x + •••+ fli==d

the single rational equation of lowest degree which a satisfies,

and f2 (x) = xm + b^v™-1 + • • • + bm= o

any other rational, equation satisfied by a, then fx (x) is a divisor

off2 (x).
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We can always put f2 (x) in the form

where f^ix) and f4 (x) are rational integral functions of x whose

coefficients are rational integers and f4 (x) of lower degree than

f1 (x). Substituting a for x in 2) we have

/2(a)=/3 (a)-/1 (a)+/4(a),

whence, since f2 (a)=o, and /i(a)=o, f*(.CL)=o\ that is, unless

/4 (^r) is identically o, a will satisfy a rational equation, /4 (^) =0
of lower degree than the /th. But this is contrary to our original

hypothesis. Hence f4 (x) is identically zero, and fx
(x) is there-

fore a divisor of f2 (x). />,! J-

We shall see later (Chap. II, Th. 4) that the rational equation

of lowest degree which an algebraic number, a, satisfies, deter-

mines the question whether or not a is an algebraic integer; that

is, that the coefficients of the single rational equation of lowest

degree, which an algebraic number, a, satisfies, shall be integers,

is a necessary as well as sufficient condition for a to be an alge-

braic integer.

§ 2. Algebraic Number Realms.

A system of algebraic numbers is called a number realm or

briefly a realm, if the sum, difference, product and quotient of

every two numbers of the system, excluding division by o, are

numbers of the system; that is, if the system is invariant with

respect to these four operations.

The simplest example of a realm is the system of all rational

numbers, for evidently the sum, difference, product and quotient

of any two rational numbers are rational numbers. Another ex-

ample is the system of numbers of the form x-\- y y — T
> where

x and y take all rational values. For the sum, difference, product

and quotient of any two of these numbers are numbers of this

form.

§ 3. Generation of a Realm.

If a be any algebraic number, the system consisting of all num-

bers, which can be formed by repeated performance upon a of the
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four fundamental reckoning operations, that is, the system con-

sisting of all rational functions of a with rational coefficients, will

be a realm.

For the sum, difference, product and quotient of any two ra-

tional functions of a are rational functions of a and hence num-

bers of the system.

We say that a generates this realm. We say also that a defines

the realm and denote the latter by k(a). The rational realm can

be generated by any rational number, a ; for a divided by a gives

I, and from I by repeated additions and subtractions of I, we can

obtain all rational integers, and from them by division all rational

fractions. As the number defining the rational realm we generally

take i, thus denoting the realm by k(i). More usually, how-

ever, the rational realm is denoted by the letter R. The realm

given as the second example in the last paragraph can be generated

by V

—

J ; f°r V— ! divided by V

—

T gives i, and from I we

can generate the rational realm and then by multiplying V— I

by all rational numbers in turn and adding to each of these

products each rational number in turn, we obtain all numbers of

the form x -f- yy/— i, where x and y take all rational values.

This realm is therefore denoted by k(V— i). We have seen in

the last example that among the numbers of k (V— i ) are found

all the numbers of the rational realm. It may be easily seen that

this is true of every realm ; that is, every realm contains R ; for if

o> be any number, w divided by w gives i, and from i we can

generate R. It is well to observe that, although V— i is the

number which most conveniently defines k (
V— I ) and is indeed

the one usually selected, it is not the only number that will serve

this purpose. We see, on the contrary, that this realm can be

generated by any number of the form a -f- bV— I where a

and b are rational numbers, and b =f= o ; that is, k (
V— 1 ) and

k{a-\-by/— 1) are identical; for since k(a-\-by/— 1) con-

tains R, it contains a and b and hence -^

—

^-r ,= y/— 1.

Therefore k(a-\-by/— 1) contains all numbers of k(y/— Y).

Moreover since &(V— 1) contains a-\-b\/— 1, it contains all



PRELIMINARY DEFINITIONS AND THEOREMS. 5

numbers of k{a-\-b\/— i). Hence k (V— I ) is identical with

k(a-\-by— 1). It may be shown similarly that any realm

may be defined by any one of an infinite number of its num-

bers; as, for example, if a be any algebraic number, k(a) and

k(a-\-ba), where a and b are rational numbers, and &=f=o are

identical. A realm may be generated by any number of algebraic

numbers. If a, /?,
• • •, X are a finite number of algebraic numbers,

the system consisting of all rational functions of these numbers

with rational coefficients is a realm which we denote by k(a, fi,

••, A). It can be shown, however, that in every realm k(a, /?,

••••, A) we can find a number 6 such that k(a, /?, •••, \)=k{6).
We shall not prove this, as all realms discussed in this book will

be defined by a single number.

§ 4. Degree of a Realm. Conjugate Realms. Conjugate

Numbers.

If the rational equation of lowest degree which a satisfies be

xn + a^xn
-x

-f • • • + an= o 1)

then k(a) is said to be of the nth. degree. That is, the degree of

a_realm is the degree of the number defining the realm. Thus

&(V— 1) is of the second degree, since the rational equation of

lowest degree which V— 1 satisfies is x2 + 1 = o. Likewise

£(1/2) is of the third degree. There is evidently only one realm

of the first degree k(i), but an infinite number of all other de-

grees. If the remaining roots of 1 ) be a', a", • • •, a (n_1)
, then n— 1

realms k(a'), k(a")
f
•••, ^(a (n_1)

) are called the conjugates of

If 6 be any number of k(a), it is a rational function of a, which

we may denote by r{a). Then 0'= r(a')> 0"= r(a"), •••,

(n_1) =r(a (n~1)
), which are derived from by the substitutions

a: a', a: a", •••,a:a (n_1)
, are called the conjugates of 0.

§ 5. Forecast of Remaining Chapters.

We shall consider now several special realms. In each we shall

find an infinite number of algebraic integers, the study of whose

properties in their mutual relations will be our task. It will be
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observed that the properties of an integer depend upon the realm

in which it is considered to lie. Thus the integer 5 is unfavor-

able in R and in k(V— 3), but in k(y/— 1) it is the product of

two integers, 2 -f- V— 1 and 2— V— 1.

The realms will be taken up in the order of their degrees.

That is, the first to be studied will be R, which is, as has been

already said, the only realm of the first degree. We shall then

take up in turn four special examples of quadratic realms,

£(V— 1), &(V— 3), £(V2 ) and &(V— 5). In the cases of

&(V— 1), fc(V— 3) and k(\/2), we shall see that, with the

introduction of a few new conceptions, the integers of these

realms obey in their relations to each other laws almost identical

with those governing the integers of R.

In the case of &(V— 5) we shall observe an important differ-

ence, and at first sight it will seem that our old laws have no

analogues in this realm. By the introduction, however, of the

conception of the ideal number not only will the difficulties of this

particular realm be overcome, but we shall be able to establish

in terms of these jdeal numbers general laws for the mutual rela-

tions of the integers of any quadratic realm, which are analogous

to those already found for the integers of the special realms ex-

amined. Furthermore the larger part of the theorems proved

for the integers of the general quadratic realm hold for the in-

tegers of a realm of any degree whatever.



CHAPTER II.

The Rational Realm.

divisibility of integers.

§ i. The Numbers of the Rational Realm.

The rational realm consists of the system of rational numbers,

any one of which, except o, may be taken to define it. It is

usually denoted by k(i) or simply R. The absolute value of a

number, m, of R is m taken positively and is denoted by
|
m

\

. Thus

l±5l=5-
The absolute value of a number is used when the result of an

enumeration is to be expressed as a function of this number.

§ 2. Integers of the Rational Realm.

The positive and the negative rational integers are evidently

integers of R, for they satisfy equations of the form ;r-|-a= o,

where a is a rational integer. The sum, difference and product

of any two rational integers are seen to be integers. The ques-

tion will at once be asked, are these all the numbers of the rational

realm which are algebraic integers under the definition given of

an algebraic integer (Chap. I, § i). That is, although a rational

fraction, b/c, where b is not divisible by c evidently cannot satisfy

an equation of the form x-\-a= o, where a is a rational integer,

we have not yet shown that b/c cannot satisfy an equation of

higher degree than the first and of the form

xn + axxn~x
-f • • • -+- an= o,

where ax,a2 ,
••-,(!„ are rational integers.

To show this, it is necessary to prove first that a rational integer

can be resolved in one and only one way into prime factors.

Therefore, until we have proved this theorem, the integers with

which we are dealing should be looked upon as merely the ordi-

nary rational integers. When we have proved the above theorem

7
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we shall see that the system of rational integers and the system

of integers of R are coextensive.

§ 3. Definition of Divisibility.

An integer, a, is said to be divisible by an integer, b, when there

exists an integer, c, such that a=bc; then b and c are said to be

divisors, or factors, of a and a is said to be a multiple of b and c.

Furthermore, a is said to be resolved into the factors b and c, or

to be factored.

We have, as direct consequences of the definition of divisibility

and the fact that the sum, difference and product of any two

integers are integers, the following:

i. If a be a multiple of b, and b a multiple of c, a is a multiple

of c. For since a is a multiple of b, we have a= a1 b, and

since b is a multiple of c, b= b xc. From which it follows that

a= axbx c. Hence a is a multiple of c. In general if each integer

of a series a, b, c, d, • • •, be a multiple of the one next following,

each integer is a multiple of all that follow it ; that is, if a be a

multiple of b, b a multiple of c, c a multiple of d, etc., a is a mul-

tiple of b, c, d, • - •, b a multiple of c, d, • • -, etc.

ii. // two integers a and b be multiples of an integer c, a -f- b

and a— b are multiples of c. If two or more integers a, b, c,
•••

be each divisible by an integer m, m is said to be a common

divisor or common factor of a, b, c, •• •. If an integer, m, be a

multiple of two or more integers, a, b, c, •••, m is said to be a

common multiple of a, b, c,- -,
1

§ 4. Units of the Rational Realm.

There are two integers, 1 and — 1, which are divisors of every

rational integer and they are the only rational integers that enjoy

this property.

We call 1 and — 1 the units of R.

Any integer which is divisible by m is also divisible by — m;
hence any two integers which differ only by a unit factor are

considered as identical in all questions of divisibility. We say

throughout this book the letters of the Latin alphabet will always

denote rational numbers, unless there be a direct statement to the contrary.
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that two such integers are associated, and call either one the asso-

ciate of the other. Two integers, a and b, each of which divides

the other, are associates, for if a= cb and b= da where c and d

are integers, then cd=i, and hence c=±i. Two integers

whose absolute values are the same are evidently associates. For

the sake of generality we consider an integer as associated with

itself.

Thus the associates of 5 are 5 and — 5 since

5= 1-5 and— 5— —1-5.

The factorizations of 30,

30= 2-3-5,

=— 2-— 3-5,

=— 2-3*— 5,

= 2 — 3-— 5,

are looked upon as identical, since they differ only by the replace-

ment of one or more of the factors by their associates.

Two integers with no common divisors other than units are

said to be prime to each other.

Under this definition the units are considered prime to every

integer including themselves.

if i'«i-i»i

a and b are associates, and it follows therefore that if a be

prime to b
|
a

|
=(=

|
b

|

unless a and b be units.

A system of integers such that no two of them have common
divisors other than the units are said to be prime each to each.

§ 5. Rational Prime Numbers.

Any integer, p, that is not a unit and that has no divisors other

than p and — p, 1 and — 1, that is, than its associates and the

units, is called a prime number or, briefly, a prime.

The units are not considered to be prime numbers, because many
of the theorems relating to prime numbers will be found not to

hold for them.
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Every integer, m, with divisors other than m, — m, I, — I is

called a composite number. We can obtain the positive prime

numbers less than any given positive integer, m, as follows : The

only even one is 2. We write down then the odd integers smaller

than m, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, •••,

and remove from the series those which are composite. To do

this strike out, counting from 3, the 3d, 6th, 9th, • • • integers

;

that is, 9, 15, 21, ••*. Then counting from 5, strike out the 5th,

10th, ••• integers; that is, 15, 25, •••, counting integers already

struck out, and in general, if p be the smallest integer not struck

out, excluding those whose multiples have been struck out, we

strike out the pth, 2pth, 3pth, • • • integers, counting from p ; that

is, all multiples of p except p. The integers not struck out are

the positive primes smaller than m.

This method is known as the Sieve of Eratosthenes. It is,

however, not necessary to carry out the process for every prime, p,

smaller than m ; for every composite number, mlf smaller than p
2

,

will have been struck out as a multiple of a prime smaller than p,

since if m 1 be less than p
2

, it contains as a factor a prime less than

p. The greatest value of p for which the process must be car-

ried out is therefore the greatest prime not greater than s/m.

The positive primes less than 100 are: 2, 3, 5, 7, 11, 13, 17, 19,

23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Ex. 1. Show that every rational prime, except 2, is either of the form

4«— 1 or 4*1 -\- 1.

Ex. 2. Show that every rational prime, except 2 and 3, is either of the

form 6n— 1 or 6n + 1.

§ 6. The Rational Primes are Infinite in Number.

The proof of this theorem as given by Euclid (Elements, Book

IX, Prop. 20) is the following : Let us suppose that there are only a

finite number of positive primes, p being the greatest. Multiply

these primes together and add 1 to the product, forming the number

It is evident that N is not divisible by any of the primes 2, 3, 5,

•••, p. Hence N is either a prime itself, or contains as a factor
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a prime greater than p. In either case there exists a prime greater

than p, which contradicts our original assumption. Hence the

number of rational primes is infinite.

This proof of Euclid's tells us far more than merely that the

rational primes are infinite in number, for if 2, 3, • • •, p be the n

smallest positive primes it gives a limit, p-\-i to 2-y-p -\- 1,

within which a prime greater than p must lie. To bring out

clearly what has been proved we may state the theorem as follows

:

// 2, 2, '", P be the n smallest positive primes, then there is a

prime greater than p among tlve numbers p -\-i, •••,2-3 -• p -\-i

and consequently the rational primes are infinite in number. For

example, 2, 3, 5, 7, being all the positive rational primes not

greater than 7, there is certainly one prime greater than 7 among

the numbers 8,9, •••,3:3"5 ,7-+ I.

After it became known that the rational primes are infinite in

number, the attention of investigators was turned to the question

whether, if from the positive integers a series be selected which

form an arithmetical progression, as for example 1, 5, 9, 13, •••,

or 3, 7, 11, 15, ••, there are in every such series an infinite number

of primes. Proofs showing that this is true of the two series

given will be found in this book.

It is not difficult to prove also that there are an infinite number

of primes of each of the forms 6n— 1, 6n -(- 1, and Sn -f- 5.
1

These are, however, only special cases of the general theorem

that in every unlimited arithmetical progression, whose general

term is a -f- nd, the first term a and the common difference, d,

being prime to each other, there occur infinitely many prime num-

bers. This theorem was first proved by Dirichlet (see D. D., 4th

Ed., Sup. VI), but he did not give an interval within which a new
prime must lie, as in the case of Euclid's proof. This omission

was supplied by Kronecker in 1885. (See above reference.)

Among problems relating to prime numbers which still await

solution is first of all that known as the problem of the frequency

of the primes. It consists in the determination of the number of

1 Kronecker: Vorlesungen iiber Mathematik; Part II, Vol. I, p. 438.

Cahen: Theorie des Nombres, p. 318.
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positive primes less than any given positive number m, that is, in

the determination of the law which governs the distribution of

the primes among the entire series of positive integers.

Kronecker mentions two interesting theorems which are be-

lieved to be true, although no proofs have yet been obtained.

I. Every positive even integer can be represented as the sum

of two positive prime numbers (2 excepted). This theorem was

first stated by Goldbach, then by Waring. Kronecker remarks1

that after testing this theorem for the even integers from 2 to

2000, it is observed that the number of possible representations

of 2n in this form increases as n increases, which heightens the

probability of correctness ; for example, we have

4= 2 + 2; 6= 3 + 3; 8= 3 + 55 10= 3 + 7, 5 + 5;

12= 5+7; 14= 3+11, 7+ 7', 16= 3+13, 5+n;
18= 5 + 13, 7 +11; etc.

II. Every positive even integer can be represented in infinitely

many ways as the difference of two positive primes.

If the truth of this theorem be assumed and it be applied to the

integer 2, we obtain the theorem : However far we may go in the

series of positive primes, we shall always find primes which differ

only by 2, that is, which lie as close as possible together. Natur-

ally the frequency of such pairs of primes decreases the farther

out we go in the series of positive integers. Among the first one

hundred integers there are eight such pairs

:

3, 5; 5, 7; H* 13; 17, 19; 29, 3i; 4i, 43; 59, 61; 71, 73;

and among the second hundred seven

:

101, 103 ; 107, 109 ; 137, 139 ; 149, 151 ; *79, 181 ; 191, 193 ; 197, 199.

If we go sufficiently far in the series of positive integers we can

find as great a number of successive integers as we please, no

one of which is a prime, for none of the integers n! + 2, n! + 3,

-",nl-\-n is a prime, since nl-^-i, i^n, is divisible by *; for

example, 5 ! + 2, 5 ! + 3, 5 ! + 4, 5 ! + 5 are all composite numbers.

§7. Unique Factorization Theorem.

According to the definition, every composite number can be

1 Vorlesungen uber Math., Part II, Vol. I, p. 68.
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resolved into the product of two factors, neither of which is a

unit. One or both of these factors may be composite, and hence

in turn resolvable into two factors, neither of which is a unit, and

we can continue this process until we reach factors which are

primes. It is evident that when one or both of the factors are

composite, the resolution is not unique; for example, 210=14-15
= io-2i =6-35= 2- 105= 3-70= 5-42= 7.30. We shall show

that, when the resolution is continued until the factors are primes,

it will be unique, considering associated factors as the same (see

§ 4) , and that such a resolution is always possible ; for example,

7

7

7

7

5;

210=14-15 =2-7-3-5

= 10-21 =2-5-3-7

= 6-35 =2-3
= 2-105= 2-3-

= 3-7o =3-2
= 5.42 =5-2.

= 7-30 =7-2

that is, 210 can be represented in only one way as a product of

prime numbers.

To prove this theorem, upon which the whole theory of the

rational integers depends, that is, that every rational integer can

be represented in one and only one way as a product of prime

numbers, we require the two following theorems

:

Theorem A. // a be any integer and b any integer different

from 0, there exists an integer m such that

\a— mb\<\b\

Let f^zm+ r,

where 01 is the integer nearest to - and hence
|
r

| ^ J ; then m is

the required integer, for m <i,

whence, multiplying by
|
b

|,

\a— mb
I

<
I

6 |.

This theorem is equivalent to saying that we can divide a by b

rr -me
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so as to obtain a remainder less in absolute value than b, the quo-

tient being m. There are, except when a is divisible by b, evi-

dently two integers which satisfy the requirements of the theorem,

one selected as above and another differing from the first by I

;

for example, if a=12 and b=— 5, then

|l2-(-2)(-s)|<|-5| and |i2 _(_3)(_ S)|<|_5|;
and hence both — 2 and — 3 satisfy the requirements of the

theorem, -j- 2 being the integer selected as in the proof.

Theorem B. // a and b be any two integers prime to each

other, there exist two integers, x and y, such that

ax -{-by= 1.

If either a or b be a unit, the existence of the integers x, y^is

evident. We shall now show that, if neither a nor b be a unit,

the determination of x and y can be made to depend upon the

determination of a corresponding pair of integers x x , yx for a

pair of integers alf b x prime to each other and such that one of

them is less in absolute value than both a and b.

Assume |&|<|a|, which evidently does not limit the generality

of the proof.

By Th. A there exists an integer m such that

|a— mb\<\b\.

Then b and a— mb are a pair of integers, a x , bx ,
prime to each

other, and a— mb is less in absolute value than both a and b.

If now two integers xx , yx exist such that

axxx + b
xyx =fi;

that is, bxx + (a— mb)y x
= 1,

we have ciyx
-\-b(xx

— my x ) = i,

and hence x=yti y= x1
— myx .

The determination of xx , y x for ax , b x may, if neither a x
nor bx

be a unit, be made to depend similarly upon that of x2 , y2 for a

pair of integers a2f b2
prime to each other and such that one of

them is less in absolute value than both a x and b x . By a continua-

tion of this process, we are able always to make the determination

of x and y depend eventually upon that of xn , yn for a pair of

integers an , b„, one of which is a unit.
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Since the existence of xn and yn is evident, the existence of x

and y is proved.

Ex. Let a = 14, b = 9 ; then oj = 9, b1 = 5, and the determination of

x and ;y, so that 14^ + 9y = 1 2)

depends upon the determination of xlf yu so that

gxs + 53>i = 1. 3)

We can make the determination of xu yt depend upon the determination of

x2 , y2 for the pair of integers a2 = 5, b2
—— 1, but it is sufficient here to

notice that xx xs— 1, yx = 2 satisfy 3) and hence ,r = y1 = 2, y=#i— m^
=— 1 — 1 -2 =— 3 satisfy 2)

.

The problem of finding the two integers x and y is most easily solved

by the method of continued fractions, but the form of proof here used

to show the existence of x and y has been adopted as being more easily

applicable to realms of higher degree.

The proof given satisfies completely, however, the requirement which

Kronecker considered should be imposed upon every existence proof in

the Theory of Numbers (see below) ; that is, it furnishes a method by

which in a finite number of steps the desired integers x, y can be found

from the given ones a, b.

Hensel says in his preface to Kronecker's "Lectures on the Theory of

Numbers," " Kronecker consciously imposed upon the definitions and proofs

of the general arithmetic a demand whose rigorous observance essentially

distinguishes his exposition of the theory of numbers and algebra from

almost all others.

" He considered that one can and must so formulate each definition in

this domain that by a finite number of trials it can be determined whether

or not it is applicable to any proposed quantity.

" Likewise a proof of the existence of a quantity is to be looked upon

as rigorous only when it contains at the same time a method, by which

the quantity, whose existence is proved, can be actually found. Kronecker

was very far from throwing entirely aside a definition or proof which did

not satisfy these high requirements, but he considered that something

was still wanting and he held its completion in this direction to be an

important task, by which our knowledge would be extended in an es-

sential point."

" He considered, moreover, that a formulation rigorous in this sense

was in general of simpler form than another which did not satisfy this

demand and he has in many cases shown by his lectures that this is

the case."

Cor. // a and b be any two rational integers, there exists a

common divisor d of a and b such that every common divisor
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of a and b divides d, and we can find two integers x and y such

that ax -\-by= d.

Let a= axc, b= b xc,

where ax and b x and prime to each other.

By Theorem B two integers x and y exist such that

axx + b xy= i. i)

Multiplying I ) by c, we have

axcx + bxcy= c

;

that is ax -\-by= c.

Every common divisor of a and b evidently divides c. Hence

c is the divisor, d, sought.

We call d the greatest common divisor of a and b.

It is evident that two such divisors which are not associates

cannot exist; for if dx , d2 be two such divisors, then since from

the definition dx must divide d2 and d2 must divide dlt dx and d2

are associates.

Any number of integers, alt a2 ,
•••, an ,

possess a common di-

visor which is divisible by all common divisors of these integers

;

for let dx be the greatest common divisor of alf a2 as defined

above. Then two integers, xx and x2 , exist such that

a
\
xx + a2x2— ^1-

Let now d2 be the greatest common divisor of dx and a3 . It is

evident that d2 is a common divisor of ax , a2 , a3 , and that two

integers, y x , y2 , exist such that

d1y 1 + a3y2
= d2 ,

or axx xyx + a2x2y x +azy2= d2 ;

that is, three integers, z x , z2 , zz , exist such that

axzx + a2z2 + a3z3= d2 ,

from which identity it is evident that every common divisor of

ax> a2} a3 , divides d2 .

Proceeding similarly with d2 and a4 , then with their greatest
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7

common divisor d3 and a
5 , etc., we see finally that there exist n

integers ulf u2 , •-,un such that

aiMi + °2u2 ~f~
'

*

" ~f" flnWn= d,

where d is a common divisor of ax , a2 ,
• • *, an .

From this identity it is evident that every common divisor of

a1} a2 , ... a-n divides d. We call d therefore the greatest common

divisor of the n integers ax , a2y
• • •, an .

The common divisors of a system of integers are evidently the

divisors of the greatest common divisor of the system.

To find the greatest common divisor of n integers a1} a2 ,
• • •, o«,

we find the greatest common divisor dx of ax and a2 ; then the

greatest common divisor of dx and az , which will evidently be the

greatest common divisor of alt a2 , a3 .

Proceeding in this manner we arrive finally at an integer d

which is the greatest common divisor of all of the integers. In

particular, if a^, a2 ,
•••, a„ have the greatest common divisor I,

we have

a1u 1 + a2u2 + • * * + &nUn= i.

This corollary is usually known as the greatest common divisor

theorem and can be proved independently of Theorem B which

follows easily from it.

The independent proof of the corollary depends upon Theorem A and

the following simple theorem whose truth is obvious.

If a = mb + r, then every integer which divides both a and b divides

both b and r, and vice versa; that is, the common divisors of a and b

are identical with the common divisors of b and r.

By virtue of these two theorems we are able to substitute for the

problem of finding the integer which is divisible by all common divisors

of a and b (|&| = |fl|) the corresponding problem for the two integers

b and r, where a = mb-\-r, and |
r

\ < |
b |.*

From Theorem A, it is evident that we can form a chain of identities,

a= mb -f- r,

b = mjr -f n,

r= m2rt + r2,

1
Euclid : Elements, Book VII, Prop. 2.

2
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in which |
r

| > | rx \
> \r2 \, etc., arriving after a finite number of such

steps, since the integers less in absolute value than a given integer are

finite in number, at a remainder rn+i which is o, and hence

rn-i = m n+1rn

Now from the theorem above it is evident that the common divisors of

a and b are identical with the common divisors of b and r, and hence with

those of r and n, and finally with those of rni and rn .

But rn is a common divisor of r%^ and rn and evidently is divisible by

every common divisor of rn- x and r«. Hence rn is the desired common
divisor of a and b ; that is, it is divisible by all the common divisors of a and

b. Moreover, we can by means of the method of continued fractions ex-

press d,=rn, in the form

ax + by= d.
1

The greatest common divisor of two or more integers is seen

to be the common divisor of greatest absolute value, there being

only one such common divisor since, if
|
a

|

=
|
b |, then a and. b

are associates. It is also, as we have seen from the proof of the

above corollary, the common divisor such that the quotients ob-

tained by dividing each of the integers by this divisor have no

common divisor other than ± I.

The reason why neither of these properties has been chosen

for the definition of the greatest common divisor of two or more

integers will appear later (see p. 252).

An objection to the former of the two, which is the one usually

employed is, however, immediately evident in that the idea of

inequality is introduced, whereas the question is purely one of

divisibility.

Theorem C. // the product of two integers, a and b, be divis-

ible by a prime number, p, at least one of the integers is divisible

by p.

Let ab— cp, and assume a not divisible by p. Then a and p

have no common divisor, and there exist two integers, x and y,

such that ax -\- py= 1. 1

)

x Cahen: p. 60. Bachman : Niedere Zahlentheorie, p. 107. Chrystal

:

Vol. II, p. 445.
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Multiplying I ) by b, we have

bax + bpy= b,

and therefore (ex+ by)p= b,

where ex -\- by is an integer. Hence b is divisible by p.

Cor. 1. // the product of any number of integers be divisible

by a prime number, p, at least one of the integers is divisible by p.

Cor. 2. // neither of two integers be divisible by a prime num-

ber, p, their product is not divisible by p.

Cor. 3. // the product of two integers, a and b, be divisible

by "an integer c and neither a nor b be divisible by c, then c is a

composite number.

Theorem i. Every rational integer can be represented in one

and only one way as the product of prime numbers.

Let m be a rational integer. If m be a prime, the theorem is

evident. Let m be a composite number ; m then has some divisor,

a, other than ±mor ± i. Either a is a prime or it has some

divisor, b, other than ±oor±i. If & be not prime, it has some

divisor, c, other than ± i and ± b. Proceeding in this manner,

we must at last arrive at a prime number, for the integers of the

series a, b, c, •• •, decrease in absolute value, and since there are

only a finite number of integers smaller in absolute value than

m, the series can have only a finite number of terms, the last of

which will be a prime number ; for otherwise the series could be

extended. Let this prime be p x . By §3, I, p x is a factor of m
and we have m= p 1m 1 . If m x be a prime, the resolution of m
into its prime factors is complete. If ;;z x be a composite number,

it contains a prime factor, p 2 , and we have

m 1
= p 2m2 ,

or m= p 1p2m2 .

If m 2 be not a prime, we can proceed as before until we have

resolved m into factors', all of which are primes. That there will

be only a finite number of these factors is evident from the fact
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that the integers of the series, m, m1} m 2 ,
• • •, decrease in absolute

value and hence must be finite in number.

We have now shown that the representation of an integer as a

product of a finite number of primes is always possible. It re-

mains to be proved that this representation is unique, regarding

representations as identical, which differ only by the substitution

for a prime of its associate.

Let m= p xp2pz --pr= q 1q2qs
~-q,

be two representations of m as a product of prime numbers.

Since the product q 1q2
"-q 8 is divisible by p lt at least one of

its factors, say qlf must be divisible by p x . But qx has only the

divisors ± q x and ± i. Hence q1=±p 1 ; that is, q x is asso-

ciated with pv Then follows

Pip*"' pr=±q2qz--- q*-

In the same manner we can show that some factor of the product

q<&z "*<7« is associated with p2 , and proceeding similarly we can

show that for each prime that occurs once or oftener as a factor

of the product, p xp2pz
• • p r , there occurs at least as often an asso-

ciated prime in the product q xq2qz
• • q 8 - In like manner, we can

show that for each prime which occurs once or oftener as a factor

of the product q xq 2q3
•••#«, there occurs at least as often an asso-

ciated prime in the product p xp2pz
•" pr> Hence the two repre-

sentations are identical. We can simplify the representation of a

composite number as the product of its prime factors by express-

ing the product of associated prime factors as a power of one of

them. Thus, if of the prime factors of m, e
x are associated with

p lf e2 with p2
, -",er with pr , we can write

m= ± p!
ei
p 2

e2 '" P
Cr

r •

Cor. i. If a and b be prime to each other and c be divisible by

both a and b, then c is divisible by their product.

Cor. 2. // a and b be each prime to c, then ab is prime to c.

Cor. 3. // a be prime to c and ab be divisible by c, b is divis-

ible by c.
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Theorem 2. If

U (*) = a^ + a^m~x + • - • + a™>

f2 (x) = & ^» + b xX^ + .
•

.+ bn,

be any two integral functions of x, whose coefficients are rational

integers, having in each case no common divisor, then the coeffi-

cients of the product of these functions

are rational integers without a common divisor.

If the coefficients c , cx ,
• • •, cm+n of f(x) have a common divisor

other than ± I, there must be at least one prime number which

divides all of them.

Let p be such a prime and suppose that p divides

cto, ax ,
• - -, ar_!, but not ar ,

and b , b lt
• • •, b8_x , but not b8y

where in accordance with our original assumption that the coeffi-

cients of fx (x) and f2 (x) have no common divisors,

o^rgfw and O&sgn.

We have now

cr+8= arb 8 + ar_xb8+x + Or.2b8+2 + '
•

' + ar+ib8_x + ar+2b 8_2 + • • •.

It is evident that cr+8 is not divisible by p, for arb8 is not divisible

by p, neither ar nor b 8 being divisible by p, while all the remain-

ing terms are divisible by p, since each of these terms contains as

a factor some one of the coefficients ao,ax,~',ar-1,b ,b 1,---,b8_1 ,

which are all divisible by p.

Hence the coefficients of f(x) have no common divisor.

Theorem 3. //

fxO) ==*•+ axx^ + . . . + am ,

f2(x)=x" + b xx^ + -- + bn

be two rational integral functions of x, the coefficients of the
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highest powers of x in each case being i, and the remaining coeffi-

cients rational numbers, the coefficients, clt c2 ,
• • •, cm+n of their

product

f(x) =/, (x) • f2 (x) =x~* + cxx***-* + • • • + cm+n

cannot all be rational integers unless all of the coefficients alf a2 ,
•••,

am , b lt b2 , '",bn are rational integers. 1

Let a and b be the least common denominators of the coeffi-

cients of ft (x) and f2 (x) respectively. Then each of the func-

tions a f1 (x) and b f2 (x) has rational integral coefficients without

a common divisor. If now the coefficients clt c2 ,
• • •, cm+n are to

be integers, the coefficients of the product,

a<A>AO) • /.(*) =«A/(*),

must all be divisible by a b .

But by Th. 2 this is impossible unless a =i, b = i ; that is,

a x , a2 ,
• • • , am , b , bx, • • •, bn are integers.

Theorem 4. A necessary as well as sufficient condition that an

algebraic number a shall be an algebraic integer is that the coeffi-

cients of the single rational equation of lowest degree of the form

fx (x) =x l +a
1
x l

~1 + ••• + a t= o, 1)

ivhich it satisfies, shall be rational integers.

If a satisfy an equation

f2 (x) = xm + M*w_1 + '
•

' + bm= o,

of degree higher than the /th whose coefficients are rational num-

bers, then by Chap. I, Th. 1,

where f3 (x) is a rational integral function of x with rational

coefficients, the coefficient of its term of highest degree being 1.

But by Th. 3 the coefficients of f2 (x) cannot all be rational in-

tegers unless the coefficients of fx (x) are all rational integers.

Hence the theorem.

1 Gauss : Disq. Arith., Art. 42, Works, Vol. I.
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We see therefore that the system of rational integers and that

of the integers of R are coextensive, and hence that all that has

been said in the preceding pages concerning rational integers may

now be looked upon as applying to the integers of R. Hereafter

the terms rational integers and integers of R will be used inter-

changeably.

It is seen from the above theorem that the equation of lowest

degree 6i the form i) satisfied by an algebraic number, determines

not only the degree of the number, but whether it is or is not an

algebraic integer.

After having proved the unique factorization theorem we could have

shown that no rational fraction alb, where a and b are prime to each

other and fr=j=± i, can satisfy an equation of the form i) whose coef-

ficients are rational integers and hence that the only integers of R are

the rational integers, but it has seemed better to treat the question in

the general manner we have used above.

§ 8. Divisors of an Integer.

We can now exhibit in a very convenient form all divisors of

any given integer, m, and deduce therefrom simple expressions

for the number and the sum of these divisors. Let m be written

in the form

m= ± p x
ei
p 2

e2 ' '

' pr
er

,

where p lf p2 , '-,pr are the different prime factors of m.

If d be a divisor of m, it can contain as factors only those

primes which occur in rn, but each of these primes can occur in d

to any power not greater than that to which it occurs in m; that

is, every divisor of m must have the form

d=±p i
mipm2 ...

p r
mr

}

where o^mig^.; % =5= 1, 2, •• *, r,

and each of the integers obtained by giving these different values

to m lf m 2f "',mr is a divisor of m. We can now easily obtain an

expression for the number, AT, of the different divisors of m,

associated divisors being considered as identical. Since there are

e
1 -f- 1, e2 -\-i, • ••, er -\-i possible values for m 1 , m2 ,

•••, mr

respectively, there are (^i + i)(^2 + I )""(^r+i) different sets

of values of mlf m 2 ,
•••, m r and each of these sets gives a dif-
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ferent divisor of m. Moreover, these sets of values of m19 m2 ,
• • •,

m r give all the different divisors of m, whence we have

N=(e1 +i)(e2 + i)-.-(er + i).

We can find similarly an expression for the sum, S, of the dif-

ferent positive divisors of m.

On expanding the product

'~(I+Pr + Pr
2 +---Pr"),

we obtain a series, all of whose terms are positive divisors of m,

each positive divisor of m occurring once and but once. The sum

of this series is therefore S.

Hence

S=(i+p 1 + p 1
2 -i---'+p^)(i+p 2 + p2

2 +"-p^)
~'(I+Pr + Pr

2 +--Prer
)

_A
ei+1 - i

. A*
+1 - J

. .
. Aer+1 - *

A - i' ' A- 1 A- i

Ex. Let m = 6o= 2
2
-3-5.

We have #= (2+ 1) (1 + 1) (1 + 1) — 12,

and Saz^ii ^ZZl . 5jhI=7 .4 . 6 _ l68
2—1 3— 1 5— 1

results which are easily substantiated bv observing that the positive

divisors of 60 are J, 2, 3, 4, 5, 6, 10, 12, ic. 20, 30 and 60.

We observe that N depends only upon the exponents of the

powers to which the different prime factors appear in m, while S
depends also upon the absolute values of these primes.

We have defined (§3) a common divisor and a common mul-

tiple of two or more integers. The representation of an integer

as a product of its different prime factors leads us to convenient

expressions for the common divisors and common multiples of

a system of integers.

Let m^, Wv,, •••,mic be any system of integers and suppose each

integer of this system expressed as a product of powers of its

different prime factors. Let p lt p2 ,
• • •, pr be the different prime



THE RATIONAL REALM INTEGERS. 2$

factors of mx,m 2 ,
--',^1^', lx,l2 , --,lr,

the exponents of the lowest

powers, and glt g2 ,
• • •, gr , the exponents of the highest powers to

which plt p2 , -",pr occur in any of these integers. Remembering

now that every common divisor of m lt m2 ,
• • •, m*, can contain as a

factor a prime, pi, to a power not higher than the lowest to which

pi occurs in any of the integers mx,m2 , ~',mk, we see that every

common divisor of mx , m2 ,
• • •, w fc , has the form

where o^di^h; i=i,2,--,r.

When dlt d2t
'"

$ dr have their greatest possible values, that is,

Kt h>
'

' '$ k, the divisor so obtained, is evidently the greatest com-

mon divisor of «»!,%•",% Denoting the greatest common

divisor of m x,m 2 , ~',mu, by g, we have therefore

g= Pi
hP2

l2 --pr lr
.

Likewise since every common multiple of m^, m2 ,
• • •, mk , must

contain as a factor a prime, pi, at least to the highest power to

which pi occurs in any one of the integers % m2 ,
• • •, m*, we see

that every common multiple of m lf m 2 ,
• • •, m* has the form

apSW--- pr
nr

,

where **$gi, i=i,2,-- -, r,

and a is any integer.

When nx,n2,---,nr have their least possible values, that is,

gi>g2>'">gr, and a is a unit, the multiple obtained is the least

common multiple of mlt m*>, • * •, m*. Denoting the least common

multiple of mx , m2 ,
-•-, m* by I, we have therefore

l= p^p2
9*---pr9r .

We observe that just as the common divisors of a system of in-

tegers are the divisors of the greatest common divisor of the sys-

tem, so every common multiple of all the integers of the system

is a multiple of their least common multiple. When two or more

of the integers mlt m2 ,
• • •, mjc are prime -to each other, the greatest

common divisor of the system is evidently a unit, and when the

integers m x , m2 ,
• •, m& are prime each to each their least common
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multiple is their product, m xm 2
• • • mk . If an integer be divisible

by each one of a system of integers mlf m 2>
• •, w&, it is divisible

by their least common multiple.

If we have two integers

= Px*Pf*' ' • p r
a% b= p^pj* • • • />r

6r
,

and g= p 1
hp

2
h ...

p r
ir

f
l= pjhpp... pr

ffr

be respectively their greatest common divisor and least common
multiple, it is evident that

li + gi= <h + K h + g2= ^ + b2r"Jr +gr= ar + br ,

and hence that gl= ab ; that is, the product of two integers is equal

to the product of their greatest common divisor and least common

multiple; for example

12 -30= 6-60.

The representation of an integer m as a product of powers of

its different prime factors gives us also a criterion for determin-

ing whether in is or is not the &th power of an integer.

Let m= ± p x
ei
p 2

e2 ' '

' prer .

By putting m= nk
, we see immediately that the necessary and

sufficient condition that m shall be the &th power of an integer is,

if k be odd, that e lf e2,--,er shall be divisible by k, while if k be

even there is the further condition that m shall be positive.

§ 9. Determination of the Highest Power of a Prime, p, by

which m ! is divisible.

The method employed consists in counting, successively, those

:nte£ers of this product which are divisible by p, p
2
, p

3
, etc.,

respectively. Remembering that those integers which are divis-

ible by p
l have already been counted i— 1 times, as among those

divisible by p, p
2

,
•••, p

l ~x
, the sum of these enumerations is seen

to be the exponent of thi desired power of p. Denote this expo-

nent by e. Since e will have the same value for — p as for p, we
can without loss of generality assume p positive.

Let [a/b] denote the greatest integer contained in the fraction

a/b, where a and b are both positive; in particular [a/b] is o



THE RATIONAL REALM—INTEGERS. 2

J

when a is less than b. Put [m/p] =mlf [m/p
2
] =m2 ,

• • •, [m/p*]

=«*, • • • . There are in the product

i»/=i*2'3 ••• m,

the m, integers, />, 2/>, Zp,-"^xP, 1

1

divisible by /^ and wz/ is therefore certainly divisible by ^"i;

that is, e < w x .

In like manner there are in ml the m2 integers

p\ 2p
2,--;m2p

2
2)

divisible by p
2

. We have counted these integers once already

among the integers i), but since they each contain p twice as a

factor, and there are m2 of them, we must add m2 to the exponent

of the power of p which is known to divide ml. Hence ml is

certainly divisible by p
m^m*

; that is,

e <£ mi + m2-

Likewise there m 3 integers of ml divisible by p
3
, each of which

has been counted twice already. Hence

e < *>h + ™ 2 + "h-

Continuing this process we arrive finally at a fraction m/pk> which

is less than i, and hence

<*-[$]-a
The highest power of p by which ml is divisible is therefore

p
miHn2+--+mk-1} whose exponent e is [m/p] + [m/p 2

] -|

+ [*•/£***].

If p > m, then w1
= o, and hence e= o.

Ex. Let m = ioo, and p = .3 ; then

W,= [W]= 3,

«4=[W]= I,

w»=[Hf]= o,

and ^ = 33 + n+3-J-i = 48.

It is easily shown that

L;lm-
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and hence -M
Using this fact in the example just given we have Wi= [

x§-] = 33> m*

= [¥] = ii, w3= [-V-1 =3, ™*= [f] = Xj «»= CH = o.

m/
§ io. The Quotient

7 ,
, where m= a-\-b -\ + fc, is

a/&/ ••• &/
an Integer.1

This quotient will be recognized as the so-called multinomial

coefficient ; that is, the coefficient of xx
ax* • • • xr

k in the expansion

of (x1 + x2 -f-
• • • xr )

m
. When r= 2, and m= a-\-b, we have

the binomial coefficient ; that is, the coefficient of xx
ax2

m-a in the

expansion of {xx
-\- x2 )

m
.

This theorem is easily proved by means of that of the last sec-

tion. To show that .
T

' .
,

i)

is an integer it is necessary and sufficient to show that every

prime, p, is contained to as high a power in the numerator as in

the denominator. Let e, ax , b lt
• •, k lt be the exponents of the

highest powers to which p is contained in ml, al, b!,'-,k!, respect-

ively. We must show that

**«k 4- &!+ "•+"**

Since m= a+ b -f-
* • *+ k,

. mad k
it follows that — = - H 1 4- —

,

-«- [7]i4+ L-]*--[i]

[?3*[?]*&+~[?}
;;/

The truth of this theorem is at once evident since —m ;- is the
alol • • • k!

number of permutations of m things a, b, • • ; k of which are alike.
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Hence, by addition,

r m~\
+ •••[7H7V Aj]
*]+[

f
]+ +L

:
]

+
[f]

+
[?]

+ +[?]

•-[i] +
[?i

+
-
+
[?]

+ -

Hence £ ^ Oj_ + &x + • • • + k x .

Therefore p is contained to at least as high a power in the

numerator of I ) as in the denominator. But p was any prime

;

therefore I ) is an integer.

From this it follows that the product of any m successive posi-

tive integers is divisible by ml
For

(a-f-i) (g+2 )
'

' •(fl+ftQ _ a/(a+i)(a+2)-"(o+w) _ (g+w)'

ml aim! at ml

which is an integer. From this and the fact that o is included

among m successive integers which are not all positive or all neg-

ative, it follows that the product of any m successive integers is

divisible by ml
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Examples. 1

' i. The sum of two odd squares can not be a square.

,
2. Every integer of the form 4»— I has an odd number of

factors of the form 4ft— 1.

3. Every prime greater than 5 has the form yym'-^n where

w=i, 7, 11, 13, 17, 19, 23 or
29J

4. The square of every prime greater than 3 is of the form

24m + 1, and the square of every integer which is not divisible by

2 or 3 is of the same form.

5. If n differ from the two successive squares between which it

lies by x and y respectively, prove that n— xy is a square.

6. The cube of every rational integer is the difference of the

squares of two rational integers.

7. Any uneven cube, n3
, is the sum of n consecutive uneven

integers, of which n2
is the middle one.

8. Show that x3— x is divisible by 6 if x be any integer.

9. Show that x4— 4X3 + Sx2
— 2X 1S divisible by 12 if x be

any integer.

{o. Show that x4m -f- x2m + 1 never represents a prime number

if x be any integer other than 1.

1 1.
r Show that (mn) ! is divisible by (m!) nn!

12. Show that (2w) !{2n) ! is divisible by ml nl (m + m) /

13. What is the least multiplier that will convert 945 into a

complete square?

14. Find the number of the divisors of 2160 and their sum.

15. Find a number of the form 2n '3-a (a being prime) which

shall be equal to half the sum of its divisors (itself excluded).

1 See Chrystal; Algebra, Part II, pp. 506, 518 and 526 for other examples,

also C. Smith, Algebra, and Hall and Knight, Higher Algebra.



CHAPTER III.

The Rational Realm.

congruences.

§ i. Definition. Elementary Theorems.

// the difference of two integers, a and b, be divisible by an

integer m, a and b are said to be congruent to each other with

respect to the modulus m. This relation is expressed by writing

a^=b, modm. 1

Similarly, if the difference of a and b be not divisible by m, we

say that a and b are incongruent to each other, with respect to

the modulus m, and write

a^=b, mod m.

Ex. We say that 21 is congruent to 15 with respect to the modulus 3,

since 21 — 15 is divisible by 3. In the above notation this fact is ex-

pressed by writing 21 == 15, mod 3.

We can express the fact that a is congruent to b by writirlg

a— b= km, or a= b + km,

where k is an integer, but the notation a==b, mod m, which is due

to Gauss, has the great advantage of placing in evidence the

analogy between congruences and equations ; and we shall see

that most of the transformations to which equations can be sub-

jected are also applicable to congruences.

H. J. S. Smith says :
" It will be seen that the definition of a

congruence involves only one of the most elementary arithmetical

conceptions,—that of the divisibility of one number by another.

But it expresses that conception in a form so suggestive of anal-

ogies with other parts of analysis, so easily available in calcula-

tion and so fertile in new results that its introduction into arith-

1 The author has adopted a slight variation of Gauss's notation,

a= b (mod m), due, he believes, to H. J. S. Smith.

31
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metic (by Gauss) has proved a most important contribution to

the progress of the science."

We have as direct consequences of the de'finition of congruences

the following:

i. If a= b, modw, i)

and b= c, modw/ 2)

then a= c, modm;

for, from 1) and 2), we have respectively

a— b= km,

b— c= k xm,

where k and k x are integers, and by addition

a— c= (k -\- kx )m',

that is, a= c, mod m.

It is now evident that we can divide all integers into classes

with respect to a given modulus, if we put into the same class

those and only those integers which are congruent to each other

with respect to this modulus. We ask: How many such classes

will there be for any given modulus m?
Any integer, a, can be written in the form

a= km + r,

where k is an integer and r is one of the integers

o, 1,2,3, •••,|m|— 1.

But a is congruent to r, mod m, and if we give k all integral

values from — 00 to +00, the resulting values of a will be a

series of integers, all of which are congruent to r, and hence by i

to each other with respect to the modulus m. By putting for r

the
I

m
I

different values o, 1, 2, 3, •••,
|
m

\

— 1, we shall get
|
m

|

classes and every integer is seen to fall into one or the other of

these classes. An integer can not be in two different classes, for

then we should have

a= km + r= k xm + ru
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where r=¥ ri, -

which gives ( k— k1)m= r
1
— r.

Since the first member of this equation is divisible by m, the

second member must be divisible by m also, but since r and rt are

both positive and less than
|
m |, we have \r— rx \ < \m\, and

hence r— rx is not divisible by m, unless r— rx
= o\ that is,

r— rx and hence k= k 1 .

There are therefore exactly
|
m

|
incongruent number classes

with respect to the modulus m, each integer being in one and but

one of the classes.

The absolute value of an integer, m, may now be defined as the

number of incongruent number classes with respect to the mod-

ulus m.

This definition brings out clearly a reason for the introduction

of the absolute value of an integer ; that is, to express the result

of an enumeration as a function of an integer.

In all theorems relating to congruences we shall think of the

entire system of rational numbers as divided into such classes,

with respect to some given modulus ; and whatever is true of any

individual integer with respect to this modulus will be true of

the entire class to which it belongs. We shall thus deal rather

with the classes than with the individuals in them and it will only

be necessary to have a representative of each class.

Such a system of
|
m

|
representative integers, each integer

being chosen arbitrarily from the class to which it belongs, is

called a complete system of incongruent numbers, or a complete

residue system, with respect to the modulus m.

The latter designation is derived from an extension of the ordi-

nary idea of the remainder, which holds when the system chosen

is o, 1,2, ", \m\— 1, by calling either one of any two integers,

which are congruent to each other with respect to the modulus

m, a remainder or residue of the other with respect to m.

Any
I

m
|
consecutive integers evidently form a complete resi-

due system with respect to the modulus m.

The most useful systems are, first, that composed of the small-

3
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est possible positive residues

o,i,2,-",\m\ — i,

and second, that composed of the residues of smallest possible

absolute value, the latter being, when m is odd and
|
m

|
=2» + i,

— n,— (n— i),-..,_ 1,0, i, •••,«— i,«;

and, when m is even and \m\=2n

— (n— i), •••,— 1,0, 1,
"'

9 n— 1,«,

the two residues n and — n being congruent to each other, mod m.

Ex. If m = ii, each of the systems

o, i, 2, 3, 4, s, 6, 7, 8, 9, io;

— 5, —4, —3, —2, -M, o, i, 2, 3, 4, s;

50, —15, —25, 20, 32, 22, —io, 13, —19, 4, 16

is a complete residue system, mod II.

ii. Addition and subtraction of congruences.

If a 1
= b 1 , mod m, 3)

and a2 z=zb2 , modm, 4)

then a, ± o
2
aa fr x ± b2 , mod m

;

for we have from 3) and 4), respectively,

ai— &i= &iwj

#2— &2 =3 k2mf

whence {a x ± a2 ) — (& x ± &2 ) — (A ± &2 )w ;

that is, (a ± ±a 2 )^=b1 ± b2 , mod m.

iii. Multiplication by an integer.

If a= b, mod ni} 5)

then ac^bc, modw;

for from 5) we have (a— b)=km;

whence ac— be= kem
;

that is, ac^bc, modw.

iv. Multiplication of congruences.

If ax ^bu modw, 6)
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and a2= b2 , modm 7)

then a1a2 ^bjb2i modm;

for from 6) we have by iii

axa2= b xa2 , modm;

and similarly, from 7) b ra2^b xb2 , modm,

whence by i axa2= b xb2 , mod m.

From this it follows, evidently, that if

a= &, modm,

then (&= &, modm,

where k is any positive integer.

v. If f(x) be a polynomial in x with integral coefficients;

that is, f(x)= %*" + 0i*
n_1 + • • • + On,

and if r^rx , modm,

then f(r)^=f(rx ), modm, 8)

for from r= fi, modm

it follows by iv and iii that

a .rn-i == tfif^*-*, mod m, i= o, 1 , 2, • • • , w,

and by addition we obtain 8).

It may be shown similarly that if f(x lf x2 , '-',xn ) be a poly-

nomial in xlf x2 , --,Xn with rational integral coefficients, and if

a2— ^2 L modm,

On= in J

then f(a 1,a2,'-,an)=f(b 1,b2,--,bn ), modm.

Ex. Let f(x)=2x3— x* + s;

since — 3 ebeII, mod 7,

we have /(— 3) =/(n), mod7;

that is, — 58= 2546, mod 7.
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vi. Removal of a common factor.

We have seen in III that we can multiply both members of a

congruence by any integer, without affecting the validity of the

congruence ; the converse of this, however, is not in general true.

Thus we have 8 aa 14, mod 6,

but
, 4 4s 7, mod 6.

To consider this question in general, let

a==&, modw>

be a congruence in which a and b are both divisible by k ; that is,

a= axk and b= b xk.

where ax and b x are integers.

Then from axk= b xk, mod w,

it does not necessarily follow that

a x
= b lt mod m

;

for that ax
— b x shall be divisible by m is not a necessary conse-

quence of k(ax
— b x ) being divisible by m, unless k be prime to m,

and all we can say in general is that a x
— b x is divisible by those

factors of m which are not contained in k ; that is, by m/d, where

d is the greatest common divisor of k and m.

Hence from axk= b xk, mod m,

it follows in general only that

a
x
m bv mod -^, 9)

where d is the greatest common divisor of k and m.

If k be prime to m, d is 1, and hence from 9) we have

ax ^==bx , modm.

Ex. From 8^14, mod 6,

it follows that 4^7, mod 3;

but from 5= 35, mod 6,

it follows that 1 == 7, mod 6.
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vii. // a= &, mod m,

and d be a divisor of m, then

a^=b, mode?;

for since a— b is divisible by m it is divisible by d.

viii. If a=b with respect to each of the moduli mv m2 ,
•••,

mn , then a= b, mod I,

where I is the least common multiple of mlf m2) --,mn \ for since

a— b is divisible by each of the integers mx , m2 ,
••, mn , it is divis-

ible by their least common multiple. An important special case

of this is when mlt m2 , ••yw* are prime each to each, / being then

their product.

ix. All integers belonging to the same residue class have with

the modulus the same greatest common divisor; for if

a= &, modw,

then a— b= km;

and any integer that divides a and m must also divide b, and any

integer that divides b and m must also divide a. Therefore the

greatest common divisor of a and m is identical with the greatest

common divisor of b and m. In particular // any integer of a

residue class be prime to the modulus m, then all the integers of

this class are prime to m.

§2. The Function <f>(m).

By ^(m) 1 we denote the number of integers of a complete

residue system, mod m, which are prime to m. Such a system

of integers is called a reduced residue system, or a reduced system

of incongruent numbers, mod m. That the number of integers

in such a system is independent of the complete residue system

chosen is obvious from § i, ix. We can therefore calculate <£(w)

for a particular value of m by writing down any complete residue

system, mod m, and removing those integers of this system that

are not prime to m. The number of those remaining is evidently

4>(m).

1 The symbol is due to Gauss : Disq. Arith., § 38, Works, Vol. I. Euler

first gave a general expression for <t>{m) : Comm. Arith., I, p. 274.
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Thus for m=— 10, take as a complete residue system

— 10,— 19, 2,— 7,— 16, 5, 16, 17, 18,— 1.

Striking out the integers — 10,2,— 16,5,16,18, that are not

prime to — 10, we have left the four integers — 19,— 7, 17,— 1,

that constitute a reduced residue system, mod — 10.

Hence <j>(— 10) = 4.

As a second example, let m= 7.

A complete residue system, mod 7, is

0,1,2,3,4,5,6,

and we see that <f>(y)=6.

The last example leads Us at once to a general expression for

<t>(p), when p is a prime ; for the integers o, I, •••,
| p |
— 1 con-

stitute a complete residue system, mod p, and are, with the excep-

tion of o, all prime to p, whence it is evident that

<t>(P)=-\P\ — 1.

It should be observed that, since the units are regarded as

prime to themselves,

4>(±i)=i.

The first method, which we shall employ to obtain a general

expression for <f>(m) in terms of m, is exactly similar to that em-

ployed in the examples just given ; that is, we write down a com-

plete residue system, mod m, remove those integers of this system

which have a common divisor with m, and count those remaining,

their number being <f>(m).

The general expression for <f>(m), where m is any integer, is

given by the following theorem

:

Theorem i. // plt p2 >
'-,pr be the different positive prime fac-

tors of m, and <f>(m) denote the number of integers of a complete

residue system, mod m, that are prime to m, then

^(m) = |m|(i-f)(i-^)-(i-^-).
Pi P2 Pr

Since, evidently,

<f>(—m)=<f>(m),

we can without loss of generality assume m positive.
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Let

tn= p 1
ei
p2

e2 '- prer ,

where p x,p2 , '",pr are the different positive prime factors of m.

Take as a complete residue system, mod m,

i,2,3,4,---,m S)

Our task is to remove from the system S those integers which

are divisible by one or more of the primes p lt p2 , '",pr, and to

count the integers left. We shall first remove those divisible by

p lt namely the m/p 1 integers

m
Pi,2px,2>Px>'->irPx>

Vx

Removing these from S there remains a system, Slf consisting

of m— tn/p lt —rn(i— l/P% ) , integers, none of which is divis-

ible by px .

From this system Sx we must now remove those integers that

are divisible by p2 ; that is, those integers of 5 which are not divis-

ible by p x but are divisible by p2 . The integers of S which are

divisible by p 2 are the m/p2 integers

m
p2> 2p2,3p2,'--,rp2

,---, — p2 ,A
and the necessary and sufficient condition that any one, rp 2 , of

these integers be also divisible by plt is that the coefficient, r, of

p2 shall be divisible by fv
The number of the integers, which are to be removed from the

system S\ on account of their divisibility by p 2 , is therefore the

same as the number of the integers

m
1,2,3, ~, ~>

A
which are not divisible by p lt and this is, since m/p 2 is divisible

by p x , exactly as in the first step of this proof

j\

\ m
t-$
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There remains then of S a system, S2 , of

integers, none of which is divisible by pr or p2 . We are now led

to conclude by induction that the number of the integers of S,

which are divisible by none of the r primes plt p 2 , •-, p r is

m('4)(-i)-(-7.)

m

To prove that this is correct, it is only necessary, since we know

that it holds for r= 2, to show that, if it holds for r= i, it holds

for r= i-\- i.

Assume then that, having removed from 5* the integers divisible

by one or more of the i primes p lt p 2 , '",pi, there is left a system

(-*)(-*)••(-*) |
integers.

To obtain the number of integers of S that are divisible by

none of the primes p 1} p2 , '",pi+i, we must remove from Si those

integers which are divisible by pi+1 and count those remaining.

The integers of Si that are divisible by pi+1 are the same as the

integers of 5 that are divisible by p t+1 but are divisible by none

of the primes p 1} p 2 ,
•••, pi. The integers of S that are divisible

by p i+1 are

m
Pi+v 2A+i,

• '

'»
rA+v '

'
•• J-Pi+v
Pi+\

and the necessary and sufficient condition that any one rp i+1 of

these integers shall be divisible by none of the primes p lf p2t '",pi

is that the coefficient, r, of pi+1 be divisible by none of these primes.

The number of integers to be removed from St coincides there-

fore with the number of the integers

m
A+i
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1

that are divisible by none of the primes p lf -",pi' By formula

i), whose correctness has been assumed, this number is

t(
l

-.k)(
l -d-( l -

l

p}
m
A

Subtracting this number from i) we get

i'-k)-(-j)(-k){-k)(-^
an expression identical in form with i), as the number of the

integers oi 5* which are divisible by none of the primes

Pi,p2>'--,pi,pi+i-

But we have proved the correctness of I ) when i= 2, hence the

theorem holds when t=3, and similarly when i= r.

If m be any integer, positive or negative, and p lt p2 ,
•

J pr be

its different prime factors, positive or negative, we have as an

absolutely general expression for <f>(m)

^) = IH( I -
f
^)-( I -^

r
).

Making use of the representation of m as a product of powers of

its different prime factors, we obtain another expression for

<f>(m) ; that is,

<t>(m) = (\p i \--l)\pi
\e^ --

(\p r \

— l)\p r
\er-K

If m be a power of a single prime as p
e
, we have

<t>(±p') = (\p\-i)\p\ e-\

and, in particular, when e=i,

<t>(P) = \p\ — i-

Ex. Let m = 60 = 2
2

• 3 • 5.

We have 0(60) = 60(1 — i) (1 — *) (1 — |)
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a result seen to be true when we write down the complete residue system,

mod 60, 1, 2, • • •, 60.

For when we remove those integers which are not prime to 60, there

are left the integers

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59,

in number 16.

We observe that <f>(m) is an even number except when m= ± 1,

or ±2; for if m=±2 e
, we have <f>(± 2e

) =2e~1
, which is an

even number when e > 1, and if m contain an odd prime factor

p lt then from 2) it is evident that <f>(m) contains the even number

I p I

— 1 as a factor and hence is an even number. This may be

proved independently of the formula. 1

The above proof, which is the one usually given for this

theorem, has been used here on account of its great simplicity.

It does not, however, admit of extension to the higher realms in

Jhe form here given, since a property of rational numbers has

been made use of which has no analogue in the case of algebraic

numbers of a higher degree. We therefore give below a proof

depending upon the same principles as the above but so formu-

lated that it is at once capable of extension to a realm of any

degree. 2 In giving these two forms we hope to make clear to the

reader some of those conditions which must be satisfied by the

form of proof of a theorem regarding rational integers in order

that, should the theorem be found to hold for the integers of any

algebraic number realm, the same form of proof can be used

for it in the general case. The proof of the general theorem

(Th. 1) depends directly upon the following simple theorem:

Theorem 2. // a=bc, where b and c are any integers, there

are in a complete residue system, mod a, exactly \c\, = |a/&|,

numbers that are divisible by b.

Since by §1, ix, if the theorem be true for any particular

residue system, mod a, it is true for all, we shall construct |c|

numbers which are divisible by b and incongruent each to each,

mod a, and shall then show that no other number of a complete

1 Cahen : p. 33.
2
See p. 44.
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residue system, mod a, of which these numbers are a portion, can

be divisible by b.

Let clf c2,"-,cCf 2)

be any complete residue system, mod c. The integers

bclf bc2,--,bcc 3)

are incongruent, mod a, for if

ben ass bci, mod a,

then ch= Ci, mode,

which is impossible.

Moreover, every integer, bd, divisible by b is congruent, mod a,

to some one of the numbers 3), for d is congruent, mod c, to some

one, say Ci, of the integers 2), and from

d= Ci, mode,

it follows that bd= bci, mod a, and bd is one of the integers 3)!

Hence the integers 3) comprise all those integers of a complete

residue system, mod a, of which they are a portion, that are divis-

ible by b. They are
|
c

|
in number and the theorem is therefore

proved.

If we select the particular residue system

1, 2, •••, \m\,

and observe that the integers of this system, that are divisible by b, are,

considering b positive, b, 2b, b,

the truth of the theorem is at once evident. The form of proof used

above has, however, been chosen on account of its immediate adaptability

to the higher realms.

From the above theorem we obtain at once the following

:

Theorem 3. If p be any prime

There are in a complete residue system, mod p
e
, exactly

| p
e
/p

|

numbers that are divisible by p and therefore
\ p

e
\

—
| p

e
/p \

that

are prime to p. Hence the theorem.
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We shall now prove again Theorem i, placing no restriction

upon either m or its prime factors as to sign.

Theorem i. If pu p 2 ,
• • •, p r be the different prime factors of

m, and <j>(m) denote the number of integers of a complete residue

system, mod m, that are prime to m, then

Second Proof. 1

Denote by S a complete residue system, mod m, and let

\m\
.

_.
|
m

;

J

\m\

\m\ \m\ \m\
S. = rrrrr, + rrrrn + • +

AllAl lAllAl lA-.llAl'

5 =
AllAh--|Al'

Consider now the sum

N=\m\-S1
Jr S:!

--- + (-iySr.

Making use of Theorem 2, we see that an integer of S, which is

divisible by i of the />'s but not by * + 1 of them, is counted

once in
|
m |, % times in Slf i(i— i)/i-2 in S2 ,

-•-, and finally once

in Si. Hence this integer contributes to N the number

i-i+ i± i^-- + (-iy=(i-iy=o.

Therefore every integer of S that is not prime to m contributes o

to N, while every integer oi S that is prime to m contributes 1 to

N, since it is counted once in \m\ and is not counted in S
ly S2 ,

•••,

Sr . Hence N is the number of those integers of 5* which are

prime to m; that is,

N= <f>(m).

1 Mathews: §7.
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Therefore

+(«) = |m|— St+ S, + (-iysr

= ]Ml
(

l

-\k\)(
l

-\k\)-{
l

-\k\}

§ 3. The Product Theorem for the ^-Function.

Theorem 4. // m=w1w2 , where mx and m2 are prime to

each other, then <f>(m) = cf>(m1)cf>(m2 ).

Let m1
= ± p 1

ei
p2

e2
•

•

' pr
er

,

and m2= ± qx
flqj* '

' fA
where p lf p 2

,-', pr, q lf q2r",q8 are different primes.

Then m= ± pt* • • • pr
er
qx

fl #/',

and

^«) = l,«l( I -
f

i
i]

)...( I -^
|

)(.-
|

^)...( I -^)

=w(i-^
]
)-(-^)i-2 i( i-

î

)-(-^)

Ex. Since 60 =4-15, and 4 is prime to 15, we have

0(6o) =0(4)0(15) =2-8=16

The above result can evidently be extended to a product of

any number of factors, which are prime each to each; that is, if

m= m1
m

2
• • mr , where mlt m2 ,

• • • mr are prime each to each,

then <f>(m) =<f>(m1 )(f>(m2 )
••• <f>(mr ).

This theorem is useful in the calculation of <f>(m).

Ex. Since 315 = 3
2

• 5 • 7, we have

0(315) = 0(3
2

)0(5)0(7) = 6-4-6 = 144.

This property of the function <f>(m) can be derived without the

use of Theorem 1. This having been done and having shown that

eo-i'iO-lTl)'
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we can derive the general expression for <f>(m) in terms of m.

This is the method adopted by Gauss. 1

§ 4. The Summation Theorem for the ^-Function.

Theorem 5. // d be any divisor of m and m= nd, the num-

ber of integers of a complete residue system, mod m, which have

with m the greatest common divisor d is <f>(n).

Since by § 1, ix, if the theorem be true for any particular resi-

due system, mod m, it is true for all, we may take the system used

in Theorem 2. We have shown there that the system of integers

dn^dn^-'-ydnn, 1)

where nlf n2i
- -,nn is a complete residue system, mod n, com-

prises all those and only those integers of a complete residue sys-

tem, mod m, which are divisible by d.

Hence the integers of this complete residue system, mod m,

which have with'^ the greatest common divisor d are those of the

system 1) in which the coefficient of d is prime to n. Since

nlf n2 , -",nn is a complete residue system, mod n, the number of

these integers is <}>(n) and the theorem is proved.

Theorem 6. If d17 d2f
-", dr be the different divisors of m, we

have

Y>(«*«)= M.

The proof of this theorem follows easily from the last. Write

down all the different divisors,^, d2 ,
•••, dr , of the integer m,

and let

m=mxdx
= m 2d2

==••• =mrdr,

observing that both 1 and m are included among the divisors of

m. Separate the integers of a complete residue system, mod m,

into classes in the following manner. Place in the first class those

integers of the system that have with m the greatest common

divisor dx ; by Theorem 5 they will be ^(wj in number. Place

in the second class those integers of the system that have with

m the greatest common divisor d2 ; they will be similarly <f>(m2 )

1
Disq. Arith., Art. 38. Works, Vol. I. See also p. 75.
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in number. Proceeding in this way it is evident that we shall

have r classes and that each integer of the system will occur in

one and but one of these classes. But the number of integers in

a complete residue system, mod m, is \m\. Hence the total

number of integers in these classes is \m\. Since, however, the

total number of integers in the classes is also

^(mj + <f>(m2 ) + ••• +<£(mr ),

and mXi mv '",mr

are merely dlf d2,'--,dr

in different order, we have

f>(*)' sH«l-
i=l

Ex. Let m = 30. The different divisors of m are

1, 2, 3, 5, 6, 10, 15, 30.

We have then

0(1) +0(2) + 0(3) + 0(5) + *(6) + 0(io) + 0(15) +0(30) = 30,

a result which may be verified by calculating the values of 0(i), 0(2),
• • •> 0(30) » and taking their sum. We have

1 + 1+2 + 4+ 2 + 4+8 + 8= 30.

The above property of the function <f>(m) has been derived

immediately from the original definition of the function, no use

having been made of the expression found for <f>(m) in terms of

m. It completely defines <f>(m) and from it we can derive all the

properties of the function, in particular the expression for <f>(m)

in terms of m. 1

We shall give now another proof of this property of <f>(nt)

making use of Theorems 3 and 4.

In order to bring out clearly the analogy which exists between

this proof and that of the corresponding theorem in the higher

realms which will be given later we shall put no restriction upon

either m or its prime factors as to their sign, although so far as

this proof is concerned merely with rational integers, they may
evidently all be assumed positive without limiting its generality.

1
Dirichlet-Dedekind : § 138.
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Let m=± p x
ei
p2

e* • '

' p r
er

where p!,p2,"',pr are different primes.

Every divisor of m has the form

di= ±p x^p^--'pr fr i)

where fx is one of the numbers o, I, •••
*£,

f2 is one of the numbers o, i, ••• e
2 ,

fr is one of the numbers o, i, ••• er .

We have by Theorem 4

(A) =+(P%H)4>{PtU) '"4>{Prfr
)- 2)

If we let flf f2,"-,fr run through the values o, 1, • • •, e1 ; o, 1, • • •, e2 ;

••• ;o, 1, --',er , respectively, we obtain from 1) all the divisors of

m, and from 2) the corresponding values of <f>(di) whose sum is

1=1

We see therefore that the terms of the series obtained by multi-

plying out the product

P= [#(x) + *(*) + *<*) + ••• + 4>(/> 1
e0] -

are identical with the terms of

I>(rfO

;

»=l

r

that is, P =£<£(</,).
i=l

But

*(i)= i, <t>(p 1 ) = \p1 \-h'-, <f>(Pi
ei) = \Pi\

e>-1
(\Pi\ — i),

whence

*(0 + <£(/>i) + ••• + 4>(/>i
e =

I
/>i

|

e
S

and similarly for the other factors of 3).

Therefore

P=\Pi\ e
*\P 1 \

e*--\pr\ e'=\m\,



THE RATIONAL REALM CONGRUENCES. 49

and hence

±<t>(di ) = \m\.

§ 5. Discussion of Certain Functional Equations and Another

Derivation of the General Expression for <j>(m).

Theorem 7. // m be any integer other than ± 1, whose dif-

ferent prime factors are p. lt p 2 ,
'"> pr, and d any divisor of m other

than dz m, and if we separate all integers of the form

m
Pl,P2 '"Pi

no p being repeated, into two classes, I and II, putting in class I

those such that m is divided by none or by the product of an even

number of the p's, and in class II those such that m is divided by

the product of an odd number of the p's, then exactly as many

integers of the one class are divisible by d as of the other.1

Before proving this theorem it will be well to illustrate its

content by an example.

Let

m= 6o= 22
.3.5.

Forming the above mentioned numbers we have the following

:

^ _ . 60 60 60 , . _

Class 1 : 00, — , — ,
—

; that is, 00, 10, 6, 4.
2.3 2 -5 3-5

_, TT 60 60 60 60 , .

Class II: — , — , — ,
; that is, 30,20, 12,2.

2 3 5 2.3.5'
'°

If now d=io, we see that two numbers of each class are

divisible by 10; that is, 60 and 10 of I, and 30 and 20 of II.

We proceed to prove the theorem, observing that since we are

concerned here only with questions of divisibility and since in

such questions what is true of one associate of an integer is true

of both of its associates, we may without limiting the generality

of our proof assume m,p x , --ypr and d to be positive.

Making this assumption, we see that the positive and negative

terms of the developed product

1 Dirichlet-Dedekind : § 138.

4
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VI (<-&(->);•('-*) >
coincide respectively with the integers of I and II. That is,

denoting by %mlt 2m2 , respectively, the sums of the numbers of

these classes, we have

Let

we shall first prove the theorem for the case in which

C1= €2= ' '

'
== €r= I

J

that is, m is not divisible by a higher power than the first of any

prime.

Setting p xp2
• • • pr= a, we have

a
(

I -7
1 )(

I -7
2
)-( I

-i)= (A- I)^- I)-^- I)

tm 2^ — 2tf
2>

where ^ax,^a2 have meanings corresponding to those of ^mXi ^m2 .

If now b be any positive divisor of a other than a, the number

of the ax terms that are divisible by b is exactly equal to the num-

ber of a2 terms that are divisible by b, for, if we put

a= bq 1q2
•••

q8

where q lt q2,'">q8 are those prime factors of a which do not

divide b, then the ax terms and the a2 terms that are divisible by b

are respectively the positive and negative terms of the developed

product

b(q1— i)(q2 —i) ••' (?•— I). 2)

Moreover, since b=%=a there is at least one prime, q, that di-

vides a but not b ; that is, there is at least one q. Hence there

are exactly as many positive as negative terms in the developed

product 2) and consequently as many of the a/s as of the a2

,

s

are divisible by b.
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The theorem is therefore proved for the case in which m is not

divisible by a higher power than the first of any prime.

We proceed now to prove the theorem for the general case.

Let a, alf a2 retain the meanings assigned above. We have

m=p^p^1
• • p r

er-1
p 1p 2

• • • pr= na,

and it is evident that the integers m lf m2 coincide respectively

with the products nalt na2 . Now let d be any positive divisor of

m other than m and let g be the greatest common divisor of the

two integers

d= gb, n= gc.

We see that b is a divisor of a ; for ca/b is an integer since

3)

ca gca na m

which is an integer, and c is prime to b.

From 3) it follows, since c is prime to b, that, if d= m, then

c=i and b= a. Conversely, if b be equal to a, and hence be

divisible by all prime factors of m, then c must be I, since it is a

divisor of m but prime to b, and hence d= tfk

Excluding, therefore, the case d= m, so that we have always

b=$=a, there are among the integers Oj exactly as many that are

divisible by b as there are among the integers a2 .

Since, moreover, the necessary and sufficient condition that an

integer mls or m 2 , where

m1
= na 1

= gca 1 ,

or m2
= na2

= gca2 ,

shall be divisible by d= gb, is that a1? or a2 , shall be divisible by

b, there are exactly as many of the integers m x divisible by d as

of the integers m 2 .

The theorem is therefore proved.

Many interesting applications may be made of this theorem;

among them are the two following

:
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Theorem 1
8. A) If f(m) and F(m) be two functions of an

integer m that are connected by the relation

Sf(d)=F(m), 4)

where d runs through all divisors of m including m, then

f(m) = ^F(m^) — SF(w2 ), 5)

where mlf m2> run through the values defined in the last theorem.

B) If f(m) and F{m) be connected by the relation

Uf(d)==F(m) 6)

where the product relates to the values of the function corre-

sponding to all the values of d, then

'(jw)= nFky 7)

To prove A it is sufficient to observe that if d be any divisor

of m other than ± m, it is a divisor of exactly as many of the

m/s as of the w 2 's (Theorem 7), and hence, when in 5) we

replace the F's by their values in terms of the /'s from 4), f(d)

will occur exactly as often with the plus sign as with the minus

sign.

Hence all terms in the second member of 5) will cancel except

f(m) which occurs once only. We shall illustrate this by a

numerical example.

Letw=i5. We have

15(1 -i) (1 -i) = 1-3-5 + 15= 1 + 15- (3 + 5),

whence ^m x
=1 + 15,

and 2m 2
= 3 + 5.

Also from 4)

/(i)+/(3)+/(5)+/(i5)=f(i5).

/(i)+/(S) =-P(5),

/(0+/(3) =F(3),

/(i) =F(i).
1 This theorem holds also in the case m = 1, which was excluded in Th.

7, if we assume that in this case there is only a single mh = 1, and no Iff*
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We have now from 5)

/(i 5)=2F(7» 1)-SF(W,2);

for

/(i 5)=F(i) +F(i 5)- [F( 3 ) +F( 5 )]

=/(i)+/(0 +/(3) +/(5) +/(I5)

-(/(i)+/(3)+/(i)+/(5))

= /(iS)-

The proof of B is evidently exactly like that of A. It will

suffice if we illustrate it by a numerical example.

Let w== 15 ; we have from 6)

/(i)/(3)/(S)/(i5)=^(i5),

/(i)/(5) =F(5),

/(i)/(3) =-F(3),

/(i) =F(i).

From 7)

_F(i)F(i S )_
^(3)>"(5)"'

_ /(i)-/(i)/(3)/(5)/(i5)

/(iV(3)-/(0/(S) '

—/(M).

From Theorem 8, A, we can easily deduce by the aid of

Theorem 6 the general expression for <f>(m).

From Theorem 6 we have

where d runs through all divisors of m.

Applying Theorem 8, we have

f(m) = <£(w) and F(m) =
|
m

|,
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and hence

W=^
I
-2^ =

|

OT
|(

I -^)( I -^-
|

)...( I -
r/

i-

|

).

As an example of the use of Theorem 8, B, we give the fol-

lowing :

Let f{m) = p, when m is a power of the prime number p, and

f(m) = i, when m=i or is divisible by two or more different

prime numbers.

We have

n/(<o=m,

where d runs through all divisors of m, from which it follows by

Theorem 8, B, that the quotient

—— = /(m)

is different from I only when m is a power of a prime number,

in which case it is equal to this prime.

For a derivation by another method of the other properties of

the
<f>

functions from the single one that

%+(d)= \nt\ t

see Kronecker, Vorlesungen uber Zahlentheorie, Vol. I, pp. 245,

246.

Also for another independent proof that

+(ofr)»+(a)+(*),

if a be prime to b, see the same, p. 125.

§ 6. ^-Functions of Higher Order.1

The theory of the <£-function may be generalized as follows

:

By
<f>n (m) we denote the number of sets of n integers of a com-

plete residue system, mod m>, such that the greatest common
divisor of the integers of each set is prime to m, two sets being

different if the order of the integers in them be different.

For example, let w= 6; then

1,2,3,4,5,6 1)

1 Cahen: pp. 36, Z7- Bachman : Niedere Zahlentheorie, pp. 91, 93.
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will be a complete residue system, mod 6. All possible sets of

two numbers each that can be formed from the numbers i) are

I, I h 2 h 3 I, 4 i, 5 i,6

2, I 2, 2 2, 3 2, 4 2, 5 2, 6

3, i 3, 2 3, 3 3, 4 3, 5 3,6

4, i 4, 2 4, 3 4, 4 4, 5 4,6

5, i 5, 2 5, 3 5, 4 5, 5 5,6

6, i 6,2 6, 3 6,4 6, 5 6, 6

Of these there are twelve sets the greatest common divisor of

the numbers of each of which is not prime to 6 ; they are

2, 2 ; 2, 4 ; 2, 6 ; 3, 3 ; 3, 6 ; 4, 2 ; 4, 4 ; 4, 6 ; 6, 2 ; 6, 3 ; 6, 4 ; 6, 6.

There are therefore twenty-four sets, the greatest common

divisor of the numbers of each of which is prime to 6. Hence

4>2 (6)=24.

It can be shown that

«^-l*K^Kf)('-Rp)-"( i T.Kp)
(

where plf p2 , '",pr are the different prime factors of m.

The following theorems can also be proved

:

i. If m^p, a prime number, then

<f>n(P) = \p\
n—^

ii. // \m\ > 2, <f>n (m) is even.

iii. If m x
and m2 be two integers prime to each other, then

4>n (mxm2 ) = <£n(wi) <Mw*)-

iv. If d run through all divisors of m,

$<j>n (d) = \m\ n
.

Ex. Let m = 6, and n= 2 ; then

2(6)=62(i-J2)(i-J2)=24 .
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§ 7. Residue Systems Formed by Multiplying the Numbers

of a Given System by an Integer Prime to the Modulus.

Theorem 9. // mly m 2f --,mm be a complete residue system,

mod m, and a be prime to m, then am^ am2 ,
•••, amm is also a com-

plete residue system, mod m.

The integers amx , am2 ,
• •

•

, amm are incongruent each to each,

mod m, for from

ami= amj, modm,

it would follow that, since a is prime to m,

miz==mj, mod w,

which is contrary to the hypothesis that m x,m2,--,mm form a

complete residue system, mod m. The integers am x ,
• • •, amm are,

moreover,
|
m'\ in number. They form, therefore, a complete

residue system, mod m.

Cor. If r1
,r2,---,r4>(m) form a reduced residue system, mod

m, and a be prime to m, then art$ •••,ar^m) is also a reduced resi-

due system, mod m; for arlf
•••, ar^m) are incongruent each to

each, mod m, prime to m and cf>(m) in number.

Ex. Since

— 9, 2, —17, 14, 15, —4, —13, 8, 19, 20

constitute a complete residue system, mod 10, and 3 is prime to 10,

— 27, 6, —51, 42, 45, —12, —39, 24, 57, 60

is also a complete residue system, mod 10. Likewise since

— 9, —17, —13, 19

is a reduced residue system, mod 10.

— 27, —51, —39, 57

is also a reduced residue system, mod 10.

If p be any prime number and a any integer prime to p, it is

evident from the above that there exists an integer a x such that

aaL
= 1, mod p.

We call ax the reciprocal of a, mod p.
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§ 8. Fermat's Theorem as Generalized by Euler.

Theorem io. If m be any rational integer and a any rational

integer prime to m, then a0 (w) ss i} mod m.

Let fit ?2> ' ' '} r
<b(nt) i)

be a reduced residue system, mod m. Then since

afit Of* • • •, arUm) 2)

is also a reduced residue system, mod m, each integer of 2) is

congruent to some integer of 1), mod m, that is, we have

ar1

, modw, 3)

where rf
1
>rj

2
>'",rj

<f>
, m) are the integers 1), though perhaps in a

different order. Since t$v t$^ '"> ruim are the integers 1), we

have

Multiplying the congruences 3) together, we have

a0 (m)P= P, modw, 4)

where P is prime to m, since each of its factors is prime to m.

Hence, dividing both members of 4) by P, we have

o0 (w) ==i, modw. 5)

If m== ± p
n

, where p is a prime, we have

ai\P\-D\P\^^ lf mod/1

, 6)

and, in particular, when m= p

abl-i= Ij mod p. 7)
'

If p be positive, 7) becomes

aP-1 ^!, mod/>; 8)

that is, if p be a positive prime number, and a an integer not divis-

ible by p}
aP'1— 1 is divisible by p. This is the form in which

the theorem was enunciated by Fermat. 1

1 This theorem was published by Fermat in 1670, without proof. Euler

was the first to give a proof. He gave two : Comm. Acad. Petrop. VIII,

1741, and Comm. Nov. Acad. Petrop. VII, p. 74, 1761.
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Ex. i. Let m = i5; a = 2; then <f>(is) =S.

From 5) it follows that

2<f>(m) = 2*= 1, mod 15

;

that is, 256= 1, mod 15.

Ex. 2. Let P = 7; a =— 3-

From 7) it follows that (— 3)
8 =i, mod 7;

that is, 729= 1, mod 7.

Ex. 3. Let

m=zpn = f; a = 2; then <f> (3*) =2-3 = 6.

From 6) it follows that

2
6 be 1, mod 9

;

that is, 64== 1, mod 9.

On account of the great importance of Fermat's theorem, we

shall give for the form 8) a second proof, depending upon the

binomial theorem. If aP^==a, mod/>, 9)

where p is a positive prime, hold for every integral value of a,

then aP'1^ 1, modp

holds when a is prime to p.

We shall show now that 9) holds for all integral values of a.

We see that 9) holds when a=i. If, therefore, we can show

that a sufficient condition that 9) shall hold for a= a1 -\-i is

that it shall hold for a= o x , 9) will hold for all positive integral

values of a. We have by the binomial theorem

(a + 1 )p= op + pav~- ^titzzl}^ + . .
. +'<*-'>"*% + 1.V

'
'

'
t ' 12 "l-2 '••

(/> i) '

From § 10 we know that all coefficients in this expansion are

integers. Hence since p occurs as a factor in the numerator of

the coefficient of every term except the first and last, and, since

the denominators of these terms contain only factors that are

prime to p, the coefficient of every term except the first and last

is divisible by p, and we have

(a4-i)P= aP+i, modp,

for every integral value of a.
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Therefore ((% -f I )
p= of + i, mod p,

whence assuming that 9) holds for a=.a1 ; that is,

0/= ^, mo&p,

we have (a± + i)p^a x + 1, mod/)

;

that is, 9) holds for a= a1
-{- 1, if it holds for a= at . But 9)

holds for 0=1. Hence 9) holds for every positive integral

value of a. Moreover, since every negative integer is congruent

to some positive integer, mod p, 9) holds also for all negative

integral values of a.

Fermat's theorem in the form 8) is an immediate consequence

of the theorem that we have just proved.

§ 9. Congruences of Condition. Preliminary Discussion.

The congruences which we have so far considered may be com-

pared to arithmetical equalities, the values of the quantities in-

volved being given and the congruence simply expressing the fact

that the difference of the two numbers is divisible by the modulus.

We shall now consider congruences which hold only when

special values are given to certain of the quantities involved ; that

is, the values of these " unknown " quantities are determined by

the condition imposed by the congruence; for example, let x be

determined by the condition that its square is to be congruent to

2, mod 7. We have x2 =z 2, mod 7,

and see easily that we must have

xmz or —3, mod 7/

To develop the theory of congruences of condition, it is neces-

sary to introduce the conception of the congruence of two poly-

nomials with respect to a given modulus; thus, if f{xlf x2 , •••,*»)

be a polynomial1 in the undetermined quantities x1,x2 , --,xn with

rational integral coefficients, we say that f(xlf x2 , •••,#„) is iden-

tically congruent to with respect to the modulus m, if all its

coefficients be divisible by m.

1 We shall understand by a polynomial in n undetermined quantities

Xi,x2, ••-,xn a rational integral function of Xit x2, ••-,xn whose coefficients,

unless the contrary be expressly stated, are rational integers.
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This relation is expressed symbolically by

f(x1,xa,---,xH)=o, modw. 1

Two polynomials f(xly x2 ,
•••, xn ) and 4>(xlf x2f '-,xm ) are said

to be identically congruent to each other, mod m, if their differ-

ence be identically congruent to o, mod m, or what is the same

thing if the coefficients of corresponding terms in the two poly-

nomials be congruent; that is, in symbols

f(x1,x2,'~,xH)==<f>(x1,x2,~-,xn ), mod™,

if f(x1,x2,-.,xn)—<l>(x1,x2,--,xn)=o, modw.

For example, we have

8x2— 2xy -f- 6y+ I= 2x2 + xy— 2, mod 3,

since 6x2— 3*3' -f-6y— 3=0, mod 3,

or, in other words, since

8= 2, — 2=1, 6=0, and 1=— 2, mod 3.

If f(xlt x2 ,
•••', xn ) ^<f>(xlf x2y '-',Xn), mod m, and alf a2 , ~,an

be any n integers, then evidently

f(a1,a2,'--,an)===<l>(a1,a2,--,an). modiw.

If, however, all the coefficients of f(xlf x2 , •-,xn ) be not congru-

ent, mod m, to the corresponding coefficients of <f>(xlf x2t -",xn ),

we do not have in general

f(alt a2f ••-,aw)=^(a 1,a2 ,
• -,o»), mod in, 1)

for ever>- set of integers olf a2,
• • •, a*. The demand that x

x , x2 ,
• •, .r„

shall have such values and only such that 1) will hold is expressed

by writing

f{xXi x2i ~-,Xn)=4>(xli x2,---yXn), mod ;;/. 2)

Any set of integers satisfying 1) is called a solution of 2).

The determination of all such sets, or the proof that none exist,

is called solving the congruence 2). It is customary to say, how-

ever, that a congruence is solvable or unsolvable according as it

has or has not solutions. We call 2) a congruence of condition.

1 The symbol == is read " is identically congruent to."
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If alf a2,-",an and b r,b2,---,bn be two sets of n rational in-

tegers and

a2 ?=b2

k mod m, 3)

then by § 1, v,

f(a lf a2
,-", a„) = f(b lt b2 , —,V) a mod M,

and <^(a 1? a2 , •••,o„)=<^(&1 ,
&2 , ••,&,), modw.

Hence, if a x , a 2 ,
• • •, a„ be a solution of 2), blf b2l •••,&» is also a

solution. Two solutions so related are, however, looked upon as

identical.

In order that two solutions may be counted as different, it is

necessary and sufficient that there shall be in the one solution a

value of at least one unknown which is incongruent, mod tn, to

the value of the same unknown in the other solution ; that is, the

n relations 3) must not hold simultaneously.

It is evident from the above that in order to solve any con-

gruence, as 2), it is sufficient to substitute for the unknowns the

\tn\ n sets of values obtained by putting for each unknown the \tn\

numbers of a complete residue system, mod m, and observe which

values of f(xlf x2 , -",xn ) so obtained are congruent to the corre-

sponding values of <f>(xlf x2J •••,.r„), mod m. There being only a

finite number, |w|", of possible solutions, we can by this process

always completely solve any given congruence. If the congruence

have the form

f(xx,x2 , •••,jt„)=o, mod mi,

and a lf a2 ,

"-
9 Om be a solution, then f{xx,x2 ,

•••
i xn ) is said to be

zero, mod m, for these values of xx,x2 ,
'-'

f
xn .

Ex. Let us consider the congruence

f(x,y) =2x*— xy+ y— 2f + 1=0, mod 3.
1

4;

1
In order to avoid confusion, we shall use throughout this book the

symbol = instead of as to denote algebraic identity.



62 THE RATIONAL REALM CONGRUENCES.

Putting for x and y, the numbers — i, o, I of a complete residue system,

mod 3, we obtain nine values of / (x, y).

/(0,-l)=-2, /(l,_l)=I, /(_!,_!)=_!,
/(o, o) = i, /(i, o) =3, /(— i, o) =3,
/(o, i) =o, /(i, i) si, /(-i, i) =3,

Four of these values /(o, i), /(i,o), /(— i,o), and /(— i, i) are con-

gruent to o, mod 3. Hence the solutions of 4) are:

.r= 1, y==o
x==—i, y==o

t

mod 3.

By the degree of a polynomial, mod m, we shall understand the

degree of the term, or terms, of highest degree, whose coefficient,

or coefficients, are not divisible by m.

A reduced polynomial, mod p, is one whose coefficients are all

numbers of the residue system, 0,1, •••,/>— 1.

§ 10. Equivalent Congruences.

Addition and Multiplication Transformations. Two congruences

A Oi, *%* '
"4 ** )' f»(f1* *%,

••'*, **) j
mod m, 1

)

and
<t>1

(x
1
,x2,---,xn )=<f>2 (x1

,x2,'-',xn),modm, 2)

are said to be equivalent when every solution of the first is a solu-

tion of the second, and every solution of the second is a solution

of the first.

In solving a congruence, as in the case of algebraic equations,

we proceed under the assumption that a solution exists and look

upon the congruence as an identity in the values of x1} x2 , --,xn

that satisfy it, though as yet unknown. Looking then upon 1)

as an identity in these unknown values of xx,x2 , --,xn , we con-

sider what operations can be performed upon 1 ) that will produce

another identity 2) such that each of these identities is a neces-

sary consequence of the other. Operations of which this is true

we shall call reversible operations.

Referring to §1, we see that there are two such operations:

first, if 1 ) be the given congruence and

F
x
(x1,x2,--,xn)=F2 (x1,x2

,'-'
i
xn ), modw, 3)
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be any identical congruence, mod m, in xly x2 , -",xn , we can add

3) member by member to i), obtaining

+Fs(x1,xt,— fxn), modw,

a congruence equivalent to i).

By means of this transformation, we can transpose any term

with its sign changed from one member of a congruence to the

other, and can thus reduce any congruence, as i), to an equiva-

lent congruence of the form

f(xlf x2 , '•,x„)==o, modm, 4)

whose second member is o. We shall hereafter assume the con-

gruences with which we deal to have been reduced to this form.

We may also by this transformation reduce the coefficients of

f(xlf x2 , '-',Xn) to their smallest possible absolute values, mod m,

and thus lessen the labor of solving the congruence.

Ex. The congruence

14X4— wx3
-f- zx

2+ 7X— 12 ==0, mod 7, 5)

is equivalent to the congruence

— 3** -f- 2X
2+ 2 == o, mod 7,

which has two roots xa— 1 or 2, mod 7, and these are therefore the

roots of 5).

A second operation which, when performed upon any congru-

ence, as 1) or 4), yields an equivalent congruence, is the multipli-

cation of both members of the congruence by any integer, a, prime

to the modulus ; that is, the congruences

f(xx ,

x

2,---,xn )==B o, mod m,

and &f(xv x2>
'"> xn) =0, mod m,

where a is prime to m, are equivalent.

Conversely, we may divide all the coefficients of a congruence

by any integer prime to the modulus, obtaining an equivalent

congruence.

Ex. The congruences

I5^y— 2ixy -f 3y
2+ 9 == 0, mod 35
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and S^y— 7xy + y
2+ 3= 0, mod 35

are equivalent.

As a special case of the multiplication transformation, as we

shall call the second of the above transformations, we have the

multiplication of the congruence

f(x1,x2,---,xn)=o, modm,

by — 1 ; that is, the change of sign of each of its coefficients.

§ 11. Systems of Congruences. 1 Equivalent Systems.

So far we have considered only single congruences ; that is, the

unknown quantities are subjected to a single condition. We can,

however, as in the case of algebraic equations, subject them to

two or more conditions simultaneously; that is, xltx±i "*,xn may

be required to satisfy simultaneously the congruences

fi(x1,x2J ---,xn)^o, modWi,

ft Oi, *2>
* '

'> *n) = o, mod m2 ,

fr(*is *»••'• *j *n) s= o, mod mr .

By a solution of such a system of congruences we understand

a set of values of x\,x2,'-',xn which satisfy simultaneously all

the congruences.

Two solutions, a ly a2 ,
~-

y
an and b lt b2 ,

•••,&«, are considered dif-

ferent when and only when the nr congruences

a 2
= b 2

^,mod m& mod m 2 ,
••-, mod m,

an=bn ~

are not satisfied simultaneously.

Two systems of congruences are said to be equivalent when

each solution of the first system is a solution of the second and

each solution of the second is a solution of the first. It is evident

that any one of the congruences of the system can be transformed

1 See Stieltjes: Essai sur la theorie des Nombres.
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into an equivalent congruence by the transformations of the last

article and the system so obtained will be equivalent to the origi-

nal system. If the moduli be the same, we can obtain an equiva-

lent system by adding two congruences and taking the new con-

gruence together with the r— 2 of the original ones not used and

either one of those used. Thus the system

/iC*if*i» •••»•*•) B *i modw, ) x

is equivalent to the system

fx C*u *»'•"> x* ) = °> mod m,
f1 (x1

,x2 , -,xn ) +f%{x*>x9,—,*%) =0, modw,

or, more generally, if ax,a2 be any two integers prime to m, 1) is

equivalent to the system

fx (xx,x2 , •••,*„) ==0, modw,

oJi(xlt x2t •,xn ) -\-a2f2 (xlf x2 , •••,#„) =0, modw.

Ex. Let the given system be

4-^— 3? + 7*= 5
]

$x + y— 3z==2 L mod 17. 2)

x— 43/— s==i
J

Multiplying the third congruence first by — 4 and then by — 5, and

adding it to the first and second respectively, we obtain the system

I3y + ii2= il
2iy-j- 2z=— 3 Lmodi7, 3)

' *— 43?— 2 == 1 J
that is equivalent to 2).

Adding the first and second congruences of 3), we obtain the equiva-

lent system

132=— 2I
2iy-f 22=— 3 L mod 17.

x— 4y— z= 1 J

The congruence 132^— 2, mod 17,

has the single solution z ==— 8, mod 17,

that substituted in 2iy-|-2.s==— 3, mod 17,

gives yas— 1, mod 17.

Substituting these values of y and 8 in

#— 4y — z ;= 1, mod 17,

5
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we have x^6, mod 17.

We obtain therefore as a solution of the given system

x == 6, y ==— 1, 8 ess— 8, mod 17,

a result easily verified by substitution in the original system. The method
of solution shows that this is the only solution (see §13).

§ 12. Congruences in One Unknown. Comparison with

Equations.

The general congruence in one unknown has the form

/(x) — a xn + &xxn-x + • • • + an= o, mod m. 1

)

If r be a rational integer such that

f(r) =0, modm,
r is called a root of 1).

The degree of 1) is, as has been said, the degree of the term

of highest degree whose coefficient is not divisible by m.

Such a congruence presents many analogies to the equation

a xn + ax
xn^ + ••• + <zn= o; 2)

for example, to the addition to both members of the equation of

the same function of the unknown corresponds the addition to

the members of the congruence of any functions of the unknown

which are identically congruent with respect to the modulus, and

to the multiplication of the equation by any quantity not a func-

tion of the unknown corresponds the multiplication of the con-

gruence by any integer prime to the modulus.

If m be a prime number the congruence presents still other

striking analogies with algebraic equations, these analogies being

absent in the case of a composite modulus.

For example, consider the two congruences of the second

degree

O— i)0— 3) so, mod 7, 3)

and (x— i)(.r— 3) =0, mod 12. 4)

We see that 3) has two roots, 1 and 3, while 4) has four roots,

1, 3, 7 and 9; that is, 3) has a number of roots equal to its degree,

while 4) has more roots than its degree.

The analogy with algebraic equations in the case of the prime
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modulus is as evident as is the lack of analogy in the case of the

composite modulus. We shall see later that no congruence of the

form 1) with prime modulus can have more roots than its degree.

The reason for this difference in the case of the above example

is seen to be that, if a be any integer, the product (a— i) (a— 3)

is divisible by a prime number, as 7, when and only when one of

its factors is divisible by this prime, a statement no longer true

when the modulus is composite ; that is, a product is zero, mod m,

when and only when one of its factors is zero, mod m, if m be a

prime number, but not otherwise. We shall, therefore, in the

discussion of the general congruence of the form 1 ) confine our-

selves first to the case in which the modulus is a prime and shall

then show that the solution of any congruence of the form 1)

with composite modulus can be reduced to the solution of a series

of congruences of the same form with prime moduli.

Although striking analogies between congruences and algebraic

equations have already been pointed out, while others will be

observed later, it is important to note an essential difference

between them.

In the case of an algebraic equation it is the same thing to

say that all the coefficients of an equation are zero or that it is

satisfied by every value of the unknown quantity, each of these

properties implying the other.

In the case of congruences, however, although, if the coefficients

be all congruent to zero with respect to the modulus, the con-

gruence is, of course, satisfied by any integral value of the

unknown, on the other hand, it is not true in general that, if a

congruence be satisfied by all integral values of the unknown, that

all of its coefficients are divisible* by the modulus.

For example, as is easily seen from Fermat's theorem, the

congruence

xp— .r==o, modp,

where p is a prime, is satisfied by every integral value of x; but

its coefficients are not all divisible by p. The reason for the dif-

ference will be shown later. We shall see also that, although a
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congruence of the form i ) with prime modulus can not have more

roots than its degree, it can have less; for example, the three

congruences

x3— 2x2— x -\- 2 == o, mod 5,

x3 + 2*2— 2x -\- i =3 o, mod 5,

x3 + 4X2 + x -f- 1 33= o, mod 5,

that are all of the third degree and have the same prime modulus,

5, have respectively three roots, 1, — 1, and 2, one root, — 2, and

no root.

Before taking up the general congruence in one unknown, we

shall consider that of the first degree.

§ 13. Congruences of the First Degree in One Unknown.

The most general congruence of the first degree can be written

in the form

ax^=b, mod m.

We shall consider first the case where a is prime to m.

Theorem ii. The congruence

\ ax==b, modra,

where a is prime to m, has always one and but one root.

If we put for x successively the \m\ integers m lf m2 , '••,mm of

a complete residue system, mod m, we obtain \m\ integers amlf am 2 ,

~-,amm , that also -constitute a complete residue system (Th. 9),

and it is evident that one and but one of these integers, say ami,

will be congruent to b, mod m. Hence the congruence has always

one and but one root, Wj. We can evidently solve any congru-

ence of this form by this method.

Ex. Let the given congruence be

3*3=— 5> mod 14. 1)

Taking as a complete residue system, mod 14, the integers o, 1, 2, 3, •••, 13,

and putting x equal to these values in succession, we have

$x = 6, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39.

The only one of these integers that is congruent to— 5, mod 14, is 9 ; that is,

3-3 33=— 5, mod 14.

Hence ^==3, mod 14, is the single root of 1)
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By means of Fermat's theorem we can find a general expres-

sion for the root of a congruence of the above form.

Since a is prime to m, we have

a0(m) == I} modm,

which multiplied by b gives

ba<t>
(m} ^b, modm,

or aba(P (m)
- 1 ^b, modm.

Hence £?a0 (m)_1 is the root of the congruence

ax^b, modm,
where a is prime to m.

This is one of the few cases in the theory of numbers where the

quantity sought can be expressed as an explicit function of the given

quantities.

Ex. The root of

3*==— 5, mod 14,

is jt==— 5-3*
(14)_1

, mod 14;

that is, *===— 5-3
5 ==— n==3, mod 14.

We shall now consider the general case where a is any integer

that may or may not be prime to m.

Theorem 12. The necessary and sufficient condition for the

solvability of the congruence

ax^E=b, modm,

is that b shall be divisible by the greatest common divisor, d, of a

and m, and when this condition is fulfilled, the congruence has

exactly \d\ incongruent roots.

Let a= axd and m= mxd, where a x is prime to mx . From

ax==b, modm, 2)

we have a
x
dx= b + km

xd.

Hence b must be divisible by d; that is, b= b xd is a necessary

condition that 2) can be solved. This gives

a xdx= b xd -\- kmxd, 3)

or a xx= b x , modm^ 4)
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Since a x
is prime to m

x , 4) has a root (Th. 11). Moreover,

all roots of 4) are also roots of 2) ; for from 4) follows 3) and

hence 2). Therefore the divisibility of b by d is a sufficient as

well as necessary condition for the solvability of 2). We see also

that not only are all roots of 4) roots of 2), but all roots of 2)

satisfy 4) and are therefore integers of the form r + km x , where

r is a root of 4). We ask now how many of these roots are in-

congruent to each other, mod m; that is, how many incongruent

roots has 2) ? Any two roots, r + k±mv r + k2m x , of 4) are con-

gruent, mod m, when and only when

r -\- k 1m x
— (r -f- ^wj — nm,

where n is an integer ; that is, if

( kx
— k2 )m 1

— nm xd,

or k x
— k 2

= nd,

or kx^k2 , modd.

Hence, in order that the roots of 2) shall be incongruent, it is

necessary and sufficient that the values of k shall be incongruent,

mod d. If we put, therefore, for k the \d\ integers of a complete

residue system, mod d, for example, o, 1,2, • • •, \d\ — 1, we shall

obtain all the incongruent roots of 2), namely

r, r + mt, r + 2wx , •••,r+(|d| — 1)m x .

They are evidently \d\ in number.

Ex. Consider the congruence

1 2.x^— 20, mod 56. 5

)

Here d — 4. Dividing by 4 we have

3*=— 5, mod 14,

a congruence whose root has already been found to be — 11. Therefore

the roots of 5) have the form — 11 -{- 14&, and are four in number.

They are — 11, 3, 17 and 31.

§ 14. Determination of an integer that has certain residues

with respect to a given series of moduli.

Let us consider first the case in which the required integer has

to satisfy two such conditions ; that is, we are to determine x so

that we have simultaneously
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x= a x , modwu i)

and x= a
2 , modm2 . 2)

All integers satisfying 1) have the form x= ax -\-mxy, where y

is an integer. Since x must also satisfy 2), y must satisfy the

condition mxy= a2
— ax , mod w,. 3)

By Th. 12 for 3) to have a solution, it is necessary and sufficient

that a2
— a x shall be divisible by the greatest common divisor, d,

of m x and m 2 . If this requirement be fulfilled and y be one

root of 3), every root, y, of 3) must satisfy the condition

that IS, y=yQ
Jr -jyv

where y x is any integer. All integers satisfying both 1) and 2)

have therefore the form

mm
x =a x + m xy + —^yx \

. . .,
m,m„

that is, x= ax + m xy , mod *

.

Hence if x be any integer satisfying both 1) and 2), all and only

those integers satisfy both 1) and 2) that are congruent to x with

respect to the least common multiple of the moduli of 1) and 2).

By an easy extension of this method we obtain the common
solution, if any exist, of the n congruences

x==a x , modwj,
x==a2 , mod w 2 ,

4)

x^=an , mod ///„,

and we see that, if x be an integer satisfying all these congru-

ences and / the least common multiple of the moduli,

.r == x , mod /,

gives all the common solutions of the system 4). The general
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problem of determining whether any given system of congruences

of the form ax^=b, mod m, have common solutions and of find-

ing them, if they exist, can be solved by the above method. When
the coefficients of x are prime to the moduli the congruences can

evidently be reduced to the form x=c, mod m, and we have the

case just treated. If the moduli be prime each to each,

/= m1m2
•" mn

and the congruences 4) always have a common solution.

We shall now give another solution of this problem for the

special case last mentioned. This solution is interesting on ac-

count both of its symmetry and some important deductions that

can be made from its form. W7

e have then to determine the

common solutions of the congruences 4) , the moduli m lf m2 ,
•-, mn

being prime each to each.

We determine first for each modulus, mi, an^auxiliary integer,

bi, such that bi is congruent to 1 with respect to the modulus nti

and is divisible by each of the other moduli, and hence by their

product ; that is, we determine blf b2,--,bn so that

bx =i, modm^ and ^= 0, mod m 2m 3
•••#»«,

&2 ==i, mod w2 , and b2= o, mod m 1m s
• • • mn ,

b n=i, modmn , and bn=o, mod m 1m 2
• • • mn_^.

It is evident that this can always be done, for we have in the case

of b x
from the second condition b 1

= tn2m 3
-- mnclf and it only

remains to determine a value for ct in accordance with the

condition

m2mz
- - - mnc 1 mm 1, mod mlf

that is always possible since m2m s
• • • tjtn is prime to mx .

Having found these auxiliary integers, we put

r= a 1b 1 + a2b2 -f ••• + anbn ,
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and shall show that the common solutions of 4) are the integers

satisfying the congruence

jrasr, mod mxm 2
• • • m„. 5)

If x satisfy 5), then

jir= r, mod mi, 6)

and, since all the auxiliary integers except bi are divisible by mi,

from 6) it follows that

x= ciibi, mod Mi,

and hence, since bi^i, mod m^,

we see that .r==ai, mod m^

Hence every integer, that satifies 5), satisfies each of the con-

gruences 4). Moreover, every integer, that satisfies each of the

congruences 4), satisfies 5), for, if x be such an integer, then

from

x ==cii, mod nii,

and r= di, modwj,

we see that x — r= o, modWij

that is, x — r is divisible by each one of the moduli mlf m2 ,
• • •, tnn ,

and hence, since they are prime to each other, by their product.

Therefore x ==r, mod m1m2
••• mn . Hence the integers satis-

fying 5) are all the common solutions of 4). It will be observed

that the auxiliary integers b x,b2,-",bn are entirely independent

of a1} a2 , ••,an , being dependent only on the moduli.

Ex. It is required to find the common solutions of the congruences

x==2, mod 11, x===4, mod 15, x==9, mod 14.

To calculate the auxiliary integers bi, b2 , b3, we have

&x = 2ioci==i, mod 11,

fr2 =i54c2 =i, mod 15,

b3 = 165^3^ 1, mod 14,

and hence Ci==i, modn, ^ = 210,

c2^ 4, mod 15, £2 = 6i6,

cz ^g, modn, & 3 =i485.

Therefore r= 420 + 2464 + 13365 = 16249,
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whence ;r== 16249, 11^2310^

or x^yg, mod 2310,

a result that is easily verified.

We observe now two important facts concerning r, that are

direct consequences of the symmetrical method of its formation.

First, if for alt a2,---,an be put the integers of complete residue

systems with respect to the moduli m 1,m2 , •••,*»», respectively, the

resulting values of r form a complete residue system, mod /, for

we obtain thus |/| values of r and they are incongruent each to

each, mod /. To show this, let two values of r be

r' as a 1

f

b 1 + a%% + * • • + CLn'bn,

and r"= a x"b x + a2"b2 + • + *•%*

where we do not have simultaneously

a x
' ss a/', mod m lf a2

'= a2
", mod m2 ,

••, a*'ss an", mod mn ;

that is, in order that the two values of r be different we must

have at least one of the a"s, such as a/, in r' incongruent, mod mi,

to the corresponding a", a/', in r".

Let at sfs a" , mod m%.

If r'= r", mod/,

it would follow that r'^ r", mod Wi,

and hence also ai'bi^=ai"b{, mod w»,

or, since 5i=i,modw{,

ai'^ai", mod Wi,

that is contrary to our supposition. The two values of r are

therefore incongruent with respect to the modulus /.

In the second place, if we select from the system of values of r

just formed those which are formed by putting for alf a2 ,---,a„,

the integers of reduced residue systems with respect to the

moduli mlfmv -••,tnn respectively, the resulting values of r form

a reduced residue system, mod /. We have already shown that

these values of r are incongruent each to each, mod /. It re-

mains to be shown that all and only those values of r that are

prime to / occur in the system as formed. If one of these values
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of r, as r', =a 1

f
b 1 + • • • + an'bn , have a prime factor, p, in com-

mon with I, then some one of the moduli, as mi, must have this

factor in common with r, and since

r'= ai, mod Mi,

ai and nti would have the common factor p, which is contrary to

the hypothesis that «#' is an integer of a reduced residue system,

mod mi.

Hence all values of r obtained above are prime to /. More-

over, when a value of r, as r', is prime to /, a/, a2 , '-,an are each

prime to their respective moduli, for, if any a, as a,-', have a factor

p in common with its modulus, then since

r'= a/, mod Wi,

r' would have the factor p in common with m\%
and hence with /.

Hence all values of r, that are prime to /, occur in the above sys-

tem, and it is therefore a reduced residue system, mod /.

Ex. Let mi =6, m 2 = 5,

we have bx = 5C1& i, mod 6,

and b2 = 6c2 ^=i, mods,

whence Cis=5, mod 6,

and c2^ i, mod 5.

Then bx = 25, and b2 = 6,

whence r = 2501 -)- 6a2 .

Putting for ai the values 1, 5 and for a2 the values 1, 2, 3, 4, that is,

the integers of reduced residue systems, mod 6, mod 5, respectively, we
have for the resulting values of r 31, 37, 43, 49, 131, 137, 143, 149, that,

being all prime to 30 and in number 0(30), = 8, constitute a reduced resi-

due system, mod 30.

This method of forming a reduced residue system shows us at

once that the number of integers in such a system, mod m1m2
• mn,

where m 19 m2 , ••-,

m

n are prime each to each, is equal to the prod-

uct of the numbers of the integers in the reduced residue systems

for each of the moduli tnlt m2 ,
• • •, mn .

We obtain therefore a new proof of Th. 4 ; that is, that

4>(m xm2 mn )=cf,(m1 )<l>(m2 ) <f>(m»),

where m x,m2 , '",mn are prime each to each.
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We shall proceed to the discussion of the general congruence

of the wth degree in one unknown with prime modulus and shall

first develop briefly the theory of the divisibility of polynomials

with respect to a prime modulus.

§ 15. Divisibility of one Polynomial by another with respect

to a Prime Modulus. Common Divisors. Common Multiples.

If p be any rational prime number we have the following

definition: A polynomial, f(x), is said to be divisible with respect

to the modulus p by a polynomial <f>(x) when there exists a poly-

nomial Q(x) such that

f(x)mQ(x)*(x), modp.

We say that <f>(x) and Q(x) are divisors or factors, mod p, of

f(x), and that f(x) is a multiple, mod p, of <f>(x) and Q(x).

We also say that /(•*") is resolved, mod p, into the factors <f>(x)

and Q(x). The degree of a polynomial, mod p, is the degree of

the term of highest degree whose coefficient is not divisible by p.

The sum of the degrees of the factors of f(x) is evidently equal

to the degree of f(x).

Ex. It is easily seen that

x* + 3xA— 4*
3 + 2= (2X2— 3)(3x*— *2+ 1), mod 5.

Hence 23?— 3 and 3xs— x2

-f- 1 are divisors, mod 5, of x5 + 3**— 42* + 2.

We have as direct consequences of the definition of divisibility

:

i. // f± (x) be a multiple, mod p, of /2 (^') and f2 (x) be a mul-

tiple, mod p, of f3 (x), then f±{x) is a multiple, mod p, of fs (x) f

or more generally, if each polynomial of the series f1 (x), f2 (x),

'">fn(x) be a multiple, mod p, of the one immediately following,

then each polynomial of the series is a multiple, mod p, of all that

follow.

ii. // ft (x) and f2 (x) be multiples, modsp, of f{x), then

f\{x ) +/2(-r ) and fi_(x) — f2 (x ) are multiples, mod p, of f(x),

or more generally, if fx (x) and f2 {x) be multiples, mod p, of

f(x), and F 1 (x),F2 (x) be any two polynomials, then F
1 (x)f1 (x)

-f- F2 (x)f2
(x) is a multiple of f(x).

If two or more polynomials f1 (x),f2 (x),---,fn (x) be divis-

ible, mod p, by a polynomial <f>(x), <f>(x) is said to be a common



THE RATIONAL REALM CONGRUENCES. JJ

divisor, mod p, of fx (x),f2 (x), •••,/„(». If a polynomial f(x)

be a multiple, mod p, of two or more polynomials <£i(-r),<k>(-l')>

•,<f>„(x), f(x) is said to be a common multiple, mod p, of

§ 1 6. Unit and Associated Polynomials with Respect to a
Prime Modulus. Primary Polynomials.

We ask now whether there exist polynomials that with respect

to a modulus p divide all polynomials. Evidently those have this

property that are of degree o and are ^ o, mod p ; that is, the ra-

tional integers not divisible by p, for they are divisors, mod p, of I

and i divides every polynomial. Furthermore, these are the only

polynomials having this property, for no polynomial, f(x), of

degree higher than the oth can divide, mod p, all polynomials, for

it can not divide i, since then the sum of the degrees of the

divisor and the quotient, mod p, would be greater than o, the

degree of i.

We call the rational integers, excluding those divisible by p, the

unit polynomials, mod p, or briefly, units, mod p, and since two

polynomials that are congruent, mod p, are considered as identical,

we can take as the units, mod p, the integers of any reduced res-

idue system, mod p, for example, I, 2, •••,
\p\
— i.

Thus the unit polynomials, mod 7, are 1, 2, 3, 4, 5, 6.

Two polynomials which differ only by a unit factor, mod p, are

called associated polynomials and are looked upon as identical in

all questions of divisibility, mod p.

If two polynomials, f1 (x), /2 (*"), are eacn associated, mod p,

* with a third polynomial, they are associated with each other; for if

f1(x)=af3 (x), modp, 1)

and f2(x)=bf3 (x), modp, 2)

where a and b are units, mod p, then, multiplying 2) by b lf the

reciprocal, mod p, of b, we have

btft00mf9(x), modp,

and hence from 1)

f1(x)=ab 1f2 (x), modp,

where ab 1 is a unit, mod p.



yS THE RATIONAL REALM CONGRUENCES.

Two polynomials, that are associated, mod p, are evidently of

the same degree and each is a divisor, mod p, of the other.

Conversely, if two polynomials be each divisible, mod p, by the

other, they are associated.

Two polynomials that have no common divisor, mod p, other

than the units are said to be prime to each other, mod p.

Any polynomial, f(x), has \p\
— I associates, mod p. Of these

one and only one has as the coefficient of its term of highest

degree i. This one is called the primary associate, mod p, of

f(x). For example, the six polynomials

x3 -\-2x—-3, 2x3 + 4X— 6, 3^r3 + 6x— 2,

4x3 + x— 5, 5^3 + 3.r— 1, 6x3 + 5x— 4,

are associated, mod 7, and x3 + 2x— 3 is the primary one.

§17. Prime Polynomials with respect to a Prime Modulus.

Determination of the Prime Polynomials, mod p, of any Given

Degree.

A polynomial that is not a unit, mod p, and that has no divisors,

mod p, other than its associates and the units, is called a prime

polynomial, mod p.

If it has divisors, mod p, other than these it is said to be com-

posite, mod p.

To find the primary prime polynomials, mod 3, of any given

degree we may proceed as follows, considering all polynomials

to be reduced. All polynomials of the first degree are evidently

prime. Hence primary prime polynomials of the first degree,

mod 3, are three in number, namely

x, x -\- 1, x -f-2.

The reduced primary polynomials, mod 3, of the second degree

are nine in number, namely

X2
,

X2 + X, X2 + 2X,

X2 +I, X2 + X-\-l, X2 -\-2X+I,

X2 + 2, X2 + X + 2, X2 -^-2X-\-2.

From the three primary polynomials of the first degree, we

can form the six composite polynomials of the second degree
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.i-
2= X2

,
x (x + I ) = x- + X,

(x + i) 2 ==x2 + 2x + i, ".r(^+ 2)=^r2 + 2jr, mod 3.

These being the primary composite, polynomials, mod 3, of the

second degree, we see that

X2 +I, X2 + X + 2, X2 + 2X + 2,

are the primary prime polynomials, mod 3, of the second degree.

In like manner we see that there are nineteen composite poly-

nomials of the third degree, mod 3, and hence eight prime poly-

nomials of the third degree, mod 3, since there are in all twenty-

seven reduced primary polynomials of the third degree, mod 3.

It can be shown that, when n is greater than 1, the number of

prime polynomials, mod p, of the nth. degree is

y
n n n

-
(p

n — 2/^ -f 2/^2 — 2/^3 ^
) f

where qx,q2i<lz, "> are the different prime factors of n.

This expression being always different from o, it follows that

there exist prime polynomials, mod p, of any given degree. 1

§ 18. Division of one Polynomial by Another with Respect

to a Prime Modulus.

Theorem 13. // f(x) be any polynomial and <f>(x) be any

polynomial not identically congruent to o, mod p, there exists a

polynomial Q(x), such that the polynomial

f(x) — Q(x)4>{x)==R{x), modp, 1)

is of lower degree than <f>(x).

The operation of determining the polynomials Q(x) and R(x)

is called dividing f(x) by <f>(x), mod p. We call Q(x) the quo-

tient, and R(x) the remainder in the division, mod p, of f(x) by

<f>(x). We shall prove the existence of Q(x) andi?(^r) by giving

a method for their determination.

1 H. J. S. Smith : p. 153. Borel et Drach : pp. 49, 50. Bachmann

:

Niedere Zahlentheorie, pp. 372, 373.
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Let /(*) = a xn + a,*"-1 + • • • + on ,

4> (x) = b xm + hi**-* -\ h bm

be any two polynomials and let

& =j=o, mod p.

We shall consider first the case in which b is I, and shall then

show that the general case can be reduced to this one. Since b

is i, we can divide f(x) by <f>(x) as in ordinary division until we

get a remainder R(x) of lower degree than <f>(x), the quotient

being Q(x). We have then

from which follows at once i).

We can now reduce to this particular case the general case in

which b has any value not divisible by p. Let c be the recip-

rocal, mod p, of b ; then

c </>0) ==</>i 0')> rnodp, 2)

where
<f> x

(x) is a polynomial the coefficient of whose term of

highest degree is 1 when reduced, mod p. Dividing f(x) by

<f) 1 (x) as above, we have

f{x)^Q{x)4> 1 {x)+R{x), modp,

and hence, making use of 2),

f(x)mc Q(x)^(x)+R(x), modp,

where c Q(x) andi^(^r) are the quotient and remainder required. 1

The above theorem plays the same role in the theory of the

divisibility of polynomials with respect to a prime modulus that

Th. A does in that of rational integers.

Ex. Let it be required to divide, mod 7,

f{x) = 5X
S— 2Xt -{-2XS— 5X1i + 2X+I,

by <f>(x)=3xB + x*—$x —2.

1 See also Cahen : p. 70, Borel et Drach : p. 33, and Bachmann : Niedere
Zahlentheorie, p. 368, concerning the division of one polynomial by another

with respect to a prime modulus..
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Since 5 is the reciprocal, mod 7, of 3, we have

0iO) =50O) =.r8 + 5*
2 + 3*— 3, mod 7. 3)

Dividing /O) by 0iO) as in ordinary algebraic division, we have

Sx
5— 2jt

4 + 2X3— sx
z + 2x Jri — (sx

2— 27X + 122) (V + 5** + 3* — 3)

= —519^— 445^ + 367,

whence, reducing coefficients, mod 7,

5jt
5— 2*4 + 2X3— 5^-

2 + 2X + 1 — (— 2X2 + * + 3) (** + 5^ + 3*— 3)

^— *2 + 3^+3, mod 7,

or, making use of 3),

5*
3— 2x* + 2X3— sx

2 + 2x + 1 — 5 (— 2X2 4- * + 3) (3-** + x2— sx — 2)

=— «" + 3* + 3, mod 7

;

that is,

j^— a**4-2jr*-f- 5«*+ar+ i—(— 3X2— 2x + 1) (3^ + ^— 5*— 2)

=— x2 + 3x + 3, mod 7,

where — 3X2— 2X + 1 and — .r
2
-f 3* + 3 are the required polynomials

Q(x) and R(x).

§ 19. Congruence of two Polynomials with Respect to a

Double Modulus.

Two polynomials, f±{x), f2 (x). are said to be identically con-

gruent to each other with respect to the double modulus p, <f>(x),

where p is a prime number and <f>(x) a polynomial, if their differ-

ence, fx
{x) — f2 {x), is divisible, mod p, by <f>(x); that is, in

symbols

/*(*)»/,(*), modd/>, 4>(x), 1)

if A(*)— /,(*) £§(?(*)*(*), modp, 2)

or, in other words, if

AC*)—U(x)=*Q{x)*{x)+F{xy.p, 3)

where Q(x) and F(x) are polynomials.

It should be observed that 1), 2) and 3) all express exactly the

same relation between the polynomials f1 (x), f2 {x) and <f>(x)

and the prime number p, but, just as in the case of congruences

between integers, 1) places this relation before us in a more

illuminating manner than does either 2) or 3).

6
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The fact that f(x) is divisible, mod p, by <f>(x) is expressed in

the above notation by writing

/(*)=o, modd/>, <j>(x).

Ex. From § 15, Ex., we have

*8 + 3*
4— 4-^ + 2= 0, modd5, 2X2— 3.

We have as consequences of the above definition just as in the

case of integers, the double modulus p, <f>(x) being understood,

throughout.

h(i)mf,(s)

f*(*)mft{*)>

ft(x) /,(*).

fl(x)mft(x)

U(s)mf£x)
momial,

F(x)f1 (x)^F(x)f2 (x).

fx{x)mft(x)

F1(x)=F2 (x),

Ux)-F^x)^ft{x)-Ft{x),

ft(x)mft(x),

The results corresponding to v, • • •, ix, § 1, follow easily.

§ 20. Unique Factorization Theorem for Polynomials with

respect to a Prime Modulus.

We shall now show that a polynomial can be resolved in one

and but one way with respect to a prime modulus, p, into prime

factors, considering always associated factors as the same. The

proof will be closely analogous to that of the corresponding

l If

and

then

ii. if

and

then

iii. //

and F(x) be any

then

iv. //

and

then

and, in particular,

if

then
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theorem for rational integers. We begin by stating the following

theorem which is an immediate consequence of the definition of

divisibility.

Theorem 14. If f{x) = Q(x)<f>(jy) -f R(x), mod p, every

polynomial that divides, mod p, both f(x) and <f>(x) divides both

<f>(x) and R(x), and vice versa; that is, the common divisors,

mod p, of f(x) and <f>(x) are identical with the common divisors,

mod p, of <f>(x) and R(x).

By means of this theorem and Th. 13 we can now prove the

theorem which is the basis of the unique factorization theorem.

Theorem 15. // f1 (x), f2 (x) be any two polynomials and p

a rational prime, there exists a common divisor, D(x), mod p, of .

fi(*)> fi(x ) sucn that D{x) is divisible, mod p, by every common '

divisor, mod p, of f1 (x) } f2 (x), and there exist two polynomials
'

0i(-r )> <f>2(x )> sucn that

We may evidently assume f2 (x) of degree not higher than fx (x).

Dividing f± {x) by f2 (x), mod p, we can find two polynomials

Q x
(x), f3 (x), such that

f1 (x) = Q 1 (x)f2(x)+fs (x), modp,

f& (x) being of lower degree than f2 {x).

Dividing f2 (x) by fs (x), mod p, we have

f2{x)=Q 2 (x)fz(x)+fA (x), modp,

where f4 (x) is of lower degree than f3 (x), and similarly

h{x) = Q z {x)f,{x)+U(x), modp,

/n_2 (*) ==Q n_2 (>)/«-! (*) +/«0), ™od p,

fn.1{x)^Qn.1 {x)fn (x), modp,

a chain of identical congruences in which we must after a finite

number of steps reach one in which the remainder, fn+1 (x), is o,

mod p, since the degrees of the remainders continually decrease.
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By Th. 14 the common divisors, mod p, of fn (x) and fn-x (x)

are identical with those of ftut(x) and /„_2 (x), those of fn- x (x),

fn-2 (x) with those of fn-t(x), fn.s (x), and finally those of /3 (.r),

f2 (x) with those of fa(x), fx
(x).

But fn(x) is a common divisor, mod p, of fn (x) and fn-i(x)

and is evidently divisible by every common divisor of fn (x) and

f«-i(x). Hence fn (x) is the desired common divisor D(x), mod

/>, of fx
(x) and/2 (».

If now we substitute the value of fs (x) in terms of f± (x),

f2 (x) obtained from the first of these congruences in the second

and the values of /3 (.r) and f4 (x) in terms of'

f

x (x) , f2 (x) in the

third and continue until the congruence

/n_2 (*) =Q„_ 2 (*)/«-i (-0 +/nO), modp,

is reached, we shall obtain the congruence

fx(x)4>t (x) +ft(x)4>t(x)mD(x) s
modp.

Cor. If fx (x), f2 (x) be two polynomials prime to each other,

mod p, there exist two polynomials
<f> x

(x),
<f>2

(x) such that

AOO^O) + /2
(.r)* 2 (*) = i, modp.

In this case D(x) is an integer a not divisible by p, and we

have two polynomials ^(x), $ 2 (-r ) such that

ft(x)^(x) +ft(x)*2(x)w&a, modp,

whence, multiplying by the reciprocal of a, mod p, we obtain

/i(-0<£iO) + /*(*)**(*) h modp.

It will be noticed that this corollary corresponds to Th. B,

while Th. 15 corresponds to the corollary to Th. B, the order of

proof here being reversed. The corollary could have been proved

first as before. 1

Theorem 16. // the product of two polynomials, fx {x) , f2 (x) ,

be divisible, mod p, by a prime polynomial, P(x), at least one of

the polynomials, fx {x), f2 {x), is divisible, mod p, by P(x).

Let f1 (x)f2 (x) = Q(x)P(x),modp, 1)

1 Laurent : Theorie des Nombres Ordinaires et Algebriques, p. 120.
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where Q(x) is a polynomial, and assume fx (x) not divisible, mod

p, by P{x). Then fx {x) and P(x) are prime, mod p, to each

other and by the last theorem there exist two polynomials, <\>1 {x) 1

<f>2 (x), such that

£(*)*>(*) +P(*)^(*)« I, mod p. 2)

Multiplying 2) by f2 (x), we have

&(*)/,(*)*{*) +/2
(-r)P(.r)^(.r)=/

2 (^), mod/»,

and therefore, making use of 1),

P(.r)(Q(.r)^(.r) + /2 (jt)^(jt) ) ==f2 (x), modp,

where Q(x)<f>1 (x) -j-f2 (x)<f>2 (x) i s a polynomial. Hence /2 (-r)

is divisible, mod p, by P(x). Expressed in the double modulus

notation this theorem is:

If fi(x )> /*(«*) be any two polynomials and P{x) a prime poly-

nomial, mod p, and if

h(x)f2 (x)=o, modd/>, P(x),

then either f1 (x)^o, modd/>, P(x),

or /,(.r)=o, modd/>, P(x).

Cor. 1. If the product of any number of polynomials be divis-

ible, mod p, by a prime polynomial P(x), then at least one of the

polynomials is divisible, mod p, by P(x).

Cor. 2. If neither of two polynomials be divisible, mod p, by a

prime polynomial P(x) % their product is not divisible, mod p,

by P(x).

Theorem 17. A polynomial, f(x), can be resolved in one and

but one way into a product of prime polynomials, mod p.

Let f(x) be any polynomial. We shall take f(x) in its reduced

form, mod p, for the sake of convenience, this assumption in no

wise limiting the generality of the proof. Let the degree, mod p,

of f(x) be n. If f(x) be prime, mod p, the theorem is evident.

If f(x) be not prime, it has a divisor, <f>(x), mod p, and we have

f(x)=<j>{x)*{x), modp,
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where <f>(x), &(x) are polynomials neither of which is a unit and

the sum of whose degrees is n.

If <f>(x) be not a prime polynomial, mod p, then

,
+(jc)Wk^i*y*x {x) % modp,

where ^(x), &i(x) are polynomials that are not units and that

have degrees whose sum is equal to the degree of <f>(x).

If
<f>2 (x) be not a prime polynomial, mod p, we proceed in the

same manner and, since the degrees of the factors form a decreas-

ing series of positive rational integers, we must after a finite

number of such factorizations reach in the series 4>(x), <t>i(x),

<f>2 (x), • • • a prime polynomial Px (x), mod p. We have then

f(x)=P1 (x)f1 (x), modp.

Proceeding similarly with fx (x) in case it be not prime, mod p,

we obtain

U{x)wiP*(j*)f%{s)t modp,

where P2 (x) is prime, mod p, and hence

f(x)=P1 (x)P2 (x)f2 (x), modp.

Continuing this process, we must after a finite number of such

factorizations reach in the series f(x), ft (x), f2 (x),-- a prime

polynomial Pn (x), mod p. We have then

f(x)=P1
(x)P2 (x) --'Pn(x), modp,

where P1 (x),P2 (x), •-,Pn (x) are all prime, mod p; that is, f(x)

can be resolved, mod p, into a finite number of prime factors.

It remains to be shown that this resolution is unique. Suppose

that

f{symQi(s)Q9
(s) "-Qm(x), modp,

be a second resolution of f(x) into prime factors, mod p. Then

P1 (x)P2 (x) -Pn(x)=Q 1 (x)Q 2 (x) -Qm(x), modp, 3)

and it follows from Th. 16, Cor. 1 that at least one of the Q(jtr)'s,

say Q x
(x), is divisible, mod p, by P 1 (x) and hence is associated,

mod p, with Px (x) ; that is,

Q 1(x)^a1P1 (x), modp,

where ax is a unit, mod p.
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Dividing 3) by Px (x), mod p, we have

P2 (x) -'-Pn (x)^ aiQ 2 (x) "-Qn (x), modp. 4)

From 4) it follows that at least one of the remaining Q(x)'s

must be associated, mod p, with P2 {x). Dividing 4) by P2 (x),

mod p, and proceeding as before, we see that with each P{x)

there is associated, mod p, at least one Q (x) and, if two or more

P(x)'s are associated, mod p, with one another, at least as many
Q(x)'s are associated, mod p, with these P(x)'s and hence with

one another.

In exactly the same manner, we can prove that with each Q(x)

there is associated, mod p, at least one P{x) and, if two or more

Q(x)'s are associated, mod p, with one another, at least as many

P(x)'s are associated, mod p, with these Q(x)'s and hence with

one another.

Hence, considering two associated factors as the same, the

resolutions are identical; that is, if in the one resolution there

occur e factors associated, mod p, with a certain prime polynomial,

there will be in the other resolution exactly e factors associated,

mod p, with the same prime polynomial.

We can now evidently write any polynomial, f(x), in the form

/(#)«(*»<*))*'(/»,(*))•... (P.Cjt))-, mod

^

where P1 (x),P2 (x), •••,P„(or) are the unassociated prime fac-

tors, mod p, of f(x).

If we take P1 (x),P2 (x), ••',Pn {x) primary, the resolution is

absolutely unique. The representations of the greatest common

divisor and least common multiple given for rational integers are

easily extended to polynomials.

§ 21. Resolution of a Polynomial into its Prime Factors with

respect to a Prime Modulus.

The resolution of a polynomial, f(x), into its prime factors,

mod p, may be effected by dividing, mod p, f(x) by each of the

prime polynomials of the first degree x,x— i,---,x— p -\- i,(p

being taken positive) in turn until either a polynomial is found

that divides f(x), or it is determined that f(x) is divisible by

none of them.
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Suppose that f(x) is divisible, mod p, by x— a x and that the

quotient is fx (x). We proceed in the same way with fx (x) until

we have found all the prime, mod p, factors of the first degree

oif(x).

Suppose that

f(x) = (x— a 1
)(x— a2 )

••• (x— a„)f2 (x), modp,

where f2 (x) has no factor, mod p, of degree lower than the

second.

The prime factors, mod p, of the second degree of f2 (x) can

next be determined in the same manner, then those of the third

degree, etc. In case, however, we do not know the prime, mod p,

polynomials of the second degree, we can simply determine

whether f2 (x) is divisible, mod p, by any polynomial of the second

degree. If it is, such a polynomial is evidently a prime, mod p,

polynomial, for f2 (x) contains no factors, mod p, of degree lower

than the second. The same method can be applied to the deter-

mination of the prime factors of higher degree.

§ 12. The General Congruence of the nth Degree in one

Unknown and with Prime Modulus.

Theorem 18. // r be a root of the congruence

f(x) — a xn
-f OjX*-1 + •• -\-an= o, mod p, i

)

f(x) is divisible, mod p, by x— r, and conversely, if f{x) be divis-

ible, mod p, by x— r, r is a root of i).

Dividing, mod p, f(x) by x— r, we have

f(x)m{x-~r)*(*)+*(r), mod/>,

whence, since r is a root of i),

R(r) =o, modp,

and hence f(x) = (x— r)<f>(x), modp;

that is, f(x) is divisible, mod p, by x— r. The converse is

evident.

If f(x) be prime, mod p, the congruence i) evidently has no

roots. The converse is, however, not true; that is, f(x) may be

1
Borel et Drach : p. 36.
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composite, mod p, but i) have no roots, for the prime, mod p,

factors of f(x) may all be of higher degree than the first. This

theorem gives us another method for determining the factors,

mod p, of the first degree of any polynomial in x. Some of these

factors may be alike and we are led therefore to say that r is a

multiple root of order e of i), if f{x) be divisible, mod p, by

(x— r) e
, but not by (x— r) e+1

.

If therefore rlf r2i '",rm be the incongruent roots of i) of

orders et,e2,---,em respectively, we have

f(x) = (x— rx)*(x~ r2 )
e*... (x— rm )

e
'-f1 (x), modp,

where f1 (x) is a polynomial having no linear factor, mod p, and

whose degree, s, is such that

^1 + ^2 + "• +em+ s=n,

where n is the degree of f(x).

Counting a multiple root of order e of i) as e roots, we see that

1) has exactly as many roots as f(x) has linear factors, mod p,

and obtain the following important theorem:

Theorem 19. The number of roots of the congruence

f(x) = a xn + axX** *\ + 0»seO, mod p,

where p is a prime number, is not greater than its degree.

Cor. 1. If the number of incongruent roots of a congruence

with prime modulus be greater than its degree the congruence is

an identical one.

Cor. 2. If the congruence

f(x) =0, mod p, 2)

have exactly as many roots as its degree and cf>(x) be a divisor,

mod p, of f(x), then the congruence

(f>(x) =0, mod p,

has exactly as many roots as its degree; for

f(x)==<l>(x)Q(x), modp,

where Q(x) is a polynomial in x, and every root of the congruence

2) is a root of either the congruence

<£(»=== o, modp, 3)
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or of the congruence

Q(jr)==o, mod p. 4)

Moreover, the sum of the degrees of 3) and 4) is equal to the

degree of 2). If, therefore, <f>(x) had fewer roots than its degree,

then Q (x) must have more roots than its degree, which is impos-

sible. Hence the corollary.

§ 23. The Congruence x0 (m) — 1= 0, mod nu

Although in the case of congruences of degree higher than the

first the theorem just given tells all that we know in general

regarding the number of their roots, still there is one important

case in which the number of roots is always exactly equal to the

degree of the congruence.

Theorem 20. The congruence

x<p(m-> — i===o, modw, 1)

has exactly as many roots as its degree.

The <]>(nt) integers of a reduced residue system, mod m, evi-

dently satisfy 1). Moreover, since by §1, ix, two integers con-

gruent, mod m, have with m the same greatest common divisor,

and the greatest common divisor of 1 and m is 1, every root of 1)

must have with m the greatest common divisor 1, that is, be prime

to m. Hence the number of roots of 1) is exactly equal to <£(m),

its degree.

Ex. The congruence

#* C10) — 1 ==0, mod 10,

or x*— 1^0, mod 10,

has the four roots 1, 3, 7, and 9.

Cor. If d be a positive divisor of p— 1, the congruence

xd— 1= o, mod p,

where p is a prime, has exactly d roots; for xd— / is a divisor

of x*-x— 1 and hence by Th. 19, Cor. 2, we have the corollary.

Since the congruence

xp— x===o, modp,
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1

has the p roots o, i, 2, • • -, p— 1 equal in number to its degree, we

have the identical congruence

xp— x= x(x— %)(x— 2) ••• (x— p— 1), mod p.

Ex. X1— x= x(x— i)0— 2)0— 3)0—4)0— 5)0— 6), mod 7.

§ 24. Wilson's Theorem.

The result just obtained gives us a proof of the following inter-

esting theorem.

Theorem 21. If p be a prime number and rx,r2 , •••,r$ (p) be a

reduced residue system, mod p, then

Vi • • • Uip) + 1=0, mod p.

By the previous section we have evidently

x<t>^ — i= {x— r1 ){x— r2 )
••• (*— !>(„,), modp,

from which, putting x= o, we have

— i= (— r1)(— r2 )
••• (— r+m}t

modp,

whence, since <f>(p) is even except when p= 2,

Vj "-^(p)) + 1= 0, modp,

which evidently holds also when p= 2.
1

Ex. Let p = 5, and take as a reduced residue system, mod 5, the integers

— 2, — 1, 1, 2. Then

(— 2)(— i).i.2 + i = 5= o, mod 5.

This theorem is a particular case of the following more general

theorem that is due to Gauss.2

If ri> r2>'"> r<i>(m) be a reduced residue system, mod m, the

product rxr2
-~ r^ (m) is congruent to — i, mod m, when m= 4,

p
n or 2pn

, where p is an odd prime, and is congruent to 1, mod m,

when m has any other value.

The two following examples will illustrate this theorem; for

its proof see references given above.

Ex. 1. Let m = f, and take as a reduced residue system, mod32
, — 4,

— 2, — 1, 1, 2, 4; then

(— 4)(— 2)(— 1). 1-2-4=— 64=— 1, mod32
.

1 See Matthews, § 16, for another proof of this theorem.
2 Gauss: Disq. Arith., Art. 78. Dirichlet-Dedekind : §38. Bachmann:

Niedere Zahlentheorie, p. 170. Cahen : p. 103.
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Ex. 2. Let m = 15, and take as a reduced residue system, mod 15, — 7,

— 4,-2,-1, 1, 2, 4, 7; then

(—7) (—4) (—2) (— 1) -1-2.4.7 = 3136= 1, mod 15.

As a special case of Th. 21 we have the following:

If p be a positive prime number and the product of all positive

integers less than p be increased by 1, the result is divisible by p;

that is,

(p— 1 ) ! + 1 sb o, mod p.

The theorem was first stated in this form by Waring in his " Medi-

tationes Algebraicae " (1770) and ascribed to its author, Sir John

Wilson.

The converse of the original form is true ; that is, // the product

of all positive integers less than a given integer, m, be increased

by 1 and the result be divisible by m, then m is a prime number.

This is easily seen to be true; for, if m= ab, where neither a nor

b is a unit, then (m— 1) ! is divisible by a, whence we have

(m— 1 ) ! + I W^ o, mod m.

For example 5 ! + 1= 121 ^o, mod 6.

Wilson's theorem gives therefore an unfailing method for deter-

mining whether any given integer is a prime number. It is, how-

ever, obviously of no practical use on account of the immense

labor of the numerical reckoning when m is large.

§ 25. Common Roots of Two Congruences.

The common roots of two congruences

f1
(x)=o, modp, and /2 (jr)=o, modp,

are evidently the roots of the congruence

<f>(x) =0, modp,

where 4>(x ) ls tne greatest common divisor, mod p, of fx {x) and

/2 (.r). Since the congruence

xp— ;r= o, modp, 1)

has for its roots the numbers of a complete residue system, mod

p, the incongruent roots of any congruence

/(,r) =0, modp,
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will be the roots of the congruence

<f>(x) =0, modp, 2)

where cf>(x) is the greatest common divisor, mod p, of x?— x

and f(x). This gives us another method of determining all the

incongruent roots of any given congruence with prime modulus.

The congruence 2) will always have as many roots as its degree,

since the congruence 1) has as many roots as its degree and <j>(x)

is a divisor, mod p, of x?— x.

Ex. To find the roots of the congruence

xl— sx3— x2
-\-2x— 6= 0, mod 7, 3)

by the above method, since o is not a root of the congruence, we need

only find the greatest common divisor, mod 7, of xl— 3x*— x2
-\-2x— 6

and xe— 1.

This -greatest common divisor is x2— 3X -\- 2, and the congruence

x2— 3^ + 2^0, mod 7,

has the roots 1 and 2, that are therefore the incongruent roots of 3).

§ 26. Determination of the Multiple Roots of a Congruence

with Prime Modulus.

The multiple roots of the congruence

f(x) =0, modp, 1)

may be determined by a method exactly analogous to that em-

ployed for determining the multiple roots of an algebraic equation.

Thus let P(x) be a prime function, mod p, and let f(x) be divis-

ible, mod p, by (P(x)) e but not by (P(x)) e+1
; then

f(x)==(P{x)YQ{x), modp,

or, what is the same thing,

f{x) = {P(x)YQ{x)+pF(x), 2)

where F(x) and Q(x) are polynomials in x and Q(x) is prime,

mod p, to P{x).

Differentiating 2), we have

f(x) = (P(x)y->(eP'(x)Q(x) + P(x)Q'{x)) + pF'(x),

where .P'(.r), Q'(x') and F'(x) are polynomials in x. Hence

f(x) = (P(x))^Q 1 (x), modp,
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where Q x (x) is a polynomial in x and is moreover not divisible,

mod p, by P(x), for

Q x (x)=eP'(x)Q(x) +P(x)Q'(x),

where P'{x) is of lower degree than P(x) and Q(x) is prime,

mod p, to P(x). Therefore f(x) is divisible, mod p, by the

prime factor P(x) exactly once less than f(x) is divisible by

P(x). In particular, if f(x) be divisible, mod p, by {x— r) e
,

but not by (x— r) e+1
, then f(x) is divisible, modp, by (#— r) e_1

but not by (x— r) e
. Hence the theorem:

Theorem 22. // the congruence

f(x) = 0, modp,

have a multiple root r of order e, the congruence

f(x) = 0, modp,

has the multiple root r of order e— 1.

If the greatest common divisor, mod p, of f(x) and f(x) be

<f>(x), then the roots of the congruence

4>0)=o, modp, 3)

if it have any, will be the multiple roots of 1) and each root of

3) will occur once oftener as a root of 1) than as a root of 3).

It may happen, of course, that f(x) and f(x) have a common
divisor, <f>(x), mod p, and yet 1) has no multiple roots. In this

case the repeated prime factors, mod p, of f(x) are of higher

degree than the first, and <f>(x) therefore contains no factor of

the first degree, mod p.

Ex. Let the given congruence be

f(x)=2x8— * -|- 1^ °> mod 5- 4)

We have f(x)=6x2— i^^r— 1, mod 5,

and the greatest common divisor, mods, of /(*") and f(x) is x -\- 1.

The congruence

x + 1^ o, mod 5,

has the root — I.

Hence the congruence 4) has two roots — 1. Dividing f(x) by (x + i)
2
,

we have f{x) =2(x -\- i)
2 (x— 2), mods,

and see that f(x) has the third root 2.
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§ 2j. Congruences in One Unknown and with Composite

Modulus.

The solution of a congruence of the form

f(x) = a xn + a xxn~x + " + o»930, mod m, i

)

where m= m xm2
• • m t ,

mlf m2 ,
"• ntt being integers prime each to each, can be reduced to

the solution of the system of t congruences,

f(x) s=o, modMj,!
f(x) =o, mod w2 ,

;
:

r 2)

f(x)z==o, modwf.J

Every root of i) is evidently a root of each of the congruences

2), and conversely any integer, that is simultaneously a root of

each of the congruences 2), is a root of«i).

If therefore a lf a2 , --,at be roots of the congruences 2) and r

be chosen so that

r= a19 mod mlt
'

r==a2 , modm2 ,

I : :
l

3)

rz=a t , mod m t , -

then r is a root of 1).

Since mlf m2 ,
• • •, mt are prime each to each, it is, by §14, always

possible to find r so as to satisfy the conditions 3).

Let b lt b2,---,bt be auxiliary integers selected as in § 14; then

r= a1b 1 + a2b2 + • • • + a tb t , mod m 4)

is a root of 1), and, if the congruences 2) have respectively

hyh>'"Jt incongruent roots, then by §14 1) has lxl2 --lt incon-

gruent roots, that are obtained by putting in 4) for a r,a2i --,at

respectively the l^,l2,-",h roots of the congruences 2).

In particular, if any one of the congruences 2) have no root,

then 1) has no root.

Ex. The solution of the congruence

**+ 3*
3 + 3**+ 3* + 2= 0, mod 30, 5)
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can be reduced to the solution of the two congruences

x* + 3X3

-f sx- -+- $x -\- 2 == o, mod 6, 6)

and x* + 3x3 + sx
2 + 3x + 2= o, mod 5. 7)

The roots of 6) are — 2, — 1, 1, 2 and those of 7) are — 2, —2, — 1, 2.

The roots of 5) are then

r.Oj=— 2,— I, I, a.
1

r== 25* + 6a 2 , mod 30.
j a __ 2 __^ 2

that gives as the roots of 5), — 13, — II, — 8, — 7, — 2, — 1,2,4,7,8, 13, 14.

If now we suppose m to be resolved into a product of powers

of its different prime factors, that is,

m=p 1
ei
p 2

e2 •••
p r

er
,

where p lt p 2 , "',pr are different primes, then the solution of 1) is

reduced to the solution of n congruences of the form

/(.r)=o, modp e
. 8)

We shall now show tfiat the solution of 8) can be made to

depend upon the solution of the congruence

/0)=o, mod^" 1
, 9)

where the modulus is a power of p one degree lower than that of

the modulus of 8), and thus be made to depend eventually upon

the solution of the congruence

f(x) =0, modp,

whose modulus is a prime.

Let x
9
be a root of 9) ; then all integers of the form x + p

e~ 1

y,

where y is an integer, are roots of 9). Furthermore, since all

roots of 8) are roots of 9), if 8) have roots they must be of this

form.

Putting in 8) x= x + p
e~ x

y, 10)

we have f(x -j- p
e~ x

y) ^ o, mod p
e
,

or, expanding f(x + p^y), /

/K) +f(^)Pe- 1y+ f-^P2e
-'Y- + -^f mod J-. 11)

Since f(* ) =0, mod/>e_1
,

1

See Example § 14.
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we have f(*o)=cpe~1
,

and hence, dividing each term of n) by />
e_1

,

c+fWj+^f¥+ "^o, mod?,

whence we have

c -\-f(x )y= o, modp, 12)

as a necessary and sufficient condition that y must satisfy in order

that the root, x + p
e~x

y, of 9) may also be a root of 8).

There are three cases to be considered:

i. If f(x9)qk6s
modp,

there is always one and but one value, y , of y that satisfies 12)

and this gives one value only of x + p
e'x

y^ tnat satisfies 8).

ii. If f(x )==o, modp, and c^£o, modp,

there is no value of y satisfying 12) and hence no value of x of

the form x + p
e'1y satisfying 8) ; that is, 8) has no root.

iii. If f(x )^=o, modp, and c= o, modp,

then 12) is an identical congruence and consequently 12) has \p\

solutions, mod p, from which by substitution in 10) we obtain \p\

solutions of 8).
1

Ex. The roots of the congruence

x*— 8x*+ 9** + 9* +14= ©, mod 5
2

, 13)

if any exist, must satisfy the congruence

x*— 8-r
3+ 9x~ + 9*+ 14 aa 0, -mod 5,

whose roots are 1 and 2, and hence be of the form

i+5y or 2-j-Sy.

Substituting 1 + 5y and 2 -f- 5y in 13), we obtain respectively

5+ 7y= o, mod 5, 14)

and 4— io:y= o, mods. 15)

From 14) we have y as o, mod 5,

and from 15) ;y==i, mods,

that give 1 and 7 as the roots of 13).

1 See Cahen :• pp. 96-103.

7



98 THE RATIONAL REALM CONGRUENCES.

§28. Residues of Powers.

// a be prime to m, and b^a f
f
mod m, where t is a positive

integer, b is said to be a power residue of a with respect to the.

modulus m.

For example, since 4==3 2
, mod 5, we say that 4 is a power resi-

due of 3 with respect to the modulus 5.

Two power residues of a which are congruent to each other,

and hence to the same power of a, mod m, are looked upon as

the"same.

A system of integers such that every power residue of a, mod m,

is congruent to one and only one integer of the system, mod m, is

called a complete system of power residues of a with respect to

the modulus m.

Ex. Every power of 5 is congruent, mod 6, to 1 or 5. Hence 1, 5

constitute a complete system of power residues of 5, with respect to the

modulus 6.

These integers may evidently be selected from among the in-

tegers of any reduced residue system, mod m. For convenience

they are usually taken from the system 1,2, •••, \m\ and we may

indeed define a complete system of power residues of a, mod m,

as being the smallest positive residues that the successive powers

of a, a°= 1, a1
, a

2
, a

3
,
•••,#', •• give when divided by m.

The more general definition given above will, however, serve

our purposes better as it will admit of direct extension to realms

of higher degree than the first, while the latter does not.

We shall now investigate certain questions relating to power

residues, and, in particular, the important one as to when a com-

plete system of power residues of an integer a, mod m, is also a

reduced residue system, mod m.

The following table gives the power residues of all numbers of

a reduced residue system, mod 13, with respect to this modulus.

In order to calculate the residue of ak , it is not necessary to raise

a to the &th power, but only to multiply the residue of ofc-1 by a

and then take the residue of the product with respect to m.

m== 13.
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We ask now, what is the smallest value ta of £ other than o for

which we have

a'= i, modw.

That ta always exists and is ^<j>(m) is evident from Fermat's

theorem, that gives, since a is prime to m,

a0(m)== i
} mod w.

Giving ta the above meaning, we say that the integer a appertains

to the exponent ta with respect to the modulus m. We see from

the table that

2, 6, 7, 1 1 appertain to the exponent 12; that is, ^(13). "

4, 10 appertain to the exponent 6

5, 8 appertain to the exponent 4 r, mod 13.

3, 9 appertain to the exponent 3
12 appertains to the exponent 2

It is evident that, if a= b, mod m, then a and b appertain to the

same exponent, mod m.

Theorem 2^. If the integer a appertain to the exponent ta,

mod m, then the ta powers of a,

1, a, a2
, --^V1

,

are incongruent each to each, mod m.

Let a s and as+r be any two of the powers 1). If

a8+r ==a8
, modm,

then, since a is prime to m,

ar z= 1, modw.

1)

3)
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But r < ta and hence 3) is impossible, since a appertains to ta .

Therefore 2) is impossible.

Theorem 24. // a appertain to the exponent ta, mod m, any

two powers of a with positive exponents are congruent or incon-

gruent to each other, mod m, according as their exponents are

congruent or incongruent, mod ta .

Let a81
, as* be any two powers of a, slf s2 being positive integers,

and let

s± s=a q x
ta + r1} s2

= q2 ta + r2 ,

where qlf q2 are positive integers and

o^rx <ta , o^r2 <ta , r^r2 . 4)

If a&**^»a**i+rt
, modwz, 5)

then ari==ar
2, mod m, 6)

whence, since a is prime to m,

ar1-r2^ Ij rnodwt.

But from 4) we have

o^r1— r2 <ta ,

and hence, since a appertains to ta , mod m,

r±
= r2 . 7)

Therefore' s±
= s2 , modfa, 8)

is a necessary condition for

asi= aS2
, mod m. 9)

Moreover, from 8) follow in turn 7), 6) and 5).

Hence 8) is also a sufficient condition for the existence of 9).

We have therefore

a1 as ata+1 hbs a2ta+1 == a3ta+1 h= •

a2= ata+2 sb a2ta+2= a3 *a+2 ss •

a'""
1= a2ta

~x be a3 *""1 se a4 * "1=
, modw.

This is known as the law of the periodicity of the power resi-

dues. It can be verified by an examination of the table, p. 99,
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where we see, for example, that 5 appertains to the exponent 4,

mod 13, and we have

2= 6= IO

3= 7=11 J

Theorem 25. The exponent, ta , to which an integer a apper-

tains with respect to the modulus m, is always a divisor of <f>{m)}

Since a0<w > == 1= a , mod m,

we have by Th. 24,

<f>(m) = 0, modta .

Theorem 26. If two integers, alf a2 , appertain, mod m, to two

exponents, tlt t2 , that are prime to each other, then their product,

axa2 , appertains, mod m, to the exponent, tj2 .

Let axa2 appertain, mod m, to an exponent t, then

(a1a2y*smis modm. 10)

Raising both members of 10) to the tx power, we have

a^a^xt == lf m0(| m

But a ±
tlt aa 1, mod m,

and hence a,,*1'— 1 * modm,

and therefore, since a2 appertains to the exponent t2 , mod m, txt

must be a multiple of t2 (Th. 24). Whence, since tx and t2 are

prime to each other, it follows that t is a multiple of t2 . In like

manner we can show that t is a multiple of tx .

Therefore t, being a multiple of tt and t2 , that are prime to each

other, is a multiple of their product tx t2 . Hence the smallest pos-

sible value of t for which 1) will hold is tj2 , and a±a2 appertains

to this exponent, mod m.

Ex. We see from the table, p. 99, that 12 and 3 appertain, mod 13, to

the exponents 2 and 3 respectively, and that their product 36(^ 10, mod 13)

appertains to the exponent 6.

Limiting ourselves now to the case in which the modulus is a

1 For a proof of this theorem not dependent upon Fermat's theorem,

see Mathews, p. 18.
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prime number, p, we ask whether there are integers appertaining

to every positive divisor of <f>(p) and, if so, how many. Before

proving the theorem, that will answer this question in its entirety,

let us examine the table, p. 99, and see how matters stand when

/>— 13. The positive divisors of ^(13), = 12, are 1, 2, 3, 4, 6

and 12.

To 1 appertains the single integer 1,

To 2 appertains the single integer 12,

To 3 appertain the two integers 3, 9, I mo^j^
To 4 appertain the two integers 5, 8,

To 6 appertain the two integers 4, 10,

To 12 appertain the four integers 2, 6, 7, 11,

Theorem 27. To every positive divisor, t, of <t>(p), there

appertain <f>(t) integers1 with respect to the modulus p.

Assume that to every positive divisor, t, of <j>(p), there apper-

tains at least one integer, a. We shall show that, if this assump-

tion be true, there appertain to t <f>(t) integers; that is, to every

positive divisor, t, of <f>(p) there appertain either <f>(t) integers

or no integers. Let \J/(t) denote the number of integers apper-

taining to t. Each of the integers

a°= i,a,a2
,
-,ow 11)

is a root of the congruence

x*= i, modp, 12)

for, if ar be one of these integers, then

(ar)*=(a') r =i, modp,

since a'=i, modp.

The integers 11) are moreover by Th. 23 incongruent each

to each, mod p, and, being t in number, are therefore all the roots

of 12), since 12) can not have more than t incongruent roots.

But every integer appertaining to t must evidently be a root of

12) and we need look therefore only among the integers 11) to

find all integers appertaining to t. Let ar be any one of the in-

tegers 11). If ar appertain to t, we must have ar,a2r , •••,a ( '~1)r

1 We, of course, consider only incongruent integers ; see p. 99.
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each incongruent to I, mod p. By Th. 24 the necessary and suffi-

cient condition for this is

ir^to, modt, 13)

where i runs through the values 1,2, •••, t— 1. In order now that

13) may hold, we must have r prime to t ; for suppose that the

contrary is true and that d is the greatest common divisor of r

and t, assuming for convenience d to be positive. We have

r=r
xd, t= txd,

and, since tx < t and i runs through all values from 1 to t— 1,

one of the values of t will be t x and we shall have for this value

txrxd= o> mod txd;

that is, 13) does not hold.

But, since i < t, 13) holds whenever r is prime to t. Hence the

necessary and sufficient condition that any one, ar
, of the integers

1, a, a2
,
••, a*

-1
shall appertain to t, is that its exponent, r, shall be

prime to t. This condition is fulfilled by <f>(t) of these integers,

and we have proved therefore that

tf,(t) = either </>(/) oro.

We shall now prove that the latter case can never occur. We
separate the <f>(p) integers of a reduced residue system, mod p,

into classes according to the divisor of <f>(p) to which they apper-

tain; that is, if tly t2,---,tn be the positive divisors of <f>(p), we
put in one class the \p{t

x ) integers of the above system that apper-

tain to tly in another class the if/(t2 ) integers that appertain to

£0, etc. It is evident that no integer can belong to two different

classes and that every integer must belong to some one of these

classes.

The integers of a reduced residue system, mod p, being <f>(p)

in number, we have therefore

Hh) +Hh) + - +tM=<i>(P).

But by Th. 5, <f>(p) taking the place of m, we have

<K'i) +<t>(t2 ) + ••• + <f>(tn ) =<£(/>),
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whence

#(«l) +*(*•) H hHtn) =<f>(t1 ) +<j>(t2 ) + • • • +<f>(tn ). 14)

Since, however, every term in the first member of 14) is equal

either to the corresponding term in the second member or o, if

even a single term in the first member were o, 14) would not hold.

Hence no term in the sum ^(^) + ^(f2 ) +""* +(*») 1S °-

Therefore f(t) = <j>(t).

§ 29. Primitive Roots.

An integer, that appertains to the exponent <f>(m) with respect

to the modulus m, is said to be a primitive root of m.

For example; 2, 6, 7 and 11 appertain, mod 13, to the exponent

0(13), = 12, and are therefore primitive roots of 13. It can be

shown that such integers exist only when m= 2, 4, p
n or 2pn

,

where p is an odd prime. 1 We shall discuss however only the

case where m is a prime number.

It having been proved in Th. 27 that, if p be a prime, there

appertain <j>(<j>(p)) integers to the exponent <f>(p), mod p, we see

that p has always <f>(<j>(p)) incongruent primitive roots. If r be

a primitive root of p, then by Th. 23 the <j>(p) powers of r

r,r2,---, r0 (p) form a reduced residue system, mod p. Hence every

integer, that is not divisible by p, is congruent to one of these

powers of r, mod p. This property, upon which depends the use-

fulness of a primitive root, may be used to define it as follows

:

An integer, a complete system of zvhose pozver residues, mod m,

constitute a reduced residue system, mod m, is called a primitive

root of m.

For example; 2, 22
, 23

, 24
, 25

, 2 6
, 27

, 28
, 29

, 210
, 211

, 212 con-

stitute a reduced residue system, mod 13. Hence 2 is a primitive

root of 13.

We shall illustrate the advantage of this representation of a

reduced residue system by a second proof of the generalized form

of Wilson's theorem (Th. 21). Let p be an odd prime, r a primi-

1 Gauss : Disq. Arith., Arts. 57-93. Dirichlet-Dedekind : §§ 127-131.

Bachmann : Elemente der Zahlentheorie, pp. 89-104. Bachmann : Niedere

Zahlentheorie, pp. 322-348. Mathews : §§ 19-29. Wertheim : §§ 48-69.
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tive root of p, and q1,q2,--,q4,<P)
any reduced residue system,

mod p. Since the integers r,r2
, -~,r<i> ip} constitute a reduced

residue system, mod p, each of the q's must be congruent to some

one of these powers of r, mod p ; that is,

mod p,

where llt l2 , —,J*c« are the numbers 1,2, —,(#) in some order.

Multiplying these congruences together, we have

But r1+ (*»=r, mod/',

and hence tfi#2
**•>

2<mp>— r 2
» mod p. 1)

We have also

r0<p> — 1= (r^ (^/2— 1) (V0W/2 + 1) =0, mod p,

and hence, since

r0(p)/2— 1^0, mod/>,

r being a primitive root of p,

r0(p)/2 _|_ T= 0j m0(J £ # 2 )

Therefore from 1) and 2) it follows that

ftfa •"$<#>+ 1 ssO* mod/>.

When p= 2, this proof does not hold as </>(/>) is then odd.

§ 30. Indices.

If q= r*, mod />, r being a primitive root of /> and i one of the

numbers o, 1, •••,<£(/>) — x > * is said to be */*£ i«cte.r 0/ g to the

base r, mod p, and we write 1= ind r g, mod />.

The subscript r is often omitted, in which case it is understood that

all indices are to be taken to a certain given base.

The relation of an integer to its index is evidently very similar
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to that of a number to its logarithm and indices play a part in the

theory of numbers similar to that of logarithms in arithmetic. It

can be easily shown that they obey the following laws

:

Let p be the modulus, and r a primitive root of p.

i. The index of the product of two integers is congruent to the

sum of the indices of the factors, mod <f>(p), that is,

indr ab ss indr a + indr b, mod <£(/>).

This result can evidently be extended to the product of any

number of integers ; that is,

indr (cMV" an) = indr ax + indr a2 + ""+ indr a„, mod <j>(p).

ii. The index of the nth power of an integer is congruent to n

times the index of the integer, mod <j>(p), n being a positive in-

teger; that is,

indr an= n indr a, mod <f>(p).

To prove i, from which ii at once follows, let

indr a= ilt indr b= i2 , indr ab— i.

Then assr* 1
, modp, Z?= r f

2, mod />, ab^r1
, mod p,

and hence r 4= ril+ *2
, mod p.

Therefore by Th. 24 i= i
x -f i

2 , mod <f>(p) ;

that is indr ab= indr a + indr b, mod
<f> (p )

.

We observe that in every system indr 1=0. By means of the

following tables, we can verify these results and illustrate the use

of indices. Table A gives for the modulus 13 the index to the

base 2 of each integer of a reduced residue system, and Table B
gives the residue corresponding to any index for the same base

and modulus. It is evident that two integers congruent to each

other, mod p, have the same index in any system of indices, mod p.

Jacobi has given in his Canon Arithmeticus, Berlin, 1839, such tables for

all primes less than 1000. See also for such tables for all numbers less

than 100 that have primitive roots Wertheim, Elemente der Zahlentheorie,

also Cahen for list of primitive roots and tables of indices for every prime

number less than 200.
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A.

107

Residue...

Index
1 2

1

3

4
4
2

5

9

6

5

7
11

8
1

3

9
8

10

10

11

7

12

6

B.

Index
Residue ... 1

1

2

2

4
3
8

4
3

5
6

6

12
t\ 8

9

9
5

10
10

11

7

Ex. Using the above tables, where the modulus is 13 and the base 2,

we have ind2 5 = 9, ind2 9 =8.

Therefore ind2 45 ^ind2 5 + ind29^ 17, mod 12, and hence ind2 45 = 5.

This result may be verified by observing that

45= 6, mod 13,

whence ind2 45s ind2 6, mod 12

;

that is, ind2 45= 5.

We can pass from a system of indices with base rlf modp, to

one with the base r2 and the same modulus by a process similar

to that employed in passing from one system of logarithms to

another.

Let p be the modulus, a any integer not divisible by p, and

f
1
= indr

1
a, i2= 'md r a, t='indr

1 *V

Then we have a=^rj*, mod/>,

and also a= r2
i2

, mod p.

But r 1^r2
i
J modp,

and hence from 2) and 3) it follows that

a= jy'S modp,

whence indr a= ii^ mod <f>(p) ;

that is, indr a= indrg
ri ' ind^a, mod <f>(p).

Therefore, to obtain a system of indices to the base r2 for a given

modulus p, from one to the base rx , we have only to multiply each

index of the latter system by indT^rx and take the smallest positive

residue of the products with respect to the modulus <f>(p).

If rlf r2 be any two primitive roots of p, then

indr
l

r
2 -indr 2

r
l
^i, mod<f>(p).

This follows at once from 4) by putting a= r2 .

2)

3)

4)
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Ex. To obtain for the modulus 13 a system of indices to the base 7

from one to the base 2, we have first to find ind7 2.

We have ind2 7-indT2^ 1, mod 12,

and from table A ind2 7= II,

whence nind T 2^ 1, mod 12.

Therefore ind 7 2 = 11.

Multiplying by 11 each index to the base 2 and taking the least positive

residues of these products with respect to the modulus 12, we obtain for

the modulus 13 the following system of indices to the base 7.

Residue...

Index
I 2 3 4 5 6 7 8 9 10 11

II 8 10 3 7 1 9 4 2 5

12

6

Theorem 28. // indr a, mod p, be i and d be the greatest com-

mon divisor of i and p— I, then a appertains to the exponent

{p-i)/d.

We have a= r*, mod p.

We ask what is the smallest value of m for which

am= rmi =i, mod p. 5)

By Th. 24 we must have

mi= o, modp— 1,

and hence m
p-l

d = °> m0d -d 6)

But i/d is prime to (p— i)/d and (p
— i)/d is therefore the

smallest value of m greater than zero, that will satisfy 6). Hence

(p— i)/d is the smallest value of m that will satisfy 5) ; that is,

a appertains, mod p, to the exponent (p— i)/d.

Cor. If r be a primitive root of p, then the <f>(p
— /) primitive

roots of p are those (f>(p
— 1) incongruent powers of r whose

exponents are prime to p— 1.

Ex. One primitive root of 13 is 2. Hence the 4, = 0(12), primitive

roots of 13 are 2, 2
5
, 2

7
,

2

U
.

§31. Solution of Congruences by means of Indices.

If we have a table of indices to any base for a given modulus p,

we can solve any congruence of the form
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ax=b, mod/>, i)

where a is not divisible by p

;

for from i) it follows that

ind a -j-r ind x= ind b, mod <f>(p),

which gives

indjr==ind&— ind a, mod <f>(p),

from which we can determine ind x and then x.

Ex. From the congruence

7x^4, mod 13,

»

we have ind x^ ind 4— ind 7^2— 11^— 9, mod 12.

Hence ind* = 3,

and therefore x^8, mod 13.

The solution of the congruence

axn ^b, mod/>, 2)

where a is not divisible by p, can be reduced by the use of indices

to the solution of a congruence of the first degree, mod <f>(p).

For from 2) we have

ind a -f- n'mdx='mdb, mod <f>(p),

and hence

nind;r= indfr— ind a, mod <f>(p), 3)

that is, a congruence of the first degree in the unknown ind x.

By Th. 12 the necessary and sufficient condition that 3) shall be

solvable is that indfr— ind a shall be divisible by the greatest

common divisor, d, of n and <f>(p). When this condition is sat-

isfied 3) gives \d\ values of ind;r, corresponding to which we find

\d\ values of x, that satisfy 2) and are incongruent, mod p.

In the following examples 2 is understood throughout to be the base

of the system of indices employed, tables A and B being used.

Ex. 1. From the congruence

$x~ ^4, mod 13,

we have 7 ind x^ ind 4— ind 5^2— 9^— 7, mod 12.

whence, upon removal of the factor '/, that is prime to the modulus 12,

we have ind .*•===— 1, mod 12.
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Therefore ind* — n,

and *s=7, mod 13.

Ex. 2. From the congruence

4*15= 5, mod 13, 4)

we have 15 ind * see ind 5— ind 4 e= 9— 2 ==7, mod 12.

The greatest common divisor of 15 and 12 does not divide 7. Hence 4)
has no roots.

Ex. 3. From the congruence

x9 ==8, mod 13,

we have 9 indx^ ind 8 ==3, mod 12. 5)

The greatest common divisor of 9 and 12 is 3 and it divides the second

member, 3, of 5). Hence 5) has 3 roots, that we find by the method

of Th. 12.

From 5) we have 3 ind x^ 1, mod 4,

whence ind* ==3, mod 4,

and consequently ind x^= 3, 7, 11, mod 12.

Therefore ind* = 3,7, or 11;

and x^8, 11, or 7, mod 13.

§ 32. Binomial Congruences.

The subject of power residues and in particular that portion

relating to primitive roots may be treated from another point

of view, that of the binomial congruence

xn—is=o, mod p.
1

1)

We see by §25 that all roots of 1) are roots of the congruence

<\>{x) =0, mod/>,

where <j>{x) is the greatest common divisor, mo&p, of xn—

1

and x?-x— 1.

It is easily seen that

<f,(x)=xd—i,

where d is the positive greatest common divisor of n and p— 1.

The congruence

xn— 1=0, modp,

^ahen: p. 77. Bachmann : Niedere Zahlentheorie, p. 318. H. J. S.

Smith: pp. 140-145.
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has therefore d incongruent roots, that are the roots of

xd— i==o, mod/>. 2)

We can now confine ourselves to congruences of the form 2),

where d is a divisor of p— 1.

The roots of 1) fall into two classes, those which satisfy no

congruence of the same form and of lower degree, these being

called primitive roots, and those which satisfy congruences of

this form and of lower degree, these being called imprimi-

tive rootg.

It is easily seen that every integer that is a root of a con-

gruence

#*— 1^0, mod/v, 3)

where d ± is a divisor of d, is also a root of 2), and conversely that

every imprimitive root of 2) is the root of a congruence of the

form 3), where d± is a divisor of d smaller than d.

The primitive roots of 2) are evidently, in the language of

power residues, those integers that appertain to the exponent d,

mod^. They are evidently <j>(d) in number (Th. 2j). The

primitive roots of p are the primitive roots of the congruence

xp-1— 1=0, mod p.

The product of any number of roots of 2) is a root of 2) and,

in particular, any positive integral power of a root of 2) is a

root of 2).

If r be any primitive root of 2), then the d roots of 2) are

by Th. 23

I, r, r2, -", r*-
1

.

If a lf a2 be roots of the congruences

xdl— 1=0, mod p, 3)

and x*2— is==o, mo&p, 4)

respectively, then a xa2
is a root of the congruence

j^id,— 1=0, mod p. 5 )

In particular, if a lf a2 be primitive roots of 3) and 4) respect-
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ively and d 1} d2 be prime to each other, then a±a2 is a primitive

root of 5) (Th. 26).

The close analogy between the theory of binomial congruences

and that of binomial equations will be easily seen.

§33. Determination of a Primitive Root of a Given Prime

Number.1

The method, which is due to Gauss, depends upon the deter-

mination of a series of integers each of which appertains to a

higher exponent with respect to the given prime, p, than any of

the preceding ones.

In such a series we must evidently reach an integer which

appertains to the exponent p— 1, modp; that is, which is a

primitive root of p.

Take any positive integer, alf less than p and greater than 1,

and form a complete system of its power residues, modp.

Let us suppose that ax appertains to the exponent tlt modp.

If tx= p— 1, then a± is the primitive root required.

If t1 =^=p— 1, it is evident that none of the power residues of

ax Can be a primitive root of p, for they are the roots of the

congruence

jfr— 1= o, mod p, 1

)

and hence appertain, modp, to exponents not greater than tv
Suppose that t1 =^=p— 1. We proceed to determine an integer

appertaining, modp, to an exponent greater than tx . Select any

positive integer, a 2 , less than p and not contained among the

power residues of a lt modp, and form a complete system of its

power residues, mod p. Let t2 be the exponent to which a2 apper-

tains, modp. If t2 —p— 1, a2 is a primitive root of p and the

problem is solved. Suppose that t2 =^=p— 1; then t2 can not be

a divisor of tti for a2 would in that case be a root of the con-

gruence 1) and hence a power residue of alf modp, which is

contrary to our hypothesis.

If t2 be a multiple of ^ but =%=p— 1, we have found an integer,

1 Gauss : Disq. Arith., Art. 73 Ca'.ien : pp. 90-95. Mathews : pp. 20-22.

H. J. S. Smith : pp. 49-54.
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a2 , appertaining to a higher exponent than alt modp, although

not a primitive root of p. We then select a positive integer less

than p and not contained among the power residues of a2 , form

its power residues, modp, and proceed as before. Suppose, how-

ever, that t2 is not a multiple of tls and let m be the least common

multiple of tx and t2 . It is evident that m is greater than tlf

since t2 is, not a divisor of tv We shall show how to determine

an integer appertaining to the exponent m, mod p.

We first resolve m into two factors, mlf tn2 ,
prime to each

other and divisors of tx and t2 respectively. This may be accom-

plished as follows.

Let p x be a prime that occurs to the power e1 as a factor of tx

and to the power e2 as a factor of t2 . We take p x
ei as a factor of

mlf or p x
e2 as a factor of w 2 , according as ex is greater or less

than e2 . If e1
= e2 , then /^i may be taken as a factor of either

mt or w2 . We have then m=m1m2
= t1/d 1

-t2/d2 , where dls d2

are respectively the product of primes that occur in the case of

dx to a lower power in tx than in t2 , and in the case of d2 to a

lower power in f2 than in t± .

Consider now the residues, modp, of a/1
, and a/2

. These

integers appertain respectively to the exponents tjdx , tjd2 , that

are prime to each other.

Hence their product ax
dia2

d2 appertains to the exponent m, that

is the product of these exponents (Th. 26).

Ex. To find a primitive root of 157. The power residues of 2, mod
157, are

2, 4, 8, 16, 32, 64, 128, 99, 4i, 82,

7, 14, 28, 56, 112, 67, 134, in, 65, 130,

103, 49, 98, 39, 78, 156,

— 2, — 4, — 8, -16, — 32, — 64, —128, — 99, — 4i, -82,
— 7, — 14, — 28, -56,-— 112, — 67, —134,-— in, -65, — 130,

-103, — 49, -98, — 39, -78, -iS6asi.

The work is shortened by observing that the residue of 2
28

is — 1, and

consequently the remaining 26 residues are the negatives of the first 26.

We see that 2 appertains to the exponent 52, mod 157. The integer 3,

not being contained among the residues of 2, we form its power residues,

mod 157, and find that it appertains to the exponent 78.

8
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We have 52 = 2
2
-i3,

and 78 = 2-3-13.

The least common multiple of 52 and 78 is 156, that can be resolved into

two factors prime to each other and divisors of 52 and 78 respectively.

Thus ^^x'-^-^^X^.
13 2 13 2

The integers 2
13 and 3

2
appertain to the exponents — and — respectively,

13 2

and hence their product 213

3
2

appertains to the exponent 156; that is,

2
13

3
2

is a primitive root of 157. But we have seen that

213 ==28, mod 157.

Hence 2
13
-3

2 ==28-9= 252==55, mod 157.

We have therefore 55 as a primitive root of 157.

We could have resolved 156 in another way, since 13 occurs to the same

power in 52 and 78.

Thus I56 = ^I3 x i^_L3= 5£ x Z?
J

I ^ 2 • 13 I
/X 26

Then 2 and 3
26

appertain to the exponents 52 and 3 respectively, and

their product 2-3M appertains to the exponent 156; that is, 2-3
28

is a

primitive root of 157.

We have 2-3*^ 2- 144^288^ 131, mod 157,

and hence 131 is a primitive root of 157. For this example and a table of

the power residues of 55, mod 157, see Cahen : pp. 92, 93.

§34. The Congruence xH E=b, mod p. Euler's Criterion.

The congruence

C^j^essfr^ modp,

where ax is not divisible by p, can always be reduced to the form

xn= b, modp,

and in this form it has a special interest. In what follows we
consider

b^o, mod p.

From what has been said in §31, the truth of the following

theorem is at once evident.

Theorem 29. The, necessary and sufficient condition that the

congruence xn ^=b, modp, 1)
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shall be solvable, is that ind b shall be divisible by the greatest

common divisor, d, of n and <f>(p) ; this condition being satisfied

the congruence has exactly \d\ incongruent roots.

See § 31, Ex. 3.

Since ind"& varies with the primitive root taken as base of

the system of indices used, this condition for the solvability of

1) appears to depend upon the primitive root selected.

It is evident, however, that in reality the solvability of i) is

in no way dependent upon this selection, and it must be possible

therefore to find a criterion for the solvability of this congruence

that is independent of indices.

Such a criterion is that first given by Euler and known as

Euler's criterion. It is contained in the following theorem.

Theorem 30. // d be the positive greatest common divisor

of n and <f>(p), the necessary and sufficient condition that the

congruence xn= b, mod p, 2)

shall be solvable is b4>w/d =i, mod p. j)

This condition being satisfied, the congruence has exactly d incon-

gruent roots.

Let r be any primitive root of p, and let

indr b= c.

Suppose 2) to be solvable, then c is divisible by d.

Let c= md.

Then b^rmd , mo&p,

and btw/d^rm-tw, modp,

whence b<pw/d= I} mod/>.

Therefore 3) is a necessary condition for the solvability of 2).

Conversely, if b satisfy 3), the index of b in every system of

indices, mod p, must be divisible by d ; for, if

b==rc
, modp,

then b<t>(pWd= rc<f>(P)/d
}
mod/>,
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and hence rc0d»/tf== I? modp.

Since r, being a primitive root of p, appertains to the exponent

<f>(p), c<f>(p)/d must be divisible by <\>{p).

Therefore c/d is an integer ; that is, c is divisible by d. Hence

3) is a sufficient as well as necessary condition for the solvability

of 2). That the congruence when solvable has d roots is evident

from the preceding paragraph.

All incongruent integers b, for which the congruence 2) is

solvable may be obtained by observing that they are the roots of

the congruence

,r*<9>/*sBi, mod p. 4)

This congruence has <f>(p)/d incongruent roots, since <f>(p)/d

is a divisor of <f>(p). These roots are the incongruent, modp,

values of b for which 2) is solvable. Such numbers congruent

to the nth power of an integer, modp, are called the «-ic resi-

dues of p, and we have the following theorem.

Theorem 31. The number of incongruent n-ic residues,

mod p, is <f>(p)/d, where d is the positive greatest common divisor

of n and <f>(p), and these residues are the rodts of the congruence

x<t>w/d ==i, modp.

Thus, if p= 7, we have for

11= 2, 3 incongruent quadratic residues of 7,

w= 3, 2 incongruent cubic residues of 7,

n= 4, 3 incongruent biquadratic residues of 7,

m= 5,6 incongruent quintic residues of 7,

n= 6, 1 incongruent sextic. residue of 7,

and so on.

We may obtain the above results and also the residues them-

selves by raising each number of a reduced residue system, mod p,

to the nth power and determining the number of the reduced

residue system to which each of these nth powers is congruent,
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mod p. Thus for p= 7, we take as a reduced residue system

1, 2, 3, 4, 5, 6, and have for

n= 2, i
2= i, 22= 4, 3

2= 2, 4
2= 2, 5

2= 4 , 62^i/
w= 3, i

3= i, 23 e==i, 3
3= 6, 4

3 =i, 5
3= 6, 63= 6,

n= 4, i
4 =i, 24= 2, 3

4= 4, 4
4= 4, 5

4= 2 > 64 =i, [.mod 7.

w= 5, i
5 =i, 25= 4, 3

5= 5. 4
5= 2, 5

5= 3, 65= 6,

n= 6, i'bbi, 2 6 =i, 3
6 =i, 4

6 =i> 5
6= i> 66 =i,

Hence the incongruent quadratic residues of 7 are 1, 2 and 4,

the cubic residues 1 and 6, the biquadratic residues 1, 2 and 4, the

quintic residues 1, 2, 3, 4, 5 and 6, the sextic residue 1.

An integer is therefore a quadratic residue of 7 when and only

when it is congruent to one of the integers 1, 2, 4, mod 7, and

likewise for the other values of n.

In the next chapter we shall discuss fully the subject of quad-

ratic residues.

Investigations concerning the properties of cubic and biquad-

ratic residues have led to important developments in the theory

of numbers, that will be noticed later.

Examples.

1. Show that ,r
13— x is divisible by 2730, x being any integer.

2. If x be a prime greater than 13, x12— 1 is divisible by 21840.

p(p-i)

3. If p be a prime and a prime to p, then either a 2 — 1 or

a 2 + 1 is divisible by p
2

.

4. No number of the form m4
-f- 4 except 5 is prime.

5. The product of numbers of the form mx+ 1 is a number

of the same form.

6. The cube of any integer not divisible by 3 is congruent to

± 1, mod 9.

7. Solve the congruences

a) x3— &r+ 1=0, mod 5.

b) x4 + 6x3— 8x2 + lyc+ 5= o, mod 7.

c) x*-\-2x3— i3.F2 -f Sx+ x 3= > mod 11.

8. The congruence
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8.r5 + 4-r4— 3,i-
3
-f- 3X

2 + 3^ + 6= o, mod 7,

has a multiple root; solve the congruence.

9. Solve the system of congruences

3*— 43'+ 52— 911= 1

2*+ $y+ 4^ + 5^= 8

*" + 53' + 6z-{-2u= 1

7X— 33'— I02 + 2U I0

10. Solve the congruence

a-
5— &r4 + 5jt3— 5-r

2 + 4.1- -j- 3= o, mod 27.

11. Solve the congruence

x5— 6.r4 + 8a-3— 4*2 + jx -f 2= 0, mod 20.

12. Prove Th. 30 without the use of indices.

13. Find the prime polynomials of the third degree, mod 5.

14. If a appertain to the exponent ta , mo&p, then

1 -f a + a2
-f • • • + a**-

1 s== o, mod p,

(Gauss: Disq. Arith., Art. 79.)

15. The product of all incongruent primitive roots, mo&p, is

congruent to 1, mod/?, except when p= 3. {Ibid.: Art. 80.)

16. If rlt r2 , •••,r^m) be a reduced residue system, modw, then

all primes are contained in the forms

km + rlf km + r2 ,
• • • , km + rUm) .

17. If p be a prime of the form \n— 1 and a appertain, mod/>,

to the exponent (p— 1)/2, then — a is primitive root of p.

18. Use theorem in Ex. 17 to determine a primitive root of 191.

(Cahen: p. 94.)

19. Determine a primitive root of 73 (Gauss: Disq. Arith.,

Art. 74), also one of 97 (Mathews : p. 20).

20. If p be a prime and rx,r2 ,
•••,^

(P) a reduced residue sys-

tem, mod/>, every rational integral symmetric function of the

r's, whose degree is not a multiple of (f>(p), is divisible by p.

(Cahen: p. 109.)

21. Solve the congruences

a) x20= 3, mod 13.

b) ,r
9= io, mod 13.



CHAPTER IV.

The Rational Realm,

quadratic residues.1

§ i. The General Congruence of the Second Degree with One

Unknown.

The most general congruence of the second degree with one

unknown has the form

ax2 + bx + c— °> m°d m. I

)

We have seen (Chap. Ill, $2j) that the solution of i) when m
is a composite number can be reduced to the solution of a system

of congruences of the same form but with prime moduli. We
shall therefore confine ourselves to the case in which m is a prime

number, p, and furthermore, since for p= 2 the congruence is

easily solvable by trial, we shall suppose p odd.

We consider then the congruence

* ax2 + bx -\- c= o, mod p, 2)

where a is not divisible by the odd prime p, for if it were, the con-

gruence would not be of the second degree. Multiplying 2) by

the reciprocal, at , mod p, of a, we obtain the congruence

x2 + axbx -\- axc == o, mod p. 3)

If now the coefficient of x in 3) be not even, we make it so by

putting aj? + P for (hf>. Having done this, if necessary, 3) is

transformed into the equivalent congruence

x2 + 2b tx -f- cx =5 o, mod p. 4)

Adding b ±
2 to both members of 4), we obtain

(x-{-b 1 )
2= b 1

2— clt modp,

or putting x + bx
= s, mod />, 5)

& x
2— cx ^d, mod/',

1 Gauss: Disq. Arith., pp. 73-119. Wertheim: pp. 170-236. Cahen: pp.

113-143. Bachmann: Niedere Zahlentheorie : pp. 180-317. Dirichlet-

Dedekind: pp. 75-127.
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we see that the solution of 2) can be reduced to the solution of a

binominal congruence

z-^d, mod/>. 6)

If d^o, mod/0 7)

the congruence 6) has either no roots or two incongrnent roots,

for if r be a root, then — r is also a root, and if

r==— r, modp,

then 2r==o, mo&p,

and hence r= o, mod/>,

which is impossible from 7).

The solutions of 4), or what is the same thing 3), being con-

nected with those of 6) by the relation 5), we see that 4) has two

incongruent roots or no roots according as 6) has two incon-

gruent or no roots.

If d= o, mo&p,

then 6) has the two equal roots

£= 0, modp,

and 4) has the two equal roots1

#h==— b 19 modp, 1

x2 + 2b ±x + C\ being a perfect square, mod p. The solutions in

the case of equal roots being obvious, we shall exclude this case

and confine ourselves therefore to the consideration of binomial

congruences of the form 6), where

c?HJ=o, mod p.

The analogy shown here between quadratic equations and congruences

of the same degree with prime modulus should be noticed, the vanishing

of the discriminant b
2— \ac of ax2

-\-bx-{- c being in the one case the

condition that the equation

ax1 + bx 4- c = o,

shall have equal roots, and the divisibility of b
2— 4ac by the modulus

being in the other case the condition that the congruence

1 Wertheim: p. 170.
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ax2+ bx -f- c ra o, mod />,

shall have equal roots.

Ex. Let 5*
2— \ix— 12= 0, mod 23,

be the proposed congruence. Multiplying it by 14, the reciprocal, mod
23, of 5, we obtain the equivalent congruence.

70X2— 154*— 168 ==0, mod 23,

or x2— 16*— 7 == o, mod 23,

or (x— 8)
2 ==2, mod 23.

Putting x— 8 ==2, mod 23, 8)

we have ^^2, mod 23,

which has the roots z as 5 or — 5, mod 23.

These substituted in 8) give the two roots of the original congruence

x^i$ or 3, mod 23.

§ 2. Quadratic Residues and Non-residues.

An integer, a, prime to the modulus m. is said to be a quadratic

residue or non-residue of m, according as the congruence

„v
2 ==a, mod wi,

has or has not roots; that is, a is said to be a quadratic residue of

m, if it be a residue, mod m, of some square number, and a quad-

ratic non-residue of m, if it be a residue, mod m, of no square

number.

Ex. 1. The congruence x^^2, mod 7,

has the roots 3 and — 3 ; hence 2 is a quadratic residue of 7.

Ex. 2. The congruence x2^s, mod 7,

has no roots, as may be seen by trying the integers — 3, — 2, — 1,

o, 1, 2, 3 (also see Chap. Ill, § 34) ; hence 5 is a quadratic non-residue

of 7.

If there be no danger of misunderstanding, the word quadratic

is omitted. The behavior of the integer a in this relation is called

its quadratic character with respect to the modulus m. It is evi-

dent that all integers belonging to the same residue class, mod m,

have the same quadratic character with respect to m. We have

now two principal questions to answer concerning the congruence

x2 ?==a, modw.
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I. What integers are quadratic residues of a given modulus m?
II. Of what moduli is a given integer, a, a quadratic residue?

We shall confine ourselves now to the case in which, m is a

prime, p. Furthermore, we may suppose p to be odd, since the

case p= 2 is at once disposed of by observing that all odd integers

are quadratic residues of 2, and all even integers, being not prime

to 2, are excluded from consideration. For convenience, we also

suppose p to be positive.

We have as a special case of Th. 30, Chap. Ill, the following

:

Eule/s Criterion.

Theorem i. The necessary and sufficient condition that a shall

be a quadratic residue of p; that is, that the congruence

x2= a, mod/>,

shall have roots, is a (p_1)/2 =i, mod p. -

Cor. 1. The integer a is a quadratic residue or non-residue of

p according as we have

a<p-i>/* == 1, or — 1, mod p ;

for since aP~x— 1=0, mod p,

then ( aW2— 1 ) (a^/2 + 1 ) = o, mod p ;

whence it follows that either

a(p-D/2_ I == 0> mod/),

or a (P-1)/2 _|_ 1 sb o, mod p.

-Therefore if a (P-1)/2 == 1, mod p, a is a quadratic residue of p, and

if a (P-1) /2 ==— i
}
mod p, a is a quadratic non-residue of p.

Cor. 2. The product of two quadratic residues or of two quad-

ratic non-residues of p is a quadratic residue of p, and the product

of a quadratic residue and a quadratic non-residue of p is a quad-

ratic non-residue of p.

Let alf a2 be quadratic residues, and a3 , a4 quadratic non-residues

of p.

Then since a1
(p_1) /2^ 1, modp,
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and a*<**>/**arl, mod p,

it follows that . O^) (p~1)/2= I, mod p.

Hence a xa2 is a quadratic residue of />.

Since ' fl3<p-i)/2=_ 1, mod/',

and a/p-1 )/2^— 1, mod/>,

it follows that Os^) (p~1)/2 I, mod p.

Hence a3a4 is a quadratic residue of />.

Since ^^/'a I, mod/>,

and ^OHiVS=— i, mod />,

it follows that O^g) **>/*»— i, mod p.

Hence axa3 is a quadratic non-residue of />. From Cor. 2 follows

at once

:

Cor. 3. The product of several integers is a quadratic residue

or non-residue of p, according as an even or odd number of the

integers are quadratic non-residues of p.

It is therefore only necessary to be able to determine the quad-

ratic character of all prime numbers with respect to any modulus p.

Ex. 1. **eB3, mod 13. 1)

We have 3
(13_1) /2= 3

6= I, mod 13.

Hence 3 is a quadratic residue of 13, the roots of 1) being 4 and — 4.

Ex. 2. ;Te=7, mod 13.

Hence 7 is a quadratic non-residue of 13.

We can verify the result by substituting the numbers, ±1, ±2, ±3,
± 4, ± 5, ±6, which give

I£7 9¥k7 25^7 I modl3 .

4=^7 16^7 36=£7 j

This also follows from the fact that ind2 7, mod 13, is not divisible by 2.

Ex. 3. Since 21 = 3-7

and 3 is a residue of 13, and 7 a non-residue of 13, 21 is by Cor. 2 a non-

residue of 13, which is verified by

2I
(13-1 ) /2_

(
_ 5)

6
) modl3>

^((-5) 2
)

3^(-i) 3^-i. mod 13.
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§ 3.? Determination of the Quadratic Residues and Non-

residues of a Given Odd Prime Modulus.

Theorem 2. // p be an odd prime, one half the integers of a

reduced residue system, mod p, are quadratic residues of p} and

the other half non-residues.

First Proof:

Take as a reduced residue system, mod p, the integers

p-i p- 3 _ 2
_ I2 . P-I P-* _x

2 2 2 2 '

The squares of the integers

2 2

are incongruent each to each, mod p, for if (p— r)/2 and

(p— s)/2 be any two of these integers, r and s being integers

of the series 1,3, •••,/>— 2, and unequal, and

m. (^r+ti)(^-^)-o.„od A

whence either 1- = o, mod p, 3)
2 2

or P^ll—t—L m o, mod py 4)
2 2

Both 3) and 4) are, however, impossible, since (p— r)/2 and

(p— s)/2 are unequal and both positive and less than p/2.

The squares of the -J (p— 1) integers 2) give, therefore,
-J (p— 1)

incongruent residues, mod p, and these are all the incongruent

quadratic residues of p} for the squares of the remaining integers

of 1) give evidently the same residues.

Hence the theorem.
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Second Proof:

Let r be a primitive root of p. Then

r,r2
, '-,ri

,
•••,rP-1

is a reduced residue system, mod p.

From Chap. Ill, Th. 29, it follows at once that every power of

r with an even exponent is a residue of p, and every power of r

with an odd exponent is a non-residue.

Hence there are J(/>— 1) residues of p and \{p— 1) non-

residues of p.

We can express this also by saying that those of the integers of

a reduced residue system which have even indices are residues of

p, while those which have odd indices are non-residues. The

residues of any prime for which we have a table of indices can

evidently be easily thus determined.

Th. 1, Cor. 2, can be deduced from the second proof given

above in a very elegant manner ; for if

a^=axa2
••• a n ,

then ind a= ind ax + ind a2 -f-
• • •

-f- ind an , mod <j>(p),

and hence, since <f>(p) is even, ind a is odd or even according as

ind ax -f- ind a2 -f-
• • • -j- ind an is odd or even. But ind a x

-j- ind a
2

-f-
• • •

-f- ind an , and hence ind a, is odd or even according as an odd

or even number of the indices of ax,a2 ,
••-

J (in are odd. Hence a

is a quadratic residue or non-residue of p according as an even or

odd number of its factors a^,a2 , "-,an are quadratic non-residues

of p.

We can now answer fully the first of our two questions con-

cerning the congruence

#2= a, modpj

where p is an odd prime ; for suppose that we have any reduced

residue system, mod p, and that those residues of this system

which are quadratic residues of p, are rlr r2 , ••-,r^(i, )
and those

which are quadratic non-residues of p are n1} n2 , '",n^(P ), this

having been determined by any of the methods given above. Then

all those and only those integers included in the forms

kp + rlf kp + r2 ,--., kp + rmp)
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are quadratic residues of p, and all and only those integers included

in the forms kp + n lt kp -f- n2 ,
•••, kp + w^(P )

\ are quadratic non-residues of p, k taking all integral values.

\ Ex. i. Let p = 17, and take as a reduced residue system,

— 8, —7, —6, —5, —4, —3, —2, —1, 1, 2, 3, 4, 5, 6, 7, 8

We have

(±i)2=l, (±3) a= 9, (±5)'— 81 (±7)^15,-1 ^od
(±2) 2= 4, (±4) ! =i6, (±6) 2= 2, (±8) :

.5,-1

13./

Hence 1, 2, 4, 8, 9, 13, 15, 16 are the incongruent quadratic residues

of 17, and all those and only those integers which are included in the forms

17k + 1, 17k + 2, 17& + 4, I7& + 8, I7& + 9, 17^ + 13, I7H- 15, 17^ + 16,

are quadratic residues of 17.

The incongruent quadratic non-residues of 17 are

3, 5, 6, 7, 10, 11, 12, 14,

and hence all and only those integers which are included in the forms

*7* + 3, Wk + 5, vjk + 6, 176 + 7, 17* + 10, 17k -f 11, 17& + 12, 17& + 14,

are quadratic non-residues of 17.

Ex. 2. Let p as 13.

From table A, Chap. IV, § 30, we see that the indices of 1, 3, 4, 9,

10 and 12 are even, and the indices of 2, 5, 6, 7, 8 and 11 are odd.

Hence 1, 3, 4, 9, 10 and 12 are the incongruent quadratic residues of

13, and 2, 5, 6, 7, 8, and 11 are the incongruent quadratic non-residues

of 13.

We see then, as above, that the quadratic residues of 13 are integers

of the forms

I3& + Xi I3& + 3, Uk + 4, 13^ + 9, ]3k + 10, 13^ -f- 12,

and the quadratic non-residues of 13 of the forms

13& + 2, I3& + 5, 13^ + 6, i3& + 7> 13^+8, 13& + H.

We have now answered fully the first question concerning the

congruence x2= a, mod p ;

that is, we are able, as shown in the two examples above, to give

for any value of p a finite system of forms, kp -f- r, where r is a

known integer and k any integer, such that all and only those

integers obtained from these forms by letting k take all integral

values, are quadratic residues of p.

A similar series of forms may, as was shown above, be given

for the non-residues of p.
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Before considering the second question, that is, of what odd

prime moduli is a a quadratic residue, we shall introduce a sym-

bolic notation which will greatly simplify the discussion.

§ 4. Legendre's Symbol.

The quadratic character of an integer a with respect to a prime

p, can be expressed in a very convenient manner by means of the

following symbol introduced by Legendre.

Let (a/p) denote -f- 1 or — 1, according as a is a quadratic

residue or non-residue of p ; that is, (a/p) = i denotes that a

is a quadratic residue of p and (a/p) =— 1 denotes that a is a

quadratic non-residue of p. In what follows, p is assumed first

of all to be odd , and secondly , for the sake__of convenience, posi^

tive. This last assumption is not necessary, but simply to avoid

the trouble of writing \p\ when the absolute value of p is to be

taken. Combining this with Euler's criterion, we see that

G)-«- mod/,

expresses the quadratic character of a, with respect to p.

From Th. 1, Cor. 3, it is evident that

(^)-(l)G)-G)
If a= b

y
mod /,

then

Also

G)-G>

denotes that the quadratic character of a with respect to p is the

same as the quadratic character of b with respect to p, and

G)~GM*)G)~
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denotes that the quadratic character of a with respect to p is

opposite to the quadratic character of b with respect to p.

If a= k 2aly then since (k2
/p) = i,

(>)-(') (5) -(5>
In determining the value of (a/p) we may therefore suppose

all square factors to have been removed from a.

§ 5. Determination of the Odd Prime Moduli of which a

Given Integer is a Quadratic Residue.

To answer the second question : of what odd prime moduli is a

a quadratic residue, of what a non-residue, we notice first that if

a=±q 1q 2
•••

qn ,

where q x,qo,--,qn are the positive prime factors of a we have

Hence (a/p) = 1 or — 1 according as an even or an odd number

of the symbols (± i/p), (qi/p), '", (qn/p) have the value — 1

;

that is, a will be a quadratic residue of all primes of which an

even number or none of the factors ± i,qXi
'-,qn are non-residues.

To determine for what values of p the value of (a/p) is 1, for

what — 1, it is therefore only necessary to determine for what

values of p the value of each of the symbols in the second member

of 1 ) is + 1, for what — 1. The problem may be reduced there-

fore to the following three simpler ones

:

To determine

1. Of what odd prime moduli — 1 is a quadratic residue?

2. Of what odd prime moduli 2 is a quadratic residue ?

3. Of what odd prime moduli is another positive odd1 prime

a quadratic residue?

§ 6. Prime Moduli of which — 1 is a Quadratic Residue.

By trial — 1 is seen to be a residue of 5, 13, 17, 29 and a non-

residue of 3, 7, 11, 19, 23, and we are led by induction to the fol-

lowing theorem:

1 Primary prime. See p. 193.
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Theorem 3. The unit — 1 is a quadratic residue of all positive

primes of the form 4n + 1 and a quadratic non-residue of all

positive primes of the form pi— i.
2

We have (§4)

^J^m{^lp
t
mod A

whence, since (— 1 ) (p-X) /2= 1 or — 1,

(¥)-<
p-i

i) r
-

Now p has either the form qn -f- 1 or 4^— 1, and it is easily seen

that when p=4n + 1,
(—i)<p-v/2= i,

aHl^s 4/u*'

and when
. p= pi— 1, (— t)(p-1>/2=—

^

Therefore (
——

J
= 1 when p= \n + 1

,

and I J=— 1 when p= ^n— I.

Ex. 1. We have (— 1/13) = 1 since 13 = 4-3 + 1; that is, the con-

gruence x*?=— 1, mod 13,

has roots. These roots are easily seen to be 5 and — 5.

Ex.2. We have (— 1/23)=— 1, since 23 = 4-6— 1; that is, the

congruence x2^— 1, mod 23,

has no roots; a result easily verified.

§ 7. Determination of a root of the congruence x2 ==— 1, mod

p, (p= 4n + 1) by means of Wilson's Theorem.

Write down the following congruences, which are evidently true

:

2n + 1 =— 2n, mod p,

2n -f- 2 =s— {211— 1 ) , mod p,

2n + 3=— (2n— 2), modp,

4n=— 1, modp,
2
First given by Fermat ; first proved by Euler.

9
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and the identical congruence

(2ft) != (2^) !, mod p.

Multiplying these congruences together, we obtain

(4n)!==(— i)
2w [(2ft) !]

2
, modp,

or (/- i)|.»J;p=iJ :

!J
l
mod/,

But by Wilson's Theorem

(p— i ) ! s==— i, mod p,

whence {- ) 1 1 = — i, mod py

and therefore * m I- ) !, mod/,

is a root of x2 ==— I, mod p.

Ex. By the above theorem the congruence

x2^— i, mod 13,

has a root x == (
3~

J
! ^= 6 ! ^= 5, mod 13

;

that is, 5
2 ==— 1, mod 13.

§ 8. Gauss's Lemma.

The following theorem known as Gauss's Lemma, will enable

us to determine (2/p) and (q/p).

Theorem 4. // m be any integer not divisible by p and if

among the residues of smallest absolute value, mod p, of the

products im, 2m, 3m, ••, %(p— i)m, there be an even number

of negative ones, m is a quadratic residue of p, if an odd number,

m is a quadratic non-residue ; that is, if fx be the number of nega^

tive residues, (m/p) — (— /)**.

We shall illustrate the content of this theorem by a numerical

example.

Let />= I3 and w= 3. The residues of smallest absolute

value, mod 13, of the integers

3, 6, 9, 12, 15, 18

are 3, 6, —4,-1, 2, 5,
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two of which are negative. Hence 3 is a residue of 13 ; that is,

This is seen to be true since the congruence

*2 e=3, mod 13,

has the roots 4 and — 4.

To prove the theorem we proceed as follows

:

Since m is prime to p, the (p— 1)/2 multiples of m

P— l
XIW, 2m,-'./- m 1)

2

are incongruent each to each, mod p. Their residues of smallest

absolute value, mod p, are therefore different integers of the

system

p — 1 p — 3 p — 3 p — I

2 2 2 2

Those which are positive and belong therefore to the system

I, 2, -,^-—-, 2)
2

we shall denote by b lt b2 , ---,b^. Those which are negative, and

belong therefore to the system

_, _ 2 ... -P^l1
> ^1 » >

2

we shall denote by — ax ,
— a2,--,— a M .

Evidently a^, a2 ,
- • • , a^ belong to the system 2). Moreover

2

We shall now prove that

a^,a2 , ••,a IJi
,b 1,b 2 , '•,bx

are the integers

/— I
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in some order. To do this it will be sufficient to show that no

two of these integers are congruent to each other, mod p. It is

evident that no two a's are congruent to each other, mod p, and

the same is true of the b's. Also no a is congruent to a b, mod p.

For if di= bj, modp,

and if Km and km be the integers of 1), of which — a-i and bj

are the residues of smallest absolute value, mod p, then

— hm= km, modp,

and hence (h -f- k)m= o, mod p,

which is impossible, for m being prime to p, and h and k both

positive and < p/2, neither of the factors m or h~\- k is divisible

by p. Therefore the (p— i)/2 integers,

alt a2 , -••,a tL,b 1 ,
b2 , •••,bx,

are incongruent each to each, mod p, and being, moreover, all posi-

tive and < p/2, must be the integers

t*St=±1,2, ,

2

in some order.

Since — ax ,
— a2 ,

•••,— a ,b lf b 2,'-,b\

are residues of

/— l

itn, 2m, 3«f, ••• , m, mod /,

we have

/—I ^
1 -2.» -^— m f s(-i)^...^1

..^
Al modA

whence, since

/ — 1

and this product is prime to />, we have

w 2 (— l)*, mod/.
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But

(")-
p-1

m 2
, mod p,

and (- i)M= 1 or— 1

Therefore

(?)-<->•
We call /x Gauss's Characteristic.

§ 9. Prime Moduli of which 2 is a Quadratic Residue.

We see by any one of the several methods given, that 2 is a

residue of the primes 7, 17, 23, 31, 41, 47,

which are of the form Sn zb 1, and a non-residue of the primes

3, 5, 11, 13, 19, 29, 37,

which are of the form 8w ± 3.

Now every odd prime is of the one or the other of these forms,

and the truth of the following theorem seems at once probable.

Theorem 4. The integer 2 is a quadratic residue of all primes

of the form 8n ± 1, and a quadratic non-residue of all primes of

the form 8n± 3.
1

From Gauss's Lemma we have

(0-
where p is an odd prime, and /* is the number of the integers

2,4,6,---,/>— 1, 1)

whose residues of least absolute value, mod p, are negative. To
determine when ft is even and when odd we notice that these fi

integers are those greater than pi2. If we suppose the series 1)

to be formed by continued subtraction of 2 from p— 1 and write

it in the form

P— I,/>— 3,"-,p— I— 2(fX— l),p— I— 2fi, •••,4,2,

1
First given by Fermat ; first proved by Lagrange.
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we see that, since there are /x of its terms, beginning with p— I

and going backwards, whose residues of least absolute value, mod

p, are negative, the smallest one of these terms will be

P— i— 2(/x— i).

The greatest term whose residue of least absolute value, mod p,

is positive is therefore p— I — 2ti.

Hence we have

p-l -2(/i- i)>|>^_i_2/v 2)

From 2) we obtain

4 4

and therefore /* is the greatest integer contained in the fraction

(/> + 2)/4. Hence we have, when

p= Sn ± i, fi= 2n,

and when p= Sn -fc 3, fi= 2n ± 1

;

that is, fi is even when p has the form Sn ± 1, and odd when p
has the form 8w ± 3.

Hence

( -7

J
= i, when/>= 8« ± 1,

and

f

-J==—
1, when/>= 8;i:±3,

and the theorem is proved.

We can express this result very conveniently in the following

manner. We observe that

£2 j

when p= Sn ± 1,
— — == 8n2 ± 2n

Q

£2 I
and when p= Sn ± 3, —5— = Sn2 ±6n + 1

;

o

/>2 j

that is, when p= Sn ± 1,
^

is even,
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and when

Hence.

Ex. 1. We have

p= 8n± 3, is odd.

GH-"'
172-1

1
8 .

Therefore 2 is a quadratic residue of 17.

f v 112-1

Ex.2. We have (_) — (_!) 8 = (_ I
)i5__ I>

Therefore 2 is a quadratic non-residue of 11.

§ 10. Law of Reciprocity for Quadratic Residues.

It remains now to answer the question : of what odd primes is a

positive odd prime q a residue, of what a non-residue? This is

answered by means of a theorem which expresses the quadratic

character of q with respect to p in terms of the quadratic character

of p with respect to q ; thus making the answer depend upon that

to our first question, § 2. This theorem, which Gauss has called

the " Gem of the Higher Arithmetic," is known as the " Law of

Reciprocity of Quadratic Residues," or more briefly as the

" Quadratic Reciprocity Law." It is the following:

Theorem 5. Law of Reciprocity of Quadratic Residues. 1
If

p and q be two different positive odd primes, the quadratic char-

acter of q with respect to p is the same as or different from the

quadratic character of p with respect to q, according as at least

one of the primes is of the form 4n -f- 1, or both are of the form

pi— 1; that is, if

p= 4h -f- 1 and q= ^k -f- 1,

or ^= 4/i-|-i and g= 4^— 1,

p= ^h— 1 and q= 4k-{-i,or

while if p= ^h— 1 and q= $k— 1, (
—
(i) a)- 1.

x See Bachmann: Niedere Zahlentheorie, pp. 194-318, for a very full

discussion of this theorem, a list of all proofs being given. .
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This theorem can be expressed in a very elegant form, if we

observe that the expression (p
— i)/2-(q— 1)/2 is even when

one or both of the primes are of the form 4ft -\- 1, but odd when

both are of the form qn— 1. We have, therefore,

$(*)-<->?*qf \p

The proof which follows is due to Pfarrer Zeller,2 and depends

solely on Gauss's Lemma.

We have by Gauss's Lemma

(!)=(-)-.J
where /a is the number of the products

\q,2q,--/-^—q, 1)

whose residues of least absolute value, mod p, are negative ; likewise

where v is the number of the products

ip,2p,---,
q-^p, 2)

whose residues of least absolute value, mod q, are negative.

Hence (J)^-*- 1^
The problem is therefore resolved into the determination of those

cases in which p -\- v is even and those in which it is odd. Denote

the residues of least absolute value, mod p, of the products 1) by

— a1}
— a2 ,

•••,— a^ b1} b2 ,
•••, b\»

and those of the products 2), mod q, by

c1? c2 ,
• • *, c V y d 1) d 2)

'

' *, a p)

2 Monatsbericht der Berliner Akademie, December, 1872.
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the a's, fr's, c's and d's all being positive. Since p and q are dif-

ferent from each other, one must be the greater. Assume q > p.

We divide now the integers clt c2 , ',c v , all of which being resi-

dues of least absolute value, mod q, belong to the system

1,2,

into two classes according as they are greater or less than p/2.

The system of those which are < p/2 we denote by Cx and the

system of those > p/2 by C2 .

Let v 1 denote the number of the integers Clf and v2 that of the

integers C2 .

The proof now falls naturally into the following four parts

:

i. That the integers, Clf are identical with the b's and therefore

together with the a's make up the system

p—i

whence /*+ v= -
f- v2 .

ii. That the number, v2 , of the integers C2 is odd or even

according as the number (p-{-q)/4 is or is not found among

them.

iii. That (p + q)/4 occurs among the integers C2 , and hence

v2 is odd, when and only when we have simultaneously

p= 4h— 1 and q= 4k + I.

iv. That therefore p-f- v is odd when and only when simul-

taneously p= 4h— 1 and q= 4k— 1

.

The proof will be rendered more intelligible if we consider

first the relation between the four parts into which we have

divided it.

Suppose that we have proved i, then

(I) a) - (- >--.
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and to prove our theorem it is sufficient to show that (p— i)/2

+ v2 is odd when and only when

p= 4h— 1, q=^4k— I.

It is evident, however, that since (p— 1)/2 is even or odd

according as p= 4k + 1 or 4/t— 1, to show that (p— 1 )/2 + v2

is odd when and only when p= 4h— 1, q= 4k— 1, it is suffi-

cient to show that v2 is odd when and only when p= 4h— 1,

q= 4k-\-i. Now the number {p + q)/4 is less than q/2 and

greater than p/2 and hence, */ an integer, is either one of the

integers C2 or one of the d's.

But (p + q)/4 is an integer only when p= 4h + 1, q— 4k— 1

or p= 4h— 1, q= 4k-\-i, and hence can therefore evidently

never be among the integers C2
in the cases p=4/1+ i

}
q=^k -4- 1

;

and p=4h— 1, q= 4k— 1. If now we can show that (p -\-q)/4

always occurs among the integers C2 when p=4h— 1, q=4k-\-i,

and never when p=4h-\-i
f q= 4k— 1, then to show that v2 is

odd when and only when p= 4h— 1, q= 4k-{-i, it will be

sufficient to show that v2 is odd when and only when (p + q)/4

occurs among the integers C2 . Therefore to show that (p— i)/2

-\-v2 is odd when and only when />=4/j— i, q= 4k— 1, it will

be sufficient to show that (p + q)/4 occurs among the integers C2

when and only when p= 4h— 1, p= 4k -f- 1. Our idea is there-

fore to show that the three conditions

p= 4h—i, q= 4k + i,

v2 odd,

one of the integers C2 ,

4

are equivalent, whence it will follow that (p— i)/2 + v2 is odd

when and only when p= 4h— 1, q= 4k— 1.

i. If any integer of the system

p— i

be not an a it must be a b ; for as we have already shown (Th. 4),

the a's and b's together make up this system. The integers Cx
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belong, however, also to this system, hence each of the integers

Cx must be either an a or a b. We shall show that each b is iden-

tical with one of the integers Cx ; also that no a is identical with

any of the integers Cx and hence the fr's and the integers Cx coin-

cide. Let bi be any one of the b's, and hiq that product of the

system i) whose residue of least absolute value, mod p, is bi.

PWe have then hiq= bi, mod p ; o < hi < -;

that is, hiq= kip-{-bi, 3)

where ki is an integer such that

Po< kip<hiq<-q,

and hence o<*»<f.

Therefore kip is one of the products of the system 2).

But from 3), we have

kip=— bi, modg,

where
P

o<bi<^.

Hence bi is one of the integers Cx.

But bi is any one of the b's ; hence each b is identical with one

of the integers Cv Let now a}
- be any one of the o's and hjq that

product of the system 1) whose residue of least absolute value,

mod p, is — ctj. We have then

hjq=— dj, mod p ;

that is, hjq= kjp— a;
-, 4)

where kj is an integer > o and < q/2 ; for from 4)

__hjq + aj
kj~~P '

P Pand hence, since o < a y < -, and o < hj < -,
— 2
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we have
2*2

n ^ hi ^O <v K) <. ,

that is, o<^<*+\
which gives, since k, and (g -f i)/2 are integers,

Hence kjp is one of the products 2), and since from 4) it follows

that kjp==aj, modg,

dj is a d and therefore not one of the integers Ct, But a, is any-

one of the a's ; hence no a can be identical with one of the integers

Cv Hence the a's and the integers Cx coincide, and therefore the

a's and the integers C x make up the system

/- I

1,2, ,

2

Therefore fi -\- v= \- v2 .

ii. To prove now that the number, v2 , of the integers C2 is

odd or even according as the number (p -j- q)/4 is or is not found

among them, let Ci be one of the integers C2 and

kip=— a, modg.

Here ki can not be (q— 1)/2, for we have

2 2 2

that is, / ss - £, mod a,
2 2

where (g— p)/2 is evidently positive and less than a/2, and hence

one of the a"s.

Therefore to each product, kip, of the system 2), whose residue

of least absolute value, mod q, taken positively is an integer of C2 ,
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there corresponds, since

a product kjp, (fcj+ (q— i)/2), of the same system, such that

^ 2
*'

We shall show now that the residue of least absolute value, mod

q, of kjp, taken positively, is also one of the integers C2 .

Multiplying 5) by p, we have

whence £•/ = ? + — — kj>,

or k.p m tilt - kj>, mod q,

and hence /£•/» — — kj>, mod q.

Moreover, since kip=— a, modg,

we have k,p = — + cp mod q.

^ P Q
But since - <*/<-,

2 * 2

we have £<£xf — *<'£22 2

Hence ^ is one of the integers C2 .

Putting /+_? - ^ = r., 6)

we see that if kip, kjp, be two products of the system 2), such that

ki and kj are connected by the relation 5), and if the residue of

least absolute value of kip, mod q, be — d, where C\ is one of the
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integers C2 , then the residue of least absolute value of kjp, mod q,

is — Cj, where Cj is also one of the integers C2 .

Hence to each integer d of C2 there corresponds in this

manner another integer Cj of C2 and it is evident that unless it

should happen that there is one (or any odd number) of these

pairs whose integers are identical, the number, v2 , of the integers

C2 will be even, but if the two integers composing each of any odd

number of these pairs be identical, v2 is odd.

If a= Cj, then from 6) it follows that

4
* 4

Hence there is at most one pair whose integers are identical and

this case will occur when and only when (p + q)/4 is one of the

integers C2 . Hence v2 is odd or even according as (p-\-q)/4

does or does not occur among the integers C2 .

iii. To prove now that (p-\-q)/4 occurs among the integers

C2 , and hence v2 is odd, when and only when we have simulta-

neously p— ^h— i, q= 4k + i,

we observe first that

P P + 9 g
2 4 2

and hence, if (p-\-q)/4 be an integer, it is either one of the

integers C2 or a d.

In order now that (p-\-q)/4 may be one of the integers C2

it is necessary and sufficient that there shall be one, kp, of the

products 2) such that

/ + Q
kp m —

, mod q ;

that is, it is necessary and sufficient that there shall exist two

integers h and k such that

kp-kq- P-±Z, 7 )
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and k < - •

2

From 7) it follows that we must have

(4k + i)p=(4h—i)q, 8)

and hence 4k -f- 1 divisible by q.

q
But we have k < -

,

2

and hence 4& + 1 < 2g.

Therefore g= 4k + 1,

and consequently from 8) it follows that

p= 4h—i;

that is, in order that the required integers h and k may exist, p

and q must have these forms. Moreover, when p and q have these

forms the required integers h and & evidently do exist.

Hence p= 4h— 1, q= 4k -\- 1 isa necessary and sufficient con-

dition that (p + q)/4 shall be one of the integers C2 .

Therefore v2 is odd when and only when we have simultaneously

p= 4h— 1, and q= 4k + 1.

iv. To prove now that /* + v is odd when and only when we

have simultaneously p= 4h— 1, q= 4k— 1, we examine the

equation

j_ P— T
1p-rv= — r-"2

and observe that

p= 4h-\- 1, q= 4k + 1 gives even, v2 even, fi-\-v even,
2

/>— 1

p= 4h -f- 1, g= 4£— 1 gives even, v2 even, ft+ v even,

p= 4h— 1, q= 4k-{-i gives odd, v2 odd, /a -j- v even,
2

p= 4J1— 1
f g= 4^— 1 gives odd, v2 even, fi-{-v odd.
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Therefore
(| ) (J )

= ,

when at least one of the positive primes p and q has the form

4W+I ,a„d
(f)(J)—

*

when both have the form 4.11— 1.

4 § 11. Determination of the Value of (a/p) by means of the

Quadratic Reciprocity Law, a being any Given Integer and p

a Prime.

Before discussing the question of what odd prime moduli is a

given positive odd prime a quadratic residue, which we shall be

able to answer by means of the Quadratic Reciprocity Law, we
shall illustrate upon an example how greatly the use of this law

simplifies the determination of the value of (a/p), where a and p

are both given integers and p an odd positive prime; that is, the

determination whether the congruence

„r
2 ==a, modp,

has or has not roots.

Let ^= 365, mod 1847,

be the congruence under discussion, 1847 being a prime. 1

We have

V1847/ V1847/ V1847/847/ \i847/ \i847>

Then since 5 is a prime of the form 4^+1, we have

§47
N

V1847/ v847/ V 5

and since 1847= 2, mod 5,

5 being of the form 8n— 3.

Hence I
——
\1847

1 Dirichlet-Dedekind : p. 103.
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Likewise since 73 is of the form 411 + 1,

and 1847= 22, mod 73,

we have

(is^j
=
V73-) = (jj)

= \y3) xjj)

But (£)-,;

since 73 is of the form 8n -\- 1, and therefore

VT847/
=

(73/

'

Again since 73 is of the form 4» + * and 73= 7, mod 11,

(M)-(H)-(f,)-
Since 7 and 11 are both of the form 471— 1,

(f.)
=-(")-©-©©—

Therefore (^) = (-1) (_i) = i ;

that is, 1 ) is solvable.

Its roots can be shown to be ± 496.

§ 12. Determination of the Odd Prime Moduli of which a

Given Positive Odd Prime is a Quadratic Residue.

Let q be an odd positive prime.

We are to determine for what positive odd prime values of p

the value of (q/p) is 1, for what — 1.

By means of the Quadratic Reciprocity Law we are able to

make the solution of this problem depend on that of the simpler

one, which we have already solved ; that is, the division of all

rational integers into two classes, one of which contains all resi-

dues of q and the other all non-residues.

Let rx,r2 , '-,r t and n x,n 2 ,
••-,«* be respectively the incongruent

quadratic residues and non-residues of q. Then an integer is a

10
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residue or non-residue of q according as it is contained in one of

the forms rt + kq, r2 -\-kq,-",rt-\-kq, 1

)

or in one of the forms

n1 + kq,n2 + kq,--',n t + kq. 2)

It is necessary now to distinguish two cases according as q has

the form 411 + 1 or 4^— 1.

i. g =411+1.

(*)-(&Then
ft \q

that is, q is a quadratic residue or non-residue of p according as p

is a quadratic residue or non-residue of q. Hence q is a residue

of all positive odd primes contained in the forms 1) and a non-

residue of all positive odd primes contained in the forms 2).

Ex. Let q = 13.

The residues of 13 are 1, 3, 4, 9, 10 and 12, the non-residues 2, 5,

6, 7, 8 and 11.

Hence 13 is a residue of all primes of the forms

1 +*I3&, 3 + I*3*j 4+ 13^ 9 + 13^Jto + 13&, 12 + 13k,

and a non-residue of all primes of the forms

2 + izk, 5 + izk, 6 + 136, 7 + 13^, 8 + 13k 11 + 13^

ii. q= 4.n— 1.

We must further divide this case into two parts according as p

has the form 4m + 1 or 4m— 1.

a) p= 4tn-\-i.

& - (£)
Then

pi \q

and q is seen to be a quadratic residue of all primes of the form

4m + 1 contained in the forms 1 ) and a non-residue of all primes

of the form 4m + 1 contained in the forms 2).

b) p= 4m— 1.

(JHf) •
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and q is seen to be a quadratic residue of all positive primes of

the form 4m— 1 contained in the forms 2) and a quadratic non-

residue of all positive primes of the form 4m— 1 contained in

the forms 1).

The primes p are in this case seen to be subjected to two con-

ditions, first that they shall give with respect to the modulus 4 the

residues 1 or — 1, and secondly with respect to modulus q the

residues rly r2 , --,r t or n 19 n2 ,
• • •

,

n t .

By Chap. Ill, § 14, we can find the forms which the numbers

must have in order to satisfy both of these conditions.

Ex.
1

Let q = 19.

The residues of 19 are

i, 4, 5, 6, 7, 9, 11, 16 and 17,

and the non-residues

2, 3, 8, 10, 12, 13, 14, 15 and 18.

Hence 19 is a residue of all positive primes of the form 4m -\- 1 con-

tained in the forms

19* + i, 19* + 4, I9& + 5, 19^ + 6, 19^ + 7/

19*4-9, 19* + n, 19* + 16, 19* 4" 17, 3)

and of all positive primes of the form \m— 1 contained in the forms

19* 4" 2
> 19^ 4"3? I9# + 8, 19* 4~ IO

>
J9^ 4~ I2

,

19* + 13, 19* 4-14, 19&+ 15, I9& 4- 18. 4)

On the other hand 19 is a non-residue of all positive primes of the

form 4W— 1 contained in the forms 3) and of all positive primes of

the form 4m -f- 1 contained in the forms 4). By Chap. Ill, §14, we may
combine the two conditions thus imposed upon p into a single one and

say that 19 is a quadratic residue of all primes of the forms

76*4-1, 3, 5, 9, 15, 17, 25, 27, 31, 45, 49, 51, 59, 61, 67, 71, 73, 75,

and a quadratic non-residue of all primes of the forms,

76*4-7, 11, 13, 21, 23, 29, 33, 35, 37, 39, 41, 43, 47, 53, 55, 63, 65, 69.

§ 13. Determination of the Odd Prime Moduli of which any

Given Integer is a Quadratic Residue.

It was shown in § 10 that the solution of this problem could be

made to depend upon the solution of the three simpler problems,

to determine

:

1 Wertheim : p. 220.
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i. Of what odd prime moduli — 1 is a quadratic residue.

ii. Of what odd prime moduli 2 is a quadratic residue.

iii. Of what odd prime moduli another positive odd prime is

a quadratic residue.

These problems have all been solved and we are now prepared

to solve the general question proposed originally in §2;- that is,

to determine^ for what _o^_j^ime~^aiues of p the value ofJj^Q^,
is i and for what — 1, a being any given integer. Assuming that

.

a contains no square factor and by pi denoting — 1 or any positive

prime factor of a, we have for. each pi two systems of forms, one

of which contains all positive odd primes of which pi is a residue,

the other all positive odd primes of which pi is a non-residue.

The positive odd primes of which a is a residue will be those

which are contained in none or an even number of the second set

of forms. Having obtained for each pi these two systems of

forms the solution of the problem reduces to that of finding an

integer which gives certain residues with respect to ^ach one of

a series of moduli (Chap. Ill, §14). A single example must

suffice here to illustrate the application of this method. For an

extended discussion of it with numerous examples see Wertheim,

pp. 221, and for the solution of this problem as well as the more

general one, where the modulus is 'also composite, see Dirichlet-

Dedekind, Bachmann and Mathews, where by an extension of

Legendre's symbol a simplification is effected.

Ex. Let a =— 15.

(^)=(t)(I)0)
Two cases must now be distinguished according as p has the form

4fei + 1 or 4k, + 3.

If /, = 4*1+ 1,

(t?)'**

and (- )
= ( --

)
= 1 when /> = ^2-^1^

and as— 1 when p as 3&? -f 2

If /,^4^ + 3 ,
^)=:_I,
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and [j\=- (0 = I when p = 3k2+ 2,

and rs — 1 when p = $k2 -f 1.

In both cases

©-(3 1 when p= 5&3 + X or 5&3 + 4,

and =— 1 when /> = 5&3 + 2 or 5^3 + 3.

In order now that — 15 shall be a residue of p, p must have such a

form that either none or two of the symbols (

—

i/p), (3/p), (5//O
have the value — 1.

Hence — 15 is a residue of all primes which are contained simulta-

neously in the forms of one of the following sets

:

4&i + i, 3&2 -f 1, 5^3+ 1, which give p = 60k + 1, 1

)

4&i + i, 3&2 + 1, 5^3+ 4, which give p = 60k -f 49, 2)

4&1 + 1, 3&2 + 2, 5^3 + 2, which give p = 60k + 17, 3,)

4^1+1, 3^2 + 2, 5&3+ 3, which give /> = 60k + 53, 4.)-

4&i + 3, 3& + 1, 5^3 + 1, which give p = 60k -f- 31, 5)

4&i + 3, 3&2 + 1, 5^3+ 4, which give p = 60k + 19, 6)

4&i "k 3, 3k +.2, 5^3 + 2, which give /> = 6ofc + 47, 7)
'

4&i+ 3, 3^2 + 2, 5^3 + 3, which give p = 60k + 23. 8)-

V
We can easily combine 1) and 5), 8) and 6), 3) and 7), 4) and 8), and

obtain as the forms of the positive odd primes of which — 15 is a residue

30& + 1, 17, 19, 23.

Similarly we find that — 15 is a non-residue of all positive primes

contained in the forms

3o£ + 7, n, 13, 29.
j.

§ 14. Other Applications of the Quadratic Reciprocity Law.

We shall now give a few theorems in the proof of which the

Quadratic Reciprocity Law and its two subsidiary theorems will

be found useful.

Theorem 6. There are an infinite number of positive primes

of each of the forms 4n-\- i and 4n— i.
1

Observing that every prime is of one of these forms, we pro-

1 See Chap. II, § 6.
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ceed to prove that there is an infinite number of primes of the

form 4n -f- 1.

Suppose that there is only a finite number of positive primes

Pi> p2>
'

' '> Ps, of the form 4.W + 1. Form the integer

(2p 1p 2
--p

8y + i=a,

which is of the form 4% -j- 1.

It is divisible by no prime q of the form 4%— 1, for, if this

were the case, we should have

{2p xp 2
--- p sy=— 1, modg;

that is, — 1 would be a quadratic residue of q which is impossible

because q is of the form 471— 1.

Moreover, a is not divisible by any of the primes 2, p lt p 2 , •••,/>«.

Hence a is itself a prime of the form 4n-\- 1, different from each

of the primes p lt p 2 , •••,^, or is a product of such primes. But

this is contrary to our assumption that there are no primes of the

form 4M+ 1 other than p lt p 2 , ••*,£«. Therefore the number' of

positive primes of the form 471 —|— 1 is infinite.

To prove now that there is an infinite number of positive primes

of the form 4%— 1, we assume as before the contrary to be true;

that is, that there are only a finite number of positive primes

Qi> <?2> "'fit °f tne form 4%— 1, q t being the greatest.

Form the integer zq 1q 2
• • • q t + 1 = b.

It is greater than q t and is not divisible by any of the primes

2
> Qi> #2> "'i9.t* Hence, if it be not prime, its prime factors must

all be of the form 411 -{- 1.

Let 2q 1q 2
'--q

t + i=p 1p 2 '"pr9 1)

where p x
== 1

/>2= i
mod 4.

prwmi

Multiplying these congruences together, we have

• PiP2'"pr=i, mod 4,
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whence 2^xg2 • • • qt + i= i, mod 4,

and hence QiQ2'"Qt = 0, mod 2. 2)

But 2) is impossible since q 1,q2,'",qt are all primes of the

form 4n— 1.

Hence 1 ) is impossible and b is either itself a prime of the form

4n— 1 or is a product of primes of this form, all of which are

greater than qt. Therefore the number of positive primes of the

form 4-n— 1 is infinite.

Theorem 7. Every prime of the form 22 + 1 has a primitive

root.3.

Let />= 2 2" +1.

If 3 be a primitive root of p, then each of the (p— 2) powers of 3

must be incongruent to 1, mod p. tt)

If, however, 3*=== 1, mod p, where o<t<p— 1, p being positive,

then, by Chap. Ill, Th. 25, it follows that

P— iso, mod/, ?>i.ji_

and, since p— 1 = 2 2"

,

/— 2Wl — 4
,

and the greatest possible value of t will be 2
2n _1

. In order, there-

fore, that 3 may be a primitive root of p, it is necessary and suffi-

cient that the following 2n— 1 incongruences should hold

3 *i,

3
22 4u, }, mod p.

3
2 *ii

A sufficient condition for this is that the last of these incon-

gruences should hold, for if any one of the previous ones did not

hold, all following ones would not hold.

We have therefore only to prove

^~ l ^i, mod/>;
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that is 3
2 ^1, mod/>. 3)

But when 3) is satisfied, 3 is a quadratic non-residue of p, and

vice versa. Hence we have only to prove (3//O =— I.

Since p is of the form 4^+1, we have

/"W 4)
(!)-(!)

But 2=— I, mod 3,

whence 2 2"= (— 1

)

2"
1 , mod 3.

Therefore 2
2n + 1 = 2, mod 3,

whence from 4) it follows that

©-
Therefore 3 is a primitive root of every prime of the form

2 2 " + I.

The theorem just proved bears an interesting relation to the

problem of the construction of regular polygons of a prime num-

ber of sides with ruler and compasses ; the construction is possible

only when p is a prime of the form 2 2 "
-f- 1, and can be accom-

plished by means of a primitive root of p.
1

Theorem 8. Every positive prime p of the form 4q -f- 1, where

q is a positive prime, has 2 as a primitive root.

If 2 be a primitive root of p, then each of the p— 2 powers of 2

2,2 2
,
..-,2P-2

must be incongruent to 1, mod p.

If, however, 2 appertains to an exponent t, mod p, less than

p— 1, then 2*e=i, mod/>, 5)

1 See Klein : Ausgewahlte Fragen der Elementar Geometrie, p. 13.

Gauss: Disq. Arith., Sect. Sept. Works, Vol. I, p. 412. Bachmann

:

Die Lehre von der Kreisteilung, p. 57 and Vor. 7th.
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and by Chap. Ill, Th. 25,

p— 1=0, mod t,

whence 4q mm o, mod /.

Hence, since q is a prime, we can have as possible values of t only

2, 4, q or 2q.

It is necessary and sufficient to show that

24 =)si, mod/>, and 22«=4=i, mod/>,

for, if 22 a=i, mod p, then 24 a»l, mod/>,

and, if 2«s=i, mod />, then 2 2«e= i, mod/>.

To prove 24 4a 1, mod />

;

that is, 15^0, mod/>,

it is sufficient to notice that the only primes which divide 15 are

3 and 5, neither of which is of the form 4*7 -+- 1, when q is a prime.

Hence 2 4 ^i, mod/>.

To prove 2 2«^ 1, mod />

;

that is, 2 (*>-1)/2 4= 1, mod p,

we need only show that

(7)—
we have I—J = (- 1)

8 = (- l)^*- - 1,

for if ^= 2, />, =4*7 -j- 1, is not a prime and therefore q is always

odd, whence it is evident that 2q
2 + g is an uneven integer.

Hence 2 2«4S l > mod/>.

Therefore 5) holds for no value of t less than p— 1.

Hence 2 is a primitive root of every positive prime of the form

4q -\- 1 when q is a positive prime.

Examples.

1. Determine the prime moduli of which 30 is a quadratic

residue.
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2. Has the congruence

jtr
2= H35, mod 231 1,

roots ?

3. Solve the congruences :

1

a) $x2— &r— 3= 0, mod 23. x= 8 or 12, mod 23.

b) 3*^+ 4*+ 5= 0, mod 20. .r=— 3,— 5, 7, 5, mod 20.

c) Jx2— 3;tr-(- 11 =0, mod 19. ;fe=5, 9, mod 19.

d) 5a-
2— $x— 2= 0, mod 12. x=— 2, 1,2, 5, mod 12.

e) 3jf2 + 4^+ 9= 0, mod 12. arss— 3, 3, mod 12.

/) Zx% + x— 4— °> mod 10. x= 1,2, 6,7, mod 10.

4. Show that among the numbers of a reduced residue system,

mod p
n

, where p is a prime different from 2, there are exactly as

many quadratic residues as non-residues of p
n

.

2

5. Show that every quadratic residue of p is also a quadratic

residue of p
n

, and that every non-residue of p is also a non-

residue of p
n

.

s

6. The numbers a and p— a, where p is a prime, have the same

or opposite quadratic characters, mod p, according as p is of the

form 4W -}- 1 or 4n— 1

.

1 Wertheim : Anfangsgriinde der Zahlenlehre, 1902, pp. 320-322. This

book contains many numerical examples and should be consulted by every

one interested in such work. It also contains many interesting historical

notes and some useful tables, and is in many ways a good book for a

beginner to read.
2 Gauss : Disq. Arith., Art. 100 ; Works, Vol. I.

3
Ibid., Art. 101.



CHAPTER V.

The Realm k(i). 1

§ i. Numbers of k(i). Conjugate and Norm of a Number.

The number V— I, that we shall as usual denote by i, is defined

by the equation x- + I = o I

)

which it satisfies.

Every number of k(i) is a rational function of i with rational

coefficients (Chap. I, §3), and since by means of the relation

i
2=— 1 the degree of any rational function of i may be reduced

so as to be not higher than the first, every number, a, of k(i)

has the form

a= a1 + b 1i

a2 -f b2i

'

where alt b ly a 2 , b2 are rational numbers, or, multiplying the numer-

ator and denominator of this fraction by a2
— b2i, we have

axa2 -f- b xb2 a2bx
— aj>2 .

<*2 +- b 2 ai + b, 2

that is, every number, a, of k(i) has the form

a= a -{- hi,

where a and b are rational numbers.''

The other root — i of the equation 1) defines the realm k{— i)

conjugate to k{%) (Chap. I, § 4). These two realms are identical,

1 Gauss : Th. Res. Biquad. Com. Sec, Works, Vol. 2, p. 95, f. f. Dirichlet-

Dedekind : § 139. Weber : Algebra, Vol. I, § 173. Dedekind : Sur la

theorie des nombres entiers algebrfuques ; Bulletin des Sc. Math., 1st Ser.,

Vol. XI, and 2d Ser., Vol. I. Bachmann : Die Lehre von der Kreisteilung,

12th Vor. Cahen: pp. 354-367.
2 Throughout the remainder of this book letters of the Latin alphabet

will always denote rational numbers (except in £(0, where * = V — 1)

while letters of the Greek alphabet will denote the general numbers of

the realm under discussion, which may or may not be rational numbers.

155
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•

for i is a number of k(— i) and— i is a number of k{i) (Chap. I,

§3). The number a— bi, obtained by putting — i for i in any

number a, =a -f- bi, of k(i), is the conjugate of a and is denoted

by a'; for example, 3 + 2.1 and 3— 2,i are conjugate numbers

(Chap. I, §4).

A rational number considered as a number of k(i) is evidently

its own conjugate.

It is easily seen that the conjugate of a product of two or more

numbers of k(i) is equal to the product of the conjugates of its

factors; that is, if fx= ap, then /i=a ,
p'. The product of any

number, a, of k(i) by its conjugate is called the norm of a and is

denoted by n[a] ; that is,

n[a + bi] = (a+ bi) (a—bi) =a2 + b2

For example:

*(3 + 2i]=(s + 2i) (3— 21) = 13,

and n[s]==5'5= 25-

We observe that the norms of all numbers of k(i) are positive

rational numbers.

Theorem i. The norm of a product is equal to the product of

the norms of its factors; that is, n[a/3] =n [a] -n[/3].

For n[ap]=ap-a'F

= « [a] •«[/?].

Every number, a, of k(i) satisfies a rational equation whose

degree is the same as that of the realm, that is, the second, and

whose remaining root is the conjugate of a, for the equation

having for its roots a,=a-\- bi, and a', =a— bi, where a and b

are rational numbers, is

x2— 2ax + a2 -\-b2= o; 2)

and this is of the form

x2 + px + q= o, 3)

where p and q are rational numbers.
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If b=o, that is, if a= a', the equation 2) is reducible, becoming

O— a) 2= o,

and the rational equation of lowest degree that a satisfies is

x— a= o

If ,&=j=o, that is, if a =4= a', the equation 2) is irreducible, and

hence is the single rational equation of lowest degree and of the

form 3) satisfied by a (Chap. I, § 2).

We observe, therefore, that the numbers of k(i) fall into two

classes according as the irreducible equations of lowest degree

satisfied by them are of the first or second degree. Those of the

second class, that is, those which satisfy irreducible rational equa-

tions of the same degree as that of the realm, are called primitive

numbers of k(i).

The numbers of the first class, that is, those which satisfy irre-

ducible rational equations of a degree lower than that of the realm,

are called imprimitive numbers of k(i).

The imprimitive numbers of k(i) are evidently the rational

numbers.

All numbers of the realm R being included among those of the

realm k(i), R is said to be a sub-realm of k(i). It is easily seen

that k(i) may be defined by any one of its primitive numbers, but

by none of its imprimitive numbers.

The constant term of the rational equation of the form 3) whose

roots are a and a' is seen to be n[a].

In general, each number a, of a realm, k(&), of the nth. degree satisfies

a rational equation whose degree is the same as that of the realm and

whose remaining roots are the n— 1 conjugates of a (see Chap. VIII,

Th. 4).

§2. Integers of k(i).

To ascertain what numbers of k(i) are algebraic integers we

may consider separately the two classes of numbers of the realm,

the imprimitive numbers being at once disposed of by remember-

ing that a rational number is an algebraic integer when and only

when it is a rational integer.
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To determine when a primitive number a is an algebraic

integer, we observe that the necessary and sufficient condition that

a shall be an algebraic integer is that the coefficients of the single

rational equation of lowest degree,

x2 + px + q= o,

satisfied by a shall be integers (Chap. II, Th. 4).

But — p= a-\-a', and q= aa'

and hence the necessary and sufficient conditions that a shall be

an algebraic integer are that a+ a! and aa' shall be rational

integers. 2

If we write a in the form a -\- bi, where a= a
x
/c

x , and b= b
x
/c

x ,

#!, b x , cx being rational integers with no common factor, these

conditions become

-J—-—L
-f — = — r= a rational integer, 1)

c1 cx c±

(
°±±M

)
(^M

)
. k^l= a rational integer . 2

)

One at least of the three following cases must occur:

i. q4=2 or 1; ii. c1
= 2; iii. ^=1.

We shall show that i and ii are impossible.

i. If c1 =%=2 or 1, then by virtue of 1) o
x
and c 1 would have a

common factor that by virtue of 2) would be contained in b x also.

But this is contrary to our hypothesis that alt b lt cx have no com-

mon factor. Hence i is impossible.

ii. If cx
= 2, then by virtue of 2) a x

2 + b x
2 would be divisible

by 22 and hence ax and b x each by 2 ; that is, a x , b x , cx would have

the common factor 2, which is contrary to our hypothesis. Hence

ii is impossible.

Hence cx
= 1 ; that is, a and b are rational integers.

2 This is a special case of the general theorem that a necessary and

sufficient condition for an algebraic number a to be an integer is that

all the elementary symmetric functions of a and its conjugates shall be

rational integers.
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Thus all integers 1 of k(i) have the form a + bi, where a and b

are rational integers, and all numbers of this form are integers of

k(i). If b= o, we obtain the rational integers. The conjugate

of any integer of k(i) is evidently also an integer, and the norm

of any integer of k(i) is a positive rational integer. We observe

that in k(i), as in R, the sum, difference and product of any two

integers are integers. 2

§3. Basis of k(i).

Any two integers a>lf o>2 of k(i) are said to form a basis of the

realm if every integer of the realm can be represented in the

form a 1 o) 1 + a2w2 , where alt a2 are rational integers. 3

It is evident that all numbers of the form a^ -f- a2w2 are in-

tegers of k(i). We have already seen that I and i form a basis

of k(i) ; that they are not the only integers of k{i) having this

property is easily shown.

For example: 1 + *, 3 + 2/ is also a basis; for if a-\-bi be any integer

of k(i), then from

a + bi= (h(i -ft) +02(3 + 20,

we have ai + 3a* = a,

fli + 2a2= b,

giving ai =— 2.a + 3b,

Oz = a— b,

which are rational integers since a and b are rational integers.

We have

a + &*•=(- 2a + 3fc) (1 +0 + (<*-&) (3 + 2*')-

1 Throughout the discussion of k(i) the term integer wiH be used to

denote any integer of the realm either complex or rational.
2
It is true, in general, that the sum, difference, and product of any

two algebraic integers is an algebraic integer (see chap. IX, Th. 8, Cor. 2).
3 There exist in every realm of the nth degree n integers «i, w2,

•••, <»n,

such that every integer of the realm has the form

6 = axWi + a&z + • • • + (hio>n,

where au a2,
•••, an are rational integers. In the definition here given I

have followed Hilbert (see H. B., §4). The basis defined above is some-

times called a minimal basis of the realm (see Weber: Algebra, Vol. II,

§H5).
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For example

;

8 + 5* =— ( i + 1) + 3 (3 + 2*) .

Every integer of the realm is therefore expressible in the form

ai(i+0 + *(3+*0»

where at and 02 are rational integers.

Hence 1 + i, 2>-\-2i is a basis.

We observe that the determinant of the coefficients
1
of 1 + * and 3 + 2% is

1 1

3 2

this being a particular case of the following theorem.

Theorem 2. // mxt o>2 fo a basis of k(i), the necessary and

sufficient condition that

1)

where alt a2 , b lt b2 are rational integers, shall be also a basis of

k(i) is

at
a.

bx b2

± 1. 2)

This condition is necessary; for, if c^*, o>2
* be a basis, we have

,2
= &1*»1* + &2*o s

3)

4)

5)

where fl^*, a2*, &x
*, b 2

* are rational integers, and substituting the

values of c^*, w2
* from 1) in 3), we have

g>i= (fl^*^ -f- 2*^i) wi + (ai*°% + a2*b2 )<»2>

From 4) and 5) it follows that

ai*#i + #2*^1= J
> #i* fl2 + G-2*&2= °>

^i*«i + &2*&i= o, K*<h + b**b2= 1,

whence

o
x
* a2

*

b* b* h b
2 ^1*^ + a2*^2 ^1*^2 + ^2*^2

I O
ass I.

O I

1 We call a, b the coefficients of the number a«i + bw2, where *t, w2

is a basis.
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Therefore = ± i.

= ± i,

The condition is also sufficient; for, solving i) for tox and <o2 ,

we have, if 2) be satisfied,

co 1= ± (^2wi*— ^2W2*)>

and hence, if w, = c^ + C2W2> be any integer of the realm,

o>=± (cj>a + c2b x
)<»* qz (cxa2 + c&)*f ;

that is, w= dx iox
* + ^2w2*j

where Jx and d2 are rational integers. Since there is an infinite

number of different sets of rational integers a
x , a2 , bx , b2 which

satisfy the relation

ax
a2

K b2

there is an infinite number of bases of k(i).

§4. Discriminant of &(f).

The squared determinant

formed from any basis numbers and their conjugates is called the

discriminant of the realm, and is denoted by d.

That d is the same, no matter what basis is taken, is evident

from the last paragraph.

For if wx , <o2 and w^*,= ax<ox
-j- a

2
w2 , <o2

*,= bxo)x
-\- b2o>2 , be any

two bases, then

I

wi* w
i

«>!* ft).

a1<o1 + a2o)2 , b x<ax
-\- b 2 <o2

2

ax<ox -f- a2(a2 , b x<Dx
-\- b 2<o2

a
x

a2
2

1

<ax w2
2 wl o>2

K b2

t t

I
0)x w2 «l' co2

Hence, since 1, i is a basis of k(i)

d= =— 4-

11
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It

that

32 THE REALM k(l).

It is easily seen that if w^wg be any two integers of k(i) such

tat

2

= d,

then <*>!, w2 is a basis of k(i).

For example

:

i + * 3 + 2* I

2

— 4:
i— i 3—2i

\

Hence 1+ *, 3 + 2* is a basis of &(0 as we have already seen.

§5. Divisibility of Integers of k(i).

Any integer, a, is said to be divisible by an integer, (3, when

there exists an integer, y, such that

a= Py.

We say that /? and y are divisors or factors of a, and that a is

a multiple of /? and y.

Ex. i. We see that 8 + i is divisible by 3 + 21, since

8 + /= (3 + 20(2-0.

Ex. 2. On the other hand 5 + 2i is not divisible by 1 + 3*', for there

exists no integer of k{i) which multiplied by 1 + 3* gives' 5 + 2*.

This can be shown as follows:

If we set s+ 2»=s (l4-30(*Hhy0i 1)

we obtain jr=r|^, 37=— |f ;

that is, there are no integral values of x and y for which 1) will hold.

Hence 5 + 3* is not divisible by 1 + 31.

This can also be shown as follows:

5 + 2* (5 + 2p(i— 30 = n_ ii v

i+3*' (i + 30d-30 " 10

As immediate consequences of the above definition we have the

following

:

i. If a be a multiple of (3 and ft be a multiple of y, a is a mul-

tiple of y, or more generally

ii. // each integer of a series a,(3,y,8,---,bea multiple of the

one next following, each integer is a multiple of all that follow it.
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iii. // two integers, a and /?, be multiples of y, then a£ + fa is

a multiple of y, where $ and t] are any integers of the realm.

It will be observed that iii depends not only upon the above

definition but upon the fact that the sum, difference and product

of any two integers of k(i) is an integer of k(i). If a be divis-

ible by /?, then a' is divisible by (3'
; for, if a= £y, then a'= 0'y'.

In particular, if a rational integer be divisible by any integer of

k(i), it is divisible by its conjugate.

Theorem 3. If a be divisible by /?, n[a] is divisible by n[(3].

For, if a= fiy, it follows from Th. 1 that

n[a]=n[p]n[y],

and hence that n[a] is divisible by n[(3].

The converse of this theorem is not in general true, as may be

seen from the following example:

If a= 8-f-*' and £= 3— 2t, n[a], = 65, is divisible by

n[(3], = 13, but a is not divisible by /?; for putting

8+t= (3—*0(*+'j9»

we obtain fractional values for x and y.

The determination of the conditions under which n[a] divisible

by n[fi] is a sufficient as well as necessary condition for a to

be divisible by ft must be postponed until the unique factoriza-

tion theorem has been proved for the integers of k(i).

If two or more integers, a, /?, y, • • • , of k (i) be each divisible

by an integer fx of k(i), fx is said to be a common divisor of

a,P,y, •••-

§6. Units of k(i). Associated Integers.

We have seen that in the rational realm there are certain in-

tegers, zh 1, called units, which are divisors of every integer of

the realm. Evidently ± 1 have this property in k(i), and are

therefore called units of k(J). We ask now whether there are

any other integers of k(i) which enjoy this property. If there

be such integers they must be divisors of 1, and conversely every

divisor of 1 is a unit. Let e,= x -\-yi, be a unit of k(i) ; then

ae=i, 1)



164 THE REALM k(i).

where a is an integer of k{i). It follows that

w[a]w[e] = 1,

and hence w[c] = 1 ; that is,

x* + y
2 =i. 2)

That n[e] =1 is not only a necessary but also a sufficient con-

dition that e shall be a unit, is evident from the fact that from it

follows ee = 1

,

and hence that € is a divisor of 1.

From 2) .it follows that

x=± 1, ;y= o; x— o, y=:±i,

and hence e= 1,— 1,1 or — i,

Therefore I,— i,i,— i are the units of k(i). That all these in-

tegers are units of k{i) may easily be verified, since, if a -j- bi be

any integer of k(i), we have

a-|- bi=i(a-\-bi)

=— i(

—

a— bi)

=*(

—

ai-\- b)

=— i(ai— b)

Starting with the original definition of a unit as an integer

which is a divisor of every integer of the realm, we obtain there-

fore the three following equivalent definitions for the units

of k(i):

i. They are the divisors of 1.

ii. They are those integers whose reciprocals are integers.

Hence the reciprocal of a unit is a unit.

iii. They are those integers whose norms are 1. Hence the

conjugate of a unit is a unit.

Two integers, a and (3, with no common divisor other than the

units are said to be prime to each other.

It is customary also to say that two integers, whose common
divisors are units, have no common divisor. A system of in-
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tegers, a x , a2 , •••,a„, such that no two of them have a common
divisor other than the units are said to be prime each to each.

As in the rational realm, two integers, m and — m, that differ

only by a unit factor, are said to be associated, so in k(i) the

four integers, a, — a, ia and — ia, obtained by multiplying any

integer, a, by the four units in turn, are called associated integers.

For example, the four integers 3 + 21', — 3— 2i, — 2 -f- 3*, 2— 3J

are associated. We say also that a, — a, ia, — ia are the asso-

ciates of a. Any integer that is divisible by a is also divisible by

— a, ia and — ia. Hence in all questions of divisibility associated

integers are considered as identical. It will be understood from

now on that when two factors, a, (3, of an integer of k(i) are

said to be the same, they are merely associated; that is, a= e/?,

where c is a suitable unit. They may or may not be equal, equality

.being understood in the ordinary sense ; that is,

a 1 + b x i= a2 + b2i,

when and only when ax
= a,, and b t= b2 .

If each of two integers be divisible by the other, they are asso-

ciated, for let a/ft= y, then p/a=i/y. If now both y and 1/7

be integers, then y is a unit and a and (3 are associated.

§ 7. Prime Numbers of k(i).

An integer of k(i), that is nut a unit and that has no divisors

other than its associates and the units, is called a prime number

ofk(i).

An integer of k(i) with divisors other than its associates and

the units is called a composite number.

It will be observed that these definitions are identical with the

corresponding ones in the rational realm. To ascertain whether

any integer a, not a unit, is a composite or prime number, we have

only to determine whether or not a can be resolved into two

factors neither of which is a unit.

We put therefore a= (a -\- bi) (c -\- di) and determine for

what sets of integral values of a, b, c and d this equation is sat-

isfied. If any one of these sets of values be such that neither

a+ bi nor c + di is a unit, a is a composite number; but, if for

every set of values one of these factors be a unit, a is a prime.
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Ex. I. To determine whether 3 is a prime or composite number
of k(i).

Put 3=(a + bi) (c + di)
;

then 9 = (c?+ b
2)(c2 + d2

),

whence we have either

2 . F
1
)

or H
C
2 +rf2= 3 J C

2 +rf2 = 9 J

Remembering that a, b, c and d must be rational integers, we see that 1)

is impossible, while from 2) a-\-bi is a unit. Therefore 3 is a prime
number of k(i).

Ex. 2. To determine whether 7 + 41" is a prime or composite number
of k(i).

Put 7 + 4t'=(a + bi) (c + dt)
;

then 65= (a
2 + b

2)(c2 + d2

),

whence we have either

a
2+ b

2=5 l a
2 +fc2 =i

'2)Li) or I

c
2 + <f=i3 j <* + <** = 65 j

low that a + bi is a unit, but

= ± I, 1 fl=± I, &=±2,
]

= ± 2, ) C=±2, rf = ± 3, J

From 2) it would follow that a + bi is a unit, but 1) gives

a=± 2, b = ± 1, )
a=± 1, b

c= ± 3, d

whence o + &*"= ± (2 + *) or ± (1 — 2/), 3)

or a + bi= ± (2— t) or ± ( 1 -f- 21) , 4)

and c + dt = ± (3 + 2/) or ±(2— 3?), 5)

or c -j- di= ± (3— 2O or ± (2 + 30 > 6)

the four integers after each sign of equality being associated.

It will be observed that this process gives us not only the divisors

of 7 + 4i and its associates, but also the divisors of every other integer

whose norm is 65; that is, of 7— 4*', 8 + t, 8— *, and their associates.

Each one of the eight values of a+ bi multiplied by any one of the

eight values of c
-J-

di gives an integer whose norm is 65, and these sixty-

four integers fall into four classes of sixteen each according to the one

of the integers 7 + Ah 7— 4h 8 + i, 8— i, with which they are as-

sociated. Each associate of each one of these four integers will be

repeated exactly four times.

Selecting by trial the divisors of 7 -f- 4*, we see that any integer from

4), multiplied by a suitable one from 6), gives 7 + 4*.

Thus 7 + 4*'= (2— 0(2 + 30- 7)

Hence 7 + 4/ is a composite number.
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We have also, 7 + 41 = (— 2 + •) (— 2 — 3*')

,

= ( i + 2*')( 3— 2»),

= (— I" 2*)(— 3 + 2*),

but these factorizations are looked upon as in no way different from

7) since the corresponding factors are associated. Hence 7 + 4* can be

factored in only one way into two factors, neither of which is a unit.

If now we attempt to factor 2— i and 2 + 3*, we find that they are

prime numbers, and hence we say that 7 + 4* has been resolved into its

prime factors.

Ex. 3. Resolution of — 23 + 41*' into prime factors.

If we endeavor to resolve — 23 + 411 into two factors neither of

which is a unit, we find that it can be done in seven different ways; that is,

— 23 + 41*= (1+3*) ( 10 +nt),
""

= (i + 5*)( 7+ 60,

= (3 + 5*)( 4+ 70,
= (l+ *')( 9+ 320, \ 8)

= (2+ *')(— 1 + 21O,
= (3 + 2*')( 1 + 13O,

= (4+ 0(— 3 + nO-
_

We find, however, that in each case either one or both of the factors

is composite and we resolve the composite ones into the following factors

all of which can easily be proved to be prime:

i-f 3»= (i + 0(2 + 0; i+Sf= (i + 0(3+2*');

3 + 5*"= (i + 0(4+ J
10+11*'= (3 + 2*')(4+ ;

7 + 6*= (2 + 0(4 + 0; 4 + 7* = (2 + 0(3 + 2*').

when these values are substituted in 8) we have in all seven cases

— 23 + 41* = ( 1 + (2 + (3 + ») (4+ ;

that is, if — 23 + 41 1 be resolved into factors all of which are prime,

the resolution can be affected in only one way.

It is now evident that we can, as in the case of the rational

integers, represent every integer of k(i) as a product of its prime

factors, and the last example renders it probable that the repre-

sentation will be unique. We shall proceed to prove three

theorems which will enable us to show that the integers of k(i)

have indeed this all-important property.

§ 8. Unique Factorization Theorem for k(i).

Theorem A. // a be any integer of k(i), and (3 any integer of
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k(i) different from o, there exists an integer fi of k(i) such that

n[a— fjL/3]<n[p].

Let a/(3= a+bi,

where a= r-\-rlf b= s -\-

s

1} r and ^ being the rational integers

nearest to a and b respectively, and hence

We shall show that /*, =r-{-si, will fulfill the required con-

ditions.

Since a/p— /*= rt + *i*,

whence « [a//3— fi] < I

;

or, multiplying by «•[£],

n[a— lip] <n[p].

Ex. If a 3= 5 + 2i, and = i -f- 3/,

then
a— 5 + 2 *' _ 1 1 _ 1 3 i

and /* = 1 — i,

therefore a— /*)3 = 5 -j- 2*— ( 1 — i) ( 1 + 3O = 1,

and w[i] <ra[i -J- 3*].

The method given above for selecting /x evidently determines

it uniquely unless either one or both of the quantities |^i|, |^i| be

J, in which cases there are respectively 2 or 4 integers which

satisfy equally the method of selection.

There are, however, values of /x that satisfy the requirements of

the theorem other than the one selected as above. In the ex-

ample given above it would serve as well to take

H= 2— i or 1— 21

;

for 5
_L. 2;_(2 _;)( I _|_ 3f)== _3*;

and n[— p] <fl[l+3*]
\

likewise 5 + 2*— (.1— 2*) ( 1 + 3*) =— 2 + i,

and n
[
— 2 + *'] < n [ 1 + 3*]

.
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It can be easily shown that there are in general (including the

one selected as in the proof) two, three or four values of fi which

satisfy the requirements of the theorem. The particular value of

fi selected as above may be called the nearest integer to a/ft.

The other possible values of n are found among the integers

rt+ sai such that r
2
,s

2
differ respectively from rl,sl by 1.

This will be made clearer by a graphical proof of the theorem

to which we are led by its statement in the following form

:

// a/p be any number of k(i), there exists an integer /x of

k(i) such that n[a//3— fi] < I.

Y

-2+2i -l+2i 2i l+2i 2+2i

-2+i -1 + i i 1 + i 2+i

»
-2 -1 1 2

/^
P, Po

-2-i -1-i -i 1 1-i 2-i

/

-2-2i -l-2£ -2i \l-2i p y 2-2i

Representing as is usual the number x -\- yi by a point whose

coordinates referred to rectangular axes are x and y, we see that

the integers of k(i) are the points of intersection of a lattice
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formed by two systems of straight lines parallel respectively to the

axes of x and y, and at the distance 1 apart. 1

Our problem is, given any number y of k(i), we are required to

find all integers, ft, of k(i) such that

»[y—rf<i- 1)

Let G and N be points representing the numbers y, = a -\- hi,

and v, =c -f- df, respectively; then every number, v, of k(t) such

that ^.[y— v] < 1

is represented by a point lying within the circle of radius 1 de-

scribed about G as a center, and conversely every number, v, of the

realm represented by a point lying within this circle satisfies 1) ;

for (x— ay+ (y— b) 2=i
is the equation of a circle of radius 1 with center at G, and we have

(c-ay+(d-by<i;
that is n[y— v] < 1

when and only when the point (c,d) lies within this circle.

The graphical solution of our prpblem consists therefore merely

in describing a circle of radius 1 around the point representing y

and observing what lattice points fall within it.

In the figure the point G represents the number y= |£— ^§*

(see example above), and a circle of radius 1 described around

G as a center is seen to enclose the three points Px , P2 , P3 , repre-

senting the integers 1 — i, 2— i, 1 — 2L Moreover, no other in-

teger point falls within this circle.

The integers 1 — i, 2— i, 1— 2» are all the values of fi which

satisfy the condition n[y— /a] < 1,

the integer 1 — i, which is the one given by the method of selec-

tion used in the proof, being represented by the lattice point near-

est to G.

It is evident that the only possible values of fi are those repre-

sented by the vertices of the lattice square in which the point G,

representing y, lies.

'Cahen: p. 357.
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We see that two, three or four of these vertices will satisfy the

required condition according as G lies in the unshaded, lightly

shaded or heavily shaded portions of the square, the square being

thus partitioned by describing from each vertex as a center an

arc of a circle of radius i.

G lt G and G 2 illustrate respectively the first, second and third

cases. G ± and G2 illustrate also the cases in which there are re-

spectively two or four equally near lattice points (original method

of selection is not unique).

Returning once more to the theorem in its original form, we

observe that it is equivalent to saying that for every integer /?,

different from o, considered as a modulus there exists a complete

residue system such that the norms of all the integers composing

this system are less than n[/3].

This interpreted graphically implies that if we describe around

the origin a circle with radius equal to "\/n>[p], that is, passing

through the point representing /?, there will be among the integers

represented by the lattice points lying inside this circle a complete

residue system, modulus p.

Theorem A is equivalent to saying that we can divide a by (3

so as to obtain a remainder whose norm is less than n[(3], the

quotient being fi. In this form its analogy with Theorem A in R
is even more clearly brought out. It enables us to do for k{%)

exactly what we did in R by means of Theorem A ; that is, by an

algorithm strictly analogous to that used in R to find a common

divisor, 8, of any two integers a and /?, such that every common
divisor of a and (3 divides 8. In other words, it enables us to

prove that any two integers of k(i) have a greatest common
divisor and to find it.

1

For example; let the two integers be 112 -f- * and — 57 + 79?'.

We have
II2 + *

.
="^5 -8905/ whence „ =_ , _ ,-

— 57 + 79* 9490

and 1 12 + i— (— 1 — i) (— 57 -f- 79J) = — 24+ 23?'.

x See Dirichlet-Dedekind : p. 439.
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Likewise 57 ~r 9l __ 3 1 5 5 5*
>
whence ih. = 3— h— 24+ 231 1 105

and —57+ 79*— (3— (— 24 -\-23i) = — 8— 14*.

Likewise - *4 + 23* = - 130- 5*»
f
whence fĴ =_ 1 _ 2if— 8— 14* 260

and — 24 -f 23*— ( — 1 — 2») (— 8— 14*) as— 4— 71.

Finally ~~ ~ I4
f — 2, whence ft = *M f* ,— 4— 71

and — 8— V4»— (2) ( — 4— 7*) = o.

Therefore — 4— 71 is the greatest common divisor of 112 + / and

— 57 + 79*-

Instead, however, of proving the existence of a greatest common

divisor of any two integers of k(i), we shall proceed as in R,

and shall prove the following theorem of which the greatest com-

mon divisor theorem is an immediate consequence.

Theorem B. If a and p be any two integers of k(i) prime to

each other, there exist two integers, £ and 77, of k(i) such that

a£+ pv =i.

If either a or /? be a unit, the existence of the required integers,

i, 7), is evident. We shall now show that, if neither a nor p be a

unit, the determination of £ and rj can be made to depend upon

the determination of a corresponding pair of integers £lf i/x , for

a pair of integers, a lf plf prime to each other and such that the

norm of one of them is less than both n[a] and n[p].

Assume n[p] ^n[a], which evidently does not limit the gen-

erality of the proof.

By Th. A there exists an integer /* such that

n[a— iip] <n[p].

Then p and a— /*/? are a pair of integers, a lt p i3
prime to each

other and n[a— fxp] is less than both n[a] and n[p~\.

If, now, two integers, £lf rf19 exist such that

that. is, £&+ (a— iiPhx =i,
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we have 0% + p(i1
—^J = i,

and hence £= ,

>?i> 7
7
==

£i— Mi-

The determination of &, ^ for at , ^ may, if neither ax nor /^

be a unit, be made to depend similarly upon that df £2 > V2 f°r a

pair of integers a2 , fi2 prime to each other and such that the norm

of one of them is less than both n[a
± ] and w-[/y.

By a continuation of this process, we are able always to make

the determination of | and rj depend eventually upon that of £n , rjn

for a pair of integers an , /?«, one of which is a unit.

Since the existence of |M and rjn is evident, the existence of |

and r] is proved.

, We shall see later that, although the proof here given of the

unique factorization theorem depends upon Th. A, there are

realms in which the unique factorization theorem holds but Th.

A does not hold. However, we shall see also that each of the

three theorems B, C and the unique factorization theorem is

necessary and sufficient for the validity of the other two.

Cor. 1. If a and ft be any two integers of k(i), there exists a

common divisor, 8, of a and ft such that every common divisor of

a and ft divides 8, a>nd there exist two integers, $ and rj, of k(i)

such that ai-{- firj= 8.

The proof is the same as in R.

We call 8 the greatest common divisor of a and /?.

Cor. 2. // a lt a2 , •••,a„ be any n integers of k(i), there exists

a common divisor, 8, of alt a2 ,
• • • , an such that every common

divisor of a t , a2 ,
• • • , an divides B, and there exist n integers

£i»£»> ••*,lii such that

a£t + a 2i2 H \- an$n= 8.

Theorem C. // the product of two integers, a and (3, of k{i)

be divisible by a prime number, *, at least one of the integers is

divisible by ir.

Let a/3= y7T, where y is an integer of k(i), and assume a not



174 THE REALM k(i).

to be divisible by ar. Then a and tt are prime to each other and

there exist two integers, £ and rj, of k(i) such that

a£+ 7n?=i. 2)

Multiplying 2) by p, we have

and therefore 7r(y| + /fy) = /3,

where y| + ft 1S an integer of &(*) ; hence (3 is divisible by tt.

Cor. 1. // the product of any number of integers of k(i) be

divisible by a prime number, ir, at least one of the integers is divis-

ible by ir.

Cor. 2. If neither of tzuo integers be divisible by a prime num-

ber, tt, their product is not divisible by v.

Cor. 3. // the product of two integers, a and /?, be divisible

by an integer, y, and neither a nor (3 be divisible by y, then y is a

composite number.

Theorem 4. Every integer of k(i) can be represented in one

and only one way as the product of prime numbers.

Let a be an integer of k(i). If a be not itself a prime number,

we have a= py, 3)

where ft and y are integers of k(i) neither of which is a unit.

From 3) it follows that n[a] = n[fi]n[y] , whence, since

n[p] =j= 1 and n[y] =)=i, we have n[fi] and n[y] < n[a].

liftbe not a prime number, we have as before

P—An,
where px and yx are integers neither of which is a unit, and hence

7t[/?J and n[y
± ] < n[p]. If px be not a prime number, we pro-

ceed in the same manner, and, since n[p], *[&], n[P2 ],
'" form

a decreasing series of positive rational integers, we must after a

finite number of such factorizations reach in the series p, p it p2 ,
• • •

a prime number wv Thus a has the prime factor ttx , and we have

a= 7rxax .



THE REALM k(t). 1 75

Proceeding similarly with a x , in case it be not a prime number,

we obtain a 1
= 7r2a 2 ,

where tt2 is a prime number, and hence

OL= ttxtt2OL2 .

Continuing this process we must reach in the series a, a lf a2 ,
• • •

a prime number tt„, since n[a], n[a
x ], n[a2 ],

•• • form a decreas-

ing series of positive rational integers. We have thus

CL TTxTTc,TT%
' ' ' 7Tfi)

where the tt's are all prime numbers ; that is, a can be represented

as a product of a finite number of factors all of which are prime

numbers.

It remains to be proved that this representation is unique.

Suppose that a= p xp2p3
• • • pm

is a second representation of a as a product of prime factors. It

follows by Th. C, Cor. i from

iri"
,

2ir3
*

'
* **~ P1P2PZ

' '

' pm, 4)

that at least one of the p's, say plf is divisible by vu and hence

associated with 7r± ; that is, p 1
= e17r1 , where cx is a unit. Dividing

4) by ttx , we have tt2tt3
• • • irn= exp2p3

• pm .

From this it follows that at least one of the remaining p's, say p2 ,

is divisible by ir2 , and hence associated with it. Thus p2= e2Tr2 ,

where c2 is a unit, and hence

7T3 • • • 7Tn == Z\£oP3 ' ' ' pm-

Proceeding in this manner, we see that with each n there is

associated at least one p, and, if two or more tt's be associated with

one another, at least as many p's are associated with these tt's,

and hence with one another.

In exactly the same manner we can prove that with each p there

is associated at least one it, and, if two or more /o's be associated

with one another, at least as many tt's are associated with these

p's, and hence with one another.
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Hence considering, as we always shall, two associated factors

as the same, the two representations are identical ; that is, if in

the one representation there occur e factors associated with a

certain prime, there will be in the other representation exactly e

factors associated with the same prime.

We can now evidently write every integer, a, of k(i) in the form

a= «-!**/ • • 7Tn
en

,

where vlf v2, »••,*« are the unassociated prime factors of a, and c

a suitable unit. Moreover, this representation is unique.

Cor. 1. If a and (3 be prime to each other and y be divisible

by both a and /?, then y is divisible by their product.

Cor. 2. // a and (3 be each prime to y, then af3 is prime to y.

Cor. 3. // a be prime to y and a/? be divisible by y, 13 is divis-

ible by y.

We have seen that the divisibility of n[a] by n[fi] is a neces-

sary condition for the divisibility of a by /?. We shall now show

that it is only when either a or J3 is a rational integer that the

condition is also sufficient.

Let a m fc***^ - */*, = %??(>? - f?

be representations of a and (3 as products of powers of their dif-

ferent prime factors, rja and rj^ being units.

From n[a]=m • n[/3],

where m is a positive rational integer, it follows that

*i JL
2 '

L
k '4 ''2 "k In "1 "2 ri r\ rz ri >

from which we see that each prime, p i} of the set p1} p2 , '•',p
l

is

associated with one of the 7r's or with one of the tt"s, say vj or «/,

and that ri 3> pj. In order that a may be divisible by /? we must

have every p associated with an unaccented ?r, which will not be

in general the case. When, however, a is a rational integer we

have a= a', and this condition is satisfied, and hence /? divides a.

If be a rational integer it is easy to see likewise that, when

n[a] is divisible by n[(3], a is divisible by (3.
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§9. Classification of the Prime Numbers of fe(i).

Every prime, ir, of k(i) divides an infinite number of positive

rational integers; for example, u[tt] and its multiples. Among
these positive rational integers there will be a smallest one, p,

and p will be a rational prime number, for if p be not a prime,

that is, if p=p 1p 2 , it would divide either p x or p2 , and hence p

would not be the smallest rational integer that -n divides. In

order, therefore, to find all primes of k(i) we need only examine

the divisors of all rational prime numbers considered as integers

of k(i).

Moreover it is evident that no prime of k(i) can divide two

different rational primes, for then it would divide their rational

greatest common divisor, I, and hence be a unit. Therefore every

prime of k(i) occurs once and but once among the divisors of

the rational primes considered as integers of k(i).

We have seen already that there are rational primes, as 3,

which are also primes of k(i), and other rational primes, as 5,

which are factorable in k(i). Denoting then by p the smallest

rational prime that it divides, we have

p= ira, 1)

and hence p
2= n[ir]n[a].

We have then two cases

. f*H=/>, .. f*[«]**#*,
\n[a]=p. ' \n[a] = i.

i. From n[ir] =inr'==p and 1) it follows that a= 7r'. If

tt= a + bi, we have then

p= a2 + b 2
.

Assume p =f= 2 ; then either a or b must be odd and the other

even and therefore />= i, mod 4.

Hence when a positive rational prime other than 2 is the product

of two conjugate primes of k(i), it has the form 4n + i-

When p==2, we have

2=(I+*)(I— f),

12
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and hence 2=*{i

—

i)
2

;

that is, 2 is associated with, and hence divisible by, the square of

a prime of k (i)

.

ii. Since n[a] =»I, a is a unit and hence p is associated with

the prime ir; that is, p is a prime in k(i). Hence a rational prime

p is either a prime of k(i) or the product of two conjugate

primes of k(i).

When p is a prime of the form 4W— 1 it is always a prime in

k(i), for we have seen that p is factorable into two conjugate

primes of k(i) only when it is 2 or of the form 4n + 1.

To prove now that every rational prime of the form 4W + 1 can

be represented as the product of two conjugate primes of k(i)

we observe that from

£s==I, mod 4,

it follows that the congruence

.ar
2=— i,mod£,

has roots. Let a be a root. Then

a2=— 1, modp,

and hence (a -\- i) (a— ») aso, mod p.

Since a-\-i and a— i are integers of k(i), the integer p, if a

prime of k(i), must divide either a + t or a— i. This is how-

ever impossible, for from

a ± i=p(c + di),

where c + cfo' is an integer of k(i), it would follow that pd=± 1,

which can not hold since p and d are both rational integers and

p > I. Hence /> is not a prime in &(*)> and since the only way in

which a rational prime can be factored in k(i) is into two conju-

gate prime factors, p is factorable in this manner.

Collecting the above results, we see that the primes of k(i)

may be classified in the following manner, according to the rational

primes of which they are factors.

1 ) All positive rational primes of the form 4%-\- 1 are factor-

able in k(i) into two conjugate primes, called primes of the first

degree.
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2) All positive rational primes of the form 411— 1 are primes

in k(i), called primes of the second degree.

3) The number 2 is associated with the square of a prime of

the first degree.

It will be observed that the norm of every prime tt of k(i) is

a power (first or second) of a rational prime and that the degree

of tt is the exponent of this power.

Moreover, we notice that 2 is the only rational prime that is

divisible by the square of a prime of k(i) ; for, if this were true

of any other rational prime of the form 4» + 1, we should have

tt associated with tt', and hence

a -j- bi= a— bi, — a + bi, b + ai or — b— ai,

which give a= o, b=^o, or a= =%=b, all of which are seen to be

incompatible with p= a2 + b 2
.

§ 10. Factorization of a Rational Prime in k(i) determined

by the value of (d/p).

The rational primes may be classified with regard to their

factorization in k(i) in the following manner:

1) Those of which the discriminant is a quadratic residue are

factorable into two conjugate primes in k(i), called primes of

the first degree. For (d/p) = i implies p= ^n-\- 1, since

d=— 4, and we have seen that all rational primes of this form

are thus factorable in k(i).

2) Those of which the discriminant is a quadratic non-residue

remain primes in k(i), called primes of the second degree. For

(d/p)=— 1 implies p= ^n+ 3, and we have seen that all

rational primes of this form remain primes in k(i).

3) Those which divide the discriminant {expressed symbol-

ically by (d/p) =0) are associated with the squares of primes

of the first degree in k(i).

Evidently 2 is the only rational prime which divides the dis-

criminant of k(i) and we have seen that 2= i(i — i)
2

. The

following table expresses the above results

:

©=•>=
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3) (jh°'
p=

Ex. Show that, if a, =a-\-bi, be any integer of k(i), such that a

and b have no common rational divisor, and c be any rational integer

divisible by a, then c is divisible by n[a].

§11. Congruences in k(i).

Exactly as in the case of rational integers, we say that two

integers a, (3, of k(i) are congruent with respect to the modulus,

/x, if their difference be divisible by fi, and write

a= p3 mod /a.

The laws of combination that were proved for congruences in

R hold here.

We can now divide all integers of k(i) into classes with respect

to a given modulus, li, putting two integers in the same class or

different classes, according as they are or are not congruent to

each other, mod /x. We shall show that for any given modulus n

there will be n[fi] such classes. To do this we shall need the

following theorem

:

Theorem 5. There exist among the multiples of any integer

fi, of k(i) two, t1 ,
= oo» 1 , i2 ,

= bw 1 + C(o2 , such that every multiple

of p can be expressed in the form

where a, b, c, llt l2 are rational integers and <d1} w2 is a basis of k(i).

Suppose all multiples of li to be written in the form

1= a1b)1
-j- a2<n2 ,

and consider those in which a2 =|=o.

Among them must be some in which a2 is smaller in absolute

value than in any of those remaining.

Let t2 , =bo>1 -\~co)2 , be one of these-; then c Will divide the

coefficient a2 in every multiple of fi ; for, if this be not the case,

x This indicates that p is unfavorable in the realm under discussion.
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let /?, = b1<o1 + cxw2 , be a multiple of /x such that cx is not divisible

by c, and let d be the greatest common divisor of c and c4. There

exist two rational integers e, elf such that

ec + excx= rf,

and hence y= £i2 + eiP= ( *& + eJ>i ) <"i + ^2

is a multiple of /x in which a2 is less in absolute value than c, but

not o. But this is contrary to our original hypothesis. Hence

we have a2
= l2c,

where L is a rational integer, and hence

t— l2 i2
s= (<*,— /2& ) Wj.

Consider now those multiples of /* in which a2 =:o, but ax =%=o.

There will be some among them in which a x is less in absolute

value than in any of those remaining.

Let tp =a<olf be one of these.

It is seen as above that a is a divisor of the coefficient ax in

every multiple of p. in which a 2
= o, ^=4=0. We have, therefore,

since (a^— l2b)<ox is a multiple of fi belonging to this class,

t— /2 t2= ( a x
— l2b ) <ox

= lxix ,

where lx is a rational integer, and hence

l= 11 l1
jt12 i2 .

Any pair, fix,ix2f of multiples of p, such that every multiple of fi

can be written in the form

m xfix + m 2ti2 ,

where mx,m2 are rational integers, we call a basis of the mul-

tiples Of fl.

The pair of multiples of p, a<ox , b<ox + c&>2 , selected as above,

and in which in addition a and c are positive, is called a canonical

basis of the multiples of p.

Theorem 6. // px , fi2 be a basis of the multiples of p, the

necessary and sufficient condition that

H*= axfix + a2fi2 ,

M2
*= £i/*i + &2/*2>
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zuhere a x , a
2 , b lt b2

are rational integers, shall be also a basis of

the multiples of /jl is

a 1 a2

b< b n

=± i

The proof of the theorem is the same as that of Th. 2.

Theorem 7. //

fix
= a 1 (a1 -J- a2 (ti2 ,

fi2
= b 1o>1 + b2<o2 ,

be any basis of the multiples of ft, then

b t
b
2

"*W;

It is evident from the last theorem (see proof of Th. 2) that

the absolute value of the determinant

ax a

is the same for every set of basis numbers of the multiples of p.

Hence we need only determine its value for some particular basis.

The integers fi= ax -f- a2h

fxi=— a2 -f- a±i,

constitute a basis of the multiples of p, and

Hence the theorem is proved.

Theorem 8. // fi be any integer of k(i), the number of num-

bers in a complete residue system, mod fi, is n[fi].

Let cua lt b(dx + c<»2 be a canonical basis of the multiples of fi

and consider the system of integers

( u= o, 1, "-,a— 1,
U<a t

-\- Vu)9 <11 2
{ v=pO, I, ••-,£— I,

I)

which are evidently ac, =n[fx], in number.

We shall show that the integers 1 ) constitute a complete residue

system, mod fi.
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First, each of them is incongruent to all the others, mod p., for

if fijttj -\- vxw2 , n2 v>x
-\- v2<o2 be any two of them, and

u1 (a 1
-\- v-^2 sa u 2(o 1 -f- v2 (o2 , mod fi,

then (u1
— u2 ) <*>! + (yx

— z/2 )<o2 =o, mod /a,

and hence, since c is the greatest common divisor of the coeffi-

cients of w2
in all multiples of fi,

vx
— z/2 ==o, mode.

But vt and v2 are both less than c; hence

vx
= v2 .

It follows that u 1
— w 2

= o, mod fi,

and hence, since a is the greatest common divisor of the coefficient

of (i)t in all multiples of fx in which the coefficient of w2 is o,

u i— u 2— °> m°d a-

But u x and w2 are both less than a ; hence

u x
= u2 .

Thus w^i -(- v1o)2
= u2o)1 -\- v2<o2 ,

and the numbers i) are seen to be incongruent each to each,

mod fi. Moreover, every integer of the realm is congruent to one

of the integers i), mod ll. For, let

0)= f1<ttl + t2<o2

be any integer of k(i), and let

t2= mc + r2 ,

where m and r2 are rational integers and r2 satisfies the condition

o g r2 < c.

Also let ft— mb=na-\-rx ,

where n and r, are rational integers and rx satisfies the condition

ogr1 <ia.

Then t
xvx -f- t

2o)2= (mb -f- na + ri) wi + (mc + r
2 ) <a2

= no*} + m{bu
x + c<o2 ) -f- rlWl + r2w2 ;
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and hence t1o)1 + 12co2m r^! -j- f2<o2 , m°d /a,

where r^ + r2a>2 is one of the integers 1 ) . Hence every integer

of the realm is congruent, mod /a, to one and but one of the

integers 1).

The integers 1) constitute, therefore, a complete residue system,

mod fi, and being n[p] in number the theorem is proved.

We can construct a complete residue system for any modulus,

fi, by means of the method employed in the above proof. Taking

1, i as a basis, we let n= m(p + qi),

where m is the largest rational integer that divides p, p and q

being consequently prime to each other.

It is easily seen that m(p2 -\-q2
) is the rational integer of

smallest absolute value divisible by fi; that is,

a= m(p 2 + q
2
).

Since ac=n[fi] — m 2
(p

2 + q
2
),

we have therefore c= m. q

Hence the n[fi] integers

tt= o,i, ••,m(p 2 + q
2
) — 1,

v= o, 1, '-'
} m— 1,

is a complete residue system, mod /*.

Ex. Let fi = 3 + 6*'= 3(1 + 2/).

Then m = 3, a =15, c = 3.

The following 45 integers constitute a complete residue system,

mod 3 + 6V,

01 234 5 67
i 1 + i 2 + i 3 + » 4+ 1 5 + t 6+ * 7 -f

«

2f 1+2* 2 + 2* 3 + 2* 4+ 2* 5 + 2* 6 + 2J 7 + 2*

8 9 io ii 12 13 14

8 + * 9+ * 10+ * 11 +* 12 + * 13 + * 14+ *.

8+ 2* 9 + 2.1 10 + 2* 11+ 2* 12 + 2/ 13 + 2* 14+ 2*.

We can thus obtain a complete residue system with respect to any

modulus by means of the method employed in the above theorem.

There are two important special cases which deserve mention.

i. If fi= p + qi, where p and q have no common divisor, the

u + vi, i
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integers i, 2, •••, p
2 + q

2
, = n(n), form a complete residue sys-

tem, mod fi.

ii. // ix= m, a rational integer, the m2 integers

-
I y= o, 1, •-., \m\ — 1,

form a complete residue system, mod m.

Ex. 1. Prove i and ii without making use of Th. 8.

Ex. 2. Show that a as 13, mod 7, implies a'^ /?, mod 7'.

All integers belonging to the same residue class, mod /*, have

with fx the same greatest common divisors ; for from

a= (3, mod fi,

it follows that a= fi-\-vfi,

and hence every common divisor of (3 and fi is also a divisor of a

and every common divisor of a and ^ is a divisor of (3.

In particular, if one number of a residue class be prime to the

modulus, fi, all other numbers of the class are prime to pu

A system of integers incongruent each to each with respect to

a given modulus, /x, and prime to ^ is called a reduced system of

incongruent numbers, mod /a, or a reduced residue system, mod /*.

Thus the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 constitute a complete

system of incongruent numbers, mod 1 +3*, and 1, 3, 7, 9 con-

stitute a reduced system to the same modulus.

§ 12. The ^-Function in k(i).

Just as in R, we understand by <£(/*)> where ^ is an integer of

k(i), the number of integers in a reduced residue system, mod p.

We have 0(c) = 1,

where c is any unit of k(i), and, as may be easily seen,

<f>(Tr)=n[Tr] — 1,

where tt is a prime of k(i) ; for example, <f>(2 -f-f) =4, since

1, 2, 3, 4, 5 constitute a complete residue system, mod 2 -f- i, and

all these integers except 5 are prime to 2 -f- i. Likewise

<Ki+3*')=4>
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since I, 2, 3, 4, 5, 6, 7, 8, 9, 10 constitute a complete residue sys-

tem, mod 1 -\- $i, and of these integers only 1, 3, 7 and 9 are

prime to 1 + 3*.

To get a general expression for <j>(fi) in terms of n, we may

employ any one of the three methods used to obtain the corre-

sponding expression in R.

We shall sketch the proof briefly, following the third method

used in R (see Chap. Ill, §4).

The completion of this and the two remaining proofs will serve

as exercises.

Theorem 9. // a= /3y, where /? and y are any integers of

k(i), there are in a complete residue system, mod a, exactly w(y)

numbers that are divisible by /?.

Let Yi>y2 > •••>yn(V ) 1)

be a complete system of incongruent numbers, mod y. The num-

bers Pyi,Py**~->Py*to) 2)

are incongruent, mod a, for if

/tyfc= /tyi> mod a,

then y fc
==y 4 , mody,

which is impossible.

Moreover, every integer (38, divisible by /? is congruent to some

one of the numbers 2), mod a; for 8 is congruent to some one,

say yi, of the numbers i), mod y, and from

h^yi, mody,

it follows that £8= /^, mod a.

Since, also, every integer congruent, mod a, to one of the num-

bers 2) is divisible by /? (see § n and Chap. Ill, § 1, ix), and the

numbers 2) are n(y) in number, there are in every complete

residue system, mod a, exactly «(y) numbers that are divisible

by/?.

Theorem 10. // tt be any prime of k(i),

^(Tm)=wM
(

I __L_)
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From the last theorem we see that among the n[irm ] numbers of

a complete residue system, mod ir
m

, there are exactly ^[tt"
1-1

] that

are divisible by tt, and hence n[irm ] — n[7rwl
~1

] that are prime to

tt
w

; that is <£O
m

) =w[7rm ]( I — -
ir—V

\ »M /

To derive the general expression for </>(/*) we have now to

prove the theorem for k(i) corresponding to Th. 4, Chap. III.

Theorem ii. // /ilt /*,, • • -,fx8 be integers of k(i) prime each to

each <£Oi/*2 •••/a«) =^(^1)^(^2) •••<£0*«)-

Ex. We have — 3 + n«= (1 + 30 (3 +2t)f

where 1 + 3* and 3 -{- 2/ are prime to each other.

Hence <t>{— 3+ lit) =0(1 + 300(3 + 20 =4- 12 = 48.

The proof of this theorem depends directly upon the following

theorem which can be proved exactly as in R (Chap. Ill, § 14) :

Theorem 12. // /x= ^ 1 /x2
---^«

where p x ,ix2 , '-,n8 are integers of k(i) prime each to each, and

if a1} a2 , ••,a8 be any integers of k(i), there exist integers, <o,

such that

co ae clx , mod fix , to^ ol2 , mod fx2 ,
• • • , w^ a s , mod /as ,

and all these integers are congruent each to each, mod p. More-

over o>= a 1^ 1 + a2/32 + • • • + a 8p8, mod ft,

where

Pi= 1, mod /xj, and /?* ==0, mod^ • • •
i*>i-1fj>i +1 • - • /**, *= 1,2, • • •, ^.

We can now obtain easily the general expression for <f>([i), n
being any integer of k(i).

Theorem 13. If p be any integer of k(i) a)td 7^, 7r2 ,
— ',tt8 the

different prime factors of jx, then

fG0*=»M (
i -n^)( l -TLTV--( i --tM-

Let
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By Th. ii we have

*00 = <*>Oi
ei)4>U2

e2
) •••(«/»),

from which by Th. 10 it follows that

+<*> = n[^,]
(

' ~spb )
wM (

'

" sib)

-^']( I -
)T[i7])

and hence that

Ex. We have

— 201 — 43*'= (i + (2 + i)*(3 + 2O
2
,

and hence <t> (— 201 — 43*)

= »(_M_^(I__^)(,__iR)...(,__
f

_J
:^)>

= 42250 • I • f • H

,

= 15600.

Theorem 14. // B19 82 ,
• • , 8r fo ffo different divisors of n, then

1, r

For proof see corresponding theorem in R (Chap. Ill, Th. 6).

Ex. We have — 3 + ni= (1 +0 (2 + •) (3 -f 2.1).

The different divisors of — 3 + 11* are 1, 1 + 1, 2+ t, 3 + 2^ * + 3*>

i + 5*> 4+ 7** and — 3 + 11*, and for these the corresponding values of

are 1, 1, 4, 12, 4, 12, 48, 48, whose sum is seen to be 130, = n[— 3 + 111].

§ 13. Residue Systems Formed by Multiplying the Numbers

of a Given System by an Integer Prime to the Modulus.

Theorem 15. // j^,/^, •••,**»[*] be a complete residue system,

mod fi, and a any integer prime to /*, then a^, a/x2 ,
• •*,a/*n[M ]

is also a complete residue system, mod p.

The integers a^, a/x2 ,
• • • , a/*„[>] are incongruent each to each,

modju, for from

OLfii^dixj, mod//.,
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it would follow that, since a is prime to p,

fii^fjij, mod jx,

which is contrary to the hypothesis that fa, p2 ,
• • •

, pn[^ form a

complete residue system, mod p. The integers a/x,15 ap2 ,
• • •, apn[^

are, moreover, n[fi] in number. They form, therefore, a complete

residue system, mod p.

Cor. // plt p2 ,
—

' , p4>(m) be a reduced residue system, mod p.,

and a be prime to p, then ap 1} ap2 ,
• - • , ap^^) is also a reduced

residue system, mod p.; for ap ly ap2 ,
• '*,ajp+(») are incongruent

each to each, mod ^, prime to p and <£(/x) m number.

§14. The Analogue for k(i) of Fermat's Theorem.

A theorem analogous to the generalized Fermat's theorem for

rational integers can be proved for the integers of k(i) ; that is,

Theorem 16. // p be any integer of k(i) and a any integer

prime to p, then a***3 = i, mod^.

Let a ly a2 , •••,a </>(tt ) be a reduced residue system, mod p.; then

aa lf aa2 , •••,aa^ (M)

is also such a system (Th. 15, Cor.).

Since aa x,aa2 , ••-,aa^ (|1 )

and a lt a2i •••,a^ (M)

are both systems of this kind, each integer in the one system must

be congruent, mod p., to one and only one integer in the other sys-

tem, though perhaps in a different order; that is,

aa2
= ak

aa
<tt
^)=a

k<i)(ilx) .

mod p.

Hence

a*Ma
xa2

-- a* (M)
z=aklaki

••• afc
^ (|0

, mod/*,

and since axa2
• • • a$ (M)= aklaki

- - • afc</>(M) ,
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and is prime to /a, we have

a *(n)=== Ij mod/*.

Cor. 1. If -rr be a prime and a any integer not divisible by it,

then a »[T]-i ==
lf m0(j w

This is the analogue of Fermat's Theorem.

Cor. 2. If tt be a prime and a any integer of k(i), then

a ra[flrl ==a, modTr.

Ex. 1. Let 7r=i + 2«, and a=i + i;

then (1 + Q+CM-iOpBi 1, mod 1 + 2f,

or (i-\-i)*=—4=1, mod 1 +2*.

Ex. 2. Let fi= 1 + 31 and a= 3

;

then 3<*>(i+3i)^
Xj mo(j j _j_£

or 81^ 1, mod 1 + 31.

Ex. 3. If a and /* be any two integers of k{%) and a= cci8, n = f^S,

where 8 is the greatest common divisor of a and /*, show that the necessary

and sufficient condition for

a+GO+i^o, mod /*,

is that nx be prime to 5.

§ 15. Congruences of Condition.

The remarks at the beginning of §9, Chap. Ill, apply equally

to congruences in k{%)
9
and the theory of congruences of con-

dition in k(i) can be developed in exactly the same manner

as in R.

In k(i) the coefficients of the polynomials are any integers

of k(i).

With this change we can show that a polynomial in a single

variable x can be resolved in one and but one way into prime

factors with respect to a modulus which is a prime of k(i), and

upon this theorem build a theory for congruences in one unknown

just as in R.

The theories of power residues, binomial congruences and in-

dices may be developed similarly for the integers of k{t).
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§ 16. Two Problems.

We shall now discuss briefly two problems which are of interest

in the theory of numbers, the first being especially famous. They

can be solved without making use of numbers other than those

of R, but their solution is greatly assisted by the introduction

of the realm k(i).

Problem i. To represent a rational prime as the sum of two

squares. 1—Let p be a rational prime and suppose the desired rep-

resentation possible. Then

p= a 2 + b 2
,

and hence p= (a + bi) (a— bi)
;

that is, the representation is possible when and only when p is the

product of two conjugate primes of k(i). Hence

i. No prime of the form 411 -f- 3 can be represented as the sum

of two squares, since a prime of this form is a prime in k(i).

ii. The number 2 and every prime of the form 411 -{- 1 can be

represented as the sum of two squares.

Moreover, this representation is unique, for if we have two dif-

ferent representations

p= a2 + b 2 and p= a1
* + b1

2
,

then

p=(a-\-bi)(a— bi) and p= (ax + bj) (ax
— bj)

;

that is, p would be factorable in two different ways into prime

factors in k(i), which is impossible. Hence 2 and every prime

of the form qn -f- 1 can be represented in one and only one way as

the sum of two squares, but no prime of the form 411 -f- 3 can be

so represented.

Problem 2. To represent any positive rational integer, m,

as the sum of two squares.

Let m= p xp2
• • • pr-qi*^** - • • qJ;

where p lt p2 , '--,pr are rational primes of the form 411 -j- 1 or 2,

1 Fermat: Works, Vol. I, p. 294.

For solution of this problem without the aid of k(i) see Dirichlet-

Dedekind: §68; also Mathews: §91.
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two or more of which may be alike, and q lt q2 ,

m ",q8 rational

primes of the form 4W + 3, that are all different from one another.

If the representation be possible,

m= a2
-f- b2

;

and hence m= (a -f- bi) (a— bi) .

The representation is therefore possible when and only when we

can factor m into two conjugate factors in k(i). The necessary

and sufficient condition for this is that all the fs be even, in which

case we have, if

Pi =:= 1T\K\
, P2= 7T27r2 ,

' ",pr= TTrTTr ,

m= (»!», • • • atfe*^,"* qs
u'*) X

Hence if a positive rational integer, m, contain a prime factor

of the form 4n-\- 3 an odd number of times, m cannot be repre-

sented as the sum of two squares. In all other cases the repre-

sentation is possible.

Moreover, supposing the factorization 1) to be possible, it can

be effected in general in several different ways, as for example,

m= (»>, . .
. wrtflfiqf* • • • q.

u'2
) X

and since each of these factorizations yields a different represen-

tation of m as the sum of two squares, the problem can be solved

in exactly as many different ways.

If m~2n
p x

eip
2
e*-'prer

q 1
Hq2

t2 '--q
Si

u
, where the p's are primes

of the form 4n -\- 1, all different, the q's primes of the form

4n + 3> and the ?s oil even, then, if N be the number of different

ways in which m can be represented as the sum of two squares,

we have N= i(e1 + 1) (e2 + 1) - • • (er+ i) or\(ex + 1) (e2 + 1)

• * •

( er + 1) + i according as some or none of the e's are uneven.

(See Gauss: Disq. Arith., V, 182.)

Ex. 65 = 13 • 5 = (1 + 2O (1 — ») (2 + 3O (2— 31),

= [(i+ 2 (2 + 301 [0 -20(2-30],
= (-4+ 70(-4-70=42+ 7

2
,

or as [(i + 20(2— 30H(i— 20(2 + 30],
= (8 + 0(8-0 =82 + i

2
.

Thus 65 can be expressed in two ways as the sum of two squares.
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§ 17. Primary Integers of k(i).

When an integer, a, plays the role of divisor it is unnecessary

to distinguish between its associates. This is, however, not the

case when a is combined with other numbers by the operations

of addition or subtraction. For example, when a is the modulus

of a congruence we may consider a to be any one of its asso-

ciates, but when a is a coefficient some particular one of its asso-

ciates must be designated. This distinction between the associates

of a is the same as that made in the rational realm between a

and — a.

There, for example, the quadratic reciprocity law is given for

positive primes, since although we have always

(0-&>
we do not have in general

is)-m
An integer so singled out from its associates according to some

prescribed rule is called a primary integer.

This rule of selection should evidently be such that the product

of any two primary integers is primary; that is, if a and p be

the integers selected as primary from a,— a,ia,— ia- and p, — P,

ip,— ip, respectively, then ap should be the integer that ac-

cording to the same rule should be selected as primary from

ap,— ap,iap,— iap.

Gauss gives two rules of selection, both of which obey the

principle just enunciated. The first rule is based entirely upon

this principle, the second partially. Gauss makes use of the sec-

ond rule and this one will now be described.

The rule will be given here without employing the above men-

tioned principle, and will then be shown to obey it.

We first divide the integers of k(i) into two classes according

as their norms are odd or even, those of the first class being called

odd integers, those of the second class even integers. 1

1 Bachmann : Die Lehre von der Kreisteilung, p. 152.

13
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If n[a-\- bi], = a2 + b 2
, be odd, it is evident that either a or b

is odd, the other even.

If n[a + bi] be even, a and & are both odd or both even.

Every prime of k(i) except I + i is evidently an odd integer.

Since I -\-i and I

—

i are associates, it is evident that n[a] divis-

ible by 2 is not only a necessary but a sufficient condition that a

shall be divisible by I -f- i.

We see, therefore, that a necessary and sufficient condition for

an integer of k(i) to be even is that it shall be divisible by i -f- i-

The selection of one of the four associates of an integer is now

made as follows. Considering first only the odd integers of k(i),

we have the following rule:

That number x -\- yi of the four associated odd integers

a -\- bi, — a— bi, — b + ai, b— ai i

)

is singled out as primary in which we have simultaneously either

x*s~ i
; y= o

^
V , mod 4, 2)

or x=— i
; y= 2 )

where x denotes the real part and y the coefficient of i.

That one and only one such integer exists in the group i) is

shown as follows. Since a -\- bi is an odd integer, a and b can

neither be both odd nor both even. Suppose a even, b odd.

Then one of the integers, b or — b, is of the form 4» + i, the

other of the form ^n— i.

If now a= o, mod 4,

that one of two integers, b— ai,— b -j- ai, will be primary in

which the real part has the form 411 -f- 1 •

If a= 2, mod 4,

that one of the integers, b— ai,— b -f- ai, will be primary in

which the real part has the form 4^— 1.

It is evident in both these cases that none of the remaining

associates satisfy the conditions.

Similarly we see that when a is odd and b even, one and only

one of the four associates 1) satisfies 2).
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If a be a rational integer, that one of the integers, a,— a, is

primary which has the form 411 + 1 . The negative rational

primes prime in k(i) are thus seen to be primary. Two conju-

gate odd integers are evidently either both primary or both non-

primary. It can be easily shown that the above rule of selection

is equivalent to the following

:

That one of four associated odd integers is primary which is

congruent to 1, mod 2+ 21. 3)

Ex. Of the four associated odd integers

9 -f- 121, — 9— 12*, 12— gi, — 12 -f- gi,

9 +121 satisfies the conditions 2); for we have

9^1 and 12^0, mod 4.

Hence 9 + 12* is primary.

We also see that 9 + 12*= 1, mod 2 -\- 22.

It is easily seen that 9 -f- 12* is the only one of its associates which

satisfies the conditions 2) or their equivalent 3).

Since every prime of k(i) except I + * is an odd integer, we
can now distinguish between the associates of every prime except

1 -}- *. In the case of 1 + i we may take any one of its associates,

say 1 + i as the primary one. The primary primes of k (t

)

whose norms are less than 50 are

I +t, — 1+21, —I—2i, —3, 3 + 2/, 3— 21, I +4*, I—4/,

— 5 + 2«, — 5— 2/, — 1 -f 6i, — 1 — 6i, 5 + 4h 5—4*', — 7-

Remembering that a necessary as well as sufficient condition

for an integer, fx, to be even is that it shall be divisible by 1 + i,

we can distinguish between the associates of /a by taking that one

as primary which when written in the form ( 1 -\-i) nv has the

factor v, which is an odd integer, primary. We shall now show

that the product of two odd primary integers is a primary integer.

Let a, = a -j- hi, and j3, = c + di, be any two odd primary in-

tegers. Then one of the following cases must occur.

mod 4,

1.

a= 1

11.

1

1

a==-
11.

— 1

IV.

ass— 1
*

b= o b= b= 2 b== 2

c== 1 c=--

1

c^ 1 C= I

d= o d= 2 d^ dz= 2 J
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and afi=(ac— bd) -f- (ad -\- bc)i= e + fi,

gives one of the following corresponding cases

:

i. ii. iii. iv.

V , mod 4.Mi'/= f&B 2 /eee 2

Hence a($ is always an odd primary integer, if a and /? be odd

primary integers. This may be shown more simply by means of

the condition 3).

From this it follows at once that the product of any two pri-

mary integers is primary. We may now express the unique fac-

torization law for the integers of k(i) as follows:

A primary integer can be resolved in one and only one way into

a product of primary prime factors.

The term primary integer is generally taken to mean what is

here called an odd primary integer.

§ 18. Quadratic Residues and the Quadratic Reciprocity Law
in k(i). 1

If a and fx be any integers of k(i) prime to each other, we say,

as in R, that a is a quadratic residue or non-residue of /u. accord-

ing as the congruence

x2= a, mod fi,

has or has not roots.

Ex. 1. The congruence

x* as 1 -f- i, mod 1 — 21,

has the roots ± 2 ; for

(± 2)
2= 1 + i, mod 1 — 2.1,

since 4— ( 1 + *) =3— i= ( 1 -j- *) ( 1 — 21)

.

Hence 1 -f- i is a quadratic residue of 1 — 2fc

Ex. 2. On the other hand the congruence

x2s 3, mod 1 — 2%,

has no roots, for substituting the integers ± I, ± 2, of a reduced residue

system, mod 1 — 2%, we have

\ , mod 1 — 2i.

4^3 j

x See Gauss: Theoria Residuorum Biquadraticorum, §§ 56-60; Works.

Vol. 2, pp. 126-130.
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Hence 3 is a quadratic non-residue of I — 2f.

The theory of quadratic residues can be developed for k(i)

along lines so nearly identical with those for the same subject in

the rational realm that only the briefest outline will be given here.

We have, as before, two questions to answer: first, what in-

tegers are, and what are not, quadratic residues of a given modu-

lus; second, of what moduli is a given integer a quadratic residue

and of zvhat moduli is it a non-residue

?

The first question can be easily answered. The second is much

more difficult. We shall confine ourselves in what follows to the case

where the modulus is a prime r. We observe first that every odd

integer of k(i), that is, every integer prime to I + h is congruent

to I, mod I + h and hence is a quadratic residue of I -f- i.

For 7r, an odd prime, we have the following theorem, the proof

of which is like that of the corresponding theorem for rational

integers (Chap. IV, Th. i).

Theorem 17. The necessary and sufficient condition that a

shall be a quadratic residue of ir is that

Ex. 3. Let tt= 1 — 2.x, a= 1 + i. We have

n|>]-l

(1 + 2 = (1+ 2= 2t as 1, mod 1 —2i.

Hence 1 -f- 1 is a quadratic residue of 1 — 21.

Ex. 4. Let 7T ss 1 — 21, a= 3. We have

»[ir]-l

3
2 =32= 9^i, mod 1— 2»*

Hence 3 is a quadratic non-residue of 1 — 21. These results are con-

firmed by Ex.'s 1 and 2 above.

Cor. The integer a is a quadratic residue or non-residue of ir

according as we have

a 2 =1 or — 1, modir. 1

Let now, as in the rational realm, the symbol (a/n) have the

1 See Chap. IV. Th. 1. Cor. 1.
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value 1 or — 1 according as a is a quadratic residue or non-residue

of sr, we have

I
-

) m a 2
, mod it.

The symbol (a/V) obeys the following laws

i. If «= /?, modTr,

te)-(f-)'

a Sine. (=-!)_ ('-) _,,

-- (v)-(t) (:-)=(,-)

iv. Since

(l)-(^)--(;)-(i)
it follows that

©-(-«)-(i)-(-:).
v. Since y

2= a, modir,

implies y' ^=ol', mod 7/,

we have

i)-6)
Every integer a can be written in the form

a= i
r(i+i) 8

p lP2
--

Pn,

where r= o, 1 , 2 or 3, s= o or a positive integer, and p x , p2 >
* * •

> P*

are odd primary primes. We have then

(=)-a)-(^m)(?)-fe),
and the determination of the value of (a/v) is seen to be resolved

into- the determination of the values of
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aM^'MD
where p is an odd primary prime.

The close similarity between this resolution of our original

problem into simpler ones and the corresponding case in the

rational realm should be noticed.

Theorem 18. The unit i is a quadratic residue or non-residue

of a prime it according as n[?r] is of the form 8m -\- i or 8m + 5-

If ir be a prime of the first degree, w[tt] is a positive rational

prime of the form 4k + 1, and hence either of the form 8w+ 1

or 8m + 5.

If 7T be a prime of the second degree, n[ir] is the square of a

rational prime of the form 4k + 3, and hence of the form 8m -|- 1.

We have from Th. 17

2
, mod 7T,u)-

(i\ »r»]-i

and hence (-)==(— 1)
4

, mod ir,

»[ir]-l

or since
(
_ ,j

4 = T or _ z

(';)-<->
»[*]-!

4

But («[ir] — 1)/4 is even or odd according as n[ir] is of the

form 8m + 1 or 8m + 5.

Hence (*/*•) = 1 or — 1 according as n[ir] is of the form

8m + 1 or 8m + 5- We observe that i is a quadratic residue of

all primes of the second degree. The solution of the same ques-

tion for 1 + i is obtained by Gauss inductively as follows i
1

We find by means of Th. 17 that 1 + i^ is a quadratic residue

of the following primary primes — I + 21, 3— 2f, — 5— 21,

— 1— 6/, 5+4*', 5— 4*', —7, 7 + 2', — 5 + &, etc., and a

quadratic non-residue of — 1 — 21, — 3, $-{-2i, I +4*, 1— 4*,

— 5 + 21,-1+61, 7— 2/, —5— 6/, —3 + 81', —3— 8/, 5 + 8/,

5— 8/, 9 + 4*, 9— 4/, etc.

*Th. Res. Biquad., Com. Sec, §58; Works, Vol. II, p. 128.
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Examining these series of primes we see that those in the first

class are all such that

a-\- &= i, mod 8,

and those in the second class such that

a+ b bb— 3, mod 8.

Hence it seems probable that I + '

'is a quadratic residue or non-

residue of an odd primary prime, a -\- hi, according as we have

a + b= i or — 3, mod 8,

one of which cases must always occur (see definition of primary

integer).

Since the quadratic character of an integer is the same with

respect to all associates of tt, and in particular

\a + bij \ — a — biJ

we see that, if the above induction be correct, I + * is a quadratic

residue or non-residue of — a— bi according as

— a— &=— I or 3, mod 8,

a + bi being an odd primary prime.

Assuming the correctness of the above inductive reasoning, we

have the following theorem

:

Theorem 19. If a-\- bi be a prime such that a is odd and b

even, 1 -\-i is a quadratic residue or non-residue of a-\- bi, ac-

cording as a-\-b=± 1 or ± 3, mod 8.

This theorem may be proved by treating it as a special case of

a more general theorem (Th. 22), which we shall consider in the

next section. 1 To determine the value of ( . . ] we have only

to remember that

(^•) = (S) (seevabove )-

1 For an independent proof see Dirichlet, Crelle, Vol. XXX, p. 312.
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and hence since

( j. ) = i,whena+(

—

b) as ± i, modSt

and =— i, when a + (— &) dz 3, mod 8,

we have

V* + &7
= 1, when a— &= ± 1, mod 8,

:— 1, when a— &=±3, mod 8.

Ex. 1. Deduce the above criterion for the value of (
—^— ) from

Va-f-fr*/

the fact that (l=*\ = ( *A f-l±J^ .

Ex. 2. Under what condition is

\a + bi) \a + bij

Gauss proceeds next to the consideration of the question: Of
what odd primary prime moduli is a given odd primary prime a

quadratic residue and of what a non-residue? The analysis em-

ployed in the discussion of this question so beautifully exemplifies

what can be accomplished in the theory of numbers by induction,

this constituting, as Gauss says,1 " the peculiar charm " of this

branch of mathematics, that we shall give it in full. ,

The following is a free translation of §§ 59, 60, Commentatio

Secunda, Theoria Residuorum Biquadraticorum.

" Passing to the odd prime numbers, we find the number— 1 + 21

to be a quadratic residue of the moduli 3 -f- 2i, 1 — 4*, — 5 -\- 21,

— i—6i, 7— 2i, _3 + 8i, 5+ 8*, 5— 81, 9 + 4, etc., but a

non-residue of the moduli— 1— 2i,— 3, 3— 2», 1+4*,— 1 + 6t,

5 + 4h 5— 4*', — 7> 7 + 2i, —5 + 6/, —5— 61, — 3— 81, 9— 4*,

etc.

Reducing the moduli of the first class to their residues of least

absolute value with respect to the modulus — 1 -f- 2i, we find these

to be — 1 and 1 only ; for instance, 3 + 2*=— i, 1 — 4**2=— i,

— 5 -|-2«= 1, — 5— 212s— 1, etc.

1 Gauss: Works, Vol. II, pp. 152 and 157.
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On the other hand, all moduli of the second class are found to

be congruent to either i or — i with respect to the modulus

— I -f- 21.
1

But the numbers i and — i are themselves quadratic residues

of the modulus — I -f- 2*, while i and — i are non-residues of the

same modulus ; wherefore, so far as induction may be trusted, we

obtain the theorem : The number — I -\- 21 is a quadratic residue

or non-residue of the prime number a-\-bi according as a -j- bi

is a quadratic residue or non-residue of — 1 + 2% itself, if a + bi

be the primary one of its four associates, or more exactly if merely

a be odd and b even.

Moreover, from this theorem follow immediately similar theo-

rems for the numbers 1 — 2i, — 1— zi, 1 -f- 2.i.

Since (
L ~ 2i

\ = (
— l

\ (
~ 1 + 2i

\ = (~ I + 2i
\

\a + bi) \a + bi)\ a + bi ) \ a + bi /'

we have (l=g) = (2+«Y
\a-{-biJ \i

—

2%)

Also f-
1 - 2^ = (-1±2\ = (JlZZ*L\ = ( ° + bi\

\ a + bi J \ a— bi ) \— 1+21 J \—i—2iJ

and then as above (*+f\ = (
a + hi

\
\a + bi) \i+2ij'

Instituting a like inductive enquiry concerning the numbers

— 3 or 3, we find that both are quadratic residues of the moduli

3 + 2*, 3— 2f, — 1 + 6», — 1— 6i, — 5 + 6i, — 5— &,— 3+ Si,

— 3— Si, 9 -f- 4i, 9— zji, etc., but non-residues of — 1 -f- 2f,

— 1—2?; 1+4*, i— 4*, —5 + 2i, —s— 2i, 5 + 4*', 5—4^
7+ 2*, 7— 2*, 5 + 8*; 5— 8*, etc.

The former are congruent with respect to the modulus 3 to

some one of the four numbers 1, — 1, i, — i; the latter, however,

to some one of the four numbers 1 -\-i, 1— i, — I +.*, — 1 — i.
2

1
It will be observed that 1, — 1, i, —-i constitute a reduced residue

system, mod— 1 + 2*-

2 The numbers 1, — 1, i, — i, i-\-i, J — i> — *+** — 1 — * constitute

a reduced residue system, mod 3.
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The numbers i, — i, i, — i are themselves quadratic residues

of 3, while I + i x — h — I + ** — * — * are non-residues.

Induction teaches, therefore, that the prime number a + bi,

supposing a odd, b even, has the same relation to the number — 3

as — 3 has to a -f- hi, in so far as the one is a quadratic residue or

quadratic non-residue of the other, and like relations hold between

3 and a -\- bi.

Applying a like inductive process to other prime numbers, we

find in every case this most elegant law of reciprocity confirmed,

and in the arithmetic of the complex numbers we are led to this

fundamental theorem concerning quadratic residues

:

Theorem 20. 1 // a1 -f- ° xi and a2 -f- b2i be two prime numbers

such that ax and a^ are both odd, b x and b 2 both even, then each

will be a quadratic residue or each will be a quadratic non-residue

of the other.

But notwithstanding the extreme simplicity of the theorem its

demonstration presents great difficulties, which, however, shall

not delay us here, since the theorem itself is merely a special case

of a more general theorem, which exhausts, as it were, the whole

theory of biquadratic residues." We shall conclude this brief

resume of the theory of quadratic residues in k(i) with the solu-

tion of three examples.

Ex. 1. To determine the quadratic character of 5— 4*" with respect to

the modulus 11 -\-6i.

We have by the above theorem

\ii+6i) \5— 4*/ V5— 4//'

1
Since ( — )= ( )= ( )= ( )

it is not necessary to limit a and

* to odd primary integers, but only to odd primary integers or those with

their signs changed ; that is, integers of the form a -f- bi, where a is odd
and b even.

Expressed symbolically the theorem is

tax -f bti\ _ /ch -f b2i\

\ch -f- b2i)
~

\tf! -{- bii)

Dirichlet gives a simple proof independent of the theory of biquadratic

residues ; Crelle : Vol. IX, p. 379 ; also H. J. S. Smith : Works, Vol. I, p. 76.
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But 6+ioi= (i + 3(i— 4*)-

Hence &=£L)-(l±i)\i=gi

• \5— 4V \5— 4*/

But f ^±A^ = 1, since 5+ (—4) =1, mod 8, (Th. 19), and by Th. 20
\5— 4*/

\ 5— 4* / \ 1 — 41 / \ 1 — 4* / V 1 — 4 l /

Hence (
S
~ 4\) = 1,

Vii + 6t/

and the congruence x2 ma 5 — 4/, mod 11+ 6i,

has roots.

Ex. 2. To determine the prime moduli of which 1 + 2.1 is a quad-

ratic residue, and those of which it is a non-residue. Let a -f- bi be a

primary prime and hence a odd, and b even.

Then

\a+ bi)
=
\T+m)

=
VF+2?/' \T+2i)' Vj+2? )

or
VT+JwJ'

according as a -\- trims I, i, — 1, or — i, modi-f-2&.

But

(* ) = T) (
f\ =_ , (^1.) = I; and (j=L) =_ I(

\l+2t/ \l+2*/ \I+2Z/ Vl+2*/

Hence 1 + 21 is a quadratic residue of a + fo when

a + fee == 1 or — 1, mod 1 + 2*"

and a quadratic non-residue when

a -j- fo^ * or — i
y mod 1 -f- 2*.

Therefore 1 -|- 21 is a quadratic residue of all primary primes included

in the forms p(i-\-2i) ±1, 1)

and a quadratic non-residue of all primary primes included in the forms

/a(i +2/) ± i. 2)

Ex. 3. To determine the prime moduli of which 3 -j- 6* is a quadratic

residue, and those of which it is a non-residue.

Let a -j- bi be a primary prime.

We have ft±|ft = (—L-} fl±£\

We find as in the last example that ( fu )
=z h w^en a + bi is a
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primary prime contained in one of the forms

3fi ± i, 3fi ± i, 3)

and f , . ] =— i, when a + bi is a primary^ prime contained in one

of the forms

SH± (i-f-O, 3/*± (i— «). 4)

Combining these with the results obtained in the last example, we see

that 3 -f- 6i is a quadratic residue of all primary primes contained simul-

taneously in the forms i) and 3), or simultaneously in the forms 2)

and 4), and their associates. On the other hand 3 + 6* is a quadratic

non-residue of all primary primes contained simultaneously in the forms

1) and 4), or simultaneously in the forms 2) and 3). These conditions

may in each case be combined into a single one by Th. 12.

§ 19. Biquadratic Residues.

It is impossible to leave the realm k(i) without a few words

as to the history of the first treatment of these numbers from

the point of view of the theory of numbers, marking as it did

a distinct epoch in the development of this branch of mathematics.

On the fifth of April, 1825, Gauss laid before the Royal Society

of Gottingen a paper1 upon the subject of biquadratic residues, a

brief report2 of which is given in the " Gottingische Gelehrte

Anzeigen" for April 11, 1825.

He remarks in this report that :
" The development of the gen-

eral theory which requires a most peculiar extension of the field

of the higher arithmetic3
is reserved for future continuation, only

those investigations being taken up in this first paper which can

be completely carried through without this extension," giving

thereby a foretaste of a step which was to revolutionize the theory

of numbers ; a step, however, the results of which he did not pub-

lish until six years later.

In this first paper Gauss defines a biquadratic residue as fol-

^heoria Residuorum Biquadraticorum : Commentatio Prima. Works,
Vol. 2, p. 65.

2
Ibid., p. 165.

'Italics are the author's. See also H. J. S. Smith: Report on the

Theory of Numbers, Arts. 24-36; Works, Vol. I, pp. 70-86, and Bach-

mann: Die Lehre von der Kreisteilung, Vorlesung 12th. The reader is

especially advised to consult Gauss' reports on his two papers and H. J. S.

Smith's resume.
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lows :
" An integer a is called a biquadratic residue of the integer

p when there exist numbers of the form x*— a which are divisible

by p, and a biquadratic non-residue of p when no number of this

form is divisible by p" or we may say, as in Chap. Ill, § 34,

that an integer, a, is a biquadratic residue or non-residue of an

integer, p}
according as the congruence

x*— a= o, modp,

has or has not roots.

Limiting the investigation now to the case in which p is a posi-

tive prime of the form 411 + 1 and a not divisible by p, all other

cases being as he says reducible to this one, he separates all

integers, a, not divisible by p, into four classes, according as

fl
i(p-D 53 1, f,

— 1, or— j, mod p,

where / is a root of the congruence

f
2
-f- 1 s= o, mod p.

Every integer of a reduced residue system, mod p, satisfies the

congruence x?~x— 1=0, mod p, 1

)

which may be written

(**<p-i>— 1) O^-1
* — /) (x^p-v + iX**-^ + /) =0, modp, 2)

where /,— / are the roots of the congruence

x2 + 1 == o, mod p.

Since the congruence 1 ) has exactly p— 1 roots, each of the

four congruences into which 2) can be resolved has exactly

\{p— 1) roots and the integers of a reduced residue system, mod

p, are seen to fall into four classes, each containing J(/>— 1)

integers, according as they satisfy the first, second, third or fourth

of these congruences.

The first class comprises those integers for which the congru-

ence 1) is solvable; that is, the biquadratic residues of p (Chap.

Ill, Th. 31) ; the third comprises those integers which are quad-

ratic but not biquadratic residues of p ; the second and fourth

classes are made up of the quadratic non-residues of p.
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We see, therefore, that, as Gauss remarks, all biquadratic resi-

dues of p are also quadratic residues of p and all quadratic non-

residues of p are also biquadratic non-residues of p ; but that not

all quadratic residues of p are biquadratic residues of p. Gauss

now divides the investigation, as in the case of quadratic residues,

into two parts according as p or a is supposed given ; that is, ac-

cording as we are to find what integers are biquadratic residues

of a given prime modulus and what non-residues, or of what

prime moduli a given integer is a biquadratic residue, and of

what a non-residue.

The first of these is elementary in comparison with the second

and easily solved. Of the second part he treats three special

cases, a=— I, a=±2, but does nothing with the general case.

These three special cases, however, he fully discusses, remarking

upon the exceeding difficulty of the cases a=±2.
In this connection H. J. S. Smith says :* " The result arrived

at in the case of 2 is that, if p be resolved into the sum of an even

and an uneven square (a resolution which is always possible in

one and only one way), so that p= a2
-f- b2 (where we may sup-

pose a and b taken with such signs that a= 1, mod 4, b= af, mod

/>), 2 belongs to the first, second, third or fourth class according

as \b is of the form 411, 4»+ 1, 411 +2 or ^n -f- 3.

"The equation p= a2Jr b 2 shows that p=(a-\-bi)(a— bi),

or that p, being the product of two conjugate imaginary factors,

is in a certain sense not a prime number. Gauss was thus led to in-

troduce as modulus instead of p one of its imaginary factors ; an

innovation which necessitated the construction of an arithmetical

theory of complex imaginary numbers of the form a -J- bi."

In a paper2 communicated to the Royal Society of Gottingen,

April 15, 1831, a report3 of which is given in the " Gottingische

Anzeigen" for April 23, 1831, Gauss continues his investigations

in this subject, limiting himself still to the case where p is a posi-

tive rational prime of the form 4^+ 1, a an integer not divis-

ible by p.

1'Works, Vol. I, p. 71.
2 Th. Res. Biq, Com. Sec, Works, Vol. II. §93-
3
Ibid., p. 169.
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He obtains by induction, but does not prove, theorems concern-

ing the moduli of which certain special values of a (± 3, 5, — 7,

— 11, 13, 17, — 19, — 23) are biquadratic residues, and those of

which they are non-residues, but says in the above mentioned

report: "Although all these special theorems can be discovered

so easily by induction it appears nevertheless extremely difficult

to find a general law for these forms, even if much that is

common makes itself evident, and it is still more difficult to find

proofs for these theorems. The methods used for the num-

bers 2 and — 2 in the first paper can not be applied here, and

if other similar methods such as that used in dealing with the

first and third classes, could serve to solve the problem, they

prove themselves, however, entirely unsuitable as foundations

for complete proofs. One soon recognizes, therefore, that it is

only by entirely new paths that one can penetrate into* this rich

domain of the higher arithmetic. The author has already pointed

out in the first paper that for this purpose a peculiar extension of

the field of the higher arithmetic is indispensable, without, how-

ever, explaining more fully wherein this consisted ; the design

of the present paper is to make known the nature of this extension.

It is simply that a true basis for the theory of the biquadratic

residues is to be found only by making the field of the higher

arithmetic, which usually covers only the real whole numbers,

include also the imaginary ones, the latter being given full equal-

ity of citizenship with the former. As soon as one has per-

ceived the bearing of this principle, the theory appears in an

entirely new light, and its results become surprisingly simple."

This widening of the field of the higher arithmetic consists,

then, in considering our integers to be all those numbers of the

form a + bi, in which a and b are rational integers. The defini-

tions of divisibility, prime number, etc., and the principal theo-

rems relating to rational integers having been shown to have their

analogues for the integers of this extended system, our realm

k(i), as has been proved in the preceding pages, Gauss then

develops briefly the theory of quadratic residues for the integers

of this new system. Passing to the subject of biquadratic resi-
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dues, he separates all integers not divisible by a given modulus

into four classes, as follows :

" If the modulus be a complex prime number, a + bi, where a

is always assumed odd, b even, and k a complex number not

divisible by a + bi, then, for the sake of brevity p being written

for a2
-+- b 2

, we have in all cases

£i(p-D == i
}
i
}
— i

}
— i} mod a -\- bi,

and thereby all numbers not divisible by a 4- bi are separated into

four classes, to which in the above order the biquadratic charac-

ters 0,1,2,3 are ascribed." That is, the biquadratic character

of an integer, k, with respect to a prime modulus, a -f- bi, is the

exponent of the lowest power of i to which ki{p
~x)

is congruent,

mod a+ bi, where p= a2 + fr
2

.

" It will be observed that, when a+ bi is a prime of the first

degree, the fourfold classification of the real residues of a+ bi

which we thus obtain is identical with that obtained for

p, =n[a-\-bi], in the real theory; for the numbers / and — f,

being the roots of the congruence

x2
-f- 1= o, mod p,

satisfy the same congruence for either of the complex factors,

a-\-bi, a— bi, of p, and are therefore congruent respectively to

+ i and — i, for one of these factors, and to — i and -f i for the

other. 1

" Evidently the character o belongs to the biquadratic residues,

the remaining ones, 1, 2, 3, to the biquadratic non-residues, to the

character 2 corresponding quadratic residues, to the characters

1 and 3 on the other hand quadratic non-residues.

" One recognizes at once that it is only necessary to determine

this character for such values of k as are themselves complex

primes, and here induction leads immediately to most simple re-

sults. If, first of all, we put k= 1 + i, it is seen that the charac-

ter of this number is always congruent to

i(—

a

2
-f 2ab— 3&

2
-f-i), mod 4,

1 See H. J. S. Smith : Works, p. 197.

14
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and similar expressions are found for the cases k= i — i, — I -\-.%

— i— i.

" If, on the other hand, k be such a prime number c+ di, that

c is odd and d even, we can obtain by induction a reciprocity law

quite analogous to the fundamental theorem for quadratic resi-

dues ; this theorem can be expressed most simply in the following

manner

:

" If c -\- d— i as well as a-\-b— i be divisible by 4 (to which

case all others can be easily reduced), and the character of the

number c -f- di zinth respect to the modulus a -f- bi be denoted by

l lf that on the other hand of a-\- bi with respect to the modulus

c -f- di by l2, then h— l2 when one (or both) of the numbers d

and b is divisible by 4; on the other hand lx— l2 ± 2, when neither

of the numbers d, b is divisible by 4.

" These theorems contain in truth all the essentials of the theory

of the biquadratic residues ; easy as it is to discover them by

induction, it is most difficult to prove them rigorously, especially

the second, the fundamental theorem of the biquadratic residues.

On account of the great length of the present paper the author

finds himself obliged to postpone to a third paper1 the presenta-

tion of a proof of the latter theorem, which has been in his pos-

session for twenty years. On the other hand, the present paper

contains the complete proof of the first theorem relating to the

number 1 + h upon which are dependent the theorems relating to

1 — i, — I -(- i, — 1 — i. This proof will give some idea of the

complexity of the subject."

The above will be made plainer to the reader by the following

brief resume. The integer a is said to be a biquadratic residue

1 Gauss never published his proof of this theorem, but soon after the

theorem was published Jacobi succeeded in proving it, and communicated
this proof to his pupils in his lectures at Konigsberg in the winter of

1836-37. He did not, however, publish his proof, and the first published

proofs are by Eisenstein, who gave in all five. See Crelle, Vol. XXVIII,

P- 53, P- 223, and Vol. XXX, p. 185; also H. J. S. Smith: Works, Vol.

I, p. 78, and Bachmann: Die Lehre von der Kreisteilung, p. 168.
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or non-residue of a prime, *, a being prime to tt, according as the

congruence x*= a, mod7r,

is or is not solvable.

From Th. 16 we have

a
w[7r]-1= i

f
modTT, 3)

and since, excluding the case ir= r + h
1 n

[
7r] — I is always divis-

ible by 4, we may write 3) in the form

/ nQ]-l \ / n [*•]-! \ / n[ir-]-l \ / n[n^-l \

[a 4 -i)\a 4 -i)\a 4 + 1) \a 4 +*j=o, modTr,

each of the congruences

»[tt]-1

t
4

"L*]-i

t
4

w[tt3-1

4

, mod7r,

a - ss— %

which may be written in the common form

n\_n]-l

a 4
wmif, modTr, r= o, 1,2, 3,

is seen to have exactly (n[Tr] — 1)/4 incongruent roots, and the

integers of a reduced residue system, mod ir, fall into four classes

according as they satisfy the first, second, third or fourth of

these congruences.

The integers of the first class are the biquadratic residues of it,

for a
4 = 1, modTr,

is the necessary and sufficient condition that a shall be a biquad-

ratic residue of 7r.

The integers of the first and third classes are together the

quadratic residues of tt, for they are the roots of the congruence

a 2 =1, modTr.

1
It is easily seen that every integer not divisible by 1 -f- * is a biquadratic

residue of 1 + i.
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The integers of the second and fourth classes are together the

quadratic non-residues of if, for they are the roots of the congruence

n[tr]-l

a 2 =— i , mod 7T.

The exponent of the power of i for which the congruence

n[ir]-l

a 4
i
r

, mod r, r= o, i , 2, 3

is satisfied is called the biquadratic character of a with respect

to it and this power of i is denoted by the symbol (o0r) 4 , so that

we have always %

©.«~ mod

The symbol (a/7r) 4 , which is due to H. J. S. Smith, seems preferable

to (( ct/ 7r)), which was adopted by Jacobi, as by a change of subscript

it will serve for the theory of residues of other degrees.

If now (a/ir) have the meaning previously assigned, we see

easily that

a)-©;-
If we understand by the quadratic character of a, mod *", instead of

1 or — 1, the exponent of the lowest power of — 1 to which a is con-

gruent, mod t, the notation for quadratic residues will be brought into

accordance with that given above for biquadratic residues.

The symbol (fit/*) 4 obeys the following laws:

From a x
= a2 , mod r, it follows that

©.-(?).-

If a x and a2 be two integers, which may be equal, not divisible

by w, then from

and ( — ) =a
2

4
f
mod 7r,

(5),(5),-<°.«.>

it follows that
nOJ-l

4
, mod 7T,
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(¥).- (5), (5);,

Since every integer a can be written in the form

a= ir (i+i)*Plp2
--

Pn ,

where r= o, 1,2, 3; ^= 0, or a positive integer; and p 1,p2,---,pn

are odd primary primes, we have

W 4

=W 4 VflT j 4
Vtt j 4w 4

*

'

• w;
and the determination of the value of [ - | is seen to be resolvedWi
into the determination of the values of ( - | , I | and 1 — 1

where p is an odd primary prime.

The following theorem gives a simple criterion for determining

the value of (*/r)«:

Theorem 21. If Tr= a-\-bi be an odd primary prime, then i

has the biquadratic character o, 1, 2 or 3 with respect to the mod-

ulus tt, according as we have a^=i, 7, 5 or 3, mod 8; that is,

\a + bi)

Since a+ bi is an odd primary prime, we have either

a= 4k + 1 ; b= 4k,

or a= 4k + $', b= 4k+2,

and hence

\a -f bi)

q2+&2_l

i
4 =/2 fe, when = 4^+1,

= j
2&+3

, when a= 4^-(-3.

But 2^= oor 2, mod 4, according as k is even or odd ; that is,

according as =4^+1= 1 or 5, mod 8

;

and 2k + 3= 3 or 1, mod 4, according as k is even or odd ; that

is, according as
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a= 4k + 3= 3 or 7, mod 8.

Hence ( —^-.) ==1,*,— ior— i.

according as a= 1, 7, 5, or 3, mod 8.

The following table gives the biquadratic character of i with

respect to each odd primary prime whose norm is less than 50.

Biq. Char. Odd Primary Primes.

O
%

i+4*, i—4*, —7-

I — I + 2f,— I — 21,— 1+6*',— I --6*.

2 — 3,5 + 4h 5— 4*.

3 3 + 2», 3— 21,— 5 + 2f,— 5— 2*.

The following theorem gives the biquadratic character of 1 + *

with respect to an odd primary prime modulus.

Theorem 22. If a-\- bi be any odd primary prime

(i±l\ _;~b

i*-
1

\a + bi)-
1

For the proof of this theorem see Gauss: Works, Vol. II, p.

135; Eisenstein: Crelle, Vols. 28 and 30; Bachmann: Die Lehre

von der Kreisteilung, p. 181.

The following table gives the biquadratic character of 1 + f

with respect to each odd primary prime whose norm is less than 50.

Biq. Char. Odd Primary Primes.

O 3— 2i,5 + 4i— 1— 61

I 1— 4h— 5 + 2i— 1 + 6* •

2 — 1 +2*,— 5— 2f,5— 4*,— 7.

3 — 1 — 2%,— 3, 3 + 2%, 1 + 4*.

This theorem is easily seen to be the equivalent of Gauss' (p.

209), for although the modulus is here restricted to an odd primary
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prime, a-\-bi, while in Gauss' it can be either ±{a-\-bi), where

a -f- bi is an odd primary prime, this makes no difference, since

(i+i) _ (
**'

)

We have only to show therefore that

\{— a* + 2ab— 3b*+i)^i(a— b— b 2— i), mod 4 , 4)

where a= 1, b= o, or a ==— 1,6= 2, mod 4.

Putting

a= 4a1 -\-i,b= 4b 1 , or = 4^— i,fr= 4& 1 + 2

in 4), we obtain in both cases

(b 1
— a1)(2a1 -{-2b 1 +i)=a1

— b 1 , mod4;

that is (»i + ^i + I )( fli
— &i)=o, mod 2,

is a necessary and sufficient condition that 4) shall hold, and this

condition is easily seen to be satisfied by all values of ax and bv
The value of (a/7r) 4 is determined by means of the reciprocity

law given by Gauss, which can be expressed most simply as

follows

:

Theorem 23. The biquadratic characters of two odd primary

primes of k(i) with respect to each other are the same or opposite

according as one of the primes is =1, mod 4, or both are

= j -\- 2i
}
mod 4.

This can be expressed symbolically as follows

:

£).-<->---m
in which ir and p are any two odd primary primes of k(i).

Since

we have from the last theorem

(>)-(;):•

(>)-(&
and from this can easily deduce the quadratic reciprocity law as

given in Th. 20.
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The biquadratic character o is opposite to 2, and I to 3, this

corresponding to lt
= l2 ± 2 in Gauss' theorem (p. 210) . His con-

dition, that a+ b— 1 and c+ d— 1 shall both be divisible by 4,

is evidently satisfied when the primes are primary. Furthermore,

it is easily seen from the definition (p. 194) that every odd pri-

mary prime is 5= 1 or 3 + 21, mod 4 ; and this is equivalent to

Gauss' condition that b (or d) be divisible or not divisible by 4.

Ex. 1. To determine the value of

\5+ 4*A

Resolving 1 + 31 into its primary prime factors, we have

\S + 4*A \S + 4*/A5 + 4«/A 5 + 4* )i

ByTh. 21 (- i—\ =i3{b-1)/2 = ?,
\5 + 4*/4

and by Th. 22 (±+1 \ = i°.

\5 + 4*7

Since — 1+2* and 5 -f- 41 are odd primary primes we have by Th. 23

and since 5 + 4* — (1 — 3*) (— 1 + 2i)= — i;
1

that is, 5 -f 41 ==— i, mod— 1 -f 2/,

we have (_* + 4L \ / -»' \ / 1_Y = *V— I 4- 2* A \— I+2I/4 V— I+2t/ 4

Combining these results, we have

\5 + 4*A

that is, 1 + 31 is a biquadratic non-residue of 5 -f 41, or in other words the

congruence x* == 1 -f- 3/, mod 5 -f 41

has no roots.

We see also that 1 + 3* is a quadratic non-residue of 5 -f- 41.

Ex. 2. To classify the odd primary primes of k(i) according to the
biquadratic character of — 1 -f 2f with respect to each of them.
Let it be any odd primary prime of k(i).

1 We select 1 — 31* as a* is chosen in Th. A.
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We have two cases to consider according as t^i or 3 + 21, mod 4.

i. ''"^i, mod 4.

Then

V • /*~~ \— 1 + 2i7 4

—
V— 1 4- 2iji \-i+ 21)\ ' \— 1 + 2i) t

or( -* ) ,

V— 1 + 21/4

according as 'as I. i — 1 or — i, mod — 1 + 21, 1, *', — 1, — t being a

reduced residue system, mod— 1 + **>

But

fcfe) =« fcira).-* G^a)-'- (^),=<' 3
-

Hence with respect to an odd primary prime, w
t sp i, mod 4, — 1 + 2t has

the biquadratic character o, 1, 2 or 3, according as we have *"==i, t, — 1,

or — i, mod— 1 + 21.

ii. * 35 3 + 2», mod 4.

Since we have both » and — i+2i= 3-f 2#, mod 4, it follows that

(-*+*) ( ' Y
V * A V— 1+21/4

Hence with respect to an odd primary prime, t, ss3 -f 2 'j mod 4,

— 1 + 21 has the biquadratic character o, I, 2 or 3, according as we
have * as— 1, — *j 1 or i, mod— 1 + 2/.

Combining these conditions we see that — 1+2* has with respect to

an odd primary prime, *", the biquadratic character

where ir=n(— 4+ &') + 1 or A*(— 4+ 80 + 3 + 21,

1 where t— fi(— 4 -|- &") + 1 -j- 4* or /*(— 4 + Si) + 3"— 2»,

2 where 7r= /i(— 4-f 81) + 1— 4/ or /*(— 4+ &*) +3 + 6*,

3 where 7T— /u(— 4+ 8O —

3

or /*(— 4+ 8*) +7 + 21,

M being any integer of k{i).

Ex. 3. Determine whether the congruence

x*= 9 + 7i, mod 5 + 4^
has roots.

Ex. 4. Class the odd primary primes of k(i) according to the bi-

quadratic character of 3 + i with respect to each of them.



CHAPTER VI.

The Realm &(V— 3)-

§ i. Numbers of &(V— 3).

The number V— 3 is defined by the equation

s2 +3== 0, I)

which it satisfies. We can show exactly as in k(i) that all num-

bers of &(V— 3) have the form a+ &V— 3> where a and b are

rational numbers. The other root, —V—3> of 1) defines the

realm k(—V— 3) conjugate to &(V— 3). These two realms

are, however, evidently identical. The number a', — a— b\/— 3,

obtained by putting — V— 3 for V— 3 in any number a,

= a-\-by/— 3, of &(V— 3), is the conjugate of a; for example,

2+V— 3 and 2—V— 3 are conjugate numbers.

y^> A rational number considered as a number of &(V— 3) is evi-

^jA dently its own conjugate. The product of any number, a, of

&(V— 3) by its conjugate is called its norm, and is denoted by

n[a] ; that is,

n[a+ b V=z\ = (a + b y-^)(fl— &V=3)=a2 +3&2

We see that the norms of all numbers of k{V— 3) are positive

rational numbers. We can prove exactly as in k(i) that the

norm of a product is equal to the product of the norms of its

factors; that is,

n[ap]=n[a]n[/3],

where a and ft are any numbers of &V— 3-

We observe, just as in k(i), that every number a, ==a -f- b\/— 3,

of &(V— 3) satisfies a rational equation of the second degree,

that being the degree of the realm, and that this equation has for

its remaining root the conjugate of a.

The numbers of &(V— 3) fall then, as in k(i), into two classes,

imprimitive and primitive, according as the above equation is

218
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reducible or irreducible; that is, according as 6= or=j=o. The

imprimitive numbers are therefore the rational numbers, and the

primitive numbers all the other numbers of the realm.

It is evident that any primitive number of &(V— 3) can be

taken to define the realm.

This realm as well as the following ones will not be discussed as fully

as k(i). Our desire is merely to bring out those points of difference

from k(i) which necessitate some change in our conceptions, and to

show that after these changes have been made and the unique factoriza-

tion theorem proved for the integers of the realm, we can get as in k(i)

a series of theorems analogous to those for rational integers.

§ 2. Integers of k (
V— 3).

To determine what numbers of £(V— 3), in addition to the

rational integers, are algebraic integers, we observe that as in k(i)

the necessary and sufficient conditions that any number, a,

= a-\-b^— 3, of &(V— 3) shall be an integer are

a + a!= a rational integer,

and aa'= 3. rational integer.

If we write a in the form

a
i + b

i
^ -1

where a= a 1/c1 , and b= b 1/c 1 , a x , b lt ct being integers with no

common factor, these conditions become

«t + ^iV—3 ^-^iV-3 2a. . .-1
* + -3 ! = —' = a rational integer, 1)
c
x

c
x v

1 l

)
(

) = 2 = a rational integer. 2)

One at least of the three following cases must occur:

i. c1 =\=2or 1; ii. c
x
= 2\ iii. c1

= i.

i. The impossibility of i is proved as in k{i).

ii. If q= 2, 2a
1
/c1 can be an integer, and yet a x not contain the

factor 2, a
x
2
-f- 2>b x

2 being divisible by 22 when ax and & 2 are

both odd.
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Hence c 1= 2, in which case a ± and bx must both be odd;

or ^=1. Hence every integer of &(V— 3) has the form

J(° + ^V— 3) > where a and b are either both odd or both even,

and all numbers of this form are integers.

§3. Basis of MV^). 1

A basis of k(V— 3) w defined as in k(i). It will be observed

that the integer V— 3 defining k (
V— 3 ) does not constitute with

1 a basis of the realm as i and 1 did in k(i) ; that is, there are

integers of the realm that can not be represented in the form

x -f- yV— 3, where x and 37 are rational integers. We shall see,

however, that two integers of &(V— 3) can be found, which

form a basis of the realm. For example, 1, £(— 1 + V— 3) 1S a

basis of k{V— 3) ; for let J(— 1 +V—3)> which is seen to be an

integer, be represented by p, and
-J (a + ^V— 3) be any integer of

k (V— 3 ) . We shall show that J ( a + bV— 3 ) can be put in the

form x + yp, where x and y are rational integers.

_, a -f b v — 3 2x—y y
put —-

—

5- = *+j,P—-

Tz+i v _ 3>

which gives 2x— y= a, y= b,

whence x= ^(a-\- b), y= b,

a ,u £ a + bv — 3 a + b
and therefore ~ = 1- bo

2 2 r '

where \{a-\-b) is a rational integer, since a and b are either both

even or both odd. Every integer of &(V— 3) can be repre-

sented therefore in the form x -\- yp, where x and y are rational

integers; that is, 1, p is a basis of &(V— 3). Moreover, every

number of the form x -f- yp can be put in the form J(a + by/— 3),

where a and b are both odd or both even, and hence is an integer

of &(V— 3). For, supposing x and 3; known, and a and b un-

known, we see from the above analysis that a and b will be either

both odd or both even, according as y is odd or even. The sum,

difference and product of any two integers of &(V— 3) is an

integer of &(V— 3), for

1 See Chap. V, § 3.
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O + yP ) =b (*, + ylP ) =x±x1 +(y± yt)p,
and

O + yp) (*i + y\p) —x*t + (*y, + *i:y)p + yjip
2

= **x— 3'3'i + O^i + x
xy— vyjp,

since p
2
-f p -f- i = o.

§4. Conjugate and Norm of an Integer of &(V—^3)-

The conjugate of p is p'=|(— i— V— 3) =p2
. Since

P + p'= P + p
2=— 1, and pp'= p

3 =i, p satisfies the equation

^r
2 + .r+i=o;

that is, p and p
2 are the imaginary cube roots of unity ; therefore

fc(V— 3) is called the realm of the cube roots of unity. If

a, =a-{-bp, be any integer of &(V— 3)» its conjugate is a',

= a-\-bp 2
. The conjugate of a -\- bp

2
is evidently a-\-bp*,

= a + bP .

Hence n[a] = (a-\- bp) (a + bp2
)

= a* + ab(p + P*)+by
= a 2— ab + b2

,

which is seen to be a positive integer.

For example

«[3 + 2p]=9— 6+ 4= 7-

§5. Discriminant of £(V—3).
1

The discriminant of k{V— 3) is the squared determinant

1 P

I P
2

formed from a pair of basis numbers and their conjugates.

Denoting it by d, we have

d=-3-

§6. Divisibility of Integers of fc(V— 3)-

We define the divisibility of integers of fc(V— 3) exactly as

we defined that of the integers of R and &(/), and all that fol-

lowed from this definition in R and k(i) holds for k(\/— 3).

1 See Chap. V, §§3, 4 ; the same remarks hold here.
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Ex. i. We see that 4 + 5P is divisible by 3 + 2p, since

4+5P= (3 + 2p)(2 + p)

= 6 + 79 + 2P
2

= 4 + SP,

since p
2=— 1 — p.

Ex. 2. On the other hand, 5 -f- 2/> is not divisible by 3 + p, since there

exists no integer of k(y/— 3) which when multiplied by 3 + P gives

5 + 2p; for let

$ + 2p= (3 + p)(* + yp)

= 3*+ (*+ 3y)p + yp
2

1)

= 3*— y + + 2y)p;

thus x and 3/ must satisfy the equations

$x— y= Sj x-\r 2y= 2,

which give x= 12/7, y= y7 ; that is, 1) does not hold for integral

values of x and y, and hence 5 + 2p is not divisible by 3 + p.

Theorem i. If a be divisible by (3, then n[a] is divisible by

n[jB].

For from a= fiy follows n[a]=n[/3]n[y] ; that is, n[a] is

divisible by n[/3]. As was seen in k(t), the converse of this

theorem is not in general true.

A common divisor of two or more integers is defined as in

R and k(i).

§ 7. Units of k (V— 3) . Associated Integers.

The units of &(V— 3) are defined, as in the case of the last

two realms, as those integers of &(y— 3) that divide every

integer of the realm. They therefore divide 1, and since every

divisor of 1 is evidently a unit, the units may also be defined

either as those integers of &(V

—

3) whose reciprocals are also

integers of k{V— 3), or, since if c be a unit, n[e] must divide 1,

as those integers of k(y— 3) whose norms are 1.

To determine the units of k(V— 3) we let «, =•* + 37>, be one

of them, and put

n[e]=x2— xy + y
2=(x— iy)* + iy*= i,

from which we see that y can have only the values o, 1 and — 1.
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y= o gives x2 =i, x=i or — I, and hence
€=: 1 or — 1

;

3/= 1 gives x2— jr. 4- 1 as i, .r= o or I, and hence

€= p , or 1 +p=— p
2

;

y==— 1 gives x2 + x + I= I, ,r= o or — i, and hence

€=— p, or — 1

—

p= p
2

.

Hence € can have any one of the six values ± i, ± p, ± p
2

, which

are therefore the units of fc(V— 3)-

As &(V— 3) contains the primitive sixth roots, i(i + V— 3) an<3

i(i — V — 3), of 1, and hence the cube roots of 1, it might more properly

be called the " realm of the sixth roots of unity." Taking 1, «,

= l(i-f-V

—

3), as a basis, we would have as the six units of the realm

1, w
}
«2

,
<a

3—— 1, w4
, w°, the six sixth roots of unity.

The nomenclature used above is, however, the usual one, and hence

has been adopted here.

If two integers, a and /?, have no common divisor except the

units, they are said to be prime to each other, or, excluding the

units, to have no common divisor.

The six integers, a, — a, pa, — pa, p
2
a, — p

2a, obtained by mul-

tiplying any integer, a, of &(V— 3) by the six units in turn, are

called associated integers; for example, the six integers, 1— 6p,

— 1 -f- 6p, 6 + 7p, — 6— jp, — 7— p and 7 + p are associated.

Any integer which is divisible by a is also divisible by — a, pa,

— pa, p
2a and — p

2
a. Hence in all questions of divisibility, asso-

ciated integers are considered as identical; that is, two factors,

one of which can be changed into the other by multiplication by

a unit, are looked upon as the same.

§8. Prime Numbers of &(V— 3).

The definitions are identical with those in k(i).

We can determine whether any integer of &(V— 3) is prime

or composite by the method employed for the same problem in

k(i), the process depending upon Th. 1.

Ex. 1. To determine whether 2 is a prime or composite number of

kW-3).
Put 2=(a + bp)(c + dp);

then 4= (a
2— ab + b

2

) (c
2— cd + <P)

,



+^= 2,

224 THE REALM &(V 3).

whence we have either

a2— ab + b
2 z=2, c

2— cd -\-

d

2= 2, 1)

or a
2— ab-\-b2 =i,c2— cd-{-d2= 4. 2)

It is easily seen that 1) is impossible; for, if

then
I
&

I
= 1 and similarly

[
a

| $x. 3)

It is evident that no pair of values of a and b, which fulfil the condition

3), can satisfy 1). Hence 1) is impossible, and 2) is the only admissible

case ; that is, a + bp is a unit. Therefore 2 is a prime number in

fc(V~"3).
Ex. 2. To determine whether 3 is a prime or composite number of

KV-T).
Put 3 = (a + &p) (c + dp) ;

then 9 —(a2— ab + b
2

) {c
2— cd + cP).

whence we have either

a
2— ab + b

2= 3, <r— cd + d2=% 4)

or a2— ab-\-b2= 1, c
2— cd + d2= g. 5)

Now, if a
2— a& + 6*=i, a + ftp is a unit and hence 5) is not an actual

factorization.

If a
2— ab + b

2=(a— |Y
4

J

then
I

&
I

g 2, and
I

a
I
i 2. 6)

The possible values of fc which satisfy 6) are 0, ± I, ± 2. Considering

them in turn we see that

b = o, gives a
2= 3, which is impossible,

b = 1, gives a
2— a -(-1=3, and hence a :=— 1 or 2,

5 =— 1, gives a
2+ a -}- 1 = 3, and hence a = 1 or — 2,

b = 2, gives a
2— 2a + 4 = 3, and hence «=I,

6 =— 2, gives a~ -\- 2a + 4 = 3> and hence a = — 1,

whence a + &P = — (1

—

p), ± (2 -f- p) or ±(i+2p).

Similarly c+rfp = ±(i— p), ±: (2 + p) or ±(i+2p),

and we have

3= (1— p)(2 + p) = (— i+p)(_ 2— p) = (i+ 2p)(— I— 2p),

the proper combinations of factors being selected by trial. All these

factorizations are, however, considered as identical, since the factors in
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each resolution are associated with the corresponding factors in the other

resolutions. All these factors can easily be proved to be primes of

k(V — 3), whence we see that 3 can be resolved into the product of two
prime factors in £(V —3), and that this resolution is unique. Moreover,

all these factors are associates of 1 — p, and we have

3 =— P
2(i— p)

2
.

We could have seen directly from the equation denning the realm that

3 = _(V^3) 2
.

Ex. 3. If we endeavor to resolve — 46 + 37P into two factors neither

of which is a unit, we find that it can be done in seven essentially different

ways, the factors in each product not being associated with the factors in

any one of the other products.

— 46 + 37P= (4 + 5P)(h + i8p) 7)

= (-5 + 6p)(8 + p) 8)

= (7 + 2p)(— 4 + 9P) 9)

= (1— p)(— 43 — 3P) 10)

== (i + 3P)(29 + 25P) 11)

= (4 + 3P)(5 + 22p) 12)

= (5 + 3P)(i + i7P) 13)

We find, however, that none of these factors except 1 — p, I+3P,

4+ 3P> and 5 + 3P are prime numbers, and that we can resolve those

which are not prime into prime factors in the following manner:

4 + 5P = (1 — P) (1 + 3P), 11 + i8p =: (4 + 3P) (5 + 3P) ;

_5 + 6p=(i + 3P)(4+ 3P), 8 + p=(i-p)(5 + 3P);

7 + 2p=z (i_p)(4 -f 3P ),
_ 4 _pc>p = (i + 3p)(5 + 3p);

— 43— 2>P — (i + 3P)(4 + 3P)(5 + 3P),

2Q + 25P= (1 _p) (44- 3p) (5 + 3p);

5 + 22P = (1 — p) (1 + 3p) (5 + 3p),

i + i7P= (1 — P)(i+3P)(4+ 3P)-

When these products are substituted in 7), 8), 9), 10), 11), 12), and 13)

we obtain in each case

— 46+ 37P= (1— P)(i+3P)(4+ 3P)(5 + 3P) \

that is, when — 46 + 37P is represented as a product of factors all of

which are prime, the representation is unique. Having made these notions

concerning the integers of £(V — 3) clear, we proceed to what will

always be our first goal in the discussion of any realm; that is, to prove

that every integer of &(V — 3) can be expressed in one and only one

way as a product of prime numbers.

15
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§9. Unique Factorization Theorem for fc(V— 3).

Theorem A. // a be any integer of k(\/— 3), and p any

integer of &(V

—

3) different from 0, there exists an integer fi

of k{y— 3) such that

n[a— n(3] <n[p]. 1

Let a/fl= a + bp,

where a= r + rlf b— s -f- slf r and s being the rational integers

nearest to a and b respectively, and hence

We shall show that ft, = r + Sp, will fulfil the required condi-

tions. Since

a//3— ix= r1 +slP ,

n [a/p— /*] = rt*— rrf, + st* g |,

whence n[a/p— fi] < 1,

or multiplying by n[p],

n[a— fxp] <n[p].

The proofs of the two remaining theorems which lead to the

Unique Factorization Theorem and the proof of that theorem

itself are now word for word identical with those in k(i) ; we
shall therefore merely state these theorems

:

Theorem B. If a and p be any two integers of £(V— j)

prime to each other, there exist two integers, £ and -q, of &(V

—

3)

such that

a£+ pv =i.

Theorem C. // the product of two integers, a and p, of

&(V

—

3) be divisible by a prime number, n, at least one of the

integers is divisible by v.

This theorem has, of course, the same corollaries as the corre-

sponding one in k(i).

Theorem i. Every integer of k(\/— 3) can be represented

in one and only one way as the product of prime numbers.
1 See note in k(i) which applies equally here.
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§ 10. Classification of the Prime Numbers of &(y

—

3).

By a train of reasoning identical with that employed in k(i),

it becomes evident that every prime, ir, of &(V— 3) is a divisor

of one and only one rational prime. In order therefore to deter-

mine all primes of &(V— 3), it is only necessary to find the

divisors of all rational primes considered as integers of k(V— 3).

Let 7T, =a-f- bp, be any prime of &(V— 3) and p the positive

rational prime of which -n is a divisor.

Then p= 7ra J 1)

and hence p
2= n[7r]n[a].

We have then two cases

\n[a]=p, ' \n[a] = i.

i. From n[?r] =inr'= p and 1), it follows that a= ir
f
. From

n [it] = p we have a2— ab -\- b2= />, and hence since every positive

rational prime, except 3, is of the form 3^ + 1 or $n— 1, we
must have, excluding the case />= 3, when p= w[tt],

a2— ab-\-b2= 1, mod 3,

or a2— ab-\-b 2=— 1, mod 3.

The first of these congruences has the solutions

a= o; a=±i; a=i; a==— 1]
fr„±I; b= o; 6^1; 6^_i}' raod 3.

while the second has no solutions.

Hence when a positive rational prime other than 3 is the

product of two conjugate primes of k{\/— 5), it has the form-

pi+ I.

The case p= 3 is easily disposed of, for the equation

p= a 2— ab + b2= 3

is satisfied by a=i, b=— 1, which give

3=(i-p)(i-p2
);

hence 3 is the product of two conjugate primes of &(y— 3).

These factors of 3 are, however, associated, for

i-P2=-P2 (i-p),
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whence 3=— p*-(i
—

P )
2

, or 3=—(V—~3) 2
;

that is, j, which is the only rational prime divisor of the discrimi-

nant of &(V

—

3), is associated with the square of a prime of

ii. From n[a]=i it follows that a is a unit. Hence p is

associated with the prime 71-; that is, p is a prime in &(V— 3).

When p is of the form $n— 1, this case always occurs, for we
have seen that in order to be factorable in &(V— 3)> a rational

prime must either be 3 or of the form 311 -f- 1.

We shall now show that every rational prime, p, of the form

3^+ 1 can be resolved into the product of two conjugate primes

of £(V-"3)-
The congruence

x-=— 3, mod p, />= 3w+i,
has roots; for

(-3//0 = (-i/7>)(3//0,

and if p= $k-\- 1,

(— i//>)= 1, and (3/70 = (J/3),

while, if £= 46 + 3,

(— i//0=— 1, and (3//0=— (J/3),

and in both cases therefore

(-3//>) = (/'/3) = (i/3)=i-

Let a be a root ; then

a2 + 3= o, mod £

;

that is, (a + V— 3)( a— V— 3)=o, mod />.

Since 0+ V— 3 and a— V— 3 are integers of &(V— 3), p

must, if a prime in &(V— 3), divide one of them; we must have,

therefore, either

g+V—3==» I
—

-

2)

when u and v are either both odd or both even, or
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where u ± and vt
are either both odd or both even. But 2) and

3) are, however, impossible, since ±pv=±i implies that v is

even, and hence that p is a divisor of 1, which is impossible.

Hence p is not a prime in &(V— 3), and, since the only way in

which a rational prime is factorable in k(V— 3) is into two con-

jugate primes, p is factorable in this manner. The primes of

&(V— 3) may therefore be classified according to the rational

primes of which they are factors as follows

:

1) All positive rational primes of the form $n -\- 1 are factor-

able in &(V

—

3) into two conjugate primes, called primes of the

first degree.

2) All positive rational primes of the form $n— 1 are primes

in k(y— 5), called primes of the second degree.

3) The number 3 is associated with the square of a prime of

the first degree.

It can be easily proved as in the case of 2 in k(i), that 3 is the

only rational prime which is associated with the square of a prime

of the first degree in &(y—3). We observe that in k(\/— 3)

as well as in k(i) the only rational primes which are associated

with the squares of primes of the first degree are those which

divide the discriminant of the realm.

§ 11. Factorization of a Rational Prime in &(V — 3) deter-

mined by the value of (d/p).

As in k(i), we can express the above results in a very con-

venient manner by means of the discriminant/ d, of &(V— 3)-

We have seen that, when p— yi-\-i, (

—

$/p) = i; that is,

(d/p) = i.

When p= 3, d is divisible by p, which is expressed symbol-

ically by (d/p) =0.
Hence we can classify the rational primes according to their fac-

torability in £(V— 3) as follows:

When (-] = /, p= Tnr
f

;

that is, p is the product of two conjugate primes of the first degree.

When |-J=— j, p= p;
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that is, p is a prime of the second degree.

When (-\= o, p= eir
2
;

that is, p is associated with the square of a prime of the first

degree.

The primes of &(V— 3) whose norms are less than 100 are 2,

!— P, 5, i + 3p> 4+ 3Pi 5 + 3p» 5 + 6p, 7 + 3p» 7 + 6p> 5 + 9p>

7 + 9/°, i + 9p» io + 3p, n + 3p.

§ 12. Cubic Residues.

If a and m be rational integers and a be prime to m, a is said

to be a cubic residue or non-residue of m according as the

congruence

x3= a, mod m,

has or has not roots.

As in the development of the theory of biquadratic residues,

we saw that our field of operation must be not simply the rational

integers but the integers of the realm k(i), of which the rational

integers are a part, so in the theory of cubic residues we must take

as our field of operation the integers of &(V— 3) ; that is, we

must consider the congruence

x3 zz=a, mod /a,

where a and /x are integers of k{V — 3) and a prime to /x.

Lack of space forbids even a brief discussion of this subject

here but the reader should consult Bachmann: Die Lehre von

der Kreistheilung, I4te Vorlesung
; Jacobi : Works, Vol. 6, p. 223,

and Eisenstein : Crelle, Vols. 27 and 28.



CHAPTER VII.

The Realm k(y/2).

§ i. Numbers of &(\/2).

The number V2 is defined by the equation

x2— 2= 0,

which it satisfies. All numbers of k{V2 ) have the form a -\- by 2,

where a and b are rational integers.

The other root,

—

\^2,oi x-—2=0 defines the realm k{—

V

2 )>

conjugate to &(V2 )- The two realms are, however, as in both

the previous cases, identical.

The conjugate of a, — a-\-by2, is a', = a— by 2. The

product act! is called as before the norm of a and is denoted by

n[a].

In n[a] = (a-\-by2)(a— by2)= a2— 2b2 we notice the

first of a series of important differences between this realm and

k(i) and k(y— 3)- The norm of a number of k(y2) is not,

as heretofore, necessarily a positive rational number. It may be

either a positive or negative rational number. This will easily be

seen to be true of all quadratic realms defined by real numbers,

while the norms of numbers of quadratic realms defined by

imaginary numbers -are always positive. Realms of the first

kind, as k(V2 )> are called real realms; those of the second kind,

as k(i) and &(V— 3), imaginary realms.

We have evidently ;w [a/?] =n[a]n[j3], where a and /? are any

numbers of &(\/2). .

§2. Integers of k {^/.2 ).

Writing all numbers of k(V2 ) *n tne form

a= <h + biV2

where a lf blf c1 are rational integers, having no common factor,

231
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we can show exactly as in k(i) that a necessary and sufficient

condition for a to be an integer is ^=1.
Therefore all integers of k(\/2) have the form a-\-b\/2,

where a and b are rational integers, and all numbers of this form

are integers; that is, 1, V2 is a basis of k{V2 )-

§3. Discriminant of ^(V2 ) •

The discriminant of &(V2 ) is the squared determinant

1.1 V~2\*

|l -l/2|

formed from a pair of basis numbers and their conjugates.

Denoting it by d, we have

d=8.

§ 4. Divisibility of Integers of k(V2 )-

The definition is identical with that given in R, k(i) and

&(V— 3). For example, since

14 + 9V 2= (
2 + V2 ) (5 + 2V 2 )

14 + 9V2 is divisible by 2 + 2V2 and 5 + 2\/2.

On the other hand, since no integral values of x and y exist for

which the equation

5 + 2V2= ( 1 + 2V2 ) O + yV2 )

is satisfied, 5 + V2 is not divisible by 1 + 2V2 -

§ 5. Units of k (

V

2 ) • Associated Integers.

The units of &(V2 )> being those integers of k(\/2) which

divide every integer of the realm, divide 1, and since all divisors

of 1 are evidently units, they can be defined either as those

integers of k{^2) whose norms are either 1 or — 1, or as those

integers of k( -\f2) whose reciprocals are also integers.

Let €, = x -f. 3/y 2, be a unit of &(V2 ) ; we have then either

n[c] = i, or n[e] =— 1;

that is i. x2— 2y2 =i, or ii. x2— 2y2=— I.
1

1 The reader will recognize i and ii as special cases of Pell's Equation

x2— Dy2 =±i,
a discussion of which will be found Chap. XIII, § 5. Here we shall treat

the question from a different point of view.
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We can easily obtain many solutions of both i and ii, as, for

example

:

\v=± i, y= o, c=± 1,

x=± 7,,y=± 2, £=±3±2V2,
x=±l 17, y= ± 12, €=± 17 ± l2\/2,

x= ± 1, y= ± I, €=±l± V2
,

<*===£ 7, :y=± S,'.€=±:7.±5V3r,

$•= ± 41, y= ±29, c= ± 41 ± 29 \/2.

We shall now show that &(V2 ) has indeed an infinite number

of units, each of which can, however, be represented as a power

of the unit I + \/2, multiplied by -f- 1 or — i. This unit I + V2

is called the fundamental unit.

Theorem i. All units of k{^/2) have the form ±{i + V2 )
n

>

•where n is a positive or negative rational integer or o, and all

numbers of this form are units of k(y/2).

Let e=i +V2 - We see that every positive power of c is a

unit; for

»[ c»] = (»[ €])»=(— i)*=i or — 1.

Hence e
n is a unit.

Moreover, since €
"
£
-w =i,

e"" is a unit also; that is, all negative powers of c are units,

Furthermore two different positive powers of c give always dif-

ferent units; for, since c, = I +V2 > is greater than i, the positive

powers of c are all greater than I and continually increase. Hence

no two are equal.

Also, since €-*= i/<pt

it is evident that c
-1

is less than I and hence that the negative

powers of c are all less than I and continually decrease. There-

fore no two negative powers are equal, and no negative power is

equal to any positive power. Hence every power of e is a unit

of &(V 2), and two different powers give always different units.

Therefore k(V2 ) possesses the remarkable property of having

an infinite number of units. We shall now show that the powers
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of c multiplied by ± I are all the units of k( \/2) ; that is, if

r) be any unit of k(V2 )> it will be of the form

where n is positive, negative or o.

Let + &V 2 De any un it °f &(V 2 )- Then a— b V 2
>

— a + &V2 and — a— ^V2 w^ also be units of k(V2 )- Denote

that one of these four units which has both terms positive by

-qx {b may be o), the remaining three will be — -qx , rj^ and — •>//.

We shall show that

where n is positive or o.

Since Vi^ 1
,

it follows that 7
j 1
= e

n
,

Or €
n <77l <€TC+1 i)

where n is a positive integer or o. We shall show that the latter

case can never arise. Dividing i ) by c
n

, we have

i < wfe < €,

where ^/c* is a unit, since the quotient of two units is a unit.

Let r) 1/e
n= x-\-y\/2.

We have (x-\-y^2)(x— y^/2) = ±I,

and hence, since x + yV2 > x > it follows that

\x—yV2
l

<i;

that is — i < x— yV2 < J -

This combined with

i <^ + yV2 < i + V2 2 )

gives o < 2x < 2 -f-V2 >

and hence, ^ being a rational integer,

jr= i.

But, if 4'= i, it- is evident that no rational integral value of y
will satisfy 2), for positive values of y give

i + yV^i+V2
,

and y= o, or a negative integer makes
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I +3>y2< 1.

Hence i) is impossible, and we have

and therefore —
Vi
==— c"5

and since 77^/= ± 1,

77/= ± i/cn= ± cn
, and —q/== zp rn

.

Therefore, if 77 be any one of the four units 77^
—

rjlf 77/, — 17/,

that is any unit of &(V2 )> we have

where n is positive, negative or o.

We can express all units of k{i) in the form in , but obtain only

the four different ones i,i, — 1, — i, since *
4= l.

Likewise we can express all units of &(V— 3) in the form

±pn
, but obtain only the six different ones 1, — 1, p,

—
p, p-,

— p
2
, since p

8= i.

Any two integers which differ only by a unit factor are said to

be associated, and in all questions of divisibility are considered as

identical. Thus, if a be a factor of /x, and n any positive or

negative rational integer, the infinitely many integers ± e
na, that

are associated with a, are also factors of p.. All these factors,

however, are considered as the same. With this understanding,

we shall find that the fact that k(V2 ) nas an infinite number of

units in no way interferes with our adopting definitions for prime

and composite numbers of k{ \/2) identical with those used in the

previous realms and proving the unique factorization theorem for

the integers of &(\/2).

§ 6. Prime Numbers of k ( y/2 )

.

The definitions are identical with those in the preceding realms

and we can determine whether an integer is prime or composite

by the methods employed in those realms.

Ex. 1. To determine whether 13 + 12V2 is prime or composite.

Put 13 + i2V2= (a + bV2) {c + d^2) ;

then —119= (a
2— 2b

2

) (c
2— 2d

2
).
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There are only four distinct cases to be considered

J
a~— 2b- =17, .. j a2— 2fr

2 = — 17,

|
c
2— 2d3= — 7.

J
c'
2— 2d2 = 7.

..... f a
2— 2b~ = ± 119,

111 and iv. ^

\c2— 2di =±i.

Both iii and iv give c -f- rf\/2 a unii and therefore need not be considered.

As solutions of i we have

a = ± 5, b=±2, c = ± 1, d=±2,
which give

I3 + I2\/2= (5 + 2V2)(l+2y2) = (_5_2V2)(— I— 2V2),
the proper factors being selected by trial.

Since neither of the integers S+V 2 » I + 2 y'2 is a unit, 13 + 12^2
is a composite number.

Other solutions of i are

a = ±7, b = ±4, c=±u, d = ±8,
which give

i3 + i2V^=(7-4V2)(n + 8V2) = (-7 + 4V2)(- II - 8V2)-

As solutions of ii we have

a = ±i, b = ±3, c = ±5, d = ±3,
which give

13 + 12^2 = (— 1+ 3^2) (5 + 3V2 ) = (I— Z\J~2)i— 5— 3\/2)-

We see, however, that all these factorizations can be derived from any

particular one by multiplying the factors by suitable units, and hence are

not different; that is,

7-4^/2 = e-
2

( 5 + 2y2), ii+8y2 = e
2(i+2y2),

— 1 + 3^2 = r*(s + 2^2), 5 + 3

V

2 = c C* + 2V 2 )'

where e= 1 +V 2» anc* we nave *n general

13 + 12V2 = [± e«(5 + 2V2) ] [± r*(i + 2V2) ]•

Ex. 2. Prove that \-\-2-\j2 is a prime.

§7. Unique Factorization Theorem for fc(V2 )-

Theorem A. // a be any integer of k(^ 2), and (3 any integer

of &(V<?) different from 0, there exists an integer /a of k(^2)

such that

\n[a-rf]\<\n[p]\ 1

Let a/(3= a-\-b-\/2,

1 See note to corresponding theorem in k(i) which applies equally here.
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where a= r-\-r1 , b= s-\-s
1 , r and ^ being the rational integers

nearest to a and b respectively, and hence

We shall show that^u, = r -{- s\/2,wi\\ fulfil the required condi-

tions. Since

d/p—ti=rx+ st-s/2t

\n[a/p— fi]
I

= \r* r- 2S*
\ ^ J,

whence \n[a/P— /*] |
< i,

or, multiplying by \n[/3]
|,

|n[a— ^]| <|n[0]|.

The proofs of the two theorems which lead to the unique factori-

zation theorem and that of the unique factorization theorem itself

are identical with those in k(i) and fc(V— 3) with the exception

that the absolute value of the norm is substituted for the norm of

an integer. This is evidently necessary whenever we make a

comparison between two integers of k(V 2 ) similar to that made

between rational integers when we say that one is greater in

absolute value than the other. It is also necessary when we ex-

press the result of an enumeration as a function of an integer of

k(\/2). In k(i) and fc(V— 3) tne norms of all numbers were

positive and hence were their own absolute values.

The result of an enumeration being always a positive integer,

the conception of the positive integer being indeed arrived at by

considering it as representing the result of an enumeration, to

express such a result as a function of an algebraic integer, a, we

must have some function of a which is always a positive integer.

Such a function is |w[a]|.

Theorem B. // a and (3 be any two integers of k{^/2) prime

to each other, there exist two integers, $ and r), of k( y<?) such that

Theorem C. // the product of two integers, a and /?, of

&(V<?) be divisible by a prime number, w, at least one of the

integers is divisible by »,

Theorem 2. Every integer of k(\/2) can be represented in

one and only one way as the product of prime numbers.
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§ 8. Classification of the Prime Numbers of k (y2)

.

By a train of reasoning identical with that employed in the

preceding realms, it becomes evident that every prime, n, of k(\/2)

is a divisor of one and only one rational prime . In order there-

fore to obtain all primes of &(V2 ) it is only necessary to resolve

all positive rational primes considered as integers of &(V 2 ) into

their prime factors in that realm.

Let 7r, = fl-f- frV 2. be any prime of k(^/2) and p the positive

rational prime of which it is a divisor.

Then £=jtO^ I

)

and hence /
>2
-=E=^I^l^I^] •

We have then two cases

n[a\j==JK \n[a]= 1.

i. From n[y] = Tnr'— p and 1) it follows that a= 7r'.

Since every positive rational prime, except 2, is of one of the

forms Sn ± 1, 8n ± 3, we must have (excluding the case p=2) 9

when £= »|y],

a2— 2&2= 1, mod 8, 2)

or a2— 2& 2=— 1, mod 8, 3)

or a2— 2b 2 == 3, mod 8, 4)

or a2— 2& 2=— 3, mod 8. 5)

The first of these congruences has the solutions

as* ±ii ±1, ±3, ±3
, mod 8.

b= ± 2, o, ±2,

The second has the solutions

11-4:1. ± i, ±3 , ±3) odg
&— =fci, ±3. ctii ±3J

The last two have no solutions, for they give

a2 ^2&2 ± 3, mod 8,

and hence require that 2b2 ± 3 shall be a quadratic residue of 8.

But the only quadratic residues of 8 are J and 4, whence it follows
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that a necessary condition that 3) or 4) shall have a solution is

1 ==2b2 ± 3, mod 8, or 4= 2fr
2 ± 3, mod 8.

All four of these congruences are easily seen to have no solu-

tions, and 4) and 5) therefore have no solutions.

Hence when a positive rational prime other than 2 is the prod-

uct of two conjugate primes of k(\/ 2), it has the form 8n± 1.

The case p= 2 must next be considered.

The equation a2— 2b2= 2

is satisfied by a= ±2, &= ±i.

Hence 2= (2 + yi) (2— yi) = (1 +V2 ) (— I + V~2) (

V

2 )
2

;

that is, 2, which is the only rational prime divisor of the dis-

criminant of &(V 2) is associated with the square of a prime of

ii. Since n[a\= 1, a is a unit. Hence p is associated with the

prime, ?r; that is, p is a prime in k(\/2). When p is of the form

8n ± 3 this case always occurs, for we have seen that to be fac-

torable in k{^2) a rational prime must either be 2 or of the form

Sn ± 1.

We shall now show that every rational prime, p, of the form

8n ± 1 can be resolved into the product of two conjugate primes

of fc(Vl).

The congruence x2= 2, mod p, p= 8n±i, has roots, for

(2/p) = i when£= 8w±i.
Let a be a root ; then

a2= 2, mod />;

that is (fl+V2 )( fl—

V

2)— °> m°d />•

Since a +V2 and a

—

\/2 are integers of &(V2), />, if a prime

of k(\/2), must divide either a +V2 > or a— V2 - This is, how-

ever, impossible, for from

a ±y2= p(c + dy2),

where c-\-d^/2 is an integer of &(V2 )> ft would follow that

pd=± 1,

which is impossible, since £ and d are both rational integers and

/> > 1. Hence £ is not a prime in &(V2 ), and since the only way
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in which a rational prime can be factored in &(\/2) is into two

conjugate prime factors, p is factorable in this manner.

The primes of k{V2 ) may therefore be classified according to

the rational primes of which they are factors as follows

:

i) All positive rational primes of the form 8n ± I are factor-

able in £(y<?) into two conjugate primes, called primes of the

first degree.

2) All positive rational primes of the form 8n ± 3 are primes

in k{y 2), called primes of the second degree.

3) The number 2 is associated zvith the square of a prime of

the first degree in k{^ 2).

It can be shown, as in the cases of 2 in k(i) and 3 in &(V— 3),

that 2 is the only rational prime that is associated with the square

of a prime of the first degree. We observe that 2 is the only

rational prime divisor of the discriminant.

§ 10. Factorization of a Rational Prime in k{ y^) determined

by the value of (d/p).

As in k(i) and &(y— 3), the above results can be expressed

in tabular form by means of the discriminant of k(~\/2). The

formation of such a table will be left to the reader.

§ 11. Congruences in k{^/2).

The unique factorization theorem having been proved for the

integers of k(^2), a series of theorems analogous to those

deduced in the case of the preceding realms can be shown to

hold for the integers of k(\/2).

Having defined the congruence of two integers of k(^/2) with

respect to a modulus precisely as we defined that of two rational

integers, we should find that there are, with respect to a given

modulus fi,
I

11 [fx]
I

classes of incongruent numbers, and can then

deduce for the integers of k(\^2) Fermat's theorem and other

theorems relating to congruences.

§ 12. The Diophantine Equations

x2— 2y2= ±i, x2— 2y2=±p, and x2— 2y2=±m.1

It is required to find the rational integral values of x and y
1 See Chap. XIII, § 5.
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for which these equations are satisfied. Since the first member

of each of the equations is the norm of x -f- yV 2, the problem

reduces, in the light of what we have learned about the integers

of &(V2), to that of finding an integer of k{ V2 ) whose norm is

the quantity constituting the second member of the equation.

If a -f- &V2 be such an integer, then

x= ± a, y=±b,
evidently satisfy the equation under consideration. We see also

that, if any one of these equations has a single solution, it has an

infinite number of solutions, for if x= a, y= b be a solution of

the given equation, and

(a + b\^2)e2n= a1 + b x
y~2,

where e= I +V2 > and n is any positive or negative integer or o,

then since

wlA + ^V2 ] =n[(a-\-b\/2)e2n
] =n[a-j-&\/2],

x= alt y= b x is also a solution of the given equation. Moreover,

since no two powers of c are equal, the solutions obtained by

giving n any two different values are different. Hence the solu-

tions are infinite in number. We shall consider now each of the

equations in detail.

i. x2— 2y2 =i, ii. x2— 2y2=— I.

The necessary and sufficient condition that an integer of

£(V2 ) shall have the norm db I is that it shall be a unit. All

units having the norm I are included in the form ±(i +V2 )
2n

>

and all having the norm — i in the form ±(i -|-V2 )
2n+\ n being

a positive or negative integer or o. Negative values of n repeat

solutions given by positive values, since (i+V2 )"" 1S the con-

jugate of (i+V2 )
n

- Hence, if

±{i+V2) 2n= a + by2,

x=±a, y= ±b,
satisfy i, and if

±(i+V2) 2n+1= a 1 + b1V~2 }

x=±alf y= ±b 1 ,

satisfy ii, and these are all the solutions of i and ii.

16
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For example:

±(i+V2) 2=± (3 + 2V2) gives (±3) 2— 2(±2) 2 =i;
that is x= ± 3 ;

3'= ± 2 are solutions of i

;

while

± (i+V2) 3=± (7 + 5V2) gives (±7) 2— 2(±5) 2=— 1;

that is x=±7; y= ± 5 are solutions of ii.

iii. x2— 2y2= p, iv. x2— 2y2=— p,

where p is a positive rational prime. The necessary and sufficient

condition that ± p should be the norm of an integer of &(\/2) is

p= ± 1, mod 8, or p= 2. Hence iii and iv are solvable when

and only when

^±1, mod 8, or p= 2.

Let p=± 1, mod 8.

If x= a} y= b be any solution of iii, all rntegers of the form

(a ± b^2)e2n= a
1 + b{\/~2

give solutions of iii, x= ±aly y=±b 1 ; for

n[(a ± b^2)e2n]=n[a ± b^/2] (— i) 2n= p,

and all integers of the form

(
a ± by2

)

€
2n+1= a

2 -\-b
2y2

give solutions of iv, x=±a2 ,
y=±b

2 ; for

n[(fl±^V2)€2 "+1
] =n[a±: b^2](—i) 2n+1=— p.

These are easily seen to be all of the solutions of iii and iv.

Ex. 1. To find all rational integral solutions of the equations

x2— 2y
2 = 7, x2— 2y

2 — — 7.

A solution of the first equation is

Hence (3 ±V2 ) ( J +V2 )
2nr gives all solutions of the first equation and

(3±V2)(i +\/2) 2n+1 all solutions of the second.

Thus for example

(3 + V2 ) (1 + \Z2)
2= 13 + 9V2 :

(3- V2 ) (1 + V2)*= 5 + 3V2

(3 + V2 ) ( 1 + \/2) = 5 + 4V2"

(3— V2) (1 + V2") = 1 + 2V2"

v. x2— 2y2= m, vi

gives (±i3 )
2 -2(± 9 )

2 = 7,

gives (±5) 2 -2(± 3 )
2= 7,

gives (±5) 2 -2(±4) 2= -
gives (±l) 2 -2(±2) 2 = -

i. X2 -- 2y2=— m,
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where m is a positive rational integer. Since m must be the norm
of an integer of k(\/2), and hence must be factorable into two
conjugate integers of k(y/2), the necessary and sufficient condi-

tion that v and vi shall have solutions is that every rational prime

factor, p, of m such that £ss ±. 3, mod 8, shall occur to an even

power.

If then m= Pip2 '
' • Prqx

2ti
q2

2t2
q*

2t
',

where Pi,P2 >
" -,Pr= ± 1, mod 8, or = 2,

and q lf q2 , ...,^=±3, mod 8,

we have

m={ir
xiz2

• • Trrq^q^ • • • g,*«) (77-/77-./ • • wr'q%**q2
u • £,**)»

= (a + &V2) (a— &V2 ) =a2— 2b 2
,

and #== ± a, y= ± & are solutions of v. If we interchange any

77- in one factor of 1) with its conjugate, we shall obtain a different

factorization of m unless «[tt] = 2, in which case the factoriza-

tion is not different, since the factors of 2 are identical.

Suppose this interchange of in and tt/, m[tt] =f=2, to have been

made, giving

m= (ax
-\- &iV2 ) ( ai

— ^iV2 ) =«i2— 2&x*.

Then x= ± aly y= ± bx are new solutions of v. Suppose that

by these interchanges of one or more 7r's with their conjugates we
obtain all possible different factorizations of m. Then by multi-

plying a factor of each of these factorizations by the even powers

of e in turn we obtain from each factorization an infinite number

of solutions of v, and by multiplication by the odd powers of e

in turn we obtain from each factorization an infinite number of

solutions of vi, and these are all the solutions of v and vi. That is,

if a-i + b±V2 , a 2 + &2V2 ,
• • •

, a t + b tV2

be each a factor of a different one of the t factorizations of m, all

solutions of v are given by

(di± bi^2~)e2n =Ci
n f C?*

nV2
,

whence x= ± r« , y= ± </»
n,

and all solutions of vi are given by

(a* ± ^V2 )e2n+1 =^^
n+ /iV2,
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whence x=±ei
n , y=±fi n ,

where i= 1,2, •••, t, andn= o, 1, •• • .

Ex. 2. To find all rational integral solutions of the equations

x'— 2y = 1 19 2r =— 119.and x~

We have

119 = 7 . 17 = (3 + y 2") (3 — y 2) (5 + 2^2) (5 — 2y2)

= [(3 + V2)(5 + 2y2)][(3 -y2)(5-2y2)]
= (i9+ny2)(i9— ny2),

or = [(3 +y2)(5_2y2~)][(3-y2)(5 + 2y2)]

= (n_y2)(ii+y2").

Whence we see that (19 ± nV2)e2« and (11 ± V2)e2» gjve au the

solutions of the first equation, and (19 ± ii\/2)e2n+i anci ( IX ± y2 )
e2n+i

give all the solutions of the second.

Thus, for example:

(i9+ny2~)(i + y2) =4i + 3oy2" gives (±4i) 2— 2(±3o) 2= — 119,

(19— ny2)(i + V2) —— 3 + 8V2" gives (± 3 )
2_ 2 (± 8)

2
=: — 119,

(11 + y2~)(i + y2) = i3 + i2y^ gives (± n) 2— 2(±i2) 2=— 119,

(11 — V2)(i + y^) =9 + 10V2" gives (±9)'-— 2(± io)
2 z=— 119.



CHAPTER VIII.

The Realm &(V

—

5).

§ 1. Numbers of &(V— 5) -

1

The number V— 5 ls defined by the equation

that it satisfies. All numbers of &(V— 5) have the form

a -f- &V— 5, where a and b are rational numbers.

The conjugate of a, = a-\-by— 5, is a', =a— by— 5; also

4a]=a2 + 5&
2
,

and n[a/3]=n[a]n[l3]

§2. Integers of k (
V— 5).

Writing all numbers of &(y— 5) in the form

fli + KV^
a= —

,

where alt b lf cx are rational integers, having no common factor,

we can show exactly as in k(i) that a necessary and sufficient

condition for a to be an integer is ^=1.
Therefore all integers of fc(V— 5) nave the form a + bV—

5

where a and b are rational integers, and all numbers of this form

are integers; that is, 1, V— 5 is a basis of &(V— 5).

§ 3. Discriminant of k(V— 5 ) •

The discriminant of k(\/— 5) is

1 1, v-s 2

i

= — 20.

\i, -V-S]
§4. Divisibility of Integers of &(V— 5).

The definition is identical wTith that adopted heretofore.

1 Throughout this chapter see corresponding sections in k(i).

245
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Ex. I. We see that 1 -+- 5\/— 5 is divisible by 2 -f- >/— 5, since

1 + JSV^= (2+ V- 5) (3 + V- 5) •

Ex. 2. We see that 5 + 2
V— 5 is not divisible by 4 -f- V— 5, since

5 + 2V:=r5= (4 + n/-7?) O +W^)
holds for no integral values of x and y.

§5. Units of fe(V—5). Associated Integers.

The units of &(y— 5) are defined as were those of the pre-

ceding realms, and as the norm of a number of &(V— 5) is

always positive, the necessary and sufficient condition that

c, = x -f- yV— 5, shall be a unit is

n[e]=x* + 5y*= i,

which gives y= o, jt= ± 1

.

Hence 1 and — 1 are the units of k{V— 5).

The definition of associated integers and the conventions re-

garding them are identical with those heretofore adopted ; that is,

the integers a and — a, obtained by multiplying any integer a by

the units 1 and — 1, are said to be associated, and in all questions

of divisibility are considered identical.

§6. Prime Numbers of &(V— 5).

The definitions are identical with those in the preceding realms.

Ex. 1. To determine whether 2 is a prime or composite number in

Put 2 = U + yV=5) (« + *V—5) J

then 4 = (V + 5V
2

) (w
2 + $v

2
),

fjr
a + 5y

2= 2 ( x2

(„* + 5^= 2 °
r "- {«

and hence

Evidently i is impossible since x and y must be rational integers.

From ii it follows that w + vV— 5 is a unit. Hence 2 is a prime in

*(V=5).
Ex. 2. To determine whether 1 -J- >/— 5 is a prime or composite num-

ber of KV-7^)-
Put 1 + \/=5= U + y\/^S) (« + ^V— 5)

;

then 6= {x2 + 5y
2

) (w
2

-f 5zr),
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and hence

i- < o .. or 11. I ,

\ u2 + sir — 2 \ u2+ sir = 1

from which it is evident as above that 1 + V— 5 is a prime in k ( >/— 5)

.

We observe that we have in i-f- V— 5 the first instance of a

prime number whose norm is not a power of a rational prime.

We shall see later that a necessary and sufficient condition for the norms
of all complex primes of any given quadratic realm to be rational primes is

that the unique factorization theorem shall hold for the integers of the

realm.

From these two examples it is easily seen that 3 and 1—V— 5

are also primes in k(V— 5).

§ 7. Failure of the Unique Factorization Theorem in k (
V— 5) •

Introduction of the Ideal.

We shall now attempt to establish the unique factorization

theorem for the integers of k (
V— 5 ) and begin as in the fore-

going realms by endeavoring to prove the following theorem

:

Theorem A. // a be any integer of &(V— 5), and f3 any

integer of &(y— 5) different from o, there exists an integer p

of k(V— 5) such that

n[a— (jLp]<n[l3].

Let . a/p= a + by~=5,

where a= r -\-rx , b= s + slt

r and s being the rational integers nearest to a and b, respectively,

and hence

Let fl= r-{-s\/~^5;

then a/p— fJL= r1 -\-s1^—^5

,

whence n[a//3— fi] = rx
2
-f- 5^i

2
i %

that is, when fi is determined as above, we may have in &(V— 5)

n[a/fi— fx\ > 1 instead of < 1

as has been the case in the three previous realms. Hence the

integer fx chosen as above will not necessarily satisfy the require-

ments of the theorem. The method which has hitherto served us

for the proof of this theorem therefore fails.
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That this theorem actually does fail for some integers of

fc(V— 5) is evident from the following example.

Let a= 3 and
fi
= I +y/^S,

then

We are to find an integer /x=, ^r + ^V— 5> sucn that

«[a//3- M ] = (i-^) 2 + 5(-i-y) 2 <i,

but this is impossible, for it is evident that for all rational integral

values of y, including o, the term 5(— ^— y)
2

is itself > i.

The method of proof adopted for Theorem A is seen to be depen-

dent upon the general form of the norm of a number r
x -f- s^o,

where I, w is a basis of the realm. We have thus in k(i),

&(V— 3), k(y/2) and &(V— 5) respectively

\n[r1 + s1<»]\
= \r1

2 + s
1
2

\, \rf—r^+sfl \rt
2— 2SX% and

\rt
2+ SsS\>

and the method is successful if

KU4> ft! si
be a sufficient condition for

Wft+A«ii < h
which is seen to be the case in k(i), &(V— 3) and &(\/2) but

not in &(V— 5).

We can easily determine all quadratic realms in which this

method of proof holds ; that is, those in which this way of select-

ing 11 is always successful.

Let k(-\Jm) be any quadratic realm, 1 v
'm being a root of the

equation x2— m— 0, where m is a positive or negative rational

integer containing no squared factor.

When m= 2 or 3, mod 4, k(^m) has as a basis 1, \/m, and

when m= i,mod 4, k(\^m) has as a basis 1, (— 1 + y/ni)/2 (see

chap. X, §6).

In the first case, it is easily seen that

1 See Chap. X, § 1.
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and in the second,

a/£—n=r1 + s1
(— 1 + \/m)/2,

which give respectively

n [ rt -\- sxVm ] =r1
2— m

s

x

2
1 1

and » r1 -\-s1
— l=*t—Vi T~ s *

Considering first the case m= 2 or 3, mod 4, we see that

is a sufficient condition that

\rx
2— msx

2
\
< 1 2)

when m=— 1, 2, — 2 or 3; but when \m\ > 3, then 1) is evi-

dently not a sufficient condition for 2). Considering now me I,

mod 4, we see that 1 ) is a sufficient condition that

m— 1

-^1— — s x -\ < 1

4

when and only when m=— 3, 5 or 13.

Hence Th. A and consequently the unique factorization theorem

holds in the realms k(i), &(V— 2), k(yj2), &(V3)> £(V— 3>>

£(V5)> ^(V^)- To these can be added &(V— 7)> f°r when

M=— 7, which is = 1, mod 4, if to 1 ) we add the condition that,

when simultaneously

1^1=1 and \s
x \ =1,

then the signs of rt and s% are to be chosen alike, we see that in

all cases

ki
2— r1s1 + 2s1 -\ <i.

Hence the theorem holds for &(V— 7).

A further slight modification in the method of selecting /x will

enable us to show that the theorem holds for k{V— n)-

It is easily seen that, if

I'll < i/V5> kil < I/V5;

then \r
2— r^ + 3^1 < 1. 3)

Moreover, if either \rt \
or {s^ or both= \, then we can choose

the signs of tt and sx so that they are alike, and hence 3) holds.
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There remains the case

1/V54 fa I
< */*« I/V5 i kll < :/2 *

i. If rx and st have like signs 3) evidently holds.

ii. If rt and st have opposite signs, for r± we can put r2

=^+1 or r
x
— 1, according as rx is negative or positive, hav-

ing then

VS
and r2 of the same sign as s19 in which case

^2
2-Vi + 3^i

2 < 1.

Hence Th. A holds for &(y^Ti).
It can be easily seen that the original method of selection, even

when modified as above, will give a suitable value of /x in no

imaginary quadratic realms other than those enumerated above,

and it is furthermore evident that these are the only imaginary

quadratic realms in which the theorem holds.

It will be observed, as has been said in k{i), that Th. A is

equivalent to saying that in a given realm we can find for any

integer /? a complete residue system such that the norms of all

the integers composing it are less in absolute value than n[(3].

This point of view is illustrated graphically in Chap. V, § 8.

It must be carefully noticed, however, that although Th. A is a

sufficient condition for the validity of the unique factorization

theorem, it is not a necessary condition, as will be shown later.

The proof of the theorem

:

Theorem B. If a and (3 be any two integers of &(V— 5)>

prime to each other, there exist two integers, £ and q, of &(V— 5)
such that

has been heretofore based upon Theorem A, which has been seen

not to hold for &(V— 5). This, however, would not, of course,

justify the assumption that Th. B does not hold for &(V— 5),

Th. A being a sufficient, but, as we shall see later, not a necessary,

condition for the validity of Th. B. Nevertheless, the following
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simple example will show that Th. B does not hold in general for

the integers of &(V— 5).

Let a= 3, /?=i+V=r 5-

We have already seen (§6) that 3 and 1 -j-V— 5 are prime

numbers ; moreover, they are not associates. Therefore they are

prime to each other. We shall show that it is impossible to select

two integers, $, =x-\-y\/— 5, and 77, =f*-|-yy— 5, such that

a$+ pr,= i 4)

H 3(* + 3'V— 5) + (i+V— 5)(« +W— 5) = i,

then 3.1- -\- a— $v=lt

and hence 3-r— 33'— Ov= 1

,

which is impossible since the first member only is divisible by 3.

Therefore £ and rj can not be found so as to satisfy 4) and the

theorem does not in general hold for the integers of k{V— 5).

We shall see later (p. 316) that the theorem:

Theorem C. // the product of two integers, a and (3 of

fc(V— 5) be divisible by a prime number, w, at least one of the

integers is divisible by r, which is a necessary as well as sufficient

condition for the unique factorization theorem, requires Th. B
as a necessary condition for its validity. The following example

will suffice to show that Th. C and the unique factorization

theorem do not hold for the integers of &(V— 5). We have

6= 2- 3=(i+V:^5)(i-V-l),
and we have shown (§6) that 2, 3, 1 +V— 5 and 1—V— 5 are

prime numbers in &(V— 5). Moreover, the factors of one

product are not associated with the factors of the other. There-

fore 6 is represented in tzvo zvays as the product of prime factors.

That this is not merely a peculiarity of 6 is seen from

21=3.7 =(i+2V:zr5)(i— 2V^5),

9= 3
2 =(2+ V=5)(2— V^5),

and 49= 7
2=

( 2 _|_3y_^) (2— 3^/^5),

the factors in the above products being easily proved to be

primes of &(y— 5).
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Moreover, that this failure of the unique factorization law does

not occur in &(V— 5) alone may be shown by an examination

of the realms k(\/~—-23) and fe(V— 89), in which we have

respectively

27= 38= (2 +V— 23)(2—V— 23),

and i25= 5
3=(6+V-89)(6-V— 89):

3,2+V— 23 and 2—V— 23 being prime numbers of fc (
V— 23 ) >

and 5, 6+V—-89 and 6—V— 89 being prime numbers of

fc(V-89).

It can now be made clear why we could not define the greatest com-

mon divisor of two integers, a and /3,

i. As the common divisor, 8, of greatest norm.

ii. As the common divisor, 8, such that a/5 and j8/S are prime to each

other.

If a =r (1 -y-^) (1 +y=5) 2= 6(1 +V-D. and /3 = 2(1-^/^5),

then the common divisors of a and j8 other than the units are 2 and

1 — y/ — 5. Of these 1 — yj — 5 has the greater norm, 6, but 1 — y/ —

5

is not divisible by 2. Hence 8 so determined has not the important

property of being divisible by every common divisor of the two integers.

Considering the definition ii we see that there are two values of 8, 2

and 1—V— 5> which satisfy it, for a/2 and P/2 are prime to each other,

and and • have the same property. Hence the defini-

1—V—

5

1—V—

5

tion ii, in addition to not determining 8 so that it is divisible by every

common divisor of a and ft, does not even determine it uniquely. It is

interesting to see, however, that, if we can find in any realm a common
divisor, 8, of two integers a and P, such that every common divisor of

a and /3 divides 8, then 8 will satisfy both the requirements i and ii ; for,

considering i, if 8X be a common divisor of a and /3 it divides 8; that is,

8 = «!/*,

whence w[8] = rajA] . w[>],

and therefore either |w[8i]
|
< |n[3]

|

or |»[»i]
I
= !»[«] I-

In the latter case

n|>] = ± 1,

and hence a* is a unit ; that is 8 and 82 are associated. Hence 8 satisfies i.

Considering ii, we have

a = 8<3i and § = 8/3^

Now if at and A be not prime but have a common divisor, 6
1} then 8 would
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not be divisible by every common divisor of a and j3, for it would not be

divisible by Sdt .

We now ask whether it would be possible to deduce for the

integers of &(V— 5), without the use of the unique factorization

theorem, the series of theorems which have flowed from it for

the integers of R, k(i), &(y— 3) and &(\/2).

It is easily seen that in general these theorems do not hold in

k ( V— 5 ) . For example, the analogue for k (V— 5 ) of Fermat's

theorem would be:

// 7r be any prime of k(V— 5) and a any integer not divisible

by 7r, then

a»[7T]-l
I EE= O, mod 7T,

and indeed, if . v
tt= 2 and a=i-\-2y/— 5,

2 being a prime and 1 + 2V— 5 evidently not divisible by 2, we
have

(i + 2V:ir
5)

n[2] -1—
i= (r + 2V— 5)

3—

1

=— 60— 34V—\5= o, mod 2;

that is,' the theorem holds in this case .

But if 7T= 2 and a=i+V— 5>

we see that, although 2 and 1 +V— 5 satisfy the requirements

2 a prime and 1 -fV— 5 not divisible by 2,

(1 + V— 5)"™-1— 1= (1 + V-^5) 3— 1

=— 15—2V—l^o, mod 2.

The cause of this peculiar difference in the behavior of

i+ 2V— 5 and 1 +V— 5 towards 2 in this relation will be

made clear later (p. 379). Our next thought is can we by the

introduction of a new conception of numbers reestablish the

unique factorization law for the integers of fc(V— 5) when the

factorization is expressed in terms of these new numbers. The

introduction of the so-called ideal1 numbers accomplish this, the

primes of fc(V— 5) being in this widened number domain no

longer in general looked upon as primes, but as being factorable

1 The term ideal number is used here in a general sense and is not to be

taken to refer particularly to the ideal numbers of KTImmer.



254 THE REALM &(V 5).

in terms of these ideal numbers. When this factorization has

been performed we shall find that every integer of fc(V— 5)

can be represented in one and only one way as the product of

prime ideal numbers.

The following considerations will make clearer their nature,

and the ideas which have led to their conception. Let us con-

sider the narrowed number domain composed of all positive

rational integers congruent to 1, mod 5; that is,

1, 6, 11, 16, 21, 26, 31, 36, 41, 46, etc. 5)

Our definitions of divisibility and prime number being the same

as before, we see that, when our operations are confined to num-

bers of this domain, the unique factorization law does not in

general hold ; for example,

336= 6-56 =16. 21,

1806= 21-86 = 6-301,

1296= 64 =i6-8i,

and 6, 16, 21, 56, 81, 86 and 301 are easily seen by multiplication of

the numbers 5) to be prime in this domain. The cause of this

failure of the unique factorization law is at once seen to lie in

the absence of the remaining positive integers. As we suppose

these integers to be unknown to us and in fact to have no real

existence, we ask by what train of reasoning are we led from the

requirements of the task to be accomplished, that is, the reestab-

lishment of the unique factorization law, to the introduction of

these missing integers, or rather the introduction of symbols

which have their properties so far as the task in hand is concerned.

Consider 336= 6-56=16-21.

Since 6 is not contained in either 16 or 21, although the product

16-21 is divisible by 6, we suppose 6 to be the product of two

factors one of. which is contained in 16, the other in 21, and

denote these factors by (6, 16) and (6, 21), respectively. The

factor (6, 16) plays the same role with respect to 6 and 16 in

all questions of divisibility in which these new numbers are used

that the greatest common divisor of two integers plays with re-
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spect to these integers when only the original numbers of the

domain are involved. We can therefore in this sense consider

(6, 16) as the greatest common divisor of 6 and 16. Likewise

we consider (6, 21) as the greatest common divisor of 6 and 21,

and we write

6=(6,i6)(6,2i),

denoting by this equation that 6 and the product (6, 16) (6, 21)

in all questions of divisibility play the same role; that is, every

integer that is divisible by 6 is divisible by (6, 16) (6, 21), and

conversely. This convention is evidently justified by the fact that

in reality (6, 16) is 2 and (6, 21) is 3. Similarly we have

56= (56, 16) (56, 21),

16= (16, 6) (16, 56),

2I= (2I,- 6) (21, 56),

and hence

336= 6.56= (6, 16) (6, 21) (56, 16) (56, 21)

= 16.21= (16, 6) (16, 56) (21, 6) (21, 56),

and the factorization is seen to be the same, the change of order

of the numbers in the parenthesis having no effect on the symbol;

that is, (6, 16) = (16, 6), etc.

We have now seen that the failure of the unique factorization

law in a certain number domain can be remedied by the introduc-

tion of a new kind of number each of which is defined by a pair

of integers of the domain and may be looked upon as the greatest

common divisor of these integers. These numbers might be

called the ideal numbers of the domain, and although the fact

that the numbers of this domain do not form a realm prevents

our expanding their conception and definition to the extent that

we shall now develop those of the ideal numbers of &(V— 5),

still we shall find that the same conception will enable us to

reestablish the unique factorization law in this realm. We shall

not, however, conceive of these new numbers, which we are about

to introduce into k(\/— 5), simply as being each the greatest

common divisor of a pair of integers of k{V— 5) and as defined

by these integers, but as being each the greatest common divisor
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of an infinite system of integers of &(V— 5) and as defined by

any finite number of these integers such that all other integers of

the system are linear combinations of these with coefficients

which are any integers of the realm. These numbers we shall

call the ideal numbers, or briefly the ideals of &(V— 5). To

make this clearer, consider the equation

2-3=(i+vzr5;)(i—v^s).
Since 2 divides neither (1 +V— 5) nor (1 —V— 5), although

it divides their product, we must, to reestablish the unique factori-

zation law, consider 2 as the product of two ideal factors, a and

h,
1 which divide 1 +V— 5 and 1 —V— 5 respectively, the quo-

tients being supposed, of course, to be ideal numbers also. We
can denote a and h by the symbols (2, 1 +V— 5) and ( 2 »

1—V5) respectively. If now a be considered to bear the rela-

tion of greatest common divisor to 2 and 1 -f-V— 5> it will bear

this relation to the entire system of integers, which are linear

combinations of 2 and 1 -f-V— 5; that is, those of the form

2a -\- (1 +V— 5)/?, where a and j3 are any integers of the realm.

Conversely, if a be considered to bear this relation to the entire

system, it will bear it to 2 and 1 +V— 5- We consider then a

to be determined not by 2 and 1 -f-V— 5 alone but by this entire

system of integers, and by a natural transition say now that a

is this system of integers.

We write therefore

understanding by this symbol the entire system of integers which

are linear combinations of 2 and 1 +V— 5> w^h coefficients

which are any integers of the realm. In order to define a, it is

therefore sufficient to give any set of integers such that all linear

combinations, with coefficients as above, exactly constitute the

above system. Hence we can introduce into the symbol defining

a any integer that is a linear combination of those already there,

and can omit any integer that is a linear combination of those

remaining ; thus

:

1
Ideals will be denoted by German letters.
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a=(2, i+v—1)
= (2, i+V—"5, 2 + 2^—~5, 3 + 3V^5)
= {2, 2 + 2V=75, 3 + 3V—"5)-

The object of the preceding discussion, that has been by no

means rigorous, has been first to show the necessity for the intro-

duction of ideal numbers, and second to acquaint the reader in

some degree with the ideas which have led to their conception and

which induce us to adopt the definition which we shall now give.

The justification of this definition will be found in the fact that,

after we have defined what is meant by the equality of two ideals

and what is meant by their product, we shall see that, when the

integers of &(V— 5) are resolved into their ideal factors, the

unique factorization law will be once more found to hold. More-

over, we shall see that the behavior of an ideal towards the integers

of the system constituting it is such as to warrant our original

conception of an ideal as the greatest common divisor of this

system.

§ 8. Definition of an Ideal of jfe(y—5).

An ideal of k(y— 5) is an infinite system of integers composed

of all linear combinations of any finite number of integers,

a x,a2 , '-,an , the coefficients being any integers of the realm. 1

The integers ax,a2 , --.an are said to define the ideal and the

integers of the infinite system of integers constituting the ideal

are called the numbers of the ideal. If an ideal a be defined bv

the integers a^a^, •••,<*» we write

a= (alt a2 , •••,a»),

understanding thereby the infinite system of integers of the form

SA+$AH h&flt* 1)

where £x, £2 , ••-,£« are any integers of the realm. We shall call

(alf a2 ,
• • •, a„) the symbol of the ideal of a.

^^The general definition of an ideal of any quadratic realm (Chap. XII,

§1) seems at first sight broader than this definition, but as it is shown

that all the numbers of any ideal are linear combinations of a finite num-
ber of them, the definitions are equivalent.

17
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If y be one of the integers included in i) ; that is, if

y == kfit + X2a2 -f-
• • •

-L. XnCLn,

where A^ A2 ,
• • •, Xn are integers of the realm, we have

a=(a1,a 2 ,
• • •, a»)= (alf a2, •••,a»,y), 2)

for the infinite system of integers of the form

lyA'H- ^2a2 + h ynan + ^w+1y, 3)

where t) x ,-q2 , •,r}n+1 are any integers of the realm, is the same as

the system 1), since putting the value of y in 3), we have

ill + Vn+iK)^i + (V2 + yn+1X2 )a2 -j h(Vn + r)n+lXn)an ,

a system that evidently coincides with 1). It is evident then

from 2) that we may, without changing an ideal, introduce into

its symbol any integer which is a linear combination of those

already there, the coefficients being integers of the realm, and

may omit from the symbol any integer which is a linear combi-

nation of those remaining.

§ 9. Equality of Ideals.

Two ideals, a= (a lt a 2 ,
• -,am ) and B= (filf yG2 ,

• • •, £»), are

equal when the two infinite systems of integers that constitute

these ideals are the same. The necessary and sufficient condition

for this is that every number, a x,a 2 , ••,am , defining a shall be

linear in the numbers,1
ft,/?2 , •••,£»», defining B, and that every /?

shall be linear in the a's ; that is, it is necessary and sufficient that

we shall be able to introduce the numbers ax,a2 , •••,a« into the

symbol of B, and the numbers /3 X , (32 , '-,(3n into the symbol of a;

in other words, zve must be able to reduce the symbol of either

one of the ideals to that of the other.

Ex. 1. To prove that the two ideals a = (2, 1 + V— 5), and
h= (2, 1 — V— 5)> are equal. We have

(2, i + V:i: 5) = (2, i + V1^ 1 — V—~5),

since 1 —v^ = 2(— Vj^S) + (1 + V-HS) I

and (2, 1 + y/^5, 1 —y/^l) = (2, 1 — V^S) 5

since I + V^-S— (y/—$2^ (t— y/ZZJ).

1 When we say that cu is linear in ft, ft, •••, /Sw we shall understand that

a% = lift -f |2ft H h^»> where &, l2, ••, In are integers of the realm.
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Having reduced the symbol of a to that of B, the two ideals are seen

to be the same.

Ex. 2. To prove that the two ideals a= (3, 1 +V— 5), and h= (3,

1 —V— 5), are unequal.

If we can show that any number, as 1 -f-V— 5, of a is not a number

of b, the two ideals will evidently be unequal. If 1 -f- V— 5 be a number
of B, then two integers, x + yV— 5, u-\-v\J— 5, of &(V— 5) must exist

such that

1 + V^S = U + yV—1)3 + O + vy/^S) (1 — V— 5),

and hence 1 = 3* -f- « + 5^,

1 = 3y + »— u,

whence by addition 2 = $x -f- 3y -f- 6v,

an equation between rational integers that is impossible, since 3 is a

divisor of the right hand member but not of the left hand member.

Hence the required integers do not exist, and 1 + V— 5 is therefore

not a number of the ideal b. The ideals are therefore unequal.

Ex. 3. To prove that the two ideals a =(2, i + V— 5)> and

b=(4, 2-\-2\J— 5), are unequal.

Although, as is easily seen, the numbers denning the second ideal may
be introduced into the symbol of the first ideal, we cannot introduce the

number 2 of the first ideal into the symbol of the second ; that is, we can-

not find two integers, x + yyj— 5, u -f v\J— 5, such that

2 = O + yVZr 5)4 + (« -f v^/=5) (2 + 2yJ~—$),

for from this equation it would follow that

2 = 4X + 2M — IOZ/,

o == 4y -f- 2M -f- 2V,

whence by subtraction 2 = 4-r— 4y— \2v,

an equation in rational integers that is impossible, since 4 is a divisor of

the second member but not of the first member. The two ideals are

therefore unequal.

Ex. 4. Show that

(2, 1 +V=5) =j= (3, 1 +V^5).
Ex. 5. Show that

(29, 32— 27Vz:r5) = (3 + 2V=r5)-

Ex. 6. Show that

(49, 21 — /V— 5, 2I + 7^J r̂
S, 14) == (7).

Ex. 7. Show that

(3— V^l. 1 + 2y/^J) = {7, 3— V:Zr5)-
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§ 10. Principal and Non-Principal Ideals.

If among the numbers of an ideal, a, there exist a number, a,

such that all numbers of the ideal are multiples of a, then a is

said to be a principal ideal, and we have

o=(a).

If such a number does not exist, a is said to be a non-principal

ideal. The necessary and sufficient condition for a to be a prin-

cipal ideal is evidently that we shall be able to introduce into the

symbol of a a number a such that all the numbers defining a are

multiples of a. If such a number cannot be introduced, a is a

non-principal ideal. Let us consider a few ideals with a view to

determining whether they are principal or non-principal ideals.

i. (7)^(2 + V^5), (6, 8, 2 + 6 V=S), (3, 3V=S),
(3, V— 5), (5, V— 5)-

ii. (2, i+V— 5), (3> i+V— 5), (3, 1—V—_5)-

Considering those of the set i, (7) and (2 +V— 5) are seen

at once from the definition to be principal ideals ; also

(6, 8, 2 + 6V—1) = (6, 8, 2 + 6V—1,2) = (2),

(3, 3V—~5) = (3),

(3, Vzr5)=5: (3i V—"5,— 5) = (3 J VF-S>.— 5- 0=<l)>

(5, V-1) = (V-1).
Hence all ideals of the first set are principal ideals.

Consider now the ideals of the set ii. If (2, 1 +V— 5) be

a principal ideal, then there must exist a number, a, of the ideal

such that 2 and 1 +V— 5 are both multiples of a.

The numbers 2 and i"+V— 5> being primes in &(V— 5) and

not associated, have as their only common divisors zb I. Hence a

must be 1 or — 1.

Since, if 1 be a number of the ideal, — 1 is also one of its

numbers and vice versa, it is sufficient to see whether we can find

two integers x + yV— 5 and u + ^V— 5, such that

1= 2<> + 3'V— 5) + (1 +V— 5) O + ^V— 5).

We have from 1 ) 1.= 2x + u— 5V>

o= 23/ -j- v + u,
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which give by subtraction

I sa 2X— 23/— 6v,

an equation in rational integers that is impossible, since the second

number only is divisible by 2. Hence 1 is not a number of the

ideal (2, 1 -|~V— 5), and this ideal is therefore a non-principal

ideal.

Ex. 1. Show in like manner that (3, i + V— 5) and (3» J — V— 5)

are non-principal ideals.

Ex.2. Show that (7, i + 2n/—"S) and (7, 1 — 2y/— 5) are non-

principal ideals.

Ex. 3. Show that (21, 9 + 3
V— 5, — 2 + 4V— 5) is a principal ideal.

Had we introduced the conception of the ideal in the realms

k(i), k( V— 3) and k(\/2), we should have seen that in all these

realms every ideal is a principal ideal, for if a, = (a lf a2t •••,a„),

be an ideal, defined as above, of any one of these realms, then,

since the unique factorization law holds in all these realms, we

could in every case find integers £r,€2 , -',£n such that

&0, + i2a2 -\ f- inPtn= 5,

where 8 is the greatest common divisor of ax,a2 , "',On* Hence

we have a= (alt a2 , ••-,an,8) = (8),

a principal ideal.

On the other hand, we have seen (Th. B) that it is not always

possible in &(V— 5) to find the integers £lf £2 , ••-,£»; hence the

fact that not all ideals of &(V— 5) are principal ideals.

§ 11. Multiplication of Ideals.

By the product of two ideals

a,= (a lt a 2f •••,aw ), and 6,= (&,&, •••,£«),

we understand the ideal defined by all possible products of a num-

ber defining a by a number defining h; that is,

ab= (ajlv

a

xp2 ,
• "lOifin,

- -'
t
amplf

• • •, aW?„).

In other words, the product of a and b is the ideal whose numbers

are all possible products of a number of a by a number of B,

together with all linear combinations of these products. It is evi-

dent from the above definition that the commutative and asso-



262 THE REALM k(\/ 5).

ciated laws hold in the multiplication of ideals; that is, ah= ha

and ab-c= a-hc.

Ex. 1.

(3, 1 + V—5)(3, 1 — V— 5) = (9, 3—3V— 5> 3 + 3\/-r5' 6 >-

= (9, 3 — 3^—^3 + 3^—5, 6, 3),

= (3).

Ex. 2. (2, 1 + V^S)"= (2, 1 + ^trj)
(2 , j + VZT5),

=5 (4, 2 + 2^=5, —4 + 2^/^5),

= (4, 2 + 2y—1, _ 4 + 2y^5, 2),

since 2 + 2\/— 5— (— 4 + 2\/— 5) — 4 = 2. Hence, since all numbers in

the symbol are multiples of 2, which is a number of the symbol,

(2, i + V-5) 2 =(2).

Ex. 3.

(2, i+y^5)( 3 , !+y~5)— (6, 2 + 2^=5, 3 + 3\/—5^ — 4+2\/— 5)

= (6, 2 + 2^=5, 3 + 3y— 5, i+y-^),

since 2 + 2V^r5 — 6 = — 4 + 2V=T
and 3 + 3V^— (2 + 2%/— 5) = 1 +V^
whence, since all numbers in the symbol are multiples of 1 + V— 5,

(2, 1 + V- 5) (3, 1 + V- 5) = (I+ V- 5).

Ex. 4.

(2, i-f-y~5)( 3 , 1 — V— 5) = (6, 2— 2y—1, 3 + 3^/^5, 6)

= (6, 2— 2^=5, 3+3-^—5; i—y—g),

since 6— (2 — 2V=r5) — (3 + 3Vzr5) = I — V1^
whence, since

3 + 3V— 5 = 6— (2— 2V— 5) — ( 1 — V—1)

.

(2, 1 + y— 5) (3, 1 — V—1) = (6, 2 — 2y—1, 1 — v—"5)

= (i-y-5)>

since all the numbers in the symbol are multiples of 1 — \J— 5.

Ex. 5. Show that

a) (3, 1 + 2V:=r
5) (3, 1 — 2V:zr

5) =5= (3),

b) (7, 1 + 2V-TK7, I—2\/— 5)-(7),

c) (3, i + 2V-~5)(7, l+2\fi^$)=(l + 2y/^J),

d) (3, 1 — 2\/zr5)(7, 1 — 2V—1) = (1 — 2V— 5).
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§ 12. Divisibility of Ideals.

An ideal, a, is said to be divisible by an ideal, h, when there

exists an ideal, c, such that

a= Bc;

b and c are then said to be divisors or factors of a.

§ 13. The Unit Ideal.

Every ideal a, = (a
x

,

a

2 ,
• • -,am ), of &(V— 5) is divisible by

the ideal (1), for

ct( 1 ) = (alt a2,---,an ) ( 1 ) = (a lf a2 ,
• • •, a») = a.

That (1) is the only ideal of fc(V— 5) possessing this property

can be easily shown.

Suppose that there is another ideal b= (8 X ,82 , •••,§„), which is

a divisor of every ideal of fc(V— 5)- Since it divides the ideal

( 1 ) , we must have ( I )= b'm,

where m= Oi,f4, •••,**«•)•

Then (1) = (S x , 82 , •••,8n)(/*i,/*2 » •"•*f»»)j

and hence 1= g^ft, -f £A/% H 1- £m „8„/>im 1

)

= AjSi -p- A282 H~~ ' * * ~T~ An8 n ,

where iv it, ,$mn and hence a^a.,, --jAn are integers of

&(V— 5). Therefore 1 is a number of b and

b=(8 1,82,-..,8n,i) = (i).

The ideal (1) is therefore the only ideal which divides every

ideal of k (V— 5 ) • Hence it is called the unit ideal of & (V— 5 ) •

It is evidently the whole system of integers of fc(V— 5)- It

should be noticed that from 1 ) it follows also that 1 is a number

of m, and in general we may show by this method that, if an

ideal a be divisible by an ideal h then all numbers of a are num-

bers of h.

§ 14. Prime Ideals.

An ideal different from (1) and divisible only by itself and (1)

is called a prime ideal. An ideal with divisors other than itself

and (1) is called a composite ideal.
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We shall show that (2, 1 +V— 5) is a prime ideal. If this

be not the case, two ideals, a and 5, neither of which is (1), must

exist such that

(2, i+V— 5) = aB.

Let a= (a19 a2 ,
• •

., am ), B= (ft, 0* • • •, 0„).

Then we should have

(2, i+V—l) = (a 15 a2 , ...,aw)(^,^2 ,
...,/?n ).

It may be shown now by the method employed in the last

paragraph that 2 and 1 +V— 5 are numbers of each of the

ideals a and b, and hence

(2, I +V— 5) = («1» ' • 'I Am, 2, I +V— 5)

(ft, ...,j8„,2, i+V— 5).

Let at, = a + &V— 5, be any one of the integers alt a2 ,
• • • , am ;

then ai= Z?(i+V— 5)+°— &•

But a— b is a rational integer, and hence is of the form 2c or

2c + 1, where c is a rational integer. We have therefore either

ai= fc(i+V— 5) + 2^ x )

or ai =^fc( I ^-yZT5)^2c-f 1. 2)

If 1 ) be the case, ai may be omitted from the symbol a. If 2)

be the case, we have

ai— b{i+^~—^s)— 2c=i,

and 1 may therefore be introduced into the symbol of a ; all other

numbers could then be omitted and we should have

a=(i).

Proceeding in this manner with each of the numbers a lt a2 ,

'•',am , we see that one of the two following cases must occur,

either all of the numbers axi a2 , '-,am are linear combinations of

2 and 1 +V— 5, and hence may be omitted from the symool of a,

in which case we have

a=(2, i+V—~5),

or some number of a is not a linear combination of 2 and

1 +V— 5> m which case 1 may be introduced into the symbol of

a and we have

a=(i).
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The same is evidently true for B. We have therefore as the

only possible factorizations of (2, 1 +V— 5)

(2, i+V=5) = (i)(i) = (i), 3)

or — (2, 1 +V^) (2, 1 +V— 5), 4)

or =(2, i+V=5)(i),

or =(i)(2, i+V—~5)-
It has already been proved that

(2, i+V-5) + (i),

hence 3) is impossible.

Likewise it may easily be shown that 4) is impossible, for we

have seen (§11) that

(2, i+y=5)==(2),
while, since 1 +V— 5 1S not a multiple of 2,

(2, i+v-l)4=(2).
Hence 4) is impossible.

The only divisors of (2, 1 +V— 5) are therefore the ideal

itself and (1). Hence (2, 1 +y— 5) is a prime ideal.

It may be shown similarly that (3, 1 +V— 5) and (3,

r —V— 5) are prime ideals. The proof in these cases is sug-

gested as an exercise.

Ex. Prove that every ideal of the form (p, 1 -j- q\/— 5), where p and q

are rational primes different from each other, is a prime ideal.

§ 15. Restoration of the Unique Factorization Law in Terms

of Ideal Factors.

We shall now show that although the factorization of 6 into

its prime number factors in k{V— 5) *s not unique, nevertheless,

when we resolve the principal ideal (6) into its prime ideal fac-

tors this factorization is unique. 1 There are evidently two differ-

ent factorizations of (6) into principal ideal factors; that is,

(6) = (2)(3) = (i+V-5)(i-V^5). 1)

1 We speak of the factorization of an integer a into its ideal factors,

meaning thereby always the factorization of the principal ideal (a)

defined by a.
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These factors are, however, not prime ideals, for we have

shown (§11) that

(2) = {2, i+V^5) 2
,

(3) = (3, i+V-l)(3, i-V-1),

(i+V=5)= te r+V^5)(3, i+V-5),
and (1—V— 5) = (2, i+V— 5)(3, i—V— 5)-

We have shown also (§ 14) that these factors of (2), (3),

(1 +V— 5) and (1—V— 5) are a *l prime ideals.

Substituting in 1) we have

(6) = (2) (3) = (2, i+V-5) 2
(3. i+V=5)(3> 1—V^Di

and

(6)=(i+V-5)(i-V-5)
=(2, i+V-5)(3, i+V— 5) (2, i-V— 5)(3, 1—V— 5)

=(2, i+V— 5)
2
(3, i+V-5)(3, 1—V— 5).

Hence (<5) can be factored in one and but one way into prime

ideal factors.

Ex. Show that the factorizations of 9, 14, 21, and 49 into prime

number factors are not unique but that the factorizations of (9), (14),

(21), and (49) into prime ideal factors are unique.

We have now shown that the introduction of the conception of

the ideal in &(V— 5) has accomplished, at least in the particular

example given, what we desired; that is, the restoration of the

unique factorization law.

Instead of showing that the unique factorization law holds in

general in &(V— 5) when the factorization is expressed in terms

of prime ideal factors, and then investigating the properties of

the integers and ideals of this realm, we shall proceed at once to

the discussion of the general quadratic realm defined by the root

of any irreducible quadratic equation. Among these realms are

included, of course, the special realms k(i), &(V— 3), &(V 2 )

and &(V— 5). We shall see that when the factorization in any

quadratic realm whatever is expressed in terms of prime ideal

factors it is unique, and we shall be able to deduce general

theorems for the integers and ideals of any realm similar to those
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found for the integers of realms in which the unique factorization

law held in the ordinary sense. We shall find, moreover, that

the introduction of the ideal will lead us to the discovery of new

and deeper properties of these realms.

The introduction of ideal factors is due to Kummer, but the

form used in the text and known as ideals is due to Dedekind.

For an account of Rummer's researches see his papers, Crelle,

Vol. XXXV, pp. 319 and 327, especially the former, in which he

announces his introduction of the ideal number; in the latter

paper he expands the theory. A brief account of Rummer's con-

ception is given in the eleventh supplement to Dedekind's edition of

Dirichlet lectures, pp. 545-550; see also Bachmann, Allgemeine

Arithmetik der Zahlenkorper, pp. 150-160, for a very interesting

discussion of Kummer's ideal numbers and other methods of

reinstating the unique factorization law in the general algebraic

number realm.



CHAPTER IX.

General Theorems Concerning Algebraic Numbers.

§ i. Polynomials in a Single Variable.1

Before beginning the study of the general quadratic realm we

shall give a few theorems which are necessary for our future

investigations.

First of all, we shall prove a theorem concerning the divisibility

of polynomials in a single variable. By a polynomial in a single

variable, x, is meant, as has been said, an expression of the form

a xn -f- a^-1 + • • • + a n,

where n is a positive rational integer and the a's are quantities

not containing x. The sum, difference and product of two poly-

nomials in x are evidently polynomials in x.

In what follows we shall in all cases assume the a's to be

rational numbers.

A polynomial, f(x), is said to be divisible by another poly-

nomial, /i(-r), when a third polynomial, f2 {x), exists such that

/<*)—/«.(*)£(*)•

It is evident that all polynomials of the oth degree, that is, the

rational numbers, divide every polynomial in x.

If fx {x) and f2 (x) have no common divisors other than con-

stants, they are said to be prime to each other, or to have no

common divisor.

Theorem i. // f1 (x) and f2 (x) be two polynomials in x

without a common divisor, there exist two polynomials in x,

4>x (x) and </>2 (-r), such that

1 Weber : Algebra, Vol. I., §§ i to 6.

268
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Let f± (x) and /2 (^) be of degrees m and n, respectively, and

m ^ n.

By division we may put ft in the form

ft=*qjt+f» 1)

where q 19 the quotient, and /3 , the remainder, are polynomials in

x, and /3 is of lower degree than /2 .

Likewise we may put f2 in the form

/2= 92/3 +/4, 2)

where fz and f4 are polynomials in x, and f4 of lower degree

than /3 .

Continuing this process, which is none other than that of finding

the greatest common divisor of fx {x) and f2 (x), we have

f*=qJ*+U 3)

U= ^^5 + /«>

and arrive finally at a point where the remainder is a constant,

/fc , different from o, since fx and /2 are prime to each other. We
have then

fk-2= qk-2fk-1 +fk.

Putting now the value of /3 from i) in 2) we have

/4=(i+2i?2 )/2— qJi',

that is L= r
1f1 + r2f2 ,

where r, and r2 are polynomials in x. Putting the expressions for

/3 and f4 in terms of fx and f2 in 3), we obtain

T5
=== ^1/1 T ^2/ 2>

where f^ s2 are polynomials in ^r. Continuing this process, we
obtain finally

fk=W1f1 + ZV2f2 ,

where wlt w2 are polynomials in x. As has been said, /& is a con-

stant different from o. Putting therefore

wt= A-4>iO) , Wa= fk<l>2 (x)

,
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we have

ftfc-(*)A"(*) +/i*i(*)/iOO =/*»
and hence

where ^(x) and <£2 (.*") are polynomials in x.

We may generalize the above theorem as follows:

Theorem 2. //A (*') an^ f* (x ) ^ *wo polynomials in x without

a common divisor and g{x) any polynomial in x, there exist two

polynomials in x, ^(a*) and $2 (x), such that ®2 (x ) w of lower

degree than fx (x) and

•kWAW + •*(*)/.(*) — tft*)'i

By Th. 2 there exist two polynomials in x, ^(x), </>2 (a), such

that ^)/iW+fc(')/iW= i 4)

Multiplying 4) by ^(^) we have

#0)4>iO)/iO) +#<*>**(•*)/*(*) =#<»• 5)

Putting #(a-)<£2 (a") m the form

^W^W=?W/iW + '(*)»

where #(a) and r(.r) are polynomials in x and r(.r) is of lower

degree than f1 (x), and substituting in 5), we have

[g^)<f>1 (x)+q(x)f2 (x)]f1 (x)+r(x)f2 (x)=g(x);

that is *d*)fd*)+*t*)fn(*)=9(*)*

where $x {x) and ®2 {x) are polynomials in x, and ®2 (x ) *s °f

lower degree than fx {x).

A polynomial, /(a), is said to be irreducible in the realm

k(a) when it cannot be resolved into integral factors whose coeffi-

cients are numbers of k(a). When f(x) has rational coefficients

and is said simply to be irreducible, no realm being specified, the

rational realm is understood; that is, f(x) is not resolvable into

integral factors having rational coefficients.

Theorem 3. An irreducible polynomial, f(x), can have no

factor in common with another polynomial, F(x), unless F(x)

be divisible by f(x).
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1

The coefficients of the greatest common divisor of the two

polynomials F(x) and f(x) are derived from the coefficients of

these two polynomials by rational operations and are therefore

rational numbers, since the coefficients of F(x) and f(x) are

rational numbers.

But f(x) is divisible by no polynomial in x with rational coeffi-

cients except itself and the rational numbers. Hence either F(x)

and f(x) have no common factor or F(x) is divisible by f(x).

Cor. 1. If f(x) be irreducible and F(x) vanish for one root

of the equation f{x) —o, it vanishes for all roots of f(x) =o.
For, if F(x) vanish for a root of f(x) =o, F(x) and f(x) must

have a common factor. But this can only be f(x).

Cor. 2. If f(x) be irreducible and F(x) be a function of

lower degree than f(x) that vanishes for one root of f(x) =o,
then F(x) must vanish identically; that is, all coefficients of

F(x) are o.

§ 2. Numbers of a Realm.

Let us consider the realm k(a) of the nth degree, a being a

root of the irreducible rational equation

/O) = x- + a,*** H h *»=0, 1

)

whose remaining roots we denote by a', a", •••,a (n"1)
.

Any number of k(a), being produced from a by repeated

performance of the operations of addition, subtraction, multipli-

cation and division, is a rational function of a with rational coeffi-

cients and hence can be expressed in the form

where x(a ) and «A(a) are rational integral functions of a with

rational coefficients. The realm k(a) is composed therefore of

all rational functions of a with rational coefficients, the denomi-

nator never being o.

We shall now show that every number of the realm can be

expressed as a rational integral function of a with rational

coefficients.
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The degrees of x(a ) and $(&) can be made lower than the

nth by virtue of the relation

an + a^-1
-\ f- an= o.

Since ^(a ) 1S different from o and of degree lower than the nth,

\p(x) is not divisible by f(x), and hence, since f(x) is irreducible,

if/(x) is prime to f(x) (Th. 3). We can therefore by Th. 1 find

two polynomials in x, ^ 1
(x), &2 (x), with rational coefficients and

<£
2 (.r) of lower degree than the wth, such that

$1W/M+$2(^W= XW. 2)

Putting a for x in 2) we have

**(a)y(<x)—x(a),
and hence

that is, = & + & xa + fr2a
2

-] j- fc^a*"1,

where bQ,b x ,
•••

i
bn_x are rational numbers. This representation

of is unique, for, if we had also

= c + c%a + c2a
2
H l. Cn^a"-1

,

then it would follow that

fro— ^0+ (fri—0<H h (frn_x— cn_1 )a
n-1= o;

that is, a polynomial in ^r of degree lower than the nth would

vanish for x= a, but this by Th. 3, Cor. 2 is impossible unless all

the coefficients of the polynomial are o. Hence

and the two representations are identical.

The numbers of the realm are seen therefore to be coextensive

with the totality of rational integral functions of a with rational

coefficients and of degree not higher than the (w— i)th.

We shall next prove the following simple theorem

:
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Theorem 4. Every number 6 of k(a) satisfies a rational

equation, whose degree is the same as that of the realm, and

whose remaining roots are the conjugates of 0.

Form the equation

<!>(t) = (t— 0)(t— 0')'--(t— 6<n-1>)

= tn + ditn-l+...+ dn==0) 3)

where 0', 0", • • •, #*** are the conjugates of 6.

The coefficients, dlf d2 ,
•••, dn , of 3) are symmetric functions of

the roots of 1) and hence rational functions of the coefficients

of 1). Hence d±,d2 , -~>dn are rational numbers. Therefore $

satisfies a rational equation of the nth degree, whose remaining

roots are the conjugates of 6. Every number of the realm is

therefore evidently an algebraic number.

We turn now to the reducibility of $(0> and shall prove the

following theorem

:

Theorem 5. The function <£(£) is either irreducible or is a

power of an irreducible function. The n conjugates of a number

of k(a) are either all different or else fall into nx systems, each

containing n2 numbers all alike. In the first case, &(t) is irre-

ducible, in the second, &(t) is th£ nxth power of an irreducible

function of the n 2th degree.

If &(t) be reducible it must be a product of irreducible factors,

each of which vanishes for one or more of the quantities

0,6', ••.,0<n-1 >.

Let *(0=*i(0*2(0---*»i(0>

where <j>x {t) ,

$

2 {t) , •••,<^>m(0 are irreducible and let
<f>x

{t) vanish

for t= ; that is,

<f>1 (0)=o.

We have seen that

o=g(a),

where a is the number defining the realm and g(a) a rational

integral function of a with rational coefficients. Then

<£i[#(s)]=o.

18
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The equations

4>i[#0')]=o and /(*)=0

have therefore a root in common, and, since f(x) is irreducible,

<f>i[9(x)] must vanish for all roots of f{x) =o; that is,

^[^(^)]=o,^ 1
[^(a-)]=o,...,^1 [5r(a^)].

But 0'= g(a'),e"= g(a"),.->,0^=g(a(n-v).

Hence

$,(6) =0,^(6') =o, -..^^"-v) =o;

that is, £i(0 vanishes for all of the w conjugate numbers

0,0', •••,0 (n_1)
.

If these numbers be all different,
<f>t

(t) is of the nth degree

and hence identical with $(0-
If, however, there be among them only n2 which are different

from each other, say

6,0', ...,0<"«-1
>,

then <j> 1 (t) = (t— 6)(t— 6
f

)
••• (t— 0^-^).

Since, moreover, every irreducible factor of ®(t) vanishes for

one of the quantities 0, 6', •••, W_1
, and hence for all of them

(Th. 3, Cor. 2), every one of these irreducible factors of &(t) is

identical with
<f> r

(t) ; that is ^(Oj^sCO* •**»^n(0 are all iden-

tical with ^(0-
Therefore $(t) is in this case a power of

<f> x (t) ; that is,

$(t) = [<^>i(0]
n
S where %n2= n.

We have seen (Chap. I, § i) that every algebraic number sat-

isfies a single irreducible rational equation.

We see now from the above that the degree of this equation

is a divisor of the degree of the realm of which 6 is a number.

According as the degree of this equation is the same as or lower

than that of the realm, 6 is said to be a primitive or imprimitive

number of the realm.

Thus 6 is a primitive number of k(a) when ft is different from

all of its conjugates and an imprimitive number when this is not

the case.
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Theorem 6. Any primitive number of k(a) may be taken

to define the realm; that is,

k(0) = k(a).

Let be any primitive number of k(a) and $', 0", •••,0 (n_1)
its

conjugates, and let w be any number of k(a) and <«/, <d", •••,o)
(n~1)

its conjugates. We shall show that o> can be expressed as a

rational function of with rational coefficients, and hence that

k(0)=k(a).

We have

q>(t) = (t— 0)(t—0') ••• (*— ^
(n"1)

).

Then

(ft) ft)' G)(
n_1

) \

7zrg +—3-, + ... +
7
-^r)) _*(,). 4)

where ^(O is a polynomial in £ of the («— i)th degree, whose

coefficients are rational numbers, for they are symmetric func-

tions of the roots of the irreducible rational equation satisfied by

a, and hence rational functions of its coefficients. Putting for

t in 4) we have

<»(0— f

){0— 0") •.(0— 0<n-v)=*(0),

or, putting as usual

d/dt>$>(t)=&(t) = (t— 0'){t— 0").-.(t— d<"-
1>)+terms.

containing the factor t— 0, we have

where &(0) is a polynomial in t with rational coefficients, and is

different from o, since is different from all its conjugates.

Every number of k(a) can therefore be expressed as a rational

function of with rational coefficients. Hence all numbers of

k(a) are numbers of k(0), and therefore

k(a)=k(0).

Theorem 7. If f(x) =**+ ax
xn~x ^ f- an= 5

)

be an irreducible rational equation, and 0, one of its roots, be an
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algebraic integer, the remaining roots, 0', 0", •••, (n_1)
, are also

algebraic integers.

This theorem follows directly from Th. 4, Chap. II. It may
also be proved as follows.

Since is an integer, it must satisfy an equation

F(x) = xn + bxx** H h ^= o, 6)

whose coefficients are rational integers. But if F(x) vanish for

one root of the irreducible equation 5), it vanishes for all roots

of 5). Hence 6', 6", • ••,0 (n-1) satisfy 6) and are integers.

Theorem 8. The sum, difference, product and quotient, the

denominator of the latter not being zero, of two algebraic num-

bers are algebraic numbers.

Let a and /? be two algebraic numbers, which satisfy respect-

ively the two irreducible rational equations

xm + a^™-1
-\ h am= 0, 7)

,*•+ fr^H \-bn= o. 8)

The necessary and sufficient condition that a + (3 shall be an

algebraic number is that it shall satisfy a rational equation.

Form the equation

[
x—(a+ p)] ••• [(*—.(a«>+0<»)] ••• [*— (a («-4)+j8<«-1>>]

=Xmn + ClXmn^ H \- Cmn= 0, 9)

whose roots are the mn numbers

f a= a,a', •••,a (w
-1)

,

a + £'
J /3= p,(3',---,/3< n -1\

The coefficients clt c2 , •••,cmn of 9) are symmetric functions of

the roots of 7) and 8), and hence rational functions of the coeffi-

cients of 7) and 8).

But the coefficients of 7) and 8) are rational numbers.

Hence the coefficients of 9) are rational numbers, and a-\-/3

is therefore an algebraic number. The proofs for a— /?, a/3 and

a/f3 are of the same character.

Cor. 1. Every rational function of any number of algebraic

numbers with rational coefficients is an algebraic number.



GENERAL THEOREMS CONCERNING ALGEBRAIC NUMBERS. 277

Cor. 2. The sum, difference and product of two algebraic in-

tegers are algebraic integers; for in this case the c's being not

only rational but integral functions of the a's and b's, and the a's

and b's being now integers, the c's are themselves rational integers.

Cor. 3. Every rational integral function of any number of

algebraic integers with rational integral coefficients is an algebraic

integer.

We obtain a still more general theorem when we notice that, if

we allow the coefficients bx , b2 , --,bn of the equation

X*+ ^«-i
_| (_ 0n= IO )

to be any algebraic numbers instead of restricting them to rational

numbers, the roots of 10) will nevertheless be algebraic numbers.

Theorem 9. If & be a root of the equation

F(x)=.rn + a 1x
n-i-{ \-an= o,

where a x,a2,--,an are any algebraic numbers, it is itself an

algebraic number.

Let ax ,

a

2 , '-,an satisfy rational equations of degree mx ,

m

2 ,
• • •,

mn , respectively, and let the remaining roots of these equations be

a ' a " ... rt t*"*-1 )

Let m—mx
m2

••• mn and form by putting for a< a*, a/, •••,

a (mi-i) (i— i
} 2, ••-, n) the m polynomials in x

F(x) =xn + a xx
n-*

H h an ,

Fx (x) =xn + a x'x
n-i

H \-an ,

F2 (x) =xn + a/V-1
H h a»,

Fm_x (x) =xn + a/^-1^"-1
H h a„ (m»-1) .

Form the product

FFxF2
.-.Fm_x= f(x).
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The coefficients of f(x) will be symmetric functions of the

roots of the rational equations satisfied by a 19 a2 ,
• • • , an , and

hence rational functions of their coefficients. They are therefore

rational numbers and <o, being a root of the rational equation

is an algebraic number.

Ex. 1. Let w be a root of the equation

F(x) = x2 + V 2* + y/J= o. 11)

We see that V2 and V3 are roots respectively of the rational equations

x2— 2 = and x'
1— 3 = o,

whose remaining roots are — V2 and — V3- We have

FxO) = x2 + \/2X— V3T

F2O) = x2— \fex + V3>

F3 (x) —x2— yj2x— V3~i

and f(x) =F F!F2Fz = xs— 4x*— 2xi— 12^+ 9 = 12)

Hence, w being a root of 12), is an algebraic number. It is moreover an

integer, since the coefficients of 11) are integers (see Cor. 1 below).

Cor. I. If to be a root of the equation

F(x)=xn + a1xn~1 + ••• -j-an= o,

where a lt a2 , '-,an are algebraic integers, it is itself an algebraic

integer; for the coefficients of f(x) formed as above are not only

rational but integral functions of the coefficients of the rational

equations satisfied by the a's and these are now rational integers.

Hence the coefficients of f(x) are rational integers, and o> is an

integer.

Theorem 10. Every algebraic number can by multiplication

by a suitable rational integer be made an algebraic integer.

Let the algebraic number, a, be a root of the rational equation

and let a be the least common denominator of the a's. Then

an + -J
• a71'1 + -2

• a11-2 + . . . + -= = o, 13)

where the b's are rational integers.
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Multiplying 13) by a n
, we have

(a.aY + ^(0,0.)^ + aQb2 (a a) n-* +'•• +V-1&»= o;

that is, a a is a root of the equation

y
n + bj*-1 + a b2y

n-*
H f- ao"-^,= o,

whose coefficients are rational integers, and is therefore an alge-

braic integer.

Ex. Let a be a root of

•*
3 -hf*

2 + f* + ! = o,

that is, of * + TV2
.+ H* + tI = o. J4)

Multiplying 14) by 12
3
, we have

(i2x) 3
-\- 6(i2x) 2

-\- 192(12*) +2160 = 0.

Thus 12a is a root of the equation

y
3 + 6y

2 + 192V+ 2160 = o,

and hence an integer.

This is seen to be simply the transformation of 13) into an

equation whose roots are a times those of 1), a being selected

so as to make the coefficients of the new equation integers.



CHAPTER X.

The General Quadratic Realm.

§ i. Number Defining the Realm.

By the general quadratic realm we understand the realm de-

fined by a root of the general irreducible quadratic equation of

the form

ax2 + bx + c= o, I

)

where a, b and c are rational integers.

If a be a root of i), this realm is denoted by k(a). If a' be

the other root of i), the realm k(a') is the conjugate realm of

fc(a)(Chap. I, §4).

Solving i), we have

— b + V& — 4ac , — b — V b* — ^ac
a = , a =

2a 2a

Put b2— 4ac= l
2m,

where m contains no square factor ; then

V&2
-— 4ac= iym,

and k{a) =k(ym)

for a
— b -}- / Vm

2a

is evidently a number of fc(Vm) and

— 2aa -f b
\/ *n :

/

is a number of k(a).

Hence k{a)=k{ym).1

Hence, to consider all quadratic realms, it is sufficient to con-

sider all realms defined by a root of an equation of the form

x2— m= o, 2)
1 See Chap. IX, Th. 6.

280
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1

where m is any rational integer containing no squared factor.

We shall understand in what follows by ~\Jm the positive real or

imaginary root of 2), and shall assume that m contains no square

factor.

The conjugate realms k(a) and k(a') are identical, since a is

evidently a number of k(a') and a' a number of k(a).

The general quadratic realm is the simplest example of what is

known as a Galois realm; that is, one which is identical with all

its conjugate realms.

§2. Numbers of the Realm. Conjugate and Norm of a

Number. Primitive and Imprimitive Numbers.

Let a be a root of the irreducible quadratic equation

*2 + Px + Q.— °-

Every number, w, of k(a) is a rational function of a with

rational coefficients, and hence has the form

a -f ba
(0=z —

,

c + a

a

where a, b, c and d are rational numbers.

a -f ba
The number co' =

c + do!

obtained from <o by the substitution of a! for a is the conjugate

of w (Chap. I, § 4). The numbers of k(a) that are rational are

seen to be their own conjugates. We shall show now that every

number, w, of k{a) can be put in the form

co= e + fa*

where e and / are rational numbers.1

First, let abe -\/m. Then we have

c + dV
1)

m

"See Chapter VIII, §2, for general theorem of which this is a special

case. Simplified proofs are given here of this and several following

theorems.
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Multiplying the numerator and denominator of i) by c—d^Jm,
we obtain

ac — bdrn be — ad ,—
~~

c2 — d2m c2 — d 2m

All numbers of k(\/m) can therefore be put in the form

e + /V ra, where e and / are rational numbers.

If w,= a-[-frVw> be any number of k(-\/m) it satisfies the

quadratic equation

x2— 2ax-\-a2— mb2= o, 2)

whose other root is uy',= a— b^Jm, the conjugate of w. Hence

every number w of k(^/m) satisfies a rational equation of the

second degree (Chap. IX, Th. 4). We say that a is a primitive

or imprimitive number of k(^/m) according as the equation 2)

is irreducible or reducible.

The necessary and sufficient condition for 2) to be irreducible

is evidently b=^=o. In other words, a is a primitive number if it

be different from its conjugate (Chap. IX, Th. 5).

If b= o, and hence w= w '= a, then w satisfies the rational

equation of the first degree

x— = 0.

The primitive numbers of a realm are thus seen to be those

defined by equations of the same degree as that of the realm

(Chap. IX, Th. 5). The imprimitive numbers of a quadratic

realm are evidently the rational numbers.

If « be a primitive number of a realm of the wth degree and the

identity

Go+ ai« -j (- an-iw"-1 = b + bi<a-\ + frn-iW*"1 3)

exist where the a's and b's are rational numbers, then the coefficients of

the same powers of « in the two members of 3) must be equal; that is,

a =bo, di= bi, •••, a»-i= &n-i

;

for otherwise « would satisfy an equation of degree lower than the wth,

which is contrary to the assumption that w is a primitive number of the

realm.

We have shown (Chap. IX, Th. 6) that any algebraic number

realm can be defined by any one of its primitive numbers. This
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can be proved for the special case of quadratic realms very simply

as follows:

Let a be a primitive number and w any number of &(\/m).

We have seen above that a and w can be put in the forms

a= a-\-b-\/m, 4)

(o= c + dy/m, 5)

where a, b, c and d are rational numbers.

From 4) we have
,— a — a

1/111 —Vm ~ b '

and from 5)
be — ad d—

b
+-

d
a.

Hence every number <o of k(^/m) can be written in the form

w= e + fa,

where e and / are rational numbers and a a. primitive number of

fc(Vw )- Hence

and we have proved not only that every quadratic realm may be

defined by any one of its primitive numbers, a, but that every

number, w, of the realm k(a) may be put in the form

<1>= e + fa,

where e and / are rational numbers (Chap. IX, § 2).

We may evidently choose as the primitive number defining the

realm an integer. In what follows we shall suppose this to have

been done. The product of a number, w, of k(a) by its con-

jugate a/ is its norm1 and is denoted by «[<u] ; that is,

w[to] =toto'.

Since n[w] is a symmetric function of the roots of the rational

equation satisfied by a, it is a rational function of the coefficients

of this equation, and hence a rational number. In particular

when the realm is defined by Vw, we have

w[to] = (a-\-b-\/m)(a— b}/m) =a2— b2m.

'Hilbert: Bericht, §3.
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§3. Discriminant of a Number.1

The square of the difference of a number a and its conjugate

is called the discriminant of the number and is denoted by d[a]
;

that is,

^[a] ==(<*- a')
2 =

It is evidently a rational number and the discriminant of the

quadratic equation

x2 + a
x
x + a2

= o,

whose roots are a and a'.

If a be a primitive number of the realm its discriminant is

different from o, and conversely, if d[a] be different from o, a

is a primitive number.

§ 4. Basis of a Quadratic Realm.

Theorem i. There exist in every quadratic realm two in-

tegers, »!, w2 , such that every integer, <o, of the realm can be

expressed in the form

(a= a1o)1
-j- a2a)2 ,

where axa2 are rational integers. 2

Suppose the realm to be defined by an integer, a, a supposition

in no way limiting the generality of the proof, and let w be any

integer of k(a). By the preceding paragraph w can be put in

the form

<»= r1 + r2a, 1)

where rt and r2 are rational numbers. We have

o> —rx -\-r2a!. 2)

Solving 1) and 2) for rx and r2 by means of determinants,

we have

'Hilbert: Bericht, §3.
2 Hilbert : Bericht, Satz 5. This proof could have been somewhat sim-

plified had greater use been made of the fact that the realm under con-

sideration was quadratic, but it seemed desirable to give the proof in a

form at once extendable to realms of any degree.
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r, =

ft) a
1

w a |I a\

ft)' a! |v a' |I «'l

I a
I

1 -I
2

I a!
1
1 a'

I ft) 1 I a

I ft)'
l«

a'

1 I a 2

|1 a'

*M'

d\ay

where A x and ^4 2 are rational integral functions of the integers

<o, a, a and a' with integral coefficients and hence integers (Chap.

IX, Th. 8, Cor. 3).

Moreover, d [a] is a rational number and hence A lf
= r1d[a],

and A 2i= r2d[a], are rational numbers. Therefore, A x and A 2

are rational integers. Hence every integer, o>, of k[a] can be

put in the form

A + A
2
a

where ^ t and ^4 2 are rational integers and J[a] is the discrimi-

nant of a.

Suppose, now, all integers of the realm to be written in the

form 3) and consider those in which A 2 is not equal to o.

Among these there will be some in which A 2 will be smaller in

absolute value than in any of the remaining ones.

A
x

' + A
2
'a

3)

Let ft>„ =
rf[a]

be one of these. Then A 2 will be the greatest common divisor

of the values of A 2 in all integers of the realm; for if this be not

the case, let

A
x

" + A
2
"a

be any integer such that A" is not divisible by A 2 , and let A be

the greatest common divisor of A 2 and A 2
"

. Then we can find

two rational integers a and b such that

aA 2
' + bA 2

"= A, I .
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and hence

7 = ™2 + ^3
= -^

aA/ + 6A
t

" + Aa

is an integer in which the coefficient of a is less in absolute value

than A 2 , which is contrary to the supposition that there is no

value of A 2 less in absolute value than A 2
'. Hence

A 2
= a2A 2 ,

where a2
is a rational integer.

Denoting «— a2w2 by to*, we have

A
x
+ A

2
a - <y4/ - a

2
A

2

fa A
x
- a

2
A/

d\a\ d[a]
'

Consider now those integers of the realm in which A 2
= o,

butA^o. 1

There will be one or more among them in which A x is less in

absolute value than in any of the remaining ones.

Let <o1
= A 1

,,,/d[a]

be one of them. We see as above that A™ is the greatest com-

mon divisor of the values of A t in all the integers in which

A 2
= o, ^/4=o,2

and hence <o*= to— a2 o)2
= d^x,

or 0)= Ojtoi -j- t72co2 . 4)

There exist, therefore, in every quadratic realm two integers,

<alf eo2 , such that every integer, w, of the realm can be expressed in

the form 4), when alt a2 are rational integers.

^he remainder could be worded much more simply, if the fact that

(A t
— 0^4/) /d [a] is a rational integer be made use of, but the above form

seems better as it is in line with the general theorem.
2 The integers, in which A*=zo and Ai=^=o, are evidently the rational

integers, excluded. Also A"' = d[a], and w x
— 1. We have

A x
— a2Ai = a^i", where at is a rational integer.
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Every pair of integers, wls »3J possessing this property is called

a basis of k(a).

Cor 1. // »XI w2 be a basis of k(a), then w/, «2
' is a basis of

the conjugate realm k(a').

Theorem 2. If mlf w2 be a basis of k(-\/m), the necessary and

sufficient condition that

• * 1

W2
*= b^-L + ^2W2>

w/^r*? alf a2 , & 1? &2 are rational integers, shall be also a basis of

k(^/m) is

K K
— db I,

For the proof of this theorem see the corresponding one in

k(i) (Chap. V, Th. 1).

§ 5. Discriminant of the Realm.

If m19 w2 be a basis of &(\/m), the square of the determinant

formed by these integers and their conjugates is called the dis-

criminant of the realm and is denoted by d; that is,

13

*-P "' 2

We see that d is a rational integer, for it is an integral sym-

metric function of the roots, Vw, —y/m, of the equation

x2—m= o,

and hence 'a rational integral function of the coefficients of this

equation, which are rational integers.

That the value of d is independent of the basis chosen may be

shown as in k(i).

The discriminant of every integer of the realm is divisible by

the discriminant of the realm; for, if

a= a1(o1
-j- a2o)2 ,

"Hilbert: Bericht, p. 181.
2
Hilbert: Bericht, p. 194.
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be any integer of k(^/m), and

i = b 1o>1 -J- b 2a>2 ,

then

d\a\ =

K w\
a

l
a
t\

= ^V.

d[a]=d,

K K = d=
a

l
a

2

CO,

If

then

and i, a, is a basis of the realm.

We see, moreover, that when d [a] is not divisible by the square

of a rational integer, we have
Q

d[a]=d,

and hence I, a, is a basis. 1

The converse of this theorem is, however, not true; that is

d[a] may be divisible by the square of a rational integer and

still i, a, be a basis.

1 The definition and deductions of this paragraph are immediately ex-

tendable to the general algebraic realm of the wth degree. The last fact

mentioned is of especial importance as it may be shown by the method

used in the text that, if be a root of

Xn + diXn~x -\ + an = o,

where au •••, an are rational integers, and d[0] be not divisible by the

square of a rational integer, then I, #, ..., n_1 is a basis of k(B). The
great value of this fact is that although we may by the method of § 4 prove

the existence of a basis in a realm of the nth degree, we have, however,

general methods of determining a basis only in the cases of » = 2 or 3.

The case n = 2 will be discussed in the next paragraph ; that for n = 3 will

be found in Woronoj : The Algebraic Integers which are Functions of a

Root of an Equation of the Third Degree, this being a translation of the

Russian title. A short account of this method will be found in : Tafel der

Klassenanzahlen fur Kubische Zahlkorper, by the author.
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Thus in k(i)> d[i],=— 4, is divisible by 2 2
, but I, its a basis

oik(i).

§ 6. Determination of a Basis of k(\/m).

We have seen that every number of k(^/m) can be written

in the form

aWi+ fyv/w,

where rt and r2 are rational numbers.

Let rx
= a/c, and r2

= b/c,

where c is the least common multiple of the denominators of r
x

and r
2 , r

x and r
2 being in their lowest terms.

Then a = , 1)
c '

where a, b and c are rational integers having no common factor.

The necessary and sufficient condition that a shall be an integer

of k(^/m) is that it satisfy an equation of the form

x2
-f- px + q= o, 2)

where p and q are rational integers, the other root of 2) being

the conjugate of a; that is,

a' =
a — bym

Hence we have as the necessary and sufficient conditions that a

shall be an integer of k(^m)

a + a' = — a a rational integer, 3)

#2 — mb2
« . x

aa r = 2— = a rational integer. 4)

Remembering that a, b and c have no common factor, and m no

square factor, we shall show that c can have a value different

from 1 only when m= 1, mod 4, and then can take only the value

1 or 2.

'9
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i. Let c= pc1} p being a prime different from 2. Then from

3) it follows that a= o, mod p,

and from 4) that a2— mb 2= o, mod p
2
,

and hence mb2= o, mod p
2

. 5)

But 5) is impossible since m can not contain the squared factor

p
2

, and if b were divisible by p then a, b and c would have a com-

mon factor p. Hence c can contain no prime factor different

from 2. s

ii. Let c= 2 e
. We can prove exactly as in i that e can not be

greater than 1.

Let e— 1 ; that is, c= 2. Then from 4) it follows that

a2— mb2= o, mod 4, 6)

From 6) we see that a can not be even, for this would require

a2= o, mod 4,

and hence m&2= o, mod 4,

from which it would follow that either m contains the squared

factor 22
, or a, b and c have the common factor 2.

Hence a= 2a x + *•

Likewise b= 2bx + 1

;

for b even gives &2= o, mod 4,

and hence from 4) a2 ==o, mod 4,

which we have seen to be impossible. We see therefore that, if

c= 2, a and b must both be odd in order that a may be an

integer; that is,

a= 2a1 -\-i and b= 2b±
-\- 1.

We must now determine the form that m must have in order

that a2— mb 2 may be divisible by 4; that is, that c may be 2.

From a= 2ax -f- 1 and b= 2b\ + I it follows that

a2= 1, mod 4,

and &2 == 1, mod 4,
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and hence from a2— mb2 z==o, mod 4, it follows that

1

—

m= o, mod 4. 7)

Therefore a and b odd and w= 1, mod 4, are the necessary and

sufficient conditions that a 2— mb 2 may be divisible by 4. We
can have therefore c= 2 when and only when these conditions

are satisfied. Hence, when m=i, mod 4, every integer, a, of

&(Vra) has the form

a -f- b\/m
a —

*

where a and & are both odd or both even, and every number of

this form is an integer of &(\/w).

When w= 2or3, mod 4, the condition 7) not being satisfied, c

can not equal 2, and every integer of k(^/m) has the form

a= a-{- bym,

where a and b are rational integers. Every number of this form

is evidently an integer of k{^/m). The cases m=l, 2 or 3,

mod 4, include all possible forms of m, ra= o, mod 4, being

excluded, since m would then contain a squared factor. These

three cases are illustrated respectively by the realms &(V— 3),

&(V2) and k(y^i).
We shall now show that, if w represent s/m, V ra or ( 1 +\/m)/2

f

according as m= 3, 2 or 1, mod 4, then all integers of k(^/m)

can be expressed in the form

a= u + V(o,

where u and v are rational integers. This is at once evident

when w= 3or2, mod 4.

To show it when w= 1, mod 4, we observe first that

1 -f Vm
co = —

2

is then an integer, for it is of the form {a-\-byJm)/2, where a

and b are both odd.

a + bVnt
Then, if a. =
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be any integer of k(^m) (ra=i, mod 4), we have, since

\/m= 2(t>— 1,

a -f b(2(o— 1) a — b
a = ^ =

f- baa
;

2 2

that is a= u + Vm,

where u=(a— b)/2, v=b are rational integers; for a and b

are rational integers, and (a— b)/2 is an integer, since a and b

are both odd or both even.

Examples.

1. Give a basis of each of the following realms : &(V5),&(\/6),
k(\/—¥), fc(V—"13), &(V75) and £( V^i).

2. Tell whether each of the following pairs of numbers is a

basis of the realm to which it belongs, 2 -|- 3 \/6, 1 -j- -y/6; 1 -+- V°\

7 + 6V6; K3 + 7V5), i(-i— 3VS).



CHAPTER XI.

The Ideals of a Quadratic Realm.

§ i. Definition. Numbers of an Ideal.

An ideal of a number realm is a system of integers, alt aoy a3 ,

•••, of the realm infinite in number and such that every linear

combination, A^+ A2a2+ A3a 3 -| ,of them, where Ax , A2 , A3 ,
• • •

are any integers of the realm, is an integer of the system. 1

The integers of the infinite system which constitutes the ideal

are called the numbers of the ideal.

§ 2. Basis of an Ideal. Canonical Basis. Principal and Non-

Principal Ideals.

Theorem i. There exist in every ideal a of a quadratic realm

two numbers, ix , i2 , such that every number of the ideal can be

expressed in the form

i= llLl -|_ /2 t2 ,

where l
x and l2 are rational integers.

Suppose all numbers of a to be written in the form

t= a1o)1 -f- a2o)2 ,

where <olf w2 is a basis of the realm, and consider those for which

a2 =f=o.

Among them must be some in which a2 is smaller in absolute

value than in any of the remaining ones.

Let t2 ,
= b(*

x
-[- c<»2> De one of these ; then c will be the greatest

common divisor of the values of a2 in all the numbers of a (see

Chap. X, Th. i).

We have a2
= l2c,

x The definition given in &(V^~5) wiU be seen later to coincide with

this. See also Hilbert : Bericht, p. 182.

293
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where l2 is a rational integer, and hence

i— 12 l2
= (ax

— l2b ) m%'

Consider now those numbers of a in which a2
— o, but at =f=o.

Just as before we can show that there exists among them cer-

tainly one, i1
= ao) 1 , such that a is the greatest common divisor

of the values of ax in all the numbers of the ideal for which

a2= o, a x =4= o.

Hence a x
— l2b= lxa,

where l
x

is a rational integer, and

we have i— l2h =: h li}

that is i= lxix
-\- 12 l2 ,

hence ix , i2 are the desired numbers.

Any pair of numbers of a such as ij, i2 , having the property

required by the theorem, is called a basis of the ideal a. The nec-

essary and sufficient condition that any other pair of numbers of a

h*= aih + a2^

t2
*= b x ix + b2 t2 ,

shall be a basis of a is that

K K
dz I

This condition can be satisfied by an infinite number of sets of

rational integers, a lf a2 , b lt b2 , and hence each ideal has an infinite

number of bases. We shall call the particular basis a<aXi b<ax + co>2

defined as above a canonical basis. Taking i,« as a basis of the

realm, we have as a basis of c^a, b + c<o, an especially convenient

form, in which a is evidently the rational integer smallest in abso-

lute value occurring in a.

Cor. i. // ax(ox -J- a2w2 , b x
o) x

-\- b2<a2 and cx<ax
-\- c2o)2 , dxmx + d2w2

be bases of the same ideal, then

b
i

b2\ d
i
d

2

1 See Chap. V, Th. i.



THE IDEALS OF A QUADRATIC REALM. 295

Cor. 2. // a 1o)1 + a2w2 , b 1o)1 -f- b2<o2 be a basis of an ideal, a,

and c1o)1 -f- c2<a2 , d1w1
-j- d2<o2 be any two numbers of a, and

d
x
d

2 K K
then cx<ax

-\- c2to2 , d1(a1
-j- d2 <a2 is also a basis of a.

Th. 1 shows at once that all ideals of a quadratic realm would be

obtained, if we paired the integers of the realm in all possible ways and

took each pair a, j3, as defining an ideal (a, /3) ; for among these pairs

would be certainly a basis of every ideal of the realm. In this pairing,

however, each ideal would be repeated an infinite number of times.

The definition given of an ideal (§ 1) holds for realms of any degree,

as does a theorem similar to Th. 1 : namely, in every ideal of a realm of

the nth degree there exist n integers, H, h, • ••,% such that every number

of the ideal can be expressed in the form hii -f- &*«+ • • • + l^n, where

h, U, •••, In are rational integers. See Hilbert: Bericht, Satz 6.

If a lt a2 ,
• • •, ar be r numbers of a such that every number of a

can be represented in the form

\xa2 + A2a2 + • • • + XrCLr, I )

where a^ A2 , ---yXr are integers of the realm, we can define a by

the symbol (a 15 a2 , --^ar) ; that is, we write

a= (a ly a2 , --,ar ),

understanding thereby the infinite system of integers of the form

1), the A's taking all possible values. We shall call alf a2f --^CLr

the numbers defining the ideal a.

The numbers of a are all those of the form I ) . We may intro-

duce into the symbol any integer which is a linear combination of

those already there without changing the ideal defined by it.

Thus, if a s= \ta x + A2a 2
-| 1- \rCLr ,

we have a= (a lf a2f •••,ar ) = (a ±,a2 , ••-,ar,a,) ;

for the system of integers

Kai + Ka2 H + ^rCLr

is coextensive with the system

A^i + A2a2 + '
*

' + ^cir+ Asa8 ,

the A's taking all possible values.
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Likewise, if any integer in the symbol be a combination of the

remaining ones therein, it may be omitted from the symbol.

Thus, if a x
= X2a2 + A3a3 + • • • + Arar ,

we can write

a= (a lt a2 ,
• • •, a r ) = (a2 ,

• • •,

a

r )

.

We speak for the sake of brevity of (a lt a2 ,
- • • , a.r ) as the

ideal a, and instead of saying that we introduce a number, as ,

into the symbol of a or omit it from the symbol, say that we

introduce a 8 into the ideal a or omit it from the ideal, although a 8

is and remains a number of a. It will be convenient also, if ilf t2

be a basis of a, to speak of (i1? i2 ) as a basis representation of a.

The determination of the question whether an integer a belongs

to a given ideal a will be greatly simplified by some properties of

ideals which will be developed later. It can, however, be easily

decided now, if we have a basis of the given ideal, for if

&>= a
i + a2w\ De any integer of the realm and b x + b2u, c i + C

2W

be a basis of a, the necessary and sufficient condition that a shall

be a number of a is evidently that two rational integers l
x , l

2

exist, which satisfy the equation

hiPx + ^2W ) + h( ci ~\~ c2<°) =^1 + 2w - 2 )

Equating the coefficients of the powers of o> in the two mem-
bers of 2), we obtain the equations

b
1
l
1 + c1

l
2
= a1 ,

b 2l1 -\-c2l2
= a2 ,

3 ^

which determine lx , l2 .

If the values of llt l2 found from 3) be integral, a is a number

of a, otherwise not. If we have not found a basis of a, we can

generally determine whether a is a number of a by means of the

fundamental condition that a is or is not a number of a according

as a is or is not a linear combination of the numbers defining a

with coefficients which are integers of the realm. For an ex-

ample of this method see p. 259.

1 Unless the contrary be stated, 1, w is taken as a basis of the realm.
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An ideal which consists of all and only those numbers of the

form \a, where a is a particular integer and A any integer of the

realm, is .called a principal ideal and is denoted by (a). An
ideal not having this property is called a non-principal ideal. For

examples of principal and non-principal ideals see Chap.VIII,

§ 10. It should be observed that although all numbers of a prin-

cipal ideal, (a), are multiples of the single integer a, when as

multiplier we take any integer of the realm, nevertheless, just as

in the case of a non-principal ideal, a basis of (a) consists of

two integers, aoi
t , ato2 , where a^, <o2 is a basis of the realm, for

every number of (a) has the form

{a1(o1
-j- a2o>2 )a= a xOLu> 1 -f- a2CLo)2)

where alf a2 are rational integers.

For example: a basis of (i -fV— 5) is * +V— 5> (i +V— 5~}x

V="5 ; that is, i +V^5, — 5 + V-^T-
If the difference of two integers a and /3 be a number of the

ideal a, this fact is expressed symbolically by writing

a= ft, mod a, 4)

and we say that a is congruent to f3 with respect to the modulus a.

The fact that a— (3 is not a number of a is expressed symbol-

ically by writing

a 4=/?, mod a, 5)

and a is said to be incongruent to /? with respect to the modulus

a. Every number, a, of the ideal a is congruent to o with respect

to the modulus a, or in symbols

a= p, mod a. 6)

No meaning other than the symbolic expression of the facts

mentioned must be attached for the present to 4), 5) and 6).

Thus we write

3—2V—I^i + sV^, mod (7, S+V^),
since 3— 2\/^5— i

1 + 2V—~5) =2—4V— 5

is a number of (7, 3 +V— 5), and we write

i + 5V^5+ 2— 3V— 5, mod(i+2V=r5),
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since 1 + 5V— 5— (2—3V~ 5) =— * + 8V~ 5

is not a number of (1 + 2V

—

5)-

Although the actual determination of a basis of any given ideal

of a quadratic realm must be postponed until the properties of

ideals have been more fully investigated, we can, however, now
determine whether any two given numbers of an ideal a are a

basis of a.

The necessary and sufficient condition for alt a2 to be a basis

of the ideal a,= (a lf a2 ,
•••, ar ), is evidently, since every num-

ber of a has the form A^ + A2a 2 + • • • + Arar , that for every

possible choice of the A's we shall be able to find two rational

integers, Ilt l2 , such that

Ai^i + A2a2 -\ f- XrOLr= tfo + l2CL 2 . j)

Let w1} a), be a basis of the realm, and

&i= ciiOi 1
-\- biO)2

"1

\i= CiWi -f- C?iW2 J

We have on equating the coefficients of the number defining

the realm in the two members of 7) two equations between

rational integers, whose satisfaction by suitably chosen rational

integral values of lXJ l2 for all possible choices of the c's and d's

is the necessary and sufficient condition that a lt a2 shall be a

basis of Q.

* Ex. 1. That 3, 1 + V— 5 is a basis of (3, 1 + V— 5) may be easily-

shown by the above method. Every number of (3, 1 + V — 5) has the

form

(c1 + rf1V^5)3+(c2 + ^V^r5)(i + V^5), 8)

where Ci, di, c«, d2 are rational integers.

If 3, i + V — 5 be a basis of (3, i + V — 5), then every number of

the form 8) must be expressible in the form hs + /2 (i + V— 5)> where

h, U, are rational integers, and hence for every possible choice of

Ci, du c2, d2, we must be able to find rational integral values of h, U, which

satisfy the equation

(ft + <W^5)3 + ic, + hyp-*) (1 + V— S) = h3 + 4(1 + V=l),
or

3ft + cz— $d2 -f- (3di+ C2 + d2 )V^ = 34 + h + hy/^J. 9)
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Equating the coefficients of the different powers of V — 5, we have

$Ci + c2— 5^2 = 3/1 + U 10)

3di + c2 + d2= U, 11)

as the two equations whose satisfaction by rational integral values of

It, h for every possible choice of Ci, di, c 2 , d2 is the necessary and sufficient

condition that 3, 1 + V — 5 shall be a basis of (3, 1 + V— S)- Sub-

tracting 11) from 10), we obtain

3*i— 3di— 6d2= 3/1,

12)
Zdi -\-c2 -\-d2= U,

a system equivalent to 10), 11), and which evidently fulfils the required

conditions.

Hence 3, 1 + V — 5 is a basis of (3, 1 + V — 5)- In this particular

case, we might have arrived at the result by simply observing that

1 + V — 5 must be the required basis number b + cyj — 5, since c has

in 1 + V — 5 the smallest possible value; that is, 1.

Moreover 3 must be the basis number a, for if (3, 1 + V— 5) contain

a rational integer smaller in absolute value than 3, it would contain 1

and we should have

(3, i + V"=r5) = d),

that is easily shown to be impossible, the equation

(ft + ca/^5)3 + (di + <W^~5) (1 +V^) = 1

not being satisfied by rational integral values of Ci, c2, di, d2 . Therefore

3, i + V — 5 is a canonical basis of (3, 1 + V — 5).

Having shown that 3, 1 + V — 5 is a basis of (3, 1 + V— 5)> we
know that the necessary and sufficient condition for any two numbers,

S t2, to be a basis of (3, 1 -f- V— 5) is that

where <h$ a2, bi, b2 are rational integers satisfying the condition

|*i **|
==±i.

Pi K 1

This condition is evidently satisfied by an infinite number of sets of values

of (h, a2, bu b2, from which we obtain by 13) an infinite number of

different bases of (3, 1 -f- V — 5)- Thus since

II 4

we see that

3.3 + 1 . (1 + V — 5) = io + V — 5

11.3 + 4(1 + V— 5) =37 + 4 V^S
is a basis of (3, 1 + V— 5).
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On the other hand

ii— 4V^
is not a basis of (3, 1 + V

2

5 = 2.3 — i(i + V — 5),

5=5-3— 4(l+ \F"S).

-5), since

- I
I = -3*±i.

5 -4|
By means of the condition given in Th. 1, Cor. 1, it may be shown even

more easily that 5 —V— 5, 11 — 4V— 5 is not a basis of (3, 1 + V— 5) ;

for 1, V— 5 being a basis of the realm, we have

3 = 3-1+0- y/~=5, 5 — V^5 = 5 • I +— I • V 7̂ ,
1 + V^5=I • 1 + 1 • V"37! 11— 4VT77

5 = ii • i+— 4- V^,
5

11 -4

Ex. 2. We can show in like manner that
3+V 3

t

3 + 5V —

3

2

is not a basis of the ideal (— 2 + »,'—
1 + 5&O of the realm &(V — 3).

1,
* ~r V 3 be ing taken as a basis of the realm.

2
Proceeding as in Ex. 1 we see that the necessary and sufficient con-

dition for — 2 + «, — 1 4- 5W to be a basis of the given ideal is that the

equation

(d + <*»*) (— 2 -f- «) -f- (c2 + &«) (_ 1 4. 5co)

14)= /1 (-2 + o,)+/2(-I + 5«)

shall be satisfied by rational integral values of h, h for every possible

choice of cu di, c2, d2 .

Performing the multiplications indicated in 14), putting w"= — 1 + w
,

and equating coefficients of like powers of « in the two members, we have

the equations

— 2Ci— C2 -\- di— 5rf2 s= — 2/1— h,

which give

These equations evidently do not give integral values for h, U for

every possible choice of Ci, di, c2, d2 ', for example, for a = dx = c2 = d2= 1.

Hence — 2 -f-
w, — 1 -f- 5W is not a basis of (— 2 -)- w, — i_[_5o>). We

have chosen an ideal of the realm k{\/ — 3), in which the unique fac-

torization law holds in the ordinary sense, to emphasize the fact that

with the introduction of ideals all quadratic realms are to be treated

1 + 5^2— 3^i--6d2
-
~-h + 5k

— 9^1 + 2fl?x--31&2= — 9k

9c2 — 5^i-- I7c?2 -= 9/2,
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alike, and that all theorems to be deduced hereafter will be equally valid

whether the unique factorization law holds in the ordinary sense or not.

Ex. 3. Show both by the above method and by the nature of a canonical

basis that 7, 3 + V~ 5 is a basis of the ideal (7, 3 + V=r5) ; also that

3 + V— 5, 5 + 4V —

5

is a basis of the same ideal. In k(yj^23)

show that 3,

I + >^~ 23
is a basis of the ideal (3,

* + ^~ 2A . a iso

q _1_ ^-v / 2 "3

that 4 + V— 23, — is a basis of the same ideal.

In k{yJ6) showthat 10 + $\/6, 6-\-2\J6 is a basis of the ideal

(10 + 3V6, 6 + 2V6).
Ex. 4. Show that 7 -f 7V— 5, — 5 + 3V— 5 is not a basis of the ideal

(7 + 7V— 5, — 5 + 3V— 5). _
Ex. 5. Show that (3* —

J
is a principal ideal of &(V~i3)-

Show that the two ideals (2,
I + ^~ I5

) and (3, ~
+ ^~ I5

) are

both non-principal ideals of k(yj— 15), but that their product is a prin-

cipal _JdeaL Show that (2, 1 + V— 13) is a non-principal ideal of

*(V— 13).

§ 3. Conjugate of an Ideal.

// a be any ideal, the ideal, zvhose numbers are the conjugates

of the numbers of a, is called the conjugate of a and is denoted

by a'.
1

It is easily seen that, if a= (alt a2 ,
• • •, a„) be any ideal,

then a'= (a/, a/, •••', a/) is the conjugate of a; for, if

^ia i + A2a 2 + * " ' + ^nCln

be any number of a, its conjugate

A/a/ + A/a/ H h A»'a»'

is a number of a, and vice versa.

Moreover, if axwx -f- a2o>2 , fr^ + 62w2 be a basis of a, where

*ti o>2 is a basis of the realm, then a^/ + «2°)2

/

> ^iwi' + ^^ is a

basis of a'. The truth of the last statement is readily seen when

we remember that, if a1(o1 + a2w2 , fr^ -f- b2a>2 be a basis of a,

then every number, a, of a can be expressed in the form

a==a(a 1 oi 1 -}-a2a>2 ) -f- b{b1(a 1 + &2<o2 ),

where a and & are rational integers.

The corresponding number, a', of a', being expressible in the

form a ,= a(a 1 (i) l
' + a2o>/) + b^b^ + b2o)2 ),

it is evident that a^/ + a2w/, &!<»/ + & 2<o/ is a basis of a'.

1 Hilbert: Bericht, p. 191.
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For example, the conjugate of (2 + 3V

—

5, 7 + 2V— 5> *7)

is (2— 3Vzr 5, 7^2y^5, 17)^ also since 3, 1 +V^5 is a

basis of (3, 14.y-~.-5), 3,1—V:=r
5 is a basis of (3> x —V— 5)-

§ 4. Equality of Ideals.

Two ideals, a,= (a 1,a2,---,ar ), and &,= (/?i,/?2 > ••-,/?«), are

said to be equal, and we write a= B, when every number of a

is a number of fc and every number of fc is a number of a.

The necessary and sufficient condition for the equality of a

and h is that every number, ai, defining a shall be expressible

in the form

ai= A1 1 + A2flH hA8/?s,

and that every number, /?y, defining b shall be expressible in the

form pj= fijO^ + fi2a2 -\ f-
{xrar .

The practical test of equality is to see whether the symbol

defining either one of the ideals can be reduced to that defining

the other by the introduction and omission of numbers under the

laws given in the preceding paragraph. 1

Ex. 1. Show that (6 + 2V — 5, 56+ 7V~ 5) = 05 + 5V— 5, 14).

Ex. 2. Show that

(

I+
2

>/l3
, 5+8/^3, 5 + 2 fft$) = (5 + 14 1A3, 6/IE3).

Ex. 3. Show that (7, 1 +V=i3) 4= (7, 1—V=i3).

§ 5. Multiplication of Ideals.

By the product ah of the two ideals

w understood the ideal, whose numbers consist of all possible

products of a number of a by a number of b, together with all

linear combinations of such products with coefficients which are

any integers of the realm. 2

We have therefore

ah= (aA, • • •, a^, • -,OrA, • • •, arp8 ),

'See Chap. VIII, §9.
2
Hilbert: Bericht, p. 183; also see Chap. VIII, § 11.
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where the numbers defining qB are all possible products of the

numbers defining a by those defining b.

If a=(a) and 5= (ft, ft, —,ft),

then oB= (aft, aft, • • •, aft).

If a=(a) and B=(0),

then ab=(a£),

and we see that the product of two principal ideals is a principal

ideal.

It is evident from the definition that

ah= ba,

and that ctb-c= a-bc;

that is, that the commutative and associative laws of multiplica-

tion hold for ideals.

Ex. Show that

(2, V^6) (3, i - V^6) (5, 2 + V^26) = (2 + V -26).

§ 6. Divisibility of Ideals. The Unit Ideal. Prime Ideals.

An ideal, a, is said to be divisible by an ideal, b, when there

exists an ideal, c, such that

a= bc.

We say that b and c are divisors of o, and that a is a multiple

of b and c. We have as a direct consequence of the above

definition

:

// each of a series of ideals a lt ct2 , a3 ,
•••, be a multiple of the

next following one, then each is a multiple of all that follow.

If two or more ideals, a, b, c, •••, be each divisible by an ideal

j, j is said to be a common divisor or common factor of a, b, c, • • •.

Theorem 2. // the ideal a be divisible by the ideal b, then all

numbers of a belong to b.

For suppose that

a= bc,
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where

a=(ap a 2,"-,a r ), b= (ft,ft, ••-,/?*), c= (yi,y8 , •••,?#);

then a=(ftyi, "-fPxyt, ••,fty„ •••jftyt)-

The numbers, fty15 •,(3syt, defining a are seen to be numbers

of ft. Hence all numbers of a are numbers of B.

Therefore

h= (ft, ft, ••-,/?*, aif a2 ,
• • •, ar ),

and c== (yi,y2> "$yu <h><**> •••,otr ).

Cor. 1. // fcco ideals fo .swc/j fto £?ac/i w a divisor of the

other, they are identical.

The converse of Theorem 2 is also true ; that is, if all numbers

of a be numbers of b, a is divisible by h, but its proof must be

deferred until some necessary theorems have been demonstrated.

Every ideal is divisible by the ideal (1), which consists of all

integers of the realm. Therefore (1) is called the unit ideal.

The only ideal having this property is evidently (1), for every

divisor of (1) contains all integers of the realm and is (1). We
observe that (r/) = (1), where 77 is any unit of the realm.

Since (i)ct=a, there is, in the case of ideals, no distinction to

be made corresponding to that made between associated integers.

An ideal, not the unit ideal and divisible only by itself and the

unit ideal, is called a prime ideal.

In k{V=5), (2, 1 +V^), (3, 1 +V ::^5), (3. 1 -V— S)

were shown to be prime ideals (see p. 264).

Two ideals are said to be prime to each other when they have

no common divisor except (1). Two integers a and fS of the

realm are said to be prime to each other when the principal ideals

(a) and (ft) are prime to each other.

For the sake of brevity we shall often say that an integer a

is divisible by an ideal a, instead of saying that the principal ideal

(a) is divisible by a. The latter meaning is, of course, always to

be understood. Similar expressions, such as " a prime to a,"

" the greatest common divisor of a and a," etc., are to be taken

in the same sense.
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By means of the definition of divisibility and the fact that

every ideal has a basis, we can prove the following important

theorem

:

Theorem 3. An ideal j is divisible by only a finite number of

different ideals.1

Let a= (ao) 1 + b<a2 , cw1 + d<a2 )

be a divisor of j, where aoi1 -f- bo)2 , co)1 -f du>2 is a basis of a, <olt <o2

being a basis of the realm.

Let /? be any number of j. Then, since

n [/?]=/?/?'= 0, mod
i,

and a is a divisor of }, we see that by Th. 2

n[fi] e=o, mod a;

that is, the rational integer n[(3] belongs to every divisor of \.

Denote now w[/3] by n and let alf bx , clt d1 be the smallest posi-

tive remainders of a, b, c, d with respect to n. Then

a= (aio-L -f- b(o2 , cuix -\- do)2 , n)

=3 {a 1o>1 -f- bxu)2 , c^-^ -\- d^^ n) 1)

Suppose every divisor of j to be expressed in the form 1).

Since a lt b lf cls dx can each take only the finite number of values

o, 1,2, •••, \n\ — 1, it is evident that the number of different

divisors of \ is finite.

§ 7. Unique Factorization Theorem for Ideals.

We shall now proceed to prove the theorem whose truth is the

raison d'etre of the ideal; that is, that every ideal can be repre-

sented in one and only one way as a product of prime ideals.

This theorem will enable us to develop for the ideals of the

general quadratic realm a series of theorems similar to those

already given for the integers of certain realms in which the

ordinary unique factorization theorem held.

The proof of the unique factorization theorem for the ideals

1 Hilbert: Bericht, Hiilfsatz 1.

20
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of the general quadratic realm will be very like that for the

integers of R, &(V— i), k(\/— 3) and &(V 2 )- It depends

directly upon the theorem that, if the product of two ideals be

divisible by a prime ideal, at least one of the factors must be

divisible by this prime ideal. The latter theorem is a consequence

of a series of three theorems which have no analogues in those

relating to integers. It depends, in the first place, directly upon

the theorem referred to on p. 304, that, if all the numbers of an

ideal belong to another ideal, the first ideal is divisible by the

second. This depends, in turn, upon the theorem, that, if the

products ab, etc of two ideals, b and c, by a third ideal a be equal,

then b= c, and this upon the theorem, that for every ideal there

exists another ideal such that the product of the two is a principal

ideal.

This last theorem is the starting point of the proof of the

unique factorization theorem and needs for its demonstration a

theorem which we shall proceed to give.

Theorem 4. // the coefficients, a lt a2 , J31} /?2 of the two ra-

tional integral functions of x,

4>{x) ==a 1x-\-a2 and \f/(x) =/3±x + /?2 ,

be integers of k(\/m) and w, an integer of k(\/m), divide each of

the coefficients, y19 y 2 , y3 , of the product of the two functions,

F (x) = <f>(x) ^(x) = a^x* + ( fllft + a£x)x + a 2(32

= 71^ + 72^ + 73,

then each of the numbers a^ly a^2 , a2f31} a xp2 is divisible by w.
1

Suppose a x and /?! =|= o. Then y 1 =(= o. We have

Hence —

a

2/?i/7i and — ^A/Vi are tne roots of

1 Hurwitz : Nachr. der K. Ges. der Wiss. zu Gottingen, 1895 ; also Hil-

bert: Bericht, Hiilfsatz 2.
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Let £ represent either a2px or a1fS2 ; we have

V vj 7i\ rj %
and, multiplying this equation by y x

2
,

€°~— y2£ + 7i73— o.

Since y2 and yiH are divisible by w and o>
2 respectively, the

coefficients of the equation

i-Y-H1
)\(0 ) to \ to J
+

O)
2 °'

that £/o> satisfies, are integers. Hence £/« is an integer (Chap.

IX, Th. 9, Cor. 1 ) ; that is, ax/32 and a^ are divisible by ».

Theorem 5. For ^z/^ry icfea/ a of a quadratic realm there

exists an ideal h of the realm such that the product ah is a prin-

cipal ideal. 1

Let a= (a lt a2 ) where alf a2 is a basis2 of a. We shall show

that the conjugate of a, that is, the ideal &,= (a 1
', a 2'), where

a/, a2
' are the conjugates of a lf a2 , has the desired property. 3

Let <f>(x)=a1
x -{-a2 and ij/(x) = a 1

,x + a2
'.

Form the product

4>(x)iKx) = a 1a 1

,x2
-f- (a^a/ +a 1

,a2 ) jir H-c^A/

= 7i^
2 + y2^ + y3 -

Let be a number defining the realm and let the irreducible

rational equation of which 6 is a root be

x2
-\- arr -f a 2

= o. 1

)

Since yu y2 , y3 are symmetric functions of the roots of 1), they

'Hilbert: Bericht, Satz 8.

" The simplification effected by the use of the basis representation of an

ideal is that, in a quadratic realm, the basis consists of two numbers and

hence Th. 4 need be proved only for functions of the first degree.
3 In the realm of the nth degree the ideal that will have the desired

property is the product of the conjugates of a. This ideal is, however,

not the only ideal having the desired property (Chap. XIV, § 1).
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are rational integral functions of its coefficients i, alt a2 . Hence

Yi> 72j 73 are rational numbers. But ylt y2 , y 3 are also integers,

since a lf a/, a2 , a2 are integers (Chap. IX, Th. 8, Cor. 2).

Hence yu y2 , y3 are rational integers.

Let a be the greatest common divisor of ylf y2 , y3 . Then

ah=(a1a 1
', a,a2

', a t

fa2 , a2a2
')

is equal to the principal ideal (a) ; for by Chap. II, Th. B, we
can find three rational integers, fw t2 , t3 , such that

a= ^i7i + *2y2 + hys

= f^a/ + ^(o^a,/ + a/a2 ) + tza2a2

'

Hence a is a number of ah and we have

ah= (a 1a1

'

t a xa2 , a^a2 , a2a2 , a).

But by Th. 4 each of the numbers a^', a ±a2 , a^a 2 , a2a 2
is a

multiple of a. Hence we can omit them from the symbol and

have ah=(a).

Therefore b is the required ideal.

It will be observed that we have proved that the product of an ideal

of a quadratic realm by its conjugate is a rational principal ideal. This

will be of use later.

Theorem 6. // a, h and c be ideals and ac= 6c, then a^b. 1

Let

a=(a 1,a2,--,ar ), h= (ft, ft, ••-,&), c= (yi,y2 , •••,yt),

and let m,= (filt fi2 , --,iin), be an ideal such that

cm=(y 1^1 , -,y</in) = (a),

a principal ideal.

Then ocm= km,

or a(a)=h(a),

or (axa, a 2a, • • •, ara) =(fta, fta, • •, fta).

Since these two ideals are equal, every number of the one must

1 Hilbert : Bericht, Satz 9.
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be a linear combination of the numbers defining the other, with

coefficients which are integers of the realm.

Hence, if aia be any number of the first and PjO. any number

of the second, we have

aid= ^pxa + £2p2a + • • • + ZsPsCL,

and pjOL= rj^OL^ -f~ f]2CL20.+ • • •
-f- TfrCLfOL,

where the £'s and rfs are integers of the realm. Hence

a«=!a&+*AH \-i*fr,

Pj=n^ + r)2a2
-j [- ^a,..

Hence every number of a is a number of b, and every number

of h is a number of a, and consequently

a= 6.

Theorem 7. 7/ a// numbers of an ideal c belong to an ideal

a, c is divisible by a.
1

Let c= (yu -,yt) and a= (a lf •••,ar,y1 , •••,y*) ;

and let m,= (f^, ••-,/*«), be an ideal such that

ftm=(o1/H, • • • ,

a

r^n, yi/*!, •••,y*/*«) = (a),

a principal ideal.

Then all numbers of am, and hence Yifi1,'",yil**,'"tytiHf'"t

ytfin, must be divisible by a. Hence all numbers of

rcic= (yi/^i, •••>yiMn, •••>y*A*n)

are divisible by a ; that is,

mc= (vxa, • • • , vn*a) = (a) (vx ,
• • , v„« ) = (a)b. 2)

Multiplying both members of 2) by a, we have

cmtc= (a)o6,

or c= ah.

Hence c is divisible by a.

1 Hilbert: Bericht, Satz 10.
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This theorem justifies our use of the notation

a= o, mod a,

to denote that (a) is a multiple of a. For, if a be a number of a,

then from the above theorem it follows that (a) is divisible by a.

From Th. 2 we saw that a necessary condition for an ideal a

to be divisible by an ideal b is that all numbers of a shall belong

to b; from Th. 7 we see that this condition is also sufficient.

Hence every common divisor, b,= (8 lf •,8t), of two ideals

a=(a1, •••,Or), &=(&, •••,£,)

must contain all numbers of both a and b ; that is,

where 8X, •••,$* are any integers of the realm, and every ideal of

this form is a common divisor of a and b.

Among the common divisors of a and b is one, g, to which

belong no numbers other than the numbers of a and b, together

with the linear combinations of these numbers; that is,

This ideal g is divisible by every common divisor, b, of a and

b, for b must contain all numbers of a and b, and hence all the

numbers of g, and therefore is a divisor of g.

As in the case of rational integers, g is called the greatest

common divisor of a and b.

That g is the only ideal having this property is evident ; for did

a second, f), exist, then g must be divisible by I) and I) by g, and

hence g and § be identical (Th. 2, Cor.).

Likewise the necessary and sufficient condition that an ideal, tn,

shall be a common multiple of a and b is that all numbers of m
shall be common to both a and b.

Among the common multiples of a and b is one to which belong

all numbers common to both a and b, together with the linear

combinations of these numbers.

This ideal, I, is evidently a divisor of every common multiple
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of a and b. That I, moreover, is the only ideal having this prop-

erty may be shown as in the case of g.

As in the case of rational integers, I is called the least common
multiple of a and b.

We shall denote the greatest common divisor of a and b by

the symbol a + b, and the least common multiple of a and b by

the symbol a— b. No idea of addition or subtraction is to be

conveyed by these symbols.

From Theorems 2 and 7 we have the important result that an

ideal a,= (a1,Oa, •••,ar), is the greatest common divisor of the

numbers defining it considered as principal ideals; that is, a is

the greatest common divisor of (o^), (a2 ), •••, (ar ).

The fact that we can at once write the greatest common divisor

of any number of ideals by placing in a single symbol all the

numbers defining the ideals is of use in numerical work with

ideals. Thus, if we can show that the greatest common divisor

of two ideals so written is (1), we know that the ideals are prime

to each other.

Ex. The greatest common divisor of (3 -f- V — 5) and (8-f-V— 5)

is (3 + V — 5> 8 + V — 5), and we have

(3 + V^5, 8 + V^l) = (3 + V"=r
5, 8+V=5, 5, 14)

= (3 + V=:
5, 8 + V=I), 5, 14, = 0)

Hence (3 -+- V — 5) and (8+V — 5) are prime to each other.

The ideas of the greatest common divisor and least common

multiple of two ideals may be at once extended to any number of

ideals.

Thus, if alt a2 ,
• • •, am be any number of ideals of a realm, there

is among the common divisors of a^cio, •,am one, g, to which

belong no numbers other than the numbers of a lf a2 ,
•••, Qm,

together with the linear combinations of these numbers; that is,

if a1 =(a 1,-'-,ar), 0*= (ft, •••,/*•),•••, fc»=G«i> •••»**#),

then g= (a lt •••,ar,^1 ,
••-,/?*, ••-,/*!, ••-,!»#).

That g is divisible by every common divisor of av a2 , •••,am

and is the only ideal having this property is seen as in the case of

two ideals. We call g the greatest common divisor of alf a2 ,
• • • , am .
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Likewise the ideal, I, to which belong all numbers common to

a19 a2 , --'yOm, together with their linear combinations and no

others, is evidently the only common multiple of a : , a2 ,
• • •, am that

is a divisor of every common multiple of a lf a2 ,
•••, am . It is

therefore called the least common multiple of alf a2i •••,om .

We write symbolically

Q= a1 + a2 -\ \-0m t

and l= a±
— a2

— •••

—

dm-

We have as an immediate consequence of Th. 7 and the defini-

tion of the least common multiple of two or more ideals the

following

:

Cor. // an ideal a be divisible by each of the ideals h lt b 2 ,
•••,

B r , then a is divisible by the least common multiple of h t , b 2 , ••, br .

We shall see later that the greatest common divisor, as defined

above for ideals, possesses the remaining two properties which

distinguished the greatest common divisor of two or more integers

in those realms in which the unique factorization law held in the

ordinary sense (see p. 318).

We have now a full justification of our introduction in

feCV31^) of the ideals ( 2^_! +Vzr 5), (3, i+V^), ( 2 >

1 —V— 5) and (3, 1 — V— 5) as the greatest common divisors

respectively of (2) and (i+V— 5)» (3) anc* (1 +V— 5), (2)

and (1—

V

zr5),and (3) and (i—-yCTj)-
Th. 7 having been proved, the remaining theorems necessary

for the proof of the unique factorization theorem and the proof

of that theorem itself for ideals are strictly analogous to the cor-

responding theorems in the realms in which the unique factoriza-

tion law held in the ordinary sense.

It may seem singular that the divisors of an ideal, a, are in a way
larger systems of numbers than the ideal, a, itself; that is, they contain

not only the numbers of a but in addition any other numbers of the

realm that we choose to introduce.

When, however, we remember that by Th. 7 an ideal divides every one

of its numbers considered as a principal ideal, it is evident that, in
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general, the more numbers we introduce into the symbol of an ideal,

that are not linear combinations of those already there, so much the more
do we narrow the ideal by thus placing more restrictions upon it.

For example; the ideal (14, 3 -f V — 14) is the greatest common di-

visor of (14) and (3 + V

—

14)» and the ideal (14, 3 + yJ~ZT^ 2 ),

that contains all numbers of (14, 3 + V— 14) and other numbers be-

sides, divides not only (14) and (3 -f- >/ -^4), and hence is a divisor

of (14, 3 + V — J4)» DUt must also divide (2).

It is analogous to the case of rational integers when we observe that 120

is divisible by every common divisor of 120 and 18, and that every common
divisor of 120 and 18 is divisible by the common divisors of 120, 18 and 4.

Examples.

1. Find the greatest common divisor of (8 +V— 14) and

(4—V— 14).

2. Find the greatest common divisor of (26, 10-J-2V— 14,

13V— 14, — 14+5V— 14) and (10, 2 + 2V— 14, 5V— 14,

— 14+V— 14).

3. Show that the two ideals (5, — 4+V-—14) and (13,

5— 12V— 14) are prime to each other.

4. Making use of form of canonical basis, show that (23,

8 -f- V— 5) is a prime ideal.

5. Show that (p, b -\-o)) is a prime ideal, p being a rational

prime, b any rational integer, and 1, w a basis of the realm.

6. If p and q be two different rational primes, show that in no

realm can (p) and (q) have a common ideal factor different

from (1).

7. Show that (1 +V— 5) is tne least common multiple of

(3, 1 +V=S) and (2, 1 -f-V^)-
8. Find the least common multiple of (6, 4+V

—

14) and

(10, 6+V— 14)-

9. Show that, if a be divisible by ax and 6 by 6X , then ab is

divisible by a^.

10. Show that, if ah be divisible by QC, then b is divisible by c

and in particular that, if a be divisible by ab, then b= (1).

11. Show that, if a, B and c be any ideals, then

[a+ B]c=oc+ Bc.
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12. Show that

[a + B + c] [Bc + ca + aB] = [B + c][c + a][a + B].

13. Show that, if a be divisible by a x , and ft by h x , then a + B

is divisible by a x + Bi, and also that a— B is divisible by ax
— Br

14. Show that, if a and B be any two ideals, then a + B is the

system of all numbers of the form a -\- ft where a is a number of

a and j3 a number of B.

15. Show that, if a, B and c be any three ideals,

a— [B— c] == [a— B] — c.

16. Show that

[a + B][a— 6]=a6.

17. Show that, if a and B be prime to each other, then

a— B := aB.

Theorem 8. // a and B be any two ideals prime to each other,

there exist a number a of a and a number |8o/B such that

a + ^1. 1

Let a= (alt a 2 ,
• • •, ar ) and B= (ft, ft,

• • •, ft)

.

Since a and B are prime to each other their greatest common
divisor is ( 1 ) ; that is,

a + B= (Op

a

2 ,
• • •, Or, ft, ft, • •

•, ft) = ( 1).

But, since 1 is a number of a+ B, it must be a linear combination

Of CLi,a2 y ••*»«r, ft, ft, "'yps',

that is,

gA + ^20t 2 H h £rCLr + l?ift + ^2ft H h >7*^.= I,

where the |'s and ^'s are integers of the realm.

But £xax + |2a2 + • • • + |rar= a, is a number of a,

and r) xfix + ?72ft + • • • + ^sft= ft is a number of B,

and we have

x This is the analogue of Th. B. See Hilbert: Bericht, Satz 11.
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Cor. // alf ct2 ,
• • •, am be ideals whose greatest common divisor

is (/), then there exist in c^, ct2 ,
•••, aw numbers a lf a2 , •••,afft ,

respectively, such that

<2i + a2 H \-am= i.

Theorem 9. // the product of two ideals, a and b, be divis-

ible by a prime ideal p, at least one of the ideals is divisible by p.
1

Assume that a is not divisible by p. Then a and p are prime

to each other and there exists by Th. 8 a number, a, of a and a

number, ?r, of p such that

a-\-7r= 1.

Let now /? be any number of b, and multiply the last equation

by /?; then

But aft is a number of ab, and hence by Th. 2 of p, since ab is

divisible by p. Moreover, irfi is a number of p. Hence ft is a

number of £ ; that is, all numbers of b are numbers of p, and b

is therefore by Th. 7 divisible by p.

Cor. 1. // ffo product of any number of ideals be divisible

by a prime ideal, p, at least one of the ideals is divisible by p.

Cor. 2. // neither of two ideals be divisible by a prime ideal,

p, their product is not divisible by p.

Cor. 3. // the product of two ideals, a and b, be divisible by

an ideal, j, and neither a nor b be divisible by j, then \ is a com-

posite ideal.

If all the ideals of a realm be principal ideals, the unique fac-

torization theorem in the usual form holds for the integers of the

realm; for, if a and (3 be any two integers prime to each other

in the usual sense, then the ideals (a) and (/?) are prime to

each other, for all factors of (a) and (/?) are principal ideals.

Hence the ideal (a, /?) must be the unit ideal (1) ; for (a, /?)

divides both (a) and (/?) and they have no common divisor

other than (1).

Since (a, £)= (l),

'This is the analogue of Th. C. See Hilbert: Bericht, Satz 11.
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there must exist two integers, | and r), of the realm such that

Th. B would therefore hold for the integers of the realm, and

we have seen that Th. C, and hence the unique factorization

theorem, follow immediately. The converse of this, that, when-

ever the unique factorization theorem in its usual form holds

for the integers of a realm, the ideals of the realm are all prin-

cipal ideals, is evident; for, if a,= (a lf a 2,---,ar ), be any ideal,

the numbers a lt a2 ,
• • • , ar have a greatest common divisor 8, and

since the unique factorization law holds for the integers of the

realm, we can find integers (Chap. V, Th. B, Cor. 2) £lt £2 , --,£r ,

such that

aJi + a2£2 H h a-r£r= 8.

Hence we have

a= (a 19 a2 , ~-,ar)= (a 15 aa, -, ar , 8) = (8),

a principal ideal.

Theorem 10. Every ideal can be represented in one and only

one way as the product of prime ideals. 1

Let j be any ideal. If \ be a prime ideal the theorem is evident.

If j be not a prime ideal, it has some divisor, a, different from
j

and from (1). Then

i=o&.

If a be not a prime ideal we have

a= axa2 ,

where a x and a2 are both different from a and ( 1 ) . Then

If any of the ideals alt a2 , 6 be not prime, we factor them, and,

proceeding in this manner, we reach finally a point where the

factorization can be carried no further, for an ideal, j, is divisible

by only a finite number of ideals (Th. 3).

The ideal j has now been resolved into its prime ideal factors.

1
Hilbert : Bericht, Satz 7.
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Let i=M 2 '-'Pr,

where p 1} p2,---,p r are prime ideals, be the representation so

obtained. We shall show that this representation is unique.

Suppose that j could be represented in another way as a product

of prime ideals, say

Then pfa • . . pr= qxqz
. - . q#. 3)

Since pt is a divisor of the product q tq2
• • •

q8 , it is a divisor

of one of its factors (Th. 9, Cor. 1), say q lf from which follows

*>i=qi-

Then it follows from 3) that

p2
...p

r= q2
•••

qa .

Proceeding in this manner, we see that for each factor in the

product pjp% • • • pr there is an equal one in the product q^ 2
• • •

q8 ,

and, reversing the process, that for each factor in the product

qtq2
'"

<\s, there is an equal one in the product p xp 2
• • • pr, and

that, if a factor be repeated in one product, it is repeated exactly

as often in the other.

The two representations are therefore identical, and the

theorem is proved.

Cor. If the product of two ideals, a, b, be divisible by an

ideal, m, and a be prime to m, then fc is divisible by m.

If we denote by p lt p2,'",pr the different prime ideals that

are factors of j, and by c
x,e2,---,er the number of times that

they are repeated respectively, we have

It is convenient sometimes to allow one or more of the expo-

nents to take the value o, a= o indicating that j does not contain

pi as a factor. It is evident that an ideal j is then and only then

divisible by an ideal b if every prime ideal which divides b occurs

to at least as high a power as a factor in j as it does in b.

Every divisor of j has therefore the form

b= p 1
m>V 2

m*'-'p r
mr

, 4)
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where nti^ei; i=i,2,--,rJ

and every ideal of the form 4) is a divisor of j. If we let m*

run through the *< + x values, o, I, ••-, e iy and do this for each of

the exponents m ls m2 ,
•••, mr , we obtain

different sets of values for these exponents, and each of these

sets gives a different divisor of j. The number of divisors of j

is therefore (e 1 + 1) (e
2 -f- 1) ••• (e r -\- 1).

If i= p 1
mi
^2

m2 •••^rmr ,

and f)=p^/2
• • • p r

nr
,

where pls p 2 , •••, p r are different prime ideals, be any two ideals,

the ideal

where gi is the lesser of the two exponents mi and m(i= l, 2,

•••,r), is the greatest common divisor of j and f).

The ideal

where U is the greater of the two exponents mi and «<(t=l, 2,

•••,r) is the least common multiple of j and f).

We see from this representation of the greatest common divisor,

g, of j and § that, of all common divisors of } and % g has the

greatest norm, and that the quotients, j/g and Ij/g, are prime to

each other (see p. 18).

Theorem ii. If a. and m be any two ideals, there exists a

number, a, of a such that the quotient (a) /a is prime to m.

For example, if a,= (2, 1 -f-V— 5), and m,= (3, 1 +V— 5),

be the given ideals, then a= 2 satisfies the requirements of the

theorem, for
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that is easily seen to be prime to (3, 1 -)-y— 5).

If a ,
= (2, i+V^5), and m,= (1 +V=I

5), be the given

ideals, then a,= 2 + 1 +Vir 5,= 3 +V=r
5, satisfies the re-

quirements of the theorem for

(3 +v^ ,
3 + v
~

s)(2,i+v=T) (7' 3 + v sh

that is prime to (1 +V— 5).

For the actual determination of a in general see Chap. XII, § 7.

We proceed now to prove the theorem.

The truth of this theorem for the case where m is any prime

ideal p is at once evident. For, if there did not exist a number,

a of a such that (a)/a is not divisible by p, then all numbers of

a would belong to ap and by Th. 7 a would be divisible by ap,

which is impossible. To prove the theorem for the general case,

let the different prime factors of m be p lt p 2 , •••,pmi and form

the products

<*!= ap2 • • • pm, a2= ap!p3 • • • pm ,
• • • , am= ap x • • • pm- x ,

which consist of a multiplied in turn by the combinations of

Pi>p2> ••-,Pm taken m— 1 at a time. Let alt a2 , -',am be num-

bers of alt a2 , •••, a OT respectively, such that (aO/c^, («2 )/a2 ,

• • •, (am)/am are prime respectively to p lt p2 ,
• • •, pm , the existence

of such numbers having been proved above since p lf p 2 ,
•••, pm

are prime ideals. Then

a= a1 -\-a 2 -{ \-am ,

is the required number; for a is divisible by a, since ax,a2 , -",am

are all divisible by a, cu being divisible by a, whence all numbers

of cu belong to a; moreover, a is not divisible by any of the m
products

api, ap 2 , '-,apm ,

as, for example, ap lt since a2,as , •••,am are all divisible by ap lf

but a x is not divisible by apx .

It is evident, therefore, that the quotient (a)/a is divisible by
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none of the prime factors p lf p 2 ,
•••

i pm of m, and hence is prime

to m.

Hence a is the required number.

Theorem 12. In every ideal, a, there exist two numbers, a lf

a 2 , such that

a=(a 1,a 2 );

that is, such that a is the greatest common divisor of (a± ) and

(a2 ).

Let a t be any number of a.

By Th. 11 there exists in a a number, a2 , such that the quotient

{a2 )/a is prime to (a x ) ; or, in other words, such that the greatest

common divisor of (a x ) and (a2 ) is a.

But, since a is the greatest common divisor of (at ) and (a2 ),

it contains all and only numbers of the form

P& + p2a2 ,

where f}v fi2 are any integers of the realm. Hence

a=(a lt a2 ).

The truth of this theorem is at once evident for quadratic realms for

we have shown (Th. 1) the existence in every ideal, a, of a quadratic

realm of two numbers ha h such that a= («i, t2). The proof in the above

form has been given, however, as it applies to the general realm of the

Mth degree; see Hilbert : Bericht, Satz 12.

The following theorem is given not only for its own interest

but because from it we obtain a new proof of Th. 11 that is not

dependent upon the unique factorization theorem. Dedekind

makes the unique factorization theorem depend upon Th. 13

(see Dirichlet-Dedekind, § 178, IX).

Theorem 13. // the ideal a be divisible by none of the ideals

Ci» c2 , •••,(:„, then there is a number, a, of a that is contained in

none of the ideals c lf c2 ,
••-•, c«.

If a should be a principal ideal, the theorem is evident. Also,

if there should be only a single ideal, c, the theorem holds, for, if

all numbers of a were divisible by c, a would be divisible by c,
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1

which is contrary to the original hypothesis. We shall now prove

that, if the theorem hold for n < r it holds for n= r, and hence,

since it is true for n=i, it holds in general. To each of the

ideals clf c2 ,
•••, cr, as c«, there corresponds an ideal h8 such that

ab8= a— c„

where h8 is evidently different from (i).

The ideal a is divisible by none of the r products

db lt ah 2 ,
• • •, abr , 5)

since all of the b's are different from (1).

But each one of the c's divides one of these products. Hence,

if we can prove the existence of a number of a, which belongs to

none of the products 5), this number will be the desired number a,

for if a were divisible by c«, it, being divisible by a, would be

divisible by the least common multiple of a and c«; that is, ab8 .

We have now two cases to consider according as the ideals h lf 62 ,

•••, fcr are, or are not, prime each to each. If they be not prime

each to each, some pair of them, say h lf B2 , must have a greatest

common divisor, h t + ft2 , that is different from ( 1 )

.

Then a is not divisible by a(Bx + b2 ), and hence, according to

our assumption that the theorem holds for n < r, there exists in

a a number, a, that is divisible by none of the r— 1 ideals

a(B1 + B2 ),ab3 , --,cibr ,

and hence also is not divisible by ab 1
and ab2 , since they are divis-

ible by a(Bx -|-B2 ). Therefore a is not divisible by any of the

c's. We must consider now the case where the r ideals, b lt b2 ,
• • •,

Br are prime each to each.

Each of these ideals, as 6„ is prime to the product, $«, of all

the remaining ones, and, since they are all different from (1),

Ij s is not divisible by &,. Hence at}8 is not divisible by ab8 , and

there is therefore a number a8 , in a$8 that is not divisible by ab8 .

The number a,= at + a2 -\ \-ar , where a lf a2 ,
• • •, ar are

numbers of a^ lf at)2 ,
• • •, df)r respectively, is a number of a, for each

21
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of the numbers alf a 2> -",ar is a number of an ideal divisible by

a, and is therefore a number of a.

Moreover, a is divisible by none of the r products ablf ab2 ,
• • •

,

ahr ; for, since the ideals §2 , §8,
• • •, §r are all divisible by i) lf all the

ideals ai)2 , •••,af)r are divisible by ab 1} and hence a2 ,

a

3 , ---jCtr are

numbers of qBj.

But ax
is not a number of ab x , and hence a is not a number

of abj.

In like manner it may be proved that a is divisible by none of

the ideals ab2 , abs ,
• • •, abr .

Hence a is the number sought.

Second Proof of Theorem II.1

If m=(i), every number of a satisfies the requirement of

Th. ii.

If m+C 1 )* let c,, c2 , •••,c,l be all the ideals different from a

that divide am and are divisible by a.

By Th. 3 these ideals are finite in number and hence there is

in a a number, a, that is divisible by none of them (Th. 13).

Hence the greatest common divisor, am + (a), of am and (a)

is different from all the c's. But am -f (a) divides am and is

divisible by a, and the only ideal different from the c's, that has

this property, is a.

Hence am-\-(a)=a, 6)

or, what is the same thing, (a) /a is prime to m.

From 6) it follows at once that

am— (a) =m(a).
1 Dirichlet-Dedekind : §178, X.



CHAPTER XII.

Congruences whose Moduli are Ideals. 1

§ i. Definition. Elementary Theorems.

If the difference of two integers, a and /?, be a number of the

ideal o, we have said that a was congruent to /? with respect to

the modulus a, and have denoted this fact by writing

a= /?, mod a. i)

In particular, if a be a number of a, we write

a= o, mod a.

The appropriateness of these symbolic expressions is made

evident by Chap. XI, Th. 7 ; for from it we see that the necessary

and sufficient condition for a— fi to be a number of a is that it

shall be divisible by a. These expressions are capable of many

of the transformations to which ordinary congruences between

rational integers can be subjected. The congruence 1) leads to

a— /?= o, mod a, 2)

and conversely 2) leads to 1).

The following deductions will be seen to correspond number

for number to those given in the case of rational integers (Chap.

Ill, §1). Their proofs are so simple that they will be left to

the reader. For them we fall back upon our original definition of

a= /?, mod a,

as meaning that a— (3 is a member of a, or, what is the same

thing, that the principal ideal (a— /3) is divisible by a. Observe

the similarity between this and the method employed in the case

of rational integers, where we made use of our original defi-

nition of

a= fr, mod m,

1
Hilbert : Bericht, Cap. III.
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as meaning that a— b is divisible by m.

i. // ol= /3, mod a,

and /?= y> m°d a,

then a= y, mod a;

for, if a— (3 and /?— y be numbers of a, a— (S -\-
fi
— y,= a— y,

is a number of a.

The infinite system of integers of the realm which are con-

gruent to a given integer, and hence each to each, mod a, are said

to form a number class, mod a.

ii. // as=/3, mod a,

and yE=8, mod a,

then a ± y S3 j3 ± 8, mod a.

iii. // ass/}, mod a,

then ^a= /x/?, mod a.

iv. // a= /?, mod a,

and y= 8, mod a,

then ay= /?8, mod a;

and, in particular, if

a= /?, mod a,

fftlff a*= /3«, mod a.

v. // /(*) = a *» + a^- 1 + • • • + an,

&£ a polynomial in x, whose coefficients are any integers of the

realm, and if

/3==y, mod a,

then /(/?) =/(y), mod 0.

vi. // fia= (xp, mod a, 3)

Men a= /?, mod a/b,

where b W f/i<? greatest common divisor of (/*) and a.
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For let (fi) = bm and a= bb, where m and b are prime to each

other; then, since fi[a— (3] is a number of a, bm(a— /3) is divis-

ible by bb.

Hence m(a— £) is divisible by b, and therefore, since m is

prime to b, (a— /?) is divisible by b (Chap. XI, Th. 10, Cor.).

We have, therefore, since b= a/b.

a= /?, mod a/b.

In particular, if ji be prime to a, then

aE=/?, mod a.

Hence in this case the congruence i) may be divided by /x.

This indeed is an immediate consequence of the fact that the

greatest common divisor of (jx) and a is (i) ; for then there is

a number /*£ of (./a) and a number y of a such that

/^ + y=i;

that is, there exists an integer £ such that

/*!e=i, mod a. 4)

Multiplying the congruence 3) by £, we obtain

a= /J, mod a.

Conversely, if there exists a number |, which satisfies the con-

gruence 4), the greatest common divisor of (fx) and a is (1) ;

that is, (/x) is prime to a.

vii. If ct^/3, mod a

awe? b be a divisor of a, then

a= j3, mod b.

viii. If a= /3 with respect to each of the moduli au a2 , •••,(!«,

*/*£» az==P, mod I,

zvhere I w ffc /<?a,rt common multiple of alt o2 ,
• ••,(!«.

ix. // a= /?, mod a,

f/z^n (a) and (/?) &az^ £/^ saw*? greatest common divisor with a;
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that is, all numbers of the same number class, mod a, have the

same greatest common divisor with a.

Let b be the greatest common divisor of (a) and a. Then,

since b is a divisor of a, we have by vii

a ===/?, mod b.

But a= o, mod b,

and hence P= o, mod b.

In particular, if any number of a class, mod a, be prime to a,

then all numbers of this class are prime to a.

§ 2. The Norm of an Ideal. Classification of the Numbers

of an Ideal with respect to Another Ideal.

If we separate the integers of a realm into classes with respect

to an ideal, a, of the realm, putting two integers into the same or

different classes according as they are congruent or incongruent

to each other with respect to a, then the number of these classes is

called the norm of a, and is denoted by n[a\.

This definition of the norm of an ideal is seen to be in accord-

ance with the principal property possessed by the absolute value

of the norm of an integer. We shall show later that the original

definition of the norm of an integer as the product of an integer

by its conjugate has also its analogue in the case of ideals.

A system of numbers formed by selecting one from each of the

classes formed as above with respect to an ideal, a, is called a

complete system of incongruent numbers, mod a, or a complete

residue system, mod a. There are evidently in such a system

exactly n[a] numbers.

Instead of separating all the integers of a realm into classes

with regard to their congruence with respect to an ideal, we may
consider simply the numbers of a single ideal, a, and put two of

these numbers, alf a2 , into the same or different classes with

respect to an ideal, b, according as we have

OLi^a.2, mod b, or a x ^p.a2 , mod b.

We shall denote by the symbol {a, b} the number of such

classes into which the numbers of a fall with respect to b.
1

1 See Dirichlet-Dedekind : § 171.
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Evidently {a, b} is not greater than w[b], since a does not com-

prise all integers of the realm k unless a=(i), in which case

{(i),6}= «[6].

It will be interesting to make use of this classification of the

numbers of one ideal with respect to another ideal to prove an

important theorem (see p. 336) and we proceed now to prove the

following relations

:

i. {a, *}= {a, a— b}.

ii. {a, h} = {a + h, b}.

iii. {a( v ), b(^)}= {a, b}.

iv. {a, c} = {a, &}{&, c},

where a is a divisor of b, and b a divisor of c.

i. To prove {a, &}= {a, a— &}.

We observe that a— b, the least common multiple of a and b,

is composed of all numbers common to both a and b.

Hence, if a lt a2 be two numbers of a such that

0^= 32* m°d b,

that is, such that a x
— a2 is a number of b, then, since at

— a2 is

also a number of a, it must be a number of a— b, and therefore

ax=a2 , mod a— b.

Conversely, if

a x
= a2 , mod a— b,

then a x
— a2 is a number of b; that is,

a x^a2 , mod b.

Hence any two numbers of a, that are congruent to each other

with respect to b, are congruent to each other with respect to

a— b and vice versa. Therefore we have

{a, h}= {a, a-h}.

ii. To prove {a, b}= {a-f b, b}.

Let a!,a2 , ••-,am (m= {a, b}) 1)
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be a complete system of incongruent numbers of a with respect to

b. Then every number of a + 8 is congruent to one of these

numbers with respect to ft, for all numbers of a + B can be

written in the form a + /3, where a is a number of a and /3 a

number of B. And from

a^di, mod fc,

where a* is one of the numbers 1), we have

a-\- /3= oii, mod B,

since /?= o, mod ft.

Moreover, since a + ft contains all the numbers of a, some

numbers of a + & will be congruent to each one of the integers

of the system 1), mod ft. Hence

{a, 6}= {a+ 6, 6}.

iii. To prove

{aW,BW}= {aJ}.

Let a 1,a2,--,am (m={a, &})

be a complete system of incongruent numbers of a with respect to

b, then G^iy, a2r),
• • • , am?/

form a complete system of incongruent numbers of a(>y) with

respect to the mod 6(77) ; for they are all incongruent, mod &(*/),

to each other, since, if

agr]==ahr), mod b(^),

then ag z==ah, mod &,

which is impossible. Furthermore, every number of a(rj) is con-

gruent to one of these integers, mod b(^), for, if ay be any num-

ber of a(rj), and

a= at, mod b,

then (a— a.i)r) is a number of &(??), and hence

arj^ai-rj, mod 16(17).

Hence {<*(,), &«}= {a, b}.
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iv. To prove that, if a be a divisor of b and b a divisor of c, then

{a, c} = {a, h}{h, c}.

Let a1,a2
,'~

t am (tn={a, fy) 2)

be a complete system of incongruent numbers of a with respect

to the modulus b, and let

ft, ft, — ,ft(n= {6, c}) 3)

be a complete system of incongruent numbers of b, mod c. We
shall show that the mn numbers

[r= 1,2, ••-,*»

Zr + Psi 4)
L$= 1,2, •••,M

which are all evidently numbers of a, form a complete system of

incongruent numbers of a, mod c.

The numbers 4) are incongruent each to each, mod c; for, if

aa + Pb= ac + pd, mod c, 5)

then, since b is a divisor of c,

aa -f fii sb ac + /?<?, mod b,

and hence, since fib and pa are numbers of b,

aa ==ac, mod b,

which is impossible unless aa= a c . But, if aa= ac , then from

5) we have

pb ==pd , mod c,

which is impossible. Hence the numbers 4) are incongruent

each to each, mod c.

Moreover, every number, a, of a is congruent to some one of

the numbers 4), mod c; for suppose

a^a-x, mod b,

where a t is one of the numbers 2), then a— a» is a number of b,

and we have

a— a<ss/b, mod c,
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where ph is one of the numbers 3), and hence

a= a* + fa, mod c,

where a« + fa is one of the numbers 4).

The numbers of a complete system of incongruent numbers of

a, mod c, are therefore exactly mn in number, and hence

{a, c}= {a, &}{*>, c}.

Theorem i. If ilt
= a

1
o) 1

-\- a2w2 , i2 ,
= &!&>! + b 2<a2 , £?£ a &a«'j

0/ f&£ wfea/ a, £/z£ absolute value of the determinant of the coeffi-

cients alf a2 , b lf b2 is equal to the norm of a; that is,

«[a] =

Let

"1 "2

where a<olt b(o ± + cw2 is a canonical basis, a and c being taken

positive. Since

1 ^2

it is sufficient to show that

a o

b c

= ac (Chap. XI, § 2),

w[q] =ac.

In the expression

Umx -j- ^a>2 6)

let w run through the values o, 1, •••, a— 1, and v through the

values o, 1, •••, c— 1. We shall show that the ac numbers so

formed constitute a complete system of incongruent numbers with

respect to a. m They are incongruent each to each with respect

to a; for, if u 1<o1 + vxoi2 and u2&x + v2o>2 be any two of them, and

Wjtoi -\- v1(o2 ss WjCDj -f- z>2w2 , mod a,

then {u
x
— u^^-^- (v1

— v2 )(o2 ^o, mod a,

and hence, since c is the greatest common divisor of the coeffi-

cient of <o2 in all numbers of a,

1
Hilbert: Bericht, Satz 19.
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1

vx
— v2

= 0, mod c.

But v
x
and v2 are both less than c, hence

vx
= v2 .

It follows that

(u x
— u2 )a> x ===o, mod a,

and hence, since a is the greatest common divisor of the coeffi-

cients of o) x in all numbers of a in which the coefficient of <o2 is o,

u
x
— u

2 ==o, mod a.

But u x and u2 are both less than a, hence

u
x
= u2 .

ThUS U
x
0) x -f" ^iW2=W^ + Z>2W2>

and the numbers 6) are incongruent each to each with respect to

a. Moreover, every integer of the realm is congruent to one of

the numbers 6) with respect to a. For, let

(0= txoix
-j- t2oi2

be any integer of the realm, and let

t2
= mc + r

2 ,

where m and r2 are rational integers and r2 satisfies the conditions

ogr2 <c.

Also let tx
— mb= na-\-rx ,

where n and rx are rational integers and rx satisfies the conditions

g rx < a.

Then

*1W 1 + ^2W2= {™b + na+ ri) W l + (WC + r2) W2

= waw! -j- m(bo)x + ^w2 ) + r
iw i + r2w2>

and hence fjo^ -J- t2w2h rxo)x + r2w2 , mod a.

But r^ + r2w2
is one of the numbers 6).

Hence every integer of the realm is congruent to one of these
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numbers with respect to a, and therefore, since they are ac in

number

n[a] = ac.

Hence n[a] =
K b

i\

From this theorem we see that the norm of an ideal is always

finite.

Ex. Since 7, 3 + y/ — 5 is a basis of the ideal (7, 3 + V — 5)>

7 o

»(7i 3 + V— 5!
3 «

= 7.

In the case of non-principal ideals, we shall omit [ ] and write merely

n before the symbol to denote the norm, as in the example just given.

Cor. 1. Since, if a1w1 + o2o>2 , b 1
a)1 + b2<o2 be a basis of a, then

a
iw i' + a2«>2> friwi' + ^2^2' W a basis of a' (Chap. XI, § j), we have

«[v] =
a, an

h K
n [a]

.

Cor. 2. If (a) be a principal ideal, where a is a rational in-

teger, then

n[(a)]=a2
;

for awj, aa>2 is a basis of (a), and hence

a o
»[(*)] =

O a
= <r.

We can prove by this method that the norm of any principal

ideal (a) is equal to the absolute value of the norm of the

integer a which defines (a) ; that is

n[(a)] = \n[a]\.

But a simpler proof can be found, based upon a theorem to be

given later.

Cor. 3. // a,= (ax<ax + a2w2> &iwi + b2<o2 ), be any ideal and

a
\

a
2

K K
=4a]

'

then a1<a 1
-j- a2w2 , b x

ta
r -J- fr2w2 £y a basis of a.
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Theorem 2. If a= bc, zvhere b and c are any ideals, there are

exactly n[c] numbers of a complete system of incongruent num-

bers, mod a, which are divisible by b.

Let rify»""»Y»['i 7)

be a complete system of incongruent numbers, mod c, and let /?

be a number of b such that (/?)/& is prime to c (Chap. XI, Th.

11). The numbers

are incongruent each to each, mod a; for, if

pyh ==f$yi, mod a,

then yft
= y<,mod c (§1, vi),

which is impossible.

Moreover, every integer, @lt divisible by b is congruent, mod

a, to some integer of the form n/3, for since b is the greatest

common divisor of a,= (alf a2 ), and (/?), we have

K=(a1,a2,p),

whence, since ft is a number of b, it follows that

where |x , |2 and fx are integers of the realm, and hence

P1
==

f
i(3, mod Q.

But every integer of the form fif3 is congruent, mod a, to some

one of the numbers 8) ; for fi is congruent to some one, say, -/»,

of the numbers 7), mod c, and from

fj.^yif mod c,

it follows easily that

fifx==l3yi, mod a.

Since, also, every integer congruent to one of the numbers 8),

mod a, is divisible by b (§1, vii), and the numbers 8) are «[c] in

number, there are in every complete system of incongruent num-

bers, mod a, exactly n[c],= n[a]/n[b], numbers that are divis-

ible by b.
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Theorem 3. The norm of the product of two ideals, a, b, is

equal to the product of their norms. 1

Let a be a number of a such that the quotient (a) /a is prime

to 6 (Chap. XI, Th. 11).

Let CLi,CL2 > •">an[a] 9)

and Pi,P2,-",Pnif>i 10)

be complete systems of incongruent numbers with respect to a

and b, respectively. Then the w[ct]n[b] numbers of the form

where £ and 17 run through the values 9) and 10), respectively,

form a complete system of incongruent numbers with respect to

ah, and hence are n[ab] in number.

To show this it is necessary and sufficient to show first that

no two of the integers 11) are congruent to each other with

respect to the modulus ab, and second that every integer of the

realm is congruent to one of them with respect to ab.

Let api -\- ai and a/3j -f- am be any two of the integers 11).

If afii + ai= a/3j + am , mod ab, 12)

then a(pi— pj)-\-a%— am= o, mod a,

and hence, since

a ((3i— fij ) = o, mod a,

we have ai— am= o, mod a,

whence a.i= am .

Then from 12) it would follow that

a (pi— pi) = o, mod ab,

and hence, since (a) + ab is a,

/3i— pj= o, mod b,

which is impossible unless

pi= pj.

1
Hilbert: Bericht, Satz 18.
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Therefore 12) is impossible and the integers 11) are incon-

gruent each to each, mod ah. Moreover, if to be any integer of

the realm, we have

a«= w, mod a, 13)

where a8 is one of the integers 9).

Now from 13) it follows that w— a8 is divisible by a. But

every integer of a complete residue system, mod ah, that is divis-

ible by a is congruent to one of the integers

aplt ap2i •••,a0„ [6] , 14)

mod ah (Th. 2) ; that is, the integers 14) are representatives of

all and only those incongruent number classes, mod ah, whose

numbers are divisible by a.

Hence we have

w— a 8 ^a(3 r , mod ah,

whence <o= a/? r -f-ag , mod ah,

where af3r + cl 8 is one of the numbers 11).

The numbers 11) form therefore a complete system of incon-

gruent numbers, mod ah, and hence i

n[ah] =n[a]n[h].

A complete system of incongruent numbers, mod ah, fall int

11 [a] classes each containing n[h] numbers, such that the numbers

of each class are congruent each to each, mod a, but the numbers

of any class are incongruent to all those of any other class, mod a.

We may arrange these classes as follows:

aft + att ap2 + a lf
• • •, a0„ [6] + alt

ft

aPi + 3n[ a],a/?2 + a«[a]»
•• •><*/?«[*] -f-a» [a] ,

where a,a lf a2 , • • -,a» [«],&,&> " m9pm*i are as defined above.

It will be seen that the numbers of each row are all and only

those of the complete system of incongruent numbers, mod ah,

that are congruent to each other, mod a.
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There are, therefore, exactly n[b] numbers of a complete

residue system, mod ab, that are congruent to any given number,

mod a. In particular there are, as we have already seen, exactly

n[b] numbers of a complete residue system, mod ab, which are

divisible by a.

It will be interesting to obtain by means of the development of § 2

another proof of the above important theorem.

We begin by proving that

{a, ab} =*[&]. '

Let a be a number of such that ah -j- (a) = a; then*

ab—(a)=b(a),

for the least common multiple of two ideals is equal to their product

divided by their greatest common divisor. We have now

{(a), ab} = {(a)-f ab, ab} (§2, ii)

= {a, ab},

and also {(a), ab} = {(a), (a) — ab} (§2, i)

= {(«), (a)b}

= {(1), b} (§2, iii)

= *[&].

Hence {a, ab}'=n[b].

To prove the theorem, we observe that, since (1) is a divisor of a, and

a is a divisor of ab, we have by § 2, iv

{(i), ab} = {(i), a}{a, ab}

and hence n[ab] =n[a]n[b].

We have seen (Chap. XI, Th. 5) that the product of an ideal,

a, by its conjugate, a', is a rational principal ideal (a). We shall

now show that

n[a] = \a\;

or in other words,

Theorem 4. // a be an ideal of a quadratic realm and a' its

conjugate, then

aa'= (n[a]).

We have act'= (a) (Chap. XI, Th. 5), where a is a rational

integer which may be assumed to be positive.

Hence n[a]n[a'] =n[(a)] *=a2 (Th. i.Cor.2).
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But n[a'] =n[a] (Th. i,Cor. i).

Hence n[a]=a,

and aa'=0[a]).

This theorem for the general realm of the wth degree is that

aa'a" ••• a*"-1 ) = 0[a]), where a', a", ..^at"-1 ) are the conjugates of a.

The proof in the case of the quadratic realm here given is much simplified

by having seen (Chap. XI, Th. 5) that in a quadratic realm the multipli-

cation of a by a' gives a principal ideal. See Hilbert : Bericht, p. 191.

This property of the norm of an ideal might be taken as its

definition. It would then be exactly in line with that of the

norm of an integer. From Th. 4 it is evident that n[a] is divis-

ible by a, as in the case of integers.

Theorem 5. The norm of a principal ideal, (a), is equal to

the absolute value of the norm of the integer a defining the ideal;

that is,

»[(a)]= |«[a]|.'

Let (a) be any principal ideal and (a') its conjugate.

Then (a)(a') = (»[(a)])(Th. 4),

and also (a) (a') = (aaf

).

But aa'= n[a]=a,

a rational integer, since the norm of an algebraic integer is a

rational integer, and

n[(a)]=b,

a positive rational integer.

Hence (a ) = (fc).

Since a is therefore divisible by b, and b by a, we have

\a\=b,

and hence

»[(*)]= Ma]|,
'

x Hilbert: Bericht, Satz 20.

22



338 CONGRUENCES WHOSE MODULI ARE IDEALS.

Theorem 6. The norm of a prime ideal, p, is a power of the

rational prime which p divides. 1

Let 1, w be a basis of the realm and p= (a, b -j- c&), where

a, b -f- Co) is a canonical basis of p. It is evident that a is a prime,

for, if a=axa2 , then since p divides a, it must divide either ax

or a2 , say a lt then a t
would be a number of p, which would be

contrary to the hypothesis that a, b -\- Cw is a canonical basis of p,

and hence that a is the smallest rational number of p. Hence a

is a prime, p.

We have then

(P)=pa,

whence n [(P)] =w[^)]«[a],

and P*= n[p]n[a], (Th. 1, Cor. 2).

Hence, since n[£] and n[a] are positive rational integers, we
have either

n[P]=P, 15)

or n[p]=p 2
; 16)

we call p a prime ideal of the first or second degree according as

15) or 16) occurs; that is, the norm of a prime ideal, p, is a

power of the rational prime which p divides, and the exponent of

this power is called the degree of p.

For example:

and hence (3, 1 +V— 5) is a prime ideal of the first degree;

on the other hand,

n[(2)]=2 2= 4 ,

and hence (2) is a prime ideal of the second degree, both

(3, 1 -f-V— 5) and (2) having been shown to be prime ideals.

Cor. 1. In a canonical basis, p, b -f- c<n, of a prime ideal, p,

the coefficient c is 1 or p, according as p is of the first or second

degree.

1 This theorem holds for realms of any degree, but the method of proof

used here is not applicable to those of degree higher than the second.

See Hilbert: Bericht, Satz 17.



CONGRUENCES WHOSE MODULI ARE IDEALS. 339

Ex. i. If a and b be two ideals and a be prime to «[b], then n[a] is

prime to n[b].

Ex. 2. If J>i, p2 ,
••-, pn be prime ideals of the first degree no two of

which are conjugate, and whose norms are pi, p2, •••, pn, show that the

smallest rational integer in the product pip2 • • • pn is pip 2 • • • pn.

Ex. 3. If the ideal a does not contain the factor (p), where p is a

rational prime, and n[a] be divisible by p
n but not by p

n+1
, then a is di-

visible by p
n

, where n[p] = p.

§ 3. Determination and Classification of the Prime Ideals of

a Quadratic Realm.

The last theorem furnishes us with a method for obtaining

and classifying the prime ideals of any quadratic realm, &(Vra),

similar to that employed for the prime numbers of &(/),£(V— 3)

and &(V2 )- We have seen that every prime ideal divides a

rational prime; hence, to obtain all prime ideals of k(^/m) we

need only factor all rational primes into their prime ideal factors

in k(ym). If p be a prime ideal and p the rational prime which

p divides 1 (since (

—

p) = (p) we may assume p positive), there

are, it has been shown, two cases to be distinguished. That is, if

then P
2= n[P]n[\],

and we have either

i. n[p]=p ; n[\]=p,

or ii. n [p]=p 2
; «[j]=i,

and hence j= (1).

From i it follows by Th. 4 and the unique factorization theorem

that

(p)=pp f

; that is, j= to';

and from ii that

(P)=9-
1 That only one rational prime can be divisible by a prime ideal p is

evident from the fact that, if two primes p and q were divisible by p,

then their rational greatest common divisor 1 would be a number of p,

and p would be (1).
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In i, (/>) is factorable into two conjugate prime ideals of the

first degree.

In ii, (/>) is a prime ideal of the second degree.

We shall now determine the relation which the form of p

bears to the occurrence of these cases, and shall see that the

factorization of (p) depends upon whether the discriminant of

the realm is a quadratic residue, a quadratic non-residue, or a

multiple of p.

We shall show first that the necessary and sufficient condition

for the factorability of (p) is that d shall be a quadratic residue

of p or divisible by p, hence proving incidentally that the condi-

tion for the non-factorability of (p) is that d shall be a quadratic

non-residue of p.

Suppose that i occurs; that is,

{p)=W- i)

Since n[p] ==p, there are p incongruent number classes with

respect to p. We may take as representatives of these classes the

numbers o, I, •••, p— i; for, since p is the smallest rational

number in p, the differences of no two of these numbers is a

number of ps
and they are therefore incongruent to each other

with respect to p.

It is evident that y/m, which is an integer, is congruent to one

of these numbers, say a, with respect to J>; that is,

a—\/m= o, mod p,

therefore, since a+\/ra is an integer of k(^tn),

(a—

V

m ) («+Vw ) =a2— m==o, mod p,

and hence, since a2—m is a rational number and p the smallest

rational number in p,

a2— m= o, mod p. 2)

Hence that m shall be a quadratic residue of p or divisible by p
is a necessary condition for the factorability of (/>).

We must now distinguish between the two cases p=\=2 and

p==2.
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1

First let p =j= 2. It may be shown that in this case

a2— m zaa o, mod p,

is a sufficient as well as necessary condition for the factorability

of (p) ; for from

a2—m=(a—yra)(a+yra)=o, mod p,

it follows (Chap. XI, Th. 9) that, if (p) be unfactorable, either

a—ym= o, mod (p),

or fl-f\/w= o, mod (/>),

and hence either

7
— .r-f 1/1///Z

# — ym = - —p

,— x+y\/m
or « -f 1/w = - p

3)

where .ar and y are either both even or both odd, the latter case

being possible only when fgeel, mod 4.

The equations 3) lead to the impossible equations

Hence 3) are impossible, and that m shall be a quadratic residue

of p or divisible by p is a sufficient as well as necessary condition

for the factorability of (p). Therefore that m shall be a quad-

ratic non-residue of p is a necessary and sufficient condition for

the non-factorability of (p).

Now let the symbol (n/q), where q is an odd rational prime

and n any rational integer, denote 1, — 1, or o, according as n is

a quadratic residue or non-residue of q, or a multiple of q.

We shall now obtain the factors of (p) when (p)=pp', and

shall show that when (m/p) = 1 they are different, and when

(m/p)=o they are alike; that is, (p) is then the square of a

prime ideal.
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When (m/p) = i, a is not divisible by p, and we shall show

by actual multiplication that

(P) = (P, a +V») (p, a—y/m).
We have

(Pi a-\-\/^n)(p, a—Vm)=(P2
> Pa
— P^/m, pa+PVm> a2—m )

=(p 2
,
pa— py/m, 2pa, a2— m)

=(p 2
, pa— p\/m, 2pa, a2— m, p)

since p is the greatest common divisor of p
2 and 2pa and may

therefore be introduced into the symbol.

We shall show now that

(P, o+V»i)+ tt a—y/m).

If they were the same, both would equal

(Pi a-\-\/m, a—-\/m) = (p, a-\-y/m, 2a)

(f=(fc a+y/ni, 2a, i)

= (0,

since p and 2a are two rational numbers prime to each other and

i may therefore be introduced into the symbol. Hence (p) is

the product of two different conjugate prime ideals when m is a

quadratic residue of p.

When (m/p) =o, a is divisible by p, and we have by similar

analysis

(P) = (P, V») (Ps — Vw)

= (P, Vm) 2
.

Hence (p) is the square of a prime ideal, when m is divis-

ible by p.

We see that, since the discriminant of the realm, d,=m or \m,

according as m== I, mod 4, or = 2 or 3, mod 4,

(d/p) = (m/p).

We may express the results so far obtained conveniently as

follows

:
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// p be an odd rational prime, (/>) is the product of two differ-

ent conjugate prime ideals, or is itself a prime ideal, or is the

square of a prime ideal, according as

(d/p) =1, — i, or o.

To obtain basis representations of p we make use of Th. I, Cor. 3,

and at once recognize that when (m/p) = i and m= 2 or 3,

mod 4,

(P, «+Vw)
is the required representation, for

p o

a I

In the case ra=i, mod 4, (p, o+Vw ) is n°t a basis repre-

sentation of p, for when we express a -\-yjm as a linear combi-

nation of the basis numbers 1,(1 -\-'\Jm)/2 of the realm, we have

that is not a basis representation, since

/ o"

a— 1 2
= 2/**|>].

In this case we can, however, get a basis representation of p

as follows: since p is odd, a can be chosen so as to be not only

a root of a2= m, mod p, but also odd. Supposing this done, we

can introduce into the symbol of p the number (a-\-^/m)/2, and

then omit a -f-\/m, obtaining

a + Vm( a+Vm\
= (A-—

j

(a — 1 1 + |/«* \

which is a basis representation of p, since

P °

#— 1

2

= / = »[>].
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We consider now the case (tn/p) = o.

In the cases m= 2 or 3, mod 4, we have as the required basis

representation

p=(p, V«)
since

o

1

-/-*[»]

When m=i, mod 4, we can introduce the number (p +y*»)/2
into the symbol (p

%

,y/m), since p is odd, and thus have

— / — p + -j/w\ / p- 1 1 + i/;;A

as a basis representation, since

1/ o
= / = *!>]

Let now p= 2.

We have in all cases (w/2) = 1 or o; that is, the necessary

condition for the factorability of (2) is always satisfied. As to

the sufficiency of this condition we must however distinguish

three cases according as m= 3, 2 or 1, mod 4. When ms=3,

mod 4, we have (in/2) = 1, and from 2), 0=1.
Putting, therefore, in equations 3) p= 2 and a=i, and re-

membering that when m= 3, mod 4, # and y must both be even,

we see that 3) leads to the impossible equation

± I= 2;r.

Hence (m/2) = 1, in the case ^= 3, mod 4, is a sufficient condi-

tion for the factorability of (2).

We have indeed

(2) = (2, 1 +Vw) (2, 1—y»)
for 2 and 1 +VW are evidently numbers of

J)
and

2 o
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Hence (2, 1 +ym) and (2,1

—

y/ni) are the factors of (2).

But evidently

(2, i+V"w) = (2, 1—Vw),
and hence

(2) = (2, 1+Vw) 2
,

a result which may be verified by multiplication. Thus when

m==3, mod 4, (2) is the square of a prime ideal.

When m= 2, mod 4, we have (m/2) =0, and from 2) a= o.

Putting, therefore, in 3) p= 2 and a= o, and remembering that

when m= 2, mod 4, .r and y must be even, we see that 3) leads

to the impossible equations

± i=2y.

Hence (m/2)=o is also a sufficient condition for the factora-

bility -of (2). We can show just as above that in this case

(2) = (2, V"0 2
.

When mm, mod 4, we have (m/2)= 1, and from 2) o=I.
Putting £= 2 and a=i in 3) we see, however, that x=i,
y=— 1 satisfy the first of these equations and x=i, y= 1 the

second, (1

—

s/m)/2 and (i-j-\/w)/2 both being integers of

k(^m), when m=i, mod 4. Hence both (1

—

^m) and

(i-|-yra) are divisible by (2) and nothing is known as to

whether (2) is prime or not.

To determine when (2)=pp' we may proceed as follows:

If (2) = pp', then o, 1 is a complete system of incongruent num-

bers with respect to p, and hence (1 -\-\/m)/2 must be con-

gruent to either o or 1 with respect to p; that is, we must have

either

1 + ^™ A ca o, mod £,

1 -I- i/»i 1 — Vm
or 1 = = o, mod to

;

2 2

and hence in any case
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But (1 — m)/4 is a rational integer and we must have therefore

1 — m
= o, mod 2, 4)

since 2 is the smallest rational number in p.

From 4) it follows that

1 — m= o, mod 8

;

that is, rn=i, mod 8,

is a necessary condition for the factorability of (2) when w=i,
mod 4.

We must now distinguish two cases according as m=i or 5,

mod 8. In the latter case (2) is evidently a prime ideal, for 4)

is no longer satisfied. We shall proceed to show that when

ra=i, mod 8, (2) is the product of two different conjugate

prime ideals. If (2) be factorable, p must contain one of the

numbers (1 -\-\Zm)/2, (1—\/m)/2, and hence p' the other.

Moreover, we have

||
2 Oil

Ilo l
\\

Hence, if (2) be factorable, we have

/ 1 -f Vm\ ( 1 — \/m\
(2) = ^, -__j|v__r_j,

and this may be shown to be correct, for by multiplication we get

/ 1 + Vm\ ( 1 — Vm\ ( .— .— 1 — m\
\2 % -j—

J
(s, - -^— j

=
(^4,

1 - Vmt 1 + •*,—-
J

= U, 1 - i/«, - -, 2
J

_=(2),

since (1 — m)/4 and 1

—

s/m are divisible by 2, when m=i,
mod 8. Moreover,

/ 1 + Vm\
,

/ I — l/w\
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for, if they were the same, they would both equal

(1 + Vm 1 — \/m \ ( 1 4- v m I — Vm, \

which is, of course, impossible. Hence, when m= i, mod 8, (2)

is the product of two different conjugate prime ideals.

We may collect the results obtained for (2) as follows:

(2) is the square of a prime ideal when m= 3 or 2, mod 4;

it is the product of two different conjugate prime ideals, when

m == 1, mod 8, and it is a prime ideal when m= 5, mod 8.

We have evidently as basis representations of the factors of

(2) in these cases respectively

(2) = (2, 1 +\/m) 2
, (2) = (2, ym)\

I + Vm \ ( 1 — Vm, . / 1 + Vm\ ( 1 — Vm\

(2) = (2, 1 -fVw )-

Let now the symbol (w/2) denote 1, — 1, or o according as n is

a quadratic residue or non-residue of 8 or is divisible by 2, and

observe that, when m= 3 or 2, mod 4, d= 4m, and hence is

always divisible by 2, and that when m=i, mod 4, d= m, and

hence is a quadratic residue of 8 when and only when w=i,
mod 8, and a quadratic non-residue of 8 when and only when

m=5, mod 8. We may now combine the results obtained for

p= 2 with those for p =4= 2 in the following theorem

:

Theorem 7. // p be any rational prime, (p) is the product

of two different conjugate prime ideals of the first degree, a

prime ideal of the second degree, or the square of a prime ideal

of the first degree, according as (d/p) = J, — /, or o.
1

An ideal a of a quadratic realm such that a= a' and which con-

tains as a factor no ideal (a), zvhere a is a rational integer differ-

ent from ± 1, is called an ambiguous ideal. The ambiguous prime

ideals of a quadratic realm are evidently the prime factors of (d).

The following table gives basis representations of the prime

factors of (p) in a convenient form for reference.

x See Hilbert: Bericht, Satz 97.
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In it a satisfies the congruence a2= m, mod p, and is, more-

over an odd integer in the case when w= i, mod 4.

©-
(,')-

m = I, mod 4 m hi 2 or 3, mod 4

Ex. 1. *(V-i3)

We have — 13 =3, mod 4, whence 1, V— 13 is a basis of &(V— 13)

and d =— 52.

Since

and i
2 as — 13, mod 2, we have (2) = (2, 1 + V — 13)

2
. Since

(3) is a prime ideal. Since

(5) is a prime ideal.

Ex. 2. Find basis representations of the prime ideal factors of all

rational primes less than 20 in the realms fc(V— 7), fc(Vn) and

*(V30~).
Ex. 3. If the norm of any ideal be divisible by an odd power of a

rational prime, p, then p is factorable into two conjugate prime ideals

of the first degree.

§ 4. Resolution of any Given Ideal into its Prime Factors.

We have in the last section given a general method for resolv-

ing any principal ideal defined by a rational prime number into

its prime ideal factors.

The resolution of any given ideal a can be effected by observ-

ing that the product of the norms of the prime factors of a must

equal n[a], and hence the only possible prime factors of a are

the prime ideal factors of the rational primes which divide n[a].
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We then determine by actual multiplication which of the finite num-

ber of prime ideals satisfying this condition are the proper ones.

We shall see that the resolution of any ideal a,= (alf a2 ,
• •

•
, a„)

,

can be made to depend upon the resolution of the principal ideals

(aj, (a2 ), •••, (a„), and shall illustrate by the following ex-

ample the resolution of a principal ideal into its prime factors.

Let &(V— 5) be the given realm and (io+V— 5) be the

given ideal; then

n[(io+Vzr5)] = io5= 3-5-7-

Hence (io-f-V— 5) must be the product of three prime ideals

whose norms are respectively 3, 5 and 7. The prime ideals whose

norms are 3 are evidently (3, 1 -f~V— 5) and (3, 1 —V— 5)- The

only one whose norm is 5 is (V— 5)- Those whose norms are

7 are (7, 3 +VZI5) and (7, 3—V^S).
By multiplication we can determine which of the four possible

combinations of these ideals is the correct one. We can, however,

materially shorten the process by observing that, if (10+V— 5)

be divisible by (7, 3—V— 5)> tnen ( I0+V— 5) *s a number of

(7, 3—V:zr5); that is,

(7, 3—V=5j=(7, 3—V^5, io+V^)
= (7, 3—V=5, io+V=5, 13)

= (7, 3—V^ io+V^, 13, 1)

= (1),

which is impossible.

Hence (7, 3—V— 5) is not a factor of (10+V— 5)-

Since 7, 3—V— 5 is a Das is °* (7> 3—V— 5) we could have

determined whether or not 10+V— 5 is a number of (7,

3—V— 5) by seeing whether or not

io+V^5= 7-r+ (3—Vz:r5)y

where x and y are rational integers. This equation gives

.a- =13/7, yz=— 1, and it is again proved that (10 +V— 5) is

not divisible by (7, 3—V

—

5)- In like manner we can show

that (3, 1 —V— 5) does not divide (10+V— 5)- Hence

(io+V=5) = (3> i+V=5)(V=5)(7, 3+V-"5).
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Had we first tested either (7, 3+V— 5) or (3> I +V— 5)

we should have found, of course, that (10 +V— 5) was divis-

ible by it.

If n[(a)] be divisible by a higher power, p
r
, than the first of a

rational prime, p, then either (p) is a prime ideal in which case a

is divisible by p
r/2

, this case being possible therefore only when

r is even, or (p) is the product of two conjugate prime ideals,

p, p', of the first degree.

In this case (a) may be divisible by both p and p', and hence

a by p, or (a) may be divisible simply by a power of one of the

ideals, say p.

If a= p
eax ,

where a x is not divisible by p, then (ax ) cannot be divisible by the

product pp' and hence, if w[(«i)] be divisible by p
8

, then ax is

divisible by either p
s or p' 8

, these cases occurring respectively as

(a x ) is divisible by p or p'.

The resolution of any principal ideal into its prime factors can

therefore be effected.

Let now ct= (alf a2 ,
• • •, an ) be any ideal. Since a is the great-

est common divisor of the principal ideals (fltj.), (a2 ), "*>
(a»)>

we can effect the resolution of a into its prime ideal factors by

resolving the ideals (aj, (a2 ),
•••, (a„) into their prime factors

and taking their greatest common divisor; this will be a.

Ex. 1. Let (21, 10+ V — 5) be the given ideal. We have found

above that

Oo + v=5) = (3, i + V^KV^K;, 3 + V=5),
and we have evidently

(21) = (3, i + vT-5)(3, i— yf^s)(at a+V^X?. 3— '•^s).

Hence
(ai, 10 + V^=: 5) = (3, i + V"^r 5)(7, 3 + V"::r5)

is the resolution of (21, 10 + V — 5) into its prime factors.

Ex. 2. Resolve the ideal (30) into its prime ideal factors in the realms

KV^S), Hy/^7) and *(V30)._
Ex. 3. Resolve the ideal (24—V2^) into its prime ideal factors in the

realm k{\/26).

Results should be verified by multiplication.
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There are many devices which shorten numerical work with ideals,

some of which will be illustrated later in the solution of examples.

§ 5. Determination of the Norm of any Given Ideal.

If an ideal has been resolved into its prime factors, or if we
have a basis of the ideal, its norm is easily found.

Let a,= (a lt a2 ,
• • -,a„), be the given ideal, and let

be the resolution of a into its prime factors ; then

w[a]=«[PiMl>2] --n[pr].

If we have a basis a^ + a2w2 , b 1oi l
-\- b2w2 of 0, we have, of

course, at once

*[tt] =

Theorem 8. The greatest common divisor of the norms of

the numbers of a is n[a].

Let n[a] —a, and let a be a number of a such that {a)/a is

prime to (a). Then, if a' be the conjugate of a and a' the con-

jugate of q, we have (a?) /a' also prime to (a), and hence

(n[a])/(a) prime to (a). Therefore a is the greatest common

divisor of n[a] and n[a], and hence of the norms of all num-

bers of a.
1

It should be observed that the greatest common divisor of the norms

of the numbers defining a is not necessarily n[a], though, of course,

n[a] is a divisor of it; for example,

(1 + V~5, 1 - V31
!)) = (2, 1 + >/— 5)

is an ideal whose norm is 2, but the greatest common divisor of

«[i + V— 5] and «[i —V — 5] is 6.

§ 6. Determination of a Basis of any Given Ideal.

Let a,= (a lt a 2 , ••-,«„), be the given ideal and let 11 [a] be

known. If two numbers, ai,= a 1oi x + a2o>2 , dj,= b 1(D1 + &2w2 , of

a be known, such that

1

2

Hilbert: Bericht, Satz 21.
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then evidently a i} CLj constitute a basis of a. If no numbers sat-

isfying this condition be known, we can determine a canonical

basis, a, b + Cm, of a, where a and c may be assumed positive, as

follows

:

We observe first that, if ax , b x + cxa> be a canonical basis of an

ideal a, and e a rational integer, then axe, bxe + cxe<a is a canonical

basis of the ideal a(e). The determination of a basis of a can

therefore be reduced always to the determination of a canonical

basis of an ideal which is the product only of prime ideals of the

first degree, no two of which are conjugates.

Having resolved a into its prime factors, we collect all pairs

of conjugate prime ideals of the first degree and all prime ideals

of the second degree. The product of these factors will be the

principal ideal (e) where e is a rational integer, and we have

a= ax (e),

where ax is the product of prime ideals of the first degree only,

no two of which are conjugates, and whose norms are

Pi,P 2 , '",Pm.

To find a canonical basis a lf b x -f- cxw of ax , we observe that a x ,

being the smallest rational integer divisible by ax , must be

P1P2 ' • • Pm, and furthermore that, since

axcx
= n[ax]= p xp2

• • • pm ,

cx
= i.

Hence p xp 2
• • • pm , b x + <*> is a canonical basis of ax , where bx is

to be determined. Since n[b x -\-ai] is a rational integer and a

number of a x we have

n[bx + o)] =0, mod p xp 2
••• pm ; 1)

that is, when o)=\/m, b x
2— m==o, mod p xp2

. .
. pm, 2)

and when

1 4- Vm (2d, + i)
2 — m»«-—

,

4
-«P, modAA'--A

l
- 3)

It will be easily seen that 2) and 3) have solutions which fall
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into pairs, b 19
— b 1 and 2b 1 + i, — 2bx

— i, and that each pair of

solutions of 2) gives the numbers

b x + y/m, —bx + y/in,

and each pair of solutions of 3) the numbers

2b
x -f 1 4- Vtn — 2b

x
— 1 + V'm

One of the numbers so obtained must belong to a± and can, of

course, always be determined by resolving the numbers into their

prime factors and thus finding out which is divisible by at . It

can, however, usually be determined with much less work from

the fact that in determining which of these numbers is divisible

by alt it is helpful to observe that, if at be divisible by p
r but not

by p
r+1

, where n[p] = p, and if a be one of the numbers satisfying

1), and n[a] be divisible by p
r but not by p

r+1
, a itself not being

divisible by p, then if a be divisible by p, it is divisible by p
r

.

The above method for determining a basis of an ideal a de-

pended upon the knowledge of the prime factors of a. We shall

now explain how a basis may be determined without this knowl-

edge and without that of n[a], giving therefore incidentally a

method for finding n[a]. We have seen that, if among the prime

factors of a there occur one or more pairs of conjugate ideals,

is divisible by a principal ideal (e), where e is a rational integer.

Every number, a< + bid), is therefore a number of (e) and hence

is divisible by e. Therefore at and fa must be divisible by e.

Conversely, if in every number, ai + bn»j of a.ai and b\ be divis-

ible by e, then a is divisible by (e).

Let e be the greatest common divisor of the coefficients, a», bi,

in all the numbers defining a, and let ai= eriy bi— esi. Then

where ax is the product of prime ideals of the first degree, no two

of which are conjugates. We have seen that a canonical basis of

ax has the form a, b+ w. Furthermore a1= {rx+ ^w, • • • , r„+ sn«>)

and the greatest common divisor of rls •••,r„,^1 ,
•••,£„ is 1. By

23
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multiplying each number, r< + Siio, defining ax , by a>, when

a s=sy/m, and by <o— i, when w= -J(i -\-y/m), we can intro-

duce into the symbol the numbers, ti + r^ ; that is, such that the

coefficient of w is r*. Since the greatest common divisor of the

coefficients, rv --,rn,sx , '-,sn , of w is I, we can find rational in-

tegers, Mj, • • •, un , vlf
• • •, vn, such that

r
xu x -) y rnun + S& H Y SnVn= I,

and hence can introduce into the symbol a number b + w ; that is,

one in which the coefficient of to is I. This is evidently one of

the desired basis numbers. To find the other number, a, we pro-

ceed as follows. Every number in the symbol can be expressed as

a linear combination of b-\-o> and a rational integer; thus

r
1 + s1u= s1 (b + o>)-Yr1

— s1b= s1 (b + <o) + c1 ,

where cx is a rational integer. We have also

c1
= r1 + sx <1>— sx (b + g>).

Hence we can introduce cx into the symbol and omit rx + sxw.

Proceeding in this manner with each of the remaining numbers,

we have finally in the symbol only rational integers and b + o>.

Let a be the greatest common divisor of these rational integers

and n[b~Yo)]. Evidently we can introduce a into the symbol

and omit all of the rational numbers ; that is, we have

ax =(a, & + o>).

To show that a, b + w is a basis of a x , we must show that any

linear combination a(ex
-}- fxa>) -j- (b ~Y <o) (e2 ~Y /2<u) of a and

b + o>, where ^ + A^, <?2 + /2W are anv integers of the realm, is

expressible as a linear combination ax ~Y (b-\-ta)y, where x and

y are rational integers ; that is, we must show that the equation

ax-Y (b + <»)y=^a(ex -Yfxw) + (b + <o) (e2 + /*»)

is satisfied by integral values of .ar and y for all integral values

°f ^u /u ^2> A- Multiplying, putting w2= m, or <o + J(w— i),

according as w=\/ra, or i( l ~YVm )> equating coefficients and

making use of the fact that w[fr + w] is divisible by a, we see
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easily that this condition is satisfied. Hence a, b + w is a canon-

ical basis of qx .

It is well to observe that, when an ideal has the form {a, fc + w), it does

not follow necessarily that a, b -f- « is a basis. The necessary and suffi-

cient condition for this is that n [b -f- «] shall be divisible by a.

Ex. i. Let a=(2)(ii)(3, i + V~5> 2
(7, 3+ y—5) be the ideal

whose basis it is required to determine. We have

and n[(Xi] = 63.

Hence 63, b + V — 5 is a canonical basis of d, where b is to be deter-

mined by the condition

b + V— 5 — o, mod fe.

The condition

n[& -f V — 5] o, mod 63

;

that is,

b
2 + 5 = o, mod 63,

gives
fc = 11, — 11, 25 or —25,

and hence as possible basis numbers of tti

n + \/^5, —H-fV^S. 25 -fV"^, — 25 + V^5-
It is easily seen that 11 + V — 5 and — 25 -f V— 5 are not divisible

by (3, 1 + V— 5) and hence, of course, are not divisible by cti, while of

the two numbers — 11-fV — 5 and 25 -f V— 5 remaining, only

— 11 + V —5 is divisible by (7, 3 + y/~^T$).

Hence — 11 + V — 5 is the number required, a result easily verified

when we see that

(- 11 + V~5) = (2, 1 + V^5) (3, 1 + V~5) 2
(7, 3 + V^S).

Hence, 63, — 11 + V — 5 is a basis of a„ and (1386, — 242 + 22V— 5)

is a basis representation of a.

Ex. 2. Let a =(210, 70 + 70V^5, 90+ 30\/—:
5, — 20+ 40\/^5)

be the ideal whose basis it is required to determine. Using the second

method, we have e = 10 and

a, = (21, 7 + 7>/^=r5, 9+ 3V^r5 > — 2 + 4V^r 5)-

We see that we can introduce the number 10 -j- V — 5 and have easily

at — (21, 63, 21, 42, 10+ V^S)-

Now 21 is the greatest common divisor of 21, 63, 42 and m[io-{-
-\J
— 5],

= 105, and therefore

a,= (21, 10+ y/^S),

where 21, 10+V— 5 is a canonical basis. A canonical basis of a is

evidently 210, 100+ 10V — 5.
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§ 7. Determination of a number a of any ideal a such that

(a) /a is prime to any given ideal m.

We have proved the existence of such a number and shall now

show how it may be determined in any given case, this problem

being not only of interest but of considerable importance in the

solution of certain problems to be given later. The proof given

above of the existence of a furnishes us with a clue to a method

for its determination, which we shall illustrate by some examples.

As is seen from the above proof, the determination of a in the

general case is dependent only upon its determination in the case

where m is a prime ideal p.

If a,= (a 1} a 2 , •••,am ), be any ideal, then some one, a if of the

numbers a lf a 2 ,
• -,am ,

x defining a, which are, of course, all divis-

ible by a, must be indivisible by Qp ; for otherwise, all numbers of

a would belong to ap and a be divisible by ap, which is impossible.

This number, a«, is the required number a. We have, therefore,

merely to resolve in turn the numbers defining a into their prime

ideal factors until we find one which satisfies the required con-

dition.

Consider the realm &(V— 5) and let

a=(2i, io+V=5); m=(2, i+V^).
Resolving a into its prime factors, we have

a=(3» i+V^X^ 3+V=r5).

Proceeding now to resolve in turn the numbers defining a into

their prime ideal factors, we have evidently

(2i) = (3)(7)=
(3, i+V^5)(3, i-V=::

5)(7, 3+V=r5)(7, 3—V=S).
We see now that the quotient

(2i)/a=(3, 1—V=^)(7, 3/#V:=r5),

is prime to (2, 1 +V— 5)> and hence 21 is the number, a,

required.

1 We can reduce these always to two but have chosen the more general

case so as to show that this reduction is unnecessary.
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Also, since

(io+V=7) = (3, i+V=5)(7, S+V^IHV^).
The quotient

(2i)/a=(3, i—V^)^, 3—V^S)
is seen to be prime to (2, 1 +V— 5) 5 hence 10 -f-V— 5 will

also serve as a. We could have seen at once that either 21 or

10 -j-V— 5 would serve as the required number, for they are both

prime to (2, 1 +V— 5), their norms being prime to n{2,

i+V— 5)- If be a principal ideal (/?) and m any ideal, it is

evident that the quotient

(/8)/(;8)= (i)

is prime to m, and hence (3 is the number, a, required.

To illustrate the determination of a in the general case, let

a=(2i, io+V^) and m=(i5, 5+V^5).
Resolving these ideals into their prime ideal factors, we have

as above

a=(3, i+V— 5) (7, S+V^),
and m=(3, 1 —V—:

5) (V—7)*

the last result being easily obtained by the method employed in

the factorization of a, or by simply observing that each number

defining m is divisible by V— 5-

We have found

(21) = (3, i+v=5)( 3 ,
i-\/-5)(7, 3+V=~5)

(7, 3—V— 5).

and (lO+V=T5)==(3, i+V=10(7, 3+V—DCV^),
and it is well to see whether one of these numbers does not fulfil

' the conditions demanded of a, this often being the case. Here

we see, however, that neither of the quotients,

(2i)/a=(3, 1—V^)(7 } 3—V^),
or (io+V ::=:5")/a=(V-=T) J
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is prime to m, and therefore that neither of the numbers 21 or

10 -fV— 5 will serve as a. Hence we must proceed to construct

a as in the above proof.

We have

^= (3. i+V:zr5)(7, z+yzzr
i)(z, 1—V^),

a2 =(3> l+V=5)<7. 3+Vzr5)(V^5),
and it is at once evident that 21 and 10+V— 5 will serve as a x

and a2
respectively; for the quotient,

(2i)/ax =(7, 3—V—5)
is prime to (V— 5)> and

(io+y=~5)/a2 =(i)

is prime to (3, 1—V^lO-
Hence a= 2i + 10 +y:3 5= 3 I +V^5

is the number required.

This result is easily substantiated by factoring (31 +V— 5)

into its prime ideal factors.

We have

*(3J +Vzr5) =966= 2.3.7.23;

hence (31 +V— 5) is the product of four ideals whose norms are

respectively, 2, 3, 7 and 23. The quotient, (31 +V— 5) At, 1S

therefore the product of two ideals whose norms are respectively

2 and 23, and hence is prime to m, whose factors have the norms

3 and 5. We indeed see easily that

(3i +V=5) = (2, 1 +V=S) (3. 1 +V :=5) (7. 3 +V=5)
(23, 8+V=5).

§ 8. The ^-Function for Ideals.

By <£(m), where m is an)' ideal, we denote the number of

integers of a complete residue system, mod m, which are prime to

m; that is, the number of integers in a reduced residue system,

mod m.
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Thus, if m=(3, i+y^5), taking as a complete residue

system, mod (3, 1 +y— 5), the numbers 1, 2, 3, we see that 1

and 2 only are prime to (3, 1 +V^), 3 being divisible by it,

and hence

<K 3 , i+Vir5)=2;
that is,

*(3> i+V:=r5)=w(3
J i+V^I) — 1.

Likewise, if m= (3) = (3, 1—V^S) (3, I +V:=:
5), taking

as a complete residue system, mod (3), the numbers o, 1, 2, V—-5,

1 +V~ r̂
5, 2 +V^J, 2V=5, 1 + 2Vzri, 2 + 2VzrI, we see

that 1, 2, V— 5, 2\/— 5 are prime to (3) and hence

*(3)=4. - rO-i)O-j0
In particular, we have <f>(i) = 1.

Ex. 1. Determine 0(1 -f- V — 5).

Ex. 2. Determine 0(13, 5 -f- V — J4)-

Theorem 9. // p be any prime ideal,

«ew—ot(i-sj5j).
By Th. 2 there are in a complete system of incongruent num-

bers, mod p
e
, exactly M[pe]/«[p] that are divisible by p, and hence

n[p e
] — w[p

e
]/«[p] that are prime to p

e
. Hence

«*—[«(« -«&)
Ex. We have

*(3, I— *'=li)»= «[(3. i-V/=M)3j/i_ '

J)
V »(3i i — V— 14)/= 27(i-i)

=^ / C?

The general expression for <£(m), where m is any ideal, could

be deduced by a method very similar to the one first employed in

R. We shall make use, however, of the second method employed

in R (Chap. Ill, § 14), for this was at once applicable in k(i)

(Chap. V, § 12), and we shall find the same to be true in the case

of ideals. This method depends in R, it will be remembered,
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upon the property of the ^-function that, if a be prime to b, then

cf> (ab)=cf>(a).(f)(b).

To prove this for ideals we begin by proving the following

theorem.

Theorem 10. // m be the product of the ideals alf a2 ,
•••,(*«

that are prime each to each, and a ly a2 , --,a8 any integers of the

realm, there exist integers, w, such that

wesson, mod au w= a2 , mod a2 , •••, w= as , mod as , 1)

and all these integers are congruent each to each, mod m. 1

This theorem is proved most easily by a method analogous to

the symmetrical one employed for the corresponding theorems in

R and k(i).

Let m= ct^= ct2b2= • • • = a*b«.

Then &, + £>,+ ... +b s =(i),

and hence there exist in the ideals h lf B2 , ••-,&« respectively,

numbers px , p2 ,
• • •

, p8 , such that

Pi+AH VPs=i (Chap. XI, Th. 8, Cor.). 2)

The number

aA + a2P2 H h a»P*

satisfies all of the congruences 1). For example, we have

aA + a2p2 H h 0L8Ps a lt mod a± ;

for, since b 2 ,

B

3 , ••-,B S are all divisible by a lf the numbers P2 ,

p

3 ,

•-,ps are all divisible by alf and from 2) it follows that

P±
= i, mod a x .

Furthermore, if w be any number satisfying the congruences 1),

we have by multiplying them respectively with p1} p2 ,
• • •, ps ,

w^i^aj/?!, mod m,

w/32= a2p2 , mod m, 3)

o)p8^asp8 , mod m.

1 See Chap. Ill, § 14, and Chap. V, § 12 ; also Dirichlet-Dedekind

:

§ 180, II.
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1

Adding together the congruences 3), and making use of 2),

we have

•1= aifit + a2p2 H \- a 8ps, mod m.

Hence all numbers satisfying the congruences 1 ) form a single

number class, mod tn.

If we let a 1,a2,—-,as run through complete residue systems

with respect to the moduli aly a2 ,
• • • , a8 respectively, the resulting

^l>i]tt[a2 ] -••n[a8]=n[m]

values of to evidently form a complete residue system, mod m.

The necessary and sufficient condition for w to be prime to m is

that alf a2 ,
• • •, a8 be prime respectively to the moduli alt a2 ,

• • •, a«

;

for, from the congruences 1) we see that the necessary and suffi-

cient condition that w be prime to each one of the factors alf a2 ,

• • •, qs of m is that each a be prime to its a.

Hence, when a lt a2 , -",a8 run through reduced residue systems,

moduli di, a2 , ---jCts, respectively, the resulting values of w form

a reduced residue system, mod m. We have, therefore, at once

the following theorem:

Theorem ii. // alf o2 ,
••-, a8 be ideals prime each to each,

then

^(^q., ••• a.) =<f>(a1 )<f>(a2 ) ---<j>(a8 ).

We can now obtain easily an expression for <£(m) when m is

any ideal whatever.

Theorem 12. // m,= p1
ei
p2

e2
• • • p/ r

, be any ideal, where p 19 p2 ,

• • •, p r are the different prime factors of m, then

W—M(t-
5ga

)(i.-^
a )
— (»-5Kj)'

By Th. 11 we have

<f>(m)=<f>(p^)<f>(p 2^) •••<A(Pr
e0,

from which by Th. 9 it follows that

^)=4^<i-
]̂
)«[V]( I-4

]
)--[^]( I

-4b)
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Hence by Th. 3

W = 4«1](i-^
j )(

I -4j)-( I-^
j )

Ex. 1. We have

(21, 10 + V^S) = (3, 1 + V^5) (7, 3 + V^5)
and hence

0(21, 10 + V— S) =21(1 — |) (1 — }) = 14-

Ex. 2. Find

*(6-hV— 14) and 0(189, 77 + 7
V—

"i4>.

Theorem 13. // b be any divisor of an ideal tit, and m= ttb,

the number of integers of a complete residue system, mod ttt,

which have with ttt the greatest common divisor b is <£(tt).

Since by § I, ix, if the theorem be true for any particular

residue system, mod m, it is true for all, we may take the system

used in Th. 2. We have shown that the integers

Bvlf $v2 , •••,8vn[n], 4)

where 8 is a number of b such that (8)/b is prime to n, and

Vi,v2 > •••>i'ni>] is a complete residue system, mod tt, comprise all

and only those integers of a complete residue system, mod tn,

which are divisible by b. Hence the integers of the complete

residue system, mod m, which have with m the greatest common

divisor b, are those of the system 4) in which the coefficient of

b is prime to tt, and these are <£(tt) in number.

Theorem 14. // b 1? b2 ,
"-

f
hn be the different divisors of ttt,

then

I>(b,.) = «[m]

Let b x , b2 , •••,b„ be the different divisors of m, including ttt and

(1). Then

ttt= Xtl 1
'0

1
= tlt 2b2= ••••= tttnb«.

Let Pi>P*> ••»/*»[«] 5)

be a complete residue system, mod ttt, and separate these numbers
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into as many classes as there are different divisors of m, putting

into one class the <f>(m^) numbers that have with m the greatest

common divisor b x (Th. 13), into another, the <f>(m2 ) numbers

that have with m the greatest common divisor b2 , etc. It is evi-

dent that each of the numbers 5) will.be in one and but one of

these classes, and hence, since they are w[m] in number,

*0»i) + *(**) H h*(n») =n[mj.

But mlt m2 , •••,mn are the different divisors of m, though in a

different order from that of the b's. The theorem is therefore

proved.

The proof here given of this theorem is, it will be observed, dependent

only upon Th. 13. The property of the 0-function thus shown completely

defines the function and we shall be able to derive from it, as in R, the

general expression for 0(m). From the general expression for 0(m) may
then be obtained Th. II. We may also obtain Th. 14 from the general

expression for 0(tn), as in R. These two proofs are left to the reader.

Theorem 15. // m be any ideal other than (r), whose prime

factors are p15 p2 , ••-,£»•, and b any divisor of m other than m,

and if we separate all ideals of the form

m

no p being repeated, into two classes, I and II, putting in class I

those such that m is divided by none or by the product of an even

number of the p's, and in class II those such that m is divided by

the product of an odd number of the p's, then exactly as many

ideals of the one class are divisible by b as of the other.

We see that the positive and negative terms of the developed

product1

in (-k)(-s)-(-k)
coincide respectively with the ideals of classes I and II ; that is,

1 No meaning of addition or subtraction is to be abscribed to the + or

— sign attached to these terms, it being simply observed that all the terms

in the developed product are ideals, to some of which the sign + is

attached and to others the sign —

.
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denoting by 2,mlt Stn2 respectively the sums1 of the ideals of these

classes, we have

m(-*)(-*)••(-*)-*"-*"•

Let m= p 1
ei

J)2
e2 ---pr

er
.

We shall prove the theorem first for the case in which

ex =s*3 == • • • ss*er =5 1

;

that is, m is not divisible by a higher power than the first of any

prime ideal.

Put Pip2-"Pr= a.

We have

K ,-0( ,

--s)*--(
,

--s)-^- ,)*r ,)"-^
= 2^— 2a

2 ,

where 5alf 2a2 have meanings corresponding to those of ^m^, 2m2 .

If now b be any divisor of a other than a, the number of ax

terms which are divisible by h is exactly equal to the number of

a2 terms which are divisible by ft ; for, if we put

a= &9i92 •*• 9«»

where 9i, 92 >
,, *>9« are those prime factors of a which do not

divide b, then the a/s and a2 's, which are divisible by & are

respectively the positive and negative terms of the developed

product

KSi— i)(?2— •'• (9.— I)? 6)

Moreover, since &=H°> there is at least one prime ideal which

divides a but not & ; that is, there is at least one g.

Hence there are always exactly as many positive as negative

terms in the developed product 6), and consequently as many a/s

1 This sum is to be understood in a purely formal sense as merely the

aggregate of the ideals of the class connected by + signs> and has, of

course, no connection with the notation for the greatest common divisor

given on p. 311.
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as a2's divisible by B. The theorem is therefore proved when m
is not divisible by a higher power than the first of any prime ideal.

We proceed now to prove the theorem for the general case.

Letting a, alf a2 retain the meaning assigned above, we have

and it is evident that the ideals m lf m2 coincide respectively with

the products na t , tta2 ..

Let now b be any divisor of m other than m and let g be the

greatest common divisor of the two ideals

b= gb, and n= gc.

We see that 6 is a divisor of a, for c is prime to b, and ca is

divisible by b, since

ca _ gca _ rta _ m
~F~~~g¥~ b~~ b"'

"

and m is divisible by b.

From 7) it follows, since c is prime to b, that, if b= m, then

c=(i) and b= a. Conversely, if b= a, and hence is divisible

by all prime factors of m, then c, since it is a divisor of m but

prime to b, must be ( 1 ) and hence b= tit.

Excluding therefore the case b= m, so that we have always

b=f=a, there are among the ideals ax exactly as many that are

divisible by b as there are among the ideals a2 .

Since, moreover, the necessary and sufficient condition that

an ideal

nti= ncti= gca^

or ttt2= tta2= gca2 ,

shall be divisible by b,= gb, is that a± or a2 shall be divisible by b,

there are exactly as many of the ideals m 1
divisible by b as of the

ideals m2 . The theorem is therefore proved.

This theorem and proof is interesting as illustrating once more how
exactly everything concerning rational integers that involves no property

other than that of divisibility, can be carried over to the general realm

in terms of ideals.
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As in the case of rational integers, the following theorem can

be deduced from the one just proved.

Theorem 16. a. If /(m) and F(m) be two functions of any

ideal m that are connected by the relation

S/(b)=F(m), 8)

where b runs through all divisors of m, including m, then

/(m)=2F(m1)—^(m2 ), 9)

where m lf m2 run through the values defined in the last theorem.

b. If f(m) and F(m) be connected by the relation

n/(b)=ILF(m), 10)

then /(m) = TTZ7; \ . 11)

To prove a) it is sufficient to observe that, if bx be any divisor

of m other than in, it is a divisor of exactly as many of the m/s

as of the m2 's (Th. 15), and hence when in 9) we replace the F's

by their values in terms of the /'s from 8), /(b^ will occur

exactly as often with the plus sign as with the minus sign. Hence

all terms in the second member of 9) will cancel with the excep-

tion of /(m), which occurs but once. The proof of b) is similar

and will be left to the reader.

From Th. 16, a, we can easily obtain by the aid of Th. 14 the

general expression for <£(m).

From Th. 14 we have

2</,(b)=4m],

where b runs through all divisors of m. Applying Th. 16, a,

we have •

/(m)=<£(m), F(m)=n[m],
and hence

<£(m) =2»[m 1 ]
— 2«[m2 ].

Since, moreover,

2ln
1

- 2l„
2
= m( I

-i-)(
I
-l)...(.-l)

(
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and, if

m
m

then

[tnj =

W>, • • • Pi

«[m]

we have

24mi]-24m2
]-«[m]( I-^

;j
)(«-^J

)...( I-^
I)

and hence

^) = «[m]( I-^
] )(

I -^
J
)...( I-^

]
).

Summing up what has been learned concerning the ^-function

for ideals, we see that, exactly as in the case of the corresponding

function in R, the function possesses the two properties

:

i. <f>(ah)=<f>(a)'4>(b) where a is prime to b.

ii. 2<£(b) =w[m], where b runs through all divisors of m; and

that either one of these properties completely defines the function,

and from it may be deduced the general expression for <£(m) and

the other properties, or we may as in R derive the general expres-

sion for the function directly from its definition, and then from

it get i and ii.

The conception of $- functions of higher order and the theorems

relating to them which hold for rational integers (Chap. Ill, § 6)

can be at once extended to ideals.

§ 9. Residue Systems Formed by Multiplying the Numbers

of a Given System by an Integer Prime to the Modulus.

Theorem 17. // filf /x2 , »*->/*»£«] be a complete residue system,

mod m, and a any integer prime to trt, then a^a^, •••,a/>in[m] is

also a complete residue system, mod m.

The integers afi^a^, •••,«/*«[,„] are incongruent each to each,

mod m, for from

a.fii= a(jLj, mod m
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it would follow that, since a is prime to m,

fxi^=fij, mod m,

which is contrary to the hypothesis that filt /x2 , •••,/An[ m ]
form a

complete residue system, mod m. The integers a/^, a/x2 ,
• • • , a/An[ ]

are, moreover, n[m] in number. They form, therefore, a com-

plete residue system, mod m.

Cor. // p1} p2 , •••,£$(„,) be a reduced residue system, mod m,

and a be prime to m, then ap 1} ap2 , •••,OLp
<t>(m)

is also a reduced

residue system, mod m; for ap x,ap2 , •••,ap^ (m) are incongrueht

each to each, mod m, prime to m, and <£(m) in number.

Ex. Since 1, 2, 3, V^Ts. * + V^5> 2 + \/=~S, W^S, 1 +zV^,
2 + 2V — 5 constitute a complete residue system, mod (3), and V — 5

is prime to (3), V^S, 2V==r
5, 3\/^5, — 5, — 5 + V^5, — 5 + tV^S*

— 10, — 10 + V — 5, — 10 + 2V — 5 is also a complete residue system,

mod (3).

Likewise since 1, 2, V — 5, 2.\J — 5 is a reduced residue system, mod
(3), V— 5, 2\/— 5, — 5, — 10 is also a reduced residue system, mod (3).

If p be any prime ideal and a an integer prime to p, it is evident

from the above that there exists an integer a x such that

0^= 1, mod p.

We call at the reciprocal of a, mod p.

§ 10. The Analogue for Ideals of Fermat's Theorem.

The following theorem is for ideals the exact analogue of

what Fermat's Theorem, as generalized by Euler, is for rational

integers. The similarity in the proofs of the two theorems should

be noticed.

Theorem 18. If m be any ideal and a any integer prime to

m, then

a* (m)= 1, mod m.

Let pitPts •••>?(*)

be a reduced residue system, mod m. Then, since

aPl,ap2 , •••,ap <Km) 2)

is also a reduced residue system, mod m, each number of 2) is
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congruent, mod m, to some number of I ) ; that is,

aPi Pji
]

aPi = Pj-2 Lmodm, 3)

aP4>{m) — Pj^m) ->

where P. , P; , ' ' ', Qi ± ,

are the numbers i), though perhaps in a different order.

Multiplying the congruences 3) together, we have

«* (w)
-PiP* ' ' • P*(«) - P/, fe '

* * <W mod m
'

from which, since Plp2
--pMm) is prime to m, it follows that,

a*(«) ssl> mod m.

Ex. Let m = (3 + V*^), and a = 3. We see that (3) is prime to

(3 + V^5) and that 0(3 + V^1-!) = 6; whence

3
6 =i, mod (3 + V^r5)>

for 3
6— 1, =728, is divisible by «[(3+ V — 5)L = H, and hence by

Cor. 1. If p be a prime ideal, and a an integer not divisible

by p, then

anm_1= i, mod p.

This is the exact analogue of Fermat's Theorem for rational

integers

Cor. 2. // p be any prime ideal, and a any integer, then

anM =a, mod p.

§ 11. Congruences of Condition.

Just as in the rational realm we have so far considered con-

gruences that may be compared to algebraic identities, the values

of all the quantities involved being given and the congruences

expressing simply the fact that the difference of the two num-

bers is a number of the ideal that is the modulus, or, in other

words, this difference considered as a principal ideal is divisible

by the modulus.

We shall now, as in the rational realm, consider congruences

that hold only when special values are given to certain of the

24
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quantities ; that is, the values of these " unknown " quantities are

to be determined by the condition imposed by the congruence.

To develop the theory of congruences of condition for ideal

moduli it is necessary to introduce the conception of the con-

gruence of two polynomials with respect to an ideal modulus;

thus,

If f(xlf x2 ,
• -,xn ) be a polynomial in the n undetermined quan-

tities xlf x2 , "-,xn with coefficients which are integers of k(-\/m)

and m be any ideal of &(\/m), we say that f(xx,x2 , ••,xn ) is

identically congruent to o with respect to the modulus m, if all

its coefficients be divisible by m.1

This relation is expressed symbolically by

f(xx,x2 , >-,xn ) =o, mod m.

Two polynomials, f(xt , x2 , •••, xn ) and <j>(xlf x2 ,
..'., xn), are

said to be identically congruent to each other, mod m, if their

difference be identically congruent to o, mod m, or, what is the

same thing, if the coefficients of corresponding terms in the two

polynomials be congruent, mod m ; that is, in symbols

f(x1,x2,---,xn)=<l>(x1,x2,---,xn ), mod m,

*/ f(*v x2, - - •? **) — 4> (*u *2> • • •» *"») °> mod nt.

For example ; we have

( i + 3V3^)^2 + $*y + 7y
2 + 1 + 2v^^

(8 + 3V=r5)^ 2+(2—V=5)*y+ 2, mod (7, 3 +V=T).

If f(x1,x2,---,xn)^<i>(x1,x2,-'-,xn ), mod m, i)

and a19 a2i
•••

f O« be any n integers of the realm, then evidently

f(a 19 a2 , •••,an)=</>(a1,a2 , •••,a»), mod m. 2)

If, however, 1) does not hold, then 2) does not hold in general 2

for every set of integers at,a2 ,
•••

9 a».

1
It will be understood throughout this discussion that the coefficients

of a polynomial are integers of some certain quadratic realm and that

the modulus is an ideal of this realm.
2 For an exception see § 13.
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1

The demand that #1$ xs, --,xn shall have such values and only-

such that 2) will hold is expressed by writing

f(xlf x2f -,xn )==cf>(x1,x2 , ••-,*„), mod m. 3)

Any set of integers satisfying 2) is called a solution of 3).

The determination of all such sets, or the proof that none exists,

is called solving the congruence 3). We call 3) a congruence of

condition.

If alf a 2 ,
• • • , an and pl,p2

,-- m ,pn be two sets of n integers »

each and

a 2^p2

a n= pn

, mod m, 4)

then by § 1, v,

f (<*!,<*» -~, <*n) =f(P1,P2,~-,pn), mod m,

and <j>(a 1,a2,--,an)=<l>(p1,p2,'-',Pn), mod m.

Hence if a 1} a2 ,
•••,#» be a solution of 3), px,p2 , '-,Pn is also

a solution. Two solutions so related are, however, looked upon

as identical. In order that two solutions be different it is neces-

sary and sufficient that the n relations 4) shall not hold simul-

taneously.

It is evident from the above that in order to solve any con-

gruence, as 3), it is sufficient to substitute for the unknowns the

(w[m] )
n sets of values obtained by putting for each unknown the

w[m] numbers of a complete residue system, mod m, and observe

which values of f(xx,x2 , •••,«#») so obtained are congruent to the

corresponding values of <j>(x1} x2 , "-,xn ), mod m.

There being only a finite number, (n[m]) n
, of possible solu-

tions, we can by this process always completely solve any given

congruence.

If the congruence have the form

f(xlf x%9
• • •, xn ) == o, mod m,

and a ls a2 , ••,a»bea solution, then f(x±,x2 , --,xn ) is said to be

zero, mod m, for these values of x1} x2 , '-',xn .
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Ex. The solutions of the congruence

(3 + V^^5)^ +^ + 2 = o, mod (3, i + V — 5),

are easily seen to be

x = 1, y=— 1, and x m — 1, y = 1, mod (3, 1 + V — 5) •

§ 12. Equivalent Congruences.

Two congruences,

f±(xltxt9 -~,xn) asfx(x%, #„•••,#»), mod m, i)

$1(xX9 Xt,-" fXn)ma<l»%(x19X2,'",Xn) i mod m, 2)

are said to be equivalent when every solution of the first is a solu-

tion of the second and every solution of the second is a solution

of the first.

All that is said in Chap. Ill, § 10, regarding congruences in

R applies equally to congruences with ideal moduli in any realm

k( s/m).

We have two transformations which lead to equivalent con-

gruences; first, if 1 ) be the given congruence and

F 1 (x1
,x

2,-'-,xn)^F2 (x1,x2,--',xn ), mod m, 3)

be any identical congruence, mod m, in xt,x2 , "-,xn , we can add

3) member by member to 1), obtaining

AOi, *» ' ->*%) + Fi(*i,

*

2 ,
••*,*•) /2O1, *2 ,

• -;xn)

+ ^2(^,^2, ••-,*„), mod m,

a congruence equivalent to 1).

By means of this transformation we can transpose any term

with its sign changed, from one member of a congruence to the

other and can thus reduce any congruence, as 1 ) , to an equivalent

congruence of the form

f{xuxv ..-,#») sso, mod m,

whose second member is o. We shall hereafter assume the con-

gruences with which we deal to have been reduced to this form.

We may also by this transformation reduce the coefficients of

f(xlf x2f ---yXn) to their smallest possible absolute values, mod m,

and thus lessen the labor of solving the congruences. In partic-
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ular we can remove those terms whose coefficients are divisible

by m. If m be such that a complete residue system, mod m, can

be constructed entirely of rational integers, all coefficients of

f(xXi x2 ,
• • •, xn ) can be replaced by rational integers. Using then

this residue system for substitution the work becomes greatly

simplified, especially when we remember that n[a] divisible by

n[m] is a sufficient as well as necessary condition that a shall be

divisible by m, if a be a rational integer.

Ex. The congruence

(4+ 3V= 5)^
2+(i—

V

:::5)^+(3 + 7VI=r 5)y
2 +i7 + 4V^5= o,

mod (7, 3 + \/=r5), 4)
is equivalent to the congruence

2x2
-f 4*y + 3/ + 5 = o, mod (7, 3 + >/—"$).

This is equivalent to adding to 4) member by member the identical

congruence

(— 2— 3\/=r5)*
2 + (3 + \/z:S)*y — 7V^53>

2— 12—4V— 5 = 0,

mod (7, 3-f V^-S),
—2—3V— S. 3 + V-—5i — 7V^r5, and —12— 4V^5 being all

divisible by (7, 3 + V^r5)-

A second transformation which leads to an equivalent con-

gruence is the multiplication of both members of the congruence

by any integer, a, prime to the modulus ; that is, the congruences

f(xlt x2i ••-,.*•„) =0, mod m,

and af(xlt x2 ,
• • • , xn ) = o, mod m,

where a is prime to m, are equivalent.

Conversely, we may divide all the coefficients of a congruence

by any integer prime to the modulus, obtaining an equivalent

congruence

Ex. The congruences

(3 + 3V^r5)*2+ 9*— 6— i5V^5=o, mod (3 + V"=r 5) >

(i + V3I 5)*
2 + 3*— 2—sV^^o, mod (3 + V^S),

are equivalent, since (3) is prime to (3 -f- V— 5).

As a special case of the multiplication transformation, as we
shall call the second of the above transformations, we have the
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multiplication of the congruence by — I ; that is, the change of

sign of each of its coefficients.

§ 13. Congruences in One Unknown with Ideal Moduli.

The general congruence in one unknown has the form

f(x) = a xn
-f- axx

n~x
-\ -f- 0*£E30, mod m, 1

)

where a ,a lf •••,an are algebraic integers of any realm k, m an

ideal of this realm, and n a positive rational integer.

If p be an integer of k such that

/(p) =0, mod m,

p is called a root of 1 )

.

The same analogies that existed in the rational realm in the case

of congruences with one unknown when the modulus is a prime

are easily seen to exist for prime ideal moduli, and their absence

in the case of composite ideal moduli is equally marked.

The reason is, of course, that just as in R the product of two

integers is divisible by a prime number when and only when one

of the integers is divisible by the prime, so the product of two

integers, that is, two principal ideals, is divisible by a prime ideal

when and only when one of the integers (that is, one of the prin-

cipal ideals) is divisible by the prime ideal. Furthermore, we
have the same difference in the case of congruences with prime

ideal moduli between saying that all the coefficients are divisible

by the modulus and that the congruence is satisfied by every

value of the unknown; for example, as is easily seen from

Fermat's Theorem as extended to ideals, the congruence

#nm— ^= 0, mod p,

where p is a prime ideal, is satisfied by every integer of the realm,

but its coefficients are not all divisible by p.

Before taking up the general congruence in one unknown with

ideal modulus, we shall consider that of the first degree. We
give first two simple examples of congruences of higher degree.

Ex. 1. Let

(5 +\/=5)x*+ (1 +V-~5)* + 8+ 3V-5= o,mod (3, 1 +V=5), 2)



CONGRUENCES WHOSE MODULI ARE IDEALS. 375

be the given congruence. We observe first that

I+V^SasO, mod (3, i + V^5)>
5 + V^5= i, mod (3, i + V^5),

8+ 3V^~5= 2, mod (3, i+V^5),
and hence 2) reduces to

x2+ 2===o, mod (3, i + V^-5)-

Substituting the numbers, 0, 1, 2, which constitute a complete residue

system, mod (3, i + V — 5), we have

2 = 2hj=o, mod (3, I+V— 5).

1+2 = 3= 0, mod (3, i + V
-

^)-
4 + 2 = 6= 0, mod (3, i + V^-5)-

The congruence has therefore the two roots 1 and 2.

Ex. 2. The congruence

(5— 6V^r5)*2 + 7-r+i= o, mod (1 — V37^.
is equivalent to the congruence

— jt-\-x+ 1= 0, mod (1 — V"--5). 3)

since

5 — 6\/^~5=— I, mod (1 — V--5)i
and

7ael, mod (1 — V^-S).

Substituting the numbers 0, 1, 2, 3, 4, 5, of a complete residue system,

mod (1 — V — 5)» m 3)» we see that the congruence has no roots.

§ 14. The General Congruence of First Degree with One Un-

known.

That there is always one and only one integer, £, of a complete

residue system, mod m, that satisfies the congruence

ax= /3, mod m, i)

where a and (3 are integers, m any ideal and a prime to m, is evi-

dent; for, if £ run through a complete residue system, mod m,

then one and only one of the resulting products, a|i, is con-

gruent to /?, mod m (Th. 17). Hence 1) has one and only one

root, if. We proceed now with the discussion of the general con-

gruence of the form 1), removing the restriction a prime to m.

A necessary condition that the congruence shall have a solution

is evidently, from (§ I, ix), that (3 shall be divisible by the
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greatest common divisor, b, of a and m. We shall see that this

condition is, as in the corresponding cases in R and k(i), also

sufficient, and that, if it be satisfied, the congruence has exactly

n[b] roots, incongruent, mod tn.

To show this, let

m= m 1b,

and take as a complete residue system, mod m, the w[m1 ]n[b],

= w[m], integers

rr=i,2,...,n[b]

where p is a number of m such that (p)/m is prime to b, and

are complete residue systems with respect to the moduli b and m 1

respectively.

We shall show that, if (/?) be divisible by the greatest common
divisor of (a) and m, exactly w[b] of the numbers 2) satisfy 1).

Let pfa-{- m De one °f tne integers 2).

Since dp is divisible by m, we have by substitution in 1), as

the necessary and sufficient condition that p8h -f- /** shall satisfy 1 )

,

ain= f$, mod m.

But since (a)/b is prime to m, the numbers

are all and only those numbers of a complete residue system, mod
m, which are divisible by b (Th. 2).

But ft is divisible by b. Hence there is one and only one of the

integers 3) to which f$
is congruent, mod m.

Let this integer be a^i.

It is evident that of the integers 2)

pK + /*i> p82 + /*i> •••,p8n[b] ~\- IH,

satisfy the congruence 1), and are the only ones that do so.

They are, moreover, »[b] in number. Hence the congruence 1)

has exactly n[b] roots that are incongruent, mod m.
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In particular, when b= ( I ) , that is, when a is prime to m,

the congruence has, as we have already seen, one and only one

root, all other integers satisfying it being congruent to this single

one, mod m. In this case by means of Fermat's Theorem for

ideals, we can find, as in the analogous case in the rational realm,

a general expression for the root of the congruence

a.v==j3, mod m, 4)

where a is prime to m, and m is any ideal.

Since a is prime to m, we have

a* (m) ss 1, mod m,

and hence

or a/ta^"0-1= /?, mod m.

Hence ^a* (m)_1
is the root of the congruence 4).

The most obvious method of solving any given congruence, and

one always applicable, is to substitute in turn the numbers of a

complete residue system with respect to the modulus, thus deter-

mining all the roots, if any exist, or proving the non-existence of

a root. This is usually the easiest method when the norm of

the modulus, m, is small, and especially when the numbers

1, •••,»[m] — 1 constitute a complete residue system, mod m.

This method has already been used in § 13, Exs. 1 and 2. We shall

further illustrate it and also the method depending on Fermat's Theorem

on the congruence

S^^i + V 13^ mod (7, 3 + VT=r
5), 5)

The numbers o, 1, 2, 3, 4, 5, 6 constitute a complete residue system, mod

(7> 3 + V— 5), substituting them in turn, we have

6)

7)

8)

mod (7, 3 + V— 5), 9)

10)

11)

12)

0— (i + V — 5)=— i — V — 5#eO

5— (i + \/^~5) = 4 —V^Ssso
10— (1 + V^5) = 9 —V^H^o
15— (1 + V—^) = 14—V^^
20— (1 + V:i3 5) = 19— V--5 45
25— (1 + y/^-5) =24— V^he^o
30— (1 + v^s) =29— V^Se^o
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all of which results, except 7) and 12), follow at once from the fact

that n[— 1 — V^5L =6, n[g— V^l], =86, «[i4—V^L =201,

wfig— V— 5], =366, and «[20,— V — 5], =846, are none of them

divisible by n(7, 3 + V— 5), = 7, and hence none of the numbers,

— 1 — V^5> 9—V—l. 14—V--& 19—V^S and 29— \/~5 can

be divisible by (7, 3 + V — 5)-

To obtain 7), we observe that ^[4— V — 5L =21, is divisible by

»(7i 3 + V— 5). and therefore 4—V— 5 may be divisible by

(7, 3 + V — 5). This is seen to be the case since

7— (3 + V^S) = 4—V^.
Hence 1 is a root of 5).

To obtain 11), we proceed exactly as with 7) and find that the condition

w[24—V — 5] divisible by n(7, 3 + V— 5)> which is necessary in order

that 24— V — 5 snaH De divisible by (7, 3 + V — 5), is satisfied, but that

the equation

7x + (3 + V^-S)? = 24— V^5
gives as values for x and y

27
*=7* /=— «•

These not being both integral, 24— V — 5 is not divisible by (7, 3+V—5)-

This last result could have been obtained also by showing that

(7, 3 + V~=~5, 24-V^5) = 0).

This method is, in general, if a be any integer and b, = (&, /3,), any

ideal, to show that a is not divisible by b, it is sufficient to show that

the ideal (j8lf )82, a) contains a rational integer smaller than any in b.

If we had noticed originally that, since 5=—(V—5)
2
> and (7, 3+V—5)

is prime to V— 5, the congruence has one and only one root, the work,

after finding that 1 was a root, would have been unnecessary. It was
given in full to illustrate this most primitive but fundamental method of

solution, which is entirely independent of the above discussion.

We shall illustrate now upon the same congruence the method de-

pendent upon Fermat's Theorem.

Since 5 is prime to (7, 3 + V—~S), and 0(7, 3 + V^17^) =6, we see

that (1 + V — 5)5
8

is the root of 5). To show that

(i + V"zr 5)5
5 =i, mod (7, 3 + V zr

5),

we observe that

i + V^ees— 2, mod (7, 3 + V^: 5),
and

5=— 2, mod (7, 3 + V^5),
and hence

(i + VTr5)5C E=(-2)(-2) 5 ==64 =i, mod (7, 3 + V^5).
The solution of a congruence of the form 1) where a is not prime to m

is perhaps most conveniently accomplished by means of the method sug-
gested by the general discussion of this case. We shall illustrate this

by two examples.
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Ex. 2.

2x= ~, mod (i + V^^)-
The greatest common divisor of (2) and (i + V — 5) is seen to be

(2, 1 + V — 5), that does not divide (7). Hence the congruence has

no root.

Ex. 3.

2.r==i —V— 5, mod (i + V — 5). 13)

Since (1 — V — 5) is divisible by (2, 1 + V — 5), the greatest common
divisor of (2). and (1 +V— 5), the congruence has 11(2, 1 +V— 5), =2,
roots.

We have

(3.1 + V-5).
(2, i + V-5)

Taking as a complete residue system, mod (3, i + V — 5), the num-
bers o, 1, 2, and substituting these numbers in 13), we have

o— (1 — V=S)=— 1+ V^5 + o
"

2— (1 — V~5>= I + V=S»o
4— (1 — <=$) = 3 + >T=5 + o

We have therefore, in the notation of the general discussion,

W= 1, mod (1+ V— 5).

p., mod (1 + V— 5).

Since

(3)

(3, I4-V-5
. =(3,

is prime to (1 + V — 5), we may take p = 3, and since o, 1 constitutes a

complete residue system, mod (2, i + V — 5), we have as the two roots

of 13)

3.0+1= 1, and 3-1 + 1=4.

The reader may verify these results, as found in examples 2 and 3, by

direct substitution of the numbers of a complete residue system, mod
(i + V^5).
These two congruences (Exs. 2 and 3) will serve as instructive ex-

amples of the dependence of the entire theory of algebraic numbers upon

the unique factorization theorem, and the necessity for the introduction

of the ideal.

In Ex. 2, 2 and 1 + V — 5> considered merely as integers of k(y/ — 5),

are prime to each other, and, were it not for the failure of the unique

factorization theorem in k(yj — 5), we should expect the congruence

therefore to have a single root in accordance with the results obtained

in R and k(i). Substituting the numbers of a complete residue system,

mod i + V — 5, we find that it has no root.

Likewise in Ex. 3, considering the numbers involved merely as integers

of £(V — 5)> we should expect the congruence to have a single root.
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Substituting the numbers of a complete residue system, mod 1 + V — 5»

we find that it has two roots. The reason for these discrepancies is made
plain when we resolve 2, 7, 1 —V — S» J + V — 5, into their prime

ideal factors.

§ 15. Divisibility of one Polynomial by another with re-

spect to a Prime Ideal Modulus. Common Divisors. Common

Multiples.

If p be any prime ideal of a realm k, we have the following

definition

:

A polynomial, f(x), is said to be divisible with respect to the

modulus p by a polynomial <f>(x), when there exists a polynomial

Q(x) such that

fi*\mQ(j*)+{x) l
mod p.

We say that <f>(x) and Q(x) are divisors or factors, mod p, of

f(x), and that f(x) is a multiple, mod p, of <£(•*") and Q(x).

The sum of the degrees of the factors of f(x) is evidently equal

to the degree of f(x).

The coefficients of f(x), <K#) and Q{x) are understood to be in-

tegers of k.

Ex. It is easily seen that

(4 + 3V"=r5)^-^ + ^ + V=l^+(i + V"=l)^ + 2

=(V-5^
2+( I+V:==r5)^+2)((3+2V=r5)^+i), mod (7, S+V^JO'*

Hence

V=r5^2 +(i + V:=:r5)^ + 2 and (3 + 2V'=5)*a + 1

are divisors, mod (7, 3 + -y/ — 5), of

We have the same consequences of this definition and the same

definitions of common divisor and common multiple for prime

ideal moduli as for rational prime numbers (Chap. Ill, § 15).

§ 16. Unit and Associated Polynomials with respect to a

Prime Ideal Modulus. Primary Polynomials.

We see as in the rational realm that the integers of the realm,

not divisible by p, divide every polynomial with respect to the
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modulus p, since they divide i, mod p, and that these are the only

polynomials having this property.

We call therefore the integers of k, which are not divisible by

p, the unit polynomials, mod p, or briefly the units, mod p.

Since two polynomials that are congruent, mod p, are consid-

ered as identical, we can take as the units, mod p, the integers of

any reduced residue system, mod p.

Two polynomials which differ only by a unit factor, mod p, are

called associated polynomials and are looked upon as identical in

all questions of divisibility, mod p.

Two polynomials that are associated with a third polynomial,

mod p, are associated with each other, mod p.

Two polynomials that are associated, mod p, are evidently of

the same degree and each is a divisor, mod p, of the other.

Conversely, if two polynomials be each divisible, mod p, by

the other, they are associated, mod p.

Two polynomials that have no common factor, mod p, other

than the units, are said to be prime to each other, mod p.

Any polynomial, f{x), has n(p) — I associates, mod p. Of
these, one and only one has the coefficient of its highest degree i.

This one is called the primary associate, mod p of f(x). For

example, the six polynomials

x* _|_ 2.v— 3, 2x3 -\- 4X— 6, 3,r
3
-\- 6x— 2,

4.r3_L. x—s, 5*3 + 3-r— 1, 6;r3 + 5*— 4,

are associated, mod 7, and x3 -\-2x— 3 is the primary one.

§ 17. Prime Polynomials with respect to a Prime Ideal

Modulus. Determination of the Prime Polynomials, mod p, of

any Given Degree.

A polynomial that is not a unit, mod p, and that has no divisors,

mod p, other than its associates and the units, is called a prime

polynomial, mod p. If it has divisors, mod p, other than these

it is said to be composite, mod p.

We can determine the primary prime polynomials, mod p, of

any given degree, n, by the process employed in the same case in
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the rational realm; that is, write down all primary polynomials,

mod p, of degree n; then, having determined by multiplying

together the primary polynomials, mod p, of degree less than n,

all composite primary polynomials, mod p, of degree n, we strike

them from the list of all primary polynomials, mod p, of degree n.

Those left are evidently the primary polynomials, mod p, of

degree n.

§ 18. Division of one Polynomial by another with respect

to a Prime Ideal Modulus.

Theorem 19. // f{x) be any polynomial and <f>(x) be any

polynomial not identically congruent to 0, mod p, there exists a

polynomial Q(x), such that the polynomial

f(x) — Q(x)<f>(x)==R(x), mod p,

is of lower degree than <j>(x).

The operation of determining the polynomials Q{x) and R(x)
is called dividing f(x) by 4>(x), mod p. We call Q(x) the quo-

tient and R(x) the remainder. The proof of this theorem is pre-

cisely the same as that for the corresponding one in the rational

realm.

The conception of the congruence of two polynomials with

respect to a double modulus is the same for a prime ideal as for

a rational prime number.

§ 19. Unique Factorization Theorem for Polynomials with

respect to a Prime Ideal Modulus.

We shall now show that, just as a polynomial whose coefficients

are rational integers can be resolved in one and but one way into

prime factors with respect to a rational prime modulus, so a

polynomial, whose coefficients are integers of any given quadratic1

realm, can be resolved in one and but one way into prime factors

with respect to a prime ideal modulus. The proof will be seen

to be identical with that employed for rational numbers. We
begin by stating the following theorem, whose truth is evident.

1 This holds for realms of any degree.
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Theorem 20. // f(x) ==Q(x)<f>(x) + R(x), mod p, every

polynomial that divides, mod p, both f(x) and <f>(x) divides both

tf>(x) and R(x) and vice versa; that is, the common divisors,

mod p, of f(x) and <f>(x) are identical with the common divisors,

mod p, of 4>{x) and R(x).

Theorem 21. // f1 (x), f2 (x) be any two polynomials and

p a prime ideal, there exists a common divisor D(x), mod p, of

fi(x)y fz(x )> such thQt D(x ) W divisible, mod p, by every com-

mon divisor, mod p, of fx (x), f2 (x), and there exist two poly-

nomials, <\>x{x), <£2 (-r )> such that

AWfcW +/iW*W"^W« mod P-

We may evidently assume f2 (x) of degree not higher than

fx (x). Dividing fx (x) by f2 (x), mod p, we can find two poly-

nomials, Q 1 (x), fs (x), such that

/,(*) BE &(*)/,(*) + /,(*), mod p,

f3 (x) being of lower degree than /2
(.r).

Dividing f2 (x) by /3 (.r), mod p, we have

/.(*)&(*)/,(*)+/,(*), mod p,

where ft (x) is of lower degree than /3 (.r), and similarly

/,(f)
= 0.(*)/«Or)+/.(f) -

/„.2
(.r) = QB.2 ('.r)/„_1 (.v)+/„(^) -. mod p,

/*.,<*) «a„(*)/.(*)

a chain of identical congruences in which we must after a finite

number of steps reach one in which the remainder, fn+1 (x), is o,

mod p, since the degrees of that remainder continually decrease.

By Th. 20 the common divisors, mod p, of fn (x) and fn-^x)

are identical with those of /„_1 (^r) and fn-2 (x), those of /n_i(-^),

fn-2 (x) with those of fn.2 (x), fn-3 (x), and finally those of f3 (x),

f2 (x) with those of f2 (x), fx {x).

But fn (x) is a common divisor, mod p, of fn (x) and fn-i(x)

and is evidently divisible by every common divisor of fn (x)
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and fn-i(x)- Hence fn (x) is the desired common divisor, D(x),

mod p, of f± (x) and f2 (x).

If now we substitute the value of f3 (x) in terms of ft (x),

f2 (x), obtained from the first of these congruences, in the second

and the values of f3 (x) and f4 (x) in terms of ft (x), f2
{x) in

the third and continue this process until the congruence

fn-2{x)=Qn_2 {x)fn_ 1 {x) +/»(.*•), mod p,

is reached, we shall obtain a congruence,

fi(*)+i{*)+M*)+Mi*)mD{s), mod p,

where faix), <f>2 (x) are polynomials.

Cor. If f1 (x), f2 (x) be two polynomials prime to each other,

mod p, there exist two polynomials, <j> x {x), <)>2 (x), such that

/iO)4>i<» +/iWfcW.*!i mod p.

In this case D (x) is an integer, a, not divisible by p, and we have

/iO)$iO) +f$x)*M(x)"mCh mod p,

whence, multiplying by the reciprocal of a, mod p, we obtain

fx {x)4> 1 {x)+f2
{x)4>2 {x) = i, mod p.

Theorem 22. // the product of tzvo polynomials, fx (x), f2 (x) ,

be divisible, mod p, by a prime polynomial, P(x), at least one of

the polynomials ft (x), f2 {x) is divisible, mod p, by P(x).

Let f1 (x)f2 (x)^Q(x)P(x),modp, 1)

where Q(x) is a polynomial, and assume fx
(x) not divisible, mod

p,byP(x).

Then fx (x) and P(x) are prime, mod p, to each other and by

Th. 21, Cor. there exist two polynomials, ^(.r),
<f>2

(x), such that

/1OH1O) +P(s)+t{x)mi $
mod p. 2)

Multiplying 2) by f2 {x) and making use of 1), we have

P(*j[Q(*)+i(*) +&(*)+*(«)]/,(*)) mod fc

where Q(x)<}>
1
(x) -\-f2 (^)<f>2

(x) is a polynomial. Hence f2 (x)

is divisible, mod p, by P(^).
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Cor. 1. // the product of any number of polynomials be divis-

ible, mod p, by a prime polynomial, P{x), at least one of the

polynomials is divisible, mod p, by P(x).

Cor. 2. // neither of two polynomials be divisible, mod p, by

a prime polynomial, P(x), their product is not divisible, mod p,

by P(x).

Theorem 23. A polynomial, f(x), can be resolved, mod p, in

one and but one way into a product of prime polynomials, mod p.

The proof of this theorem is identical with the corresponding

one in the rational realm.

We can now evidently write any polynomial, f(x), in the form

fWaaCAW)^?,^))*- (Pn(*)) en
, mod p,

where Px (x), P2 (x), •••, Pn (x) are the unassociated prime fac-

tors, mod p, of f(x).

If we take P1 (x), P2 (x), •••, Pn (x) primary, the resolution is*

absolutely unique.

The representations of the greatest common divisor and least

common multiple,* mod p, of two polynomials are identical with

those in the rational realm.

The resolution of any polynomial into its prime factors, mod

1p, may be effected by the method employed in the case of rational

numbers.

§ 20. The General Congruence of the nth Degree in One Un-

known and with Prime Ideal Modulus.

Theorem 24. If p be a root of the congruence

f(x)=a xn + a x
xn-1

-\ f-a„= o, mod p, 1)

f(x) is divisible, mod p, by x— p, and conversely, if f{x) be

divisible, mod p, by x— p, p is a root of 1).

Dividing, mod p, f(x) by x— p, we have

f(x) = (x— P )<p(x)+R(p), mod p,

whence, since p is a root of 1),

f(x) = (x— p)<p(x), mod p;

25
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that is, f(x) is divisible, mod p, by x— p. The converse is

evident.

If f(x) be prime, mod p f
the congruence i) evidently has no

roots. The converse is, however, not true; that is, f(x) may be

composite, mod p, but i) have no roots, for the prime factors

of f(x), mod p, may all be of higher degree than the first.

This theorem gives us another method for determining the

factors, mod p, of the first degree of any polynomial in x. Some

of these factors may be alike and we are led therefore to say

that p is a multiple root of order e of i), if f(x) be divisible, mod

p, by (x— p)
e but not by (x— p)

e+1
.

If, therefore, p1,p2,'",pm be the incongruent roots of i) of

orders elt e2 ,
.

. • , em respectively, we have

f(x)m(x—pt)H*—p2)*--- (*—f>m)em
fi(*), mod p,

where ft (x) is a polynomial having no linear factors, mod p, and

whose degree ^ is such that

where n is the degree of f(x).

Counting a multiple root of order e as e roots, we see that i)

has exactly as many roots as f(x) has linear factors, mod p, and

have the following important theorem

:

Theorem 25. The number of roots of the congruence

f(x)=a xn -\-a1x
n-1

-{ \-an= o, mod p,

where p is a prime ideal, is not greater than its degree.

Cor. 1. // the number of incongruent roots of a congruence

with prime ideal modulus be greater than its degree, the con-

gruence is an identical one.

Cor. 2. // the congruence

f(x) =0, mod p, 2)

have exactly as many roots as its degree, and <f>(x) be a divisor,

mod p, of f(x), then the congruence

<f>(x) =0, mod p,
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has exactly as many roots as its degree; for

/(*)M+(*)0(*)> mod p,

where Q(x) is a polynomial in x, and every root of the con-

gruence 2) is a root of either the congruence

<f>(x)=o, mod p, 3)

or of the congruence

Q(x) =0, mod p. 4)

Moreover, the sum of the degrees of 3) and 4) is equal to the

degree of 2).

If, therefore, <f>(x) had fewer roots than its degree, then Q(x)

must have more roots than its degree, which is impossible.

Hence the corollary.

§ 21. The Congruence x* (m) — 1 = 0, mod m.

Although in the case of congruences of degree higher than the

first the theorem just given tells all that we can in general say

regarding the number of the roots, still there is, as in the rational

realm, one important case in which the number of roots is always

exactly equal to the degree of the congruence.

Theorem 26. The congruence

4r*
(a)ss 1, mod m, 1)

has exactly </>(m) roots.

The 4>(m) integers of a reduced residue system, mod m, evi-

dently satisfy 1). Moreover, since by §1, ix two integers con-

gruent, mod m, have with m the same greatest common divisor

and the greatest common divisor of (1) and m is (1), every root

of 1) must have with m the greatest common divisor (1) ; that is,

be prime to m. Hence the number of roots of 1 ) is exactly equal

to <£(m), its degree.

Ex. 1. The congruence

jf^+i^BM, mod(i+
1/=5),

or *2 == 1, mod (1 -f V -~5)>
has two roots, 1 and 5,

Likewise the congruence

**CW"=*>- 1, mod (7, 3 + /=5),
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or *6
=ee i, mod (/, 3 + \f=-$),

has six roots, i, 2, 3, 4, 5, 6.

Ex. 2. Consider the congruence

^ (2l/^5, _5+y—5) ^ f> mod (2^=5, _ 5 + ^5), 2)

Since

(2V"^5, - 5 + V-^S) = (V^l) (2, 1 + V^),
we have

0(2V^-5> — S + V^) =0(V^5)^(2, 1 +

V

3^) =4-1 = 4.

Substituting therefore in the congruence

**aasl, mod UV—~S, — S + V"^).
the numbers o, 1, 2, 3, 4, 5, 6, 7, 8, 9, which form a complete residue system,

mod (2V — 5, — 5 + V — 5)* we see that the numbers 1, 3, 7, 9, which

form a reduced residue system, mod (2\/ — 5, — 5 + V — 5), are the

only ones which satisfy the congruence.

Cor. If d be a positive divisor of $(p), the congruence

xa— j == o, mod p,

where p is a prime ideal, has exactly d roots.

This follows at once from Th. 25, Cor. 2, since xd— 1 is a

divisor, mod p, of x*M— 1.

The congruence xnV^ — ,r= o, mod p, having the n [p] roots

pu P2>
*

' •> pn ipi equal in number to its degree, we have the identical

congruence

xnW— x==(x— Pl )(x— P2 )
... (x— PnM ), mod p.

For example

x7— x= x(x— i)(x— 2)0— 3)0—4)0— 5)0"— 6),

mod (7, 3+ V^S)-

§ 22. The Analogue for Ideals of Wilson's Theorem.

The result just obtained gives us a proof of the following

theorem

:

Theorem 27. If p be a prime ideal and p lf p2 ,
•••, p^^) a

reduced residue system, mod p, then

P1P2 •••?,*,(»+ 1=0, mod p.

Since the congruence

X*M— 1=0, mod p,
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has exactly <f>(p) roots, Pl,p2 ,
• • -

t p^Mt we have by § 21

x .*(») i==(x— Pl)(x— p 2 )
•• (*— p* (»), mod p.

Putting jt= o, we have

— I3s(-pi)(— p,)
••• (—p«»), mod p,

whence, since <£(p) is even, except when n[p] = 2,

P1P2 ~'P4M+ l —°> mod p,

which evidently holds also when n[p] = 2.

Ex. Let p = (7, 3 + V — 5) ; then 1, 2, 3, 4, 5, 6 is a reduced residue

system, mod (7, 3 -f- V — S)j and we have

1 -2 • 3 .4. 5 -6+1 = 721=0, mod (7, 3 + V—!)•

§ 23. Common Roots of Two Congruences.

The common roots of two congruences

f1 (x)==o, mod p, and /2 (.r)=o, mod p,

are evidently the roots of the congruence

<f>(x) sago, mod p,

where <f>(x) is the greatest common divisor, mod p, of ft (x)

and f2 (x).

Since the congruence

2*1*1 — .r==o, mod p,

has for its roots the numbers of a complete residue system, mod

p, the incongruent roots of any congruence

f(x) =0, mod p,

will be the roots of the congruence

<p(x) =0, mod p,

where <f>(x) is the greatest common divisor, mod p, of xnlx ^— x
and f(x).

This gives us another method of determining all the incon-

gruent roots of any given congruence with prime modulus.
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§ 24. Determination of the Multiple Roots of a Congruence

with Prime Ideal Modulus.

The multiple roots of the congruence

/0)=o, mod p, 1)

may be determined just as in the case of rational integers. Let

P(x) be a prime polynomial, mod p, and let f(x) be divisible, mod

p, by [P(x)] e but not by [P(x)] e+1
; then

f(x) = [P(x)Y<f>(x), mod p,

or, what is the same thing,

where F(x) and <f>(x) are polynomials in x, with coefficients

which are integers of the realm k, to which p and the coefficients

of f{x) belong, and F(x) is identically o, mod p.

Differentiating 2), we have

f(*)«=[P(*)J**[«P(£)#(jr) +P(,*)*'(*)] +F'(x),

where P'(x), <f>'(x) and F'(x) are polynomials in x with coeffi-

cients which are integers of k, and F'(x) is identically o, mod p,

for all coefficients of F(x) being divisible by p, all coefficients of

i7'^-) are divisible by p. Hence

f(x)mlP{xy]-1
i>x

(x),taodp,

where $x (x) is a polynomial in x, with coefficients which are

integers of k, and is, moreover, not divisible, mod p, by P(x), for

*,(*) = «/»(*)+(*) +P(x)*'(Jr),

where P'(x) is of lower degree than P(x) and <#>(^) is prime,

mod p, to P(^")- Therefore f(x) is divisible, mod p, by the

prime factor P(x) exactly once less often than f(x).

In particular, if f(x) be divisible, mod p, by (x— p)
e but not

by (x— p)
e+1

, then f(x) is divisible, mod p, by (x— p)
e_1 but

not by (x— p)
e

.

Hence the theorem

:
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1

Theorem 28. If the congruence

f(x) =0, mod p,

have a multiple root, p, of order e, the congruence

f(x) =0, mod p,

has the multiple root p of order e— 1.

If the greatest common divisor, mod p, of f(x) and f(x) be

4>(x), then the roots of the congruence

<£0)e=o, mod p, 3)

if it have any, will be the multiple roots of 1) and each root of 3)

will occur once oftener as a root of 1) than as a root of 3).

It may happen, of course, that f(x) and f{x) have a common
divisor, <f>(x), mod p, and yet 1) has no multiple roots. In this

case the repeated prime factors, mod p, of f(x) are of degree

higher than the first, and <j>(x), therefore, contains no factor of

the first degree, mod p.

§ 25. Solution of Congruences in One Unknown and with

Composite Modulus.

The solution of a congruence of the form

f(x) = a xn + a xx
n~x

-| +a„= o, mod m, 1

)

where m= m1m2
• • • m t ,

m19 m2 ,
•••, mt being ideals prime each to each, can be reduced to

the solution of the series of t congruences

f(x) =0, mod m lt

'

f(x) ^o, mod m2 ,

f(x) ^o, mod m

2)

Every root of I ) is evidently a root of each of the congruences

2), and conversely any integer, p, of the realm which is simul-

taneously a root of each of the congruences 2) is a root of 1),

for if the integer f(p) be divisible by each of the ideals mlf m2 ,

•••, mt, which are prime each to each, it is divisible by their

product.
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If therefore a lf a2,---,a t be roots of the congruences 2) and

p be chosen so that

p= a 1} mod Bin
)

P= a2 , mod m 2 , I

3)

pzz=a t , mod mt,

then p is a root of 1).

Since m1} m2 , ,mt are prime each to each, it is by Th. 10

always possible to find p so as to satisfy the conditions 3).

Let p1,p2>'">Pt be auxiliary integers selected as in Th. 10;

then

p= aj$i + a2(32 H h atfitt mod m, 4)

is a root of 1), and, if the congruences 2) have respectively

^2> "->h incongruent roots, then by Th. 10 1) has lj2 ••• lt in-

congruent roots, which are obtained by putting for alt a2 , •••,&*

in 4) respectively the llt l2 , ••-,/* roots of the congruences 2). In

particular, if any one of the congruences 2) have no root, then

1) has no root.

We may now suppose m = p&pf* • • • prer , where the }>'s are different

prime ideals, and show, as in the corresponding case in R (p. 96), that the

solution of the congruence f(x) ^o, mod p
e
, can be made to depend

upon that of f(x) ^o, mod p^1
, and hence eventually upon that of

/(jr)^o, mod p, the same method being applicable with slight modifi-

cations.

§ 26. Residues of Powers for Ideal Moduli.

// a be prime to the ideal m, and

fi^a*, mod m,

where t is a positive rational integer, /? is said to be a power

residue of a with respect to the modulus m.

For example, since

—2V— 5=(i+V— 5)
3

>
mod (7, 3-f-V— 5),

we say that — 2\/— 5 is a power residue of 1 -|~V— 5> mod

(7> 3 +V— 5)- Two power residues of a which are congruent,

mod m, to each other and hence to the same power of a, are

looked upon as the same.
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A system of integers such that every power residue, mod m,

of a is congruent, mod m, to one and only one integer of the

system is called a complete system of power residues of a, mod

m. These integers may evidently be selected from among the

integers of any reduced residue system, mod m. The following

table gives the power residues of all numbers of a reduced residue

system, mod (7, 3+V— 5), the system taken being 1,2,3,4,5,6.

m = (7, 3+

V

a a1 a2 a3
a* a5 a6

1 I I I I I I

I 2 4 I 2 4 I

I 3 2 6 4 5 I

I 4 2 1 4 2 I

I 5 4 6 2 3 I

I 6 1 6 1 6 1

We ask now what is the smallest value, ta , of t, greater than o,

for which

a*= 1, mod m.

That such a value of t always exists and is equal to or less than

<£(m) is evident from Th. 10 by which we have, since a is

prime to m,

a* (m) s= 1, mod m.

Giving to ta the above meaning, we say that the integer a apper-

tains to the exponent ta with respect to the modulus m.

We see, by consulting the above table, that 3 and 5 appertain

to the exponent 6; that is, <£(m), mod (7, 3 +V— 5), that 2 and

4 appertain to the exponent 3, mod (7, 3+V— 5)» and that 6

appertains to the exponent 2, mod (7, 3+V— 5).

It is evident that, if a= /?, mod m, then a and (3 appertain to

the same exponent, mod m. Hence to find the exponents to

which all integers appertain, mod m, it is only necessary to ex-

amine the numbers of a reduced residue system, mod m.
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Theorem 29. If the integer a appertain to the exponent

4, mod m, then the ta powers of a,

it, a, a8
,...., a*.-1, 1)

are incongruent each to each, mod m.

Let as
, a8+r be any two of the numbers 1).

If as+r= a s
, mod m, 2)

then, since a is prime to m,

ar=i, mod m. 3)

But r is less than ta and 3) is therefore impossible, since a

appertains to ta .

Hence 2) is impossible.

Theorem 30. // a appertain to the exponent ta , mod m, any

two powers of a with positive exponents are congruent or incon-

gruent, mod m, according as their exponents are congruent or

incongruent, mod ta .

Let a*1
, a 82 be any two powers of a, slf s2 being positive rational

integers, and let

*i= qJa + ri» s*= q*t a+ r*>

where qlf q2 are positive rational integers and

o^r1 <ta , o^r2 <ta , rx ^r2 . 4)

If otfi*«-H-i = a^-+r2
, mod m, 5)

then ari= ar2
, mod m, 6)

and hence, since a is prime to m,

ari~r2= 1, mod m.

But from 4) we have o^rx
— r2 < tai whence, since a apper-

tains to ta , mod m,

r1
= r2 . 7)

Therefore s±
= s2 , mod /<., 8)

is a necessary condition that we shall have

a si= a*
2j mod m. 9)

Moreover, from 8) follow in turn 7), 6) and 5). Hence 8) is

also a sufficient condition for the existence of 9).

We have therefore



CONGRUENCES WHOSE MODULI ARE IDEALS. 395

a E=a'a+1 = a2 'a+1= -

,ta-l

-mod m;

that is, the same law of periodicity holds for power residues with

respect to ideal moduli as in the case of rational integers.

This can be verified by an examination of the table (p. 393),

where we see, for example, that 2 appertains to the exponent 3,

mod (7, 3+V^lO, and that

2° mm 23 sg 26 mm

mod (7, 3 +V:=:
5),2 ==2*

2-= 2 l

2' =
28=

and
= 3= 6=--.

1=4= 7=...

2^5= 8=. --J

mod 3.

Theorem 31. The exponent, ta , to which an integer, a, apper-

tains with respect to the modulus m, is always a divisor of <£(m).

Since a+^ssissa , mod m,

we have by Th. 30 <£(nt) =0, mod ta .

Theorem 32. If two integers, alt a2 , appertain, mod tn, to two

exponents, tlt t2 , which are prime to each other, then their

product, a^a 2 , appertains, mod m, to the exponent, tx t2 .

Let axa2 appertain to the exponent t, then

(a1o2) # ssi, mod m. 10)

Raising both members of 10) to the ^th power, we have

a^hta^* mm i, mod m.

But a^^mmi, mod m,

and hence a^^i, mod tn.

Therefore, since a 2
appertains to the exponent t2 , mod m, tx t

must be a multiple of t2 , whence, since tlf t2 are prime to each

other, it follows that t is a multiple of t2 .
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In like manner we can show that Ms a multiple of tv
Therefore, t being a multiple of both t 1 and t2 , is a multiple of

their product, tx t2 .

Hence the smallest possible value of t for which 1 ) holds is fx#8.

Therefore, a xa 2 appertains to the exponent ^2 , mod m.

Ex. We see from the table (p. 393) that 2 and 6 appertain, mod (7,

3 + V — 5)> respectively to the exponents 3 and 2, and that their product,

12, ^5, mod (7, 3 + V — 5), appertains to the exponent 6, mod (7,

Limiting ourselves now to the case in which the modulus is a

prime ideal p, we ask whether there are integers appertaining to

every positive divisor of <j>(p), and, if so, how many?

An examination of the table will show us how matters stand

when p= (7, 3 +V=r5)-

We have <f>(y, 3 -f-V— 5) =6, and the positive divisors of 6

are 1, 2, 3 and 6.

To 1 appertains the single integer I.

To 2 appertains the single integer 6.

To 3 appertain two integers, 2 and 4.

To 6 appertain two integers, 3 and 5.

Theorem 33. To every positive divisor, t, of <f>(p) there

appertain <f>(t) integers with respect to the modulus p.

Assume that to every positive divisor, t, of <f>(p) there apper-

tains at least one integer, a. We shall show that, if this assump-

tion be true, there appertain to t <f>(t) integers; that is, to every

positive divisor, t, of <f>(p) there appertains either ^(t) 1 integers

or no integer.

Let \J/(t) denote the number of integers appertaining to t.

Each of the integers

a°=i,a,a2
, •••,a*

_1
,

11)

is a root of the congruence

£* 1, mod p; 12)

for, if ar be any one of these integers, then

(ar) t=(at
)
r Bsi

i
mod p,

1 We consider t simply as a rational integer, and <t>{t) is to be understood

in this sense.
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since a f= I, mod p.

The integers n) are, moreover, incongruent each to each, mod

p (Th. 29), and being t in number, are, therefore, all the roots of

12), since 12) cannot have more than t incongruent roots (Th.

25, Cor. 2). But every integer appertaining to t must evidently

be a root of 12) and we need look, therefore, only among the

integers 1 1 ) to find all the integers belonging to t

.

Let ar be as before any one of the integers 11).

If ar appertain to t we must have ar,a2r
, •••,a u_1)r all incon-

gruent to 1, mod p.

By Th. 30 the necessary and sufficient condition for this is

ir^o, mod t, 13)

where i runs through the values 1, 2, ••••, t— 1.

It is easily seen that the necessary and sufficient condition that

13) shall hold is that r shall be prime to t. Hence the necessary

and sufficient condition that any one ar of the integers 11) shall

appertain to t is that its exponent r shall be prime to t.

This condition is fulfilled by <f>(t) of the integers 11), and we

have proved therefore that

^(f) =either$(£) oro.

We shall now prove that the latter case can never occur.

We separate the <f>(p) integers of a reduced residue system,

mod p, into classes according to the divisor of <j>(p) to which

they appertain; that is, if t1 ,t2 , --,tn be the positive divisors of

<f>(p) we put in one class the \p{tx ) integers of the above system

that appertain to tx , in another class the if/(t2 ) integers that apper-

tain to t2 , etc. It is evident that no integer can belong to two

different classes and that every integer of this system must belong

to some one of these classes.

The integers of a reduced residue system, mod p, being <£(p)

in number, we have, therefore

rt*i)+rth) + "'++(**) =+(p>*

But, considering <£(p) simply as an integer of R, we have also

(Chap. Ill, Th. 6)

*('i) +<K'2 ) + — +*(*•) =*(P).
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Hence

iK'i) +<H'2 ) H hiKf») =*d) + <K'2 ) H h *('»). 14)

Since, however, every term in the first member of 14) is equal

either to the corresponding term in the second member or to o,

and hence, if even a single term in the first member of 14) were

o, 14) would not hold, no term in the first member of 14) is o.

Therefore f(t) =<f>(t).

An examination of the table (p. 393) will illustrate this.

§27. Primitive Numbers with respect to a Prime Ideal

Modulus.1

Among the integers of a reduced remainder system, mod p,

there are, we have seen, <£(<£(£)) that belong to the exponent

<f>(p). These integers are caller primitive numbers with respect

to the modulus p, or briefly, primitive numbers, mod p.

From the table (p. 393) we see that 3 and 5 are primitive num-

bers with respect to the modulus (7, 3 +V— 5)- If p be a primi-

tive number, mod p, the <f>(p) powers of p,

n°= I n1 n2 n3 ••• n^^)- 1

P x
> P } P > R > > P y

form a reduced residue system, mod p. This is for many pur-

poses an extremely useful way of representing such a system.

We can determine a primitive number, mod p, by the method

used (Chap. Ill, § 33) to determine a primitive root of a rational

prime.

We can prove Wilson's Theorem for an ideal modulus by the

aid of such a reduced residue system, just as the original theorem

was proved for rational integers (Chap. Ill, § 29).

It will be noticed that the primitive numbers, mod p, play exactly the same
role with regard to p that the primitive roots of a rational prime, p, do

with regard to p. It would seem desirable to have the nomenclatures the

same, but those employed are the usual ones. It would, perhaps, be best

to use the term primitive number instead of primitive root in the case

of rational integers.

§ 28. Indices.

// CL= p
l

, mod p,

'See Hilbert: Bericht, §9.
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where p is a primitive number, mod p, and i be one of the num-

bers o, I, 2, .--, <p(p) — i, i is said to be the index of a to the

base p with respect to the modulus p.

The relation between an integer and its index, which was seen

in R to be similar to that of a number to its logarithm, is evidently

the same in the case of ideals. It can be shown exactly as in

R that, if p be any primitive number, mod p, a, (3 any integers of

the realm, and m a positive rational integer, we have the follow-

ing relations.

i. The index of the product of two integers is congruent to the

sum of the indices of the factors, mod <j>(p), that is;

ind
p (aft) = ind

p
a + ind

p
/?, mod <f>(p) .

ii. The index of the mth power of an integer is congruent to m
times the index of the integer, mod <f>(p), that is;

ind
p
am= m ind

p
a, mod cp(p).

We observe that in every system

ind
p

I= o.

By means of the following tables we can illustrate the use of

indices for an ideal modulus. Table A gives for the modulus

(7> 3 +V— 5) the index to the base 3 of each integer of a

reduced residue system, and Table B gives the residue corre-

sponding to any index to the same base and modulus.

It is evident that two integers congruent to each other, mod p,

have the same index in any system of indices, mod p.

A.

Residue 1 2 3 4 5 6

Index 2 1 4 5 3

B.

Index 1 2 3 4 5

Residue » 3 2 6 4 5
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To pass from an index system with the base p x to one with the

base p2 , the modulus being p, we find as in R that

ind
p2
a = ind

pi
a • ind^ pv mod <p(p) ;

that is, to obtain the system with base p 2
from one with base p lt

we multiply each index of the latter system by ind
p p lf the smallest

positive residues, mod <p(p), of these products bring the required

system to the base p2 .

In particular, if a= p 2 , we have

ind^/yind^EEE i, mod </>(».

Ex. To obtain for the modulus (7, 3 + V — 5) a system of indices to

the base 5 from one of the base 3 we have first to find ind5 3. From the

relation just given

ind3 5 • ind., 3^ 1, mod 6,

whence from Table A it follows that

5 ind5 3^1, mod 6,

and therefore

indi 3 = 5-

Multiplying by 5 each index to the base 2 and taking the least posi-

tive residues, mod 6, of these products, we obtain for the modulus

(7, 3 + V — 5) the following table of indices to the base 5.

Residue
|

1 2 3 4 5 6

Index 4 5 2 1 3

§ 29. Solution of Congruences by Means of Indices.

As in R, the solution of any congruence of the form

ax= /3, mod p, 1)

where a is not divisible by p, can be effected by means of a table

of indices for the modulus p ; for from 1 ) it follows that

ind a + hid •*"= ind (3, mod 4>(p),

which gives

indx= ind (3— ind a, mod <f>(p),

from which x can be determined.
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Ex. i. From the congruence

(2 +V—^arsss— I+SV^, mod (7, 3 + V^),
we obtain ind3 (2 + V — 5) -}- ind3 ^^ind3 (— I+3V — 5), mod 6;

that is, since

2 + V"3r5= 6, mod (7, 3 + V =r5),
and

— I^V^ss* mod (7, 3 + V^r5),
3 + ind3 ;r^ 4, mod 6,

or

inda X= I,

whence

*==3, mod (7, 3+

V

- 5)-

The solution of the congruence

cur*mm f},
mod p, 2)

where a is not divisible by p, can be reduced by the use of indices

to the solution of a congruence of the first degree, mod <j>(p).

From 2) it follows that

inda-j- winder= ind/?, mod cf>(p),

and hence

n'mdx= md/3— ind a, mod <j>(p), 3)

which is a congruence of the first degree in the unknown x.

Moreover, n, ind x, ind /?, ind a and <f>(p) are evidently to be

regarded merely as integers of R. Hence by § 14 the necessary

and sufficient condition that 3) shall be solvable, is that ind ft

— ind a shall be divisible by the greatest common divisor, d, of

n and <f>(p), and, if this condition be satisfied, 3) has \d\ roots.

To these \d\ values of ind x correspond \d\ values of x satis-

fying 2) and incongruent, mod p. These are the roots of 2).

We see therefore that by the use of a table of indices we can

reduce the solution of both 1) and 2) to the solution of con-

gruences between rational integers.

Ex. 2. Consider the congruence

(i + V^)*4^— V^5, mod (7, 3 + Vzr5), 4)

where 1 + V — 5 is not divisible by (7, 3 + V — 5) •

ind3 (1 + V — 5) +4 ind3 x^= ind3— V — 5, mod 6; that is, since

i-hV^SssS. mod (7, 3 + \A=r5),
26
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and

—V— $ss3. mod (7, 3 + ^/^5),
using table A,

5 + 4 ind3 x ^= 1, mod 6

or

4 ind3 x^2, mod 6. 5)

Since the greatest common divisor, 2, of 6 and 4 divides 2, the con-

gruence 5) has two roots which are easily found to be 2 and 5.

Hence we have
ind3 j= 2 or 5,

and therefore

x==2 or 5, mod (7, 3 + V — 5).

These results are easily verified by substitution in 4). We obtain

(1 + V^)24= 2 + 2V^r5==— V^5, mod (7, 3 + V^5),
and

(i + V^5)5*= 2 + 2VTir5=— V^5, mod (7, a + V^1!)-

Ex. 3. The congruence

(1 + Vz=r5)^^2, mod (7, 3 + V^r 5),

has no roots, since the congruence

ind3 (1 + V — 5) +4 md3 *= ind3 2, mod 6,

or

4 ind3 xs 3, mod 6,

has no roots, the greatest common divisor, 2, of 4 and 6 not dividing 3.

Ex. 4. Construct a table of indices to the base 10 for the modulus

(23, 8 -f- V — 5) and solve by its aid the congruence

(2-\-3yy-~5)^= -^/^5, mod (23, S + V"11!).

Ex. 5. Show that the congruence

(i + V=S)**e=i5, mod (23, 8 + V^5)
has no root.

The congruence xns j3, mod p, where p is a prime ideal, can be treated

as was the corresponding congruence in R (Chap. Ill, § 34), and a criterion

for its solvability given analogous to Euler's. The general congruence of

the 2d degree in one unknown can be discussed and the first part of the

theory of quadratic residues for ideal moduli developed as in R, Legendre's

symbol being replaced by ( -
J

, where a is an integer and p a prime ideal

of k(Vm) (see Sommer: Vorlesungen iiber Zahlentheorie, pp. 92-98).

The reader should work out the above. It is evident from the nature

of an ideal that no direct reciprocal relation can exist between a and p,

such as that between two rational primes as expressed bv the quadratic

reciprocity law. A discussion of the reciprocity laws in the higher realms

is beyond the scope of this book; for them the reader may consult Hilbert

:

Bericht, and Math. Ann., Vol. 51; Sommer: V. u. Z., Fiinfter Abschnitt.



CHAPTER XIII.

The Units of the General Quadratic Realm.

§ i. Definition.

The units of any quadratic realm are those integers of the

realm which divide every integer of the realm. For purposes of

investigation they may be defined as follows

:

i. The divisors of I and hence those integers whose recip-

rocals are integers.

ii. Those integers whose norms are ± I.

These two definitions are easily seen to coincide ; for, if c be a

unit of &(Vw), we have from i

ea=i, i)

where a is any integer of k(\/m).

From i) it follows that

«[e]«[a] = I,

and hence n[e] = ± I

;

that is, ii is a consequence of i.

Likewise, if e be a unit of &(\/m), we have from ii

ee'=±I,

where e is the conjugate of c and therefore an integer of k(^m).

Therefore e is a divisor of I, and hence i is a consequence of ii.

It follows from the above definition that if each of two integers,

a, /?, divide the other, their quotient is a unit; for, if

a//?= y,

y and i/y are both integers ; hence y is a unit by i. In particular,

the quotient of two units is a unit. In investigating the units of

the general quadratic realm, we shall distinguish two cases accord-

ing as the realm is imaginary or real.

403
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§ 2. Units of an Imaginary Quadratic Realm.

The fact that the norms of all the integers of an imaginary

quadratic realm are positive will enable us to determine the units

of such a realm.

Let m be a positive integer containing no squared factor; then

&(V

—

m) is an imaginary quadratic realm, and we have seen that

all imaginary quadratic realms will be obtained if m take all

positive values.

Let e,= x -\-yio, be a unit of k(\/— m), 1, w being a basis of

the realm.

We have

n[ € ] = (x-\-yo>)(x + y»')= i, 1)

the value — 1 being impossible, since the realm is imaginary.

We have now to see for what rational integral values of x

and ti) holds, and to do so must distinguish two cases.

i. When — m= 2 or 3, mod 4, and hence w=y

—

m.

Then

n [e] = (x -L- y V— m) (x— y V— m) = x2
-\- my2= 1.

If m > 1, it follows that y= o andx=± 1, and hence c= ± 1.

If m=i, we have the realm k(i) whose units we have found

to be ± 1, ± i.

ii. When — fnasi, mod 4, and hence <a= (1 +V

—

m)/2.

Then

1 -f V — m\f 1 — y
/—m\

r ., / 1 + V —m\(

2 my1

+— -* I-

4

If m > 4, it follows that y= o and a-=± i, and hence

c=± 1.

If w= 3 we have the realm fc(V— 3) whose units we have

found to be ± 1, =b[(i ±V— 3)/2 ]- We see, therefore, that

k(i) has the four units ± /, ±i, and k(y— 3) the six units

± 1, db [(1 ±V— 3)/2 ]> and that all other imaginary quadratic

realms have only the two units ± /.
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§ 3. Units of a Real Quadratic Realm.

The determination of the units of a real quadratic realm is

much more difficult. We shall see that, as in the realm k(^/2),

the units of such a realm are infinite in number and can all be

expressed as powers of a single unit called the fundamental unit.

To show this we shall need the two following theorems, the first

of which, due to Minkowski, is of great importance in the theory

of numbers.

Theorem i. // cl xx -\-

p

xy, a2x-\-/32y be two homogeneous

linear forms with real coefficients whose determinant

CL ft

8 =

is not 0, there exist tzvo rational integers, x
, y , not both zero

such that

and

If we put

then

|<*i*o + A:yo|i|V8|,

1*2*0 + &yolslV*|.
1

x=^tA. A

1)

7,

or

Putting

y^A.i+ B.r,

B.

2)

we see that A8= 1.

If now we can find two quantities, £ , r] , such that

I&J^I/IVA] and ho|^i/|VA[,

1 Minkowski: Geometrie der Zahlen, p. 104. Hilbert: Bericht, Hulfsatz 0.
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and such that the corresponding values x
, y of x and y are

rational integers, then x and y are the required values of x and y.

For, if ^'o^^i^o + ^o.

and 3'0= ^2& + -^2'70»

then

rj = a2x + p2y ,

and hence, since

|«o|^|V«l and h |=
we have

l^-o + tool^lVSl.

To prove our theorem it will be sufficient therefore to show

that two quantities, | , r} , exist which satisfy the conditions

|€o| ^i/IVA| ; hfo|si/|VS|,

and such that

are rational integers, where A lt A 2 , B x , B2 are real and

A = A B,

A b
2

4=0.

In the proof of the theorem we shall prove first the case in

which a lt a2 , filf (32 are rational and integral, then that in which

the coefficients are rational and finally require merely that they

be real. In the first two cases the theorem will be proved in its

original form, in the last case in the equivalent form given above.

The proof in the second case will depend directly upon the

truth of the theorem for the first case, and that in the third case

upon case two.

i. Let a lf a2 , f}lf fi2 be rational integers.

We shall need a theorem concerning binary linear forms.

Calling a binary linear form a xx + b xy, where alf b x are ra-
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tional integers, for the sake of brevity a form, and two such forms

a form system, we say that a form c xx -f- dxy is reducible to o by

the form system axx+ b xy, a2x -f- b2y, if

c xx + dxy= gx (axx + b xy)+g2 (a2x+ b2y),

where g x , g2 are rational integers.

Two forms are reducible to one another by a given form system

if their difference is reducible to o by this system.

Two form systems are said to be equivalent if every form that

is reducible to o by either one of the systems is also reducible to

o by the other system.

The analogy to the basis of an ideal is at once evident, for, if

a x
s=s (axu>x + bxw2 , a2(ox -f- b2oy2 ) be an ideal, where ax<ax

-j- b2o)2 ,

a 2 o)x -f- b2 o)2 is a basis, then an integer, c x (ox
-)- dxa>2 , is a number of

the ideal if

cx (ox + dx<o2= gx (ax(ox + b x(o2 ) + <72 ( a2wi + o2<o2 ),

where gx , g2 are rational integers. Thus the reducibility of a

form to o by a given form system corresponds to a number be-

longing to an ideal.

We can show exactly as in the case of a canonical basis of an

ideal (Chap. XI, Th. i) that among the form systems equivalent

to a given system there is one, Ax, Bx -f- Cy, such that among

all forms of the form ax, reducible to o by the given system, Ax
is that one in which a is smallest in absolute value, and among

those of the form bx -f- cy reducible to o by the given system,

Bx -\- Cy, is one of these in which c is smallest in absolute value.

We can then show that, if two form systems be equivalent, the

absolute values of the determinants of their coefficients are equal

(see Chap. XI, Th. i, Cor.).

It will now be evident that to say in the case of forms that

two forms are reducible to one another by a given form system

is the same as saying in the case of an ideal that two integers are

congruent with respect to this ideal, for in the former case the

difference of the two forms is reducible to o by the given system

while in the latter the difference of the two integers is a number

of the ideal.
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The statement in the one case that there are exactly

a
i K

a
2 K

forms, no two of which are reducible to one another by the form

system axx + b xy, a2x -\- b2y, is the same as the statement in the

other case that there are exactly

a
2

b
2

integers which are incongruent each to each with respect to the

ideal {axu x + a2w2 , b xwx -f- b2o>2 ), and may be proved similarly (see

Chap. XII, Th. i).

We observe now that |8| is equal to one of the square numbers

i, 4, 9, 1 6, 25, -.., r2
,
(r+1) 2

,

or lies between two of them.

Let r*g|*f<('+l)a
.

and form the (r+ i) 2 forms

ra= o,i,2,...,r,
ax + by A

1 J
\ b= o, 1,2, ->,r.

3)

Since there are only \B\ forms, no two of which are reducible

to one another by means of the form system a xx -\- (3xy, a2x -f- (32y,

at least two of the forms 3) are reducible to one another by this

system.

Let these two forms be a\x -\- biy and tyx -\- bjy.

Then

dix + b ty= ajx + b$y + c(a xx + (3xy) + d(a2
x + fty )

;

that is,

(a t
— a,)* + (bi— bj)y= (a xc + a2d)x + (ftc + ftd)y,

and hence o^c + a2d= a<— a,-,
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Since \ai— aj\ and |&«— bj\ -^r, they are both g |

\/8\ ; hence c

and d are the required values of x and y.

ii. Let a t , a2 , ft, ft be rational fractions.

Let their least common denominator be g. Then #a x ,
#a 2 , #ft,

</ft are rational integers.

By case i we can find two rational integers, x
, y , such that

\g<*z*o + #ft3'o|^
I
V¥2

|- 4)

On dividing both members of 4) by g we get

k* + ft3'o|^|V8|,

K*o + ft3'o|^|V8|.

Hence x and y are the required values of x and y.

iii. Let alt a2 , ft, ft be any real numbers.

We shall prove the theorem in its second form ; that is, that if

A lf A 2 , B lt B 2 be any real numbers, such that the determinant,

A b
2 \

is not zero, there exist two numbers, £ , rj , satisfying the conditions

|&|*X/|V*|. ho|^l/|VA|,

and such that x =A 1£ -f- B xr) ,

y =A 2$ -\-B 2rj
,

are rational integers.

Let A lf A 2 , B lf B 2 be defined respectively by the rational fun-

damental series

a lt a2 , a
z ,

••

blt b 2 , b 3 ,

Ox's <*2> a%> •

5)

that is,

^ 1
= lim a n , B1=lhn b,

A t>= \im (in, J5„= lim bj
6)
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Let

A =
a b'

where an , bn , an ', bn ' are the nth terms of the above series,

then

lim An= lim an • lim bn '— Hm an
r

•Hm bn ,

=A 1
B 2
— A 2B 1

= &.

We observe now that in the series

* A x , A2 , A3 ,
-.., 7)

though some of the terms may be o, the number of such terms is

always finite ; that is, from some ith term onward no A is o ; for

otherwise, lim An would not exist or else would be o.

Since now the terms 5) are all rational numbers, and A* and

all succeeding A's are different from o, we can find by case ii

for every set, ai+p, bi+p , a' i+p , b'i+p of (i-{-p)th terms of the series

5), two numbers, &+p , rji+p , such that

|&*| s-i/! V^Ji#|.. h* +p|ii/|V^|, , 8)

and that 0*+p&+p + bi+v-qi+p ,

a'i+p£i+P + b
f

i+PY)i +Pf

are rational numbers.

From 8) it is evident that the terms of the series

rji, rji+1 , rji+2 ,
•••,

have an upper limit, for no term of the series

|Ai|, |A{+1 |, |A4+2 |,
-..,

is o, and lim An= A =4= o, whence the terms of this series have a

lower limit.

Let this upper limit of the £'s and */s be k.

Consider a system of rectangular axes and construct a square
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with the origin as center, its sides equal to 2k and parallel to the

axes.

v

If now we consider £i+p , rji+p as the abscissa and ordinate re-

spectively of a point, we may represent each pair of numbers

£up, yi+p(P= o, 1, 2, • • • ) by a point.

All these points will be within or on the boundary drawn as

above.

Since there are infinitely many points (&+p , r}%+v ) within or on

this boundary they will have at least one limiting point within

or on the boundary. Let the coordinates of this point (or, if

there be more than one, of any particular one) be £ , rj .

There will be certain series of the points (|i+p , r)i+p ) which

approach and remain arbitrarily close to (£ , rj ) as p is indefi-

nitely increased.

If (f^y, yi+
/) denote such a series, where p' represents only

those values of p which gives this series, we have

£0 = lim £*+,'» % = limW
Then

P'=o

lim ("i+Jiw + **f«*w) = AS + B%>
p'=x>

•im «,yf„y + b\+p,r,.
+p) = A% + B'%.

P'=«3

But all terms of the series

and

are rational integers.

a'i+A+p' + ^i+pViW
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Hence their limits, A$ -f- B-qQ and A'£ -f- B'-q0i are rational in-

tegers. Therefore £ and r/ are the required numbers, and the

theorem is proved in its second form. It holds therefore in its

original form.

From the above theorem we have at once the following theorem

:

Theorem 2. If a xx + fSxy, a2x -f- (32y be two homogeneous

linear forms with real coefficients, whose determinant

«i Pi

"1 ft

is not and k, k k be any two positive quantities such that

K*k=
|

8
I>

there exist rational integers x
, y , not both 0, such that

Given the two forms

L ft a
2 , ft1.

whose determinant is not zero, there exist by Th. 1 two rational

integers, -x
, yoy not both o, such that

|*i
,
ft u

\fC
° K J

°\
'

«. _L ft
Z^ + IT* ^ 1

'A
,VA

and hence l^i^'o + Ay |
g *,

|*t*t+ toils«*

From this theorem we obtain at once the following theorem,

which is necessary for the investigation concerning the units of

a real quadratic realm as well as interesting on its own account.

1
Hilbert : Bericht, Hulfsatz 7.
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Theorem 3. There are in every real quadratic realm an in-

finite number of integers, the absolute value of whose norms

i. The existence of at least one such integer is seen at once.

For, if 1, to be a basis of the realm,

x -f- yoj, x + y*'

are two linear forms whose determinant

1 &)

1 *»'!

and making use of Th. 2 and putting

K=K X , K^ = \\/'d\/K 1 ,

where *t > o, we see that there exist two rational integers, x
x , y lf

which are not both o, and which are such that

k + ^'I^IWlAi,
and hence

I {*i + &•) Oi + 3'X) fs IV^|

;

that is,

M*i+*rf|*'|V2|r

Therefore the realm contains at least one integer, a
1 ,
= .r1+ >'iw >

the absolute value of whose norm is less than or equal to |V^|-

To show that there are an infinite number of such integers we

proceed as follows

:

To prove the existence in the realm of an integer, a2 ,
= x2

-\- y 2o>,

that is different from ± a lt and such that

\n[a 2]\^\Vd\,

we have only so to choose k, that from the condition

it will necessarily follow that

a2^±av
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This may be effected in infinitely many ways, a simple one being

to take for k± some positive quantity /c2<|a1 |; for example,

\aj2\, for then from \^2[^ K2< K x

it follows that |a,|< \ax \,

whence a2 =j= ± ol ± .

Since by Th. 2 there exist two rational integers, x2 , y2 , which

are not both o and which are such that

\x
2 + y2«> |^K2 ,

it follows that there is in the realm an integer, a 2 ,
= x2 -f- y2w,

different from dfc a ly and such that

|»la,]|s|V3|.

To prove the existence in the realm of a third integer, a3 , dif-

ferent from ± a.! and ± a2 and such that

we have only to put for k in the inequality a positive quantity k3

less than k2 , when it is at once evident that such an integer

exists; for from \a3 \
g*3 <[a2 |<Ia il

it follows that a3 =f= ± a2 , and a3 4= ± ax .

Continuing in this manner we can prove the existence in the

realm of as many such integers as we choose. They are, there-

fore, infinite in number.

Ex. We shall illustrate the above theorem by showing that we can

actually find in k{yjy) as many integers as we please, the absolute values

of whose norms are less than or equal to
| V2^

I,
d being in &(V7)

equal to 28.

Following the method employed in the proof, we let a.i, = Xi -\- yiV7>
be any integer satisfying the required condition and * be any positive

quantity, say 2.

We have to determine x, y so that

\a,\i^Bi, W\f 9)
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We may assume without loss of generality that Xi, yi have the same
sign, for, this assumption being made and V7 being taken positive,

I
X! + yiV7 1 > I

xi—W7 I,

otherwise not, and the most favorable way in which the conditions 9)

can be imposed is
|
xx + .ViV7 I

= tne larger of the two quantities k and

I V d
I
A, here

| V2& |/2, |
Xi— yi\/7 |

^the smaller of the two quantities

k and
I V^ |/K> here 2. Making this assumption, the conditions which

Xi, yi must satisfy are

|*t-fW7|iV7, 10)

\x1 + y1y/7\^2. 11)

The further assumption Xi, yi positive, which may evidently be made
without loss of generality, will simplify the work.

Doing this, we see that, since Xi and yi have the same sign,

*i = 0, yi = i

Xi=z I, yi = o

Xi = 2, yi = o.

or

or

But it is evident from 11) that of the three values only those pairs in

which yi = are admissible ; hence

xi + yiV7 = I or 2.

The only integers of k{\/j) which satisfy the condition 9) are therefore

± 1, ±2. The absolute values of the norms of 1, — 1, 2, and — 2 are

evidently all less than
| V28 |.

To find another integer a«, = x2+ y2\/7, the absolute value of whose
norm is less than

| V28 |» we proceed as in the proof of Th. 3 and let

k=
I
a,/2 I, where ax is any one of the integers 1, — 1, 2 or — 2, say 2;

that is, we have now to determine x2 , y% so that

I
x2+ y2V7 1 ^ V28. 12)

1*2—

y

2V7l^i, 13)

where Xz, y2 are assumed to be both positive. Since x2, y2 have the same
sign and the value o for a2 is excluded, we see from 12) that

x2 = 0, y2 = 1 or 2,

or #2=1 or 2, y2 = 1,

or x2 s= 1, 2, 3, 4, 5, y2 = ;

but 13) excludes all these values except

x2 = 2, y2 — 1

and
x2 = 1, y2 = o.

The last set gives a2 = 1, an integer already found, but the other gives

cc2 = 2-j- yjy, a new integer satisfying the conditions 12) and 13), and

hence one the absolute value of whose norm is less than
| V2^ |.
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We see indeed that

l»[2 + V7]|=3<l V&l
If now we put *=s| (2— V7)/2 l>

and proceed as before, we can find

an integer a3 such 4hat

I

n [a3 ] I
<

I V28 I,
and a, =|= ± a* a, =)= ± a*

Continuing in this manner, we can find as many integers as we please

satisfying the required conditions.

Theorem 4. // * be any positive constant, there exist only a

finite number of algebraic integers of the second degree such that

they and their conjugates are simultaneously less than k in abso-

lute value. 1

Let a be an integer of the second degree such that

|a| <*, |.a'| < K . 14)

Let x2
-\- a x

x -j- a2
= o

be the irreducible rational equation of which a and a' are the

roots. We have

a1
= -*-(a-\-a'), a 2

= aa',

hence |ax |=|a + a'|, |a2|=| aa '|-

But \a-\-a'\<2K
,

\aa'\<K 2
,

hence \a x \<2K ,
|o 2 |<k

2
. 15)

It is evident that only a finite number of rational integers can

satisfy the condition 15) ; hence there are only a finite number of

equations of the second degree whose roots satisfy 14). There

are, therefore, only a finite number of integers of the second

degree satisfying 14). This theorem, it will be observed, is

proved not for a single quadratic realm but for the integers of

all quadratic realms taken together.

Moreover, it will be noticed that not all the roots of these equa-

tions satisfy 14) but that among their roots are all the integers

of the second degree that satisfy 14). See Ex. § 4.

1 Hilbert : Bericht, Satz 43.
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Theorem 5. There exists in every real quadratic realm a

unit, e, different from ± 1, and such that every unit, 77, of the

realm has the form

rj=±em ,

where m is a positive or negative rational integer, or o.
1

The proof of this theorem may be conveniently divided into

the following four parts

:

i. Every real quadratic realm contains an infinite number of

integers, a lf a2 , a s , •••, the absolute values of whose norms are

less than or equal to \^Jd\.

ii. A quadratic realm, whether real or imaginary, contains only

a finite number of ideals whose norms are less than \Vd\, and

hence the infinite series of integers, au a2 , a3 ,
••-, considered as

principal ideals, (ax ), (a2 )> (as)> '"» 9^ve onh a finite number

of different principal ideals, whence it follows that the integers,

alf a2 , a3 , •••, must fall into a finite number of classes, each con-

taining an infinite number of integers which differ from each

other only by unit factors, and hence there are in every real quad-

ratic realm an infinite number of units different from ± 1.

iii. Infinitely many of these units of a real quadratic realm are

greater than 1 ; among these there is a smallest one, c.

iv. Every unit, rj, of the realm has the form

where m is a positive or negative integer, or 0.

Having already proved i, we begin with ii.

ii. We obtain all prime ideals whose norms are less than
|

\/d\

l)y resolving all positive rational primes less than
|

\/d\ into their

prime ideal factors.

There are evidently only a finite number of such prime ideals.

By multiplying these prime ideals together we obtain all ideals

whose norms are less than |V^|- These ideals are evidently also

finite in number. Hence among the infinite system of principal

ideals

(<*i)»(a2)»(a«)» •'•> 16)

a See Hilbert: Bericht, Satz 47.

27
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whose norms g| V^|> at least one ideal must be repeated an infinite

number of times.

Let the infinitely many ideals

(3*1)1 (a*2)> (g#8)*

taken from the system 16) be the same. Then each one of the

integers

aiv CLi 2 , at 3 ,
•••, 17)

must be divisible by every other one ; that is, we have

ail= /3a i2 ,

and ya.i
1
= a.i 2 ,

where (3 and y are integers.

Hence /3 and y are units (§ 1), and are, moreover, different

from ± 1, since we may assume that no two of the integers 17),

as a*!, cii 2 , are so related that

3^=4= ± CLi2 .

Furthermore, the number of such units is infinite ; for

ai
1
==Sai3f

where 8 is a unit, and if ft=±8, then a i2 =^±a i .

i , which is

impossible.

Hence the quotients obtained by dividing each of the integers

17) by a« x constitute an infinite system of units,

Vi, %j ••>

such that we never have

r)i= ± rfj.

iii. There are in the realm an infinite number of units which

are > 1 ; for from each one of the units, rflt rj2 ,
• • •, as rji, we can

derive such a unit, since one of the integers,

all of which are units, must be such a unit. Among this infinite

system of units greater than 1 there is a smallest one; for, if rji
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be a unit greater than i, there are by Th. 4 only a finite number

of integers, a, of the realm such that

|a|<i^; |a'|<T7i;

and hence only a finite number of units, rj, such that

\y\<ii> W\<vi- l8 )

But if 7] be any unit greater than 1 but less than rji, we have from

W=± 1,

r?b'|= I, •

and hence |?/|<i< 77*;

that is, r] must satisfy 18).

There are, therefore, only a finite number of units, rj, such that

and hence there is among them a smallest one, which is, of course,

the smallest of all those units of the realm that are greater than 1.

Denote this unit by e.

iv. It is evident that the units

•••, ±e"2
, ±e-\ ±€°, zte1

, ±€2
,

-.., 19)

are all different; for from

e
m=±en

, m > n}

it would follow that

e
m-n==z±.

If

which is impossible, since e=4=± 1, and none of the numbers of

the realm are imaginary.

We shall now show that the system 19) comprises all units of

the realm.

Let £ be any positive unit greater than or less than 1 ; then £

will lie between two consecutive, positive or negative powers of

c, or else be equal to a power of e; that is, we can determine an

integer, n, positive, or negative, such that

€
M <£<en+l
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Let !/€»=&;

then |i is a unit, and we have

i si li < «•

But we cannot have

K & < €,

for 6 is the smallest unit greater than i. Hence

and therefore £= e
n

.

When n is positive the units are greater than i, and when n is

negative they are all positive but less than i; n= o gives £=ir
By letting n take all rational integers from — cc to -{- cc we thus

obtain all positive units of the realm.

Now let £ be a negative unit; then — £ is a positive unit, and

we have

— $=en
;

hence $=— e
n

.

Every unit, $, therefore, of a real quadratic realm has the form

where n is a positive or negative rational integer, or o, and c is the

smallest unit of the realm > 1.

This unit e is called the fundamental unit of the realm.

§ 4. Determination of the Fundamental Unit.

If in any quadratic realm k(\/m) any unit, rj, be known, we

can at once obtain a unit greater than 1 ; for one of the four units,

rj, —7), i/rj or — i/v ,

has this property.

Denote that one of these four units which is greater than 1 by

7) 1
. We have now to determine whether there are any units in the

realm which are greater than 1 but less than rju and, if there be

any such units, to find the smallest of them.



THE UNITS OF THE GENERAL QUADRATIC REALM. 42

1

Th. 4 enables us to do this; for by the method employed in

the proof we can find the rational integral equations finite in

number, among whose roots are the integers a of the second

degree finite in number, such that

\a\<*; \a'\<m> i)

Among these integers will be included all units, |, such that

K ! < %, 2)

for we have seen that from 2) and

££'=±h
it follows that

|f|<*; |TK*.

Since we wish to find only those units which satisfy 1), and

the last term of the irreducible rational equation satisfied by an

integer of the second degree is the norm of the integer, we may

make the last term of each of our equations =t I.

Writing down, therefore, all irreducible equations of the form

x2 + ax± 1=0, 3)

where a is a rational integer, such that

\a\<2Vl ,

and solving these equations, we obtain all units which satisfy 1),

not only of the realm under discussion but of all real quadratic

realms.

If there be any unit of the realm under discussion which is

greater than 1 but less than rj1} it will be found among these.

Ex. Let the realm under discussion be £(V5)- Since

«[2 + V5~]= — 1

2 + V5^is a unit of £(V5)- Moreover 2-}-\/5>i-
To determine those units of &(V5) that are greater than 1 but less

than 2 -f- y/s, if any exist, we write down all irreducible equations of the

form 3), in which
|
a

| < 2(2 -|- V5)- We need only write those in

which a is negative since the change of sign of a merely changes the

signs of the roots.
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We have, therefore, as the equations among whose roots will be

found the unit sought for, if it exist,

x-— X +1 = x2— x — J[ =0
X2— 2X + I = X2— 2X— ][ =0
x2— 3x + I = o x2— 2,x—][ =0
x2— 4x + i = o x2— 4x— ][ =0
x2— 5* + i = o x2— $x— 3[ =0
x2— 6x + i = o x*— 6x— J[ =0
x2— 7x + i = o x2— yx— [ =0
x2— 8x + i = o x2— Sx— [ =

Solving these equations, we obtain four units of &(V5) which are greater

than i, £(i + V5XK3 + V5), 2 + V5 and K7 + 3V5), and of them

evidently £(i + V5) 1S tne smallest and hence the fundamental unit.

The foregoing determination of the fundamental unit of a real

quadratic realm depended upon the supposition that some unit

of the realm was known. To find some unit of the realm we may
proceed as follows, the method being that used in Th. 5 to show

the existence in such a realm of a unit different from ± 1.

Let k(\Ztn) be the realm.

Determine first how many different ideals have their norms

less than |\/d|. This is easily done by factoring all rational

primes less than |V^| and forming all products of these ideals,

such that the norms of these products are less than |yd|. Sup-

pose that there are m different ideals whose norms are less

than |yd|.

Find now w+i integers whose norms are less than |Vd|,

which can be done by the method used in the proof of Th. 3.

The quotient of some pair of these integers whose norms have

the same absolute value must be a unit.

This method of determining the fundamental unit may be

shortened by observing that, if c + d\/m be the fundamental

unit of &(\/m), where c and d are either rational integers or

rational fractions whose numerators are odd and denominators

2, then c and d are both positive, and hence no equation of the

form 3), where |a|< 2c, can have as a root a unit of the realm

greater than 1 and less than c + d^Jm. Therefore the funda-

mental unit is a root of the first equation among the equations
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3), arranged in ascending values of \a\, whose roots are units

of k(\/m). From this, we see that, in the example above, it

was unnecessary to proceed further after finding i(i+V5) as

a root of x2— x— i= o.

The number of equations to be examined may also be reduced

by observing that we must have

a2 + 4 53 o, mod m,

if an equation, whose last term is — i, is to have as a root a unit

of k(y/m). If m be divisible by a prime, p, of the form 411— I,

this relation is evidently impossible, for it requires that — 1 shall

be a quadratic residue of p. Hence the fundamental unit of

k(\/m) can not have — 1 as norm, if m be divisible by a prime

of the form 4n— /.

§ 5. Pell's Equation.

It will be at once recognized that the determination of the units

of a real quadratic realm, k(^/m), is equivalent to solving Pell's

Equation

:

x2— my2=± 1, where 771= 2 or 3, mod 4,

and x2— my2= ± 4,

or x2— my2 =±i, where m==l, mod 4;

furthermore the smallest solution will give the fundamental unit.

The general problem of determining an integer with given

norm, H, of which the above is a particular case, is evidently

equivalent to solving

x2— my2= H.

The following theorems relating to Pell's Equation are taken

from Chrystal's Algebra, Part II, p. 450, and the reader is referred

to this work for their proof and for the complete discussion of

this subject. 1 Confining ourselves now to solutions in which x
and y are prime to each other, for, if x and y have a common
factor r, then r2 must be a factor of H and we can reduce the

1 See also H. J. S. Smith : pp. 192-200.
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equation to x'2— my'2= H', where H'=H/r2
, and limiting our

discussion to the case |H|<| V*»|, we have the following theorem

:

Theorem 6. The equation

x2— my 2 =s ±:H
where m andH are positive integers and m is not a perfect square,

admits of an infinite number of solutions provided its right-hand

side occurs among the quantities (

—

i) nMn belonging to the devel-

opment of yjm as a simple continued fraction, zvhere Mn is the

(n-{-i) th rational divisor, and all these solutions are x= pn,

y= qn , where pn/qn is the 11
th convergent in the development

of Vw.

Cor i. The equation

x2—my2=1 1

)

where m is positive and not a perfect square always admits of an

infinite number of integral solutions, all of which are furnished

by the penultimate convergents in the successive or alternate

periods of yjm.

Cor 2. The equation

x2— my2=—

1

2)

where m is positive and not a perfect square admits of an infinite

number of integral solutions, provided there be an odd number of

quotients in the period of "\/m, and all these solutions are fur-

nished by the penultimate convergents in the alternate periods

of \/m.

If there be an even number of quotients in the period of V m
the equation has no integral solution.

If p, q be the first solution of 1) or 2) and we have

x ~\-y Vm=z (P ± o. Vm )
n

y

where n takes all positive values, or all odd positive integral

values. Then the resulting values of x, y are all solutions of 1)

or 2) respectively.
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For the discussion of the equation

x2— my2 ==±Hj

where H is greater than \/m, the reader is referred to Chrystal's

Algebra, Part II, p. 454.

The following examples will illustrate these theorems

:

Ex. 1. Determine the fundamental unit of &(\/7)- We must solve

x2— 7y
2 =— I, if possible, and if not possible, then x2— yy

2 =i.
Expanding \/y in a continued fraction we have

1/7 = 2 + 1+ 1 +
1 1

~+ 4 + +
ill

which gives the following table, where, as in Chrystal, n is number of

convergent, an the wth partial quotient, pn the numerator of the nth

convergent, qn the denominator of the nth convergent, Mn the (n+i)th
rational divisor.

n * A In Mn

1 2 2 I 3
2 1 3 I 2

3 1 5 2 3

4 1 8 3 1

5 4 37 14 3

There being an even number, 4, of quotients in the period of V7> the

equation x2— 7^
2 =— 1 has no solution (Th. 6, Cor. 2); that is, the

realm k(yjy) has no unit with negative norm. We observe, however,

that the penultimate convergent, 8/3, in the period of V7 gives

8
2— 7 • 3" = 1, (Th. 6, Cor. 1.)

thatjs, 8 + 3V7, 8— 3\/7, —8 + z\/J and —8— 3V7" are units of

£(V7)> 8 + 3V7 being the fundamental unit. This can be verified by

the method of the previous section.

Ex. 2. Determine the fundamental unit of ^(V I 7)- Expanding yjiy

in a continued fraction, we have

>/^ =t+8i+ 8T...

which gives the table, there being only one quotient in the period of V J 7-

n an Pn In ^„

I 4 4 I 1

2 8 33 8 1

Hence the equations

x2 - 17y 4 and x2— I7y" = 4
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have no solution, but the equation

x-— i/y'
2=— 1

has the solutions x= ± 4, 3; = ± 1, and 4+ V*7 1S seen to be the funda-

mental unit. This can be verified by seeing that among the roots of the

equations

x-— ax ± 1 =
where \a\ < 2(4+ V T7)> the only unit of k{\Jiy), which is greater than

1, is 4 + Vi7. _
Ex. 3. Find the fundamental units of the realms &("y/io), £(-^11) and



CHAPTER XIV.

The Ideal Classes of a Quadratic Realm.

§ i. Equivalence of Ideals. 1

We have seen (Chap. XI, Th. 5) that in any quadratic realm,

^(V«), there exists for every ideal a an ideal m, such that the

product am is a principal ideal.

Attention was also called to the evident fact that although the

particular ideal which was shown to have the desired property

was the conjugate a' of a, all ideals of the form ct'(y), where (y)

is any principal ideal, have this property.

Since, moreover, if a and 16 be any two ideals, there exists in

a a number a such that (a) /a is prime to b (Chap. XI, Th. 11),

it is evident that there is an infinite number of ideals each one

prime to all the others and each such that its product by a is a

principal ideal ; for, if a x be any number of 0, then

(a 1)=aa1 ,

where at is an ideal having the desired property. By the above

theorem there exists in a a number a 2 such that

(a2)~aa2 ,

where a2 is prime to ax and is evidently an ideal having the

desired property. In like manner there exists in a a number a z

such that

(a3 ) = aa3 ,

where a3 is an ideal having the desired property and prime to

0^2, and hence to each of them.

Proceeding in this manner, it is evident that an infinite number

of ideals exist each of which is prime to all of the others and

such that, when multiplied by a, the product is a principal ideal.

1
Hilbert: Bericht, Cap. VII.
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We see, therefore, that the ideal m need not contain a' as a

factor; for example,

(2, i+v=5)(3, i+V-5) = (i+V-5)>

(2, i+y-5)(3, i_v-5) = (i-V— 5),

where (3, i + V— 5) .
an<3 (3, 1 — V— 5) are prime to

(2, 1— V— 5) and to each other.

From the fact that infinitely many ideals give, when multiplied

by one and the same ideal, products which are principal ideals,

we are led to the introduction of the idea of the equivalence of

ideals, wThich is defined as follows

:

Tzvo ideals, a and fc, are said to be equivalent if an ideal m
exists such that the products am and bm are both principal ideals.

The equivalence of a and B is expressed symbolically by writing

a'r^ 6;

that they are not equivalent by writing

For example, as we have seen above, the product of each of

the ideals (3, r~f-V— 5) anc* (3, 1—V—-5) by the ideal (2,

1 +V— 5) is a principal ideal; hence (3, 1 +V— 5) * s equiva-

lent to (3, 1—V— 5) j or m symbols

(3, 1 +V— 5)^(3, 1—V— 5)-

Likewise, since the product of (2, 1 +V— 5) by itself is a

principal ideal, (2, 1 +V— 5) is equivalent to each of the two

ideals (3, 1 +V::r 5) and (3, 1—y/^).
As an example from another realm k(V— 17), we see that

(3, 1 + V—'17) ^ (ii, 4—V—~I7),

for it can be easily shown that

(11, 4-fy—T7)(n> 4—V—^7) = (ii)>

and (11, 4+V— I7)(3> 1 +V— 17) = U+V— 17)>

If a~b,

then by the definition there exists an ideal c, such that

QC=(ju),
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Multiplying these equations respectively by b and a, we have

abc=0)b=(»a;

that is, if a^h, there exist two integers, /x and v, such that

Furthermore, if a and b be any two ideals and there exist two

integers, /x and r, such that

O)a=0*)b, 1)

then a ^ b

;

for let m be any ideal such that the product am is a principal

ideal (y), then multiplying i) by m, we have

0)am= (vy) = (/*)bm.

But, if the product of a principal ideal and another ideal be a prin-

cipal ideal, the second ideal must be a principal ideal also. Hence

bm is a principal ideal and consequently

ct^b.

We may therefore define the equivalence of two ideals as fol-

lows, this definition being, as shown above, exactly equivalent to

the former one:

Two ideals, a and b, are equivalent if two integers, a and (3,

exist such that

a(/B)==»(a).>

For example, we have

(i—V=~5)(3> i+V=7
5) = (i+V::r5)(3 ) i—V=5),

whence it follows that

(3, i +V::::
5) ~ (3> i —V^)-

We shall use both of these definitions of equivalence, each

having some advantages of its own.

Equivalences between ideals obey the following laws:

i. If a^b and b ^ c, 2)

1 Hilbert : Bericht, p. 223.
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then a «—
' c,

for from 2) it follows that there exist integers a, /?, y, 8, such that

a(p)=Ha) and b(8) =c(y),

and hence, multiplying these equations respectively by (8) and (a),

a(/?S)=c(ay ),

Therefore a /—' C.

ii. If a^b and c^b, 3)

then qc r^ bb,

for from 3) it follows that there exist integers a, /?, y, 8, such that

a((3)=b(a) and c(8)=b(y),

and hence ac(/?8) = bb(ay).

Therefore ac ^ bb.

If a^h,

then from ii it follows immediately that

where n is any positive rational integer.

The original definition of equivalence given above is that used

by Dedekind, the second is equivalent to the following, which is

given by Hilbert and Weber:

Every number of a realm, *, not an integer, can be represented

as the quotient of two integers ; that is,

If now we look upon a and /? as principal ideals and remove all

factors common to (a) and (/?), we have

(a)/G8) = a/6,

a representation that is evidently unique. For example, let

1 + l/- 5/€=
1-1/-5
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1

We have

(1 + 1/^5) = (2, i +v^Xz, 1 + v/:-j) = (3, 1 + v^)
(1 - 1/- 5) (2, 1 + V- 5)(3, 1 - V- 5) (3, 1 - 1/--5)

'

If inversely the quotient ct/b of two ideals, a and 6, where a

and b may or may not have a common factor, is equal to the

quotient of two principal ideals, (a) and (/?) ; that is, if

a/b=(a)/(/?),

and hence may be taken to represent in the above sense a number,

k= ol//3, then we say that a is equivalent to b.

For some purposes it is useful to define the equivalence of

ideals in a narrower manner, considering a equivalent to b when

and only when a number, k, whose norm is positive exists such that

K= a/h;

that is, when two integers, a and /?, whose norms have the same

sign, exist such that

(/J)a=(a)6.

This definition of equivalence will evidently be essentially dif-

ferent from the original one when and only when the realm con-

tains no unit whose norm is negative. In quadratic realms this

will always be the case except when the realm is real and the

norm of the fundamental unit is — I.

In general this definition of equivalence is identical with the

original one in all realms of odd degree.

Examples. Show that the following equivalences hold

I) (23, 8—V— 5)^(7. 3+V— 5).

2) (7. i +V— 13) ~ (2. i+V— 13),

3) (,
i+
f^y- ( .),

4) (2, V—10) — (5, V— 10),

5) (3, 1 — V— 14)
2 — (2, V— 14),

6) (5, i+V26)-(2,V26),
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§ 2. Ideal Classes.

Since, if two ideals, a1} a 2 , be equivalent to an ideal a, they are

equivalent to each other (§ i, i), the ideals of a realm can be

separated into classes by putting two ideals into the same or

different classes according as they are or are not equivalent to

each other.

The system of ideals composing such a class has the property

that every ideal in it is equivalent to every other one and that it

consists of the totality of all ideals which are equivalent to any

one of the ideals composing the class.

Such a class is called an ideal class and is denoted by a Latin

capital letter.

Any ideal a of a class A, may evidently be taken as the repre-

sentative of the class, and the class is completely determined by a.

The class composed of all principal ideals and as whose repre-

sentative we can take (i), is called the principal class and is

denoted by i.

If alt Q2 be any two ideals of the class A, and b lf B2 be any two

ideals of the class B, then since from

ctj. ^ o2 ,

and &! r^ fc2 ,

it follows that

aj) x ^aj)2 (§i,ii),

it is evident that all ideals of the form ab, where a and b are any

ideals of the classes A and B respectively, belong to a single class,

C, which class can, however, contain infinitely many ideals other

than the products ab.

The ideal class C is called the product of the ideal classes A
and B and we write

C= AB.

For example, we have

(3, i + sF^S) (2, i + V^S) = (I + V~=~5),

-whence it follows that the product of the classes of (3, 1 -f- V — 5) and

(2, i + V — 5) is the principal class. But (3, 1 + V — 5) and

<2, 1 + V — 5) belong to the same class, A. Hence we have A 2= 1.
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The product of any ideal class A by the principal class is A
;

that is,

A-i=A.

Inversely from AB= B

it follows evidently that A= r.

In the multiplication of ideal classes it is evident from the

definition of the product of two classes that the commutative and

associative laws hold; that is,

AB= BA

and AB-C= A-BC.

We see, therefore, that in the formation of the product of any

number of classes, A 19 A 2 ,
•••, Am , the order in which the classes

are taken will make no difference in the final result, which we

denote by A X
A 2

• • • Am .

If als a2 ,
•••, am be any representatives of the classes A lt A 2 ,

• ••, A m , then a^-dm is a representative of the class A XA^ -'Am .

If each of the m factors is the class, A, then the product is

called the wth power of A and is denoted by Am
.

We have A 1=A

and A°= i.

Theorem i. For every ideal class A there exists one and only

one ideal class B such that the product AB is the principal class. 1

Let a be any ideal of the class A and a any number of a. Then

ct6=(a), 1)

where b is an ideal whose class we denote by B. Then from i)

it follows that

AB= i. 2)

If now a class C other than B exist such that

AC=i, 3)

1 Hilbert : Bericht, Satz 45.

28
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we have from 2)

ABC= C,

and hence, making use of 3)

B= C.

The theorem is therefore proved.

The class B is called the reciprocal class of the class A and is

denoted by A-1
.

It is evident that inversely A is the reciprocal class of A'1
.

Defining further A-m as the reciprocal class of Am , the follow-

ing laws are seen to hold for any positive integral rational expo-

nents, r, s.

A rA 8= A r+s
,
(A r

)
s= A rs

,
(AB) r= A rBr

.

Theorem 2. // A be any ideal class and b any ideal, there

exists in A an ideal prime to b.
1

The quotients obtained by dividing each number, a, of an ideal

a by a are evidently ideals that belong to a single class.

Among them can be found an ideal prime to any given ideal

b, for a can be chosen so that (a) /a is prime to b. Hence the

theorem.

§ 3. The Class Number of a Quadratic Realm.

We shall now show that the number of ideal classes in any

given quadratic2 realm is finite; that is, there exists in every

quadratic realm a system of ideals finite in number such that the

product of any ideal of the realm by one and only one of these

ideals is a principal ideal. Such a system of ideals for a given

realm we shall call a complete system of non-equivalent ideals.

The number of ideals composing such a system, that is, the

number of ideal classes of the realm is denoted by h.

To prove that h is finite we need the following theorem:

Theorem 3. In every ideal a there exists a number a different

from and such that

1
Dirichlet-Dedekind : p. 579.

2 This theorem holds for the general realm of the wth degree.
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|*MUI»MV<*|,
zvhere d is the discriminant of the realm. 1

We shall distinguish two cases according as the realm is real

or imaginary.

i. Let a be any ideal of a real quadratic realm, k, and

a basis of a, where o) 1 , w2 is a basis of k. Since a lt a2 and their

conjugates, a/, a/ are real numbers, k being a real realm,

Ojjr + 323^ a/'r + a2

r

3' are linear forms with real coefficients, and

their determinant can easily be shown to be different from o.

Hence by Minkowski's Theorem (Chap. XIII, Th. i) there exist

rational integers, x
, y , such that

K'.r + a2
'y

\ g IV^a/—

a

2a/|

It is easily seen that a,= a1
x -\-a.2y , is the desired number of

a, for if a— a xx -\-a2y , then a'= a 1'x -\-

a

2 y , and hence

from i)

Moreover,

that is,

«i
a
2 =

a
x

a
2 *>1 *>2

and hence

\afi%
t

OA'I-= / [a]V*|,

|»[a]|s|»[o]V?|.

ii. The realm is imaginary.

Let ax
= pi + foj, a2= p2 + *<t2 ,

where p a , p2 , o-j, <r2 are real numbers and i= V— i, be a basis of a.

Since pi, p2 , o^, o\> are real numbers, whose determinant is dif-

ferent from o, there exist by Minkowski's Theorem rational in-

tegers, x
, y , such that

|Pl-r + P23'o| ^
I
VPl^2 /^l

oV^o + <r2J 1 g j Vpi°2— P2^i

1

Hilbert : Bericht, Satz 46.
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We shall show that

a= axx + a2y

is the desired number.

We have

a =ct 1
x +a2y ^p^o+ PsS^'fo^o+ »*?•)»

a'= ck'x9 + a2
'y = Plx + p2y — $ ( <rt*t + *2y )

,

n[a] = ( Plx + p2y )
2 + (atx9 + <r2y Y,

and hence

MM ^2| Plo-2
—

p2(Tx \.

It is easily seen, moreover, that

I
«ia2

'— a2a/ 1
= 2

1 Pl (r2
—p^ |

,

whence «[a] ^ [flA'— a 2ax
'|.

We have, however, as in i,

\a xa2
'— a2a1'\

= \n[a]Vd\,

and therefore

n[a] g |»[q] y~d\.

Theorem 4. There exists in every ideal class of a realm, k,

an ideal whose norm does not exceed the absolute value of the

discriminant of k}

Let A be any ideal class and \ an ideal of the reciprocal class

A-1
. By the last theorem there exists in j a number, 1, such that

|«H1*|»fflV3|. 2)

But (0=Kt, 3)

where a is an ideal belonging to the class reciprocal to A'1
;

that is, to A.

From 3) it follows that

\n[ L]\=n[i]n[a],

and hence from 2)

»MslV3|-
1
Hilbert : Bericht, Satz 50.
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Theorem 5. The number of ideal classes of any realm is

finite.
1

Since every ideal is a divisor of its norm, we shall by the last

theorem obtain at least one representative of each ideal class of

any given realm, k ; that is, a complete system of non-equivalent

ideals, if we resolve into their ideal factors all positive rational

integers which are less than |V^|> where d is the discrimi-

nant of k.

There are evidently only a finite number of rational integers

satisfying this condition and each of them is resolvable into only

a finite number of ideal factors. The number of ideals of k

whose norms are less than |V^| * s therefore finite.

Hence the number of ideal classes of k is finite.

The last two theorems enable us to determine the number of

ideal classes of any quadratic realm, the method consisting sim-

ply in determining into how many classes the finite number of

ideals fall, whose norms are less than |V^|.
2

We shall illustrate this method of determining the class number

by several examples. This we do the more readily as in the

solutions of these examples will be found many of the problems

which arise in reckoning with ideals.

Our task then being to ascertain into how many classes the

ideals of any given realm, k, fall, whose norms are ^|V^|, it is

evident that this will be accomplished, if we determine into how

many classes fall the prime ideals and those of their powers and

products whose norms satisfy the given condition.

Having determined the prime ideals whose norms are g|V^|

by resolving all rational primes which are g|V^| m*o their ideal

factors, we next determine what equivalences exist between these

ideals, including, of course, (1) as a representative of the prin-

cipal class. The number of classes given by these prime ideals

and (1) having been determined, it remains to be ascertained

x Hilbert: Bericht, Satz 50.
2 This method of determining the class number of a realm is applicable

to realms of higher degree. See Hilbert : Bericht, p. 226; also " Tafel

der Klassenanzahlen fur Kubische Zahlkorper " by the author.
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whether any powers and products of these prime ideals, the norms

of such powers and products being ^| \/d\, give new classes.

The solution of the question whether or no two given ideals

are equivalent will be discussed in full in connection with the

numerical examples.

Theorem 6. // h be the class number of a realm, k, the hth

power of every ideal class is the principal class.
1

Let A be any ideal class of k.

In the series

A, A 2
, • ••, A r

,
• ••,

we must have two classes the same, as

A r+e= A r
,

and hence A e= I.

If A e be the lowest power of A which gives the principal class;

then the classes

A°=i, A, A*, .-., A+* 4)

are all different.

If B be a class different from all the classes 4), then the classes

B, AB, A 2B, -.., A^B
are all different from each other and from each of the classes 4).

Continuing this process, we see that h is a multiple of e. But e

was the exponent of the lowest power of any class that gives the

principal class.

Hence the hth power of every class of k is the principal class.

From this theorem it is evident that the hth power of every

ideal is a principal ideal.

Ex. 1. k(i). Basis: 1, i. d =— 4.

Each class must contain an ideal whose norm is ^
|
\/ — 4 |, that is ^2.

We shall indicate this by writing n[ct] i
| V — 4l> w[ct] =1 or 2.

We have
(2) = (l + 2

.

The only ideals whose norms satisfy the given condition are therefore

(1) and (i-f-*)» both of which are principal ideals. There is therefore

'Hilbert: Bericht, Satz 51.
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only one class, the principal class. Hence h = 1. Therefore the ordi-

nary unique factorization law holds in k(i), as we have already seen to

be the case.

Ex.2. k(\/~^z). Basis: 1, i(i +
V"

1^)- d= — 3

n[a]^\ V^3|, »[<*] = 1.

The only ideal whose norm satisfies the given condition is 1, hence there

is only one class, the principal class; that is,

ftssrl.

Ex. 3. *(N/2). Basis: 1, V2 - d = 8

r

e have
n[a] ^

| V8 j, n[a] = 1 or 2,

(2) = V2)
2
.

The only ideals whose norms satisfy the given condition are (1) and

(\/2), both of which are principal ideals.

Hence
ft ±3 1-.

Ex. 4. &(V — 5)- Basis: 1, V— 5- d — — 20.

w[a] g
I V —20 |, n[a] = i, 2, 3, or 4.

We have

(2) = (2, i + V^5) 2
>

(3) = (3, i + V^"5)(3, i-V^"5).

We have now to determine what equivalences, if any, exist between the

ideals (1), (2, I+V~ 5), (3, i + V^). (3, 1 — V^5) and

(2, 1 + V — 5)
2
> these being all the ideals whose norms satisfy the given

condition. We see at once that (2, 1 + V — 5)
2
, = (2), is a principal ideal

and represents therefore with (1), the principal class.

On the other hand, it is easily shown that (2, 1 -J- V — 5) is a non-

principal ideal, for, if it were a principal ideal, there must exist an integer,

a, = x + yV— 5, such that

(a) = (2, i+ V=S).
and hence

w[a]=w(2, 1 + v^s);
that is, two rational integers, x, y, must exist such that

This is, however, manifestly impossible.

Hence (2, 1 + V — 5) *s a non-principal ideal and the representative

of a new class, which we shall denote by A.

We have already proved (§ 1) that (3, 1 + V — 5) ar,d (3, 1 —V — 5)

are equivalent to (2, 1 + V — 5).

They belong therefore to A, and all ideals of &(V — 5) fall into two
•classes, 1 and A. Hence h = 2. It will be observed that A*=l.
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Ex. 5- *(V7>, Basis: 1, \f?. d = 28.

«[<*] ^
I V28 I,

n[a] = 1, 2, 3, 4, or 5.

We have

(2) = (2,1+ V7)
2

(3) = (3, i + V7)(3, i-V7)

(5) = (5)-
1

The ideals to be considered are therefore (1), (2, i-j-\/7)> (3» I + V7)»
(3, 1- V7), (5) and (2, 1 + V7)

2
; of these (1), (5) and (2, 1 + V7)

2

belong to the class 1.

We proceed as in the case of (2, 1 -f- V — 5) in the last example to

determine whether (2, 1 -\- V7) is or * s not a principal ideal. In order

that (2, 1 + V7) may De a principal ideal, it is necessary and sufficient

that there exist an integer a, = x -f- yyjj, such that

\n[a] \=n(2, 1 + V 7 ) ;

that is, that there exist rational integers x, y, such that

x2— 7y
2 = 2 or — 2.

We see that x = 3, y = 1 satisfy this condition.
2 Hence

(2, i + V7) = (3 + V7),

a principal ideal, 3 + V7 being divisible by (2, 1 + V7), since the latter

is the only ideal whose norm is 2. We can in like manner show that

(3> 1 + V7) is a principal ideal, for x = 2, y = 1 satisfy the condition

*2— 7y
2 =— 3

whence

(3, 1 + V~7) = (2 + V7) or r 2— V7).

So far as the task in hand is concerned, it is indifferent to which of the

two conjugate principal ideals, (2 + V7) and (2— V7)» (3> 1 + V7) *s

equal, for all that we need know is that it is a principal ideal, from
which it follows at once that (3, 1 — \/7) 1S a principal ideal, for it

belongs to the class reciprocal to that of (3, 1 + V7) since

(3, 1 + V7) (3, 1 — V7) — (1).

It is easily seen, however, that 2 + V7 is not a number of (3, 1 + V7)
while 2— \/7 does enjoy this property. Hence

(3, i + V7) = (2-V7),
and

(3, i-V7) = (2 + V7).

All the ideals of k{\Jj) whose norms are i
| V^ I

being principal ideals,

we have h = 1.

1 This denotes that (5) is a prime ideal.
2
See also Chap XIII, § 5, Pell's Equation.
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1

We are assisted in determining to which of the classes, i, A,

A 2,.-.,

A

1
, if any, a given ideal j belongs by the following

theorem

:

Theorem 7. // a' be the lowest power of a which is a prin-

cipal ideal, a, a2
, • • •, a' *-> 1, being representatives of the t classes

A,A\ •',A*=i, 5)

and
}
8 the lowest power of an ideal j which is a principal ideal,

then in order that j may belong to one of the classes 5) it is neces-

sary that t shall be divisible by s, and furthermore, if this condi-

tion be satisfied and t=t 1s, then \ can belong to none of the

classes 5) except the <f>(s) classes A*, for which i=i1 tly and ix is

prime to s.

If i-a%

then j*^ a** *** I ** j
8

,

whence £= 0, mod s;

that is, t divisible by s is a necessary condition that j shall belong

to one of the classes 5).

Furthermore, if * j r-* a\

then I
s ~> a8i r^x^a*t

whence si sb 0, mod t, sss t^,

and therefore i as 0, mod 11 ;

that is, i= ix tx .

Then j ^ qMi,

f^a2i^,

jf ,
— a fiiti

,

\
9 —

' affhti ,
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from which it follows, since no two of the ideals j, j

2
, • • •

, j
s are

equivalent, that

must be incongruent each to each, mod t ; that is, we must have

where / and g are any two of the integers, i, 2, •••, s, different

from each other.

Therefore we must have fix =^gix , mod s;

that is, the integers ilt 2$lt •••, sit must form a complete residue

system, mod s, which can be the case only when i1 is prime to ,?.

Hence in case j should belong to any one of the classes 5) it

is possible only to have

i
~ a***1,

where tx= t/s, and i1 is prime to s.

There are therefore only <f>(s) of the classes 1) to which it is

possible for j to belong.

Ex. 6. Let a2* be the lowest power of a which is a principal ideal,

a, a2
, •••, cf*.—'I, representing therefore the twenty-four classes

A, A2
,

-.., A 2i =i, 6)

Let f be the lowest power of j which is a principal ideal.

Since 24 is divisible by 6, it is possible for j to belong to 0(6) =2, of

the classes 6). We have £ = 4, and those of the classes 6) to which it

is possible for j to belong are A* and A 20
.

By means of Th. 7 we can reduce the labor of determining h

;

for, if a be an ideal satisfying Minkowski's condition, that is,

n[a] ^|V^|j and Q* the lowest power of a that is a principal

ideal, then

a, a2
,

•••, a*^ 1,

are representatives of £ ideal classes,

^, ^ 2
, ...,^*=i, 7)

and, as we have seen in the last theorem, h is a multiple of t.

Let now N be the number of ideals of the realm that satisfy
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Minkowski's condition, n the number of these ideals that belong

to one or the other of the classes 7), and c the number of the

known classes 7) that have found representatives among the

ideals satisfying Minkowski's condition.

The t classes 7) must evidently have representatives among the

Ar ideals satisfying Minkowski's condition, and therefore, since

only c of these classes have yet found representatives among these

ideals, t— c of the JV— n of these ideals whose classes have not

yet been determined must belong respectively to the t— c classes

whose representatives are missing. We have then as possible

representatives of new classes

N— n— (t— c) ideals, and, if

N— n— (t— c)<t;

that is, if N— n-\-c<2t,

it follows, since h must be divisible by t, that

h = t.

In particular, if N < 2t,

we have at once h= t.

If Ar— n + c<£2t,

we must proceed to determine whether some of the remaining

ideals belong to the classes 7). Let j be one which is found to

belong to none of the classes 7) and let \
8 be the lowest power of

j

which is a principal ideal.

Then j, j

2
, •••, j*

_1 are representatives of the s— 1 new classes,

B, B 2
,

• • • , 5 S_1
, and there are now in all st known classes

1, A, A\ ..-, A**9

B, BA, BA 2
,

•••, BA*-\

8)

B*-\ B*~K4, B^A 2
,

••-, £ s-M'-\

and h is therefore divisible by st.
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If now n and c have their former meaning except that 8) are

now the known classes, and if

N— n + c < 2st,

then h= st.

If, however, N— n + c <£ 2^,

we proceed as before to determine the classes to which the remain-

ing ideals belong, observing always whether

N— n + c < 2tf.

If we find one that belongs to none of the classes 8), we proceed

as with j.

fl/-3i
Ex.7. KV—li). Basis: i,—^- ±,d=- 3

»[<*] = IV — 31 I; »[<*] = 1, 2, 3, 4 or 5.

We have

(3) = (3),

(s)=
(
s.
Lbfc*) (s.5=^>

Since
^ +^ + 8/ =4=2

for any integral values of x and y, there is no integer of &(V — 3 1 )

whose norm is 2. Hence

(
2,i+^.)~,(

We proceed to determine the lowest power of ( 2, j that

is a principal ideal.

We have

since the only integer of &(V— 3 1 ). whose norm is 4, is 2, and, if

then

(,i±^ii)=
(,),

which is impossible.
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We have

since

8 3=
l + V— 3 1

.

l —V— 3\
2 2

Hence we have so far found representatives, 1, ( 2, 5l
J

, and

^i+J^ZilV ( 2y
1 + ^~ 3I V^iof three classes 1, A, A 2

, {A
3 =i).

Therefore h is divisible by 3.

Of the eight ideals satisfying Minkowski's condition, (i),( 2, ——
J,

and ( 5>
J

four belong to these classes and from

we see that ( 2, ^
J

belongs to A 2
, and hence ( 2, £ 5-

J

to A.

The inequality N— n + c < 2t is now seen to hold, for we have N = 8,

n = 6, c= 3, and * = 3, and it is evident that h = 3. The classes to which

( S> ^ ) and ( 5,
—

] belong are easily determined, since

and
3-f V~ Zl

is a number of both (2,

1 ~ V~ 3l
\ and (5,-^—).

whence

Therefore (5>
3 + ^~ 31

) belongs to A, and ^IZUtlHj to A 2
.

Ex. 8. KV82). Basis: 1, V82. ^= 328.

«[«] = V328 I
; n[a] = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, II, 12, 13, 14, 15, 16, 17,

or 18.
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We have

(2) = (2, V82) (2, V&)
(3) = (3, 1 + V82X3, 1-V82)
(5) = (5)

(7) = (7)

(Il) = (ll, 4+ V82)(n, 4-V82)
(13) =(13, 2 + V82)(i3, 2— V&)
(I7) = d7).

We must now determine whether (2, V82) is a principal ideal. To do

this we determine whether £(\/82) contains an integer whose norm is 2;

that is whether integral values of x and y can be found satisfying the

equation

x2— S2y
2= 2. 9)

Using Th. 6, Chap XIII, and developing V82 as a continued fraction,

we see that

1 1

y
/

82 = 9 -f 18+18-^
and have

n an Pn fn Mn

" 9 9 I I

2 18 163 18 I

From this it is evident that 9) has no solution, and hence that (2, V82)
is a non-principal ideal.

From this development of V82, it is also evident that k(yJ82) contains

no integers with norms 3, 5, 6, or 7, and furthermore 9 + V82 is the

fundamental unit.

That &(V82) contained no integers with norms 5 or 7 was, of course,

already shown by the fact (5) and (7) are principal ideals. We have,

however, learned, in addition to the fact that (2, V82) is a non-principal

ideal, that (3, 1
-f- V82) and (3, 1— V82) are non-principal ideals, since

&(V82) contains no integer with norm 3, and, moreover, that neither of

the products of these last two ideals by (2, V82) can be a principal ideal,

since &(V82) contains no integer with norm 6.

We shall now determine into how many classes the ideals, which have

been proved to be non-principal, fall.

We have (2, \/82) as a representative of a new class, A, and A 2 = 1.

Calculate now the norms of a few integers of fc(V82). We have

w[8+ V82]= — 18.

Hence (18) is the product of three ideals whose norms are 2, 3 and 3

respectively. Since 8+V82 is a number of (3, 1 — V82) and not of

(3, 1 + V82), we must have

(18) = (2 f V82) (3, 1-V82) 2
.
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From which it follows that (3, I — V&O 2 belongs to A, and (3, 1 — V82)
gives a new class B. We have A = B2

.

But n[i— V82] =— 81=—3*, and 1—V&2 is a number of (3, 1—V&2 )

and not of (3, 1 + V&2 ). Hence

(i-V82) = (3, 1-V82)*,

and we see that we now have four classes 1, B, Br, B3 (£* = 1), as repre-

sentatives of which among the ideals satisfying Minkowski's condition,

we may take (1), (3, 1 — V82), (2, V&O and (3, 1 -f V82). We have

now A' = 28, n = 24, c = 4, and f = 4, and hence AT— n -f c <£ 2t ; that is,

there are four ideals, the factors of (11) and (13), whose classes are yet

undetermined and we have found representatives of all of our four known
classes. One of these remaining ideals might therefore give a new class

and we should have h = 8. That h is either 4 or 8, we now know. This

is, however, easily settled, for n{y -J- V82I ——^ and 7 + V82 is a

number of both (3, 1 + V82) and (11, 4— V82). Hence

(7 + V82") = (3 , 1 + V82K11, 4-V&),
and (11, 4— V82) belongs to the class B. Therefore

h = 4 -

We see that (11, 44-V82) belongs to B3 and from the fact that n[2+V82]
=— 78 =— 2 • 3 • 13, we can show easily that (13, 2 -f V82) belongs to

B and (13, 2— V82) to B3
.

Ex. 9. Show that h=z 6 for k (V— 26), h = 1 for &(V— 19), /i = 2

for ^(V I 5)> h = 2 for &(\/26), A = 4 for &(V— 34), h = 6 for

fc(V^6i).
The labor of finding h by this method can be reduced by using another

theorem, due also to Minkowski, which gives a smaller limit below which

the norms of the representatives of the classes must fall, thus diminishing

the number of ideals to be examined. This theorem for the general realm

of the nth degree is as follows : In every ideal class there is an ideal, a,

such that

M<(;?)'5!l»?l'

where n is the degree of the realm, d its discriminant, and r the number

of pairs of imaginary realms which occur among the conjugate realms,

In a real quadratic realm, we have n[a] < I \ yjd' \, and in the case

of fc(\/82) need, therefore, to examine only those ideals whose norms are

less than 10.

It will be noticed that we did find, as representatives of all classes, ideals

whose norms satisfied this condition.

1 Minkowski : Diophantische Approximationen, p. 185. See also " Tafel

der Klassenanzahlen fur Kubische Zahlkorper " by the author for its

application to cubic realms.
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For a table giving the class numbers of quadratic realms, their funda-

mental units and other data, see J. Sommer: Vorlesungen uber Zahlen-

theorie.

This table extends, for imaginary realms, to ra=— 97, and, for real

realms, to m = 101. This book should be consulted by those who wish

to pursue the subject further.

The class number of a realm can also be expressed by means of an

infinite series. See Hilbert : Bericht, Cap. VII and §79; also Dirichlet-

Dedekind: §184.

We shall close this chapter with a theorem that gives important

information regarding the class number of a realm in a certain

special case. For its proof, we shall need two theorems, the

second of which throws additional light upon the question whether

the norm of the fundamental unit of a real quadratic realm is

1 or — 1.

Theorem 8. Every number, a, of a quadratic realm, &(\/m),

whose norm is 1, can be represented as the quotient, y/y', of two

conjugate integers, y, y , of the realm}

We have seen that a can be put in the form

a + bat

c

where 1, w is a basis of the realm and a, b and c are rational

integers. Let y— x-\- ym, where x and y are rational integers to

be determined, and let the rational equation of which w is a root be

x2 + ex + f= o.

Put

a -f- boy x 4- \'o) N
! —g —L^_

. 10)
C X + To/

Making use of the relations »-)-«'==— e, and ww'= /, we

have from 10), as the equations that x and 3! must satisfy,

(o— c)x-\- (bf— ae)x= o,

")
bx— (a + c)y=0.

These equations evidently have a solution different from x= (\

1 See Hilbert : Bericht, Satz 90.
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y= o when and only when the determinant, D, of their coefficients

is o, and, if D= o, they have an infinite number of solutions

jfss=:r.Xii y= ryi, where xx , y t is any particular solution different

from o, o, and hence have an infinite number of integral solutions,

for we can choose r so that rxlf ry± are integers.

We have

D=— a2 + abe— b 2
f + c2=— n [a] • c

2 + c
2= o,

since n[a] = I. Hence the equations n) have an infinite number

of integral solutions and the theorem is therefore proved.

- As a particular solution of n), we may take x= a-\-c, y= b,

all integral solutions then being of the form

s(a + sb*-._-
, y= -j,

where ^ and t are rational integers and t a common divisor of

a-\- c and b.

We can, of course, take a, b and c without a common divisor,

and then have also a prime to b, since n[a] = i.

Ex. Let a = —
. We have a= 2, b=i, c = 3, and hence

3

3 5— V"—

S

Theorem 9. // f/i^ discriminant, d, of a real quadratic realm,

k(y/m), be divisible by a single prime number, the norm of the

fundamental -unit of the realm is — I.
1

In order that d may be divisible by a single prime number, we

must have m= 2, or a prime= 1, mod 4.

Let c be the fundamental unit of &( Vw )-

If w[e]=i, by Th. 8 there would exist an integer, y, of

k(-\/m) such that

e= ?-. 12)

r
Then from 12) it would follow that

(y) = (/),
1
Hilbert : Bericht, p. 294.

29
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and hence that (y) is either an ambiguous ideal (p. 347), an

ambiguous ideal multiplied by a rational principal ideal (a), or

(a). Since, however, d is divisible by the single prime m, the

realm contains only one ambiguous prime ideal (\/w), which is

therefore the only ambiguous ideal of the realm. Hence, we
must have

(y)='(Vw), (aV») or (a),

and therefore y^^ym, rja^/tn or rja,

where 77 is a unit. But we have then from 12)

or

and hence c=— rj
2 or rf,

from which it would follow that e is not the fundamental unit, as

was assumed. Hence the assumption that n [e] = 1 is untenable,

and the theorem is proved.

The realms k{^/2), k{-\J$) and &(\/i7), whose fundamental units

have been found to be 1 + y 2, £(i + \/5) and 4+^17 respectively,

will illustrate the truth of this theorem.

Theorem 10. // the discriminant of a quadratic realm, k ( ^/m),

be divisible by a single prime number, the class number, h, of the

realm is odd. 1

Assume h to be even. Then there is in the realm certainly one

non-principal ideal, j, whose square is a principal .ideal ; that is,

j
2 r^ 1. But we have also jj' — 1, and hence j^ f ; that is, there

exist integers, a, /?, of the realm such that

(a)i=(/J)f. 13)

From 13) we have n[(a)]=n[(p)]
9
whence a//3,= /c, is a

number of the realm whose norm is ± 1. When k(-\/m) is

imaginary, we have *[*]=* I, and when k(\/m) is real and

n[e] =— 1, where e is the fundamental unit, we have either

n[K.]=ii, or n[ac] = i. By Th. 8 we can put K= y/y, or

CK= y/y', according as h[k] = 1 or. — 1, y and y' being conju-

gate integers of the realm. In both cases, we have

'Hilbert: Bericht, Hiilfsatz 13.
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and hence from 13) (y)j= (y')i'» as a consequence of j
2

<-*> 1,

where j is a non-principal ideal ; that is, as a consequence of h even.

Hence (y)j is either an ambiguous ideal, an ambiguous ideal

multiplied by a rational principal ideal (a), or (a). Since, how-

ever, when m= 2, or a prime= 1, mod 4, the realm contains no

ambiguous ideal other than (Vm) (see proof of Th. 9), and, in

in the case of k(i), the only ambiguous ideal is (1 + *). We see

that in all cases (y)j must be a principal ideal, and hence j a

principal ideal. But this renders untenable our assumption that

h is even. Hence h is odd.

The realms k(i), k(^/ — 3), k(yf

2) and k{^J — 31), whose class

numbers were found to be 1, 1, 1 and 3 respectively, will illustrate the

truth of this theorem.

It is evident that in determining the class number of a realm,

satisfying the conditions of Th. 10, we can use, since h must be

odd, instead of the inequality N— n -j- c < 2t, the inequality

N— n -f- c < 3/, thus shortening the work still further. Making

use of this in Ex. 7, it is unnecessary to determine the class to

which belongs ( 2, j.
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Numerals refe

Ambiguous ideal, 347.

Appertains, exponent to which an in-

teger, 99, 393.

Associated integers, in R, 9 ; in k(i),

163; in k(V—3), 223; in kiV^),
246.

Basis, of k(i), 159-161 ; of £V—3),

220; of k(V2), 232; of k(V — 5),

245 ; of k(Vtn), 284-287, determi-

nation, 289-292 ; of ideal, 293-295,

determination, 351-355.

Biquadratic residues and reciprocity

law, 205-217.

Character of an integer, quadratic, in

R, 121, in k(i), 212; biquadratic,

209, 212

Classes, ideal, definition, 432 ;
prin-

cipal class, 432 ;
product of, 432

;

reciprocal, 434.

Classification of the numbers of an

ideal with respect to another ideal,

326-330.

Class number of a realm, definition,

434; is finite, 437; determination,

437-448, 45 1-

Congruences, definition, 31, 297, 323 ;

elementary theorems, 32-37 ; 323-

326 ; of two polynomials, 57, 370

;

of condition, 59-61, 369-372 ; of

first degree in one unknown, 68-70,

375-38o ; equivalent, 62-64, 372,

373 ; transformations, 62-64, 372,

374 ; equivalent systems, 64 ; of nth

degree in one unknown, preliminary

discussion, 66-68, 374, 375, root, 66,

374, with prime modulus, 88-90,

385-387, composite modulus, 95-97,

39i, 392; multiple roots, definition,

452

r to pages.

89, 386, determination, 93, 94, 386 ;

limit to number of roots, 89, 386 ;

x4><-m>—

i

=o, mod m, 90 ; x<t>(m )—

1

== o, mod m, 387, 388 ; common
roots, 92, 93, 389; binomial, 110-

112, primitive and imprimitive

roots, in; xn ^=b, mod p, 114-

116, Euler's criterion, 115; of sec-

ond degree with one unknown, 119-

121 ; solution of x2
^^.— 1, mod p,

by means of Wilson's theorem, 129,

130; in k(i), 180, of condition, 190.

Conjugate, numbers, 4 ; realm, 4.

Dirichlet's theorem regarding infinity

of primes in an arithmetical pro-

gression, 11.

Discriminant, of k(i), 161 ; of

k(V — 3), 221; of k(y/2), 232; of

k(V^S), 245; of k(Vm), 287,

288 ; of number, 284.

Divisor, greatest common, in R, 16,

18, 25; in k(i), 173; of two ideals,

310-313, 318; discussion of defini-

tion, 252.

Divisors, of integers in R, number of,

23, sum of, 24 ; of ideal, number of,

318.

Equivalence of ideals, 427-431 ; in

narrower sense, 431.

Eratosthenes, sieve of, 10.

Euler's criterion for solvability of

xn^=b, mod p, 115, 122.

Factorization of a rational prime de-

termined by (d/p), in k(i), 179; in

k(V — 3), 229; in fe(Vm), 347,

348.

Fermat's theorem, 57 ; as generalized
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by Euler, 57 ; analogue for k(i),

189 ; analogue for ideals, 368, 369.

Frequency of the rational primes, II,

Galois realm, 281.

Gauss' lemma, 130.

Generation of realm, 3.

Ideal numbers, necessity for, 253 ;

nature explained, 254-257 ; Kum-
mer's, 267.

Ideals, definition, 257, 293 ; numbers

of, 293 ; basis of, 293-295 ; can-

onical basis of, 294 ; determination

of basis, 298-301 ; numbers defin-

ing, 295 ; symbol of, 257, 295 ; in-

troduction of numbers into and

omission from symbol, 258, 295,

296 ;
principal and non-principal,

260, 261, 297 ; conjugate, 301 ;

basis of conjugate, 301 ; equality of,

258, 259, 302 ; multiplication of,

261, 262, 302, 303; divisibility of,

263, 303 ; common divisor of, 303 ;

prime, 263-265, 304 ; norm of, 326-

338, 351.

Imprimitive numbers, see primitive

numbers.

Incongruent numbers, complete sys-

tem of, in R, 34; in fe(i'), 182-185;

in k(Vm), 326.

Index, of a product, 106, 399; of a

power, 106, 399.

Indices, definition, 105, 399; system

of, 106, 399 ; solution of congru-

ences by means of, 1 08-1 10, 400-

402.

Integers, of R, 7, 23; absolute value

in R, 7 , 33; of k(i), 157; of

k(V —3), 219; of k(V2), 231; of

k(V — 5), 245; of k(Vm), 284-

287; general algebraic, 1, 275-279.

Legendre's symbol, 127.

Multiple, least common, in R, 25 ; of

two ideals, 310-312, 318.

Non-equivalent ideals, complete sys-

tem of, 434.

Norm, of a number, in fe(i'), 156; in

k(V^3), 218, 221 5 in k( V2), 231 ;

in k(V — 5), 245; in k(Vrn), 283;

of an ideal, definition, 326, 337,

value, 330, determination, 351 ; of a

product of ideals, 334 ; of a prin-

cipal ideal, 337 ; of a prime ideal,

338.

Numbers, algebraic, definition, 1 ; de-

gree of, 1 ; conjugate, 4 ; rational

equation of lowest degree satisfied

by, 2, 273; of R, 7; of k(i), 155;

of k(V~^3), 218; of fc(V2), 231;

of k(V — 5), 245; of the general

realm, 271-279; of fe(Vw), 281.

Number class, rational modulus, 32,

33 ; ideal modulus, 324.

Pell's equation, 423-426.

0-function, in R, definition, 37, gen-

eral expression, 38, 44, 53, product

theorem, 45, summation theorem,

46, 75, of higher order, 54 ; in

k(i), 185-188; for ideals, definition,

358, expression for power of prime

ideal, 359, general expression, 359--

362, 366, 367, summation theorem,

362, 363, 367, product theorem, 360,

361, of higher order, 367.

Polynomials in a single variable, 268-

271.

Polynomials with respect to a prime

modulus, reduced, 62 ; degree of,

76 ; divisibility of, 76, 380 ; com-

mon divisor of, 76, 380 ; common
multiple of, 76, 380 ; unit, 77,

381 ; associated, 77, 381 ; primary,

78, 381 ; prime, 78, 381 ; determina-

tion of prime, 78, 381, 382; congru-

ence with respect to a double

modulus, 81 ; unique factorization

theorem for, 82-87, 382-385 ; divi-

sion of one by another, 382.

Power of a prime by which m ! is

divisible, 26.
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Primary integers of k(i), 193-196.

Prime factors, resolution of an ideal

into, 348-350.

Prime ideals, of k(V — 5), 263-265;

of k(Vm), definition, 304, deter-

mination and classification, 339-

348.

Prime numbers, of R, definition, 9,

infinite in number, 10 ; of k(i), defi-

nition, 165, classification, 177; of

k(V — 3), definition, 223, classifi-

cation, 227-230; of k(V2), defi-

nition, 235, classification, 238-240
;

of k(V — 5), 246, 247.

Primitive numbers, of k(i), 157 ; of

k(V~^3), 218; of the general

realm, 274, 275; of k(V*n), 282,

283 ; with respect to a prime ideal

modulus, 398.

Primitive root, definition, 100; deter-

mination, 112; of prime of form

22 4-i, 151; of prime of form

49+i is 2, 152.

Realm, definition, 3 ; generation, 3 ;

degree, 4 ; conjugate, 4 ; number
defining, 4, 280 ; number generating,

4.

Reciprocity law, for quadratic resi-

dues, in R, 135; in k(i), 201-205;

determination of value of (a/p) by

means of, 144; other applications

of, 149; for biquadratic residues,

210, 215-217.

Residue, odd prime moduli of which

an integer is a quadratic, 128, 145,

147 ;
prime moduli of which — 1, is

a quadratic, 128; prime moduli of

which 2 is a quadratic, 133.

Residue system, complete, in R, 33,

34; in k(i), 182-185; in fe(Vm),

326; reduced, in R, 37; in k(i),

185, in fe(Vw), 358.

Residues of powers, definition, 98,

392 ; complete system of, 98, 393

;

law of periodicity, 100.

Residues, n-ic, 116; quadratic, in R,

131, in k(i), 196-201
; quadratic

non-, 121 ; determination of quad-

ratic, 124 ; with respect to a series

of moduli, integer having certain,

70 ; cubic, 250 ; biquadratic, 205-

217.

Sub-realm, 157.

Symbol, Legendre's, 127 ; for ideal,

257, 295.

Unit ideal, of k(V — 5), 263; of

k(Vm), 304.

Unit, fundamental, of fe(V2), 233;

of k(Vm), definition, 420; deter-

mination, 420-426.

Units, of R, 8; of k(i), 163; of

fc(V — 3), 222; of fc(V2), 232-

23S; of k(V — 5), 246; of fe(Vm),

definition, 403, realm imaginary,

404, realm real, 405-426.

Unique factorization theorem, in R,

12; in k(i), 167, 174, graphical

discussion of, 169; in k(V2), 236,

237; in k(V—3), 226; in k(V—5),

failure of, 247-253, necessity for,

253, restoration in terms of ideal

factors, 265, 266 ; realms in which

original method of proof holds,

248-250; for ideals in fe(Vw),

305-317.

Wilson's theorem, 91 ; as generalized

by Gauss, 91 ; analogue for ideals,

388, 389-
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