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PREFACE.

I mAvE written this book, -having.in view the ultimate
improvement of the course™'in’ mathematics offered at
Bucknell University, and bearing in mind that the crowded
curricula give to this course less time and more subjects
than was the case twenty-five years ago.

In carrying forward a course of mathematical study,
nothing can make amends for hasty or imperfect prepara-
tion. However, since Plane Geometry is an almost uni-
versal requirement for admission to college, it becomes
possible, by means of the entrance examinations, to enter in
the subject of Solid Geometry, only those students who are
already well trained in Euclidian methods of demonstration
and investigation.

Believing that for such students the course in Solid
Geometry may be made quite brief with the ultimate ad-
vantage of having more time for advanced mathematics, I
offer this short course. In it are a number of theorems for
original demonstration and many illustrative examples. A
section on Mensuration is introduced with the design of
calling special attention, by means of illustrative examples,
to all the important rules for finding volumes and surfaces
of solids, demonstrated in the preceding sections. Also,
methods for finding the volumes of the Regular Polyedron,
the Wedge, and the Prismoid are deduced.

iii



iv PREFACE.

For the purpose of bringing the important theorems as
near as possible to the definitions, postulates, ete., on which
they rest, I have found it necessary to deviate somewhat
from the usual sequence of propositions. Thus, I have
grouped in the same section the prism and its limiting case,
the cylinder, because they have so many properties in com-
mon. I have treated the pyramid and its limiting case, the
cone, in like manner, ete.

Always, I have aimed to give the most direct proof pos-
sible, and to save the student, by means of corollaries, the
labor of reproducing constructions unnecessarily.

An experience of twenty years in teaching mathematics
leads me to think that the student who gets up the subject
from this brief work, in the end will be at no disadvantage
from not having used some one of our larger popular text-
books.

Many of the diagrams used in illustration are, by permis-
sion, from Professor Wells’ geometry. In thanking him for
this act of courtesy, I desire also to acknowledge my indebted-
ness to him for valuable aid rendered me through the agency
of his text-books, some of which I have had in class-room
use from the date of their publication.

WILLIAM C. BARTOL.

BUCKNELL UNIVERSITY,
LEWISBURG, PA., Aug., 1893.
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THE ELEMENTS OF SOLID GEOMETRY.

SECTION 1.

LINES AND PLANES IN SPACE.
DEFINITIONS.

1. A plane is a surface such that, if a straight line be
passed through any two of its points, the line will lie wholly
in the surface.

‘When a line lies wholly in a plane, it may be said of the
plane that it passes through the line.

2. The intersection of two surfaces is a line containing
all the points which are common to the two surfaces.

3. The intersection of a line and a plane is the point
where the line pierces the plane. This point is called the
Joot of the line.

4 Alineis perpendicular to a plane when it is perpen-
dicular to every line of the plane, passing through its foot.
And the plane is then perpendicular to the line.

5. Planes are parallel if they do not meet, however far
extended.

6. A line ana a plane are parallel if they do not meet,

however far extended.
1



2 THE ELEMENTS OF SOLID GEOMETRY.

ProrositioN I,

7. TraEOREM. Through a straight line an indefinite num-
ber of planes may be passed.

4l

Let AB be a straight line lying in a plane (1). Now, we
may conceive of the plane as rotating about the line as an
axis, and thus occupying successively an indefinite number
of positions. But the plane in any position is a plane through
the line AB. Hence, through the line AB an indefinite
number of planes may be passed. Q. E. D.

8. CororrLARrY 1. Through a straight line and a point
without ¢, only one plane may be passed.

For if the plane be rotated about the line until it includes
the given point, any further rotation, in either direction, will
cause the plane to no longer include the given point.

9. SceHoLIUM. Since only one plane may be passed
through a straight line and a point without it, @ plane is
determined by a straight line and a point without .

10. CoroLLARY 2. A planeis determined by three points
not in the same straight line.

For two of the points may be joined by a straight line,
and the plane rotated about the line, as in Cor. 1, until the
third point is included.

11. CoroLLARY 3. A plane is determined by two straight
lines which intersect, or by two parallel lines.

12. CororLrLARY 4. The intersection of two planes is a
straight line.




LINES AND PLANES IN SPACE. 3

For if through two points of the intersection we pass a
straight line, all the points of that line must be common to
the two planes (1); and no point without this line can be
common to the two planes (8). Hence, the straight line
must be the line of intersection of the planes (2).

Prorosition II.

13. TueoreEM. Only one perpendicular can be drawn
Jrom a given point to a plane.

Let QP be a perpendicular to the plane MN, drawn from
P, a point in the plane; and let TP be any other line drawn
from P ; then TP cannot be perpendicular to MN.

For, pass through QP and PT a plane, intersecting MN in
the line HK ; then, since QP is perpendicular to HK (4), TP
cannot be perpendicular to HK (350) ; neither can TP be
perpendicular to MN (4).

-4

BT [}

Again, let AB be a perpendicular to the plane MN, drawn
from A, a point without the plane; and let AC be any other
line drawn from A to the plane ; then AC cannot be perpen-
dicular to MN,

Draw the line BC. Now, since AB is perpendicular to
the plane MN, it is also perpendicular to the line BC (4);
and therefore AC cannot be perpendicular to BC (350) ;
hence it cannot be perpendicular to MN (4). Q. E. D.
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ProrpositTion IIIL

14. TaEeoreM. Al perpendiculars to a straight line at
a given point lie in a plane which is perpendicular to the
line at the given point.

'B

s

N

Let any line AE be drawn perpendicular to the line AB
at a given point A ; and let MN be a plane passing through
A, and perpendicular to AB; then will AE lie in MN.

For, if AE does not lie in MN, pass through AE and AB
a plane BAE; and let AE’ be the intersection of this plane
with MN. Now, AB is perpendicular to AE’ (4), and AE
was drawn perpendicular to AB; hence, at A there are two
perpendiculars to the line AB, lying in the same plane BAE.
But this is impossible. Hence the assumption that AE
does not lie in MXN is false; or, AE lies in MN. Q. E. D.

15. CororLrLARY. Through a girven point in « straight
line only one plane may be passed perpendicular to the line.

ProrositioN 1IV.

16. TueoreM. If a line is perpendicular to each of two
lines at their point of intersection, it is perpendicular to the
plane of the two lines.

Let the line AB be perpendicular to the lines BC and BD
at B, their intersection ; and let MN be the plane of BC and
BD; then will AB be perpendicular to MN.
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By our hypothesis BC and BD are perpendiculars to AB,
at 2 common point B; therefore they lie in a plane which
is perpendicular to AB at B (14). But, there is but one plane
in which both BC and BD can lie; i.e., the plane of the lines
(11), which is by hypothesis MN. Hence MN is perpen-
dicular to AB; or, AB is perpendicular to MN. Q. E. D.

ProrosiTion V.

17. TreoreM. Parallel lines included between two paral-
lel planes are equal.

el
s aN\rg

Let the parallel lines AA’, BB/, and CC' be included
between the parallel planes MN and PQ; then will AA’,
BPB’, and CC’ be equal.

Draw the lines AC and A’C’. Now these lines are paral-
lel. For, they lie in the same plane, .e., the plane of the
parallel lines AA” and CC’ (11) ; and they cannot meet, since
they lie in the parallel planes MN and PQ (5); hence they
are parallel.

AC’ is therefore a parallelogram (371); and AA’is equal
to CC’ (360). Inlike manner we may prove that AA’equals
BB/, and that BB’ equals CC". Q. E. D.

18. CororLLARY 1. The intersections of a plane with two
parallel planes are parallel lines.

We have shown that AC and A’C’ are parallel; i.e., the
intersections of the plane AC’ with the parallel planes MN
and PQ are parallel lines.

19. CoRrROLLARY 2. Angles lying in different planes hav-
ing their sides parallel and in the same direction each to
each, are equal.
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We have shown that AC’is a parallelogram; therefore
AC is equal and parallel to A’C’. In like manner it may be
shown that AB is equal and parallel to A'B’, and that BC is
equal and parallel to B’C’. It follows then that the triangle
ABC is equal to the triangle A’B’C’ (357), in which tri-
angles, any angle ABC is equal to the corresponding angle
A’B’C’.  And these angles have their sides parallel, each to
each, and lying in different planes.

20. CoroOLLARY 3. Lines parallel to the same line are
parallel to each other.

For, from the parallelogramms AC’ and AB’, we derive that,
the lines CC' and BB’ are each parallel to the same line
AA’; and they are parallel to each other, since BC' is also
a parallelogram.

Prorosition VI.

21. TueorREM. If a straight line is perpendicular to one
of two parallel planes, it is perpendicular to the other also.

J =

B
N

B
E
L 2
Q

Let MN and PQ be parallel planes, and let AD be per-
pendicular to PQ; then will AD also be perpendicular to
MN.

Through AD pass two planes whose intersections with
MN and PQ are the lines DF, AC, and DE, AB. Now DF
and AC are parallel (18); and since ADF is a right angle
(4), DAC is also a right angle (368). In like manner we
may prove that DAB is a right angle. Hence, since DA is

perpendicular to both AC and AB at their point of inter-
section, AD is also perpendicular to MN (16). @. E. D.
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22. CoroLLARY. If two planes are perpendicular to
the same straight line, they are parallel to each other.

Let the two planes MN and PQ be perpendicular to the
straight line AD at the points A and D; then will these
planes be parallel to each other.

For, pass through A a plane which is parallel to PQ, and
it will be perpendicular to AD (21). But only one plane
can be passed through A which is perpendicular to AD (15).
Therefore MN must coincide with this plane which has
been passed through A, parallel to PQ; .., MN is parallel
to PQ.

Prorosition VII.

23. TrEOREM. If one of two parallel lines is perperdicu-
lar to a plane, the other is also perpendicular to the plane.

B D

\A'\ c\"\
x E F

Let the line BA be perpendicular to the plane ay; and
let the line DC be parallel to BA ; then will DC be perpen-
dicular to xy.

In zy, draw through C, any line CF, and parallel to CF
draw AE; then the angles BAE and DCF will be equal
(19). But BAE is a right angle (4); therefore DCF is a
right angle. Then, since DC is perpendicular to CF any
line in the plane xy, DC must also be perpendicular to
zy (4. Q. E. D.

24. CoRrOLLARY 1. If two lines are perpendicular to the
same plane they are parallel to each other.

Let the lines BA and DC be perpendicular to the plane
xzy at the points A and C. Now through A, draw a parallel
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to CD and it will be a perpendicular to xy, by our proposi-
tion; and it must therefore coincide with the perpendicular
BA (13). Since then, BA coincides with a parallel to DC,
BA must be parallel to DC.

25. CoroLLARY 2. Parallel planesare everywhere equally
distant.

Consider the parallel planes MN and PQ, of Pror. V.
Let AA’ and CC’ be any two perpendiculars to the plane
PQ between the parallel planes; then will AA’ and CC’ be
equal.

For, AA’ is parallel to CC’ (24),
Hence, AA’ is equal to CC’ (17).

Prorosition VIII.

26. THEOREM. Straight lines cut by three parallel planes
are divided proportionally.

1
PN, 7

Let the lines AC and A’C’ be cut by the parallel planes
MN, PQ, and RS, in the points A, B, C, and A’, B’, C'; then
will

AB:BC: A'B’: B'C.
Draw the line AC’ piercing PQ at D ; then draw BD and

DB/, also draw AA’ and CC’. Now BD is parallel to CC’,
and DB’ is parallel to AA’ (18).

Hence, AB:BC: AD:DC,
and A'B'":B'C':AD:DC" . .. (361).
Therefore, AB:BC: A'B’:BC. Q. E. D.
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EXERCISES.

27. TaEOREM. If A be any point without a plane:

(a). The perpendicular from A to the planeis shorter than
any oblique line,

(6). Oblique lines from A cutting off equal distances from
the foot of the perpendicular are equal.

(¢). Of two oblique lines cutting off unequal distances
Srom the foot of the perpendicular, the more remote is the
greater.

Let the line AB be drawn from A, perpendicular to the
plane MN, meeting it at any point B. Let the points C
and D be taken in MN, equally distant from B; and let E
be a point more remote.

Prove (a). AB is shorter than AD, any other line,
(). AC is equal to AD.
(¢). AE is greater than AC.

DEFINITIONS.

28. A diedral angle is the angle between two planes
which intersect each other.

29. The line in which the planes intersect is called
the edge of the angle; the planes themselves are called the
Jaces of the angle.

30. Lines drawn in the faces of a diedral angle perpen-
dicular to the edge and from the same point in it, form a
plane angle which is taken as the measure of the diedral
angle,
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If the plane DE intersect the plane DF in the line DG,
then F-GD-E, the angle between the planes,
is a diedral angle. DF and DE are faces
and DG is the edge of the diedral angle.

i

B, In the face DF draw the line AC perpen-
]

% B

)

[

dicular to the edge GD at the point A. And,

in the face DE draw the line AB perpendicu-
F  lar to the edge GD at the point A. Then
CAB, the plane angle between the lines CA and AB, is the
measure of the diedral angle F-GD-E.

For, if we revolve DF about DG as an axis, the angle
CAB will increase or diminish precisely as the angle
F-GD-E increases or diminishes. And, since this is not
the case with any other plane angle whose vertex is at A
and whose sides are in DF and DE respectively, CAB is
taken as the measure of F-GD-E.

Construct a, second plane angle C'A'B’, as before; then
CAB is equal to C'A’B’ . . . (19).

Qb

Proposition IX.

31. TaEOREM. If a line is perpendicular to a plane, any
plane passing through the line is perpendicular to the plane.

R A

P ]
M !
NP /
B ™5
N

Let the line BA be perpendicular to the plane MN; and
let the plane PQ be passed through BA; then will PQ be
perpendicular to MN.

In MN draw the line BS perpendicular to BQ, the inter-
section of PQ and MN. Now since AB and BS lying in
their respective planes PQ and MNX, are perpendicular to
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the intersection of these planes, at a common point, the
angle ABS is the measure of the diedral angle between the
planes PQ and MN ... (30). But since ABS is a right
angle (4), PQ is perpendicular to MN. Q. E. D

32. CorOLLARY 1. A line drawn in one of two perpen-
dicular planes, perpendicular to their intersection, is per-
pendicular to the other plane.

Thus, as we see, the line BA drawn in the plane PQ
perpendicular to the intersection BQ, is perpendicular to
the plane MN.

33. CoroLLARY 2. If a line be drawn perpendicular to
one of two perpendicular planes, at a point of their intersec-
tion, it will lie in the other plane.

Thus, as we see, the line BA drawn perpendicular to the
plane MN, at B in the intersection, lies in the plane PQ
perpendicular to MN.

34. CoroLLARY 3. If two intersecting planes are per-
pendicular to a third plane, their line of intersection will
also be perpendicular to the third plane.

Thus, as we see, the line BA drawn perpendicular to MN,
is the intersection of the planes PQ and RS passing through
BA (12), which planes are perpendicular to MN (31).

DEFINITIONS.

35. A polyedral angle is an angle formed by three or
more planes meeting at a common point.

36. The point in which the planes meet is called the
vertex of the angle. The lines in which the planes meet
are called the edges of the angle. Those portions of planes
which lie between the edges are termed the faces.

37. The plane angles lying between the edges and hav-
ing a common vertex, are called face angles.



12 THE ELEMENTS OF SOLID GEOMETRY.

38. The face angles and the diedral angles between the
faces are called the parts of the polyedral angle.

39. Two polyedral angles in which all the parts of the
one are equal to all the parts
of the other, each to each, are

o o
said to be mutually equal in
all their parts, or, with re-
4 c ¢ Spect to all their parts.
B B’

40. If the equal parts of

Fic. 1. the one are arranged in the

same order as the equal parts

of the other, throughout, the polyedral angles are super-
posable, and hence equal. See Fig. 1.

41. If the equal parts of the one are arranged in the
reverse order of the equal parts of the other, the polyedral
angles are evidently not superposable ; in this case they are
symmetrical. See Fig. 2.

42, A good illustration
of symmetrical forms is the

(] o’
case of an object and its
image in a plane mirror.
4 o ¢ 4’ Place O-A’B'C’ under
/ 0-ABC, so that A'B'C’ coin-
B B
FIc. 2.

cides with ABC and O’ falls

below the common base. The
solids will then be in the relative position of an object
standing upon a horizontal mirror and the image of the
object.

“ A familiar example of the symmetry of non-superpos-
able figures is afforded by a pair of outstretched hands.
They can be so placed, palm opposite to palm, that each is
the image of the other.”

43. A triedral angle is a polyedral angle of three faces.
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ProrosiTioNn X.
44. TaEOREM. Any face angle of a triedral angle is less
than the sum of the other two.

[0}

B

Of the three face angles forming the triedral angle O-ABC,
let AOC be the greatest; then will AOC <AOB+4BOC.

Draw OD making the angle AOD equal to the angle AOB.
Take DO, AO, and BO equal to each other. Draw AD pro-
duced to meet OC in some point C. Draw AB and BC.

The triangles AOD and AOB are equal (355); and there-
fore the homologous sides AD and AB are equal.

Now, AC<AB+ BC ... (353),
and, AD = AB, just shown.

Hence, AC — AD < BC, by subtraction,
or, DC < BC.

In the triangles
DOC and BOC, since DC < BC
angle DOC < BOC . . . (358).
But angle DOA = AOB by construction.
Hence, DOA + DOC < AOB + BOC;
or, AOC < AOB + BOC.
Q. E. D.
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ProrosiTion XIL.

45. TaeoreM. The sum of the face angles of a convex
polyedral angle is less than four right angles.

o

Let O-ABCDE be a convex polyedral angle whose face
angles are AOB, BOC, COD, DOE, and EOA; then will

AOB + BOC + COD + DOE + EOA < 4rt. angles.
Through the polyedral angle, pass a plane intersecting the
faces in the lines AB, BC, CD, DE, and EA ; and let O’ be
a point within the polygon thus formed. Draw the lines
0’4, OB, U'C, O'D, and O’E.
Now, angle
0OAE+ OAB> O'AE+ OU'AB (44),
and angle
OBA + OBC > O’BA + O'BC, and so on,.

and, if we add all these inequalities, member to member, we
shall obtain the inequality

OAE 4 OAB + OBA + ete. > O’AE 4+ O’AB +
O’'BA + ete.;

t.e.,, the sum of the angles at the ba.ses of the triangles,
whose common vertex is O is greater than the sum of the
angles at the bases of the triangles whose common vertex
is O

But the sum of all the angles of the triangles whose com-
mon vertex is O equals the sum of all the angles of the
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triangles whose common vertex is Q’, since there is the same
number of triangles in each set, and (354).

Hence, the sum of the angles whose common vertex is O
is less than the sum of the angles whose vertex is O’. That is,

AOB + BOC + COD + DOE + EOA < 4 rt. angles.
Q. E. D.

ProrosiTion XII.

46. TaeoreM. If two triedral angles have the three face
angles of the one equal to the three face angles of the other,
each to each, the two triedral angles are mutually equal in
all their parts.

bl

In the triedral angles o and o', let the face angles aob, boc,
coa, be equal to the face angles a'o'd’, 8'0’¢/, ¢'o’a’, respectively.
Then will the diedral angle «-0b-¢ be equal to the diedral
angle a/-0’b'-¢/, ete.

Take 0b equal to o'4’. Draw ba and be, each perpendicular
to 0b. In like manner draw &'a’ and 4'¢/, each perpendicular
to o’%’. The plane angles abe and a'd’c’ are the measures of
the diedral angles a-0b-c and a’-0'd’-¢’ (30).

The triangle aob equals the triangle a'o’d’ (356); hence,
ab equals a'¥’, and ao equals a’o’. In like manner we can
prove that be equals #'¢’ and co equals ¢’o. Hence, the tri-
angle aoc equals the triangle a'o’¢ (355), and hence ac
equals a'c.

Now, the triangles abc and a'6’c’, being mutually equilat-
eral, are equal, and hence the angle abc equals the angle
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a'b'd. But abc and a’'t’¢ are the megsures of the diedral
angles a-ob¢ and a’-0't’<’; hence a-obc equals a’-0't’<. 1In
like manner the other two diedral angles of 0 may be shown
to be equal to the corresponding diedral angles of o/, each to
each. Q. E. D.

47. ScuoriuM. The triedral angles o and o’ have their
equal parts arranged in the reverse order. The triedral
angles O and o have their equal parts arranged in the same
order. The above demonstration applies in either case. We
observe that o and o’ are symmetrical (41); and that O and
o0 are equal (40).

EXERCISES.

48. TaEOREM. If two triedral angles have two face angles
and the included diedral angle of the one, equal to two face
angles and the included diedral angle of the other, each to
each, the two triedral angles are mutually equal in all their
parts.

Prove the above theorem, using the diagram and method
of (46).

49. TaeorEM. If two parallel lines intersect a plane,
they make equal angles with it.

50. THEOREM. If a line is parallel to one plane and per-
pendicular to another, the two planes are perpendicular.
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SECTION II.

SOLIDS: PRISMS AND CYLINDERS.
DEFINITIONS.

51. A solid is a portion of space bounded on all sides by
plane or curved surfaces. A solid bounded by planes is
called a polyedron. The bounding planes are called faces.
The intersections of the faces are called edges. The points
in which the edges meet are called vertices.

62. A prism is a polyedron whose edges are all parallel,
except those formed by two parallel faces
cutting all the other faces. The parallel “
faces are called dbases ; all others are called
lateral faces.

53. The lateral surface is the sum of
the lateral faces.

54. The lateral edges are the parallel edges.

55. Prisms are named from their bases; if the bases are
pentagons, as in the figure of (52), the prism is called a
pentangular prism. In like manner we have quadrangular
prisms, ¢riangular prisms, ete.

56. A right prism is one whose lateral edges are perpen-
dicular to the bases; all other prisms are termed oblique.

67. The altitude of a prism is the perpendicular dis-
tance between the bases.

68. Any section of a prism perpendicular to the lateral
-edges is called a right section.
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From the definition of a prism we readily deduce the fol-
lowing:

89. The lateral edges are equal to each other.

60. The lateral faces are parallelograms.
61. The bases are equal polygons.

62. Parallel sections cutting all
the lateral edges are equal.

63. Right sections are equal.

64. The lateral faces of a right
prism are rectangles perpendicular to
the bases.

65. Right prisms whose bases and altitude are equal,each
to each, may be shown to be equal by superposition.

-The demonstration of the above is left to the student.

66. A parallelopiped is a prism whose bases are paral-

It is termed right or oblique

» lelograms,
’ according to the conditions of Art. 56.
From the definition the student may
readily deduce the following : —

() " The opposite faces are parallel.

) Any right section is a parallelogram.

(c) All right sections are equal.

67. A rectangular parallelopiped is a right prism
whose bases are rectangles; all the faces are therefore
rectangles (64).

68. A cube is a rectangular parallelo-
piped * all of whose faces are equal squares.
69. The unit of cubic measure is the cube
/ whose edge is the linear unit.
Z 70. The volume of a solid is the ratio of
the solid to the unit of cubic measure.

* R. Baldwin Hayward, late President of the Association for the Improve-
ment of Geometrical Teaching, calls the rectangular parallelopiped 8 cuboid. We
shall adopt the term.
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Prorosition XIII.

71. THEOREM. Right prisms having a common base are
to each other as their altitudes.

G F
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Let the right prisms AF and AL have the common base
AC, and the altitudes CF and CL respectively; then will

AF: AL : CF:CL.

Let us suppose that CF and CL are commensurable; and
that a common measure Ca is contained in CF five times,
and in CL four times; then will CF: CL:: 5:4.

Apply Ca, the common measure, to CF so that Ca = ab = be,
etec. Through the points of division a, b, ¢, etc., pass planes
perpendicular to the edge FC. These planes divide AF
into & right prisms, and AL into 4 (22 and 56). The
small prisms thus formed are equal to each other; for they
may be made to coincide by superposition (63 and 65).

Now, since AF contains 5 of these equal prisms, and AL

contains 4, . . . AF: AL ::5:4;
but, CF:CL:5:4;
hence, AF: AL: CF:CL. Q. E. D.

Let us assume that CF and CL are incommensurable, still
the proposition remains true.

For if AF is not to AL as CF is to CL, AF must be to AL
as CF is to some altitude Cx, either greater or less than CL.
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Assume AF:AL: CF:Cz, in which Cz is less than CL.

Divide CF into equal parts, each of which is less than 2L
at least one point of division ¢, will fall between 2 and L.

Construct a right prism ABC-c. Now, because CF and
Cc are commensurable,

AF:Ac::CF:Cec; and we have supposed
AF:AL: CF:Cx; combine these proportions,
then, Ac¢:AL: Ce:Ca.

Now, Ac is less than AL, being a part of it; hence our
proportion determines Cc to be less than Cx. But this is
absurd, since the whole is greater than any part.

Hence, since our assumption that AF:AL::CF:Ca, in
which Cx is taken less than CL, leads to an absurdity it
must be false.

Cz, then, cannot be taken less than CL; and in like man-
ner it may be shown that Cx cannot be taken greater than
CL. Hence, Cx, the fourth term of the proportion, must be
taken equal to CL; or, AF: AL:: CF:CL. Q. E. D.

72. CoroLLARY. Right prisms whose bases are equal are
to each other as their altitudes.
ProrositTion XIV.

73. TaEOREM. Cuboids are to each other as the products
of their three dimensions.

E F
C D
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Let AF and KN be cuboids whose dimensions are respec-
tively BA, BM, BD, and BK, BO, BP; then will

AF:KN: (BA) (BM) (BD): (BK) (BO) (BP).
Produce the faces of KN forming the cuboids AL and AN,
Regarding AM as a common base we may write,

AF:AL:BD:BP ... (71).
Regarding AP as a common base we may write,
AL: AN : BM: BO.
Reguding BN as a common base we may write,
AN :KN: BA:BK.
Multiplying the like terms of these three proportions we
may write, after cancelling AL and AN,

AF : KN :: (BD) (BM) (BA): (BP) (BO) (BK).

Q. E. D.
74. CoroLLARY 1. Thevolume of a cuboid is equal to the
product of its three dimensions.

For, let KN be taken as the unit of cubic measure, which
we shall represent by U; BK, BO, and BP, each represent-
ing the linear unit; then,

AF:U: (BA) (BM) (BD):1x 1x1... (73)
AF_ (BA) (BM) (BD) |

6.,

U 1x1x1
But éUE is the volume of AF (70).

Hence, volume
AF =(BA) (BM) (BD).

75. CoRrROLLARY 2. The volume of a cuboid is equal to the
product of its base and altitude.
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ProrosiTion XV.

76. THEOREM. An obligue parallelopiped is equivalent to
that right parallelopiped whose base and altitude are equal
respectively to a right section and a lateral edge of the oblique
parallelopiped.

S
E

0
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Let AF be an oblique parallelopiped. Produce its hori-
zontal edges AB, CD, HG, and EF. On one of these lay off
JK equal to CD; and pass through the points J and K
the planes JQ and KP at right angles to the edge JK. Re-
garding JQ as a base, LO is a right parallelopiped whose
base JQ equals a right section of the oblique parallelopiped
AF; and the altitude JK of LO equals CD, a lateral edge
of the oblique parallelopiped.

‘We are to prove AF equivalent to LO.

Designate the solid AHEC-LQNJ as the solid A’; and
the solid BGFD-MPOK as the solid B’.

Since JQ equals KP (63), we may move solid A’ so that
its face JQ will come into coincidence with KP a face of
solid B’. Let this be done; then the edge CJ of solid A’
coincides with the edge DK of solid B’. For, these edges
are perpendicular respectively to the coincident.planes JQ
and KP, at the point J in coincidence with K; and only one
perpendicular to a plane can be drawn to the same point;
and moreover, these edges CJ and DK are equal, since they
are made up of equal parts CD and JK, and a common part
DJ. In like manner we may prove that, by the proposed
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movement of the solid, EN comes into coincidence with FO,
HQ with GP, and AL with BM. Hence, the solids A’ and
B’ may be made to coincide throughout and are therefore
equal.

Now, from these equal solids A’ and B’ take away the
common part BGFD-LQNJ and there remains

AF equivalent to LO.
Q. E. D.,

Since the above demonstration was made wholly inde-
pendent of the form of the base or right section involved, it
applies as well to any other prism as to the parallelopiped.
Hence,

77. CororLrLARY 1. An oblique prism is equivalent to
that right prism whose base and altitude are equal respec-
tively to a right section and a lateral edge of the oblique
prism.

78. CororrLaRY 2. If a cuboid and a parallelopiped
have equivalent bases and equal altitudes, they are equal to
each other in volume. .

Produce the edges LQ, JN, MP, and KOj; lay off OS
equal to KO; and pass through O and S planes perpendicu-
“lar to OS. Then, VR thus formed is a cuboid; and, since
NV is a right section of LO, and OS equals KO, LO is
equivalent to VR (76). But, AF is equivalent to LO, as we
have shown (76) ; hence, VR is equivalent to AF.

79. CoroLLARY 3. The volume of any parallelopiped is
equal to the product of its base and altitude.

Regard CF, JO, and NS, as the bases of the parallelo-
pipeds to which they belong. Represent the common alti-
tude of the three solids by @ ... (25); then will the
volume of AF be equal to (a) (CF).

For CF, JO, and NS are equivalent (363); then, multi-
plying each of the above by a, we obtain () (CF), (a) (JO),
and (@) (NS) equivalent to one another.
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But (a) (NS) equals the volume of VR (75); and the
volume of VR equals the volume of AF (78). Hence, the
volume of AF equals (a) (CF). Q. E. D.

Note. 'We shall hereafter use the symbol=—=to represent
equivalence.

ProrosiTion XVI.

80. THEOREM. A plane passed through the diagonally
opposite edges of a parallelopiped divides it into two equiva-
lent triangular prisms.

Let the plane AC’ pass through the diagonally opposite
edges AA’and CC’ of the parallelopiped BD’; then will
the triangular prisms ABC-B’ and ADC-D’, thus formed,
be equivalent.

Any right section EFGH is a parallelogram (66, ), and
EG, drawn from vertex E to vertex G, is a diagonal.
Hence the triangle EFG equals the triangle EHG. (359.)

The prisms ABC-B’ and ADC-D’ are equivalent, respec-
tively, to those right prisms whose bases are the right sec-
tions EFG and EHG, and whose common altitude is the
edge CC’ (77). But EFG and EHG are equal; therefore
the right prisms of which they are bases, are equal in vol-
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ume (65). Hence the prism ABC-B’is equivalent to the
prism ADC-D'. Q. E. D.

81 Scrorrum. ABC-B’and ADC-D’ are mutually equal
in all their parts; however, not being superposable, they are
not equal solids but symmetrical (41 and 42).

82. CoroOLLARY. The volume of any triangular prism
is equal to the product of its base and altitude.

Let a represent the altitude of ABC-B’; then will the
volume of ABC-B’ be equal to (ABC)(a).

@). For, vol. BD' = (2)(ABC-B") . . . (80),
(2). And, area DB = (2)(ABC) . . . (359),
(3)- But, vol. BD’ = (DB)(a) . . . (79).

Now substitute in equation (3), the values of vol. BD’
and area DB from equations (1) and (2) respectively, and
we find, (2)(ABC-B’) = (2)(ABC)(a).

Hence, ABC-B’ = (ABC)(a). Q. E. D.

DEFINITIONS.

83. A cylindrical surface is a curved surface generated
by a line moving parallel to a given
fixed line and continually touching
a guiding curve, the curve and the B
fixed line not lying in the same
plane. The generating line in any
position is termed an element of the
surface.

CD is a moving line always parallel to NM a given fixed
line, and continually touching DEA, a guiding curve. The
guiding curve and the given fixed line lie in different planes.

CD, FE, and BA are elements of the cylindrical surface
DB.




26 THE ELEMENTS OF SOLID GEOMETRY.

84 A cylinder is a solid bounded by a cylindrical sur-
face and two parallel planes called bases.
- The bases cut all the elements of the cylin-
drical surface. If the bases are circles as in
the figure, the cylinder is said to be eircular ;
and if the generating line is perpendicular
to the planes of the circles, the cylinder is
termed a right circular cylinder. The axis
of the cylinder is the line joining the centres of the bases.

85. A right circular cylinder is called a
cylinder of revolution ; for if a rectangle be re-
volved about one of its sides as an axis, it will
generate a right circular cylinder.

86. If two similar rectangles be revolved
about homologous sides as axes, two similar
cylinders of revolution will be generated.

87. A prism is inscribed in a cylinder when the bases of
the prism are inscribed in the bases of the cylinder. The
lateral edges of the prism then become
elements of the surface of the cylinder.
FC is a prism inscribed in the cylinder
FC.

88. A cylinder may be regarded as the
limiting case of an inscribed prism, when
the number of luteral faces of the prism
s increased indefinitely.

Thus if an inscribed prism of four lateral faces be
changed to an inscribed prism of eight lateral faces, and
then the prism of eight faces be again changed to one of
sixteen faces, etc., the prism will approach the cylinder as
a limit. By indefinitely increasing the number of faces of
the inseribed prism, it may ultimately be brought into coin-




SOLIDS: PRISMS AND CYLINDERS. 27

cidence with the cylinder, in altitude, in surface, and in
volume; that is, in its entirety.

89. For definitions of altitude, right section, ete., of
cylinders, see corresponding definitions under prisms.,

Proposition XVII.

90. TaEOREM. The volume of any prism is equal to the
product of its base and altitude.

Let the base, altitude, and volume of any prism DG,
be represented by B, a, and V, respectively; then will
V=) @.

Through the edge AB and the vertices E, K, etc., pass
planes AF, AL, etc., dividing the prism DG into triangular
prisms., All the prisms thus constructed have the common
altitude a.

From (82) we may write the following equations:
vol. (DFB-C) = (DFB) (a).
vol. (FBL-A = (FBL) (a).
vol. (BLH-K) = (BLH) (o).
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By axiom the sum of the first members of the three equa-
tions equals the sum of the second members; but the sum of
the first members equals V; therefore,

V = [(DFB) 4 (FBL) + (BLH)] (a);
and since DFB 4 FBL 4 BLH = DFLHB, or B,
V = (B) (a). Q. E. D.

91. CoroLLARY 1. The volume of any cylinder is equal
to the product of its base and altitude.

For the cylinder is the limiting case of the inscribed
prism; and accordingly the theorem of (90) must be true
alike for the prism and for the cylinder (88).

92. COROLLARY 2. Prisms are to each other as the pro-
ducts of their bases and altitudes. When the altitudes are
equal, the prisms are to each other as their bases. When
the bases are equal, the prisms are to each other as their
altitudes. This COROLLARY is also true of the cylinder.

- Use V, B, and a to represent the volume, base, and alti-
tude, respectively, of a prism; and correspondingly for any
other prism use V', B’ and a’; then,

% = 1%; also when a = o/, then % _—_%; orif B=B,
then V:, =2
A’ a

93. CoroLLARY 3. Using V and a, as in (92), and R to
denote the radius of the base, then for any circular cylinder

V = (z R? (a).
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ProrosiTion XVIII.

94. TuroreEM. The lateral surface of a prism is equal to
the product of the perimeter of a right section by a lateral edge.

N
iﬁ’
D
B
Let DE + EF + FD be the perimeter of a right section
of any prism ABC-K. Let ! represent the length of any

lateral edge (59). Let S represent the lateral surface; then
will

</

S = ! (DE + EF + FD).

Bearing in mind (4) and (372), we may write
AH = (DE),. . . for DE is the altitude of AH;
BK = [ (EF) . . . for EF is the altitude of BK;

CG =!(FD) . .. for FD is the altitude of CG ;
then, AH + BK + CG =!(DE + EF + FD) by addi-
tion;
but, AH + BK 4 CG = S8;
hence, S =1{(DE + EF 4 FD). Q. E. D.

95. CoROLLARY 1. The lateral surface oy a cylinder is
equal to the product of the perimeter of a right section by an
element of the surface.

For the cylinder is the limiting case of the inscribed
prism (88); and, accordingly, theorem (94) must be true
alike for the prism and for the cylinder.
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96. CoROLLARY 2. The lateral surface of a right prism
or cylinder is equal to the product of the altitude and the
perimeter of the base.

97. CoroLLARY 3. Lateral surfaces of right prisms or
cylinders, if the perimeters of the bases are equal, are to each
other as the altitudes of the solids ; if the altitudes are equal,
the lateral surfaces ure to each other as the perimeters of
the bases.

EXERCISES.

98. THEOREM. The volumes of twc similar cylinders of
revolution are to each other as the cube. of their altitudes, or
as the cubes of the radit of their bases.

99. THEOREM. The surfaces, lateral -or total, of two sim-
tlar cylinders of revolution are to each other as the squares
of their altitudes or as the squares of the radii of their bases.

Use diagram of (98) for (99).

100. Tueorem. The opposite faces of a parallelopiped
are equal.

D' Cl

SN
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101. TreorEMm. The diagonals of any parallelopiped
bisect each other. .

102. DeriNITION. Similar prisms are such as have the
same number of faces, each face of the one being similar to
a corresponding face of the other, and similarly placed with
respect to adjoining faces.

103. THEOREM. With respect to their triedral angles,
two similar prisms are mutually equiangular.

Use diagram of (104) for (103).

104. TurEOREM. Two similar prisms are to each other as
the cubes of their corresponding edges.

M

Place the prisms, as in the diagram, with their correspond-
ing bases on the plane MN. Draw the perpendiculars AB
and ¢b. Then AB, ab, AD, and DB lie in the same plane;
DB being in the plane MN.

AB and ab are the altitudes of the respective prisms.
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SECTION III.

PYRAMIDS AND CONES.

DEFINITIONS.

0 105. A pyramid is a solid enclosed by
the faces of a polyedral angle and a plane
cutting all these faces (36). The cutting
plane bounded by its intersections with

D the faces is called the base. The line from

4 3 C the vertex (36) to the centre of the base

is called the axis. The perpendicular dis-

tance from the vertex to the base is termed the altitude.

The lateral faces are all the faces except the base.. The lat-

eral surface is the sum of the lateral faces. The lateral
edges are the edges of the polyedral angle (36).

106. A right pyramid is one whose axis
is perpendicular to the base; if the base is
a regular polygon the right pyramid is
termed a regular pyramid.

107. A truncated pyramid is a portion

of a pyramid included between the base

and any section cutting all the lateral edges. If the
section is parallel to the base, the truncated pyramid is
called a frustum, and the section is its

<"/ 1 upper base. The altitude of the frustum
is the distance between its bases. The
lateral faces are all the faces except the

bases, and: the lateral surface is the sum of
the lateral faces.
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108. Pyramids and frustums, like prisms, are named
from their bases (55).

From the above definitions we may readily deduce for the
regular pyramid and for its frustum the following:

109. The lateral edges are equal.

110. The altitudes of the lateral faces
are equal.

11. The lateral faces are equal.
Also for the frustum we may deduce :
112. The lateral faces are tr(;zpezovids.

113. The perimeter of a right section
midway between the bases equals half the
sum of the perimeters of the bases.

The demonstration of the above is left to the student.

114. The common altitude of the lateral faces is called
the slant height (110).

ProrosiTion XIX.

115. THEOREM. Any section of a pyramid parallel to the
base is a polygon similar to the base. '

Let A'B'C'D’ be a section of the pyramid O-ABCD, par-
allel to the base ABCD; then will A'B’C'D’ be similar to
ABCD.
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For, A’B’ is parallel to AB . . . (18),
and B’C’ is parallel to BC.

Hence, angle
A’B'C’ equals ABC . . . (19).

And in like manner we can prove that the section and
the base have corresponding angles equal, each to each,
throughout.

Now, triangle

OAB is similar to OA'B’ . . . (362);
and triangle
OBC is similar to OB'C".

A'B’ OB’ B'C
Hence, E— = (()_B> =ﬁ o o o (370)-
That is, A'B’: AB:: B'C': BC.

And in like manner we may prove the sides of the section
and of the base, proportional throughout.

The section and the base have their sides proportional,
and are mutually equiangular, as we have shown; hence
they are similar. Q. E. D.

116. ScuoriuM : The lateral edges and the altitude of a
pyramid are divided proportionally by the section parallel to
the base.

The section A’C’ parallel to the base cuts the altitude OP
in the point P’. A plane MN passed through the vertex O
parallel to the base, cuts the altitude and all the lateral
edges in the point O.

Then, AA’: A’0:: BB’: B'O :: PP’: PO, ete. (26).
117. CoroiLLARY. The base of a pyramid and the sec-

tion parallel to the base are proportional to the squares of
their distances from the vertex.
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For, AA:AO=PP: PO ... (116);
hence, « AO: A0 :PO: PO (composition).

But AO:A’0O: AB: A’B’ (similar triangles) ;
hence, AB:A'B’':: PO: PO
or, "AB’: AB?:: PO*: PO

But, AC: A'C':AB*: AB” . .. (115);
hence, AC:A'C’: PO': PO

Q. E. D.
ProrosiTioN XX.

118. TuEeOREM. If two pyramids have equal altitudes and
equivalent bases, sections made by planes parallel to their bases
and at equal distances from their vertices are equivalent.

Let H be the common altitude of the pyramids O-ABC
and O'-A’B’C’; and let 4 be the common distance from the
vertices of the sections DEF and D’E’F". Let the sections be
parallel to the bases ABC and A’B’C’, and let the bases
be equivalent. Then will the sections DEF and D’E'F’ be
equivalent.

For, ABC:DEF:H2: A . .. (117);
and, A’B'C': D’E'F’ :: H?: A?;

Hence, ABC:DEF :: A'B'C’: D'E'F’.

But, ABC=c=A'B’C’ (hypothesis) ;
hence DEF =c=D'E'F.

Q. E. D.
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Prorosition XXI.

119. TueoreM. Triangular pyramids having equivalent
bases and equal altitudes are equal in volume.

Q

Let o and o’ represent two triangular pyramids having
their bases «be and a'd’¢’ equivalent; and let any line QP
be the common altitude of the pyramids. Then will o be
equivalent to o'.

Place the pyramids upon the same horizontal plane. Di-
vide the common altitude QP into equal parts ; and, through
the points of division pass planes parallel to the plane of
their bases, forming sections def and ghk in pyramid o, and
d'éf’ and ¢'I'k in pyramid o'.

At pyramid o, construct the prisms abed, def-g, and
ghk-o; and in pyramid o’ construct the prisms d'e/f’-a’ and
grE-d.

(). Tt is evident. that the difference between the sum of
the prisms of o and the sum of the prisms in o', is greater
than the difference between pyramids o and o’.

Now def-g and ghk-o are equivalent respectively to d’e/f"-a’
and g'A'k’-d’, the bases being equivalent and altitudes equal,
(82). And hence the sum of all the prisms of o is greater
than the sum of all the prisms of o/, by as much as the
volume of the prism constructed on abc as a base.

By increasing the number of equal parts into which QP
is divided, and then with these parts as altitudes construct-
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ing new series of prisms, we may make the volume of the
prism on the base abc as small as we please; and hence
make the sum of the prisms of o differ from the sum of the
prisms of ¢/, by as small an amount as we please. Thus by
dividing QP into a sufficient number of parts the difference
between the sums of these series of prisms may be made
indefinitely small; but, since this difference is greater than
the difference between the pyramids o and o', see paragraph
(a), o must be regarded as equivalent to o'. Q-E.D.

Lemma XXII.

120. THEOREM. A triangular prism may be divided into
three equivalent triangular pyramids.

E
N~ ’//'D
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Let DEO-ACB be a triangular prism. Pass through it
the planes AOC and EOC, forming three pyramids whose
common vertex is O; then will these three pyramids
ABC-0, AEC-0, and EDC-O be equivalent.

Now, AEC-0O and EDC-0 have their bases in the same
plane, AD, and their vertices at the same point O; hence,
they have a common altitude. Moreover, their bases are
equal, being halves of the parallelogram AD (359).

Therefore AEC-0 =<c=EDC-0 (119).

Pyramid EDC-0O may be regarded as having EOD for its
base and C for its vertex. It is therefore equivalent to
ABC-0 (119).

Hence, ABC-0, AEC-0, and EDC-O are equivalent.

Q. E. D.
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121. CoroLrLArY. The volume of a triangular pyramid
s equal to one-third the product of its buse and altitude.

For, the volume of the prism DEO-ACB equals the pro-
duct of its base and altitude (82); and from (120), the pyr-
amid ABC-0, constructed with the same base and altitude
as the prism, has a volume one-third as great. Hence, the
volume of a triangular pyramid is equal to one-third the
product of its base and altitude.

DEFINITIONS.

122 A conical surface is a curved surface generated by
a moving line passing through a fixed
point and continually touching a guid-
ing curve, the curve and the fixed point
not lying in the same plane. The gen-
erating line in any position is termed
an element of the surface. The point
in which the elements meet is called
the vertex.

It follows from the definition that
the conical surface will consist of two
parts, each of which has its vertex at O. We shall, how-
ever, refer to only the one part, O-ABC, as the conical
surface

123. A cone is a solid bounded by a conical
surface and a plane called the dase passing
through all the elements of the surface. The
line from the vertex to the centre of the base
is called the axis. If the base is a circle, the
cone is said to be circular ; and if the axis is
perpendicular to the circle, the cone is termed
a right circular cone.

124. A right circular cone is called a cone of revolution ;
for if a right triangle be revolved about one of its sides as
an axis it will generate a right circular cone.
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125. If two similar triangles are revolved about homologous
sides as axes, twosimilar cones of revolution will be generated.

126. A pyramid is inscribed in a cone
when the base of the pyramid is inscribed
in the base of the cone and the two solids
have a common vertex. The lateral edges
of the pyramid are elements of the sur-
face of the cone.

127. A cone may be regarded as the limit
of an inscribed pyramid when the number
" of its lateral faces is increased indefinitely.

By indefinitely increasing the number of lateral faces of
the pyramid O-ABCD inscribed in the cone O-ABCD, the
pyramid is made to approach the cone as its limit. Ulti-
mately, then, the pyramid in its entirety becomes the
cone.

For definitions of altitude, right section, frustum, ete.,
of a cone, see corresponding definitions
under pyramid.

128. From the above definitions we
may readily deduce the following :

In the right circular cone :
129. All elements of the surface are
equal.

130. Sections embracing the axis are
1sosceles triangles.

131. Right sections are circles.

132. The circumference of the right section bisecting
the altitude equals one-half the circumference of the base.

In the frustum of the right cone:
133. AUl elements of the surface are equal.

134. Sections embracing the axis are trapezoids.
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135. The circumference of the right section bisecting the
altitude equals one-half the sum of the circumferences of the

bases.
The demonstration of the above is left to the student.

136. An element of the surface is taken as the slant
height (129 and 133).

ProrosiTioNn XXIII.

137. TuroreM. The volume of any pyramid is equal to
one-third the product of its base and altitude.

1

Let V represent the volume of a pyramid, BCDEF the
base, and Az the altitude; then will V = } (BCDEF) (Ax).
Divide the pyramid into triangular pyramids by the
planes A’CE and A’CF. Represent the volumes of these
triangular pyramids by V', V", ete.
Now, V' =3} (BCF)(Ax) ... (121);
and V" =} (FCE) (Ax), etc.
Hence, V' 4+ V" 4+ V” = } (BCF 4 FCE + ECD) (Ax).
But, V 4+ V' 4+ V"=V,
and, BCF + FCE + ECD = BCDEF.
Hence, V = } (BCDEF) (Ax). Q. E. D.

138. CororrARY. The volume of any cone is equal to
one-third the product of the base and altitude.
For,inany cone A’~-BCDEF inscribe a pyramid A’-BCDEF.
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By indefinitely increasing the number of its lateral faces
the inscribed pyramid is made to approach the cone as a
limit (127). '

Hence, it is true of the cone as of the pyramid, that the
volume is equal to one-third the product of the base and
altitude.

'~ FRUSTUMS OF PYRAMIDS AND CONES,

139. PrOBLEM. Given the bases and altitude of the frus-
tum of a pyramid to find the altitude of the smaller pyramid

removed to form the frustum.
07

2

Let B represent the area of the lower base.

Let & represent the area of the upper base.

Let H represent the altitude of the frustum.

Let « represent the altitude of the smaller pyramid.

Then H + « will represent the altitude of the entire
pyramid.

We are to find the value of  in terms of B, b, and H.

Now, B:b:(H+2):2% (117).
Hence, VB:ve iH+z: 2.
Hence, z2~/B=H+b +2p;
or, 2 VB —ovE=HV5;
Hvb '
% =B =+ Q.EF.
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140. From the conditions given in (139), to find the
volume of the entire pyramid of which the frustum is a part.

Let V represent the required volume, then we are to find
the value of V in terms of B, 4, and H.

V=3B H+=x)...dA37).
Substitute the value of « found in . . . (139);

ten, V=3 @(H+ Y0,

E—F
or, V=iB(H\/Bi/i}§I:/b\/-;H\/b);
_ . p HVB)
o VEWIE Q.EF.

141. From the conditions given in (139), to find the wvol-
ume of the frustum.

Let V' represent the volume of the smaller pyramid.
Let F represent the volume of the frustum.
‘We are to find the value of F in terms of B, b, and H.

Now, F=V-V.
But, V'= M, . .. (137) and (139);

VB — Vb
and, V_§B\/B—_\—/§,---( )
_3BEVE) _ 3bHEH)
Hence, F = TB=vi VB—3 '
o p_YHEBVE—bvT)
T B

or, F=§H(B+\/ﬁ+b);
or, F=3HB + }Hb + 3 H/Bs. Q. E F.
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142. Scmorivm. The formule obtained in (139), (140),
and (141), apply equally well to all frustums of pyramids
or of cones.

These formul® may be stated in general terms; (141)
may be expressed as follows :

143. The volume of any frustum is equal to the volume of
three pyramids or cones having for their altitude the altitude
of the frustum, and for their bases, the bases of the frustum,
and a mean proportional between the bases.

ProrosiTion XXIV.

144. THeOREM. The lateral surface of a reqular pyra-
mid is equal to one-half the product of the slant height by
the verimeter of the base.

1 4

LT

B

Let V-ABCD be a regular pyramid whose slant height is
Vz. Let A represent the lateral surface, P the perimeter
of the base, and S the slant height, then will A = } (S) (P).

Now, 8 is the common altitude of all the lateral faces (114).

Hence,A =} S (AB) 4+ 4 S (BC) + £ S (CD) + 8 (DA)
... (364);
or, A =} S (AB + BC + CD + DA);
or, A=1}(S)(®P). Q. E. D.
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145. CororLLARY 1. The lateral surface of a right cone
is equal to ome-half the product of the slant height by the
circumference of the base.

For the cone may be regarded as the limiting case of the
inseribed pyramid (127). Accordingly (144) must be true,
alike for the pyramid and for the cone.

146. CoroLLARY 2. When A represents the lateral sur-
Jace, S the slant height, and R the radius of the base, ¢cf a
cone of revolution ; then A = = (R) (S).

ProrosiTion XXV,

147. TaeEOrREM. The lateral surface of the frustum of a
reqular pyramid is equal to one-half the product of the slant
height by the sum of the perimeters of the bases.

Let EFG-ABC be the frustum of a regular pyramid
whose slant height is #y. Let P represent the perimeter of
the lower base, p the perimeter of the upper base, S the
slant height, and A the lateral surface; then will

A=3S(p+P).

Now, S is the common altitude of all the lateral faces
(114), and each face is a trapezoid (112).
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Hence,
A=3}S(AB+ EF) + } S (BC+FG) + etc. . . . (366);
or, A=}8S(AB + EF + BC 4+ FG + CA + GE);
or, A=}S[(AB+ BC+ CA) + (EF + FG + GE)];
or, A=}S(p+ D). Q. E. D.

148. CoroLLARY 1. The lateral surfuce of the frustum
of a right cone is equal to one-half the product of the slant
height by the sum of the circumferences of the bases.

For, the frustum of a cone is the limiting case of the
inscribed frustum of a pyramid; and accordingly theorem
(147) must be true alike for the frustum of the pyramid
and for the frustum of the cone.

149. CorOLLARY 2. The lateral surface of the frustum
of a right cone may be found by multiplying its slant height
by the circumference of the right section equidistant from the
bases. :

For, the circumference of the right section equidistant
from the bases equals one-half the sum of the circumfer-
ences of the bases (135).

150. ScuorLium. Let the lines AB and CD be drawn in
the same plane, and let M be the mid-
dle point of AB. Let AC, ME, and c
BD be perpendiculars drawn to CD. 4
Now, if ABDC be revolved about CD
as an axis, the frustum of a right
circular cone will be generated, AC,
BD, and ME generating respectively
an upper base, a lower base, and a mid-
dle right section. If we represent the
lateral surface of the frustum by A, then will

A=BA.27.ME ... (149).
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‘ EXERCISES.
151. THEOREM. The volume of two stmilar cones of revo-
lution are to each other as the cubes of their altitudes, or us

the cubes of the radii of their bases.

152. THEOREM. The surfaces, lateral or total, of two
similar cones of revolution are to each other as the squares of
their altitudes, or as the squares of the radii of their bases.
Use diagram of (151).

153. DeriNITION. Similar pyramids are such as have the
same number of faces, each face of the one being similar to
a corresponding face of the other, and similarly placed with
respect to adjoining faces.

154. THEOREM. With respect to their triedral angles, two
similar pyramids are mutually equiangular. Use diagram
of (165). Also see (39), (40), and (43).

155. THEOREM. Two similar pyramids are to each other
as the cubes of their corresponding edges.

A

Place the equal triedral angles A and A’ in coincidence,
and draw from the common vertex A, a perpendicular to the
base BCD ; thus representing the altitude of the pyramids.
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156. THEOREM. In any truncated triangular prism
ABC-F, the sum of the three pyramids ABC-F, ABC-E,
and ABC-D is equivalent to the truncated prism.

157. CoroLLARY 1to (156). The volume of any truncated
right triangular prism ABC-F s equal to the product of its
base ABC by one-third the sum of its lateral edges AD, BE,
and CF.

158. CoROLLARY 2 to (156). The volume of any truncated
triangular prism ABC-F is equal to the product of the right
section GHK, by one-third the sum of the lateral edges AD,
BE, and CF.
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159. TueorEM. Two triangular pyramids having o tri-
“edral angle of the one equal to a triedral angle of the other,
are to each other as the products of the edges including the
equal triedral angles.

Place the equal triedral angles in coincidence at 0. Draw
CP and C'P’ perpendicular to the face OA'B’.
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SECTION 1IV.

THE SPHEHRE.
DEFINITIONS.

160. A sphere is a solid bounded by a curved surface,
every point of which is equally distant
from a fixed point within. The fixed
point is the centre. Any line from the
centre to the surface is a radius. Any
line through the centre limited by the
surface is a diameter.

161. A plane or a line is tangent to
a sphere when it touches the surface of
the sphere in only one point.

From the above definitions the student may readily
deduce the following :

162. Radii of the same or equal spheres are equal.
163. Diameters of the same or equal spheres are equal.

164. Two spheres of equal radii may be made to coincide
by placing their centres in coincidence.

165. A sphere may be generated by Y the revolution of a
semwzrcle about the diameter as an axis.

166. Sections of a sphere through the centre are equal
circles of the same radius as the sphere. Such circles are
called great circles.

167. Any great circle bisects the sphere.
168. Two great circles bisect each other.
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169. A great circle is determined by two points in the
surface of the sphere, unless the points are extremities of a
diameter.

170. The plane perpendicular tv the radius of a sphere at
its extremity is tangent to the sphere. And conversely the
plane which is tangent to a sphere is perpendicular to the
radius drawn to the point of contact.

171. The distance between two points on the surface of
a sphere is measured on the arc of a great circle joining the
points.

172. A sphere is inscribed in a polyedron when the faces

of the polyedron are tangent to the sphere. The polyedron
is then circumscribed about the sphere.

ProrosiTrion XXVI.

173. TrEOREM. Every section of a sphere made by a plane
18 a circle.

The section through the centre is a circle (166). Let
ABC be any section not through the centre O; then will
ABC be a circle.

Draw a diameter perpendicular to the section ABC, pier-
cing it at some point O’. From the centre O to any points
B and A in the perimeter of the section ABC, draw OB and
OA. Draw BO’ and AO'.

Now, in the triangles OBO’ and OAQ’, the angle O0’A
equals the angle OO'B (4) ; OB equals AO being radii, and
00’ is common; hence the triangles are equal, and therefore
A(Q’ equals BO’. That is, any points B and A in the perim-
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eter of the section ABC are equally distant from (O, a
point within. By definition then, ABC is a circle having O’
for its centre. Q. E. D.

174. Scuorrum. A diameter of a sphere perpendicular
to a circle is termed the axis of the circle. The extremities
of the axis are the poles of the circle. ’

175. CoroiLLARY. The axis of any circle of a sphere
pterces the centre of the circle.

For the diameter perpendicular to any circle ABC has
been shown to pierce the centre of ABC.

ProrosiTion XXVII.

176. TreorEM. Either pole of a circle of a sphere is
equally distant from any two points in the circumference of
the circle.

Let A and B be any two points in the circumference of
the circle ABC whose poles are P and P’; then will the arcs
AP and BP be equal, also the arcs AP’ and BP’ will be
equal.

Let O be the intersection of the axis PP’ with the circle
ABC. Draw the straight lines AO, BO, AP, and BP.

Now, in the triangles AOP and BOP, the angle AOP
equals the angle BOP (4); the side AO equals the side BO
(175); and OP is common to the two triangles; hence, the
triangles are equal and homologous parts AP and BP are
equal. Then the arc AP equals the arc BP (374). In like
manner we may prove that the arc AP’ equals the arc BP".

Q. E. D.
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177. Scuorium. The distance from the pole of a circle
of a sphere to a point in its circumference is called the
polar distance of the circle.

178. CoroLrArY 1. The polar distances of two equal
circles of the same or equal spheres are equal.

For, the diameters of equal circles of a sphere are chords
of equal arcs of great circles, each of these equal ares being
" twice the polar distance of one of these equal circles.

179. CoroLLARY 2. The polar dis-
tance of a great circle is a quadrant.

For, AOP is a right angle (174);
hence arc AP which is the measure of
AOP is a quadrant. In like manner
B arc BP is found to be a quadrant.

180. CoroLrLARY 3. That point on

P the surface of a sphere which is a quad-
rant’s distance from two points in the

circumference of a great circle is the pole of the great circle.

Proposition XXVIIL

181. THeoreEM. The surface of a sphere is equal to the
area of four great circles.

F
4 c
M E
B
P D
K u
L

Let the sphere whose centre is D be generated by the
revolution of the semicircle FBL about the diameter FL as
an axis ; and let R represent the radius and S the surface
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of the sphere; then will = R? represent the area of a great
circle (373) and S will equal 4 = R2

In the semicircle inscribe FABKL one-half of the regular
polygon. From M, the centre of the chord AB, and from
the vertices A, B, and K, draw to FL the perpendiculars
ME, AC, BD, and KH. Also draw AP, a perpendicular to
BD. MD is the radius of the circle which may be inscribed
in the regular polygon FABKL ete., (367) ; call this radius r.

In the revolution of the semicircle, the line AB will gen-
erate the surface of a frustum ; and if A represent this sur-
face, then will A =BA ‘2#*ME =2~ -BA-ME (150).

Now, by the similar triangles MDE and ABP,

MD:BA:: ME:PA or CD;

hence, BA-ME =MD - CD.
But, A =2rBA -ME;
hence, A=27MDCD=2x'7:CD.

182. This proves that the surface generated by a side of
this regular polygon is equal to the circumference of the in-
scribed circle multiplied by the projection of the side upon
the axis. ‘

In the revolution, then, the sides will generate the follow-
ing areas :

area AF =24r-FC ... (182);
area AB=2xr-CD;
area BK =2 #=r-DH;
area KL = 2 #r- HL.

Call the sum of these areas 8’; then,

§' =2xr (FC + CD 4+ DH + HL).

Now, FC 4 CD + DH + HL = the diameter, or 2 R.

Hence, 8" = (2 =r) (2R).

If the number of sides of the inscribed semi-polygon be.
increased indefinitely, it will approach the semicircle as its
limit and » will approach R as its limit; at the limit then,

S = (2xR) 2R);
or, S =4 7R3 Q. E. D.
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183. CororLrarY 1. The surfaces of two spheres are to
each other as the squares of the radii of the spheres.

For, if we represent the surfaces of two spheres by S and
S’, and the radii by R and R’, then,

184. Scuorium. The surface generated by an arc AB is
termed the zone AB. CD, the projection of the arc upon the
axis, is the Aeight of the zone.

185. CoxroiLrArY 2. The area of a zone is equal to the
circumference of a great circle multiplied by the height of the
zone.

For, at the limit, area AB = 2« 7+ CD becomes, —

zone AB =2x-R-CD.

186. CoOROLLARY 3. Zones on the same or equal spheres
are to each other as their height.

Zone AB= 272R-CD =_QB
zoneBK ~ 2zR-DH DH'

For

DEFINITIONS.

187. A spherical polygon is that portion of the surface
of a sphere intercepted by the faces of a polyedral angle
having its vertex at the centre of the

sphere. ABCD is a spherical polygon.

B
c 188. It follows from the definition

‘V that the sides of a spherical polygon are

those arcs of great circles which measure
the face angles of the polyedral angle at
the centre; and that each angle of the
polygon corresponds to a diedral angle
between two faces of the polyedral angle. Thus, AB,a side
of the polygon, is the arc of a great circle which measures
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AOB, an angle at the centre. And BAD, an angle of the
polygon, corresponds to the diedral angle B-AO-D; to
which angle it is equal in value; ¢.e.,, BAD and B-AO-D
contain the same number of degrees.

189. A spherical triangle is a spherical polygon of three
sides; it, like the plane triangle, may be right, oblique,
isosceles, ete. Its three sides and three angles are called
the parts of the triangle.

190. A spherical angle may be defined as the angle on
the surface of the sphere between two intersecting arcs of
great circles. The spherical angle between the arcs of two
intersecting circles, and the corresponding diedral angle
between the planes of these circles are equal in value (188).

191 If, from the vertices of a spherical triangle as
poles, arcs of great circles be de-
scribed, a second spherical triangle
will be formed which is called the
polar triangle of the first. If A, B,
and C are poles of B'C’, C’A’, and
A’B’, respectively, then will A’'B'C’
be the polar triangle of ABC.

192. A spherical pyramid is a
solid enclosed by a spherical polygon and the faces of the

polyedral angle which intercept the polygon. See O-ABCD
(187). The spherical polygon is called the dase.

o

193. A4 spherical sector is that por-
tion of a sphere generated by revolving
a sector of a great circle about any
diameter of the sphere lying in the plane
of the sector. The plane sector DOC
revolved about AB as an axis generates
a solid or spherical sector. The base of
the sector is the zone generated by the
arc DC.
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194. A spherical segment of one base
is the portion of a sphere generated by
revolving a semi-segment of a great cir-
cle about that diameter which bisects
the segment. The plane semi-segment
EAF revolved about AB as an axis gen-
erates a solid or spherical segment. The
plane face is called the dase.

195. A spherical segment of two bases is the portion of a
sphere included between two parallel planes. It is gen-
erated by revolving CDFE about the diameter AB; CD and
EF being perpendicular to AB. See diagram (194).

ProrosiTion XXIX.

196. THEOREM. The measure of a spherical angle is the
_arc of a great circle described from its vertex as a pole, in-
cluded between its sides produced if necessary.

A

Let BB’ be the arc of a great circle described from the
vertex of the spherical angle BAB’ as a pole, included be-
tween BA and B’A, the sides of the angle; then will BB’
be the measure of BAB'.

To O, the centre of the sphere, draw BO and B'O. Now,
AB and AB’ are quadrants (179); hence, AOB and AOB’
are right angles (375). It follows, then, that BOB’, or BB’
which measures BOB’, is the measure of the diedral angle
between the planes of the circles through AB and AB’ (30).

And since BB’ is the measure of the diedral angle be-
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tween the planes through AB and AB/, it is the measure of

the spherical angle between AB and AB’ (190).
‘ _ Q. E. D.

197. CororLARY. Tangents to the sides of a spherical

angle, at its vertex, include a plane angle equal in value
to the spherical angle.

For such a plane angle measures the diedral angle be-
tween the planes through the sides of the spherical angle
(376).

ProrosiTion XXX.

198. THEOREM. The volume of a sphere is the product
of its surface by one-third the radius.

Let the volume of the sphere whose centre is O be
represented by V, the radius by R, and the surface by S;
then will V=3 R-S.

Let a cube be circumscribed about the sphere (172). To
the vertices of the cube draw lines from the centre O. Con-
ceive the cube to be formed of six pyramids whose bases
are the faces of the cube and whose common vertex is the
centre of the sphere.

Now, these pyramids have a common altitude R (172 and
170) ; and since the volume of each pyramid is § R times
its base (137), the volume of all these pyramids, i.e., the
volume of the cube, is 4 R times the surface of the cube.

Let the polyedron circumscribed about the sphere have
the number of its faces increased, all of them, however,
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remaining tangent; still the volume of the circumseribed
solid is 4 R times its surface.

When the number of faces of the circumscribed solid is
made infinite, the solid will approach the sphere as a limit;
and, at the limit, the volume of the sphere is 3 R times the
surface of the sphere; or V= }R"S. Q. E. D.

199. CoroLLARY 1. The volume of a sphere equals % = E?,
or } n D3 D being the diameter.
For,V=}R-S.and S =4 = R?; hence V=4 Réor } = D%

200. CoROLLARY 2. Spheres are to each other as the
cubes of their radii or diameters.

For, V_4aR R, V _3=D* _D¢

201. CoroLLARY 3. The volume of a spherical pyramid
is equal to the product of its base by one-third the radius of
the sphere.

202. CoroLLARY 4. The volume of a spherical sector is
equal to the product of the zone which forms its base by one-
third the radius of the sphere.

ProrosiTion XXXI.

203. ProBLEM. To0 find the wolume of a spherical
segment,

p

Let a, b, ¢, p, be a circle whose centre is 0. From @ and
b draw perpendiculars an and &m to ¢p, a diameter. Revolve
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the semicircle acp about cp as an axis; then, the plane
sectors boc and aoc will generate corresponding spherical
sectors. Call these S and §’, respectively.

The triangles dmo and ano will generate right circular
cones ; call these C and C’ respectively. »

The semi-segments dcm and acn will generate correspond-
ing spherical segments of one base, and anmb will generate
a spherical segment of two bases; call these spherical seg-
ments O, O, and T, respectively.

Now,0=8—-C;and 0 =8 —C’; and T=0"— 0.

By means of these formule the volume of any spherical
segment may be found. Q. E. F.

ProrosiTion XXXII.

204. TuEOREM. If one spherical triangle is the polar tri-
angle of a second, then, reciprocally, the second is the polar
triangle of the first.

Let A’B’C’ be the polar triangle of ABC; then will ABC
be the polar triangle of A'B'C’.

Since A is the pole of the arc B'C’, B’ is at a quadrant’s
distance from A. And since C is the pole of the arc B’A/,
B’ is also a quadrant’s distance from C. Now, since B’ is at
a quadrant’s distance from both A and C, B’ must be the
pole of the arc AC (180).

In like manner we may prove that C’is the pole of the
arc BA, and A’ is the pole of the arc BC.

Hence, ABC is the polar triangle of A'B’'C’ (191).

Q. E. D.
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205. CororrArY 1. If A is any angle of a spherical
triangle, and if B'C’ is the side opposite A, in the polar tri-
angle, then will A be equivalent to 180° — B'C'.

For, produce the arcs AB and AC until they meet B'C’ at
some points D and E.

(¢) Now, arc B'E = 90° (179).
) And arc C'D = 90°;
(¢)  hence, B'E 4 C'D =180°, adding (a) and (b).

But, B’E 4+ C'D = B'E 4+ (EC' + ED);
or, B'E 4 C'D = B’C’ 4 ED; substitute in (c),
then, B'C’ 4+ ED = 180°;
hence, ED = 180° —-B'C..

But are  ED is the measure of angle A (196) ;
hence, A ===180° — B'C". Q. E. D.

206 Scmorium. If in two spherical triangles all the
angles of the one are equal to all the angles-of the other,
each to each, the triangles are said to be mutually equiangu-
lar ; if in the two triangles all the sides of the one are
equal to all the sides of the other, each to each, the tri-
angles are said to be mutually equilateral.

207. CoroLLARY 2. If two spherical triangles are mu-
tually equiangular, their polar triangles are mutually equi-
lateral.

For, homologous sides in the polar triangles are supple-
ments of equal angles in the primitive triangles (205).

208. CoroOLLARY 3. If two spherical triangles are mu-
tually equilateral, their polar triangles are mutually equi-
angular.

For, homologous angles in the polar triangles are supple-
ments of equal sides in the primitive triangles (205).
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ProrosiTion XXXIII.

209. THEOREM. Any side of a spherical triangle is less
than the sum of the other two sides.

c

In the spherical triangle ABC let the side BC be greater
than either AC or AB; then will BC be less than AB 4+ AC.
Complete the demonstration by (44).

210. THEOREM. The sum of the sides of any spherical
polygon is less than four right angles.

Use the diagram of (209), and complete the demonstra-
tion by (45).

ProrosiTion XXXIV.

211. TreEOREM. The sum of the angles of a spherical
triangle is greater than 180° and less than 540°.

Let A, B, and C represent the angle of any spherical
triangle ABC; then will A 4B+ C > 180° and < 540°.
Construct A'B’C’, the polar triangle of ABC.



62 THE ELEMENTS OF SOLID GEOMETRY.

Now, A =180° — B'C’ . . . (205)

and B = 180° — A'CY

and  C =180° — A’B’; adding

then, A+B+C =540° — (B'C'+A'C'+ A'B).
But, B'A’+ A'C’ 4+ A’B’ < 360° . . . (210).

Substituting this value of B’A’4- A’C’ 4 A’B’ in the pre-
ceding equation, we find A 4 B 4 C > 180° and < 540°.
Q. E. D.

212. CorROLLARY. A spherical triangle may have one,
.Bwo, or three right angles, or each of its angles may be obtuse.

213. ScHoLiuM. A birectangular triangle has two right
angles ; a tri-rectangular triangle has three right angles.

214. ScuoriuM. The sum of all the angles of a spheri-
cal polygon minus two right angles gives a remainder which
is called the spherical excess of the polygon.-

Prorosition XXXV.

215. THEOREM. Two spherical triangles on the same or
equal spheres are mutually equal with respect to all their
parts, under the following conditions :

1. If they are mutually equilateral.
II. If they are mutually equiangular.
III. If they are mutually equal with respect to two sides
and their included angle.
IV. If they are mutually equal with respect to two angles
and their common side.
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Case I. Let the spherical triangles ABC and DEF, on
equal spheres, be mutually equilartea ; then will they be
mutually equal with respect to all their parts.

Let O and O’ be the triedral angles of the spherical tri-
angles ABC and DEF (187 and 189).

Now, O and O’ have three face angles of the one equal to
three face angles of the other, each to each (188). Hence
O and O’ are mutually equal in all their parts (46).

But, if O and O’ are mutually equal with respect to all
their parts, then ABC and DEF are mutually equal with

respect to all their parts (188). Q E. D.
A D’
4
B’ E P’

Case II. Let the spherical triangles ABC and DEF be
mutually equiangular, then will they also be mutually equi-
lateral. For,—

Let A'B’C’ and D’E'F’ be the polar triangles of ABC and
DEF respectively.

Now, since ABC and DEF are mutually equiangular (Hyp.),
A’B’C’ and D'E'F’ are mutually equilateral (207).

And, since A’B’C’ and D’E'F’ are mutually equilateral,
they are also mutually equiangular (Case I.).

And because A’B’C’ and D'E’F’ are mutually equiangular,
ABC and DEF are mutually equilateral (207).

Q. E. D.

Case III. See diagram, Case L.

Let the angle B equal the angle E. Let the side AB
equal the side DE, and let the side BC equal the side EF;
then ABC and DEF will be mutually equal with respect to
all their parts. :

Now, the triedral angles O and O’ have two face angles
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and the included diedral angle of the one, equal to two face
angles and the included diedral angle of the other, each
to each (188). Hence O and O' are mutually equal with
respect to all their parts (48), then ABC and DEF are mutu-
ally equal with respect to all their parts (188). @. E. D.

Case IV. See diagram, Case II.

Let the spherical triangles ABC and DEF be mutually
equal with respect to two angles and their common side;
then ABC and DEF will be mutually equal with respect to
all their parts.

Since ABC and DEF are mutually equal with respect to
two angles and their common side, A'B’C’ and D’E'F’ are
mutually equal with respect to two sides and their included
angle ; for the parts of a polar triangle are supplements of
the opposite parts in the primitive triangle (205).

But, if A'B’C’ and D’E'F’ are mutually equal with respect
to two sides and their included angle, they are mutually
equal in all their parts (Case III).

And, if A’'B’C’ and D’E'F’ are mutually equal in all their
parts, ABC and DEF are mutually equal in all their parts
(207 and 208). Q. E. D.

216. Scuorium 1. Our theorem is proved to be true,
independent of the size or equality of the spheres involved
if the sides of the triangles are expressed in degrees. It is
also proved to be true, independent of the order in which
the equal parts are arranged.

217. Scuorium 2. Two spherical triangles on the same
or equal spheres, mutually equal with respect to all their
parts, cannot always be made to coincide by superposition.

(e). If the equal parts of the one triangle are arranged in
the same order as the equal parts of the other, the triangles
may be made to coincide, and hence are equal. ABC and
DEF are equal. See diagram, Case 1.
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(6). If the equal parts of the one triangle are arranged in
the reverse order of the equal parts of the other, coinci-
dence is not always possible, and hence
the triangles are not always equal. Such 4
triangles are symmetrical. EFD and

EFD are symmetrical. See diagram, D
Case L

Let the triangles ABC and ABD be 0
symmetrical. To make them coincide B

we must bring the equal sides AD and

AC together; if, for this purpose, we turn ADB about AB
as an axis, the convexity of the surfaces will prevent the
coincidence of the triangles.

(¢). If the triangles ABC and ABD are isosceles, they may
be made to coincide by sliding the side AB of the triangle
ABD over on the side AC of the triangle ACB ; hence,

Symmetrical isosceles triangles on any sphere are superpos-
able and therefore equal.

Prorosition XXXVI.

218. Lemma. Circles passed through the vertices of each
of two symmetrical spherical triangles are equal.

4 D

Let ABC and DNL be two symmetrical spherical tri-
angles, and let a circle be passed through the vertices A, B,
C; and similarly, let a circle be passed through D, N, L;
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then will the circle determined by A, B, C be equal to the
circle determined by D, N, L.

Draw chords forming the plane triangles ABC and DNL.

Now, since the arc AB equals the arc DN, the chord AB
equals the chord DN. In like manner it follows that the
chord AC equals the chord DL, and the chord BC equals
the chord NL. The plane triangles ABC and DNL are
therefore mutually equilateral, and hence equal.

But, if the plane triangles ABC and DNL are equal, the
circles which may be circumscribed about them must be
equal, as may be shown by superposition. Q. E. D.

219. CoroLrLARrY. The pole P of the circle ABC is the
same distance from the vertices A, B, C, as the pole S of the
circle DNL 1s from the vertices D, N, L (178).

Prorosition XXXVII.

220. THEOREM. Symmetrical spherical triangles are
equal in area. :

Let ABC and DNL be two symmetrical spherical tri-
angles in which AB equals DN, AC equals DL, and BC
equals NL; then ABC and DNL will be equal in area.

Let P be the pole of the circle through A, B, and C; and
let S be the pole of the circle through D, N, and L. Draw
arcs of great circles, PA, PB, PC, and SD, SN, SL.
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Now, PA =8D,and PB =S8N (219); and since by
hypothesis AB = DN, it follows that the triangles APB and
DSN are mutually equal with respect to all their parts
(215, Case L).

But, PA = PB and SD = SN (176). The triangles APB
and DSN are thus found to be symmetrical isosceles tri-
angles ; they are therefore equal (217, ¢).

Similarly, we may prove that the triangle BPC equals
the triangle NSL; and the triangle APC equals the triangle
DSL.

But,if APB = DSN,

and APC = DSL, then, adding,
APB 4 APC = DSN 4 DSL.
But, BPC = NSL, then, subtracting,

APB + APC — BPC=c=DSF + DSL — NLS;
which from the diagram gives,
ABC=c=DNL. Q. E. D.

221. Scuorium. If the poles fall within the spherical
triangles, the areas of the triangles may be shown to be
equal by adding BPC = NSL, instead of subtracting as
above.

Prorosition XXXVIIIL
222. THEOREM. In an isosceles spherical triangle the

angles opposite the equal sides are equal.

A

B
D

Let ABC be an isosceles spherical triangle whose sides
AB and AC are equal; then C and B the angles opposite
the equal sides will be equal.
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Through A the vertex and D the middle point in the base
pass the arc of a great circle, forming triangles ADB and
ADC.

Now, the triangles ADB and ADC being mutually equi-
lateral are mutually equal with respect to all their parts
(215, Case 1.).

Hence B and C are equal, being homologous parts.

Q. E. D.

223. CorOLLARY. The arcfrom thevertex of an isosceles
triangle to the middle of its base bisects both the triangle and
its vertical angle, and it is also perpendicular to the base.

ProrosiTion XXXIX.

224. TueorEM. If two angles of a spherical triangle are
equal, the sides opposite are equal.

Let A’B’C’ be a spherical triangle whose angles B’ and ¢’
are equal, then will A’C’' and A’B’, the sides opposite, be
equal. .

Let ABC be the polar triangle of A’B'C'.
Now, B ' =180°— AC ... (205);
and C’ =180° — AB.
Hence, 180° — AC = 180° — AB, since B’ = C';
or, AC = AB.
But if AC = AB,
then, B=C... (222);
and, in the polar triangle by the method used above,
A'C"=A'B. Q. E. D.
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Prorosition XL.

225. THEOREM. In a spherical triangle of unequal parts
the greater side lies opposite the greater angle ; and con-
versely the greater angle lies opposite the greater side.

A
D

B c

(). Let ABC be a spherical triangle in which the angle
B is greater than the angle C, then will AC opposite B be
greater than AB opposite C.

Construct the spherical angle DBC equal to C, complet-
ing the triangle BDC. Then, since the angle DBC equals
C, the side DC equals the side DB (224).

Now, BD -+ AD> AB ... (209).

But, BD = DC, just shown.
Hence, DC + AD > AB by substitution
or, AC > AB. Q. E. D.

(6). Let the side AC be greater than the side AB, then
will the angle B opposite AC, be greater than the angle C
opposite AB.

If B were less than C, AC would be less than AB. See (a).
If B were equal to C, AC would be equal to AB (224).
But since AC is neither less than nor equal to AB, B can-
not be less than or equal to C.

Hence B is greater than C. Q. E. D.
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DEFINITIONS.

226. Let two great circles of a sphere, A‘CAC’ and

BA’B’A, bisect each other at right angles, they will have a

common diameter AA’. Pass a third

great circle CB'C’'B through the sphere,

whose poles are the extremities of this

common diameter AA’. The sphere is

now divided into eight equal parts by

three great circles at right angles to each

other. The spherical surface of one of

these parts is a tri-rectangular triangle each of whose sides

is a quadrant. The entire surface of a sphere then con-
tains eight tri-rectangular triangles.

227. A lune is a spherical surface bounded by two semi-
circumferences of great circles. A lune then has two equal
angles and two equal sides. A'B’CB is a lune. See (226).

Prorosition XLI.

228. THEOREM. A lune is to the entire surface of the
sphere as the angle of the lune is to four right angles.

A

T ¢

\\

v

Let AaV and AcV be two great circles through a common
diameter AV, then the surface AaVcA will be a lune whose
angle is cAa. Represent the surface AaVcA by L, the
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whole surface of the sphere by 8, and the angle of the lune
by A: then
L:S8: A:4rt angles.

Let abeda be the circumference of a great circle whose
poles are A and V, and let ac be an arc of it intercepted by
the sides of the lune; then ac is the measure of A (196).

Let ab, a common measure, be contained in ae, m times,
and in the circumference abeda, n times; then,

arc ac: circum. abeda::m:n;
or, A:4rt angles:im:n . . . (196).

Through all the points of division in abeda pass great circles
embracing AV. The whole spherical surface is thus divided
into » smaller lunes which are superposable and therefore
equal. The lune L contains m smaller lunes.

Hence, L:Su:m:n
But, A:4rt. angles: m: n.
Hence, L:S: A:4rt angles. _

And the same may be shown when arc a¢ and circumfer-
ence abeda are incommensurable. Q. E. D.

229. CoRrOLLARY 1. The area of a lune may be found by
multiplying twice its angle expressed in right angles, by a tri-
rectangular triangle.

If a right angle be taken as the unit of angular measure,
the value of the angle A is A right angles. And if a tri-
rectangular triangle is taken as the unit of spherical surface,
the value of the entire spherical surface is 8 T, in which T
represents a tri-rectangular triangle (226). Whence the
proportion,

L:S: A:4rt. angles (228) becomes
L:8T: A rt. angles: 4 rt. angles;
or, L:8T:A:4;
or, 4L =8T-A;
or, L=2A-T.
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230. CorROLLARY 2. Lunes on the same sphere have the
same ratio as their angles.

If L and L’ are two lunes on the same sphere and A and
A’ their angles, then,

ProrosiTron XLII.

231. TarorEM. Thearea of a spherical triangle is equal
to the product of the spherical excess by a tri-rectangular
triangle.

Let ABC be any spherical triangle, and let A + B + C
express the sum of its angles in right angles; then A 4+ B
+ C — 2 will express its spherical excess (214). Now, if T
be the area of a tri-rectangular triangle, and S the area of
the triangle ABC; then wilS = (A +B +C—2) T.

Complete the great circles of which the sides of the
triangle are arcs. Now, since two great circles bisect each
other these great circles will intersect in diameters AA’,
BB’, and CC'.

And, since the vertical angles at the centre are equal,
BC =B'C/, BA’ = AB/, and CA’ = AC’; whence the tri-
angles AC'B’ and A’CB being mutually equilateral are
mutually equal in all their parts (215), and must be equal
or symmetrical (217) and equivalent (220); and, the lune
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which is made up of the triangles ABC and A’BC is equiva-
lent to ABC + AC'B'.

(1). That is, lune BACA’ == ABC + AB'C".
(2). But lune ABCB’ == ABC + ACB".
(3)- And, lune ACBC' == ACB + ABC('.

Equations (1), (2), and (3) give by addition,

(4). BACA’ + ABCB’ + ACBC’' === 2 ABC + ACB
+ AB'C’ + ACB’ + ABC'

(5)- But, BACA’ + ABCB’ 4+ ACBC' <=2 AT +
2B-T+2C-T... (229;

(6). and ACB + AB'C" + ACB" + ABC' <=4 T, the
surface of the hemisphere BCB'A . . . (226).

(7). And 2 ABC = 2 8, from our hypothesis.

Now, substituting in (4) values found in (5), (6), and (7) ;
then,
8).2A'T+2B'T+2C-T=28+4T;
9. or,28=2AT+2B'T+2C-T—4T;
or, S=(A+B+C-2)T. Q. E. D.

232, SceonLiuM. By dividing a spherical polygon into a
number of spherical triangles we may readily deduce from
our theorem that, —

The area of a spherical polygon is equal to the product of
its spherical excess by a tri-rectangular triangle.

233. GENErRAL ScHOLIUM. In the foregoing demonstra-
tions it has been shown that certain similar solids (see
prisms, pyramids, cylinders, cones, and spheres) are to
each other as the cubes of corresponding edges or dimen-
sions, and that the surfaces of these similar solids are to
each other as the squares of corresponding edges or dimen-
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sions. By the methods already used we may show that,
any two similar solids are to each other as the cubes of their
corresponding dimensions ; and that, the surfaces of any two
similar solids are to each other as the squares of their corre-
sponding dimensions.

EXERCISES.

234. LemmA. Any point in the plane which bisects a
diedral angle is equally distant from the faces of the angle.

i

From any point P in the bisecting plane BE, dsaw
perpendiculars PN and PM to the faces of the diedral
angle. Through PM and PN pass a plane intersecting the
faces of the angle and the bisecting plane in the lines FN,
FM, and PF. Show that the plane angles PFN and PFM
are the measures of corresponding diedral angles, and hence
equal. From which find the triangles PNF and PMF to be
equal, and hence PM equals to PN.

235. THEOREM. A sphere may be inscribed in a trian-
gular pyramid.

Bisect the diedral angle between the base BCD and each
face, by planes; then see (234).
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236. TuroreM. The surface of a sphere i8 to the surface
of a circumsecribed right cylinder as two is to three.

237. TueoreEM. The volume of a sphere is to the volume
of a circumscribed right cylinder as two is to three.

238. TaeorEM. Tangents drawn to a sphere from a
common external point are equal.
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SECTION V.
REGULAR POLYEDRONS.
DEFINITIONS.

239. A polyedron has already been defined as a solid
bounded by plane surfaces, the bounding planes being called
faces.

240. Polyedrons are named from the number of their
faces; one of four faces is called a tetraedron, one of six
faces a hexaedron, ete.

241. A regular polyedron is a polyedron of which the
faces are equal regular polygons, and each polyedral angle
is bounded by the same number of faces.

ProrositTion XLIII.

242. THEOREM. There cannot be more than five regular
polyedrons.

Each face is a regular polygon (241). And the value of
one angle of a regular polygon is, —

in the case of the triangle 60°,

« « o« « « gquare 90°,

“ o« “ 6« penta,gon 108°,
« « « « « hexagon 120°.

But since the sum of the face angles at any vertex of a
polyedral angle is less than 360°. . . (45); and since there
are at least three face angles meeting at any vertex, the
hexagon cannot be the face of any regular polyedron; for
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120° x 3 is not less than 360°. In like manner the heptagon,
octagon, etc., are excluded as faces.
There remains then to be considered only the ¢riangle, the
square, and the pentagon. With respect to these, —
The polyedral angle may be formed by the meeting at a
point of, —
() 8 triangles, since 60° x 3 = 180°, or by
(b) 4 triangles, since 60° x 4 = 240°, or by
(¢) 5 triangles, since 60° x 5 = 300°, or by
(d) 3 squares, since 90° X 3 = 270°, or by
(¢) 3 pentagons, since 108° x 3 = 324°.
All other cases are excluded by the limiting value of a
polyedral angle, i.e., 360°.
Thus then there cannot be more than, —
three regular polyedrons of triangular faces; see (a),
®); (9,
one regular polyedron of square faces; see (d),
one regular polyedron of pentagonal faces; see (e).
Five in all. Q. E. D.
243. ScroLium. The five regular polyedrons are named

from the number of their faces, the tetraedron, the hexaedron,
the octaedron, the dodecaedron, and the icosaedron.

CONSTRUCTION. — REGULAR POLYEDRONS.

244. The five regular polyedrons (243) may be con-
structed out of cardboard in a very simple manner.

NN
V

TETRAEDRON. HEXAEDRON. OCTAEDRON.




78 THE ELEMENTS OF SOLID GEOMETRY.

DODECAEDRON. ICOSAEDRON.

Draw on the cardboard as accurately as possible the fore-
going diagrams and cut them out. On the interior lines cut
the cardboard about half through its thickness. The parts
will then readily bend about the half-cut lines into the
required form, and can be retained in place by gluing over
the edges a strip of paper or linen.

245. PrOBLEM. 7o construct a regular tetraedron.

D

At E, the middle point of ABC, erect a perpendicular ED,
and take the point D so that AD, which is equal to DB and
to DC, shall be equal to AB.
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246. ProBLEM. T construct a reqular hexaedron.

H @

A B

247. ProBLEM. To construct a regular octaedron.

248. TFig. 1 and TFig. 2, following, represent the regular
dodecaedron: completed in Fig. 2.
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249. Fig. i, Fig. 2, and Fig. 3, following, represent the
regular icosaedron : completed in Fig. 3.




MENSURATION OF SOLIDS. 81

SECTION VI.
MENSURATION OF SOLIDS.

250. In this section it is designed to call special atten-
tion, by means of illustrative examples, to all the important
rules for finding volumes and surfaces of solids, demou-
strated in the preceding sections. Also, methods will be
deduced for finding the volumes of certain additional solids,
such as the Regular Polyedron, the Wedge, and the Pris-
moid.

PRISMS AND CYLINDERS.

251. A piece of timber in the form of a right prism is
10 feet long, and contains 48 cubic feet. If a carpenter
cuts off one linear foot, how many cubic feet will remain ?
See 71,"Prop. XIII.

252. A block of marble in the form of a cuboid is 3
feet 6 inches long, 2 feet 3 inches wide, 6 inches thick, and
weighs 800 lbs. What is the weight of a like piece of
marble whose dimensions are 2 feet 6 inches, by 1 foot 3
inches, by 3 inches ? See 73, Prop. XIV.

253. How many cubic feet in each piece of marble
described in the foregoing Problem ? See 74, Cor. 1.

254. Across a street 50 feet wide a ditch 2 feet broad
and 3 feet deep is dug. The ditch is straight, but runs at
an angle of 45 degrees with the direction of the street.
How many cubic feet of earth were removed in making it ?
See 79, Cor. 3.
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255. Each edge of the base of a triangular prism is 16
inches. Now, if the altitude is also 16 inches, what is the
volume ? See 82.

256. Each edge of the base of a hexagonal prism is 12
inches. Now, if the altitude of this prism is 12 inches,
what is its volume ? See 90.

257. A cylindrical column is 100 feet high and measures
31.416 feet in circumference. What is its volume ? See
91 and 93.

258. From the column described in Problem 257, 10
linear feet were removed. How many cubic feet remained ?
See 92.

259. What is the total surface of the cylindrical column
described in Problem 257 ? See 96.

260. A cylindrical column is 100 feet high and measures
62.832 feet in circumference. Compare its total surface
with that of the column mentioned in Problem 259. See 97.

261. Compare the volumes of the two columns in ques-
tion. See 92.

262. The corresponding dimensions of two similar cyl-
inders of revolution are in the ratio of 2 to 3. If the
volume of the larger cylinder is 24 cubic feet, what is the
volume of the smaller ? See 98.

263. Compare the surfaces, lateral and total, of the cyl-
inders described in Problem 262. See 99.

PYRAMIDS AND CONES.

264. Each edge of the base of a right triangular pyra-
mid is 24 feet. Now, if the altitude is also 24 feet, what is
the volume ? See 137.

265. The altitude of a right circular cone is 12 feet, and
the circumference of its base is 24 feet. What is the vol-
ume ? See 138.
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266. The altitude of the frustum of a right circular
cone is 64 inches, and the radii of the upper and lower bases
are, respectively, 8 inches and 12 inches. What is the vol-
ume of the frustum ? See 143.

267. The cone described in Problem 265 is cut by a
plane, 8 feet above the base, and parallel to it. Find the
volume of the frustum thus formed. See 143.

268. Find the total surface of the pyramid described in
Problem 264. See 144.

269. Find the total surface of the cone described in
Problem 265. See 146.

270. Find the total surface of the frustum described in
Problem 266. See 149 and 150.

271. Two similar cones of revolution have their corre-
sponding dimensions in the ratio of 3 to 4. If the volume
of the smaller is 64 cubic feet, what is the volume of the
larger ? See 151.

272. If the lateral surface of the smaller cone is 48
square feet, in Problem 271, what is the lateral surface of
the larger cone ? See 152.

273. There is a truncated triangular prism the lateral
edges of which are 18, 20, and 22 feet, respectively. A
right cross section of this cone forms a triangle whose sides
are 6, 8, and 10 inches, respectively. What is the volume
of this prism ? See 158. :

THE SPHERE.

274. 'What is the surface of a sphere whose diameter is
200 feet ? See 181.

275. The radii of two spheres are to each other as 10 to
40. What is the ratio of the surfaces? See 183.

276. What is the area of a zone on the sphere described
in Problem 274, whose altitude is 10 feet? See 185.
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277. What is the volume of the sphere described in
Problem 274 ? See 198.

278. What is the volume of a sphere whose diameter is
100 feet? See 199.

279. What is the ratio of the volumes of the spheres
described in Problem 275? See 200.

280. The values of the angles of a spherical triangle
are 40° 410', 80° 4+ 20', and 140° 4 30/, respectively.
What are the values of the sides of the polar triangles ?
See 205. :

28l. On a sphere whose diameter is 2000 feet, the angle
of a lune is 30 degrees. What is the surface of the lune?
See 228.

282. What is the area of a tri-rectangular triangle of the
sphere in Problem 281 ? See 226.

283. What is the area of the triangle described in Prob-
lem 280, if located on the sphere of problem 281 ? See
231.

THE REGULAR POLYEDRON.

284. In the case of any one of the regular polyedrons,
it follows from the definition (241), that if lines be drawn
from the centre to each of the vertices, pyramids thus
formed will have equal bases and equal altitudes.

Since the volume of a pyramid is equal to the product of
the base by one-third the altitude, it follows that, —

285. The volume of a regular polyedron is equal to one-
third the product of its surface by the perpendicular distance
Srom its centre to any face.

It is plain too that, —

286. Any two regular polyedrons of the same number of
Saces are similar, and hence are to each other as the cubes of
their like dimensions. Moreover, the surfaces of these similar
solids are to each other as the squares of their like dimensions.
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287. By rule 285 the volumes of all the regular polyedrons
have been computed, the edge being taken in each case
equal to the linear unit. The total surface for each of these
solids has also been computed. Following are the results.

TABLE FOR SURFACES.

Name. No. of Faces. Surface.
Tetraedron . . . . . . 4 . . . . . . 173205
Hexaedron . . . . . . 6 . . . . . . 6.00000
Octaedron . . . . . . 8 . . . . . . 3846410
Dodecaedron. . . . . . 12 . . . . . . 20.64573
Icosaedron . . . . . .20 . . . . . . 866025

TABLE FOR VOLUMES.
+  Name. No. of Faces. Volumes.
Tetraedron . . . . . . 4 . . . . . . 011785
Hexaedron . . . . . . 6 . . . . . . 100000
Octaedron . . . . . . 8 . . . . . . 047140
Dodecaedron . . . . .12 . . . . . . 7.66312
Icosaedron . . . . . .20 . . . . . . 218169

288. What is the volume and what is the surface of a
regular tetraedron whose edge is 30 ? See 286.

289. Find the volume and the surface of a regular
hexaedron whose edge is 30.

290. Find the volume and the surface of a regular
octaedron whose edge is 30.

291. Find the volume and the surface of a regular
dodecaedron whose edge is 30.

292. Find the volume and the surface of a regular
icosaedron whose edge is 30.

THE WEDGE.

293. A wedge is a solid bounded by five plane faces, viz.,
a rectangle called the back, two trapezoids called faces, and
two triangles called ends. The intersection of the two faces
forms the edge. See next diagram.
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The length of the back is that dimension which is parallel
to the edge. The length of the back may be equal to the
length of the edge, or it may be shorter or longer.

Prorosition XLIV.

204. TrHEOREM. The volume of a wedge s equal to the
product obtained by multiplying twice the length of the back
added to the length of the edge, by the breadth of the back,
and that result by one-sixth of the altitude.

S B

D

Let ADF, e, AB — CDEF be a wedge. Through A,
one extremity of the edge, pass a plane AHK parallel to
the end BCD. The wedge is thus found to be composed of
a prism, ADK (52) and a pyramid A-EHKF (105).

Draw from 8, any point in the edge, ST a perpendicular
to the back.

Represent the length FC of the back by /, the breadth
CD by &, the edge AB of the wedge equal to KC by e, the
altitude ST by a ; then will the volume of ADF equal

b (ab) (e + 20).

Now, ADK is one-half of a parallelopiped whose base is

KD, equal to eb, and whose altitude is ST equal to a (80).

(1) ... Whence Vol. ADK =}a (eb) . . . (79).
@)... And Vol. A-FEHK = }a (I-)b . . . (137).
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By adding, we obtain from (1) and (2) the volume of the
wedge, or,
Vol. ADF = }aeb + % alb — J aeb;
or, Vol. ADF = } aeb + % alb;
or, Vol. ADF =} ab (e + 20). Q. E. D.

295. CoroLLARY. The same formula for the wvolume
of ADF will be obtained when e is greater than l.

296. ProBLEM. Required the volume of a wedge; the
edge is 12 feet, the altitude is 14 feet, the breadth of the
base is 8 feet, and the length is 16 feet.

297. ProBrLEM. Required the volume of a wedge; the
edge is 10 feet, the altitude is 8 feet, the breadth of the base
is 3 feet, and the length 18 feet.

THE PRISMOID.

298. A prismoid is a solid bounded by six plane faces,
viz., two rectangles, which are parallel, and four trapezoids.

The two rectangles are the bases, and the distance between
them is the altitude of the prismoid. The prismoid is the
frustum of a wedge.

ProrosiTion XLV,

299. THEOREM. The volume of a prismoid s equal to
the product obtained by multiplying the sum of the bases and
Jour times a section midway between them, by one-sixth of the
altitude.

G H
'F,
[
7 \/“
C B

Let AF, i.e., ABCD-EFGH be a prismoid. Let @ repre-
sent its altitude, 6 and B the areas of its upper and lower
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bases, respectively, and Mm the area of the section midway
between them; then will the volume of the prismoid be

equal to 3 @ (B + & + 4 Mm).

By passing a plane through the lines BC and HG, the
prismoid is found to be composed of two wedges, whose
edges are BC and HG, and whose backs are HF and AC,
respectively.

Now, we may write for the volumes of the wedges, using
V' and V” to represent these volumes, and V to represent
the volume of the prismoid,

V' =3a@2BC+ HG)AB, . .. (294), and
V” = }a (2 HG + BC) HE.

‘We may change the form of the above equations to
V=3a(2B+HG-AB) ... and
V”=1}a 26+ BC-HE); by adding, we obtain
V=3a[B+b+ (B +b+HG AB + BC-HE)]... (A).

Now, 2m=AB+HE... (377),

and 2M = BC + HG; by multiplying, we obtain
4Mm = (AB + HE) (BC + HG), ’
or, 4Mm=B+b+I~_I_G'E+B6'ﬁ]—§.

Now, substituting in equation (A), we obtain
V=3a(@®B+b+4Mm). Q. E. D.

300. Scmorrum 1. This formula is of very extensive
application. It may be used in computing volumes of earth-
work in excavations and embankments for railroads, canals,
ete.

301. Scrmorium 2. This formula may be applied, in
general, to the computation of the volume of any one of the
solids which we have considered in this book. Thus, in a
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pyramid, we may regard the upper base as zero. The area
of the section midway between the bases is evidently one-
fourth the area of the lower base. Applying the above
formula, then,

V=3%a@B+04B),or,
V = } @ B, which is the formula for finding the
volume of a pyramid.

302. What is the volume of a prismoid whose bases are
25 feet by 40, and 35 feet by 50, respectively, and whose
altitude is 20 feet ?

303. In making an excavation for a railroad, a pris-
moidal cut is made 300 yards long; the areas of the right
cross sections at the ends are 1000 square feet and 1500
square feet, respectively. Find the volume of the pris-
moidal cut.

MISCELLANEBOUS EXERCISHS.

304. From a point 4 ft. above a plane a circle is
described in the plane by a line 12 ft. long. What is the
radius of the circle ?

305. What is the length of a diagonal of a cuboid
whose edges are 6 ft. 8ft. and 10 ft.?

306. There is a regular triangular pyramid whose alti-
tude is 6 ft., and whose basal edges are each 8 ft. What is
the lateral edge of the pyramid ?

307. Find the entire surface of a regular triangular
prism whose altitude is 12 ft., each side of the base being
12 ft.

308. Find the entire surface of a regular hexagonal
prism whose altitude is 12 ft., each side of the base being
6 ft.



90 THE ELEMENTS OF SOLID GEOMETRY.

309. What is the entire surface of a regular triangular
pyramid whose altitude is 12 ft., each side of the base being

10 ft. ?

310. What is the entire surface of a right square pyra-
mid whose altitude is 12 ft., each side of the base being

4 ft.?

311. Pass a.plane through one of the diagonals of a
parallelogram ; draw perpendiculars from the extremities of
the other diagonal to this plane. Prove that the perpen-
diculars are equal.

312. There are two similar octaedrons whose corre-
sponding edges are as 4:5. What is the ratio of their
surfaces, and of their volumes ?

313. There is a pyramid 40 ft. high whose base contains
400 sq. ft. The top is cut off so as to form a frustum 10 ft.
high. 'What is the area of the upper base of the frustum ?

314. If the radius of the earth is 4000 miles, what is the
area of a small circle parallel to the equator, through a point
60° from the equator ?

315. What is the entire surface of a frustum of a cone
of revolution, the radii of the bases being 6 ft. and 8 ft. and
the altitude 10 ft?

316. How many bushels of wheat will the frustum of a
hexagonal pyramid hold, each edge of the upper base being
4 ft., of the lower 10 ft., and the altitude 6 ft. ?

317. Find the surface and volume of a sphere whose
diameter is 10 ft.

318. What is the volume of the crust of the earth,
assuming the earth to be a sphere with a radius of 4000
miles and the crust to be 50 miles thick ?

319. Find the volume of the earth’s atmosphere, assum-
ing that it extends 50 miles above the surface.
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320. How many miles from the centre of the earth is
that point from which one third the earth’s surface may be
seen ?

321. There is a sphere whose volume and surface are
represented by the same number. Find the diameter of this
sphere.

322. There is a cube whose volume and surface are
represented by the same number. Find the edge of this
cube.

323. There is a regular tetraedron whose volume and
surface are represented by the same number. Find the
edge of the tetraedron.

324. There is a right circular cone whose altitude and
diameter of base are equal. The volume and surface are
represented by the same number. What is the altitude of
this cone ?

325. A regular pyramid 40 ft. high is changed into
a regular prism of equivalent base. What is the height of
the prism ?

326. How much of the earth’s surface is visible from a
point 4000 miles above it ?

327. The diameter of a sphere is 40 ft. Find the curved
surface of a segment whose height is 10 ft.

328. In a sphere whose radius is 4000 miles, find the
height of a zone whose area is equal to that of a great
circle.

329. A vessel is in the shape of the segment of a sphere;
the distance across the top is 20 in., the greatest depth is
10 in. How many quarts of water will it hold ?

330. A right triangle whose hypotenuse and sides are
respectively 10, 8, and 6 ft., is revolved about the hypote-
nuse as an axis. Find the volume of the solid generated.
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331. An equilateral triangle is circumscribed about a
circle whose radius is 10 ft., and revolved about the altitude
of the triangle as an axis. Find the volumes of the solids
generated by the triangle and by the circle.

332. A conical glass having a diameter and altitude of
10 in. is filled with water. Into it is dropped a sphere of
iron whose radius is 4 in. Find the number of cubic inches
of water remaining in the glass.

333. If the sphere in problem 332 is drawn into a cylin-
drical wire one-eighth of an inch thick, what is the length
of the wire ?

334. If through the centre of a four-inch sphere a two-
inch hole be bored from surface to surface, what are the
contents of the remaining portion of the sphere ?

335. Find a point in a given straight line equally distant
from two points in space.

336. Draw a plane parallel to two given straight lines in
space.

337. TFind the surface and volume of a regular tetraedron
whose edge is a.

338. Cut a cube by a plane so that its section shall be a
regular hexagon. .

~ 339. Find the volume of the double cone generated by
the revolution of an equilateral triangle about one of its
sides.

340. Prove that the six planes which bisect the edges of
a tetraedron at right angles will all pass through one point.

341. A cone is circumscribed about a sphere and its
height is double the diameter of the sphere. Prove that the
total surface and the volume of the cone are respectively
double those of the sphere.
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342. Show that a regular dodecaedron may be inscribed
in a regular icosaedron. '

343. Show that a regular icosaedron may be inscribed in
a regular dodecaedron.

344. Find the radii of the sphere inscribed in a regular
tetraedron whose edge is 12 ft.

345. To find a method of bisecting a given arc or given
angle of a sphere.

346. There is a cube inscribed in a sphere; the surface
of the cube is equal to the surface of the sphere. Find the
diameter of the sphere. Are these conditions possible ?

347. The angle which a line makes with a plane is the
angle between the line and its projection upon the plane.
Prove that if a line intersect two parallel planes it makes
equal angles with them.

348. Prove that only one common perpendicular can be
drawn to two lines not in the same plane.

THEOREMS OF PLANE GEOMETRY.

349. The demonstrations of the preceding pages refer to
a few of the theorems of Plane Geometry. These theorems
are collected here and numbered the same as in the text;
they will be found convenient for reference.

350. At a point in a straight line only one perpendicular
to that line can be drawn; and from a point without a
straight line only one perpendicular to that line can be
drawn.

351. Two parallel lines cannot meet.

352. Two lines perpendicular to the same straight line
are parallel to each other.
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353. Any side of a triangle is less than the sum of the
other two sides.

354. The sum of the three angles of a triangle is equal
to two right angles.

3565. Two triangles are equal in all respects when two
" sides and the included angle of the one are equal respec-
tively to two sides and the included angle of the other.

356. Two triangles are equal when a side and two adja-
cent angles of the one are respectively equal to a side and
two adjacent angles of the other.

357. Two triangles are equal when the three sides of the
one are equal respectively to the three sides of the other.

358. If two sides of a triangle be equal respectively to
two sides of another, but the third side of the first triangle
be greater than the third side of the second, then the angle
opposite the third side of the first triangle is greater than
the angle opposite the third side of the second.

359. The diagonal of a parallelogram divides the figure
into two equal triangles.

360. In a parallelogram the opposite sides are equal and
the opposite angles are equal.

361. If a line be drawn through two sides of a triangle
parallel to the third side, it divides those sides propor-
tionally.

362. Two triangles which have their sides respectively
parallel are similar.

363. Parallelograms having equal bases and equal alti-
tudes are equivalent.

364. The area of a triangle is equal to one-half the
product of its base by its altitude.

365. Triangles having equal bases are to each other as
their altitudes; triangles having equal altitudes are to each
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other as their bases; any two triangles are to each other as
the product of their bases by their altitudes.

366. The area of a trapezoid is equal to one-half the
sum of the parallel sides multiplied by the altitude.

367. 1. A circle may be circumscribed about a regular

polygon.
II. A ‘circle may be inscribed in a regular polygon.

368. If a line is perpendicular to one of two parallel
lines it is perpendicular to the other also.

369. Parallel Lines are straight lines which‘lie in the
same plane and have the same direction, or opposite
directions.

370. Similar Polygons are polygons which have their
homologous angles equal and their homologous sides pro-
portional.

371. A Parallelogram is a quadrilateral which has its
opposite sides parallel.

372. Thearea of a parallelogram is equal to the product
of its base and altitude.

373. The area of a circle equals the square of the radius
multiplied by =, i.e. A = n R

374. In the same or equal circles equal chords subtend
equal arcs.

375. The angle at the centre of a circle is measured by
the arc of the circumference intercepted by the sides of the
angle.

376. A tangent to a circle is perpendicular to a radius
drawn to the point of tangency.

377. The line which joins the middle points of the two
sides, not parallel, of a trapezoid, equals half the sum of
the parallel sides.


















