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THE

DIFFERENTIAL CALCULUS.

CHAPTER I.

FUNCTIONS, RATES, AND DERIVATIVES.

I.

Functions.

LA QUANTITY whicn depends for its value upon another

quantity is said to be a function of the latter quantity. Thus
x1

, tan.r, log (a + x}, and ax are functions of x.

The quantity upon which the function depends must be

regarded as variable, and be represented in the analytical

expression for the function by an algebraic symbol. This

quantity is called the independent variable. It is essential

that variation of the independent variable should actually

produce variation of the function. Thus the quantities

x&quot;,
x^ + (a + x] (a x], and (tan x + cot x) sin 2x are not func

tions of x, since each admits of expression in a form which
does not involve x.

2m The notation f(x] is employed to denote any function

of x, and, when several functions of x occur in the same in-
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vestigation, such expressions as F(x\ F (x), (x\ etc., are

employed, the enclosed letter always denoting the indepen
dent variable. When expressions like f(\\f(a\ f(zx\ or

/(o) are employed, it must be understood that the enclosed

quantity is to be substituted for x in the expression which
defines f(x\ Thus, if we have

/(i) = 2, f(2x) = ^e + 2*, and /(o) = c.

Again, if F(%) == loga-^ (# &amp;gt; i)

JF( I
)
=

0&amp;gt; 77(0) = oo, and F(a) = i.

3. When x denotes the independent variable upon which
a function depends, any quantity independent of x is, in con

tradistinction, called a constant ; both when it is an absolute

constant, like i, |/2, or IT, and when it is denoted by a symbol,
like a, u, or y, to which any value can be assigned. Thus,
when a* is denoted by f(x), it is considered simply as a func

tion of Xj and a is regarded as a constant.

When it is desired to express that a quantity is a function

of two quantities, both the symbols denoting them are placed
between marks of parenthesis. Thus, since a* is a function of

x and #, we may write

/(*&amp;gt; )
= *

Accordingly we have

)
= **, /(3,2) = 8, and 7(2,3) =9.

4. It is often convenient to represent the value of a func

tion of x by a single letter ; thus, for example, y = x\ When
this notation is used, if we represent the independent variable

x by the abscissa of a point, and the function y by the corre-
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spending ordinate, a curve may be constructed which will

graphically represent the function, and will serve to illustrate

its peculiarities.

Rectangular coordinates are usually employed for this

purpose. See diagram, Art. 10.

A function of the form

y = m x + b,

m and b being constants, is represented by a straight line.

Functions of this form are, for this reason, called linear func
tions.

Implicit Functions.

5. When an equation is given involving two variables x
and y, either variable is obviously a function of the other

;

and the former variable, when its value is not directly ex

pressed in terms of the other, is said to be an implicit func

tion of the latter. Thus, if we have

ax* ^axy + y* a* = o,

either variable is an implicit function of the other.

By solving the above equation for x, we obtain

In this form of the equation, x is said to be an explicit func

tion of y.

This example will serve to illustrate the fact, that from a

single equation involving two variables, there may be derived

two or more explicit functions of the same variable. In the

above case, x is said to be a two-valued function of y, while,

since the equation is of the third degree in y, the latter is a

three-valued function of x.
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Inverse Functions.

6. Ify = f(x), x is some function of y ;
we may therefore

write

yf(x\ whence x

Each of the functions /and &amp;lt;/&amp;gt;

is then said to be the inverse

function of the other. Thus, if

y = a*
y

we have x logay ;

hence each of these functions is the inverse of the other. So
also the square and the square root are inverse functions.

7. In the case of the trigonometric functions, a peculiar
notation for the inverse functions has been adopted. Thus,
if we have

x = sin 0, we write = sin&quot;
1

.*-.

Whenever trigonometric functions are employed in the

Calculus, the symbol representing the angle always denotes

the circular measure of the angle ;
that is, the ratio of the arc

to the radius. Hence sm -1
;tr maybe read either &quot;the in

verse sine of x&quot; or &quot; the arc whose sine is x.&quot;

The inverse trigonometric functions are evidently many-
valued. See Art. 54.

The Classification of Functions.

8. With reference to its form, an explicit function is

either algebraic or transcendental.

An algebraic function is expressed by a definite combination

of algebraic symbols, in which the exponents do not involve

the independent variable.
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All functions not algebraic are classed as transcendental.

Under this head are included exponential functions
;
that is,

those in which one or more exponents are functions of the

variable, as, for example, ax
9
xa*x

,
etc. : logarithmic func

tions : the direct and inverse trigonometric functions, and

other forms which arise in the higher branches of mathematics.

9. With reference to its mode of variation, a function is

said to be an increasing function when it increases and de

creases with x
;
and a decreasing function when it decreases

as x increases, and increases as x decreases. Thus, it is evi

dent that x* is always an increasing function of x, while is
X

always a decreasing function of x. Again, tan x is always an

increasing function, but sin x is sometimes an increasing and

sometimes a decreasing function of x.

10. The increase and decrease here considered are alge-

~braic. For example, x* is an increasing function when x is

positive, but when x is negative it becomes
a decreasing function

; for, when x is negative
and algebraically increasing, x

z
is decreasing.

The curve y =. x* which illustrates this

function is constructed in Fig. I. Since alge
braic increase in the value of x is represented

by motion from left to right, whether the

moving point is on the left or on the right of

the axis of y, the downward slope of the curve on the left

of the origin indicates that x* is a decreasing function when x
is negative.

Expressions involving an Unknown Function.

11. An expression involving f(x), as, for example, xf(x)
or F\_f(x)\, is generally a function of x; but it may happen

u

FIG. i.
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that such an expression has a value independent of x. Thus,

suppose that, in the course of an investigation, the following

equation presents itself :

in which/ denotes an unknown function, and x and z are en

tirely independent arbitrary quantities. When this is the case,

we can make z a fixed quantity, and give to x any value what

ever; that is, we can make x a variable and z a constant;

but if z is a constant, sf(z) is likewise a constant, we can,

therefore, write

.rf(x) = c,

c being an unknown constant. Hence we have

The value of the constant c is readily found, if we know the

value of f(x) corresponding to any one value of x.

Examples I.

i. (a) For what value of n does x* cease to be a function of ,r?

(/3) For what values of x does it cease to be a function of ?

(a) When n = o. (13)
When x = i, or x o.

2 If y 1 1

a ~
&quot;M =: r +

a ~l ~
. show thaty is a function of a, but

/
\ a + x) a + X

not of x.

3. Show that sin x tan %x + cos.r is not a function of x.

4. If y .r + ^/(i + ,r
2

), show thatj
2

2xy is not a function of x.

5. If f(x) = x\ find the value of f(x + //) ;
of /(ar); of /(^) ;

of

/Yr .r); of /(i) ; /(i2) ;
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6. If /(0) = cos 0, find the value of/(o); of /(^TT); of /(*); of

/&amp;lt;*)

7. If F(x) = a* t give the value of F(a)\ of .F(i) ;
of F(o). Also

show that in this case \_F(x}}* = F(zx).

8. Given/
2

2&amp;lt;2/
+ jr

2 = o, make/ an explicit function of jr.

/ = * y(
a -

x-}.

9. Given i + loga y = 2 loga (x + ), make/ an explicit function of x.

(*+&amp;lt;*r

^= ____.

10. Given the equations

n + i = n (cos + cos cos 4- cos2

0),

and i = n (sin
2 # + sin 6 sin + sin

2

0) ;

eliminate ,
and make / an explicit function of 0. Also make an ex

plicit function of 6. I

11. Given sin
1
JT + sin&quot;

&quot;ji/

= a, make/ an explicit function of x.

y = sin a 4/(i Jf
2

) JT cos &amp;lt;x.

12. Given tan~ l x + tan~ l

y = or, make/ an explicit function of jr.

tan a x
y ~

i+Jtr tana:

13. Given xy 2.x +y = n, show that/ is not a function of x when
n = 2.

*2x _ 1

14. If / = - show that the inverse function is of the same

form.

15. If/ =f(x)= --, find 2 =/(/), and express z as a function
I - Jf

of jr.

16. If both / and denote increasing functions, or, if both denote

decreasing functions, show that $[/(*)] is an increasing function.

Also show that the inverse of an increasing function is an increasing
function.
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17. Find the inverse of the function,^ = loge \x + y(i + .i-
2

)].

*,= *(*_-*).

1 8. If f(x) be an unknown function having the property

/W- + /(r)=/

prove that /(i) = o.

/&amp;gt;*j = i.

19. If f(x) has the property

=/(*) +/00.

prove that/(o) = o. Also prove that the function has the property

/(/*)=//(*),

in which p is a positive or negative integer.

For positive integers, puty = x, 2X, i&amp;gt;x, etc., in the given equation ; for

negative integers, puty x.

20. If /denotes the same function as in Example 19, prove that

f(mx) = mf(x\
m denoting any fraction.

Sohition :

Putting z x
&amp;gt; qz =px,

hence, by Example 19, qf(z) = pf (x\

or

21. Given, the property of the same function proved in Example 20;

viz.,

f(rnx) mf(x} ;
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by putting z for mx, show that

I/GO = I/G*),

and thence deduce the form of the function. See Art. n.

22. Given, (x)]* = [(/&amp;gt; (3-)]* ,
and

determine (x).

23. Given CO + (j) = Oj)

prove 9) (.*) = m $ (x),

and thence prove $ (x) = c logo:.

Use the methods of Examples 19, 20, and 21.

II.

12. In the Differential Calculus, variable quantities are

regarded as undergoing continuous variation in magnitude,
and the rates of variation, denoted by appropriate symbols,
are employed in connection with the values of the variables

themselves.

If a varying quantity be represented by the distance of a

point moving in a straight line from a fixed origin taken on
that line, the velocity of the moving point will represent the

rate of increase or decrease of the varying quantity.

FIG. 2.

Thus O (Fig. 2) being the fixed origin and OP a variable

denoted by x, P is the moving point whose velocity repre
sents the rate of x. The velocity of P, or the rate of x, is

regarded as positive when P moves in the direction in which
x increases algebraically ; thus, taking the direction OX, or

toward the right, as the positive direction in laying off x, the
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velocity is positive when P moves toward the right, whether

its position be on the right or on the left of the origin. Ac

cordingly, a rate of algebraic decrease is considered as nega
tive, and would be represented by a point moving toward the

left.

Constant Rates.

13. The rate of a quantity like the velocity of a point may
be either constant or variable. A velocity is uniform or con

stant, when the spaces passed over in any equal intervals of

time are equal, or, in other words, when the spaces passed ove*.

in any intervals of time are proportional to the intervals.

The numerical measure of a uniform velocity is the space

passed over in a unit of time ; then if / denote the time elapsed

from an assumed origin of time, and k the space passed over

by a moving point in a unit of time, kt will denote the space

passed over in the time /. Hence, whenever the velocity is

uniform, the quotient obtained by dividing the number of

units of space by the number of units of time occupied in

describing this space is constant, and serves as the numerical

measure of the velocity.

1 4-. Now, if x be a quantity having a uniform rate k, it

will be represented by the distance from the origin of a point

having the uniform velocity k, and if a denote the value of x

when / is zero, we shall have

x = a + kt (i)

This formula expresses a uniformly varying quantity as a

function of /. When x is a uniformly decreasing quantity,

k is, of course, negative.

Conversely, if x, when expressed as a function of /, is of the

form (i), involving the first power only of /, then x is a quan

tity having a uniform rate, and the coefficient k is a measure

of this rate.
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Variable Velocities.

15. If the velocity of a point be not uniform, its numerical

measure at any instant is the number of units of space which

would be described in a unit of time, were the velocity to remain

constantfrom and after the given instant.

Thus, when we speak of a body as having at a given in

stant a velocity of 32 feet per second, we mean that should the

body continue to move during the whole of the next second,

with the same velocity which it had at the given instant, 32

feet would be described. The actual space described may be

greater or less, in consequence of the change in velocity which

takes place during the second ; it is, for instance, greater than

the measure of the velocity at the beginning of the second,
in the case of a falling body, because the velocity increases

throughout the second.

16. Attwood s machine for determining experimentally
the velocities acquired by falling bodies furnishes a familiar

example of the practical application of the principle em
bodied in the above definition.

This apparatus consists essentially of a thread passing
over a fixed pulley, and sustaining equal weights at each ex

tremity, the pulley being so constructed as to offer but slight
resistance to turning. On one of the weights a small bar of

metal is placed, which, destroying the equilibrium, causes the

weight to descend with an increasing velocity. To deter

mine the value of this velocity at any point, a ring is so placed
as to intercept the bar at that point, and allow the weight to

pass. Thus, the sole cause of the variation of the velocity

having been removed, the weight moves on uniformly with

the required velocity, and the space described during the

next second becomes the measure of this velocity.
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Variable Rates.

17. When x is a function of /, but not of the form ex

pressed by equation (i), Art. 14 that is, when the function is

not linear the rate of x will be variable. To obtain the

measure of this rate at any given instant, we employ the

same principle as in the case of a variable velocity. Thus,
let x be represented by OP &s in Fig. 2, Art. 12, let the sym
bol dt denote an assumed interval of time, and let dx denote

the space which would be described in the time dt, were P
to move with the velocity which it has at the given instant

unchanged throughout the interval of time dt. Then the

space which would be described in a unit of time is, evidently,

dx_

. dt

which is therefore the measure of the velocity of P, or the

rate of x.

This ratio is in general variable, but, when x is of the form

a + kt, it has been shown in Art. 14 that k is the measure of

the rate
;
we therefore have

- = k, when x = a + kt.
dt

Differentials.

18. The quantities dx and dt are called respectively &quot;the

differential of x&quot; and &quot;the differential of /.&quot;

In accordance with the definition of dx given in the pre

ceding article, the differential of a variable quantity at any

instant is the increment which would be received in the time

dt, were the quantity to continue to increase uniformly

during that interval of time with the rate it has at the given
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instant. The quotient obtained by dividing the differential of any

quantity by dt is therefore the measure of the rate of the quantity.

The differential of a quantity is denoted by prefixing d to

the symbol denoting the quantity ;
when the symbol denot

ing the quantity is not a single letter it is usually enclosed

by marks of parenthesis to avoid ambiguity. Thus, d(x*),

d(xy), d(tanx), d(a* + x*) t
etc.

The Differentials of Polynomials.

19. Let x and y denote two variable quantities, and let a

and b denote particular simultaneous values of x and y, while

k and k ! denote corresponding values of the rates of x and y.

Now, if x and y should continue to vary with these rates,

their values would (see Art. 14) be expressed by

x = a + k t,

and y b + k t,

whence x +y a -f b + (k -f k ) t.

Thus the quantity x+y would become a uniformly varying

quantity, and, by Art. 14, its rate would be k+ k?
t which,

therefore, is the measure of the rate of x +y at the instant

when x and y have the rates k and k . Consequently,

_ ,
, ,,_ dx dy-~ + ~

dt

Now, since k and k denote any values of the rates, this equa
tion is universally true. We have, therefore,

d(x +y) = dx + dy.

This formula is easily extended to the sum of any number
of variables. Thus,

(2)
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20. The differential of a constant is evidently zero, hence

d(x+k) = dx........ (3)

Again, if y = *, ^ + ^ = 0,

hence, by equation (i), since zero is a constant, we have

dy + dx = o, or dy = dx
;

that is, 4*) = dx........ (4)

The differential of a negative term is therefore the negative
of the differential of the term taken positively.

It appears, on combining the results expressed in equations

(2), (3), and (4), that the differential of a polynomial is the alge
braic sum of the differentials of its terms ; and that constant

terms disappear from the result.

The Differential of a Term having a Constant

Coefficient.

21. Let the term be denoted by mxy
m denoting a con

stant.

Resuming equation (2), Art. 19 ; viz.,

d(x+y+z + -)

and denoting the number of terms by/, we put

x=y = 2= ----
,

thus obtaining d(px) = pdx, ....... (i)

p denoting an integer.
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To extend equation (i) to the case in which m denotes a

fraction, let

z=X) then qz=px.

By applying equation (i) we obtain

q dz =pdx, or dz = dx
;

that is, ^( ) ~q*
Hence generally, when m is positive,

d(in x) = m dx (2)

Since d( x) dx, this equation is true likewise when m
is negative.

It therefore follows that the differential of a term having a

constant coefficient is equal to the product of the differential of the

variable factor by the constant coefficient.

Examples II.

2 1T f
i. Find the differential oi ,

and of -
. , ,

T.O. m 2 2dx
,

ax
, and

-\a m 2

2. Find the differential of -- ,
and of 5-

&quot; j
-

r,, and 2-m m

a + b 4. (a fyx dx
3. Find the differential of ^~~~^

&quot;&quot;

#&quot;+&

4. Find the differential of
a

^,
and of

^. ^.
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dy
5. Given ay + bx + 2cx + ab o, to find

-^. ^ b + ic

dx
~

a

6. Given y log a + x sin a y cos a. ax + tan a = o, to find
^r..

dy a sin a.

dx lug a cos a

7. Given ay cos a
&amp;lt;* 2b (i sin or) x b(a x cos 2

a), to find-^-.
(13C

dy b (i sin a)

~dx
~

a (i + sin a)

8. Given 2 + 2 (i + cos a).y = (x + y} sin 2
a, to find .

&amp;lt;y
oc

-7- = tan 2

dx 2

Q Given + =r + = ! to express ^fe in terms of dx and
a o c

= --**
-j&amp;lt;iy.

10. A man whose height is 6 feet walks directly away from a lamp

post at the rate of 3 miles an hour. At what rate is the extremity

of his shadow travelling, supposing the light to be 10 feet above the

level pavement on which he is walking?

Draw a figure, and denote the variable distance of the man from the

lamp-post by x, and the distance of the extremity of his shadowfrom the

post by y.
7i miles per hour.

. At what rate does the man s shadow (Ex. 10) increase in length ?
ii

III.

Differentials of Functions of an Independent Variable.

22. When the variables involved in any mathematical

investigation are functions of an independent variable x, the

latter may be assumed to have a rate denoted by -|,
in which
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dx is arbitrary. So also the corresponding rate of y will be

denoted by -2-, and, if y is a function of x, the value of dy will

depend in part upon the assumed value of dx.

To differentiate a function of x is to express its differential

in terms of x and dx.

It is to be understood, of course, that the differentials

involved in an equation are all taken with reference to the

same value of dt.

If two quantities are always equal, their simultaneous

rates are evidently equal; and hence their differentials are

likewise equal. We can therefore differentiate an equation ;

that is, express the equality of the differentials of its mem
bers; provided the equation is true for all values of the

variables involved. Thus, from the identical equation

(x + //)

2 x i +2hx+k\

it follows that d[_(x + /;)

2

]
= d(x*) + 2/1 dx.

The Derivative.

23. Before proceeding to the differentiation of the vari

ous functions of x, it is necessary to show that, it

y=f(*) (i)

dv
the ratio -

dx

has a definite value for each value of x, independent of the assumed

value of dx.

Let a particular value of x be denoted by a, and let the

corresponding value of dx be an arbitrary quantity.

Now, although dx is arbitrary, since dt is likewise

arbitrary, the rate of x, that is, the ratio

, ......... (3)
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may be assumed to have a certain fixed value at the instant

when x a. The corresponding value of the rate of y,
denoted by

J (3)

evidently depends solely upon the rate of x and upon the form
of the function /in equation (i). Hence, when the value of

the rate (2) is fixed, the value of (3) is also definitely fixed.

Denoting- these fixed values by k and k\ we have, when
x = a,

dx 7
, dy ,, , dy k

~ =. k, and -^ = k whence = --

dt di dx k

Hence, corresponding to a particular value a of x, there

exists a determinate value y of the ratio -j- notwithstand-
k dx

ing the fact that dx has an arbitrary value
;
in other words,

the value of the ratio X is independent ofthe arbitrary value 0/dx.
dx

24-. It is obvious that, in general, this ratio will have

different values corresponding to different values of x, and

hence that it may be expressed as a function of x, and de

noted by/ (*) ; thus,

The form of this new function/
7
will evidently depend upon

that of the given function/
The function f (x) is called the derivative of f(x\ and, since

equation (i) may be written in the form

it is also called the differential coefficient of y regarded as a

function of x.
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When, however, the given function f(x) is of the linear

form
y

the derivative is no longer a function of x, but is a constant,

since the value of y gives

dy = m dx,

dy-*

The Geometrical Meaning of the Derivative.

25. Representing the corresponding values of x and y by
the rectangular coordinates of a moving point, if this point
move in a uniform direction, so as to describe a straight line,

dy
that is, if y be a linear function of x

y
the value of r will be

constant, by the preceding article. Hence, in the general

case, when this ratio is variable, the point will move in a vari

able direction.

If we denote the inclination of this direction to the axis of

x by 0, the value of
&amp;lt;/&amp;gt;

will vary with the value of x, and the

point will describe a curve.

The tangent line to a curve is denned as follows :

The tangent to a curve at any point is the straight line which

passes through thepoint, and has the direction of the curve at that

point*

Hence, for any point of the curve, &amp;lt;/&amp;gt;

denotes the inclina

tion to the axis of x of the tangent line at that point.

*
It will be shown hereafter (Art. 49) that, in the case of the circle, this

general definition of a tangent line agrees with that usually given in Plane

Geometry.
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26. Now, if a point, at first moving- in the curve, should,

after passing the point whose abscissa is a, so move that the

rates -j- and
-y-

retain the values which they had at the in

stant of passing the given point, the direction of its motion

will become constant, and the point will describe a straight

line tangent to the curve at the given point.

The value of dx may be repre
sented by an arbitrary increment of

x as in Fig. 3 ;
the value of dy will

then be represented by the corre

sponding increment which Avould be

received by y, were the point moving
FlG -

3&amp;gt; in the tangent line, as indicated in

the diagram. Hence

which is evidently independent of the assumed value of dx*

It follows that the value of the derivative of f(x\ for any
value of x, is represented by the trigonometric tangent of

the inclination to the axis of x of the curve y =/(*), at the

point corresponding to the given value of x.

27. The moving point, which is conceived to describe

the curve, may pass over it in either of two directions differ

ing by 1 80. The two corresponding values of &amp;lt; give, how

ever, the same value of tan
&amp;lt;#,

since tan
((f&amp;gt; 180) = tan #.

Thus, in Fig. 3, the point P may be regarded as moving

so as to increase x and y, in which case both dx and dy will

be positive, and will be in the first quadrant ;
or P may

* In other words, the value of the derivative is determined by the form of the function/ which

determines the curve, and the value of x which fixes the position of P,
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move in the opposite direction, making dx and d~- negative,

and placing in the third quadrant. In either case, ~ or

tan&amp;lt;/&amp;gt;
is positive.

28. It is evident that when f(x) is an increasing func

tion, as in Fig. 3,
~~ is positive, and that when it is a de-

dy .

creasing function, -r- is negative.

Thus the sign of / (x) for any value of x is positive or

negative according as f(x) is, for that value ot x, an increas

ing or a decreasing function. For example, it is evident that

the value of the derivative of sin x must be positive when x
is between o and \n, negative when x is between -Jrr and |-rr,

and so on.

dy .

When the notation - - is used, the value of the derivative
ax

corresponding to a particular value a of x is expressed by

~ which is equivalent to/ (a). See Art. 2.

Examples III.

1. If a point move in the straight line 2y 7,? 5 = o, so that fts

ordinate decreases at the rate of 3 units per second, at what rate is the

point moving in the direction of the axis of x!

^= _5
dt~ 7

2. If a point starting from (o, K) move so that the rates of its co

ordinates are k and ft , show that its path \symx + b, m being
k

equal to
j-

Express x and y in terms of t (Art. 14), and eliminate t.

3. If a point moving in a curve passes through the point (5, 3)
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moving at equal rates upward and toward the left, find the value of

-~ .
, also the equation of the tangent line to the curve at the given

fcrj. , n
dy\

point. ~dx\
= ~ l and J/ + ;t = 8 -

4. If a point is moving in the straight line

x cos ex. + y sin OL = p,

its rate in the positive direction of the axis of x being / sin a, what is its

rate of motion in the direction of the axis of _y?
/ cos a.

5. Given ay sin a ax+ax cos a F seca = o; show that is con

stant and equal to %a.

6. If/ (X) = tan*, show that/ O) must always be positive.

7. Show, by trac;ng the curve, that if y x*, ^ can never be

negative.



CHAPTER II.

THE DIFFERENTIATION OF ALGEBRAIC FUNCTIONS.

IV.

The Square.

29. IN establishing- the formulas for the differentiation of

the simple algebraic functions of an independent variable, we
find it convenient to begin with the square. The object of

this article is, therefore, to express d(x
i

) in terms of x and

dx.

We first deduce a relation between two values of the de

rivative of the function and the corresponding values of the

independent variable
;
for this purpose, we assume two values

of the variable having a constant ratio m. Thus, if

z = m x, 2* = n? x*.

Differentiating by equation (2), Art. 21,

dz m dx, and d(} = m* d(x*) ;

dividing, we obtain

Whence, dividing by z = m x to eliminate m, we have

1 4^) _I &amp;lt;fl

8 dz
~
x dx
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The derivatives -^- and
~-^j-

are, by Art. 23, functions

of z and of x respectively, independent ol the values of dz

and dx\ moreover, equation (i) is true for all values of x
and z, these quantities being entirely independent of each

other, since the arbitrary ratio m has been eliminated. There

fore, either of these quantities may be assumed to have a

fixed value, while the other is variable
;

hence it follows

that the value of each member of this equation must be a

fixed quantity, independent of the value of x or of 2. Denot

ing this fixed value by c, we therefore write

x dx

or d(x*) = cxdx (2)

30 To determine the unknown constant c, we apply this

result to the identity

(x + //)
= x* + 2hx + h\

Differentiating each member (Art. 22) by equation (2), we have

c (x + /i) d(x + Ji)
= ex dx + 2/1 dx

;

since d(x + //)
= dx, this equation reduces to

chdx=. 2h dx,

or (c 2) // dx = o.

Now, since h and dx are arbitrary quantities, this equation

gives

this value of c substituted in (2) gives

d(x*) = 2x dx (a)

That is, the differential of the square of a variable equals

twice the product of the variable and its differential.
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31. Employing the derivative notation, this result may
also be expressed thus :

If /(*) = X\ //(*) = 2*.

This derivative is negative for negative values of *, there
fore, for these values, x* is a decreasing function, as already
mentioned (Art. 10) in connection with the curve illustrating
this function.

Since * and dx are arbitrary, we may substitute for them
any variable and its differential. Equation (a) therefore en
ables us to differentiate the square of any variable whose
differential is known. Thus,

^(5* - 3)
2 = 2(5* - 3) t&amp;gt;dx

= 10(5* - 3) dx.

Again, d(ax&quot; + bxf = 2(ax
i 4 bx) d(ax* + bx)

= 2(ax
i 4 bx) (2ax + b) dx.

The Square Root.

32. To derive the differential of the square root, we put

y \/x,

whence y x

differentiating by (a), 2y dy dx,

dx
or dy = ---

That is, the differential of the square root of a variable is

equal to the quotient arisingfrom dividing the differential of the

variable by twice the given square root.
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Thus, 4 v (
-

*)] =Tp
or, using derivatives,

dx y (a* #*

Examples IV.

1. Differentiate (2* + 3) , and find the numerical value of its rate,

when x has the value 8, and is decreasing at the rate of 2 units per

second.

The differential required is denoted by d[(2x + 3)&quot;],
and the rate by

^+Al
;
the given rate -- = - 2. ^2 units per second .

2. Find the numerical value of the rate of (*
a - 2*)

a
, when x = 3.

and is increasing at the rate of \ of one unit per second.

Differentiate the given expression before substituting.

12 units per second.

\1 3 Find the numerical value of the rate of y(/ + ^2

), whenj - 7

and * = -
7, if J is increasing at the rate of 12 units per second, anc

x at the rate of 4 units per second.

4 4 . If f(jc) = x - y(^
2 - 2

),
find /V). and show that /W is a

decreasing function. y/^ = z _
_^_^-_.

5. Differentiate the identity (^ + V^ = *+* + * j/*.
and

show that the result is an identity.

6. Differentiate

The constantfactor-^^^ should be separated from the variable

factor before differentiation. __
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,o. if /w r
__

r
_

55f
/ (.)

Rationalize the denominator before differentiating.

J jr
2

y
2

dy
ii. Given , + -7^ = i, express ^ in terms of x, and give the values

dy~\ dy~\ dy b x
of

2?J
and TX\- -

*.. 3 TC?^^-

/ dy
\7i2. Given j

2
=4^jr, express -y in terms of x, also in terms of y, and

a 2ar 1 rtV~|
glve the values of-^ and _Z

J^

13. A man is walking on a straight path at the rate of 5 ft. per
second; how fast is he approaching a point 120 ft. from the path in

a perpendicular, when he is 50 ft. from the foot of the perpendicular?

Solution :

Let x denote the variable distance of the man from the foot of the

perpendicular, so that -, may denote the known velocity of the man,

and let a denote the length of the perpendicular (120 ft.); then the

distance of the man from the point is -/(a
2 + .r

2

), of which the rate of

change is denoted by

d(a&quot;- + x* x dx
dt

~
y(a* +**) dt

At the instant considered, x = 50 ft., while a = 120 ft., and : = 5 ft.
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per second. By substituting these values, we obtain i|f. Hence his

distance from the point is diminishing (that is, he is approaching it) at

the rate of i|f ft. per second.

*
14. If the side of an equilateral triangle increase uniformly at the

rate of 3 ft. per second, at what rate per second is the area increasing,
when the side is 10 ft. ? 15 4/3 sq. ft.

15. A stone dropped into still water produces a series of continu

ally enlarging concentric circles ; it is required to find the rate per
second at which the area of one of them is enlarging, when its diame

ter is 12 inches, supposing the wave to be then receding from the

centre at the rate of 3 inches per second. 3& 7T ^Nf/jJfrtrT*
&quot;

v 16. If a circular disk of metal expand by heat so that the area A of

each of its faces increases at the rate of o.oi sq. ft. per second, at what

rate per second is its diameter increasing? f~

^
17. A man standing on the edge of a wharf is hauling in a rope

attached to a boat at the rate of 4 ft. per second. The man s hands

t&amp;gt;eing 9 ft. above the point of attachment of the rope, how fast is the

boat approaching the wharf when she is at a distance of 12 ft. from it?

5 ft. per second.

V 18. A ladder 25 ft. long reclines against a wall; a man begins to

pull the lower extremity, which is 7 ft. distant from the bottom of

the wall, along the ground at the rate of 2 ft. per second ; at what rate

per second does the other extremity begin to descend along the face

of the wail? 7 inches.

J

19. One end of a ball of thread is fastened to the top of a pole 35 ft.

high ;
a man holding the ball 5 ft. above the ground moves uniformly

from the bottom at the rate of five miles an hour, allowing the thread

to unwind as he advances. What is the man s distance from the pole

when the thread is unwinding at the rate of one mile per hour ?

| 4/6 ft.

p

20. A vessel sailing due south at the uniform rate of 8 miles per hour

is 20 miles north of a vessel sailing due east at the rate of 10 miles an
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hour. At what rate are they separating (a) at the end of i hours?

(.3)
at the end of 2^ hours ?

Express the distances in terms of the time. () 5Ty miles per hour.

21. When are the two ships mentioned in the preceding example
neither receding from nor approaching each other ?

Put the expressionfor their rate of separation equal to zero.

When / = ff- of an hour.

22. Derive, by the method employed in Art. 29 to determine the

differential of the square, the result d\ \

= rt-,c being an unknown
Vr/

*

constant.

V.

The Product.

33. Let x and y denote any two variables
;
in order to

derive the differential of their product, we express xy by
means of squares, since we have already obtained a formula

for the differentiation of the square. From the identity

we derive

Differentiating, d(xy) = (x+y) (dx + dy) x dx y dy,

therefore, d(xy) ydx + xdy......... (c)

Since x and y denote any variables whatever, and dx and

dy their differentials, we can substitute for x and y any
variable expressions, and for dx and dy the corresponding
differentials. Thus,

,

XOX*
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34. Formula (c) is readily extended to products consist

ing of any number of factors. Thus let x^ x^ xz
. . . . xp denote

the product of / variable factors, then

d(x^x^ x^ xp )
= x^ x^

-

-xp dxl
+ x^ d(x^ x3

-

-Xp)

The Reciprocal.

35. The differential of the reciprocal may now be

obtained by means of the implicit form of this function.

Denoting the function by 7, we have

I

xy = I ,

x

Differentiating the latter equation by formula (c), we obtain

y dx + xdy = o,

ydxwhence ay= -- ;

substituting the value of yt

dx

Formula (d) enables us to differentiate any fraction of

which the denominator alone is variable
; thus,

.. dx
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The Quotient.

36. By the term quotient, as used in this article, we mean

a fraction whose numerator and denominator are both

variable. In deriving its differential, the quotient is re

garded as the product of its numerator by the reciprocal

of its denominator. Thus, applying formulas (c) and (d\

y \ yi y y
dx x dy

w

It will be noticed that the negative sign belongs to the

term which contains the differential of the denominator.

As an illustration of the application of this formula, we

have

2x - a 2(x* + b} 2x(2x-d} b +ax- J~~
Formula (e) is to De used only when both terms of the

fraction are variable ; for, when the numerator is constant, the

fraction is equivalent to the product of a constant and the

reciprocal of a variable, and, when the denominator is

constant, it is equivalent to the product of a constant by a

variable factor. Thus, if it be required to differentiate the

fraction^ ^ ,
the use of formula (e) may be avoided by first

Ct 3C

making the transformation,

*? + &*_* &.
ax a x
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since, in this form, one term of each fraction is constant

Hence,

+ a dx adxj
ax i a

The Power.

37. To obtain the differential of the power when the

exponent is a positive integer, suppose each of the variables

x^x^x^- -Xp in formula (c \ Art. 34, to be replaced by x.

The first member contains/ factors, and the&quot; second/ terms ;

the equation therefore reduces to

d(x}=px~ l dx....... (i)

Next, when the exponent is a fraction, let

y = xi
,

then yq = XT
;

differentiating by (i), / and q being positive integers, we have

qf~* dy =p xp~ ^

dx,

p xp ~ l

therefore, dy = ~- -
r dx.

Substitutin the value of

(2)

Again, when the exponent is negative, we have



V.] THE POWER. 33

Differentiating by formula (d\ Art. 35, we obtain

_ d(x
m
}

and, since m is positive, we have, by (i) or (2),

,,
,,A mxm ~ l dx

d(x &quot;)= -JET-
-*- -V/^. . . . (3)

Equations (i), (2), and (3) show that, for all values of w,

4^w

)
= w^n -W^ (/)

By giving to n the values 2, -J, and i, successively,
it is readily seen that this more general formula includes

formulas (a), (&) and (d).

38. It is frequently advantageous to transform a given

expression by the use of fractional or negative exponents,
and employ formula (/) instead of formulas (&) and (d).

Thus,

d

and d ,
---

3 \=d(a + x)-* =
(a + x) ~*dx.

L \/ \ tZ i
--* ) _I

When the derivative of a function is required, it may be

written at oiice instead of first writing t-he differential, since

the former differs from the latter only in the omission of

the factor dx, which must necessarily occur in every term.

Thus, given

derive - =
(i
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.

Examples V.

i. From the identity xy i(.r + _y)
2

i(jr j)
2 derive the formula foi

differentiating the product.

a + bx + ex*
2. Differentiate--- .

a i a
Put the expression in theform + b + ex. \c

--
-,

3. Find the derivative of

y = 3*~P See remark, Art. 35. ^ = (a? - P) ^CTpJr

dy
4. y = V(x*

- a 3

). Z
~

-. 6. j/=(i + 2.r
2
)(i +4JT

8
).

7. y = (a* + x*W&amp;gt; + 3jr
2

).
~

V
8. = I + ^ (i + ^2

) .
= 4(1

9. j =

^r - 2^

IO&amp;gt;/
= ____
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y(x
a - a 2

)

/ ab
3. y - cx 38.

dy_

~dx

dy ab

z 7

H. y

15. j = (I + x) 4/(i
-

-r).

16. = (a + -r)
3

(^ ,r)
4

.

(b
-

__
^

6a)x- 9**].

**&amp;gt; = dy

1 8. = - ax).

Ji9.y = -^
x-.r^

Put in theform (a? ^2

)(2&amp;lt;

y 20. y=

21. y =

22. =

23- y =

(*-.rr

bx

i + ,r

(2^r-^]

dy a*

dx (\-

Rationalize the denominator. -j- = // a 1~~^\ -r 2^r .

AT
[_ y(a + x ) j
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V 24. Two locomotives are moving along two straight lines of railway
which intersect at an angle of 60

;
one is approaching the intersection

at the rate of 25 miles an hour, and the other is receding from it at the

rate of 30 miles an hour
;
find the rate per hour at which they are

separating from each other when each is 10 miles from the intersection.

2% miles.

25. A street-crossing is 10 ft. from a street-lamp situated directly

above the curbstone, which is 60 ft. from the vertical walls of the

opposite buildings. If a man is walking across to the opposite side of

the street at the rate of 4 miles an hour, at what rate per hour does

his shadow move upon the walls (a) when he is 5 ft. from the curb

stone ? (fi) when he is 20 ft. from the curbstone ?

(a) 96 miles
; (J3) 6 miles.

26. Assuming the volume of a tree to be proportional to the cube

of its diameter, and that the latter increases uniformly ;
find the ratio

of the rate of its volume when the diameter is 6 inches to the rate

when the diameter is 3 ft.
-gig-.

27. If an ingot of silver in the form of a parallelepiped expand

YoVo Part f each of its linear dimensions for each degree of tempera

ture, at what rate per degree of temperature is its volume increasing
when the sides are respectively 2, 3, and 6 inches ?

If x denote a side, dx may be assumed to denote the rate per degree of

temperature. -^ of a cubic inch.

28. Prove generally that, if the coefficient of expansion of each

linear dimension of a solid is k, its coefficient of expansion in volume

is 3/.

Solution :

Let x denote any side
; then, if V denote the volume, we shall have

F= ex
3

;
c being a constant dependent on the shape of the body.

Therefore dV = y X* dx
;

or, since dx = kx,



CHAPTER III.

THE DIFFERENTIATION OF TRANSCENDENTAL FUNCTIONS.

VI.

The Logarithmic Function.

39. IN this chapter, the formulas for the differentiation of
the simple transcendental functions are to be established.
We begin by deducing the differential of the logarithmic

function, employing the method exemplified in Art. 29.
The symbol log.*- is used in this article to denote the loga

rithm of x to any base, and log,* is used when we wish to

designate a particular base b.

Let s=mx, .. log-s = log

differentiating by Art. 21,

dz m dx, and */(log s) = &amp;lt;log x) ;

whence fefl =^A
dz m dx

Multiplying by z = mx, to eliminate /, we obtain

The derivatives,
- ^

and (g
, are, by Art. 23, funo
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tions of z and of x respectively, independent of the values of

dz and dx\ moreover, equation (i) is true for all values of

x and s, these quantities being entirely independent of each

other, since the arbitrary ratio m has been eliminated. Hence,

in equation (i), one of the quantities, x or z, may be assumed

to have a fixed value, while the other is variable ;
whence it

follows that the members of this equation have a fixed value

independent of the values of x and z ;
we therefore write

^ a constant....... (2)

This constant, although independent of x, may be dependent

on the value of the base of the system of logarithms under

consideration. Denoting the base of the system by b, we

therefore denote the constant by B, and write equation (2)

thus,

(3)

40. To determine the value of B, we establish a relation

between two values of the base and the corresponding values

of this unknown quantity.

Denoting another value of the base by a, and the corre

sponding value of the unknown constant by A, we have

(4)x

The relation sought may now be obtained by differentiat

ing, by means of (3) and (4), the identical equation

loga* = loga log,*,* (5)

* This identity is most readily obtained thus, by definition
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Adx . ,Bdx
thus obtaining loga b

or B

hence

that is, A is the logarithm to the base a of *
; whence we

have

(6)
= a

Now, it is obvious that the value of aA cannot depend
upon by hence equation (6) shows that the value of bB likewise

cannot depend upon b; bD must, therefore, have a value

entirely independent of b. Denoting this constant value by e,

we write

* = .......... (7)

Adopting this constant as a base, and taking the loga
rithms of each member of equation (7), we have

whence B \

Introducing this value of B in equation (3), we obtain

In this equation, the differential of a logarithm to any
given base is expressed by the aid of the unknown constant e.

41. The constant e is employed as the base of a system of

taking the logarithm to the base a of each member, we have

loga.* = \ogb
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logarithms, sometimes called natural or hyperbolic, but more

commonly Napierian logarithms, from the name of the in

ventor of logarithms. Hence e is known as the Napierian
base.

Putting b = e in formula (g) we derive

4iog,*) = ~........ Or )^

The logarithms employed in analytical investigations are

almost exclusively Napierian. Whenever it is necessary, for

the purpose of obtaining numerical results, these logarithms

may be expressed in terms of the common tabular logarithms

by means of the formula,

which is derived from equation (5), Art. 40, by writing 10 for

a and e for b. The value of the constant Iog 10
e will be com

puted in a subsequent chapter.

Hereafter, whenever the symbol log is employed without

the subscript, loge
is to be understood.

The Logarithmic -Curve.

4-2. The curve, corresponding to the equation

y = log** ........ (i)

is called the logarithmic curve.

The shape of this curve is indi

cated in Fig. 4. It passes through
the point A whose coordinates are

x
(i, o), since

FlG - 4 log i = o.

Since we have, from formula (g \
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the value of tan&amp;lt; at the point A is unity, and therefore the

tangent line at this point cuts the axis of x at an angle of 45,
as in the diagram. We have from equation (2),

when x
&amp;gt;

I tan&amp;lt;
&amp;lt; i,

and when x
&amp;lt;

I tan^ &amp;gt;
i

;

the curve, therefore, lies below this tangent, as shown in

Fig. 4.

The point (e, i) is a point of the curve
;
let B, Fig. 4, be

this point, then OR will represent the Napierian base, and
BR = i. Since

OA = I, and AR
&amp;gt;
BR

t

OR
&amp;gt; 2;

that is, the Napierian base e is somewhat greater than 2.

The quantity e is incommensurable : the method of com
puting its value to any required degree of accuracy is given
in a subsequent chapter.

Logarithmic Differentiation.

43. The differential of the Napierian logarithm of the

variable x, that is the expression --, is called the loga

rithmic differential of x.

When x has a negative value, the expression \ogx has no
real value; in this case, however, log ( x) is real, and we
have

... d(x] dx
*)] =
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This expression therefore, in the case of a negative quantity,
is identical with the logarithmic differential of the positive

quantity having the same numerical value.

The process of taking logarithms and differentiating

the result is called logarithmic differentiation. By means of

this method, all the formulas for the differentiation of alge

braic functions may be derived.

In the following logarithmic equations, it is to be under

stood that that sign is taken in each case which will render

the logarithm real.

By differentiating the formulas,

log

log(,r) = n log(,r),

dx dywe obtain
xy x y

_
dx

~ n ~

These formulas are evidently equivalent to (c), (r),
and (/), of

which we thus have an independent proof.

4-5. The method of logarithmic differentiation may fre

quently be used with advantage in finding the derivatives of

complicated algebraic expressions. For example, let us take

u =
(*
- 2T

Hence, we derive

(i)
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log*/ - ilog(2;r)+ilog(l -^r2

)- -flog (^-2), . . (2)

differentiating,

2X

adding and reducing,

8-r
3

4- 2_r2
.r 6

du S-t
3 + 2/pr

2

theretore -- =-- -~

3 2x i ^- x

For certain values of x, one or more of the quantities whose

logarithms appear in equation (2) become negative. When
this is the case these logarithms should, strictly speaking, be

replaced by the logarithms of the numerical values of the

quantities in question ;
this change however would not affect

the form of equation (3). See Art. 43.

Exponential Functions.

46. An exponential function is an expression in which an

exponent is a function of the independent variable. The

quantity affected by the exponent may be constant or vari

able. In the first case, let the function be denoted by

(i)

If a is negative, a* cannot denote a continuously varying

quantity. We therefore exclude the case in which a has a

negative value, and regard a* as a continuously varying pos
itive quantity.

Taking Napierian logarithms of both members of equation

(i), we have

differentiating by
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=. log a . dx
;

hence dy \ogu.ydx,

or d(a*) log # .#**/.*....... (h)

Exponential functions of the form e* are of frequent occur

rence. Putting a = e in formula (//),
we have

hence the derivative of the function e-*
1

is identical with the

function itself. This function is the inverse of the Napierian

logarithm ;
it has been proposed to denote it by the symbol

exp x.

47. When both the exponent and the quantity affected by
it are variable, the method of logarithmic differentiation may
be employed. Thus, if the given function be

we shall have log 2 = x* log (n x) ;

differentiating,
- = x* + 2x log (n x) dx,2 X

hence d\(n x]
x
^ (n *Y* x \.

1 + 2 lS (
n *)] dx.

Examples VI.

J I. Given the function y = logt ^r; show that -- --, and
ax _\

hence prove that the tangent to the corresponding curve, at the point

whose abscissa is e, passes through the origin.

Put a = x = e in equation 5, Art. 40.
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y
3. y = log (log X).

j

4. JK = log [log(a

I).

4.
6. 7 = log

the form, log ( -j/ +
V&quot;-*&quot;)

~ log ( i7^
~

V-r)-

7- 7 = ^g [ 4/Cr
-*H ^(-^

-
*)!

- =

__^
1 1. y = log [.r + */(a-

- -f
2

)]. -^
=

/ x
log

TcPT^P^&quot;

.:,,=
fLtfL
(x-af
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\ 26.^=^.

/

15

16. y = enr. 2L = - L- . erh
dr (i + xf

4 19. y= -.y
ex + e

-

20. J = ^. ^L :

J K,y=a*\ *L =

v 22 r = _!:_ dy _ *(!-.*)- i

e-r ^~ (e
_

i)

23.^-iog (^4-^). ^jLzir^r e* + e~*

*^ 24. _X = Io*. -^-= loq-_.rt lo8*

27 -- r dx

. 45.
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Q V[ax(x-3a)]
-

dL-

d

VII.

Trigonometric or Circular Functions.

48. In deriving the differentials of the trigonometric
functions of a variable angle, we employ the circular measure

of the angle, and denote it by 0. Thus, let s denote the

length of the arc subtending the angle in the circle whose
radius is a, then

fl=i.
a

In Fig. 5, let OA be a fixed line, and OP an equal line

rotating about the origin O
;

then P
will describe the circle whose equation

-^ (the coordinates being rectangular) is

EL-^

The velocity of the pointP is the rate of

s, and (see Art. 17) is denoted by -j- f

which has a positive value when P
moves so as to increase 6. Let PP 9

taken in the direction of the motion of/*, represent ds\ then,

according to the definition given in Art. 25, PP is a tangent

line, and PB and BP will represent dx and dy, as in Art. 26.

FIG. 5.



48 TRANSCENDENTAL FUNCTIONS. [Art. 49.

49. We have first to show that the line PP, which is a
tangent to the curve according to the general definition (Art.
25), is perpendicular to the radius.

Differentiating the equation of the circle, we have

xdv+ydy = o;

whence tan = - = -.
dx y

Now (see Fig. 5),
^ = tan 0,x

therefore, tan = cot = tan (0 TT),

or,
&amp;lt;t&amp;gt;

= o7t
,

hence the tangent line is perpendicular to the radius.

Assuming to be the angle between the positive directions
of x and ds

t
we have

The Sine and the Cosine.

50. From Fig. 5, it is evident that

y x
sin0 =

, and cos0 -,a a&quot;

therefore ^(sin0) = ,
and ^/(cos0) = . . . (i)

In equations (i) we have to express dy and dx in terms of

6 and d6.
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Again, from the figure, we have

dy sin 0. ds, and dx = cos 0. ak ;*

substituting in equations (i), we obtain

d(sinO) = sin0 ,
and d(cosO) cos0 . ... (2)

Since = 6 + % TT, and

sin = cos 6, cos sin 0, and :- = dd.

Substituting these values in equations (2), we obtain

^(sinfl) = cos 6 dO, ...... (i)

and ^(cos0)= sin Odd....... (/)

The Tangent and the Cotangent.

51. The differential of tan0 is found by applying formula

(e) to the equation

sinfl
tan = ---

cos^

., . /A ^ cos d(sin 6} sind d(cosd)
thus, &amp;lt;/(tan 6}

=-i- -, -A

*In Fig. 5, dx is negative ; but,
&amp;lt;j&amp;gt; being in the second quadrant, cos^ is

likewise negative.
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The differential of cot is found by applying formula (k]
to the equation

cot0 = tan(^;r 0) ;

whence */(cot0) = = cosec 8

0^0. ...(/)

The Secant and the Cosecant.

52. The differential of sec 6 is found by applying formula

(d) to the equation

cos0

whence d(sec 0) = 2
- = sec tan dd. (m\cos

The differential of cosec is found by applying formula
to the equation

cosec = sec (
TT

0) ;

whence */(cosec0)= ^^-- = cosec cot 0^0. . ()

The Versed-Sine.

53. The versed-sine is defined by the equation

vers = i cos d
;

therefore */(vers 6)
= sin 6 do
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Examples VII.

1. The value of rf(sm6) being given, derive that of
&amp;lt;/(cos0) from

the formula

cosO = sin Q-TT 0) ;

also from the identity

cos 2 = i sin 2
0.

2. From the identity sec 2 0= i + tan 2
0, derive the differential of

secO.

3. From the identity sin 20 = 2 sin cos O, derive another by taking
derivatives

cos 20 = cos 2 0- sin 2
0.

4. From the identity sin (0 TT)
= 1^/2 (sin0 cos0), derive an

other by taking derivatives.
cos(0 i?r) = ^^ (cos0 ^ sinfl)&amp;gt;

5. Prove the formulas :

^/(log sin 0) = ^(log cosec 0) = cot

&amp;lt;/(log
cos 0) = &amp;lt;/(log

sec 0) = tan

&amp;lt;/(log
tan 0) = &amp;lt;/(log

cot 0) = (tan + cot 0) &amp;lt;/0.

6. Obtain an identity by taking derivatives of both members of the
equation

tan 40 = ^!-!
sin0

r cosQ

o _
&quot;
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i o. y = ^ tan 3 tan + 0.

tan 9.

12. y = sine*.

J
13. y = ^rsin .r

2
.

J

-/, = tan 4
0.

-t=sec&amp;lt;0.

*-- = e* cos e*.

5- = sin ^r
2 + 2.r

2 cos ^r
2

.

*

15. j= tan 2 + log (cos
2
9).

16. j/
= log (tan + sec 0).

17. _y
= log tan (iff + |0).

*

1 8. y = x + log cos (iff x).

J
19. y = log y(sin JT) -f log |/(CO8 ^r).

^ = 2tan 3
0.

^X
-f^
= sec 0.

dy i

^0
~~

cos

dy_ 2

dx
~~

i + tan ^

-/- = cot 2x.

20. j/
= sin n (sin 0)

w
.

sinjtr

^

tan*

22. eax cosfrx.

4 / zcosjr sin.f

23- /-. log f/ ^coiTTT^^-

^/ cos 3
;r sin 3

^-

dx
~

(sin x + cos .r)
a
*

-^ &*(aw$&amp;gt;bx bs\
dx

-ab
-^ = -
dx ^rcos2

^-
a
sin*.*
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v
24. y = x

(cos .# .sin jc).
-=: a c* sin #.

Hh&

25. The crank of a small steam-engine is i foot in length, and

revolves uniformly at the rate of two turns per second, the connect

ing rod being 5 ft. in length ;
find the velocity per second of the

piston when the crank makes an angle of 45 with the line of motion

of the piston-rod ; also when the angle is 135, and when it is 90.
Solution :

Let a, b, and x denote respectively the crank, the connecting-rod,
and the variable side of the triangle ;

and let denote the angle be

tween a and x.

We easily deduce

x = acosQ + \/(P a 1 sin 2

6) ;

l*\
** cu- 7

dx !
2 sin_ =

_^ sinfl +__
dQ

In this case, -j = 4?r, a = i, and b = 5.

26. An elliptical cam revolves at the rate of two turns per second

about a horizontal axis passing through one of the foci, and gives a

reciprocating motion to a bar moving in vertical guides in a line with

the centre of rotation : denoting by the angle between the vertical

and the major axis, find the velocity per second with which the bar is

moving when = 60, the eccentricity of the ellipse being ,
and the

semi-major axis 9 inches. Also find the velocity when = 90.
The relation between and the radius vector is expressed by the equation

I

When 6 = 60,
-^-
= 124/3^ inches.

27. Find an expression in terms of its azimuth for the rate at which

the altitude of a star is increasing.
Solution :

Let h denote the altitude and A the azimuth of the star,/ its polar

distance, / the hour angle, and L the latitude of the observer ; the

formulas of spherical trigonometry give
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sin h sinZ cos/* + cosZ sin/ cos /, . . . . (i)

and sin/ sin t = sin A cos h....... (2)

Differentiating (i),/ and L being constant,

7
dh

cos h = cos Z sin/ sm /,

whence, substituting the value of sin/ sin /, from equation (2),

dh
cos L sm ^4.

It follows that is greatest when sin^ is numerically greatest ;
that

is, when the star is on the prime vertical. In the case of a star that

never reaches the prime vertical, the rate is greatest when A is greatest.

VIII.

The Inverse Circular Functions.

54. It is shown in Trigonometry that, if

x = sin 0,

the expressions

2H7T + and (2n+i)7f 0, . . (i)

in which n denotes zero or any integer, include all the arcs

of which the sine is x-, hence each of these arcs is a value

of the inverse function

Among these values, there is always one, and only one,

which falls between \7t and +JTT; since, while the arc
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passes from the former of these values to the latter, the sine

passes from i to + 1
;

that is, it passes once through
all its possible values.

Let 0, in the expressions (i), denote this value, which we
shall call the primary value of the function.

55. In a similar manner, if

x = cos 0,

each of the arcs included in the expression

2Jl7t 6 (2)

is a value of the inverse function

One of these values, and only one, falls between oand TT
;

since, while the arc passes from the former of these values

to the latter, its cosine passes from + i to i
;
that is, once

through all its possible values. In expression (2), let denote

this value, which we shall call the primary value of this

function.

56. In the case of the function

the definition of the primary value that was adopted in the

case of sin&quot;
1

.*
1

,
and the same general expressions (i) for the

values of the function, are applicable.
In the case of the function

the definition of the primary value adopted in the case of
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cos- 1

.*- and expression (2) for the general value of the
function are applicable.

Finally, in the case of each of the functions

tan&quot;
1

.*; and cot&quot;
1

.*-

the primary value (0) is taken between
|-TT and + TT, and

the general expression for the value of the function is

H7t+0

The Inverse Sine and the Inverse Cosine.

57. To find the differential of the inverse sine, let

= sin- 1

*;

then x=sind, and dx

do= .

costf

Now, cos0 = |/(i sin
2

0)
=

hence ^-^=-
If 6 denotes the primary value of this function

;
that is, the

value between TT and +TT, cosfl is positive. Hence the

upper sign in this ambiguous result belongs to the differential

of the primary value of the function
;

it is therefore usual to

write

Since we have, from expressions (i), Art. 54,

Q) = dQ, and d\(2n+ I)TT 6]
=
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it is evident that the positive sign in equation (i) belongs not

only to the diiierential of the primary value of sin&quot;
1

^, but

likewise to the differentials of all the values included in

2n TT + 6
;
and that the negative sign belongs to the differen

tials of the values of sin~ .r included in (2n+ i)
n 0.

58. Similarly, if

6 = cos~ l

x, x

whence do =.
,

or

If denote the primary value of the function which in

this case is between o and TT, sin is positive ;
hence the up

per sign in this ambiguous result belongs to the differential of

the primary value. It is therefore usual to write

Since, from expression (2), Art. 55, we have

d(2n n 0)
= dQ

\

it is evident that the upper and lower signs in equation (i)

correspond to the upper and lower signs, respectively, in the

general expression 2n n 0.

The Inverse Tangent and the Inverse Cotangent.

59. Let

= tan
~ l

x, then x = tan 6
;

differentiating, we derive,

dx

~sec 2
0*



5_. TRANSCENDENTAL FUNCTIONS, [Art.

But sec^d = i + tan 2
a = i + x\ therefore,

No ambiguity arises in the value of the differential of
this function

; since, from expression (3), Art. 56, we have

d(n 7T + 6)
= do.

Similarly, putting

cot&quot;
1

.*-,

we derive * x\ = _ ___ m

i + x*

Inverse Secant and Inverse Cosecant.

60. Let

0=sec~ 1

.*-, then ^

differentiating, we derive

sec 6 tan (9

But sec 6 = jr, and tan^ = ^(sec
2 ^

i)
= y(z* i\

therefore,

If JT is positive, and if denotes the primary value of the
function, tan0 is positive. &quot;Hence it is usual to write
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When x is negative, if 6 denotes the primary value of the

function, which in th: s case is in the second quadrant, tan is

negative ; consequently the radical must be taken with the

negative sign. Hence, since x is also negative, the value of
the differential is positive, when the arc is taken in the
second quadrant.

In like manner we derive

// IN dx-

Similar remarks apply also to this differential when x is

negative.

The Inverse Versed-Sine.

61. Let

vers
~X then x = vers d = i cos 6,

But sin (9 =
|/(i cos

2

6)
= \/(2x x*), therefore,

and i x = cos 0, . . dd = -
sin0&quot;

Illustrative Examples.

62. It is sometimes advantageous to transform a given
function before differentiating, y means of one of the

following formulas :

&amp;gt;

cos&quot;&quot; =
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e* cos .r

Thus, let J = tan

then 7= cot-^e-

By formula (s),

dy e--*sec;r tan.ar e-
- 2X sec

a

multiplying both terms by
2*cos2

-r,

dy *(cos ^r sin x e*)

~dx~ I + 2 e^ sin jr + 2X

63. Trigonometric substitutions may sometimes be

employed with advantage. Thus, let

If in this example we put x = tan0, we have

tan sin~~

Examples VIII.

i. Derive from Q), (r), and (/&amp;gt;
the formulas:

dx
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/ x\ adx
d( sec- 1

J

=
(

a _ 8

2. Derive */(sec
-1

-r) from the equation sec - l x = cos -1

3. Derive d{ cot&quot;
1

)
from the equation cot&quot;

1 = tan- 1

\ a J ax
Tx

5. y = sin- 1

(COS.T).

dy
6. y = sin (cos&quot;

1
^:). -7-dx

7. y= sin- 1

(tan^r). = =-

^r 4/(i tan 2
.

/ _
&amp;lt;/y

2sin^r
8. y = COS&quot;

1

(2COS.T). -- = -V-
-

?
-

9. y=x*m-*x+ y(i-x ). -J-=sm

10. y

/ . . ^
II. jj/= (jr

2 + i) tan- 1 ^ ^r.
~

* 12. y a* sin- 1 + x
a

,
mx dy m(\

^-^.jrrtan- 1

+ e~

i x* dx i + (tn* 2) x* +

* + i _^ i

4/2 dx~ A/(l 2X1
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^= ta &quot;- -v?7^^- S

16. y =

\ 17. y = sin-* -

23- J = y^TT

\
24. y=(x-\-d) tan

IX.

18. _y= sin- 1

y(sin ar). ^-
= ^ -^/(i + cosec.r).

19. j= ^(i-^sin-^-jr. ^
;;z 4- x

20. y = tan- 1

rrr- ^=nr?

M.,= un-yjT|2H. dx

Differentials of Functions of Two Variables.

64. The formulas already deduced enable us to differen

tiate any function of two variables, expressed by elementary

functional symbols ;
the application of these formulas is, how-
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ever, sometimes facilitated by a general principle which will

now be shown to be applicable to such functions.

The formulas mentioned above involve differential factors

of the first degree only. It follows, therefore, that*the differ

entials resulting from their application consist of terms each
of which contains the first power of the differential of one of

the variables. In other words, if

(i)

Now, if y were constant, we should have dy = o, and the

value of du would reduce to that of the first term in the right-
hand member of (i); hence this term may be found by differ

entiating u on the supposition that y is constant, and in like

manner the second term can be found by differentiating u on
the supposition that x is constant. The sum of the results

thus obtained is therefore the required value of du.

65. As an example, let

Were v constant, we should have for the value of dz, by
formula (/), Art. 37,

v uv~ x du
;

and, were u constant, we should have, by formula (#), Art. 46,

log u . uv dv
;

whence, adding these results,

dz = u* l

(v du + u log u dv).
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Although this result has been obtained on the supposition
that u and v are independent variables, it is evident that any
two functions of a single variable may be substituted for u

and v. T^ius, if

u = nx and v = x*t

we have z = (n x}
x

*&amp;gt;

and, on substituting,

dz = (n xy*
- l

(x*ndx + n x log (n x) . 2x dx\

= x (n x)** [ i + 2 log (n x)\dx,

which is identical with the expression obtained in Art. 47, for

the differential of this function.

Examples IX.

I. u = xy e* + 2
y. du= * +

*|&amp;gt;(i + x)dx + x(i -f 1y}dy\.

2. = iog tanf. du=*ydx
~ xd

y.
y 2 . x

y* sin 2

, , x , ydx xdy
3. u = log tan - !

. dfo = ^ ^
.

C^+j^tan- 1 -

J J
5 u =
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r .

V 7. # = i/ -i *s .

Y * +y
2 xy (y d.x x dy]-^-^---

.

8. # = log*

*

. 8 .

x v(x* y)

9. Given x = r cos 0, and jy
= r sin 0; eliminate and find #&amp;gt;-

;
also

eliminate r and find d.

,

dr = -
x dx -f y dy xdy y dx~J

,. ,
and //O = ~ ^ .+ ^+

Miscellaneous Examples.

_
~~

x

+ Vx dx~ 2 Vx V(a + x)(Va+

4. y = ( yx - 2 Va) V( Va + Vx}.
Q- =

^ - (

dx 4 V ( Va +

dy_ ^(x?* -
- i

6. y = log -fr ~r + i tan
~l
x.

(f
-

,)

^ _ JC

sec-. =

x x
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y -
^-~

&amp;gt;

a _1_ A/ ( s^ ~2 \
I, I* -|~ T 1* * / / / 2 2\

\ ii. jy
= tf log V(ax)&amp;gt;

00

dx~ x

x

dy __ i x*
___

i + 2X* , 2 x . _!

^c ^: :v
a

_ / 1 cos Jic dy _ i
J 3- J ^|/ j + cosjc&quot; dx~ sin.*

dy

j
I ^2N

15. y = sec 1
^ . -j-= 77-2X I ^C V (

I
~

-
16. ^ = cos

x in + i fl&e ^2n + i

,a x . r , 2 , Na-,

V 17. j^^cos- 1 V [?
-

(a
-

*) ].

^ ~
v

[t&amp;gt;*

-
(
-

*)
a

]

/i-^ ^- y(i -x)
* 1 8. V = COS 1 ^ 2i/- -r- = -7 TaT-

I + * ft*
(Z + jc)

^^-i
,,*.-&amp;gt;. ^_(i + ^V

catan
-^

g

&quot;V(I-+^
2

)
^

(l + ^9

)
f

C/&quot;^ logarithmic differentials.



CHAPTER IV.

SUCCESSIVE DIFFERENTIATION.

X.

Velocity and Acceleration.

66. IF the variable quantity x represent the distance of a

point, moving in a straight line, from a fixed origin taken on the

line, the rate of x will represent the velocity of the point.

Denoting this velocity by vx we have, in accordance with the

definition given in Art. 17,

dx . .

In this expression the arbitrary interval of time dt is re

garded as constant, while dx, and consequently vx , is in gen
eral variable. Differentiating equation (i) we have, since dt

is constant,

d(dx)* V1

The differential of dx, denoted above by d(dx\ Is called the

second differential of x
;

it is usually .written in the abbreviated

form d*x, and read &quot; d-second x.&quot; The rate of vx is therefore

expressed thus :

dvx _ d*x

dt
~~
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The rate of the velocity of a point is called its acceleration,

and is usually denoted by a
;
hence we write

the marks of parenthesis being usually omitted in the denomi

nator of this expression.

67. When the space x described by a moving point is a

given function of the time /, the derivative of this function is,

by equation (i), an expression for the velocity in terms of t.

The derivative of the latter expression, which is called the

second derivative of x, is therefore, by equation (2), an expres

sion for the acceleration in terms of /.

A positive value of the acceleration a indicates an algebraic

increase of the velocity v, whether the latter be positive or

negative ; and, on the other hand, a negative value of a indi

cates an algebraic decrease of the velocity.

68. As an illustration, let x denote the space which a body

falling freely describes in the time /. A well-known mechanical

formula gives

(0

Hence we derive vx =-r-=gt, ....... (2)
at

dvx d^x / N

and &quot; =--= = * ...... (3)

In this case, therefore, the acceleration is constant and posi

tive, and accordingly vx,
which is likewise positive, is numeri

cally increasing.

69. When the velocity is given in terms of x, the acceleration

can readily be expressed in terms of the same variable, as in

the following example.
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Given vx 2 sin x
;

dvx dx
whence -, 2 cos x ;

dt at

that is,
otx = 2 cos ;r. vx = 4 cos ;tr sin x = 2 sin 2x.

The general expression for ax ,
when ^ is given in terms

of X, is

/,\

dt
~~

dx dt~ dx 2 dx

Component Velocities and Accelerations.

70. When the motion of a point is not rectilinear but is

nevertheless confined to a plane, its position is referred to co

ordinate axes
;
the coordinates, x and y, are evidently functions

of /, and the derivatives - and -5- ,
which denote the rates

dt dt

of these variables, are called the component or resolved velocities

in the directions of the axes. Denoting these component veloci

ties by 2^ and vyi we have

dx dy

Again, denoting by s the actual space described, as measured

from some fixed point of the path, s will likewise be a function

of /, and the derivative =- will denote the actual velocity of
at

the point. (Compare Art. 48.) Now, the axes being rectangu

lar, and
(j) denoting the inclination of the direction of the mo

tion to the axis of x, we have

dx = ds cos
(j&amp;gt;j

and dy = ds sin ^.

TT dx ds .
, dy ds . ,

Hence
Tt

= * cos * and
~di

=
Tt

sm ;
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or vx = v cos #, and vy = v sin 0.

Squaring and adding,

The last equation enables us to determine from the component
velocities the actual velocity in the curve.

71. If we represent the accelerations of the resolved mo
tions in the directions of the axes by a* and ayf we shall have,

by Art. 66,

ax = and ay =d?

These accelerations, &amp;lt;* r and ay ,
will be positive when the re

solved motions are accelerated in the positive directions of the

corresponding axes ; that is, when they increase a positive re

solved velocity, or numerically decrease a negative resolved

velocity.

Examples X.

v i. The space in feet described in the time / by a point moving in

a straight line is expressed by the formula

x = 48* i6/
2

;

find the acceleration, and the velocity at the end of z\ seconds; also

find the value of / for which = 0.

a 32 ;
v o, when t = i.

v 2. If the space described in / seconds be expressed by the formula

*=iolog^L;

find the velocity and acceleration at the end of i second, and at the

end of 16 seconds. When / = i, v = - 2 and a = f .



X.] EXAMPLES. 71

3. If a point moves in a fixed path so that

s= Vt,

show that the acceleration is negative and proportional to the cube of

the velocity. Find the value of the acceleration at the end of one

second, and at the end of nine seconds. J, and j^.

J
4. If a point move in a straight line so that

x = a cos

show that a ^tfx.

V
5. If x = a + b &amp;lt;r

,

prove that a x.

^J 6. If a point referred to rectangular coordinate axes move so that

x a cos t + b and y a sin / + c,

show that its velocity will be uniform. Find the equation of the path
described.

Eliminate tfrom the given equations.

V 7- A projectile moves in the parabola whose equation is

= x tan a
y

2 V cos a

(the axis ofy being vertical) with a uniform horizontal velocity

vx = V cos a
;

find the velocity in the curve, and the vertical acceleration.

v= V(V&quot;
-

2gy), and a, = -g.

8. A point moves in the curve, whose equation is
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so that vx is constant and equal to k
;
find the acceleration in the di

rection of the axis of y. a \tf

^ 9. If a point move so that v - V(zgx)\ determine the acceleration.

Use equation (i), Art. 69.
& g-

V 10. If a point move so that we have

V* C A* log X,

determine the acceleration. &amp;lt;* .

ii. If a point move so that we have

}J.X

determine the acceleration.
-

a-

v/
12. The velocity of a point is inversely proportional to the square

of its distance from a fixed point of the straight line in which it moves,

the velocity being 2 feet per second when the distance is six inches
;

determine the acceleration at a given distance s from the fixed point.

-
, feet.

2S

^
13. The velocity of a point moving in a straight line is m times its

distance from a fixed point at the perpendicular distance a from the

straight line
;
determine the acceleration at the distance x from the

foot of the perpendicular.
a mx.

14. The relation between x and t being expressed by

__
find the acceleration in terms of x. x*

15. A point moves in the hyperbola

/=/* + ,?

in such a manner that v, has the constant value c ; prove that
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, ,

and thence derive ay by equation (l), Art. 69.

Ot * f-.
y

1 6. A point describes the conic section

having the constant value c
;
determine the value of a

Express z in terms ofy, andproceed as in Example 15.

XI.

Successive Derivatives.

72. The derivative of /(V) is another function of ^r, which

we have denoted by /X^) 5
^ we ta^e tne derivative of the

latter, we obtain still another function of x, which is called the

second derivative of the original function f(x), and is denoted

by /&quot;(*)
Thus if

/(*) = x\ f (*) = 3*\ and
/&quot;(*)

- fe

Similarly the derivative of
f&quot;(x)

is denoted by f&quot;\x),
and

is called the third derivative of f(x) ;
etc. When one of these

successive derivatives has a constant value, the next and all

succeeding derivatives evidently vanish. Thus, in the above

example, f&quot;(x)
= 6, consequently, in this case, /iv

(^) and all

higher derivatives vanish.

The Geometrical Meaning of the Second Derivative.

73. If the curve whose equation is

y=f(x)
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be constructed, we have seen (Art. 26) that

|?=/ (*) = tan*,dx

&amp;lt;f&amp;gt; being the inclination of the curve to the axis of x\ hence

dx

If now the value of this derivative be positive,

tan
(/&amp;gt;

will be an increasing function of x, as in

Fig. 6, in which, as we proceed toward the

right, tan fi (at first negative) increases alge

braically throughout. In this case, therefore,

the curve appears concave when viewed from
above. On the other hand, if

f&quot;(x]
be negative, tan

a decreasing function of x, as in Fig. 7, in

which, as we proceed toward the right, tan ^

decreases algebraically throughout, the curve

appearing convex when viewedfrom above.

FIG. 6.

will be

74. A point which separates a concave from

a convex portion of a curve is called a point of FIG. 7.

inflexion, or a point of contrary flexure.

It is obvious from the preceding article that, at a point of

inflexion, like P in Fig. 8, f&quot;(x)
must change

sign; hence at such a point, the value of this

derivative must become either zero or infinity.

75- When a curve is described by a moving

point, the character of the curvature is depen
dent upon the component accelerations of the FIG. 8.

motion. For, if we put

vx = c, or dx

c denoting a constant, we have
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-,,, , I d*y ofyand hence / (*)
= _.

^1
=
^.

Whence it follows that, if vx is constant, ay and
f&quot;(x)

have

the same sign, and consequently that a portion of a curve

which is concave when viewed from above is one in which ay is

positive when ax is zero.

Successive Differentials.

76. The successive differentials of a function of x involve

the successive differentials of x ; thus, if

v x*y *
&amp;gt;

we have dy = ^x^dx,

and d*y =

In general, if

and d*y =/ &quot;(*) (dxf + $f&quot; (x) dx d*x +/ (*) &amp;lt;***

Equicrescent Variables.

77. A variable is said to be equicrescent when its rate is con

stant
;
since dt in the expression is assumed to be constant,

at

dx is also constant, when x is equicrescent.
In expressing the differentials of a function, it is admissible
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to assume the independent variable to be equicrescent, since

the differential of this variable is arbitrary. This hypothesis

greatly simplifies the expressions for the second and higher dif

ferentials of functions of
x&amp;gt;

inasmuch as it is evidently equiva
lent to making all differentials of x higher than the first vanish.

Thus, in the general expressions for d*y and d*y given in the

preceding article, all the terms except the first disappear, and

it is easy to see that, in general, we shall have

when x is equicrescent.

78. From the above equation we derive

The expression in the first member of this equation is the usual

symbol for the ^th derivative of y regarded as a function of x.

The nth differential which occurs in this symbol is always un

derstood to denote the value which this differential assumes

when the variable indicated in the denominator is equicrescent.

The symbol is frequently used to denote the operation

of taking the derivative with reference to X, and similarly the

/ d \ n dn

symbol ( ) ,
or , is used to denote the operation of tak-

\dx] dx*

ing the derivative with respect to x, n times in succession.

Examples XL

i. Find the second derivative of sec x, and distinguish the concave

from the convex portions of the curve y sec^. Also show that the

curve y = log x is everywhere convex.
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/^ 2. Find the points of inflexion in the curve y = sin x.

&amp;gt;/ 3. Find the point of inflexion of the curve

y = 2*3

3*
2 12* + 6.

The point is (J, J).

^
4. Show that the curve y tan x is concave when y is positive, and

convex when y is negative.

5. Find the points of inflexion of the curve

y = x* 2*3
i2*2 + n* + 24.

The points are (2, 2) and ( i, 4).

6. , find/ (*)

,. ,, &amp;lt;

a ,. ,. . (

7. If/(*)=--, find/ (*). / (*)=--

8. If y is a function of x of the form

^ xn
-f- ^^n ~ i + + jfjc + .A7

;

prove that -~ = i. 2. i nA.
dxn

9. If/ (^) = &, find/
v

(jc). /v
(x) = a&quot; (log ^)

5
b
ax

.

V 10. If/ (^)
= ^3

log (wa;), find/
lv

(x). f (x)
=

,

* ii. If/ (*) = log sin ,T, find/
&quot;

W. /
&quot;

(*) - .

/ 12. If/ (*)
= sec x, find/&quot; (jc) and/

&quot;

(jc).

/&quot; (x)
= 2 sec

3 x sec a:, and/
&quot;

(x) = sec jc tan x (6 sec
2 * i).

/ 13. If/ (*) = tan x, find/
&quot;

(jc) and/
IV

(x).

/
&quot;

(
x )
= 6 sec

4* 4 sec
2

*, and/
IV

(x) = 8 tan * sec
2* (3 sec

2* i).
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14. If/ (x) = .*, find/&quot; (.). /&quot; (.) = of (i + log .)
2 + x-\

x

_
- 1 a -

yi9. If^ sin-., find
f?.

/ 20, If= 8in

-
3
= f

nx
cos # sin ^ (sin . + 3).

J 2I . K , = *
,

i + log. x 2

dx&amp;gt; x(i + log.)

22. Find the value of ^/
3

(
fl

)&amp;gt;

when x is not equicrescent.

23. Find the value of --
(sin 0), 6 being a function of /.



CHAPTER V.

THE EVALUATION OF INDETERMINATE FORMS.

XII.

Indeterminate or Illusory Forms.

79. WHEN a function is expressed in the form of a fraction

each of whose terms is variable, it may happen that, for a cer

tain value of the independent variable, both terms reduce to

zero. The function then takes the form -
,
and is said to be

,o

indeterminate, since its value cannot be ascertained by the ordi

nary process of dividing the value of the numerator by that

of the denominator. The function has, nevertheless, a value as

determinate for this as for any other value of the independent
variable. It is the object of this chapter to show that such defi

nite values exist, and to explain the methods by which they
are determined.

The term illusory form- is often used as synonymous with

indeterminate form, and these terms are applied indifferently,

not only to the form -
,
but also to the forms

,
co- o, CQ oo,

o co

and to certain others whose logarithms assume the form co-o.

When a function of x takes an illusory form for xa, the cor

responding value of the function is sometimes called its limit*

ing value as x approaches the value a.

80. The values of functions which assume illusory forms may
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sometimes be ascertained by making use of certain algebraic

transformations. Thus, for example, the function

a - V(a*
-

far)

x

takes the form - when x o.
o

Multiplying both terms by the complementary surd

a -f V(a* bx],

bx b
we obtain

x\_a + V(a*
-

far)] a + V(a*
-

bx)

The last form is not illusory for the given value of x, since the

factor which becomes zero has been removed from both terms

of the fraction. The value of the fraction for x - o is evi

dently .

2a

The following notation is used to indicate this and similar

results ; viz.,

a - V(a*
-

far)-| _ b_

the subscript denoting that value of the independent variable

for which the function is evaluated.

Evaluation by Differentiation.

81. Let - represent a function in which both u and v are

u

functions of x, which vanish when x = a
;
in other words, for

this value of x, we have u = o, and v = o.
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Let P be a moving point of which the abscissa and ordinate

are simultaneous values of u and v (x not

being represented in the figure) ; then, de

noting the angle POUby 6, and the inclina

tion of the motion of P to the axis of u by ^,

we have

Frr tan0==-, and tan
&amp;lt;/&amp;gt;

= --.
* IG - 9- u du

At the instant when x passes through the value a, u and v

being zero by the hypothesis, P passes through the origin ; the

corresponding value of 6 is evidently determined by the direc

tion in which P is moving at that instant, and is therefore equal

to the value of $ at that point.

Hence the values of tan 6 and tan corresponding to x = a

are equal, or

dv

U =

therefore, to determine the value of - for x = a; we substitute

for it the function -=-
,
whose value is the same as that of the

du

given function, when x = a.

82. This result may also be expressed in the following man
ner : let f(x) and $(x) be two functions, such that f(a) = o,

and
(j&amp;gt;(a)

= o
;
then

As an illustration, let us take --^-
. When x I, this func

tion takes the form ; by the above process, we have
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log

the required value.

83. Since the substituted function or /^ frequently
au

(j) (x)
*

takes the indeterminate form, several repetitions of the process
are sometimes requisite before the value of the function can be
ascertained.

For example, the function ~ takes the form - when&quot;

O
8=0-, employing the process for evaluating, we have

i cos 6~] sin 6h

28 J
&amp;gt;

which is likewise indeterminate ; but, by repeating the process,
we obtain

i - cos S~\
__ sinjTI _ cos

6~\
& Jo 26 J

- -y^ *

84. If the given function, or any of the substituted func

tions, contains a factor which does not take the indeterminate

form, this factor may be evaluated at once, as in the following
example.

The function

(i x)
x

I

tan
2
;r

is indeterminate for x = o. By employing the usual process
once, we obtain

(i
-

x) s*
i~j _ xe*

~|

tan&quot; x Jo 2 sec
u
;r tan x_\

*

which is likewise indeterminate
; but, before repeating the pro-

x
~~\

cess, we may evaluate the factor . The value of
2 sec

a

^rJ
this factor is

;
hence we write
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I-***- n = _ *** = _ i

tan** Jo 2 sec
2

^r tan ^-Jo tan*

85. When the given function can be decomposed into fac

tors each of which takes the indeterminate form, these factors

may be evaluated separately. Thus, if the given function be

i) tan
2
.*:

the form
/

\ x

may be employed. We have

tan x~\

-)

x Jo

,
-

= i, and = I ;

hence the value of the given function is unity.

When this method is used, if one of the factors is found

to take the value zero while another is infinite, their product,

being of the form o- oo, must be treated by the usual method,

since o oo is itself an illusory form.

86. Another mode of decomposing a given function is that

of separating it into parts, and substituting the values of such

parts as are found on evaluation to be finite.

As an illustration, we take the expression,

_

Each of the fractions into which this function can be decom

posed being obviously infinite, we first apply the usual process,

thus obtaining
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_

Separating this expression into two fractions, thus,

_ (t* + S-*) (e*
-*

2X)~\ _
*~~ &quot; ~

the latter is found on evaluation to have a finite value, and the

expression reduces to

_
* -*

Hence

51 T-
-Jo-

1 -&quot;

Examples XIL

. i. Prove 1 =
i,
^~ =

i, and = i.

X Jo X Jo * Jo

These results are frequently useful in evaluating other functions.

Evaluate the following functions :

- _^ x a. nd
J&amp;lt; log- log*

-
-

H
-

9
-

1

x* - x 2 - $x
-

3

/ ^4 8^3
4- 22^2

24^ -f 9 ^ _
5 ^- 4^

3 - 2^2 + 12* + 9

6.
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f sin x cos x
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(a a:
3

)* + (a x)* _ V(2a)
I ~3 3\4 , / ,\A- T 4- /2 &amp;lt;i/2*

Divide both terms by (a xfi.

sn x x cos x
20. - -

:
-

,
X=0. 2.

x sin x

, ^=0. I.
x tan jc

\

(X 2)f
z + JC + 2 I

^ x
4 2T..- ^=1. 2.

V 24.

,

i x + log A:

tan jc sin ^

. J7 - sin x~\ sec ^ i~|n theform -- --
5
-

.

^ Jo X Jo

85 . X=I
(x + ,&amp;gt;(_ 1)1

i V(2x x Y

sin a: log (

a
cos^) J

2&amp;lt;

~ ~~ &quot;&quot;
&quot;

_ sin(logx)

an a -an-^
V y tan~ (a + x) tan&quot; (a

- x)

COS*
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^z _ eSin x

/ 31.
-

:
,

when x o. i.
x sin x

mx
sin nx nx

sin mx
\. 32.
- -

, m ~ n.
tan nx tan #2.#

~ l

(n cos # sin nx} cos
2

#.

7/z solving this and the following example, x and n way be regarded
as constants, and m as a variable.

/ tan nx tan mx
33&amp;gt;

sin (n*x
- w^)

m ==

XIII.

Form
-^.

87. Let .} . denote a function which assumes the form

~ when x = a, then we have
I

~6^}
=
~T~ (0

The second member of this equation takes the form - when
o

x = a\ we therefore have, by equation (i) Art. 82,

_L JM_
f(a) = fta) [(f&amp;gt;(a}f_ (*) (f(a) \

2

&quot;

_

/w c/wr

whence, if -^W- is neither zero nor infinity, we infer that
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This formula, it will be observed, is identical with that employed

when the function takes the form -.
o

88. When the value of rr\ is either zero or infinity, equa-
(p\Oj)

tion (2), Art. 87, will be satisfied independently of the exist

ence of equation (3) ;
we are not justified therefore, when this

is the case, in deriving the latter from the former. The follow

ing demonstration shows, however, that equation (3) holds in

these cases also.

First, when the value of 4/^ is zero
&amp;gt;

by adding a finite

&amp;lt;/&amp;gt;(a)

quantity n to the given function, we have

/(*) 4 - /(*)+*(*)
#) #()

a function which is by hypothesis finite. To this function there

fore the demonstration given in Art. 87 applies ;
hence

therefore =T
&amp;lt;I&amp;gt;(a)

4&amp;gt; (a)

as before.

Again, if the value of-^
is infinite, that of H is zero,

and, by the last result,

/(*) / ()

hence, in this case, likewise
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/(*)_/ (*)

Derivatives of Functions which assume an Infinite Value.

89. When f(x) becomes infinite, for a finite value a of the in

dependent variable, f (a) is likewise infinite. For, let b denote a
value of x so taken that/(;r) shall be finite for x = b and for all

values of x between b and a : then, as x varies from b to a, the
rate of f(x) must assume an infinite value, otherwise /(;tr) would
remain finite. The value of x for which the rate is infinite must
be a or some value of x between b and a

;
that is, some value

of x nearer to a than b is. Now, since b may be taken as near
as we please to a, the value of x for which the rate is infinite

cannot differ from a. The expression for this rate is/ (X) ,
in

dt

which may be assumed finite, therefore f (x) must be infinite

when x = a
;
in other words, f (a) is infinite when f(a) is infinite.

90. It follows from the theorem proved in the preceding
article that when a is finite the function obtained by the appli

cation of formula (3), Art. 87, takes the same form, ,as that
oo

assumed by the original function. Hence, except when the

given value of x is infinite, the application of some other process,
either to the original function or to one of the substituted func

tions, is always requisite. Thus in the example,

log (sin 2x)~\ __ oo
^

log sin x J
~

oo

by using the above formula we obtain
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log sin 2x~\ _ 2 cot 2x~\

logsin^J
~

cot x J

which takes the form ~
;
but the last expression is equivalent

sin x cos 2x~\ , . . .

to 2 -
,
and is therefore easily shown to have the

sin &amp;lt;^jv cos 3C ._ i ..

value unity.

The Form o . oo.

91. A function which takes this form may, by introducing
the reciprocal of one of the factors, be so transformed as to take

either of the forms - or
,
as may be found most convenient.

oo

For example, let us take the function

which assumes the above form when x = oo, n being positive.

In this case it is necessary to reduce to the form . Thus
00

e*
etc

By continuing this process, we finally obtain a fraction whose
denominator is finite while its numerator is still infinite. Hence
we have, for all finite values of n,

= oo.

The Form oo oo.

92. A function which assumes this form may be so trans

formed as to take the form -
. Let the given function be
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f___l_ _

IXl + *)

log

which takes the form oo oo, since the second term is easily

shown to be infinite. But

*~(i +*) log (i +
X\l + X)

= *-(i + *)logd +
*)&quot;[

_ i - log (i 4- x] - i~] _
2X

Examples XIII.

Evaluate the following functions :

-3.

cosecfaw-)
x = -

\ 3- O.

tan x

x

/5-

/6.
log(i -x)

&amp;gt;
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tanx

. og_i_
^

/ /i
9. ^

x - i

^ - 2
Tr.r

V/ xo.-^-tan-, ^ = A _1

7
ii. ^w (log x)

n
, (m d;^ n ^% positive), x o.

12. ^=00.

log tan nxV
15. T^ -,

log tan ^

^
13.

~ r
(i logjir), ^ = o. o.

7T.# ,
I 2

v 14. sec-- log , x=-i. .

2 X 7t

log cot

16. -
,

x o.
cotjc + log.*

TTJT 2
tan . x = a.

20, 71

2

7t

v 17. sec x (x sin x ~

^is.iog(*-f)

\| 19. (i x

J 20. log (# a) tan (^ a), x = #. o.

!X
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XIV.

Functions whose Logarithms take the Form oo . o.

93. In the case of a function of the form uv
,
we have

log uv v log u.

The expression vlogu takes the illusory form o-oo in two

cases : first, when v = o and log u - oo
;
and secondly, when

v oo and log u Q.

Log u is infinite when u = o, and also when u = oo
;
there

fore the first case will arise when the original function takes

one of the forms 00 or o.

Log = o when # = i, therefore the second case will arise

when the original function takes the form i .

Hence functions which take either of the three illusory forms,

00, o, or i
00

,

may be evaluated by first evaluating their logarithms, which

take the form o oo.

It is to be noticed however that o and oo
00 are not illu

sory forms, since their logarithms take the form oo (=p oo).

The Form i .

94. As an illustration of this form, we take the function

(i +-) ,
which assumes the form iwhen.ar = oo. Denot-

\ x/

ing this function by ,
we have

,N **( +;)
log *

the last expression assuming the form when x oo.
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In evaluating this logarithm, it is convenient to substitute

z for ;
then

since, when x oo, ,8- = o. Taking derivatives, we have

. log(i + az)~\ a
~\

Jog^oo^- = ~ = a *

z Jo I H- tf.su o

Hence #w =/i-t--J = *.

\ */ I oc

95. If &amp;lt;3:
=

I, we have

( +;)&quot;].=
&amp;lt;

that is, as ^r increases indefinitely, the limiting value of the func-

/ iN*
tion f i H )

is f. The Napierian base is often denned as the

limiting value of this function, or, what is the same thing, by
formula

The Form o.

96. The function
x*&quot;\ , by the aid of which many functions

of similar form may be evaluated, will serve as an illustration

of the form o.

Let u = x*
;

then lo^
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log 01 - ^-1 - -
-^1

- o;
_Jo X _Jo X -Jo

and

therefore ^ = *

The value of a function which takes the form o is usually

found, as in the above example, to be unity. This is not, how

ever, universally true, as the function

(one of those earliest adduced for this purpose *) will show.

This function takes the form o, when x o; but since its

logarithm reduces to a -f x, its value when x o is *.

Examples XIV.

&amp;gt;/ i. (cos #)* *, when* o. *T*

V

2. -^- , *=0.

3. (cos ^)

5-

/ i X-*
V 6. (-) (m&amp;gt;Q\ ;;= . i.* /

AT=0.

4 8.

* See Crelles Journal ,
vol. xii, p. 293.
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9-
X o.

! : (cot *)&quot;

- - = i.

10.

i ii. (sin*)
tanx

,

- 96.)

= O. i.

12.
= O.

13.

V 14. ^a

( &amp;gt; o),

x = o.

o.

^
15-

log (x -f log cos .r) X O.

J _L_
16. x*~*,

\j
17. x**- 1

,

1 8.

when # = i.

= O.

X = O.

20. = oo.

2 sm

71

X = .

2 2

n
m+3

i ) (a sin # sin g^

sin ^c (cos x cos #:x:)

m,logm,



CHAPTER VI.

MAXIMA AND MINIMA OF FUNCTIONS OF A SINGLE
VARIABLE.

XV.

Conditions Indicating the Existence of Maxima
and Minima.

97. IF, while the independent variable increases continu

ous!}^ a function dependent on it increases up to a certain

value, and then decreases, this value of the function is said to

be a maximum value. In other words, a function f(x) has a

maximum value corresponding to x a, if, when x increases

through the value a, the function changes from an increasing
to a decreasing function.

Since f (x) is positive, when f(x) is an increasing function,

and negative when it is a decreasing function
;

it is obvious

that if/(tf) is a maximum value of f(x\f (x) must change sign,

from + to
,
as x increases through the value a.

On the other hand, a function is said to have a minimum
value for x = a, if it is a decreasing function before x reaches

this value and an increasing one afterward. In this case, f (x)

changes sign from to +.

98. The derivative f (x) can only change sign on passing

through zero or infinity. Hence a value of x, for which f(x)
is a maximum or a minimum, must satisfy one of the two follow

ing equations :

= o and * = oo.
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The required values of x will therefore be found among the

roots of these equations.
The case which usually presents itself, and which will there

fore be considered first, is that in which the required value of

x is a root of the equation f (x) o.

99. As an illustration, let it be required to divide a number
into two such parts that the square of one part multiplied by the

cube of the other shall give the greatest possible product.

Denote the given number by a, and the part to be squared

by x
;
then we have

It is evident that a maximum value of this function exists
;

for when x o its value is zero, and when x = a its value is

again zero, while for intermediate values of x it is positive ;

hence the function must change from an increasing to a decreas

ing function at least once, while x passes from the value zero to

the value a.

Taking the derivative of this function, the equation

/ (*)-

is in this case 2x(a x)* ^x* (a x)* =. o,

or x(a xf (2a $x) o.

o and a are roots of this equation ; but, as we are in search of

a value of the function corresponding to an intermediate value

of x, we put

2a %x o,

and obtain x = \a.

The corresponding value of the function is -^ft/V^** tne maxi

mum value sought.
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Maxima and Minima of Geometrical Magnitudes.

100. When the maximum or minimum value of a geometri
cal magnitude limited by certain conditions is required, it is

necessary to obtain an expression for the magnitude in terms of

a single unknown quantity, such that the determination of the

value of this quantity will constitute the solution of the prob
lem. For example : let it be required to determine tJie cone of

greatest convex surface among those which can be inscribed in a

sphere whose radius is a.

Any point A of the surface of the

sphere being taken as the apex of

the cone, let the diagram represent
a great circle of the sphere passing

through the fixed point A.

If we refer the position of the

point P to rectangular coordinates,
and take C as the origin, the required
cone will evidently be determined

when x is determined. We have
now to express the convex surface

S in terms of x.
FIG. 10.

The expression for the convex surface of a cone gives

-( + *)], (I)

in which the unknown quantities x and y are connected by the

equation of the circle

=
(2)

Substituting the value of
j/, we have

= n a -

reducing, (3)
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Since the factor n V(2a) is constant, we are evidently re-

quired to find the value of x for which the function

is a maximum. The equation / (*&quot;)

is
&amp;gt;

in tms case

2 V0

whence x \a.

The altitude of the required cone is therefore %a. Substi

tuting this value of x in equation (3), we have

the maximum value required.

101. As a further illustration, let it be required to determine

the greatest cylinder that can be in

scribed in a given segment of a pa
raboloid of revolution.

Let a denote the altitude, and b

the radius of the base of the seg

ment. The equation of the gener

ating parabola is of the form

/ = qcx.

Since (a, b) is a point of the curve,

we have the condition
FIG ii.

eliminating 4^, the equation of the curve is

(i)
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The volume V of the cylinder of which the maximum is re

quired is expressed by

V= ny\a-x\

ft*

or, by equation (i), V n x(a x).

Hence we put f(x) ax xz
&amp;gt;

and the condition f\x) = o gives

x = J&amp;gt;a.

Consequently a x, the altitude of the cylinder, is one half the

altitude of the segment.

Examples XV.

y i. Find the sides of the largest rectangle that can be inscribed in

a semicircle of radius a. The sides are a 4/2 and \a 1/2.

v/2. Determine the maximum right cone inscribed in a given sphere.

The altitude is four thirds the radius of the sphere.

J 3. Determine the maximum rectangle inscribed in a given segment
of a parabola.

The altitude of the rectangle is two thirds that of the segment.

4. Find the maximum cone of given slant height a.

The radius of the base is \a V6.

v
5. A boatman 3 miles out at sea wishes to reach in the shortest

time possible a point on the beach 5 miles from the nearest point of

the shore
;
he can pull at the rate of 4 miles an hour, but can walk at

the rate of 5 miles an hour
;
find the point at which he must land.

Express the whole time in terms of the distance of the required point

from the nearest point of the shore.

He must land one mile from the point to be reached.



IO2 MAXIMA AND MINIMA. [Ex. XV.

v 6. If a square piece of sheet-lead whose side is a have a square cut

out at each corner, find the side of the latter square in order that the

remainder may form a vessel of maximum capacity

The side of the square is \a.

J 7. A given weight is to be raised by means of a lever weighing n

pounds per linear inch, which has its fulcrum at one end, and at a

fixed distance a from the point of suspension of the weight w ;
find the

length of the lever in order that the power required to raise the weight

may be a minimum. /2aw
r n

v 8. A rectangular court is to be built so as to contain a given area

C*-,
and a wall already constructed is available for one of the sides

;

find its dimensions so that the least expense may be incurred.

The side parallel to the wall is double each of the others.

V 9. Determine the maximum cylinder inscribed in a given cone.

The altitude of the cylinder is one third that of the cone.

J 10. Prove that the rectangle with given perimeter and maximum

area is a square ,
also that the rectangle with given area and minimum

perimeter is a square.

4 ii. Find the side of the smallest square that can be inscribed in a

square whose side is a.

Take as the independent variable the distance between the angles of the

two squares. va V2 -

^ 12 Inscribe the maximum cone in a given paraboloid, the apex of

the cone being at the middle point of the base of the paraboloid.

The altitude of the cone is half that of the paraboloid.

13. Find the maximum cylinder that can be inscribed in a sphere

whose radius is a. The altitude is \a 1/3.

14. Through a point whose rectangular coordinates are a and b draw

a line such that the triangle formed by this line and the coordinate

axes shall be a minimum.
The intercepts on the axes are za and 2b.
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15. A high vertical wall is to be braced by a beam which must pass

over a parallel wall a feet high and b feet distant from the other
,

find, the length of the shortest beam that can be used for this purpose.

Take as the independent variable the inclination of the beam to the

horizon

J 1 6. The illumination of a plane surface by a luminous point being

directly as the cosine of the angle of incidence of the rays, and in

versely as the square of its distance from the point ;
find the height

at which a bracket-burner must be placed, in order that a point on

the floor of a room at the horizontal distance a from the burner may
receive the greatest possible amount of illumination.

The height is -.

XVI.

Methods of Discriminating between Maxima ana ,

Minima.

102. When the existence of a maximum or a minimum cor

responding to a particular root a of the equation f (x) o is

not obvious from the nature of the problem, it is necessary to

determine whether f (x) changes sign as x passes through the

value a.

If a change of sign does take place we have, in accordance

with Art. 97, a maximum if, when x passes through the value

a, the change of sign is from + to
;
that is, if f (x) is a de

creasing function, and a minimum if the change of sign is from

to +, in which case f\x] is an increasing function.

103. In many cases we are able to distinguish maxima from

minima by examining the expression for f\x\ as in the fol

lowing examples.
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Given = __,

whence /(*) =

f\x) = O gives log x I, or x = e.

Since log* is an increasing function, it is obvious that, as x in

creases through the value
&amp;lt;?,/ (*) increases

;
it therefore changes

sign from to +, and consequently /(f) is a minimum value

I04-. If f (x) does not change sign we have neither a maxi

mum nor a minimum
; thus, let

f(x] x sin x,

whence f (x] I cos x.

In this case f\x] becomes zero when x = 2nrr, n being zero

or any integer, but does not change sign, since I cos* can

never be negative; consequently f(x) has neither maxima

nor minima values, but is an increasing function for all values

of*.

Alternate Maxima and Minima.

105. Let the curve

be constructed, and suppose it to take the form represented in

Fig. 12. There is a maximum value of

/(*) at B, another at A and minima

values occur at A, at C, and at E.

It is obvious that in a continuous por

tion of the curve maxima and minima

ordinates must occur alternately, and

must separate the curve into segments ^ ^
in which the ordinate is alternately an

increasing and a decreasing function
;
hence, if f(x) has maxi-

Y



XVI.] ALTERNATE MAXIMA AND MINIMA. 1 05

ma and minima values, they must occur alternately unless infi

nite values of the function intervene. It is also evident, with

the same restriction, that a maximum is greater in value than

either of the adjacent minima, but not necessarily greater than

any other minimum; thus, in Fig. 12, the maximum at B is

greater than the minima at A and C, but not greater than

that at E.

106. As an illustration let us take the following function in

which it is easy to discriminate between the maxima and min
ima values.

Whence,

/ \x)= (x + aj (x
-

a)* + 2x(x + a] (x
-

aj + ^x(x + aj (x
-

a)\

= (x + a) (x aj (6x~ + ax a
).

a and a are evidently roots of f (x) o; the roots derived

by putting the last factor equal to zero and solving are ^a
and J#. Hence f (x) can be written in the form

f\x) = 6(x + a) (x + \a] (x
-

%d) (x
-

a)*,

In which the factors are so arranged that the corresponding
roots are in order of magnitude.

When x
&amp;lt; a, f (x] is negative, and, if we regard x as in

creasing continuously, f (x) changes sign when x = a, when
x %a, and again when x J#, but not when x a.

Since f (x) is at first negative it changes sign from to 4-

when it first passes through zero, that is when x = a
;
the

corresponding value of f(x) is therefore a minimum. Accord

ingly the value of f(x) corresponding to the next root x %a
is a maximum, and that corresponding to x %a is another

minimum
; but there is neither a maximum nor a minimum

corresponding to x a,
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107. When the function is continuous as in the above ex

ample, that is, does not become infinite for any finite value of

x, it is always easy to determine by examining the function

itself whether the last, or greatest value of x in question, gives

a maximum or a minimum. Thus, in the above example, f(x)

evidently increases without limit as x increases without limit
;

therefore, the last value must be a minimum.

The Employment of a Substituted Function.

108. Since an increasing function of a variable increases and

decreases with the variable, such a function will pass from a

state of increase to a state of decrease, or the reverse, simulta

neously with the variable
,
that is, it will reach a maximum or

a minimum value at the same time with the variable.

This fact often enables us to simplify the determination of

maxima and minima by substituting an increasing function of

the given function for the given function itself. For example,
if we have

f(x) V(b* -f ax) + V(b* ax),

we may with advantage employ the square of the given func

tion. The square is

2#2
4- 2 V(b* a*x*),

which is obviously a maximum when x o, and, since the square

of a positive quantity is an increasing function, we infer that

f(x) is likewise a maximum for the same value of x.

109. A decreasing function of the given function may also

be employed ; but, in this case, since the substituted function

decreases with the increase of the given function and increases

with its decrease, a maximum of the substituted function indi-
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cates a minimum, and a minimum indicates a maximum of the

given function.

Thus, if we have

the reciprocal may be employed. The reciprocal of this func

tion is

= + .

X X

whence, taking the derivative, we obtain

which vanishes when x i.

Since x* is an increasing function when x is positive, this deriv

ative is evidently an increasing function when x i. The re

ciprocal is therefore a minimum for this value of x, and conse

quently /(i) is a maximum value of f(x). In a similar manner
it may be shown that f( i) is a minimum.

Examples XVI.

Determine the maxima and minima of the following functions

/
i. / (x) x . A min. for x = -

.

2 - f(x)
~

. A max. for x = ~Z.

~a-~2x A min. for x = a.
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5- /(*) = sin 2x x. A max. for x = n n + \TT
a min. for x = n n ^TT.

6. f(x) = 2x3 + $x* 36* + 12. A max. for x = -
3 ;

a min. for x = 2.

/ 7. /(#) = #3

3^
2

9X + 5. A max. for x i
;

a min. for ^7 = 3.

8 - /(*) = 3^
&

125^ + 2160*. A max. for^= 4 and ^=3 ;

a min. for ^=3 and #=4,

V 9. ^ (x) = & + c (x a)^. Neither a max. nor a min.

J 10. /(#) = (x i)
4

(jc + 2) . A max. for x = -
f ;

a min. for # = i.

/ ii. f(x) = (x 9)
5

(jc 8)
4
. A max. for x = 8

;

a min. for x = f .

., . i # + x*
12. / (#) = -

^ . A mm. for x .

I ~r ^ X

/- / N ^^ Max. for jc = i ;

3-/M=^r=toTV -S

i4./(*) = (- 1

)
+&amp;gt;

.

Min. for ^ = \(a being positive).

15. /(*) = (i +^)(7 -) i
.

iSi?/^ by putting x = z*. For method of discriminating between max
ima and minima, see Art. 107. Min. for x = o, and x = 7 ;Vmax. for # i.

16. /(#) = 5*
6 + i2^

5

15 j? 40* + i$x
2 + 6ox + 27.

Min. for x = 2.

J 17. /(#) = *6 6*4 + 4^c
3 + 9^

1 12* + 3.

Min. for # = 2, and # = i;

max. for jc = i .

,
..

.

C V /v^ ^J V^V ^K
r\s**~~~ C^. (/~- C X /**

r\ ^ _*
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y 1 8. The top of a pedestal which sustains a statue a feet in height is

b feet above the level of a man s eyes ;
find his horizontal distance from

the pedestal when the statue subtends the greatest angle.

When the distance = V[b(a + )].

19. It is required to construct from two circular iron plates of radius

a a buoy, composed of two equal cones having a common base, which

shall have the greatest possible volume.

The radius of the base = \a 4/6.

v 20. The lower corner of a leaf of a book is folded over so as just to

reach the inner edge of the page ;
find when the crease thus formed is

a minimum.

Solution :

Let y denote the length of the crease, x the distance of the corner

from the intersection of the crease with the lower edge, and a the

width of the page.

By means of the relations of similar right triangles, the following

expression is deduced :

xVx
&quot;W-^a)

Whence we obtain

/

x j a,

which gives a minimum value of y.

21. Find when the area of the part folded over is a minimum.

When x =

XVII.

The Employment of Derivatives Higher than the First.

110. To ascertain whether/ (*) is an increasing or a de

creasing function, (and thence whether /(V) is a minimum or a

maximum), it is frequently necessary to find the expression for

its derivative, /&quot;(V). Now, \if\a) is found to have a positive

value, it follows that / (*&quot;)
is an increasing function when x a.
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and, as was shown in Art. 102, that f(a) is a minimum. On the

other hand, if we find that f &quot;(a)
has a negative value, it follows

that
/&quot;(;r)

is a decreasing function, and that f(a) is a maximum.
To illustrate, let

f(z) = 3^ i&amp;lt;5x

3 - Gx- 4-12,

then f\x) = l2^ 4&*
a
~ ~ I2x-

The roots of f (x) o are x = o, and x 2 4/5.

In this case f (x) $6x
2

96* 12,

hence
/&quot;(o)

= 12;

f(x) is therefore a maximum when .r = o.

It is unnecessary to find the values
oif&quot;(x)

for the other

roots ; for, since the function does not admit of infinite values,

the maxima and minima occur alternately. The root 2 V $

being negative and 24-1/5 positive, the root zero is intermediate

in value, and therefore both the remaining roots give minima.

||| r
If f (x) contains a positive factor which cannot change

sign, this factor may be omitted
;

since we can determine

whether f (x) increases or decreases through zero by examin

ing the sign of the derivative of the remaining factor. Thus, if

Since -- ^ is always positive, we have only to determine
( l + x

)

whether the factor i x* changes sign. Denoting this factor

by v, and putting v o, we have

x= i.

Now -j- 2x
dx

which is negative for x = I and positive for x= i. These
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roots, therefore, give respectively a maximum and a minimum
value of f(x).

(12. There may be roots of the equation f (x) o which

correspond to neither maxima nor minima, since it is a condi

tion essential to the existence of such values that f !

(x) shall

change sign. When such cases arise, the form assumed by the

curve y = f(x) in the immediate vicinity of the point at which
x = a will be one of those represented
at A and B in Fig. 13-

At these points the value of tan $ or

f (x) is zero, but at A it is positive on
both sides of the point, and f(x) or y is

an increasing function, while at B f (x) o

is negative on both sides of the point, FIG. 13.

and f(x) is a decreasing function.

113. It is important to notice that at A the value zero

assumed by f\x) constitutes a minimum value of this function,
thus a root of f (x) o for which f (x) is a minimum corre

sponds to a case in which f(x) is an increasing function. In

like manner a root of f (x) = o for which f (x) is a maximum
is a case in which f(x) is a decreasing function.

114. It follows from the preceding article and from Art.
102 that, if f(a) = o, then, of the two functions/^) and / (*),
one will be a maximum and the other a decreasing function,
or else one will be a minimum and the other an increasing
function. Hence, if we consider the case in which the given
function and several of its successive derivatives vanish for the
same value of x, it is evident that when these functions are

arranged in order they will be either alternately maxima and

decreasing functions, or alternately minima and increasing func
tions.

1(5. Now suppose that f
n

(x] is the first of these successive
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derivatives that does not vanish when x = a, then, writing the

series of functions

/(*), /(*), /&quot;(*). /(*). /&quot;&amp;gt;

let us assume first that
f&quot;(a)

is positive. Then in the above

series of functions f n ~ l

(a\ f
n

~\a\ etc., will be increasing

functions while f n
~*(a\ f n

~\a), etc., will be minima.

Now whenever n is odd, the original function will belong to

the first of these classes and will be an increasing function,

while if n is even the original function will belong to the second

class and will be a minimum.

On the other hand, if
f&quot;(ft)

has a negative value, the series

of functions will be alternately decreasing functions and maxi

ma
;
and when n is odd f(a) will be a decreasing function, but

when n is even f(d) will be a maximum.

Thus we shall have neither maxima nor minima unless the

first derivative, which does not vanish when x a, is of an

even order ; but when this is the case we shall have a maximum

or a minimum according as the value of this derivative is nega

tive or positive.

116. The following function presents a case in which the

above principle is advantageously employed.

f(x) = E* + *+ 2 cos x,

f(x) = e* - * - 2 sin x.

Zero is evidently a root of the equation f\x) = o.* In this

case

* Zero is the only root of / (x) o in this example ;
for

(s
1

i)
2

f&quot;(x) therefore cannot be negative, hence / (*) cannot again assume the value

zero.
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f&quot;(x)
e* 4- z~* 2 cos* .*.

f&quot;(o) o,

/ &quot;(*)

= *
a&quot;* + 2 sin * /. / &quot;(o)

= o,

/ iv

(*)
= * + e~^ + 2 cos * /.

/&quot; (o)
= 4.

The fourth derivative being the first that does not vanish, and

having a positive value, we conclude that x o gives a mini

mum value of f(x\

Infinite Values of the Derivative.

117. It was shown in Art. 98 that if we have, for x a,

a maximum value will present itself iff (x) changes sign from

+ to
,
and a minimum if it changes sign from to +. It

may, however, happen in these cases that the value of f(a) is

also infinite. When/(0) is finite, the form of the curve

.?=/(*)

in the vicinity of a maximum or a minimum ordinate of this

variety is represented at A and B in Fig. 14.

As an example, let

/(*)=(**
-

k

whence

f(x) is infinite when x = o and when x b.

When x = o / (V) does not change sign,

since .ar* cannot be negative, but when x b o

it changes sign from to + ;
hence f(x) has

a minimum value when x = ^.

FIG. 14.
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Examples XVII.

y i. Show that as
kx

-f b~ kx has a minimum value equal to 2 V(ab).

Find the maxima and minima of the following functions :

2. f(x) = jf sin .#.

A maximum for a value of x in the second quadrant satisfying the

equation tan x = #.

/ 2 72

The roots # = and # = give a min. and a max. if b is
a + b a b

to

positive, but a max. and min. if b is negative.

4. /(#) = 2 cos x + sin
2
~T.

Sohition : f (
x)
= 2 sin ^ (cos.* i) ;

rejecting the factor 2(1 cos jc), which is always positive, we put

dv
v = sin x. Hence = cos x.

dx

A max. for x = znn

a min. for x = (zn + i) n.

5. f(x) = sin x(i 4- cos ^:). A max. for x = \n ;

a min. for JP = ^TT ;

neither for jc = n,

I 6. f (x) = sec x + log cos
2

.*.

Multiplying the derivative by cos
2
x, we obtain

n

= sin x ( i 2 cos j; ) .

A max. for x o, and .# =
a min. for x= rt.

, , __ tan
3 x A min. for x = o, |TT, -|TT,

and TT
;

&quot;

tan 3* a max. for x = \n, \n, JTT, etc.

J 8. f(x) = x + ~ x x\ A min. for x = o.

I ~;^j-*~
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9. Find maxima and minima of the following functions :

f (x) = (x
3

&amp;lt;

3
)

3
. A min. for x =: o.

10. f(x) = (x* b*)$. A max. for x = o
;

a min. for x = b.

. f(x) = (x- + $x + 2)% 4- x*.

f\x] oo gives min. corresponding to x 2, x= i and x o.

f (x) = o gives two intermediate maxima.

min. for x = o and x= 2.

* + r. A max. for ^ = 2 + a
;

O

min. for x = a and x b.

V IA. f(x\ - (* ~ a}(x ~ ^ , *abV 14. / (x)
-

g . A mm. for x -x a + b

- f(x) =(-0)f(-^)i.
Solutions for # = and x = \(2b + a) ;

if b
&amp;gt; a, the former gives

a max. and the latter a min.

Miscellaneous Examples.

J ,/(*&amp;gt;
= - -^JL

J,

. Use the reciprocal.

Max. for x 4.

A max. for x = o
;

x ~ + x ~~ I a min. for x = 2.
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3. f(x) = x- e
b
*. A min. for x -

.

/ 4. The equation of the path of a projectile being

x*
y = x tan OL -

,

4/2 cos OL

find the value of x when y is a maximum ;
also the maximum value

of y. Max. when x = ^ sin 2 ex, and y h sin
2
tf.

5. In a given sphere inscribe the greatest rectangular parallel

epiped.

Solution :

Regarding any one edge as of fixed length, it is easy to show that

the other two edges are equal. Hence the three edges are equal.

X
S 6. In a given cone inscribe the greatest rectangular parallelo-

piped.

Solution :

Regarding the parallelepiped as inscribed in a cylinder which is

itself inscribed in the cone, the base is evidently a square, and the

altitude is that of the maximum cylinder. See Ex. XV, 9.

v 7. A Norman window consists of a rectangle surmounted by a

semicircle. Given the perimeter, required the height and breadth of

the window when the quantity of light admitted is a maximum.

The radius of the semicircle is equal to the height of the rectangle.

8. A tinsmith was ordered to make an open cylindrical vessel of

given volume, which should be as light as possible ;
find the ratio be

tween the height and the radius of the base.

The height equals the radius of the base.

9. What should be the ratio between the diameter of the base and

the height of cylindrical fruit-cans in order that the amount of tin used

in constructing them may be the least possible ?

The height should equal the diameter of the base.
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V 10. Determine the circle having its centre on the circumference of

a given circle so that the arc included in the given circle shall be a

maximum.
A max. for the value of 6 which is in the first quadrant.

ii. Given the vertical angle of a triangle and its area
;
find when

its base is a minimum. The triangle is isosceles.

. Prove that, of all circular sectors of the same perimeter, the

sector of greatest area is that in which the circular arc is double the

f radius.

\]
X 13. Find the minimum isosceles triangle circumscribed about a par

abolic segment.
The altitude of the triangle is four-thirds the altitude of the seg

ment,

I/ 14. Find the least isosceles triangle that can be described about a

given ellipse, having its base parallel to the major axis.

The height is three times the minor semi-axis.

15. Inscribe the greatest parabolic segment in a given isosceles

triangle.

The altitude of the segment is three-fourths that of the triangle.

16. A steamer whose speed is 8 knots per hour and course due north

sights another steamer directly ahead, whose speed is 10 knots, and

whose course is due west. What must be the course of the first steamer

to cross the track of the second at the least possible distance from her ?

N. 53 8 W.

17. Determine the angle which a rudder makes with the keel of a

ship when its turning effect is the greatest possible.

Solution :

Let
(j&amp;gt;

denote the angle between the rudder and the prolongation

of the keel of the ship ;
then if b is the area of the rudder that of the

stream of water intercepted will be b sin (/) : the resulting force being

decomposed, the component perpendicular to the rudder contains the

factor sin
2

(/&amp;gt;. Again decomposing this force, and taking the compo
nent that is perpendicular to the keel of the ship, which is the only
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part of the original force that is effective in turning jit: ship, the ex

pression to be made a maximum is

sin
&amp;lt;}&amp;gt;

cos
&amp;lt;!&amp;gt;.

Whence we obtain

tan $ 1/2.

1 8. The work of driving a steamer through the water being propor

tional to the cube of her speed, find her most economical rate per hour

against a current running a knots per hour.

Solution :

Let v denote the speed of the steamer in knots per hour. The

work per hour will then be denoted by kv\ k being a constant, and the

actual distance the steamer advances per hour by v a. The work

per knot made good is therefore expressed by

tv*

v a

Whence we obtain the result



CHAPTER VII.

THE DEVELOPMENT OF FUNCTIONS IN SERIES.

XVIII.

The Nature of an Infinite Series.

118. A FUNCTION which can be expressed by means of a

limited number of integral terms, involving powers of the inde

pendent variable with positive integral exponents only, is called

a rational integralfunction.
When f(x) is not a rational integral function, it is usually

possible to derive an unlimited series of terms rational and in

tegral with respect to x, which may be regarded as an algebraic

equivalent for the function. The process of deriving this series

is called the development of the function into an infinite series.

When the given function is in the form of a rational frac

tion, the ordinary process of division (the dividend and divisor

being arranged according to ascending powers of x) suffices to
effect the development. Thus

a series of terms arranged according to ascending powers of x
y

each coefficient after the absolute term being 2.

It is to be observed, in the first place, that, owing to the
indefinite number of terms in the second member, the equa
tion as written above cannot be verified numerically for an
assumed value of x, In this case, however, the process not
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only gives us the series, but the remainder after any number of

terms. Thus carrying the quotient to the term containing xn
,

and writing the remainder, we have

I -4- JIT-~ = I 4-~ X I X

This equation may now be verified numerically for any assumed
value of x

;
or algebraically by multiplying each member by

i x, thus obtaining an identity.

The ordinary process of extracting the square root of a

polynomial furnishes an example of a series which may be ex

tended so as to include as many terms as we please ;
but this

process gives us no expression for the remainder.

119. Assuming that f(x) admits of development into a

series involving ascending powers of x, and denoting the re

mainder after n -f I terms by R, we may write

f(x] =A + Bx + Cx*+ - - - + NX&quot; + Ri . . . (i)

in which A, B, C, . . . N denote coefficients independent of x,

and as yet unknown
;
the value of R is however not indepen

dent of x. If the coefficients J3, C, . . . N admit of finite

values, it may be assumed that R is a function of x which van

ishes when x = o
;
and in accordance with this assumption

equation (i) becomes, when x o,

(2)

which determines the first term of the series. If in any case

the value of /(o) is found to be infinite, we infer that the pro

posed development is impossible.

120. When the coefficients B, C, ... N admit of finite

values, and the value of the function to be developed remains
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finite, R will have a finite value. If moreover the value of R
decreases as n increases, and can be made as small as we please,

by sufficiently increasing n, the series is said to be convergent,
and may be employed in finding an approximate value of the
function f(x) ;

the closeness of the approximation increasing
with the number of terms used. A series in which R does not
decrease as n increases is said to be divergent.

When the successive terms of a series decrease it does not

necessarily follow that the series is convergent ;
for the value

of the equivalent function, and consequently that of R, may be
infinite. To illustrate, if we put x = i in the series

we obtain the numerical series

it can be shown that, by taking a sufficient number of terms, the
sum of this series may be made to exceed any finite limit, the
value of the equivalent or generatingfunction of the above series

being in fact infinite when x i.*

121. Since R vanishes with x, every series for which finite

coefficients can be determined is convergent for certain small
values of x. In some cases there are limiting values of x, both

positive and negative, within which the series is convergent,
while for values of x without these limits the series is diver

gent. These values of x are called the limits of convergence.

* If we consider the first two terms separately, and regard the other terms as

arranged in groups of two, four, eight, sixteen, etc., the groups will end with the
terms

,
&amp;gt;-, ^ -

ft etc. The sum of the fractions in the first group exceeds f or
,

the sum of those in the second exceeds | or \, and so on
; hence the sum of zN such

groups exceeds the number N, and vVmay be taken as large as we choose.

The generating function in this case is log^ , and unity is the limit of con

vergence.



122 THE DEVELOPMENT OF FUNCTIONS. [Art. 121.

We shall now demonstrate a theorem by which a function
in the form f(x + h) may be developed into a series involving
powers of h, and in Section XIX we shall show how this

theorem is transformed so as to give the expansion of f(x) in

powers of x.

Taylor s Theorem.

122. A function of // of the form f(x + /i)
in general admits

of development in a series involving ascending powers of h.

We therefore assume

f(x +k*) = A Q + B k + C ??+ . . + NJi
n + R ,

. . (i)

in which A
,
B

,
C , . . . N are independent of h, while R

is a function of h which vanishes when h is zero. Hence, mak
ing h = o, we have

/(*.) = A,.

We have now to find the values of BQy COJ . . . N
, which

are evidently functions of x . For this purpose we put

^i = X* + h, whence h x^ XQ ;

substituting, equation (i) takes the form

in which we may regard x^ as constant and x as variable. Re

placing the latter by x, and its functions, ,
Cc ,

. . . N ,
and

Ro, by B, C, . . . N, and R, we have

/IX) = f(x) +B(x. -x} + C(^ -*)&amp;gt;. +N(x t
-

x}
n
+R. . (2)

Taking derivatives with respect to x, we have
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. ... (3)

To render the development possible, B, C, . . . N, and R must
have such values as will make equation (3) identical, that is, true

for all values of x.

123 It is evident that B may be so taken as to cause the

first two terms of equation (3) to vanish, and that, this being
done, C can be so determined as to cause the coefficient of

(x, x] to vanish, D so as to make the coefficient of (x, x)*

vanish, and so on. The requisite conditions are

and finally (x, xf~ + - = o.

From these conditions we derive

*dx

i

and in general N= f n

(x\1-2

Putting x for x, and substituting in equation (i) the values of

A
,
Z?

,
C

,
. . . No, we obtain

I *2
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This result is called Taylor s Theorem, from the name of its dis

coverer, Dr. Brook Taylor, who first published it in 1715.

It is evident from equation (4) that the proposed expansion is

impossible when the given function or any of its derived func

tions is infinite for the value x ,

J. Lagrange s Expression for the Remainder.

124. R denotes a function of x which takes the value ^
when x xoj and becomes zero when x x^. It has been

shown in the preceding article that R must also satisfy the

equation

. H dR
i X)

- + -= O,dx dx

or, substituting the value of N determined above,

This equation shows that cannot become infinite for any

value of x between XQ and jrt
, provided f

n + I

(x) remains finite

and real while x varies between these limits. Since it follows

from the theorem proved in Art. 104 that all preceding deriva

tives must be likewise finite, the above hypothesis is equivalent

to the assumption that f(x) and its successive derivatives to the

(n 4- \)th inclusive remain finite and real while x varies from x

to Xo -f h.

125. Let P denote any assumed function of x which, like

R, takes the value RQ when x XQ and the value zero when

^r = ^ I ,and whose derivative -=- does not become infinite or
dx

imaginary for any value of x between these limits.
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Then, RQ being assumed to be finite, P R denotes a func

tion of x which vanishes both when x = XQ and when x x^

and whose derivative cannot become infinite for any interme

diate value of x. It follows therefore that the value of this

function cannot become infinite for any intermediate value of x.

Since, as x varies from x to x iy P R starts from the value

zero and returns to zero again, without passing through infinity,

its numerical value must pass through a maximum
;
hence its

derivative cannot retain the same sign throughout, and as it can

not become infinite it must necessarily become zero for some
intermediate value of x. Since x* x 4- h this intermediate

value of x can be expressed by xa -f 0/z, 6 being & positive proper

fraction. It is therefore evident that at least one value of x
of the form

x = XQ + eh

will satisfy the equation

dP dR

J26. The value of P will fulfil the required conditions if we
assume

,-

for this function takes the value R when x x and vanishes

when x = x
;
moreover its derivative with reference to x, viz.,

dP _ (n + i) (*,-*) ,

~
n

does not become infinite for any intermediate value of x. Sub

stituting in equation (6) the values of the derivatives given in

equations (5) and (7), and solving for Roy we obtain

^o=-- -x/*
+I
(*o+ Oh). ... (8)

1-2- -.( + iy
^
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This expression for the remainder was first given by La-
grange.

The series may now be written thus :

*}
T^2~

It should be noticed that the above expression for the remain-
der after n -f i terms differs from the next, or (n + 2jth term
of the series, simply by the addition of 6k to XQ .

The Binomial Theorem.

127. We shall now apply Taylor s Theorem to the function

(a + b)
m

in order to obtain a series involving ascending powers
of b.

In this case b takes the place of k, and a that of x
; hence

and

fn
(x^= m(in i)(m 2)

. . . (m n + i)a
&quot;~n

.

Whence

(si
i ft\ m i m T / WliWt \\a + o)

= a -f- ma b H ^ L am ~*b* ....
1-2

m(m i)(m 2) (;# n -4- i)

^T^TTTF- -^-

This result is called the Binomial Theorem.
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Examples XVIII.

i. To expand log (x + ti) by Taylor s Theorem.

Solution :

/&quot;(*)= -4 . . /&quot;(*.) =-3-
*v ^/-i

By substituting in equation (4), Art. 123, we obtain

Employing Lagrange s expression for the remainder (Art. 126) we

derive

/

2. Expand ^ro + \

Solution :
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/Or) = *&quot; /. /(*o )
= a

/ (*) = log * &amp;lt;? . / C*o) = log a-*&quot;

/&quot;(*)
^ Oog &quot;Y-a* . . /&quot;(* )

=
(log ) .*&quot;

/&quot;(*)
= (log *)&quot;* /. / n

(^ )
-

(log fl)-.&quot;.

Substituting in equation (4), Art 123, we have

.+&amp;gt; = ^ x + log a-h + (log )

V 3. Find the expansion off(x A), when /(#) = x log ^ jc, writ

ing the (n + i)&quot;
term of the series.

/(# + ^) = ^O log^ ^ + log # -^ H----- -_.J_+...

/ 4- Expand sin
*

(x + JL) to the fourth term inclusive.

i / i \ i rl

(!-**)* (I

I 4- 2^o

^/ 5. Prove that

sin ft, -M) _ 4 f2
L

+ ^V3-----1
I-2-3-4-5 J

1-2 1-2-3 1-2-3.4

6. Prove that

tan n
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XIX.

Maclauriris Theorem.

128. We shall now give a particular form of Taylor s Series,

which is usually more convenient, when numerical results are to

be obtained, than the general form given in the preceding sec

tion.

This form of the series is obtained by putting XQ o and

replacing h by x in equation (4), Art. 123. Thus,

f(*)=f(o)+f (o)x+f&quot;(o)
~

+/*(o)
t . *&quot;. . n

+^ . , (i)

and, the same substitutions being made in equation (8), Art. 126,

we obtain

R =f* +
*(0x) ^ : .

I -2- ( + I)

Equation (i) is called Maclaurin s Theorem: it maybe used

in developing any function to which Taylor s Theorem is ap

plicable, by giving a different signification to the symbol f.

Thus, if log (i 4- h] is to be developed by Taylor s Theorem,

f(x] = log x, the value of X
Q being unity; but, if log (i 4- x)

is to be developed by Maclaurin s Theorem, we must put

f(x) = log (i 4- x). (Compare Ex. XVIII., i, with Art. 130.)

The Exponential Series and the Value of 8.

129. As an example of the application of the above theo

rem, we shall deduce the development of the function *, which

is called the exponential series, and shall thence obtain a series

for computing the value of e.

The successive derivatives of ex being equal to the original

function, the coefficients, /&quot;(o), /(o), etc., each reduce to unity;
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we therefore derive, by substituting in equation (i) and in

troducing the value of R
,

X* X* Xn Xn^
1-2 1-2-3 J -2 ..... n 1-2- (+!)

Putting x equal to unity, we obtain the following series, which

enables us to compute the value of the incommensurable quan

tity e to any required degree of accuracy :

1-2 1-2-3 1-2-34
I

*

_]
---

\,
-

.

1-2-3 n 1-2-3 .(#+!)

The computation may be arranged thus, each term being de

rived from the preceding term by division :

2.5

.16666666667

4166666667

833333333

138888889

19841270

2480159

275573

27557

2505

209
16

2.71828182846

Since e is less than e, the remainder (n being 14) is less than

T\ of the last term employed in the computation, and therefore

cannot affect the result. Inasmuch as each term may contain a

positive or negative error of one-half a unit in the last decimal
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place, we cannot, in general, rely upon the accuracy of the last

two places of decimals, in computations involving so large a

number of terms. Accordingly, this computation only justifies

us in writing
f = 2.718281828.

Logarithmic Series.

130. The logarithmic series is deduced by applying Mac-
laurin s Theorem to the function log(i + x).

In this case

/M = log (
i + x) .*. /(o)=o

/W = 7x- / (o)
= i

i + x

/&quot;(*)
= -

^jr^-j
--

/&quot;(o)
= - i

-dTi?
;tr

Q
;f

3
^r

4

hence log(i+^r)=^ + . + ...
. . .

(
t
)

Since this series is divergent for values of x greater than

unity (see Art. 120), we proceed to deduce a formula for the

difference of two logarithms, which may be employed in com

puting successive logarithms; that is, denoting the numbers

corresponding to two logarithms by n and n + ^, we derive a

series for

log (n -f k) log n = log .
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A series which could be employed for this purpose might be

obtained from (i), by putting --- in the form I -f -. We ob-
n n

tain, however, a much more rapidly converging series by the

process given below.

Substituting x for x in (i), we have

Subtracting (2) from (i),

a series involving only the positive terms of series (i).

r&amp;gt; A.*.-
i + x n + h , . h

Putting - = --
,
we derive x = -

; substituting
i x n 2n + h

in (3), we have

i *L+A _
g

The Computation of Napierian Logarithms.

131. The series given above enables us to compute Napierian

logarithms. We proceed to illustrate by computing loge 10.

The approximate numerical value of this logarithm could be

obtained by putting n I and h = 9 in (4) ; but, since the series

thus obtained would converge very slowly, it is more convenient

first to compute log 2 by means of the series obtained by put

ting n i and h = i in (4) ;
thus :



XIX.] LOGARITHMIC SERIES. 133

We then put n 8 and h = 2 in (4) ; whence

log, 10 = 3 log, 2 + ?[I + 1 . -I + I . I + I . -L + . . .1
3L-3 33 5 3* 7 3

3

J
In making the computation, it is convenient first to obtain

the values of the powers of A which occur in the series for log 2,

by successive division by 9, and afterwards to derive the values
of the required terms of the series by dividing these auxiliary
numbers by i, 3, 5, 7, etc. The same auxiliary numbers are
also used in the computation of loge 10. See the arrangement
of the numerical work below.

i
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The tabular logarithms of the system of which 10 is the

base, are derived from the corresponding Napierian logarithms
by means of the relation

l,x = loge iologIO ;r,

whence logI0 ^ = logger =M . log ;tr.

The constant
j^ ^-,

denoted above by M, is called the modulus

of common logarithms. Taking the reciprocal of loge io, com
puted above, we have

M = 0.43429448.

The Developments of the Sine and the Cosine.

132. Let /(*) = sin *,

then

f\x) = cos
x,f&quot;(x)

= - sin
x,f&quot;\x)

= - cos x,f\x] = sin x
;

/ iv

being identical with/, it follows that these functions recur
in cycles of four

;
their values when x = o are

o, i, o, i, etc.

Hence substituting in equation (i), Art. 128, we have

X* r* T1

sin x = x + - + ... d\
1-2-3 I-2---5 1-2- --

7

In a similar manner, we obtain

cos x = i -j L . . (2\
1*2 1-23-4 1-2- - -6

V
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Examples XIX.

:. Expand (i + x]
m

.

mx + +
1-2 1-2-3

It is evident that no coefficient will vanish if m is negative or frac

tional. This is the form in which the binomial theorem is employed
in computation, x being less than unity.

\/ 2. Find three terms of the expansion of sin
2
x.

3 3 5

J 3. Expand tan x to the term involving x&quot; inclusive.

X^ 2X*
tan x = x H 1 + -

3 15

v/
4. Expand sec x to the term involving x&quot; inclusive.

x* tjjc

4
6uc6

sec x i H -\ 1

u . . .

1-2 I 2-3 4 1-2 - 6

;. Expand log sec x to the term involving x* inclusive.

X~ X* X*
log sec x = - H H 4-

2 12 45

6. Find four terms of the expansion of
x
sec x.

2X*
f

x
sec x = i + x + jv

2

H .+-,..

/ 3

^
7. Derive the expansion of log f i jc

2

) from the logarithmic series,

and verify by adding the expansions of log (i -f- x) and log (i x).

v 8- Derive the expansion of (i + x)s
x from that of f*.

i-x* n + i

(i + x)e* = i + 2x + - -f x*.v
1-2 1-2 - n
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i/ 9 Find, by means of the exponential series, the expansion of xt?\

including the nth term.

V 10. Expand by division, making use of the exponential
I r OC

seres.
-

,= I H +-
/ i + x 2 3 8 30

ii. Find the expansion of Mog(i + x) to the term involving*
5

,

by multiplying together a sufficient number of the terms of the series

for
x and for log(i + x).

12. Expand log (i + *).

13. Expand (i + f
1

)

71

to the term involving x
9
inclusive.

( + i) x 1

V 14. Find the expansion of V(i sin 2*), employing the formula

V(i sin 2x) = cos x sin x.

15. Find the expansion of cos&quot; x by means of the formula

(i -\- COS 2X).

,
2

9 V _2*^!_ ,

COS *-!-* h
j&amp;gt;2 i&amp;gt;2

_ 6
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1 6. Find the expansion of cos
3

x, by means of the formula

cos
3 x J(cos 3^ + 3 cos x).

1-2 4 i-2-34 4 1-2 2

^ 17. Compute Ioge 3, and find Iogi 3 by multiplying by the value of

M (Art. 166).
log3 = 1.0986123.

logI0 3 = 0.4771213.

18. Find

Put n = 270 10 x 3
3

,
and h = i.

Ioge269 5.5947114.

19. Find log7, and log, 13.

Ioge 7
= 1.9459101.

Ioge i3 = 2.5649494.



CHAPTER VIII.

CURVE TRACING.

XX.

Equations in the Form y f(x).

133. WHEN a curve given by its equation is to be traced,

it is necessary to determine its general form especially at such

points as present any peculiarity, and also the nature of those

branches of the curve, if there be any, which are unlimited in

extent.

The general mode of procedure, when the equation can be

put in either of the forms, y f(x] or x
(f&amp;gt; (y), is indicated in

the following examples.

Asymptotes Parallel to the Coordinate Axes.

134. Example I. -ay x^y = a
3

(i)

Solving for/, we obtain

y = / (2)

When x o,y a. Numerically equal positive and nega

tive values of x give the same values for jr, the curve is there

fore symmetrical with reference to the axis of y. As x increases
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from zero, y increases until the denominator, a* x\ becomes
zero, when y becomes infinite

;
this occurs when x a.

Draw the straight lines x = a. These are lines to which
the curve approaches indefinitely, for we may assign values to

x as near as we please to + a or to a, thus determining points
of the curve as near as we please to the straight lines x a and
x = a. Such lines are called asymptotes to the curve.

When x passes the value a,y becomes

negative and decreases numerically, ap
proaching the value zero as x increases

indefinitely. Hence there is a branch
of the curve below the axis of x to

which the lines x = a and y = o are

asymptotes.
The general form of the curve is in

dicated in Fig. 15.

The point (o, a) evidently corresponds to a minimum ordi-

nate.

FIG. 15.

135. Example 2. c?x=.y(x a)* (i)

Solving for/,

y
(x
-

a)*

When x is zero, y is zero
; y increases as x increases until

x = a, when y becomes infinite. Hence

x = a

is the equation of an asymptote. When x passes the value

a, y does not change sign, but remains positive, and as x in

creases y diminishes, approaching zero as x increases indefi

nitely.
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Examining now the values ofy which correspond to nega
tive values of x, we perceive that, y becoming
negative, the branch which passes through the

origin continues below the axis of x, and that

y approaches zero as the negative value of x
FIG. 17. increases indefinitely. Hence the general form

of the curve is that indicated in Fig. 17.

(36. To determine the direction of the curve at any point,
we have

/ dy a 4- x
tan --= a 2 -

-,

-
. ...

dx (x
-

a)

The direction in which the curve passes through the origin
is given by the value of tan $ which corresponds to x = o.

From (3), we have

the inclination of the curve at the origin is therefore 45.

Minimum Ordinates and Points of Inflexion.

137. To find the minimum ordinate which evidently exists

.13 VJi Jf) WC ^UL tUC t.A.Jl taaiUU J.U1

to zero, and deduce

on the left of the axis of y t
we put the expression for -

equal

x a.

The minimum ordinate is therefore found at the point whose
abscissa is a

;
its value, obtained from equation (2), is

-i*
d*vA point of inflexion is a point at which changes sign (see
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Art. 74) ;
in other words, it is a point at which tan $ has a

maximum or a minimum value. In this case there is evidently
a point of inflexion on the left of the minimum ordinate. From

equation (3) we derive

2
x 4- 2a

putting this expression equal to zero to determine the abscissa,

and deducing the corresponding ordinate from (2), we obtain,

for the coordinates of the point of inflexion,

x = 2a, and y = fa.

Oblique Asymptotes.

138. Example^, x* 2.x*y 2xn-

87 = o. . .. . , (l)

Solving this equation for j, we have

It is obvious from the form of equation (2) that the curve

meets the axis of x at the two points (o, o) and (2, o). Since

y is positive only when x
&amp;gt; 2, the curve lies below the axis of

x on the left of the origin, and also between the origin and the

point (2, o), but on the right of this point the curve lies above

the axis of x.

139 Developing the second member of equation (2) into

an expression involving a fraction whose numerator is lower in

degree than its denominator, we have

/=**- +;^ &&amp;gt;
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The fraction in this expression decreases without limit as x in

creases indefinitely ; hence the ordinate of the curve may, by
increasing x, be made to differ as little as we please from that
of the straight line

This line is, therefore, an asymptote.

The fraction -

x -f 4
is positive for all values

of x less than 2, negative
for all values of x greater
than 2, and does not be

come infinite. The curve,

therefore, lies above the
Fic&quot; l8

asymptote on the left of
the point (2, o), and below it on the right of this point, as

represented in Fig. 18.

140. There is evidently a minimum ordinate between the

origin and the point (2, o).

We obtain from equation (2)

dy
dx

+ \2x 16

(x* + 4)
2 (4)

and ^ = 4
\2X

4)
3 (5)

Putting -- = o, we obtain x o and x = 1.19 nearly, the only

real roots
;
the abscissa corresponding to the minimum ordinate

is therefore 1.19, the value of the ordinate being about o.ii.

The root zero corresponds to a maximum ordinate at the

origin.
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Putting
Trpj

= o, we obtain the three roots x = 2, and

x 2 (2 V 3) ;
the corresponding ordinates are obtained

from equation (3). There are, therefore, three points of in

flexion, one situated at the point ( 2, i), and the others

near the points (0.54, 0.05), and (7.46, 2.55).

The inclination of the curve is determined by means of

equation (4) to be tan- J at the point (2, o), and tan~ f at the

left-hand point of inflexion.

Curvilincar Asymptotes.

141. Example A,, x* xy + i = o. . . . . . . . (i)

Solving for/
3? + I

y=J
2x + -.

x (2)

In this case, on developing/ in powers of x, the integral portion
of its value is found to contain the second power of x

;
the

fraction approaches zero when x increases indefinitely ; hence

the ordinate of this curve may be made to differ as little as we

please from that of the curve

y = x* (3)

The parabola represented by this equation
is accordingly said to be a curvilinear asymp
tote. It is indicated by the dotted line in

Fig. 19.

142. The sign of the fraction - is always

the same as that of x, and its value is infinite

when x is zero
;
hence the curve lies below

the parabola on the left of the axis of/, and
above it on the right, this axis being an

asymptote, as indicated in Fig. 19.
FIG. 19.
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Taking derivatives, we obtain

There is a point of inflexion at
( I, o) ;

the inclination of the

curve to the axis of x at this point is tan
~

( 3).

There is a minimum ordinate at the point (i\J/4, 5/^2).
This cubic curve is an example of the species called by

Newton the trident. The characteristic property of a trident

is the possession of a parabolic asymptote and a rectilinear

asymptote parallel to the axis of the parabola.

Examples XXVI.

1. Trace the curve y = x (x
1

i).

Since y is an odd function of x, the curve is symmetrical with re

ference to the origin as a centre. Find the point of inflexion, and

the minimum ordinate.

2. Trace the curve y
1

(x i)
= x*.

The curve has for an asymptote the line x = i
;
there is a mini

mum ordinate at (2, 2), and a point of inflexion at (4, f 4/3).

N 3. Trace the curve / = x3

(x a), determining its direction at

the points at which it meets the axis of x.

The asymptote is found by the method of development, thus

.
3* 9*

the equation of the asymptote is therefore

y = x - }0,
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4. Trace the curve x* + xy + 2x y = o.

5. Trace the curve y
1 = x 1 + x3

,
and find its direction at the

origin.

The curve has a maximum ordinate at
( f, f 1/3). The

value ofy may be taken as the function whose maximum is required.

(See Art. 108.)

6. Trace the curve y = x3

xy. Find the point of inflexion, the

minimum ordinate, and the asymptotes.

The curve has a rectilinear asymptote x i, and a curvilinear

asymptote jy x 1 x + i. This curve is a trident. (See Art. 142.)

7. Trace the curve y* = of x*.

Both branches of the curve are tangent to the axis of x at the

origin.

8. Trace the curve 7 47 = x* + x1

.

Solving for 7, we obtain

y 2 V(x
s + x* + 4) = 2 V[(x + 2) (x x + 2)].

The factor x 2 x + 2 being always positive, the curve is real on

the right of the line x = 2.

Find the points at which the curve cuts the axis, and show that

the upper branch has a maximum ordinate for x = f and a mini

mum ordinate for x = o.

9. Trace the curve (x 20) xy = a (x a) (x 30).

10. Trace the curve (x 20) xy* = a2

(x a) (x 30).

11. Trace the curvey = x4

(i x*)
3

: find all the points at which

the tangent is parallel to the axis of x.

12. Trace the curve 6x (i x} y = i + 3^:.

This curve has a point of inflexion, determined by a cubic having

only one real root, which is between i and 2. Find the three

asymptotes, and the maximum and the minimum ordinate.
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13. Trace the curve xy* (x + 2
)

2

(i +
Solving the equation for j ,

we have

The asymptotes are y = x + 2
, 7 = _v -2, and ^ =o. The

curve has a minimum ordinate corresponding to A- = ^2 ;
the inclina

tion at the point at which it cuts the axis of x is tan
1

( \ 1/5). There
is a point of inflexion corresponding to the abscissa x 6.1 nearly.

XXL

Curves Given by Polar Equations.

143. The following examples will illustrate some of the
methods employed when the curve is given by means of its

polar equation.

Example^, r a cos 6 cos 26
(i)

When = o, r = a, the generating point P therefore starts

from A on the initial line. As 6 increases, r decreases and
becomes zero when d = 45, P describing the half-loop in the
first quadrant, and arriving at the pole in a direction having an
inclination of 45 to the initial line. When passes 45, r
becomes negative, and returns to zero again when 9 == 90, P

describing the loop in the third quad
rant. As passes 90, r again becomes

positive, but returns to zero when

/A = 135, P describing the loop in the

second quadrant. As Ovaries from 135
to 1 80, r again becomes negative, P de

scribing the half-loop in the fourth quad
rant, and returning to A.
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In this example if we suppose 6 to vary from 1 80 to 360,
P will again describe the same curve, and, since 6 enters the

equation of the curve, by means of trigonometrical functions

only, it is unnecessary to consider values of 6 greater than 360.

144. Putting equation (i) in the form

r = a (2 cos3# cos 8),

we derive

_. = a ( 6 cos
2# sin 6 + sin 6\

do

To determine the maxima values of r, we place this derivative

equal to zero, thus obtaining the roots

sin 6 = o and cosQ=^V6;

the former gives the point A on the initial line, and the latter

gives the values of 6 which determine the position of the maxi

ma in the small loops. The corresponding values of r are ^ - V6.

To determine the position of the maximum ordinate, we
have from (i)

y = r sin 9 = i a sin 4$.

The maxima values occur when sin 4$ =i, and the minima

when sin 4$ = I
;
that is, we have maxima when 6 = ITT and

when 6 = \n, and minima when 6 \n and JTT.

145. In the preceding example the substitution of + ft

for 6 changes the sign but not the numerical value of r. When
this is the case, #and 6 +TT evidently give the same point of

the curve, and the complete curve is described while 6 varies

from o to TT. If however this substitution changes neither the

numerical value nor the sign of r, 6 and 6 + 7t will give points

symmetrically situated with reference to the pole ;
that is, the

curve will be symmetrical in opposite quadrants.
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Again if the substitution of 9 for 6 does not change the

value of r, and give points symmetrically situated with

reference to the initial line, hence in this case the curve is sym
metrical to this line

; but, if the substitution of 6 for 6

changes the sign of r without changing its numerical value, the

curve is symmetrical with reference to a perpendicular to the

initial line.

The Determination of Asymptotes by Means of Polar

Equations.

146. When r becomes infinite for a particular value of 6 the

curve has an infinite branch, and, if there be a corresponding

asymptote, it may be determined by means of the expression

derived below.

Let 0j denote a value of d for which r is infinite, and let OB
be drawn through the pole, making this angle with

the initial line
; then, from the triangle OBP, Fig.

20, we have

PB = rsm(B l
-

d).

Now, if the curve has an asymptote parallel to

OB, it is plain that as 6 approaches t
the limiting value of PB

will be equal to OR, the perpendicular from the pole upon
the asymptote. Hence, if the curve has an asymptote in the

direction t ,
the expression

which takes the form oo o, will have a finite value, and this

value will determine the distance of the asymptote from the

pole. Fig. 20 shows that when the above expression is posi

tive OR is to be laid off in the direction X 90.

If upon evaluation the expression for OR is found to be in-



XXL] ASYMPTOTES. 149

finite we infer that the infinite branch of the curve is para
bolic.

147. Example 6. r
aP

0* - i

Since r becomes infinite when 6 = I, we proceed to apply the

method established in the preceding article for determining the

existence of an asymptote. In this case we have

The angle 9 = i corresponds to 57 18
, nearly, and since

the expression for the perpendicular on the asymptote is neg
ative its direction is 0, + 90 = 147 18 ; consequently, the

asymptote is laid off as in Fig. 21.

Numerically equal positive and negative values of 8 give the
same values for r

;
hence the curve is symmetrical with refer

ence to the initial line.

While 6 varies from o to I, r is negative and varies from o
to oo, giving the infinite branch in the third

quadrant.
As 8 passes the value unity, and increases

indefinitely, r becomes positive and decreases,

approaching indefinitely to the limiting value

a, which we obtain from (i) by making in

finite. Hence the curve describes an infinite

number of whorls approaching indefinitely to

the circle r = a, which is therefore called an

asymptotic circle.

The points of inflexion in this curve are

determined in Art. 175.
FIG. 21.



150 CURVE TRACING. [Ex. XXI.

Examples XXI.

i. Trace the curve r a cos
3

-| 0.

Show that, to describe the curve, must vary from o to 37? ;
also

that the curve is symmetrical to the initial line. Find the values of

which correspond to the maxima and minima ordinates and abscissas,

the initial line being taken as the axis of x.

V 2. Trace the curve r a (2 sin 3 sin o).

Show that the entire curve is described while varies from o to TT,

and that the curve is symmetrical with reference to a perpendicular

to/ the initial line.

7
3. Trace the curve r 2 + sin 30.

A maximum value of r (equal to 3) occurs at = 30 ;
a mini

mum (equal to i) at 90. The curve is symmetrical with refer

ence to lines inclined at the angles 30, 90, and 150 to the initial

line.

\) 4. Trace the curve r = i + sin 50.

The curve consists of five equal loops.

v 5. Trace the curve r
3 = a* sin 30.

The curve consists of three equal loops.

/ 6. Trace the curve r cos = a cos 20.

The curve has an asymptote perpendicular to the initial line at the

distance a on the left of the pole.

V
7. Trace the curve r = 2 + sin |9.

A maximum value of r occurs at = 60, and a minimum at

1 80. The curve has three double points, one being on the initial

line.

8. Trace the curve r cos 20 = a.

The curve is symmetrical with reference to the initial line and

with reference to a perpendicular to the initial line. There are four

asymptotes.
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9. Trace the curve r sin 46 a sin 30.

The curve is symmetrical to the initial line, and has three asymp
totes

;
the minimum value of r is Ja.

10. Trace the curve r* = a* cos 26.

The curve is symmetrical with respect to the pole since

r = a 4/ (cos 26) : r is imaginary for values of between \n and f#.

11. Trace the curve i& a* cos f 0.

The curve consists of three equal loops, r being real for all values

of 0.

12. Trace the curve r
2
cos = a* sin 30.

The curve consists of two loops and an infinite branch which has

an asymptote perpendicular to the initial line and passing through the

pole.

13. Trace the curve r a .

20 1

Find the rectilinear and the circular asymptote, and also the point
of inflexion.

XXII.

The Parabola of thej^th Degree.

148. The term parabola is frequently applied to any curve

in which one of the coordinates is proportional to the ^th

power of the other, n being greater than unity. The parabola

proper is thus distinguished as the parabola of the second

degree.

The general equation of the parabola of the ^th degree is

usually written in the homogeneous form, (a being positive)
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The curve passes through the origin and through the point

(a, a), for all values of ;/. Since n &amp;gt; I, the curve is tangent to

the axis of x at the origin.

(49. The following three diagrams represent forms which

the curve takes for different values of n. When n denotes a

fraction, it is supposed to be reduced to its lowest terms.

Fig. 22 represents the general shape of

the curve when n is an even integer, or a

fraction having an even numerator and an

odd denominator.

Fig. 23 represents the form of the curve

when n is an odd integer or a fraction with

an odd numerator and an cdd denominator,

the origin being a point of inflexion.

Fig. 24 represents the form of the

curve when n is a fraction having an odd

numerator and an even denominator.

In this case y is regarded as a two-

valued function, and is imaginary when

x is negative.

FIG. 22.

FIG. 24.

FIG. 23.

Fig, 22 is constructed for the parabola

in which n 4.

Fig. 23 is the cubicalparabola in which

n= 3-

Fig. 24 is the semi-cubicalparabola in

which n f ;
the equation being

~
it 3* y

or af = x\

The curves corresponding to the general equation

y = A + Bx + Cx? + Dx*+ . . . Lxn

are sometimes called parabolic curves of the nth degree.
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The Cissoid of Diodes.

150. Let A be a point on the circumference of a circle,
and BC a tangent at the opposite

extremity of the diameter AB; let

AC be any straight line through A,
and take CP AD

;
then the locus

of P is the cissoid.

To find the polar equation, AB
being the initial line, let DB be

drawn, and denote the radius of the

circle by a\ then AC = 2a sec 0;
and since ADB is a right angle,
AD 2a cos 6. The polar equation
of the locus of P, A being the pole,

is, therefore,

r = 2a(sec 6 cos 6) 2a
cos 8

or
sirr

cos#* (I)

151. To obtain the rectangular equation, we employ the

equations of transformation

sin = I, cos = -,
r r

whence, eliminating 6 we obtain

r = 2a
r̂x

and thence the rectangular equation of the curve

or
x

(2)

(3)
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The Cardioid.

152. The curve defined by the polar equation

r 2a (i cos 6) . . (i)

is called the cardioid. In Fig.

26, A denotes the pole.

The polar equation can also

be written in the form

r = 40 sin (2)

FIG. 26.

Transforming equation (i) to

rectangular coordinates, we have

for the rectangular equation of

the cardioid,

= o (3)

A point at which two branches of a curve have a common

tangent is called a cusp. This curve has a cusp at the origin.

The Lemniscata of Bernoulli.

153. The curve defined by the polar equation

7
2 =tf2 COS2# . . . (i)

is called the lemniscata. In Fig. 27

O denotes the pole : a is the semi-

axis of the curve.

From (i), we have FIG. 27.
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or

whence we have

0, ..... (2)

the rectangular equation of the lemniscata, referred to its cen

tre and axis of symmetry.
If we turn the initial line back through 45, (i) becomes

r1 = a2
sin 26, ....... (3)

and the corresponding rectangular equation is

(4)

When the equation has this form, the coordinate axes are the

tangents at the origin.

The Logarithmic or Equiangular Spiral.

154. This spiral is defined by the

polar equation

r=aB&quot;
J

. . . . (i)

or log r log a + nO,

the logarithm of the radius vector being FlG 2g
a linear function of the vectorial angle.

It is proved in Art. 168 that this curve cuts its radius vector
at a constant angle whose cotangent is n

; hence it is sometimes
called the equiangular spiral.

The Loxodromic Curve.

155. The track of a ship whose course is uniform is a curve
that cuts the meridians of the sphere at a constant angle, and
is called a loxodromic curve.
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If we project this curve stereographically upon the plane of

the equator the meridians will project into straight lines, and,

since in this projection angles are unchanged in magnitude, the

projection of the curve will make a constant angle with the

projections of the meridians and will therefore be an equiangu
lar spiral.

Let 6 denote the longitude of the generating point mea
sured from the point at which the curve cuts the equator, and

C the course ;
that is, the constant acute angle at which the

curve cuts the meridians, the generating point being supposed
to approach the pole as 6 increases. Taking as the pole the

projection of the pole of the sphere, the polar equation of the

projected curve will be of the form
.*

r = a**, ........ (i)

in which a is the radius of the sphere, since B o gives r = a
;

we also have

n = - cot C, ....... (2)

since the angle whose cotangent is ;/ is the supplement of C

(see the preceding article).

Denoting by (f&amp;gt;

the co-latitude of the projected point we

have, by the mode of projection,

- = tan # ;
....... (3)

a

and, denoting the corresponding latitude by /,

Equation (i) is therefore equivalent to

tan (ITT -/)=: f

whence, solving for 0, we have
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6 tan C loge tan Q-TT
-

\l] tan C loge tan (fan + /),

or, employing common logarithms and expressing (9 in degrees,

6 = 131.9284 tan C* logIO tan (45 + \l] . . . (4)

The Cycloid.

156. The path de

scribed by a point in

the circumference of a

circle which rolls upon
a straight line is called

a cycloid. The curve

consists of an unlimited

number of branches cor

circlresponding to successive revolutions of the generating

single branch is, however, usually termed a cycloid.

Let (9, the point where the curve meets the straight line,

be taken as the origin, let P be the generating point of the

curve, and denote the angle PCR by ^. Since PR is equal to

the line OR over which it has rolled,

OR = PR =
ai/&amp;gt;,

and, from Fig. 29, we readily derive

- sn

(57. These two equations express the values of x and y in

terms of the auxiliary variable ^, and constitute the equations
of the cycloid. If desirable, ?/;

is easily eliminated from equa
tions (i) and an equation between x and y obtained. Thus,
from the second equation, we have
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and hence from the first of equations (i)

or

= a cos- 1 -

a

Equations (i) will in general be found more convenient than
equation (2). Thus we easily derive from (i)

dy __ sin

whence

dx*

(i cosip) dtp

cos ip i t

i cos

a(i cos?//)
2

. 158. The cycloid is frequently referred to the middle pointO or vertex of the curve as an origin, the directions of the
axes being turned through 90.

Denoting the coordinates referred to the axes OX and
O Y

,
in Fig. 29, by x and /, we have

/ x an = a
(&amp;gt;/:

- n sin #),
x = 2a y a (i + cos ^),

or, denoting ip TT by ip t

y a (ip

f + sin
?/ ^

(3)

In these equations ?//
= o gives the coordinates of the ver

tex and ip
= 7t gives those of the cusps.
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The Epicycloid.

159. When a circle, tan

gent to a fixed circle exter

nally, rolls upon it, the path
described by a point in the

circumference of the rolling

circle is called an epicycloid.

Taking the origin at the

centre of the fixed circle,

and the axis of x passing

through A, (one of the posi

tions of P when in contact

with the fixed circle,) a, b, ip,

and j, being defined by the

diagram, we have, evidently, FIG. 30.

The inclination of CP to the axis of x is equal to
i/&amp;gt;

-f j, or to

j ip ;
the coordinates of P are found bysuotracting the pro

jections of CP on the axes from the corresponding projections

of OC
;
hence

f 7N , a -\- b
x (a + b) cos

if}
b cos -

\

r ZA * a + ^
jj/
= ^ -|- ^j sin y u sin -

?

These are the equations of an epicycloid referred to an

passing through one of the cusps,

axis
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Were the generating point taken at the opposite extremity

of a diameter passing through P in the figure, the projection of

CP would be added to that of OC
,
the axis of x would in this

case pass through one of the vertices of the curve, and the

second terms in the above values of x and y would have the

positive sign.

The Hypocycloid.

160. When the rolling

circle has internal contact

with the fixed circle, the

curve generated by a point

on the circumference is called

the hypocycloid) whether the

radius of the rolling circle be

greater or less than that of

the fixed circle.

Adopting the notation

used in deducing the equa
tion of the epicycloid we
have (see Fig. 31),

FIG. 31.

OC a b, and

The inclination of CP to the negative direction of the axis of

x is

hence the equations of the hypocycloid are

b

y = (a b) sin
i/&amp;gt;

b sin
&quot;

//?

a b
x (a b] cos *p + b cos y
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The Four-Cusped Hypocycloid.

FIG. 32.

y

161. In the case of the

hypocycloid when b = \a, the

circumference of the rolling

circle is one-fourth the circum

ference of the fixed circle, and

the curve will have a cusp at

each of the four points where

the coordinate axes cut the

fixed circle, as represented in

Fig. 32.

On substituting \a for b

equations (2) Art. 160 become

= f# cos $ + \a cos 3?/?
) ,.

= \a sin
?/? \a sin 3?/? )

Substituting the values of cos 3^ and sin 37/7 from the for

mulas,

cos 3 /
= 4 cos

3

//? 3 cos ?/ ,

and sin 3^ = 3 sin 4 sin
3

&amp;lt;/&amp;gt;,

we have
= a cos ty

= a sin
8

ib

whence x* ^= &amp;lt;2

:j cos2

?/
1

, and j

Adding, we have ^rl+jj/ ^1,

the rectangular equation of the curve.

(2)

(3)

y



CHAPTER IX.

APPLICATIONS OF THE DIFFERENTIAL CALCULUS TO
PLANE CURVES.

XXIII.

The Equation of the Tangent.

162. THE equation of the curve being given in the form
y =/(*) the inclination of the tangent at any point is deter
mined by the equation

tan# = S=/ W-

Hence, if (* 7,) be a point of the curve, the equation of a

tangent at (x,, 7,) will be found by giving to the direction-
ratio m, in the general equation

y -y, = m (x- *,),

the value -/ ; thus
axj^

or .?- .?. =/ (*) (*-*.)...... (2)

For example, in the case of the semi-cubical parabola

y =
,
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, dy s /a
we have -7- I i/ax Y x

The point (a, a) is a point of this curve
;
the equation of

the tangent at this point is, therefore,

$y - 2x = a.

The Equation of the Normal.

(63i A perpendicular to the tangent at its point of contact

is called a normal to the curve.

The coordinate axes being rectangular, the direction-ratio

of the normal is the negative reciprocal of that of the tangent ;

for the inclination of the normal is
-|/r + ^, and

tan(-|7r + (/))
= cot

&amp;lt;f&amp;gt;.

The equation of the normal may, therefore, be written thus

dx

As an illustration, let us take the equation of the ellipse

, /_

dy Px
whence -~ --

.

ax ay

The equation of the normal at any point (x j/i) of the ellipse

is, therefore,
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Subtangents and Subnormals.

I64-. Denoting by s the length of the arc measured from some

fixed point, denotes the velocity of P, the generating point

of the curve
;

let PT, equal to ds, be measured on the tangent
at P, then PQ and Q Twill represent dx and dy, and the angle
TPQ will be

(/&amp;gt;
; hence T

dx
ds

. . dysin
(f&amp;gt;

= ~
,

and

(i)

(2)

165. The distance PT (Fig. 34) on the tangent line inter

cepted between the point .of contact

and the axis of x is sometimes called

the tangent, and in like manner the in

tercept PN is called the normal.

From the triangles PTR and NPR,
we have

FIG. 34.

The projections of these lines on the axis of x, that is 77?

and RN, are called the subtangent and the subnormal.

From the same triangles, we have
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the subtangent, TR = y cot
&amp;lt;j&amp;gt;

= y
dy

j

and the subnormal, RN= ytar\(f)=y ^L.
dx

The Perpendicularfrom the Origin upon the Tangent.

166. If a perpendicular/ to the tangent PR be drawn from
the origin, we have, from the triangles in Fig

P/ 35,

|y
/ x sin &amp;lt;*&amp;gt; y cos $5, . . . (i)

y=&quot; /

V ~ 9 being taken as thepositive direction of p.

Substituting the values of sin
&amp;lt;f&amp;gt;

and cos ^,
FIG. 35. equation (i) becomes

, __ -^^fy ~
J^-*&quot; _ xdy~

For example, let us determine / in the case of the four-

cusped hypocycloid,

y a sin
3

?/\

Differentiating,

dx= $a cos 2

?/&amp;gt;

sin
?/; ^?/&amp;gt;,

and ^ = 3^ sin2

^

hence ^y = 3# sin
?/&amp;gt;

cos ^ ^.

Substituting in equation (2) we obtain

p-a cos
3

?/?
sin

t/&amp;gt;

+ a sin
3

^ cos $ = a sin cos
/&amp;gt;

=
^

To ascertain the direction of / it is necessary to determine
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$. The ambiguity in the value of
&amp;lt;t&amp;gt;

as determined from the

equation tan
&amp;lt;#

= -~ may be removed by means of one of the

formulas of Art. 164. Thus, in the present case, we have

tan ^ = tan
ip,

whence
&amp;lt;f&amp;gt; ^, or ^ n ^\

dx
but, since

cos(/&amp;gt;=-^-=

- cos ip,

we must take $ = ?r ip.

The direction of/ when positive is therefore \7t ?/&amp;gt;.

Examples XXIII.

*i. In the case of the parabola of the th degree

find the equations of the tangent and the normal at the point (a y a).

2. Find the subtangent and the subnormal of the parabola

/ = tax. ^ -. a.^

3. Prove that the subtangent of the exponential curve

*&quot;$*-

is constant, and find the ordinate of the point of contact when the

tangent passes through the origin.
-

4. Find the subnormal of the ellipse whose equation is

5 . Find the subtangent of the curve
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V 6. In the case of the parabola

find/ in terms of x.

yf
7. Find, in terms of ^, the equation of the tangent to the four-

cusped hypocycloid (Art. 161), and thence show that the part inter

cepted between the axes is of constant length.

8. In the case of the epicycloid, find the value of ds in terms of
the auxiliary angle i/&amp;gt;.

See Art. 159.

ds 2 (a 4- &) sin f dib.
20

9. Determine the value of / in the case of the epicycloid em-

plojing the value of ds determined in the preceding example.

( ~* 2b

XXIV.

Polar Coordinates.

167. When the equation of a curve is given in polar co
ordinates the vectorial angle 6 is usually taken as the inde

pendent variable
; hence, denoting by s an arc of the curve, it

is usual to assume that ds ancTd?0 have the same sign ; that is,

.
ds .

that is positive.

In Fig. 36 let PT, a portion of the tangent line, represent
ds

; then, producing r, let the rectangle PT be completed, and
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let
if}

denote the angle TPS\ that is, the angle between the

positive directions of r and s. The re

solved velocities of P along and perpen-

s dicular to the radius vector are and
rdO

dt

FIG. 36.

j-,
the latter being the velocity which P

would have if r were constant ;
that is, if

P moved in a circle described with r as a

radius. Hence we have

and PR = rdd.

From the triangle PSTt
we derive

rdO
,

rdO dr
cos

,/,
= _.,

and M (2)

168. The second of equations (i) shows that, in accordance

with the assumption that ds has the sign of dQ, the value of $
will always be either in the first or in the second quadrant.

The first of equations (i) is equivalent to

cot
?/; rdO

(3)

which shows that cot
?/&amp;lt;

is the logarithmic derivative of r re

garded as a function of 6. Thus in the case of the logarithmic

spiral

r = as*

we have

hence

log r log a +

cot
&amp;lt;/

n
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whence it follows that, in the case of this curve, ij&amp;gt;

is constant.

See Art. 154.

169. It is frequently convenient to employ in place of the

radius vector its reciprocal, which is usually denoted by u
;

then

I
t j du=-

y and dr--= -.
(4)

Making these substitutions in equations (2) and (3) we have

and cot = du

udO

Polar Subtangents and Subnormals.

170. Let a straight line perpendicular to

the radius vector be drawn through the pole,
and let the tangent and the normal meet
this line in T and N respectively ;

then the

projections of PT and PN upon this line,

that is OT and ON, are called respectively
the polar subtangent and the polar subnormal.
In Fig. 37, OPT= $ whence

y&amp;gt; T1
o du dOOT= r tan

?/?
= r2 _

,

dr du

and dr du

Fig. 37 shows that the value of OT is positive when its
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direction is 6 90 ;
that of ON is, on the other hand, positive

when its direction is 8 + 90.

The Perpendicularfrom the Pole upon the Tangent.

(71. Let/ denote the perpendicular distance from the pole

to the tangent ; then, from Fig. 37 we obtain

These expressions give positive values for
/&amp;gt;,

because
-^

is

assumed to be positive, and Fig. 37 shows that/ has the direc

tion
(f&amp;gt; 90, (f&amp;gt; being the angle which the positive direction of

s makes with the initial line.

The relation between / and u is obtained thus: from (i)

we have

! d?

and, transforming by the formulas of Art. 169,

172, The expression deduced below for the function

-JQ
is frequently useful.

Differentiating (2), we have

&amp;lt;/a ^ 2dp .
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(
+ )*hence

or since du = -
,

&amp;lt;Fu _ S_ dp
h ~~&quot;

The Perpendicular upon an Asymptote.

173. When the point of contact P passes to infinity the

tangent at P becomes an asymptote, and the subtangent
OT coincides with the perpendicular upon the asymptote.
Hence (0 t denoting a value of 6 for which r is infinite) the length

of this perpendicular is given by the expression -- ,
and

duJ 6l

like the polar subtangent is, when positive, to be laid off in the

direction
r 90.

This expression for the perpendicular upon the asymptote
is also easily derived by evaluating that given in Art. 146.
Thus

Points of Inflexion.

174. When, as in Fig. 37, the curve lies between the tan

gent and the pole, it is obvious that r and / will increase and

decrease together; that is, -j-will be positive. When on the

other hand the curve lies on the other side of the tangent,

~r- is negative. Hence at a point of inflexion -- must changear cir

sign.
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Now, since/ is always positive, it follows from the equation
deduced in Art. 172 that the sign of this expression is the same

as that of

hence at a point of inflexion this expression must change sign.

(75. As an illustration, let us determine the point of in

flexion of the curve traced in Art. 147 ; viz.,

r =

In this case u = -
( i
-

0-*} ;

a\ J

, du 2
8 cPu 6 _

4whence = - B , and -j^= -- ;

dO a d6 a

u +~ = -
(i -6~* - 60

au a \
therefore

au a

e* - & - 6

Putting this expression equal to zero, the real roots are

= V3,

and it is evident that, as 6 passes through either of these values,

the expression u + -^changes sign. Hence the points of in

flexion are determined by

B = 4/1 and r= -
3
^- .
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Examples XXIV.

1. Prove that, in the case of the lemniscata r
2 = c? cos 20,

^ = 20 + Jar, and
Q̂
=
^-

2. Find the subtangent of the lituus r
1 =

,
and prove that the

perpendicular from the origin upon the tangent is

2,2 4/0

V(i + 46*)

3. Find the polar subtangent of the spiral r (i* +
~ e

)
= a.

a

4. Find the value of/ in the case of the curve rn = an sin nG.

i

/ \
l + ~

p = a (sm 6)
w

5. In the case of the parabola referred to the focus

, prove that/
2 = ar.

i + cosfl

6. In the case of the equilateral hyperbola

a*
r* cos 20 a*, prove that/ .

7. In the case of the lemniscata

r
2 =

a&quot;

2

cos 20, prove that/ = 5- .

8. In the case of the ellipse r = a (I
~ *

I ,
the pole being at

I 6 COS o
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the focus, determine/.

, = _ __(.*
- 3_

7 4/(l 2^ COS a + &amp;lt;f

2

)

9. In the case of the cardioid

r = a (i 4- cos 6), prove that r
3 =

2#/*.

10. Show that the curve rQ sin = a has a point of inflexion at

, . , za
which r .

7t

XXV.

Curvature.

176. If, while a point P moves along a given curve at the

rate
,

it be regarded as carrying with it the tangent and

normal lines, each of these lines will rotate about the moving

point P at the angular rate
, &amp;lt;f&amp;gt; denoting the inclination of

the tangent line to the axis of x.

The point P is always moving in a direction perpendicular

to the normal with the velocity . Let us consider the

motion of a point A on the normal at a given dis

tance k from P on the concave side of the arc.

While this point is carried forward by the motion

x of P with the velocity -=- in a direction perpen-

IG 38 dicular to the normal, it is at the same time car

ried backward, by the rotation of this line about P, with the
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velocity -=-
;
since this is the velocity with which A would

move if the point P occupied a fixed position in the plane ;

and the direction of this motion is evidently directly opposite
to that of P. Hence the actual velocity of A will be

ds
dj&amp;gt;

~dt~ *~Tt*

in a direction parallel to the tangent at P.

Let p denote the value of k which reduces this expression
to zero, and let C (Fig. 38) be the corresponding position of A :

then,

ds d

whence PC =P=~........ (l)

177. The value of p determined by this equation is, in

general, variable
; for, if the point Pmove along the curve with

a given linear velocity -^, the angular velocity will gene

rally be variable. If however we suppose the angular velocity

j-
to become constant, at the instant when P passes a given

position on the curve, r, the value of p, will likewise become
do

constant, and C will remain stationary. When this hypothesis
is made, the curvature of the path of P becomes constant, for

P describes a circle whose centre is C, and whose radius is p.

Hence this circle is called the circle of curvature corresponding
to the given position of P; C is accordingly called the centre of
curvature, and p is called the radius of curvature.
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The Direction of the Radius of Curvature.

178. If in Fig. 38 the arrow indicates the positive direction

of s
;
the case represented is that in which # and s increase to

gether, and therefore the value of p as determined by equation

(i), Art. 176, is positive. Hence it is evident that when p is

positive its direction from P is that of PC in Fig. 38 ; namely,

&amp;lt;#

+ 90. In other words, to a person looking along the curve

in the positive direction of ds, p, when positive, is laid off on the

left-hand side of the curve.

For example, let the curve be the four-cusped hypocycloid,

x = a cos
3

// , y = a sin
3

&amp;lt;/

.

It was shown in Art. 166 that for this curve

ds = $a sin fy cos ip dty, and $ n
?/? ;

hence d$ d^,

and p= - =

When ?/ is in the first quadrant p is negative ;
its direction

is therefore $ \n \n fi, which is in the first quadrant.

When
i/&amp;gt;

is in the second quadrant p is positive and its direction

is
(f)

4- JTT
=

|TT ?/;,
which is in the second quadrant.

The Radius of Curvature in Rectangular Coordinates.

179. To express p in terms of derivatives with reference to

,
we have
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hence

and /
= -=&quot; (i)

Since -r- is assumed to be positive, ^ should be so taken as
dx

to cause x to increase with ^, and it must be remembered that

the direction of p is
&amp;lt;j)
+ 90 when p is positive, in accordance

with the remark in the preceding article.

180. To illustrate the application of the above formula, we

find the radius of curvature of the ellipse
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Expressions for P in which x is not the Independent
Variable.

181. To express p in terms of derivatives with reference to

y, we have

dx ds /r (dx
^=cot-&amp;lt; ,

and -- =
|/ i +

(
_

^ dy \dy

d x

^ =
~77WS&amp;gt;

and p= ~ [~i
+ (f\l\dy J _

J / 7

dy J dy

In this case ds and
&amp;lt;^/

were assumed to have the same sign,

hence ^ must be taken so as to cause/ to increase.

182. When x and y are expressed in terms of a third vari

able we employ the formula deduced below.

Differentiating

both dx and ^ being regarded as variable, we have

dxd*y dyd*x
dy d*x t

I + /4r_Y
^2 + ^2

fdy\
rf-l\dxj

^ (^T
2 T er / /T \

whence p -jy = , , 2 ^ , 2 0)^ dxd*ydyd*x
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Examples XXV.

1. Find the radius of curvature of the cycloid

x = a ($ sin */;), y a(\ cos ^).

/V0z# Ma/
&amp;lt;# \ (TT ?/&amp;gt;),

##&amp;lt;/ use p = -rv .

p =

2. Find the radius of curvature of the parabola y* = &amp;lt;\ax.

3. Find the radius of curvature of the catenary

y -
\

c + e

and show that its numerical value equals that of the normal at the

same point. See Art. 165.

4. Find the radius of curvature of the semi-cubicalparabola

Q 3

ay = # .

5. Find the radius of curvature of the logarithmic curve

X

y = a&.

p=v+
&amp;lt;y
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6. Find the radius of curvature of the cissoid

(2a x)a

_ a Vx (Sa

3 (2a-xY

7. Find the radius of curvature of the parabola

Vx + Vy = 2 1/0.

o =^
8. Find the radius of curvature of the cubicalparabola

_ (a + 9* )*
*

9. Find the radius of curvature of \hzprolate cycloid

x aip b sin ^, jy
= ^ ^ cos ^.

2 + F - 2ab cos_
b (a cos ip b)

XXVI.

Envelopes.

183. The curves determined by an equation involving #
and y together with constants to which arbitrary values may
be assigned are said to constitute a system of curves. The

arbitrary constants are called parameters. When but one of
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the parameters is regarded as variable, denoting it by a, the

general equation of the system of curves may be expressed thus :

(i)

When the curves of a system mutually intersect (the intersec

tions not being fixed points), there usually exists a curve

which touches each curve of the system obtained by causing the

value of a to vary.

For example, the ellipses whose axes are fixed in position,

and whose semi-axes have a constant sum, constitute such a

system ; and, if we regard the ellipse as varying continuously

from the position in which one semi-axis is zero to that in which

the other is zero, it is evident that the boundary of that por

tion of the plane which is swept over by the perimeter of the

varying ellipse is a curve to which the ellipse is tangent in all

its positions. A curve having this relation to a given system
of curves is called the envelope of t/ie system.

Every point on an envelope may be regarded as the limit

ing position of the point of intersection of two members of the

given system of curves, when the difference between the cor

responding values of a is indefinitely diminished. For this

reason, the envelope is sometimes called the locus of the ultimate

intersections of the curves of the given system.

184. If we differentiate equation (i) of the preceding arti

cle (regarding a as a variable as well as x and y) the resulting

equation will be of the general form

/; (x, y, a) dx +fy(x, y, a) dy +fa(x, y, a) da = O. . (2)

In this equation each term may be separately obtained by

differentiating the given equation on the supposition that the

quantity indicated by the subscript is alone variable. See

Art. 64.



1 82 APPLICATIONS TO PLANE CURVES. [Art. 184.

From equation (2) we derive

ffy = /j (x, y, a) _ /g Q, y, a) do^

In Fig. 39 let PC be the curve corresponding to a particular

value of a, and let P be the point (x, y) ;
then 3

7
JL

the expression for -- given in equation (3)

determines the direction in which the point P
is actually moving when x, y, and a vary

simultaneously. This direction depends there- FIG. 39.

fore in part upon the arbitrary value given to the ratio .

ctx

185. Now if a were constant da. would vanish, and equa
tion (3) would become

This expression for -~- determines the direction in which P

moves when PC is a fixed curve.

Let AB be an arc of the envelope, and let C be its point of

contact with PC. Now, if P be placed at the point C, it is

obvious that it can move only in the direction of the common

tangent at C, whether a be fixed or variable. It follows there

fore that, at every point at which a curve belonging to the

system touches the envelope, the expressions for -~ given in

equations (3) and (4) must be identical in value.

Assuming that/^(;r, y, a) &&& fy (x, y, a) do not become in

finite for any finite values of x and/, the above condition re

quires that

(*,* o = ....... (5)
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Hence the coordinates of every point of the envelope must

satisfy simultaneously equations (5) and (i) ;
the equation of

the envelope is therefore obtained by eliminating a between

these two equations.

186. Let it be required to find the envelope of the circles

havingfor diameters tJie double ordinates of the parabola

If we denote by a the abscissa of the centre of the variable

circle, its radius will be the ordinate of the point on the para
bola of which a is the abscissa, the equation of the circle will

therefore be

f + (x )

2

4aa = o...... (l)

Differentiating with reference to the variable parameter a, we
have

- 2 (x
-

a)
- ^a = O,

or a = 2a + x
;
........ (2)

substituting in (i), and reducing, we obtain

+ *)........ (3)

The envelope is, therefore, a parabola equal to the given para
bola and having its focus at the vertex of the given parabola.

Two Variable Parameters.

187. When the equation of the given curve contains two
variable parameters connected by an equation, only one of

these parameters can be regarded as arbitrary, since, by means
of the equation connecting them, one of the parameters can

be eliminated. Instead, however, of eliminating one of the

parameters at once, it is often better to proceed as in the fol

lowing example.
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Required, the envelope of a straight line of fixed length a,

which moves with its extremities on two rectangular axes.

Denoting the intercepts on the axes by a and ft, the equa

tion of the line is

a and ft being two variable parameters which, by the condi

tions of the problem, are connected by the relation

Differentiating (i) and (2) with respect to a and ft as vari

ables, we have

(3)

and ada + ftdft
= o (4)

We have now four equations from which we are to eliminate

a, ft, and the ratio ^ . Transposing and dividing (3) by (4),

we obtain

Substituting in (i) the value of y derived from the last

equation, we have

whence by equation (2)

a = x*a*.
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In like manner we find

ft
=

jj/3 a%.

Hence, substituting in (2)

x* + y^ a$.

The envelope is therefore a four-cusped hypocycloid.

Evolutes.

188. In Fig. 40 let C be the centre of curvature of the given
curve : this point is so determined (see Art. 176) as to have no
motion in a direction perpendicular to the normal

PC, but since p is in general variable, it has a mo
tion in the direction PC. Hence C describes a

curve to which the normal PC is always tangent
at the point C. Moreover, since P has no motion
in the direction PC, if we regard P as a fixed FlG 40

point on this line, the rate of C along this moving
line will be identical with its rate along the curve which it

describes. Hence the motion of PC is the same as that of a

tangent line rolling upon the curve described by C, while P, a

fixed point of this tangent, describes the original curve.

The curve described by the centre of curvature C is there

fore called the evolute of the curve described by P, and the

latter is called an involute of the former.

189. Since the evolute of a given curve is the curve to

which all the normals to the given curve are tangent, it is

evidently the envelope of these normals.
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The equation of the normal at the point (x, y) of a given
curve may be written in the form

(# , y) being any point of the normal. See Art. 163.

In this equation y and -~ are functions of x determined bydx
the equation of the given curve, and x is to be regarded as the

arbitrary parameter. Hence, differentiating with reference to

x, we have

The equation of the evolute is therefore the relation be

tween x and y which arises from the elimination of x between

equations (i) and (2).

(90. As an illustration, let it be required to find the evolute

of the common parabola

whence ^ = -
,

and !^-=--^-.dx \xJ dx* 2x*

Substituting, we obtain from equation (2) of the preceding
article

whence, from equation (i) of the same article,

2 = 4 (x?
-

2af,

the equation of the evolute, which is, therefore, a semi-cubical

parabola having its cusp at the point (2a, o).
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191. It is frequently desirable to express the equation of
the normal in terms of some parameter other than x before

differentiating. Thus, let us determine the evolute of the ellipse

by means of the equation of the normal in terms of the eccen
tric angle.

The equations of the ellipse are

x a cos ip, and y = b sin $ ;

whence dx = a sin
&amp;lt;$ dtp, and dy = bcosip dip.

Substitution in the equation of the normal,

(x
-

x) dx + (/ -y)dy = o,

gives ax sin
i/&amp;gt; by cos ^ (a* &) sin $cosip= o.

Differentiating, we have

ax cos ^ + by sin ^ - (a
2 - &2

) (cos
2 - sin2

#) = o
;

eliminating/ and x1

successively, and dropping the accents,

ax - (a
2 - b2

) cos
3
^ and by = -

(a
2 -

P) sin8
ty ;

whence (ax$ + (byfi = (a
2 - b^.

Examples XXVI.

i. Find the envelope of the system of parabolas represented by the

equation

. /=&amp;lt;_),

in which a is an arbitrary parameter and c a fixed constant.
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2. Find the envelope of the circles described on the double or-

dinates of an ellipse as diameters.

x
_L_ y - T

O T -3 1^ t &amp;gt;

&quot;&quot;&quot;* *

a* -f b b

3. Find the envelope of the ellipses, the product of whose semi-

axes is equal to the constant f.

The conjugate hyperbolas, 2xy = c*.

4. Find the envelope of a perpendicular to the normal to the para

bola, / = 4#x, drawn through the intersection of the normal with the

axis.

/ = 40 (20
-

x).

5. Find the envelope of the ellipses whose axes are fixed in posi

tion, and whose semi-axes have a constant sum c.

The four-cusped hypocycloid, x* + y* = C*.

6. Given the equation of the catenary

a f *- -

prove that

an x= x - -

and deduce the equation of the evolute.

7. Derive the equation of the evolute to the hyperbola, its equa

tions in terms of an auxiliary angle being

x = a sec ^ and y = t&amp;gt; tan ^.
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The equation of the normal is

ax sin
i/&amp;gt;

+ by (a* + 3
2

) tan ?/&amp;gt;,

and the equation of the evolute is

8. Find the equation of the evolute of the cycloid.

The equation of the normal is

sin ib

x +y
I COS

The equations of the evolute are .

# = a(^ + sin^) and y a (i cos^).

The evolute is therefore a cycloid situated below the axis of x,

having its vertex at the origin. See equations (3), Art. 158.



CHAPTER X.

FUNCTIONS OF Two OR MORE VARIABLES

XXVII.

The Derivative Regarded as the Limit of a Ratio.

192. THE difference between two values of a variable is fre

quently expressed by prefixing the symbol A to the symbol
denoting the variable, and the difference between correspond

ing values of any function of the variable, by prefixing A to the

symbol denoting the function. Hence x and x 4- Ax denote

two values of the independent variable, and Af(x) denotes the

difference between the corresponding values of f(x) ;
that is,

ifJ =/(*),

=f(x+ Ax)-f(x). ... (i)

If we put Ax = o, we shall have Ay = o
;

hence the ratio ^ = /C*^) -/(*)
Ax Ax

takes the indeterminate form - when Ax = o. The value as-
o

sumed in this case is called the limiting value of the ratio of the

increments, Ay and Ax, when the absolute values of these incre

ments are diminished indefinitely.

193. To determine this limiting value, for a particular value

a of x, we put a for x and z for Ax in the second member of
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equation (2), and evaluate for z = o, by the ordinary process

(see Art. 82). Thus

Therefore when Ax is diminished indefinitely, the limiting value

of corresponding to x = a is ~~-
, and, since a denotes any

^1/Jv IZ^V __ \ ft

value of x, we have in general

=
Ax dx

Av
If we denote by e the difference between the values of ~- and

-r. we shall have
dx

and the result established in the preceding article may be ex

pressed thus

e = o when Ax = o
;

in other words, e is a quantity that vanishes with Ax.

Partial Derivatives.

194. Let =/(*, .7),

in which x and y are two independent variables. The deriva

tive of u with reference to x, y being regarded as constant, is

denoted by u, and the derivative of u with reference to y, x
d&amp;gt; 3

being constant, by -y- u. These derivatives are called the par

tial derivatives of u with reference to x and y respectively.
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Adopting this notation, the result established in Art. 64 may
be expressed thus :

d d
au = u ax -\ u-ay

dx dy

provided u denotes a function that can be expressed by means of tJu

elementary functions differentiated in Chapters II and III.

It is now to be proved that this result is universally true.

195. Let Axu denote the increment of u corresponding to

Ax, y being unchanged, Ay u the increment corresponding to Ay,

x being unchanged, and Au the increment which u receives

when x and y receive the simultaneous increments Ax and Ay.

Let

and u&quot; = f(x + Ax,y + Ay) ;

then Axu = u u,

Ayii
= u&quot; u t

and Au u&quot; u ;

hence Au = Axii + Ay u ........ (i)

Denoting by At the interval of time in which x, y, and u re

ceive the increments Ax, Ay, and Au, we have

Au_ _ Axu 4X /
2
v

At
&quot; :

At At

Since Au is the actual increment of u in the interval At, the

limit of the first member of equation (2) is, by Art.
193,-^,

the

rate of . The limit of -4^ is the rate which u would have
At
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were x the only variable ; and, since
-^

u dx \s the value which

du assumes when this supposition is made, if we put

d ,

-j-tt- dx dxu,
dx

this rate will be denoted by -^
. Hence by equation (4), Art.

193, equation (2) becomes

du dxu ,
, dyU* ,,

in which e, e
f

,
and e&quot; vanish with At

;
but when At o, Ax o,

and therefore u = u
; hence, putting At o, we have

du _ dxu dy u
~dt~~&quot;~dt &quot;~df

Therefore du dxu + dy u ;

that is, du = -=- u - dx + -=- u dy.dx dy

196. This result is usually written in the form

, du ,
,

du ,

du -=- dx -f -j dy,dx dy

but when written in this form it must be remembered that the

fractions in the second member represent partial derivatives,

the symbol du in the numerators standing for the quantities

denoted above by dxu and dy u, which are sometimes called par-
tial differentials. The du that appears in the first member is

called the total differential of u when x and y are both variable.

The above result is easily extended to functions of more

than two independent variables.
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Examples XXVII.

i. Given u (x* +J?)$, prove that

du du
x 4- y - = %u.
dx dy

2. Given u
, prove that

x + y

du du
x +y-dx dy

3. Given u tan&quot;
1

(- V, prove
\x + yJ

tliat

du
,

du
x +y = o.
dx dy

r^. ~ , du . du
4. Given u = log,*, to find md .

dy

du
i_ ^ du^ __ log*

dx x logjy dy
~~

y (logy)*

XXVIII.

The Second and Higher Derivatives regarded as Limits.

197. In Art. 193 it is shown that

Ay dy
~Ax^^dx

+

In this equation e is a function of x and likewise of Ax-, hence
de

the derivative - is in general a function of x and of 4x. It is



XXVI 1 1.] THE SECOND DERIVATIVE AS A LIMIT. 195

also proved in the same article that e becomes zero when Ax
vanishes

;
that is, e assumes a constant value independent of the

value of x when Jx becomes zero
; hence, when Ax is zero, the

derivative of e with reference to x must take the value zero,

whatever be the value of x
;
in other words,

-j- vanishes with Ax.
dx

In a similar manner it may be shown that each of the higher
derivatives of e with reference to x vanishes when Ax o.

198. Since ~^- is a function of x, A~ will denote the incre

ment of this function corresponding to Ax. Employing the

symbol to denote the operation of taking this increment,

and dividing the result by Ax, we obtain, by applying to this

function the principle expressed in equation (4), Art. 193,

A_ Ay _ d Ay
Ax Ax

~
dx ~A^

+ e ......

d fdy

dx* dx

In this equation both e and vanish with Ax by the preced

ing article ; hence the sum of these quantities likewise vanishes
with Ax, and may be denoted by e. Thus we write

A Ay _ d*y~ ~ ~~ ~ + *.......
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(99. Since Ax is an arbitrary quantity it may be regarded

as constant, whence A -~ is the increment of a fraction whoseAx
denominator is constant

;
but this is evidently equivalent to the

result obtained by dividing the increment of the numerator by
the denominator

;
that is,

Ay _ A Ay
Ax Ax

The numerator A - Ay is usually denoted by the symbol A*y ;

hence equation (2) may be written thus :

_
&quot;^

4

and, since e vanishes with Ax, it follows that the second deriva

tive is the limit of the expression in the first member of equa
tion (3).

In a similar manner it may be shown that each of the higher
derivatives is the limit of the expression obtained by substi

tuting A for d in the symbol denoting the derivative.

Higher Partial Derivatives.

200. The partial derivatives of u with reference to x andjj/

are themselves functions of x and y. Their partial derivatives,

viz.,

d du d du d du d du_ _ __ % _ _ 9 ___ rlTlCl _ _
dx dx* dy dx dx dy dy dy

are called partial derivatives of u of the second order.

It will now be shown that the second and third of these

derivatives, although results of different operations, are in fact

identical
;
that is, that

d du
__

d du

~dy dx
~
dx dy*
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Employing the notation introduced in Art. 195, we have

Axu=f(x -f ^,&amp;gt;)-/(*f &amp;gt;);

if in this equation we replace y by y + Ay, we obtain a new
value of z/.r&, and, denoting this value by Axu, we have

Axu = f(x + Ax,y + Ay)
- f (x, y + Ay).

Since this change in the value of Axu results from the increment

received by y, the expression for the increment received by
Axu will be Ay (Axu) ;

hence

Ay (Axu) = Axu - Axu,

or

Ay (Axu)=f(x + Ax,y + Ay)-f (x, y + Ay]-f (x + Ax, y) +f(x,y).

The value of Ax(Ayii),
obtained in a precisely similar manner,

is identical with that just given ;
hence

J, (4*) = 4, (4)....... (i)

Since Ax is constant, we have, as in Art. 199,

Ax y Ax

Hence, dividing both members of equation (i) by Ax Ay, we
have

A), A xu _ A^ Ayu ,.

Ay Ax
~
Ax Ay

or, employing the symbol as in Art. 198,

^L A. -A. *_

Ay Ax Ax Ay
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From this result, by a course of reasoning similar to that em
ployed in Art. 198, we obtain

d du __ d du .

~&quot;~~ * U)

201. The partial derivatives of the second order are usually
denoted by

&quot;dx* dxdy df

the factors dx and dy in the denominator of the second being,

by virtue of formula (3), interchangeable, as in the case of an

ordinary product.
The numerators of the above fractions are of course not

identical. Compare Art. 196.

Formula (3) of the preceding article is readily verified in

any particular case. Thus, given

u = yx,

du du
whence = y*\ogy, and - = xy*

*

;

d du d du
~y~ ~r~ y (x logr + i

)
-=- -r .

dy dx dx dy

examples XXVIII.

i. Given u = sec (y + ax) + tan (y ax), prove that

2. Verify the theorem = when u = sin (x/).
dx dy dydx

3, Verify the theorem ~r r̂ = -j-%- when u - log tan (ax + /).
dxdy dydx
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4. Verify the theorem ^- = ?L when u = tarT
1 -

dy dx dxdy y

5. Verify the theorem -^ =
JgL when u = y log (j +

6. Given ^ = sinjt
cos_&amp;gt;&amp;gt;, prove that

dy* dx
2

dx* dy* dxdy dxdy

7. Given u = x*z* +
&amp;lt;?/* + ^y^, derive

=
6ye*z*

GivCn * = ,//JL^ Prove that

:
2

da db

9. Given u = (x + j)
2

, prove that

dx dx dy dx

10. Given u = p prove that

_
dx? dy*

+ ^ 2
~
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PREFACE.

THIS work, as at present issued, is designed as a shorter

course in the Integral Calculus, to accompany the abridged

edition of the treatise on the Differential Calculus, by Pro

fessor J. Minot Rice and the writer. It is intended hereafter

to publish a volume commensurate with the full edition of the

work above mentioned, of which the present shall form a part,

but which shall contain a fuller treatment of many of the sub

jects here treated, including Definite Integrals, and the Me

chanical Applications of the Calculus, as well as Elliptic Inte

grals, Differential Equations, and the subjects of Probabilities

and Averages. The conception of Rates has been employed

as the foundation of the definitions, and of the whole subject

of the integration of known functions. The connection be

tween integration, as thus defined, and the process of summa

tion, is established in Section VII. Both of these views of an

integral namely, as a quantity generated at a given rate, and

as the limit of a sum have been freely used in expressing

geometrical and physical quantities in the integral fo/-nc\

in
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THE

INTEGRAL CALCULUS

CHAPTER I.

ELEMENTARY METHODS OF INTEGRATION.

I.

Integrals.

I. IN an important class of problems, the required quanti

ties are magnitudes generated in given intervals of time with

rates which are either given in terms of the time ^, or are

readily expressed in terms of the assumed rate of some other

independent variable.

For example, the velocity of a freely falling body is known

to be expressed by the equation

v=gt, ........ (0

in which t is the number of seconds which have elapsed since

the instant of rest, and g is a constant which has been deter

mined experimentally. If ^denotes the distance of the body
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at the time /, from a fixed origin taken on the line of motion,
v is the rate of s

;
that is,

ds

hence equation (i) is equivalent to

ds^gtdt, .

-....... (2)

which expresses the differential of s in terms of / and dt. Now
it is obvious that \gfi is a function,of t having a differential

equal to the value of ds in equation (2); and, moreover, since

two functions which have the same differential (and hence the

same rate) can differ only by a constant, the most general

expression for s is

C, ....... (3)

in which C denotes an undetermined constant.

2. A variable thus determined from its rate or differential

is called an integral, and is denoted by prefixing to the given

differential expression the symbol ,
which is called the integral

sign.* Thus, from equation (2) we have

=
\gtdt,

which therefore expresses that s is a variable whose differential

is gtdt ;
and we have shown that

- C.

The constant C is called the constant of integration; its

occurrence in equation (3) is explained by the fact that we

have not determined the origin from which s is to be measured.

* The origin of this symbol, which is a modification of the long s, will be

explained hereafter. See Art. 100.
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If we take this origin at the point occupied by the body when
at rest, we shall have s o when t o, and therefore from

equation (3) C=o\ whence the equation becomes s

The Differential of a Curvilinear Area.

3. The area included between a curve, whose equation is

given, the axis of x and two ordinates affords an instance of

the second case mentioned in the first paragraph of Art. I ;

namely, that in which the rate of the generated quantity, al

though not given in terms of /, can be readily expressed by means
of the assumed rate of some other

independent variable.

Let BPD in Fig. i be the curve

whose equation is supposed to be

given in the form

dx
R

FIG. i.

C
Supposing the variable ordinate

PR to move from the position AB
to the position CD, the required
area ABDC is the final value of the

variable area ABPR, denoted by
A, which is generated by the motion of the ordinate. The rate

at which the area A is generated can be expressed in terms of

the rate of the independent variable x. The required and the

assumed rates are denoted, respectively, by
dA , dx

and _
; and, to

express the former in terms of the latter, it is necessary to

express dA in terms of dx. Since x is an independent variable,

we may assume dx to be constant
;
the rate at which A is gen

erated is then a variable rate, because PR or y is of variable

length, while moving at a constant rate along the axis of x.

Now dA is the increment which A would receive in the time
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dt, were the rate of A to become constant (see Diff. Calc.,

Art. 17). If, now, at the instant when the ordinate passes the

position PR in the figure, its length should become constant,

the rate of the area would become constant, and the increment

which would then be received in the time dt, namely, the

rectangle PQSR, represents dA. Since the base RS of this

rectangle is dx, we have

(0

Hence, by the definition given in Art. 2, A is an integral, and

is denoted by

A =

Definite Integrals.

4-. Equation (2) expresses that A is a function of x, whose

differential \sf(x)dx ;
this function, like that considered in Art.

2, involves an undetermined constant. In fact, the expres

sion f(x)dx is manifestly insufficient to represent precisely

the area ABPR, because OA, the initial value of x, is not indi

cated. The indefinite character of this expression is removed

by writing this value as a subscript to the integral sign ; thus,

denoting the initial value by a, we write

A =
f f(x)dx, (3)

in which the subscript is that value of x for which the integral

has the value zero.

If we denote the final value of x (OC in the figure) by b, the

area ABDC, which is a particular value of A, is denoted by
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writing this value of x at the top of the integral sign,

thus,

ABDC= ?f(x)dx (4)
J a

This last expression is called a definite integral, and a and

b are called its limits. In contradistinction, the expression

f(x)dx is called an indefinite integral.

5. As an application of the general expressions given in the

last two articles, let the given curve be the parabola

Equation (2) becomes in this case

A =
[

x*dx.

Now, since \x* is a function whose differential is x*dx, this

equation gives

in which C is undetermined.

Now let us suppose the limiting ordinates of the required

area to be those corresponding to x = I and x 3. The vari

able area of which we require a special value is now represented

by f x*dx, which denotes that value of the indefinite integral

which vanishes when x = I. If we put x = I in the general

expression in equation (i), namely \x* + C, we have + C\.

hence if we subtract this quantity from the general expression,

we shall have an expression which becomes zero when x I.

We thus obtain
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Finally, putting, in this expression for the variable area, x = 3 t

we have for the required ana

6. It is evident that the definite integral obtained by this

process is simply the difference between the values of the indefinite

integral at the upper and lower limits. This difference may be

expressed by attaching the limits to the symbol ] affixed to the

value of the indefinite integral. Thus the process given in the

preceding article is written thus,

- i*
8

4- c= 9
- i = 8|.

The essential part of this process is the determination of

the indefinite integral or function whose differential is equal to

the given expression. This is called the integration of the

given differential expression.

Elementary Theorems.

7. A constant factor may be transferredfrom one side of the

integral sign to the other. In other words, if m is a constant

and u a function of x,

I

mudx m \ udx.

Since each member of this equation involves an arbitrary

constant, the equation only implies that the two members have

the same differential. The differential of an integral is by

definition the quantity under the integral sign. Now the

second member is the product of a constant by a variable

factor; hence its differential is md\ \udx ,
that is, m u dx, which

is also the differential of the first member.
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8. This theorem is useful not only in removing constant
factors from under the integral sign, but also in introducing
such factors when desired. Thus, given the integral

recollecting that

d(x + l

)
=

(
n + i)xdx,

we introduce the constant factor n + I under the integral sign ;

thus,

\x*dx
-

[( + i)x
n dx ;tr

;z + r + C.
J n + i J

v n + i

9. If a differential expression be separated into parts, its in

tegral is the sum of the integrals of the several parts. That is,

if #, v&amp;gt; w, - - are functions of x,

I (u + v + w + -

-)dx = \u dx +
I

v dx + \w dx +

For, since the differential of a sum is the sum of the differ

entials of the several parts, the differential of the second mem
ber is identical with that of the first member, and each member
involves an arbitrary constant

Thus, for example,

the last term being integrated by means of the formula deduced
in Art. 8.

Fundamental Integrals.

10. The integrals whose values are given below are called

the fundamental integrals. The constants of integration are

generally omitted for convenience.
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Formula (a) is given in two forms, the first of which is de
rived in Art. 8, while the second is simply the result of putting
n = m. It is to be noticed that this formula gives an indeter

minate result when n I ; but in this case, formula
(ti) may

be employed.*
The remaining formulas are derived directly from the for

mulas for differentiation; except that (/ ), ( ), (/ ),
and (m

f

)

are derived from (/), (k), (/), and (m) by substituting
- for x.

cix

x

cos& de = sin

sm6d6= - cos .+ . .........
(&amp;lt;)

Applying formula (a) to the definite integral xndx
t
we have

f*xndx
t
we ha

Ja

(b

A&quot;+
I ^n + I

n 7 t fl!x dx
,

a + I

which takes the form - when - i
; but, evaluating in the usual manner,

a result identical with that obtained by employing formula ().

f That sign is to be employed which makes the logarithm real. See Diff. Calc.,

Art. 43.
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[j^=
J cos^c/

sm

sin

=
[

J

= - cot .r

(COS

6 dO (

^-:-
sin&quot; c/ J

7/ , ^
tan 6 d6 = sec 6&amp;gt; -f-

= cosec

= - cos&quot;-

(g)

. . (k)

CO

. 1 S*t f 7 ;\= -- cot&quot;
1 --he. . . . (K)a a

C= -cosec- 1 ^+ C . .

I , x ~, /7 , N-cosec-- + C . (/

m}

d
r

x*)

* f*
. + .( ..

a ^^
^
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Examples I.

Find the values of the following integrals :

dx

I.
dx

&amp;gt;

3-
&quot;I:

/ 5.
J

r

&amp;gt;/ 6. (.v-
Ji

8.
f&quot;

(a + xfdx, a*x + -^^ + ax* + -
I
= V-

J-a 2 4J-

. r
2

^, log (-*) log*
J -I * -1 -!



1.]
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20. If the velocity of a pendulum is expressed by

nt
v = a cos

,

2T

the position corresponding to / = o being taken as origin, find an ex

pression for its position s at the time
/, and the extreme positive and

negative values of s.

2Ta . nts= -- sin ,

7T 2T

s = - - when / = T, 37-, 57-, etc.

i

21. Find the area included between the axis of x and a branch of

the curve

y = sin x. 2.

; 22. Show that the area between the axis of x, the parabola

and any ordinate is two thirds of the rectangle whose sides are the

ordinate and the corresponding abscissa.

23. Find (ex) the area included by the axes, the curve

and the ordinate corresponding to x = i, and (/3) the whole area be

tween the curve and axes on the left of the axis of y.

(*)-!, (ft) i.

I 24. Find the area between the parabola of the ;/th degree,

and the coordinates of the point (a, a). H ~T~ I



EXAMPLES.

25. Show that the area between the axis of .r, the rectangular

hyperbola

the ordinate corresponding to x =
i, and any other ordinate is

equivalent to the Napierian logarithm of the abscissa of the latter

ordinate.

For this reason Napierian logarithms are often called hyperbolic

logarithms.

J 26. Find the whole area between the axes, the curve

and the ordinate for x = a, m and n being positive.

If &amp;gt; m. J!^_

if n ^[m, co .

v 27. If the ordinate BR of any point B on the circle

*+/ = a

be produced so that BR - RP = a\ prove that the whole area between
the locus of P and its asymptotes is double the area of the circle.

v 28. Find the whole area between the axis of x and the curve

y (a* + x*) = a
3

.

7ta\

2.9. Find the area between the axis of x and one branch of the com
panion to the cycloid, the equations of which are

x =
ai/&amp;gt; y a (i cos^).

27tC?.
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II.

Direct Integration.

II. In any one of the formulas of Art. 10, we may of course

substitute for x and dx any function of x and its differential.

For instance, if in formula (b) we put x a in place of x, we
have

J -^-a
= loS (

x - a
)

or lo (a
~ x\

according as x is greater or less than a.

When a given integral is obviously the result of such a sub

stitution in one of the fundamental integrals, or can be made
to take this form by the introduction of a constant factor, it is

said to be directly integrable. Thus, su\mxdx\s directly in-

tegrable by formula (e) ; for, if in this formula we put mx fpr (9,

we have

i
sin m x mdx = cos m,r

,

hence

sin mx dx = sin m x m dx cos m x .

J m } m

So also in
\/(a + bx*) x dx ,

the quantity x dx becomes the differential of the binomial

(a + bx^) when we introduce the constant factor 2b, hence this

integral can be converted into the result obtained by putting

(a + bx*) in place of x in ./ xdx, which is a case of formula (a).

Thus

i

-
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12. A simple algebraic or trigonometric transformation

sometimes suffices to render an expression directly integrable,

or to separate it into directly integrable parts. Thus, since

sin x dx is the differential of cos x, we have by formula (b)

), f sin x dx ,

tan x dx = - = log cos x .

J COS .a:

So also, by formula (/),

-*;

by (e) and (a),

fsin
3 6d6 = f (i

- cos2
0) sin d8 = - cos 6 + cos3 8 ;

by (J) and (a),

Rational Fractions.

13. When the coefficient of dx in an integral is a fraction

whose terms are rational functions of x, the integral may gen

erally be separated into parts directly integrable. If the de

nominator is of the first degree, we proceed as in the following

example.

Given the integral f

** ~ x + 3 dx
;

J 2^+1
by division,

**-* + 3 = * 3
|

15 _L_
*2X + I 2 4 4 2X -f I
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hence

K-* + 3

J 2 X + I 2 J 4 J 4 J 2# + I

= :_3- il log(2 ,. + l) . 2^

When the denominator is of higher degree, it is evident that

we may, by division, make the integration depend upon that of

a fraction in which the degree of the numerator is lower than

that of the denominator by at least a unit. We shall consider

therefore fractions of this form only.

Denominators of the Second Degree.

14. If the denominator is of the second degree, it will (after

removing a constant, if necessary) either be the square of an

expression of the first degree, or else such a square increased

or diminished by a constant. As an example of the first case,

let us take

f
x -f I ,

-r ^ dX.
} \x - i)

2

The fraction may be decomposed thus :

hence

15. The integral
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affords an example of the second case, for the denominator

may be written in the form

X* + 2X + 6 = (x + i)
2

4- 5.

Decomposing the fraction as in the preceding article,

x + 3 _ x + i 2 _
(x + i)

2 + 5

~~

(x + i)
2 + 5 (F+l)

a + 5

whence

* + 3 ^^r-fr+O fa
+i a s- i*r*^ 71 / \ o ** I 7 \o

J^r
2 + 2X + 6 K|(4T + i)

2 + 5 }(* + O 2 + 5

The first of the integrals in the second member is directly

integrable by formula (b\ since the differential of the denom
inator is 2 (x + i)dx, and the second is a case of formula

Therefore

x -f 3 , ii A 6\
2 -\ x + l

+ 2x + 6 4/5 ^5

16. To illustrate the third case, let us take

f
2X + I ,

^2 ^

in which the denominator is equivalent to (x |)
2 -

6J-,. and
can therefore be resolved into real factors of the first degree.
We can then decompose the fraction into fractions having these,

factors for denominators. Thus, in the present example, as

sume

2x + i A B
+^_^-6 - ^-3 ^+2

in which ^4 and .# are numerical quantities to be determined.

Multiplying by (x 3) (^ -f 2),

2^r + i = A (x + 2) + B (x
-

3). ...... (2),
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Since equation (2) is an algebraic identity, we may in it assign

any value we choose to x. Putting x = 3, we find

7 = 5.4, whence A =
|,

putting x 2,

-
3
=

5^5, whence B =
-f.

Substituting these values in (i),

2*+ l 7

whence

f^-^Ti^ = * lo
(
r ~ 3) + I log (x + 2).

J * x o

17. If the denominator, in a case of the kind last considered,

is denoted by (x a) (x
-

b), a and b are evidently the roots of

the equation formed by putting this denominator equal to zero.

The cases considered in Art. 14 and Art. i$ are respectively

those in which the roots of this equation are equal, and those

in which the roots are imaginary. When the roots are real and

unequal, if the numerator does not contain x, the integral can

be reduced to the form

and by the method given in the preceding article we find

f __g_ -,;=-L-
J (x

-
a) (x -b} a - b

x a

* The formulas of this series are collected together at the end of Chapter II.

for convenience of reference. See Art. 101.
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in which, when x &amp;lt; #, log (a x] should be written in place of

log (x a). [See note on formula (b), Art. 10.]

If b a, this formula becomes

f
dx \.x-a ....

\x* a~^r g ~T~ ( )

Integrals of the special forms given in (A) and (^4 ) may be

evaluated by the direct application of these formulas. Thus,

given the integral

f dx

J 2x* + -$x 2

if we place the denominator equal to zero, we have the roots

a \, b 2; whence by formula (A),

f dx .

f
dx i i . x 4-

2^ + ^-2 = *u^=^wF+ 2
s

)

=
2 ^ los ^ri ;

J A f ^^t J \X gy \A- -[- Z,)
Z,

Z-jjr
X ~T Z,

or, since log (2^ i) differs from log (x |) only by a con

stant, we may write

j.

dx _ i 2x i

- 3^ 2
~

5
g x + 2

Denominators of Higher Degree.

18. When the denominator is of a degree higher than the

second, we may in like manner suppose it resolved into factors

corresponding to the roots of the equation formed by placing it

equal to zero. The fraction (of which we suppose the numerator

to be lower in degree than the denominator) may now be decom

posed into partial fractions. If the roots are all real and un

equal, we assume these partial fractions as in Art. 16; there

being one assumed fraction for each factor.

If, however, a pair of imaginary roots occurs, the factor cor-
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responding to the pair is of the form (x a)
2 + fi

2
,
and the

partial fraction must be assumed in the form

B
(x of + ft

2

for we are only entitled to assume that the numerator of each

partial fraction is lower in degree than its denominator (other

wise the given fraction which is the sum of the partial fractions

would not have this property).

19. For example, given

l^+ViJ-.r**
Assume

x + 3 = Ax + B C
&quot;

whence

x + 3 = (x
- \)(Ax + B) + (x* + i) C.

Putting x I,

4 =-2r, whence C2\
putting x o,

3
= B + C

y
whence B I.

To determine A, any convenient third value may be given

to x
;
for example, if we put x i, we have

2 = -2(-A + B) + 2C /: A = -2.

Substituting in (i),

x + 3 2 2^r + i
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i

therefore

x + 3 j _ dx f 2x dx
2 ~

= 2 log (x i) log (z
8 + i) tan&quot;

1
;tr.

20. If the denominator admits of factors which are func

tions of 3?, and the numerator is also a function of x*, we may
with advantage first decompose into fractions having these

factors for denominators. Thus, given

x*dx

Putting y for x* in the fraction, we first find

y = *

,

i

hence

dx f ^r
! + #2

therefore [see equation (^ ),
Art. 17],

(x^dx
I

,
JT a I , ^*

-i -. log H tan&quot;
l~

.

x* a* 4a
& x + a 2a a

This method may sometimes be employed when the nume
rator is not a function of x*

; thus, since

a*)

we have

+
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hence

f xdx
__i_

x* - a2

21. The fraction corresponding to a pair of equal roots, that

is, to a factor in the denominator of the form (x of, is (see

Art. 14) equivalent to a pair of fractions of the form

A B
x a (x of

we may, therefore, at once assume the partial fractions in this

form. We proceed in like manner when a higher power of a

linear factor occurs. For example, given

f
X + 2 ^

J(*-I)
3
(*+I)

;

we assume

x + 2

whence

Putting ^r = I, we have

The values of B and may be determined as follows : if we

substitute the value just determined for A, equation (i),
is

identically satisfied by x i, hence it may be divided by x- i.

We thus obtain

-|=[^ + C(x- i)] (*+ i) + D(x- i)
2

. . (2)
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in which we may again put x = i, whence B =
J. In like

manner from (2), we obtain

from which C =
, and Z&amp;gt;

=
J. Therefore

^ i f dx
.

i f dx i ( dx

x i

22. In this example, after obtaining the values of A and D
from equation (i) by putting x = i, and * = -

i, two equations
from which B and C might be obtained by elimination could
have been derived by giving to x any two other values. Con
venient equations for determining and C may also be obtained
by putting x = i in two equations successively derived by
differentiation from the identical equation (i). In the first dif
ferentiation we may reject all terms containing (x

-
i)

2
; since

these terms, and also those derived from them by the second
differentiation, will vanish when x = i. Thus, from equation
(i), Art. 21, we obtain

i = A + 2Bx + 2C (x* -i) + terms containing (x
-

i)
2

.

Putting x = i, and A = f ,
we have B = - f Differentiating

again and substituting the value of B,

= ~
J + ^Cx + terms containing (x i),

and, putting x = i in this last equation, C=\.

23. When the method of differentiation is applied to a case
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in which more than one multiple root occurs, it is best to pro
ceed with each root separately. Thus given,

f
X + l J

-, ^r-, ^ &amp;lt;*X*

J(*- i)
2

(,r+2)
2

x + i A B C D
4-

(;r
-

I)
2

(;r + 2)
2

(*
-

i)
2

,r - I (x + 2)
2 * + 2

whence

^+I = [^+^(^-l)](^ + 2)
2
+[C+Z?(^ + 2)](^-l)

2
. . (I)

Putting x i, and .r = 2, we derive

2 ., i

A = -
,

c = .

9 9

Differentiating (i), we have

i = 2A (x + 2) + B (x + 2)
2 + terms containing (x i),

whence, putting x = i, and ^4 -
,
we have B .

Again, differentiating (i), we have

i 2C (x i) + D (x i)
2 + terms containing (x + 2),

whence, putting x = 2, and C = --
,
we have D = -

.

Therefore

x + I

-
iy (* + aJT 9 (^

-
i) 9 C* + 2) 27 *- i

24. Instead of assuming the partial fractions with undeter-
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mined numerators, it is sometimes possible to proceed more

expeditiously as in the following examples :

Given
i ,

rr 5r* I

putting the numerator in the form i + x* x*, we have

f
l ^ !

l + & j \ ^ j
JATT?)^ H *(i + *)** HFOT?)^

(dx {
i

~~
/ o; dx*

} x* yx(i + ^
Treating the last integral in like manner,

dx dx xdx

Again, given

putting the numerator in the form (i + x)* 2x x*, we have

i , dx 2 + x ,

+x)*
a

dx f dx

Hence by equation (A), Art. 17,

f

dx
_

i _ . x i

j ^(i + ;r)
2
~

jr
^

i + x
~~

i +
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r%
Examples II.

,

8. (0 + ?) ^,

{
dx .(a

9 &quot;

Js&quot;h?^

,

10. cos
3 ^ sin x dx,

J o

2.

3-kr&&amp;gt;
&amp;gt;

g(a

Jo 3

7.

(tf + mx)*a*

f
cos Q &amp;lt;/Q _ I cosec

2
6

\ II. I ; 3 j &quot;^V - X *. rv_, 2

J 12.
f
sec

3

3 A- tan $x dx,
Jo
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- 13.3

14 .

f
(

/ 15. (
i + 3 ,

m log a

= o.

/
-

I 17.

2

cos
3

0^/0,
-

J o

J 1 8. sec
4

0^/0,

tan
3 x dx

y

tan H tan
3
0.

3

tan
2
.* + log cosx

77

v 20.
4
sec

4
jc tan j: rt^,

Jo

f ;^ x .

21. 4/- ^c,
J f CL -\- X

If

- sec
4 # =

4 Jo

IT

(2
cot

3

TT

I lo

2

23.
- S + a

/f24. j

sin (a
-

20) &amp;lt;#, ^_
COS (tf 20)--

&amp;lt;
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f cos*,fa
-Ilog(a-*n*).

}a bsmx* o

* dx
-Hog 2.

ff tan

33-

f

1

v 35-

2 8. --
log (- log ,r)

= -
log

rlog*

3 -

\ V(a

d
- xy ^ . ^&quot;i?

dx

f dx tJfct*^* ^^ -
v 34&amp;lt;

] t *y(v# 0- f^ 4
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36. . _

2\ 1
X

a) a sec
~ J

.

#

38 - Lrzr^ a 2

Oog 2 -i).

vX

) tan&quot;
1
.*.

f4^
2 - oc + 3

39- ^ + r

- ^, 4^ ~ i log (^

2 2J*T T

T tan -1

4, ^

\ At V / Jv i4 \~^~~j/r log
.1

\ ^

[(2X + i)
2
^tr

43-
\ 2X+ , ^2 - .r + 2 log (2* + 3).

45-

46. | ^ ^ _,, U^^^^ 1 ^
i _ :

.r ^z cos or~|
*

7t a
T^- - tan :

=
:m f d5 sm or 2^ sin &amp;lt;^

I O
sn
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fdx i x a sec a a tan a

x* 2axseca + i

2a tan a g x a sec a + a tan a

^2 , 2X 2 - 3 V2

I2 2^_ 2 + 3 V*

r
^2 ^

V 49.J7
r.

f

-j

V 55-

- i i ,
- * 2

o- - X&amp;gt;- 2X
&amp;lt;**&amp;gt; 6 log

(* + i)&quot;

xdx -

x + 3 3

1 J fir&amp;gt;

c ^ ____ - loe---- tan
53- + ^_ a 6

10g^+ 13
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-
Q

dx
59 .Ui + * +

log x -
log (i 4- x)

-
log (i + *2

) tan
- * x.242

i . x x- log-2-r^
k

J 62 . *̂
12 7

B x + 2 7

* *** ^&quot; 1

f 2A
a

-\C? 5 ^ I ^ &amp;lt;3J

64. *?-&amp;lt;&,
-^-tan- 1--- log-

J jc
4 4 2^ 4^

to x +

/ r dx i r. * + *
.
*

t ,*
66 -

J (^T?7T^T7) ^Tl? Llog7PT7) +
~a

tan

, f&quot;

^ n
7

J o (*&quot;
+ ) (* + *

2

) 2^(*
~V

i fiR r_f!^_ . ^^ &quot;*

4

J
68 -

J^M^ + ^V
~

v 69 U(i + r
2)^ tan-^+lbg-^

/ f dx n ^
*&quot;

fj^
\ N
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/ n f__^ . ?A~*
.U&amp;gt; + Ar3

)

/ 74. Find the whole area enclosed by both loops of the curve

/*(,*&amp;gt;. i.

^/ 75. Find the area enclosed between the asymptote corresponding
to x = a, and the curve

\/ 76. Find the whole area enclosed by the curve

&amp;gt;^
77. Find the area enclosed by the catenary

the axes and any ordinate.

78. Find the whole area between the witch

and its asymptote. See Ex. 23.
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III.

Trigonometric Integrals.

25. The transformation, tan2
(9 = sec2 6 i, suffices to

separate all integrals of the form

[tan*
040, ......... (i)

\

in which n is an integer, into directly integrable parts. Thus,

for example,

[tan

5 8dO =
[tan

8 6 (sec
2 6 - i) dB

4

Transforming the last integral in like manner, we have

f tan4 tan2 #
f

tan5 QdQ - - + tan 6dO\
J 4 2 J

hence (see Art. 12)

f, * tan4 6 tan2
,

tan5 Odd =--- -- log cos 6.

4 2

When the value of n in (i) is even, the value of the final inte

gral will be 6. When n is negative, the integral takes the form

which may be treated in a similar manner.
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26. Integrals of the form

\sec*6dO (2)

are readily evaluated when n is an even numberp

, thus

[sec
6 BdO =

[(tan
2 + i)

2 sec2 0d0

=
[tan

4
(9 sec2 6 dO + 2

[tan
2 sec2 0*0 +

[sec

2 6 dd

tan5
9 2 tan3 8= + - + tan 6.

If ?z in expression (2) is odd, the method to be explained in

Section VI is required.

Integrals of the form I cosec*0&amp;lt;/# are treated in like manner.

Cases in which sin d cos* 8 d8 is directly integrable.

27. If n is a positive odd number, an integral of the form

[sin**
6 cos&quot; 8d8 (3)

is directly integrable in terms of sin 8. Thus,

jsin

2 8 cos5 6dd=
jsin

2 8 (i
- sin2

&amp;lt;9)

2 cos OdO

_ sin3 8 2 sin5 8 sin7 8T ~r 7

This method is evidently applicable even when m is frac

tional or negative. Thus, putting y for sin 6,
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fi=

hence

-_._.
smi0 3^ 3 V(sin0)

When m in expression (3) is a positive odd number, the in

tegral is evaluated in a similar manner.

28. An integral of the form (3) is also directly integrable
when m + n is an even negative integer, in other words, when it

can be written in the form

pnl [
J cos+ 2? 6 J

in which q is positive.

For example,

(tan
2

6&amp;gt; + i)

hence

2-, *.~ &quot;

It may be more convenient to express the integral in terms
of cot 6 and cosec 0, thus

pgjry
= fcot

4 9 (cot
2 0+i) cosec2 Od6

cot7 6 cot5
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Integrals of the forms treated in Art. 25 and Art. 26 are in

cluded in the general form (3), Art. 27. Except in the cases

already considered, and in the special cases given below, the

method of reduction given in Section VI is required in the

evaluation of integrals of this form.

The Integrals [sin
2 6 dd, and

J

cos2 8 do.

29. These integrals are readily evaluated by means of the

transformations

sin2 6 = i(i
~ cos 2/9),

and cos2 8 = 4(1 + cos 20}.

Thus

[
sin

2 Odd = %{d8 - $
fcos

26 d8 = - i sin 20,

or, since sin 20 = 2 sin cos 0,

fsin

2
&amp;lt;#
= i(0

- sin 8 cos (9)..... (B)

In like manner

sin0cos0)..... (C)

Since sin2 8 + cos2 =
i, the sum of these integrals is

J

dB\ ac

cordingly we find the sum of their values to be 8.

In the applications of the Integral Calculus, these integrals

frequently occur with the limits o and \n ;
from (B) and (C)

we derive
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do r de , f de
The Integrals [- -, f-r--, and* Jsm #cos 6 Jsm 6 J cos0

30. We have

Odd

Again, using the transformation,

sin 02 sin ^6 cos %0,

we have

f de

hence

This integral may also be evaluated thus,

sin0d0

Since sin BdO = d(cos ^), the value of the last integral is, by
formula (A \ Art. 17,

i . i cos 6 I cos 6

and, multiplying both terms of the fraction by I cos 6, we

have

e , i cos 6
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31. Since cos 6 = sin (^n + 6), we derive from formula (E),

dB dO

By employing a process similar to that used in deriving for

mula ( ),
we have also

dO i + sin 6

Miscellaneous Trigonometric Integrals.

32. A trigonometric integral may sometimes be reduced,

by means of the formulas for trigonometric transformation, to

one of the forms integrated in the preceding articles. For

example, let us take the integral

f dB

}a sin 6 + b cos B&quot;

Putting a = k cos ex, b ksma,. . . . (i)

we have
f dB i f- dB

] a sin 6 + b cos B
~

k } sin (B + a)

Hence by formula (E)

[
. -

d
. a

- i
log tan - (8 + ) ;

J a sin e + b cos B k

or, since equations (i) give

_ ^

a
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33. The expression sin mQ sin n6 dd may be integrated by
means of the formula

f . _ .
,,,

sin (m n) 6 sin (m + n)
sin md sin nd dd = )

- ! . . (i)
2 (m - n} 2 (m + ri\

cos (m n) d cos (m + n) d = 2 sin md sin nd
;

whence

_ sin (m n)d sin (m + n) d

2 (m n) 2 (m + n)

In like manner, from

cos (m n}d-{- cos (m + n) d 2 cos md cos nd,

we derive

(
n Jn sin (m n} d sin (m + ri\ $ , .

COS 0*0 COS 72# 00 =
-,

-i- 1 7 ^ . . (2)
2 (m n) 2 (m + n)

When m n, the first term of the second member of each

of these equations takes an indeterminate form. Evaluating
this term, we have

f 2 a Jn & g in 2n9 f \

JrfrfM
=--___, ....... (3)

fcos&amp;gt;,flrfg
= g +

sin 2*g
. (4)

J 2^and

Using the limits o and n we have, from (i) and (2), tu/ien. m
and n #?r unequal integers,

smm6smn6d6 =
[

cos *0 cos ;/6&amp;gt;^ o
;

.. . (5)
Jo J o

but, when m and n are ^y#/ integers, we have from: ($) and (4)

[
sm-nddO =

[&quot;cos

2 0dT0 =- ...... ,. (6)
Jo Jo 2

34. To integrate V(i 4- cos 0) dd\ we use the formula
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whence V(i + cos 6)
- V2 cos J0,

in which the positive sign is to be taken, provided the value of

Q is between o and TT. Supposing this to be the case, we have

[

V (i + cos 0) aT0 = 1/2
jcos

ed6

= 24/2 sin 0.

For example, we have the definite integral

n

[

2

4/(i + cosO)dO = 2 4/2 sin - = 2.

fl

Integratum of r T\.6 J a + o cos

35. By means of the formulas

I = cos2
-U^ 4- sinU# and cos 8 = cos2 ;0 - sin

2

J0,

we have

(

Multiplying numerator and denominator by sec2
i#, this be

comes

and, putting for abbreviation

tan J0 = y,

we have, since \ sec2
J0^0 = ^X,

f ^_ 2 f

la + cos ]
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The form of this integral depends upon the relative values

of a and b. Assuming a to be positive, if b, which may be

either positive or negative, is numerically less than a, we may
put

a + b _ o~

The integral may then be written in the form

dy

the value of which is, by formula \k\

-. -tan- 1 ^.
c (a b) c

Hence, substituting their values for y and c, we have, in this

case,

(--IT- -*= &amp;lt;-* o,
tan -f4/^4 tan i#l . (G)

}a + b cos /(a
2

&) [_
V a + b

If, on the other hand, b is numerically greater than
,
this

expression for the integral involves imaginary quantities; but

putting

^ + a _ Jj

F^a~
the integral becomes

&amp;lt;*

^

the value of which is, by formula .(A
1

), Art. 17,

/
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Therefore, in this case,

dB _i_ V(b + a)+ V(b-a) tan \Q _.,
~ g -- *

36. If e &amp;lt; I, formula (G) of the preceding article gives

(0

(2)

+ e cos 0- V

Putting

and noticing that &amp;lt;

= o when 6 = o, we may write

Now, if in equation (i) we put ^ for and change the sign of

e, we obtain

r ^
J o

I ecos(&amp;gt;

hence, by equation (2),

^-K. (4)
[ e cos (p v (i

*

Equations (3) and (4) are equivalent to

and

dO d$
^ ^

(6)

I + e cos 1^(1
-

//^ dB
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the product of which gives

(i -f e cos#) (i e
cos(f&amp;gt;)

= i e* . . . . (7)

By means of these relations any expression of the form

f dB

J(i + e cos#)

where n is a positive integer, may be reduced to an integrable
form. For

f dd f dB i
t

J(i + e cos e)
n
~

} i + e costf (i + e cos 0)*-*

hence, by equations (5) and (7),

dd

I (i + fees ey
=
(T^TF^ jo

(
- e cos

By expanding (i
- e cos #)*- ,

the last expression is reduced
to a series of integrals involving powers of cos

&amp;lt;f&amp;gt; ; these may
be evaluated by the methods given in this section and Section

VI, and the results expressed in terms of 6 by means of equa
tion (2) or of equation (7).

Examples III.

4 , tan
3 mx tan mx

J 3/# m

.

J

4

tan
7

^^, ^_ Jlog 2 .

.

jsec

4

(0 + a) dB,

tan (e + a) + ^ (Q + ^
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/ F -
4. sin mx dx, Zm

Jo

f

5. sm cos 0d0,

6. /(sin 0) cos
5

*/0,

7T

\/7. cos
4

sin
3

dQ 9

Jo

3 5

2 11
sin? - sin 8 H sin 3 0.

2 . i 4.3. 2 . 11
- * - 8 3

2

35

sin
3

dB

9- f-
^

, Multiply by sin
2 + cos

2
0. tan cot 0.

J sm
2

cos
2

/
COS X

J Ir f
_^

i (tan
2 - cot

2

0) + 2 log tan 0.

Jsin
3

cos&quot;0

( I2 . f^^, |tanl.
J cos 8 6

Ism xdx _J!____-_.

I3
J cos&quot;* 5 cs* 3COS

3 *

5nT
.

5 3

15.
1 -
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7t

2m
/ -

\/ 1 6. sin
2 mx dx,

o

I7 |-
sin 6 9

log tan - + - sintf.

J cos0 L4 2j

- 2

x 18.
2

^-y i(log 3 -i).

IQ [_ . _logta
Jsin + cos0

7 V2

\ 20. { , tani^p.
J I + COS X

(dx-i- cos*
C0ti^

2

{
dx

v
22 -

J7$nsr5

Multiply both terms of the fraction by i T sin jc. tan jc sec #.

r ^o r* , o&quot;i i

2^. , log tan H log cos 6.

V
**

Jsec0 tan0 L4 2j

\ 24.
I

cos cos 30 d9. .Ste Art. 33. J sin 46 + \ sin 20.

r; i

25. COS COS
20&amp;lt;/0,

--
J J

7T *

26.
4
sin

a
sin 20

&amp;lt;/0, J sin
4

|

= i
J O o

7T

\/ 27.
|

sin 30 sin 20
&amp;lt;/0,

-
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y 28. sin mO cos
&amp;lt;/0,

J n

i cos (m + n) Q i cos (m n]

2 (m 4- n) 2 (m n)

I 29. cos x cos 2x cos 3* */*,

Reduce products to sums by means of equation (2), Art. 33.

Fsin 6* sin 4* sin 2*
^ l

~~
T&quot; ~T~ X .

4L 6 4 2 J

&amp;lt;?O. 1/ (i COS*)//*. 21/2.
Jo

(
I&quot; &amp;lt;& I

tp &quot;I

I 31- hi r- 7 , . , , -T tan -tan* .

NJ )a* cos- x + & sin* * ^ L J

\ f d7* i . tan *
J 32. =

,
-tan 1 - -.J

J i + cos x 1/21/2

f ^/* i + b tan

/ 33 L-cos^-ysin^ 7^ g a b tan

A 34-

sin x cos
2

35-
I + ^cos2 *

Putting y ybr cos *, the integral becomes 5-^.

cos * tan&quot;
1

(a cos *)
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I [

^
}a + b sin0

sin = cos (0 I-TT),
and use formulas (G) and (G ).

2 f~ /a b 20 7T~1
lia&amp;gt;b, TT-* TiT tan 1

A/ tan-
V (a F) l_V a + b 4 J

Tr i . V (b + a) + V (b a) tan (I- J n\
II a

&amp;lt;b.
-

; log 5

V (b
- d )

& V (b + a)
- V (b a) tan (J ?r)

f //O

\/ 39- , I tan&quot;
1

) 3 tan 4 0|.
J 5 4 cos O

X 4
j 2 cose i V3

1V5
i +

&quot;4/3
&quot;tan

|-

IT

I i
(*

J
-

tan

3
- cos0 4/2

fa &amp;lt;$

.
,J2~COSQ

TT

42
COSQ 24/3-

//o

(i + e cos

f //o

43- 7 ni ?
See Art. 36.

J(i + e cos 6&quot;

, e + cos &amp;lt;f sin
-; cos

~ ^

44-

(i ^\f ^ 4- &amp;lt;? cos i e&quot; i + e cos

(2 + /) 7T
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(p cos x + q sin x
45

j acosx + sini

Solution :

By adding and subtracting an undetermined constant, the fraction

may be written in the form

p cos x + q sin x + A (a cos x 4- b sin ^) _ ^
a cos # + sin x

we may now assume

/ cos x + q sin # + ^ (a cos # + sin x) = k (b cos x a sin*);

the expression is then readily integrated, and A and k so determined

as to make the equation last written an identity. The result is

f/cos^+j/sin x ^ = ^_|f x + ^f log (a cos x + * sin *).

.Ucos* + sin* &amp;lt;?+& a + b

46. f
-^- -, See Ex. 4$.
}a + b tan x

b
j log ( cos * + ^ sin *).

47. Find the area of the ellipse

- b sin

(o
sin

2

(f&amp;gt; d&amp;lt;l&amp;gt;

=

48. Find the area of the cycloid

^ = a &amp;gt;

- sin #)
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49. Find the area of the trochoid (b &amp;lt; a)

x = aty b sin
//? y = a b cos

*/,
.

50. Find the area of the loop, and also the area between the curve

and the asymptote, in the case of the strophoid whose polar equation is

r = a (sec tan 6).

Solution : 2

Using as an auxiliary variable, we have

,x = a(i sine) y-a
^tan QJ,

the upper sign corresponding to the infinite branch, and the lower to

the loop. Hence, for the half areas we obtain

(in-

ffr r 7l~\
sin Q &amp;lt;fy + a \ sin

2
G tfa = c? i + -

and 2

[ sin Q d + a*
\

sin
2
6 d% a?

\
i -- .

I* V L. 4J
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CHAPTER II.

METHODS OF INTEGRATION CONTINUED.

IV.

Integration by Change of Independent Variable.

37. IF x is the independent variable used in expressing an

integral, and y is any function of x, the integral may be ex

pressed in terms of y, by substituting for x and dx their values

in terms of y and dy. By properly assuming the function y,

the integral may frequently be made to take a directly integra-

ble form. For example, the integral

f x dx

(ax + U?

will obviously be simplified by assuming

y ax + b

for the new independent variable. This assumption gives

x y ~
,

whence */* = ;

substituting, we have

(y
-

b) dyf xdx _ {(y
- b

J (ax + Uf a* J /

= -
log y + --

;* * J %
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or replacing y by x in the result,

38. Again, if in the integral

(_*L
J --i

we put y =
x

,
whence

dy
x logj, and ax --

,

we have ^

dx _ dy

Hence, by formula (^4), Art. 17,

=106= log (-!)-

It is easily seen that, by this change of independent variable,

any integral in which the coefficient of dx is a rational func

tion of
x

, may be transformed into one in which the coefficient

of dy is a rational function of/-

Transformation of Trigonometric Forms.

39. When in a trigonometric integral the coefficient of dO is

a rational function of tan 0, the integral will take a rational

algebraic form if we put

tan 6 = x, whence dO =
^ + ^ -
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For example, by this transformation, we have

f dB _ f dx
Ji -t. tan S~ J(i + .**)( i + *)*

Decomposing the fraction in the latter integral, we have

f dO If akr I f .r^r I f &amp;lt;&r

J i + tan 2JI + 3? 2 J i + x* 2] i -f x

i- tan&quot;

1

.!-
-

log (i + .r
2

) + J- log(i + x)

tan

r
f i +tan ff

= H^ + log (cos ^ + sin
)].

40. The method given in the preceding article may be em

ployed when the coefficient of dB is a homogeneous rationalfunc
tion of sin B and cos 0, of a degree indicated by an even integer ;

for such a function is a rational function of tan B. It may also

be noticed that, when the coefficient of dd is any rational func
tion of sin B and cos B, the integral becomes rational and alge
braic if we put

z = tan
2

;

for this gives

I +

This transformation has in fact been already employed in

the integration of-,
-

. See Art. 3S.
a + b cos B



IV.] LIMITS OF THE TRANSFORMED INTEGRAL. 53

Limits of the Transformed Integral.

41. When a definite integral is transformed by a change of

independent variable, it is necessary to make a corresponding

change in the limits. If, for example, in the integral

dx

we put x = a tan 0, whence dx a sec2$ d8,

we must at the same time replace the limits a and oo
,
which

are values of x, by |-TT and|7T, the corresponding values of 6.

Thus

712
So3

The Reciprocal of x taken as the New Independent
Variable.

42. In the case of fractional integrals, it is sometimes use

ful to take the reciprocal of x as the new independent variable.

For example, let the given integral be

Putting x - whence dx = --
=?,

y y
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we have

METHODS OF INTEGRATION. [Art. 42.

dx f fdy fdydx f fdy
n?- &quot;J .L +

i

Transforming again by putting * = ;/+ I, the integral be

comes

I

I _X + I

Therefore, since ^ =7 + I = - + I = -

Power of x taken as the New Independent Variable.

43. The transformation of an integral by the assumption,

is not generally useful, since the substitution

i

whence dx = -
}
n

dy,x =

will usually introduce radicals. Exceptional cases, however,
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occur. For, since logarithmic differentiation of equation (i)

gives
dx _dy

it is evident that, if the expression to be integrated is the product

of -- and a function of xn
,
the transformed expression will be&

the product of and the like function ofy.
.dy

ny
For example, the expression

(x
4

\)dx

x(x*+i).

dx
which is the product of and a rational function of x*, becomes

a rational function of y. Hence, decomposing the fraction in

the latter expression, we have

[Q
4 -

i]dx I
f y- i

J --4
i

=

44. When this method is applied to an integral whose form
at the same time suggests the employment of the reciprocal,
as in Art. 42, we may at once assume y = x ~ n

. Thus, given
the integral
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dx dy
putting y = x 3

,
whence - -

,

we obtain

i
f ydydx i f y dy

I ^4
(2 + **)&quot;

&quot;

3Ji 27+ I

log (27 +
i)&quot;| = 2 -log 3

12 12

45. The same mode of transforming may be employed to

plify the coefficient of
,
when this

^v

rational function of xn
. Thus, the integral

simplify the coefficient of
,
when this coefficient is not a

will take the form of the fundamental integral (/ ),
if we put

dx 2 dy
*&quot;=/,

whence = = -y

Making the substitutions, we have

** 2 d ^ 1
&quot;= sec -

1

Examples IV.

2 + A-
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2*- I

6
dx

6 -

i r

|/^. [*f
&quot;&quot;

*&quot;*, ^ 2^ + I _ log (2* + i) _ 7

-^

J i

=

/ 5- f ITS? * ~ 0g * +

J.eo&quot;feT
I -lOg 2.

+ 2 log (e* i).

2 + tan e log (3 cos sin

- tan ~2

f
d i tan 0i

10. 5 log
J tan i 4

to
tan + i 2

(tan

2
d0 i tan01.0

tan e-i I
10

Jcos
0^/0 b log (^ cos b sin e)

J ^ cos sin0
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I* COS dQ , __ a
I3

Jcos (a + Q)

(0 + a) cos ot sin a log cos (0 + a).

f sin (0 + a)

(0 + ft) cos (a- ft) + sin (a
-

ft) log sin (0 + ft).(20 + 2(X + 7T

tan (0 + a) cos
&amp;lt;/0,

cos + sin a log tan - -

T 5 f

cos
_ cos a log (2 cos a) + a: sin ar.

Jo sin (-a + 0)

fj cos | . i , 1/2+2 sin0 ~|6 _ log (3 + 24/2)

fsinia^
,

?

sm0

f
-

log2 -
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f dx _L j_ I _ i
x + i

2 3- 3 1 , \ &amp;gt; n ~i ~&quot;~ ~ *g ~ ~~

27.

i ,r)~ i JT
&

i xlog
Jt:

*^
j

+ 2) 4

26. | 7 j-f: , lOg
- r-

( tf + PJC ) 4dJ tf T A&amp;gt;^

^ + tf*

f^~^7T&amp;gt; I log (^
3 -

i) -log A-

j * i-* i ;

28

dx 2

29. 77^ =r,
-

M sec~
x -

-^ I -v &amp;gt;i/ / -\-n s,n\ n \ ^

V.

Integrals Containing Radicals.

46, An integral containing a single radical, in which the

expression under the radical sign is of the first degree, is

rationalized, that is, transformed into aTTational integral, by

taking the radical as the value of the new independent vari

able. Thus, given the integral

f
*!_

J i + V(* + i)



6o
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fulfils the condition given in Art. 43, when n 3, the quantity

under the radical sign may be reduced to the first degree.

Hence, in accordance with Art. 46, we may take the radical as

the value of the new independent variable. Thus, putting

dx ^
3 dz

whence ;r # i, and
x -*(*- 1)

we have

f dx _ 4 f -s
2 dz

Decomposing the fraction in the latter integral as in Art. 20,

we have finally

= tan
3

f(* +
I)*]

+ I. log^i
1^1

Lv ; J 3
B ^+ii+i

Radicals of the Form V(ax* + 6).

49. It is evident that the method given in the preceding

article is applicable to all integrals of the general form,

(I)

in which m and n are positive or negative integers, These

integrals are therefore rationalized by putting

y =
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Putting m = O, the form (i) includes the directly integrable
case

50. As an illustration let us take the integral

dx
{

&amp;lt;

)xV(J

putting y V(x* + a2

),

whence xz = r2 ^2
, and = -; &amp;gt;x f a*

we have

Hence, by equation (A )
Art. 17,

f ^L _ 1 1
y~

} x~Vx* 4- rt
2

&quot;

2rt
g +

z a

+ a

Rationalizing the denominator of the fraction in this result,

we have

a2

} -a_ f

V(x* + a2
) + ^

~

Therefore

dx i
, i/(^

2 + a2
) a



dx I . a-V^-x*)=
a

l^~ V -
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In a similar manner we may prove that

h
51. Integrals of the form

are reducible to the form (i) Art. 49, by first putting y = -.

For example :

(dx(a** + bft

is of the form (2) ; but, putting x = -
,
whence

6)=
a +

and ** = -*,

we obtain

The resulting expression is in this case directly integrable.
Thus

f
_^_ _!_
J(^ + ^ * V (a + b)



64 METHODS OF INTEGRATION. [Art. 52.

Integration of

52. If we assume a new variable z connected with x by the

relation

z - x =
V(**&amp;lt;*)&amp;gt;,

...... (i)

we have, by squaring,

Jt
....... (2)

and, by differentiating this equation,

2 (z x) dz 2z dx = o ;

whence

dx _ dz

z x~ z

or by equation (i),

dx _dz ,,

V(** a*)

~
z

Integrating equation (3), we obtain

53. Since the value of x in terms of z, derived from equa

tion (2) of the preceding article, is rational, it is obvious that

this transformation may be employed to rationalize any ex-

dx
pression which consists of the product ^ ^jJFZ^h

anc* a

rational function of x. For example, let us find the value of
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which may be written in the form

By equation (2)

x

whence

Therefore, by equations (3) and (5),

f i f ( rt
2V

V(* r) dx = *
-

J A J 2

(4)

log z.

By equations (4) and (5), the first term of the last member
is equal to J x V(x*

2

).
Hence

(x* a*) dx = S a1

}-]
. . (L)

Transformation to Trigonometric Forms.

54. Integrals involving either of the radicals

or
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can be transformed into rational trigonometric integrals. The

transformation is effected in the first case by putting

x = a sin 6, whence y(a^ x*}
= a cos 6

;

in the second case, by putting

x a tan 6, whence V(a
2 + x*)

= a sec 6
;

and in the third case, by putting

x = a sec 6, whence V(x* a2

)
= a tan 6.

55. As an illustration, let us take the integral

putting x a sin 0, we have V(a*. x*) a cos 6, dx = a cos 6 d8\

hence

= rt
2

[

__
tfO a* sin 6 cos 6

:

2 2

by formula (C) Art. 29. Replacing 8 by .r in the result,

f // 2 jz\ ^ ^2
T-r ,

*V(a2
.1^ , M \V (&amp;lt;r jr) dx = sin

- J

|
. . . \M )

J 2 a 2

Regarding the radical as a positive quantity, the value

of may be restricted to the primary value of the symbol

sin
- x -

(see Diff. Calc., Art. 54) ;
that is, as x passes from - a

a

to + a, 8 passes from | ?t to + J TT.
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Radicals of the Form *J(ax* + bx +
c}.

56. When a radical of the form V(ax* + bx 4- c) occurs in an

integral, a simple change of independent variable will cause the

radical to assume one of the forms considered in the preceding
articles. Thus, if the coefficient of is positive,

in which, if we put x + ---=y, the radical takes the form

+ a2

)
or i/(^

2 #2

), according as ^ac b2
is positive or

negative. If a is negative, the radical can in like manner be

reduced to the form y(a
z

y*) or V( &amp;lt; y*) ; but the latter will

never occur, since it is imaginary for all values of y, and there*

fore imaginary for all values of x.

For example, by this transformation, the integral

r dx

J (ax* + bx + c)*

can be reduced at once to the form (y), Art. 51. Thus

r dx e dx

2a 2b
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57. When the form of the integral suggests a further

change of independent variable, we may at once assume the

expression for the new variable in the required form. For

example, given the integral

V(2ax x dx
;

we have V(2ax x*)
=

\/\_cP (x of]

hence (see Art. 54), if we put x a a sin 0, we have

V(2ax x*} a cos 6,

.-.

[
V(2ax

- x*}xdx = a*
[cos

2
6(1 + sin 6) dB

- (8 sin 8 cos 0) - cos8 8~

2 3

8
. x a a , N ., ox I ,= sin 1 -

-\ (x a) V(2ax x*) (2ax
2 a 2

V

3

a* x a \ ., - r 2= sin - ^ - +
z&quot; V(2ax x*) [2;r ax

2 a o

77z&amp;lt;? Integrals

( dx , ( dx
-^Tn

58 . An integral of the form
j .//-p ^ T~T ma7 b7 tne

method of Art. 56, be reduced to the form (K\ Art. 52, or to

the form (/ ),
Art. 10, according as ^ is positive or negative.
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But when the quantity under the radical sign can be resolved

into linear factors, the formulas deduced below give the value

of the integral in forms which are sometimes more convenient.

If a and ft are the roots of the equation

ax* + bx + c = o,

the integral may be put in the form

dxi f_dx_

J !/*- *-

according as a is positive or negative. Assuming

\/(x a) = z
t

whence x == + a and dx 2z dz,

we have

by formula (K], Art. 52 ;
hence

In like manner we have

__^/r_ _ f fljgr

7[(^-)(^-^)]-
2

J /(^ - a -
**)

&quot;

by formula (/ ) ; hence

x a
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It can be shown that the values given in formulas (N) and

(O) differ only by constants from the results derived by em

ploying the process given in Art. 56.

Examples V.

&amp;lt;/,.

2 .
(

tf(x + a)-x* dx, *(a + x)$-^(a + x)t + (a + x)}.
J 7 5 o

(&quot;TT

d^C 2 3

,
-** - ^ + 2 y* - 2 log (l + tfx).

\ocdx *(x-2a)V(x+a)
J V(x +&amp;lt;*) 3

5-
f yj^-i

2^ + 2 log (l
~ V^

UL 3v
7 3/l fl

*.- 9^
+ *)*** y J

= -a

d&
2_

_
t

/2Jr g_

2~=^ J

J y
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,10.
f (x+ iftxdx,
Jo

f xdx

)x-Vx*-a*

__
5 Ji 10 40

2(1 +^

Rationalize the denominator.

/ ,j. j,,^,)*,,, +,),

/.

2 (^ + g)
- 2 (^ +

3
-

4
g *

4 + i)
- i

is
f
v^iL*r

f

p +l)(^- l)
i

*

j ^

tan~

rv(^
2 - 2

) r r ^2 -^2
, n

18. 2 L dx =
77-= ?.dx ,

J * L }xV{x* &amp;lt;?)
J
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20.

f= \*+?~* dx. See formulas (L) and (K\\
L J \x + a

&amp;gt;

-1

-:r*/(*
2 +

a&quot;)

- -
a&quot; log [x +

&amp;lt;/X
+ a )] .

2d

dx

tf log

22&amp;gt; \I^L-L^LLdx, See Art. 51.

log [ V(x* + ) + *]
-

N/ 24&amp;lt; |^^^ ^ Formula (AT), jlog [^
2 + V(i + ^4
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25 .

J
V(ax* + b] dx, \a &amp;gt;o]

Put V(ax* + b)
= z -x Va.

& r \ ~i I

V (&amp;lt;?

27.

[

^dx
}(x*-a*}*

x

log tan

dx y(x* i) i

f 2
\&quot;

*&quot;&quot;&quot;

2
\X I) 2X 2
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34-

dx
37 ^2^

39

dx _L
35- -pr=^r&amp;gt;

4/2

tf(2(ix x*) dx
t

I
a

o

(o
w
cos

2

0(i + sinO) dfj = a

2.

1ao ,(-* )* *,

rs* 2~]
T
cos

2

(i + sinG) dft = a
-^- J
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f dx
42.

44.

by Art. 56, log [x + a + ^(2^ + ,r
2

)] + C;

. 58, log [ tfx + ^(2^ + .v)] + C&quot;.

4747

r*
J.,

sin&quot;

1

V(2ax jf
8

).

45-

/ % _i_ i

by Art. 58, 2 sin~ T y - -
h C .

6

f ^ AT
46. : rr , 2 Bin&quot;

X
i/ 7T.

A/I/J V* &quot;V I r /T IJOT l** * 1 c^
1
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50. Find the area included by the rectangular hyperbola

y
2 = 2ax + A-*,

and the double ordinate of the point for which x 2a.

a* [6V2 -log (3 + 2V2)].

51. Find the area included between the cissoid

x (x* + y
2

)
= 2ayi

and the coordinates of the point (a, a) ;
also the whole area between

the curve and its asymptote.

it 2 #2 and

52. Find the area of the loop of the strophoid

*(**+/) +a (^-f) = o;

also the area between the curve and its asymptote.

1 \ 1 2 ( i \

2a
(

i )
,

and 20* ( i
-j j

.

For the loop put y x 7-^ a\ &amp;gt;

s^nce x *s negative between the limits

V(a x
}

a and o.

53. Show that the area of the segment of an ellipse between the

x
minor axis and any double ordinate is ab sm &quot; ~ + ^
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VI.

Integration by Parts.

59. Let u and v be any two functions of x
;
then since

d (uv) u dv + v du,

uv \u dv + \v du,

whence \udv=uv \vdu ....... (i)

By means of this formula, the integration of an expression
of the form u dv, in which dv is the differential of a known
function v, may be made to depend upon the integration of

the expression v du. For example, if

u = cos~*x and dv = dx
y

we have

, dx

hence, by equation (i),

xdx

in which the new integral is directly integrable ;
therefore

COS 1
.^ ^ = ;tr COS~ T

;F t/(l ^5
).

The employment of this formula is called integration by parts.
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Geometrical Illustration.

60. The formula for integration by parts may be geomet

rically illustrated as follows. Assum

ing rectangular axes, let the curve be

constructed in which the abscissa and

ordinate of each point are correspond

ing values of v and u, and let this

curve cut one of the axes in B. From

any point P of this curve draw PR
and PS, perpendicular to the axes.

Now the area PBOR is a value of the

indefinite integral \u dv, and in like

manner the area PBS is a value of
\&amp;lt;vdu\

and we have

Area PBOR = Rectangle PSOR - Area/^5;

therefore

\u dv = uv \v du.

Applications.

61. In general there will be more than one possible method
of selecting the factors u and dv. The latter of course in

cludes the factor dx, but it will generally be advisable to in

clude in it any other factors which permit the direct integra

tion of dv. After selecting the factors, it will be found con

venient at once to write the product u&amp;gt;v, separating the factors

by a period ;
this will serve as a guide in forming the product
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v du, which is to be written under the integral sign. Thus, let

the given integral be

F

log x dx.

Taking x* dx as the value of dv, since we can integrate this

expression directly, we have

f 2 1 j l
3

l
f 3

dx
x&

log x ax = log x&amp;gt; x6 -- x
*

--
J

xz log x -- x* dx
3 3

=
^(3

log*- i).

62. The form of the new integral may be such that a

second application of the formula is required before a directly

integrable form is produced. For example, let the given

integral be

sP cos x dx.

In this case we take cos x dx dv\ so that having X*1 = u, the

new integral will contain a lower power of x : thus

Lt;
2 cos x dx ^-sin x 2 \xs\\\xdx.

Making a second application of the formula, we have

\x^^^xdx ^^sin^r 2\ x(-

= x* sin x + 2x cos x 2 sin x.
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63. The method of integration by parts is sometimes

employed with advantage, even when the new integral is no

simpler than the given one ; for, in the process of successive

applications of the formula, the original integral may be repro

duced, as in the following example :

|e&amp;gt;*si

aO m t

n }

n
a)^^ L sin (;*

ir J

in which the integral in the second member is identical with

the given integral ; hence, transposing and dividing,

[e&quot;
tx sin (nx + a) dx =

*

2 [m sin (nx + a)
- n cos (nx + )].

64. In some cases it is necessary to employ some other

mode of transformation, in connection with the method of

parts. For example, given the integral

taking dv = sec2 6 dQ, we have

[sec
3 BdO = sec #-tan -

f
sec tan2 dti . . . (i)
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If now we apply the method of parts to the new integral, by

putting

sec 6 tan 8 d6 dv,

the original integral will indeed be reproduced in the second

member ;
but it will disappear from the equation, the result

being an identity. If, however, in equation (i), we transform

the final integral by means of the equation tan2 8 = sec2
i,

we have

f

sec3 BdQ- sec tan -
[sec

3 8 dO +
[sec

OdO.

Transposing,

hence, by formula (F), Art. 31

Formulas of Reduction.

65. It frequently happens that the new integral introduced

by applying the method of parts differs from the given integral

only in the values of certain constants. If these -constants are

expressed algebraically, the formula expressing the first trans

formation is adapted to the successive transformations of the

new integrals introduced, and is called a formula of reduction.
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For example, applying the method of parts to the integral

we have

I

xn ea -r
dx,

(-r % f

xn za*dx = xn---- \**-*&*dx. . . . . (i)
a a J

in which the new integral is of the same form as the given

one, the exponent of x being decreased by unity. Equation

(i) is therefore a formula of reduction for this function. Sup
posing n to be a positive integer, we shall finally arrive at the(**a -r

dx, whose value is . Thus, by successive appli

cation of equation (i) we have

a*

Reduction of \sin
m 8dSand (cos

m
8dO.

66. To obtain a formula of reduction, it is sometimes neces

sary to make a further transformation of the equation obtained

by the method of parts. Thus, for the integral

J^
de&amp;gt;

the method of parts gives

[sin0&amp;lt;/0=
sin&quot;-

x

0(-cos0) + (m i)fshv-
2 d cos* 8 d6.
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Substituting in the latter integral I sin
2

for cos2
6,

[sin
w Odd = sin&quot;*

- 1 0cos0

+ (m
-

i) fsin&quot;

- 2 BdO - (m -
i)

[sin&quot;&amp;lt;

0^0;

transposing and dividing, we have

f
sin edO = - sin &quot;&quot; gcosg

+ -g
L[sin&quot;-grfg, (i)

J m m J

a formula of reduction in which the exponent of sin is dimin

ished two units. By successive application of this formula, we

have, for example :

COS B 5 f
si

6J

5 si64 64
5 3

f
si6}

sin5 # cos 5 sin
3 cos 6 5 .3 sin cos 5 -3 -I

6 6-4 6-4-2 6-4-2

67 By a process similar to that employed in deriving

equation (i), or simply by putting 6 J-TT 6 in that equa
tion, we find

I
n 1n cos&quot;*

1 sin m \ ( , ,

cos&quot;
1 6^0 =- .+ - cosw - 2

0^0, . . (2)
? w J

a formula of reduction, when ;;/ is positive.
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68. It should be noticed that, when m is negative, equation

(i) Art. 66 is not a formula of reduction, because the exponent

in the new integral is in that case numerically greater than the

exponent in the given integral. But, if we now regard the

integral in the second member as the given one, the equation

is readily converted into a formula of reduction. Thus, put

ting n for the negative exponent m 2, whence

m n + 2,

transposing and dividing, equation (i) becomes

[_dO_ _ cosfl -2
\_dO__

,,

Jsin0~ (n i)sm&quot;-&amp;lt;
On- i Jsin*-

2 6T

Again, putting 8 = -\
it - 9 in this equation, we obtain

f

)

n-2
cosw 6 (n- i)cos-^

+
n ijcosw &quot; 2

&amp;lt;9

Reduction of \siri*B cos
n
6 dd.

69. If we put dv sinw 6 cos B dB, we have

cos*&quot;
x^sinf*+1 ^

f si] m + i

+
* ~

--
f sinw+ 2 8 cos&quot;

2 BdO\. . . (i)m + i J

but, if in the same integral we put dv = cos&quot; 6 sin BdB, we

have

sin &quot; cosw 6 d6 =
3
-

i- + i

W I f . , /a +2 /3 JA (^
i sin

&quot; cos &quot; a &quot; ... v i

n + i J
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When m and n are both positive, equation (i) is not a

formula of reduction, since in the new integral the exponent
of sin 6 is increased, while that of cos 6 is diminished. We
therefore substitute in this integral

sin;+ 2 _.
s jn ,

(
x _ CQS2

0^

so that the last term of the equation becomes

n ~ l

[sin- 6 cos&quot;-
2 Od6- n ~ I

f
sin- cos&quot; 6 dO.

m + i J ;/z + i J

Hence, by this transformation, the original integral is repro

duced, and equation (i) becomes

i- n i -i r sin-+I tfcos&quot;-
1 6

i + sin- d cosw dB = -
m + i J J

/# + i

+ -2 L
[sin- Oco$-*8dO.m + i J

T^- -j- i_
i m + n ,

Dividm by I H =
,
we have

L 7

Jsin&amp;lt; + n

l

[sin-0cos&quot;-
2
fld#, . . . (3)+ w J

a formula of reduction by which the exponent of cos is

diminished two units.
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By a similar process, from equation (2), or simply by put

ting 6 = TT 6 in equation (3), and interchanging m and n,

we obtain

I

sin?&quot; cos&quot; 6d9=- m + n

m
l

[sm-
a

n
}

a cos* 6 J0, . . .

a formula by which the exponent of sin 6 is diminished two

units.

70. When n is positive and m negative, equation (i) of

the preceding article is itself a formula of reduction, for both

exponents are in that case numerically diminished. Putting

m in place of m, the equation becomes

rcos^ cos-0 *- i
fcos&quot;-

8^ (
-x

Jsin &quot;0 (*-i) sin*- 1 * -i Jsin
2

Similarly, when ; is positive and w negative, equation (2) gives

n-0 ,. sin ^ ^-
&quot;&quot;

71. When m and n are both negative, putting
- m and n

in place of m and n, equation (3) Art. 69 becomes

f _ dO J
J sin &quot;

cos&quot;

~
(m + n) sin*1

- 1
cos&quot;

+I
(9

m+n] sin*1
(9 cos&quot;+

2
(9

in which the exponent of cos &amp;lt;9 is numerically increased. We
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may therefore regard the integral in the second member as the

integral to be reduced. Thus, putting n in place of n + 2, we
derive

f d9 i

J sin 6 cos* 6 (n i
) sinm ~ l cos*

- x 9

4.
m + n ~ 2 f_ dS

ni Jsin^ cos*- 2 0*
&quot;

&quot;

Putting =
j-
n 8

,
and interchanging m and #, we have

d9 i

cosw 9 (m i)sin&quot;*~
I #cosw ~ x 9

m + n 2

A
(8)

72. The application of the formulas derived in the preced
ing articles to definite integrals will be given in the next sec
tion. When the value of the indefinite integral is required, it

should first be ascertained whether the given integral belongs
to one of the directly integrable cases mentioned in Arts. 27
and 28. If it does not, the formulas of reduction must be

used, and if m and n are integers, we shall finally arrive at a

directly integrable form.

As an illustration, let us take the integral

f
sin2 8 cos4 6 d9.

Employing formula (4) Art. 69, by which the exponent of sin 6

is diminished, we have

Jsin*
cos 8d9=- Sin *

6

cos^
+ I

(
cos* 9 M.
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The last integral can be reduced by means of formula (2) Art.

67, which, when m = 4, gives

therefore

f
sin 6 cos5 6 cos3 6 sin sin cos 6

sin2 0cos4^ = - -- - + - --
-iff-

h
le

ys. Again, let the given integral be

By equation (5), Art. 70, we have

fcos
6 Od6 _ coss

&amp;lt;9

__ 5^
fcos4

0_d0

3 sin
8

&quot;

2 sin2 d 2 J sin 6

We cannot apply the same formula to the new integral, since

the denominator m i vanishes ;
but putting n 4 and m I,

in equation (3) Art. 69, we have

fcos4
0&amp;lt;/0 _ cos3 (9 fcos8 0^/0

J sin 6 3 J sin

f *
_f si

Jsin J
+ KJ

= S2i? + log tan - 6 + cos 0.

3

Hence

J sin
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Extension of the Formula.

74. Lit

etc., etc.
;

then, if the functions ^y (JT), ^ /; (.r),
. . . . ^ (V), which may be

called the successive integrals of ^(V), are known, and also the

successive derivatives of /(V), we shall have

Continuing this process, and writing for shortness fy $,,... for

f(x\ &amp;lt;f&amp;gt;, (x) . . . we have

The application of this formula is equivalent to the use of a

formula of reduction. Thus the value of \x* eax given in Art. 65,

may be derived immediately from it.
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Taylor s Theorem.

75. If, in the formula of the preceding article, we put

f(x) =.F (x +h- .r),
and # (x)

= I,

;r and ^ being constants,

/ (
X

)
= -F&quot; (x + h- *), f&quot; (*)

= F &quot;

(x + h- x\ etc. ;

and ^ (x) = x, ^ (x)
= *-

2
, &amp;lt;frin (x] - ~~ ,

etc.

Hence
o

(x +k- x) dx = F (x + h - x)-x+ F&quot; (x + k - x)
~

Now

hence, applying the limits o and h, we have

F(x + h)= F(^ )+ ^ (* )
/ + ^&quot; (^o)

~
2

1-2

This formula is Taylor s Theorem, with the remainder expressed

in the form of a definite integral.
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X/ 1 1 .

f

x sec
2 x dx

y
x tan x + log cos x.

f r r ~]
i

f v. 12. jctan
2*^ * (sec

2 * i) dx L * tan * + log cos* -AT

;. f
#2

sin * ^c, 2* sin * + 2 cos * x* cos #.

14. I
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J o
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f
*

21. * sin x cos x dx, (sin 2x 2 cos 2x\

sin
3

mO cos ^5 36 3 sin #26 cos mQr . 4sm
J

22.
8

23. Derive a formula of reduction for \(\ogx)
n xm dx, and deduce

from it the value of (log^
1

)

3 ^2
dx.

(log #)
w xm dx (log jf)

^m ^
f (log Jf)^-

1 xm dx.
J m + i m + i j

J(log^)

s
x? dx = &quot; &quot;

24. ,r cos
2 x dx, ^ x sin x cos ^ J sin

&quot; x +

26. Derive a formula of reduction for \xn sin (:v + a) dx, and

duce from it the value of x* cos x.

\xn sin (x + a) d&p = xn sin AT + + -

+ \x
n ~ * sin jv + r H dx.

J L 2j

Lr
5

cos x dx = (x* 2cxr
3

-} i2ox) sin x + (5,.** 6o^2 + 120)



94 METHODS OF INTEGRATION. [Ex. VI.

f 2 4 sin
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3

cos i r n
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6 sin
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0d9,
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W TT

28.
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4
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4
6 sin

4

&amp;lt;/0, [

2
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4

6&amp;gt; dB =
.

J 2j 12

8
29. cos0 + (

=

30

^

8J o 32

.

3

cos
6

&amp;lt;/0,

o

7T

sin cos Q (8 cos
4 + 10 cos

2 + 15) + 150
&quot;[3

_ 94/3 4- I:&amp;gt;TT

48 ~J
~

&quot;^6~

fcos^e cos
3

Q _ 3 cos _ 3 log tan |Q

J sin
3

2 sin
a

2 2

fsin
2

6 sin 6 sin i
,

FTT ~|
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f dO i _ 3 cos 3
37&amp;gt;

J sine sin
1
20 4 sin

2
cos 9 8~sn7~i

+
8 g

2

38. Prove that when n is odd

f do sec&quot;-
1
6

,

sec-6
-T- - - - + - - + ........ + log tan 6

;

j sm cos* 11 i ^ 3

and when is even

f do sec*- r sec *- 3 6- --
f- = - - + - --h ........ + log tan -

.

J sm cos n i n 3 2

(do 15 rsec
3

0~]
39. -r-i

--
3- ,

--
r-s
--r + ~ ~ + SCC + log tan -

.

Jsm
3

Gcos
4 2smJ

6cos
3

2L 3 2j

)^
2^

l/(^- t
)&amp;gt;

^*** = sece.

ir V(^
2 -

i) + Jlog [^ + V(^
2 -

i)].

4,

43.

* +

a + i)
3
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f cos
3

sin
3

6
, |~ (, . v cos0 sinO ,~1

46. ^ va &amp;lt;/0
=

(i + sin cos 0) T-r r-7 T ^ .

J (sin + cose) L J (sme + cosO) J

sin cos

sin + cos

47. Derive a formula for the reduction of La: sec* A: dk
;
and refer

ring to Ex. ii, thence show that this is an integrable form when n is

an even integer. Give the result when n = 4.

f .rsec*- 2 ~Ttan x sec*- 2 A:

x sec* x dx = --
/
--

TT r

J n i ( i)( 2)

K 2 r
sec

_ 2 r dx ^n- i J

i JT sec
2
,r tan ^ sec

2 x 2
r

-,

or sec
4 x dx =--- ---

^
--h -

[^ tan x + log cos x\.
J O O

48. Derive a formula of reduction for tf cos* .# dk, and deduce

x cos
3 x dx.from it the value of

Jorcos^-^rsin.r
cos*.* n i f

^ cos* x dx =- -
-1
---

ii

--h -\x cos*-
n }

( xsinx, 2 v . cos^,
2

.

Lr cos x dx =- (cos
2 x + 2) H-- (cos

2 ^ + 6).
j 5 y

49- Find the area between the curve

y = sec
- z x

9
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the axis of x, and the ordinate corresponding to x = 2.

2 7T

log [2 + 1/3]
= 0.77744,

50. Find the area between the axis of x, the curve

y = tan~ x

x,

and the ordinate corresponding to x = i. 0.43882.

VII.

Definite Integrals.

76. Before proceeding to transformations of definite inte

grals involving the values of the limits, it is necessary to

resume the consideration of the relations between a definite

integral and its limits, as defined in the first section.

By definition, the symbol

Ixf(x)dxa

denotes the quantity generated at the rate

while x passes from the initial value a to the final value X.

The rate of x is arbitrary, and may be assumed constant
;
but

in that case its sign must be the same as that of the increment
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received by x
;
that is, the sign of dx is the same as that of

X- a.

These considerations often serve to determine the sign of

an integral. Thus

{&quot;
sin xdx

denotes a positive quantity, because dx is positive, and -

is positive for all values of x between o and it.

77. Now let F (x) denote a value of the indefinite integral,

so that

d{F(x)}=f(x)dx;

thus
/&quot;(.a:)

is the derivative of F(x). Then, supposing F (x) to

vary continuously as x passes from a to X
;
that is, to have no

infinite or imaginary values for values of x between a and X,
the integral is the actual increment received by F (x}, while x

passes from a to X. In this case, therefore

If, on the other hand, there is any value, or, between a and X,
such that

equation (i) does not hold true. For example,

and in the case of the definite integral

dx
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x passes through the value zero, for which F (x) is infinite
;
we

cannot therefore write

This result indeed is obviously false, since dk is here positive,

and ^ is never negative for real values of x. The value of the

integral is in fact infinite, since the increments received by

-
,
while x passes from I to o, and while x passes from o

Jv

to I, are both infinite and positive.

78, Since the derivative of a function becomes infinite when

the function becomes infinite, [Diff. Calc., Art. 104; Abridged

Ed., Art. 89], we can have F (a] oo only when f(a) oo
;

but it is to be noticed that F (x) does not necessarily become

infinite when/(V) becomes infinite. Thus, in

f(x)x-\^ which becomes infinite for x o, a value of x

between the limits
;
but since

\x-kdx = \x*

the indefinite integral F (x) does not become infinite. There

fore equation (i) holds true, and

79. We have, in the preceding articles, assumed that the

independent variable varies uniformly in passing from the

lower to the upper limit
;
but when a change of independent

variable is made, the new variable does not generally vary
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uniformly between its limits. It is, however, obvious, that, in

equation (i), Art. 77, x may vary in any manner whatever in

passing from a to X, provided that F(x) remains throughout

a continuous one-valued function ; x may even pass through

infinity, provided F (x) is finite and one-valued when x oo .

Multiple- Valued Integrals.

80. When the indefinite integral is a multiple-valued func

tion, a particular value of this function must of course be

employed, and it is necessary to take care that this value varies

continuously while x passes from the lower to the upper limit.

In the fundamental formula (/) it is sufficient (provided the

radical 1/(I x*) does not change sign), to limit the meaning of

the symbols sin- 1 ^ and cos- 1
.*- to the primary values of these

symbols (see Diff. Calc., Arts. 54 and 55), since these values

are so taken as to vary continuously while x passes through

all its possible values from I to + I.

81. In the case of formula (k] the primary value of tan- 1 x

is so defined that, as x passes from oo to + oo
,
the primary

value varies continuously from \n to + \-rt.
We may there

fore employ the primary value at both limits, unless x passes

through infinity, as in the following example. Given the inte

gral

rf dS __ [T
sec2 6^0

J
cos2 8 + 9 sin2 6

~~

J i + 9tan
2

if we put tan 6 = x, this becomes

[~

8

_* =iten-3*T = \ [tan-&amp;lt;(- f3) -tan- o].

Jo i + 9** 3 -Jo 3

But here it is to be noticed, that, as 6 passes from o to \n, x
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passes through infinity when 6 = \n. Hence, if the value of

tan- 1

3^- is taken as o at the lower limit, it is to be regarded as

increasing and passing through |TT, when ^=00, so that its

value at the upper limit is f TT, and not \n. Hence

5^

FJo cos2 B + 9 sin2 6 9
&quot;

82, When the symbol cot- 1 x is employed, the primary

value, defined in the same manner as in -the case of tan&quot;
1

-*-,

cannot be taken at both limits when x passes through zero.

Thus, using the second form of (/), Art. 10, we have

in which, if cot- 1
I is taken as J n, cot- x

( i) must be taken

as
f-
n. Thus

- 1 dx _i_ 7t

1 + 3* 2

Formulas of Reduction for Definite Integrals.

83. The limits of a definite integral are very often such as

to simplify materially the formula of reduction appropriate to

it. For example, to reduce

f
J

we have by the method of parts

\xn
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Now, supposing n positive, the quantity x
n e~ x vanishes when

x o, and also when x = oo [See Diff. Calc., Art. 107 ; Abridged

Ed., Art. 91]. Hence, applying the limits o and oo
,

(00

.&amp;gt;

x*z-*dx = n xn ~* e~
o Jo

By successive application of this formula we have, when n is

an integer,

2 I.

(00

xn e~-r dx = n (n i)
.....

o

84. From equation (i) Art. 66, supposing m &amp;gt; i, we have

a
*_

f

2

sin- OdB = ^Z_1
f

2

Sin
- 2

0&amp;lt;/0.

Jo m Jo

If m is an integer, we shall, by successive application of this

7T ^

formula, finally arrive at
f

2

d8 = - or
f

2

sin 6 &amp;lt;/0 = i, according
Jo 2 J

as w is even or odd. Hence

Uneven, .^. . . (P)

and if m is odd , f
sin &quot; d6 =

(*^l)(^-3hiii_2
... (P }
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85. From equations (3) and (4) Art. 69, we derive

TT &quot;a

f

2

sin cos&quot; 6d6 = ^^-l-
[

2

sin 6 cos*~ 2

Jo m + n Jo

7T ^

and f

2

sin cos&quot; 6 dO = m ~ * 2

sinw ~ 2
cos&quot;w + % J

By successive application of these formulas, we shall have for

the final integral one of the four forms

[

2
sin

0&amp;lt;/0,
F cos 0^/0, or

[

2

sin
Jo Jo o

COS 0^0.

The numerator of the final fraction
(

or
)
is in each

\m + n m + nj
case either 2 or I. In the first case, the value of the final inte

gral is J TT, and the final denominator is 2 : in the second and

third cases, the value of the final integral is i, and the final

denominator is 3 : in the fourth case, the value of the final

integral is J, and the final denominator is 4. Therefore (since

the factors in the denominator proceed by intervals of 2), it is

readily seen that we may write

sin&quot; B cos&quot; 9M = (&quot;-0(^-3) -(-0(_l3)ii:.
a&amp;gt;

. (Q)
(m + n)(m + n 2)

provided that each series of factors is carried to 2 or I, and a is

taken equal to unity, except when m and n are both even, in which

case a = $ n.
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Elementary Theorems Relating to Definite Integrals.

86. The following propositions are obvious consequences of

equation (ij, Art. 77.

[*/(*)&amp;lt;**=-
Ja

(0

(*)dx . . . (2)
&quot; c

Again, if we put x ~ ^ + ^ z, we have

(* + *-*) i =
f
/( + ^

Jrt

by (i), or since it is indifferent whether we write z or x for the

variable in a definite integral,

(3)

If ^ = c, we have the particular case
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87. As an application of formula (4), we have

77 77 77

f

2

cos- 8d8=
f

2

cos-(- -8]d8 = f

2

sin- 8 d8 . . . . (i)
J J \2 / J

77 77

fir rr
Hence the value of CQS&amp;gt;

m 0d& as well as that of sinm QdB
Jo Jo

is given by formulas (P) and (P
1

). The values of these integrals

are readily found when the limits are any multiples of $ 7t.

For, by equation (2) of the preceding article, we may sum the

values in the several quadrants. But, putting 8 = k I- 8
,
and

employing equation (i), we have

, ,, , 77 77 77

f(K+l)

(/t+l) f

77 77
* * * \ /

^ ^T

in which the sign to be used is determined by that of sinw 8

or cos ;;z 8 in the given quadrant.
In like manner the value of the integral in formula (Q) is

numerically the same in every quadrant, and its sign is the

same as that of sin ;&quot; 8 cos&quot; 8 in the given quadrant.

Change of Independent Variable in a Definite Integral.

88. It is often useful to make such a change of independ
ent variable as will leave unchanged, or simply interchange,
the values of the limits. As an illustration, let us take the

definite integral
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If we put x ,
whence log x log y, and dx = -

~y

u =
I .2 .

*
.- dy=-u\

whence we infer that

89. Again, let

r logu =
-p-

5

2

Putting x = ,
we have

ur_ f2log^-logj ^_ o1_, f_^

hence

Differentiation of an Integral.

90. The integral /(*) dx is by definition a function of x,
J a

whose derivative, with reference to x, is f(x\ Thus, putting

f/-
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This gives the derivative of an integral with reference to its

upper limit. By reversing the limits we have, in like manner,

dU

when the lower limit is regarded as variable.

91, Now writing the integral in the form

=
f udx, (i)
J a

[7 =

if u is a function of some other quantity, &amp;lt;x, independent of x

and a, U is also a function of ae, and therefore admits of a de

rivative with reference to a. From (i) we have

dU_ =

whence

d_ _
da dx doc

By the principle of differentiation with respect to independent
variables [See Diff. Calc., Art. 401 ; Abridged Ed., Art. 200].

= ^ dU
dx da da dx

Therefore

d_dU= du
t

dx da da

and by integration

dU dudU (du , ~
t

x

-T~ = -T- dx + C ...... (2Jda }da
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Now, in equation (i), U is a function of x and a which, when
x = a, is equal to zero, independently of the value of a. In

other words, it is a constant with reference to a, when x = #
;

therefore ;-= o when .* = #. If, then, we use a as a lower
dw

limit in equation (2), we shall have C = o. Therefore

&amp;lt;//

f
&amp;lt;/ ,

-T- = -T- dx (3)da J a da

Substituting for x any value b independent of a, we have

_
da

which expresses that an integral may be differentiated with

reference to a quantity of which the limits are independent, by

differentiating the expression under the integral sign.

92. By means of this theorem, we may derive from an inte

gral whose value is known, the values of certain other inte

grals. Thus, from the first fundamental integral,

1 + 1

we derive, by differentiating with reference to ?z,

(i)^ )

{

j.r
log

the result being the same as that which is obtained by the

method of parts.

93. The principal application of this method, however, is

to definite integrals, when the limits are such as materially to
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IC&amp;gt;9

simplify the value of the original integral. Thus, equation (i)

of the preceding article gives

xn dx
n+ I

whence, by successive differentiation,

Integration under the Integral Sign.

94. Let be a function of x and a, and let a and a be con-

stants
;
then the integral

is a function of x and #, which vanishes when a = a
,
inde

pendently of the value of x, and when x a, independently of

the value of a. From (i)

dU {
d dU=

\ udx, whence -=- -7- = ;

dto J, dx da

d dU dU f , rtherefore -j- 3 =
ft, whence -j-

= o + C-
dfo^ &amp;lt;/4T J
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dUNow
-j-

must vanish when a = &amp;lt;T

Q ,
since this supposition makes

/ independent of x\ therefore, if we use a
o
for a lower limit

in the last equation, we must have C = o
;
therefore

dU f
- =

^or,^r )ao

and since u vanishes when x = a,

U=\ \l uda\ dx. . (2)
Ja.Ua J

Comparing the values of ^7 in equations (i) and (2), we have

f [
udxdct=

\ \
,

Jaja JaJa
u dx dot = u da dx.

It is evident that we may also write

(b rb

(&amp;lt;*i

to to toil

u dx doL
\ udotdx, . . . . (3)

a.\a JaJa,

provided that the limits of each integration are independent
of the other variable.

95. By means of this formula, a new integral may be de

rived from the value of a given integral, provided we can inte

grate, with reference to the other variable, both the expres

sions under the integral sign and also the value of the inte

gral. Thus, from

+
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by multiplying by dn, and integrating between the limits /

and s, we derive

dn

whence

f
i xs xr

, s + I

_.^- = log
-

.

Jo tog*&quot;
r+ *

96. When the derivative of a proposed integral with refer

ence to a is a known integral, we can sometimes derive its

value by integrating the latter with reference to a. Thus, let

-d....... . . (I)
o X

In this case

* = r- e~*: =^ J OL

/J

hence, integrating, u =- log + C = log . . . . (2)

since in (i) u vanishes when a 0.

77^ Definite Integral Regarded as the Limiting Value

of a Sum.

97. Let A denote the greatest, and B the least value as

sumed by /(*), while x varies from * to b. Then it is evident

that

f(x)dx&amp;lt; Adx; ...... (0
J a, **

for, while x passes from a to b, the rate of the former integral
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is generally less, and never greater than the rate of the latter.

In like manner

tf(x)dx&amp;gt; [* Bdx (2)
J a J a

The values of the integrals in the second members of equations

(i) and (2) are A (b a) and B (b a) respectively. There

fore, if we assume

-a) (3)

we shall have A
&amp;gt;
M

&amp;gt; B.

The quantity M in equation (3) is called the mean value of the

function /(V) for the interval between a and b.

98. Let

b a = n &x
, (4)

then the n + I values of x,

a, a + A
x&amp;gt;

a + 2 A x, b,

define n equal intervals into which the whole interval b a is

separated. Let xlt x&amp;lt;i,
xn be n values of x, one com

prised in each of these intervals; also let 2af(xr) kx denote

the sum of the n terms formed by giving to r the n values

I 2 n in the typical termf(xr ) tx\ that is, let

..- + ^ A JT. . .
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We shall now show that when n is indefinitely increased the

limiting value of 2 b

af(xr) A* is JVW &amp;lt;*x.

99. If we separate the integral into parts corresponding to

the terms above mentioned ; thus,

fa + L.X f + 2 A.*

(*)dr= f(x)dx*\ /(*)*&
Jo. Jrt+AJf

and let Mlt M* ---- MH denote the mean values of f (x)

in the several intervals, we have, in accordance with equation

(3), Art. 97,

Now, since f(xr}
and Mr are both intermediate in value

between the greatest and the least values of f (x) in the inter

val to which they belong, their difference is less than the dif

ference between these values olf(x). Therefore, if we put

(7)

er is a quantity whose limit is zero when n, the number of

intervals, is indefinitely increased, and i\x in consequence

diminished indefinitely.

Comparing the terms in equations (5) and (6) we have, by

means of equation (7),

A* =[*/(*) dx + (el + e&amp;lt;&amp;gt;

---- + en) &x. ... (8)
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Denote by e the arithmetical mean of the n quantities

?n ;
that is, let

ne = e1 + r2 -f e3 en ; (9)

then, since e is an intermediate value between the greatest and
the least value of cr ,

it is also a quantity whose limit is zero

when n is indefinitely increased. By equations (9) and (4),

equation (8) becomes

a /(.v,) IX = f(.r) dx + e(b- a\

\b ,

whence it follows that f(x) dx is the limit of 2a f (xr) dx
J a

when n is indefinitely increased, since the limit of c is zero.

100. It was shown in the Differential Calculus, Art. 390

[Abridged Ed., Art. 193], that, in an expression for the ratio

of finite differences, we may pass to the limit which the ex

pression approaches, when the differences are diminished with

out limit, by substituting the symbol d for the symbol A.

The theorem proved in the preceding articles shows that, in

like manner, in the summation of an expression involving
finite differences, we may pass to the limit approached when
the differences are indefinitely diminished, by changing the

symbols 2 and A into and d.

The term integral, and the use of the long s, the initial of

the word sum, as the sign of integration, have their origin in

this connection between the processes of integration and sum
mation.
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Additional Formulas of Integration.

101. The formulas recapitulated below are useful in evalu

ating other integrals. (A) and (A
1

)
are demonstrated in

Art. 17; (B) and (C) in Art. 29; (D) and (E) in Art. 30;

(F) in Art. 31 ; (G) and
( )

in Art. 35 ; (//) and (/) in Art. 50 ;

(7) in Art. 51 ; (K) in Art. 52 ; (Z) in Art. 53 ; (J/) in Art. 55 ;

(N) and
(&amp;lt;9)

in Art. 58; (P) and
(/&amp;gt; )

in Art. 84; and (Q) in

Art. 85.

dx i , x a
g

Tx - a) (x
-

b)

~
a-b x - b

dx i
,

x a= log**a2 2a **x + a

= ^- sin &amp;lt;9 cos tf , ... o . . (B)

(C)

sin
log tan

i cos
. (E)

cos 2 cos
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f
d9

=
i , V(b + a)

4-
|/(J

-
a) tan j

}a +I&amp;gt;cos8 y(P-a
2

)

*
V(6 + a)

- V(b - a) tan
|-
9

= log* *a x

dx

xV(a*-x*} a

dx
&amp;gt; + b)

=
ysin-f

sin- OM= cos
m(m 2)

...... 22

.

&amp;lt;?)

dx = log [^ + ,/(# ^)] . . (I)

(?)
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f
sil

in which a = I, unless m and ?/ are both even, when a =

Examples VII.

i.

&quot;~

*L
., [a &amp;gt; b, and n an integer]

Jo 2 + COS0*

7T

5.
r sin

8

9^0,
Jo

f
ff

L. sin dQt

Jo

32

16

i5

16
5. | w cos 0,

^,

fl-
^

6. |sin
4

cos
6

Q
&amp;lt;/Q,

512
Jo
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7. sin
3

cos
4

Q do,
J

- _

8.
2

sin&quot; G cos&quot; 6
&amp;lt;/0,

Jo 2W J

12

35

f&amp;lt; ^2;? ^r 1-3-5 (2-i) 5
y&amp;gt;

Jo V(i-^) 2.4-6 - - 2n 2

2.4.6-

3-5-7-

63

JOO / 2 2\^ J

L
&quot;

^ Tba

x* dx 8

71

Jo (^&quot;+^

2

)

4

15. Prove that

r / \ f*^
&amp;gt;( )-- *^v =

Jo o

and derive a formula of reduction for this integral, supposing n
&amp;gt; o

and / &amp;gt; i.

1

272 I
j&quot;

a

xn - 1 ^_ x}m
- i fa _ A-

(^_^)m
- 2^ ^

o 72 J o
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1 6. Deduce from the result of Ex. 15 the value of the integral
when m is an integer.

,m + n - 1

45045

n(n+i)

fa 3.

17. (a+xY(a-x)* dx. See Ex. 16.
J ~ a

it

18. |sin
7

(cos 6)* ^. ^^ sin
2 x

Jo

2
8

5.7.II.I9
*

19. Show by a change of independent variable that

[lfAr=[(/^Y

and therefore _^LJ*!L_ = 1 f
^

^ _ _^.
^

20 log a~

&quot; 1 ^. dx

100

T
. X X OX jr*

tan 1

-3 j,
^

o a x ~\~ & J.6&

23. Derive a series of integrals by successive differentiation of the

definite integral I
e- a*

dx.

, 1-2- n
dx
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24. Derive from the result of Art. 63 the definite integrals

f e- m*smnxdx = r^ and f
&quot;

&quot;&quot;cos # dx = -^~ ,;

J
m + n Jo m + n

and thence deri e by differentiation the integrals

(*&amp;gt;̂ -^si

25. From the results of Ex. 24 derive

I

00

o

**e- *

f
00

j o

* &quot; ^

26. From the fundamental formula (k
1

)
derive

and thence derive a series of formulas by differentiation with refer

ence to of.

r d

J (^-+
n -

27. Derive a series of integrals by differentiating with reference to

,
the integral used in Ex. 26.

dx jr_ i;3 5 (
2n ~ 3) . .j__
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28. From the integral employed in examples 26 and 27, derive

the value of

Differentiate twice with reference to /?, and once ^mth reference to a.

x&amp;lt; dx TT

29. Derive an integral by differentiation, from the result of Ex. II., 67

p dx _ n(2a + b)

Jo (A* + b*) (.r

a + a

)

a
~~
w b (a + )

2

f &amp;lt;/.* TT

30. Derive an integral by integrating -^ 5
= .

I o Ct ~T~ *.A/ 2^?

(i) /^
]
dx 7t p

tan~ - tan~ T = log
-

.

o L x x
_\ x 2 g

31. Derive a definite integral by integrating

(oo

s
- m* sin nx dx -, 5

o W +

with reference to ?*.

1 , m* + t&amp;gt;*

T cos ox) ax = log ^
-

.

2
** m* + a

32. Derive a definite integral from the integral employed in Ex. 31

by integration with reference to m.
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33. Derive an integral by integrating with respect to m

f
m

- mx cos nx dx = y-j 2 .

Jo m + n

JI ^&quot;ir
- cos^^ =

7 log ^T^-

34. Derive an integral by integrating with respect to n the integral

used in the preceding example.

r-o f-mx m(a b}

(sin ax sin bx) dx = tan -^rqr^
Jo X

35. Show by means of the result of Ex. 32 that

I
sin nx ,

^
dx .

a X 2

36. Derive an integral by integration from the result of Ex. II., 67.

(q + b)

37 . Evaluate
(&quot;
log^-#&amp;lt;**

^ the method of Art 96

38. Evaluate flog f&quot;i

+ J
J o L_

7T tf
-
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CHAPTER III.

GEOMETRICAL APPLICATIONS.

VIII.

Plane Areas.

102. THE first step in making an application of the Inte

gral Calculus is to express the required magnitude in the form

of an integral. In the geometrical applications, the magni
tude is regarded as generated while some selected independ
ent variable undergoes a given change of value. The inde

pendent variable is usually a straight line or an angle, varying
between known limits

;
the required magnitude is either a

line regarded as generated by the motion of a point, an area

generated by the motion of a line, or a solid generated by the

motion of an area. A plane area may be generated by the

motion of a straight line, generally of variable length, the

method selected depending upon the mode in which the

boundaries of the area are defined.

An Area Generated by a Variable Line having a Fixed

Direction.

103. The differential of the area generated by the ordinate

of a curve, whose equation is given in rectangular coordinates,

has been derived in Art. 3. The same method may be em

ployed in the case of any area generated by a straight line

whose direction is invariable.
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Let AB be the generating line, and let R be its intersection

with a fixed line CD, to which it is always

perpendicular. Suppose R to move uni

formly along CD, and let RS be the space
described by R in the interval of time, dt.

Then the value of the differential of the

area, at the instant when the generating line

passes the position AB, is the area which
would be generated in the time dt, if the

rate of the area were constant. This rate

would evidently become constant if the generating line were
made constant in length ;

and therefore the differential is the

rectangle, represented in the figure, whose base and altitude

are AB and RS; that is, it is the prodiict of the generating line,

and the differential of its motion in a direction perpendicular to

its length.

104. In the algebraic expression of this principle, the inde

pendent variable is the distance of R from some fixed origin

upon CD, and the length of AB is to be expressed in terms

of this independent variable.

When the curve or curves defining the length of AB are

given in rectangular coordinates, CD is generally one of the

axes; thus, if the generating line is the ordinate of a curve,

the differential is y dx, as shown in Art. 3. It is often, how

ever, convenient to regard the area as generated by some

other line.

For example, given the curve known as the witch, whose

equation is

fx 2af + 4a*x = (i)

This curve passes through the origin, is symmetrical to the

axis of x, and has the line x 2a for an asymptote, since

x 2a makes y oo .

Let the area between the curve and its asymptote be re-
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quired. We may regard this area as generated by the line

PQ parallel to the axis of x
y y being taken

as the independent variable. Now

hence the required area is

A = [ (2a-x)dy. ... (2)
J -co

From the equation (i) of the curve, we

have

:

whence 2a x

and equation (2) becomes

dyA = J-

FIG. 4.

Oblique Coordinates.

105. When the coordinate axes are oblique, if a denotes

the angle between them, and the ordinate is the generating

line, the differential of its motion in a direction perpendicular
to its length is evidently sin a*dx

; therefore, the expression
for the area is

A = sin a \y dx.
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As an illustration let the area between a parabola and a chord

passing through the focus be required. It is shown in treatises

on conic sections, the expression for a focal chord is

AB = 4#cosec
2a

,
. . . (i)

x
where a is the inclination of the chord

to the axis of the curve, and a is the

distance from the focus to the vertex.

It is also shown that the equation of

the curve referred to the diameter

which bisects the chord, and the tan

gent at its extremity which is parallel to the chord is

f* = 4*2 cosec
2 a-x (2}

The required area may be generated by the double ordi-

nate in this equation; and since from (i) the final value of

y is 2a cosec2
&amp;lt;*, equation (2) gives for the final value of x

OR a cosec2 a.

Hence we have

(a

cosec o,

ydx,
o

or by equation (2)

j-acosec&quot;.
8tf

2 COSCC3

A = 4 ya yx ax -

J o 3

Employment of an Auxiliary Variable.

106. We have hitherto assumed that, in the expression
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x is taken as the independent variable, so that dx may be

assumed constant
;
and it is usual to take the limits in such a

manner that dx is positive. The resulting value of A will

then have the sign of j/, and will change sign if y changes

sign.

It is frequently desirable, however, as in the illustration

given below, to express both y and dx in terms of some other

variable. When this is done, it is to be noticed that it is not

necessary that dx should retain the same sign throughout the

entire integral. The limits may often be so taken that the ex-

tremityof the generating ordinate must pass completely around

a closed curve, and in that case it is easily seen that the com

plete integral, which represents the algebraic sum of the areas

generated positively and negatively, will be the whole area of

the closed curve.

107. As an illustration, let the whole area of the closed

curve

represented in Fig. 6, be required. If in this equation we put

we shall have

whence x a sin8
// , and y b cos8

i/&amp;gt;

. . . (i

Therefore \y dx = ^ab cos4
?/&amp;gt;

sin2
ip dip.
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Now if in this integral we use the limits o and 2?r, the point

determined by equation (i) de

scribes the whole curve in the

direction ABCDA. Hence we
have for the whole area

(2V
cos4

ip sin2 ty cfyt

o

and by formula (Q)

The areas in this case are all generated with the positive

sign, since when y is negative dx is also negative. Had the

generating point moved about the curve in the opposite direc

tion, the result would have been negative.

Area generated by a Rotating Line or Radius Vector.

108. The radius vector of a curve given in polar coordinates is

a variable line rotating about a fixed extremity. The angular
7/1

rate is denoted by -r and may be re

garded as constant, although the rate at

which area is generated by the radius

vector OP, Fig. 7, is not constant, be

cause the length of OP is not constant.

The differential of this area is the

area which would be generated in the

time dtj if the rate of the area were con- FlG - 7-

stant ; that is to say, if the radius vector were of constant
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length. It is therefore the circular sector OPR of which the

radius is r and the angle at the centre is dO.

Since arc PR = r dO,

sector

therefore the expression for the generated area is

109. As an illustration, let us

find the area of the right-hand loop
of the lemniscata

i* = a2 cos 28. FIG. 8.

The limits to be employed are those values of which

7T 7C

make r = o; that is and .

4 4
Hence the area of the loop is

A = - cos

110. When the radii vectores, r^ and r corresponding to the

same value of 6 in two curves, have the same sign, the area

generated by their difference is the difference of the polar areas

generated by r^ and rz . Hence the expression for this area is

- r^ dO. (2)
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I. Let us apply this formula to find the whole area

between the cissoid

a T-J
= 2a (sec 6 cos 0),

Fig. 9, and its asymptote BP^y
whose

polar equation is

r&amp;lt;i

= 2a sec 0.

One half of the required area is generated

by the line P\P& while 6 varies from o to

- TT. Hence by the formula

A = 2-cos2
6&amp;gt;)

dB =

FIG. 9.
Therefore the whole area required is

Transformation of the Polar Formulas.

112. In the case of curves given in rectangular coordinates,

it is sometimes convenient to regard an area as generated by a

radius vector, and to use the transformations deduced below

in place of the polar formulas.

Put y = mx
;

now taking the origin as pole and the initial line as the axis

of ,r, we have

x = r cos 6, y r sin 6
;
... (2)

therefore

and

m =
-^
= tan 0,

dm = sec2 8 dB. (3)
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From equations (2) and (3),

x* dm = r* dO ;

therefore equation (i) of Art. 108 gives

dm. ...... (4)

In like manner, equation (2) Art. no becomes

&amp;lt;7

113. As an illustration, let us take the folium

(5)

...... (0

Putting y mx, we have

x? (i + ms

)
- wmx* = o ...... (2)

This equation gives three roots or values of x, of which two

are always equal zero, and the third is

i +

whence y
~

\ + n

These are therefore the coordinates of the point Pin Fig. 10.

Since the values of x and y vanish when m = o, and when

= oo
,
the curve has a loop in the first quadrant. To findm
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the area of this loop we therefore have, by equation (4) of the

preceding article,

A =:

2

114. The area included between this curve and its asymp-

p
tote may be found by means of equation

(5), Art. 112. The equation of a straight
line is of the form

y = mx + b,

and since this line is parallel to y = mx,
the value of m for the asymptote must be

that which makes x and y in equations (4) and (5) infinite ;

that is, m I
;
hence the equation of the asymptote is

FIG I0

y + x = (6)

in which b is to be determined. Since when m = i, the

point P of the curve approaches indefinitely near to the asymp
tote, equation (6) must be satisfied by P when m= i.

From (4) and (5) we derive

_~ + m

whence, putting m = I, and substituting in equation (6)

the equation of the asymptote AB, Fig. 10, is

(7)
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Now, as m varies from oo to o, the difference between the

radii vectores of the asymptote and curve will generate the

areas OBC and ODA, hence the sum of these areas is repre

sented by

2 -

in which x% is taken from the equation of the asymptote (7),

and Xi from that of the curve.

Putting^ = mx, in (7), we have

*2= -

and the value of x is given in equation (4). Hence

+ m3
I + WJ.CO

2 -f m m2
~} a2 2

)

2 i + m3 21

Adding the triangle OCD, whose area is \a
2

,
we have for the

whole area required f#
2

.

* This reduction is given to show that the integral is not infinite for the

value m = I, which is between the limits. See Art. 77.
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Examples VIII.

1. Find the area included between the curve

ay = xz
-f ax\

and the axis of x.

2. Find the whole area of the curve

3. Find the area of a loop of the curve

,

V^/

4. Find the area between the axes and the curve

,(*&quot;+) =*&amp;gt;(,-*).

5. Find the area between the curve

*y + y - *v =
o,

and one of its asymptotes. 20*.

6. Find the area between the parabolay = 40.* and the straight

8a
a

line j^
= x. .

9

7. Find the area of the ellipse whose equation is
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\/ 8. Find the area of the loop of the curve

in which c &amp;gt; o and b
&amp;gt; a.

8
( d]\

15 Vc

Ny 9. Find the area of the loop of the curve

10. Finothe area included between the axes and the curve

-
20

ii. If n is an integer, prove that the area included between the
axes and the curve

s ^ =_ -.-
2(2 -!)...(+ j)^

12. If n is an odd integer, prove that the area included between
the axes and the curve

is A =
(2 2) 2 2
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13. In the case of the curtate cycloid

x a^ b sin $, y a b cos ^,

find the area between the axis of x and the arc below this axis.

14. If b \an, show that the area of the loop of the curtate

cycloid is

\J 15. Find the area of the segment of the hyperbola

y
x _ a sec ^ y = b tan y,

cut off by the double ordinate whose length is zb.

t$7t\/2 log tan
--

1 6. Find the whole area of the curve

r&quot; a* cos
2

4- !? sin
2

6.

17. Find the area of a loop of the curve

r
2 = 2

cos
2 - 2

sin
2

0.
j-

+ -^ tan
1

-.

1 8. Find the areas of the large and of each of the small loops of

the curve

r = a cos fj cos 20 ;
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and show that the sum of the loops may be expressed by a single

integral. 22 22
Tld d . TCCl a
-T- + -

,
and - - -

.

10 4 32 o
f. 1~ f V

r/V !*-:&amp;gt;
-

5

19. In the case of the spiral of Archimedes,

find the area generated by the radius vector of the first whorl and

that generated by the difference between the radii vectores of the nth

and (n + i)th whorl.

-
,

and %ndn t
-

6

20. Find the area of a loop of the curve

= a sin 36.

21. Find the area of the cardioid

22. Find the area of the loop of the curve

cos 26 a* (4 TT)

\

cos B 2

23. In the case of the hyperbolic spiral,

a

show that the area generated by the radius vector is proportional to

the difference between its initial and its final value.



GEOMETRICAL APPLICATIONS. [Ex. VIIL

24. Find the area of a loop of the curve

r a cos n B.

25. Find the area of a loop of the curve

COS

26. Find the area of a loop of the curve

r
2
sin a&quot; cos 20.

Afr/fo? /to r is real andfinite from = /b 6 = ? an^ tfrat [
_^_

4 4 J sin 5

negative in this interval. a* \ 4/2 log (i + 4/2)

t/ 27. Find the area of a loop of the curve

& +/) =
&amp;gt;.

Transform to polar coordinates.

28. In the case of the limacon

r = 2a cos 6 + ,

find the whole area of the curve when b &amp;gt; za and show that the same

expression gives the sum of the loops when b
&amp;lt; 2(7.
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29. Find separately the areas of the large and small loops of the

limayon when b &amp;lt;
20.

b\
If a cos- 1

( }
,

large loop = (2^ + F) a + ^ ^(4**
- 2

) ;

small loop = (20* + ^
2

) (TT tf)

30. Find the area of a loop of the curve

r* a* cos n fj 4- b&quot; sin 0.

31. Find the area of the loop of the curve

2 COS 2 6 I

r = a
COS

32. Show that the sectorial area between the axis of x, the equi

lateral hyperbola

and the radius vector making the angle & at the centre is represented

by the formula

_ i i + tan
^

4 i tan
*

and hence show that

_ 2A 2A ~ 2A

-
. and y .

If A denotes the corresponding area in the case of the circle

x* +f = i,

we have

.v = cos 2A, and y = sin 2^4.
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In accordance with the analogy thuspresented, the values of x and y given

above are called the hyperbolic cosine and the hyperbolic sine of 2A. Thus

:= cosh (
2A),

* 2 ~ g = sinh (
2A).

33. Find the area of the loop of the curve

= o.

34. Find the area of the oop.of the curve

38. Trace the curve

and find the area of one loop.

sin ,

35. Find the area between the curve

zn + i 2

and its asymptote.
~ a

36. Find the area of the loop of the curve

/ + ax* - axy = o.

37. Find the area of a loop of the curve
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IX.

Volumes of Geometric Solids.

115. A geometric solid whose volume is required is fre

quently defined in such a way that the area of the plane sec

tion parallel to a fixed plane may be expressed in terms of

the perpendicular distance of the section from the fixed plane.

When this is the case, the solid is to be regarded as generated

by the motion of the plane section, and its differential, when

thus considered, is readily expressed.

116. For example, let us consider the solid whose surface is

formed by the revolution of the curve APB, Fig. II, about

the axis OX. The plane section per

pendicular to the axis OX is a circle;

and if APD be referred to rectangu
lar coordinates, the distance of the

section from a parallel plane passing

through the origin is ,f, while the

radius of the circle is y. Supposing
the centre of the section to move

uniformly along the axis, the rate at

which the volume is generated is not

uniform, but its differential is the vol

ume which would be generated While the centre is describing

the distance dx, if the rate were made constant. This differen

tial volume is therefore the cylinder whose altitude is dx, and

the radius of whose base isj. Hence, if V denote the volume,

dV ny* dx.

117. As an illustration, let it be required to find the volume

of the paraboloid, whose height is h, and the radius of whose

base is b.
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The revolving curve is in this case a parabola, whose equa
tion is of the form

and since y = b when x = k,

ft
b* 40/1, whence 4^ = -

;

the equation of the parabola is therefore

Hence the volume required is

f
n\

}

ntfh= rt xdx
/I

118. It can obviously be shown, by the method used in

Art. 1 1 6, that whatever be the shape of the section parallel to

a fixed plane, the differential of the volume is the product of the

area of the generating section and the differential of its motion

perpendicular to its plane.
If the volume is completely enclosed by a surface whose

equation is given in the rectangular coordinates x, 7, z, and if

we denote the areas of the sections perpendicular to the axes

by A x ,
Ay ,

and A~, we may employ either of the formulas

V = IA,, dx, V= \Ay dy, V =
\A S dz.

The equation of the section perpendicular to the axis of x
is determined by regarding x as constant in the equation of

the surface, and its area A x is of course a function of x.
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For example, the equation of the surface of an ellipsoid is

The section perpendicular to the axis of x is the ellipse

whose semi-axes are- y(a* 3?) and -
V(a

2 Xs
).

Since the area of an ellipse is the product of n and its semi

axes,

The limits for x are a, the values between which x must lie

to make the ellipse possible. Hence

119- The area A.r can frequently be determined by the con

ditions of the problem without finding the equation of the

surface. For example, let it be required to find the volume of

the solid generated by so moving an ellipse with constant

major axis, that its center shall describe the major axis of a

fixed ellipse, to whose plane it is perpendicular, while the ex

tremities of its minor axis describe the fixed ellipse. Let the

equation of the fixed ellipse be
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and let c be the major semi-axis of the moving ellipse. The
minor semi-axis of this ellipse is y. Since the area of an

ellipse is equal to n multiplied by the product of its semi-axes,

we have

Therefore V= -
\/(a*a J -a

hence, see formula (M),
T&abc

The Solid of Revolution regarded as Generated by a

Cylindrical Surface.

120. A solid of revolution may be generated in another

B manner, which is sometimes more

convenient than the employment
of a circular section, as in Art. 116.

For example, let the cissoid POR,
Fig. 12, whose equation is

/ (2a
-

x) = .r*,

revolve about its asymptote AB.
The line PR, parallel to AB and

terminated by the curve, describes

FIG. 12. a cylindrical surface. If we con

ceive the radius of this cylinder to

pass from the value OA = 2a to zero, the cylindrical surface

will evidently generate the solid of revolution. Now every
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point of this cylindrical surface moves with a rate equal to

that of the radius; therefore the differential of the solid is

the product of the cylindrical surface, and the differential of

the radius. The radius and altitude in this case are

PC=2a

Putting

V=

and PR = 2j,

I
za .

(2ax X*YX dx.
o

x a a sn
,

rr

[

2

^
6 + cos2 6 sin 6) dd = 2n*aP.

Double Integration.

121. When rectangular coordinates are used, the expression

for the area generated by a line parallel

to the axis of y and terminated by two

curves is

Let AB, in Fig. 13, be the initial,
A

and CD the final position of the gen-
FlG - T 3-

crating line, then the area is ABDC, which is enclosed by the

curves

and by the straight lines

x a,
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If in equation (i) we substitute for y% j/x the equivalent ex

pression *dy, we have
hi

ft&amp;gt; fJa

A=\ dydx, (2)
J a Jj,

which expresses the area in the form of a double integral. In

this double integral the limits j\ and yz forj/, are functions of

x, while a and b, the limits for x, are constants.

122. If the area is that of a closed curve y and
jj&amp;gt;2 are two

values of y corresponding to the same value of x in the equa
tion of the curve, and a and b are the values of x for which y^

and y% become equal, as represented by the dotted lines in Fig.

13. It is evident that the entire area may also be expressed in

the form

A
\

*

dxdy; (3)

and that when either of the forms (2) or (3) is applied to the

area of a closed curve the limits are completely determined by
the equation of the curve.

123. The limits in either of the expressions (i) or (2) define

a certain closed boundary, and since either of these integrals

represents the included area, it is evident that we may write

\\dydx =\\dxdy,

provided it is understood that the limits in the two expressions

are such as to represent the same boundary. It should however

be noticed that if the boundary is like that represented by the

full lines in Fig. 13, or if the arcs y = y\ and y = jj/2
do not

belong to the same curve, we cannot make a practical application

of the form (3) without breaking up the integral into several

parts.
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(24, Let ^ (x,y) be any function of x and y. In the double

integral

r, (i)

;tr is considered as a constant or independent of j/ in the first

integration, but the limits of this integration are functions of x.

The double integration is then said to extend over the area

which is represented by the expression

(b

p 2 tb

dyd.v, or (y^-
a J v, J a

125. Now let the surface, of which

(2)

(3)

is the equation in rectangular coordinates, be constructed
;
and

let a cylindrical surface be formed by moving a line perpen
dicular to the plane of xy about the boundary of the area (2)

over which the integration extends. Let us suppose the value

of z to be positive for all values of x and y which represent

points within this boundary. Then the cylindrical surface,

together with the plane of xy and the surface (3), encloses a

solid, of which the base is the area

(2) in the plane xy, or ASBR in Fig.

14, and the upper surface is CQDP a

portion of the surface (3).

Let SRPQ be a section of this

solid perpendicular to the axis of x.

In this section x has a constant value,

and the ordinates of R and 5 are the

corresponding values of y and y%.

The area of this section, which denote
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by A x ,
as in Art. 1 1 7, may be regarded as generated by the line

z, hence

(* *dy\y\

and therefore

b

which is identical with expression (i) Art. 124.

126. Now it is evident that the same volume may be ex

pressed by

V= \\zdxdy,

provided that the double integration extends over the same area.

Hence, with this understanding, we may write

f
U (*,y) dy dx = \\&amp;lt;b (x,y) dxdy.

In this formula x and y may be regarded as taking the

places of any two variables, the limits of integration being

determined by a given relation between the variables. Thus

we may write

(f&amp;gt; (u, v) dv du ^ (u, v) du dv,

provided the limits of integration are determined in each case

by the same relation between u and v.

127. For example, if this relation is

u2 + i? - c* = O,
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the range of values in the first integration is between

v =

that is, we must have

or (i)

But this condition also expresses the limits for u, since v is

only possible when u2
&amp;lt; c*. Now, putting rectangular coordi

nates, x and y, in place of u and v, it is convenient to express

the restriction (i), by saying that the range of values of x and
,

y is such as to represent every point within the circle

^ + / - c
2 = o.

Volumes by Double and Triple Integration.

128, As an application of formula (i), Art. 125, let us sup

pose the curve ASBR to be the circle

(x-tif + (v-K? = c\ ...... (i)

and the equation of the surface CQDP to be

xy = pz...... . . . (2)

Then
I (

b P2
= -\ z
P J a ifi
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in which the limits y\ and y% are derived from equation (i).

Hence

f,
= k + V [r*

-
(x
- hn y, = k-V\f -

(x
-

Kf\,

Ok t b

and V= ~
V\t*

-
(x
-

lif\ x dx.
P Ja

The limits for x are the extreme values of x which
makej&amp;gt;

possible ;
that is,

a = h c and b = h + c

To evaluate the integral, put

x h = c sin
;

then V =
5^- f

2

cos2
6&amp;gt; (A + c sin 0) &amp;lt;#.

Since, by Art. 87,

7T

f

2

cos2 sin dB = c,
J _-

2

we have finally

nkhr

P

129. A volume in general may be represented by the triple

integral
f f f

r dy dx, (
I
)
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which is equivalent to

tofor I

(2% 2^ dy Ax,
the area of a section perpendicular

the axis of x. We may regard this formula as expressing the
difference between two cylindrical solids of the form represented
in Fig. 14.

130. When the volume is that of a closed surface, ^ and *,
are two values of 2 in terms of x and y found from the equa
tion of the surface. The area over which the integration
extends is in this case the projection of the solid upon the plane
of xy ;

in other words, the base of a circumscribing cylinder.
Thus, if the volume is that of the sphere

2l and 2Z are the two values of 2 derived from this equation

that is c y(d*-x* -).

Hence 2 \ (a*
- x* - /),

and y 2 i i \ (a* r* &amp;lt;i/t\ //i//yv
t ^

( 2 )

The integration here extends over the circle

x* + / - a* = a. . . . . . .. . (3)
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since .So z^ is real only when

From equation (3) we find the limits for y to be

hence, by formula (M), equation (2) becomes

Finally the limits for x are a, since y is real only when x is

between these limits
;

therefore V= TT \a*x - - x* I* = - 3

3 J-- 3

Elements of Area and Volume.

131. In accordance with Art. 100, the expression for an area,

rr&amp;gt;&......... (0
J a

J,&quot;!

is the limit of the sum

Since each of the terms included in ^ A/ is multiplied by

the common factor A*, this sum may be written in the form
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The sum (2) consists of terms of the form

and this product is called the element of the sum ; in like man

ner, the product

dy dx,

which takes the place of Aj/ A;r when we pass to the limit by

substituting integration for summation, is called the element of
the integral (i), or of the area represented by it.

132. We may now regard the process of double integration

as a process of double summation, as indicated by expression

(2), followed by the act of passing to the limiting value. In

the first summation indicated, the elemental rectangles corre

sponding to the same value of x are combined into the term

(j/2 y\) A.r, which may be called a linear element of area, since

its length is independent of the symbol A.

133. It is easy to see that, in a similar manner, when rec

tangular coordinates are used, a volume may be regarded as

the limiting value of the sum of terms of the form

A x A7 A z
;

and hence dx dy dz,

which takes its place when we pass to the limiting value by

substituting integration for summation, is called the element of
volume.

If the summation is effected in the order
z&amp;gt; y, x, the first

operation combines the elements which have common values

of y and x into the linear element of volume
,
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The second operation combines the linear elements correspond

ing to a common value of x, over a certain range of values of y,

into a term whose limiting value takes the form

A

This last expression represents a lamina perpendicular to the

axis of x, whose area is A x a section of the solid, and whose

thickness is A.r.

Polar Elements.

134. If in the formula for a polar area,

-rfd8] ...... (i)

[equation (2), Art. no], we substitute for I(r|- r?) the equiv-

)r

a

r dr, we obtain
r\

A=[* \\drd8, ...... (2)
Ja }r

t

in which a and ft are fixed limits for 6.

Now it follows, from Art. 126, that the limits being deter

mined by a certain relation between r and 8, this integral may

also be put in the form

,
... (3)
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in which a and b are the limiting values of r, between which 6

is possible.

The expression r dr d6,

in equation (2), is called the polar element of area.*

135. The formula

=
JV

(02
-

may also be derived geometrically ;
for r (6% 0j) is the length

of an arc whose radius is r. As r increases, this arc generates
the surface, and it is plain that every point has a motion,
whose differential is dr, in a direction perpendicular to the arc.

136. In determining the volume of a solid, it is sometimes
convenient to express z as a function of the polar coordinates

of its projection in the plane of xy. In this case we employ
the linear element of volume,

(z% z^ r dr dd,

corresponding to the polar element of area.

*
It is easily shown that the area included between the circles whose radii are

rand r + Ar, and the radii whose inclinations to the initial line are 6 and + Afl

is

(r + i A r} A r A 0.

Since r + %Ar is intermediate between r and r + A r, the limiting value of the

sum, of which this is the element, is, by Art. 99, the integral of the element

rdr do.

In the summation corresponding to equation (i), the elements are first combined

into the sectorial element

while in the summation corresponding to equation (3), they are first combined into

the arc-shaped element

(r + 4Ar)( 2 -0,) Ar.
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As an illustration, let us determine the volume cut from a

sphere by a right cylinder, having a radius of the sphere for

one of its diameters. Taking the centre of the sphere as

the origin, the diameter of the cylinder as initial line, and the

axis of z parallel to the axis of the cylinder, we have for

every point on the surface of the sphere

t* + r* = &amp;lt;? (i)

where a is the radius of the sphere. Hence

2
\\rf JL 3

The circular base passes through the pole, and its equation is

r = a cos 0, (2)

hence the limits for r are o and a cos 0, and by substitution we

obtain

The limits for 6 are -
,
the values which make r vanish

in equation (2) ;
but it is to be noticed that the expression

(a?
_

7-2)1, for which we have substituted #3 sin
3

0, is always posi

tive, whereas sin3
is negative in the fourth quadrant. Hence

the value of V is double the value of the integral in the first

quadrant ;
that is,

V
3
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If a second cylinder whose diameter is the opposite radius of

the sphere be constructed, the whole volume removed from the

q y^
Q

sphere is^- -
,
and the portion of the sphere which

3 9

remains is
,
a quantity commensurable with the cube of

the diameter.

Polar Coordinates in Space.

137. A point in space may be determined by the polar

coordinates p, (j&amp;gt;,

and 0, of which p de

notes the radius vector OP, Fig. 15,

&amp;lt;f)

the inclination FOR of p to a fixed

plane passing through the pole, and 9

the angle ROA, which the projection

of p upon this plane makes with a

fixed line in the plane. The angles (f&amp;gt;

and 9 thus correspond to the latitude

and longitude of the point P considered

as situated upon the surface of a sphere

whose radius is p. The radius of the

circle of latitude BP is

PC p cos $.

FIG. 15.

The motions of P, when p, (f&amp;gt;,

and 6 independently vary, are

in the directions of the radius vector OP and of the tangents at

P to the arcs PR and PB.

are respectively

The differentials of these motions

and p cos
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and since these motions are mutually rectangular, the element
of volume is their product,

p
2 cos

&amp;lt;j&amp;gt; dp d(j) d6,

and V=\\ \($co$(f&amp;gt;dpd(l)d6 (i)

I38 B Performing the integration with respect to p, the for

mula becomes

(2)

When the radius vector lies entirely within the solid, the lower
limit p1 must be taken equal zero, and we may write

(3)

The element of this double integral has the form of a pyramid
with vertex at the pole.

If, on the other hand, in formula (i) we perform first the

integration with respect to
&amp;lt;#,
we have

V =
| [(sin

(f&amp;gt;2
- sin ^) p

1

dpdO..... (4)

Taking the lower limit ^ = o, so that the solid is bounded by
the plane ORA, we have the simpler formula

dp d6....... (5)

139. The formulas of the preceding article take simpler



ix.] POLAR COORDINATES IN SPACE. 159

forms when applied to solids of revolution. Let OZ, Fig. 15,

be the axis of revolution, then p and
&amp;lt;f&amp;gt;

are polar coordinates of

the revolving curve, OR being the initial line. Now 6 is in

this case independent of p and
(f&amp;gt;,

and its limits are o and 2n.

The integration with reference to 6 may therefore be performed
at once. Thus from (3) we obtain

27T

T (6)

and in each of the formulas the factor 2it may take the place
of the integration with reference to 6.

140. As an example of the use of equation (6), let us find

the volume generated by a circle revolving about one of its

tangents. The initial line, being perpendicular to the axis of

revolution, is a diameter
;
hence if a is the radius of the circle

its equation is

p = 2a cos ^,

and the limits for
(f&amp;gt;

are and . Substituting in (6)2 2

141. The following example of the use of

equation (4), Art. 138, is added to illustrate

the necessity of drawing a figure in. each

case to determine the limits to be employed.
Let it be required to find the volume

generated by the revolution of the cardioid

about its axis, the equation of the curve

being

p a(i + sin 0), . .

FIG. 16.
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when the initial line is perpendicular to the axis of the curve,

as in Fig. 16. The figure shows that the upper limit for
&amp;lt;/&amp;gt;

is TT, while the lower limit is the value of
&amp;lt;# given by equa

tion (i) ;
therefore

sin $3 !&amp;gt;

and sin
&amp;lt;ft

I.

The limits for p are evidently o and 2a. Substituting in equa
tion (4) Art, 138,

2 7T
I

^ - =
L 3 4 Jo

Examples IX.

i. Find the volume of the spheroid produced by the revolution of

the ellipse,

a* b1
~

about the axis of x.

2. Find the volume of a right cone whose altitude is a, and the

radius of whose base is b.

3. Find the volume of the solid produced by the revolution about

the axis of x of the area between this axis, the cissoid

y* (20, x) x\

and the ordinate of the point (a, a). 8a*7t (log 2 f ).



IX.] EXAMPLES. l6l

4. Find the volume generated by the revolution of the witch,

y*x 2ay
2 +

&amp;lt;\d

2x = o,

ut its asymptote.

See Art. 104. 4?rV.

5. The equilateral hyperbola

revolves about the axis of .v : show that the volume cut off by a plane

cutting the axis of x perpendicularly at a distance a from the vertex

is equal to a sphere whose radius is a.

6. An anchor ring is formed by the revolution of a circle whose

radius is b about a straight line in its plane at a distance a from its

centre: find its volume.
&amp;lt;L&amp;gt;0-

27i*atf.

7. Express the volume of a segment of a sphere in terms of the

altitude h and the radii a\ and a^ of the bases.

TT/l 9 .

(/;

2 + $a{ + 3^2

2

).
o

8. Find the volume generated by the revolution of the cycloid,

x = a
(&amp;lt;p

- sin ip), y
- a (i

- cos
?/&amp;lt;),

about its base. 5 7r
2

a 3
.

9. The area included between the cycloid and tangents at the

cusp and at the vertex revolves about the latter
;
find the volume gen

erated.
?rV.

TO. Find the volume generated by the revolution of the part of the

curve

y = &quot;,

which is on the left of the origin, about the axis of x.
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11. The axes of two equal right circular cylinders, whose common
radius is a, intersect at the angle a find the volume common to the

cylinders.

The section Parallel to the axes is a rhombus. 1 6a*

3 sin &amp;lt;x

12. Find the volume generated by the revolution of one branch of

the sinusoid,

, . x
y = b sin

,a

about the axis of x. it*b
^

13. Find the volume enclosed by the surface generated by the revo

lution of an arc of a parabola about a chord, whose length is 2c, per

pendicular to the axis, and at a distance b from the vertex.

15

14. Find the volume generated by the revolution of the tractrix,

whose differential equation is

- 4.

dx~
-

about the axis of x.

Express ny* dx in terms of y.

15. Find the volume cut from a right circular cylinder whose radius

is a, by a plane passing through the centre of the base, and making

the angle a with the plane of the base.

2&amp;lt;z

3
tan a

3
1 6. Find the volume generated by the curve

xy = 4a (20,
-

x)

revolving about its asymptote. 47rV.
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17. Express the volume of a frustum of a cone in terms of its

height h, and the radii #1 and # 2 of its bases.

nh
i 2 ^ n

. _Kt^ +
&amp;lt;rf)

.

1 8. Find the volume generated by the revolution of the cardioid,

r = a (i cos 6),

about the initial line.

Express y and dx in terms of B. &7ra
3

3

19. Find the volume of a barrel whose height is 2h, and diameter

2b, the longitudinal section through the centre being a segment of an

ellipse whose foci are in the ends of the barrel.

3 (F + h)

20. Find the volume generated by the superior and by the inferior

branch of the conchoid each revolving about the directrix
;
the

equation, when the axis of y is the directrix, being

21. On two opposite lateral faces of a rectangular parallelepiped

whose base is ab, oblique lines are drawn, cutting off the distances

c\, c^ &amp;lt;r3 ,
&amp;lt;r4 on the lateral edges. A straight line intersecting each of

these lines moves across the parallelopiped, remaining always parallel

to the other lateral faces : find the volume cut off.

ab (d + c + c* + &amp;lt;r4)

22. Find the volume enclosed by the surface generated by an arc

of a circle whose radius is a, about a chord whose length is 2c.
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23. The area included between a quadrant of the ellipse

.1 a cos 0, jy sin 0,

and the tangents at its extremities revolves about the tangent at the

extremity of the minor axis
;
find the volume generated.

nab (10 372-)

24. An ellipse revolves about the tangent at the extremity of its

major axis
; express the entire volume in the form of an integral,

whose limits are o and 2/r, and find its value. 2V??b.

25. Show that the volume between the surface,

and any plane parallel to the plane of xy is equal to the circumscrib

ing cylinder divided by n + i.

26. A straight line of fixed length zc moves with its extremities in

two fixed perpendicular straight lines not in the same plane, and at a

distance zb. Prove that every point in the moving line describes an

ellipse in a plane parallel to both the fixed lines, and find the volume

enclosed by the generated surface. 4?r (V
2

b*} b

3

27. Find the volume enclosed by the surface whose equation is

^ / s
4 Znabc__L -L. _\__ T .

a* & S
~

5

28. A moving straight line, which is always perpendicular to a fixed

straight line through which it passes, passe.; also through the circum

ference of a circle whose radius is a, in a plane parallel to the fixed

straight line and at a distance b from it
;
find the volume enclosed

by the surface generated and the circle. ncfb

2
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29. Find the volume enclosed by the surface

Ttabc
and the plane -v.= a.

2

30. Find the volume enclosed by the surface

#* + y* + ** = A

s dtf i ^r/. 107, tftfd
7 //^;z evaluate V by a similar method.

35

31. Find the volume between the coordinate planes and the surface

9

32. Find the volume cut from the paraboloid of revolution

by the right circular cylinder

whose axis intersects the axis of the paraboloid perpendicularly at the

focus, and whose surface passes through the vertex. 3
160

2 Tea ~\~
~

3

33. The paraboloid of revolution

.v
2 + y = cz

is pierced by the right circular cylinder

,v
2 + / = ax,
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whose diameter is a, and whose surface contains the axis of the parab

oloid
;
find the volume between the plane of xy and the surfaces of

the paraboloid and of the cylinder.

34. Find the volume cut from a sphere whose radius is a by a

right circular cylinder whose radius is
/&amp;gt;,

and whose axis passes through

the centre of the sphere. 471 [~ 2 , 2 \|~1

TL&quot; J

35. Find the volume cut from a sphere whose radius is a by the

cylinder whose base is the curve

r a cos 0.

3 9

36. Find the volume cut from a sphere whose radius is a by the

cylinder whose base is the curve

r = c? cos
2 + & sin

2

0,

16 , , .$
supposing b &amp;lt; a.

-- --
\a ~sr)*.

O \7

37. A right cone, the radius of whose base is a and whose alti

tude is I, is pierced by a cylinder whose base is a circle having for

diameter a radius of the base of the cone
;
find the volume common

to the cone and the cylinder. bcf

38. The axis of a right cone whose semi- vertical angle is a coin

cides with a diameter of the sphere whose radius is 0, the vertex being

on the surface of the sphere ;
find the volume of the portion of the

sphere which is outside of the cone. 4rr#
3 cos

4 a

3

39. Find the volume produced by the revolution of the lemniscata

r = a cos 20,

about a perpendicular to the initial line. Tr a
3

^2
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40. Find the volumes generated by the revolution of the large loop
and by one of the small loops of the curve

r = a cos 6 cos 26

about a perpendicular to the initial line.

,. I
,
and

16 5 32 io

41. From the element

r dr dB dz

derive the formulas for determining the volume of a solid of revolution

whose axis is the axis of z.

V 27i \rdrdz,

f e

V-- n\(rri )dz, and V= 27t \(z 2 z^rdr.

Interpret the elements in these integrals.

42. Find the volume generated by the revolution of the curve

in which a
&amp;gt; b, about the axis of y.

Transform topolar coordinates, and use the method of Art. 139.

b
72\ cos

Z ~
2

43. Find the volume generated by the curve given in the preceding
example, when revolving about the axis of x.

Tta (20* + 3
a

) ntf a + V(a* b*}-- + - 1 -
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44. Find the volume common to the sphere whose radius is p a,

and to the solid formed by the revolution of the cardioid,

r a (i + cosQ),

about the initial line.

57T0
3

See Art. 141. 6

45. Find the whole volume enclosed by the surface

(x* 4 / + s
1

)

8 = *y*.

Transform to the coordinates p, (p, 0, and show that the solid consists*

a
3

offour equal detached parts. ^

X.

Rectification of Plane Curves.

142. A curve is said to be rectified when its length is deter

mined, the unit of measure to which it is referred being a

right line.

It is shown in Diff. Calc., Art. 314 [Abridged Ed., Art. 164],

that, if s denotes the length of the arc of a curve given in

rectangular coordinates, we shall have

ds = V(dx* + df).

If the abscissas of the extremities of the arc are known, s is

found by substituting for dy in this expression its value in

terms of x and dx, and integrating the result between the

given values of x as limits. Thus, to express the arc measured

from the vertex of the semi-cubical parabola
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in terms of the abscissa of its other extremity, we derive, from
the equation of the curve,

Vxdx
,

whence
2 Va

Integrating,

27 Va 27

143. When x and y are given in terms of a third variable,
ds is generally expressed in terms of this variable. For exam

ple, from the equations of the four-cusped hypocycloid,

x = a cos3
^, y = a sin3

//, . . . (i)

we derive

dx = 3# cos2
ip

sin
ty dip, and dy 3^ sin2

t[&amp;gt;

cos ^ dfy&amp;gt;;

whence . ds = ^a sin ^ cos */ */./- (2)

The length of the arc between the point (a, o), corresponding
to

-i/.- o, and (o, a) corresponding to
i/?
=

%TT, is therefore
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Change of the Sign of ds.

-. We have hitherto assumed ds to be positive, but it is

to be remarked that an expression substituted for ds, as in the

illustration given in the preceding article, may change sign.

Thus, in equation (2), ds, which is so written as to be positive

while
?/; passes from o to \n, becomes negative while

?/; passes

from \n to it. Thus the integral gives a negative result for

the arc between the points (o, a) and (a, o), corresponding to

\it and n. This change of sign in ds indicates a cusp or sta

tionary point of the curve
;
and the existence of such points

must be considered before we can properly interpret the result

ing values of s. For instance, if in this example we integrate

between the limits o and~, we get the results = ,
which is

4 4
the algebraic sum, but the numerical difference of the arcs

between the points corresponding to the limits.

Polar Coordinates.

145. It is proved in Diff. Calc., Art. 317 [Abridged Ed.,

Art. 167], that when the curve is given in polar coordinates

ds =

This is usually expressed in terms of 6. For example, the

equation of the cardioid is

r a (i cos#) 2&amp;lt;2sin
2
|#;

whence dr = 2a sin $0 cos J0 dti,

and by substitution

ds = 2a sin 40 d&.
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The limits for the whole perimeter of the curve are o and 27T,

and ds remains positive for the whole interval. Therefore

(27T

n n
I

277

sin dQ Aa cos - = Sa.
2 2 J

Rectification of Curves of Double Curvature.

146. Let a denote the length of the arc of a curve of double

curvature-, that is, one which does not lie in a plane, and sup

pose the curve to be referred to rectangular coordinates x, y
and z. If at any point of the curve the differentials of the

coordinates be drawn in the directions of their respective axes,

a rectangular parallelepiped will be formed, whose sides are

dx, dy and dz, and whose diagonal is da. Hence

da = V(dx* + dp

The curve is determined by means of two equations connect

ing x, y and 2, one of which usually expresses the value of y in

terms of x, and the other that of 2 in terms of x. We can

then express da in terms of x and dx.

If the given equations contain all the variables, equations
of the required form may be obtained by elimination.

147. An equation containing the two variables x and y
only is evidently the equation of the projection upon the plane

of xy of a curve traced upon the surface determined by the

other equation. Let s denote the length of this projection ;

then, since ds* = dx* + dy*,

in which ds may, if convenient, be expressed in polar coordin

ates
; thus,

da = tf(di* + i*dffl + ds?).
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14-8. As an illustration, let us use this formula to deter

mine the length of the loxodromic curve from the equation of

the sphere,
^8 + y +&amp;lt;8

s = ^ ....... (i)

upon which it is traced, and its projection upon the plane of

the equator, of which the equation is

or in polar coordinates

2a = r

Equation (i) is equivalent to

t* + t? = c?
;

and, denoting the latitude of the projected point by &amp;lt;#,

this

gives /
s

z = asm(f&amp;gt;,
r = acos$. . . . (3)

In order to express dO in terms of #, we substitute the value

of r in (2) ;
whence

fno j_ -*e 2 sec
(f&amp;gt;,

...... (4)

and by differentiation

_ sec () tan &amp;lt;&amp;gt;

-~ ..... (5)
n dv

Squaring and subtracting equation (5) from equation (4),

which reduces to

. (6)
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From equations (3) and (6)

d a2 cos2

whence substituting in the value of do (p. 171)

da = aV( i + -g ) ^.

Integrating,

,//*
^_I)

where and /? denote the latitudes of the extremities of

the arc.

Examples X.

i. Find the length of an arc measured from the vertex of the

catenary
X X

y~
c

and show that the area between the coordinate axes and any arc is

proportional to the arc.

A=cs.

2. Find the length of an arc measured from the vertex of the

parabola

/ = tax.

tfx + y(x + a)
V(a* + **) 4- a log

- -~^
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3. Find the length of the curve

between the points whose abscissas are a and b.

&b
i

log
--h a b.6

&amp;gt;

I
%

4. Find the length, measured from the origin, of the curve

y = a log

. a 4- x
a log x.^ a x

5. Given the differential equation of the tractrix,

dx V(a-yY

and, assuming (o, a) to be a point of the curve, find the value of s as

measured from this point, and also the value of x in terms of y ;
that

is, find the rectangular equation of the curve.

y

6. Find the length of one branch of the cycloid

x a ($ sin ip), y a (i cos
?/&amp;gt;).

&*.

7. When the cycloid is referred to its vertex, the equations being

x-=a(i -cos^), ^ = a (^ + sin /),

prove that ^ =
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8. Find the length from the point (a, o) of the curve

X = 2d COS lp
a COS

2^&amp;gt;,

y = 20 sin ^ sin 2^.

40 (^ sin
*/&amp;gt;).

9. Show that the curve, ,

x = 3 # cos
//?

2# cos
8

^, J = 20 sin ^ ,

has cusps at the points given by ty
= o and rp

TT ; and find the

whole length of the curve. 1 20.

/
10. Find the length of a quadrant of the curve

a
2 + ab+tf

See Fig. 6, Art. 107. a + b
~

11. Show that the curve

# = 20. cos
&quot;

0(3 2 cos
2

0), y = 4# sin cos
3

has three cusps, and that the length of each branch is .

12. Find the length of the arc between the points at which the

curve

x tfcos
2

cos 20, y =0sin ? 0sin 20

2 V2
cuts the axes. .

~~ a
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&amp;gt;

13. Show that the curve

x acosip (i + sin
2

// ),

y a sin ^ cos
2

ip

is symmetrical to the axes, and find the length of the arcs between

the cusps.

cos

14. Find the length of one branch of the epicycloid

x(a-^b) cos fy b cos -
0,

,
. ^ + b .

y (a + b) sm ip sm -
^.

83 (a +

15. Show that the curve

x = ga sn &amp;gt;

j = 30 cos ^ + 40 cos
3

is symmetrical to the axes, and has double points and cusps : find the

lengths of the arcs, (&amp;lt;x)
between the double points, (ft) between a

double point and a cusp, and (y) the arc connecting two cusps, and not

passing through the double points.

(a), 0(7T +

(A ~

(y), &quot;(

1 6. Find the whole length of the curve

x
3&amp;lt;2

sin $ a sin
3

?/&amp;gt;,
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v 17. Find the length, measured from the pole, of any arc of the

equiangular spiral

in which n cot ex. r sec a.

1 8. Prove by integration that the arc subtending the angle Q at the

circumference in a circle whose radius is a, is caO.

19. Find the length, measured from the origin, of the curve defined

by the equations

*&amp;gt;

&amp;gt;-=

20. Find the length, measured from the origin, of the intersection of

the surfaces

y ^n sin x, z zn (2* + sin 2x).

21. Find the length, measured from the origin, of the intersection of

the cylindrical surfaces

(y
- xy =

22. If upon the hyperbolic cylinder

a curve whose projection upon the plane of xy is the catenary

be traced, prove that any arc of the curve bears to the corresponding

arc of its projection the constant ratio V(^
2

4- ^) : *&quot;.



1 78 GEOME TRICAL APPLICA TIONS. [Art. 149

XI.

Surfaces of Solids ofRevolution.

149- The surface of a solid of revolution may be generated
by the circumference of the circular section made by a plane

perpendicular to the axis of revolu

tion. Thus in Fig. 17, the surface

produced by the revolution of the

curve AB about the axis of x is re

garded as generated by the circum
ference PQ. The radius of this cir

cumference is y, and its plane has a

motion whose differential is dx, but

every point in the circumference itself

has a motion whose differential is ds,s

denoting an arc of the curve AB.
Hence, denoting the required surface by S, we have

dS 2ny ds df).

The value of dS must of course be expressed in terms of a single
variable before integration.

ISO. For example, let us determine the area of the zone of

spherical surface included between any two parallel planes.
The radius of the sphere being a, the equation of the revolv-

whence

x dx

adx

and dS 2 na dx ;
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therefore

5 = 27ta \dx 27ta (x* x) .

Since x^ x is the distance between the parallel planes,

the area of a zone is the product of its altitude by 2na, the

circumference of a great circle, and the area of the whole sur

face of the sphere is 4x0*.

151. When the curve is given in polar coordinates, it is con

venient to transform the expression for 5 to polar coordinates.

Thus, if the curve revolves about the initial line,

S 27t{y ds = 27t \r sin 6 V(dr* +

For example, if the curve is the cardioid

r2a sin2
,

we find, as in Art. 145,

ds 2a sin - 6 dd.

Hence
I

2(&quot;sin*-

1

Jo 2

Areas of Surfaces in General.

152. Let a surface be referred to rectangular coordinates x,

y and z
;
the projection of a given portion of the surface upon

the plane of xy is a plane area determined by a given relation

between x and y. We may take as the elements of the surface

the portions which are projected upon the corresponding
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elements of area in the plane of xy. If at a point within the

element of surface, which is projected upon a given element

A .TAJ, a tangent plane be passed, and if y denote the inclina

tion of this plane to the plane of .rjj/,the area of the correspond

ing element in the tangent plane is

Sec y A X AJ .

The surface is evidently the limit of the sum of the elements

in the tangent planes when &x and Aj/ are indefinitely dimin

ished. Now sec y is a function of the coordinates of the point
of contact of the tangent plane ;

and since these coordinates

are values of x and y which lie respectively between x and

x + kx and between/ and/ + A/, the theorem proved in Art.

99 shows that this limit is

S = \\ sec y dx dy.

153. The value of sec y may be derived by the following

method. Through the point P of

the surface let planes be passed

parallel to the coordinate planes,

and let PD, and PE
t Fig. 17, be the

intersections of the tangent plane
with the planes parallel to the

planes of xz andyz. Then PD and

PE are tangents at P to the sec

tions of the surface made by these

planes. The equations of these

sections are found by regarding y
and x in turn as constants in the equation of the surface

; there

fore denoting the inclinations of these tangent lines to the plane

of xy by and ^, we have

FIG. 18.

and
d
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in which and-:- are partial derivatives derived from the equa-dx dy
tion of the surface.

If the planes be intersected by a spherical surface whose

centre is P, ADE is a spherical triangle right angled at A,

whose sides are the complements of
(f&amp;gt;

and ip. Moreover, if a

plane perpendicular to the tangent plane FED be passed

through AP, the angle FPG will be y, and the perpendicular

from the right angle to the base of the triangle the comple
ment of y.

Denoting the angle EAF by 6, the formulas for solving

spherical right triangles give

n tan ip . n tan ^
cos =--

,
and sin v-=

tan y tan y

Squaring and adding,

_
tan

or tan2
y = tan2

1/&amp;gt;

+ tan

,whence sec2
y = I + ^ + ^

Substituting in the formula derived in Art. (152), we have

154. It is sometimes more convenient to employ the polar
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element of the projected area. Thus the formula becomes

5* sec yr dr d6,

where sec y has the same meaning as before.

For example, let it be required to find the area of the sur

face of a hemisphere intercepted by a right cylinder having a

radius of the hemisphere for one of its diameters. From the

equation of the sphere,

;**+/+ *=*, (I)

we derive

dz_ x dz _ y

whence

A /r / ( dz\? ,

/dfe\ 2
~l

a
secx=4/|i+4/{-r-)+(-r] ~~;Y L \dx) \dyJ J z

c ((rdrdBtherefore o = a\\ ^ ,

the integration extending over the area of the circle

r a cos 6 (2)

Since equation (i) is equivalent to
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From (2) the limits for r are ^ = o, and r2 a cos 6,

hence

in which a sin 6 is put for the positive quantity V(a* r). The
limits for 6 are -\n and JTT, but since sin 6 is in this case to
be regarded as invariable in sign, we must write

5

TT

- 2rt
2

f

2

(i
- sin 6) dO = n# -

Jo

If another cylinder be constructed, having the opposite radius
of the hemisphere for diameter, the surface removed is

2?ra2
~4a\ and the surface which remains is 4^

2
, a quantity

commensurable with the square of the radius. This problem
was proposed in 1692, in the form of an enigma, by Viviani, a
Florentine mathematician.

Examples XI.

i. Find the surface of the paraboloid whose altitude is a- and the
radius of whose base is b.

2. Prove that the surface generated by the arc of the catenary given
in Ex. X., i, revolving about the axis of x, is equal to

n(cx + sy).

3. Find the whole surface of the oblate spheroid produced by the
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revolution of an ellipse about its minor axis, a denoting the major,

b. the minor semi-axis, and e the excentricity,
^ ~ b

&amp;gt;

.

27ta
2

4- 7t -
log

e
&quot;

i e

4. Find the whole surface of the prolate spheroid produced by the
revolution of the ellipse about its major axis, using the same notation
as in Ex. 3.

5. Find the surface generated by the cycloid

x a (ip sin
//?), y = a (i cos

revolving about its base.

6. Find the surface generated when the cycloid revolves about the

tangent at its vertex.

7. Find the surface generated when the cycloid revolves about its

axis,

8. Find the surface generated by the revolution of one branch of

the tractrix (see Ex. X., 5) about its asymptote.
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9. Find the surface generated by the revolution about the axis of
x of the portion of the curve

y =

which is on the left of the axis of y.

log

10. Find the surface generated by the revolution about the axis of
a; of the arc between the points for which x = a and x b in the

hyperbola

xy - k\

&quot;*
&quot;*) ^ ^ 1-

&quot;-?

--
J

ii. Show that the surface of a cylinder whose generating lines are

parallel to the axis of z is represented by the integral

s =

where s denotes the arc of the base in the plane of xy. Hence,
deduce the surface cut from a right circular cylinder whose radius is

a, by a plane passing through the centre and making the angle a with
the plane of the base. 2^

2
tan a

12. Find the surface of that portion of the cylinder in the problem
solved in Art. 154, which is within the hemisphere. 2a\

13. Find the surface of a circular spindle, a being the radius and
2c the chord.

\ c \ia ^jsin-
1 -

*J
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XII.

The Area generated by a Straight Line moving in any

Manner in a Plane.

155. If a straight line of indefinite length moves in any man

ner whatever in a plane, there is at each instant a point of the

line about which it may be regarded as rotating. This point we

shall call the centre of rotation for the instant. The rate of

motion of every point of the line in a direction perpendic

ular to the line itself is at the instant the same as it would

be if the line were rotating at the same angular rate about this

point as a fixed centre.* Hence it follows that the area

generated by a definite portion of the line has at the instant

the same rate as if the line were rotating about a fixed instead

of a variable centre.

156. Suppose at first that the centre of rotation is on the

generating line produced, pt
and p2 denoting the distances from

the centre of the extremities of the generating line, and let

denote its inclination to a fixed line. By substitution in the

general formula derived in Art. no, we have

dA =
-(tf-p?)d&amp;lt;I&amp;gt;.

*
Compare Diff. Calc., Art. 332 [Abridged Ed., Art. 176], where the moving

line is the normal to a given curve, and the centre of rotation is the centre of cur

vature of the given curve. If the line is moving without change of direction, the

centre is of course at an infinite distance.

When the line is regarded as forming a part of a rigidly connected system in

motion, its centre of rotation is the foot of a perpendicular dropped upon it from

the instantaneous centre of the motion of the system. Thus, if the tangent and

normal in the illustration cited are rigidly connected, the centre of curvature, C, is

the instantaneous centre of the motion of the system, and the point of contact, P,

is the centre of rotation for the tangent line.
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Applications.

157. The area between a curve and its evolute may be

generated by the radius of curvature p, whose inclination to

the axis of x is
(f&amp;gt;
+ \TT, in which

&amp;lt;f&amp;gt;

denotes the inclination

of the tangent line. Since the centre of rotation is one

extremity of the generating line/9, the differential of this area
is found by substituting in the general expression p1

= o and

p2
= o. Hence when p is expressed in terms of 0,

A = -

expresses the area between an arc of a given curve, its evolute,
and the radii of curvature of its extremities, the limits being
the values of $ at the ends of the given arc.

158. For example, in the case of the cardioid

r a(i cos 6),

it is readily shown, from the results obtained in Art. 145, that
the angle between the tangent and the radius vector is \9\ and
therefore # = |#, and

ds A.a . 6
p = -J-.

sin- .^ 3 3

To obtain the whole area between the curve and its evolute,
the limits for 6 are o and 2n

;
hence the limits for

&amp;lt;f&amp;gt;

are o
and 3?r. Therefore

AA = - 8rt
8
f3
w

.
,(/&amp;gt;

.= sin2
~d(f&amp;gt;

=
9 Jo 3

159. As another application of the general formula of

Art. 156, let one end of a line of fixed length a be moved
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along a given line in a horizontal plane, while a weight at

tached to the other extremity is drawn over the plane by the

line, and is therefore always moving in the direction of the

line itself. The line of fixed length in this case turns about

the weight as a moving centre of rotation. Hence the area

generated while the line turns through a given angle is the

same as that of the corresponding sector of a circle whose

radius is a.

The curve described by the weight is called a tractrix, and

the line along which the other extremity is moved is the direc

trix. When the axis of x is the directrix, and the weight

starts from the point (o, a), the common tractrix is described
;

hence the area between this curve and the axis is \ncP.

160. Again, in the generation of the cycloid, Diff. Calc.,

Art. 288 [Abridged Ed., Art. 156], the variable chord RP may
be regarded as generating the area. The point R has a motion

in the direction of the tangent RX ;
the point P partakes of

this motion, which is the motion of the centre C, and also has

an equal motion, due to the rotation of the circle in the direc

tion of the tangent to the circle at P. Since the tangents

at P and R are equally inclined to PR, the motion of P in a

direction perpendicular to PR is double the component, in this

direction, of the motion of R. Therefore the centre of rota

tion of PR is beyond R at a distance from it equal to PR.

Hence, denoting PRO by #,

= PR= 2a sin 0, p2
= 2PR =W sin #.

Substituting in the formula of Art. 156, we have for the area

of the cycloid, since PRO varies from o to n,

A = 60* sin
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Sign of the Generated Area*

161. Let AB be the generating line, and C the centre of

rotation. The expression,

dA =
(i)

FIG. 19.

for the differential of the area, was obtained upon the supposi
tion that A and B were on the same side of C. Then suppos

ing Pz &amp;gt; Pi) an d that the line rotates in the positive direction
t

as in figure 19, the differential of the area is

positive; and we notice that every point in the

area generated is swept over by the line

AB, the left hand side as we face in the

direction AB preceding.

162. We shall now show that in every

case, the formula requires that an area

swept over with the left side preceding, shall be considered

as positively generated, and one swept over in the opposite

direction as negatively generated.
In the first place, if C is between A and

B so that p, is negative, as in figure 20, pf

is still positive, and formula (i) still gives

the difference between the areas generated

by AB and AC. Hence the latter area,

which is now generated by a part of the

line AB, must be regarded as generated

negatively, but the right hand side as we
face in the direction AB of this portion of the line is now

preceding, which agrees with the rule given in Art. 161.

Again, if C is beyond B, the formula gives the difference

of the generated areas; but since pf is numerically greater

than p|, in this case, dA is negative, and the area generated by
AB is the difference of the areas, and is negative by the rule.

FIG. 20.
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Finally, if the direction of rotation be reversed, d(j&amp;gt;
and

therefore dA change sign, but the opposite side of each por
tion of the line becomes in this case the preceding side.

163. We may now put the expression for the area in another

form. For

2 2

whatever be the signs of p2 and plf the first factor is the length
of AB, which we shall denote by /, and the second factor is

the distance of the middle point of AB from the centre of

rotation, which we shall denote by pm . Hence, putting

~
Pl = and

we have A =

Since pm d$ is the differential of the motion of the middle point
in a direction perpendicular to AB, this expression shows that

the differential of the area is the product of this differential by
the length of the generating line.

Areas generated by Lines whose Extremities describe

Closed Circuits.

I64-. Let us now suppose the generating line AB to move
from a given position, and to return to the

same position, each of the extremities A and

B describing a closed curve in the positive

direction, as indicated by the arrows in figure

21. It is readily seen that every point which

is in the area described by B, and not in that

described by A, will be swept over at least

once by the line AB, the left side preceding,

FIG. 21. and if passed over more than once, there will be
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an excess of one passage, the left side preceding. Therefore

the area within the curve described by B, and not within that

described by A, will be generated positively. In like manner

the area within the curve described by A, and not within that

described by B, will be generated negatively. Furthermore, all

points within both or neither of these curves are passed over,

if at all, an equal number of times in each direction, so that the

area common to the two curves and exterior to both disap

pears from the expression for the area generated by AB.

Hence it follows that, regarding a closed area whose perimeter

is described in the positive direction as positive, the area generated

by a line returning to its original position is the difference of the

areas described by its extremities. This theorem is evidently

true generally, if areas described in the opposite direction are

regarded as negative.

Amslers Planimeter.

165. The theorem established in the preceding article may
be used to demonstrate the correctness of the method by
which an area is measured by means of the Polar Planimeter,

invented by Professor Amsler, of Schaffhausen.

This instrument consists of two bars, OA and AB, Fig. 22,

jointed together at A. The rod OA turns on

a fixed pivot at O, while a tracer at B is carried

in the positive direction completely around

the perimeter of the area to be measured. At
some point C of the bar AB a small wheel is

fixed, having its axis parallel to AB, and its

circumference resting upon the paper. When
j&is moved, this wheel has a sliding and a roll

ing motion
;
the latter motion is recorded by

an attachment by means of which the number FIG. 22.

of turns and parts of a turn of the wheel are registered.
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166- Let Mbe the middle point of AB, and let

OA=a,

Since b is constant, the area described byAB is by equation (2),

Art. 163,

(i)

Denoting the linear distance registered on the circumference

of the wheel by s, ds is the differential of the motion of the

point C, in a direction perpendicular to AB, and since the dis

tance of this point from the centre of rotation is pm + c,

ds (pm + c) d(b :

substituting in (i) the value of pm d(f&amp;gt;,

(2)

167. Two cases arise in the use of the instrument. When,
as represented in Fig. 22, O is outside the area to be meas

ured, the point A describes no area, and by the theorem of

Art. 164, equation (2) represents simply the area described

by B. In this case ^ returns to its original value, hence
d&amp;lt;f&amp;gt;

vanishes, and denoting the area to be measured by A, equation

(2) becomes
A = bs......... (3)

In the second case, when O is within the curve traced by B,

the point A describes a circle whose area is 7ta*, and the limit-
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ing values of # differ by a complete revolution. Hence in this

case equation (2) becomes

A _ ncp l&amp;gt;s 2n be,

or A = bs + 7t(a*- zbc)* ..... (4)

In another form of the planimeter the point A moves in a

straight line, and the same demonstration shows that the area

is always equal to bs.

Examples XII.

i. The involute of a circle whose radius is a is drawn, and a tangent

is drawn at the opposite end of the diameter which passes through the

cusp ;
find the area between the tangent and the involute.

a** (3 + 7T
2

)

2. Two radii vectoresof a closed oval are drawn from a fixed point

within, one of which is parallel to the tangent at the extremity of the

other
;

if the parallelogram be completed, the area of the locus of its

vertex is double the area of the given oval.

3. Show that the area of the locus of the middle point of the chord

joining the extremities of the radii vectores in Ex. 2, is one half the

area of the given oval.

* The planimeter is usually so constructed that the positive direction of rotation

is with the hands of a watch. The bar b is adjustable, but the distance A C is fixed

so that c varies with b. Denoting A C by q, we have c q \b, and the constant

to be added becomes C= it (a~ zbg + 2
) in which a and^ are fixed and b adjusta

ble. In some instruments q is negative.

It is to be noticed that in the second case s may be negative ;
the area is then

the numerical difference between the constant and bs.
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4. Prove that the difference of the perimeters of two parallel ovals,
whose distance is b

t
is 27tb, and that the difference of their areas is the

product of b and the half sum of their perimeters.

5. A limayon is formed by taking a fixed distance be on the radius
vector from a point on the circumference of a circle whose radius is a ;

show that the area generated by b when b
&amp;gt; 20, is the area of the lima-

con diminished by twice the area of the circle, and thence determine
the area of the limafon.

71(20* -f P).

6. Verify equation (4), Art. 167, when the tracer describes the
circle whose radius is a + b.

7. Verify the value of the constant in equation (4), Art. 167, by
determining the circle which may be described by the tracer without
motion of the wheel.

8. If, in the motion of a crank and connecting rod (the line of motion
of the piston passing through the centre of the crank), Amsler s record

ing wheel be attached to the connecting rod at the piston end, deter
mine s geometrically, and verify by means of the area described by the
other end of the rod.

9. The length of the crank in Ex. 8 being a, and that of the con

necting rod b
y find the area of the locus of a point on the connecting

rod at a distance c from the piston end.

io. If a line AB of fixed length move in a plane, returning to its

original position without making a complete revolution, denoting the areas
of the curves described by its extremities by (A) and (), determine
the area of the curve described by a point cutting AB in the ratio

m : n.

n(A] + m(B)
m + n
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ii. If the line in Ex. 10 return to its original position after making a

complete revolution, prove HolditcKs Theorem ; namely, that the area of

the curve described by a point at the distance c and c from A and B is

c (A] + 4*) _
~7T7

12. Show by means of Ex. n that, if a chord of fixed length move

around an oval, and a curve be described by a point at the distances

c and c from its ends, the area between the curves will be TTCC.

XIII.

Approximate Expressions for Areas and Volumes.

168. When the equation of a curve is unknown, the area

between the curve, the axis of x, and

two ordinates may be approximately ex

pressed in terms of the base and a lim

ited number of ordinates, which are sup

posed to have been measured.

Let ABCDE be the area to be de

termined
;
denote the length of the base

by 2h
;
and let the ordinates at the ex

tremities and middle point of the base

be measured and denoted by y^y* and^3- Taking the base for

the axis of x, and the middle point as origin, let it be assumed

that the curve has an equation of the form

v = A +Bx+ Ci? + &amp;gt;**; (i)

then the area required is

T =
4 J-A-A 2 3 4

in which which A and C are unknown.

, -(2)
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In order to express the area in terms of the measured

ordinates, we have from equation (i),

j/t
= A + Bh + CJ? +

j/8
= A - Bh + Ch* - Dhz

;

whence we derive

yl f 73 = 2A + 2Ck\

and substituting in (2),

It will be noticed that this formula gives a perfectly ac

curate result when the curve is really a parabolic curve of the

third or a lower degree.
169. If the base be divided into three equal intervals, each

denoted by k, and the ordinates at the extremities and at the

points of division measured, we have, by assuming the same

equation,
*

A= (i

From the equation of the curve,

FIG. 24.

Bh Ctf Dh*

&quot;T
&quot;4

8

Bh a2

^8=^ + _ +_

y* = A +
4 ^
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whence y\ + 74 = 2A ~

i/
2 + J/3

= 2A H .

2,

From these equations we obtain

&amp;lt; _ -
7i + 972 + 973-74

T6

rj 7i-72-73+74
and C/5 = -

4

Substituting in equation (i),

8

Simpsons Rules.

!70. The formulas derived in Articles 168 and 169, although

they were first given by Cotes and Newton, are usually known

as Simpsons Rules, the following extensions of the formulas

having been published in 1743, in his Mathematical Disserta

tions.

If the whole base be divided into an even number n of

parts, each equal to h, and the ordinates at the points of divis

ion be numbered in order from end to end, then by applying

the first formula to the areas between the alternate ordinates,

we have

A = -
(7! + 47, + 2}/8 + 474

&quot; + 47 + y + 0-

3

That is to say, the area is equal to the product of the sum of

the extreme ordinates, four times the sum of the even-num-
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bered ordinates, and twice the sum of the remaining odd-num
bered ordinates, multiplied by one third of the common interval.

Again, if the base be divided into a number of parts divis
ible by three, we have, by applying the formula derived in
Art. 169, to the areas between the ordinates Ji j/4,j/4jK? , and so on,

375

Cotes Method of Approximation.

171. The method employed in Articles 168 and 169 is

known as Cotes Method. It consists in assuming the given
curve to be a parabolic curve of the highest order which can
be made to pass through the extremities of a series of equi
distant measured ordinates.

The equation of the parabolic curve of the nth order con
tains n + i unknown constants

; hence, in order to eliminate
these constants from the expression for an area defined by the
curve, it is in general necessary to have n + i equations con
necting them with the measured ordinates. Hence, if n de
note the number of intervals between measured ordinates over
which the curve extends, the curve will in general be of the

degree.*

*
If // denotes the whole base, the first factor is always equivalent to H

divided by the sum of the coefficients of the ordinates
;
for if all the ordinates are

made equal, the expression must reduce to Hy^. Thus, each of the rules for an
approximate area, including those derived by repeated applications, as in Art. 170,
may be regarded as giving an expression for the mean ordinate. The coefficients
of the ordinates, according to Cotes method, for all values of n up to n = 10, may
be found in Bertrand s Calcul Integral, pages 333 and 334. For example (using
detached coefficients for brevity), we have, when n = 4,

TT

^=[7, 32, 12, 32, 7];

and when n =. 6,

A =
840

k 1
2l6&amp;gt; 27&amp;gt; 272 27 2l6 4IJ
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172. For example, let it be required to determine the area
between the ordinates yl and j/2 ,

in terms of the three equi
distant ordinates y, y and y$, the common interval being h.

We must assume

y = A + Bx +

then taking the origin at the foot of yl

from which A, B and C must be eliminated by means of the

equations

yi = A,

y2 =A+ Bh + Ch\

j/8
= A + 2Bh

Solving these equations, we obtain

A =y^

If we make a slight modification in the ratios of these last coefficients by sub--

stituting for each the nearest multiple of 42, we have

A
42&amp;gt; 252 42) 2I0

(the denominator remaining unchanged, since the sum of the coefficients, is still

840), which reduces to

H r

2^~
[l 5&amp;gt;

T
6&amp;gt;

T 5 lj

This result is known as Weddles Rule for six intervals. The value thus given to

the mean ordinate is evidently a very close approximation to that resulting from
Cotes method, the difference being

T

+ Jo)
- 6 (y, + yo)

-
20J,].
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and substituting

173. It is, however, to be noticed, that when the ordinates
are symmetrically situated with respect to the area, if n is

even, the parabolic curve may be assumed of the (n + i)th
degree. For example, in Art. 168, n = 2, but the curve was
assumed of the third degree. Inasmuch as A, B, C and D
cannot all be expressed in terms of ylt y^ and 7,, we see that a

variety of parabolic curves of the third degree can be passed
through the extremities of the measured ordinates, but all of
these curves have the same area.*

Application to Solids.

174. If y denotes the area of the section of a solid perpen
dicular to the axis of x, the volume of the solid is \ydx, and

* This circumstance indicates a probable advantage in making n an even num
ber when repeated applications of the rules are made. Thus, in the case of six

intervals, we can make three applications of Simpson s first rule, giving
rr

A =
18

t 1 4 2
&amp;gt; 4, 2, 4, i], (i)

or two of Simpson s second rule, giving

A =
16 [l 3 3 2 3. 3, i] (2)

In the first case, we assume the curve to consist of three arcs of the third degree,
meeting at the extremities of the ordinates y^ and; .-, ; but, since each of these arcs

contains an undetermined constant, we can assume them to have common tangents
at the points of meeting. We have therefore a smooth, though not a continuous
curve. In the second case, we have two arcs of the third degree containing no

arbitrary constants, and therefore making an angle at the extremity of _y 4 . It is

probable, therefore, that the smooth curve of the first case will in most cases form a

better approximation than the broken curve of the second case.

In confirmation of this conclusion, it will be noticed that the ratios of the

coefficients in equation (i) are nearer to those of Cotes coefficients for n = 6, given
m the preceding foot-note, than are those in equation (2).
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therefore the approximate rules deduced in the preceding arti

cles apply to solids as well as to areas. Indeed, they may be
applied to the approximate computation of any integral, by
putting y equal to the coefficient of x under the integral sign.

The areas of the sections may of course be computed by
the approximate rules.

Woollens Rule.

175. When the base of the solid is rectangular, and the
ordinates of the sections necessary to the application of Simp
son s first rule are measured, we may, instead of applying that

rule, introduce the ordinates directly into the expression for
the area in the following manner.

Taking the plane of the base for the plane of xy, and its

centre for the origin, let the equation of the upper surface be
assumed of the form

Let 2h and 2k be the dimensions of the base, and denote
the measured values of z as indicated in

Fig. 25. Tlie required volume is

(h
tk

zdyd*
-h J -k

This double integral vanishes for every
term containing an odd power of x or an
odd power of y\ hence FIG. 25.

hk
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By substituting the values of x and y in the equation of the

surface, we readily obtain

#1 + #3 + Ci + CB = 4 4- 4 + 4F&, ... (3)

a* + c^ + ^ + 3
= 4^ + 2 /?&amp;gt;^ + 2/^r2

. ... (4)

From these equations two very simple expressions for the
volume may be derived

; for, employing (2) and (4), equation
(i) becomes

2hk
v-- ~

(&quot;*
+ bi + 2b* + t&amp;gt;*

+ c
*}&amp;gt; (4)

and employing (2) and (3),

hk
(5)

Equation (4) is known as Woolleys Rule ; the ordinates employed
are those at the middles of the sides and at the centre

;
in (5),

they are at the corners and at the centre.

Examples XIII.

1. Apply Simpson s Rule to the sphere, the hemisphere, and the

cone, and explain why the results are perfectly accurate.

2. Apply Simpson s Second Rule to the larger segment of a sphere
made by a plane bisecting at right angles a radius of the sphere.

8
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3. Find by Simpson s Rule the volume of a segment of a sphere, b

and c being the radii of the bases, and h the altitude.

4. Find by Simpson s Rule the volume of the frustum of a cone, b

and c being the radii of the bases, and h the altitude.

nh

3

5. Compute by Simpson s First and Second Rules, the value of

(
,
the common interval being T̂ in each case.

O i + x

The first rule gives 0.6931487, and the second rule gives 0.6931505.

The correct value is obviously log 2 = 0.6931472.

6. Find the volume considered in Art. 175, directly by Simpson s

Rule, and show that the result is consistent with equations (4) and (5).

hk

9

7. Find, by elimination, from equations (4) and (5), Art. 175, a

formula which can be used when the centre ordinate is unknown.

flK r l \ / \ 1
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CHAPTER IV.

MECHANICAL APPLICATIONS.

XIV.

Definitions.

176. We shall give in this chapter a few of the applications

of the Integral Calculus to mechanical questions.

The mass or quantity of matter contained in a body is pro

portional to its weight. When the masses of all parts of equal

volume are equal, the body is said to be homogeneous. The

factor by which it is necessary to multiply the unit of volume

to produce the unit of mass is called the density, and usually

denoted by y.

In the following articles it will be assumed, when not other

wise stated, that the body is homogeneous, and that the density

is equal to unity, so that the unit of mass is identical with the

unit of volume. When the mass of an area is spoken of, it is

regarded as a lamina of uniform thickness and density, and the

unit of mass is taken to correspond with the unit of surface.

In like manner the unit of mass for a line is taken as identical

with the unit of length.

Statical Moments.

177. The moment of a force, with reference to a point, is the

measure of the effectiveness of the force in producing motion

about the point. It is shown in treatises on Mechanics, that

this is the product of the force and the perpendicular from tht

point upon the line of application of the force.
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The moment of the sum of a number of forces about a

given point is the sum of the moments of the forces.

The statical moment of a body about a given point is the

moment of its gravity ;
the force of gravity being supposed to

act upon every part of the body, and in parallel lines.

178. In order to find the statical moment of a continuous

body, we regard the body as generated geometrically in some

convenient manner, and determine the corresponding differen

tial of the moment.
In the case of a plane area, let the body be referred to

rectangular axes, and let gravity be supposed to act in the

direction of the axis of y. Then the abscissa of the point of

application is the arm of the force when we consider the

moment about the origin. Let us first suppose the area to be

generated by the motion of the ordinate y. The differential of

the area is then y dx. The corresponding element of the sum,

(bydx is the limiting value, see Art. 99, is

a

yr&x, ........ (0

in which yr is the ordinate corresponding to any value of x

intermediate between a + (r i) A.r, and a + r Ax. It is

evident that the arm of the weight of the element (i) is such

an intermediate value of x
;
hence the moment of the ele

ment is

xryr &x......... (2)

The whole moment is therefore the limiting value of a sum

of the form

In other words, it is the integral

tb

xydx,
*

(3)
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in which the differential of the moment is the product of the

differential of the area and the arm of the force, which in this

case is the same for every point of the element. In other

words, the moment of the differential is the differential of the

moment.

179. As an illustration, we find the moment of a semicircle

(Fig. 26) about its centre. The area may be

generated by the line 2y, moving from x o to

^ x = a. The equation of the circle being

the differential of the area is

2 \/(a~ x2
)
dx.

^^
The moment of this differential is

FIG. 26.

hence the whole moment is

2 3-
\

a 2#^

3

a
3

Centres of Gravity.

180. If a force equal to the whole weight of a body be

applied with an arm properly determined, its moment may be

made equivalent to the whole statical moment of the body.
If the force is in the direction of the axis of y, as in Fig. 26, we

have, denoting this arm by ~x,

~x Area = Moment,

Moment
x ~

Area
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In like manner, supposing the force to act in the direction

of the axis of x, we may determine y for the same body.
It is shown in treatises on Mechanics that the point deter

mined by the two coordinates x and jT, is independent of the

position of the coordinate axis. This point is called the centre

ofgravity of the area. The centre of gravity of a volume is

defined in like manner.

181. The symmetry of the form of a body may determine
one or more of the coordinates of its centre of gravity. Thus
the centre of gravity of a circle or a sphere coincides with the

geometrical centre, and the centre of gravity of a solid of revolu

tion is on the axis of revolution. The centre of gravity of the

semicircle in Fig. 26, is on the axis of x
;
hence to determine

its position we have only to find x. Dividing the moment
of the semicircle found in Art. 179 by the area \na^, we have

182. In finding the moment of the semicircle (Art. 179), we
regarded the area as generated by the double ordinate 27, and
the differential of the moment was found by multiplying the

differential of the area by x, which is the arm of the force for

every point of the generating line.

We may, however, derive the moment from the differential

of area,

, ......... (0

since the area may be generated by the motion of the abscissa

x from y = a to y a. But in this case to find the moment
of the differential we must multiply it by the distance of its

centre of gravity from the given axis. The centre of gravity of

the line x is evidently its middle point, hence the required arm
is \x. Therefore the differential of the moment is
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and consequently the whole moment is

This result is identical with that derived in Art. 179.

Polar Formulas,

183. When polar formulas are employed, r and 6 being

coordinates of the curved boundary of the area, the element is

\r* dO. Since this element is ultimately a triangle, we employ
the well known property of triangles ;

that the centre of gravity

is on a medial line at two-thirds the distance from the vertex

to the base.

The coordinates of the centre of gravity of the element are,

therefore,

&quot;7 2
~rsin# and r cos 0.

3 3

Hence we have the formula

^cosOdB
- -

,

de

and similarly
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184. To illustrate, let us find the centre of gravity of the
area enclosed by the lemniscata

r2 = a2 cos 26.

Whence J=~: -^ - = f?
,

4

(cos 20) cos OdO.
3 /- 3 Jo

CPS204/0
Jo

Put cos 20 = cos2
^, whence sin ^ = \/2 sin ^,

and \ 2 cos 6^^ z= cos
(j) d(p,

- 2 V2 f
2

^ = cosV
.1 O

24/2 3-1 7T /2

3 ^T2 2
^

8~

Solids of Revolution.

185. To find the centre of gravity of a solid of revolution,
we take the axis of revolution as the axis of x, and the circle

whose area is itf
1 as the generating element. Replacing y in

equation (3), Art. 178, by this expression, we have for the stati

cal moment

and for the abscissa of the centre of gravity

C*

^_ Ja

(&quot;

b

fdx
a.
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186. To illustrate, we find the centre of gravity of a spheri
cal segment whose height is k. In this case, taking the origin

at the vertex of the segment, and denoting the radius of the

sphere by #, we have

h

Hence * =&amp;gt;- -=*
I ~\

2ax~ x* dx -ax* - -x*
J

If the centre of gravity of the surface of the segment be re

quired, since the differential of the surface is 2ny ds, we easily

obtain the general formula

th

xyds
Jo

TJi

yds
J o

and, in this case the curve being a circle, y ds = a dx
;
hence,

substituting, we have

x = h.

The Properties of Pappus.

187. Let a solid be generated by the revolution of any plane

figure about an exterior axis in its own plane. It is required

to determine the volume and the surface thus generated.

It is evident that this solid may also be generated by a

variable circular ring whose centre moves along the axis of

revolution
; denoting by y^ and /2 corresponding ordinates of
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the outer and inner circles respectively, the area of this ring is

7i
(yf yf) . Hence

But this integral is the statical moment of the given figure,

since j/! y* is the generating element of its area, and -^
2
is

the corresponding arm. Denoting the area of the figure by A,

we may therefore write

V 2nyA ;

that is, the volume is the product of the area of the figure and the

path described by its centre ofgravity.
The surface (5) of this solid is, by Art. 149,

S 27i\yds 27t \ds9

\iy denotes the ordinate of the centre of gravity of the arc s.

Hence we have 5 = 2ny-arc ;

that is, the surface is the product of the length of the arc into

the path described by the centre ofgravity.
These theorems are frequently called the properties of Gul-

dinus
; they are, however, due to Pappus, who published them

1588.

It is obvious that both theorems are true for any part of

a revolution of the generating figure.
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Examples XIV.

i. Find the centre of gravity of the area enclosed between the

parabola _/ = ^mx and the double ordinate corresponding to the

abscissa a.

2. Find the centre of gravity of the area between the semi-cubical

parabola ay* x* and the double ordinate which corresponds to the

abscissa a.

3. Find the ordinate of the centre of gravity of the area between

the axis of x and the sinusoid r = sin _Y, the limits being x = o and

*=* y=t*.

4. Find the coordinates of the centre of gravity of the area be

tween the axes and the parabola

()Ŵr+(-i=i.
a b

x =-, andy = -

5. Find the centre of gravity of the area between the cissoid

y
l

(a x) x* and its asymptote.

Solution :

Denoting the statical moment by M and the area by A,

o (a x)*

= 50 A $M ;

. . M A. hence
6
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6. Find the centre of gravity of the area between the parabola

v
2
=r 40.r and the straight linejy

~ mx.

&a ,
- 2a

x -

,
and y .

~

7. Find the centre of gravity of the segment of an ellipse cut off

by a quadrantal chord.

2 a , 2 b
x - . - and y = - -

.

3 7T 2 3 7T- 2

8. Given the cycloid,

y a
(

i cos
&amp;gt;/;),

.v = a
(if)

sin ^) ,

find the distance of its centre of gravity from the base.

9. Find the centre of gravity of the area enclosed between the

positive directions of the coordinate axes and the four-cusped hypo-

cycloid

Put .v a cos
3

0, tf^/j = # sin
3

0.

-~- 2 5 6a

10. Find the centre of gravity of the area enclosed by the cardioid

= a (i cos
fj).

ii. Find the centre of gravity of the sector of a circle whose radius

is a, the angle of the sector being 2 a.

2 a sin tx.

Use the method of Art. 1 83.
x -

.
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12. Find the centre of gravity of the segment of a circle, the angle
subtended being 2 a and the radius of the circle a.

Solution :

:0sa 2#
3
sin

s a Chord3

_ _
Area 3 Area

~
12 Area*

13. Find the centre of gravity of a circular ring, the radii being a

and #!, and the angle subtended 2 a.

_ 2 a* #!
3

sin (x

3 a1 -
a-c a

14. Find the centre of gravity of a circular arc, whose length is 2s.

Solution :

We have in this case, taking the origin at the centre and the axis

of x bisecting the arc,

-J-.
x ds

ds

Put x a cos 0, then ds = a d, and denoting by a the

angle subtended by s, we have

cos d^

a sin a _ c^_

2$ a a*

2c being the chord.
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15. Find the coordinates of the centre of gravity of arc of the semi-

cycloid whose equations, referred to the vertex, are

x a(i cos^), and
y&amp;gt;= a(ip + sin ip).

20, f A\x --
,
and y (7t-}a.

o \ ^5 /

1 6. Find the centre of gravity of the arc between two successive

cusps of the four-cusped hypocycloid

2d
X =

5

17. Find the position of the centre of gravity of the arc of the semi-

cardioid

r = a (i cos #).

-

x-=.
,
and y .

1 8. A semi-ellipsoid is formed by the revolution of a semi-ellipse
about its major axis

;
find the distance of the centre of gravity of the

solid from the centre of the ellipse.

19. Find the centre of gravity of a frustum of a paraboloid of
revolution having a single base, h denoting the height of the frustum.

20. A paraboloid and a cone have a common base and vertices at

the same point ; find the centre of gravity of the solid enclosed
between them.

The centre of gravity is the middle point of the axis.
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21. Find the centre of gravity of a hyperboloid whose height is h,

the generating curve being

y = /# (2#J + ^a

).

^ 8&amp;lt;z 4- 3^

4 3^ + A

22. Find the centre of gravity of the solid formed by the revolution

of the sector of a circle about one of its extreme radii.

The height of the cone being denoted by h, and the radius of the

circle by a, we have

23. Find the centre of gravity of the solid formed by the revolution

about the axis of x of the curve

ay = ax* - x\

between the limits o and a.

-5&amp;lt;*=y
24. A solid is formed by revolving about its axis the cardioid

r a (
i cos 0) ;

find the distance of the cusp from the centre of gravity.

i6a
x .&quot;

J 5

25. Determine the position of the centre of gravity of the volume

included between the surfaces generated by revolving about the axis

of x the two parabolas

y = mx
y

and

- a m -f 2tn
~
3 m + m
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26. Find the centre of gravity of a rifle bullet consisting of a cylin
der two calibers in length, and a paraboloid one and a half calibers in

length having a common base, the opposite end of the cylinder con

taining a conical cavity one caliber in depth with a base equal in size

to that of the cylinder.

The distance of the centre of gravity from the base of

the bullet is iff calibers.

27. A solid formed by the revolution of a circular segment about

its chord is cut in halves by a plane perpendicular to the chord
;

determine the centre of gravity of one of the halves. This solid is

called an ogivaL

Denoting by 2a the angle subtended by the chord, and by a the

radius of the circle, the distance of the centre of gravity from the

base is

_ a_ ^
44 sing a + sin2

2&amp;lt;x + 32 (cos 2a cos a]_

1 6 sin a (2 + cos* a) 3^ cos

28. Find the centre of gravity of the surface of the paraboloid
formed by the revolution about the axis of x of the parabola

a denoting the height of the paraboloid.

- _ i ($a 2m) (a +
5 (a + m)* m*

29. Find the centre of gravity of the surface generated by the revo
lution of a semi-cycloid about its axis, the equations of the curve

being

x = a(i cos ip), and y a ($ + sin ip).
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30. Find the centre of gravity of the surface generated by the revo

lution about its axis of one of the loops of the lemniscata

r2 = a2
cos 20.

2 + |/2
Ctr-

31. A cardioid revolves about its axis
;
find the centre of gravity

of the surface generated, the equation of the cardioid being

r = a (i cos 9).

*=
~63

32. A ring is generated by the revolution of a circle about an axis

in its own plane ;
c being the distance of the centre of the circle

from the axis, and a the radius, determine the volume and surface

generated.
V= 2 7rV&amp;lt;z

2

,
and 6*

33. A triangle revolves about an axis in its plane ; #1, #2,
and a3,

denoting the distances of its vertices from the axis, determine the vol

ume generated.

V= 2
-- -

(a, + a* + a3 ).

o

34. Find the volume of a frustum of a cone, the radii of the bases

being a^ and a9 ,
and the height h.

35. Find the volume and surface generated by the revolution of a

cycloid about its base.
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XV.

Moments of Inertia.

188. When a body rotates about a fixed axis, the velocity

of a particle at a distance r from the axis is

dco

in which GO is the angle of rotation. The force which acting
for a unit of time would produce this motion in a mass m is

measured by the momentum

dca
mr r- .

dt

The moment of this force about the axis is therefore

The sum of these moments for all the parts of a rigid system is

dco

since the angular velocity, r ,
is constant. In the case of a

at

continuous body this expression becomes

in which dm is the differential of the mass. The factor
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which depends upon the shape of the body, is called its mo*

ment of inertia, and is denoted by /.

189. When the body is homogeneous, dm is to be taken

equal to the differential of the line, area, or volume, as the case

may be. For example, in finding the moment of inertia of a

straight line whose length is
2&amp;lt;7,

about an axis bisecting it at

right angles, we let x denote the distance of any point from

the axis; then dm = dx, hence we have

f&quot; j*fc = =
L, 3 I2

Again, in finding the moment of inertia of the semi-circle in

figure 25, about the axis of/, let dm 2ydx; then, since every

point of the generating line is at the distance x from the axis,

the moment of inertia is

1=2
\
yx*dx = 2 Va* - **) ^ dx

Jo

Putting x a sin 8, we have

I:

The Radius of Gyration.

190. If the whole mass of the body were situated at the

distance k from the axis, its moment of inertia would be &m.

Now, if k is so determined that this moment shall be equal to

the actual moment of inertia of the body, the value of k is the

radius of gyration of the body with reference to the given

axis. Hence
Moment of inertia

AT =



XV.] THE RADIUS OF GYRATION. 221

Thus, for the radius of gyration of the line 2, whose moment
of inertia is found in the preceding article, we have

, 9 a , a
A* nr &Kf \J 1 tv -

3 V3

and for the radius of gyration of the semi-circle, whose area

is

13. /.& -
,

or k -
.

4 2

It is evident that this expression is also the radius of gyra
tion of the whole circle about a diameter, for the moment of

inertia of the circle is evidently double that of the semi-circle,

and its area is also double that of the semi-circle.

191. It is sometimes convenient to use modes of generating
the area or volume, other than those involving rectangular

coordinates. For example, let it be required to find the radius

of gyration of a circle whose radius is a, about an axis passing

through its centre and perpendicular to its plane. This circle

may be generated by the circumference of a variable circle

whose radius is r, while r passes from o to a. The differential

of the area is then 2nr dr, and the moment is

/o 7 **#= 2 7t \ r3 dr .

Dividing by the area of the circle, we have

192. Again, to find the radius of gyration of a sphere
whose radius is a about a diameter. In order that all points
of the elements shall be at the same distance from the axis.
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we regard the sphere as generated by the surface of a cylinder
whose radius is x, and whose altitude is 2y. The surface of

this cylinder is therefore ^nxy. The differential of the volume
is qjtxydx, and the moment of inertia is

/ = 47r \x*y dx = 4?r
j
V(a*

-
x)

Putting x = a sin 6,

= 47Ttf
5

f

2

si

Jo
sin3 6 cos2

15

Dividing by - -
,
the volume of the sphere, we have

Radii of Gyration about Parallel Axes.

193. The moment of inertia of a body about any axis exceeds

its moment of inertia about a parallel axis passing through the

centre of gravity, by the product of the mass and the square of
the distance between the axes.

Let h be the distance between the axes. Pass a plane

through the element dm perpendicular to the axes, and let r

and r\ be the distances of the element from the axes. Then,

r, rly and h form a triangle ;
let 6 be the angle at the axis

passing through the centre of gravity, then

cos
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The moment of inertia is therefore

I r*dm = rl dm + Jfim 2h \r cos 6 dm . . . (2 )

Now rt and 6 are the polar coordinates of dm, in the plane
which is passed through the element; hence the last integral in

equation (2) is equivalent to

2h x dm.

But x dm is the statical moment of the body about the axis

passing through the centre of gravity. Now from the defini

tion of the centre of gravity, this moment is zero
; hence,

equation (2) reduces to

I

r2 dm r? dm + $m ....... (3

Introducing the radii of gyration, we have also

& = k? + h* (4)

194. As an application of this result, we shall now find the

moment of inertia of a cone whose height is //, and the radius

of whose base is a, about an axis passing through its vertex

perpendicular to its geometrical axis. Taking the origin at

the vertex of the cone, the axis of x coincident with the geo
metrical axis, and a circle perpendicular to this axis as the

generating element, we have for the area of this element Try
2

,

and for its radius of gyration about a diameter parallel to
-j

the given axis,
J

.

4
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The distance between these axes being x, the proposition

proved in the preceding article gives an expression for the

radius of gyration of the element about the given axis
; viz.,

r
2

.r
2

-+ . Replacing r2
,

in the general expression for / (Art.
4

1 88), by this expression, and substituting for dm the differen

tial ny* dx, we have

ctx
in which j = . Therefore

J7 ncPh
and since V ,

To find the square of the radius of gyration about a

parallel axis through the centre of gravity, we have

To find the moment of inertia of a right cone about its

geometrical axis we employ the same generating element as

before ;
but in this case the square of the radius of gyration is

. Hence
2
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therefore
_ na^h . 70 3^

2

/= whence /r = .

10 10

Polar Moments of Inertia.

195. In the case of a plane area, when the axis of rotation

passes through the origin, we have

= x* + /, hence t* dm =
(x* + /) dm,

therefore 7= U2 dw + I
jj/

2

that is, /^ .raw 0/ the moments of inertia of a plane area about

two axes in its own plane at right angles to each other is equal to

the moment of inertia about an axis through the origin perpendicu

lar to the plane. I in the above equation is called the polar

moment of inertia.

In the case of the circle, since the moment is the same

about every diameter, the polar moment is twice the moment

about a diameter ;
that is, denoting the former by // and the

latter by /, we have

j =2l -=^*~ 2

See Art. 191.

Examples XV.

i. Find the radius of gyration of a circular arc (2$) about a radius

passing through its vertex.
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Solution :

Taking the origin at the centre, and the axis of x bisecting the arc,

and denoting by 2a the angle subtended by 2s, we have

1J

fa

/ ds a*\ sin
2

_ a* I sin 2a
m = 2a(X . . k = I i ---

2 \ 2(X

2. Find the radius of gyration of the same arc about the axis of y,

and thence about a perpendicular axis through the centre of the

circle. k = a.

3. Find the radius of gyration of the same arc about an axis through

its vertex perpendicular to the plane of the circle.

See Ex. XIV., 14, and denote by c the subtending chord.

2S

4. Find the moment of inertia of the chord of a circular arc, in

terms of the diameter parallel to it, and its angular distance from this

diameter.
73

See Arts. 189 and 193. / (3 cos a cos 3^) .

24

5. Find the radius of gyration of an ellipse about an axis through
its centre perpendicular to its plane.

Find the radius of gyration about the major axis and about the minor

axis, and apply Art. ioq.

6. Find the radius of gyration of an isosceles triangle about a per

pendicular let fall from its vertex upon the base (2^).
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7. Find the radius of gyration about the axis of the curve, of the

area enclosed by the two loops of the lemniscata

r
2

a&quot; cos 20.

8. Find the radius of gyration of a right triangle, whose sides are a

and b, about an axis through its centre of gravity perpendicular to its

plan

k
, = a* + V

18

9. Find the radius of gyration of a portion of a parabola bounded

by a double ordinate perpendicular to the axis, about a perpendicular

to its plane passing through its vertex.

10. Find the radius of gyration of a cylinder about a perpendicular
that bisects its geometrical axis, 2/ being the length of the cylinder,

and a the radius of its base.

*=*V-.
4 3

11. Find the radius of gyration of a concentric spherical shell about

a tangent to the external sphere, the radii being a and b.

_
5 tf-lf

12. Find the radius of gyration of a paraboloid of revolution about

its axis, in terms of the radius (b} of the base.

13. Find the moment of inertia of an ellipsoid about one of its

principal axes.

j^^ab^
5
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14. Find the radius of gyration of a symmetrical double convex lens

about its axis, a being the radius of the circular intersection of tne

two surfaces, and b the semi-axis.

tf +
5&amp;lt;gV

+ ioa
4

15. Find the radius of gyration of the same lens about a diameter

to the circle in which the spherical surfaces intersect.

_ ioa
4 +

THE END.
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