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PREFACE.

——————

The key-note to the arrangement of the contents of the
book, and to its raison d’étre, is the quotation from De
Morgan given on the title-page.

A number of supposed improvements are :

Improved Notation. The notation throughout the book
is as brief as possible. The general features are the rep-
resentation of lines, planes, and angles by single letters
where possible, and planes and angles by two letters where
one is objectionable.

In problems and construction diagrams, the known parts
are generally indicated by the middle letters of the alpha-
bet, and the construction points, etc., by the first letters
of the alphabet, in the order in which they are found.
A glance at the diagram shows the given, required, and
intermediate parts, and moreover the order in which they
are drawn.

‘Where possible, suggestive letters are used, as ¢ for the
trace of one plane upon another, 2 for height or altitude,
r for radius, B for base, Sph. Z for surface of a spherical
zone, o for area of a spherical degree.

Corresponding lines in different figures are indicated by
corresponding Greek and English letters. Similarly, sub-
seripts indicate a close relation between the parts, equality,
similarity of position or homology, ete.
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Lines are indicated by the lower case letters, points and
surfaces by capitals.

The new symbols representing angle, triangle, perpen-
dicular, parallel, etc., have been judiciously used.

Improved Diagrams. The briefer notation results in in-
creased clearness in both diagrams and text. The student
sees much of the demonstration in the character of the
typography, and the diagrams are not encumbered with a
confusing array of letters.

The increased simplicity and clearness of the diagrams
is shown by comparing those of §§ 135, 149, 153, etc., with
the corresponding diagrams in other books. They are
much easier for the student to grasp and remember.

Much of the difficulty experienced by students consists
in not being able to “see the figure.” This difficulty is
due not to lack of mathematical power but to lack of
imagination, made worse by the poor character of the dia-
grams. Pains has been taken to overcome this difficulty
by careful attention to the perspective of the figures. See
the figures of §§ 24, 43, 173, 261, 286, etc.
~ The accurate delineation of polar triangles is noteworthy
and new. § 261.

Figures which are dissimilar or <rreqular are represented
as markedly so, that the student may have no difficulty in
recognizing from the diagram the dissimilarity or irregu-
larity. See §§ 92, 167, 169, 170.

Clear Statements. In the text, demonstrations are pre-
sented in their constituent parts under distinctly designated
headings : Notation, To Prove, Construction, Analysis, Proof.

No student need say he “can’t see what the book is
driving at.”

Generalized Conceptions. In the chapter on cones, poly-
hedrons, etc., the frustum of a pyramid is considered as

e
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the primary solid, and the pyramid, prism, cone, and cylin-
der are considered as special cases of the frustum.

The student thus gets a broader view of the subject,
and is impressed with the oneness of the different solids.

His attention is constantly directed to the limiting cases
of surfaces and solids, and the manner in which they
merge, one into the other, is constantly impressed upon
his mind. See §§ 104-106, 188, 190, 298, 3014.

Condensation. Aside from enlarging the conception of
the student and broadening his horizon generally, a large
saving in space is made, twenty-one propositions by this
arrangement covering about the same ground as thirty-
nine or forty under the usual arrangement. Many propo-
sitions covering a page under the usual arrangement are
here disposed of as a corollary of a few lines.

The student gets a clearer grasp of the subject, and is
not deluded by a page of padded matter into thinking that
he has acquired something more than a corollary. For
instance, the student has pointed out to him once for all
that the cone is the limiting case of the pyramid, and
then the properties of the cone are given as corollaries
to those of the pyramid, instead of repeating each time
that the cone is a limiting case, etc., and making a whole
demonstration out of what is properly disposed of in a
few lines.

Chapter III, on the sphere, effects a similar condensation
from thirty odd to twenty-one propositions.

This gain in space 1s effected, not by curtailing the demon-
strations or omitting any necessary matter, but solely by the
method of arrangement, making corollaries of what have
usually been propositions which were padded out with
repetitions of previous matter to give them the proper
length.
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The whilom popular idea that each proposition must
occupy an entire page or pages is discarded. A short
demonstration is made short.

" The student is not deceived into thinking he has learned
a page of geometrical truth, when in fact he has learned
but a few lines.

In the present work the diagrams are generally so
simply lettered, that one glance is sufficient to fix it in
the student’s mind, and he is under no necessity to turn
to it again, this simplicity being secured by few letters,
or where that is impossible, by suggestive or characteristic
letters, as explained under the head of notation. Compare
§§ 24, 34, 64, 67, 135, 153, 174, ete.

Special Characteristics. The problems in the construc-
tion of the regular polyhedrons (§ 209) are solved upon
_tentative rather than upon dogmatic lines, with marked
gain for the student.

The student is not arbitrarily led per saltum, and the
correctness of the step proved afterwards, but each solid
is put together piece by piece, as one would do in the
actual construction of a model.

In the propositions relating to spherical surfaces, in-
creased clearness has been gained by the use of the
spherical degree as the unit of spherical surface, and it
is defined much more precisely and comprehensively than
is usual. . 4

Precision and comprehensiveness have been sought in
all the definitions. See §§ 298, 300, 301, 3014, 3154.

The very general solid, the prismatoid has been intro-
duced, and made the basis of demonstration for its limit-
ing cases, the wedge, pyramid, cone, ete.

In the area of the spherical triangle, lune, etc., the
expression of the angles in angular degrees or radians
has been carefully distinguished.
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The One object which has been kept in sight throughout
the book has been the attainment by the student of a
practical and comprehensive working knowledge of the
principles of solid geometry considered as a unit: the
attainment of something more than the accumulation of
a quantity of isolated theorems of little use as a mental
training and of no use for practical purposes.

One aid to this object 15 a large number of practical
examples scattered through the book. Among the typo-
graphical aids to the student is the table of abbreviations
and formulae at the end of each chapter.

Where the properties of parallel lines are referred to,
the well-recognized and convenient formula that parallel
lines meet at infinity has been used.

This need not mislead the student, and mekes the treat-
ment much more brief.

But, to insure that the language of the book shall not be
misunderstood, it may be well to say here: Parallel lines
are the limit to which intersecting lines tend as the inter-
section passes out to infinity. This is conveniently phrased
in the formula referred to above.

Similar remarks apply to parallel planes, prisms con-
sidered as limiting cases of pyramids, etec.
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SUGGESTIONS TO STUDENTS.

WHEN studying a proposition, draw the figure for yourself on
a separate piece of paper, varying the shape and proportions, but
keeping the lettering the same.

Write out the principal points, equations, etc., as you study
them. ‘

Consult other books and see if you can find a demonstration
that suits you better than the one given here.

When through, write out the demonstration in your own
language, using the one which seems simplest and best.

Use pencil and paper constantly. Mathematics must.be written
into the mind, not read into it. “No head for mathematics”

nearly always means “ will not use a pencil.”



NOTATION.

The following notation is used generally throughout the book,
though departed from in some instances where additional brevity
could be secured.

Points are indicated by capital letters, A, B, C, M, N, etc.,
also by the two lines whose intersection determine the point,
thus point pg means the point at the intersection of the lines
pandgq.

Lines are indicated by lower case letters, a, b, ¢, m, p, ete.

Planes and surfaces are indicated by capital letters, M, N, R,
S, ete.

Angles are indicated by the two lines which form the angle,
thus / mn means the angle between the lines mn; or by Greek
letters, e.g., a, B, 7, etc.

Plane figures are indicated by giving two or more of their sides,
as many as are sufficient to completely determine them. Thus
A ab means the A two of whose sides are ab. Figure ab means
the figure which has ab for its sides. If necessary all the sides
are named.

Volumes are denoted by heavy faced type, e.g., V, P, Q, etc.

The ordinary notation of geometry is used where that happens
to be shorter and clearer.

The given parts are generally designated by the middle letters
of the alphabet, the unknown parts by the last letters, and the
construction parts by the first letters of the alphabet in the order
in which they are found. Hence a glance at the diagram indi-
cates the given, required, and intermediary parts, and moreover
the order in which the intermediary parts are found.

Suggestive letters are used where practicable, thus ¢ for the inter-
sections (traces) of planes, & for height or altitude, r for radius, B
for base.

Corresponding lines in two figures are indicated by correspond-
ing English and Greek letters.

Subscripts indicate a close relation between the parts, equality,
similarity of position or homology, etec.



CHAPTER 1.
LINES AND PLANES IN SPACE.

X Solid Geometry is that branch of geometry in which/
the forms (or figures) treated are not limited to a single
plane.

~

% 1. A plane is a surface such that a straight line joining

any two points in it lies wholly in the surface. A plane
is indefinite in extent, so that however far the straight
line is produced, all its points lie in the plane; but a
limited portion of a plane is usually represented by =
parallelogram.

¥ 2. A plane is said to be determined by certain lines or
points, when it is the only plane which contains those
lines or points.

8. Any number of planes may be passed through a
straight line, for a plane passing through the line may be
revolved about the line and made to occupy an infinite
number of positions, each of which will be a different
plane. Hence a single straight line does not determine a
plane. ‘

4. A plane is determined by three ‘points not in the samc
straight line.

For if the plane be turned about the straight line con-
taining two of the points until it contains the third point,
the plane is evidently determined, since if it is then
revolved either backward or forward, it will no longer
contain the third point.
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% 8. A plane is determined by a straight line and a point

without that line, by two intersecting straight lines, or by
two parallel lines, since each of these cases can be con-
verted into that of § 4 by selecting three points, two in
one of the given lines and the third in the other line.

A 8. A straight line is perpendicular to a plane when it
is perpendicular to every straight line of the plane which
passes through its foof, that is, the point where it meets
the plane.

Conversely, the plane is perpendicular to the line.

“ 7. A line is obliqgue to a plane if it is not perpen-

dicular to all the straight lines drawn in the plane through
its foot.

%+ 8. A line is parallel to a plane when it is the limiting
case of an oblique line, that is when its point of inter-
section has. passed out to infinity.

In this case it is said to meet the plane at infinity.
A plane cuts all lines in space which are not parallel
to it.
+ 9. The distance from a point to a plane is the perpen-
dicular distance from the point to the plane.

10. Two planes are parallel when their line of inter-
section has passed out to infinity ; and the planes are said
to meet at infinity.

11. The projectioi of a point on a plane is the foot of
the perpendicular let fall from the point to the plane.

% 12. The projection of a line on a plane is the locus of
the projections of all its points.

13. The angle which a line makes with a plane is the
angle which it makes with its projection on the plane.
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Prorosition I. THEOREM.

14. The intersection of two planes is a straight
line.

Proof. Join two points of the intersection by a straight
line. By definition, § 1, this straight line lies wholly in
each plane, and hence must be common to them, or, in
other words, be their intersection. Q.E.D.

No point outside of thjs line can lie in the intersection,
for only one plane can contain a straight line and a point
without, § 5.

ProprosiTion II. THEOREM.

16. If a straight line is perpendicular to each
of two straight lines at their point of intersection
it is perpendicular to the plane of those lines.

Notation. Let m and n be two straight lines which de-
termine the plane M, and p
another straight line perpen-
dicular to each of them at
their intersection. Let I be
any other straight line in the
plane M passing through the
intersection of m and n.

To prove p | to [, and therefore to the plane M.

Construction. Lay off m =, and prolong p making
p'=p. Connect the extremities of m, n, p, p' by straight
lines. From the intersection of { and one of these new
lines, draw lines to the extremities of p and p'.

Analysis. 1° &, &', 4", " are =since points in the |
bisectors m, n are equally distant from the ends of p, p/,
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and m =n. Hence in the isosceles A’s bb"e, b'b"e, the
L be= [ b'e, and the A bed = A b'ed'.

2°. d and d' are =because the A bed = A b'ed’ (having
two sides and the included angles equal).

3° p is L to I because the lines d, d' are equal (points
equidistant from the ends of a straight line lie in the |
bisector).

Hence p is perpendicular to M because it is perpen-
dicular to /, any line in that plane. Q.E.D.

Is it necessary that m =n?

16. Cor. 1. At a given point in a plane, only one per-
pendicular to the plane can be erected.

Otherwise, if we pass a plane through the two perpen-
diculars, giving an intersection ! with the plane M, we
should have two _1’s in the same plane tc¢ the same straight
line / at the same point, which is impossilile.

17. Cor. 2. From a point without a plune only one per-
pendicular can be drawn to the plane.

For if p, b be two such |’s, the A pbn would contain two
rt. /s, which is impossible.

18. Cor. 3. Oblique lines drawn from a point to a plane
and meeting the plane at equal distances from the foot of the
perpendicular, are equal. E.g., b and b", § 15.

19. Cor. 4. Of oblique lines drawn from a point to a
plane the one which meets the plane further from the foot
of the perpendicular is the longer.

If n be extended, b, the hypothenuse of the rt. A bn,
must become longer than "

20. Cor. 5. Equal oblique lines from a point to a plane
meet the plane at equal distances from the foot of the per-
pendicular; and of two unequal oblique lines the greater
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meets the plane at a greater distance from the foot of the
perpendicular.

21. Cor. 6. The perpendicular is the shortest line from
a point to a plune.

22. Cor. 7. The locus of the point in a plane at a giren
distance from a fixed point, is a circle whose centre is the
Joot of the perpendicular through the point.

23. Cor. 8. The locus of a point in space equidistant
Jrom all points in the circumference of « cirele is a straiyht
line passing through the centre and perpendiculur to the
plane of the circle.

ProrositioNn III. THEOREM.

* 24, All the perpendiculars to a straight line at
the same point lie in a plane perpendicular to the
lire.

Notation. Let m, n and ¢ be ‘ i
three perpendiculars to p at the P e
same point, and M the plane of "\:. <
two of them, m and =. m/ :

To prove that 3/ contains c. ’ —

Construction, Pass the plane N through p and ¢, cutting
M in ¢t

Analysis. ¢ and ¢ are two perpendiculars to p in the
same plane at the same point, which is impossible, .-. ¢ and
¢t must coincide, and ¢ lies in M. Q.E.D.

25. Cor. 1. At a given point in a straight line, one and
only one plane perpendicular to the line can be drawn.

26. Cor. 2. If a right angle be turned around one of its
arms as an axis, the other arm will generate a plane per-
pendiculur to the axis.
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27, Cor. 3. The locus of a point in space equidistant
Jrom the extremities of a straight line is the plune perpen-
dicular to this line at its middle point.

For, all points in a | bisector of the line are equidistant
from the ends of the line, and if this | bisector be revolved
around the given line as an axis, it generates a plane, § 26,
whose points must be equidistant from the ends of the
given line.

28. Cor. 4. Through a given point without a straight
line one plane, and only one, can be drawn perpendicular
to the line.

Notation. In the figure let p be the given line, and the
end of ¢ the given point, and ¢ a | to p through the given
point, M the plane generated by revolving ¢ around p as
an axis, and N a plane through p and ¢.

Te prove M | to p,; and that there can be no other
perpendicular plane.

Analysis. Cor. 2 proves the first part.

If there could be another perpendicular plane, its inter-
section with ¥ would make a second perpendicular in the
same plane to the line p from a point without, which is
impossible, hence there cannot be a second perpendicular
plane. . QE.D.

1. Show two nonparallel lines which will not meet.

2. With a 12 foot pole how would you determine a point in
the floor directly under a certain point in a ceiling which is 10
feet high?

8. How would you determine a perpendicular to a plane by the
use of two carpenter’s squares ?

4. Find the locus of points equally distant from two given
points.
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ProprosiTioNn IV. THEOREM.

29. If from the foot of a perpendicular to a
plane a straight line is drawn at right angles to
any line in the plane, and its intersection with
that line is joined to any point of the perpen-
dicular, this last line will be perpendicular to
the line in the plane.

Notation. Let p be | to the
plane M, ta | from its foot to
any line ¢, and & a line joining
the intersection of ¢ and ¢ to
any point in p. M

To prove dl e
Construction. Take ¢ =c¢' and draw b, &'

Analysis. 1°. d is | ¢ because b =10. 2° b=
because e =¢'.

Proof. e¢=¢' because ¢=¢' (if two sides and the in-
cluded angle of one triangle are equal, etc.) ... 6=1", § 18.
But if 5=0¢'and ¢=¢', then dis | toe. (If a straight
line have two points each of which is equally distant from
the extremities of a second line, the first line is a perpen-
dicular bisector of the second.) Q.E.D.

80. Cor. cis | to the plane of the A\ pdt. Why?

Find the locus of points
5. Equally distant from two given lines in a plaae.
6. Equally distant from three given points.
7. Equally distant from three given planes.
8. Equally distant from three given lines in a plane.
~ 9. Equally distant from three concurrent lines.
10. In a given plane equally distant from two exterior points.
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ProrositioN V. THEOREM.

81. Two straight lines perpendicular to the same
3 % plane are parallel.

Notation. Let m, n be | to m\
the plane M. '

Construction. Connect the foot \ /

of the |8 by the line ¢ and draw M
the line . Through the foot of
n draw the line 4 in the plane M | to a.

n

To prove m || to n.

Analysis. 1° m and = lie in the same plane.

2° they are both | to the same line a.

3° .- they are |.

Proof. 1° nis | tod,§6: bis | tod, §29: ais | to
d by construction. .- n, 5 and e lie in the same plane, § 24.
.~. n and m lie in the same plane.

2° they are both [ to a, § 6.

3° .- they are |. Q.E.D.

32. Cor. 1. Ifone of two parallels is perpendicular to a
plane, the other is also.

Notation. Let p be || to ¢ and
_J_ to M.
To prove q 1l M.

Construction. Through the foot
of ¢, draw a, 1 to M.

Analysis. a is || to p, §31, but ¢ is already || to p
through the same point, and hence ¢ and a must coincide.
Hence ¢ is | to M. . Q.E.D.
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v 38, Cor. 2. Two straight lines that are parallel to a
third are parallel to euch other.

Notation. Let p and ¢ be each | to z.
To prove Pl toq.
Construction. Draw the plane M | to=.

Analysis. p and ¢ are each | to M,
§32: hence p || to ¢, § 31. . Q.E.D.

ProrosiTioN VI. THEOREM.

84. One of two parallel lines is parallel to every

* plane containing the other.
Notation. Let m, n be two |
lines, and N a plane through =. 4

To prove m || to . / E

Construction. Draw the plane 4
through m and =.

Analysis, If m meets the plane‘ N it must be some-
where in the line %, the intersection of the two planes, but
m and = are [, hence m cannot meet . Q.E.D.

NoTe. The limiting case of a line || to a plane is a line in the plane.
85. Cor. 1. A line parallel to the intersection of two
planes is parallel to the planes.

88. Cor. 2. Through any given straight line, a plane
can be passed parallel to any other straight line.

Notation. Let = be the given line.

Required to pass a plane through it /
| to m.

Construction. Through a point of 74
n, draw a, | to m. »
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Analysis. The two lines n, @ determine a plane which
by § 34 is | to m. Q.E.D.

37. Cor. 3. Through a given point a plane cen be passed
parallel to any two lines.

For through the point draw two lines | to the giv »
lines. These will determine a plane which by § 34 is || t .
each of the given lines.

388. Cor. 4. If a line is parallel to a plane, the intersee-
tion of this plane with any plane through the line is purallel
to the line.

For, if the intersection is not || to the line it must meet
it (being in the same plane with it), and since the inter-
section cannot pass out of the given plane, it must meet it
in that plane, but this is impossible since the line is || to

the plane, hence the intersection must be || to the line.

. E.D.
Are two lines which do not meet necessarily parallel ? ¢

89. Cor. 5. If a straight line und a plune are parallel,
a parallel to the line drawn throuyh a point in the plune,
lies in the plane. . §38

ProposiTioN VII. THEOREM.

* 40. Two planes perpendicular to the <came
straight line are parallel.

Notation. Let M and N be | to the
line p.
P
To prove M | to N. v

Analysis. If M and N could meet, we
should have two planes perpendicular to
the same line from the same point, which is impossible,
§ 28, hence M and N are parallel. Q.E.D



LINES AND PLANES IN SPACE. 11

ProrosiTioN VIII, THEOREM.

“41." The intersections of two parallel planes by
a third plane are parallel lines.

Notation. Let the || planes M, N
be cut by the plane §, giving the in-
tersectious m, n.

To prove m || to n.

Analysis. m and » can not meet
because the planes which contain
them are ||, and being in the same
plane, S, they must be parallel. Q.E.D.

42, Cor. Purallel lines included between parallel plunes
are equul.

Notation. Let p, ¢ be two || lines (whose plane is S.)
included between the || planes M, N.

To prove rP=q.

Analysis. » and ¢ are | lines included between the
|| lines m, n, and hence are equal. Q.E.D.

. ProrositioNn IX. THEOREM.
43. A straight line perpendicular to one of tiwwo
parallel planes is perpendicular to the other.
Notation. Let M, N be | planes and
let p be | to M. c
To prove pltoN
Construction. Through p in the plane

N draw the line e, and through ap pass o 7
the plane B, cutting M in e.

Analysis, « is | to ¢, §41: pis |
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to e, §6: ... pis | to a, and since ¢ is any line in the
planeN,pls_LtoN Q.E.D.

44, Cor. 1. Two parallel planes are everywhere equally
distant.
For perpendiculars between them must be equal by § 42.

% 45. Cor. 2. Through a given point one plane can be
passed parallel to a given plane, and only one.

For if p is | to the plane N, a plane M through any
point of p | to p, will be | to N, by § 40.

If another plane could be passed through :he same
point | to W, it would, by § 43, be 1 to p, and we should
have two planes through the same point | to the same
line which, by § 25, is impossible. Hence only one || plane
can be passed through this point. Q.E.D.

46. Cor. 3. If to intersecting lines are each parallel to
a given plane, the plane of these lmes 18 parallel to the given
plane.

Notation. Let m and n be the two
lines (determining the plane M) || to the
given plane N.

To prove M || to N.

Construction. Draw p through the in-
tersection of m, n and 1 to N. Where p -pierces N, draw
in N (§39) a and b || respectively to m and .

Analysis. p is | to e and b, since it is | to &, and is
also | to m and n, their parallels, consequently p is | to
M. Hence M and N are parallel, § 40. Q.E.D.

Find the locus of points
11. Equidistant from two given planes, and two given pomts
12. Equidistant from two parallel planes.
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ProprosiTioN X. THEOREM.

# » 41. If two angles not in the same plane have
their sides respectively parallel and lying in the
same direction,- they are equal and their planes
are parallel.

Notation. Let m, n (determining
the plane M) and p, ¢ (determining
the ‘plane N) be the sides of the
two anglgs: m || to p and n | to g.

(1) To prove
L mn=/pq.
Construction. Take m=p, n=yg, and draw the lines
a, b, c.

Analysis. The angles are = because the A mne = A pqge'.

Proof. Since m = and | to p, the figure a, ¢ is a paral-
lelogram and ¢« =and || to ¢. Similarly, « = and || to .
Hence the figure J, ¢ is a parallelogram and ¢ = and | to
¢'. Hence, having the three sides =, each to each, A mne
= Apye’. Hence L mn= ./ p. Q.E.D.

(2). To prove M | to N.
Proof. Since i, n are each || to N, § 34, their plane M
is || to Y, § 46. ‘ Q.E.D.

« 48. Cor. If two angles have their sides parallel, they
are equul or supplemental, and their plunes are parallel.

13. How would you test whether the side wall is a plane or
not ?

14. How would you test the perpendicularity of a rod project-
ing from a wall?
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ProrosiTioN XI. THEOREM.

¥ 49, If two straight lines are cut by three par-
allel planes, the corresponding segments are pro-
portional.’ .
Notation. Let m, n be cut by the /— : 7
three | planes M, N, R, into the /

segments m, m' and n, n'.

m n .
To prove =
Construction. Draw the line pp' e ' o

which is cut into the segments, p, p'.
Connect the points where these
lines pierce the planes by the lines
a, b, ¢, d. '

Analysis, The segments m, m' and n, n' are proportional
because they are the segments of the sides of triangles cut
by a line || to the base.

m p
Proof. b | d, by §41, =
. . n m n
Similarly %: o Hence —F=

Q.E.D.
50. Cor. Any number of straight lines cut by parallel
planes are divided into proportional segments.

15. The heights of two rooms, one above the other, are 9 and
Je 12 feet respectively, and the floor is one foot thick. A rod 32
- feet long rests on the lower floor and projects into the room above,

" just reaching the ceiling. How much of the rod is in each room ?

. 16. The guy ropes of a derrick are 75, 86, 93 and 97 feet

+  respectively, and the derrick is 35 feet high. It is desired to extend

<. horizontal spars from a point 10 feet from the top of the derrick
to the guy ropes. At what points will they touch the guy ropes?
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X DIHEDRAL ANGLES.

+ 51. The opening between two intersecting planes is °
called a dihedral angle. ’

The two planes are called the faces, and their line of in-
tersection the edge.

52. A dihedral angle is designated by
its edge, or its two faces and its edge, or its
two faces. Thus the dihedral angle in the
figure is designated by a, or MaN, or MN.

@ A dihedral angle is generated by the

revolution of a plane about a line in the plane, or what is
the same thing, about its intersection with another plane.

Consequently, the measure of a dihedral angle is the
amount of this revolution from the position of coincidence.

If at a point in the intersection a line be drawn in each
plane perpendicular to the intersection (p, ¢ in the figure),
these lines will coincide when the planes coincide, and will '
open or revolve about ‘their intersection exactly the same
amount that the planes revolve gbout their intersection,
and evidently the angle between these lines will be the
measure of the revolution of the planes.

This angle is called the plane angle of the dihedral
angle, and will evidently be of the same magnitude at
whatever point in the edge it is constructed, § 47.

a

54. Two dihedral angles are equal if their plane angles
are equal.

55. The plane of the plane angle is evidently perpen-
dicular to the edge, § 15.

56. If a plane is drawn perpendicular to the edge, its
intersections with the faces form the plane angle of the
dihedral angle.
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67. Two dihedral angles are equal when they can be
made to coincide, or when their plane angles are equal.

The magnitude of a dihedral angle depends upon the
relative position of its faces, and not upon their extent.

58. Two dihedral angles are adjacent when they have a
common edge and a common face between them, as in § 76.

59. When two intersecting planes make the adjacent
dihedral angles equal, each of these dihedral angles is
called a right dihedral angle: -and one plane is said to be
perpendicular to the other.

60. Vertical dihedral angles are those which have a
common edge and the faces of one are prolongations of the
faces of the other.

81. Dihedral angles are acute, obtuse, complementary, sup-
plementary, under the same conditions that hold for plane
. angles.

62. The demonstrations of many properties of dihedral
angles are the same as the demonstrations of analogous
properties of plane angles.

For example :

Vertical dihedral angles are equal.
Dihedral angles whose faces are respectively parallel or
perpendicular are either equal or supplementary.

ProrosiTion XII. THEOREM.

88. The ratio of two dihedral angles is equal to
the ratio of their plane angles.

This follows from § 53, since the plane angles are the
measures of the dihedral angles.
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ProrositioNn XIII. THEOREM.
4

-84 If two planes are perpemlwular to each other,
a line in one of them perpendiculur to the inter-

section is perpendicular to the other.

Notation. Let A and N be | to each other, and let p
be drawn in M perpendicular to their
intersection £

To prove p | to N.

Construction. In NV draw « | to ¢ /

Analysis, 1°. The / pea is a right
angle, being the plane angle of the
dihedral Z MN. Hence

2°. pis | to both ¢and @ and .-. | to .

Proof. 1°. The / pu is the plane angle of the dihedral
Z MN because p and @ are both drawn | to ¢ at the
same point, one in each plane, § 53.

2°. pis | to ¢ by construction, and | to « because / pa
is the measure of the angle between the planes, which is
by hypothesis a 1t. Z/. Hence, § 15, pis | to N. q.E.D.

85. Cor. 1. If two planes ave perpendicular to each

other, a perpendicular to one of them at any point of their
tntersection will lie in the other.

By § 16, only one 1 to the plane can be erected at the
point, but p has already, § 64, been shown to be one | to
N, and p lies in M. Hence, if two planes, etc. Q.E.D.

66. Cor. 2. If two planes are perpendicular to each
other, a perpendicular to one of them from any point of the
other will lie in the other.

By § 17, only one | can be drawn to a plane from a
point without, but p has already, § 64, been shown to be
one | to W, and p lies in M. Hence, If two planes, etec.

Q.E.D.
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Prorosition XIV. THOREM.

+ 87. If a straidht line is perpendicular to a plane,
every plane passed through the lire is perpendicular
to the first plane.

Notation. Let p be | to N, and M be any plane passed
through p, intersecting &V in ¢.

To prove M | to N.

Construction. Through the foot of
p draw a in the plane &, | to ¢
Analysis. Since pis | to &, itis | '
to ¢ and to a, § 6, ... Z pa is the plane
angle of the dihedral / MN. But £ peisart. £ .. M

is | to NV Q.E.D.

88. Cor. A plane perpendicular to the edge of a dihedral
angle is perpendicular to its faces.

For the faces are planes through the perpendicular line
(edge).

69. If three lines p, t, a are perpendicular to one another
at the same point, each line is perpendicular to the plane of
the other two, and the three planes determined by the lines
are perpendicular to each other.

17. If a plane intersects two || planes, are there any equal
dihedral angles ?

18. How would you determine if the floor is level, if you had
a plumb line and a carpenter’s square ?  If you had a carpenter’s
level ?

19. Tn example 18, what must be the relative positions of the
square? Of the level ?

20. If a line and a plane are | to the same plane, the); are [.
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Prorousition XV. THEOREM.

* 70, If two intersecting planes are each perpen-
dicular to a third jlane, their intersection is also
perpendicular to that plane.

Notation. Let the planes M and N intersecting in the
line p be | to the plane R.

To prove p 1 to R. 1

Analysis. If a perpendicular to B
be erected at the point 4 where the
traces of M and N intersect, it will,
by § 65, lie in both M and A, and hence must be the inter-
section p, hence p is | to R. Q.E.D.

71. Cor. 1. A plane perpendicular to each of two inter-
secting plunes is perpendiculur to their intersection.

72. Cok. 2. If a plune R be perpendicular to two planes
M and N which include a right diledral angle, the inter-
section of uny two of these plunes s perpendicular to the
third plane, and euch of the three intersections is perpen-
dicular to the other two.

Compare § G9.

PropositioNn XVI. THEOREM.

~ 18, Through a given line oblique to a plane, one,
and only one plane, can be passed perpendicular to
the given plare.

Notation, Let 7 be oblique to the -
plane N. >

« Vv
: t
To prove that one plane can he /w
passed through m | to N and only d

one.
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Construction. From any point of m draw e | to N, and
through am pass the plane R.

Analysis. R is | to N by § 67, since it passes through
the perpendicular a. Q.E.D.
Also because any plane passed through m | to N must
contain the perpendicular a, § 66, ... since a plane is de-
termined by two intersecting straight lines, § 5, R is the
only plane | to IV that can be passed through m. q.E.D.

74, Cor. 1. The projection of a straight line en a plane
is a straight line.

For the. s from all points of m to N lie in the plane R
1 to N, § 66, and therefore all these perpendiculars meet

N in the trace #, which is a straight line, § 14. )

75, Cor. 2. The projection of a line passes through the
point where the line intersects the plane.

ProrosiTioN XVII. THEOREM.

78. Every point in a plane which bisects a dihe-
dral angle is equidistant from the faces of the
angle. :

Notation. Let the plane R bisect the dihedral angle
MN; and let p, p' be s drawn from
any point of 2 to M and N respec-
tively.

To prove p=p.

Construction, Through p and p'
pass a plane A, intersecting M and
N in the lines « and 2, and I in ¢.

Analysis. 1°. The A puc = A p'be, .- 2° p =p'.
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Proof, 4 is 1 to M and N by § 67, and therefore is
1 to their intersection by § 71. Hence, by § 56, £ ac
= / bc, since the dihedral angles are equal. Hence
the rt. As pac and p'bc are equal, having a hypothenuse
and an / = each to each. .. p=p" Q.E.D.

ProprositioN XVIII. THEOREM.

X 77 Between two straight lines not in the same
plane only one perpendicular can be drawn.

Notation, Let m and n be the Y
given lines. - 3 J

(1) To prove ¢ | to m and to =.
c N

Construction. Through m pass
the plane M || to », and through n pass the plane N | to M,
intersecting M in «. At the point am erect b in the plane
N | toa -

Analysis. 1°. 0 is | to M and therefore to m.
2°. bis | to a and therefore to n.

Proof. 1°. bis | to M by § 64, and is therefore perpen-
dicular to m, a line through its foot.

2° a is || to n by § 38, and .-. b, which is | to a by con
struction, is also | to its || n.

Hence b is | to both m and =. Q.E.D.

(2) To prove that d, any other line, is not | to both m
and n.

Construction. Through the point md, draw ¢ | to n (m
and ¢ determine the plane M) ; and through the point nd
draw e | to a.
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Analysis. eis | to M. If dis | to m and =, it is also
1 to ¢ and therefore to M, thus giving two |s to M from
the same point, which is impossible.

Proof. ¢is | to M by § 64.
If dis | tonitis | toits | c. Being perpendicular to

m and ¢ at their intersection it is | to M, § 15.
Hence we have two | s to M from the same point, whic!,
is impossible, ...  is not | to m and =. Q.E,D

78. Cor. The common perpendicular is the shortest dis-
tance between two lines.

For b =e¢ < d. § 21.

PoLYHEDRAL ANGLES.

79. When three or more planes meet in a common point,
they form what is called a polyhedral angle at that point.

80. The common point is called the vertex of the angle,
the intersections of the planes are the edges, and the por-
tions of the planes between the edges are the faces, and the
plane angles formed by the edges are its face angles.

81. The edges of a polyhedral angle may be produced
indefinitely, but are usually represented as cut off Ly a
plane as in §§ 91, 92. The intersections of the faces with
this plane form a polygon which is called the base of the
polyhedral angle.

82. The magnitude of a polyhedral angle depends upon
the relutive position of its faces and not upon their extent.

83. In a polyhedral angle each pair of adjacent faces
forms a dihedral angle, and each pair of adjacent edges
forms a face angle.

84. 'T'wo polyhedral angles are equal when the face and
dihedral angles of one are respectively equal to the face
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and dihedral angles of the other and are arranged in the
same order. The two polyhedral angles can evidently be
made to coincide.

85. A polyhedral angle is convex if its base is convex.

¥ 86. A polyhedral angle is called trihedral, tetrahedral,

R

X

ete., according as it has three fabes, Jour faces, ete.

87. A trihedral angle is called isosceles if it has two of
its face angles equal : equilateral if it has all three of its
face angles equal.

88, A trihedral angle is called rectangular, bi-rectangu-
lar, tri-rectangular, according as it has one, two or three
right dihedral angles.

The corner of a cube is a tri-rectangular trihedral angle.

89. Two polyhedral angles are symmetrical when the
face and dihedral angles of one are equal to those of the
other, each to each, but arranged in reverse order, as shown
in figures S and S, in § 93.

In general, two symmetrical polyhedral angles cannot be
brought into coincidence.

The two hands are an illustration of symmetry. The
right hand is symmetrical to the left hand, but cannot be
made to coincide with it. So with the right and left shoe.

90. Opposite or vertical polyhedral angles are those in
which the edges of one are prolongations of the edges of
the other.

They are evidently symmetrical.

21. If two dihedrals of a trihedral are equal, the trihedral is
isosceles.

22, If a line is drawn in each face of a dihedral from the same
point in the edge, and oblique to the edge, is the angle between
the lines greater or less than the plane angle? If the dihedral s
a right angle how large or how small can it be?
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Prorosition XIX. .THEOREM.

/. 91, The sum of two face angles of a trihedral
angle is greater than the third.

Notation, Let o, 8 and y be the three face angles of a
trihedral angle, of which
B is the greatest.

To prove a + v > B.

Construction. In the
face B, draw the line S4
making the angle y'=1y
with the edge SB. Lay
off SC= 84. Draw the
line BA to D.

‘Analysis. o> (B—7y). vat+y>(B— ;i ty=0RH).

Proof. The A SADL=A SBC (having two sides and the
included angle equal, ete.). -+ AB=DBC.

But BC+ CD > AB+ AD. Taking away the equals
AB and BC we have CD> AD.

But SC= 54, - LASD =8—y, <a

Adding y to both sides of this inequality we have

at+y> B—nty=An). Q.E.D.

23. Can three planes intersect without forming a trihedral
angle?

24. If two intersecting planes contain two lines || to each other,
the intersection of the planes will be || to the lines.

25. In how many points do three planes intersect ?

26. How many planes can be determined by three parallel
lines ?

27. How many planes can be determined by four parallel lines ?

28, How many planes can be determined by the sides of a
ganche quadrilateral ?
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ProrosiTion XX. THEOREM.

X' 92. The sum of the face angles of any convex
polyhedral angle is less than four right angles.

Notation. Let S be any polyhedral angle formed by the
face angles 1, g, «, ete.

To prove
+0+«k+.. ete. <4 rt. Ls.

Construction. Passa plane
acio3s the polyhedral angle
giving a base, one point in
the interior of which is P.
From P draw lines to the
vertices of the base, thus
giving a set of triangles
with their common vertex at P, and equal in number to
the set of face triangles having their common vertex at S.

Notation. At any vertex V, V), ete., denote the angles of
the face triangles by a, a,, etc., B, By, ete., and of the base
triangles by v, y;, ete. Denote the sum of all the angles
of the base triangles (having their common vertex at P) by
SP, and the sum of all the angles of the face triangles
(having their common vertex at §) by 3.

NoTE, — 3 stands for sum.

Analysis, 3.5 = 3P, since each set has the same number
of triangles.

By § 91, a+ B>y, a; + B> y1. ete.
sletat BB F )t )

Hence
38— (@t at et B+ Bt ) <SP — (v +yi4 ).
But 2S'—(a+a1+...B+Bl+...)=q+0+etc.
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and SP—(y+yn+..)=4rt Ls
ot 04k ete. <41t s, Q.E.D.

The limits of the sum of the face angles of a convex
polyhedral angle are 0° and 360°.

Prorosition XXI. THEOREM.

% 93. Two trihedral angles, which have three face

angles of the one equal respectively to three face
ungles of the other, are either equal or symmetrical.

Notation. In the trihedral /s S, S, the face angles »,
0, x, and 5, 6,, ), are respectively equal as shown in the
figure.

To prove the dihedral angles between these faces respec-
tively equal.

Construction. We will measure the dihedral /s 58 and
1 0,, between the faces yfand 5 6,. On the edge of this
dihedval Z lay off @ =«,. At this point erect the 1s b, ¢,
by, ¢, in the faces 5 and 6 respectively. Connect the inter-
sections of these lines with the other edges by the lines d, d,.

Analysis. The A bed = A beid, .- the £ be = bye,, but
this is the plane angle of the dihedral angle 56, and there-
fore the dihedral angles are equal.
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Proof. A ab= A ab, (having two /s and a side =),
o b - bl.‘

Similarly c=c¢, and d=d,.
" Hence A bed= A bieydy.
o L be= L bye,, or dihedral / 50 = dihedral / 4, 6,.

Q.E.D.
In the same way it can be proved that the other dihedral
/s are =,

Hence, §§ 84, 89, the trihedral /s S and 8, are either
equal or symmetrical. Q. E.D.

29. Perpendiculars to the faces of a dihedral angle include an
angle supplemental to the plane angle of the dihedral.

80. The sum of the dihedrals of a trihedral may be anything
hetween two and six right angles.

31. An isosceles trihedral and its symmetrical trihedral are
equal.

32. The dihedrals opposite the equal face ahgles of an isosceles
trihedral are equal.

33. If the intersections of several planes are ||, what about the
normals to those planes through a given point.

- 34. The projections of | lines upon any plane are | lines.

35." The projection of an / upon a plane is greatest, when?
When least? When = to the /?

86. Find the plane upon which the projections of two non [l
and non-intersecting lines will be |.

37. Through the vertex of a trihedral angle draw a line equally
inclined to the edges.

38. In any trihedral angle the planes through the edges, |.
to the opposite faces, intersect in the same straight line. (See
§ 70).

39. If the projections of a line upon two non | planes are -
straight lines, the given line is also a straight line.



CHAPTER IL

POLYHEDRONS, CYLINDERS, CONES.

X
N DEFrINITIONS.

94. A polyhedron is a solid bounded by planes. The
portions of the bounding planes, limited by their mutual
intersections, are the faces of the polyhedron; the inter-
sections of the faces are the edges, which meet in points
called the vertices.

% 95, A diagonal of a polyhedron is a straight line join-

r

ing any two vertices not in the same plane.

96. A polyhedron of four faces is called a tetrahedron ;
one of six faces, a hexahedron; one of eight faces, an octa-
hedron; one of twelve faces, a dodecahedron; one of
twenty faces, an icosahedron.

97. A polyhedron is convex when every section formed
by an intersecting plane is a convex polygon. Only convex
polyhedrons will be treated of in this book.

98. The volume of a solid is the number which expresses
its ratio to some other solid taken as a unit of volume.
The unit of volume is a cube whose edge is a linear unit.

99. Two solids are equivalent when their volumes are
equal.

100. Polyhedrons are equal when their homologous
edges coincide.
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% 101, A pyramid is a polyhedron all of whose faces ex-
cept one are triangles meetingin a point called the vertex.
The face not passing through the vertex is called the base.
The faces which meet at the vertex are called lateral faces
and their intersections are called lateral edges. The edges
of the base are called base edges.

¥ 102, A frustum of a pyramid is the portion contained
between the base and a plane parallel to it. Parallel
planes evidently cut off frustums between them, one of the
sections being considered as the base of a new pyramid.

103. The frustum is the general solid, and special cases
of the frustum are, as defined below, the pyramid, prism,
cone and cylinder.

104. A pyramid may be considered as a frustum in
which the cutting plane parallel to the base passes through
the vertex: a frustum whose upper base has become
zero.

105. Another special case of a frustum is that in which
the vertex is moved out to infinity, in which case the lateral
edges become parallel lines, and we have what is called a
prism. '

1068. Another special case of a frustum is that in which
the number of lateral faces becomes infinite, in which case
the pyramid becomes what is called a cone, and the prisin
a cylinder, and the frustum a frustum of a cone, and the
lateral edges become elements of the cone and cylinder.

107. The following definitions apply to frustums, and,
therefore, to the special cases of frustums: pyramids,
prisms, cones and cylinders.

108. The altitude of a frustum (pyramid, prism, cone,
cylinder) is the perpendicular distance between its bases.
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* 109. A regular frustum (pyramid, prism, cone, cylinder)
is one whose base is a regular polygon (circle for cone and
cylinder) and whose edges (or elements) are equally in-
clined to the base. The cone is called a cone of revolution,
because it can be considered as generated by revolving a
right angled triangle about one of its legs as an axis.
Similar cones of revolution are generated by similar tri-
angles.

110. In the case of a regular pyramid (cone) the centre
of the polygon (circle) coincides with the foot of the per-
pendicular let fall from the vertex. The perpendicular is
called the axis of the pyramid (cone).

111. In the case of a regular prism (i. e., frustum of an
infinitely long pyramid) the edges as well as the axis are
perpendicular to the base. The corresponding cylinder is
called a cylinder of revolution, being considered as gener-
ated by a rectangle revolving about one of its sides as an
axis. Similar cylinders of revolution are generated by
similar rectangles.

If the base is distorted so as to be no longer regular, we
still have what is called a right (though not a regular)
prism or cylinder. Compare § 120.

112. The slant height of a regular frustum is the per-
pendicular distance between the corresponding base edges.

113. In the frustum of a cone, the slant height becomes
the portion of an element included between the bases.

114. In the case of the prism and cylinder, the slant
height becomes the altitude.

115. In the case of the pyramid the slant height be-
comes the distance from the vertex to one of the base
edges, and in the cone it becomes one of the elements.
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SPECIAL DEFINITIONS.

116. A frustum of a pyramid (pyramid, prism) is called
triangular, quadrangular, pentagonal, etc., according as
its base is a triangle, quadrangle, pentagon, etc.

117. A triangular pyramid is called a tetrahedron; and
any one of its faces can be taken as its base.

118. A circular cone (cylinder) is one whose base is a
circle. The line connecting the centre of the base with the
vertex is called the awis.

119. A right circular cone (cylinder) is one whose axis
is perpendicular to the base.

120. A right prism (cylinder) is one whose lateral
edges (elements) are perpendicular to its bases.

121. An oblique prism (cylinder) is one whose lateral
edges (elements) are not perpendicular to its bases.

122. A right section of a prism (cylinder) is a section
made by a plane perpendicular to its lateral edges
(elements).

128. A truncated pyramid (prism) is the part of a pyra-
mid (prism) included between the base and a plane not
parallel to the base.

124. A prism whose bases are parallelograms is called a
parallelopiped: a right parallelopiped if it is a right
prism, and a rectangular parallelopiped or cuboid* if it is
a right rectangular prism.

A parallelopiped is evidently a solid contained between
three pairs of parallel planes.

125. A rectangular parallelopiped whose edges are equal
is called a cube,

#*Suggested by R. Baldwin Hayward, Elements of Solid Geometry.



32 SOLID GEOMETRY.

126. A tangent line to a cone (cylinder) is a straight
line (not an element) which touches but does not intersect
the lateral surface.

127. A plane which contains an element of the cone
(cylinder) and does not cut the surface is called a tangent
plane.

128. The element contained by the tangent plane is
called the element of contact.

129. A frustum of a pyramid (prism) is inseribed in a
frustum of a cone (cylinder) when its lateral edges are ele-
ments of the frustum of the cone (cylinder), and its bases
are inscribed in the bases of the frustum of the cone
(cylinder).

130. If the faces are tangent externally and the bases

are circumscribed instead of inscribed, the pyramid (prism)
is said to be eircumscribed about the cone (cylinder).

SkcoNDARY DEFINITIONS.

x 131, A conical surface is the surface generated by a
moving straight line called the generatrix passing through
a fixed point called the vertex and constantly touching a
fixed curve called the directrix.

The directrix may be an open or a closed curve.

The generatrix in any position is called an element of
the surface.

Since the generatrix extends on both sides of the vertex,
the whole surface consists of two portions lying on opposite
sides of the vertex, which are called the upper and lower
nappes or sheets.

132. If the vertex is carried out to infinity we get a
cylindrical surface.
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133. A cone (cylinder) is a solid bounded by a conical
(cylindrical) surface which returns into itself, and a plane
cutting all its elements. The conical (cylindrical) surface
is called the lateral surface, and its area, the lateral area.

134, The base of a cone (cylinder) is its plane surface.

ProrosiTion I. THEOREM.

F (1§5, If a pyramid is cut by a plane parallel to
the base, the edges are divided proportionally, and
the section is a polygon similar to the base.

Notation. Let the pyramid P be cut by a plane || to the
base B, giving the section S.
(1) To prove the segments of

the edges proportional. AT
Analysis. S and B have their

edges respeetively ||. ... the faces

are each divided into similar As,

and the edges are divided propor-

tionally. 41
Proof. The edges of S and 4

are respectively |, because they

are sections of | planes by a third, § 41.
.. the faces are similar As (having their sides |)).

.. the edges are divided proportionally (sides of similar
As are proportional). Q.E.D.

(2) To prove S similar to B.

Analysis. They are | polygons* (proved above) and
similar, because the edges are proportional, being the bases
of similar As. Q.E.D.

* Parallel polygons -are those having their sides respectively parallel. They
are not necessarily similar, .
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136. Com. 1. Sections of a pyramid (cone) made by
parallel planes are similar polygons.

187. Cor. 2. Sections of a circular cone by a plane
parallel to the base are circles.

138. Cowr. 3. The upper base of a frustum of a pyramid .
(cone) is similar to the lower base.

139. Cor. 4. Sections of a prism (cylinder) made by
parallel planes are congruent polygons, since the edges are
mutually equal, being parallel lines between parallel lines.

140. Cox. 5. Sections of a prism (cylinder) parallel to
the base are congruent to the base.

141. Cor. 6. AU right sections of a prism (cylinder) are
equal.

142. Cor. 7. The upper and lower bases of a prism
(cylinder) are congruent polygons.

143. This furnishes ground for a new definition of a
prism, viz., a polyhedron two of whose opposite faces,
called bdases, are parallel polygons, and whose other faces,
called lateral faces, meet in parallel lines called lateral
edges.

From this it easily follows that the lateral edges are
equal, § 42; the lateral faces are parallelograms; and the
bases are equal.

* \144. Cor. 8. The areas of parallel sections of a pyramid
(cone) are proportional to the squares of their distances from
the vertex.

This follows because similar polygons are proportional
to the squares of homologous lines.

145. If the pyramid (cone) become a prism (cylinder)
then the areas are equal. Compare Cor. 4.
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146. Cor. 9. If pyramids (cones) of equal altitudes are
cut by planes parallel to the buse and at equal distances from
the vertex, the sections will be proportional to the bases.

147, Cor. 10. In pyramids (cones) of equal altitudes and
equivalent bases, sections made by planes parallel to the
bases and at equal distunces from the vertices are equivalent.

148. Cor.11. The lateral Jaces of a regular frustum are
30sceles trapezoids.

ProrosiTioNn II. THEOREM.

¥ 149. The lateral area of a prism is equal to the
product of a lateral edgde by the perimeter of a
right section.

Notation. Let K be a prism with the right section G
(whose perimeter is p), lateral edge ¢, and lateral area S.

To prove S=¢"p.

Analysis. Each face is a
parallelogran whose area is
equal to its base e, multiplied
by its altitude. The altitude
is a side of the right section.
The sum of all the altitudes =
the perimeter of the right section =p.” .- the sum of all
the faces = the lateral area = S =¢- p. Q.E.D.

150. Cor. 1. The lateral area of a cylinder is equal to
the product of an element by the perimeter of a right section.

151, Cor. 2. The lateral area of a right prism (cylinder)
is equal to the altitude multiplied by the perimeter of the
base.
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152. Cor. 3. The luteral area of a cylinder of revolution
8 the product of the circumference of its buse by its altitude.

Proposition III. THEOREM.

% 153. The lateral area of a regular frustum is
equal to one half the product of the slant height by
the sum of the perimeters of the bases.

Notation. Let A be a frustum of a regular pyramid ; its
lateral surface S; slant height I; perimeter of bases p
and p;.

K
To prove S=14% 1 (p+ py). ‘

Analysis, The lateral faces are
isosceles trapezoids, §§ 110, 18, 50,
with the common altitude I. .- the
sum of the faces = § =47 X sum
of the perimeters of the bases = 4 I (p+ p,). Q.E.D.

154. Cor. 1. The luteral area of a frustum of a cone of
revolution is equal to the product of the slant height by one
half the sum of the circumferences of the bases.

155. Cor. 2. The lateral area of a frustum of a cone of
revolution is equal to the slant height by the perimeter of a
mid-sectio.

156. Cor. 3. The lateral area of a regular pyramid
(cone of revolution) is equal to one half the perimeter of base
multiplied by the slunt height.

157. Cor. 4. The lateral area of a right prism (cylinder)
is equal to the altitude multiplied by the perimeter of the base.

40. Sections of a prism made by planes parallel to the lateral
edges are parallclograms.
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x Prorosition 1IV. THEOREM. ’ w

+ 158. Two prisms are equal when the three faces
about a trihedral of one are equal respectively to
the three faces about a trihedral of the other, and
similarly arranged.

Notation. Let the two prisms have the three faces M,
N and R equal respec-
tively to M,, N, and R,.

To prove the prisms
equal.

Analysis, Since the
face angles are equal,
the trihedrals are equal,
and can be made to coincide. Then the vertices of R
coincide with the vertices of R,; and likewise the vertices
of the other = faces, respectively.

Since the vertices of R and R, coincide, the lateral edges
extending from these vertices must coincide, since they are
|| to the edge MN, and are limited by the plane determined
by the three lower vertices of M, V.

But if the lateral edges of one prism coincide respectively
with the lateral edges of the other, the prisms must be
equal, § 100. Q.E.D.

159. Cor. 1. Two right prisms which have equal bases
and equal altitudes are equal.

If the faces are not similarly placed, one of the prisms
can be inverted and applied to the other.

160. Cor. 2. The above proposition and demonstration
applies equally well to truncated prisms.
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ProprosiTioN V. THEOREM.

181. An ollique prism (cylinder) is equivalent to
a right prism (cylinder) whese base is « right sec-
t'on of the oilique prism (cylinder) and whese
altitude is -a lateral edge (element) of the oblique
prism (cylinder). :

Notation. Let R be a right section of the oblique prism,
and the base of a right prism whose lateral edges equal the
edges of the oblique prism; B=
the base of the oblique prism.
The combined figure is composed
of three truncated prisms. P-+@Q
=the oblique prism. Q@4 T=
the right prism.

To prove P-+@=@-+4Tor P=T.

Analysis. P and T have the
same base 5. If from the lateral
edges of the prisms P 4@ and
Q 4 T we take the edges of @, which are common to both,
the remainders will be equal; that is, the edges of P = the
edges of T. ... the faces of P=the faces of T, being ||
polygons with their homologous edges =.

Hence P=T, § 160.
~P+Q=Q+T Q.E.D.

41. I{ the four diagonals of a quadrangular prism pass through
a common point, the prism is a parallelopiped.

42. If two non-parallel diagonal planes of a prism are perpen-
dicular to the base, the prism is a right prism. § 70.

43. In a cube the square of a diagonal is three times the square
of an edge.
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ProrosiTioN VI. THEOREM.

* 162. The opposite faces of ‘a parallelopiped are
equal and parallel.

Notation. Let M, M, be two opposite faces of a paral-
lelopiped, their edges being e, f and e, f; respectively.
B and B, are the upper and lower
bases of the parallelopiped.

To prove M —and || to M,.

Analysis, Since B is a paral-
lelogram ¢ = and | to ¢,. Simi-
larly (or by § 143) f = and | to
Sfio o ZLef =L efi, §47. Similarly with the other
angles. Hence M =and | to M;. Q.E.D.

In the same way the other faces can be proved || and =.

Second Method. f || f; by definition, § 143. ¢ | ¢ by
definition of a parallelogram. Hence M and M, are |
polygons. But the base edges not adjacent to M, M, are |,
§ 143. .- the definition of § 143 applies with M and M,
as bases, and they must he = and |. Q.E.D.

163. Scholium. Any two opposite faces of a parallelo-
piped may be taken as bases.

44. The four diagonals of a parallelopiped mutually bisect each
other. )

45. The sum of the squares upon the four diagonals of a paral-
lelopiped is equal to the sum of the squares upon its twelve edges.

46. The four diagonals of a rectangular parallelopiped are equal
to each oiher, and the square i3 equal to the sum of the squares
of the three edges which meet at any vertex.

(The Pythagorean proposition is a special case of this one.)
47. Find the length of the diagonal of a rectangular parallelo-

piped whose edges are 1, 4 and 8.
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ProrositioN VII. THEOREM.

- @4;. The plane j.assed through two diagonally
opposite edges of « parallelopiped divides it into
two equivalent triangular prisms.

Notation. Let the parallelopiped whose edge is e be cut
by the plane into two tri-
angular prisms R and L.

To prove B -~ L.

Construction. Take a
right section of the paral-
lelopiped giving a quad-
rilateral which is divided
by the diagonal plane into two triangles M, M, .

Analysis, M =M,. .. L=eM*=eM,=R.

Proof. The quadrilateral MM, is a parallelogram, its
sides being | since they are intersections of | planes by a
third, ' § 41.

o the A M=A M,.

By § 161, L=eM. Likewise E=elM,.
Hence since M=M,, L=¢M=eM,=R. Q.E.D.

48. 'The lateral surface of a pyramid is greater than the base.

49. The lines joining each vertex of a tetrahedron with the
intersection of the medial lines of the opposite face, meet in a
point, which divides each line in the ratio 1 : 4.

50. Iow often must a cylinder 53 feet long, whose diameter is
21 inches, revolve, to roll an acre ?

X Ol. A pyramid whose height is 12, and whose hase is 8, is cut

by a plane parallel to the base giving a section of 5. What is the
distance of this section from the vertex?

%eM. eM,, etc., means the prism- whose edge is e and whose base is .V, M, ete.
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Prorosition VIII. THEOREM.

¥ 185. Two rectangular parallelopipeds having
equal bascs are to each other as their altitudes.

Case I. When the altitudes are commensurable.
Notation. Let P and Q be two rectangular parallelopi-

peds having their altitudes
m and 7 units respectively.

P m
To prove a=n

Construction. Divide P
into m and @ into » rect-
angular parallelopipeds by planes || to the base.

Analysis. These small prisms are all equal, § 159.
Since P contains m of them, and @ = of them,
P m ‘
then a=n OLI.D.

. Case II. When the altitudes are incommensurable.

Notation. Let P and @ be two rectangular parallelopi-
peds having their altitudes

as m and = respectively, 0

where m or n, or both, are A / 2
incommensurable * numbers.

Let m, and 7, be the units

in m and » respectively. Let { /
P,, Q, be parallelopipeds

having the same bases as P and @, but altitudes of m, and
7, units,

m

-

P
To prove = =
/ Q
* An incommensurable number is one whose value cannot be exactly expressed

in tigures, e.g., 7 =3.141592....., +/2 =1.4142136...., etc.
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Construetion. Divide P, and Q, into m, and =, rectangu-
lar parallelopipeds 1-espectively, by planes | to the base.
ml

Analysis. By Case I, Q

If the unit of measure is mdeﬁnitely diminished, these
ratios continue =, and approach the limiting ratios

(I; and 1-5
But if two variables are constantly equal, and each ap-

proaches a limit, the limits are equal.

Hence P _m

Q = Q.E.D.

166. Scholium. This theorem may be expressed :
Two rectangular parallelopipeds which have two dimen-
sions in common are to each other as their third dimension.

ProrosiTioN IX. THEOREM.

187. Two rectangular parallelopipeds having
equal altitides are to each other as their bases.

~

Y
(ab T T

Notation. Let P and Q be two rectangular parallelopi-
peds having the three dimensions a, b, ¢ and =, y, ¢,
respectively.
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To prove P = b .
Q zxy
Construction. Construct a third parallelopiped B with
the dimensions ¢, z, 5. (¢, %, @ would have done as well.)

Analysis. By § 166, § —2and R_S

Q vy
Multiplying these equations, we have
P_ab
Q zy Q.E.D.

168. Scholium. 7Two rectangular parallelopipeds having
one dimension in common are to each other as the products of
the other two dimensions.

ProrosiTioN X. THEOREM.

169. Two rectangular parallelopipeds are to each
other as the products of their three dimensions.

Notation. Let P and @ be two rectangular parallelopi-
peds whose dimensions are «a, , ¢ and z, y, 2, respectively.

T S =
'o prove ' Q =y
Construction. Make a third parallelopiped R, whose
dimensions shall be «, , 2. (a, ¢, y or , ¥, ¢ or , ¢, =, eto,,
would have done as well.)
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. P o R ab
. B 168 i d = =—.
Analysis. By §§ 166, 168, 2=: an Q=
e . P abc
El t t —— —
iminating B, we ge A= e QLED

ProposiTioN XI. THEOREM.

170. The volume of a rectangular parallelopije:l
is equal to the product of its three dimensions.

1
«

Notation. Let P be a rectangular parallelopiped whose
dimensions are a, b, ¢, and @ the unit of volume.

To prove P =abec.
Proof. By §169, E_P_ ¢ . p— . :
Q 1~ 1. Q.E.D.

171. Cor. 1. The volume of a rectangular parallelopiped
s equal to the product of its base by its altitude.

172. Cor. 2. The volume of a cube s the cube of its edye.

¥ 52. A pyramid 22 feet high has a base containing 324 square
feet. How far from the vertex must a plane be passed parallel to
the base so that the section may contain 81 square feet ?
53. The base of a pyramid contains 196 square feet: a plane
para,llel to the base and 6 feet from the vertex cuts a section con-
taining 121 square feet : find the height of the pyramid.
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ProrosiTioN XII. THEOREM.

% \1:73> The volume of any parallelopiped is equal
to the product of its base and altitude.

\\

Q 2

)

¥ N

Q,

Notation. Let P be an oblique parallelopiped with the
base B and altitude .

To prove P = Bh.

Construction. Extend the edges of P as shown, making
the prism of P, of indefinite length. From this prism cut
aright prism @ whose altitude = the lateral edge of P, with
face B,. Extend the edges of @ as shown, giving the
indefinite prism @,. From this cut a right prism B with
its altitude = the lateral edge of @, and face B,.

Analysis. P=@Q by § 161. Likewise @=R. .. P=R.
But R, since its faces are at rt. /s to each other, is a

rectangular parallelopiped. ... R = Bk, §171.
But, being parallelograms between the same parallels,
B=B,=B,;. ..P=R=B,h= Bh. Q.E.D.

X 54. Apyramid 20 feet high has a square base 10 feet on a side.
Find the area of a section parallel to the base and 5 feet from the
vertex.
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ProrositioNn XIII. THEOREM.

f (17£ The volume of a triangular prism is equal
{o the product of its base and altitude.

Notation. Let P be a triangu-
lar prism with the base B and
altitude 4.

To prove P = Bh.

Construction. Complete the
parallelopiped R, having its edges
=and | to those of P, and its
base = 2 B.

Analysis, P=4RBR, § 164.
But BR=2B-h § 173.
< P=1R=Bh Q.E.D.

175. Cor. 1. The volume of any prism (cylinder) is
equal to the product of its base and altitude.

For, any prism may be considered as made up of tri-
angular prisms, the sum of whose bases form the base of
the given prism. Then the volume of the given prism
equals the sum of the volumes of the triangular prisms,
that is, the sum of their bases, or the base of the given
prism, multiplied by the common altitude.

176. Cox. 2. The volumes of two prisms (cylinders) are
to each other as the product of their bases and altitudes:
prisms (cylinders) having equivalent bases are to each other
as their altitudes: prisms (cylinders) having equal altitudes
are to each other as their bases: prisms (cylinders) having
equivalent bases and equal altitudes are equivalent.



POLYHEDRONS. 47

\A TrorosiTioN XIV. THEOREM. .

171. Two triangular pyramids having equivalent
bases and equal altitudes are equivalent.
P Q

Notation. Let the two pyramids P and Q have equiva-
lent bases and equal altitudes.

To prove PQ

Construction. Divide the common altitude into any num-
ber of equal parts, and through the points of division pass
planes || to the bases. On these sections as upper bases,
construct prisms, as shown, with their edges | to one edge
of the pyramid.

Analysis. The sum of the prisms in P = the sum of the
prisms in @ By increasing the number of divisions of the
altitude indefinitely, the sums of the two sets of prisms
approach the pyramids P and @, respectively, as their
limits. The sums remain =, ... P Q.

Broof. Since the corresponding sections of P and @ are
equal, § 147, each prism in P 2 its corresponding prism
in @ .- the sum of the prisms in P .~ sum of the prisms
in @ The limit of one sum is P, of the other Q. But if
two variables are constantly equal, and each approaches a
limit, the limits are equal. .. P~ @ Q.E.D.
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Prorosition XV.

\178. The volume of a triangular pyramid is
equal to one third of a triandular prism of the
same base and altitude.

Notation. Let P be a triangular pyramid, of base B and
altitude 7.

To prove P =13 Bh.

Construction. Complete the tri-
angular pris;n of the same base
and altitude, composed of the
three pyramids P, @ and R. R
has for its base the upper base of
the prism, B. @ may be cousidered as having for its base
% the rear face of the prism.

Analysis. P =R, since they have equal bases (B) and
equal altitudes, § 177. @ and R, when compared, may be
considered as having their bases in the rear face of the
prism and their vertices at the front upper vertex of the
prism. Their bases being in the same plane and their
vertices together, their altitudes are —. Their bases are
halves of the same parallelograms and .-. —.

Hence R=AQ.

~P=R=Q=}P+Q+R)=%Bs §174.

Q.E.D.

179. Cok. 1. The volume of a triangular pg/rami'd is
equal to one third the product of its base and altitude.

180. Cor. 2. The volume of any pyramid (cone) is equal
to one third the product of its base and altitude.
For it can be considered as the sum of triangular pyramids.
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181. Cor. 3. The volume of any pyramid (cone) is equal
to one third the prism (cylinder) upon the same base and
of the same altitude.

182. Cor. 4. The volumes of two pyramids (cones) are
to each other as the product of their bases and altitudes:
having equivalent bases they are to each other as their alti-
tudes: having the same altitude they are to each other as
their bases: having equivalent buses and altitudes, they are
equicalent.

183. Cor. 5. If a triangle and a rectangle having the
same base and equul altitudes be revolved about the common
base us an axis, the volume generated by the triangle will be
one third that generated by the rectangle.

For the volumes generated are a double cone and a
cylinder, and one is one third of the other, by Cor. 3.

Y 184, A prismatoid is a polyhedron whose bases are any
two polygons in parallel planes, and whose lateral faces are
triangles determined by so joining the vertices of the bases
that each line in order forms a triangle with the preceding
line and one side of one of the bases.

- 185. The altitude of a prismatoid is the perpendicular
distance between the bases. A plane midway between the
bases and parallel to them gives what is called a midsection.
Its vertices halve the lateral edges of the prismatoid.

186. In general, the lateral faces are triangles in differ-
ent planes, yet if two basal edges, which are respectively
the sides of two adjoining faces, are parallel, then these
two triangular faces fall into the same plane, and together
form a trapezoid.
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y. 187. If the bases of the prismatoid become parallel
polygous, we have what is called a prismoid.

188. 1If the bases are parallel polygons and similar, the
prismatoid becowmes a frustum of a pyramid, with its limit-
ing cases, pyramid, cone, etc. If both bases become
straight lines, it is a tetrahedron.

189. If one base is a rectangle, and the other base a line
parallel to a side of the rectangle, we have a wedge.

190. If one base becomes a point we have a pyramid,
with its limiting cases, cone, cylinder and prism.

Prorosition XVI. THEOREM.

191, The volume of « prismatoid is equal to the
product of one-sixth the altitude into the sum of
the two buses and four times the mid-section.

Notation. Let P be a
prismatoid with the bases
By and B,, mid-section M,
and the altitude A.

To prove % %
P=}h(B+ B, +4M). X

Construction. Take any \\‘
point O in the mid-section
and connect it with all the
vertices of the prismatoid 3 E
and of the mid-section. This divides the prismatoid into

pyramids having, their vertices at 0, and for bases, the
upper base 3y, the lower base B, and the lateral faces,

respectively. One of these lateral pyramids is O — ADE, A‘Bco

composed of three pyramids O— ABC, O— BCE, O— BDE,

g -Bco
D—
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Let the part of the mid-section within these pyramids
=AO0BC=p,. Itisshaded in the figure, to distinguish it.

Analysis. O— ABC =0— BCE =} kB, (having the
same base B, and the same altitude } 2). DE=2B( since
BC is half-way up the triangle. .. ABDE=2ABCE since
they have the same altitude. .. 0 — BDE=2(0— BCE)
=2-]) kB, their vertices being together and their bases in
the same plane, ... 0 — ADE =§ hB,.

In like manner, the volume of every lateral pyramid
=} . times the area of its own piece of the mid-section,
and their sum is § AM.

The pyramid having B, for its base =} AB;, and the
pyramid having B, for its base =} AB,.

Adding all these pyramids, we get

p=;;']¢ (B4 B +4M). Q.E.D.

The prismatoidal formula and definitions are taken, by permission, from
Dr. George Bruce Halsted’s work on Mensuration.

192. Cor. The volume of the frustum of a pyramid
(cone) is equal to the swm of three pyramids (cones) whose
common altitude s the altitude of the frustum and whose
bases awre rvespectively the wpper base, the lower buse, and a
mean proportional between them.

Notation. Let ¢, and ¢, be hom-
ologous edges of the upper and
lower bases, B, and B, of a frus-
tum of a pyramid of volume V,
and A its mid-section,

To prove V=3Bt B+ VB, By)-

Analysis. The homologous edge of the mid-section will
be } (¢, + ¢2), since it is the median of a trapezoid. Since
similar areas are proportional to the squares of homolo-
gous lines,
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o : 0T VB VI,

2
and o =V, VEE.
Adding the antecedents of these proportions, we have
e1+ez:e‘_g&'= By + VB, : VM,
or ) 2VM=VB,+ VB,
whence AM= B, + 2\/(7}13—’). + B,.

Inserting this in the prismatoidal forniula., we have
V=124 (B+ B,+4M)
=1 A[B+ B AVBB)]  qEb.

193. Scholium 1. If the upper base of the frustum
becomes zevo, the frustum becomes a pyramid (cone) and
the formula becomes V=) A I, as before.

194. Scholium 2. If the vertex is carried out to
infinity, the frustum becomes a prism (eylinder) and the
formula becomes, since the two bases become equal,
V=14 @B,)= B, ] as before.

194!. Scholium 3. For a frustum of revolution, of
height /%, and bases whose radii are »' and ", the formula

becomes |
V=13ah (4 r? 4.

£

195. Similar polyhedrons are those having the same
number of polyhedral angles, equal each to each, and the
corresponding faces similar and similarly placed.

196. Homologous faces, edges, angles, lines, etc., in
similar polyhedrons are faces, edges, angles, lines, ete.,
which are similarly placed.
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Prorosition XVII. THEOREM.

197. Two similar polyhedrons may be decompoced
into the same number of tetrahedrons, similar ea h
to each, unid similarly placed.

Notation. Let P and @ be two similar polyhedrons, the
vertices P and Q being
homologous.

To prove that they
may be decomposed
into the same nwmber
of tetrahedrons, simi-
lar each to each, and similarly placed.

Construction. Divide all the faces of each polyhedron
except those adjacent to P and @, into corresponding
similar As, and draw straight lines from P and @ to their
vertices.

Analysis. The polyhedrons are then decomposed into
the same number of tetrahedrons similarly placed.

The tetrahedrons P — ABC and @ — ABC have the
faces about the trihedral /s 4 similar, since they are the
homologous parts of similar polygons. .- the A PLC is
similar to A @QBC, since their sides are the homologcus
diagonals of similar and proportional polygons. By § 93, the
corresponding trihedral /s are =. .. P — ABC is similar
to Q — ABC, § 195.

If these tetrahedrons be removed, the polyhedrons
remaining will be similar, since similar parts have been
removed from the faces, and equal parts from the polyhe-
dral angles.

This process of removing similar tetrahedrons can he
repeated until the two similar polyhedrons are reduced t
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similar tetrahedrons - that is, until they are decomposed
into the same number of tetrahedrons, similar each to each,
and similarly situated. Q.E.D.

198. Cor. 1. Any two homologous lines in two similur
polyhedrons are proportional to any two homologous edges.

199. Cor. 2. The homologous lines of two similar poly-
hedrons are proportionul to euch other.

200. Cor. 3. The homologous faces of two similar poly-
gons are proportional to the squares of any two homologous
lines.

201. Cor. 4. The entire sw;faces, or proportional parts
thereof, of two similar polyhedrons are proportional to the
squares of any two homologous lines.

Prorosition XVIII. THEOREM.

202. Two tetrahedrons having a trihedral andle in
each equal, are to each other as the products of the
including edges.

Notation, Let P and Q be two tetrahedrons having the
common trihedral angle S.
Let a, ), cand a, B, v, be the
corresponding edges about
the angle S, and d and 3
the altitudes of the tetra-
hedrons, as shown.

To prove g =%
P Q aBy
Analysis. By § 179, §= 2’;;1(; . But since the As b¢

and By have an angle in common they are to each other as
the products of the including sides: that is



POLYHEDRONS. ‘ )

Abe _ be
LBy By
Since d and 8 are the legs of similar rt. /Z As,
d

-8— == ; .
Substituting these expressions, we get
P_ ake

Q afy Q.E.D.

203. Cor. 1. Two similar tetrahedrons are to each other
as the cubes of their homologous edges.

If the tetrahedrons are similar, and therefore the faces
similar, then -

a_b_o ae_d_ ¥ _J
a B y afy a B o
u P_o_v_¢
ence Q—'as_BS_YS‘ Q.E.D.

204. Similar polyhedrons are to each other as the cubes
of their homologous lines.

For any two similar polyhedrons may be decomposed
into the same number of tetrahedrons, similar each to
each, § 197 ; and any two homologous tetrahedrons are to
each other as the cubes of their homologous edges, or as
the cubes of any two homologous edges or lines of the
polyhedrons, § 199. . .- The polyhedrons, or sums of the
similar tetrahedrons, are proportional to the cubes of
the homologous lines.

205. Cor. 3. Similar pyramids (prisms, cones, cylin-
ders) are to each other as the cubes of their altitudes, or
of any other homologous lines.
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208. S8cholinm. This is a partial application of the
general rule, that similar surfaces of any form are to each
other as the squares of homologous lines: and similar
volumes as the cubes of homologous lines.

REGULAR POLYHEDRONS.

207. A regular polyhedron is a polyhedron all of whose
faces are equal regular polygons, and all of whose polyhe-
dral angles are equal.

ProrosiTion XIX. THEOREM.

208. There can le only five regular convex polyhe-
droms.

Analysis. At least three faces are necessary to form a
polyhedral angle, and the sum of its face angles must be
less than 360°, § 92. '

1°. Because the angle of an equilateral triangle is 60°,
a convex polyhedral angle may be formed with 3, 4, or 5
equilateral triangles, but not with 6, because the sum of
6 such angles is 360°. Therefore only three regular
convex polyhedrons can be formed with equilateral tri-
. angles ; the tetrakedron, octahedron, and icosaledron.

2°, Because the angle of a square is 90° a convex
polyhedral angle may be formed with 3 squares, but not
with 4, because the sum of 4 such angles is 360°. There-
fore only one regular convex polyhedron can be formed
with squares ; the hexahedron or cube.

3°. Because the angle of a regular pentagon is 108° a
convex polyhedral angle may be formed with 3 regular
pentagous, but not with 4, because the sum of 4 such
angles is greater than 360°. Therefore only one regular
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convex polyhedron can be formed with regular pentagons;
the dodecahedron.
4°. Because the angles of a regular polygon of more
than five sides are each equal to or greater than 120°, the
sum of three such angles equals or exceeds 360°, and these
polygons cannot be used to form regular polyhedrons.
Hence only five regular polyhedrons are possible.

ProrosiTioNn XX. PROBLEM.

209. To construct the regular polyhedrons, having
Ziven one of the edges.

1. The regular tetrahedron.
Upon the given edge 4B construct the equilateral A ABC.
From the three vertices 4, B and C,
erect the three lines meeting in the D
point D, each line = the given edge. /
D— ABC is a regular tetrahedron.

Proof. Each face is an equilateral
triangle with its side = 4B, the 4
given edge, and the trihedral /s are
=by § 93. .. D—ABC is a regular B
tetrahedron.

2. The regular hexgﬁ\edron, or cube.
Upon the given edge AB, construct the square ABCD.
Upon the ‘sides of this square con-
struct four equal squares | to the plane \ —F
ABCD, giving the figure ABCD — F, [~
which is a regular hex&%ﬂron.

Proof. Since the faces are by con-
struction equal squares, the eight tri- . c
hedral angles are equal, §,93; and :
ABCD — F is a regular hexafdrou.

4 B.
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8. The regular octahedron.

Upon the given edge 4B construct the square 4BCD,
and upon this square as a base construct the two regular
pyramids with their vertices at
E and F respectively, and their
lateral edge AE = BE=CE=
ete.,,= AB. This gives us the
octahedron EF, with

(a) All the lateral faces equal
equilateral triangles. 4

The polyhedral angle £ is
evidently equal to the polyhe-
dral angle F, since the two
pyramids are equal. ) F

Since the As ABC and AEC are = legged isosceles As
upon the same base 4 C, they are equal and £ AEC=1rt. £.
Similarly, Z AFC=1t. /. Therefore AFCE is a square
=ABCD, and the pyramid B — AECF = pyramid
D— AECF=ypyramid £— ABCD. .- polyhedral / B=
polyhedral Z D = polyhedral / E. Similarly,

(&) All the polyhedral angles can be proved equal.

Hence, we have a regular polyhedron.

B

.
N

4. The regular dodecahedron.

Upon the given edge .1B construct a regular pentagon,
and upon the edges of this construct five other regular
peutagons, so inclined that their edges unite to form the
convex surface shown in figure «. Into each of the open
angular spaces thus formed around the upper edge fit a
regular pentagon equal to the others, giving figure 4, which
is completed by fitting another regular pentagon into the
top, giving a regular dodecahedron.

Proof. In figure « all the trihedral /s around the base
are equal, § 93.
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Since the faces M and N are regular pentagons the =
edges e, ¢; must be inclined at the same angle as the =
elges ¢, ¢,, viz.,, 108° the angle of a regular pentagon.
Therefore a third regular pentagon can be fitted in at the
vertex C. So with all the other vertices, D, etc. Let the
student show that these faces will exactly join each other.
The trihedral /s at these vertices are equal to thoso at A,

§ 93.

B T 4 B °©¢ 4

' F16. a. FiG. b.

In figure b the edges g, g, are at an angle of 108°, for
the same reason as above. So with the other edges around
the top. Hence the upper edges form a regular pentagon,
equal to the other faces.

By § 93, all the trihedral /s at these vertices = the tri-
hedral £ at 4. .- the trihedral /s are equal, the faces
are equal regular pentagons, and the solid is a regular
dodecahedron.

> 5. The regular icosahedron.

Upon the given edge ADB construct a regular pentagon
ABCDE. TUpon this as a base construct the regular pyra.
mid F — ABCDE, with its lateral edges = AB, giving
figure @. Upon the base edges of this pyramid erect equi-
lateral triangles ABG, BCH, ete., so inclined that the
distances between their vertices KG, GH, HI, etec., shall



60 SOLTD GEOMETRY.

equal 4B, i. e., so that the inserted triangles AGK, BGH,
etc., shall be equilateral triangles. This gives figure 2,
with the open base GHIJK.

| x’
4" 4|‘ ’

Since the = legged isosceles As AFC and ABC are upon
the same base AC they are =, and £ AFC = /£ ABC =
108°. .. the pyramid B — AFCHG, having = lateral
edges, and standing upon an equilateral base, one of whose
angles is 108°, must be a regular pyramid = pyramid
F— ABCDE. .- the polyhedral / B = the polyhedral /
F. Similarly all the other completed polyhedral /s 4, C, :
ete., can be shown to be =. ;

F1a. d.

Upon the edges GH, HI of the open base, erect the
equilateral As GHL, HIL, giving us figure ¢. The penta-
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gon BCILG is regular, since it is equilateral, with two
/s =108° each. The = legged isosceles As GHI and
GLI upon the same base are =, and / GHI=/ GLI=
108°. So with the /s between the other edges of the
open base.

-. the open base GHIJK is a regular pentagon, and can
be taken as the base of a regular pyramld = pyramid
F— ABCDE, giving figure d.

The polyhedral /s G, H, etc., can he proved = as were
the /s A, B, ete.

Therefore, the figure, being formed from equilateral As,
and having its polyhedral /s =, is a regular polyhedron.

209.* If a plane be passed through each vertex of a
regular polyhedron, perpendicular to the radius from the
centre, these planes will be the faces of another regular
polyhedron called the sympolar polyhedron.
~ The sympolar polyhedron evidently has as mavny faces
as its primitive has vertices.

Prorosition XXI. THEOREM.

7 210. A truncated triangular prism is equivalent
to the sum of three pyramids who e common base is
the ba-e of the prism and whose vertices are the three
vertices of the upper base.

Notation. Let P be a truncated triangular prism and
R, 8, and T, three pyramids having for their bases the
base of the frustum, and their vertices at the vertices of
the upper base of P.

To prove - P=R+8,+T.

Construction. Pass a plane so as to cut P into @ and R.
R has the required base and vertex.
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By another plane cut Q into 8 and T, which are respect-
ively = to 8, and T, which have the required bases. The
required bases are represented by shaded areas.

Proof. 8 = 8,, because they have the same base DCF
and the same altitude, their vertices being in the same
line £B | to the base, § 34. )

For a similar reason 8, = 8,. Likewise T = T,.

~P=Q+R=8+T+R=8,+T,+R. QED

211. Cor. 1. The volume of a truncated right triangular
prism is equal to the product of its base by one-third the sum
of its lateral edges.
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For the lateral edges being | to the. base, are the

altitudes of the three pyramids whose sum is equivalent to

. the truncated prism. The sum of the volumes of the

pyramids = the common base by } the sum of the three
altitudes. '

'212. Cor. 2. The volume of any truncated trianguiar
prism is equal to the product of its right section by one-third
the sum of its lateral edges.

For the right section divides the truncated prism into
two truncated right prisms, whose volumes are by Cor. 1
= the rt. section X } the sum of the edges.

Prorosition XXII. Turorem (EULER’s).

212.* In any pyramid the number of edges is
two less than the sum of the faces and vertices.

Notation. Let E denote the number of edges, 7" the
number of vertices, and F the number of faces of the
pyramid.

To prove E=V+4+F-—2.

Proof. Beginning with the base, we have (in the base)
Edges = vertices + faces — 1.

Annexing a lateral face, two edges are added to the left-
hand member, and one vertex and one face to the right-
hand member ; so that the equation remains as before,

Edges = vertices -+ faces — 1.

Annexing another face, one unit is added to the edges
(left-hand member) and one unit to the faces (right-hand
member), so that the equation remains unchanged.

And so on, no change resulting in the equation by the
annexing of additional lateral faces, until we come to the
last one. '
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‘When this is annexed one unit is added to the faces
only, and to preserve the equation an abstract unit must be
subtracted, which puts the equation in the form

Edges = vertices 4 faces — 2,
or E=V+F—2, Q.E.D.

212.%* Cor. In any polyhedron E=V 4 F — 2,

Assume the truth of the formula. Suppose an edge to
disappear by the coalescence of two vertices whijch will
cause the disappearance or loss of the joining edge and one
of the vertices. In addition there will be lost, if the faces
adjoining the vanishing edge are

Polygons . . . . . noedges, novertex, no 1ace.
Polygon and triangle . one edge, no vertex, one face.
Triangles . . . . . twoedges, no vertex, two faces.

In any case the equation £ =V -+ F — 2 is not disturbed.
By repeating this operation the polyhedron is finally re-
duced to a pyramid, for which the equation does hold, and
therefore it holds for the given polyhedron. Q.E.D.

Prorosition XXIII. THEOREM.

212** The sum of the face-angles of any poly-
hedron is equal to four right andles taken as
many times as the polydon has vertices less two.

Notation. Let E, F and V denote the number of edges,
faces and vertices, respectively, and § the sum of the face
Zs of any polyhedron, expressed in rt. /s.

. To prove " S=(V—2)4rt Ls.

Proof. Since each edge is common to two faces, .- the
whole number of polygor edges is 2E, belonging to F
polygons. .
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If we form an exterior / at each vertex of the polygons,
the sum of the exterior and interior angles at each vertex
=2 rt. /s. Since the whole number of polygon edges or
vertices is 2 £, the sum of all the ext. /s + sum of all the
int. /s =sum of all theext. /s 4+ 8§, : ¥y 4>

=2E-271t /8, “ ¢ x4 L'
= E <4 1t. 48) .
But, sum of all the ext. /s=F-4 rt. £s.: 2 ¢
At fs+S=E-41t. /s
o S= (E—F)4rt Ls,
=(V—2)4rt. £s. QE.D.

212.** The following table gives the number of edges,
faces, etc., of the regular polyhedrons, and the correspond-
ing sympolar :

FACES
SoLIp, F E v OF SYMPOLAR.
SYMPOLAR.

Tetrahedron 4 6 4 4 Tetrahedron
Cube 6 12 8 8 Octahedron
Octahedron 8 12 6 6 Cube
Dodecahedron 12 30 20 20 Icosahedron
Icosahedron 20 30 12 12 Dodecahedron

55. The base of a regular pyramid is a hexagon of which the
side is 6 feet. Find the height of the pyramid if the lateral area
is 6 times the area of the base.

56. Find the lateral area of a right pyramid whose slant hei_ht
is 6, and whose base is a regular octagon of which each side is 3.

57. Find the total surface of a regular pyramid when each side
of its square base is 10 feet and the slant height is 20 feet.

58. Find the total surface of a regular pyramid when each side
of its square base is 25 feet and the altitude is 80 feet.
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NOTATION.
B = base. M = midsection.
r = radius. V = volume.
h = altitude. p = perimeter of base.
§ = lateral or side surface. e = edge.
T = total surface. | = slant height.
FORMULAE.

PrismaTOID.

V=3}tB,+B,+4M). . . . . . . . §10L
FrusTumM oF A Pyramip (Conk).

V={h[B,+B,+V (BBl . . . . . . §ls2
of Circular Cone, or Cone of Revolution.

CV=3imh (2 4r24rr) . . . . . . . §194%
of Cone of Revolution.

S=i(p+p)l . « « ¢« ¢« « o . . §154.
Pyramip (ConE).

V=1Bk . ¢ ¢« ¢ ¢« ¢ ¢ ¢« o« « « o« « §180.
Circular Cone.

V=3mrth . « ¢ « ¢ ¢« ¢« o ¢« « « « . §180.
Cone of Revolution.

S=rn(+ml=}(+p)l
Prism (CYLINDER).

V=Bk . . ¢« ¢« ¢ ¢ ¢« ¢« ¢« « « « « . §175.
Circular Cylinder.

V=or2h. . « ¢« ¢« o ¢« ¢« o ¢« ¢« o« « o« §175.
Cylinder of revolution. .

S=2Frh « v v « v v e v e e e . . §152

§ 155.

YL, S _Z ... . .. §26
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EXERCISES.

X 59. Find the total surface of a triangular pyramid when
each side of the base is 9 feet and the slant height is 20
feet.

X 60. Find the volume of a regular pyramid when each side of
its square base is 40 feet and the lateral edge is 154 feet.

4 61. Find the volume of a right quadrangular pyramid whose
altitude is 9 and whose base is'6 units.

x 62. Find the lateral area of a right pentagonal pyramid whose
slant height is 14 and each side of the base 6.

x 63. Find the volume of a regular pyramid whose base is an
equilateral triangle inscribed in a circle of 80 feet radius, and
whose slant height is 50 feet.

X 64. Find the volume of a regular square pyramid whose base
edge is 24 and whose height is 7.2.

x 65. Find the volumg of a regular triangular pyramid whose
base edge is 3.2 feet and whose height is 12 feet.

x 66. Find the volume of a regular hexagonal pyramid whose
base edge is 4.8 feet and whose height is 24 feet.

X 67. Find the total surface of a regular square pyramid whose
base edge is 6.4 feet and the slant height 16 feet.

x 68. Find the tctal surface of a regular square pyramid whose
base edge is 8 and whose slant height is 20.

y 69. Find the total surface of a regular triangular pyramid
whose base edge is 4.8 and the slant height 7.5.

x 70. Find the total surface of a regular square pyramid whose
base edge is 26 and whose height is 84.

X 71. Find the height of a square pyramid whose volume is
13.6 and whose base edge is 2.8.

X 72. Find the height of a triangular pyramid whose base edges
are 3, 4 and 5, and volume 20.

X 73. Find the volume of a regular square pyramid whose base
edge is 32 and whose lateral edge is 80.8.

X 74. Find the volume of a regular triangular pyramid whose
slant height is 9.6 and whose base is inscribed in a circle of 8
units radius, .~ . ¥ ’



68 SOLID GEOMETRY.

v - . A
¥ 75. How many square inches of tin will be required to make a

>

funnel if the diameters of the top and bottom are 22.4 and 11.2
inches respectively, and the height 19.2 inches? .. (.

x 76. Find the volume of the frustum of a regular square

v

%

pyramid whose slant height is 16 and its base edges 32 and
12.8. 2’ LA

¥ 77. Find the height of the frustum of a regular hexagonal
pyramid whose base edges are .8 and 1.6 respectively, and whose
volume is 6.144. /.3 >

" X 78. The frustum of a right circular cone is 11.2 in height and

!

its volume is 474. Find the radii of the bases if their sum is 7.2.v, ‘,

79. Find the height of a right circular cylinder of a radius r *
whose volume is equivalent to a rectangular parallelopiped of the
dimensions a, b, c.

80. Find the height of right circular cone of radius r whose
volume is equivalent to a right rectangular prism whose dimensions
are a, b, c.

81. Find the height of a prism equivafént to a regular pyramid
120 feet high and of the same base. < ¢

82. Find the height of a right square prism whose base edge
is 8, and whose volume is equivalent to right circular cylinder
4 units high and whose diameter is 28. 77 ...

‘83. Find the height of a regular square prism with base edge
a, which is equivalent to a cylinder of revolution whose altitude
is & and diameter 2r. T b v

84. If one edge of a cube is a, what is the height of an

‘ equivalent right circular cylinder whose diameter is b? & a«% L‘.’

!

85. The heights of two equivalent right circular cylinders are
as m: n. The diameter of the first is d, what is the radius of the
other? A YE/- 4 ::«‘ .

86. What is the height of a cylinder 4.8 feet in diameter, which
is equivalent to a right circular cone 5.6 feet in diameter and 6.4
feet high? 4,

87. What is the height of a regular square pyramid whose base
edge is 9.6, which is equivalent to a frustum of a regular four-
sided pyramid whose base edgés are 4 and 6.4 respectively, and
whose height is 4.8? -~

v
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¥ 88. Find the edge of a cube equivalent to a regular tetrahedron
whose edge is 24. / / ,

.~ 89. Find the edge of % cube equivalent to a regular octahedron
whose edge is 24. /%

The dimensions of a trunk are 4, 6, 8. If the trunk is to
hold 5 times as much, what change must be made in one dimen-
sion? What similar change in all the dimensiors?

91,) The dimensions of a trunk are 1, 2, 3. What will be the
dimensions of a similar trunk which holds 5 times as much?

/ @ How must the dimensions of a cylinder be increased in
order to get a similar cylinder n times as large superficially ?

[/ (93.) How must the dimensions of a cylinder be lucreased to
give a similar cylinder n times as large volumetrically ?

» 92. Find the height of a right circular cylinder whose base is
the mid-section of a frustrum of a cone of revolution, the frustum
being 4 feet high, and the diameters of its bases being 1.6 and
2.4 feet respectively, the solids being equivalent. £/, 7.¢

v 95, A mld-sectlon of a pyramid has how much of the pyramid
above it ? /\‘{

v 96. How far from the vertex will a plane cut the lateral edge
of a pyramid 6 feet high in order to cut off one-half the
pyramid? ¢

97. If you had a cone of maple sugar, what proportion of the
altitude should be cut off in order to give away one-half the
cone?

/ @D At what distance from the vertex must a pyramid (cone)
be cut by two planes in order to divide the solid into three equal
fmstums?

| \99 In example 98, if the lateral edge is 6 feet where will it be
cut by the two planes?

100. At what distance from the vextex must a pyramid (cone)
be cut in order to divide the solid into n equal frustums.

|/ 101. At what distance from the vertex must a pyramid (cone)
be cut' so as to divide the solid into two frustums which are to
each other as 3: 47

| 102. Tn example 101, suppose the solid be divided into 3 frus

- tums which are to each other as q, b, c.
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“ 103. The volumes of two_similar pyramids (cones) are to each
other as 8 : 343. The height of the first one is 4. What is the
height of the other? /4

¥ 104. The volumes of two similar pyramids (cones) are to each
other as 8: 843. A line in one (edge, diagonal, diameter, etc.)
is 4. What is the corresponding line in the other? / °

% 105. The volumes of two similar pyramids (cones) are to each
other as 8: 343. A rod sticking through the first one has 4 feet
within the solid. How much of a rod simila.ly placed in the
other golid is within the solid? /4

4, @ In each of two cones of revolution the radius of the base
is .3 times the slant height. The volume of one 4: 5 that of the
other. What is the ratio of the radii?

07 In example 106, what is the ratio of the altitudes?

08./ The height of a cone of revolution is & and the radius of
its base is ». 'What are the dimensions of similar cones 3, 4 and
5 times as large?

109) The bases of two similar pyramids (cones) are to each
other as 2: 3. What is the ratio of their volumes.

110. The volumes of two similar solids are in the ratio of m : n.
What is the ratio of homologous sections.

111. Homologous faces ‘of similar solids are in the ratio
m:n. What is the ratio of their volumes? Of homologous
lines ?

112, The height of a frustum of a pyramid (cone) is # the
height of the entire pyramid (cone). What is the ratio between
the volumes ? .

v 113. The frustum of a pyramid is 10 feet high, and two ho-
mologous edges of its bases are 5 and 6 feet respectively. What
part of the pyramid is the frustum? -

4  114. How far from the top must you cut a circular tent in

order to cut the cloth in half?

115. If the slant height of a frustum of a cone is inclined to
the base at 45°, what is the lateral surface, the radii of the bases
being r and ' ?

\ 116. What is the volume of a wedge of which the base is 70 x
80, the length of the edge 110, and the altitude 24.8%
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117.If in the frustum of a cone, the diameter of the upper
base equals the slant height, find the lateral area, having given
the altitude % and the perimeter p of a vertical section through
the axis.

118. The frustum of a cone has its upper base circumscribing
the base of a frustum of a regular square pyramid, and its lower
base inscribed in the basge of the pyramidal frustum. If the base
edges of the pyramidal frustum are e and ¢’ and its lateral edge e,
what is the slant height of the conical frustum ?

Given ! and ¥, the longest and shortest elements of a cir-

~/ cular cone, and the altitude %, find the radius of the base.

2—6? Find the altitude of a frustum of a cone of revolution,
having the lateral surface S and the bases B and B'.
(1"1 J Find the total surface of a regular hexagonal pyramid
whose altitude is k and whose base edge is e.

122, /In a regular square pyramid, given p, the perimeter of the
base and 4, the area of a section through two diagonally opposite
edges, find the lateral surface.

v 123. How many square feet of canvas are requ.u'ed for a conical
tent 20 feet high and 12 feet in chameter T / .

@ In the frustum ot a right circular cone, on each base
stands a cone with its vertex in the center of the other base; if
the radii of the bases are r and /, what is the radius of the circle
in which the two cones intersect ?

“125. If a piece of brass 8 by 6 by 12 inches is drawn into a wire

w5 of an inch in diameter, what will be the length of the wire ?

A @ If the area of a vertical section through the axis of a right

cylinder is M, what is area of a parallel section which is distant
from it half the radius of the cylinder.

1 127. What is the amount of metal in a pipe 2.55 feet long and
whose jnternal and external diameters are 12.8 and 14.4 feet. =

Z/ @ What is the area of the upper base of a conical frustum

which divides the altitude of the entire cone in the ratio m: n,
the radius of the base of the cone being r?

i KL_‘?Q A cone and a cylinder have equal total surfaces, and their

axis sections are regular polygons. What is the ratio of their
volumes ?



72 SOLID GEOMETRY.

130. Find the ratio between the volumes of the cones inscribed
and circumscribed to a regular tetrahedron whose edge is a.

v 131. Both faces of a prismatoid of altitude % are squares; the

lateral faces are isosceles triangles; the sides of the upper base
are parallel to the diagonals of the lower base, and half as long
as these diagonals; bis a side of the lower base. What is the
volume ?

/ 132. The upper base of a prismatoid of altitude 2 =26 is a
square of side a ="7.07107; the lower base is a square of side
b =10, with its diagonals parallel to the sides of the upper base;
the lateral faces are isosceles triangles. Find the volume. .

% 183. The base edges of a frustum of a square pyramid are 20
and 7.2, and the height is 192. What is the volume ? ‘j‘,

134. If the total surface of a right circular cylinder is
7T and the radius of the base is r, what is the height of the
cylinder?

135. In example 134, what is the volume ?

136. In example 134, what is the volume if the height is equal
to the diameter of the base?

V137, Having the total surface T of a right circular cone and
the lateral surface, find the volume.

138. A stone is dropped into a circular tub 48 inches in diame-
ter, causing the water therein to rise 24 inches, What is the size
of the storie?

139. If the circumference of the base of a right circular cylin-
der is p and the height %, what is the volume?

. ¥ 140. Find the volume of a pyramid whose altitude is 18 feet
and whose base is a rectangle 7 feet by 5. 3 /

% 141, Find the volume of the frustum of a square pyramid, the
sides of whose bases are 8 and 10 feet, and whose altitude is 12
feet.

142. A regular hexagonal pyramid whose altitude is 16 feet,
and the edge of whose base is 6 feet, is cut by a horizontal plane
midway between the vertex and the base. What is the lateral
area and volume of the frustum? -~

143. Find the volume of a. pyramld whose helght is 8.and
whose base is a square, each side of which is 5.
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v/144. Find the volume of the frustum of a regular triangular
pyramid, the sides of whose bases are 6 and 8 and whose lateral
edge is 7.

v'145. Find the convex surface and the volume of a frustum cut
from a right circular cone whose slant height is 24, and the cir-
cumference of whose base is 8, the slant height of the frustum
being 19.2. ,

46. What is the difference between the volumes of the frustum
of a square pyramid whose base edges are 8 and 6 feet respec-
‘tively, and the volume of a prism of the same altitude whose base
is a mid-section of the frustum ?

\147) Find the volume V of the frustum of a cone of revolution,
whose slant height is {, and height 4, and convex surface 8.

148. Find the number of edges in a pyramid whose base is a
polygon of n sides.

149. Find the number of edges in a prism whose base is a
polygon of n sides.

150. Find the lateral area of a regular pentagonal pyramid
whose slant height is 18 and whose base edge is 6.

151. Find the ratio of two rectangular parallelopipeds whose
dimensions are 5, 6, 7, and 6, 14, 17 respectively. § ’

152. Find the surface of a rectangular parallelopiped whose
base is 7 by 12 feet and whose volume is 504 cubic feet.

153. Find the volume of a rectangular parallelopiped whose
surface is 480 and whose base is 3 by 6.

154. The volume of a triangular prism is equal to the product
.of the area of a lateral face by one-half the perpendicular distance
of that face from the opposite edge.

155. The volume of a regular tetrahedron is equal to the cube
of its edge multiplied by 44 V2.

156. The volume of a regular octahedron is equal to the cube
of its edge multiplied by § V2.

157. To cut a tetrahedral angle by a plane, so that the section
shall be a parallelogram.
1"158. Find the dimensions of a cube whose surface shall numer
ically equal its volume.
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159. Find the volume of a rectangular prismoid whose bases
are 9 and 5, and 5 and 3, respectively, and whose altitude is 5.

160. Find the volume of a rectangular pyramid whose base
edges are 4 and 7 and whose altitude is 5.

161. Find the volume V of a regular four-sided pyramid whose
total surface is T and whose buse edge is e.

162. What is the height of a regular four-sided pyramid whoi.c
base edge is ¢ and whose total surface is 7'?

163. Given the height & of a regular foursided pyramid, and
the surface 7', find the base edge e.

164. Find the volume of a pyramid whose altitude is 22 and
whose base is a regular hexagon, each side of which is 6.

165. How many edges has a regular tetrahedron ?

166. How many edges has a regular dodecahedron ?

167. How many edges has a regular icosahedron ?

168. What is the sum of the face angles of a regular tetra-
hedron ?
' 169. What is the sum of the face angles of a regular icosa-
hedron ?



CHAPTER IIL

X THE SPHERE, .
218. A sphere is a solid bounded by a curved surface,
every point of which is equally distant from a point within,
called the centre.
A sphere may be considered as generated by the revolu-
tion of a semicircle about its diameter as an axis.

214. A radius of a sphere is a straight line drawn from
its centre to its surface.

215. A diameter of a sphere is a straight line passing
through the centre and limited by the surface.

Since all the radii of a sphere are equal, and a diameter
is equal to two radii, all the diameters-of a sphere are
equal.

216. A line or plane is tangent to a sphere when it has
but one point in common with the surface of the sphere.

217. Two spheres are tangent to each other when their
surfaces have but one point in common.

218. The common point is called the point of tangency.

219. Two spheres are concentric when they have the
same centre.

220. Two spheres are equal when they have equal radii.

221. A polyhedron is said to be inscribed in a sphere
when its vertices lie in the surface of the sphere. In this
case the sphere is circumscribed about the polyhedron.
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222. A polyhedron is said to be eircumseribed about a
sphere when its faces are tangent to the surface. In this
case the sphere is inscribed in the polyhedron.

ProrosiTioN I. THEOREM.

228. Every section of a sphere by a plane is a
circle.

Notation. Let LMN be a plane section of the sphere
whose centre is O.

To prove that LMN = ©®.

Construction. Draw 04 |
to the plane of the section
meeting it in 4, and draw OL,
OM to any two points in the
section.

Proof. OL=OM, §213. .. AL= AM, §20. But AL,

AM are any two lines. ... LMN is a © whose centre is 4.
Q.E.D.

DEFINITIONS.

224. The circular section of a sphere by a plane is called
a circle of the sphere; a small circle if the plane does not
pass through the centre of the sphere; a great circle if the
plane does pass through the centre, in which case its
radius is the radius of the sphere.

225. The diameter of the sphere perpendicular to a
circle of the sphere is called the axis of the ecircle, and its
extremities are called the poles of the circle.

228. Cor. 1. The diameter of the spheré which is per
pendicular to the plane of a circle passes through its centre,
§ 223.
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Therefore, the axis of a circle passes through its centre
and all parallel circles have the same axis and the same
poles.

X 2237, Cor. 2. All small circles at equal distances from
the centre of the sphere are equal; and of two circles un-
equally distant from the centre, the nearer is the larger, and
conversely.

For with the same hypothenuse OL, AL is larger the
shorter OA4 is; and vice versa.

228. Cor. 3. Al great circles of a sphere are equal, § 224.

229. Cor. 4. Every great circle bisects the sphere and its
surface.
For the two parts can be made to coincide, § 213.

230. Cor. 5. Any two great circles bisect each other.

For the intersection of their planes passes through the
centre of the sphere, and is therefore a diameter of each
circle.

231. Cor. 6. An arc of a great circle may be drawn
through any two points on the surface of a sphere.

For the two given points and the centre of the sphere
determine the plane of a great circle passing through the
two points, § 4.

232. Cor. 7. An arc of a small circle may be drawn
through any three given points on the surface of a sphere,
§ 4.

233. Definition. By the distance between two points on
the surface of a sphere is meant the shorter of the two
arcs of a great circle joining them. The length of the arc
is generally expressed in angular measure, and the distance
is called angular distance.
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ProrosiTioNn II. THEOREM.

233* Every section of a sphere by a sphere is o
circle.

Notation. Let OA be the circle whose revolution gener-
ates one sphere, and 0'4 the
circle in the same plane whose
revolution about the same axis [\
generates the other sphere. The '
point A generates the line of
intersection of the two surfaces.

To prove the line generated by 4 = a circle.

Proof. The common chord 4B is | to and is bisected
by OO. When the circles are revolved the point A4
remains at a constant distance from the axis 00, and
hence generates a circle, which must be the line of inter-
section. Q.E.D.

233.** Cor. 1. Al lines tangent to a sphere from a
point without are equal and touch the sphere in a circle.

The point without may be taken as the centre of another
sphere whose radius = the length of the tangent.

233** Cor. 2. A sphere touches the circumscribed cone
in a circle.

» 170. Through any four points not in the same plane, a single
spherical surface can be passed.
* 171. A sphere may be inscribed in any tetrahedron.
* 172. A sphere may be circumscribed about any tetrahedron.
+ 173. The four perpendiculars to the faces of a tetrahedron
through their centres meet at the same point.
«  174. The six planes which bisect at right angles the six edges
of a tetrahedron all intersect in the same point.
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ProrosiTion III. THEOREM.

234. A plane perpendicular to a radius at its
extremity is tangent to the sphere.

Notation. Let O be the centre
of the sphere and M a plane
perpendicular to the radius 04
at its extremity.

To prove M tangent to the
sphere. B

Construction. Draw any line OB, from O to the plane.

Proof. By § 21, OB > 04, ... B is without the sphere.
B is any point, except 4, ... M is tangent to the sphere,
§ 216. Q.E.D.

235. Cor. 1. Every straight line perpendicularly to a
radius at its extremity i8 tangent to the sphere, § 216.

(=

236, Cor. 2. Ewery line or plane tangent to a sphere is
perpendicular to the radius through the point of contact.

237. Cor. 3. A straight line tangent to any circle of a
sphere lies in the tangent plane through the point of contact.

238. Cor. 4. Any straight line drawn in a tangent plans
through the point of contact is tangent to the sphere at that
point. _

239. Cor. 5. Any two straight lines, tangent to o sphere
at the same point, determine the tangent plane at that point.

%~ 175. The six planes which biseot the six dihedral angles of a
tetrahedron intersect in a point.
176. Lines from a point in the surface of a sphere to the end
of a diameter are — what ?
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ProrosiTioN IV. THEOREM.

240. Al points in the circumference of a circle of
a sphere are equally distant from each of its poles.

Notation. Let P and P; be the
poles of the circle LMN.

To prove PL=PM = PN and L
P M= PL=PN.

Proof. Since PP, is | LMN,
§ 225, and passes through its centre,
§ 226, ... the chords PL, PM, PN

are equal, § 20, .- the arcs PL, PM, pl'
PN are equal. Q.E.D.
Similarly, the ares P,L, P,M, PN are equal. Q.ED.

241. Definition. The polar distance of a small circle is
the distance from the nearer pole to the circumference of
the circle.

242. Scholium 1. The term quadrant in Spherical Geom-
etry usually signifies a quadrant of a great circle.

243. Cor. 1. The polar distance of a great circle is a
quadrant.

For it is the measure of a right angle whose vertex is at
the centre of the sphere.

244. Scholium 2. The properties of the pole enable us
to draw circles upon a sphere with the same facility as
upon a plane surface. With one point of the compasses
at the pole, the other point describes the circle required.
In order to reach around the bulge of the sphere the
compasses must be curved, like the callipers of the
machinist.
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ProsLEMS.

245. (a). To find the radius of a given sphere.

. Notation. Let P be any point
on the given sphere, and @ its
antipodal point.

Construction. From any point
P as a pole describe with the
callipers a small circle ABC.
With the three chords 4B, BC
and AC construct a plane A
ABC, and circumscribe a circle
about it. This circle will = the small circle 4BC.
Hence, knowing its radius, we know 4D. In the rt. £
A8 ADP, PAQ, knowing AD and AP we can construct
the As, which will give us P the diameter of the sphere.

Q.E.F.

246. (b). To draw the arc of a great circle through two
given points.

Construction. From the two points as poles, i.e. with
the opening of the callipers = the chord of a quadrant,
describe the ares of two great circles. Their intersection
will, § 243, be the pole of an arc through 4B. Then with
this pole as a centre, the arc passing through 4B may be
described.

ProrosiTion V. THEOREM.

248, A point on the surface of a sphere, which
is at the distance of a quadrant from each of two
other points, not the extremities of a diameter, is a
pole of the great circle passing through these points.
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Notation. Let P be a ppint' at a 4
quadrant’s distance from M and N.

To prove P the pole of MNL.

Proof. / POM =/ PON=rt. £
(because they are measured by quad-
rants), ... POis | to the plane MNO,

- § 15, ... P is a pole of MNL, § 225.
Q.E.D.

[S)

DEFINITIONS.

249, The angle of two curves passing through the same
» point is the angle formed by the two straight lines tangent
to the curves at that point.

250. When the two curves are arcs of great circles the

7 angle is called a spherical angle, The tangents being |

to the common diameter of the great ©s, must be the sides

of the plane angle of the dihedral angle between the planes
of the ®s.

{

251. A spherical polygon is the portion of the surface
of a sphere bounded by three or more arcs of great circles.
The bounding arcs are the sides of the polygon; the
spherical angles which they form are the angles of the
polygon ; their points of intersection are the vertices of
the polygon.

.. 252, A diagonal of a spherical polygon is an arc of a

great circle joining any two vertices which are not con-
secutive.

253. The planes of the sides of a spherical polygon
form a polyhedral angle whose vertex is the centre of the
sphere, and whose face angles are measured by the sides
of the polygon.
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254, A spherical polygon is convex when its corre-
sponding polyhedral angle is convex.

255. A spherical pyramid is the portion of the sphere
bounded by a spherical polygon and the planes of its
sides. The centre of the sphere is the vertex of the
pyramid, and the spherical polygon is called the base,

258. The sides of a spherical polygon, being arcs, are
usually expressed in angular measure (degrees). .

257, Two spherical polygons are equal if they can be
applied one to the other, so as to coincide.

258. A spherical triangle is a polygon of three sides,
and is right or oblique, scalene, isosceles or equilateral,
under the same conditions that apply to a plane triangle.

259. Two spherical polygons are symmetrical when
the sides and angles of one are
equal respectively to the sides ﬁ XA
and angles of the other, but
arranged in the reverse order.

In general they cannot be made to coincide by super-

position. They lean in different directions, as it were, as
shown in the figure.

If, however, they are isosceles, that is
lean neither to the right nor left, they
may be superimposed.

260. Symmetrical triangles may be considered
as the bases of opposite or vertical spherical
polyhedrons, § 90; their corresponding vertices
will be at the opposite ends of the same diameter.

261. One spherical triangle is called the polar triangle
of a second spherical triangle when the sides of the first
triangle have their poles at the vertices of the second.
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Thus 4, B, and C are the poles of the arcs B'C", C'4'
and A'B', and A'B'C' is the polar of ABC.

The arcs of the
polar form by
their intersection
eight triangles,
seven of which
can be partly A
seen in the figure.
The eighth is the
symmetrical of
A'B'C". Of the eight triangles, that
is the polar in which the vertex 4,
polar to A4, lies-on the same side
of BC as the vertex 4, and similarly
for the other vertices. The vertex
which is polar to 4 is the inter-
section of arcs drawn from B and
C as poles.

ProrosiTioN VI. THEOREM.

282. Two symmetrical spherical triangles are
equivalent.

Notation. Let 4BC and afBy be two symmetrical tri-
angles, and D and .8 the poles
of small circles passing through
their vertices.

. A ABC = Sph. A apfy.

Construction, Connect D and
8 with the vertices of the tri-
angles by arcs of great circles.

Proof. Since the sides of the
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8ph. As are respectively =, the chords of those arcs are
respectively =, and the small circles, being circumscribed
about equal plane As, are =. Hence AD = ad, BD = f33,
ete. .. Sph. A ADB = Sph. A a3B, Sph. A_ADC~=Spk.- ‘}5/?
Aady, ete., § 6L — ¥

Hence Sph. A ABC %= Sph. A apy, as the two are com-
posed of equal parts. Q.E.D.

If the poles of the smallN\gircles fall without ‘the given
As, they will be equivalent to sum of two triangles -
minus a third. -

Prorosition VII. THEOREM.

X 263, 4 spherical angdle is measured by the arc
of a Zreat circle described from its vertex as a
pole and included between its sides (produced if
necessary).

Notation. Let 4B, AC be two arcs of great circles inter-
secting at 4: and AM, AN the
tangents to these arcs at 4: BC
an arc of a great circle described
from 4 as a pole.

To prove Sph. / BAC=arc BC.

Construction. Draw the radii
OB, OC.

Analysis, Sph. / BAC =/
MAN, § 250, = / BOC, § 53, = arc BC. Q.E.D.

284. Cor. 1. A4 spherical angle is equal to the dihedral
angle between the planes of the two circles.

2685. - Cor. 2. If two arcs of great circles cut each other,
their vertical angles are equal.
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286. Cor. 3. The angles of a spherical polygon are equal
to the dihedral angles between the planes of the sides of the
olygon.

267. Scholium. Since the sides and angles of a spherical
polygon are measured by the face and dihedral angles of
the polyhedral angle corresponding to the polygon, we may
Jrom any property of polyhedral angles, infer an analogous
property of spherical polygons.

268. Cor. 4. Euch side of a spherical triangle is less
than the sum of the other two, § 91.

269. Cor. 5. Any side of a polygon is less than the sum
of the other sides.

270. Cox. 6. The sum of the sides of a spherical polyyon
8 less than 360°, § 92.

271. Cox. 7. Two mutually equilateral triangles on equal
spheres are mutually equiangular, and are equal or sym-
metrical, § 93, and equivalent, § 262.

¥ 272 Cor. 8. In an isosceles sphericul triangle, the angles
. opposite the equul sides are equal.

For, from the intersection of the = sides draw an arc to
the middle point of the base. This divides the isosceles
triangle into two mutually equilateral Sph. As. Hence,
by Cor. 7, they are mutually equiangular, and the Sph. /:
at the base are equal, Q.ET.

278. Cor. 9. The arc of a greut circle drawn from the
vertex of an isosceles triangle to the middle of the buse, bisec's
the vertical angle, is perpendicular to the base, and divides
the triangle into two symmetrical triangles.

> 177. 1f from a point perpendiculars be dropped to other lines
all ¢f which pass through a common point, the feet of the per-
pendiculars will lie upon the surface of a sphere.
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ProrosiTion VIII. THEOREM.

X~ 274 The shortest distance on the surface of a
sphere between any two points on the surface, is
the shorter arc of a great circle joining them.

Proof. Let two points be joined by an arc of a great
circle, and by some other line on the surface of the sphere.
The second line may be considered as made up of a large
number of very small arcs of great circles. These, with
the arc joining the two points, form a polygon. By § 269,
the arc of the great circle is less than the sum of the other
sides of the polygon, that is, less than any other line join-
ing the two points. Q.E.D.

ProrosiTion IX. THEOREM.

X 275, Two triangles on equal spheres, having two
sides and the included angle of one equal respec-
tively to two sides and the included angle of the
other, are either equaql or equivalent.

Proof. By superposing one Sph. A upon the other, or
~ upon its symmetrical, the theorem can be proved exactly
as in the case of plane As. Q.E.D.

PropPosITION. THEOREM.

K 278. Two triangles on equal spheres, having «
side and the two adjacent angles of the one equal
respectively to the side and the two adjacent angles
of the other, are either equal or symmetrical.

Proof. One of the Sph. As, or the Sph. A symmetrical
with it, can be superposed upon the other, as in the corre-
sponding case of plane As. Q.E.D



88 SOLID GEOMETRY.

Prorosition X. THEOREM.

% 877, If one spherical triangle is the polar of
another, then, reciprocally, the second triangle is
the polar of the first.

Notation. Let Sph. A A'B'C' be the polar of Sph. A
ABC.
B

To prove Sph. A ABC the polar of
Sph. A 4'B'C".
Analysis. Since B is the pole of
A'C', the vertex A' lies at a quad- /
’

rant’s distance from B, § 243. And C

since C is the pole of A'B', A' lies at
a quadrant’s distarce from C.

... A" 3 the pole of BC, § 248.

Similarly B’ is the pole of AC, and C' the pole of AB.
.. Sph. A ABC is the polar of Sph. A A'B'C", § 261.
Q.ED.

ProrosiTion XI. THEOREM.

X 278, In two polar triangles, each angle of one is

the supplement of the side lying opposite it in the
other.

Notation, Let a, b, ¢ and o', ¥, ¢’ denote the sides, and
4, B, C and 4', B' (" the opposite :
angles in the two polar triangles.

To prove 4 4 a'=180°% B 4+ ¢'=
180°, A' + a =180°, etc.

Construction, Produce the arcs p

AB and AC until they meet B'C' at
D and E.
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Analysis. By § 263,
Sph. /£ A =arc DE.
By § 277, B'E =DC'=90°
~BD+DE+ EC'+DE=DBC+ DE=qa'+ DE=180"
But DE =S8ph. £/ A. ... a'4+ A=180° Q.E.D.
Similarly, all the other relations may be proved.

279. 8cholium. Polar triangles are sometimes called
supplementary triangles,

ProrosiTion XII. THEOREM.

V't 280. The sum of the angles of a spherical tri-
angle is greater than two, and less than six, right
angles.

Notation. S}ame as in § 278.
To prove A4 B4 ¢ > 180° and < 540°.
Proof. 4=180°—a', B=180°—10', C=180°—¢"
Adding, we get A+ B+ C=540°— («' +0' 4 ¢').
But, by § 270, o'+ '+ ¢' < 360° and > 0°.
' A+ B+ > 180° and < 540°.  Q.E.D.

281. Cor. A spherical triangle may have ome, two or
three obtuse or smaller angles.

»x 282. Definition. A bi-rectangular or tri-rectangular
spherical triangle is one that has two and three right
angles, respectively.

% 178. The planes of intersection of three intersecting spheres
intersect in one line.

X 179. If the sides of a spherical triangle are 80° 105° 110°
what are angles of its polar?
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ProrosiTion XIII. THEOREM.

7 283. Two mutually equiangular triangles upon
equal spheres are mutually equilateral, and Zze
either equal or equivederwt. 3 e

Notation. Let 4 and B be two mutually equiangul&
Sph. As, and P and @ their polar triangles. .

To prove Sides of 4 =sides of B.
Proof. By hypothesis, angles of 4 = angles of B.

.. § 278, supplements of sides of P = supplements of
sides of Q.

.~. sides of P =sides of Q.
.. § 271, angles of P =angles of Q.

.. § 278, supplements of sides of A4 = supplements of

sides of B. /'l

.. sides of A'=sides of B. Q. EJX.
By §§ 275, 276 they are ¢.ther equal or 4 :
. Q.E.D.

284, Cor. 1. If two angles of a spherical triangle are
equal, the triangle is isosceles.

285. Cor. 2. If three mutually perpendicular planes
meet at the centre of a sphere, they divide the sphere surface
into elght equal tri-rectangular triangles, § 283.

X 180. If the angles of a spherical triangle are 72°, 89°, 1229,
find the sides of its polar.

" 151. Show that the sum of the angles of a spherical pentagon
is greater than six, and less than ten, right angles.

X" 182. If the sides of a spherical triangle are respectively 62°,
87° and 114° how many degrees are there in each angle of its
polar triangle.

3" 183. Through a given point on a sphere, to draw a great
circle tangent to a given small circle.
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ProrosiTioN XIV. THEOREM.

)< 288. In a bi-rectangular spherical triangle, the
sides opposite the right angles are quadrants.

Notation. Let MNP be a bi-rect-
angular Sph. A, right angled at M
and N.

To prove MP —= NP =90°.

Proof. The planes MOP and NOP
are each | tothe plane MNO. .- their
intersection OP is | to MNO. § 70.

.~. P is the pole of MN, § 225. R
w MP = NP =90" Q.E.D.

287. Cor. 1. If two sides of a triangle are quadrants,
the opposite angles are right angles.
k]

288. Cor. 2. In a bi-rectangular triangle the third angle

and its opposite side are equal,’ ™ § 263.
289. Cor. 3. Each side of a tri-rectangular spherical
triangle i3 a quadrant, . § 263.

X ProBLEM. . ﬂ

v'x 200, Through a given point to drop an arc per-
pendicular to a given arc.

Notation. Let M be the given point
and 4B the given arc.

Construction. From M as a pole
describe an arc of a great circle cutting
the gwmg. arc in 4. From 4 as a
pole describe the arc MB through M.
Since AM = AB = 90°, Sph. A AMB
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is a bi-rectangular Sph. A, § 287, and the Sph. / Bis a
rt. Sph. Z. . Q-E.F.

ProrosiTion XV. THEOREM.

7w 201, In a spherical triangle, the greater side is
opposite the greater angle, and conversely.

(1) Notation. Let Sph. A ABC be
a Sph. A having Sph. / C > Sph. / B.

To prove ¢ > b.

Construction. From C draw the arc
CH making Sph. / BCH = Sph. /
B, and denote the segments of the -
side ¢ by y and 8.

Proof. By § 284, HC=1y. But by § 268, HC 4 8=
Y+B>b. ~c>b. Q.E.D.

(2.) Hypothesis. Suppose ¢ > b.
To prove Sph. ~ C > Sph. / B. )

Proof. If Sph. / C=S8ph. £ B. .-.c¢=b, § 284, which
is contrary to hypothesis.

If Sph. Z ¢ <Sph. £ B, .. ¢ < b (proved above) which
is also contrary to hypothesis.

.~ Sph. Z C > Sph. / B. - Q.E.D,

SPHERICAL SURFACES. DEFINITIONS.

> 202, A zone is the portion of the surface of a sphere
included between two parallel planes. The circumferences
of the sections made by the planes, are called the bases of
the zone, and the distance between the planes is its
altitude. '
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293. When one of the planes is tangent to the sphere,
we have a zone of one base. When a sphere is generated
by the revolution of a semi-circle, any arc of the semi-circle
generates a zone. A sphere is one limiting case of a zone,
as a circle is the other.

X 294, A lune is the portion of the surface of a sphere

bounded by two semi-circumferences of great circles. The

Y limiting cases are a sphere and a semi-circle. A lune may

be considered as a spherical triangle, one of whose sides is
zero. The two opposite lunes formed by two intersecting
great circles may be considered as two symmetrical tri-
angles and therefore equal.

295. The angle of a lune is the angle between the arcs
which form its boundaries.

296. A lune may be considered as generated by the
revolution of a semi-circle about its diameter as an axis.
Hence two lunes, generated by the same semi-circum-
ference, are to each other as their angles.

297. Lunes having the same angle, but upon different
spheres are called similar lunes.

298. A spherical polygon has already been defined,
§ 251.

The fundamental spherical surface is the spherical
polygon, special cases of which are the triangle (polygon
of three sides), lune (polygon of two sides), and sphere
surface (lune of 360°).

Hence, an enlarged definition of spherical polygon would
be, a portion of the surface of a sphere bounded by two or
more arcs of great circles.

The limiting cases of a spherical polygon are the half
sphere surface, a semi-circumference and a point.

Special cases are the tri-rectangular triangle and the
hemisphere.
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299. As a quadrant is divided into 90 parts called angu-
lar degrees, so for convenience a tri-rectangular triangle is
divided into 90 semi-lunes called spherical degrees, There
" are 720 spherical degrees on the whole surface of the
sphere. :

A spherical degree is not angular measure but surface
measure.* Its typical shape is a semi-lune of 1°. It is
denoted by .

800. The spherical excess of a spherical polygon is the
excess of the sum of its angles over what it would have
been if the polygon had been plane, i.e., over a straight
angle taken as many times as the polygon has sides less
two. It is denoted by E.

301. The spherical excess of a spherical triangle is the
excess of the sum of its angles over what the sum would
have been if the triangle had been plane, i. e., the excess
of the sum of its angles over a straight angle. , It is

denoted by e It varies from 0 to a round angle. Z66°

8014. The spherical excess of any spherical surface
bounded by arcs of great circles, is the excess of the sum
of its angles over what that sum would have been if the
arcs had been straight lines. .

This applies to lunes, triangles, polygons and sphere
surfaces. The spherical excess of a lune is twice its
angle ; that is, we may say that as the correlative of the
spherical triangle is the plane triangle with the sum of
the angles equal to a straight angle, so the correlative of
the lune is two coincident straight lines with the sum
of the angles equal to zero. Since a sphere is a lune of
360°, the spherical excess of a sphere expressed in angular
degrees is 720°.

# Tt must be impressed upon the mind of the student, that a spherical degree
18 surfuce, and not angular nmeasure,
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Prorosition XVI. THEOREM.

v x 302. The area of a lune in spherical degrees is
equal to twice the angle of the lune expressed in
angular degrees.

Notation. Let 4° denote the angle of the lune L.
To prove Sph. L=2 A4%.

Proof. Since two lunes generated by the same semi-
circumference are to each other as their angles, § 296, so
two semi-lunes are to each other as their angles.

The spherical degree is a semi-lune of 1°.

.. 4 Sph. L:o0=4°:1° or Sph. L =2 4°. Q.E.D.

ProrosiTion XVII. THEOREM.

X 803. The area of the surface generated by a
straight line revolving about an axis in its plane
is equal to the product of the projection of the
line on the axis by the circumference whose radius
is a perpendicular erected at the middle point of
the line and terminated by the axis.

Notation, Let 7 be the length of the generating line 4B,
and p = CD its projection on the axis,
7' = the radius of the circumference de-
scribed by its middle point, and » = MR, 2
the length of the perpendicular. /P

To prove area AB=p-2mr."
Construction. Draw AE || to CD. D -
Proof. Area AB=1-2m7, § 155.

In the similar triangles ABE, rr,

rip=r:l. .pr=ri
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Substituting this in the above equation, we get
area AB=p- 27, ' Q.E.D.

804. 8cholium. The surface described by 4B is a frus-
tum of a cone of revolution. We get the limiting cases, a
cylinder or a cone, according as 4B is | to or touches the
axis. In either case, this formula can be reduced to those
of §§ 151, 156.

Prorostrion XVIII. THEOREM.

~ 805. The surface of a sphere is equal to four
Sreat circles.

Notation. Let ABCDE be the semicircle which gener-
ates a sphere, and ABCDE a regular semi-
polygon inscribed therein.

To prove Sph. S.=4'772

Proof. The semi-polygon generates a ¢
number of frustums of cones of revolution,
the lateral surface of each of which = the
projection of its slant height X 2 or - the apo-
them of the polygon, § 303. The sum of all
the lateral areas = the apothem X 2 7 * the sum of all the
projections of the slant heights = the apothem X 2 7 - 4E.

When the number of sides of the polygon is indefinitely
increased, the apothem becomes the radius of the circle ;
the lateral area becomes Sph. §, and our formula becomes

Sph. S=r 27 -2r=4 7 Q.E.D.

806. Cor. 1. In square units, Sph. I, =7r_:;_)ff .

For . = ==
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% 807. Cor. 2. Similar lunes are to each other as the
squares of the radii of the spheres wpon which they are
situated. Compare § 206.

¥ 808. Cor. 3. The surfaces of two spheres are to each
other as the squares of their radii, or as the squares of their
diameters.

v Y 309. Cor. 4. The area of a zone is equal to the product
of its altitude by the circumference of a great circle =2 mr - h.
This follows by applying the reasoning of § 305 to the

arc BC.

~ 810, Cor. 5. Zones on equal spheres are to each other as
their altitudes.

311, Cor. 6. The area of a zone of one base is equal to
the area of the circle whose radius is the chord of the gener-
ating arc.

The zone generated by the arc AB=AF X 27r=
m+AF - AE = - AB® since in the similar As ABE and
ABF, AF : AB=AB: AE.

5(

* 184. Find the surface of a sphere if the diameter is 4. J¢ K c
¥ 185. Find the surface of a sphere if the diameter is 21. /& % L.
*+186. Find the diameter of a sphere if the surface is 9856. ¥~
-4 187. What is the numerical value of the radius of a sphere if
its surface has the same numerical value as the circumference of
a great circle ? }1 . :

' 188. Find the surface of a lune if its angle is 374° and the tota
surface of the sphere is 6. ;{/; .

+ 189. Two angles of a spherical triangle are 40° and 50°. What
do we know about the third angle? ) a .

* 190. A lune of 40° on a sphere of 6 feet radius has how many
square feet? §© %, ‘

191. Lunes of 50° upon spheres of 2 and 3 feet radius bear
what ratio to each other? 4.

v N

X
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ProrositioN XIX. THEOREM. NE

2312, The area of a spherical triangle, expressed
in spherical degrees, is equal to its spherical
excess expressed in angular degrees.

Notation. Let 4, B, C, denote the values of the angles
of the Sph. A ABC expressed in
degrees.

To prove Sph. A ABC=¢€" ‘0.

Construction. Produce the sides
of the Sph. A to complete circles.
This gives us three lunes, 4ABCF,
ABCD and ABCE, the given Sph.
A being common to all of them. Denote the As ADE,
ACD and ABE by a, B, y, respectively. '

The Sph. As BCF and a being symmetrical, are =, § 262.

. lune ABCF &« Sph. A 4 a, Sph. A denoting the Sph.
A ABC.

Hence, lune ABCF =2 A°- o =8ph. A +} a.

lune ABCD=2 B°- o= Sph.A-l-ﬁ.
lune ABCE =2 C°'a=Sph.A+;/..
Adding these, we get ,
2(d+B+C)o=28ph. A+ Sph. A+a+B8+y.
=2 Sph. A 4 360 ¢." T §299.

~Sph. A=(A+ B+ C—180)¢=€"-0.
Q.E.D.

3813. Cor. 1. The area of a spherical triangle is to the
surface of a sphere as its spherical excess in degrees is
to 720°.
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X 3814, Cor. 2. If Sph. A is required in the usual units
of area, as square inches, etc., we get by substituting the
value of o, ‘

Amrr? _ arie

Sph.A=€°'a.=€°7ﬁ= 180

X 315. Cor. 3. The area of a spherical polygon, expressed
in spherical degrees, is equal to its spherical excess expressed
in angular degrees.

If n denote the number of sides of the polygon, it can
be divided into (» —2) Sph. As. If ¢ ¢, €, etc., be the
spherical excess of the different Sph. As, we will have

Sph. polyg. = (e+ & + &+ ...) 0.

But e+ € + €+ ... is evidently equal to the sum
of the angles of the polygon less as many straight angles
as the polygon has sides less two, i.e. = E.

.. Sph. polyg. = E°a. Q.E.D.

3184. The area in spherical degrees of any spherical
surfuce bounded by arcs of great circles is equal to its
spherical excess expressed in angular degrees.

Compare §§ 300, 301}, 302, 312, 315.

SpRERICAL VOLUMES.

¥ 3816. A spherical pyramid has already been defined in
§ 255. The limiting cases are the sphere, a radius, and a
semicircle. Compare § 298.

X 817. A spherical sector is the portion of a sphere
generated by the revolution of a circular sector about any
diameter of its circle. The limiting cases are the sphere
and a conical surface.
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818. Its base is the zone gen-
erated by the arc of the spherical
sector.

819. If the sector revolves
about its bounding radius as an axis, it generates what
may be called a spherical cone. A spherical cone may be
considered as a spherical pyramid with a regular base of
an infinite number of sides.

820. A spherical segment is the portion of a sphere
contained between two parallel planes. Its bases are the
sections made by the planes; and its altitude is the
distance between the bases.

321. If one of the planes is tangent to the sphere the
segment is called a segment of one base.
The sphere is a segment whose altitude is 27.

322, A spherical ungula or wedge is a portion of a
sphere bounded by a lune and two great semicircles.

The angle of the wedge is the angle of the lune forming
its base.

The sphere is a wedge of 360°.

ProrosiTioN XX. THEOREM.

X 823. The volume generated by a triangle revolv-
ing about one of its sides is equal to the area
Cenerated by its base multiplied by one-third its
altitude.

Notation. Let m be the side about which the
triangle revolves, [ its base, d its altitude, and
r the radius described by its vertex, V the
volume generated. :

To prove V=1}d - mri. § 156.
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Proof. By § 183, V=} % m. In the similar rt. As
ir and dm we have rm = dl.

W V=}mr-di=}d-mrl « ¥ QED.

v 3824 Cor. 1. The volume generated by any triangle
revolving about a line passing through its vertex is equal
to the area generated by the base multiplied by ome-third
the altztude

Notatlon Let ABC be the given A and CD the axis
about which it revolves, d the altitude and I = D
AB, its base, r = the radius of the circle
described by B, and 7' = the radius described
by A.

To prove V=3d o (r+1) L . §165.
+ "Proof. Vol. ABC =vol. ADC — vol. BDC
=J)d-area AD—)} d-area BD=)d - area AB
=}d-w(r+r)0L §155. Q.E.D. c

825. Cor. 2. The volume of a double cone is equal to
the lateral surface of one cone multiplied by one-third the
perpendicular let fall from the vertex of the second cone to
the side of the first.

~

¥ 328, The volume of a sphere is equal to its sur-
face multiplied by one-third its radius.

Notation. Let Sph. V denote the volume of the sphere,
Sph. § the area of its surface, and r its radius.

To prove Sph. V==Sph. §-}r

ProposiTioN XXI. THEOREM.

Proof. Conceive a polyhedron circumseribed about the
sphere. If pyramids are formed having the faces of the
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polyhedron as bases and the centre of the sphere as a
common vertex, these pyramids will Lhave a common alti-
tude equal to the radius of the sphere.

Then each pyramid = face X } r.

.~ sum of pyramids = sumn of faces X } ». But at the
limit, the sum of the pyramids = Sph. V, the sum of the
faces = Sph. S.

.. Sph. V=Sph. §-} » v  QE.D.

x 327. Bcholium. The sphere might be considered as

generated by the revolution of isosceles triangles about a
common vertex, whence by § 323, Sph. V=} » - Sph. S.

828. Cor. 1. The volume of a spherical pyramid (cone)
is equal to the arex of its base multiplied by one third the
radius of the sphere.

4 829, Cor. 2. The volume of a spherical sector is equabd
to the arew of the zone which forms its buse multiplied by one
third the radius of the sphere, =} r+- 2 wrh =3 mwr2L.

For the spherical sector may be considered as the differ-
ence of two spherical cones, and its base as the difference
of two one-based zones.

830. Cor. 3. Spherical sectors on equal spheres are to
each other us the zones which form their bases, or as the alti-

tudes of those zones, § 310.
x 831 Cor. 4. '
The volume of a sphere =4 wri=} m- (27).
For Sph. S=4#r3,

. Sph. V=13 »Sph. S=§ =2

832. Cor. b. The volumes of two spheres are to each
other as the cubes of their radii, Compare § 206.

». 333. Cor. 6. The volune of a sphere is two thirds the
circumscribing cylinder, since the cylinder=m73-2r=2 7%
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Prorosition XXII. THEOREM.

Y 834. The volume of a spherical segment is equal
to the sum of two cylinders and a sphere, the alt.-
tudes of the cylinders being one half the altitude
of the segment, and their bases the upper and lower
bases of the segment, respectively, and the diameter
of the sphere being the altitude of the seZmont.

Notation. Let ABCD be the plane
semi-segment whose revolution about
DC as an axis generates the spherical
segment. Let A= DC, '=DE, ' =
CE, = AD, r"=BC, r= OF.

To prove

segment ABCD=V = 'n'r"g+ wr"’g + LAl
Analysis. The segment AFBCD = sector OAFB — vol.
AOB + frustumn ABCD.
Proof. By §§ 329, 324, 303,
vol. GAFB= 3 wr*h— 3 w OG%,
2 of 502
=3 wh [ﬂ— 0G*=AG1=} AW:ﬁi(;—")-] ,

=} wh [(v'— ")+ 12].
By § 1944, frustum ABCD =} wh (»*+ "2 4 ¢'7").
< VOl AFBCD =} wh [(r' — ") + A*]
+ i mh (724 "),
=}amh (=27 41"+ 22+ 27742942177,
=} mwh 37+ 374 1Y,
m b

h
=t L ar' = whd.
B ’ 2+ Z_H’r Q.E.D.
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335. Cor. 1. If the segment has one base only, »"=0,
the second eylinder becomes zero, and therefore disappears
from the equation, and the formula becomes

V=7rr";—l+a,7rh“. .

e

336. A second unit of angular measure is the radian, or
the arc whose length is equal to the radius. Since a cir-
cumference = 360°, 2 7 radians = 360°,and

1 radian — 360" _ 57°.3.
27

The radian is designated by p.

Evidently p= 180° ,and 1°=_"_ p-
T

180
Hence, to convert angular degrees into radians, multiply
b S
y 180°

This rule can be used to convert our formulae for
spherical area from spherical degrees to square radii.

. 2
E le : Sph. L =TT 4°,
xample ph 90

Multiplying by ing) to convert the angular degrees into

radians, and dividing by %} so as not to alter the value

of the expression, we get
Sph. LT 4o 77 A'm 180
90T 790 180 T ar
7 180
-;%E.AP'—';I'_ =2,24°.
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% Sph. S, Sph. A, and Sph. P can be transformed in the

same manner. This is left as an exercise for the student.

337. In § 299, we adopted as the unit of spherical sur-
face measure, the spherical degree.

Another unit is the squared radius, or the surface equal
to a square radius.

By § 3014, the spherical excess of a sphere surface ex-
pressed in radians is 4. By § 305, its area equals 4 7/%

Hence, The areu of « sphere surfuce expressed in squured
radii equals the sphericul excess expressed in radiuns.

This is a special case of the general

Theorem: The urea of uny spherical surface bounded by
arcs of greut circles expressed in squure rudic equuls the
spherical excess expressed in radiuns. Compare §§ 338, 339.

888, By § 296, since the sphere may be considered as a

lune, Sph. L: (Sph. S=4m?)=4":2m,
whence Sph. L =2 4%+2, Compare § 302.
338. By using the formula of § 338 in § 312, we easily
get . Sph. A=¢€:
NOTATION.

€ = spherical excess of spherical triangle.

E = spherical excess of spherical polygon.

o = area of as pherical degree = .} Sph. S= ; Sph. T.
Sph. § = area of a sphere = 720 0.
Sph. T' = area of a tri-rectangular triangle = 90 0.
Sph. I = area of a lune.
Sph. A = spherical triangle.

r = radius.

h = altitude.
Sph. P = area of spherical polygon.

~ Sph. Z = zone.

A = spherical angle.

Sph. V = spherical volume.
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FORMULAE.
Sph. L =2A4%0 . . . « . « « « « . . . . . §302
A .. . . . §306.
90
=2A4P2% . . . . . . . .« .« . . . . §838
Sph. S=4mr® . . . . . . . . . . .. . . §305
Sphhe A=€0¢ - « « « « « « « o . . ... §3812
e, § 314.
180

=€.92 . . . . . . .. .. . ... §33.

Sph. P=E°¢ . . . . . . . « . . . . . . §3815
=EP-r2 . . . . . . . . . . . . . . §336

Sph. V=1~ Sph e e e e . e . .. §326.
—41rr'=1 'lr("r_d)8 e e e e . . . . 8331

Area generated by revolvmg straight line = p-27r . . § 303.
Volume generated by revolving A = {, d-mrl . . . §323.
1d- 7r(r+r’)l . §324.

Volume of a double cone = . . .. §325.

Volume of a spherical pyramid = % r- Sph .. . . §328.
Volume of a spherical sector = 3 r-Sph. Z =3mr% . . §329.

h h .
Volume of a spherical segment — 'm’?§ + w2 5+ rwid § 334.

192. The angles of a spherical triangle are 60° 70° and 80°.
The radius of the sphere is 56. What is the area of the triangle
in square feet? / . 4

193. The sides of a sphencal triangle are 42°, 82° and 116°.
What is the area of its polar triangle? /% C.

19.4. In the last example what is the area of the polar in square
mdii? In square feet, if the radius is 6 feet? 2 .., ". 44 7/,

195. A tin pan 1 foot high, with a spherical bottom, has its
sides flared out 60°. The bottomn measures 2 feet across. How

much tin, neglecting the seams, does it take to make it? ¢ ' B

<

196. What is the area of a zone of one base whose height is &,
and the radius of whose base is »? What would be the area if
the height were three times as great? If } as great?
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--197. A globe 10 inches in diameter is how much larger than a
marble 1 inch in diameter? /oo,

» 198. The slant height of a cone of revolution is equal to the
diameter of its base: its total area is 27. What is the area of
the inscribed sphere? /v

. 1992 If au equilateral (slant height equal to diameter of thg
base) cylinder and cone be inscribed in a sphere, what is the rela-
tion subsisting between the total areas of the cylinder, the cone

\_and the sphere?

200. In the last example what is the relation between the
volumes ? )

201. In the last example, suppose the sphere inscribed in the
cone.

X 202. A right circular cone whose vertical angle is 60°, is cir-
cumscribed about a sphere. Compare the lateral area of the cone
and of the sphere. J % . .

» 203. In the last example, compare the volumes. ¥ ‘ /.

x 204. A sphere is cut by 3 planes 6 inches apart, the outside one
being tangent to the sphere. The radius of the sphere is 13
inches. Compare the spherical surfaces included between the
planes. £xaf.

~ 205. A spherical bowl is 14 inches across the top. A pencil 8
inches long just reaches from the edge to the center. What is the
surface of the bowl? 770 '*

L' Having the volume ¥ of a sphere, find the volume of the

! inseribed cube.

é @ Having the volume V of a sphere, find the volume of the

circumscribed cube.

208. The two legs of a right triangle are a and b: find the area
of the surface generated when the triangle revolves about its
hypotenuse.

209. Find the volume generated in the last example.

x 210. The lateral area of a cone of revolution is double the
area of its base : its altitude is 4 : find the radius of the base. ¥ -

/=—-—"211. Find the volume of a spherical pyramid the angles of

whose base are 80°, 90° and 130°, the volume of the sphere bein,
120. 2c, :

o
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~ 212. Find the area of a spherical pentagon whose angles are
138° 112°,131°, 168° and 153°, the surface of the sphere being 40.
S @ A cylinder of height % is inscribed in a sphere. What is
the volume of the sphere lying outside its convex surface?
214. A cone is circumscribed about a sphere, its altitude being
4 times the radius of the sphere. If the surface of the sphere is
120, what is the total surfarce of the cone?
215. In the last example, if the volume of the sphere is 16
what is the volume of the cone?
J— -~ 216. A circular sector of 60° revolves about one side, the radius
being 12, generating a spherical sector. What is the volume neces-
sary to complete the hemisphere? 7/ ' s
217. Find the surface of a sphere inscribed in a cube whose
» surface is 729.
218. The volume of a sphere is 226 : find its diameter.
7219) Find the surface of a sphere circumscribing a regular
tetrahedron whose edge is 6.’
220. What is the surface of a sphere inseribed in a cube whose
"7 surface is 482 )
-— 221. Find the volume of a spherical segment, the radii of
whose bases are 3 and 5, and whose altitude is 4. 52 ¢/ L
222, How much of the earth’s surface would a man see if he
were raised to the height of a diameter above it?
! 223. What is the volume of a wedge of 42° in a sphere of 5 feet
radius? </ .,
224. What is the angle of a spherical wedge if its volume is 3,
and the volume of the sphere is 157 ¢+,
' 225. What is the volume of a spherical sector, if its basal zoue
is 5, and the radius of the sphereis 6? /7 .
226. The radii of the bases of a spherical segment are 6 and 8
feet, and its height is 3 feet: what is its volume? &5 7
227. Find the area of a spherical polygon whose anglkes are
100°, 120°, 140° and 160°, the radius of the sphere being 104.
228. A plane cuts a sphere of radius 5 feet, 3 feet from the
centre. What is the area of the section ?
229. In a sphere whose radius is r, find the height of a zone
whose area is equal to that of a great circle.
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E@B Find the area of the zone illuminated by a candle A feet
from the surface, the radius being r feet.
(231,) Find the volume V of a sphere in terms of the circumfer-
ence ¢ of & great circle.
(©32) Having the volume V of a sphere, what is the radius?

233. A plane bisects the radius of a sphere at right angles.
What is the ratio of the two zones formed ?

234> A cone has for its base the base of a hemisphere, and its
vertex at the pole of the base. Compare the volumes of the hemi-
sphere and cone.

@ETJ The surface and volume of a sphere are expressed by the
same number. What is its radius?

236.) A zone of one base is a mean proportional between the
remaining surface of the sphere and the total sphere surface.
How far is the plane of its base from the centre?

237. Find the volume of a sphere circumscribed about a cube
whose volume is 216.

238. Find the volume of a sphere circumscribed about a cube
whose volume is V.

239, _To what height must a man be raised above the earth in
order to see one-fourth of its surface?

240. To what height must a man be raised above the earth in

order to see % pf its surface?

241. A cone of revolution the radius of whose base is 12, is
inscribed in a sphere of radius 20 ; what is the volume of the
cone? 7 'V,

242) A cone of revolution the radius of whose base is a is
inscribed in a sphere of radius = ; what is the volume of the cone ?

243. Find the spherical excess of a triangle from its area and
the radius.

244. A section parallel to the base of a hemisphere bisects its
altitude : what is the ratio of the two volumes?

245. A segment of one base, 4 feet high contains 150 cubic
feet : what is the radius of the sphere?  //.

246. Find the radius of a sphere equal to the sum of two
spheres whose radii are 3 and 6. 2
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247. Having the voiume ¥V and the height A, of a spherical I|
segment of one base, find the radius of the sphere. |
- 248. The radius of the base of a segment is 16 feet and its |
height 8 feet : what is its volume? 74¢& A |
249. The edge of a spherical pyramid is 3.85 and the angles of '
its base are 80°, 100°, 120° and 150°: what is its volume? %% &< |
250. If the volume of a sphere -is V, and the area of a zone is '
S, what is its height ? l
251. If the two bases of a segment are nr? and #r}, and the
ratio of. their distances from the centre of the sphere ism:n,
what is the radius of the sphere?
252. The sphere surface has what ratio to the entire surface of
the circumscribing cylinder.
253. If a man is h feet from the surface of a globe what
proportion of the surface will he see, the radius of the sphere
being r?
254. A light h feet from the surface of a globe of radius r,
illuminates how many square feet of the globe?
255. How far from the centre must a plane be passed to divide
a hemisphere into two equal zones?
256. What is the area of a lune whose angle is 42°?
257. If two angles of a spherical triangle are right angles
what relation does its area bear to the third angle?
258. The volume generated by a triangle revolving about one
of its sides is equal to its area multiplied by the path described
by its centre of gravity. § 323.
259. Ditto, about any line through its vertex. § 324.
260. Ditto, about any exterior line. § 1944.
261. Ditto, any area. (Theorem of Pappus.)
262. A circle, radius r, revolves about an exterior line at a dis-
tance d from its centre : find the volume generated.
263. The surface generated by a line revolving about an axis is
equal to its length multip]ied by the path described by its centre
of gravity.
264. Ditto, the surface by two (or more) contiguous lines.
265. Ditto, any curve. (Theorem of Pappus.)
266. Find the surface in example 262.
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PREFACE.

—_————

THE subject is treated purely from the standpoint of a
plane section of a conical surface, and the elementary
properties of the conic section determined in situ, upon
the conic surface. The existence of a constant rat.o
between the distances of any point of the section from a
fixed point and a fixed line is shown at the outset, and the
three varieties of curves shown to be.but special cases of
the general section. ’

Particular attention is paid to the special and limiting
cases, found by varying the slope of the cutting plane, and
the angle of the cone. ’ '

The attempt has been, not to give the student many
specialized properties of the conic sections, but to give
a broad and comprehensive view of the correlations of the
three varietiesp)and of the ways in which they merge into
each other.

The essential unity of the different curves, their sub-
jection to the same law of generation and their possession
of the same general properties is constantly impressed
upon the mind of the student.



CHAPTER IV.
OONIC SECTIONS.

1. A conic section is the curve made by the intersection
of a plane with the conical surface of a circular cone.

A cone of revolution is generally selected, and will be
the one used in what follows.

2. There are three cases : —

The cutting plane may intersect one nappe only, cutting
all the elements, in which case we call the curve an
ellipse: or it may cut all the elements but one, to which
it is of course parallel, in which case we call the curve a
parabola.

3. The cutting plane may cut both nappes, in which
case we call the curve a hyperbola.

We will investigate the properties of these three curves
in the order named.

ProrosiTioNn I. THEOREM.

4, Every complete plane section of one nappe of
a right circular cone is a curve, the sum of the
distances of every point of which from two fixed
points is constant.

Notation. Let MPN be a plane section of one nappe
of a right circular cone, passing through all the elements :
O and @ the centres of two spheres inscribed in the cone,
and tangent to the cutting plane at the points F and ¥
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respectively : P any point in the section, and S, T the
points in which the element
VP touches the spheres.

To prove PF + PF'=con-
. stant.

Proof, PS= PF, being two
tangents to a sphere from a
common point. (8. G § 233.%*)

Likewise PF'= PT.

- PF+ PF' .
= PS8 + PT = constant.
Q.E.D,

. 5. Scholium. The fixed points F, F' are called the foci
of the curve, and the lines PF and PF' focal radii; the
line MN passing through the foci is called the focal axis*
of the curve, and the points M N are called vertices.

6. Cor. 1. The sum of the focac rudii of an ellipse is
equal to the major axis.

MF + MF'=2 MF + FF'= constant
=NF+4 NF' =2 NF'4 FF"',
.~ MF= NF"
 PF+4 PF'=MF+ MF'= MF'4+ NF'= MN.
Q.E.D.

7. Cor. 2. The foct are equidistant from the vertices.

8. Scholium. The length of the major axis is denoted
by 2a. One half the distance between the foci, called the
linear eccentricity of the curve, is denoted by e.

9. Cor. 3. If the cutting plane is parallel to the base,
the section is a circle.

The circle is a special case of the ellipse.

* In the ellipse, also called major axis,



114 SOLID GEOMETRY.

! ProrosiTion 1I. THEOREM.

10. Every complete plame section of one nappe
of «w right circular cone is a curve, the ratio of the
distances of whose points from a fixed point and
a fixved line is constant.

Notation. Same as in § 4. Also, let K and L be the
planes determined by the cir-
cles of tangency of the cone
and spheres, intersecting the
cutting plane J in the two lines
t,t. Denote the distance of
P from ¢ by d, and from ¢ by
d'. Through the lines S7" and
dd' pass a plane cutting K and
L in the lines a, a/, respec-
tively.

To prove s = constant.
Proof. a | a' (8. G. § 41). .. A ad is similar to A a'd'.
| PS8 _r_d
CPTT T A
- d
B t LA — -
y composition ookl ]
" o
—3 — :7—_{*:—:1' =—m = constant. §4.

Q.E.D.

11. Scholium. A conic section which cuts all the ele-

ments of one nappe may be defined as a curve the ratio of

the distances of whose points from a fixed point and a fixed

line is constant. The fixed point is called the focus, and
the fixed line is called the directrix.

12. Cor. 1. The directrix is perpendiculur to the mujor
axis.
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13. Cor. 2. The constant ratio between the distances of

a point on an ellipse from the focus and the directrix equals
the linear eccentricity divided by the semi major axis.

Notation. Let D be a
point in the directrix and /\\
F, F' the foci of the conic Dhoeee M2 Lv)y
whose vertices are Mand N. F F
Let MF = NF'=v, and v

MD=34.
TOpl'OVO ' m=r=€.,
d a
Proof. For the vertex M
’ v=m 8. § 10.

For the vertex N :
Zetv=m 2¢c+2v+3).

Substituting the value of v in the first member, and the
value of 2a = 2¢ 4 2v in the second, we get

2¢

M= —.
2a Q.E.D.

14. B8cholium. This ratio is called the eccentricity of
the ellipse, and is denoted by e. Evidently ¢ < 1.

15. Scholium. There will be two points, C and I, of
the ellipse which are equidistant from the vertices. The
line CD, connecting these two points, is called the conju-
gate axis (in the ellipse, minor axis), and is designated by Zi..

In the rhombus FCF'D, the
diagonals bisect each other at ﬁx
right angles. Hence the minor [ F, 0 F .
and major axis mutually bisect
each other. The point of inter- & A
section O is called the centre of 4
the ellipse.
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16. Cor. 3. An ellipse has two directrices.
This follows since the above demonstrations apply
equally well to the line ¢'

17. Cor. 4. The ellipse is symmetrical about either awis.

This follows because § 4 applies to either focus, and
§§ 10, 13 to either focus in connection with the corre-
sponding directrix.

18. Cor. 5. The eccentricity of « circle is zero.

19. If the cutting plane be turned downward, the conic
section will evidently become longer, until finally, when
the cutting plane becomes parallel to one element of the
cone, the ellipse has become infinitely long, and its centre
is said to have passed out to infinity.

This special case of the ellipse is called a parabola.

Prorosition III. THEOREM.
20. Every point of a parabola is equidistant
from the focus and the directrizx.

Notation. Same as in § 10, except
that J is | to the element GH. Also,
let PH be a section of the cone made
by a plane || to K.

To prove r=d.

Proof. r=PS=GH=d (GH and
d being || lines between | planes).

21. Cor. 1. The eccentricity of the parabola equals unity.

22. If the cutting plane be turned beyond the point of
parallelism it must cut both nappes and we get a hyperbola.
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ProrosiTioN. THEOREM.

28. Every plane section of both nappes of a right
circular cone is a curve, the difference of the dis-
tances of whose points from two fixed points is
constant.

Notation. Same as in § 10,
mutatis mutandis.

To prove ' —r = constant.

Proof. » —r=PT— PS =
ST = constant. Q.E.D.

24. Scholium. The remarks of
§ 5 apply to this section without
change.

25. Cor. 1. The difference of g
the focal radii of a hyperbola is ’
equal to the mujor axis. j

The proof is the same as for
§ 6, mutatis mutandis. This is left as an exercise for the
student. '

28. Cor. 2. The foci are equidistant from the vertices.

Prorosition IV. THEOREM.

27. Every plane section of both nappes of a right
circular cone is a curve the ratio of the distances
of whose points from a fived point and a fixed
line is constant.

Notation. Same as in § 23.

To prove = constant.

r
d
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Proof. Same as in § 10.

28. B8cholium. The fixed point is called the focus, and
the fixed line is called the direetrix.

29. Cor. 1. The constant ratio between the distances of
the points of a hyperbola from the focus and the directrir
equals the linear eccentricity divided by the semi major axis.

See § 13. The proof is left as an exercise for the student.

80. Cowr. 2. The eccentricity of the hyperbola is greater
than unity. :
381. Cor. 3. A4 hyperbola has two directrices.

32. From what has gone before, we see that the general
definition of & conic section is — a curve the distunces of
whose points from a fixed point and a fixed line bear a con-
stant ratio: less than 1 for the ellipse: equal to 1 jfor the
parabola: and greater than 1 for the hyperbola.

Another definition might be: A curve, the alyebraic sum
of the focal radii of any point of which is « constant, the
Jocal radii having like signs when the foci are on the same
side of the vertex, and unlike signs when on opposite sides of
the vertex. :

If the algebraic sum is also the arithmetic sum, the result-
ing curve will be an ellipse ; if the arithmetic difference, a
hyperbola.

The middle of the transverse axis is a centre of sym-
metry, and is called the centre of the curve. Compare §17.

LimitiNé¢ AND SpPECIAL CASEs.

33. Ellipse. If the cutting plane pass parallel to the
base of the cone, the ellipse becomes a circle, as a special
case.

If the plane pass through the vertex, we get a point as
the limiting case of an ellipse, or of a circle.
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The other limiting case of the ellipse is the parabola, as
has already been mentioned.

34. Now suppose the angle of the cone to increase, the
limit of which would be a circular disc.

The limit of the conic section would be an infinitely
large curve, a finite portion of the arc of which would be a
straight line, or lines.

85. If the cone lengthens to a cylinder the section still
remains an ellipse, and we have the

Theorem. Every complete section of a circular cylinder is
an ellipse.

36. Parabola. As the cutting plane approaches the ele-
ment to which it is parallel, the section gets narrower and
sharper, and finally, as it reaches the element, we have as
a limiting case of the parabola two coincident straight lines
perpendicular to the directrix. Before the lines coincide,
we have for that portion of the parabola not in the vicinity
of the vertex, two parallel lines as a limiting case, which
are further apart the more obtuse the cone.

If the cone is flattened into a circular dise, the limiting
case becomes a straight line parallel to the directrix, the
directrix and focus being at an infinite distance.

37. If the cone lengthens out to a cylinder, the section.
by a plane parallel to an element, becomes two parallel
straight lines as a limiting case of a parabola.

38. Hyperbola, As the cutting plane approaches the
vertex the two branches of the hyperbola become sharper,
and at the vertex become two intersecting straight lines as a
limiting case.

As the plane recedes from the vertex, the hyperbolas
become less curved.

Now suppose the angle of the cone to increase, the limit
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of which would be two flat discs with a common centre at
the vertex.

The limiting case would be two coincident straight lines
(parallel to the directrix) if the plane passed through the
vertex ; and two parallel straight lines further and further
apart as the plane passed from the vertex and the angle of
the cone lessened.

89. The parabola is the limiting case between the
ellipse and the hyperlola. .4s the ellipse beromes
longer and one focus passes out to infinity, the last
ellipse is a paralola.

As the hyperbola elongates and one focus passes out to
infinity (as the cutting plane approaches parallelism to
one of the elements of the cone), one branch of the hyper-
bola disappears with its focus, and the last of the series
of hyperbolas is a parabola.

If the cutting plane has revolved about one of the
vertices of the curve, this last hyperbola (or parabola) is
exactly the same parabola which we arrived at as the last
of the ellipses.

Hence, the parabola is the limiting case between the
* ellipse and the hyperbola. Whatever properties are pos-
. sessed by the ellipse or hyperbola belong equally to ‘the
: parabola, but the parabola possesses many properties which
do not belong to the other curves, just as whatever is
true of the ellipse is true of the circle (as §§ 40-43, 44),
but not wice versa, as, a perpendicular to a tangent at the
point of contact passes through the centre, equal chords
are equally distant from the centre, etec.

Many of the properties of the ellipse and hyperbola,
though existent in the parabola, are rendered unavailable
by reason of the introduction of infinite magnitudes; e.g.,
§§ 4, 6, 7, 13, 16, 17, 25, 26, 40, 42.
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Others, as §§ 10, 12, 23, 41, 43, 45, are available, not-
withstanding these infinite magnitudes.

Except in §§ 20, 21, no special properties of the parabola
are introduced here, though many exist.

40. The algebraic sumv of the distances of any
pom,t from the foci of a conic is greater or less
than 2a, according as the point is without or
within®* the curve.

Notation. Let X and I denote respectively an exterior
and an interior point of the conic, and P the point where
the focal radius » through
either of the points cuts

P
the curve. Q'
To prove EF + EF'>
20> 1F + IF',

Construction. Draw the other focal radius #/, and con-
nect the points with the foci.

Proof ELLipsk.
EF 4 EF'>r~4+">IF + IF'. Q.E.D,
Hvyperbora. 7— ' =2q, by definition. 4
“r+ EP— (r'+ EP)=2a.
But r+ EP=FKF and '+ EP> EF'
o BEF — EF° > 24,
Similarly, IF — IF' < 2a. Q.E.D.

41. A line through a point on the cllipse (Lyper-
bolw) and bisecting the external (internal) angdle
between the focal radii is a tangent.

Notation. Let 72X be a line through the point 7' and

* Within means, on the same side of the curve as the centre.
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I.. <l 2. XAF. XF=X4A2Z2 FA
Bt FA=r=y =2
and X4=0F.
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<
and X is on the convex side of the curve and X7 is a
tangent, § 40.

Q.E.D.
42. Cor. 1. TX _ to AF".
43. Coxr. 2. The luens of the foot of the focal perpen-

dicular wpon the tungent is a eircle upon the mujor axis as a

ditmeter.

For, O bLeing the middle point of FF' and P of AF,
OP =4} AF =1} (2u)=a.

Therefore P is on a circle of radius « and centre O.

44. The circle on the focal axis as a diameter is called
the auxiliary cirele.

45. Con. 3. The perpendiculur to the focal radius at
ity intersection with the auxidiary circle is tangent to the conie.
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CONSTRUCTION PROBLEMS.

46. To construct « conic section having given the
dirertrix, the focus and the eczentricity.

Notation. Let ¢ be the directrix, and F the focus, and
m the eccentricity.

Construction. || to d and at any "a"/

assumed distance, «, draw the line b, 4
From F as a centre, and with a
radius = ma, describe the circle cut-
ting & in the points ¢, ¢ ¢, ¢' will
be points of the conic; an ellipse, a
parabola, or a hyperbola, according I~
aam<=>1.
If m > 1, the arbitrary line b can be drawn on the other
side of the directrix from the focus, and we will get two
branches, or a hyperbola. Repetitions of the process will
give different points of the locus through which a curve
can be drawn.

47. To construct a conic, having given the foci
and the major axis.

Notation. Let F and F'be the given foci, and 2« the
length of the major axis.
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Construction. About F as a centre describe a circle with
radius 2a.

On any circle described from F as a centre assume a
point 4 and let the indefinite line 4 cut the circle 2a in
the point B.

From F' as a centre with radius AB describe a circle
cutting the circle through 4 (centre ¥') in the points X, Y.
X, Y will be points on the conic.

Proof. FX + F'X=FA * AB= FB=_2a. Q.E.D.

This gives the rule:— From one focus with a radins
equal to one seyment of the major axis, describe a circle:
Srom the other focus with the remaining segment describe
another circle: where these circles intersect will be points
on the conic: an ellipse if the segments are internul, a
hyperbola if the segments are external.

48. To construct a conic, having given the /'obus
and the auxiliary circle.

Construction. Draw the line FA4 from the focus to the
auxiliary circle, and at the point A
erect the perpendicular 4B. AB will
be a tangent, and the different tang-
ents will outline the curve: envelope.
it. § 45.

If the focus is outside the auxiliary
circle, we get a hyperbola; if inside,

an ellipse.
If the auxiliary circle is a straight
line (radius =) we get a parabola. Fo. 1..

49. This gives a very convenient and accurate method
of outlining a conie, the successive tangents as they are
put in determining the curve to any degree of accuracy.
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It also gives a very clear and easy method of following
the curve in its successive changes.

50. Change of focus.

Starting with the focus on the left of the
auxiliary circle of moderate size, we have a
very obtuse hyperbola which grows sharper -
and narrower as the focus approaches the
circle, and finally when the focus reaches
the circle the hyperbola becomes two lines intersecting at
an angle of zero. At the same time, we get the limiting
case of an ellipse, viz.,, the diameter of the

circle.

As the focus moves inside the circle the 4
ellipse broadens out until the focus reaches
the centre, when it becomes a circle, namely, r
the auxiliary circle.

As the focus moves on, the ellipse narrows
again and we have the same succession of Fia. 3.
figures in a reverse order, the hyperbolas
tending to become parallel straight lines perpendicular
to the axis as the focus moves to infinity.

Fia. 2.

51. Change of auxiliary circle.

As the auxiliary circle increases in size, all these figures
approach the form of a parabola, becoming a parabola when
the circle becomes infinite, that is, when its circumference
in the neighborhood of the focus is a straight line.

This shows again the parabola as the transition form
between the ellipse and hyperbola.

. As the auxiliary circle decreases, the hyperbolas tend to
become parallel straight lines perpendicular to the axis,
and the ellipses to vanish in a point.

If, as the circle diminishes, the focus approaches the
circle, the limit of the hyperbolas will be two intersecting
straight lines.
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It will be noticed that diminishing the circle, or increas-
ing the distance of the focus, has the same effect on the
shape of the hyperbola, viz., a tendency to flatten it: and
enlarging the circle or decreasing the distance of the focus
has tendency to sharpen it.
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Examples to be Solved Mentally.
57, 61, 68, 79, 80-85, 90, 92, 93, 95-98, 100, 101,
108-112, 114, 128, 140, 141, 143, 151, 168, 197, 204,
205, 207, 220, 224, 233-235, 252.

8ections and Corresponding Examples.

Sections. Examples.
118, 119
119, 124,
120,  126.
150,  134.
50, 62, 67-70, 75,
155 1 150.
154,  120.

156,  121-123.

170,  151-153, 158.

174,  116.

a7s, {79 85, 125, 127,
135-139.

60, 61, 63-66, 71—

74, 80-84, 86,

180, 129,140, 141, 143,
160-164.
116,131-133,154

191 ) » 19%

? 159.
192, 76-78, 87, 117,

118,142, 144-147.

Qonti

) 1

1943,
201,
204,

209,

212%,
212%%,

94, 115.

92, 114, 128.

90, 91, 93, 95-113.
88, 89, 130, 155,
156.

148, 149.
165-167.

212%** 168, 169.

223,
302,
303,

305,

309,

811,

312,
314,

{

228, 241, 242.
256.

208, 210.

198, 199, 202, 214,
217, 219, 220, 252.
204, 205, 229, 233,
250, 255.

195, 196, 222, 230,
236, 239, 240, 253,
254,

192-194, 257.
243,
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Sections: Examples. Sections. Examples.

315, 212, 227. 200, 201, 203, 206,
323, 209, 258. 331 207, 215, 218, 231,
324, 259-262. ’ 232, 234, 235, 237,
328, 211, 216, 223, 224, 238, 246.
249. 332,  197.
329,  225. 334 213, 221, 226, 244,
* 245,247, 248, 251.
ANSWERS.
*=22/7.
15, 13, 17 4. 67. 245.76.
16. 213, 244, 263, 274. 68. 384.
47. 9. : 69. 63.93.
50. 1509 times. 70. 5096.
51. 6/ (%) 71. 5.2.
52. 11. 72. 10.
53.6:14/11. 73. 26,475.99.
54. 6.25. 74. 241.826.
55. +/[3%(6*—1)]=230.74. 75. 1056.
56. 72. : 76. 6815.
57. 500. - , 77. 1.58.
58. 25%§1 + /(1 + 43/5%). 78. 4.8, 24.
59. 3°(10 + § v3). 79. h=abe/mrs
60. $4%10° /(71117 — 2°5Y). 80. 3abe/mwr.
© 61. 18. 81. 40.
62. 210. 82. 38.5.
63. 28-3:5° /48, 83. wrih/a’.
64. 17.066. 84. 4a/mwhs
85. 17. 86. d+/m/2+/m.
66. 479. 86. 2.9.



ANSWERS.
87. 4.3. 102. pa/p/ (a+b+c),
88. 11.76. P («+b) /¥ (atb+c).
89. 18%. 103. 14.
90. X 5, X ¥/5. 104, 14,
91. 1.7, 34, 5.1. 105. 14.
92. /n. 106. 1/9/4.
93. #/'n. 107. 1/¢/'%.
94. 4.05. 108. h'3, hp/4, A5, ete.
95. & 109. 23/34,
96. .79. 110. m¥/nd.
97. 1/§/2=.793. 111. m¥/n3, mi/nk.
98. 1/9/3, p'2/p/'3. 112. 63/64.
99. 6§/, 693 - 118. 91/216.
100. 1/p/n, 2/ P'n, ete. 114, h//2.
101. ¥3/1. 115, /2 (r'*—1%).
116. 31,000.
117. [P+ 1242+ p o/ (2 — 1212)]/36.
118, o/ [e—}e?+ (1 —4+/2) ee'].
119, }§ V(B — W) — ("~ k)],
120. / {S—(B— B}/ {w(B+B)}.
121, 3¢ {he/3+ /(M +}a?)}.
122. §+/(32A%+ J5 Y. 127. 87.39.
123. 393.73. 128. mrm*?/(m + n)?
124. »'/(r+7"). 129. /2/+/3.
125. 55,004 ft. 130. (3av/$)*: (¢/~/3) =}
126. + M+/3. 131. Z M2
182. A (4 v/ 2ab+ a?) = 500.
133. 38,133.76. 134. T/2mwr—n.
135, 3 Tr— 7,
136. T~/ T/3/ (6m).
137. o/ {(T—&)(28—T)T}/3ym
138. 43,429 140. 210.
139. p*h/4 . 141. 976.

' 3



142.

145.

148.
149,
150.

164.
168.
169.
184.
185.

197.

201.
202.

210.
211.
212,

219.
220.
221.
222.
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227.1, 436.46. 143. 663.

144. Yy ~/143 (6*4 87+ 68).

92.16, 40.3, 146. $h.

147. V=4wh {38 /47°l'+ ('— A7) /4}.
2n. 151. 5/34. 154. Use §191.
3n. 152. 396.6. 158. Edge = 6.
270. 153. 444. 159. 1434.

160. 46§.

161. V=e+/ {T(T—2¢%}/6.

162. h=+/ {T(T—26"}/2e.

163. a=T+~/2/2/(T+21%.

213111, 186. 56. 191. 4: 9.

8rt. /s.  187. §. 192. 1642%.

401t Zs. 188, §. 193. 1200.

503. 190. 503. 194, §mr*, 24 .

1386. 195. 87 (/3 —1).
196, 7 (B*+41%), 3w (h*+41%), 7 (24 7).

1000. 198. 12.

199. Cyl. = /(Sph. 8. X Cone).

200. Cyl.= +/(Sph. V. X Cone).
4./2:3:4/3. 203. 9:4. 206. 2V/mw/3.
3:2. 204. Equal. 207. 6 V/m.

205. 8.

208. wab (a + 0)/(a® 4 ¥}

209. wa*h?/3 (a® 4+ )L
r=4+/3/3. 213. wl*/G. 215. 32.

20. 214. 240. 216. mr*/3.
9. 217. 71214,

218. /(113-76/11).

6. 223. 613. 226. 48534
8. 224. 72° 227. 308.
236/3. 225. 10. 228. 716.
% 229. r/2.



230.
231
232,
233,

243.
244.
2456.
246.

262.
263.
264.
2565.

ANSWERS. 5

2m?h/(r+ k). 234, 2:1. 238. mV/3/2.
/6, 236. 3. 239, 7.
P @V/im). 236, r(\/6—2). 240. 27/(n—2).
3:1. 237. w108+/3.  241. 7123,

242. gma? {/ (P —d’) +1}.

A 180 /7 ‘ 247. r=V/mh*+ h/3.

11/5. 248. 3486.

4.3. 249. 29.89.

3¢9. 250. S/p/(67*V).
261, ~/ (M —n’r]) /) (m* —nf).

2/3. 256. Tmr*/15.

h/2(r4h). 267. A« 3d £

2mwr*h/(r+ k). 262. 27rd.

r/2. 266. 47rd.
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