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PREFACE.

IN the following Treatise I have adopted the method of

Limiting Eatios as my basis
;

at the same time the co

ordinate method of Infinitesimals or Differentials has been

largely employed. In this latter respect I have followed in

the steps of all the great writers on the Calculus, from

Newton and Leibnitz, its inventors, down to Bertrand, the

author of the latest great treatise on the subject. An ex

clusive adherence to the method of Differential Coefficients

is by no means necessary for clearness and simplicity ; and,

indeed, I have found by experience that many fundamental

investigations in Mechanics and Geometry are made more

intelligible to beginners by the method of Differentials than

by that of Differential Coefficients. While in the more ad

vanced applications of the Calculus, which we find in such

works as the Mecanique Celeste of Laplace and the Meca-

nique Analytique of Lagrange, the investigations are all

conducted on the method of Infinitesimals. The principles

on which this method is founded are given in a concise form

in Arts. 38 and 39.

In the portion of the book devoted to the discussion of

Curves I have not confined myself exclusively to the ap-

plicati^n of the Differential Calculus to the subject, but

have availed myself of the methods of Pure and Analytic

M577310



v* Preface.

Geometry whenever it appeared that simplicity would be

gained thereby.

In the discussion of Multiple Points I have adopted the

simple and general method given by Dr. Salmon in his

Higher Plane Curves. It is hoped that by this means the

present treatise will be found to be a useful introduction to

the more complete investigations contained in that work.

As this book is principally intended for the use of begin
ners I have purposely omitted all metaphysical discussions,

from a conviction that they are more calculated to perplex
the beginner than to assist him in forming clear conceptions.
The student of the Differential Calculus (or of any other

branch of Mathematics) cannot expect to master at once all

the difficulties which meet him at the outset
;
indeed it is only

after considerable acquaintance with the Science of Geometry
that correct notions of angles, areas, and ratios are formed.

Such notions in any science can be acquired only after

practice in the application of its principles, and after patient

study.

The more advanced student may read with profit Carnot s

Reflexions stir la Metaphysique du Calcul Infinitesimal; in

which, after giving a complete resume of the different points

of view under which the principles of the Calculus may be

regarded, he concludes as follows :

&quot; Le merite essentiel, le sublime, on peut le dire, de la

methode infinitesimale, est de reunir la facilite des precedes

ordinaires d un simple calcul d approximation a 1 exactitude

des resultats de 1 analyse ordinaire. Get avantage immense

serait perdu, ou du moins fort diminue, si a cette methode

pure et simple, telle que nous 1 a donnee Leibnitz, on voulait,

sous 1 apparence d une plus grande rigueur soutenue dans

tout le cours de calcul, en substituer d autres moins naturelles,
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moins commodes, moins conformes a la marclie probable

des inventeurs. Si cette methode est exacte dans les re-

sultats, comme personne n en doute aujourd hui, si o est tou-

jours a elle qu il faut en revenir dans les questions difficiles,

comme il parait encore que tout le monde en convient,

pourquoi recourir a des moyens detournes et compliques pour

la suppleer? Pourquoi se contenter de 1 appuyer sur des

inductions et sur la conformite de ses resultats avex ceux que

fournissent les autres methodes, lorsqu on peut la demontrer

directement et generalement, plus facilement peut-etre

qu aucune de ces methodes elles-memes ? Les objections que

Ton a faites centre elle portent toutes sur cette fausse suppo

sition que les erreurs commises dans le cours du calcul, en y

negligeant les quantites infiniment petites, sont demeurees

dans le resultat de ce calcul, quelque petites qu on les sup

pose ;
or c est ce qui n est point : 1 elimination les emporte

toutes necessairement, et il est singulier qu on n ait pas

apercu d abord dans cette condition indispensable de 1 elimi

nation le veritable caractere des quantites infinitesimales et

la reponse dirimante a toutes les objections.&quot;

Many important portions of the Calculus have been

omitted, as being of too advanced a character
; however,

within the limits proposed, I have endeavoured to make the

Work as complete as the nature of an elementary treatise

would allow.

I have illustrated each principle throughout by copious

examples, chiefly selected from the Papers set at the various

Examinations in Trinity College.

In the Chapter on Eoulettes, in addition to the discussion

of Cycloids and Epicycloids, I have given a tolerably com

plete treatment of the question of the Curvature of a Eoulette,

as also that of the Envelope of any Curve carried by a rolling



viii Preface.

Curve. This discussion is based on the beautiful and general
results known as Savary s Theorems, taken in conjunction
with the properties of the Circle of Inflexions. I have

introduced the application of these theorems to the general
case of the motion of any plane area supposed to move on

a fixed Plane.

I have also given short Chapters on Spherical Harmonic

Analysis and on the System of Determinant Functions

known as Jacobians, which now hold so fundamental a place

in analysis.

TRINITY COLLEGE,

October, 1899.
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DIFFEKENTIAL CALCULUS,

CHAPTER I.

FIRST PRINCIPLES DIFFERENTIATION.

i . Functions. The student, from his previous acquaintance
with Algebra and Trigonometry, is supposed to understand
what is meant when one quantity is said to be a function of

another. Thus, in trigonometry, the sine, cosine, tangent, &c.,
of an angle are said to be functions of the angle, having each

a single value if the angle is given, and varying when the

angle varies. In like manner any algebraic expression in x
is said to be a function of x. Geometry also furnishes us
with simple illustrations. For instance, the area of a square,
or of any regular polygon of a given number of sides, is a
function of its side

;
and the volume of a sphere, of its radius.

In general, whenever two quantities are so related, that

any change made in the one produces a corresponding variation

in the other, then the latter is said to be a function of the

former.

This relation between two quantities is usually represented
by the letters F,f, 0, &o.

Thus the equations

u =
F(x), v =/(*), w =

(a),

denote that w, v, w, are regarded as functions of #, whose
values are determined for any particular value of #, when the
form of the function is known.

2. Dependent and Independent Variables, Con-
stants. In each of the preceding expressions, x is said to be
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the independent variable, to which any value may be assigned
at pleasure ;

and u
9 v, w9

are called dependent variables, as their

values depend on that of x
9
and are determined when it is

known.

Thus, in the equations

y= ID*, y = x\ y = sins,

the value of y depends on that of x
9
and is in each case deter*

mined when the value of x is given.
If we suppose any series of values, positive or negative,

assigned to the independent variable x
9
then every function

of x will assume a corresponding series of values. If a quan
tity retain the same value, whatever change be given to x

9
it

is said to be a constant with respect to x. We usually denote

constants by a, #, c, &c., the first letters of the alphabet ;

variables by the last, viz., u, v, w, x, y, z.

3. Algebraic and Transcendental Functions.
Functions which consist of a finite number of terms, involving

integral and fractional powers of x
9 together with constants

solely, are called algebraic functions thus

are algebraic expressions.
Functions which do not admit of being represented as

ordinary algebraic expressions in & finite number of terms are

called transcendental : thus, sin x
9
cos a?, tan #, *, log x

9 &c.,

are transcendental functions ; for they cannot be expressed

in terms of x except by a series containing an infinite number

of terms.

Algebraic functions are ultimately reducible to the follow

ing elementary forms : (i). Sum, or difference (u + v, u -
v).

(2). Product, and its inverse, quotient ff,
-j.

Powers, and

their inverse, roots (u
m

,
um

).

The elementary transcendental functions
^

are also ulti

mately reducible to : (i). The sine, and its inverse, (sin w,

sin&quot;
1

!*)- (2). The exponential, and its inverse, logarithm

(Mogu).
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i* 4. Continuous Functions. A function (#) is said to

be a continuous function of x, between the limits a and &,

when, to each value of x, between these limits, corresponds a
finite value of the function, and when an infinitely small

change in the value of x produces only an infinitely small

change in the function. If these conditions be not fulfilled

the function is discontinuous. It is easily seen that all

algebraic expressions, such as

+ .... On,

and all circular expressions, sin x, tan x, &c., are, in general,
continuous functions, as also e*, log a?5 &c. In such cases,

accordingly, it follows that if x receive a very small change,
the corresponding change in the function of x is also very
small.

-

5. Increments and Differentials. In the Differen
tial Calculus we investigate the changes which any function

undergoes when the variable on which it depends is made to

pass through a series of different stages of magnitude.
If the variable x be supposed to receive any change, such

change is called an increment ; this increment of x is usually
represented by the notation A#.

When the increment, or difference, is supposed infinitely
small it is called a differential, and represented by dx, i.e. an

infinitely small difference is called a differential.

In like manner, if u be a function of x, and x becomes
x + Ao?, the corresponding value of u is represented by u + Aw

;

i. e. the increment of u is denoted by A.
sS 6. Limiting Ratios, Derived Functions. If u be a
function of x, then for finite increments, it is obvious that the
ratio of the increment of u to the corresponding increment of

x has, in general, a finite value. Also when the increment
of x is regarded as being infinitely small, we assume that the
ratio above mentioned has still a definite limiting value. In
the Differential Calculus we investigate the values of these

limiting ratios for different forms of functions.

The ratio of the increment of u to that of x in the limit,

when both are infinitely small, is denoted by . When
dx

B 2
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u =/(#), this limiting ratio is denoted by/ (#), and is called

the first derivedfunction* of/(#).
Thus ; let x become x + h, where h = A#, then u becomes

f(x +
ti), i. e. u + Aw =f(x + h),

/. Aw =/(* + h] -/(*),

Ati * + *-*

The limiting value of this expression when h is infinitely small

is called the first derived function of /(#), and represented

by/.
Again, since the ratio has/ (x) for its limiting value,

A0
if we assume

Aw

must become evanescent along with A# ; also becomes
A#

- at tlib same time
;
hence we have

dx

This result may be stated otherwise, thus : If HI denote

the value of u when x becomes #1, then the value of the ratio

~- when a?i
- x is evanescent, is called the first derived

#!
- X

function of w, and denoted by .

* The method of derived functions was introduced by Lagrange, and the

different derived functions of/ (a?) were defined by him to be, the coefficients of

the powers of h in the expansion off(x + h) : that this definition of the first

derived function agrees with that given in the text will be seen subsequently.
This agreement was also pointed out by Lagrange. See &quot;Theorie des

Fonctions Analytiques,&quot; N 08
. 3, 9.
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If Xi be greater than x, then HI is also greater than u, pro

vided
Ul

~ U
is positive ;

and hence, in the limit, when xl
- x

CCi
- X

rfu ^

is evanescent, th is greater or less than u according as is

positive or negative. Hence, if we suppose x to increase,

then any function of x increases or diminishes at the same

time, according as its derived function, taken with respect
to x, is positive or negative. This principle is of great

importance in tracing the different stages of a function of x,

corresponding to a series of values of x.

7. Differential, and Differential Coefficient, of

/(*)
Let u =/(#) ;

then since

du nf , ^

afe-
W,

we have du = d (/(#))
= f(x] dx,

where dx is regarded as being infinitely small. In this

case dx is, as already stated, the differential of x, and du

or f (x) dx, is called the corresponding differential of u.

Also / (x) is called the differential coefficient of /(#), being
the coefficient of dx in the differential of f(x).

8. Algebraic Illustration. That a fraction whose
numerator and denominator are both evanescent, or in

finitely small, may have a finite determinate value, is

evident from algebra. For example, we have - = what

ever n may be. If n be regarded as an infinitely small

number, the numerator and denominator of the fraction

both become infinitely small magnitudes, while their ratio

remains unaltered and equal to
j.

It will be observed that this agrees with our ordinary
idea of a ratio

;
for the value of a ratio depends on the

relative, and not on the absolute magnitude of the terms

which compose it.

. na + ri*a

Again, ;f u ^,nb + nzo

in which n is regarded as infinitely small, and a, b, a and tf
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represent finite magnitudes, the terms of the fraction are
both infinitely small,

but their ratio is
* + &quot;*

n
b + nb

n

the limiting value of which, as n is diminished indefinitely,
. a .

is y. Again, it we suppose n indefinitely increased, the

limiting value of the fraction is
^&amp;gt;.

For
o

a + a n a ati - ba

ft + 6 w V b (b + b n)

but the fraction 77
- diminishes indefinitely as n

b (b + bn)
increases indefinitely, and may be made less than any
assignable magnitude, however small. Accordingly the

limiting value of the fraction in this case is %
b

&amp;lt;

9. Trigonometrical Illustration. To find the values

of
tanlP

an(*
~0~

wnen is regarded as infinitely email.

Here - - = cos0, and when 9 =
o, cos 9 = I.

tan (j

Hence, in the limit, when = o* we have
sin 9 , tan 9
7 7i

= i and, .*. -i ^ = i. at the same time,
tan v sin u

a

Again, to find the value of ^
^,
when 9 is infinitely small.

sin u

From geometrical considerations it is evident that if 9 be
the circular measure of an angle, we have

tan 9 &amp;gt; 9 &amp;gt; sin 0,

tanfl 9
or

TJ
&amp;gt; -^- &amp;gt; i

;
sin 9 sin 9

*
If a variable quantity be supposed to diminish gradually, till it be less than

anything finite which can be assigned, it is said in that state to be indefinitely
small or evanescent; for abbreviation, such a quantity is often denoted by cypher.

A discussion of infinitesimals, or infinitely small quantities of different orders,

will be found in the next Chapter.
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but in the limit, i.e. when 9 is infinitely small,

tanfl

sin
~

and therefore, at the same time, we have

sin0

This shows that in a circle the ultimate ratio of an arc to its

chord is unity, when they are both regarded as evanescent.

10. Creometrical Illustration. Assuming that the

relation y = f(x) may in all cases be represented by a curve,

where -, N

y =
/(*)

expresses the equation connecting the co-ordinates (a?, y)

of each of its points ; then, if the axes be rectangular, and

two points (x, y), (xly y\) he taken on the curve, it is obvious

that
y-^^~

represents the tangent of the angle which the
x\

~~ x

chord joining the points (x9 y), (xi9 yl) makes with the axis

of x.

If, now, we suppose the points taken infinitely near to

each other, so that Xi
- x becomes evanescent, then the chord

becomes the tangent at the point (x9 y) 9
but

?^ZJ^ becomes -^ or / (x) in this case.

Xi
- x dx

Hence, f (x) represents the trigonometrical tangent of the

angle which the line touching the curve at the point (x, y) makes

with the axis of x. We see, accordingly, that to draw the

tangent at any point to the curve

y - /()
is the same as to find the derived function f

f

(x) of y with

respect to x. Hence, also, the equation of the tangent to

the curve at a point (x, y) is evidently

y-T -/()( -Z), (2)

where X, F are the current co-ordinates of any point on the
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tangent. At the points for which the tangent is parallel to

the axis of #, we have f (x)
= o

;
at the points where the

tangent is perpendicular to the axis, f (x)
= oo . For all

other points f (x) has a determinate finite real value in

general. This conclusion verifies the statement, that the

ratio of the increment of the dependent variable to that of

the independent variable has, in general, a finite determinate

magnitude, when the increment becomes infinitely small.

This has been so admirably expressed, and its con

nexion with the fundamental principles of the Differential

Calculus so well explained, by M. Navier, that I cannot for

bear introducing the following extract from his &quot;Lecons

d Analyse&quot;:
&quot;

Among the properties which the function y =
/(#), or

the line which represents it, possesses, the most remarkable

in fact that which is the principal object of the Differential

Calculus, and which is constantly introduced in all practical

applications of the Calculus is the

degree of rapidity with which the

function / (x) varies when the in

dependent variable x is made to

vary from any assigned value.

This degree of rapidity of the

increment of the function, when x

is altered, may differ, not only
from one function to another, but

also in the same function, ac

cording to the value attributed to

the variable. In order to form a Fig.

precise notion on this point, let us attribute to x a deter

mined value represented by ON, to which will correspond
an equally determined value of y, represented by PN. Let

us now suppose, starting from this value, that x increases by

any quantity denoted by A#, and represented by NM, the

function y will vary in consequence by a certain quantity,

denoted by Ay, and we shall have

y + Ay = f(x + or Ay = f(x +

The new value of y is represented in the figure by QM,
and QL represents Ay, or the variation of the function.
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The ratio of the increment of the function to that of

the independent variable, of which the expression is

is represented by the trigonometrical tangent of the angle

QPL made by the secant PQ with the axis of x.

&quot; It is plain that this ratio is the natural expression

of the property referred to, that is, of the degree of rapidity
with which the function y increases when we increase the

independent variable x
;

for the greater the value of this

ratio, the greater will be the increment Ay when x is in

creased by a given quantity Aa?. But it is very important
/\ At

to remark, that the value of -
(except in the case when

L\X

the line PQ becomes a right line) depends not only on the

value attributed to x, that is to say, on the position of P on

the curve, but also on the absolute value of the increment A#.

If we were to leave this increment arbitrary, it would be
^^.77

impossible to assign to the ratio - any precise value, and
L^X

it is accordingly necessary to adopt a convention which shall

remove all uncertainty in this respect.
&quot;

Suppose that after having given to A# any value, to

which will correspond a certain value Ay and a certain

direction of the secant PQ, we diminish progressively the

value of A#, so that the increment ends by becoming
evanescent

;
the corresponding increment Ay will vary in

consequence, and will equally tend to become evanescent.

The point Q will tend to coincide with the point P, and the

secant PQ with the tangent PT drawn to the curve at the

point P. The ratio of the increments will equally

approach to a certain limit, represented by the trigonometrical

tangent of the angle TPL made by the tangent with the

axis of x.

&quot;We accordingly observe that when the increment A#,
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and consequently Ay, diminish progressively and tend to

vanish, the ratio of these increments approaches in

general to a limit whose value is finite and determinate.

Hence the value of corresponding to this limit must be
A#

considered as giving the true and precise measure of the

rapidity with which the functionf (x) varies when the independent
variable x is made to vary from an assigned value

;
for there

does not remain anything arbitrary in the expression of this

value, as it no longer depends on the absolute values of the
increments A# and Ay, nor on the figure of the curve at any
finite distance at either side of the point P. It depends
solely on the direction of the curve at this point, that is, on
the inclination of the tangent to the axis of x. The ratio

just determined expresses what Newton called the fluxion of
the ordinate. As to the mode of finding its value in each

particular case, it is sufficient to consider the general
expression

Ay/fo + Afl) -f(x]

and to see what is the limit to which this expression tends,
as A# takes smaller and smaller values and tends to vanish.

This limit will be a certain function of the independent
variable #, whose form depends on that of the given function

f(x) ..... &quot;We shall add one other remark; which is, that

the differentials represented by dx and dy denote always
quantities of the same nature as those denoted by the variables

x and y. Thus in geometry, when x represents a line, an

area, or a volume, the differential dx also represents a line, an

area, or a volume. These differentials are always supposed
to be less than any assigned magnitude, however small

; but
this hypothesis does not alter the nature of these quantities :

dx and dy are always homogeneous with x and y, that is to

say, present always the same number of dimensions of the unit

by means of which the values of these variables are expressed.&quot;

loa. Limit of a Variable Magnitude. As the con

ception of a limit is fundamental in the Calculus, it may
be well to add a few remarks in further elucidation of its

meaning :
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In general, when a variable magnitude tends continual^ to

equality with a certain fixed magnitude ,
and approaches nearer to

it than any assignable difference, hoivever small, this fixed magni
tude is called the limit of the variable magnitude. For example,
if we inscribe, or circumscribe, a polygon to any closed curve,

and afterwards conceive each side indefinitely diminished,
and consequently their number indefinitely increased, then

the closed curve is said to be the limit of either polygon.

By this means the total length of the curve is the limit of

the perimeter either of the inscribed or circumscribed polygon.
In like manner, the area of the curve is the limit to the

area of either polygon. For instance, since the area of any
polygon circumscribed to a circle is obviously equal to the

rectangle under the radius of the circle and the semi-perimeter
of the polygon, it follows that the area of a circle is repre
sented by the product of its radius and its semi-circumfe

rence. Again, since the length of the side of a regular

polygon inscribed in a circle bears to that of the correspond

ing arc the same ratio as the perimeter of the polygon to the

circumference of the circle, it follows that the ultimate ratio

of the chord to the arc is one of equality, as shown in Art. 9.

The like result follows immediately for any curve.

The following principles concerning limits are of fre

quent application: (i) The limit of the product of two quan
tities, which vary together, is the product of their limits ; (2) The
limit of the quotient of the quantities is the quotient of their

limits.

For, let P and Q represent the two quantities, and p and

q their respective limits
;
then if

a and /3 denote quantities which diminish indefinitely as P
and Q approach their limits, and which become evanescent

in the limit.

Again, we have

PQ =pq +pfi + qa + a/3.

Accordingly, in the limit, we have

PQ-pq.
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P p + a p Qa -
pfi

The numerator of the last fraction &quot;becomes evanescent in

the limit, while the denominator becomes q
z

,
and consequently

P p
the limit of is -.

Q ?
1 1 . IHfferentiation. The process of finding the derived

function, or the differential coefficient of any expression, is

called differentiating the expression.
We proceed to explain this process by applying it to a

few elementary examples.

EXAMPLES.

i. y = xz .

Substitute x + h for x, and denote the new value of y by yi, then

yi = (x + A)
2 = x2 + 2xh + hz

;

If A be taken an infinitely small quantity, we get in the limit

dy
-f-

= ix :

dx

or if /(#) = #2 we have/ (#)
= za;.

Here

-y .~~

which equation, when h is evanescent, becomes
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12. Differentiation of the Algebraic Sum of a
Finite dumber of Functions. Let

then, if xl
= x + h, we get

y l
= Wi + ?i

- Wi +

y\-y Ui- u Vi-v
* ~~

which becomes in the limit, when h is infinitely small,

dy du dv dw

dx dx dx dx

Hence, if a function consist of several terms, its derived

function is the sum of the derived functions of its several parts,

taken with their proper signs.

It is evident that the differential of a constant is zero.

13. Differentiation of the Product of Two Func
tions. Let y = uv, where w, v, are both functions of x

;
and

suppose Ay, Aw, A0, to be the increments of y, w, 0, corre

sponding to the increment A# in x. Then

Ay = (u + Aw)* (v + A0)
- w0

Aw At?,

Ay Afl
, A N

Aw
or = w + (v + Ae?) .

A# AOJ
v 7 A#

Now suppose Aa? to be infinitely small, then

Ay A# Aw

A? A Ai
become in the limit

dy dv , du

also, since A# vanishes at the same time, the last term dis

appears from the equation, and thus we arrive at the result

dy dv du . ,

S- s+ta? (3)
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Hence, to differentiate the product of two functions
multiply each of the factors by the differential coefficient of the
other, and add the products thusfound

Otherwise thus: let /(a), (*), denote the functions, andh the increment of #, then

yi =/(# + h) (x + h) ;

h

^
Now, in the limit,

f(x + h] -f(x]
h

and 0(

and, accordingly,

which agrees with the preceding result.
When y =

au, where is a constant with respect to x,we have evidently

dy du

dx dx

14. Differentiation of the Product of any Numberof Functions. First let

y = uvw\

suppose vw =
,

then y = wg
,

and, by Art. 13, we have

dy dz du
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but, by the same Article,

dz dv dw
= w + v

dx dx dx
hence

dy du dv dw
-f-

= vw + wu + uv .

dx dx dx dx

This process of reasoning can be easily extended to any
number of functions.

The preceding result admits of being written in the form

i dy _ i du i dv i dw

y dx u dx vdx w dx

and in general, if y =
y\ y* y* . y,

it can be easily proved in like manner that

dy_ = _i dyi i_dy* dy / x

y dx y\ dx yz dx yn dx

15. Differentiation of a Quotient Let

y =
-, then u = yv\

, du dv dy
therefore, by Art. 13, -y*

dy du dv _ du udv

\

dv

or v y =
dx dx dx dx v dx

dx dx~~
J

du dv

**

~dx

=
T&quot;

This may be written in the following form, which is often

useful :

d
fu\ __

i du u dv

dx \v 1 i* dx v* dx
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Hence, to differentiate a fraction, multiply the denominator

into the derivedfunction of the numerator, and the numerator into

the derived function of the denominator ; take the latter product
from the former, and divide by the square of the denominator.

In the particular case where u is a constant with respect
to x (a suppose), we obviously have

L (^] = _ L f!* (6)
dx\v] tf dx

EXAMPLES.
a-x du

&quot;

2. u =
(a + x) (* + *)

= a + b+ix.

V 1 6. Differentiation of an Integral Power. Let
f U y

- xn
,
where n is a positive integer.

Suppose 2/1 to be the value of y, when x becomes # t , then

a?!
- # iPi

- a?

Now, suppose Xi
- x to be evanescent. In this case we

may write x for xl in the right-hand side of the preceding

equation, when it becomes nxn
~ l

; but the left-hand side, in

clu

the limit, is represented by -jj-dx

Hence
ax

This result follows also from Art. 14 ; for, making

2/1
=

2/2
=

2/3
= .

= yn =
u,

we evidently get from (4),

^5 = ** (7)
efe? dx

This reduces to the preceding on making u = at.
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Kin Differentiation of a Fractional Power. Let
T

,

then ^ = *, and

hence, by (7),

=
dx dx

m

d(u&quot;) dy_
&quot;

dx ~dx

~
n y

n&quot;1 dx
~

n dx

1 8. Differentiation of a Negative Power. Let

y = trm,
then y =

^,
and by (6) we get

mw&quot;^
1
-7- ,

d ,
dx m . du ( N

. (tr) = -- - = - mw^&quot;
1 --. (9)^ v uzm dx

Combining the results established in (7), (8), and (9), we

find that

d (u
m

) . du
- - = muv-l

-r
dx dx

for all values of w, positive, negative, or fractional. When

applied to the differentiation of any power of x we get the

following rule : Diminish the index by unity, and multiply the

power of x thus obtained by the original index ; the result is the

required differential coefficient, with respect to x.

19. Differentiation of a Function of a Function.

Let y = f(x) and u =
(y), to find . Suppose yl9 u^ to be

the values of y and u corresponding to the value x^ for x
;

then if Ay, Aw, A#, denote the corresponding increments,

we have evidently

MI - u _ Uj - u yi
- y

xi- x y\- y xi-&amp;lt;*?

or

Aw AM Ay
A# Ay A#*
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As this relation holds for all corresponding increments,
however small, it must hold in the limit,* when A# is

evanescent ;
in which case it becomes

du dudy , *

dx dy dx

Hence the derived function with respect to x of u is the

product of its derived with respect to y ; and the derived of y
wtth respect to x.

&quot;^ 20. Differentiation of an Inverse Function. To

prove that

dx
i_

dy dy

~dx

Suppose that from the equation

the equation

is deduced, and let x^ y^ be corresponding values of a?, y,

which satisfy the equation (a), it is evident that they will

also satisfy the equation (b). But

- y
x

As this equation holds for all finite increments, it must

hold when x l
- x and y\- y are infinitely small ;

therefore

we have in the limit

*!.*!.,. (n)
dx dy

The same result may also be arrived at from Art. 19,

as follows :

When y -/(a?), and u =

* The Student will observe that this is a case of the principle (Art. ioa) that

the limit of the product of two quantities is equal to the product of their limits.
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we have, in all cases,

du _ dudy
dx dy dx

This result must still hold in the particular case when u = x9

in which case it becomes

dxdy

dydx

EXAMPLES.

Let a2 - a? - y, then w = y
8
,

du . dy

T = &, and - = - .

Hence = - wx (a
2 - a:

8
)

4
.

3. u =
(i

4. u =
(i + a;&quot;)&quot;*.

We next proceed to determine the derived functions of

the elementary trigonometrical and circular functions.

21. Differentiation of sin #. Let

y = sin x, y = sin (x + A),

A
. , , x . 2 sin -

rx
- y sin (# + ^)

- sin x 2

. h f h\
2 sin - cos ( x + -

1

. h
sm-

But by Art. 9, the limit of -r = i J moreover, the limit of

COS ( X + -
}
IS 008 05.

OJ
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d (sin x) t N
Hence ^-= s = cos*. (12)

dx

22. Differentiation of cos a?.

y = cos x, yi
- cos (# + ),

A . / A\
, , v 2 sm - sin (x + -

}

y\- y _ cos (x + h)
- cos # 2 \ 2J

h h h

Hence, in the limit,

dcoBx
= _^na?

/ x

dx

This result might be deduced from the preceding, by substi

tuting
- - s for x, and applying the principle of Art. 19.

It may be noted that (12) and (13) admit also of being

written in the following symmetrical form :

dsmx _ .

~
dx

dcosx = cos
dx

23. Differentiation of tan x.

y = tan x, y\
= tan (x + h) 9

sin (x + h) sin x

y l -y tan (x + h) -tana; _ cos (x + h) cos x

sin h_ _
hcosx cos (x + h)

9

which becomes = in the limit,
cos a;
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.,__.
d (tan x) i

,
.

Hence ^3
- = =seo2

a;. (14)
fifo COS

2 X

Otherwise thus,

7 sin x d sin # d cos x
j /, x a . cos x ; sin x =

a (tan x) _ cos a? dx dx

dx dx cos
2 x

cos
8 x + sin

2 x i

cos2 x cos
2 x

24. Differentiation of cot x. Proceed as in the last,

, d (cot x) i
, Nand we get

~ - = - -r-z- = - cosec2
#. (15)

dx sin
2

a;

This result can also be derived from the preceding, by put

ting z for a?, as in Art. 22.

25. Differentiation of sec x.

i
= seo a? =

dy si
* - ~

COS* X
sec a;.

a . .. . d cosec #
Similarly

- - = - cot x coseo x.

26. Differentiation of y = sin&quot;
1
^.

dx
Ht3 3 x - sm y, .*. -=- = cos y.

Hence, by Art. 20, we get

fy =
i

=
I

flfo? cos y -v/j _ #*
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The ambiguity of the sign in this case arises from the ambi

guity of the expression y =
sin&quot;

1 x
;
for if y satisfy this equa

tion for a particular value of #, so also does TT - y ;
as also

2?r + y, &o. If, however, we assign always to y its least value,

i. e. the acute angle whose sine is represented by #, then the

sign of the differential coefficient is determinate, and is evi

dently positive ;
since an angle increases with its sine, so long

as it is acute. Accordingly, with the preceding limitation,

In like manner we find

d . cos&quot;
1 x

(18)

with the same limitation.

This latter result can be at once deduced from the preced

ing by aid of the elementary equation

sin 1 x + cos&quot;
1 x = -.

27. Differentiation of tan&quot;
1
a?.

A
y = tan&quot;

1

^, /. x = tan y\

henoe
Ty=^&amp;gt;

Similarly,

28. Geometrical Demonstration. The results ar

rived at in the preceding Articles admit also of easy demon-
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stration by geometrical construction. We shall illustrate this

method by applying it to

the case of sin 0.

Suppose XPQFtobe a

quadrant of a circle hav

ing as its centre, and

construct as in figure.

Let denote the angle
XOP expressed in circu

lar measure ;
then

Accordingly,

= cos
PQ
WK-

arc PQ,

PQ
But we have seen, in Art. 9, that the limiting value of ^arc JL vf,

= i ; also PQE =
0, at the same time

;
hence = cos 0,

as before.

The student will find no difficulty in applying the pre

ceding construction to the differentiation of cos 0, sin&quot;
1

0, and

cos&quot;
1
0. The differential coefficients of tan 0, tan&quot;

1

0, &c., can,

in like manner, be easily obtained by geometrical construction.

I. y = sin (nx -f ).

2. y = cos mx cos we.

3. y = sm

EXAMPLES.

dy
----- n cos (nx + a).

= - (m cos nx sin mx + n cos mx sin nx).
dz

dy- = n sin&quot;
1 x cos x,

to
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4. y = sin (, + ..). *=* co.
(i+*&amp;gt;.

5- Show that sin2 * 1 (sinms sin mo;) = m sin*** sin (m + r) *.

Here - (sin** sin ta*) = m sin- * (cos * sin m* + sin x cos **)
= w sin*&quot;-

1 x sin (m + 1)3; .-. &c .

^ 7- 2/
=

sin(sin a:).

Or y = sin *, where = sin x. g = cos x cos (sin^

Here (i
-

**)i
= sin y ; .-. T=cosy.

ro.
.

**

11. y =

12. y =

^
^ 29. IdilTereiitiatioii of

Let

y _ log, (x + h)
- iogag

Hence is equal to the limiting value of

when h is infinitely small.

Again, let h = xu, then

+
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.*.
-- = -

multiplied by the value of logfl (i + u)
u when u is

infinitely small.

To find the value of the latter expression, let - =
s, then

1 / i\
a

.

(i + u}
u becomes f i + -

J
,
in which z is regarded as infinitely

great. Suppose the limiting value of this expression to be re

presented by the letter e, according to the usual notation. We
can then find the value of e as follows by the Binomial
Theorem :

z i z(z- i) ii+_=i+_.-+ -^ 1 .-+...
J * T 2 z

I 1.2 1.2.3
The limiting* value of which, when z =

oo, is evidentlyiii i
i + - + + + + &c.

I 1.2 1.2.3 1.2.3.4

By taking a sufficient number of terms of this series, we
can approximate to the value of e as nearly as we please.
The ultimate value can be shown to be an incommensurable

quantity, and is the base of the natural or Napierian system
of logarithms. When taken to nine decimal places, its value
is 2.718281828.

Again, since (i + u)
w = e when u =

o, we get

_ loga e

dx (20)

Also, since the calculation of logarithms to any other
base starts from the logarithms of some numbers to the base e

;

* It will be shown in Chapter 3, without assuming the Binomial expansion,
that e is the limit of the sum of the series

ii i

i H 1 1 + &c., ad infinitum.
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and moreover, since the logarithms of all numbers are expressed

by their logarithms to the base e multiplied by the modulus

of transformation, the system whose base is e is fundamental

in analysis, and we shall denote it by the symbol log without

a suffix. In this case, since log e = i, we have

Again,
d n . Iogi e M . .-

(log,,*)
=
-^-

= -, (22)

where M or Iog 10 e is the modulus of Briggs or the ordinary

tabulated system of logarithms. The value of this modulus,

when calculated to ten decimal places, is

0.4342944819.

On the method of its determination see Galbraith s
&quot;Algebra,&quot;

p. 379.
If x be a large number, it is evident, from the preceding,

that the tabular difference (as given in Logarithmic Tables),

i. e. the difference between Iog 10 (x + i) and logic #, is
, ap-x

proximately. The student can readily verify this result by
reference to the Tables.

30. Differentiation of ax .

Let y = ax
,

then log y = x log a ;

rfflogy) _ d (log y)dy_ %.
but ~^~ dy dx ydx

. (23)
ax ax

Also, since log e = i, we have

*--*. (4)
dx
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EXAMPLES.

i. y = log (sin x).

Let sin x z, then y = log *.

dy dy dz
And since = 3~

rfy cos x
we get -^ = - = cot x.

dx sin x

log V *-*-* kg (*-

dy

.*. y = log tan -. Hence =
2 dx sin x

31. Logarithmic Differentiation. &quot;When the func

tion to be differentiated consists of products and quotients
of functions, it is in general useful to take the logarithm
of the function, and to differentiate it. This process is called

logarithmic differentiation.

EXAMPLES.

i. y = yi . y* - ys . . . yn , log y = log y\ + log y3 + . . . + log y.

Hence - = - h -!-...+ 3
y dx y\ dx yz dx yn dx

This furnishes another proof of formula (4), p. 15.

a. y- . Here, logy = m log sin x -n log cos*;

I dy cos x sin x dy sin&quot;
1 x . . , .

.-. -~ = m + n
; . .-/-= ;- (m cos2 x + n sm3

*).
y dx sm x cosx dx cosn+1 x
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(*-2)l(*- 3)|-

Here log y = -
log (a;

i
)
- -

log (x 2)
- log (x ) ;2 4 3

hence 1 ^ _ 1 -L - 1 _^ 7 i _ 7* + 3* -
97

yrfa; 2 g - i 435-2 3^-3 12 .
(a:
-

i) (*
-

2} (x
-

3)

dy^ _ (a;
-

i)| (7a;
2

-f 300:
-

97)

*^~ 12 . (*
-

2)1 (x
-

3 )

dy a4 + a2 a;
2 - 4a*

4. y=*( 2 + a:
2
)&amp;lt;sA

2 -32
. ^ =

7 :

V 2 - 2

5- y = &quot;. Here log y = a; log x.

&**. Here log y = a?*,

//

.*. ~ = ex x*(i +log a;).
c?a;

7. y =
,
where M and v are both functions of*.

Here log y = v log w,

I dy dv v du

dy I. dv v du\ dv
. . = uv

( log U + - =
M&quot; log W +

dx \ dx u dx dx fo*

32. The expression to be differentiated frequently admits
of being transformed to a simpler shape. In such cases the

student will find it an advantage to reduce the expression to

its simplest form before proceeding to its differentiation.

I. y = sin- 1

EXAMPLES.

x

+ x*

Here = sin y, or
^
= Sin2 y J

nence a; = tan y,

dy i
and we get = cosz y .
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Here tan y =

\/i + xz tan y 4- i

+ tan y)2
-

(i
-
tany)

2 2tany

(i + tan y)
2 + (i

- tan y)* 1

du
Hence - cos

dy x x

dx
~~

cos iy v x _

/V/ i+iP-t-A/ 1 -^ J
, */ 1 +X + 1/I - x

= iog r
, =-iog x -7=

\\/I+X-^/l-X */I+X-&amp;lt;/l-it

*f I
Hence ~ = .

* 2sVi - a2

. -V/I + X2 - I 2$
-1 Z. ^_

fon-1
4. y = tan~ + tan

x i

Let x = tan z, and the student can easily prove that

5 , dy 5 i
- z

;
hence - =

a & a i +



3&amp;lt;&amp;gt;
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EXAMPLES.

Ans. 2

2. y = x\ogx.

3- y = logtan*.

4- y = log tan-i*.

sin 2x

8. y =

Here

(i + a
)

y = tan 1
*/~x + tan-i &amp;lt;

&amp;lt;fy_ i_

^ViTS&quot;

r + a?)
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Xy =
(-* ) --*. ^ =l^!_L^ (l -^. 8in-.,

X

I - tan a;

sec a;

dx x X*

= -
(cos + sin x).

/
17.

18. =

dy

gatan&quot;
r

(
aa;

_
j)

i+*__

20. y = log {(a*- i)

,

+ b
V

/ \ * /
2
\

*

23. Being given that y = a3 fi-sM
I

1
&quot;&quot;)

&amp;gt;

dx

determine the values of c, c
,

c&quot;. -4*. c = 3, c = -
6, c&quot; = f .

dy i

24. y = log (log *).
dx x log #*

2 C. = COS*
l 3 + 5 cos x dy

5 + 3 cos x dx 5 + 3 cos*

.
-

a6 . y = sm-i__.

27. y = ea* sinm rx. -ef^ sin&quot;
1-! ra;

(
sin ra; + wr cos r*).

dx
+ r2 sin (rx + &amp;lt;/&amp;gt;),

where tan
^&amp;gt;

= -.
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j,
f / y

20. y = log (A/ x a + A/ x b - * *V(*-)(*-b)

3- y =

Hero l = tan ; ... .-.... =-_
i + a a rfar (i

-

31. = .31. y = x*
n

.

j-
- #*

w
+n-i

( log a; + i).

32.

la cos x b sin # dy ab
g

&quot;V a cos x + d sin # &amp;lt;fo

~
02 cos2 x - bz sin2 #

34. Define the differential coefficient of a function of a variable quantity,
with respect to that quantity, and show that it measures the rate of increase of

the function as compared with the rate of increase of the variable.

35 . If y = -, prove the relation

dy dx

. + ax + *(x*+ax) 2 - bx du .

36. If u = log
--- -

, prove that is of the form
ay.* - bx

,
and determine the values ofA and B. Ans. A =

3, B = a.

V (x
2 + ax)~ bx

d f . \ A sin* + B sin2 + C
37- Prove that - sin e cos e y/ I _ c2 Sin2 Q

= T ,

- &amp;lt;Si~c*Bm*e

^ and determine the values of A, B, 0. Ans. A = 3c
2
,
JB = - a (i + c2

),
C = i

X
38. If w = * + !^ + i^-+ I

-^!-
7

,+ . . . *!/.; find the sum
23 2.45 2.4.67

of the series represented by . Ans. (i

39. Reduce to its simplest form the expression

dy sin2 (a + y)

40. If sin y ss 3 sin (a + y), prove that =
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. 41

In this case

#)i
= o, find .

dx

a;
2

(i + y) = y* (r + a:)

*2 - y
2 =

ya: (y
-

*),

42. y = log (x +
x dij I x + a
-. - = -

43. Ifx and y are given as functions of t by the equations

*=/(&amp;lt;); ^=^(0;

find the value of -- in terms of t.

dx

44-

x*
.

45.

Hence y = .

-j-
= 777 .

dx J (t)

I + &c., ^ infaiitum.

dy x
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CHAPTER II.

SUCCESSIVE DIFFERENTIATION.

33. Successive Derived Functions. In the preceding
chapter we have considered the process of finding the derived
functions of different forms of functions of a single variable.

If the primitive function be represented by/(#), then, as

already stated, its first derived function is denoted by f (x).
If this new function, / (a?), be treated in the same manner,
its derived function is called the second derived of the original
function /(#), and is denoted by /&quot;(a?).

In like manner the derived function of
/&quot;(a?)

is the third

derived of /(a;), and represented by/ &quot;(a?),
&c.

In accordance with this notation, the successive derived

functions of /(a?) are represented by

each of which is the derived function of the preceding.

34. Successive Differential Coefficients.

If y = f(x) we have ~ =/ (#)
CttX/

Hence, differentiating both sides with regard to a?, we get

1(2) -s^-w -&amp;gt;w-

Let -r-
(
-r- } be represented by f,dxax J dxz

then

d fd
z

y\ . . , . e?
3
y ,

In like manner -

^ is represented by -7-^, and so on
;3



Successive Differentials. 35

hence . g =/
&quot;

(*), &o. . . . g =/ (). (i)

The expressions

dy &amp;lt;y d*y d^y_

dot dx^ dx* dxn

are called the first, second, third, . . . nth differential coef

ficients of y regarded as a function of x.

These functions are sometimes represented by

V, if, / . y(n}
&amp;gt;

a notation which will often be found convenient in abbre

viating the labour of forming the successive differential

coefficients of a given expression. From the mode of

arriving at them, the successive differential coefficients of a

function are evidently the same as its successive derived

functions considered in the preceding Article.

35. Successive Differentials. The preceding result

admits of being considered also in connexion with differen

tials
; for, since x is the independent variable, its increment,

dx, may be always taken of the same infinitely small value.

Hence, in the equation dy = f (x) dx (Art. 7), we may
regard dx as constant, and we shall have, on proceeding
to the next differentiation,

since d\_f(x)-]=f&quot;(x)dx.

Again, representing d (dy) by d z

y,

we have d?y
=

/&quot; (x) (dx)
2

;

if we differentiate again, we get

&amp;lt;*v -/&quot;(*)(&amp;lt;**) s

and in general

Prom this point of view we see the reason why/W (x) is

called the nth
differential coefficient

D2
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In the preceding results it may be observed that if dx
be regarded as an infinitely small quantity, or an infinitesimal,
of the first order, (dx)

z
9 being infinitely small in comparison

with dx, may be called an infinitely small quantity or an
infinitesimal of the second order; as also c?

2

y, if
f&quot;(x]

be
finite. In general, dn

y, being of the same order as (dx)
n

,
is

called an infinitesimal of the nth order.

36. Infinitesimals. We may premise that the expres
sions great and small, as well as infinitely great and infinitely
small, are to. be understood as relative terms. Thus, a magni
tude which is regarded as being infinitely great in comparison
with &finite magnitude is said to be infinitely great. Similarly,
a magnitude which is infinitely small in comparison with a
finite magnitude is said to be infinitely small. If any finite

magnitude be conceived to be divided into an infinitely great
number of equal parts, each part will be infinitely small with

regard to the finite magnitude ;
and may be called an infini

tesimal of the first order. Again, if one of these infinitesimals

be conceived to be divided into an infinite number of equal
parts, each of these parts is infinitely small in comparison
with the former infinitesimal, and may be regarded as an

infinitesimal of the second order, and so on.

Since, in general, the number by which any measurable

quantity is represented depends upon the unit with which
the quantity is compared, it follows that a finite magnitude
may be represented by a very great, or by a very small num
ber, according to the unit to which it is referred. For ex

ample, the diameter of the earth is very great in comparison
with the length of one foot, but very small in comparison
with the distance of the earth from the nearest fixed star, and
it would, accordingly, be represented by a very large, or a

very small number, according to which of these distances is

assumed as the unit of comparison. Again, with respect to

the latter distance taken as the unit, the diameter of the

earth may be regarded as a very small magnitude of the first

order, and the length of a foot as one of a higher order of

smallness in comparison. Similar remarks apply to other

magnitudes.

Again, in the comparison of numbers, if the fraction (one

million)^ or
6 ,

which is very small in comparison with
10
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unity, be regarded as a small quantity of the first order, the

fraction =, being the same fractional part of
6
that this

IO !O

is of i, must be regarded as a small quantity of the second

order, and so on.

!
/ r \2 /

! y
If now, instead of the series -, f

6
j

,
(

-

6
j

,
. . .

we consider the series -, , ,

n vr vr
in which n is

supposed to be increased without limit, then each term in the

series is infinitely small in comparison with the preceding

one, being derived from it by multiplying by the infinitely

small quantity -. Hence, if - be regarded as an infinitesimal

of the first order,
-

2 , ,..., may be regarded as infini-
iv % %

tesimals of the second, third, . . . rth orders.

37. Geometrical Illustration of Infinitesimals.

The following geometrical results will help to illustrate the

theory of infinitesimals, and also

will be found of importance in the

application of the Differential Cal

culus to the theory of curves.

Suppose two points, A, 13, taken

on the circumference of a circle ;

join B to E, the other extremity
of the diameter AE, and produce
EB to meet the tangent at A
in D. Then since the triangles
ADB and EAB are equiangular,
we have

AB BE BD

Now suppose the point B to approach the point A and to

become indefinitely near to it, then BE becomes ultimately

equal to AE, and, therefore, at the same time, r= = i.
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Again, -j=- becomes infinitely small along with -j-=,

i. e. BD becomes infinitely small in comparison with AD or

AB. Hence BD is an infinitesimal of the second order when
AB is taken as one of the first order.

Moreover, since DE - AE &amp;lt; BD, it follows that, ichen one

side of a right-angled triangle is regarded as an infinitely small

quantity of the first order, the difference between the hypothenuse
and the remaining side is an infinitely small quantity of the

second order.

Next, draw BN perpendicular to AD, and BF a tan

gent at B; then, since AB &amp;gt; AN, we get AD - AB
&amp;lt;AD-AN&amp;lt;DN ,

AD- AB DN AD
BD

&amp;lt; BD &amp;lt;

DE

Consequently,
--

^j^
becomes infinitely small along with

AD ,
. . AD - AB is an infinitesimal of the third order.

Moreover, as BF = FD, we have AD = AF + BF-, . . AF
+ BF - AB is an infinitely small quantity of the third order

;

but AF + FB is &amp;gt; arc AB, hence we infer that the difference

between the length of the arc AB and its chord is an infinitely

small quantity of the third order, when the arc is an infinitely

small quantity of the first. In like manner it can be seen

that BD - BN is an infinitesimal of the fourth order, and

so on.

Again, if AB represent an elementary portion of any
continuous* curve, to which AF and BF are tangents, since

the length of the arc AB is less than the sum of the tangents

AF and BF, we may extend the r?ult just arrived at to all

such curves.

* In this extension of the foregoing proof it is assumed that the ultimate

ratio of the tangents drawn to a continuous curve at two indefinitely near

points is, in general, a ratio of equality. This is easily shown in the case of

an ellipse, since the ratio of the tangents is the same as that of the parallel

diameters. Again, it can be seen without difficulty that an indefinite number

of ellipses can be drawn touching a curve at two points arbitrarily assumed on

the curve ;
if now we suppose the points to approach one another indefinitely

along the curve, the property in question follows immediately for any con

tinuous curve.
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Hence, the difference between the length of an infinitely

small portion of any continuous curve and its chord is an infi

nitely small quantity of the third order, i.e. the difference between

them is ultimately an infinitely small quantity of the second

order in comparison with the length of the chord.

The same results might have been established from the

expansions for sin a and cos a, when a is considered as infi

nitely small.

If in the general case of any continuous curve we take

two points A, By on the curve, join them, and draw BE
perpendicular to AB, meeting in E the normal drawn to

the curve at the point A ;
then all the results established

above for the circle still hold. When the point B is taken

infinitely near to A, the line AE becomes the diameter of

the circle of curvature belonging to the point A ; for, it is

evident that the circle which passes through A and B, and
has the same tangent at A as the given curve, has a contact

of the second order with it. See &quot;Salmon s Conic Sections/

Art. 239.

EXAMPLES.

1. In a triangle, if the vertical angle be very small in comparison with either

of the base angles, prove that the difference between the sides is very small in

comparison with either of them ;
and hence, that these sides may be regarded as

ultimately equal.

2. In a triangle, if the external angle at the vertex be very small, show that

the difference between the sum of the sides and the base is a very small quantity
of the second order.

3. If the base of a triangle be an infinitesimal of the first order, as also its

base angles, show that the difference between the sum of its sides and its base

is an infinitesimal of the third order.

This furnishes an additional proof that the difference between the length of

an arc of a continuous curve and that of its chord is ultimately an infinitely
small quantity of the third order.

4. If a right line be displaced, through an infinitely small angle, prove that

the projections on it of the displacements of its extremities are equal.

5. If the side of a regular polygon inscribed in a circle be a very small

magnitude of the first order in comparison with the radius of the circle, show
that the difference between the circumference of the circle and the perimeter of
the polygon is a very small magnitude of the second order.
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38. Fundamental Principle of the Infinitesimal
Calculus. We shall now proceed to enunciate the funda
mental principle of the Infinitesimal Calculus as conceived by
Leibnitz :* it may be stated as follows :

If the difference between two quantities be infinitely
small in comparison with either of them, then the ratio of

the quantities becomes unity in the limit, and either of them
can be in general replaced by the other in any expression.
For let a, |3, represent the quantities, and suppose

a =
/3 + t, or

I
= i + 1.

Now the ratio
-^
becomes evanescent whenever t is infinitely

small in comparison with j3. This may take place in three

different ways : (i) when J3 is finite, and i infinitely small :

(2) when i is finite, and j3 infinitely great ; (3) when j3 is

infinitely small, and i also infinitely small of a higher order :

y&quot;

thus, if i =
7i-j3

2

,
then ^

=
k(3, which becomes evanescent along

with
/3.

* This principle is stated for finite magnitudes by Leibnitz, as follows :

&quot; Caeterum aequalia esse puto, non tanturn quorum differentia est omnino nulla,

sed et quorum differentia est incomparabiliter parva.&quot; ...&quot; Scilicet eas

tanturn homogeneas quantitates comparabiles esse, cum Euc. Lib. 5, defin. 5,

censeo, quarum una numero sed finito multiplicata, alteram superare potest ;
et

quse tali quautitate non differunt, zequalia esse statuo, quod etiam Archimedes

sumsit, aliique post ipsum omnes.&quot; Leibnitii Opera, Tom. 3, p. 328.
The foregoing can be identified with the fundamental principle of Newton,

as laid down in his Prime and Ultimate Ratios, Lemma I. : &quot;Quantitates, ut

et quantitatum rationes, quae ad sequalitatem tempore quovis finito constanter

tendunt, et ante finem temporis illius proprius ad invicem accedunt quam pro
data quavis differentia, fiunt ultimo aequales.&quot;

All applications of the infinitesimal method depend ultimately either on the

limiting ratios of infinitely small quantities, or on the limiting value of the

sum of an infinitely great number of infinitely small quantities ;
and it may

be observed that the difference between the method of infinitesimals and that of

limits (when exclusively adopted) is, that in the latter method it is usual to

retain evanescent quantities of higher orders until the end of the calculation,

and then to neglect them, on proceeding to the limit; while in the infinitesimal

method such quantities are neglected from the commencement, from the know

ledge that they cannot affect t\\Q final result, as they necessarily disappear in the

limit.
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Accordingly, in any of the preceding cases, the fraction

^ becomes unity in the limit, and we can, in general, substi

tute a instead of j3 in any function containing them. Thus,
an infinitely small quantity is neglected in comparison with
a finite one, as their ratio is evanescent ; and similarly an
infinitesimal of any order may be neglected in comparison
with one of a lower order.

Again, two infinitesimals a, j3, are said to be of the same

order if the fraction tends to a finite limit. If tends
a a&quot;

to a finite limit, /3 is called an infinitesimal of the nth order

in comparison with a.

As an example of this method, let it be proposed to

determine the direction of the tangent at a point (#, y] on a
curve whose equation is given in rectangular co-ordinates.

Let x + a, y + ]3, be the co-ordinates of a near point on
the curve, and, by Art. 10, the direction of the tangent

depends on the limiting value of . To find this, we substi-
a

tute x + a for #, and y + ]3 for y in the equation, and neglect

ing all powers of a and j3 beyond the first, we solve for -,
a

and thus obtain the required solution.

For example, let the equation of the curve be xz + y*
= $axy :

then, substituting as above, we get

hence, on subtracting the given equation, we get the

v ., p /3 or -
ay

limit of - = ---.-.
ax -

y
1

39. Subsidiary Principle. If ai + a2 + a 3 + . . . + a

represent the sum of a number of infinitely small quantities,
which approaches to a finite limit when n is increased indefi

nitely, and if
)3i, j3 3 ,

. j3w be another system of infinitely
small quantities, such that

a2 a*
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where e l9 e2, fn, are infinitely small quantities, then the

limit of the sum of |3i, ]3 2, . . . |3n is ultimately the same as

that of cti, a 2 ,
. . . an .

For, from the preceding equations we have

j8i+]32 + .. . + )3n =ai + a2 + . . . + an + aid + a 2 2 + .. . + an n .

Now, if rj be the greatest of the infinitely small quan
tities, 61, 2 ,

. . . e, we have

]3i + )32 + ...+- (a! + a3 + .,,.,,* an) &amp;lt; t; (ai + a a ...+ an ) ;

but the factor ai + a 2 + . . . + a has a finite limit, by hypo
thesis, and as TJ is infinitely small, it follows that the limit of

)3i + )3 2 + . . . + j3 rt is the same as that of ai + a2 + . . . + an .

This result can also be established otherwise as follows :

mi L- i 2 . . .
-

The ratio ---
,

a\ + az + . . . + an

by an elementary algebraic principle, lies between the greatest
and the least values of the fractions

&&_ _,.
i a2 an

it accordingly has unity for its limit under the supposed con
ditions : and hence the limiting value of ]3i + ]32 + . . . + ]3 is

the same as that of ai + a 2 + . . . + an .

40. Approximations. The principles of the Infini

tesimal Calculus above established lead to rigid and accurate

results in the limit, and may be regarded as the fundamental

principles of the Calculus, the former of the Differential, and
the latter of the Integral. These principles are also of great

importance in practical calculations, in which approximate
results only are required. For instance, in calculating a

result to seven decimal places, if
4
be regarded as a small

quantity a, then a
2

,
a3

, &c., may in general be neglected.

Thus, for example, to find sin 30 and cos 30 to seven de

cimal places. The circular measure of 30 is 7, or .008 7266;
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denoting this by a, and employing the formulae,

a3

Sin a = a - ,
COS a = I

,

2

it is easily seen that to seven decimal places we have

a2 a3

= .0000381,
= .0000001.

Hence sin 30 = .0087265 ;
cos 30 = 9999619-

In this manner the sine and the cosine of any small angle

can be readily calculated.

Again, to find the error in the calculated value of the

sine of an angle arising from a small error in the observed

value of the angle. Denoting the angle by a, and the small

error by a, we have

sin (a + a)
= sin a cos a + cos a sin a = sin a + a cos a,

neglecting higher powers of a. Hence the error is repre

sented by a cos a, approximately.
In like manner we get to the same degree of approxima

tion

Again, to the same degree of approximation we have

a + a a ba -
aft

where a, |3
are supposed very small in comparison with a and b.

As another example, the method leads to an easy mode of

approximating to the roots of nearly square numbers ;
thus

v/^Ta = a +
; v/a

3 + a
2 = a + =

a, whenever a
2

may
2d 2d&amp;gt;

be neglected.

Likewise, I/a* + a = a +
-^-

2 ,
&o.

If b = a + a, where a is very small in comparison with tf,

, / a a + b

we have v ab = y a + aa = a + = .
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Again, in a plane triangle, we have the formula

c r
c
2 = a2 + b

2 - 2ab cos C =
(a + b)

z sin2 + (a
-

b)
2
cos

2
.

Now if we suppose a and b nearly equal, and neglect (a
-

b)
2

in comparison with (a + b)
2

,
we have

c=l(a + b)
2
sin2

-^
+ (a

-
b)

2
cos

3 =
(a + b) sin .

This furnishes a simple approximation for the length of
the base of a triangle when its sides are very nearly of equal
length.

EXAMPLES.

^ i. Find the value of (i + o) (i
- 2 a2

) (i + 3 a
3
), neglecting a* and higher

powers of a. Ans. I + a - 2a2 + a3
.

2. Find the value of sin (a + o) sin (b + ft), neglecting terms of 2nd order
in a and ft. Ans. sin a sin b + a cos a sin b + ft sin a cos b.

3. If &amp;gt;r
= u - e sin w, e being very small, find the value of tan u.

Ans. (r + e) tail .

TT u m e . u /m \ e
Here - = 4-

- sin u
;
tan - = tan

[
+ a

,
where o = - sin u : .-. &c.222 \ 2 / 2

4. In a right-angled spherical triangle we have the relation cos e = cos a cos b ,

determine the corresponding formula in plane trigonometry.

The circular measure of a is
,
fi being the radius of the sphere; hence,

a~

substituting i - for cos a, &c., and afterwards making E =
oo, we get

C2 = a* + 2
.

5. If a parallelogram be slightly distorted, find the relation connecting the

changes of its diagonals.

Ans. dAd + d Ad =
o, where d, d denote the diagonals, and Ad, Ad the

changes in their lengths. In the case of a rectangle tile increments are equal,
and of opposite signs.

6. Find the limiting value of

Aa + Bam + l + Ca&amp;gt;

+z + &c.

act&quot; + i a 1
*
1 + cap- + &c.

when a becomes evanescent.

A nM A
In this case the true value is that of- = am~*.

aan a

A

Hence the required value is zero, ,
or infinity, according as

w&amp;gt;, =, or
&amp;lt; *.



Examples. 45

7. Find the value of

X* &
I +

2 24

a;
2 2*

neglecting powers of # beyond the 4th. Ans. i H---1- .

^X 3. Find the limiting values of - when y
-

o, x and y being connected by

the equation y* = 2xy - z*.

Here, dividing by y2 we get

If we solve for - we hare
V

f

y

Hence, in the limit, when y = o, we have - =
2, or - = o.

9. In fig. 3, Art. 37, ifAB be regarded as a side of a regular inscribed polygon
of a very great number of sides, show that, neglecting small quantities of the

4th order, the difference between the perimeter of the inscribed polygon and

that of the circumscribed polygon of the same number of sides is represented

by - BD.

Let n be the number of sides, then the difference in question is n (AD -AB);

but n
*AE ,_ _ x TrAE(AD-AB)

-Z&amp;gt;, fl. p.
2

This result shows how rapidly the perimeters of the circumscribed and in

scribed polygons approximate to equality, as the number of sides becomes very

great.

10. Assuming the earth to be a sphere of 40,000,000 metres circumference,
show that the difference between its circumference and the perimeter of a regular
inscribed polygon of 1,000,000 sides is less than -^-th of a millimetre.

11. If one side b of a spherical triangle be small, find an expression for the

difference between the other sides, as far as terms of the second order in b.

Here cos e = cos a cos b + sin a sin b cos C.

Let z denote the difference in question ;
i. e. c = a z

;

then cos a cos z + sin a sin z = cos a cos b + sin a sin b cos C;

.. sin z - sin b cos C = cot a (cos b cos z).
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Since * and b are both small, we get, to terms of the second order,

z-b cos (7 =

ShMhi
8*

,
aPProximatio

f

n
/ives

s = b cos G If this be substituted for * in the
right-hand side, we get, for the second approximation,

We now proceed to find the successive derived functions
in some elementary examples.

41. Derived Functions of #&quot;*.

Let y =
yan^

then
-| -**&quot;, S-( -

)*&quot;,

tfMftj

and in general, ^ - (w -
i) (m -

2) . . .
(&amp;gt;

- * + i) ^-.

If m be a positive integer, we have

dm (x
m

]

-^r-=i.2...m.

and all the higher derived functions vanish.
If m be a fractional, or a negative index, then none of the

successive derived functions can vanish.

EXAMPLES.

i. If u = ax* + fo-i -f czn~~ + &c., prove that

prave fliut

and
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x 3. y = 2a*/x;

dy a &y a &y 3 a
prove mat =

71, -r-= = -, -r-r = -,
dx / dxz 2#i dx* 4#i

, VB 3-5-7 . (2* -i a

1 l
+i

42. If y = #3

log #, to fintl
J.

^^^ CtJO

Here
-j-

= 3#
2

log a; + ar
8

;

y
also = 6^ log x + $x + 2x = 6# log ^ + 5-r,

UX

d*// d*y 6
-=6log, + 6 + 5) _--.

It might have been observed that in this case all the

terms in the successive differentials which do not contain

log x will disappear from the final result thus, by the last

d* (x
2
}

Article, 3
=

o, accordingly, that term may be neglected ;

CttJO

and similar reasoning applies to the other terms. The work
can therefore be simplified by neglecting such terms as we

proceed.
The student will find no difficulty in applying the same

mode of reasoning to the determination of the value of

dnv
,
where y = xn

~l

log x.

For, as in the last, we may neglect as we proceed all terms

which do not contain log x as a factor, and thus we get in

this case,

dn
y (n

-
i) . . . 2 . i _ \

n ~ l

dxn x x
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43. Derived Functions of sin mx.

Let y = sin w#,

then -f- = m cos
dx

** y o
- = - m2

sin mx,
dx?

and, in general, -[ =
(- i)

nw2 &quot;

sin w#,
Cfu/

^7 -(-0- **.

It is easily seen that these may be combined in the single

equation (Art. 22),

d r
(sin mx) r ( .*&quot;]

dtf
n^ r

2)

In like manner we have

d r cos m^
^r

= mr cos w?^ + T

44. Derived Functions of eM.

Let y = e
ax

,

then -^ = c*, f = 2
c
a
*. .

- = M
c

ffa:
. (*}

dx dx* dx&quot;

This result may be written in the form

where the symbol f I denotes that the process of differentia-
\dxj

tion is applied n times in succession to the function c
ax

.
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In general, adopting the same notation, we have

&o.

This result, if
&amp;lt;p (a?)

denote the expression

^o^ + ^i^ 1 + An,

may be written in the form

#()--#&amp;lt;.)-;
(5)

in which
&amp;lt;/&amp;gt; () is supposed to contain only positive integral

powers of a.

45. To find the nth Derived Function of e
ax cos bx.

Let y represent the proposed expression,

then -r =
a&amp;lt;?

x cos bx - be
ax sin bx

ax

= e?
x
(a cos bx - b sin bx) ;

i f tan
(j)

=
-, we have 6 = ^/a

2 + 6
3
sin

&amp;lt;^&amp;gt;,

and a = ^a2 + i
2
cos 0.

Hence we get
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Again,

-Jj[
=

(a
2 + 2

)i e
a*

[a cos (fa? + 0)
- b sin (te + 0)]

=
(a

2 + ft
2

)
eax cos (fo +20).

By repeating this process it is easily seen that we have in

general, when n is any positive integer,

-jj-
=

(
a- + 2

)

3
e
a* cos (bx + n^}. (6)

46. To find the Derived Functions of tan &quot;1
( -\
\*t

and tan 1
x.

Let y = tan&quot;
1

f-j,
or # = cot y :

,, dy - i

then -7-
=-

;
= - sin

2
?/.

cte i + tf

d* d d\ d .

sin2

y -T- (sin
2

y)
= sin

2

y sin 2y.

. . d*y d . . , . x dy d , .

gam =
^
Sm y Sm 2y^

= (sm y S

- sin
2

y (sin
2

y sin

-1.2. sin3
?/ sin 3^. (^. 5, Art. 28.)

TT
Hence, also = 1.2.3. sm4

y sin 4^;

fjftqj

and in general, -7-^
=

(- i)
n

|

- i sinw y sin wy.
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Again, since tan&quot;
1 x = tan&quot;

1

-,

we have ~j =
(- I

)

n~1

\_

n - l sinn z/ sin ny, (7)

where y = cot 1

x, as before.

This result can also be written in the form

v sin ( n tan-1 -
j

2. (-,)-(- i i _*/.
(8)

47. If y = sin (w sin&quot;
1

^), to prove that

Here

dy _m cos (m sin
~

/. (i
- #2

)
j

= w3 cos2

(m sin-1

a?)
= wa

(i
- y

2
).

Hence, differentiating a second time, and dividing by 2
,

we get the required result.

48. Theorem of Leibnitz. To find the nth differen

tial coefficient of the product of two functions of x. Let

y = uv ; then, adopting the notation of Art. 34, we write

. , , dy du , dv
/, W ,tUor-,-,and~,

and similarly, y&quot;, u&quot;, v&quot;, &o., for the second and higher
derived functions thus,

F 1
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Now, if we differentiate the equation y =
uv, we have

y
f = wf + vu

, by Art. 13.

The next differentiation gives

y&quot;

=
uv&quot; + u

f

v + v u + w&quot; = uv&quot; + 2u if + w/ .

The third differentiation gives

1/&quot;

- UV&quot; + U v&quot; + 2U V&quot; + 2U&quot;V + V U&quot; + VU
&quot;

= uv
m + su v&quot; + 3 t&amp;lt;V + vu

&quot;,

in which the coefficients are the same as those in the expan
sion of (a + b)

3
.

Suppose that the same law holds for the nth
differential

coefficient, and that

y() =
w&amp;gt;W + nu v(

n~V +
n

(
n ~ 1

^ u v (n-2) + &c
I . 2

+ nu(n-Vtf + w(&quot;)j;

then, differentiating again, we get

&c. . . .

f^^^J + &0. . . . ,

in which it can be easily seen that the coefficients follow the
law of the Binomial Expansion.

Accordingly, if this law hold for any integer value of
,

it holds for the next higher integer ;
but we have shown that

it holds when n = 3 ; therefore it holds for n =
4, &o.

Hence it holds for all positive integer values of n.

In the ordinary notation the preceding result becomes

dn (uv) dnv du dn~l v n (n
- i

)
d*u dn

~~v---- = U __U VI--- + __f ___1 /?rp

dxn
u
dxn dxdaT* 1.2 d*d***

dnu
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49. To prove that

where n is a positive integer.
Let v = e

ax in the preceding theorem
; then, since

dv
-ae

d
-are - an e

rv.s?
-

cfef-
&quot;

we have

dxj
^

\ dx i . 2

which may be written in the form

or

/ d\n
.

where the symbolic expression f a +
J

is supposed to be

11 j i J.T -r&amp;gt;- i mi n du dzU drU
developed by the Binomial Theorem, and

, ,
. . .

dx cfx us/

substituted for f

j
u, f

J
u, f

J
u, in the resulting ex

pansion.

50. In general, if (a) represent any expression in

volving only positive integral powers of a, we shall have

For lei
tf&amp;gt; ( -7-

)&amp;gt;

when expanded, be of the form
^dx J

A (
n

\dx
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then the preceding formula holds for each of the component
terms, and accordingly it holds for the sum of all the terms

;

/. &c.

The result admits also of being written in the form

4
This symbolic equation is of importance in the solution

of differential equations with constant coefficients. See
&quot; Boole s Differential Equations,&quot; chap. xvi.

51. If y = sin&quot;
1

x, to prove that

hence, by differentiation,

---
Again, by Leibnitz s Theorem, we have

On subtracting the latter expression from the former, we
obtain the required result by (14).

If x = o in formula (13), it becomes
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where f
J

represents the value of ~J when x becomes

cypher.

Also, since \4 )

=
i, we get, when n is an odd integer,

\ .^//V* /

Again we have f-r^ j

= o; consequently, when n is an even

\dx* Jo

(d
n
y\

integer, we have I
= O.

52. If y = (i+^)
2

sin(mtan-
1

ir),
to prove that

2\^ / v + Cm - iW = o (15)

Here

dx

or

1 TI //f*/ I A \ **s i

m

+ m (i + a?Y cos (m tan&quot;
1

a?) ;

i+xz

dy
cos

The required result is obtained by differentiating the last

equation, and eliminating cos (m tan~1

^) and sin (m tan 1

^) by

aid of the two former.

Again, applying Leibnitz s Theorem asm the last Article,

we get, in general
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Hence, when x =
o, we have

Moreover, as when x o, we have y = o, and = m
;

it
dx

follows from the preceding that

For a complete discussion of this, and other analogous

expressions, the student is referred to Bertrand,
&quot; Traite de

Calcul DifEerentiel,&quot; p. 144, &c.
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EXAMPLES.

3 . y = **,

4. y = log (sin #),

5. y = ta,n- 1

6. y = x4 log (a!), &amp;gt; dx5
&quot;

x

d^v 8-V/2 . x3

/!_+_
r. y-

^^_

8. y = ^sinar, ^
- ^T

^
where tan

&amp;lt;p

9. If y = &quot;*

ar, Prove ttat

&amp;lt;&

+ 10. \iy = a cos (log a?) + b sin (log a:),

^ 2
2/ ^

provethat
2^ + * ^ + V =

ii. If y = c sin-la:
,

&amp;lt;f

2y dv

prove that (i
- *2

)
- * ^ =
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12 Prove that the equation

&quot;-**&amp;gt;-*|-V
= o

is satisfied by either of the following values of y :

y cos (a sin&quot;
1
x), or y = e a&amp;gt;J

~l *-
.

13. Being given that y = (x +

prove that (afl
-

i) jjL
+ x JL _ ms

y = o&amp;gt;

14. If y = sin (sin #),

prove that | + -? tan a; + y cos s = o.
#* a#

15. In Fig. 3, Art. 37, ifAB he regarded as a side of a regular polygon of an

indefinitely great number of sides, show that the difference between the circum

ference of the circle and the perimeter of the polygon is represented by - BD,

to the second order of infinitesimals.

(d
2

\
+ n2

J
y = o.

j. If y=-, prove that -(- .&amp;gt;.
l^

8i &quot;&quot;&quot;

(

where = tan&quot;
1 -.

This follows at once from Art. 46, since f tan 1 -
)
= .

a
.. It can also be

dx \ ac/ a? + x9

proved otherwise, as follows :

i / d \ * r i /^A i

20 (- i)i \^/ a?-a(- i)i ~2fl(- j) \^/ &quot;* + a(

(- 1) i . 2 . . . n r i___r

aa (_ i)| |_(*
-

(~ O 1
)&quot;*

1
(* + &amp;lt;- W

(-l)l r(a? + a^i))^) -(ag-a(~Qi)^n

1^1 (** + a^ J
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Again, since - = tan
&amp;lt;/&amp;gt;,

we havo a =
&amp;lt;/tfT*&amp;gt;

sin
&amp;lt;J&amp;gt;,

and = \A2 + *2 cos * ;

hence (* + (- I)*)&quot;*

1 =
(

8 + sV~(cos * + (- i) sin
&amp;lt;J&amp;gt;)^

n + l

= (a
2 + *2)

2 {cos(+ !)&amp;lt;/&amp;gt;

+ (- Ij*a(-t O Hi

and we get, finally,

1 8. In like manner, if y = ^ + g2
,

, |w.sm*
1

prove that
g&quot;

1&quot;^

19. Ifw = *y,

rfw ^y
prove that d^

= X
d^

20. If w = (sin
1
*)

2
,

rf2 rfw

prove that (I
- *2)^ -

^^

21. Prove, from the preceding, that

and

22. If y = * sin te, prove that - 2a - + (a2 + J2)y = o.

* + * * * d
&quot;y

23. Given y = ^-72
,
find .

ax + b _ ac + b I ac - b I

Here
^2_ C2

=
2C x - c

(- l
)
n

&quot;

Hence
dy (- l

)
n

\&quot;

(_ae_+J&amp;gt;_

ae-6 \

d&
=
~~17~ V5

- ^^
+

(* + c
)
n+1

/
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CHAPTEE III.

DEVELOPMENT OF FUNCTIONS.

53. Lemma. If u be a function of x + y which is finite

y,
and continuous for all values of x + y, between the limits

a and b, then for all such values we shall have

du du

dx dy

For, let u =f(x + y), then if x become x + h,

- = limit of

-
,

dx h

when h is infinitely small.

Similarly, if y become y + h, we have

g - limit of/i*Lt* *)-/(***),
dy h

which is the same expression as before.

du du
Hence -y-

=
-y.

efo c?y

Otherwise thus : Let s = # + y, then w =/(*),

dz , c?s
=

i, and =
i;

dx dy

du
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54. If a continuous function f(x + y} be supposed ex

panded in a series of powers of ?/, the expansion can contain

no negative poicers ; for, suppose it contains a term of the

form Hy-
m

,
where M is independent of y, this term would

become infinite, for all values of z, when y = o
;
but the given

function in that case reduces to f(x) ;
and since f(x) cannot

be infinite for all values of #, it follows that the expansion
off(%+ y} can contain only positive powers of y.

Again, if f(x) and its successive derived functions be

continuous, the expansion off(x + y) can contain no fractional
p

power of y. For, if it contain a term of the form Py
n
*q,

where - is a proper fraction, then its (n + i)
th derived func

tion with respect to y would contain y with a negative index,

and, accordingly, it would become infinite when y = o
;
but this

is impossible for the same reason as in the former case
; hence,

with the conditions expressed above, the expansion of/(# +
?/)

can contain only positive integral powers of y.

55. Taylor s Expansion off(% + y).* Assuming that

the function f(x + y) is capable of being expanded in powers of

y, then by the preceding this equation must be of the form

f(x + y}=PQ + Piy + Ptf + &o. + Pny
n + &c.,

in which P
,
P: ,

. . . Pn are supposed to be finite and con
tinuous functions of x.

When y =
o, this expansion reduces to f(x) = P .

Again, let u =f(x + y) ;
then by differentiation we have

du dP dP1 z
dPz n dPn ,

-T- =
-5
- + V-j-+V -;- + ... + 3/

n
-T-^ + &e. ;

dx dx
*
dx dx dx

fill-

&o.

* The investigation in this Article is introduced for the purpose of showing
the beginner, in a simple manner, how Taylor s series can be arrived at. It is

based on the assumption that the function/ (x + y} is capable of being expanded
in a series of powers of ?/, and that it is also a continuous function. It demon
strates that whenever the function represented by/(# + y) is capable of being
expanded in a convergent series of positive ascending powers of y, the series

must necessarily coincide with the form given in (i). An investigation of the
conditions of convergency of the series, and of the applicability of the Theorem
in general, will be introduced in a subsequent part of the Chapter. The parti
cular case of this Theorem when f (x) is a rational algebraic expression of the n^
degree in x is already familiar to the student who has read the Theory of Equations.
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Now, in order that these series should be identical for all

values of y the coefficients of like powers must be equal.

Accordingly, we must have

dx

&amp;gt;

__!_ f ()&amp;gt;

I dP, I
d&amp;gt;f(x)

and in general,

p _
*

Accordingly, when /(a?) and its successive derived func

tions are finite and continuous we have

f(*+y) =/(*) + f/
+ T72 f&quot;(^

+ +
jf
/wW+- (I)

This expansion is called Taylor s Theorem, having been first

published, in 1715, by Dr. Brook Taylor in his Methodus

Incrementorum.

It may also be written in the form

or, if u =
/(a?), and ^ =f(x +

1.2

To complete the preceding proof it will be necessary jto

obtain an expression for the limit of the sum of the series

after n terms, in order to determine whether the series is

convergent or divergent. We postpone this discussion for

the present, and shall proceed to illustrate the Theorem by
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showing that the expansions usually given in elementary

treatises on Algebra and Trigonometry are particular cases

of it.

56. The Binomial Theorem. Let u =
(x -I- y)

n
;

here/(#) = xn
, therefore, by Art. 41,

f (x)

Hence the expansion becomes

(x

(4)

If be a positive integer this consists of a finite number of

terms
;
we shall subsequently examine the validity of the

expansion when applied to the case where n is negative
or fractional.

57. The logarithmic Series. To expand log (# + ?/).

Here /() =
log (),- f(x) = i, /&quot;()

- -
,

Accordingly

If x = i this series becomes

lg(i+y)=f-f +
^-...(-ir..&o. (5)

When taken to the base a, we get, by Art. 29,

(6)
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58. To expand sin (x + y).

Here f(x) =sin#, f(x) = cos a?,

/ = - sin x, f&quot;(x]
= - cos x, &o.

Hence

sin (# + y)
= sin #( i + &c. f . . .

)

\ 1.2 1.2.3.4 \2n J

y* y* f
....4,5 &quot;*6EI&quot;&quot;&amp;gt;W

As the preceding series is supposed to hold for all values

it must hold when x =
o, in which case it becomes

&c . (g)
3.4.5

TT

Similarly, if x =
,
we get

cos y = i - -^
-f
---- &c. (9)1.2 1.2.3.4

We thus arrive at the well-known expansions* for the sine

and cosine of an angle, in terms of its circular measure.

59. Maclauriii s Theorem. If we make x = o, in

Taylor s Expansion, it becomes

-/(o) + / (o) + / + ~/ &quot;

(o) + . . , (10)

where /(o) . . ./(
n
)(o) represent the values which /(a?) and

its successive derived functions assume when x = o.

Substitute x for y in the preceding series and it becomes

/(*) -/(o) +
*
/ (o) +^ /&quot;(o)

+ . . . + /M (o) + &o.

* These expansions are due to Newton, and were obtained by him by the

method of reversion of scries from the expansion of the arc in terms of its sine.

This latter series he deduced from its derived function by a process analogous
to integration (called by Newton the method of quadratures). See Opuscula,
torn i., pp. 19, 21. Ed. Cast. Compare Art. 64, p. 68.
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This result may be established otherwise thus
; adopting

the same limitation as in the case of Taylor s Theorem :

Assume f(x) = A + Bx + Cxz + Dx* + Ex* + &c.

then / (&amp;lt;*)

= B + 2Cx + ^Dx* + 4^3 + &o.

/&quot; (x)
= 2C + 3 . 2Dx + 4 3^3 + &o.

f&quot;(x)
= 3.2D + 4.3.2jEb + &o.

Hence, making x = o in each of these equations, we get

whence we obtain the same series as before.

The preceding expansion is usually called Maclaurin s*

Theorem
;

it was, however, previously given by Stirling, and

is, as is shown already, but a particular case of Taylor s series.

We proceed to illustrate it by a few examples.

60. Exponential Series. Let y = ax .

Here /(a?)
=

*,

f(x) =a*loga,

f(x] -o&quot;(log)%

/) (x)
= tf (log *)&quot;,

and the expansion is

(x log a) (x log #)x

hence /(o)
=

i,

/(o) =loga,

()
(o)

.
(log a)

(# log a)
n

---
i . 2 . . . n

&c.

If c, the base of the Napierian system of Logarithms, be

substituted for
,
the preceding expansion becomes

1.2 i . 2 . . . n
(12)

* Maclaurin laid no claim to the theorem which is known hy his name, for,

after proving it, he adds &quot;This theorem was given by Dr. Taylor, Met/tod.

Increm.&quot; See Maclaurin s Fluxions, vol. ii., Art. 751.
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If x = i this gives for e the same value as that adopted in

Art. 29, viz. :

4

6i. Expansion of sin x and cos x by Ulaclaurin s

Theorem. Let /(a?)
= sin a?, then

and we get
- ,~5

- &o. . . .

In like manner

cos x = i -

the same expansions as already arrived at in Art. 58. .

Since sin (-#)=- sin x, we might have inferred
at^

once

that the expansion for sin x in terms of x can only consist of

odd powers of x. Similarly, as cos (- x)
= cosz, the expan

sion of cos x can only contain even powers.

In general, if F(x) = F(- a?),
the development of F(x}

can only consist of even powers of x. If F(- x)
= -

F(x}&amp;gt;
the

expansion can contain odd powers of x only.

Thus, the expansions of tana?, shr 1

*, tan&quot;
1

*?, &c., can con

tain no even powers of x\ those of cos x, sec a?, &o., no odd

powers.
62. Huygens Approximation to length ofCircular

Arc.* If A be the chord of any circular arc, and B that of

.. SB -A
half the arc

;
then the length of the arc is equal to--

, q.p.
O

For, let R be the radius of the circle, and L the length of

the arc : and we have

L B . L

* This important approximation is due to Huygens. The demonstration

given above is that of Newton, and is introduced .by
him as

**$*&quot;**&L expansion for the sine of an angle, rid. Epis. Prior ad Oldemhurgmm.
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hence, by (8),

A = L-- +-- - &o.
2.3.4.^ 2 .3.4. 5 . i6.^ 4

rs rs
- &c.

2 . 3 . 4 .& 2 . 3 . 4 . 5 . 64 .

sequently, ne

get

consequently, neglecting powers of beyond the fourth, we

SB -A
, N

(13)
3

Hence, for an arc equal in length to the radius the error in

adopting Huygens approximation in less than th
part of

7080
the whole arc

;
for an arc of half the length of the radius

the proportionate error is one-sixteenth less
;
and so on.

In practice the approximation* is used in the form

i

3

This simple mode of finding approximately the length of

an arc of a circle is much employed in practice. It may also

be applied to find the approximate length of a portion of

any continuous curve, by dividing it into an even number of

suitable intervals, and regarding the intervals as approxi

mately circular. See Eankine s Rules and Tables, Part I.,

Section 4.

* To show the accuracy of this approximation, let us apply it to find the

length of an arc of 30 in a circle whose radius is 100,000 feet.

Here B - 2E sin 7 30 ,
A = iR sin 15 ;

but, from the Tables,

sin 7 30 = .1305268, sin 15 = .2588190.

z_B -A
Hence iB + = 52359-7i

The true value, assuming ir = 3.1415926, is 52359.88 ;
whence the error is but

.17 of a foot, or about 2 inches.

F 2
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63. Expansion of tan&quot;
1^. Assume, according to Art.

61, the expansion of tan ^to be

Ax + Bxz + Co? + Dx 1 + &c.,

where A
9 B, C, &c., are undetermined coefficients:

but -^.- =-
2
= i - tf + a?

4
a?

6 + &o.,

when a? lies between the limits i .

Comparing coefficients, we have

A=i, 5 = --, (7 = i, D = --, &o.
o /

Hence

when a? is less than unity.
This expansion can be also deduced directly from Mac-

laurin s Theorem, by aid of the results given in Art. 46.

This is left as an exercise for the student.

64. Expansion of sin
1
^. Assume, as before,

*, snr1^ = Ax + Bof + Cx5 + &c. ;

then 7 rrr = A + $Bx* + ^Cx* &c. ;

(i
- #2

)*

but (T^r^-^ =I +^ +^ +-

i. 3 ...2r-
V-fi&amp;lt;|

2.4... 2r

Hence, comparing coefficients, we get

**- &amp;gt;*
L
,i &quot;-

Finally,

i ^3
1.3 ^ i.3---

. .

i 23 2.45 2.4... 2r 2r+i
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Since we have assumed that sin&quot;
1^ vanishes along with x we

must in this expansion regard snr 1^ as being the circular

measure of the acute angle whose sine is x.

There is no difficulty in determining the general formula

for other values of sin&quot;
1

^, if requisite.
A direct proof of the preceding result can be deduced

from Maclaurin s expansion by aid of Art. 5 1 . We leave

this as an exercise for the student.

From the preceding expansion the value of TT can be

exhibited in the following series :

TT i ii i . 3 i o- = - + -- - +--- + &c.
6 2 2.38 2. 4. 532

For, since sin 30 =
-, we have - = sin&quot;

1 -
;

. . &c.
2 02

An approximate* value of TT can be arrived at by the aid

of this formula
;
at the same time it may be observed that

many other expansions are better adapted for this purpose.

65. Euler s Expressions for Sine and Cosine. In

the exponential series (12), if x */ - i be substituted for x,

we get

1.2 1.2.3.4

+ y^- i --- + &c. ...
LI 1.2.3 J

= cos x + */ - i sin x ; by Art. 59.

Similarly, e~**~
l = cos x - */ - i sin x.

Hence e^&quot;
1 + e~

x&amp;gt;/
-1 = 2 cos #,

2- i sn x.

(16)

A more complete development of these formulae will be
found in treatises on Algebra and Trigonometry.

* The expansion forsin&quot;
1
^, and also this method of approximating to

TT, were

given by Newton.
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66. John Bernoulli s Scries. If, in Taylor s Ex

pansion (i) we make y = -
a, and transfer f(x) to the other

side of the equation, we get

= + r - * - - &o -

This is equivalent to the series known as Bernoulli s,*

and published by him in Act. Lips., 1694.
As an example of this expansion, let/(#)

= e*
;
then

/(o)-i, /(*)=*, /-,&&amp;lt;).,

and we get

e* = i + xe? - -
&amp;lt;? + &c.,

Or, dividing by e
x

,
and transposing,

e* = i - a? 4-
---

&o.,

which agrees with Art. 60.

67. Symbolic Form of Taylor s Theorem. The

expansion

f(x + y) -/(*) + y !./(*) +^ (

may be written in the form

in which the student will perceive that the terms within the

brackets proceed according to the law of the exponential

series (12) ;
the equation may accordingly be written in the

shape

f(x + y)
= e

y
^f(x),_(19)

In his Eeduc. Quad, ad long, curv., John Bernoulli introduces this theorem

again adding&quot; Quam eandum seriem postea Taylorus, interjecto vigmti

annorum intervallo, in librum quern edidit, A.D. 1715, demethodo incrementorum,

transferre dignatus est sub alio tantum characterum habitu.&quot; The great in

justice of this statement need not be insisted on
;
for while Taylor s Theorem is

one of the most important in the entire range of analysis, that of Bernoulli is

comparatively of little use
;
and is, as shown above, but a simple case of layloi

Expansion.
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where e* is supposed to be expanded as in the exponential

This form of Taylor s Theorem is of extensive application

in the Calculus of Finite Differences.

68. Other Forms derived from Taylor s Series.

In the expansion (3), Art. 55, substitute h for y,

then

If now h be diminished indefinitely, it may be represented

by dx
9
and the series becomes

du dx d\i dx* dnu dxn

I 1.2 1.2.3

in which ih
- u is the complete increment of u

9 corresponding

to the increment dx in x.
. . . ,

Again, since each term in this expansion is infinitely small

in comparison with the preceding one, if all the terms after

the first be neglected (by Art. 38) as being infinitely small in

comparison with it, we get

du =/ (
a?
) ^&amp;gt;

the same result as given in Art. 7.

Another form of the preceding expansion is

69. Theorem. If a function of x &quot;become infinite for any

finite mine of x then all its successive derived functions become

infante at the same time.

If the function be algebraic, the only way that it can be

come infinite for a finite value of x is by its containing a

JP
term of the form -, in which Q vanishes for one or more
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values of x for which P remains finite. Accordingly, let

dP
_ PdQ

P ,, du clx Q dx\ this also becomes infinite when
u = --\ then = -

Q dx Q,

Q = o.

Similarly, , , &c., each become infinite when Q = o.
dx~ dx

\

Again, certain transcendental functions, such as e
* *

,

cosec (x
-

a), &c., become infinite when x = a
;
but it can be

easily shown, by differentiation, that their derived functions

also become infinite at the same time. Similar remarks apply
in all other cases.

The student who desires a more general investigation is

referred to De Morgan s Calculus, page 179.

70. Remarks on Taylor s Expansion. In the pre

ceding applications of Taylor s Theorem, the series arrived

at (Art. 56 excepted) each consisted of an infinite number of

terms
;
and it has been assumed in our investigation that the

sum of these infinite series has, in each case, a, finite limiting

mine, represented by the original function,/(a + y), or /(#).
In other words, we have assumed that the remainder of the

series after n terms, in each case, becomes infinitely small

when n is taken sufficiently large or, that the series is con

vergent. The meaning of this term will be explained in the

next Article.

71. Convergent and Divergent Series. A series,

HI, u-i, ffe, . . * * consisting of an indefinite number of

terms, which succeed each other according to some fixed law,

is said to be convergent, when the sum of its first n terms

approaches nearer and nearer to a finite limiting value, accord

ing as n is taken greater and greater ;
and this limiting value

is called the sum of the series, from which it can be made to

differ by an amount less than any assigned quantity, on

taking a sufficient number of terms. It is evident
^that

in the

case of a convergent series the terms become indefinitely

small when n is taken indefinitely great.

If the sum of the first n terms approximates to no
^finite

limit the series is said to be divergent.
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In general, a series consisting of real and positive terms

is convergent whenever the sum of its first n terms does not

increase indefinitely with n. For, if this sum do not become

indefinitely great as n increases, it cannot be greater than a

certain finite value, to which it constantly approaches as n

is increased indefinitely.

72. Application to Geometrical Progression.
The preceding statements will be best understood by apply

ing them to the case of the ordinary progression

i xn

The sum of the first n terms of this series is- in all cases.
i x

(i). Let#&amp;lt; i
;
then the terms become smaller and smaller

as n increases
;
and if n be taken sufficiently great the value

of xn can be made as small as we please.

Hence, the sum of the first n terms tends to the limiting

value- . also the remainder after n terms is represented
i -x

xn

by -

, which becomes smaller and smaller as n increases,7
i -x 9

and may be regarded as vanishing ultimately.

(2). Let x &amp;gt; i. The series is in this case an increasing

one, and xn becomes infinitely great along with n. Hence
i xn xn i

the sum of n terms,- or --
,
as well as the remainder

i -x x - i

after n terms, becomes infinite along with n. Accordingly
the statement that the limit of the sum of the series

i + x + a? + . . . + xn + . . . ad infinitum

is- holds only when x is less than unity, i. e. when the
i x

series is a convergent one.

In like manner the sum of n terms of the series

i x + a? - #3 + &o.

i -(- i)
n xn

13 -
.

I + X
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As before, when x &amp;lt; i
,
the limit of the sum is

; but
1 + 3;

when x &amp;gt; i, xn becomes infinitely great along with n, and the
limit of the sum of an even number of terms is - oo

; while
that of an odd number is + oo . Hence the series in this case
has no limit.

73. Theorem. If, in a series of positive terms repre
sented by

MI + Ma + ....+ wn + &c.,

the ratio be less than a certain limit smaller than unity, for
un

all values of n beyond a certain number, the series is convergent,
and has a finite limit.

Suppose k to be a fraction less than unity, and greater

than the greatest of the ratios -^-
. . . (beyond the number

un

n), then we have

^n-H ,
&amp;lt; Km

7 7
&amp;lt; k, . . un+1 &amp;lt; krun .

Hence, the limit of the remainder of the series after un is

less than the sum of the series

kun + k*un + . . . + krun ... ad infinitum ;

therefore, by Art. 72, less than

kun

i - ,
since k &amp;lt; i .

Hence, since un decreases as n increases, and becomes infi

nitely small ultimately, the remainder after n terms becomes
also infinitely small when n is taken sufficiently great ;

and

consequently, the series is convergent, and has a finite limit.

Again, if the ratio be &amp;gt; i, for all values of n beyondun



Convergent and Divergent Series. 75

a certain number, the series is divergent, and has no finite

limit. This can be established by a similar process ; for,

assuming k &amp;gt; i, and less than the least of the fractions

-^-, . . . then by Art. 72 the series
un

un + kun + tfun + &c. ad infinitum

has an infinite value ;
but each term of the series

&G.

is greater than the corresponding term in the above geome
trical progression ; hence, its sum must be also infinite, &c.

These results hold also if the terms of the series be alter

nately positive and negative ;
for in this case k becomes

negative, and the series will be convergent or divergent

according as - k is &amp;lt; or &amp;gt; i
;
as can be readily seen.

In order to apply the preceding principles to Taylor s

Theorem it will be necessary to determine a general expres
sion for the remainder after n terms in that expansion ;

in

order to do so, we commence with the following :

74. Lemma. If a continuous function fy(x) vanish ivhen

x =
a, and also when x =

b, then its derived function $/(#), if

also continuous, must vanish for some value of x between a
and b.

Suppose b greater than a
;
then if $ (%) do not vanish

between a and 6, it must be either always positive or always
negative for all values of x between these limits; and

consequently, by Art. 6, 0(#) must constantly increase, or

constantly diminish, as x increases from a to 6, which is

impossible, since
^(a?)

vanishes for both limits. Accordingly,
(o?)

cannot be either always positive or always negative ;

and hence it must change its sign between the limits, and,

being a continuous function, it must vanish for some inter

mediate value.

This result admits of being illustrated from geometry.
For, let y =

$(x) represent a continuous curve
; then, since

0(a)
=

o, and 0(6)
=

o, we have y
-

o, when x =
a, and also

when x = b
; therefore the curve cuts the axis of x at distances

a and b from the origin ; and accordingly at some inter-
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mediate point it must have its tangent parallel to the axis of

x. Hence, by Art. 10, we must have
&amp;lt;fr (x)

= o for some
value of x between a and b.

75. Lagrange s Theorem on the Limits of Tay
lor s Series. Suppose Hn to represent the remainder after

n terms in Taylor s expansion, then substituting X for x + y
in (i), we may write

\n-i

in which /(a?),/ (#) ..... fn
(x) are supposed finite and

continuous for all values of the variable between X and x.

If we now make &amp;lt;c

= X, we get Hn = o
; accordingly it

contains X - x as a factor ;
hence we may write

Rn = (X-x)PP, (22)

where p is a positive quantity, and P is a function of X and x.

Consequently we may write

= o. (23)

Now, let 2 be substituted for x in every term in the pre

ceding, with the exception of P, and let F (z) represent the

resulting expression : we shall have

F(z) =f(X) - /() -f _ / ()+....-* (X-*)P, (24)

in which P has the same value as in (22).

Again, the right-hand side in this equation vanishes

en* = Z; . . F(X) = o.

Also, from (23), the right-hand side vanishes when z = x
;

.-. F(x) = o.

C.I
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Accordingly, since the function F(z) vanishes when % = X,
and also when z =

x, it follows from Art. 74 that its derived

function F (z) vanishes for some value of z between the limits

X and x.

Proceeding to obtain F (z) by differentiation from equa
tion (24), it can be easily seen that the the terms destroy each

other in pairs, with the exception of the two last. Thus we

shall have

I

Consequently, for some value of z (z suppose) between x

and X we must have

p In - i

Again, if be a positive quantity less than unity it is

easily seen that we may write

z = x + (X -
x),

since by assigning a suitable value to 0, x + (X -
x) can be

made equal to any number intermediate between x and X.

If we substitute this value for z in the foregoing equation it

becomes

IJ
=(i -0M by (

22 )-

Hence we infer that p = n y
and

Rn = (-~^-/W {* + fl (X -
*) )

. (^

Making this substitution, equation (22) becomes

(X -
*) }

. (26)

The preceding demonstration is taken, with some modifi-

ions, from Bertrand s
&quot; Traite de Calcul Differentiel

&quot;

(273).cations
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Again, if h be substituted for X -
x, the series becomes

hn .,_.
,U0 + 0AY. (27)

-I&quot; in

In this expression w may be any positive integer.
If n = i the result becomes

f(x + h) =f(x) + hf (x +
B/i). (28)

When n -
2,

+ _-/ ( + eh). (29)

The student should observe that 9 has in general different

values in each of these functions, but that they are all subject
to the same condition, viz., 6 &amp;gt; o and &amp;lt; i.

It will be a useful exercise on the preceding method for

the student to investigate the formulae (28) and (29) inde

pendently, by aid of the Lemma of Art. 74.

The preceding investigation may be regarded as furnish

ing a complete and rigorous proof of Taylor s Theorem, and

formula (27) as representing its most general expression.

76. Creometrieal Illustration. The equation

f(X) -/(*) + (X -*)/ !*+ 9 (X -
*)}

admits of a simple geometrical verification; for, let y =f(x)

represent a curve referred to rectangular axes, and suppose

(X, Y), (a?, y) to be two points Pl9 Pa on it : then

T-y
X-x X-x

is the tangent of the angle which the chord PI P2

X x

makes with the axis of x
; also, since the curve cuts the

chord in the points Px ,
P2 ,

it is obvious that, when the point on

the curve and the direction of the tangent alter continuously,

the tangent to the curve at some point between PI and P2 must be

parallel to the chord Pl P2 ; but by Art. io,/ (*,) is the tri

gonometrical tangent of the angle which the tangent at the
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point (ari t yi) makes with the axis of x. Hence, for some value,

a?i, between X and #, we must have

or, writing #1 in the form x + (X -
#),

/(JT) =/(*) + (Z -)/{* + (Z -
*)}.

77. Second Form of Remainder. The remainder

after n terms in Taylor s Series may also be written in the form

-

/W (x + Oh).\n- i

For it is evident that Rn may be written in the form

Substitute s for ^, as before, in every term except PI ;
and the

same reasoning is applicable, word for word, as that employed
in Art. 75. The value of F f

(z) becomes, however, in this

case

n -i

and, as F (z) must vanish for some value of z between x and

X, we must have, representing that value by x + (X -
x),

n- i
(so)

where 0, as before, is &amp;gt; o and &amp;lt; i .

If h be introduced instead of X x, the preceding result

becomes

which is of the required form.
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Hence, Taylor s Theorem admits of being written in the

form

n- i
(32)

The same remarks are applicable to this form* as were made
with respect to (27).

From these formulae we see that the essential conditions

for the application of Taylor s Theorem to the expansion of

any function in a series consisting of an infinite number of

terms are, that none of its derived functions shall become

infinite, and that the quantity

p/C% + 0)
C

shall become infinitely small, when n is taken sufficiently

large ;
as otherwise the series does not admit of a finite limit.

78. Limit of- when n is indefinitely great.
i . 2 .. n

Let un =-
,
then =-

;
.*. becomes smaller

i . 2 . . n un n + i un

and smaller as n increases
; hence, when n is taken sufficiently

great, the series ww+i, unw, . . . &c., diminishes rapidly, and
the terms become ultimately infinitely small. Consequently,
whenever the nth derivedfunction f(

n
)

(x) continues to be finitefor
all values of n, however great, the remainder after n terms in

Taylor s Expansion becomes infinitely small, and the series has

a finite limit.

* This second form is in some cases more advantageous than that in (27).
An example of this will be found in Art. 83.
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r^Tg. General Form of Maclaurin s Series. The

/&quot;expansion (27) becomes, on making x =
o, and substituting

x afterwards instead of h,

+
/(&quot;&amp;gt;(*). (33^

Hence the remainder after n terms is represented by

where is &amp;gt; o and &amp;lt; i .

This remainder becomes infinitely small for any function

xn

f(x) whenever /C
n

)
(0#) becomes evanescent for infinitely

great values of n.

We shall now proceed to examine the remainders in the

different elementary expansions which were given in the

commencement of this chapter.
80. Remainder in the Expansion of ax . Our for

mula gives for Rn in this case

(kg )&quot;*&quot;

Now, a6x is finite, being less than ax
;
and it has been proved

in Art. 78 that - becomes infinitely small for large

values of n. Hence the remainder in this case becomes

evanescent when n is taken sufficiently large. Accordingly
the series is a convergent one, and the expansion by Taylor s

Theorem is always applicable.
8 1 . Remainder in the Expansion of sin x. In this

case

xn fmr
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This value of Rn ultimately vanishes by Art. 78, and the
series is accordingly convergent.

The same remarks apply to the expansion of cos x.

Accordingly, both of these series hold for all values of x.

82. Remainder in the Expansion of log (i + x).
_

The series

--- + &c.,34
when x is &amp;gt; i

,
is no longer convergent ;

for the ratio of any
term to the preceding one tends to the limit - x

; conse

quently the terms form an increasing series, and become
ultimately infinitely great. Hence the expansion is inappli
cable in this case.

Again, sincefn
(x]

=
(- i)&quot;-*

2

^

* &quot; l

\ the remainder

*_ xRn is denoted by -- -
(
-

)
?; hence, if x be positive and

iv V I *r \JJO I

/yt

less than unity,
-

^-
is a proper fraction, and the value of

I i \/JC

Rn evidently tends to become infinitely small for large values
of n

; accordingly the series is convergent, and the expansion
holds in this case.

83. Binomial Theorem for Fractional and Nega
tive Indices. In the expansion

m m (m 1

(i + x\m = i + -x
1.2

m (m
-

i
)

. . . (m
- n + i

)
xn

+ H &0.
I . 2 ...

if un denote the nth
term, we have

un+1 m-n+
un n

the value of which, when n increases indefinitely, tends to

become x
;
the series, accordingly, is convergent if x &amp;lt; i

,

but is not convergent if x &amp;gt; i.
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Accordingly, the Binomial Expansion does not hold when
x is greater than unity.

Again, as

/() (x) =m(m- i) ... (m - n + i) (i +
a?)&quot;

1

-&quot;,

the remainder, by formula (25), is

m (m- i) . . . (m- n+ i) , n Nn)*-5-i-L xn (i + 0.r)
m-tt

,

i .2. . . n

or

*w (m- i) . . . (m-n + i)
x&quot;

i . 2 . . . n i + ^ n~w

Now, suppose # positive and less than unity ; then, when
w is very great, the expression

m (m - i
)

. . . (m - n + i
)

/

I . 2 . . . W

becomes indefinitely small ; also -- is less than unity ;

hence, the expansion by the Binomial Theorem holds in this

case.

Again, suppose x negative and less than unity. We employ
the form for the remainder given in Art. 77, which becomes
in this case

or

( \\
m
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In general (x + y)
m
may be written in either of the forms

y\
m

( x
+ ory

w i+-
/&amp;gt; / *? \ -.

now, if the index m be fractional or negative, and x &amp;gt; y, or

y- a proper fraction, the Binomial Expansion holds for the

series

(x
I 1.2

but does not hold for the series

since the former series is convergent and the latter divergent.We conclude that in all cases one or other of the expan
sions of the Binomial series holds ; but never both, except
when m is a positive integer, in which case the number of
terms is finite.

84. Remainder in the Expansion of tan~!
#. The

series

l
x tf x*

tan 1^ = --- + -- &c.,
i 3 5

is evidently convergent or divergent, according as x &amp;lt; or &amp;gt; i .

To find an expression for the remainder when x&amp;lt; i, we have,
by (

8
)&amp;gt; p- 50

. / 7T

n n-i . sm I n -- n tan&quot;
1^

Hence we have, in this case,

xn sin In-- n tan&quot;
1

(Bx) &amp;gt;

P - /_ i\n-i_ 2_/.Mn ~
( l)

(i + 61V);

which, when x lies between + i and - i
, evidently becomes

infinitely small as n increases, and accordingly the series holds
for such values of x.
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85. Expansion of sin&quot;
1
^. Since the function sin&quot;

1
a; is

impossible unless x be &amp;lt; i, it is easily seen that the series

given in Art. 64 is always convergent ;
for its terms are each

less than the corresponding terms in the geometrical pro

gression

x + 3? + x5 + &c.

Consequently, the limit of the series is always less than the

limit of the preceding progression.
A similar mode of demonstration is applicable to the

expansion of tan^z when x &amp;lt; i, as well as to other analogous
series.

In every case, the value of Rn ,
the remainder after n

terms, furnishes us with the degree of approximation in the

evaluation of an expansion on taking its first n terms for

its value.

86. Expansion by aid of Differential Equations.
In many cases we are enabled to find the relation between
the coefficients in the expansion of a function of x by aid of

differential* equations ;
and thus to find the form of the

series.

For example, let y = e
x

,
then

--
dx~

~

Now suppose that we have

y =
0&amp;lt;&amp;gt;

+ i* + a&z + . . . anx
n + . , . ,

then - =
! + 2a2x + . . . nan x*&quot;* + &o.

Accordingly we have

&c.,

* This method is indicated by Newton, and there can be little doubt that it

was by aid of it he arrived at the expansion of sin (m sin&quot;
1
x), as well as other

series. Vide Ep. posterior ad Oldemburgium. It is worthy of observation that
Newton s letters to Oldemburg were written for the purpose of transmission to
Leibnitz.
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hence, equating coefficients, we have

&amp;lt;=&amp;gt; *-?*! *-r 3
.*

Moreover, if we make a? = o, we get a =
i,

.-.*-. +2* JL+.-J^ +&c
I 1.2 1.2.3

the same series as before.

Again, let

y = sin (m ear
1

at).

Here, by Art. 47, we have

C -^-I-v-o.
Now, if we suppose y developed in the form

y = a, + a& + 2^3 + . . . + anz
n + &c.,

i dy = a,

Substituting and equating the coefficients of a? we get

nz -m*
a ~

(n +i)(+ 2)
&quot;&quot; (34)

Again, when x = o we have y = o ; .-. a = o.
Hence we see that the series consists only of odd powersot x
; a result which might have been anticipated from Art.

To find #!. When # = o, cos (m sin 1

^) i
, hence

[ )-w j

accordingly a^ = m\

a = --2-1

1.2.3

a
-

9)

4-5 1-2.3.4.5
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hence we get

sin* (m sur a?)
= x -- #3

1.2.3.4-5

In the preceding, we have assumed that snr 1^ is an acute

angle, as otherwise both it, and also sin (m sin&quot;
1

^), would admit

of an indefinite number of values. See Art. 26.

87. Expansion of sin mz and cosws. If, in (35), 2 be

substituted for sin~
:

#, the formula becomes

2.3

(m
3 -

i) (w
2 -

Q) . , p )
, ,v

+ -sm4
s -

&c.[ (36)
1.2.3.4-5 )

In a similar manner it can be proved that

cos mz=l - &quot;^ + ^&amp;gt;^A sin
&amp;lt;

s _ &0 . (37)
1.2 1.2.3.4

If m be an odd integer the expansion for sin mz consists

of a finite number of terms, while that for cos mz contains an

infinite number. If m be an even integer the Dumber of

terms in the series for cos mz is finite, while that in sin mz is

infinite.

The preceding series hold equally when m is a fraction.

A more complete exposition of these important expansions

will be found in Bertrand s
&quot; Calcul Differentiel.&quot;

In general, in the expansion (36), the ratio of any term

to that which precedes it is -;

r-j
-: sin

2

s, which, when

n is very great, approaches to sin
2
s. Hence, since sin z is

less than unity, the series is convergent in all cases. Similar

observations apply to expansion (37).

* This expansion is erroneously attributed to Euler by M. Bertrand j
it wus

originally given by Newton. See preceding note.
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The expansion

1 1-2 1.2.3 I -2.3.4
can be easily arrived at by a similar process.

88. Arbogast s Method of Derivations.

If u = a + b- + c + G?- + &c.,
I 1.2 1.2.3

to find the coefficients in the expansion of (u) in ascending
powers of a?

Let /(*) =
(
tt
),

/^

and suppose /(a?)
= ^ + - x + - - ^2 + & .

1 1.2

then we have evidently

A =/(o) =
(ar).

Also, writing , &quot;,
w
w

,
&c. instead of

by successive differentiation of the equation/() = rf, () we
obtain

. + 3 W . t. u +

(U) . Wiv +
j&amp;gt; (u)^ u

&amp;gt;

+ 3 (

Now, when a? - o, n, ?/, w
/x

,
w
w

, . . . obviously become
a, b, c, d, . . . respectively.
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Accordingly,

D =
/&quot; ( )

= ^ (a) . d +
30&quot; (a) . be + $

&quot;

(a) . b*,

E = /* (o)
=

tf (a) . e +
0&quot; (a) ($bd + $?) + 60

&quot;

(a) . b*c

+
&amp;lt;p

v
(a) . 64

.

From the mode of formation of these terms, they are seen

to be each deduced from the preceding one by an analogous
law to that by which the derived functions are deduced one
from the other

; and, as/ (#), /&quot;(a?)
... are deduced from/(#)

by successive differentiation, so in like manner, J5, (7, D, . . .

are deduced from
(f&amp;gt;(u) by successive derivation ; where, after

differentiation, a, b, c, &c., are substituted for

du d?u

If this process of derivation be denoted by the letter S, then

J5 = 3.^, C=S.B, D = S.tf,&c. (38)

From the preceding, we see that in forming the term
S . 0(#), we take the derived function $ (), and multiply it

by the next letter b, and similarly in other cases.

Thus S . b =
c, 8 . c =

d, . . .

8 . bm = mbm-*c, S . c
m = mcm~ld . . .

Also 8 . (a) b =
$ (a) c +

0&quot; (a) b\

This gives the same value for C as that found before
;
D

is derived from C in accordance with the same law
;
and so

on.

The preceding method is due to Arbogast : for its com
plete discussion the student is referred to his &quot; Calcul des
Derivations.&quot; The Eules there arrived at for forming the
successive coefficients in the simplest manner are given in
&quot;

Galbraith s Algebra,&quot; page 342,
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As an illustration of this method, we shall apply it to find
a few terms in the expansion of

f OP (F^ /V^ \
sin (a + b - + c + d + &o. i

\ i 1.2 1.2.3 /

Here A = sin a, B = S . sin a = b cos a,

C =
. b cos a = c cos a - b

z
sin a,

D = S . C = d cos a 3 #c sin a - b
z cos

,

3c sn a - c cos a

+ b4- sin a.

a?
If the series a + bx + o + &c. consist of a finite num-

I . 2

ber of terms the derivative of the last letter is zero thus, if

d be the last letter, 8 . d =
o, and ^ is regarded as a constant

with respect to the symbol of derivation S.

If the expansion of (w) be required when u is of the
form

a 4- /3# + 7#
2 + & 3 + &c.,

the result can be attained from the preceding method by
substituting a, b, c, d, &c. instead of a, j3, i . 2 7, i . 2 . 3 . 8,

&c., and proceeding as before.

The student will observe that in the expression for the
terms D, E, &c., the coefficients of the derived functions

&amp;lt;tf(

a
)&amp;gt; &quot;(*)

&c
-&amp;gt;

are completely independent of the form of the
function 0, and are expressed in terms of the letters, b, c, d,

&G. solely; so that, if calculated oncefor all^ they can be applied
to the determination of the coefficients in every particular
case, by finding the different derived functions $ (a), $&quot;(d),

&c., for that case, and multiplying by the respective coef

ficients, determined as stated above.
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EXAMPLES.

i If w = f(ax + bv) then - = - . This furnishes the condition that
a dx o dy

a given function of x and y shouM he a function of ax + by.

2. Find, hy Maclaurin s theorem, the first three terms in the expansion of

tana?.

Ans. x + +
3 *5

3. Find the first four terms in the expansion of sec x.

a? c#4 61 #6

Ans. i + + +- .

2 24 720

4. Find, hy Maclaurin s theorem, as far as z*, the expansion of log (i + sin x]

in ascending powers of x.

Let f(x] = log(i + sin a?),

cos x i - sin x
then/ (*)

=-
:

= -- = sec x - tan x,
i + sm x cos x

f&quot;(x)
= sec x tan x - sec2# = -f (x) sec x ;

/ &quot;(*) =-/&quot;(*) sec a; -/ () sec z tan a? = -/ () /&quot;(
a;

)

a; z a;

.-. log (i + sin x}
= x - - + - - + &c.

5. Find six terms of the development of -- in ascending powers of a:

Ans. i +x + x* + +- + ...
3 2 10

6. Apply the method of Art. 86, to find the expansions of sin a; and cos x.

7. Prove that

tan 1
(x + h)

= tan i x + h sin z
:

--
(h sin z)

2- + (h sin z)
3 --- &c.,

where z = cot- 1^.

Here/ (x)
= tan- 1 x =

;
and hy Art. 46, = (- i}

n
\n-i sin*zsinMz; . .&c,
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8. Hence prove the expansion

TT sin z sin 2* sin 33- = Z + COS 2 + COS22 + COS32 + &C.21 a 3

Let h = - cot 2 = -
x, &c.

q. Prove that

ir 2 sin 2 sin 22 sin 32

2
~

2 I 2 3

Let A sin 2 = - i in Example 7 ;
then h + x = :

= - tan -
; . . &c

10. Prove the expansion

TT sin 2 r sin 22 i sin 32

2
~

COS Z 2 COS2 2 3 COS32

Assume h = : ,
then

smz cos z

x + h = - tan 2 = tan (ir
-

z) ; .*. ir - 2 = tan&quot;
1
(x + A), &c.

Substituting in Example 7, we get the result required.

The preceding expansions were first given by Euler.

11. Prove the equations

sin 9* = 9 sin x - 120 sin3* + 432 sin5* - 576 sin?* + 256 gin3*,

cos 6* = 32 cos6* - 48 cos4* + 1 8 cos2* - i.

These follow from the formulae of Article 87 .

12. If in = 2, Newton s formula, Art. 87, gives

(
. sin3* sin5*

)sm 2* = 2 &amp;lt; sin x &c. 5
;

verify this result by aid of the elementary equation sin 2* = 2 sin * cos x

13. If $ (x + h) + &amp;lt; (* A)
=

(J&amp;gt; (*) &amp;lt; (h), for all values of * and h,

prove that ^~7~\
=

&quot;i

~
&amp;lt;^c &quot;

= cons^an^

and also ^ C )
=

&amp;gt; $ &quot;(0)
=

&amp;gt;

&c&amp;gt;

14. If, in the last,
^-

y
= 2

; prove that
&amp;lt;&amp;gt;(*)

= * + ?-&quot;.

If
^ Y = - 2

J prove that
^&amp;gt; (*)

= 2 cos (a*).
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15. Apply Arbogast s method to find the first four terms in the expansion
of

(a 4- bx 4- ex2 + dx* + &c.)
n

.

Ans. a 4-
n &quot;1 bx + I * W- 4- nac

J
a&quot;-

2 x*

a*
Wj
^ 4- &c.

1 6. Prove that the expansion of . x can contain no odd powers of x.

For if the sign of a; be changed, the function remains unaltered.

17. Hence, show that the expansion of contains no odd powers of x

beyond the first.

x x x e* + i

Here - 4 - = -
.
- -

; . . &c.

18. If u = -
, prove that

n fd&quot;-
l
u\ n(n-i) (d&quot;*u\ (du\-

3 ; 1 + -
( 1 , ) +...+(y + (o = O

;
I \dx

n-*
Jo 1.2 \d0tr*/t \dXjQ

and hence calculate the coefficients of the first five terms in the expansion of u.

Here e*u = x + w, and by Art. 48, we have

(du
n(n- i) d*u dnu\ dnu

u + n + --i + . . . +
} =, . . &c.

dx 1.2 dx2 dxn I dxn

x x _Z?i % J?3

19. If- = i - - + - x*--&quot;-
a;
4 +-&quot;

-, a:
6 - ...

e* - I 2 1.2 1.2.3.4

prove that

These are called Bernoulli s numbers, and are of importance in connexion
with the expansion of a large number of functions.

20. Prove that

x x ix* 2x* J?3*6- =--- (2
2 -

I) +-- (2*
-

i)
- ---

(26
-

I) 4- . .

e*+i 2 I .
N

I . .
V ; i.2...6 v
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21. Hence, prove that

x x r.s

+ &c.
2 24 240

22. Prove that

_
1.2 1.2.3.4 I- 2. ..6

*
23. Also, tan = Six (2?

-
i) + (2*

-
i) + &c.

24. Prove that

featf-r-**-**-**-...
li li I!

This follows immediately by substituting
- for x in Ex. 21.

25. Given w
(
-

*) = i ; find the four first terms in the expansion of u in
terms of #, by Maclaurin s Theorem.

% +
%+&quot;&quot;

expand y in powers of x by the method of indeterminate coefficients.

27. Show that the series

is convergent when x &amp;lt; r, and divergent when x &amp;gt; I, for all values of m,

28. Prove the expansion.

/(*) i /(a) I

29. Find, by Maclaurin s Theorem, the first four terms in the expansion of

(I + x)* in ascending powers of #.
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But, by Art. 29, /(o) = ;

.

Hence (i + x)
g = -- + ~ ^ *3 + &o.

This result can be verified by direct development, as follows:

let w =(i + *)*,

X X* X*

then log M = -
log (i + z) = I - - + - +...;

34&quot;

a;
2 r5 \ a;

2 / r x ** \
2 ^3

/-
1 * \

3
1

+
T&quot;)

+r(H+
4&quot;}-ri(i-

+
-) J

30. In Art. -76, if /(a?) and/ (jr) be not botb continuous between the points

PI, P2 ,
show that there is not necessarily a tangent between those points, parallel

to the chord.

71. Find the development of-- in ascending powers of x, the coef-
sin x sin 2x

ficients being expressed in Bernoullian numbers. &quot; Camb. Math. Trip., 1878.&quot;

g{nce -sin ^ = x cot x + x cot 2x, the expansion in question, by (22),
sin x sin 2x

x . 6

(2 + I}
~ &quot;&quot;

(23 + ~~ + &quot;



CHAPTER IV.

INDETERMINATE FORMS.

89. Indeterminate Forms. Algebraic expressions some
times become indeterminate for particular values of the

variable on which they depend ; thus, if the same value a

when substituted for x makes both the numerator and the

denominator of the
fraction*^ vanish, then

-y-^
becomes of

the form -, and its value is said to be indeterminate.
o

Similarly, the fraction becomes indeterminate if/ (x) and

(j) (#) both become infinite for a particular value of x. We
proceed to show how its true value is to be found in such

cases. By its true value we mean the limiting value which the

fraction assumes when x differs by an infinitely small amount

from the particular value which renders the expression indeter

minate.

It will be observed that the determination of the diffe

rential coefficient of any expression/ (x) may be regarded as a

case of finding an indeterminate form, for it reduces to the

f(x + ]l\-.f (x\
determination of - when h = o.

h,

In many cases the true values of indeterminate forms can

be best found by ordinary algebraical and trigonometrical

processes.
We shall illustrate this statement by a few examples.

EXAMPLES.

i. The fraction
gz &quot; &quot; 2acx + ac

becomes of the form - when x = c; but since

bx* - 2bcx + be2 o

it can be written in the shape
a

, &quot;*!
! 2 &amp;gt;

its true value in all cases is
-

.
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2. The fraction =* /
J=T becomes - when x = o.

To find its true value, multiply its numerator and denominator by the com

plementary surd, \/ a + x + \/ a - x, and the fraction becomes

x(\/a + x + \/a - x) y a + x + y a -x
^

2X 2

the true value of which is y a when x - o.

3.

y a + a; -ya-x

Multiply by the two complementary surd forms, and the fraction becomes

2ax {y* a + x + y a -
x}

or

the true value of which evidently is \/ a when x = o. From the preceding

examples we infer that when an expression of a surd form becomes indeter

minate, its true value can usually be determined by multiplying by the com

plementary surd form or forms.

c. ^ when x = o. ^. .
9* *i )/

a sin d sin ,
o .

6. becomes - when 6 = o.

0(cos0- cos ad) o

To find its true value, substitute their expansions for the sines and cosines,

and the fraction becomes

/ 63 \ / a3 3
\

a (e + ... I - 1 00 + ...)
\ 1.2.3 / V 1.2.3 /

fl
a a2 0-
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Divide by
3
(a-

-
i), and since all the terms after the first in the new numerator

and denominator vanish when 6 o, the true value of the fraction is - in this

case.

7. The fraction

~l
4- A2X&amp;gt;-* + . . . A , oo ,

becomes when x = oo :

its true value can, however, be easily determined, for it is evidently equal to

that of

a\ #2
o + - 4 -

2
+ . . .

Moreover, when x =
oo, the fractions

, j . . . . . .,
all vanish ; hence,

the true value of the given fraction is that of

xm- n ? when x oo.

The value of this expression depends on the sign of in n.

(i.) If m &amp;gt; n, xm n = oo when x = oo
;
or the fraction is infinite in this

case.

(2.) If in = n, the true value is .

(3.) Ifm&amp;lt;n, then xm - = o when.# = oo
;
and the true value of the frac

tion is zero.

Accordingly, the proposed expression, when x = oo, is infinite, finite, or zero,

according as m is greater than, equal to, or less than n. Compare Art. 39.

8. u = \/x + a- y^x + b, when x

a-b

y x 4 a + v x + b

a

9. -v/2
2 + ax -

x, when x = co. Ans. -.

a-b
Here u = --- = o when x - oo.

u - a* sin
(
-

) ,
when x =

\V
(i.) If a &amp;lt; i, a* = o when x =

oo, and therefore the true value of u is zero

in this case.

c .

(2.)
If a

&amp;gt; i, then a* becomes infinite along with x
;
but as - is infinitely

small at the same time, we have sin
-^

=
^.

Hence, the true value

of u is c in this case.
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ii. u - \/ az - x- cot - A is of the form O x oo when x = a.
2 A/ a + x

Here u
ir la - x

2 \a + x
tan

but, when a x is infinitely small,

TT la x it la x
tan- J = - * -;

2 M -fa; 2 Ma + *

\/ 2 - x 2 a + x

. .-, E -

3\I^T5 2

.= when # = a.

a; sin (sin x) am x
12. w =

ji , when a; = o.

Substitute the ordinary expansion for sin a:, neglecting powers beyond the sixth,

and u becomes

x { sm x -

3 /v5

a;
5

Hence we get, on dividing by a;5
,
the true value of the fraction to be when

a; = o.

IS-

Similar processes may be applied to other cases ; there

are, however, many indeterminate forms in which such pro
cesses would either fail altogether, or else be very laborious.

We now proceed to show how the Differential Calculus
furnishes us with a general method for evaluating indetermi
nate forms.

90. Method of the Differential Calculus. Sup-
f i \

pose ~4 to be a fraction which becomes of the form - when
0(s) o

x = a\
i. e./(fl)

=
o, and

&amp;lt;j&amp;gt; (a)
= o

;

H 2
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substitute a + h for x and the fraction becomes

f(a + h) -f(d)

/( + *) or 1 _
4&amp;gt;(a+ h) $(a + h)

-
0(0)

~T~

but when h is infinitely small the numerator and denominator

in this expression becomef(a) andtf/(a), respectively; hence,

in this case,

/( + *) = ./

0(0 + h) tf(a)

Accordingly, ^-771 represents the limiting or tfrwe value of

W
the fraction ^-^-.

A(a)

(i.) If/ (a)
=

o, and
^) (^) ke no^ zero

&amp;gt;

^ne ^me value ^

/()
7-^ is zero.

0(a)

(2.) If/ (a) be not zero, and $ () =
o, the true value of

/()
il4 is oo.

0(0) /r/ \

(3.) !/ () =
o, and (a)

= o, our new fraction
-^^

is

still of the indeterminate form -. Applying the

preceding process of reasoning to it, it follows that

its true value is that of ,,,\.
()

If this fraction be also of the form -, we proceed to the

next derived functions.

In general, if the first derived functions which do not

vanish be/W(fl) and #W(0), then the true value of
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EXAMPLES.

T
x sin x

tt=
cos a;

W en#=-.

Here f(x)=x sin x
,

# (a;)
= cos x

;

.*. f (x)
= a; cos x + sin a?,

&amp;lt;j&amp;gt;

= -sina?, * (T] = -

Hence u = -
i, when a? = -.

-
2. =-

, when x = .

(a;
-

a)
r

Here /(a;)
= emx - ema

,

/ (a)
=

$ (x] =r(x- a)*
1
, &amp;lt;ft (a) is o or oo, as r &amp;gt; or &amp;lt; i.

Hence the true value of u is oo or o, according as r &amp;gt; or &amp;lt; i.

This result can also be arrived at by writing the fraction in the form

gm(x-a) _ i ema emh _

(x
-

a) hr
ema

,
where h = x - a

;

hence, expanding emh
,
and making h = o, we evidently get the same result as

before,

x - sin x .

3. 5 when a; = o.
#*

Here f (x)
= i - cos a;, / () = -

fy (x)
=

3a;
2
, ^ () = *

/&quot;(*)= sin*, /&quot;(o)=o.

f&quot;(x]
= cos a;, / &quot;(o)

= i.
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Hence, the true value is -, as can also be immediately arrived at by substituting

x3

x -^ + &c. instead of sin x.
6

a* - i

4. when x = o. Am. log a.

It may be observed that each of these examples can be exhibited in the form
oo - oo

,
that is, as the difference of two functions each of which becomes in

finite for the particular value of x in question.

91. Form o x oo. The expression /(#) x $(x} becomes

indeterminate for any value of x which makes one of its fac

tors zero and the other infinite. The function in this case is

easily reducible to the form -
;
for suppose f(a)

=
o, and (a)

=
oo, then the expression can be written

,
which is of the

required form.

EXAMPLES.

TTX

1. Find the value of (i
-

x) tan when x = i.

This expression becomes ,
the true value of which is - when x = I.

cot
2

2. Sec* lx sin x - H ,
when x = \

IT

x sin #

This becomes -. a form already discussed,
cos a;

3. Tan (x-a). log (x
-

),
when x = a. Am. o.

4. Cosec2
/3# . log (cos ax),

x = o. -
-^p.
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02. Form . As stated before, the fraction -^
also

0W
becomes indeterminate for the value x = a, if

/(a)
=

oo, and $(d)
= oo.

It can, however, be reduced to the form - by writing it

in the shape

/(*)

The true value of the latter fraction, by Art. 90, is that of

(*)

(x)

/to
/&quot;(#)

Now, suppose J. represents the limiting value of r\

when x =
a, then we have

that is, the true value of the indeterminate form g is found

in the same manner as that of the form -.
o

In the preceding demonstration, in dividing both sides of

our equation by -4, we have assumed that A is neither zero

nor infinity ;
so that the proof would fail in either of these

cases.

It can, however, be completed as follows :

Suppose the real limit of^ to be zero, then that of

J(a] + ^(a) ^ j wnere k may be any constant ;
but as the
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latter fraction has a finite limit, its value by the preceding
method is

or

therefore ~ =
J * e - when u4 is zero, -&amp;gt;

W is also zero, and
l) W

wee versa.

/w
Similarly, if the true value of -^-4 be infinity when x =

a,

0W
then ~- is really zero

;
we have, therefore, ^W= o, by what

/ W
f

j (
a
)

has been just established
;
.V ,. (

= oo.

$ (a)

Accordingly, in all cases the value of &quot;TTT-T* determines

that of ^-~ for either of the indeterminate forms - or ~.

* On referring to Art. 69, the student will observe that - is of the form
9 \

x
)

whenever =
,
so that the process given above would not seem to assist

&amp;lt;/&amp;gt;(#)

us towards determining the true value of the fraction in this case
; however, we

generally find a common factor, or else some simple transformation, by which
o

we are enabled to exhibit our expression, after differentiation, in the form -.

For example
*

^
is of the form -22- when x =-: here f(x)

I 7T\ 00 1

log(.-j)

sec**;,
&amp;lt;f&amp;gt;

r

(z)
=

^3, and the fraction -rrL is stm of tte form
S&quot;

but it; can

x
2

IT

X --
be transformed into- which is of the form -

: the true value of the latter
* o

fraction can be easily shown to be oo when x -.

In some instances an expression becomes indeterminate from an infinite value

of x. The student can easily see, on substituting
- for a?,

that our rules apply

equally to this case.
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03 Indeterminate Expressions of the Form

(/(0))*. Let u = {/(0)}*
(af)

,
then log u =

0(0) log/(0).
This latter product is indeterminate whenever one of its fac

tors becomes zero and the other infinite for the same value

of

(i.) Let 0(0)
= o, and log (/(0)}

= co
;

the latter re-

quires either /(0)
=

oo, or/(0)
= o.

Hence, j /(0)}*^ becomes indeterminate when it is of the

form o, or 00.

(2.) Let 0(0)
=

00, and log (/(0)j
=

o, 0?/(0)
= i

;
this

gives the indeterminate forms

i
*
and i&quot;&quot;.

Hence, the indeterminate forms of this class are

o, 00, and i*&quot;.

EXAMPLES.

I . (sin x)
* * is of the form

o&amp;lt;&amp;gt;,

when x - O.

log (sin x)
Here log u = tan # log (sin a?)

= -

coiy

The true value of this fraction is that of- = cos x sin x. or o when x = o.

cosec2#

Hence the value of (sin a;)
ten * -

(ft = i at the same time.

2. (sin a;)
tan

*, when x = -.

This is of the form i
&quot;,

but its true value is easily found to be unity.

i

tan a:\l2*

(tan

a:\-
J

Here log

x = o.

tan x
but - = i + - + &o.

X j
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tan x f x*
, \ a;

2

.*. log =
log I i + + &c.

J
= 4 &c.

Hence, the true value of log u is - when a; =o; and, accordingly, the value of u

is e$ at the same time.

-H).4. =
(

i + -
J ,

when x = o.

i log; (i -f.

Let a? = -, then log u =

&
. . by Art. 92, the true value of log u when z = &amp;lt;x&amp;gt; is that of- ,

or is zero.
i + az

Hence, the value of u is i at the same time.

5. = ( i H J, when x = &amp;lt;x&amp;gt;.

Let

the true value of which is a when z is zero.

Hence, the true value of u is e
;
as also follows immediately from Art. 29.

(I

\ tan x
-

I
,

IT*

I 2
J

2a
,

when x = o. Ans.

IT*

when # = a.

94. Compound Indeterminate Forms. If an in

determinate form be the product of two or more expressions,

each of which becomes indeterminate for the same value of #,

its true value can be determined by considering the limiting

value of each of the expressions separately ;
also when the

value of any indeterminate form is known, that of any power
of it can be determined. These are evident principles : at

the same time the student will find them of importance in the

evaluation of indeterminate functions of complex form. We
will illustrate their use by a few elementary applications.

EXAMPLES.

i. Find the value of

/ it IX \
n

. IT

z&quot;&amp;gt; (sin x)
tan *

(
:
-

) ,
when x = -.

\2 sm2X/ 2

The value of xm is I -
J

&quot;

,
and that of (sino;)

t;m * is unity: see p. 105.



Examples. 107

Again,
*~ 2X

becomes on substituting
- - z for : hence its true

b
2 sin 2x 2 sin 2Z 2

value is - when z = o.
2

7| 7T

Accordingly, the true value of the proposed expression when x = - is
^^.

xn
2. when # = oo.

This fraction can be written in the form / ~ \ . The true value of ~, by the

method of Art. 92, is that of 7 ;
but the value of the latter fraction is zero

n

when x = oo
;
hence the true value of the proposed fraction is also zero at the

same time.

3. M = xn (log x)
m

,
when x = o, and m and n are positive.

n

Here w = (# log x)
m

,

^-^ is of the form g- when # = O
;

af*

its true value is that of

Hence, the true value of the given expression is zero.

This form is immediately reducible to the preceding, by assuming xn = e~v.

u = when x = &amp;lt;.

Here /
* \*

m
.

\b*
n~m

l

but if b &amp;gt; i, and n &amp;gt; m, bxH
~m =

&amp;lt;x&amp;gt; when x = oo. Consequently the value of u is

of the form o
,
or is zero in this case.

Again, if m
&amp;gt; n, bxH

~m = o when x =
&amp;lt;x&amp;gt;,

and the true value of u is oo.
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a x

u = when x = o.

Let x = -, and this fraction is immediately reducible to the form discussed in

the previous Example.

2&quot;

1

X
when x = O.

-

method of Art. 90, and it becomes

From Art. 29, this is of the form -
;
to find its true value, proceed hy the

Again, substituting for (i + *) its limiting value e, we get

-(i + ar) log (i +

the true value of which is readily found to be - - when x = o. Compare Ex. 29,

m.-,
i |q

rino;- sin

^|
I sin a; I (ar(cos#- cosaa;))

The true value of ^- ,
when x = o, is log m ;

sin 2

sin x sin &amp;lt;z# ,

has been found in Example 6, Art 89, to be ;
hence the true value of the given

expression when x - o, is - og m.



x* tan
10. -,

( x + sin 2x - 6 sin -
J

f 4 + cos x -
5 cos -

J

Examples. IOQ

EXAMPLES.

,/g-^g
wh-* ^.^||

/sin wa;\
m

z -

( )

cos xQ cos

4
vT&quot;w * =a y *

6.
** ~ *&quot;*

~ 2
*. * = o. -.

i - sin a; + cos x _v

tan x - sinx I

, ..a -.

01 &quot;* a TT ,

II. , ; , X= -. a log
log sm x 2

A
12. -- COt (-1.

a;
2 + 2 cos x - 2 i

13. ,
a. = o.

12
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y/2 + cos 2s- sins T
I5&amp;lt; when * = -.

#a sin a sin ##
- tanza

* * = .

(n cos na sin no) cos2/m.

z* tan nx - n tan x 4
I cos mx n sin x - sin nx m**

(2 sin a; sin 2#)
2

(sec a: cos 2x}
3 x = o.

i

20

2I
a;1 g( I + a;)

I - COS X

231

log (tan 2#)
25

log (tan s)

26&amp;gt;
f_+log(i-s)-i

7T

S =O.

im
27. r-

x ,
tan- 1

cos
3^&amp;gt;

sec a; cos a;
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n v ^
/log x\x

3- I I
&amp;gt;

when x = =. ^s. i.

sin a; - log (e
x cos a;) i

32.- , * = o. -.

33- **

a; + log a:

34- -^T^

35-

36.

i - x + log x

X* -X
I - X + log #

cos x -
log (

r + ar) + sin a? - i

g* _ e-x _
39&amp;gt;

3

4..

^_
/ga;2 + bx + g\

te \ ! + *! /

a-* -a log (-)-7===S
a y 2ax xz

2
tan (a + a?)

- tan (a
-

a?)
&quot;

tan-i(&amp;gt; +*) - tan-i (a
-

iC 30; 4- 2

43

sm a: I

, i , _L .\

~
ar = o ,
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44. (sin#)
sin

*, when# = o. Ans. i.

45. (sees)&quot;
8
&quot;*,

3 = 0. i.

tar.* ^
46. (sin #) ,

47. Find the value of

(x
-

y) a* -f (y -g)jE
n + (a- a?)y

n

&quot;l^-^Ty^^H^^T&quot; ~T7T
when x = y = a.

Substitute + h for #, and a + A for y, and after some easy transformations we

get the answer, on making h = o, and k = o.

x + tan x tan 2# 7

22 + tan a; - tan 30; 26*

x + sin # sin ^x 7
4Q. ,

= O. .

2# + tan # tan $% 52

/ / / T
\/ a + V x ci

-- sin x - tan x

20



CHAPTEE Y.

PARTIAL DIFFERENTIAL COEFFICIENTS AND DIFFERENTIATION

OF FUNCTIONS OF TWO OR MORE VARIABLES.

95. Partial Differentiation. In the preceding chap
ters we have regarded the functions under consideration as

depending on one variable solely ; thus, such expressions as

e
ax

j
sin bx, xm

, &c.,

have been treated as functions of x only ;
the quantities

a, b, m, . . . being regarded as constants. &quot;We may, however,
conceive these quantities as also capable of change, and as

receiving small increments
; then, if we regard x as constant,

we can, by the methods already established, find the differen

tial coefficients of these expressions with regard to the quan
tities, a, b, m, &c., considered as variable.

In this point of view, e
ax

is regarded as a function of a as

well as of #, and its differential coefficient with regard to a

d (e
ax

)
is represented by ,

or x e
ax
L^ Art. 30 ;

in the derivation
Cld

of which x is regarded as a constant.

In like manner, sin (ax + by) may be considered as a

function of the four quantities, a, y, a, b, and we can find its

differential coefficient with respect to any one of them, the

others being regarded as constants. Let these derived functions

be denoted by
du du du du

d~x dy Ha
9

db
9

respectively, where u stands for the expression under con

sideration, and we have

du
N

du
, N= a cos (ax + oy),

= b cos (ax + by),
u/x cly

du . . . du / T \= x cos (ax + oy) t
= y cos (ax + by).

i(a do
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These expressions are called the partial differential coef

ficients of u with respect to #, y, a, b, respectively.

More generally, if

/fe y, *)

denotes a function of three variables, x, y, z, its differential

coefficient, when x alone is supposed to change, is called the

partial differential coefficient of the function with respect tox;

and similarly for the other variables y and z. If the function

be represented by u, its partial differential coefficients are

denoted by
du du du

dx dy
9

fa

and from the preceding it follows that the partial derived

functions of any expression are formed by the same rules a?

the derived functions in the case of a single variable.

EXAMPLES.

i. u = (ax* r by*
-- cz2

)&quot;.

Here = 2nax (nx* -f
by&quot;

+ cz8
)&quot;

1
,

ax

= 2nby (ax* + by* +
8

)&quot;-

1
,

dy

= 2ncz (ax* + by* + z
2
)-.

dz
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96. Differentiation of a Function of Two Vari
ables. Let u =

(a?, y), and suppose x and y to receive the

increments h, k, respectively, and let Aw denote the corre

sponding increment of w, then

Aw =
(a?

+ h, y 4 &)
-

(a?, y)

=
(a&amp;gt;

+ A, y + k)
-

(a?, y +
)
+

(a?, y + A)
-

(a?, y)

(a?
+ A, y + *)

-
(a?, y + *) ft (

If now h and & be supposed to become infinitely small,

by Art. 6 we have

ft (x + h, y + k)
-

&amp;lt;j&amp;gt; (oe, y +
) _ c? . (#, y + &)

&amp;lt;t&amp;gt;(x,y
+

k)-&amp;lt;}&amp;gt;tx,y)_d.&amp;lt;t&amp;gt; (x, y]
ano. --;

-
;

k dy

In the limit, when k is infinitely small, ^ (a?, y + )

becomes ^ (^, y), and

d . &amp;lt;t&amp;gt; (a, y -*- ki . d . 6 (#, y)
i-i-f^
-- becomes

y
,

v yy
;

efo cte

hence we get- neglecting infinitely small quantity of the second

order,

, dr du
du = h + It;

dz dy

where h and k are infinitely small.

If dx
9 dy, be substituted for h and k, the preceding

becomes
. du _ du , ,

N
du = -r- dx + --

dy. (i)
dx dy

In this equation du is called the total differential of u,

where both x and y are supposed to vary.
The student should carefully observe the different mean

ings given to the infinitely small quantity du in this equation.

Thus, in the expression dx, du stands for the infinitely
dx

I 2
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small change in u arising from the increment dx in sc, y being

regarded as constant. Similarly, in dy, du stands for the
dy

infinitely small change arising from the increment dy in y, x

being regarded as constant. If these partial increments be

represented by dxu, dyu, the preceding result may be written
in the form

du = dxu + dyu.

That is, the total increment in a function of two variables is

found by adding its partial increments, arising from the
differentials of each of the variables taken separately.

EXAMPLES.

i. Let x = rcosfl, in which r and 6 are considered variables, to find the
total differential of x.

Here

Hence dx = cos 6 dr - r sin 6 d6.

du 2x du

dx a? dy

= 2 then ef

r
Again, multiplying the former of the two preceding equations by x, and the
latter by y, and adding, we get

du du
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97. Differentiation of a Function of Three or
more Variables. Suppose

u =
(x, y, *),

and let h, k, I represent infinitely small increments in #, y, z,

respectively; then

Aw =
(x + h, y + k, z + 1)

-
(#, y, s)

which becomes in thy limit, /y the same argument as before,
when dx, dy, dz, are substituted for h, k, I,

du 7 du 7 du . . x
c?w = dx + dy + dz. (2)

(fo? dy dz

Or, the infinitely small increment in u is the sum of its

infinitely small increments arising from the variation of each

variable considered .separately.
A similar process of reasoning can be easily extended to

a function of any number of variables
; hence, in general, if

u be a function of n variables, #1, #2, #3? #n&amp;gt;

,
du . du dy .

du = dxi + dx* + . . . + dxn . (3)
dxi dx-i dxn

98. If
u =/(^, w),

where v
9
w

9
are both functions of x ; then, from Art. 96, it is

easily seen that

du df(v9 w)dv df(i\iv)dw

dx dv dx dw dx

This result is usually written in the form

du du dv du dw

dx dv dx dw dx ^

In general, if
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wjiere yly ya, . . . yn, are each functions of x, we have

du
^ du_dy du^dy* du_dyn

dx dy^dx dy* dx
+

&quot; +
dyn ~dx

5

Also, if yi9 y2, &c., yn , be at the same time functions of
another variable s, we have

du
= du_ dy^

du dy* du dyn
dz dyl dz dy* dz ~dyn ~dz

9

and so on.

r. Let u = (X, J),

where Z = ax + by, T = a x + b y

tlien
du du dX du dY

du _ du dX du dY

but = a = b, = a ~V
d$ c^y clx d/u

Hence
* = a + S*L ,
(?3? C?i fi?^

du du du

2. More generally, let

., i / -y TT 7\w = 9 (
A

i
*

&amp;gt; ^;&amp;gt;

where X = ax + iy + as,

T = a a; + i y + c
&amp;gt;

&quot;When these substitutions are made, u becomes a function of #, y, z, and we
have

du du .du ,,dti- = + 4 ,

du du
, du .. du

= c+ c -+ c&quot;-~.

dz dX dY dZ
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08*. Differentiation of a Function of Diffe

rences. If u be a function of the differences of the vari

ables, a, |3, 7 : to prove that

du du du__
Ta* dfi

+
d^~

Let a - =
a?, j3

- 7 -
y, 7

- a = s
; ^then,

w is a function

of x, y, 2
; and, accordingly, we may write

y,

Hence

Similarly,

da dxda dy dn dzda dx dz

du _du_uu du_^du _du t

dp dy *&amp;lt;*? dy d* dy

du du
du_ _

This result admits of obvious extension to a function of

the differences of any number of variables.

i. If

2. If

EXAMPLES.

i, i, i, if

a, 3, 7, S
&amp;gt;

e\ B\ 7
2

, 82,

a3, tf, 7s
,

3

, prove that

rfA &amp;lt;/A dA

&quot;rfS

O.

dA

I, T, I, r
&amp;gt;

a, 0, 7&amp;gt;
8,

a2
, j8

2
, 7

2
,

82
,

a4
,

4
, 7

4
, SS

, prove that

I, J
5

7, 8,

!

, 7
2

,
8

;

3
, 7

3
,

S ;
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Definition of an Implicit Function. Suppose
that y, instead of being given explicitly as a function of #, is

determined by an equation of the form

/(a?, y)
=

o,

then y is said to be an implicit function of x
;
for its value, or

values, are given implicitly when that of x is known.
100. Differentiation of an Implicit Function.

Let k denote the increment of y corresponding to the incre

ment h in a?, and denote /(#, y) by u.

Then, since the equation /(#, y)
= o is supposed to hold

for all values of x and the corresponding values of y, we
must have

f(x + 7i,y + k)= o.

Hence du = o
;
and accordingly, by Art. 96, we have,

when h and k are infinitely small,

du . du .

h + k = o;
dx dy

du

k dy dx /
hence in the limit 7 = -r = -

^-
^

(o)

This result enables us to deterSiine the differential

coefficient of y with respect to a? whenever the form of the

equation /(#, y)
= o is given.

In the case of implicit functions we may regard x as

being a function of y, or y a function of x, whichever we

please in the former case y is treated as the independent

variable, and, in the latter, x : when y is taken as the inde

pendent variable, we have

du

dx _ dii __i_

dy du dy

dx dx

This is the extension of the result given in Art. 20, and

might have been established in a similar manner.



Differentiation of an Implicit Function. 1 2 1

EXAMPLES.

dy
I. If

3 + j/
3 - $axy =

c, to find .

Here -
3&amp;lt;* f),

=
3 (^

2 -
*) &amp;gt;

dx

See Art. 38.

xm
2 - If

101. If =
(a?, ?/),

where a? and ?/ are connected by the

equation /(#, y)
=

o, to find the total differential of u with

respect to x
; y heingrej-tirded

as a function of #.

Here, by Aft.~987we get&quot;

du d$ dfy ly /

dx dx dy dx

Also

___
dx dy dx

Hence, eliminating ,
we get

d(j) df df d$
du _ dx dy dx dy /-\

dx
~

df

dy
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This result can also be written in the following deter
minant form :

du
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102. Euler s Theorem of Homogeneous Func

tions. If

where

p -4- q = p + g =p&quot;
+

q&quot;

= &c. = n,

to prove that

du, du _ / \

C*K dy

Here x = ^p^ y + Bp tf y
1- + &o. ;

aa;

y
- &o. ;

&c.

Hence, if w be any homogeneous expression of the n :ri

degree in x and y, not involving fractions, we have

du du
-r + y-j- ~=nu.
dx dy

Again, suppose u to be a homogeneous function of a

fractional form, represented by
^

;
where

&amp;lt;i, fa,
are homo-

r 2

geneous expressions of the nth and w*A degrees, respectively,

in x and y ; then, from the equation

-
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accordingly we get

* du

but, by the preceding,

hence .r J% ,,fo - *fr *
-
*fr fr

efo
y

&amp;lt;^ (02)*

=
(w

-
w) =

(n
-
m) u;

02

which proves the theorem for homogeneous expressions of a
fractional form.

This result admits of being established in a more general
manner, as follows :

It is easily seen that a homogeneous expression of the nih

degree in x and y, since the sum of the indices of x and of y
in each term is n, is capable of being represented in the

general form of

Accordingly, let u xn $ I -

where t? = 6

m1 du dv
Then = nxn

~lv + xn
,

dx dx

du dv
and = xn :

dy dy

multiply the former equation by x, and the latter by y, and
add

;
then

du du _ / dv dv\
X

~dx
+
y~dy~

nX V + X
\~dx

+ y
dy)
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but (by Ex. 3, Art. 96),

dv dv
% i~ + y T =

5

dx dy

du du
henoe *s +y%* ^

wliicli proves tlie theorem in general.

In the case of three variables, #, y, *,

suppose
u

then we have

and the same method of proof can be extended to any homo

geneous function of three or more variables.

Hence, if u be a homogeneous function of the nth
degree

in x, y, 2, we have

du du du
(

\

X +U-T + Z-T- = nu. (10)
dx dy dz

It may be observed thai the preceding result holds also

if n be a, fractional or negative number, as can be easily seen.

This result can also be proved in general, by the^same
method as in the case of two variables, from the considera

tion that a homogeneous function of the nth
degree in a, y, z

admits of being written in the general form

or in the form

u = xn
(j&amp;gt; (vj iv),

where v =
-, and w = -.

Proceeding, as in the former case, the student can show,
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without difficulty, that we shall have

du du du
x-r + y-r +z = nu.
dx dy dz

Another proof will be found in a subsequent chapter, along
with the extension of the theorem to differentiations of a

higher order.

EXAMPLES.

Verify Euler s Theorem in the following cases by direct differentiation :

x3 + y* du du CM
! = -

^- : prove x + y = .

(s+M dx
y
dy 2

x3 + ax*y + by* du du
=

103. Theorem. If 17 = u + ^ + u2 . . . + un,

where UQ is a constant
1

, ^nd u
lt 2, . . . , are homogeneous

functions of a?, y, , &c., of the isty 2nd, ... nth
degrees,

respectively, then

dU dU dU
*~fa

+
y~fy

+
*~fa+

- s:Ul + 2U2 + 3U

For, by Euler s Theorem, we h-jve

dur dur dur ox- + y- + * + &o. =
dx dy dz

since ur is homogeneous of the rth

degree in the variables.

COR. If U=o, then

dU dU dU
(12)

This follows on subtracting

nu + nui + . . . + nun = o

from the preceding result.
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104. Remarks on Euler s Theorem. In the appli

cation of Euler s Theorem the student should be careful to

see that the functions to which it is applied are really

homogeneous expressions. For instance, at first sight the

expression sin^f-^ J might appear to be a homogeneous

function in x and y ;
but if the function be expanded, it is

easily seen that the terms thus obtained are of different

degrees, and, consequently, Euler s Theorem cannot be

directly applied to it. However, if the equation be written

in the form
X
,

+
^ = sin u, we have, by Euler s formula,

#2 + y%

d sin u d sin u sin u

*-dr + y -Ar ~r&amp;gt;

( du du
u\ x-r + y-r-
\ dx dy

sin u
or

du du *an u i x + y
hence ^ +/ = =

dx dy 2 2

When, however, the degrees in th&amp;gt; numerator and the

denominator are the same, the function is of the degree zero,

and in all such cases wo hi?ft

du 3 _
dx

c

dy

For example, sin^f^- ~J,
tan 1 -

,
ey

, &o., may be

treated as homogeneous expressions, whose degree of homo

geneity is zero. The same remark applies to all expressions

which are reducible to the form
(

-
)

;
as already shown in

\xj
Ex. 3, Art. 96.

105. If x = r cos 0, y = r sin 0,

to prove that xdy - ydx = r
z
dO. (13)
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In Ex. i, Art. 96, we found

dx = cos Odr - r sin OdO ;

similarly dy = sin Odr 4- r cos OdO.

Hence xdy = r cos sin Odr + r2
cos

2

0c/0,

ydx = r cos sin Odr - r2
sin

2 OdO
;

.*. #dy -
ydx = r2

fl$.

1 06. If x and ?/ have the same values as in the last, to

prove that

(dx)
z + (dy}*

=
(dr}* + r

z

(dO)\ (14)

Square and dd the expressions for dx, dy, found above,
and the required result follows immediately.

The two preceding formulae are of importance in the

theory of plane curves, and admit of being easily established

from geometrical considerations.

107. If u = ax* + by* + cz
z + 2/yz + 2gzx + 2hxy,

to find the condition among the constants that the same values of

x, y, z should satisfy the three equations

du du du
T~

=
&amp;gt; 3~ = -T- = O.

dx dy dz

du
= 2ax + 2hy + 2gz - o,uX

Here

du - 2hx 4- 2by 2fz

du
2fy + 2cz = o.

Hence, eliminating x, y, z between these three equations,
the required condition is

abc - af
z -

bg
z - chz + 2fgh = o ;

or, in the determinant form,

a h g

h b f =o.

g f c
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The preceding determinant is called the discriminant of the

quadratic expression, and is an invariant of the function
;

it

also expresses the condition that the conic represented by
the equation u = o should break up into two right lines.

(Salmon s Conic Sections, Art. 76.)
The foregoing result can be verified easily from the latter

point of view
; for, suppose the quadratic expression, u, to be

the product of two linear factors, X and Y
;

or u = XY,

where X = Ix + my + nz, Y = I x -f my + nz
;

., du -^dY ^dX 7,_ 7T_then = X- + Y- = IX + IY,dx dx ax

du clY ^dX ^=X + Y - = mX + mY,
dy dy dy

du dY v dX=X - + Y -r- = nX + nY.
dz dz dz

Here the expressions at the right-hand side become zero for

the values of #, y, z, which satisfy the equations X =
o, Y= o,

or Ix + my + nz =
o, I x + m y + nz = o.

Hence in this case the equations

du du du
=

o, -T- =
O,

= o
dx dy dz

are also satisfied simultaneously by the same values.

We shall next proceed to illustrate the principles of

partial differentiation by applying them to a few elementary

questions in plane and spherical triangles. In such cases we

may regard any three* of the parts, a, b, c, A, , C, as being

* The case of the three angles of a plane triangle is excepted, as they are

O^uivalent to only two independent data.
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independent variables, and each of the others as a function of

the three so chosen.

1 08. Equation connecting the Variations of the

three Sides and one Angle. If two sides, a, b, and the

contained angle, (7, in a plane triangle, receive indefinitely

small increments, to find the corresponding increment in the

third side c, we have

c* = a? + b* - 2al) cos C\

.-. cdc =
(a -b cos C) da + (h - a cos C) db + ab sin CdC;

but a = b cos C + c cos B, I = a cos C + c cos A.

Hence, dividing by c, and substituting c sin B for b sin (7,

we get
dc = cos Bda + cos A db + a sin BdC. (15)

Otherwise thus, geometrically.

By equation (2), Art. 97, we have

&amp;lt;;/c . dc do
dc = da + -77 db + -^ du.

da db dC

Now, in the determination of we must regard b and C as

constants ; accordingly, let us sup

pose the side CB, or ,
to

receive^a
small increment, Btf or Atf, as in

the figure. Join AB ,
and draw B D

perpendicular to AB, produced if

necessary; then, by Art. 37, AB
= AD when BB is infinitely small,

neglecting infinitely small quanti
ties of the second order.

Hence

Ac = AB -AB = AD-AB = BD;

Fig. 4-
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dc
Similarly,

= cos A
;
which results agree with those arrived

at before by differentiation.

Again, to find
-^. Suppose the angle C to receive a

small increment A (7, represented by
BCB in the accompanying figure;
take CB 1 = CB, join J#, and draw
BD perpendicular to AK.

Then

Ac = AB -AB = BD (in the limit)

= BB cos ABB =BB sinABCfa.). Fig. 5.

Also, in the limit, BB == KG sin ^(7^ = a Atf.

a sn
;

the same result as that arrived at by differentiation .

In the investigation in Fig. 5 it has been assumed thatAB - AD is infinitely small in comparison with BD; or that

the fraction - vanishes in the limit. For the proof

of this the student is referred to Art. 37.
When the base of a plane triangle is calculated from the

observed lengths of its sides and the magnitude of its vertical

angle, the result in (15) shows how the error in the computed
value of the base can be approximately found in terms of the
small errors in observation of the sides and of the contained
angle.

dC
109. To find

-^
when a and b are considered

Constant. In the preceding figure, BAB represents the
change in the angle A arising from the change AC in (7;
moreover, as the angle A is diminished in this case, we must
denote BAB by -

A^i, and we have

AB&A AB&A
sin ABB cos B

K 2
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Also, BB = a A (7;

~T~A
=
T~7 (i

n tne limit)
=--

^. (16)dA v

This result admits of another easy proof by differentiation.

For a sin B = b sin A
;

hence, when a and 6 are constants, we have

a cos B dB = b cos A dA
;

also, since A + B + C =
TT, we have

dA + dB + dC= o.

Substitute for e?J? in the former its value deduced from the
latter equation, and we get

(a cos B + b cos A) dA = - a cos B dC\

or c dA = - a cos B dC, as before.

no. Equation connecting the Variations of two
Sides and the opposite Angles. In general, if we take
the logarithmic differential of the equation

a sin B = b sin A,

regarding a, b, A, J?, as variables, we get

da . dB ^db dA
a

+
tan,B~ b

+
tan -4&quot;

in. I&amp;lt;anden s Transformation. The result in equa
tion

(
1 6) admits of being transformed into

dA _dC f

a cos It c

but

c = \/d* + b
2 - 2ab cos (7, and a cos B = \/a? - b*

hence we get

dA dC
-

b&quot; sin
ZA ^/ a? + b* - 2ab cos
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If C be denoted by 180 -
20,, the angle at A by 0, and

- by /, the preceding equation becomes

d(f&amp;gt;
2dthi 2d6 l

- AT sin
2

-vi + 2/c cos

2

(T+T)

1

where

Also, the equation a sinB = b sin ^4 becomes

sin (20!
-

0)
= k sin0.

The result just established furnishes a proof of Landen s*

transformation in Elliptic Functions.

We shall next investigate some analogous formulae in

Spherical Trigonometry.
112. Relation connecting the Variations of Three

Sides and One Angle. Differentiating the well-known
relation

cos c = cos a cos b + sin a sin b cos (7,

regarding a and b as constants, we get

dc sin a sin b sin C
sm c

sm a sin B.

dc
Again, the value of

, when b and C are constants, can

be easily determined geometrically as follows :

* This transformation is often attributed to Lagrange ;
it had, however heen

previously arrived at by Landen. (See Philosophical Transactions, 1771 and
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In the spherical triangle ABC, making a construction
similar to that of Fig. 4, Art. 108, we have

c

T&amp;gt;T&amp;gt;&amp;gt;

dc . Ac BDBB = A#;.-.= limit of = -

da &a BB
(in the limit)

= cos B.

Similarly, when a and C are con-

dc
stants. = cos A.

do

Hence, finally,
FiS- 6 -

dc = cos Bda + cosA db -f sin a sin^ dC. (19)

This result can also be obtained by a process of diffe

rentiation. This method is left as an exercise for the
student.

As, in the corresponding case of plane triangles, we
have assumed that AB = AD in the limit ; i.e., that

,
is infinitely small in comparison with AD in the

limit
;
this assumption may be stated otherwise, thus :

If the angle A of a right-angled spherical triangle be
g A

very small, then the ratio - becomes very small at the
^jL

same time, where c and b have their usual significations.
This result is easily established, for by Napier s rules we

have
tan b sin b cos c

cos A = =
. ;

tan c cos b sin c

i - cosA sin c cos b - cos c sin b _ sin (c
-

b) ^

i + cos A sin c cos b + cos c sin b sin (c + b)

or

/ r\ t-^ / TA sin (c-6) . , ... A
sin (c

-
0)

= tan2 sm (c + o) ;
.. .

= sin (c + b) tan,
tan

2

But the right-hand side of this equation becomes very small

along with A, and consequently c - b becomes at the same
time very small in comparison with that angle.
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The formula
(
1 9) can also be written in the form

dc da db

sin a sin B sin a tan B sin b tanA

The corresponding formuloe for the differentials of A and B
are obtained by an interchange of letters.

Again, from any equation in Spherical Trigonometry
another can be derived by aid of the polar triangle.

Thus, by this transformation, formula (19) becomes

dC = cos b dA cos a dB + sin A sin b do. (21)

These, and the analogous formulae, are of importance in

Astronomy in determining the errors in a computed angular
distance arising from small errors in observation. They also

enable us to determine the most favourable positions for

making certain observations ; viz., those in which small errors

in observation produce the least error in the required result.

113. Remarks on Partial Differentials. The be

ginner must be careful to attach their proper significations to

the expressions , ^, &c., in each case. Thus when a and
da dG

dc
o are constants, we have -^ = sin a sin B ; but when A and a

u/Lf

are constants, we have
-^

= ~
-^ ;

these are quite different

dc

quantities represented by the same expression -7-^.
clLf

The reason is, that in the former case we investigate the

ultimate ratio of the simultaneous increments of a side and
its opposite angle, when the other two sides are considered as

constant ; while in the latter we investigate the similar ratio

when one side and its opposite angle are constant.

Similar remarks apply in all cases of partial differentia

tion.

When our formulae are applied to the case of small errors

in the sides and angles of a triangle, it is usual to designate
these errors by Art, A5, Ac, A^4, AJ9, A (7; and when these

expressions are substituted for da, db, &c., in our formulae,

they give approximate results.
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For instance (19) becomes in this case

Ac = Afl cos B + A6 cos^ + AC sin a sin B
; (22)

and similarly in other cases.

It is easily seen that the error arising in the application of
these formula to such cases is a small quantity of the second
order ; that is, it involves the squares and products of the
small quantities A, A6, Ac, &c. This will also appear more
fully from the results arrived at in a subsequent chapter

114. Theorem. If the base c, and the vertical angle &amp;lt;7,

of a spherical triangle be constant, formula (19) becomes

da db

cos A cosB
~

Now, writing instead of a, $ instead of b, and k for
sin C ... .. ,

,
this equation becomes

sin c

(since k -^ = *?*}
\ Km a sinbj

where and
&amp;lt;/,

are connected by the following* relation

cos c = cos cos ^ + sin sin
&amp;lt;//

cos (7,

or cos c = cos cos ^ + sin sin
i/, &amp;gt;v/i -/^sin

2 ^

115. In a Spherical Triangle, to prove that

da db dc

sin (7when - is constant.
sin c

* This mode of establishing the connexion between Elliptic Functions by
aid of Spherical Trigonometry is due to Lagrange.
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Let sin C = k sin c, and we get

k cos c _ sin^ cos c ^ m

~
cos C sin a cos C

substitute this value for dC in (19), and it becomes

cos c sin A sin B
dc = cos A db + cos -S da + --^

-- efc ;

COS L/

/ cos c sin ^t sin B
or cos^^+cosJ5^ =

( i- -^Q
cos .4 cos 5

=---77 ^c ;

cos (7

since sin J. sin B cos c = cos C + cosA cos .#.

&amp;lt;fo db dc

^A +^ + ^TC~

Again, since cos J. = A/ 1 - sin
2^. = */i - k9

sin
2

^, &c.,

the preceding result may be written in the form

da db dc

-/I-** sin* a
+

&amp;lt;/T^^tfb

+
yi-Fsin2 ^

&quot;

where a, b, c, are connected by the equation

cos c = cos a cos b + sin a sin & v i - &2 sin2
c.

1 1 6. Theorem of I^egendre. We get from (24)

cos B cos Ctf0 + cos A cos &amp;lt;7d& + cos B cos ^dc =
o,

or (cos A - sinB sin cos a) da + (cos5 - sin A sin (7 cos b) db

+ (cos (7 - sinA sin I? cos c}
dc = o

;

/. cos Ada + cos Bdb + cos (7^c

= sin sin C0(sm a) + sin ,4 sin Ctf (sin b) + sin ^ sin Bd (sin c)

= F
{
sin b sin ctf (sin a) + sin a sin cd (sin i) + sin a sin ftd (sin c) }

= M (sin a sin i sin c) ;
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or y/i - k2
sin2 a da + */i - kz

sin
2
b db +

&amp;lt;/i
-&2

sin2
c dc

= k*d (sin a sin b sin c) .

(26)

This furnishes a proof of Legendre s formula for the compa
rison of Elliptic Functions of the second species.

The most important application of these results has place
when one of the angles, C suppose, is obtuse

;
in this case

cos C is negative, and formula (25) becomes

db dc

- k* sin
2
b y/i - 7r sin2

c

where the relation connecting a, b, c is

cos c = cos a cos b - sin a sin b */\ - kz
sin

2
(j.

In like manner, equation (26) becomes, in this case,

- kz
sin

2 a da + y/i - 7c
2
sin2

b db

= *\ - k* sin2
c dc + kz d (sin a sin b sin c).

117. If w =
0(# + at, y + ]8^), where #, y, a, /3, are in

dependent of t, and of each other, to prove that

du du ~ du
= a +P . (27)

(ft ^ ^y

Let x = a? + a^, / = y + ]3^ ;

then w =
(aj , y ),

dsxf dy
f

dx di/and
S&quot;

1^- 1
*&quot;^*-^

Also, since ?/

r

is independent of #, we have

dw c?w (^ c?w (?w du

Tx
=
~M~fa

=
lh^

{Qd ^
=
^*

rfw _ du dx du dy
f

_
du ~du

dt dx dt dy dt
&quot;

dx dy



Partial Differentiation. 139

In like manner, if of, y ,
*

,
be substituted for x + at, y + fit,

z + yt, in the equation

it becomes u =
(# , /, s

) ;

c?w dw dx d^dy^ du_dz_ f

also = + ~

Tx
+

dz dx
;

dx dtf dd

S =I ^ = ^ =
J

du du du _ du du _ du

^ = ^ aso ^
= ^ S&quot;^

rfw rfw c^ du dy
f

du_ d^
-di

=
dx

7

~dt
+
W~di

+
fa ~M

dx d dz
1

Hence = ^, 7 . (28).^ dx ^
dy dz

This result can be easily extended to any number of variables.
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EXAMPLES.

r. If u = sin 1
[
-

) + sin 1
( ? ) , prove that du =

, + ,

y

W W V/a2 -^ v/a-y*

&quot; dx dy
~

3. Find the conditions that u, a function of x, y, z, should be a function of
x + y + 2.

&amp;lt;?M (?W &amp;lt;?M

An&. = =
dx dy dz

4- If f (ttx + by] = &amp;lt;?,
find -r~ . .

rfic
&quot;

b

5. If /(w) = &amp;lt;^&amp;gt;(v),

where w and are each functions of x and y, prove that

&amp;lt;?M rfy dv du

dx dy dx dy

b. Find the values of x -* t/ , when
dx dy

7. If M = sin ax + sin by + tan 1
f
-

J
, prove that

du = a cos aa; (? + b cos 3y &amp;lt;?y
+ ^ ^.

y2 + Z2

. _ du , ?w du i du -
log x

8. If M = logyjc, find - and -. Ant. =
,

=
dx dy dx a; logy dy

9. If 6 = tan-1
-, prove that

(*
2 + y

2
) do = ydx - xdy.

10. If u = y
xz

, prove that

du = y**-
1
(xzdy + yz log ydx + xy log ydz).
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11. If a +
&amp;lt;\/

a2 -
2/

2 = ye , prove that

dy _ y

dx
~

&amp;lt;/tf^y*

12. la a spherical triangle, when a, b are constant, prove that

dA tan A , dC sin G
-,
and

^B
~~

tan jB rf-5 sin J5 cos -4

13. In a plane triangle, if the angles and sides receive small variations,

prove that

CAB + bcosAAO=o-y a,b being constant,

cos CAb + cos BAc = o
; a, A being constant,

tanAAb = bAG ; a, -B being constant.

14 The base c of a spherical triangle is measured, and the two adjacent

base angles A, B are found by observation. Suppose that small errors dA, dB

are committed in the observations of A and B
;
show that the corresponding

error in the computed value of C is

- cos adB - cos bdA.

15. If the base c and the area of a spherical triangle be given, prove that

sin2 - dB + sin2 - dA = o.
2 2

1 6 Given the base and the vertical angle of a spherical triangle, prove that

the variation of the perpendicular p is connected with the variations of the sides

by the relation

sin Cdp - sin 9 da + sin sdb,

s and s being the segments into which the perpendicular divides the vertical

angle.

17. In a plane triangle, if the sides a, b be constant, prove that the variations

of its base angles are connected by the equation

dA dB

y^a*-4*Bm
a^f \A3 -

1 8. Prove the following relation between the small increments in two sides

and the opposite angles of a spherical triangle,

da dB _ dA db

tan a tan B tan A tan b

19. In a right-angled spherical triangle, prove that, if A be invariable

sin 2cdb = sin 2b.dc ; and if c be invariable, tan ada + tan Wi = o.
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20.If a bei one of the equal sides of an isosceles spherical triangle, whose
vertical angle is very small, and represented by rf, prove that the quantity by
which either base angle falls short of a right angle is - cos a dot.

21 In a spherical triangle, if one angle C be given, as well as the sum of
the other angles, prove that

da
Jd_

sin a sin b
~

22. If all the parts of a spherical triangle vary, then will

cos Ada + cos Bdb + cos Cdc = kd (k sin a sin 6 sin c) ;

where * =
sin A

= s^l =
sin

_?
sin a sin b sin c

*

dc

These are more general than the theorems contained in Arts. liCand 116and can be deduced by the same method without
difficulty.

2?. If z =
(f) (

x ~ -
yi)f prove that

dz dz

24. If z = -/ f
J

, prove that

25&amp;gt;
Find ^ and

Jx
When ^ y Z are connec^ed by two equations of the

form

f(z,y,z)=o,

dz dy dy dz

dfdji&amp;gt;_ df_d&amp;lt;^

dj^ _ dydx dx dy
~dx

~
dfd^_ dfdf
dz dy dy ~dz
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26. Prove that any root of the following equation in y,

y
m + xy = i,

satisfies the differential equation

d?u dift dyz^ +
&amp;lt;&quot;

- ^ +
&amp;lt;

M-^ = -

27. How can we ascertain whether an expression such as

4&amp;gt;(*,y) + v/r~i
/ (*y)

admits of heing reduced to the form

ns. =
,

= --.
ax ay ay ax

28. IflX+mT+nZ, l X + m Y+ n Z, l&quot;X+ m&quot;Y f n&quot;Z, be substituted

fora:, y, z, in the quadratic expression of Art. 107 ; and if a
,
b

,
c

t
d

t
e ,/ ,

be
the respective coefficients in the new expression, prove that

f *

f b d

e d c

= o, whenever I / b d I = o.

I e d c
I

29. If the transformation be orthogonal, i. e. if #- -f y
2 + z2 = X* + Y* + Z\

prove that the preceding
1 determinants are equal to one another.

30. If u be a function of
, 77, ,

and | = y + , q = z + -, -] ,

shoMr that

du du du du du .du f du du



CHAPTER VI.

SUCCESSIVE DIFFERENTIATION OF FUNCTIONS OF TWO OR MORE
VARIABLES.

1 1 8. Successive Partial Differentiation. We have in
the preceding chapter considered the manner of determining
the partial differential coefficients of the first order in a func
tion of any number of variables.

If u be a function of z, y, z, &c., the expression

du du du
~1~&amp;gt; ~Tt ~7~t &0..
ax ay dz

being also functions
a?, y, ,

&c
., admit of being differen

tiated in the same manner as the original function
; and the

partial differential coefficient of
,
when x alone varies, is

denoted by
d fdu\ d zu

dx \dxf
r
^? &amp;gt;

as in the case of a single variable.

Similarly, the partial differential coefficient of
, when y

alone varies, is represented by

d ichi\ A*

3- 3&quot;)
&amp;lt;*

dy \dx)

and, in general, denotes that the function u is first

differentiated n times in succession, supposing x alone to

vary, and the resulting function afterwards differentiated m
times in succession, where y alone is supposed to vary ;

and

similarly in all other cases.
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We now proceed to show that the values of these partial

derived functions are independent of the order in which the

variables are supposed to change.

119. If u foe a Function of a; and y, to prove that

d fdu\ d fdu\ d zu d~n .

N
I

\ _ __ I r\Y .
- __ .

i I )

~dy \dx)
~

dx \di/J dijdx dxdy

where x and y are independent of each other.

Let u =
&amp;lt;(#, y), then represents the limiting value of

dx

&amp;lt;j&amp;gt;(x

+ h, y)
-

&amp;lt;j&amp;gt;
(a?, y]

h

when h is infinitely small.

This expression being regarded as a function of y, let y
d (du\ . .

become y + 7c,
x remaining constant ;

then
-r[-~rj

1S the

limiting value of

when both A and 7^ become infinitely small, or evanescent.

In like manner is the limiting value of

dy

0, y + *)
-

(^y)

when ^ is infinitely small
;
hence f

]
is the limiting value

of

&amp;lt;j&amp;gt;(x

+ h, y + k)
-
0(a?+A, y)

-
(a?, y + k) + 0(a,y)

when both A and A- are infinitely small.

Since this function is the same as the preceding for all
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finite values of h and k, it will continue to be so in the limit
hence we have

d_
fdu\ _ d_

/du\

dx \dy)
~
dy \dx)

dx*dy

In like manner

for by the preceding = -

dxdy dydx
d d

dx dy

___
dx \dxdy

~
dx dydx

d
d_

dy dx

du

similarly in all other cases. Hence, in general,

Again, in the case of functions of three or more variables,
by similar reasoning it can be proved that

d*u d u

dzdxdy dxdydd
Hence we infer that the order of differentiation is in all cases

indifferent, provided the variables are independent of each
other.

EXAMPLES FOE VERIFICATION.

u u
verify that - = --

.

dydx dxdy

2. If u- tan-M -
J,

3. If u = 8i

dy-dx
=

dxdy*

dx*df difdx*

120. Condition that P dx + Qdy shall be a total
niflferential. This implies that P dx + Qdy should be the
exact differential of some function of x and y. Denoting this

function by w, then

du = P dx + Q dy,
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and, by (i), Art. 95, we must have

P
du 0-*?.P =
Tx&amp;gt;

**~
dy

dP _ d*u dQ _ d*u

dy dydx dx dxdy

Hence the required condition is

121. If u foe any Function of x and y, to prove that

d -. , du d

where x and y are independent variables.

Here each side, on differentiation, becomes

. d?u ,,,. .dudu
F(u) -r-T- + F (u] -T-J-; &o.

v /

122. More generally, to prove tbat

d dv\ d dv

where u and v are both functions of z, and z is a function of

x and y.

d / dv\ dudv d*v
For -r u =

-7- + ^ -T r ,

ay \ da?/ ay # ayaa;

aw du dz dv dv dz
but -7-

= -; r-, -f- ~; T~ 9

dy dz dy dx dz dx

d f dv\ du dv dz dz &amp;lt;Pv

I ni \ __ r
! a/

dy \ dx) dz dz dx dy dydx

d ( dv\ , ,

and [u has evidently the same value.
dx\ dy)

L 2
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123. Killer s Theorem of Homogeneous Func
tions. In Art. 102 it has been shown that

du du
x -j- + y 3- = nu

&amp;gt;

dx
y
dy

where u is a homogeneous function of the nth
degree in

a? and y.

Moreover, as and are homogeneous functions of the

degree n -
i, we have, by the same theorem,

d fdu\ d (du\ . N du
x
Tx(Tx)

+ y
dy\Tx)

=
(n-^M

d du du

multiplying the former of these equations by a?, and the

latter by y, we get, after addition,

, d
zu dzu ^d

zu . ( du du\
x* + 2xy -j- + if

- r = (n
-

i) (x + y
dx* dxdy dy*

J

\ dx dy)

= (n-i)nu. (5)

This result can be readily extended to homogeneous
functions of any number of independent variables.

A more complete investigation of Euler s Theorems will

be found in Chapter VIII.

124. To find the Successive Differential Coeffi

cients with respect to t, of the Function

0(a + at, y + fit),

where x, y, a, /3, are independent of t, and of each other.

By Art. 1 1 7 we have in this case, where stands for the

expression $(x + at, y + fit),

= a -/- +
| -y.

dt dx
^
dy
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efy d d&amp;lt; .d
Henoe -^

This result can also be written in the form

d

in which
(
a -7- + 8 -7- )

is supposed to be developed in the
\ dx ^

dyj

usual manner, and ~-f, &c., substituted for
( ) ^&amp;gt;,

&o.
\ctx

Again, to find .

dt

df dt\dfj dt\ dx ^
dy

dx dy) dt \ dx ^
dyj \ dx dy

f d . d\*
(a + j3 =-] 0.
V cfe ^ r

By induction from the preceding it can be readily shown
that

d d\

This expression, when expanded by the Binomial Theorem,
gives the nth differential coefficient of the function in terms of

its partial differential coefficients of the nth order in x and y.
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EXAJIPLES.

1. If w = sin (#
2
y), verify the equation

du
= -^-.

dxdy dydx

2. If u = sin (y + ax) + (y
-

aar)
2

, prove that

dzu d~u

3- In general, if w = /(*/ + ax
] + $ (y _ ^), pr0ve that

4. If u = y*, prove that

^U _ ar-l
^M

^c?y
~ ^V ^

dydx

. i^VZ

5. If u =
^^ ,

find the values of

-T-^, -, and ^.

6. If M =
(a;

2 + y
2
)i, prove that

^2
&quot;T^r

+ ^xy 1- y2
o.

^-
w^:^?/ (jfo/

2

7. If =
(afl + 2/

s
)J, prove that

8. If V=Ay* + $By*x + tfya? + Vx*, prove that

A, B,
, C, D

and show that the left-hand side of this equation vanishes when V is a perfect
cube.

9 If U = t* U. J X .2N^ Pr Ve that



CHAPTER VII.

LAGRANGE S THEOREM.

125. fcagrange s Theorem. Suppose that we are given

the equation

z = x +
y(}&amp;gt;(z),

(0

in which x and y are independent variables, and it is required

to expand any function of * in ascending powers ot y.

Let the function be denoted by F(*), or by , and, by

Maclaurin s theorem, we have

y fdu\ f (d*u\ _J/1__W + &c ., (2)&quot;u =
o o

..

where ,

(|)o

, &o., represent the values of u,
g,

&o., when

zero is substituted for y after differentiation.

It is evident that u, = F(x). ,*./ \ ^
To find the other terms, we get by differentiating (i) witn

respect to x, and also with respect to y,

or i-

hence

Also, since t^ is a function of 2, we have

du du dz du_^
Tx

=
dz ~da? fy

~
dz dy

9
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Lagrange s Theorem.

hence we obtain

du du

Ty
-

tfW (3)

Again denoting $() by Z, we have by Art. 12,, since6 is a function of !,

- d du

dy
-

or

Hence also *!f . __ *

since * and y are independent variables
;

but - (& ~}- d
(z&amp;gt;

d
&quot;\

d
(7*

du
i,~ Z =

(3),

or
da&amp;gt;

hence - .

(5!

To prove that the law here indicated is general, suppose

that ^
*&amp;gt;

then, since . ^. *!\ . _ ,M du
dx dx\ dy

we have -L./z* - V rf &quot;

-

and hence
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This shows that if the proposed law hold for any integer

n, it holds for the integer n + i
;
but it has been found to hold

for n = 2 and n = 3 ; accordingly it holds for all integral values

of n.

It remains to find the values of
, ,

&c. when we
ay ay

make y = o. Since on this hypothesis Z or
&amp;lt;}&amp;gt;(%}

becomes

$(x\ and -^ becomes =~ or F\x), it is evident from (3),
dx clx

(4), (5), (6), that the values of

du dzu d3u dn&quot;u

ty dy
2

df
&quot;

become at the same time

,

Consequently formula (2) becomes

2
&c.

This expansion is called Lagrange s Theorem.
If it be merely required to expand 2, we get, on making

(8)
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126. Laplace s Theorem. More generally, suppose
that we are given

and that it is required to expand any function F(z) in ascend
ing powers of y.

Let t = x +
y&amp;lt;$&amp;gt;(z),

then z =f(t), and we have

* = * + y* {/(*)) (10)

Also F(z) =
F{f(t]} ;

and the question reduces to the

expansion of the function F(f(t)} in ascending powers of y
by aid of (10) ; accordingly, formula (7) becomes in this case

dn

&0 -

This formula is called Laplace s Theorem, and is, as we
have seen, an immediate deduction from the Theorem of

Lagrange. These theorems evidently only hold when the

expansions are convergent series.
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EXAMPLES.

i . Expand z, being given the equation

z = a + bz*.

Here x = a, y = b, $(z)
=

,

and we get, from formula (8),

z = a + bo? + 3&
2 5 + i2b3 a j + &c.

Lagrange has shown that this expansion represents the least root of the pro

posed cubic, and that a similar principle holds in like cases.

2. Given z = a + bzn
,
find the expansion of z.

b* b*
Am. z = a + anb + ina&quot;

2 &quot; 1- +
T&amp;gt;n(i,n

-
i) a3 &quot;&quot;

2- + &c.

3. Given z = x + ye
s
,
find the expansion of z.

Ana. z = x + ye? + y*e** + $* + - ^e^ + &c.

4. z --= a t 9 sin z, expand (i) , (2) sin a.

(l). w4w*. z = a + e sin + --7- (sin
3
a) H-- [ ) (sin

3
) + &c.

i . 2 da
^

1.2.3 \da)
v

(2). ,, sin 2 = sin a + e sin a cos a + -- (sin a cos
) + &c.

i . 2 da

5. If z = a + -
(z

2
i), prove that

a2 - i\ 2* (az
-

I} + J?_ - (
a*-

*}
i 2 i . 2 da \ 2 I

I
|

/
~

i . 2 . . . n \da] \ 2
+ &c.

i . 2 . . . n \aa] \ 2 /

6. Hence prove that
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CHAPTER VIII.

EXTENSION OF TAYLOR ?

S THEOREM TO FUNCTIONS OF TWO
OR MORE VARIABLES.

127. Expansion of $(x + h, y + k). Suppose u to be a func
tion of two variables x and y, represented by the equationw =

$(x, y) ; then substituting x + h for x, we get, by Taylor s

Theorem,
J

&c.

Again, let y become y + k, and we get

~

&o. (i)

But

,= W +^ +- +&o.
dy 1.2 dif

Also

i . 2

and

&amp;gt;

. 2 ax* 1.2
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Substituting these values in (i), we get

, du , du

tf&amp;gt;(*
+ A,s/ + )*

= u + /*~ +^
h? d?u ,

&amp;lt;Pu &2 d*u . .

+-- o + hk -r-r + --n + &c -
(
2

)

1.2 dx* dxdy i . 2 dy*

128. This expansion can also be arrived at otherwise as

follows : Substitute x + at and y + (Bt for x and y, respectively,

in the expression (x, y), then the new function

&amp;lt;t&amp;gt;(x

+ at, y + j30,

in which x, y, a, )3,
are constants with respect to t, may be

regarded as a function of
,
and represented by F(t) ;

thus

The latter function ^(0, when expanded by Maclaurin s

Theorem, becomes, by Art. 79,

F(t)

(3)

where F (o) is the value of F(t) when ^ = o, i.e. ^(o)
=

(a;,

= u\ also -P (o), F&quot;(o),
&c. are the values of

when t = o
;
wherfe ^ stands for $(x + at, y + fit).

Moreover, by Art. 1 17, we have

* Since it is indifferent whether we first change x into x + A, and afterwards

change y into y + k, or vice versa ; the expansion given above furnishes an in

dependent proof of the results arrived at in Art. 119.
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but, when t = o, 0(* + a t, y +
*) becomes u, or ^(o), and ^

becomes a^ + /3
-^

at the same time.

Hence
*&quot;(o)

= ^ + *?.
0# dy

Also, by the same Article,

d
*&amp;lt;t&amp;gt; z d*&amp;lt;i&amp;gt;#-*+*

which, when t = o, reduces to

* (4)

&o. &o. &o.

equations may also be writ^en in the symbolic

x ^
dy

A - / ^Y ^W
gam&amp;gt;

\
a
dx)

Um &quot;

dtf
&a

&amp;gt;

since a ft are independent

of* and ?/ : and hence the general term in the expansion of
F(f) can be at once written down by aid of the Binomial
Theorem.
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Finally, we have, on substituting li for at, and k for |3,

, 7X _ du 7 du h* d*u . d zu
d&amp;gt; (x + h, y + k)

= u + h + k + -- + hk 37-dx dy 1.2 dx* dxdy

kz tfu i /, d d\
n+l

+- -

71 + ... + ,

--
(h + k-r ) $(&amp;lt;B

+ 6h9 y + Ok). (5)
i . 2 dy* \n

+ i \ dx dy)

129. Expansion of
&amp;lt;/&amp;gt; (x + h, y + k, z +

1). A function

of three variables, a?, y, z, admits of being treated in a similar

manner, and accordingly the expression

0(0 + at, y + (3t, Z + yt),

when u is substituted for 0(#, y, z), becomes

+ fi + y

d Q d d\+ 3-J- + y -r)u + &c.,
. 2\ dx ^

dy dzj

or

f.d d . d\
$ (x + h, y + k, z + 1)

= u + ( h + k + I \u

\ dx cly clz I

i /. d
1
d d\+- h + k + /-- }u + &c.

i . 2 rfo? c? dz

kz dhi

dx dy dz i . 2 dx* i . 2 dif 1.2 dz*

., d~u d2u ,,,
+ Hi

7 T + U- + &o. (6)7

dxdy dzdx dydz

The general term in this expansion, and also the re

mainder after n terms, can be easily written down.
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These results admit of obvious generalization for any
number of variables.

Also, by making #, y, z each cypher in (6), we have

du

I . 2

where ( )
. ( )

. . . . denote the values which the functions
\dxjo \dyjj

du du , . ,

,,... assume on making x = o, y =
o, and z = o.

dx dy
This result may be regarded as the extension of

Maclaurin s Theorem.

130. Symbolic Expression for preceding Results.

Since

d_ d\ i / d

ix dy) i . 2\ dx dy

i (. d
7
d\*

+
(
h-r + k + &c.,

i\ dx dyj

equation (5) may be written in the shape

This is analogous to the form given for Taylor s Theorem
in Art. 67, and may be deduced from it as follows :

We have seen that the operation represented by ehdx

when applied to any function is equivalent to changing x

into x + h throughout in the function.
d

Accordingly, ***$ (a-, y)
= $ (x + h, y), since y is indepen

dent of x.
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d

In like manner, the operation ekdy
,
when applied to any

function, changes y into y + k
;

d d d

. . e
k^

. ***+ (x, y}
= J*$(x + h,y} =

&amp;lt;t&amp;gt;(x

+ h,y + k],

d
d^

or e
kdV

+hdX

assuming that the symbols k and h are combined ac-
dy dx

cording to the same laws* as ordinary algebraic expressions.
In an analogous manner we obtain the symbolic formula

d
i

e
hdx +kdy

+

*&amp;gt;Q(X, y, z)
=
$(x + h, y + k, z + /). (8)

131. If in the development (2), dx be substituted for #,

and dy for k, it becomes

J

dx dy

i . 2 \dx* dxdy dy*

If the sum of all the terms of the degree n in dx and dy
be denoted by rf

w
0, the preceding result may be written in

the form

/ 7 7 v cf(t&amp;gt; d~(h d3
(b

&amp;lt;b(x
+ ax, y + dy)

= + -- + - 4- z, h . . .

i 1.2 1.2.3

+ ?LV + & .

w

Since dx, dy, are infinitely small quantities of the first

* That this is the case appears immediately from the equations =
,

dxdy dydx
\ ,73i/

,,&c.
dx- dy dy dx
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order, each term in the preceding expansion is infinitely small
in comparison with the preceding one.

Hence, since
d*&amp;lt;(&amp;gt;

is infinitely small in comparison with
flty,

if infinitely small quantities of the second and higher
orders be neglected in comparison with those of the first, in
accordance with Art. 38, we get

d$ =
$(x + dx,y + dy)

-
j&amp;gt;(x, y)-

u/x dy

which agrees with the result in Art. 97.
132. Kuler s Theorems of Homogeneous Func

tions. We now proceed to give another proof of Euler s

Theorems in addition to those contained in Arts. 102 and 123.
If we substitute gx for h and gy for k in the expansion (5),

it becomes

/ x / du du\
(x + gx, y + gy)

= u + g #-_ + y \

\ w* dyl

where u stands for $(#, y).

But *( + 0* ? + W) -
*{(i + g)x, (i + g)y] ;

and, if $(xf y) be a homogeneous function of the nth
degree

in x and y, it is evident that the result of substituting (i + g)x
for x

9
and (i + g)y for y in it, is equivalent to multiplying it

^7 (
l + g)

n
* Hence, we have for homogeneous functions,

$(x + gx,y + gy}
=

(i + g)
n

&amp;lt;j&amp;gt; (x, y]
=

(i + g)
n
u,

f \m f du du\or (i +!). fi +
f^s +

rs)

u dzu d

i . 2 \ d& dxdy
y

where u is a homogeneous function of the nth

degree in x
and y.
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Since the preceding equation holds for all values of g, if

we expand and equate like powers of g, we obtain

du du
x + y = nu,
dx dy

f
.

^~r + y TI = n
(
n - u*

dxdy dy
2

&o. &o. &c.

The foregoing method of demonstration admits of

easily extended to the case of a homogeneous function of three

or more variables.

Thus, substituting gx for A, gy for
/&amp;lt;, gz for /, in formula

(6) Art. 1 2 9, and proceeding as before, we get

du du du

dx dy dz

, ^
x TT + y TT + 2 ~r^ + 2xy -JT + 2ZX T~r

dx*
y

dy* d dxdy dzdx

&o. &o. &c.

These formulae are due to Euler, and are of importance
in the general theory of curves and surfaces, as well as in

other applications of analysis.
The preceding method of proof is taken from Lagrange s

M6canique Analytique.
M 2
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CHAPTER IX.

MAXIMA AND MINIMA OF FUNCTIONS OF A SINGLE VARIABLE.

133. Definition of a Maximum or a Minimum. If any
function increase continuously as the variable on which it de

pends increases up to a certain value, and diminish for higher
values of the variable, then, in passing from its increasing to its

decreasing stage, the function attains what is called a maximum
value.

In like manner, if the function decrease as the variable

increases up to a certain value, and increase for higher values

of the variable, the function passes through a minimum stage.

Many cases of maxima and minima can be best determined

without the aid of the Differential Calculus
;
we shall com

mence with a few geometrical and algebraic examples of this

class.

134. Geometrical Example. To find the area of the

greatest triangle which can be inscribed in a given ellipse. Sup
pose the ellipse projected orthogonally into a circle

;
then any

triangle inscribed in the ellipse is projected into a triangle
inscribed in the circle, and the areas of the triangles are to

one another in the ratio of the area of the ellipse to that of

the circle (Salmon s Conies, Art. 368). Hence the triangle in

the ellipse is a maximum when that in the circle is a maxi

mum ;
but in the latter case the maximum triangle is evidently

equilateral, and it is easily seen that its area is to that of the

circle as v/2 7 to 4^- Hence the area of the greatest triangle

inscribed in the ellipse is

where a, b are the semiaxes.

Moreover, the centre of the ellipse is evidently the point
of intersection of the bisectors of the sides of the triangle.



Algebraic Examples of Maxima and Minima. 165

EXAMPLES.

1. Prove that the area of the greatest ellipse inscribed in a given triangle is

~
/ (area of the triangle).

2. Find the area of the least ellipse circumscribed to a given triangle.

3. Place a chord of a given length in an ellipse, so that its distance from the
centre shall be a maximum.

The lines joining its extremities to the centre must be conjugate diameters.

4. Show that the preceding construction is impossible when the length of

the given chord is
&amp;gt;a*/

2 or &amp;lt;b *^/z ;
where a and b are the semiaxes of the

ellipse. Prove in this case that if the distance of the chord from the centre be
a maximum or a minimum the chord is parallel to an axis of the curve.

5. A chord of an ellipse passes through a given point, find when the triangleformed by joining its extremities to the centre is a maximum.
6. Prove that the area of the maximum polygon of n sides, inscribed in a

given ellipse, is represented by - ab sin .

2 n

!35- Algebraic Examples of Maxima and Minima.
Many cases of maxima and minima can be solved by ordi

nary algebra. We shall confine our attention to one simple
class of examples.

Let/(;r) represent the function whose maximum or mini
mum values are required, and suppose u =/(#), and solve
for x\ then the values of u for which a? changes from real to

^giy^^r^,ar^jhesolutions ot thejroblem. Tins method is,

in general, inapplicable when tEe equation in x is beyond the
second degree. We shall illustrate the process by a few ex
amples :

EXAMPLES.

i. To divide a number into two parts such that their product shall be a
maximum.

Let a denote the number, x one of the parts, then x (a - jr) is to be a maxi
mum, by hypothesis.

Sere u = x(a -
#), or xz - ax + u = o

;

solving for x we get

a*

accordingly, the maximum value of u is
,

since greater values would make x

imaginary.
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2. To find the maximum and minimum values of the fraction- .

Here .- -/-, or *+ , -g, ... . = JL+
~

&quot;&amp;gt;&amp;lt;
+

&amp;gt;.

**+ 1 W 2W
~

2W

In this case we infer that the maximum and minimum values of w are - and
2

--
; and the proposed fraction accordingly lies hetween the limits - and --

2 22
for all real values of T.

These results can be also easily established, as follows. &quot;We have in all cases

Accordingly^
if x + y be given, xy is greatest when x-y= o, or when x = y.

Conversely, if xy be given, the least value of x + y is when x = y.

Hence, denoting xy by a2
,
the minimum value of x H is 2 a, for positive

values of x.

Again, it is evident that when a function attains a maximum value, its in
verse becomes a minimum

;
and vice versd.

Accordingly, the max. value of is
,
under the same condition.

x* + a* 20,

3. Find the greatest value of .

(a + X)(b + x)

_ (a + z) (b + x) . ab ,
Here is to be a minimum, or (- x is a mm. ; ,. x y ab,

and the max. value in question is -

(x + a) (x + 6)
f

x + c

(z + a - e) (z + I - c)
Let x + c = 2, and the fraction becomes -.

z

In order that this should have a real min. value, (a c)(b c) must be posi
tive ; i. e. the value of c must not lie between those of a and b, &c.

5. Find the least value of a tan 4- b cot 0. Am. i\/~ab.

6. Prove that the expression -. will always lie between two fixed
C2 + OX + C

finite limits if o + c2
&amp;gt;

ab and W &amp;lt; 4 & ;
that there will be two limits between

which it cannot lie if a2 + c2
&amp;gt;

ab and b*
&amp;gt; 4 &amp;lt;J

3
: and that it will be capable of all

values if a2 + c2 &amp;lt; ab.

136. To find the Maximum and Minimum values

of
ax* + 2bxy + cy*

a x* + 2b xy + c y*
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not

then we get

/v*

Let u denote the proposed fraction, and substitute s for -;

az2 + 2bz + c . .

a z* + 2b z+ c

or (a-a u)z
i + 2(b-b u}z + c-c u = o.

Solving for z, this gives

(a
- a u)z + b - b u = ^/(b

- b u)
z -

(a- au) (c
- c u). (2)

There are three cases, according as the roots of the equation

(b
z - a c

)
u2 + (ac + ca -2 btf) u+b

z -ac = o (3)

are real and unequal, real and equal, or imaginary.

(i). Let the roots be real and unequal, and denoted by
a and j3 (of which ]3 is the greater) ; then, if b

z - a c &amp;gt; o, we
shall have

(a
- a u)z + b-b u = */(b

2 - a c
) (u-a) (u-ft).

Here, so long as u is not greater than a, z is real
;
but

when u &amp;gt; a and &amp;lt;

]3, z becomes imaginary ; consequently, the

lesser* root (a) is a maximum value of u. In like manner, it

can be easily seen that the greater root (ft) is a minimum.

Accordingly, when the roots of the denominator, a x* + 2b x

+ c =
o, are real and unequal, the fraction admits of all pos

sible, positive, or negative values, with the exception of those

which lie between a and /3.

If either a = o, or c =
o, the radical becomes

and, as before, the greater root is a minimum, and the lesser

a maximum, value of u.

* In general, in seeking the maximum or minimum values of y from the

equation, y =
&amp;lt;/&amp;gt;(#),

if for all values of y between the limits o and ft, the corre

sponding values of x are imaginary, while x is real when y = a, or y = ft ;
then

it is evident that the lesser of the quantities, o, /3, is a maximum, and the greater
a mini-mum, value of y. This result also admits of a simple geometrical proof,

by considering the curve whose equation is y =
&amp;lt;$&amp;gt;(%)



1 68 Maxima and Minima of Functions of a Single Variable.

^(2.)
When a =

/3, the expression under the radical sign is

positive for all values of u, and consequently u does not admit
of either a maximum or a minimum value.

(3.) When the roots o and j3 are imaginary, the expres-
Bion under the radical sign is necessarily positive, and u in
this case also does not admit of either a maximum or a mini
mum value.

Hence, in the two latter cases, the fraction admits of all

possible values between + oo and - oo .

In the preceding, the roots of the denominator are sup
posed real

;
if they be imaginary, i.e. if 6

2 - a c &amp;lt; o, we have

(a
- a u)z + b- I u = v/(y-& 2

) (u-a) (/3
-

u).

It is easily seen that z is imaginary for all values of u
except those lying between a and j3. Accordingly, the greater
root is a maximum, and the lesser a minimum, value of u.

Hence, in this case, the fraction represented by u lies be
tween the limits a and /3 for all real values of x and y.

137. auadratic for determining g. Again, the value
of z, corresponding to a maximum or a minimum value of w,
must satisfy the equation

(a
-
du}z + b - b u = o.

Substituting for u in (i) its value derived from this latter

equation, we obtain the following quadratic in g :

(ati
- Idy + z(ac -ca

)
+ bc -cV = o. (4)

This equation determines the values of z which correspond
to the maximum and minimum values of u. It can be easily
seen that if the roots of equation (3) are real so also are those
of (4) ;

and vice versa.

The student will observe in the preceding investigation
that when u attains a maximum or a minimum value, the

corresponding equation in z, obtained from (2), has equal
roots. This is, as will be seen more fully in the next Article,
the essential criterion of a maximum or a minimum value, in

general.



Condition for a Maximum or Minimum. 169

Find the maximum or minimum values of u in the follow

ing cases :

EXAMPLES.

x2 + ix + 1 1 5
i. M = . Ans. u = 2, a max., w = ^ a mm.

a2 + 40; + 10 6

1
- S *2

4- X - I .--- is a max. or a mm. according as--- 13 a mm. or a max., i.e.
xz

+ x - i i - x

as-- # is a maximum or a minimum.
i x

. . x= o, or x = 2
;
the former gives a maximum, the latter a minimum solution.

We now proceed to a general investigation of the condi

tions for a maximum and minimum, by aid of the principles
of the Differential Calculus.

138. Condition for a Maximum or Minimum. If

the increment of a variable, x, be positive, then the corre

sponding increment of any function, f(%), has the same sign
as that of/ (#), by Art. 6

; hence, as x increases, /(#) increases

or diminishes according %&f (x} is positive or negative.

Consequently, when f(x] changes from an increasing to a

decreasing state, or vice versa, its derived function f (x) must

change its sign. Let a be a value of x corresponding to a

maximum or a minimum value of f(x) ; then, in the case of

a maximum we must have for small values of h,

f(a)&amp;gt;f(a
+ h

and, for a minimum,

f(a) &amp;lt;f(a
+ h), and/(*) &amp;lt;f(a-h).

Accordingly, in either case the expressions

f(a + h)-f(a),

have both the same sign.
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Again, by formulae* (29), Art. 75, we have

/(a + K) -/() =
hf(a) + / (

+ 6h),

f(a
-

K) -f(a) = -
hf(a) +

/&amp;gt;

-

Now, when h is very small, and f (a) finite, the second
term in the right-hand side in each of these equations is very
small in comparison with the first, and hence /(a + h) -f(a)
and f(a- h}

-
f(a) cannot have the same sign unless

/() = o.

Hence, the values of x which render f(x) a maximum or a

minimum are in general roots of the derived equation f(x) = o.

This result can also be arrived at from geometrical
considerations

; for, let y =
f(x) be the equation of a curve,

then, at a point from which the ordinate y attains a maximum
or a minimum value, the tangent to the curve is evidently

parallel to the axis of x
; and, consequently f(x) =

o, by
Art. 10.

Moreover, if x be eliminated between the equations

f(x)
= u and/ (#)

=
o, the roots of the resulting equation in

u are, in general, the maximum and minimum values of /(#).
This is the extension of the principle arrived at in

Art. 134.

Again, since
f(a)&amp;lt;= o, we have

/(,- A) -/(,). -

(5)

* In the investigation of maxima and minima given above, Lagrange s form
of Taylor s Theorem has been employed. For students who are unacquainted
with this form of the Theorem, it may be observed that the conditions for a
maximum or minimum can be readily established from the form of Taylor s

Series given in Art. 54, viz.,

/(a + h} -/(a) = hf (a) + ^f W +^^ /&quot; + &c. ;

for when h is very small and the coefficients /(o),/&quot;(o), &c. finite, it is evident

that the sign of the series at the right-hand side depends on that of its first

term, and hence all the results arrived at in the above and the subsequent
Articles can be readily established.
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But the expressions at the left-hand side in these equations
are both positive for small values of h when

/&quot;(a)
is positive ;

and negative, when f (a) is negative ;
therefore f(a) is a

maximum or a minimum according as
f&quot;(a)

is negative or

positive.

If, however,f (a) vanish along with f(a) 9
we have, by

Art. 75,

f(a
-

h) -/() -
T/&amp;gt;)

H-77~-4/
iv
(*

-
&amp;lt;W

Hence it follows that in this case, f(a) is neither a

maximum nor a minimum unless f
m

(a] also vanish; but if

f&quot;(a}
= o, then/(0) is a maximum when /iv

() is negative,
and a minimum when/lr

(a) is positive.

In general, let /W(fl) be the first derived function that

does not vanish
; then, if wbe odd, /(a) is neither a maximum

nor a minimum ; if n be even, f(a) is a maximum or a mini

mum according as/M (a) is negative or positive.

The student who is acquainted with the elements of the

theory of plane curves will find no difficulty in giving the

geometrical interpretation of the results arrived at in this

and the subsequent Articles.

EXAMPLES.

I. = a sin a? + b cos a;.

Here the maximum and minimum values are given by the equation

du a
= a cos x o em x = o, or tan x = -.

ax o

Hence, the max. value of u is */az + i, and the min. is - \/a? + 62 . This is

also evident independently, since u may be written in the form

-Va2 + 2 sin
(a? + o),

where tan a = .

a

2. u = x sin*.

du cPu d*u
In this case = i cos x. = sin #, ;

= cos *
dx dx* d&
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A 1-1 /.
du dz

^i d3u
Accordingly, if =

o, we have =
o, and = i.

nx ax* dx3

Consequently, the function x - sin x does not admit of either a maximum or a
minimum value.

This result can also he easily seen from geometrical considerations.

3. u = a cos x + b cos 2x, a and b heing hoth positive.

TT du
liere = - a sm x - ^b sin 2X.

ax

d^u
= a cos x qb cos 2x.

The maximum and minimum values are given hy the equation a sin x + zb
sin 2X = o :

. . we have, (i), sin x = o
;

or (2), cos x = .

4^

The simplest solution of (i) is x =o, in which case

d^u
u K a -\- & = _ Q _ 4h *

dx*

consequently this gives a maximum solution.

Jo..

Again, let x = TT, and we have u = b -
a,
-- = a - 4b ; consequently this

gives a maximum or a minimum solution, according as a is &amp;lt; or
&amp;gt; 4^.

If a = 4#, we get when x - v,
~ = o.

On proceeding to the next differentiation we have

3
= a (sin x -t 2 sin 2#),

= o when x = .

Again&amp;gt;

dx*
= a

^
C S ^ + 4 cos 2*) = 3- Consequently the solution is a

minimum in this case.

Again, the solution
(2) is impossible unless a he less than 4^. In this case,

i. e. when a &amp;lt; qb, we easily find positive, and accordingly this gives a min.

2

value of u, viz. b.

4, Find the value of x for which sec x - x is a maximum or a minimum.

A us. sin a: = .
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139. Application to Rational Algebraic Expres
sions. Suppose f(x) a rational function containing no
fractional power of x, and let the real roots of f(x) = o,

arranged in order of magnitude, be a, /3, y, &c.
;
no two of

which are supposed equal.

Then f(x)
=

(x
-

a) (x
-

J3) (a
-

y] . . .

and /&quot;()- (a -0) (a -y) . . .

But by hypothesis, a -
]3, a 7, &c. are all positive ; hence

/&quot;(a)
is also positive, and consequently a corresponds to a

minimum value of f(x).

Again, / (/3)
= (0

-
a) (j3

-
7) ----

here |3
- a is negative, and the remaining factors are positive ;

hence
/&quot;()3)

is negative, and/(/3) a maximum.

Similarly,/^) is a minimum, &c.

140. Maxima and Minima Tallies occur alter

nately. We have seen that this principle holds in the case

just considered.

A general proof can easily be given as follows : Suppose
f(x) a maximum when x =

a, and also when x =
b, where b is

the greater ;
then when x = a + h, the function is decreasing,

and when x = b -
h, it is increasing (where h is a small incre

ment) ;
but in passing from a decreasing to an increasing

state it must pass through a minimum value
;
hence between

two maxima one minimum at least must exist.

In like manner it can be shown that between two minima
one maximum must exist.

141. Case of Equal Roots. Again, if the equation

f(x) = o has two roots each equal to a, it must be of the form

In this case
/&quot;(a)

= o,/ &quot;(a)

= 2$ (a), and accordingly,
from Art. 138, a corresponds to neither a maximum nor a

minimum value of the function /(#).
In general, iff (x) have n roots equal to a, then

Here, when n is even, /(a) is neither a maximum nor a

minimum solution : and when n is odd, /(a) is a maximum or

a minimum according as
i//(a)

is negative or positive.
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142. Case where f (x)
= oo. The investigation in

Art. 138 shows that a function in general changes its sign in

passing through zero.

In like manner it can be shown that a function changes
its sign, in general, in passing through an infinite value ; i.e. if

0(a)
=

00, 0(a
-

Ji)
and 0(a + h) have in general opposite signs,

for small values of h.

For, if u and -
represent any function and its reciprocal,

they have necessarily the same sign ; because if u be positive,

- is positive, and if negative, negative.

Suppose M!, uzj u3, three successive values of u, and

, , , the corresponding reciprocals.

Then, if u2
=

o, by Art. 138, u^ and ud have in general

opposite signs.

Hence, if = oo
,

and have also opposite signs ;
and

U-i Ui U3

we infer that the values of x which satisfy the equationf
f

(x)
= co may furnish maxima and minima values o

143. We now return to the equation

in which n is supposed to have any real value, positive, nega
tive, integral, or fractional.

In this case, when x = a,f (x) is zero or infinity according
as n is positive or negative.

To determine whether the corresponding value of f(x) is

a real maximum or minimum, we shall investigate whether

/ (#) changes its sign or not as x passes through a.

When x = a + h, f(a + h)
= hn $ (a + h),

inow, when h is infinitely small, t// (a + h) and ^(a-h) become
each ultimately equal to

r/ (a) : and therefore f (a + h) and

f(a -
h) have the same or opposite signs according as

(
-

i)
w

is positive or negative.
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(i). If n be an even integer, positive or negative,/^) does

not change sign in passing through a, and accordingly a cor

responds to neither a maximum nor a minimum solution.

(2). If n be an odd integer, positive or negative, f(a + h)

and/ (#
-

h) have opposite signs, and a corresponds to a real

maximum or minimum.

(3). If n be a fraction of the form
,
then

(
-

i)

= i
* = i

,
and a corresponds to neither a maximum nor a

minimum.
2T + 1 1

(4). If n be ofthe form &$
9
then

(
-

i)*

*
=

(- i)

J&amp;gt;

;

this is imaginary Up be even, but has a real value
(
-

i) when
p is odd. In the former case, f (a -h) becomes imaginary ; in

the latter,f (a + h) and/ (#-,&) have opposite signs, and/()
is a real maximum or minimum.

Thus in all cases of real maximum and minimum values

the index n must be the quotient of two odd numbers.

EXAMPLES.

1. f(x) - ax* + 2bx + c.

Here f(x)
2

(
ax + *)

=
&amp;gt;

hence x =
t

f (x)
= 20.

And - is a maximum or a minimum value of axz + ibx + c, according
a

as a is negative or positive.

2. f(x) = 23? - I5Z
2 + $6x + 10.

Here / (*)
=

6(*2
-

5x + 6)
= 6(*

-
2) (x

-
3).

(i.) Let x 2
; then/&quot;(#) is negative ;

hence /(2) or 38 is a maximum

(2.) Let # = 3 ; then/ &quot;(#)
is positive; hence / (3) or 37 is a minimum.
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It is evident that neither of these values is an absolute maximum or mini
mum

;
for when x = oo

, f(x) = so
,
and when x = -

&amp;lt;*=

, f(x) = - oo
, accord

ingly, the proposed function admits of all possible values, positive or negative.
Again, neither + oo nor oo is a proper maximum or minimum value, because

for large values of x, f(x) constantly increases in one case, and constantly dimi
nishes in the other.

It is easily seen that as x increases from oo to + 2, f(x) increases from oo

to 38 ;
as a; increases from 2 to 3,/O) diminishes from 38 to 37 ;

and as x in
creases from 3 to :*,/(#) increases from 37 to oo. When considered geome
trically, the preceding investigation shows that in the curve represented by the

equation

y = 2x* - i$x
z

-f T,6x + 10,

the tangent is parallel to the axis of x at the points x = 2, y = 38 ; and x = 3,

y = 37 ;
and that the ordinate is a maximum in the former, and a minimum in

the latter case, &c.

3- /(#) = a + b
(
x - tf- -An*- x = e. Neither a max. nor a min.

4. f(x] = b + c(x
-

a}% + d(x - 0)i

Substitute a + h for z, and the equation becomes

also f(a-h) =
l&amp;gt; + ch* + dh*

;

but when h is very small h$ is very small in comparison with Ai, and accordingly b

is a minimum or a maximum value off(x) according as c is positive or negative.

5- /(*) = 5*6 + l2*5 ~ !5*4 - 4#3 + i.5
2 + 600; + 17.

Ans. x = r gives neither a max. nor a min.
;
x = 2 gives a min.

6.- . Let x 10 = z, and the fraction becomes
x 10

(. + 9) (.+ 4) 36

Z Z

The maximum and minimum values are given by the equation I - = o;

. 2 = + 6, and hence x = 16 or 4 ;
the former gives a minimum, the latter

a maximum value of the fraction.

Hence / (*)
= (* + 5).

If x =
T,/(#) is neither a maximum nor a minimum

;
if x = -

5,/(^) is a

maximum.
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Max. and Mm. of -,

~ ^-.
ax* + 2bxy + cy*

Again, the reciprocal function -~
3

is evidently a max. when x = - i
;

for if we substitute for x, i + h, and - I h, successively, the resulting
values are both negative ; and consequently the proposed function is a minimum
in this case.

This furnishes an example of a solution corresponding to / (#) =00. See

Art. 142.

144. We shall now return to the fraction

ax* + 2bxy + cy*

a x* + 2b xy + c y*

the maximum and minimum values of which have been already
considered in Art. 136.

Write as before the equation in the form

z*(a
- a u) + 2z(b

- b u) + (c
- c u)

-
o,

x
where z = -.

y

Differentiate with respect to s, and, as = o for a maxi-
az

mum or a minimum, we have

2 (a
- a u) + (b

- b u)
= o.

Multiply this latter equation by z, and subtract from the

former, when we get

z(b
- b u) + (c

- c u)
= o.

Hence, eliminating z between these equations, we obtain

(a
- a u) (c

- c u)
=

(b
- b u)\

or u*(a c b
2

)
-

u(ac + ca 2bb
)
+ (ac &*)

= o; (3)

the same equation (3) as before.

The quadratic for z,

z*(ab
-
ba) + z(ac

- ca
)
+ be - cb =

o, (4)

is obtained by eliminating u from the two preceding linear

equations.
N
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This equation can also be written in a determinant form,
as follows :

,2i - z r

a b c

a V c

= o.

It may be observed that the coefficients in (3) are in

variants of the quadratic expressions in the numerator and
denominator of the proposed fraction, as is evident from the

principle that its maximum and minimum values cannot be
altered by linear transformations.

This result can also be proved as follows :

Let &quot;

aX z + 2bXY
where X, Y denote any functions of x and y ; then in seeking
the maximum and minimum values of u we may substitute

X
z for

,
when it becomes

az* + 2bz + c
U =

V + 2b x +7&quot;

and we obviously get the same maximum and minimum values

for u, whether we regard it as determined from the original
fraction or from the equivalent fraction in z.

Again, let X, Y be linear functions of x and y, i. e.

X = Ix + my, Y = I x + my,

then u becomes of the form

Ax~

where A, B, C, A ,
B

,
C

,
denote the coefficients in the trans

formed expressions ; hence, since the quadratics which deter

mine the maximum and minimum values of u must have the

same roots in both cases, we have

& =
\(ac

- b
z

),
AC + CA - 2BBf =

\(ac
f

+ ca - 2bb
),
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It can be seen without difficulty that

A =
(tot

- mf}\

&quot;We shall illustrate the use of the equations (3) and (4) by
applying them to the following question, which occurs in the

determination of the principal radii of curvature at any point
on a curved surface.

145. To find the Maxima and Minima Values of

r cos
2
a + 2s cos a cos/3 + t cos

2

/3,

where cos a and cos (3 are connected by the equation

(i +p*) cos
2
a + 2pq cos a cos /3 + (i + #

2

)
cos

2

/3
=

i,

, q, r, s, t are independent of a and
]3.

Denoting the proposed expression by u, and substituting
cos a

r^ weget

rs2 + 2sz + t

i + p*z* + 2pqz + i +
&amp;lt;f

The maximum and minimum values of this fraction, by
the preceding Article, are given by the quadratic

i +p
z

)t) +r*-
2
=o; (6)

while the corresponding values of z or --
TJ

are given by

*
2

{(i +/)* -pqr] + {(i +p*)t
-

(i + f)r]

+ {pqt-(i + q*)s} =0* (7 )

The student will observe that the roots of the denominator
in the proposed fraction are imaginary, and, consequently, the

values of the fraction lie between the roots of the quadratic

(6), in accordance with Art. 136.

*
Lacroix, Dif. Cal., pp. 575, 576.

N 2
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146. To find the Maximum and Minimum Radius
Vector of the Ellipse

ax2 + 2bxy + cy*
= i.

(i). Suppose the axes rectangular; then

r* = x* + y
z
is to be a maximum or a minimum.

M
Let - =

s, and we get

#32 + 2bz + G

Hence the quadratic which determines the maximum and
minimum distances from the centre is

f4 (ac
- b

z

)
- rz (a + c) + i = o.

The other quadratic, viz.

bx* - (a
-

c) xy
-

by*
= o,

gives the directions of the axes of the curve.

(2.) If the axes of co-ordinates be inclined at an angle w,

then

r2 = xz + y* + 2xy cos w

z
z + 2z cos w + i

^

and the quadratic becomes in this case

r4

(ac
- b

z

)
- r

z

(a + c - 2b cos w) + sin
2

o&amp;gt;

=
o,

the coefficients in which are the invariants of the quadratic

expressions forming the numerator and denominator in the

expression for r
2
.

The equation which determines the directions of the axes

:A the conic can also be easily written down in this case.



Maximum and Minimum Section of a Right Cone. 1 8 1

147. To investigate the Maximum and Minimum
Values of

dy*

a x* + $b x*y +

Substituting z for -, and denoting the fraction by w, we have

az* + 3#s
2 + $cz + d

=
a z* + 3&V +

3&amp;lt;/s
+ dT

Proceeding, as in Art. 1 44, we find that the values of u and z

are given by aid of the two quadratics

2bz + c = (a z* + 2b z + tyu,az

bz* 2cz d= (b z* + zc z + d }u.

Eliminating u between these equations, we get the following
biquadratic in z :

z*(ab
-
ba) + 2z*(ac

- ca
)
+ z*{ad

f - ad + $(bc
-

cV)}

+
2s(bd&quot;

- db
}
+ (cd

-
cd)

= o. (8)

Eliminating z between the same equations, we obtain a

biquadratic in u, whose roots are the maxima and minima
values of the proposed fraction. Again, as in Art. 144, it

can easily be shown that the coefficients in the equation in u
are invariants of the cubics in the numerator and denominator
of the fraction.

148. To cut the Maximum and Minimum Ellipse
from a Right Cone which stands on a given circular
base. Let AD represent the axis of

the cone, and suppose BP to be the

axis major of the required section;
its centre; a, b, its semi-axes. Through

and P draw LM and PR parallel to

BC. Then BP = 20, b
2 = LO . OM

(Euclid, Book m., Pr. 35) ;
but LO

PR OM BC
.PR.

2 2 4
Hence BP* . PR is to be a maximum
or a minimum.
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Let L BAD -
a, PBC =

ft BC = c.

The BP - p/^ 01 ^-&quot; 1^^ c cos a

sin BPC~ cos
(6/

-
a)

0COS (0+ al

cos (0
-

a)

COS (0 + a) .

* * u =
3/0_ \ 1S a maximum or a minimum.

-a- du sin 26 - 2 sin2a

55
=

oo* (0-.)

The
^solution becomes impossible when 2 sin 2 a &amp;gt; i ; i.e. if

the vertical angle of the cone be &amp;gt; 30.

^
The problem admits of two solutions when a is less than

15. For, if 6 1 be the least value of derived from the

equation sin 20 *= 2 sin 2 a ; then the value - -
ft evidently

gives a second solution.

Again, by differentiation, we get

cPu 2 cos z9

d oos* (tf- a)

This is positive or negative according as cos 2 9 is positive or

negative. Hence the greater value of 9 corresponds to a
maximum section, and the lesser to a minimum.

^

In the limiting case, when a = 15, the two solutions
coincide. However, it is easily shown that the corresponding
section gives neither a maximum nor a minimum solution of
the problem. Eor, we have in this case 9 = 45 ; which value

d?u
gives -^

= o. On proceeding to the next differentiation, we

find, when 9 = 45,

d?u 4 64

dfi
=

cos4

(45 -a)
= &quot;

&quot;9&quot;

Hence the solution is neither a maximum nor a minimum.
When a &amp;gt; 15, both solutions are impossible.
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149. The principle, that when a function is a maximum
or a minimum its reciprocal is at the same time a minimum
or a maximum, is of frequent use in finding such solutions.

There are other considerations by which the determina

tion of maxima and minima values is often facilitated.

Thus, whenever u is a maximum or a minimum, so also

is log (w), unless u vanishes along with -.

dx

Again, any constant may be added or subtracted, i.e. if

f(x) be a maximum, so also is/(#) c.

Also, if any function, u, be a maximum, so will be any
positive power of u, in general.

150. Again, if s=/(w), then dz = f(u)du, and conse

quently 2 is a maximum or a minimum; either (i) when
du = o, i.e. when u is a maximum or a minimum ; or (2) when

/(.) = o.

In many questions the values of u are restricted, by the

conditions of the problem,* to lie between given limits;

accordingly, in such cases, any root of f(u) = o does not

furnish a real maximum or minimum solution unless it lies

between the given limiting values of u.

We shall illustrate this by one or two geometrical

examples.

(i). In an ellipse, to find when the rectangle under apair of

conjugate diameters is a maximum or a minimum. Let r be any
semi-diameter of the ellipse, then the square of the conjugate
semi-diameter is represented by a* + b

z - r
2

, and we have

u = r2

(#
2 + b* r

2

)
a maximum or a minimum.

Here = 2 (a* + b
z - 2rz

) r.
dr

Accordingly the maximum and minimum values are,

(
i
)
those for which r is a maximum or aminimum

; i.e. r - a,

or r = b
; and, (2) those given by the equation

r(a
z + b* -

2r*)
= o;

* See Cambridge Mathematical Journal, vol. iii. p. 237.
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or r =
o, and r

The^solution r=o is inadmissible, since r must lie between
the

^

limits a and b : the other solution corresponds to the

equiconjugate diameters. It is easily seen that the solution
in (2) is the maximum, and that in (i) the minimum value
of the rectangle in question.

151. As another example, we shall consider the following
problem* :

Given in a plane triangle two sides (a, b) to find the
maximum and minimum values of

i A-
. cos

,

C 2

where A and c have the usual significations.

Squaring the expression in question, and substituting x
for c, we easily find for the quantity whose maximum and
minimum values are required the following expression :

neglecting a constant multiplier.

Accordingly, the solutions of the problem are (i) the
maximum and minimum values of #, i.e. a + b and a - b.

(2) the solutions of the equation -, i.e. of
dx

*
.
46 3 (^ -

b*)

or x* + $x -
3 (a

2 - b
z

)
= o

;

whence we get x = A/3a
2 + &

2 -
2b,

neglecting the negative root, which is inadmissible.

Again, if b &amp;gt; a, */$(? + b
2 - 2b is negative, and accord

ingly in this case the solution given by (2) is inadmissible.

* This problem occurs in Astronomy, in finding when a planet appears
brightest, the orbits being supposed circular.
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If a &amp;gt; b, it remains to see whether ^30? + b
z - 2b lies

between the limits a + b and a b. It is easily seen that

v/3a
2 + b

z - 2b is &amp;gt; a - b : the remaining condition requires

a + b &amp;gt; v/V + b
2 -

zb,

or a + 36 &amp;gt;

or a2

i.e. 4&
2 + 3#

- 2
&amp;gt; o,

or (46
-

) (6 + a) &amp;gt; o ;

or, finally, 6 &amp;gt; -.

4

We see accordingly that this gives no real solution unless

the lesser of the given sides exceeds one-fourth of the

greater.
When this condition is fulfilled, it is easily seen that the

corresponding solution is a maximum, and that the solutions

corresponding to x = a + b, and x = a - b, are both minima
solutions.

152. Maxima and Minima Values of an Implicit
Function. Suppose it bo required to find the maxima or

minima values of y from the equation

/(*, V]
= o-

Differentiating, we get

du du dy

dx dy dx~
9

where u represents /(#, y). But the maxima and minima

values of y must satisfy the equation
-~ = o : accordingly the
(.IX
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maximum and minimum values are got by combining* the

.. du
equations =

o, and u = o.

153. Maximum and Minimum in case of a Func
tion of two dependent Variables. To determine the

maximum or minimum values of a function of two variables,
x and y, which are connected by a relation of the form

/(a?, y)
= o.

Let the proposed function, (#, y] be represented by u
;

then, by Art. 101, we have

d$ df d$df
du _ dx dy dy dx

dx
=

ay

dy

But the maxima and minima values of u satisfy the

equation =
o, hence the values of x and y derived from

the equations /(#, y)
=

o, and

d&amp;lt;j&amp;gt; d/_ d(f&amp;gt; df _
dx dy dy dx

9

furnish the solutions required. To determine whether the

solution so determined is a maximum or a minimum, it

d 2u
is necessary to investigate the sign of . We add an

ax

example for illustration.

154. Given the four sides of a quadrilateral, to find when its

area is a maximum.
Let a, b

y c, d be the lengths of the sides, the angle
between a and

, ^ that between c and d. Then ab sin $
+ cd sin ^ is a maximum

;
also

a* + b* - 2ab cos = (? + d* 2cd cos
;//

being each equal to the square of the diagonal.

This result is evident also from geometrical considerations.
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d\L

Hence ab cos 6 + cd cos \L = o
a&amp;lt;p

for a maximum or a minimum ; also,

M
ab sin 6 = cd sin ip-rr ;

$&amp;lt;p

.. tan &amp;lt; + tan
i//
=

o, or &amp;lt; +
i/&amp;gt;

= 1 80.

Hence the quadrilateral is inscribable in a circle.

That the solution arrived at is a maximum is evident

from geometrical considerations; it can also be proved to be

so by aid of the preceding principles.

ab sin . , d\L ..

For. substitute =. -. instead of
,
and we get

cd sin
i/j d&amp;lt;{&amp;gt;

du ab sin + i&amp;gt;

sn

_. c?*w 5 cos (A + \L) f d\fr\ i . ,Hence = --_lr. 22 j + JL
)
+ a term which

t/0
2

sin ^ \ a^&amp;gt;/

d*u
vanishes when + ^ = 1 80

;
and the value of

2
becomes

in this case

ab f
+
ab\

&quot;

sin
&amp;lt;/&amp;gt; \ erf/

which being negative, the solution is a maximum.
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EXAMPLES.

1. Prove that a sec 6 + b coseo is a minimum when tan 6 = II -.
^i

&amp;lt;i

2. Find when $x?
-

15** -f i2x - i is a maximum or a minimum.

-4w*. x =
,
a max.

;
a; = 2, a min.

3. If a and i be such that f(a) =
f(b), show that f(x) has, in general, a

maximum or a minimum value for some value of x between a and b.

4. Find the value of x which makes

sin x . cos x

cos3 (60 -x)

maximum. Ant. x = 30*.

5. If -~. ^i be a maximum, show immediately that ^-~is aminimum.
/(*)

-
*(*) *(*)

6. Find the value of cos x when - is a maximum.
\/5 -

4 cos x

Ans. cofls^ -A/13
6

I 4- 3 12

7. Find when is a maximum. a; = --,

V/4 + 5*
2

a&amp;gt;&amp;gt; + o + 4
8. Apply the method of Ex. 5 to the expression

-
;.

x* ax + o

9. &quot;What are the values of x which make the expression

2X3 ~ 21X~ -r $6z 20

a maximum or a minimum ? and (2) what are the maximum and minimum

values of the expression ? Ans. x = i, a max.
;
x = 6, a min.

ma
&amp;lt;o. u = xm(a

- *). -&amp;lt;&amp;lt;
* =

^JT^
a maximum

11. Given the angle C of a triangle ; prove that sin2^4 + sin27? is a maximu

cos8^ + cos2J? a minimum, when A = B.

12. Find the least value of aek* + ler**. Ans.
z\/al&amp;gt;
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14. Show that b + c (x
-

)*, when x = a, is a minimum or a maximum

according as c is positive or negative.

15. * = *cos*. Ans.x=cotx.

1 6. Prove that x* is a maximum when x = e.

17. Tanm# . tann (a
-

x} is a maximum when tan (a
- ix) =

^JT^
tan a ^

1 8 Prove that is a minimum when x = e.

logx

19. Given the vertical angle of a triangle and its area, find when its base is

a minimum.

20. Given one angle A of a right-angled spherical triangle, find when the

difference betweeen the sides which contain it is a maximum.

dc

Here tan c cos A = tan b
;
and since c - b is a maximum, = i .

Hence we find tan b = v cos A.

This question admits of another easy solution ; for, as in Art. 112, we have

sin (c + b)

consequently sin (e
-

b) becomes a maximum along with sin (c + b), since A is

constant ;
and hence c - b is a maximum when c + b = 90.

This problem occurs in Astronomy, in finding when the part of the equation

of time which arises from the obliquity of the ecliptic is a maximum.

21 Prove that the problem, to describe a circle with its centre on the

circumference of a given circle, so that the length of the arc intercepted within

the given circle shall be a maximum, is reducible to the solution of the equation

= cot 0.= .

22. A perpendicular is let fall from the centre on a tangent to an ellipse,

find when the- intercept between the point o contact and the foot of the perpen

dicular is a maximum. Prove that p = &amp;lt;/ab,
and intercept = a - b.

2 -i A semicircle is described on the axis-major of an ellipse ; ,

draw a line from

one extremity of the axis so that the portion intercepted between the circle and

the ellipse shall be a maximum.

24. Draw two conjugate diameters of an ellipse, so that the sum of the

perpendiculars from their extremities on the axis-major shall be a maximum.

25 Through a point on the produced diameter AB of a semicircle draw a

secant ORE ,
so that the quadrilateral ABRR inscribed in the semicircle shall

be a maximum.

Prove that, in this case, the projection of RRf on AB is equal in length to

the radius of the circle.

26. If sin
&amp;lt;f&amp;gt;

= k shujs and $ + tf
= a, where a and Je are constants, prove

that cos\|/ cos is a maximum when tan2
^ = tan ^ tan t|/

.
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27. Find the area of the ellipse

ax2 + 2hxy + by
2 = e

in terms of the coefficients in its equation, by the method of Art. 146.

(i) for rectangular axes. Ana.

(2) for oblique.

V ab A2

28. A triangle inscribed in a given circle has its base parallel to a given line,
and its vertex at a given point ; find an expression for the cosine of its vertical

angle when the area is a maximum.

29. Find when the base of a triangle is a minimum, being given the ver
tical angle and the ratio of one side to the difference between the other and a
fixed line.

30. Of all spherical triangles of equal area, that of the least perimeter is

equilateral ?

31. Let w3 + x3
$axu = o ; determine whether the value x o gives u a

maximum or minimum. Ans. Neither.

32. Show that the maximum and minimum values of the cubic expression

ay? + 3^2 + 3cx + d

are the roots of the quadratic

V - 2Gz + A =o;

where G = a2d- ^abc -f 2i3
,
and A = a~d2 +4^ + $db* - ^bW - 6abcd.

33. Through a fixed point within a given angle draw a line so that the

triangle formed shall be a minimum.
The line is bisected in the given point.

34. Prove in general that the chord drawn through a given point so as to

cut off the minimum area from a given curve is bisected at that point.

35. If the portion, AS, of the tangent to a given curve intercepted by two
fixed lines OA, OS, be a minimum, prove that PA = NB, where P is the point
of contact of the tangent, and N the foot of the perpendicular let fall on the

tangent from 0.

36. The portion of the tangent to an ellipse intercepted between the axes is

a minimum : find its length. Ans. a -f b.

37. Prove that the maximum and minimum values of the expression, Art. 147,
are roots of the biquadratic

(a
-
ud}* (d

- ud Y + 4 (a
-
ud] (c

- we
)

3 + 4 (d
- ud

) (b
- ubj

-
3 (*

- tri )~ (c
~w? - 6 (a - ud} (b

- ub
} (c

- uc] (d
- ud

}
= o.



CHAPTEE X.

MAXIMA AND MINIMA OF FUNCTIONS OF TWO OR MORE IN

DEPENDENT VARIABLES.

155. Maxima and Minima for Two Variables. In

accordance with the principles established in the preceding

chapter, if ^ (#, y) be a maximum for the particular values

XQ and i/ ,
of the independent variables x and y, then for all

small positive or negative values of h and k, $ (ar , yo) must
be greater than $ (XQ + h, yQ + k) ;

and for a minimum it must
be less.

Again, since x and y are independent, w*&amp;gt; may suppose
either of them to vary, the other remaining constant;

accordingly, as in Art. 138, it is necessary for a maximum
or minimum value that

du .. du
=

o, and = o; (i)dx dy

omitting the case where either of these functions becomes
infinite.

156. Lagrauge s Condition. We now proceed to

consider whether the values found by this process correspond
to real maxima or minima, or not.

Suppose #o, yo to be values of x and y which satisfy the

equations
du n du
3- =

o, and =
o,

dx dy

j i A. A -n n i n T ! 1.
^U ^U d*U

and let A, B, C be the values which
, -7-7-, -7-5 assume

dx* dxdy dy*
when XQ and ye are substituted for x and y ;

then we shall

have

k)
-

(j) (#o, y )
=- (AU* + 2Bhk + Ck*) + &c. (2)
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But when h and k are very small, the remainder of the

expansion becomes in general very small in comparison with
the quantity Ah2 + iBhk + Ckz

; accordingly the sign of

0(# + h, 2/0
+ k)

-
0(a? , 3/0) depends on that of

OF, i.e. of

Now, in order that this expression should be either always
positive or always negative for all small values of h and k,
it is necessary that AC - JB2 should not be negative; as, if

it be negative, the numerator in the preceding expression
would be positive when&=o, and negative when Ah + Bk = o.

Hence, the condition for a real maximum or minimum is

that AC should not be less than .Z?
2
,
or

,_ ___ *^ /&quot;\T*
_

f _ I

dPdjf. \dxdy)

and, when this condition is satisfied, the solution is a maxi
mum or a minimum value of the function according as the

sign of A is negative or positive.
If B2 be &amp;gt; AC the solution is neither a maximum nor a

minimum.
The necessity of the preceding condition was first estab

lished by Lagrange ;* by whom also the corresponding con
ditions in the case of a function of any number of variables

were first discussed.

Again, if A =
o, 13 =

o, C =
o, then for a real maximum

or minimum it is necessary that all the terms of the third

degree in h and k in expansion (2) should vanish at the same

time, while the quantity of the fourth degree in h and k

should preserve the same sign for all values of these quan
tities. See Art. 138.

The spirit of the method, as well as the processes em
ployed in its application, will be illustrated by the following

examples.
157. To find the position of the point the sum of the

squares of whose distances from n given points situated in

the same plane shall be a minimum.

* Theorie des Fonctions. Deuxieme Partie. Ch. onzieme.
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Let the co-ordinates of the given points referred to

rectangular axes be

(0i, #1), (02, #2), (03, ^3) ... (0, #), respectively;

(a?, y) those of the point required ; then we have

u =
(x

- a^ + (y
-

#i)
2 +

(a?
- #2)

2 + (y
- &2)

2 + . . .

a mnmum
&amp;lt;fe

. .
=

_-=

Hence *

and the point required is the centre of mean position of the
n given points.

From the nature of the problem it is evident that this

result corresponds to a minimum.
This can also be established by aid of Lagrange s con

dition, for we have

, dzu d zu d*uA = =
n, B = - =

o, C =
,
= n.

dx2

dxdy dy*

In this case AC - JB
2

is positive, and A also positive ;

and accordingly the result is a minimum.
158. To find the Maximum or Minimum Value

of the ex.presion

ax~ + bif + 2hxy + 2gx + 2fy + c.

Denoting the expression by w, we have

i du
= * + /,.+ ,7

=
0,

i du
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Multiplying the first equation by x, the second by y, and

subtracting their sum from the given expression, we get

u = gx + fy + c\

whence, eliminating x and y between the three equations,
we obtain

a h g

u(ab
- A2

b f (3)

9 f c

This result may also be written in the form

c?A
u = A,

dc

where A denotes the discriminant of the proposed expression.

d*u d zu . d*u
Again,

- -
2a, = 20,

= 2h.
dx&quot; dy* dxdy

Hence, if ab - tf be positive, the foregoing value of u is a

maximum or a minimum according as the sign of a is negative
or positive.

If hz
&amp;gt; ab, the solution is neither a maximum nor a

minimum.
The geometrical interpretation of the preceding result is

evident
; viz., if the co-ordinates of the centre be substituted

for x and y in the equation of a conic, u =; o, the resulting

value of u is either a maximum or a minimum if the curve

be an ellipse, but is neither a maximum nor a minimum for

a hyperbola ;
as is also evident from other considerations.

159. To find the Maxima and Minima Values

of the Fraction

ax* + by* + 2hxy + 2gx + 2/y + o

2h xy+

Let the numerator and denominator be represented by
and

&amp;lt;p

2 ; then, denoting the fraction by w, we get
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Differentiate with respect to x and y separately, then

d&amp;lt;b\
du dfa d&amp;lt;j&amp;gt;i

du dfa ^

dx dx dx dy dy dy

but for a maximum or a minimum we must have

hence, the required solutions are given by the equations

ax + hy + g = u(dx + tiy + /),

Multiplying the former by a?, the latter by y, and subtracting

the sum from the equation (a), we get

(j* +fy + c = u (g x +fy + c/ )-

These equations may be written

(a
- du}x + (h

- h u)y + g -
ffu

=
o,

(h
-

liii)x + (b
- b u)y +f -fu =

o,

(g
-

cfu}x + (/-/% + c - cu = o.

Eliminating x and y, we get the determinant

a - du h -h u g
- g u

h-tiu b-b u f-fu

9
-

&amp;lt;fu f~fu c ~ c u

o. (4)

The roots of this cubic equation in u are the maxima and

minima required.
This cubic is the same as that which gives the three

systems of right lines that pass through the points of

intersection of the conies fa
=

o, fa
= o*

* Salmon s Conic Sections, Art. 370.

O 2
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The cubic is written by Dr. Salmon in the form

AV 4 9V + Qu + A =
o, (5)

where A, A denote the discriminants of the expressions 0! and

fa, and 0, 9&quot; are their two other invariants.

On the proof of the property that the coefficients are in

variants compare Art. 144.
The cubic reduces to a quadratic if either the numerator

or the denominator be resolvable into linear factors
;
for in

this case either A =
o, or A = o.

If both the numerator and denominator be resolvable into

factors, the cubic reduces to the linear equation

Q u + =
o,

and has but one solution, as is evident also geometrically.
1 60. To find the Maxima or Minima Values of

#3 + y* + 2
2

,
where

ax* + by* + cs
2 + 2hxy + zgxz + 2fay = i.

/V* At

Let u = xl + y
z + s?

;
substitute x and y for - and -, and

we have

ax&quot;* + by
2 + c + 2hxf/

i/ + 2gx H

Accordingly the cubic of formula (4) becomes in this case

a - u~l h g

h b-u-1 / =o. (6)

g f e-*-1

This is the well-known cubic* for determining the axes of

a surface of the second degree in terms of the coefficients in

its equation : when expanded it becomes

^-3 _
(
a + i + c

^
u-* + (ab + be + ac -f* -

g*
- hz

)u~
l

+ (of
2 + bg* -f ctf - abc - 2/gh)

= o.

* See Salmon s Geometry of Three Dimensions, 3rd ed., Art. 82.
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161. Application of Lagrange s Condition. In

applying this condition to the general case of Art. 159, we
write the equation in the form

from which we get, on making =
o, and =

o,dx ay

d2^ _
dz

&amp;lt;f&amp;gt;

2 dzu
7

o
= U -j~ + 02 ~T~9

da? dxz Y dx2

d^ti, d2^ d*u

dxdy dxdy
r

dxdy
9

dy* dy&quot;

1

dy*

drf dy? dxdy

Hence

Accordingly, the sign of AC - JB
Z

is the same as that of

the quadratic expression

(ab
- A) -

(aV + la - 2M
) u + (a V -

ti*)u\ (7)

where u is a root of the cubic (4) or (5).
If A 2 represent the determinant in (4), the preceding

quadratic expression may be written in the form -

2

.

dc

Again, u
i9
uz, u3 representing the roots of the cubic (4) ;

a, |3, those of the quadratic (7) ;
if u^ be a real maximum or

minimum value of u, we must have (ui
-
a)(i

-
/3) (

- A 2

)

a positive quantity.

Accordingly, if a b - h z be positive, Ui must not lie be
tween the values a and

]3. Similarly for the other roots.
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If all the roots of the cubic lie outside the limits a and /3,

they correspond to real maxima or minima, but any root

which lies between a and ]3 gives no maximum or minimum.
In the particular case discussed in Art. 1 60 the roots of

the cubic (6) are all real, and those of the quadratic

a - n~l

,
h

= o are interposed between the roots of the

h, b-**
cubic. (See Salmon s Higher Algebra, Art. 44). Accord

ingly, in this case the two extreme roots furnish real maxima
and minima solutions, while the intermediate root gives
neither. This agrees with what might have been anticipated
from the properties of the Ellipsoid ; viz., the axes a and c

are real maximum and minimum distances from the centre to

the surface, while the mean axis b is neither.

It would be unsuited to the elementary nature of this

treatise to enter into further details on the subject here.

162. Maxima or Minima of Functions of three

Variables. Next, let u =
0(#, y, s), and suppose a?

, 2A&amp;gt;,
*o

to be values of x
9 y, s, which render u a maximum or a mini

mum
; then, if #, y, z be independent of each other, by the

same reasoning as before, it is obvious that #
, y ,

2 must

satisfy the three equations

du du dn

omitting the case of infinite values.

Accordingly we must have

h* ** C l
*

L 2&amp;gt; I 2 * *

+ Fkl + Ghl + Hhk + &o.

where A, B, (7, F, G, H, are the values that ^

dx* Hy* ~dz* dydz ~dxdz dxdy

respectively assume when
#&amp;lt;&amp;gt;, yo, So are substituted for x, y, s

in them.
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Now, in this, as in the case of two independent variables,

it is necessary for a real maximum or minimum value that

the preceding quadratic function should be either always

positive or always negative for all small real values of A, k,

Substituting a/ for /*, and $1 for k, and suppressing the

positive factor /*, the expression becomes

Aa 2 + Bp + C + aF/3 + 2Ga + 2//a/3, (8)

Completing the square in the first term, and multiplying by

A, we get

(Aa + J5T/3 + G)
2 + (AB-H*}P + 2(AF- GH}$ + (AC- (?).

Moreover, since the first term is a perfect square, in order

that the expression should preserve the same sign, it is neces

sary that the quadratic

(AB - S 2

)(5
2 + 2(AF - CH)P + AG- GP

should be positive for all values of |3 : hence we must have

AB-H2
&amp;gt; o, (9)

and (AB - H2

)(AC
-

CP) &amp;gt; (AF - GH}\

or A(ABC + 2FGH- AF2 - EG* - CH2

)
&amp;gt; o, (10)

i.e. A and A must have the same sign, A denoting the dis

criminant of the quadratic expression (8), as before.

Accordingly, the conditions (9) and (10) are necessary

that a?
, 2/o, So should correspond to a real maximum or mini

mum value of the function u.

When these conditions are fulfilled, if the sign of AbQ

positive, the function in (8) is also positive, and the solution

is a minimum ;
if A be negative, the solution is a maximum.

163. Maxima and Minima for any number of

Variables. The preceding theory admits of easy extension
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to functions of any number of independent variables. The
values which give maxima and minima in that case are got
by ^equating to zero the partial derived functions for each
variable separately, and the quadratic function in the ex

pansion must preserve the same sign for all values
;

i.e. it

must be equivalent to a number of squares, multiplied by
constant coefficients, having each the same sign.

The number of independent conditions to be fulfilled in the
case of n independent variables is simply n

-
i, and not 2 n - i,

as stated by some writers on the Differential Calculus. A
simple and general investigation of these conditions will be

given in a note at the end of the Book.

164. To investigate the Maximum or Minimum
Value of the Expression

ax* + by* + cz* + 2hxy + 2gzx + 2/yz + 2px + 2qy + 2rz + d.

Let u denote the function in question, then for its maxi
mum or minimum value we have

du ,

du -

dy

= 2(gx +fy + cz + r)
= o;

hence, adopting the method of Art. 158, we get

u = px + qy + rz + d.

Eliminating #, y, s between these four equations, we obtain

a h g p

h b f q

g f c r

p q r d

Again, since - = 2
, -^

= u

a h g

h b f

g f c
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the result is neither a maximum nor a minimum unless

h
is positive, and

a h g

h b f

g f c

has the same sign as a.

The student who is acquainted with the theor}^ of surfaces

of the second degree will find no difficulty in giving the

geometrical interpretation of the preceding result.

165. To find a point such that the sum of the

squares of its distances from n given points shall toe

a minimum. Let (a, b, c), (of,
b

,
c

), &c., be the co-ordi

nates of the given points referred to rectangular axes
; x, y, z,

the co-ordinates of the required point ;
then

(x
-

a)* + (y- b)
z + (*

- cy

is equal to the square of the distance between the points

(a, b, c], and (x, y, z).

Hence

(y
- bj

&c. -
b)

z

where the summation is extended to each of the n points.
For the maximum or minimum value, we have

du . .

= 2S(# -
a)

= 2nx -

-
b)

= 2ny -

du
-j-

= 2S z -
c)

= 2ns - 2Sc = o ;

n n n

i.e. #05 ^05 So are the co-ordinates of the centre of mean posi-
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tioii of the given points. This is an extension of the result

established in Art. 157.

. . d*u d*u d*u d*u
Again =

2ft,
- =

2ft,
= 2W, -fr- =

O, &0.
dx* dy* dz* dxdy

The expressions (10) and (n) are both positive in this case,
and hence the solution is a minimum.

It may be observed with reference to examples of maxima
and minima, that in most cases the circumstances of the prob
lem indicate whether the solution is a maximum, a minimum,
or neither, and accordingly enable us to dispense with the

labour of investigating Lagrange s conditions.
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EXAMPLES.

Find the maximum and minimum values, if any such exist, of

ax -4- hu 4- C 6 + \
,,

+ y*
- #3

4- xy -
y*.

(a). # = o, y o, a maximum.

(j8). # = y = + -, a minimum.

(7).
= -/ = + ,

a minimum.

4. ax* + bxy + rfa* + Ixz + myz.

a; = y = z = o, neither a maximum nor a minimum.

5. If u = ry - *V ~
*V&amp;gt; Prove that ^ =

~&amp;gt; y = ~ makes w a maximum.

6. Prove that the value of the minimum found in Art. 165 is the -th part of

the sum of the squares of the mutual distances between the n points, taken two

and two.

7. Find the maximum value of

8. Find the values of x and y for which the expression

(aix + hy + otf + (a2x + % + c2)2 + . . . 4-
(&amp;lt;;*

becomes a minimum.



CHAPTEB XI.

METHOD OF UNDETERMINED MULTIPLIERS APPLIED TO THE
INVESTIGATION OF MAXIMA AND MINIMA IN IMPLIJIT
FUNCTIONS.

1 66. Method of Undetermined Multipliers. In many
cases of maxima and minima the variables which enter into

the function are not independent of one another, but are con
nected by certain equations of condition.

The most convenient process to adopt in such cases is

what is styled the method of undetermined* multipliers. We
shall illustrate this process by considering the case of a func
tion of four variables which are connected by two equations
of condition.

Thus, let u =
$(#i, #2? #3? #*)&amp;gt;

where #1, #2 , #3? #4 are connected by the equations

Fi(xl9 #2, #3, #4)
=

o, F2(xl9 x*, x*, a?4)
= o. (i)

The condition for a .maximum or a minimum value of u

evidently requires the equation

7 -

-r- dxi + dx-i + -f- dxt + dxi = o.
dx\ dxz axa dx

Moreover, the differentials are also connected by the rela

tions

dFl . dF, . dF1 , dF1 .

dxi + -7- aas% + -7 ax3 + -T- dxi =
o,

dxi dx&amp;lt;i
dxz dx

dFz dF2 dF2 dF,
-r- dx\ + -j dx2 + -7 dx* + -j dxi = o.
dxi dx-i dx-i, dxA

Multiplying the first of the two latter equations by the arbitrary

This method is also due to Lagrange. See Mec. Anal., tome i., p. .74.
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quantity \ 19 the other by A2 ,
and adding their sum to the pre

ceding equation, we get

&amp;lt;fy

, dFi - dFi\ (d$ , dFl , d*l
3^ + Ai -7- + A2 cfer, + -r- + A! + A2

k

_ &amp;gt;

. dFl x
d[ ,Xt~ d^-f- 1- + A! -T-

1
+ A2

- ^4= o.

As A!, A2 are completely at our disposal, we may suppose
them determined so as to make the coefficients of dxi and dxz

vanish. Then we shall have

dd&amp;gt; dFl . dF9\ .
fdd&amp;gt;

. dFl , dF%\ ,-- + Ai -- + Aa dxz + -Z- + Aa - + A2 dx = o.

Again, since we may regard a?3 ,
x as independent variables,

and a?!, xz as dependent on them in consequence of the equa
tions (i), it follows that the coefficients of dx3 and dx^ in the

last equation must be separately zero, for a maximum or a

minimum
; consequently, we must have

d&amp;lt;b dFi k
dF9

j- + Ai -T- + A2
= o,

a^s aa;3 a^s

c?rf&amp;gt; djR c? 2̂

-^- + Ai + A2 -=- = o.

oa?4 094 a#4

These, along with equations (i) and

&amp;lt;fy
, rfJ\ , dF9

-j- + Ai + A 2 -j-
= o,

efo?! rfa?i da?i

tf?6 A dFi , 2̂

3^ + A! + A 2 3- =
o,

oa^ 0*1 dxt

are theoretically sufficient to determine the six unknown

quantities, xl9 a?a , ^3? ^4, AI, A 2 ; and thus to furnish a solution

of the problem in general.
This method is especially applicable when the functions

Fi, Ft, &c., are homogeneous ; for if we multiply the preceding
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differential equations by x
l9 a?2 ,

&amp;lt;r3 ,
a-4 , respectively, and add,we can often find the result with facility by aid of Euler s

Theorem of Art. 103.

^There
is no difficulty in extending the method of undeter

mined multipliers to a function of n variables, vl9 a?2 , %,...
xn ,

the variables being connected by m equations of condition.

Fi =
o, F&amp;gt;

=
o, F3

= o, . . . Fm =
o,

m being less than n
; for if we differentiate as before, and

multiply the differentials of the equations of condition by the

arbitrary multipliers, \ 19 X,, . . . \m respectively; by the same
method of reasoning as that given above, we shall have the n

following equations,

dx l

= O,

d* +\ dFl
\ dFm

~T~ + AI 3 + . . . + Am = O.
dx-i dxz dxz

These, combined with the m equations of condition, are

theoretically sufficient for the determination of the m + n
unknown quantities

EXAMPLES.

i. To find the triangle of maximum area inscribed in a given circle.

^

Let R denote the radius of the circle, A, , C, the angles of an inscribed

triangle, u its area
;
then

dbc
=

;:
= 2.S2 sin A sin B sin G.

4

Also, A + S+ C =180; .-. dA + dB +dC~o;

and, taking logarithmic differentials, we get

cot AdA + cot BdB + cot CdO = o,
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and consequently

tan A = tan B = tan C; hence A = B = C = 6oe
;

and therefore the triangle is equilateral.

2. Find a point such that the sum of the squares of the perpendiculars
drawn from it to the sides of a given triangle shall he a minimum.

Let x, y, z denote the perpendiculars : a, b, c the sides of the triangle ;
then

u - x* + y- + z2 is to be a minimum
;

also ax + by + cz = double the area of a triangle = 2A (suppose) ;

. \ xdx -f ydy 4- zdz o, adx -f bdy + cdz = o
,

.-. x = \a, y = \b, z = \c: multiplying these equations by a, b, c, respectively,

and adding, we obtain
2A

ax -f by + cz = \ (a? + bz + c
2
), or A. =

2 2 &amp;gt;

a2 + 62 -f c2 a2 + 62 + c a + + c

which determine the position of the point. The minimum sum is obviously

4A2

a

3. Similarly, to find a point such that the sum of the squares of its distances

from four given planes shall be a minimum. Suppose A, B, C, D to represent

the areas of the faces of the tetrahedron formed by the four planes ; x, y, z, w,

the perpendiculars on these fares respectively; then, as in the preceding

example, we have

Ax + 2ty+Cz + Dw = three times the volume of the tetrahedron = 3 F (suppose),

and = z2 + y* + z3 + w2
&amp;gt;

a minimum;

.. xdx + ydy + zdz + wdio = o,

Adx + Bdy + Cdz + Ddw = o
;

hence x = A^4, y = AJ?, z =
\&amp;lt;7,

w = \D ;

9 F2

and proceeding as before, we get= ^ -^ + C2 + -D2

4. To prove that of all rectangular parallelepiped! of the same volume the cube

has the least surface.

Let x, y, z represent the lengths of the edges of the parallelepiped ; then, if

A denote the given volume, we have

xyz = A, and xy + xz + yz a minimum ;

.. yzdx + xzdy + xydz = o,

(y + z) dx + (x + z} dy + (x + y} dz = o
;

hence yz = \(y + z], xz = h(x + z), xy = \ (x + y) :

from which it appears immediately that x = y = z.
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167. To find the Maximum and minimum
Values of

ax* + by* + cz* + 2hxy + 2gzx + 2/3/2,

where the variables are connected by the equations

Lx + My + Nz =
o, and x* + y* + z* = i.

In this case we get the following equations :

ax + hy + gz + AiZ + A 2# =
o,

hx + by +fz + AiJf + A2y =
o,

gx +fy + cz + Ai-ZV + A 2s = o.

Multiply the first by #, the second by y, the third by s, and
add; then

u + A 2
= o, or A3

= - u.

Hence (a
-

u) x + hy + gz + AiZ =
o,

hx + (b
-

u) y + fz + AiJf = o,

gx +fy + (c
-

u) z + \tN =
o,

Lx + My + Nz = o :

eliminating #, y, 2 and Ai, we get the determinant equation

9, L

/, M
g, /, c-u, N
L, M, N, o

The roots of this quadratic determine the maximum and
minimum values of u.

The preceding result enables us to determine the principal
radii of curvature at a given point on a surface whose equa
tion is given in rectangular co-ordinates.

a -
u, h,

h, b-u,
o.
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Again, the term independent of u in this determinant is

evidently

a, h, g, L

h, b, /, M
g, /, c, N
L, M, N, o

and the coefficient of it? is D + M~ + N2
. Accordingly, the

product of the roots of the quadratic (2) is equal to the frac

tion whose numerator is the latter determinant, and denomi
nator L* + M* + N2

. From this can be immediately deduced
an expression for the measure of curvature* at any point on a
surface.

Salmon s Geometry of Three Dimensions, Art. 2 95.
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EXAMPLES.

i. Find the minimum value of

*;+*;+*:+. ..+**,

where a?i, #2 ,
. . . xn are subject to the condition

01*1 + 2*2 f . . . + cn*w = fc Ans. -- *!__
:
+

:-+&amp;lt;

* Find the maximum value of

where the variables are subject to the condition

ax + dy + cz = p + q + r.

&amp;lt;

3. If tan - tan - m, find when sin p - sm is a maximum.

4. Find the maximum value of (x + i) (y + i) ( + i) where z ^v c-
s = A.

.

- _

27 log a . log . log e

5- Find the volume of the greatest rectangular parallelepiped inscribed iu
the ellipsoid whose equation is

z2 8
-^
= I. 2f)M.

*

6. Find the maximum or the minimum values of u, being given that

M = aV + %2 + c2z-, x~ + y
z + &= I, and fa + my + nz = o.

Proceeding by the method of Art. 1 67, we get

a*x + \x + nl = o, fty + \y + ^m = o. c~z 4- Az + /j.n
= o.

Again, multiplying by x, y, z, respectively, and adding, we get A = -
.

.-. (u
- a2

)
a; = /*/, (

- i 2
) y = /ti, (M

- c8) z = /u.

Hence, the required values of w are the roots of the quadratic

W - M -
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.2
? ,2 g

2

7. Given +
|^
+ -5

=
I, and to + my + nz = o, find when x* + y

z + z* is a

maximum or minimum. Proceeding, as in the last example, we get the quadratic

u - a? w -
6&quot; w - &

This question can be at once reduced to the last by substituting in our equations

ax, by, and cz, instead of x, y, z.

8. Of all triangular pyramids having a given triangle for base, and a given
altitude above that base, find that whose surface is least.

Ans. Value ofminimum surface is \/rz + pz
,
where a, 5, e repre

sent the sides of the triangular base
; r, the radius of its inscribed circle

;
and p,

the given altitude.

9. Divide the quadrant of a circle into three parts, such that the sum of the

.ducts
of the sines

etermine which it is.

products of the sines of every two shall be a maximum or a minimum ; and
d

10. Of all polygons of a given number of sides circumscribed to a circle, the

regular polygon is of minimum area ? For, let
&amp;lt;pi, 2, .

&amp;lt;pn

be the external

angles of the polygon, then the area can be easily seen to be in general

where $\ + #2 . +
&amp;lt;j&amp;gt;n

= 2*.

Hence, for a minimum, (pi
= $% = fa = , . . = &amp;lt;.

n. Of all polygons of a given number of sides circumscribed to any closed

oval curve which has no singular points, that which has the minimum area

touches the curve at the middle point of each of the sides.

12. Given the ratio sin
&amp;lt;J&amp;gt;

: sin
&amp;lt;|/,

and the angle 6, find when the ratio

sin
(&amp;lt;p

+ 6) : sin
(i|/ + 6) is a maximum or a minimum. Ans.

&amp;lt;j&amp;gt;

+ ^ = 9.

13. Required the dimensions of an open cylindrical vessel of given capacity,
so that the smallest possible quantity of material shall be employed in its con

struction, the thickness of the base and sides being given.
Ans. Its altitude must be equal to the radius of its base.

14. Show how to determine the maximum and minimum values o

subject to the conditions

Ix + my -\- nz o.

P 2
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CHAPTEE XII.

TANGENTS AND NORMALS TO CURVES.

1 68. Equation of the Tangent. If (#, y), (xlf yt), be the
co-ordinates of any two points, P, Q, taken on a curve, and
if (X, T) be any point on the Y
line which joins P and Q ; then
the equation of the line PQ is

in which X and Y represent the R ^ M x
current co-ordinates. Fis- 8 -

If now the point Q be taken infinitely near to P, the line

PQ becomes^the tangent at the point P, and, as in Art. 10,
we have for its equation

Y - v = (X - } ( \

where X, Y are the co-ordinates of any point on the line,
and x, y those of its point of contact.

For example, to find the equation of the tangent to the
curve

. nn+m

Taking the logarithmic differentials of both sides, we get

n tn dy dy ny
% y dx dx

~
ma?

and the equation of the tangent becomes

nX mY
+

x y
m + n.
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m + n
If we make X= o, and Y= o, separately, we get m

and- x for the lengths of the intercepts made by the
n

tangent on the axes of x and y, respectively. This result

furnishes an easy geometrical method of drawing the tangent
at any point on a curve of this class.

If m =
i, n =

i, the preceding equation represents a

hyperbola ; if m =
2, and n = -

i, it represents a parabola.

169. If the equation of the curve be of the form

f(x, y)
=

o, and if /(#, y) be denoted by ut we have from
Art. 100,

du

&amp;lt;fy_^_dx

dx du
9

Ty

and hence the equation of the tangent becomes

(,)

The points on the curve at which the tangents are

parallel to the axis of x must satisfy the equation = o ;

they are accordingly given by the intersection of the curve,
ra|J

M =
o, with the curve whose equation is = o. The y co-

dx

ordinates at such points are evidently in general either

maxima or minima.
Similar remarks apply to the points at which the tangents

are parallel to the axis of y.

To find the tangents parallel to the line y = mx + n. The

points of contact must evidently satisfy

du du
-T + rn-r =0.
dx dy

The points of intersection of the curve represented by
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this equation with the given curve are the points of contact
oi the system of parallel tangents in question.

The results in this and the preceding Article evidently
apply to oblique as well as to rectangular axes.

EXAMPLES.

i. To find the equation of the tangent to the ellipse

a*
+ P

= *

Here !1=^ ^-^
dx a* dy b*

and the required equation is

2. Find the equation of the tangent at any point on the curve

#&quot;

,
ym Xx*-i

55
+
*:-

1 - Ans -^r+

3. If two curves, whose equations are denoted by u =
o, u =

o, intersect in
a point (z, y), and if u be their angle of intersection, prove that

du du duf du

tan w = dx d
-

dx ~*V
.

du duf du du

dx dx dy dy&quot;

4. Hence, if the curves intersect at right angles, we must have

du
duf_

du du _
dx dx ~dy dy

~ *

5. Apply this to find the condition that the curves

x* y
2
_ & y*

a*
+

41
~ & +

v*
= l

should intersect at right angles. ^ns. # - 6* = 8 -
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1 70. Equation of Normal. Since the normal at any

point on a curve is perpendicular to the tangent, its equation,

when the co-ordinate axes are rectangular, is

or (3)

The points at which normals are parallel to the line

y = mx + n are given by aid of the equation of the curve u = o

along with the equation

- = m--.
dy dv

EXAMPLES.

I. Find the equation of the normal at any point (*, y) on the ellipse

Am. ,
a* -

2. Find the equation of the normal at any point oa the curve

y = axn . Am. nYy + mXx ny* -f mx*.

171. &ufotangent and SuSjsiormal. In the accom

panying figure, let PT repre- y
sent the tangent at the point P,
PN the normal ; OH, PM the

co-ordinates at P ; then the

lines TM and MN are called

the subtangent and subnormal o

corresponding to the point P. Fig. 9-
X ^OJ^V- iJ.VAAJuj.^

v .f j^~- T1 /TTTI F

To find the expressions for their lengths, let $ = L PI M,

then
dy L

~dx
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The lengths of PT and PN are sometimes called the

lengths of the tangent and the normal at P : it is easily
seen that

dp

dx

EXAMPLES.

i. To find the length of the subnormal in the ellipse

Here 7*1

the negative sign signifies that JOT is measured from JIf in the negative
direction along the axis of #, i.e. the point JVlies between M and the centre ;

as is also evident from the shape of the curve.

2. Prove that the subtangent in the logarithmic curve, y = *, is of constant

length.

3. Prove that the subnormal in the parabola, y
z = imx, is equal to m.

4. Find the length of the part of the normal to the catenary

intercepted by the axis of x. Ans. .

5. Find at what point the subtangent to the curve whose equation is

xy* = a* (a
-

x)

a
is a maximum. Ans. x = -, y a.

172. Perpendicular on Tangent. Let p he the length
of the perpendicular from the origin on the tangent at any

point on the curve

Ffo y)
=

c,
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then the equation of the tangent may be written

X cos o&amp;gt; + Y sin w = p,

where w is the angle which the perpendicular makes with

the axis of x.

Denoting F (a?, y) by u, and comparing this form of the

equation with that in (2), and representing the common value

of the fraction by X,

du du du du

dx dy dx dy

cos w &quot;sin to p

TT \2 fdu\* fdu\*Hence A2 =
j
+

&amp;gt;

e?w G?M

, dx y
dy i ^and j9

= -^ .
(4)

W&quot;

COR. If F(x 9 y) be a homogeneous expression of the nth

degree in x andy, then by Euler s formula, Art. 102, we have

du du
x -f y = nu =

we,

and the expression for the length of the perpendicular
becomes in this case

nc

173. In the curve

to prove that

-1 * (a cos
w)&quot;

1 + (b sin w)
7&quot;&quot;1

. (5)
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By Ex. 2, Art. 169, the equation of the tangent is

comparing this with the form

X cos to + Y sin &amp;lt;o

= p9

cos to x&quot;
1

sin M
we get

- =
,

__ =
p am9 p

A 1

fa cosfajV&quot;&quot;
1^ /6 sin wY&quot;

1
&quot;

1

^

V ^ )
&quot;

\~7~y
=

&quot;^

or

Hence, substituting in the equation of the curve, we obtain
the result required.

1 74. Locus of Foot of Perpendicular for the same
Curve. Let X, JTbe the co-ordinates of the point in ques-

X Y
tion, and we have, evidently, cos w =

, sin to =
: substi-

p p
tuting these values for cos w and sin o&amp;gt; in (5), it becomes

(X
2 + F2

)-
1 = (aX)

n^ 4 (b Y)
m
-\

since p* = X 2 + F2
.

175. Another Form of the Equation to a Tan
gent. If the equation of a curve of the nih

degree be
written in the form

0(#, y)
= Un + Un,i + Un-t + . f a + ^1 + Wo =

O,

where wn denotes the homogeneous part of the nth
degree in

the equation, un^ that of the (n
-

i)
th

, &c.; then, by Cor.

Art. 103, we have

&quot;
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Hence the equation of the tangent in Art. 169 becomes

. . . + nu = o
; (6)

an equation of the (n
-

i)
th

degree in x and y.

176. RTumber of Tangents from an External
Point. To find the number of tangents which can be

drawn to a curve of then** degree from a point (a, )3), we sub

stitute a for X, and j3 for Fin (6), and it becomes

This represents a curve of the (n
-

i)
th

degree in x and y,

and the points of its intersection with the given curve are the

points of contact of all the tangents which can be drawn
from the point (a, )3) to the curve. Moreover, as two curves

of the degrees n and n - i intersect in general in n (n
-

i)

points, real or imaginary (Salmon s Conic Sections, Art. 238),
it follows that there can in general be n(n

- i
)

real or

imaginary tangents drawn from an external point to a curve

of the nth
degree.

If the curve be of the second degree, equation (7) be

comes
d(b -.dd&amp;gt;

a-j- +p-j- + Ui + 2U =0,
dx ^

dy

an equation of the first degree, which evidently represents
the polar of (a, ]3) with respect to the conic.

In the curve of the third degree

W3 + UZ + Ui + UQ =
O,

equation (7) becomes

dd&amp;gt; n dd&amp;gt;

a -~ + p -~ + uz + 2Ui + 3W = O,
dx dy

which represents a conic that passes through the points of

contact of the tangents to the curve from the point (a, |3).

This conic is called the polar conic of the point. For the

origin it becomes

Ut + 2Ui + U = O.
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177. Kfumber of Normals which pass through a
Given Point. If a normal pass through the point (a, ]3),

we must have from (3),

,du du
&amp;lt;&amp;gt; 55-0-10 a?

This represents a curve of the nth
degree, which intersects the

given curve in general in n* points, real or imaginary, the

normals at which all pass through the point (a, )3).

For example, the points on the ellipse

at which the normals pass through a given point (a, j3),

are determined by the intersection of the ellipse with the

hyperbola
xy (a*

- b
2

)
= a? ay - &

2

j3#.

For the modification in the results of this and the pre

ceding article arising from the existence of singular points on

the curve, the student is referred to Salmon s Higher Plane

Curves, Arts. 66, 67, in.

178. Differential of the Arc of a Plane Curve.
Direction of the Tangent. If the length of the arc of a

curve, measured from a fixed point A on it, be denoted by s,

then an infinitely small portion of it is represented by ds.

Again, if $ represent the angle QPL (fig. 8), we have

PL QL
cos = - and sin &amp;lt;&amp;gt;

--- -;

but in the limit, PL = dx, QL =
dy, and PQ = ds* and also

$ becomes PTX, or (fig. 9).

* In Art. 37 it has been proved that the difference between the length of an

infinitely small arc and its chord is an infinitely small quantity of the second

order in comparison with the length of the chord; i.e.- -- is infinitely

small of the second order, and therefore this fraction vanishes in the limit.

arc PQ , .

Hence - =^. -
i, ultimately.

ord FQ
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Hence

dx

ds

dy

squaring and adding, we get

(8)

(9)

Hence, also, we have

ds
z = dxz + dy\

and therefore

ds = Ji + ^ dx. (10)

On account of the importance of these results, we shall

give another proof, as follows :

Let, as before, PR be the tangent to the curve at the

point P,

L PTX =
0, arc PQ = As,

Then, if the curvature of

the elementary portion PQ
of the curve be continuous,
we have evidently the line

x

or
2 + A^

2
&amp;lt; As &amp;lt; A# sec + Ay - A^? tan

;

-y\ As Ay
2-

]
&amp;lt; &amp;lt; sec 6 + - - tan rf&amp;gt;.

Aa?/ AdJ Aa?

-j-
Again, in the limit - = -- = tan 0, and Ji + (
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becomes J 1 +
(~f}

or sec ^ ; accordingly each of the pre

ceding expressions converges to the same limiting value, and

we have -7-== /i-H-~! ; which establishes the required
dx \ \dxj

result.

179. Polar Co-ordinates. The position of any point
in a plane is determined when its distance from a fixed point
called a pole, and the angle which that distance makes with a

fixed line, are known
;
these are called the polar co-ordinates

of the point, and are usually denoted by the letters r and 6.

The fixed line is called the prime vector, and r is called the

radius vector of the point.
The equation of a curve referred to polar co-ordinates is

generally written in one or other of the forms,

r =/(0), or F(r, 0)
- o,

according as r is given explicitly or implicitly in terms of 9.

Also, if be positive when measured above the prime vector,

it must be regarded as negative when measured below it.

i So. Angle between Tangent and Radius Vector.
Let be the pole, P and Q two near

points on the curve, PM a perpendicular
on OQ, OP =

r, POX =
0, and ^ the M

angle between the tangent and radius

vector. Then /^F*
ten 0P- , sin OOP =

o
&amp;gt;&quot;*

*
*&amp;lt;&amp;gt;

cos OQP =
T-TT : but in the limit when
Q&quot; Fig. n.

Q and P coincide, the angle OQP
becomes equal to ip,

and*

QM dr PM rdO
, -=r^

=
,
at the same time

j

dr rdO rdO
or o088 &quot; sm= tan=~-

* These results can be easily established from Art. 37.
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Also, (12)

Hence, also, we can determine an expression for the

differential of an arc in polar co-ordinates ; for, since

PM*
~ *

we get, on proceeding to the limit,

dsds _ i

d~r

=
V

or = i + dr. (13)

These results are of importance in the general theory of

curves.

181. Application to the Logarithmic Spiral.

The curve whose equation is r = a9
is called the logarithmic

spiral. In this curve we have

rdO i

tan il
-

7
=

i
.

dr log a

Accordingly, the angle between the radius vector and the

tangent is constant. On account of this property the curve

is also called the equiangular spiral

182. I*olar Subtangent and Subnormal. Through
the origin let ST be drawn perpendi- g

cular to OP, meeting the tangent in T,

and the normal in & The lines OT and

OS are called the polar subtangent and.

subnormal, for the point P. To find

their values, we have

Or= OP tan OPT

OS = OP tan OPS

Also, if u == i,

r tan \L = -
.

dr

OT=~
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Again, if 0-ZVbe drawn perpendicular to PT, we have

(15)

183. Expression for Perpendicular on Tangent.
As before, let p = ON, then

I
_

cts* _ dr* + r*dez

_ dr*
~ ~&quot; &quot; +

r
2

The equations in polar co-ordinates of the tangent and
the normal at any point on a curve can be found without

difficulty : they have, however, been omitted here, as they
are of little or no practical advantage.

EXAMPLES.

1. To find the length of the perpendicular from a focus on the tangent to an

ellipse.

The focal equation of the curve is

a(i -
6*) i e cosfl

T = -. Or tt=
;

rr- J

I e cos Q a(i e*)

du e sin Q
hence =

. x ;

dd a(i -e*)
1

I , +eZ - 26 COS 6
__

I
_ /2fl _ \

2. Prove that the polar subnormal is constant, in the curve r - aB ;
and thd

Dolar subtangent, in the curva rfl = a.
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184. Inverse Curves. If on any radius vector OP,
drawn from a fixed origin 0, a point P be taken such that

the rectangle OP . OP is constant, the point P is called the

inverse of the point P ;
and if P describe any curve, P

describes another curve called the inverse of the former.

The polar equation of the inverse is obtained immediately
from that of the original curve by

substituting
- instead of r in its

,

equation ;
where k2

is equal to the

constant OP . OP.
Again, let P, Q be two points,

and P , Q the inverse points ;
then

since OP . OP* = OQ . OQ , the

four points P, Q, Q ,
Pf

y
lie on a

circle, and hence the triangles

OQP and OP Q! are equiangular ;

FiS- J 3-

PQ OP
_
OP. OQ OP. OQ

* PQ
~
OQ

=
OQ . OQ

~
V

Again, if P, Q be infinitely near points, denoting the

lengths of the corresponding elements of the curve and of its

inverse by ds and d$
9
the preceding result becomes

*-& . (18)

185. Direction of the Tangent to an Inverse
Curve. Let the points P, Q belong to one curve, and P

, Q
to its inverse; then when P and Q coincide, the lines PQ,
P Q become the tangents at the inverse points P and P \

again, since the angle SPP = the angle SQ Q, it follows that

the tangents at P and P form an isosceles triangle with the

line PP .

By aid of this property the tangent at any point on a
curve can be drawn, whenever that at the corresponding
point of the inverse curve is known.

It follows immediately from the preceding result, that if

two curves intersect at any angle, their inverse curves intersect at

the same angle.

Q
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1 86. .Equation to the Inverse of a Given Curve.

Suppose the curve referred to rectangular axes drawn through
the pole 0, and that x and y are the co-ordinates of a point P
on the curve, X and Y those of the inverse point P ;

then

OP . OP&quot; 7c
2

.,
y_

k*
S] y * 2OP * X*+ Y* Y

hence the equation of the inverse is got by substituting
i2

-
&quot;

and
x* + if & +

y&quot;

mstead of x and y in the equation of the original curve

Again, let the equation of the original curve, as in Art.

174, &quot;be

tln + Un-i

x v
When-;-- and ,

are substituted for x and y, //

x* + y
z x* + y

z

l
nu

becomes evidently 7-7
-

^ ,.J z zn

Accordingly, the equation of the inverse curve is

y*)
= o. (19)

For instance, the equation of any right line is of the form

Ui + UQ
= o

;

hence that of its inverse with respect to the origin is

tfui -f (x* + f) = o.

This represents a circle passing through the pole, as is

well known, except when UQ
= o

;
i.e. when the line passes

through the pole 0.

Again, the equation of the inverse of the circle

xz + y
1 4 ?/j

4- ?/ =
o,

with respect to the origin, is

(V + Wui + t* (0* + /)) (^
2 + f) =

o,

which represents another circle, along with the two irnajo-inarv

right lines x&quot; + y
z = o.
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Again, the general equation of a conic is of the form

MZ + **i
~*&quot; ^o =

;

hence that of its inverse with respect to the origin is

which represents a curve of the fourth degree of the class

called &quot;bicircular quartics.&quot;

If the origin be on the conic the absolute term u vanishes,

and the inverse is the curve of the third degree represented

by

This curve is called a &quot; circular cubic.&quot;

If the focus be the origin of inversion, the inverse is a

curve called the Limacbn of Pascal. The form of this curve

will be given in a subsequent Chapter.

187. Pedal Curves. If from any point as origin a per

pendicular be drawn to the tangent to a given curve, the locus

of the foot of the perpendicular is called the pedal of the curve

with respect to the assumed origin.

In like manner, if perpendiculars be drawn to the tan

gents to the pedal, we get a new curve called the secondpedal

of the original, and so on. With respect to its pedal, the

original curve is styled the first negative pedal, &c.

1 88. Tangent at any Point to the Pedal of a

given Curve. Let ON, ON
be the perpendiculars from the

origin on the tangents drawn
at two points P and Q on the

given curve, and T the intersec

tion of these tangents ; join NN \

then since the angles ONT and

ON T are right angles, the qua
drilateral ONN T is inscribable

in a circle,
Flg* I4

.-. LONN=LOTN.

In the limit when P and Q coincide, L OTN = L OPN,
and NNf

becomes the tangent to the locus of JV; hence the

Q 2
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latter tangent makes the same angle with ON that the

tangent at P makes with OP. This property enables us

to draw the tangent at any point N on the pedal locus in

question.

Again, if p represent the perpendicular on the tangent at

N to the first pedal, from similar triangles we evidently have

Hence, if the equation of a curve be given in the form

pi
r =f(p), that of its first pedal is of the form =/(jp), in

which p and p are respectively analogous to r and p in the

original curve. In like manner the equation of the next

pedal can be determined, and so on.

189. Reciprocal Polars. If on the perpendicular ON
a point P be taken, such that OP . ON is constant (k* sup

pose), the point P is evidently the pole of the line PJVwith

respect to the circle of radius k and centre
; and if all the

tangents to the curve be taken, the locus of their poles is a

new curve. We shall denote these curves by the letters A
and J5, respectively. Again, by elementary geometry, the

point .of intersection of any two lines is the pole of the line

joining the poles of the lines,* Now, if the lines betaken as

two infinitely near tangents to the curve A, the line joining
their poles becomes a tangent to B

; accordingly, the tangent
to the curve B has its pole on the curve A. Hence A is the

locus of the poles of the tangents to B.

In consequence of this reciprocal relation, the curves A and
B are called reciprocal polars of each other with respect to the

circle whose radius is k.

Since to every tangent to a curve corresponds a point on
its reciprocal polar, it follows that to a number of points in

directum on one curve correspond a number of tangents to its

reciprocal polar, which pass through a common point.

Again, it is evident that the reciprocal polar to any curve

is the inverse to Us pedal with respect to the origin.

&quot;We have seen in Art. i ;6 - that the greatest number of tan-

geats from a point to a curve of the nth
degree is n (n

-
i) ;

* Townsend s Modern Geometry, vol. i., p. 219.



Reciprocal Polar8. 229

hence the greatest number of points in which its reciprocal

polar can be cut by a line is n(n -
i), or the degree of the

reciprocal polar is n(n /). For the modification in this

result, arising from singular points in the original curve, as

well as for the complete discussion of reciprocal polars, the

student is referred to Salmon s Higher Plane Curves.

As an example of reciprocal polars we shall take the curve

considered in Art. 173.
If r denote the radius vector of the reciprocal polar cor

responding to the perpendicularp in the proposed curve, we
have

Substituting this value for p in equation (5), we get
m
m-i

-
)

=
(a cos to)

*
(b sin w) ,

or

which is the equation of the reciprocal polar of the curve re

presented by the equation

In the particular case of the ellipse,

the reciprocal polar has for its equation

The theory of reciprocal polars indicated above admits of

easy generalization. Thus, if we take the poles with respect
to any conic section ( U) of all the tangents to a given curve

Aj we shall get a new curve B
;
and it can be easily seen, as

before, that the poles of the tangents toB are situated on the

curve A. Hence the curves are said to be reciprocal polars
with respect to the conic U.

It may be added, that if two curves have a common
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their reciprocal polars have a common tangent; and if the
curves touch, their reciprocal polars also touch.

For illustrations of the great importance of this&quot; principle
of

duality,&quot; and of reciprocal polars as a method of investi

gation, the student is referred to Salmon s Conies, ch. xv.
&quot;We next proceed to illustrate the preceding by discussing

a few elementary properties of the curves which are comprised
under the equation rm = am cos mQ.

190. Pedal and Reciprocal Polar of rm = am coamO.
&quot;We shall commence by finding the

angle between the radius vector and
the perpendicular on the tangent.

In the accompanying figure we

have tan PON = cot OPN = - ~.
rdO

Fig. 15.

But m log r = m log a + log (cos mO) ;

hence = - tan mO,

and accordingly, L PON - mO. (20)

pjftti

Again, p = ON= r cos mO =
,

or rm+1 = amp. (21)

The equation of the pedal, with respect to 0, can be im

mediately found.

For, let LAON = w, and we have

& -
(m + i

)
0.

Also, from (21), !
-

)

Hence, the equation of the pedal is

\ (&quot;&amp;gt;m + i
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Consequently, the equation of the pedal is got by substi

tuting: instead of m in the equation of the curve.
3 m + i

By a like substitution the equation of the second pedal is

easily seen to be

cos ;2m + i

and that of the nth
pedal

_ ^L. Q

(*3)
+ I

Again, from Art. 1 84, it is plain that the inverse to the

curve rm = am cos mO, with respect to a circle of radius a, is

the curve rm cos mO = am .

to the
Again, the reciprocal polar of the proposed, with respect

he same circle, being the inverse of its pedal, is the curve

rm+l cos- =
a&quot;&quot;

1
. (24)

It may be observed that this equation is got by substitut

ing^
- for m in the original equation.3 m + i

Accordingly we see that the pedals, inverse curves, and

reciprocal polars of the proposed, are all curves whose equa
tions are of the same form as that of the proposed.

In a subsequent chapter the student will find an additional

discussion of this class of curves, along with illustrations of

their shape for a few particular values of m.

EXAMPLES.

t. The equation of a parabola referred to its focus as pole is

r (i + cos0) = 20,

to find the relation between r and p.

f\

Here H cos - =
*, and consequently p* av^

a well-known elementary property of the curve.
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a2 represents an equilateral hyperbola; prore

3. The equation f = a* cos ^ represents a Lemniscate of Bernoulli; findthe equation connecting p and r in tnis case. Ans. r = a*p
d
f

*he
t^u

p
ati

1

1
} ?

n in? the radius vector and the perpendicular on
t m the Cardioid whose equation is

cos0). Ans. r3 = zap-.

It is evident that the Caraioid is the inverse of a parabola with respect to
its focus

; and the Lemniscate that of an equilateral hyperbola with respect to
its centre. Accordingly, we can easily draw the tangents at any point on either
of these curves by aid of the Theorem of Art. 185.

&amp;gt;

5. Show, by the method of Art. 188, that the pedal of the parabola, = ar
with respect to its focus, is the right line p = a.

6. Show that the pedal of the equilateral hyperbola pr = a~ is a Lemniscate.

7. Find the pedal of the circle r&amp;gt;
= 2ap. Ans. A Cardioid, r3 = 2ap\

191. Expression for PN. To find the value of the
intercept between the point of

contact P and the foot N of

the perpendicular from the

origin on the tangent at P.
&quot;Let v = ON. u&amp;gt;~L NOA,

Aw
; &KL

,
also SN =TS

SN ^o

Fig. 16.

limit, when PQ is
infinitely small, .

8^ becomes ^,
sinNON dw

and TS becomes PN or t :

,.&amp;lt;-*

Also OP* = ON2 + PN* ;

192. To prove thai

ds dt

(27)
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On reference to the last figure we have

ds ,PTTQ dt _. ,QN -PN
= limit of-

,
= limit of - -

;

dii) AOJ&amp;gt; w Aw

but PT+ TQ - QN + PN = TN - TN
;

, ds dt .. .TN-TN .. f
SN __

hence --- = limit of- = limit of- = ON=p ;

d(j) ao) Ao&amp;gt; Aw

ds dt

This result, which is due to Legendre, is of importance in

the Integral Calculus, in connexion with the rectification of

curves.

If ~ be substituted for t, the preceding formula becomes

j-~p^ (28)

This shape of the result is of use in connexion with curva

ture, as will be seen in a subsequent chapter.

193. Direction of formal in Vectorial Co-ordi
nates. In some cases the equation of a curve can be

expressed in terms of the distances from two or more fixed

points or foci. Such distances are called vectorial co-ordi

nates. For instance, if r^ rz denote the distances from two
fixed points, the equation n + rz

= const, represents an ellipse,

and r x
- rz

=
const., a hyperbola.

Again, the equation

PI + mr2
= const.

represents a curve called a Cartesian* oval.

Also, the equation
const.

represents an oval of Cassini, and so on.

The direction of the normal at any point of a curve, in

such cases, can be readily obtained by a geometrical con

struction.

* A discussion oi tne principal properties of Cartesian ovals will be found

in Chapter XX.
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For, let

F(r\ 9
r2)

= const.

be the equation of the curve, where

then we have F-*

Fig 17.

3~~ ~r ~, T =
-

ar\ as drz ds

Now, if PJbe the tangent at P, then, by Art. 1 80, we have

dr-L drz= cos
i//!,

= cos
i/ 2 ,

where fa
= L TPF19 i//3

= L TPF2 .

do u/S

-P- dF dF
Jtience cos \pi + cos

i/-2
= o. (29)

Again, from any point R on the normal draw RL and
RM respectively parallel to F2P and F^P, and we have

PL : LR = sin RPM : sin RPL = cos ^2 :
- cos ^

_^ p

dF

ct&amp;gt;\ dr^

Accordingly, if we measure on PF^ and PF2 lengths

PL and PJLT, which are in the proportion of - to -7, then
d&amp;gt;\ d)\

the diagonal of the parallelogram thus formed is the normal

required.
This result admits of the following generalization :

Let the equation of the curve* be represented by

^ r2 ,
r3 ,

. . . rn)
=

const.,

* The theorem given above is taken from Poinsot s Elements de Statique,
Neuvieme Edition, p. 435. The principle on which it was founded was, how
ever, given by Leibnitz (Journal de/&amp;gt;- Savans, 1693), and was deduced from
mechanical considerations. The term resultant is borrowed from Mechanics,
and is obtained by the same construction as that for the resultant of a number
of forces acting at the same

point,. Thus, to find the resultant of a number of
lines Pa, Pb, PC, Pd, . . . issuing from a point P, we draw through a a right
line aB, equal and parallel to Pb, and in the same direction ; through B, a right
line 0, equal and parallel to PC, and so on, whatever be the number of lines:

then the line PR, which closes the polygon, is the resultant in question.
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where rly r2 ,
. . . rn denote the distances from n fixed points.

To draw the normal at any point, we connect the point with

the n fixed points, and on the joining lines measure off

lengths proportional to

f, ... respectively;
d)\ drl efr, &amp;lt;&

then the direction of the normal is the resultant of the lines

thus determined.

For, as before, we have

i dFdr* dF drn___
_|_
_ _ + . . .

= o.
dr l ds dr-i ds drn ds

Hence ~ cos fr + cos ^ + . . . -=- cos &amp;lt;

= o. (30)
dri dr&amp;lt;2

drn

NOW, COS ^j, COS
l//2 ,

. . . COS l//w,

^n dn drn

are evidently proportional to the projections on the tangent

of the segments measured off in our construction. Moreover,

in any polygon, the projection of one side on any right line

is manifestly equal to the sum of the projections of all the

other sides on the same line, taken with their proper signs.

Consequently, from (30), the projection of the resultant on

the tangent is zero
; and, accordingly, the resultant is normal

to the curve, which establishes the theorem.

It can be shown without difficulty that the normal at any

point of a surface whose equation is given in terms of the

distances from fixed points can be determined by the same

construction.

EXAMPLES,

T. A Cartesian oval is the locus of a point, P, such that its distances, PM,
PM

,
from the circumferences of two given circles are to each other in a constant

ratio
; prove geometrically that the tangents to the oval at P, and to the circles

at M and Jf
,
meet in the same point.

2. The equation of an ellipse ol Cassini is r/ = ab, where r and / are the

distances of any point P on the curve, from two fixed points, A and B. If

be the middle point of AS, and PJVthe normal at P, prove that L APO= L BPN.

3. In the curve represented by the equation n3 + rg
3 = a3

, prove that the

normal divides the distance between the foci in the ratio of r% to n.
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194. In like manner, if the equation of a curve be given
in terms of the angles ft, ft, ... tin , which the vectors drawn
to fixed points make respectively with a fixed right line, the
direction of the tangent at any point is obtained by an analo

gous construction.

For, let the equation be represented by

F(019 ft, ... On)
= const.

Then, by differentiation, we have

dFdOn _
rfft ~ds

+
rfft ~fo

+
dSn ~ds

=

Hence, as before, from Art. 1 80, we get

i dF . i dF . i dF .

Accordingly, if we measure on the lines drawn to the fixed

points segments proportional to

\dF \dF i dF

and construct the resultant line as before, then this line will

be the tangent required. The proof is identical with that of

last Article.

195. Curves Symmetrical with respect to a Line,
and Centres of Curves. It may be observed here, that

if the equation of a curve be unaltered when y is changed
into -

y, then to every value of x correspond equal and oppo
site values of y\ and, when the co-ordinate axes are rect

angular, the curve is symmetrical with respect to the axis of x.

In like manner, a curve is symmetrical with respect to

the axis of y, if its equation remains unaltered when the sign
of x is changed.

Again, if, when we change x and y into x and -
y, re

spectively, the equation of a curve remains unaltered, then

every right line drawn through the origin and terminated by
the curve is divided into equal parts at the origin. This

takes place for a curve of an even degree when the sum of
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the indices of x and y in each term is even
;
and for a curve

of an odd degree when the like sum is odd. Such a point is

called the centre* of the curve. For instance, in conies, when
the equation is of the form

aa? + 2hxy + by*
=

c,

the origin is a centre. Also, if the equation of a cubicf be

reducible to the form

M3 + Wi = o,

the origin is a centre, and every line drawn through it is bi

sected at that point.
Thus we see that when a cubic has a centre, that point

lies on the curve. This property holds for all curves of an

odd degree.
It should be observed that curves of higher degrees than

the second cannot generally have a centre, for it is evidently

impossible by transformation of co-ordinates to eliminate the

requisite number of terms from the equation of the curve.

For instance, to seek whether a cubic has a centre, we substi

tute X + a for a?, and T + j3 lor y, in its equation, and equate
to zero the coefficients of Jf 2

,
XFand F2

,
as well as the abso

lute term, in the new equation : as we have but two arbitrary
constants (a and |3) to satisfy four equations, there will be

two equations of condition among its constants in order that

the cubic should have a centre. The number of conditions is

obviously greater for curves of higher degrees.

* For a general meaning of the word &quot;centre,&quot; as applied to curves of

higher degrees, see Chasles s Apercu Historique, p. 233, note.

t This name has been given to curves of the third degree by Dr. Salmon,
in his Higher Plane Curves, and has been generally adopted by subsequent
writers on the subject.
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EXAMPLES.

1. Find the lengths of the subtangent ana subnormal at any point of the
cur^e

vz
yn = afirigg, AnSt nx y_

f

nx

2. Find the subtangent to the curve

fix
x,,,yn

- 0m-H. Amt -- 1

in

3. Find the equation of the tangent to the curve

= v. 4*. - =3.

4. Show that the points of contact of tangents from a point (a, ft) to the
curve

are situated on the hyperbola (m + n}xy = nfrx + may.

5. In the same curve prove that the portion of the tangent intercepted be
tween the axes is divided at its point of contact into segments which are to each
other in a constant ratio.

6. Find the equation of the tangent at any point to the hypocycloid, x\ + y\
= at

;
and prove that the portion of the tangent intercepted between the axes is

of constant length.

7. In the curve xn + y
n = an

,
find the length of the perpendicular drawn

from the origin to the tangent at any point, and find also the intercept made by
the axes on the tangent.

a&quot; aZn
Am. p =

;
- -

; intercept

8. If the co-ordinates of every point on a curve satisfy the equations

x = c sin 20(i + cos 20), y = ccos 20 (i
- cos 20),

prove that the tangent at any point makes the angle 6 with the axis of a?.

9. The co-ordinates of any point in the cycloid satisfy the equations

x = a(Q -sind), y = a(i
- w&Q):

prove that the angle which the tangent at the point makes with the axis of y

, e
is -.

2
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*
He*

10. Prove that the locus of the foot of the perpendicular from the pole on
the tangent to an equiangular spiral is the same curve turned through an angle,

11. Prove that the reciprocal polar, with respect to the origin, of an equi

angular spiral is another spiral equal to the original one.

12. An equiangular spiral touches two given lines at two given points ; prove
that the locus of its pole is a circle.

13. Find the equation of the reciprocal polar of the curve

r* cos - =
J,

rt

with respect to a circle with radius a. Ans. The Cardioid r* = a* cos -.

14. Find the equation of the inverse of a conic, the focus being the pole of

inversion.

15. Apply Art. 184, to prove that the equation of the inverse of an ellipse
with respect to any origin is of the form

zap = OFi . pi + OF2 . pz,

where Fi and FZ are the foci, and p, pi, 02 represent the distances of any point
on the curve from the points 0, f\ and /2 , respectively ; f\ aud fz being the

points inverse to the foci, F\ and Fz.

1 6. The equation of a Cartesian oval is of the form

r + kr =
a,

where r and r are the distances of any point on the curve from two fixed points,
and a, k are constants. Prove that the equation of its inverse, with respect to

any origin, is of the form

api + &oz -f W 3 = o,

where pi, pz, pa are the distances of any point on the curve from three fixed

points, and a, /3, 7 are constants.

17. In general prove that the inverse of the curve

api + /3p2 -f ypa = o,

with respect to any origin, is another curve whose equation is of similar form.

1 8. If the radius vector, OP, drawn from the origin to any point Pon a
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curve be produced to PI, until PP\ be a constant length ; prove that the normal
at PI to the locus of PI, the normal at P to the original curve, and the perpen
dicular at the origin to the line OP, all pass through the same point.

This follows immediately from the value of the polar subnormal given in

Art. 182.

19. If a constant length measured from the curve be taken on the normals

along a given curve, prove that these lines are also normals to the new curve
which is the locus of their extremities.

x2
y~

20. In the ellipse -^ t ^ =
i, if x = a sin

&amp;lt;/&amp;gt;,

prove that

21. If d-s be the element of the arc of the inverse of an ellipse with respect
to its centre, prove that

, a * i # sin2
(b T

da = A --r-V1
d&amp;lt;t&amp;gt;&amp;gt;

where n

22. If be the angle which the normal at any point on the ellipse

\-
= i makes with the axis-major, prove that

23. Express the differential of an elliptic arc in terms of the semi-axis major,

H, of the confocal hyperbola which passes through the point.

24. In the curve r = am cos w0, prove that

&amp;gt;i-1

ds
= a sec m

dd

25. If F(x, y) o be the equation to any plane curve, and the angle be

tween the perpendicular from the origin on the tangent and the radius vector to

the point of contact, prove that

dF_ aF
V 7x~

X
~dy

dF
,

dF
X^ y

dy
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CHAPTEB XIII.

ASYMPTOTES.

196. Intersection of a Curve and a Right line.
Before entering on the subject of this chapter it will be ne
cessary to consider briefly the general question of the inter
section of a right line with a curve of the nth

degree.
Let the equation of the right line be y =

fix + v, and sub
stitute JJLX + v instead of y in the equation of the curve

;
then

the roots
^of

the resulting equation in x represent the abscissse
of the points of section of the line and curve.

Moreover, as this equation is always of the nth

degree, it

follows that every right line meets a curve of the nth
degree in n

points, real or imaginary, and cannot meet it in more.

^

If two roots in the resulting equation be equal, two of the

points of section become coincident, and the line becomes a
tangent to the curve.

Again, suppose the equation of the curve written in the
form of Art. 175, viz. :

then, since un is a homogeneous function of the nth
degree in

x and y, it can be written in the form flf/e (-]j similarly

&amp;gt;**

And accordingly, the equation of the curve may be written,

-
=

o&amp;lt;

Substituting ^ + - for - in this, it becomes
x x

&quot;
+

s)
+ *M/

t&quot;+;i*rv.i*i+r)
+ fc*B.
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Or, expanding by Taylor s Theorem,

+ &o. = o. (2)

The roots of this equation determine the points of section in

question.
&quot;We add a few obvious conclusions from the results arrived

at above :

i. Every right line must intersect a curve of an odd de

gree in at least one real point ;
for every equation of an odd

degree has one real root.

2. A tangent to a curve of the nth
degree cannot meet it

in more than n 2 points besides its points of contact.

3. Every tangent to a curve of an odd degree must meet

it in one other real point besides its point of contact.

4. Every tangent to a curve of the third degree meets

the curve in one other real point.

197. Definition of an Asymptote. An asymptote is

a tangent to a curve in the limiting position when its point

of contact is situated at an infinite distance.

1. No asymptote to a curve of the nth
degree can meet it

in more than n - 2 points distinct from that at infinity.

2. Each asymptote to a curve of the third degree inter

sects the curve in one point besides that at infinity.

198. Method of finding the Asymptotes to a Curve
of the nth Degree. If one of the points of section of the

line y =
/nx + v with the curve be at an infinite distance, one

root of equation (2) must be infinite, and accordingly we

have in that* case

Q. (3)

Again, if two of the roots be infinite, we have in addition

* This can be easily established by aid of the reciprocal equation ;
for if we

substitute - for x in equation (2), the resulting equation in a will have one root
z

zero wfien its absolute term vanishes, i.e., when/oO*) = o ; it has two roots

zero when we have in addition vfo (fjC) +/i(/0 = o
;
and so on.
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Accordingly, when the values of /u and v are determined

so as to satisfy the two preceding equations, the correspond

ing line

y =
JJLX + v

meets the curve in two points in infinity, and consequently is

an asymptote. (Salmon s Conic Sections, Art. 154.)

Hence, if ^ be a root of the equation/ (ju)
=

o, the line

is in general an asymptote to the curve.

If /i(ju)
= o and/ (ju)

= o have a common root (/ui suppose),
the corresponding asymptote in general passes through the

origin, and is represented by the equation

y =
pix.

In this case un and un^ evidently have a common factor.

The exceptional case when
/&amp;gt; (/*)

vanishes at the same
time will be considered in a subsequent Article.

To each root of / (/i)
= o corresponds an asymptote, and

accordingly,* every curve of the nth
degree has in general n

asymptotes, real w imaginary.
From the preceding it follows that every line parallel

to an asymptote meets the curve in one point at infinity.
This also is immediately apparent from the geometrical
property that a system of parallel lines may be considered
as meeting in the same point at infinity a principle intro

duced by Desargues in the beginning of the seventeenth

century, and which must be regarded as one of the first

important steps in the progress of modern geometry.
COR. No line parallel to an asymptote can meet a curve

of the nth
degree in more than (n

-
i) points besides that

at infinity.
Since every equation of an odd degree has one real

root, it follows that a curve of an odd degree has one real

*
Since/o(,u) is of the nth

degree in p., unless its highest coefficient vanishes,
in which case, as \ve shall see, there is an additional asymptote parallel to the axis
of y.

R 2
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asymptote, at least, and has accordingly an infinite branch

or branches. Hence, no curve of an odd degree can be a closed

curve.

For instance, no curve of the third degree can be a finite

or closed curve.

The equation fo(/u)
= o, when multiplied by #n

,
becomes

un = o
; consequently the n right lines, real or imaginary,

represented by this equation, are, in general, parallel to the

asymptotes of the curve under consideration.

In the preceding investigation we have not considered

the case in which a root of / (/u)
= o either vanishes or is

infinite; i.e.., where the asymptotes are parallel to either

co-ordinate axis. This case will be treated of separately in a

subsequent Article.

If all the roots of / (ju)
= o be imaginary the curve

has no real asymptote, and consists of one or more closed

branches.

EXAMPLES.

To find the asymptotes to the following curves :

I. y
3 = ax2 + x*.

Substituting fix + v for y, and equating to zero the coefficients of xz and x\

separately, in the resulting equation, we obtain

o and u2v = a ;

hence the curve has but one real asymptote, viz.,

a
y = x + -.

2 . y-*
Here the equations for determining the asvmptotes are

^-1=0, and 4/u?v + 20/* = o

accordingly, the two real asymptotes are

a a
v = x , and y + x + - = o.

2 2

5 = o.

x \ i

Ans. y + -+- =
o, y = x +-,
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199. Case in which un = o represents the n Asymp
totes. If the equation of the curve contain no terms of

the (n
-

i)
th

degree, that is, if it be of the form

C. . . . + MI + U = O,

the equations for determining the asymptotes become

/O (/M)
=

o, and Vf (p)
= o.

The latter equation gives v =
o, unless /O (M) vanishes along

with/ (jLt), i.e., unless/ (ju)
has equal roots.

Hence, in curves whose equations are of the above form,
the n right lines represented by the equation un = o are the

n asymptotes, unless two of these lines are coincident.

This exceptional case will be considered in Art. 203.
The simplest example of the preceding is that of the

hyperbola
ax* + 2hxy + by

z =
c,

in which the terms of the second degree represent the asymp
totes (Salmon s Conic Sections, Art. 195).

EXAMPLES.

Find the real asymptotes to the curves

1. xy* x*y = a?(x + y) + d3. Ans. x = o, y o, x y o.

2. y* y? = cPx. y x = o.

3. #4 - y4 = azzy + b2 y*. N x + y = o, x y = o.

200. Asymptotes parallel to the Co-ordinate
Axes. Suppose the equation of the curve arranged accord

ing to powers of x, thus

a $n + (a\y + b) x
n~l + &c. = o ;

then, if a = o and a^y + 6 =
0, or y - --

,
two of the roots

#1

of the equation in x become infinite
;
and consequently the

line aiy + b = o is an asymptote.
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In other words, whenever the highest power of x is

wanting in the equation of a curve, the coefficient of the

next highest power equated to zero represents an asymptote
parallel to the axis of x.

If tf =
o, and 5 =

o, the axis of x is itself an asymptote.
If xn and xn

~l be both wanting, the coefficient of xn
~2 re

presents a pair of asymptotes, real or imaginary, parallel to

the axis of x
;
and so on.

In like manner, the asymptotes parallel to the axis of y
can be determined.

EXAMPLES.

Find the real asymptotes in the following curves :

1 . y^x ay* = a3 + axz + b3 . Ans. x a, y = x + a, y + x + a = o.

2. y(#
2 - 3& + 2#2

)
= Xs - 3a;

2 + a3
, x = b, x ib, y + 30 = x + $b.

3. #2
y2 = 02 (#2 + y^ f X- + U, y = a.

4. xz
y* = a?(x*

-
y2). y + a = o, y - a = o.

5. y
2# - y*x = x3

. x a.

201. Parabolic Branches. Suppose the equation

/o(/i)
= o has equal roots, then/o ^) vanishes along with/ (^),

and the corresponding value of v found from (5) becomes in

finite, unless fi(fi) vanish at the same time.

Accordingly, the corresponding asymptote is, in general,
situated altogether at infinity.

The ordinary parabola, whose equation is of the form

(ax + j3?/)
2 = lx + my + n,

furnishes the simplest example of this case, having the

line at infinity for an asymptote. (Salmon s Conic Sections,

Art. 254.)
Branches of this latter class belonging to a curve are

called parabolic, while branches having a finite asymptote are

called hyperbolic.
202. From the preceding investigation it appears that

the asymptotes to a curve of the nth
degree depend, in

general, only on the terms of the nth and the (n
-

i}
th

degrees
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in its equation. Consequently, all curves which have the

same terms of the two highest degrees have generally the samt

asymptotes.
There are, however, exceptions to this rule, one of whicli

will be considered in the next Article.

203. Parallel Asymptotes. We shall now consider

the case where /o(ju)
- o has a pair of equal roots, each repre

sented by jui,
and where /i(jui)

=
o, at the same time.

In this case the coefficients of xn and xn
~l in (2) both

vanish independently of v, when ju
=

jiti ;
we accordingly

infer that all lines parallel to the line y = n& meet the curve

in two points at infinity, and consequently are, in a certain

sense, asymptotes. There are, however, two lines which are

more properly called by that name ; for, substituting ^ for ^
in (2), the two first terms vanish, as already stated, and the

coefficient of xn
~2 becomes

/.V) + tfW +/,&.).

Hence, if v\ and v2 be the roots of the quadratic

the lines y =
[i\x + v i9 and y = n& + v2,

are a pair of parallel asymptotes, meeting the curve in three

points at infinity.
If the roots of the quadratic be imaginary, the corre

sponding asymptotes are also imaginary.

Again, if the term un_i be wanting in the equation, and
if /o(//)

= o have equal roots, the corresponding asymptotes
are given by the quadratic

In order that these asymptotes should be real, it is

necessary that/2 (/ui)
and / &quot;(jui)

should have opposite signs.
There is no difficulty in extending the preceding investi

gation to the case where ./o(ju)
= o has three or more equal

roots.
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EXAMPLES.

! (% -I- y}* (*? + y
1 + xy] = V + a?(x - y).

Here fQ(p.)
=

(i + ^(i + p + ^), /iGu)
=

o,

.. /*!
= -!, /o&quot; (/AI)

=
2,

accordingly ^i = a, ^2 = -
,

and the corresponding asymptotes are

y + x a = o, and y + x + a = o.

The other asymptotes are evidently imaginary.

i. x 2
(x + y}* + 2atf~(x + y) + Zatxy + azy = o.

Here /(/*) = (i +/*), /ifc) = 2^(1 + /*), /2(/t)
= 8aV ,

.-. /xi
= -

i, / &quot;0*)
= 2, /! Gui)

= z, /2(/*0
= - 8 2

,

rtad the corresponding asymptotes are

y + x 20, = o, and y + # + 4 = o.

204. If the equation to a curve of the nth
degree be of

(.he form

(y + er# + /3)0i + 2
=

o,

where the highest terms containing x and y in fa are of the

degree n -
i, and those in 2 are of the degree w - 2 at most,

I/he line

/ + ax f ]3
= o

is an asymptote to the curve.

For, on substituting
- ax - j3 instead of y in the equation,

it is evident that the coefficients of xn and xn~^ both vanish
;

hence, by Art. 198, the line y + ax + )3
= o is an asymptote.

Conversely, it can be readily seen that if y + ax + )3 be an

asymptote to a curve of the nth
degree its equation admits of

being thrown into the preceding form.

In general, if the equation to a curve of the nth

degree
be of the form

(y + atf + j3,)G/ 4 a zx + /3 2)
. . . (// + anx + (3n ) + fa

=
O, (7)
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where 2 contains no term higher than the degree n -
2, the

lines

y + &amp;lt;M? + /3i
=

o, y + azx + /33
=

o, . . . y + an# + /3*
= o

are the n asymptotes of the curve.

This follows at once as in the case considered at the com
mencement of this Article.

For example, the asymptotes to the curve

xy (x + y +
i) (x + y + az)

+ b& + b^y
= o

are evidently the four lines

# =
o, y =

o, # + ?/ + #i =
o, x + y + 2

= o

If the curve be of the third degree, 2 is of the first, and

accordingly the equation of such a curve, having three real

asymptotes, may be written in the form

(y + a& + p 1)(y+a&+ |3 2)(y + a 3^ + |33)
+ to + my + n = o. (8)

Hence we infer that the three points in which the asymp
totes to a cubic meet the curve lie in the same right line, viz.,

Ix + my + n = o.

The student will find a short discussion of a cubic with

three real asymptotes in Chapter xvm.
205. To prove that, in general, the distance of a point

in any branch of a curve from the corresponding asymptote
diminishes indefinitely as its distance from the origin increases

indefinitely.

If y + ax + j3
= o be the equation of an asymptote, then,

as in the preceding Article, the equation of the curve may be

written in the form

(y + ax + j3) ^i
=

02,

where
&amp;lt;/&amp;gt;

2 is at least one degree lower than fa in x and y.
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Hence y + ax + /3
= -

,

0i

and the perpendicular distance of any point (XQ, y ) on thr
curve from the line y + ax + ft

= o is

^VI + a y! + a

where the suffix denotes that # and yQ are substituted for a
and y in the functions fa and 2 .

Now, when XQ and y are taken infinitely great, the value
of the preceding fraction depends, in general, on the terms
of the highest degree (in x and y) in fa and fa ; and since the

degree of fa is one lower than that of fa, it can be easily

seen by the method of Ex. 7, Art. 89, that the fraction ^
01

becomes, in general, infinitely small when x and y become

infinitely great. Hence, the distance of the line y + ax + ]3
from the curve becomes infinitely small at the same time.

It is not considered necessary to go more fully into this

discussion here.

The subject of parabolic and other curvilinear asymptotes
is omitted as being unsuited to an elementary treatise.

Moreover, their discussion, unless in some elementary cases,
is both indefinite and unsatisfactory, since it can be easily
seen that if a curve has parabolic branches, the number of its

parabolic asymptotes is generally infinite. The reader who
desires full information on this point, as well as the discussion

of the particular parabolas called osculating, is referred to a

paper by M. Pliicker, in Liouville s Journal, vol. i., p. 229.
206. Asymptotes in Polar Co-ordinates. If a

curve be referred to polar co-ordinates, the directions of its

points at an infinite distance from the origin can be in gene
ral determined by making r =

oo, or u =
o, in its equation,

and solving the resulting equation in 9. The position of the

asymptote corresponding to any such value of is obtained

by finding the length of the corresponding polar subtangent,

i.e., by finding the value of corresponding to u = o.
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7/1

It should be observed that when is positive, the asymp

tote lies above the corresponding radius vector, and when

negative, below it ; as is easily seen from Art. 182.

If we suppose the equation of the curve, when arranged

in powers of r, to be

the transformed equation in u is

/o(0)
= o : (9)

consequently, the directions of the asymptotes are given by
the equation

/o(0) =o. (10)

Again, if we differentiate (9) with respect to 9, it is easily

seen that the values of
-^ corresponding to u = o are given

by the equation

/.Wjgj
+/. () -0 (II)

provided that none of the functions

become infinite for the values of 9 which satisfy equation (10).

Consequently, if a be a root of the equation/ (0)
=

o, the

curve has an asymptote making the angle a with the prime

vector, and whose perpendicular distance from the origin is

represented by -
p-r-r.

It is readily seen that the equation of the corresponding

asymptote is

r sin(a
-

6)
-- = o.

This method will be best explained by applying it to one

or two elementary Examples.
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EXAMPLES.

I. Let the curve be represented by the equation

r = a sec 6 + b tan 0.

Here = COS *
.

a + b sin0

When 6 = -, we have u = o, and =
~

2 rf0 a + b

Accordingly, the corresponding polar subtangent is a + b, and hence the line
perpendicular to the prime vector at the distance a + b from the origin is an
asymptote to the curve.

Again, u vanishes also when $ =
,
and the corresponding value of the

polar subtangent is a - b
;
thus giving another asymptote.

Here

r = a sec tn8 + b tan me.

cos tnd
u =

a + b sin mQ

When e =
, we have u = o, and =

,
2 dQ a + V

whence we get one asymptote.

Again, when 6 = ^, =
o, and- =

,2w rf* _ tf

which gives a second asymptote.

On making 6 =
-^,

we get a third asymptote, and so on.

It may be remarked, that the first, third, . . . asymptotes all touch one
fixed circle; and the second, fourth, &c., touch another.

3. Find the equations to the two real asymptotes to the curve

rZsin (e
-

o) + ar sin (Q
-

20) + a2 = o.

Ans. r sin (6
-

a)
= + a sin a.

207. Asymptotic Circles. In some curves referred to

polar co-ordinates^
when 6 is infinitely great the value of r

tends to a fixed limiting value, and accordingly the curve
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approaches more and more nearly to the circular form at the

same time : in such a case the curve is said to have a circular

asymptote.
For example, in the curve

aO
&quot;

so long as is positive r is less than a, a being supposed
positive; but as 6 increases with each revolution, r con

tinually increases, and tends, after a large number of revo

lutions, to the limit a
;
hence the circle described with the

origin as centre, and radius 0, is asymptotic to the curve,
which always lies inside the circle for positive values of 0.

Again, if we assign negative values to 9, similar remarks are

applicable, and it is easily seen that the same circle is asymp
totic to the corresponding branch of the curve

;
with this

difference, that the asymptotic circle lies uithin the curve in

the latter case, but outside it in the former. The student
will find no difficulty in applying this method to other

curves, such as

aO a62

_
a (9 + cos 0)

T ~
+ sin 8

f
r ~

& + a
2

r ~
~~0 + sin &amp;lt;T
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EXAMPLES.

Find the equations of the real asymptotes to the following curves :

1. y(a
i -

x&quot;

2
)
= b*(2x 4 e). Ans. y = o, x + a = o, x - a = o.

2. #4 -
y?yi + (fix* + j&amp;gt;*

= o. x 4 y -
o, x y -

o, x o.

3. *4 -a;3
y
2 4z2 4 */

2 -2 = o. #-1=0, *4i = o, x-y =

4. (rt + z)
2

(

2 -a;2
)
= a;V. * = o.

5. (a 4 xf(b~ + x*)
= xzy

z
. x = o,y = x + a,y + x + a

6. xz
y - 2x*y* 4 xy* = a^x2 + Py*. x = o, y=o, x-y = */ a* 4 P.

7. a;
3 - 4#y2 - 3^

2 4 iixy -
i2y* 4 8^; 4 iy + 4 = o.

Ans. x 4 3 = o, x ly = o, x 4 2y = 6

8. #2
y
2 - #(# 4 y)

3 2a2y
2 a* = o. # la = o, a; 4- a o.

9. If the equation to a curve of the third degree be of the form

s + u\ + UQ = O,

the lines represented by MS = o are its asymptotes.

ro. If the asymptotes of a cubic be denoted by a = o, )8
= o, 7 =

0, the

equation of the curve may be written in the form

oy = Aa f -P/3 4 Oy.

i r . In the logarithmic curve

prove that the negative side of the axis of x is an asymptote.

12. Find the asymptotes to the curve

r cos nQ = a.

13. Find the asymptotes to

r cos m6 = a cos n9.

14. Show that the curve represented by

x3 4 aby axy = o

has a parabolic asymptote, x* 4 bx 4 bz = ay.
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15. Find the circular asymptote to the curve

aQ + b

6 + a

1 6. Find the condition that the three asymptotes of a cubic should pasa

through a common point.

Let the equation of the curve he written in the form

o + 3^&amp;gt;# + 3% + 3 co
2

then the condition is

o.

This result can he easily arrived at by substituting x + a and y + ft instead

of x and y in the equation of the cubic, and finding the condition that the part
of the second degree in the resulting equation should vanish. See Art. 204.

17. &quot;When the preceding condition is satisfied show that the co-ordinates,
o and ft, of the point of intersection of the three asymptotes, are given by the

equations

^ c\d\ cod-} Codi c\do~ =

1 8. If from any point, 0, a right line be drawn meeting a curve of the nth

degree in J?i, .Z?2 ,
. . . lln ,

and its asymptotes in n, 7-2, . . . rn , prove that

ORi + ORz + . . . ORn = On + Orz + . . . Orn .

N.B. The terms of the nth and (n i)
th

degrees are the same for a curve
and its asymptotes.

19. If a right line be drawn through the point (a, o) parallel to the asymptote
of the cubic (x

-
a}

3
x&quot;~y

= o, prove that the portion of the line intercepted by
the axes is bisected by the curve.

20. If from the origin a right line be drawn parallel to any of the asymptotes
of the cubic

y(ax
z + ihxij + by

9 + igx + ify + c)
- x3 = o,

show that the portion of this line intercepted between the origin and the line

gx +fy + c = o is bisected by the curve.

21. If tangents be drawn to the curve x3 + y^ = a3 from any point on the
line y x, prove that their points of contact lie on a circle.

22. Show that the asymptotes to the cubic

ax*y + bxy* + a x2
-f Vy* + a x + V y = o

are always real, and find their equations.

Ans. bx + V =
o, ay + a = o,

ab(ax +
by&quot;)

cfib - a b2 = o.



CHAPTEE XIY.

MULTIPLE POINTS ON CURVES.

208. In the following elementary discussion of multiple
points of curves the method given by Dr. Salmon in his

Higher Plane Curves has been followed, as being the simplest,
and at the same time the most comprehensive method for

their investigation. The discussion here is to be regarded as

merely introductory to the more general investigation in that

treatise, to which the student is referred for fuller information
on this as well as on the entire theory of curves.

We commence with the general equation of a curve of the
nth

degree, which we shall write in the form

+ by

&0. + &0.

&o. + lny
n = o,

where the terms are arranged according to their degrees in

ascending order.

&quot;When written in the abbreviated form of Art. 175, the

preceding equation becomes

O.

We commence with the equation in its expanded shape,
and suppose the axes rectangular. Transforming to polar
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co-ordinates, by substituting r cos and r sin instead of

x and y, we get
#o + (b cos 9 + bi sin 9) r

+ (cQ cos
2 + GI cos 9 sin + &amp;lt;?2 sin

2

0) r2 + . . .

+ (1 cosn + /! cos&quot;
1 sin + . . . + ln sin

n
O) r

n = o. (i)

If be considered a constant, the n roots of this equation
in r represent the distances from the origin of the n points
of intersection of the radius vector with the curve.

If a =
o, one of these roots is zero for all values of 9

;
as

is also evident since the origin lies on the curve in this case.

A second root will vanish, if, besides a =
o, we have

bQ cos 6 + bi sin 6 = o. The radius vector in this case meets
the curve in two consecutive points* at the origin, and is

consequently the tangent at that point.
The direction of this tangent is determined by the

equation
b&amp;lt;&amp;gt;

cos 9 + bi sin = o
;

accordingly, the equation of the tangent at the origin is

b&amp;lt;& + biy
= o.

Hence we conclude that if the absolute term be wanting
in the equation of a curve, it passes through the origin, and
the linear part (ui) in its equation represents the tangent at

that point.
If b =

o, the axis of a? is a tangent ; if bi =
o, the axis

of y is a tangent.
The preceding, as also the subsequent discussion, equally

applies to oblique as to rectangular axes, provided we sub
stitute mr and nr for x and y ; where

sin
(itt

-
0) sin 9m = ^ - andn=- ;

sin to sin to

w being the angle between the axes of co-ordinates.
From the preceding, we infer at once that the equation of

the tangent at the origin to the curve

a? (or + y*)
= a(x- y)

* Two points which are infinitely close to each other on the same branch of
a curve are said to be consecutive points on the curve.
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is x -
y =

o, a line bisecting the internal angle between the
co-ordinate axes. In like manner, the tangent at the origin
can in all cases be immediately determined.

209. Equation of Tangent at any Point. By aid
of the preceding method the equation of the tangent at any
point on a curve whose equation is algebraic and rational

can be at once found. For, transferring the origin to that

point, the linear part of the resulting equation represents the

tangent in question.

Thus, if /(#, y)
= o be the equation of the curve, we sub

stitute X + x-i for x, and Y + y l for y, where (#1, y^) is a

point on the curve, and the equation becomes

o.

Hence the equation of the tangent referred to the new axes is

On substituting x -
a?i, and y

- y^ instead of X and F, we
obtain the equation of the tangent referred to the original

axes, viz.

/ N Mf\ , X fdf\
fr-^(*),

+ fr
-*&amp;gt;(*),-*

This agrees with the result arrived at in Art. 169.
2 1 o. Double Points. If in the general equation of a

curve we have aQ
=

o, b =
o, bi = o, the coefficient of r is

zero for all values of 0, and it follows that all lines drawn

through the origin meet the curve in two points, coincident

with the origin.
The origin in this case is called a double point.

Moreover, if 6 be such as to satisfy the equation

c cos
2 + Cicos 8 sin 9 + c8 sin*0 =

o, (2)

the coefficient of r2
will also disappear, and three roots of

equation (i) will vanish.

As there are two values of tan 9 satisfying equation (2), it

follows that through a double point two lines can be drawn,
each meeting the curve in three coincident points.
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The equation (2), when multiplied by r2
, becomes

C
Q X* + c&y + wf = o.

Hence we infer that the lines represented by this equa
tion connect the double point with consecutive points on the

curve, and are, consequently, tangents to the two branches of
the curve passing through the double point.

Accordingly, when the lowest terms in the equation of a
curve are of the second degree (w3), the origin is a double

point, and the equation u2
= o represents the pair of tangents at

that point.
For example, let us consider the Lemniscate, whose equa

tion is

On transforming to polar co-ordinates its equation becomes
r4 = V (cos

2 - sin
2

0), or, r2 = a3
cos 20.

Now, when =
o, r = a

;

and, if we confine our atten

tion to the positive values of

r, we see that as increases

from o to -, r diminishes
4

from a to zero. When &amp;gt;

-
4

and &amp;lt;

,
r is imaginary, &c., Fig. 18.

and it is evident that the figure of the curve is as annexed,
having two branches intersecting at the origin, and that the

tangents at that point bisect the angles between the axes.
The equations of these tangents are

x + y =
o, and x - y =

o,

results which agree with the preceding theory.
211. Nodes, Cusps, and Conjugate Points.* The

pair of lines represented by u2
= o will be real and distinct,

coincident, or imaginary, according as the roots of equa
tion (2) are real and unequal, real and equal, or imaginary.

* These have been respectively styled crunodes, spinodes, and acnodes, by
Professor Cayley. Sec Salmon s Higher Plane Curves, Art. 38.

S 2
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Hence we conclude that there may be one of three kinds

of singular point on a curve so far as the vanishing of UQ and u^

is concerned.

(
i
)

. For real and unequal roots, the

tangents at the double point are real

and distinct, and the point is called a

node; arising from the intersection of

two real branches of the curve, as in

the annexed figure.

(2). If the roots be equal, i.e. if uz
Fig&amp;gt;

be a perfect square, the tangents coin

cide, and the point is called a cusp : the

two branches of the curve touching each
m

other at the point, as in figure 20.

(3). If the roots of wa be imaginary,
the tangents are imaginary, and the

double point is called a conjugate or

isolatedpoint ; the co-ordinates of the point satisfy the equation
of the curve, but the curve has no real points consecutive to

this point, which lies altogether outside the curve itself.

It should be observed also that in some cases of singularities

of a higher order, the origin is a conjugate point even when w 2

is a perfect square, as will be more fully explained in a sub

sequent chapter.
We add a few elementary examples of these different

classes for illustration.

EXAMPLES.

1. jr
8

(

Here the origin is a node, the tangents bisecting the angles between the axes of

co-ordinates.

2. ay
2 = *3

-

In this case the origin is a cusp. Again, solving for y we get

Hence, if a be positive, y becomes imaginary for negative values of x
; and,

accordingly, no portion of the curve extends to the negative side of the axis of #.

Moreover, for positive values of x, the corresponding values of y have opposite

signs. This curve is called the semi-cubical parabola. The form of the curve

near the origin is exhibited in Fig. 20.
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y&amp;gt;

= (* + a).

Ans. The origin is a cusp.

a;3.

Ans. The origin is a conjugate point.

y* = o.

Ans. The two branches at the origin touch the co-ordinate axes.

212. Double Points in General. In order to seek

the double points on any algebraic curve, we transform the

origin to a point (x\ 9 y\] on the curve
; then, if we can deter

mine values of x^ y^ for which the linear part disappears from
the resulting equation, the new origin (x^ yi) is a double point
on the curve.

From Art. 209 it is evident that the preceding conditions

give

df\ _ fdf\
-f

=
o, and l-f }= o ;

dx), \dyji

moreover, since the point (a?i, ^) is situated on the curve,
we must have

As we have but two variables, #1, yl9 in order that they
should satisfy these three equations simultaneously, a con
dition must evidently exist between the constants in the

equation of the curve, viz., the condition arising from the

elimination of #1, y^ between the three preceding equations.

Again, when the curve has a double point (^, y,), if the

origin be transferred to it, the part of the second degree in

the resulting equation is evidently

Accordingly, the lines represented by this quadratic are

the tangents at the double point.
The point consequently is a node, a cusp, or a conjugate

point, according as
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It may be remarked here that no cubic can have more
than one double point ;

for if it have two, the line joining
them must be regarded as cutting the curve in four points,
which is impossible.

Again, every line passing through a double point on a cubic

must meet the curve in one, and but one, other point ;
ex

cept the line be a tangent to either branch of the cubic at

the double point, in which case it cannot meet the curve else

where; the points of section being two consecutive on one

branch, and one on the other branch.

In many cases the existence of double points can be seen

immediately from the equation of the curve. The following
are some easy instances :

EXAMPLES.

To find the position and nature of the double points in the following

curves :

i. (bx
-

cy)
z = (x- a)

5
.

ab
The point x = a, y =

,
is evidently a cusp,

at which bx cy = o is the tangent, as in the

accompanying figure

The point x = a, y = e, is a cusp if a &amp;gt; b, or

if a = b ; but is a conjugate point if a &amp;lt; b.
N

Fig. 21,

The point y = o, # = - # is a conjugate point.

4. x* + yi = *

The points x o, y = a
;
and y = o, x = a, are easily seen to be cusps.

213. Parabolas of the Third Degree. The follow

ing example* will assist the student towards seeing the dis

tinction, as well as the connexion, between the different kinds

of double points.

Let f=(z- a) 0*
-

ft) (a
-

e)

be the equation of a curve, where a &amp;lt; b &amp;lt; c.

Lacroix, Gal. Dif., pp. 395-7. Salmon s Higher Plane Curves, Art. 39.
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Here y vanishes when x =
a, or x =

&amp;gt;,

or x = c
; accordingly,

if distances OA =
a, OB =

b, 00 =
c, be taken on the axis of

x
9
the curve passes through the points A, B, and C.

Moreover, when x &amp;lt; a, y^ is negative, and therefore

y is imaginary.

n x &amp;gt; a, and &amp;lt; 6, ?/

2
is positive, and therefore

y is real.

x &amp;gt; #, and &amp;lt; c, y
2
is negative, and therefore

y is imaginary.
x &amp;gt; c, y~ is positive, and therefore

y is real
;
and

increases indefinitely along with x.

Hence, since the curve is sym
metrical with respect to the axis of

x, it evidently consists of an oval

lying between A and -5, and an

infinite branch passing through
(7, as in the annexed figure. It

is easily shown that the oval is

not symmetrical with respect to

the perpendicular to AS at its

middle point. Again, if b =
c, the

equation becomes

jf-( -)&amp;lt;*-$). Fig. 22.

In this case the point B co

incides with 0, the oval has

joined the infinite branch, and
B has become a double point,
as in the annexed figure.

On the other hand, let b

Fig. 23.

0, and the equation becomes

y*
= (x- a}*(x-c);

in this case the oval has shrunk

into the point A, and the curve

is of the annexed form, having
A for a conjugate point.

Next, let a = b =
c, and the

equation becomes

t/ \ /
*

Fig. 24-
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here the points A, B, C, have
come together, and the curve

has a cusp at the point A, as in
*

~J~
the annexed figure. X

The curves considered in

this Article are called parabolas Fig. 25.

of the third degree.
As an additional example, we shall investigate the fol

lowing problem :

214. Given the three asymptotes of a cubic, to find its equa

tion, if it have a double point.

Taking two of its asymptotes as axes of co-ordinates, and

supposing the equation of the third to be ax + ~by + c =
o, the

equation of the cubic, by Art. 204, is of the form

xy (ax + by + c)
= Ix + my + n.

Again, the co-ordinates of the double point must satisfy

the equations
du du

& =
sr

or (2ax + by + c) y =
/, (ax + 2by + c} x = m

;

from which / and m can be determined when the co-ordinates

of the double point are given.
To find n, we multiply the former equation by #, and the

latter by y, and subtract the sum from three times the equa
tion of the curve, and thus we get

cxy = 2lx + 2my + $n ;

from which n can be found.

In the particular case where the double point is a cusp,*
its co-ordinates must satisfy the additional condition

dzu d*u ( cP

dx*dtf \dxdy

or (2ax + 2by +
c)

2 =

and consequently the cusp must lie on the conic represented

by this equation.

* It is essential to notice that the existence of a cusp involves one more

relation among the coefficients of the equation of a curve than in the case of an

ordinary double point or node.
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It can be easily seen that this conic* touches at their

middle points the sides of the triangle formed by the asymp-

totes

The preceding theorem is due to Pliicker,f and is stated

by him as follows :

&quot; The locus of the cusps of a system of curves of
the^

third

degree, which have three given lines for asymptotes, is the

maximum ellipse inscribed in the triangle formed by the

given asymptotes.&quot;

It can be easily seen that the double point is a node or a

conjugate point, according as it lies outside or inside the

above-mentioned ellipse.

215. Multiple Points of Higher Curves. By follow

ing out the method of Art. 208, the conditions for the existence

of multiple points of higher orders can be readily determined.

Thus, if the lowest terms in the equation of a curve be of

the third degree, the origin is a triple point, and the tangents

to the three branches of the curve at the origin are given by
the equation u3

= o.

The different kinds of triple points are distinguished,

according as the lines represented by u3
=

p
are real and

distinct, coincident, or one real and two imaginary.
In general, if the lowest terms in the equation of a curve

be of the mth
degree, the origin is a multiple point of the mth

order, &c.

Again, a point is a triple point on a curve provided that

when the origin is transferred to it the terms below the third

degree disappear from the equation. The co-ordinates of a

triple point consequently must satisfy the equations

du du d*u d?u (Pu

Hence in general, for the existence of a triple point on a

curve, its coefficients must satisfy four conditions.

The complete investigation of multiple points is effected

* From the form of the equation we see that the lines x =
o, y = o are

tangents to the conic, and that 2ax + 2b?j + c = o represents the line joining the

points of contact ;
but this line is parallel to the third asymptote ax + by + c = o,

and evidently passes through the middle points of the intercepts made by this

asymptote on the two others.

f Lion-vine s Journal, vol. ii. p. 14.
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more satisfactorily by introducing the method of trilinear co

ordinates. The discussion of curves from this point of view is

beyond the limits proposed in this elementary Treatise.

215 (a). Cusps, in General. Thus far singular points
have been considered with reference to the cases in which

they occur most simply. In proceeding to curves of higher

degrees they may admit of many complications ;
for instance

ordinary cusps, such as represented in Fig. 20, may be called

cusps of the first species, the tangent
lying between both branches : the cases in

which both branches lie on the same side, S
as exhibited in the accompanying figure, m _^^^^
may be called cusps of the second species. Fi 26
Professor Cayley has shown how this is

to be considered as consisting of several singularities happen
ing at a point (Salmon s Higher Plane Curves, Art. 58).

Again, both of these classes may be called single cusps,
as distinguished from double cusps extending on both sides of

the point of contact. Double cusps are styled tacnodes by
Professor Cayley. These points are sometimes called points

of osculation ; however, as the two branches do not in general
osculate each other, this nomenclature is objectionable. It

should be observed that whenever we use the word cusp with

out limitation, we refer to the ordinary cusp of the first species.

Cusps are called points de rebrousscment by French writers,

and Ruckkehrpunkte by Germans, both expressing the turning
backwards of the point which is supposed to trace out the

curve; an idea which has its English equivalent in their

name of stationarypoints. A fuller discussion of the different

classes of cusps will be given in a subsequent place. We
shall conclude this chapter with a few remarks on the multiple

points of curves whose equations are given in polar co-ordi

nates.

EXAMPLES.

1. (y
- x*y = X*.

Here the origin is a cusp ;
also

y = x* x%
;

hence, when # is less than unity, both values of y are positive, and consequently
the cusp is of the second species.

2. Show that the origin is a double cusp in the curve
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216. Multiple Points of Curves in Polar Co-ordi

nates. If a curve referred to polar co-ordinates pass through
the origin, it is evident that the direction of the tangent at

that point is found by making r = o in its equation ;
in this

case, if the equation of the curve reduce to /(0) =
o, the

resulting value of 9 gives the direction of the tangent in

question.
If the equation f(9)

= o has two real roots in 9, less than IT,

the origin is a double point, the tangents being determined

by these values of 9.

If these values of 9 were equal, the origin would be a cusp ;

and so on.

In fact, it will be observed that the multiple points on

algebraic curves have been discussed by reducing them to

polar equations, so that the theory already given must apply
to curves referred to polar, as well as to algebraic co-ordi

nates.

It may be remarked, however, that the order of a multiple

point cannot, generally, be determined unless with reference

to Cartesian co-ordinates, in like manner as the degree of a

curve in general is determined only by a similar reference.

For example, in the equation

r = a cos
2 - b sin

2

0,

the tangents at the origin are determined by the equation

tan 9 =
Jp and the origin would seem to be only a double

point ; however, on transforming the equation to rectangular

axes, it becomes

p + tf -.(*- OT;
from which it appears that the origin is a multiple point of the

fourth order, and the curve of the sixth degree. In fact,

what is meant by the degree of a curve, or the multiplicity of

a point, is the number of intersections of the curve with any
right line, or the number of intersections which coincide for

every line through such a point, and neither of these are at

once evident unless the equation be expressed by line co-ordi

nates, such as Cartesian, or trilinear co-ordinates; whereas

in polar co-ordinates one of the variables is a circular co

ordinate.
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EXAMPLES.

1. Determine the tangents at the origin to the curve

2. Show that the curve

touches the axes of co-ordinates at the origin.

3. Find the nature of the origin on the curve

4. Show that the origin is a conjugate point on the curve

ay* o? + bxz = o

when a and b have the same sign ;
and a node, when they have opposite signs.

5. Show that the origin is a conjugate point on the curve

6. Prove that the origin is a cusp on the curve

(&amp;lt;/

- x^ = x\

7. In the curve

(y
-

x*)*
= z,

show that the origin is a cusp of the first or second species, according as n is

&amp;lt;
or &amp;gt; 4.

8. Find the numher and the nature of the singular points on the curve

9. Show that the points of intersection of the curve

v\l

with the axes are cusps.

10. Find the double points on the curve
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11. Prove that the four tangents from the origin to the curve

i + a + 3 = o

are represented by the equation 4^1 s = u\.

12. Show that to a double point on any curve corresponds another double

point, of the same kind, on the inverse curve with respect to any origin.

13. Prove that the origin in the curve

x4 - lax 1
}} axy* + cfiy*

= o

is a cusp of the second species.

14. Show that the cardioid

r = a(i 4- cos0)

has a cusp at the origin.

15. If the origin be situated on a curve, prove that its first pedal passes

tbrough the origin, and has a cusp at that point.

16. Find the nature of the origin in the following curves:

a02

r3 = a3 sin 36, rn = a&quot; sin w0, r = - .

Do + C

17. Show that the origin is a conjugate point on the curve

#* - az~y + axif
1 + fl

2
y
2 = o.

1 8. If the inverse of a conic be taken, show that the origin is a double point

on the inverse curve; also that the point is a conjugate point for an ellipse, a

cusp for a parabola, and a node for a hyperbola.

19. Show that the condition that the cubic

xy* -f #3 + Ix2- + ex + d + 2ey o

may have a double point is the same as the condition that the equation

3
4- ex2 + dx - e* = o

may have equal roots.

20. In the inverse of a curve of the nth
degree, show that the origin is a

multiple point of the nth
order, and that the n tangents at that point are parallel

to the asymptotes to the original curve.



CHAPTER XY,

ENVELOPES.

217. Method of Envelopes. If we suppose a series of
different values given to a in the equation

f(x, y, a)
=

o, (i)

the for each value we get a distinct curve, and the ahove

equation may be regarded as representing an indefinite

number of curves, each of which is determined when the

corresponding value of a is known, and varies as a varies.

The quantity a is called a variable parameter, and the

equation /(#, y, a)
= o is said to represent & family of curves;

a single determinate curve corresponding to each distinct

value of a ; provided a enters into the equation in a rational

form only.
If now we regard a as varying continuously, and suppose

the two curves

f(x, y, a)
=

O, /(a, y, a + Aa) = O

taken, then the co-ordinates of their points of intersection

satisfy each of these equations, and therefore also satisfy the

equation

f(x, y,a + Aa) -/(a?, y, a) = Q
Aa

Now, in the limit, when Aa is infinitely small, the latter

equation becomes

and accordingly the points oi intersection of two infinitely
near curves of the system satisfy each of the equations (i)
and (2).
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The locus of the points of ultimate intersection for the

entire system of curves represented by /(#, ^, a)
=

o, is ob
tained by eliminating a between the equations (i) and (2).
This locus is called the envelope of the system, and it can be

easily seen that it is touched by every curve of the system.
For, if we consider three consecutive curves, and suppose

PI to be the point of intersection of the first and second, and
P2 that of the second and third, the line Pl P2 joins two infi

nitely near points on the envelope as well as on the inter

mediate of the three curves
;
and hence is a tangent to each

of these curves.

This result appears also from analytical considerations,
thus : the direction of the tangent at the point #, y, to the

curve /(#, y, a)
=

o, is given by the equation

df dfdy
T- + T-T^ =

5
ax ay ax

in which a is considered a constant.

Again, if the point #, y be on the envelope, since then a

is given in terms of x and y by equation (2), the direction of

the tangent to the envelope is given by the equation

df df dy df (da da dy\ _
dx dy dx da. \dx dy dx)

df ^or + -7-
= o,

dx dy dx

since = o for the point on the envelope.da

Consequently, the values of are the same for the two
OvijC

curves at their common point, and hence they have a common
i i . . * i TAX *

tangent at that point.
One or two elementary examples will help to illustrate

this theory.
The equation x cos a + y sin a =

/&amp;gt;,

in which a is a variable

parameter, represents a system of lines situated at the same
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perpendicular distance p from the origin, and consequently
all touching a circle.

This result also follows from the preceding theory ; for

we have

/(#&amp;gt; Vy )
= x cos a + y sin a - p =

O,

df (x, y, a)--=
-- = - x sm a + y cos a =

O,
da

and, on eliminating a between these equations, we get

tf + y*
= p

z
,

which agrees with the result stated above.

Again, to find the envelope of the line

m
y = ax + ,

a

where a is a variable parameter.

Here /(#, y, a)
= y - ax -- =

o,
a

df(x, y, a) m
[m--- = _ # + = o

j
.. a =

/
.

da a- \ x

Substituting this value for a, we get for the envelope

which represents a parabola.
218. Envelope of Laz + 2Ma + N= o. Suppose Z, M, N,

to be known functions of x and y, and a a parameter, then

/(#, y, a)
= Laz + 2Ma + N= O,

df
7-

= 2ia + 2M = O;
aa

accordingly, the envelope of the curve represented by the

preceding expression is the curve

LN = M\
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Hence, when Z, M9
N are linear functions in x and y,

this envelope is a conic touching the lines Z, N9 and havingM for the chord of contact.

Conversely, the equation to any tangent to the conic
LN * M z can be written in the form

where a is an arbitrary parameter.
219. Undetermined Multipliers applied to Enve

lopes. In many cases of envelopes the equation of the

moving curve is given in the form

f(x,y, a, |3) =&amp;lt;?

(3 )

where the parameters a, (3 are connected by an equation of

(a, /3)
= *. (4)

In this
case^we may regard j3 in (3) as a function of a by

reason of equation (4) ; hence, differentiating both equations,
the points of intersection of two consecutive curves must
satisfy the two following equations :

df df 43 . fa
d&amp;lt;j&amp;gt;

d3
~T + ~JB 7

=
&amp;gt;

aD(^- -r + ~r\ -r- - O.
da df3 da da

ttfi da

d
JL V

Consequently ~ = -~-

If each of these fractions be equated to the undetermined
quantity X, we get

da

* Salmon s Conies, Art. 270.

T
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and the required envelope is obtained by eliminating a, f3,
and

X between these and the two given equations.

The advantage of this method is especially found when

the given equations are homogeneous functions in a and /3 ;

for suppose them to be of the forms

/(a?, y, o, j3)
= cl9 (a, 0) = C2 ,

where the former is homogeneous of the nth
degree, and the

latter of the mth
,
in a and |3. Multiply the former equation

in (5) by a, and the latter by j3, and add ; then, by Euler s

theorem of Art. 102, we shall have

nd. = mc2\, or X =
-, (6)

by means of which value we can generally eliminate a and /3

from our equations.

EXAMPLES.

i. To find the envelope of a line of given length (a) whose extremities move

along two fixed rectangular axes.

Taking the given lines for axes of co-ordinates, we have the equations

/3

x
Hence -. = A

I

from which we get A. = ;

and the required locus is represented by

(jit^sT)
2. To find the envelope of a system of concentric and coaxal ellipses of con.

slant area.

Here ^ + ^r= r
&amp;gt;

# = e
&quot;

hence - A3, = *a
;

.-. 2\c=i

and the required envelope is the equilateral hyperbola

2xy = c.
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3. To find the envelope of all the normals to an ellipse.

Here we have the equations

where a and ft are the co-ordinates of any point on the ellipse.

TT a2x a bzy ft

Hence, _ = A -, = - A -
;

or a2
ft- o*

consequently A. = fl
2

b~,

and we get a*x = (a
2 - i2

)
a3

,
i4y = -

(a
2 - 2

)/3
3

;

a / ax \i /8 ( by \l

Substituting in the equation of the ellipse, we get for the required envelope,

This equation represents the evolute of the ellipse.

4. Find

the equation

4. Find the envelope of the line -
H =

r, where o and ft are connected by
a ft

+ ft
m = a*. Ans. x*! +

y&quot;**

1 = cm

2 20. The preceding method can be readily extended to the

general case in which the equation of the enveloping curve

contains any number, n, of variable parameters, which are

connected by n - i independent equations. The method of

procedure is the same as that already considered in Chapter
XI. on maxima and minima, and does not require a separate

investigation here.

T 2
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EXAMPLES.

i. Prove that the envelope of the system of lines -
4- = i, where I and

I in

are connected by the equation
- H =

i, is the parabola

6H8
2. One angle of a triangle is fixed in position, find the envelope of the

opposite side when the area is given. Ans. A hyperbola.

3. Find the envelope of a right line when the sum of the squares of the

perpendiculars on it from two given points is constant.

4. Find the envelope of a right line, when the rectangle under the perpen
diculars from two given points is constant.

Ans. A conic having the two points as foci.

5. From a point P on the hypothenuse of a right-angled triangle, perpen
diculars PM, PN are drawn to the sides

;
find the envelope of the line MN.

6. Find the envelope of the system of circles whose diameters are the chords
drawn parallel to the axis-minor of a given ellipse.

7. Find the envelope of the circle

X* + y*
- 2aex + a* - b2 = O,

where a is an arbitrary parameter ;
and find when the contact between the

circle and the envelope is real, and when imaginary.

(a). Show from this example that the focus of an ellipse may be regarded as

an infinitely small circle having double contact with the ellipse, the directrix

being the chord joining the points of contact.

8. Show that the envelope of the system of conies

x9 v2

+ -Z-T-I,
a a-h

where a is a variable parameter, is represented by the equation

(x \/A)
2 + y* = o.

Hence show that a system of conies having the same foci may be regarded
as inscribed in the same imaginary quadrilateral.

9. Find the envelope of the line

xam + y&m = a&quot;
1* 1

,

where the parameters o and are connected by the equation

a&quot; + n = *&quot;.

Ans.
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i o. On any radius vector of a curve as diameter a circle is described : prove

geometrically that the envelope of all such circles is the first pedal of the curve

with respect to the origin.

11. If circles be described on the focal radii vectores of a conic as diameters,

prove that their envelope is the circle described on the axis major of the conic as

diameter.

12. Prove that the envelope of the circles described on the central radii of an

ellipse as diameters is a Lemniscate.

13. Find the envelope of semicircles described on the radii of the curve

rn = an cos nQ

as diameters.

14. If perpendiculars be drawn at each point on a curve to the radii vectores

drawn from a given point, prove that their envelope is the reciprocal polar of

the inverse of the given curve, with respect to the given point.

15. Find the envelope of a circle whose centre moves along the circum

ference of a fixed circle, and which touches a given right line.

16. Ellipses are described with coincident centre and axes, and having the

sum of their semiaxes constant ;
find their envelope.

17. Find the equation of the envelope of the line \x + py + v = o, where

the parameters are connected by the equation

-2,f(J.V + 2ffV\ + 2/iA/i
= O.

= o.Ans.

a, *, g,

b, &, f,

ff, /, *,

x, y, I,

1 8. At any point of a parabola a line is drawn making with the tangent an

angle equal to the angle between the tangent and the ordinate at the point ;

prove that the envelope of the line is the first negative pedal, with regard to the

focus, of the parabola ;
and hence that its equation is yl cos - Q = J, the focus

being pole.

N.B. This curve is the caustic by reflexion for rays perpendicular to the

axis of the parabola.

19. Join the centre, 0, of an equilateral hyperbola to any point, P, on the

curve, and at P draw a line, PQ, making with the tangent an angle equal to the

angle between OP and the tangent. Show that the envelope of PQ is the first

negative pedal of the curve

r2 = 2 2 sin - 9 sin -
8,

3 3

the centre being pole, and axis minor prime vector.

N.B. This gives the caustic ly reflexion of the equilateral hyperbola, the

centre being the radiant point.

20. A right line revolves with a uniform angular velocity, while one of its

points moves uniformly along a fixed right line
;

find its envelope.
4ns. A

cycloid,
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CHAPTEE XVI.

CONVEXITY AND CONCAVITY. POINTS OF INFLEXION.

221. Convexity and Concavity. If the tangent be
drawn at any point on a curve, the neighbouring portion of

the curve generally lies altogether on one side of the tangent,
and is convex with respect to all points lying at the opposite
side of that line, and concave for points at the same side.

Thus, in the accompanying figure, the portion QPQ is

convex towards all points

lying below the tangent, and
concave for points above.

If the curve be referred

to the co-ordinate axes OX
and OY, then whenever the

ordinates of points near to

P on the curve are greater
than those of the points on

the tangent corresponding to

the same abscissae, the curve is said to be concave towards

the positive direction of Y.

Now, suppose y =
(x) to be the equation of the curve,

then that of the tangent at a point x, y, by Art. 168, is

M N X
Fig. 27.

Let P be the point x, y, and MN = h = MN
y QN

TN = Yi, and we have

y,
= 0(* + h)

= 00) + htf(x) +
-

0&quot;

y

&quot;* +&c.

/. .- F. -
*&quot;

(i)
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When h is very small, the sign of the right-hand side of

this equation is the same in general as that of its first term,
and accordingly the sign of y\

- T^ or of Q T, is the same as ,.

that of
0&quot; (ap.

Hence, for a point above the axis of x* the curve is convex
(^

towards that axis when
&amp;lt;p&quot;(x)

is positive, and concave when

r

e accordingly see that the convexity or concavity at any

point depends on the sign of
$&quot;(%}

or
y^,

at the point.

222. Points of Inflexion. If, however, 0&quot;(#)
= o at

the point P, we shall have

1.2.3 1.2.3.4
(2)

Now, provided &amp;lt;$&amp;gt;&quot;(%)

be not zero, y v
- Fx changes its sign

with A, i.e. if

and if Q lies above jf, the

corresponding point Q lies

below T
,
and the portions of

the curve near to P lie at

opposite sides of the tangent,
as in the figure.

Consequently, the tangent
at such a point cuts the curve,

as well as touches it, at its

point of contact.

inflexion.

Again, if $ &quot;(%}
as well as

shall have

M N y
Fig. 28.

Such points on a curve are called points of

vanish at the point P, we

and, provided &amp;lt;

iv
(#) be not zero at the point, y^

- Ti does not

change sign with A, and accordingly the tangent does not

intersect the curve at its point of contact.

Generally, the tangent does or does not cut the curve at

its point of contact, according as the first derived function

which does not vanish is of an odd, or of an even order ;
as

can be easily seen by the preceding method.
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From the foregoing discussion it follows that at a point
of inflexion the curve changes from convex to concave with

respect to the axis of #, or conversely.
On this account such points are called points of contrary

flexure or of inflexion.

223 The subject of inflexion admits also of being treated

by the method of Art. 196, as follows : The points of in

tersection of the line y =
\ix + v with the curve y = $ (x] are

evidently determined by the equation

. / _A __ I / \
r \ /

&quot;

\Oy

Suppose A, J9, (7, D, &c., to represent the points of section in

question, and let ^, x^ ... xn
be the roots of equation (3) ;

/^&quot; ^v~- ^f- ^^-
then the line becomes a ^p \^
tangent, if two of these ^

roots are equal, i.e., if Fis- 2 9-

^(aji)
=

ju, where #1 denotes the value of x belonging to the

point of contact.

Again, three of the roots become equal if we have in

addition
^&quot;(#1)

= o
;
in this case the tangent meets the curve

in three consecutive points, and evidently cuts the curve at its

point of contact ;
for in our figure the portions PA and CD

of the curve lie at opposite sides of the cutting line, but

when the points A, B, C become coincident, the portions AB
and BC become evanescent, and the curve is evidently cut as

well as touched by the line.

In like manner, if
0&quot; (#0 also vanish, the tangent must

be regarded as cutting the curve in four consecutive points :

such a point is called & point of undulation.

It may be observed, that if a right line cut a continuous

branch of a curve in three points, A, B, C, as in our figure,

the curve must change from convex to concave, or conversely,

between the extreme points A and (7, and consequently it

must have a point of inflexion between these points ;
and so

on for additional points of section.

Again, the tangent to a curve of the nth
degree at a point of

inflexion cannot intersect the curve in more than n -
3 other

points : for the point of inflexion counts for three among
the points of section. For example, the tangent to a curve
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of the third degree at a point of inflexion cannot meet the

curve in any other point. Consequently, if a point of in

flexion on a cubic be taken as origin, and the tangent at it

as axis of #, the equation of the curve must be of the form

a?
3 + y$ =

o,

where represents an expression of the second and lower

degrees in x and y. For, when y =
o, the three roots of the

resulting equation in x must be each zero, as the axis of x

meets the curve in three points coincident with the origin.
The preceding equation is of the form

or, when written in full,

x* + y (ax~ + 2lixy + by
2

)
+ y (2gx + 2fy + c]

= o. (4)

Now, supposing tangents drawn from the origin to the

curve, their points of contact, by Art. 176, lie on the curve

Ut + 2Ui =
O,

i.e. on the curve

(gv+fy + c)y = 0.

The factor y = o corresponds to the tangent at the point
of inflexion, and the other factor gx + fy + c = o passes

through the points of contact of the three other tangents to

the curve.

Hence, we infer that from a point of inflexion on a cubic

but three tangents can be drawn to the curve, and their three

points of contact lie in a right line.

It can be shown that this right line cuts harmonically
every radius vector of the curve which passes through the

point of inflexion.

For, transforming equation (4) to polar co-ordinates, and

dividing by r, it becomes of the form

Ai* + Br + C = o.

If r
,

r&quot; be the roots of this quadratic, we have

i i B
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Now, if p be the harmonic mean between / and /
,
this

gives

_ i
2&amp;lt;7

cos0 + 2/sin0

Hence the equation of the locus of the extremities of the
harmonic means is

gx+fy + c = o. Q.E.D.

This theorem is due to Maclaurin (De Lin. Geom. Prop.
Gen., Sec. in. Prop. 9).

From this property the line is called the harmonic polar of
the point of inflexion. This line holds a fundamental place
in the general theory of cubics.*

^
224. Stationary Tangents. Since the tangent at a

point of inflexion may be regarded as meeting the curve in
three consecutive points, it follows that at such a point the

tangent does not alter its position as its point of contact

passes to the consecutive point, and hence the tangent in this

case is called a stationary tangent.
d^yThe equation yf

= o follows immediately from the last

consideration
;

for when the tangent is stationary we must

have - =
o, where 0, as in Art. 171, denotes the angle

which the tangent makes with the axis of x
;
but tan =

,

dx
d z

y
hence =

o, which is the same condition for a point of
ct*c

inflexion as that before arrived at.

*
Chasles, Aper^u Ilistorique, note xx.

;
Salmon s Higher Plane Curves.

Art. 179.
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EXAMPLES.

1. Show that the origin is a point of inflexion on the curve

a?y = bxy + ex3 + dx4
.

2. The origin is a point of inflexion on the cubic u$ + u\ = o ?

3. In the curve am ly xm
,

prove that the origin is a point of inflexion if m be greater than 2.

4. In the system of curves

find under what circumstances the origin is (a) a point of inflexion, (b] a cusp.

5. Find the co-ordinates of the point of inflexion on the curve

a

6. If a curve of an odd degree has a centre, prove that it is a point of

inflexion on the curve.

7. Prove that the origin is a point of undulation on the curve

Ml + 4 + U5 + &C., + M = O.

8. Show that the points of inflexion on curves referred to polar co-ordinates

are determined by aid of the equation

d*u I

u + = o, where u = -.

9. In the curve rQm = a, prove that there is a point of inflexion when

=^m i -m).

10. In the curve y = c sin -, prove that the points in which the curve
a

meets the axis of x are all points of inflexion.

u. Show geometrically that to a node on any curve corresponds a line

touching its reciprocal polar in two distinct points ;
and to a cusp corresponds a

point of inflexion.
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12. If the origin be a point of inflexion on the curve

1 + UZ + 3 + . . . + Un = O,

prove that itz must contain u\ as a factor.

13. Show that the points of inflexion of the cubical parabola

y
2 =(*-) 2

(*-*)
he on the line

ix + a = 4# :

and hence prove that if the cubic has a node, it has no real point of inflexion
;

but if it has a conjugate point, it has two real points of inflexion, besides that
at infinity.

14. Prove that the points of inflexion on the curve y
1 = a2

(a
2 + *px + q}

are determined by the equation 2x3 -f 6px
2 + 3 (p* + q) x + 2pq = o.

15. If y
8 = /(*) be the equation of a curve, prove that the abscissae of its

points of inflexion satisfy the equation

{/*(*;}-*/() ./&quot;&amp;lt;*)

16. Show that the maximum and minimum ordinates of the curve

y =2/M /&quot;(*)- {/ (*) P

correspond to the points of intersection of the curve y
2
=/(#) with the axis

of*.

17. &quot;When y
2
=/(#) represents a cubic, prove that the biquadratic in x

which determines its points of inflexion has one, and but one, pair of real roots.

Prove also that the lesser of these roots corresponds to no real point of inflexion,
while the greater corresponds, in general, to two.

1 8. Prove that the point of inflexion of the cubic

ay
z + ^lxy&quot;~ + ,cx~y + dxs + ^ex* = o

lies in the right line ay + bx = o, and has for its co-ordinates

where G is the same as in Example 32, p. 190.

19. Find the nature of the double point of the curve

and show that the curve has two real points of inflexion, and that they subtend
a right angle at the double point.

20. The co-ordinates of a point on a curve are given in terms of an angle 9

by the equations

x = sec3 6, y = tan Q sec2 Q
;

prove that there are two finite points of inflexion on the curve, and find the
values of Q at these points.



285

CHAPTER XVII.

RADIUS OF CURVATURE. EVOLUTES. CONTACT. RADII OF

CURVATURE AT A DOUBLE POINT.

225. Curvature. Angle of Contingence. Every con

tinuous curve is regarded as having a determinate curvature

at each point, this curvature being greater or less according
as the curve deviates more or less rapidly from the tangent at

the point.
The total curvature of an arc of a plane curve is measured

by the angle through which it is bent between its extremities

that is, by the external angle between the tangents at these

points, assuming that the arc in question has no point of in

flexion on it. This angle is called the angle of contingence of

the arc.

The curvature of a circle is evidently the same at each of

its points.
To compare the curvatures of

different circles, let the arcs AB
and ab of two circles be of equal

length, then the total curvatures

of these arcs are measured by the

angles between their tangents, or

by the angles ACB and acb at

their centres : but

arcAB arcflfr i I

LACB: Lacb = -
:

= -77,:.AC etc AC ac

Consequently, the curvatures of the two circles are to each

other inversely as their radii
;
or the curvature of a circle

varies inversely as its radius.

Also if As represent any arc of a circle of radius r, and

A&amp;lt; the angle between the tangents at its extremities, we have

As
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The curvature of a curve at any point is found by deter

mining the circle which has the same curvature as that of an

indefinitely small elementary arc of the curve taken at the

point.
226. Radius of Curvature. Let ds denote an infi

nitely small element ofa curve at a point, dfy the corresponding

angle of contingence expressed in circular measure, then
d(j)

evidently represents the radius of the circle which has the
same curvature as that of the given curve at the point.

This radius is called the radius of curvature for the point,
and is usually denoted by the letter p.

To find an expression for p, let the curve be referred to

rectangular axes, and suppose x and y to be the co-ordinates

of the point in question ;
then if $ denote the angle which the

tangent makes with the axis of x, we have

dy d . tan 6 dz
y

tan
&amp;lt;j&amp;gt;

=
-f- ;

. .
-^ = -

dx dx

,

or sec d- = -AY dx dx*

d6 d&amp;lt;b dx dd&amp;gt; . d*y
Again, -r = -r:r = cos 0:r = cos TV

ds dx ds
Y dx r

dx*

_
Hence p

( r^YV
V \dx) )--

ds

At a point of inflexion - = o : accordingly the radius of
ax

curvature at such a point is infinite : this is otherwise evident

since the tangent in this case meets the curve in three conse

cutive points. (Art. 222.)

Again, as the expression f I +
r~J j

has always two

values, the one positive and the other negative, while the
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curve can have in general but one definite circle of curvature

at any point, it is necessary to agree upon which sign is to be

taken. &quot;We shall adopt the positive sign, and regard p as

being positive when ^|
is positive; i.e. when the curve is

convex at the point with respect to the axis of x.

227. Other Expressions for p. It is easy to obtain

other forms of expression for the radius of curvature ;
thus

by Art. 178 we have

dx . _dy_
^ ds ds

Hence, if the arc be regarded as the independent variable, we

get

.
dd&amp;gt; dzx

J d&amp;lt;f&amp;gt; _ tfy

from which, if we square and add, we obtain

w\

Again, the equations dx = cos
(j&amp;gt;ds, dy = sin

&amp;lt;j&amp;gt;ds,

ds

give by differentiation (substituting
for

efy&amp;gt;),

/ T \ 3
(^/s)

2

&x = cos &amp;lt;bd*s
- sin *^-S &amp;lt;Py

= sin
&amp;lt;j&amp;gt;d*s

+ cos . (3)

P P

Whence, squaring and adding, we obtain

*&quot; =- (4)
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Again, if the former equation in (3) be multiplied by
sin 0, and the latter by cos 0, we obtain on subtraction,

cos
&amp;lt;Py

- sin #*, or dxd*y - dyd
zx = .

P P

Hence p = (**

dxd*y -
dytfx

/

The independent variable is undetermined in formulse (4)
and (5), and may be any quantity of which both x and y are
functions.

For example, in the motion of a particle along a curve,
when the time is taken as the independent variable, we get
from (4) an important result in Mechanics.

EXAMPLES.

i. To find the radius of curvature at any point on the parabola xz = qmy.

TT dy dzy fdu^ x2
&amp;gt;/Here *mf

=
*, M-g.i, i + [f = i + - = I + ^;* ax* \dxj 4m2 m

2
p ^ -,

-
mi

Find the radius of curvature in the catenary

Here

Hence the radius of curvature is equal to the part of the normal intercepted
by the axis of z, but measured in the opposite direction (Ex. 4, Art. 171).

3. In the cubical parabola 3
2
y = #3

,
we have
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X* 1/
Z

4. To find the radius of curvature in the ellipse -r + = I,

Let x = a cos
&amp;lt;,

then y = b sin 0, and we have

dx = a sin
$d&amp;lt;f&amp;gt;,

d2x = a cos fydqP a sin Qdtfa

dy = b cos
&amp;lt;pcfy&amp;gt;, tfy b sin

&amp;lt;(fy&amp;gt;

3 + b cos
&amp;lt;t&amp;gt;d

2
&amp;lt;(&amp;gt;.

Hence by formula (5) we obtain

5. In the hypocycloid & + y* = a*, let x = a cos3
&amp;lt;,

then y - a sin3
4&amp;gt;,

and re

garding as the independent variable, we have

dx = 3 cos2 sin
&amp;lt;J&amp;gt;^, d?x = 3^ cos ^)^2

(2 sin2
&amp;lt;

- cos2
$),

&amp;lt;?y

= 30 sin2 &amp;lt;

cos&amp;lt;j&amp;gt;d&amp;lt;p, cP-y
= $a sin ^^2

(2 cos2 - sin2
&amp;lt;p),

whence

(rfa;
2 + %2

)i
= 3# sin&amp;lt;^)

cos (^^, and

from which we obtain

p = -

6. Find the radius of curvature at any point of the cunre

228. General Expression for Radius of Curva
ture. The value of p becomes usually difficult of determi

nation from formula
(
i
)
whenever y is not given explicitly in

terms of a?, that is, when the equation of the curve is of the

form

-/(*&amp;gt; y)
=

-

We proceed to show how the equation for p is to be trans

formed in this case. Suppose

du du d2u d zu d zu
= L, ~r=M, = A, -J-

= B, = C;
dx dy dj? dxdy dif

then, by Art. i oo, we have

L + Md
JL . o.
dx

v
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Again, differentiating this equation with respect to #,

regarding y as a function of x in consequence of the given

equation, and observing that

j*/n- - ~ .

dx (
~
dx dy do? dx

&quot;

dx dy dot

we obtain

dx dy dx \ dx dy dx dx dx*

whence, on substituting
- for ,

we obtain
JjJL dx

_ CD
dx*

~ ~W~
Consequently

(L* + Jf2

)*
- AN*-2BLM + CL*

Or, on replacing L, M, A, B, 0, by their values,

J/AY+/SY1
1

IUJ
+
UJ)

J

-d*ufdu\
z

^_ d*u_dudu
d*u

(du\
2

dx* \dy) dxdy dx dy dy* \dx)

The result in (6) enables us to determine the second diffe

rential coefficient of an implicit function in general; a process

which is sometimes required in analysis.

229. The Centre of Curvature is the point of

intersection of two Consecutive Normals. We shall

next proceed to consider the subject from a geometrical

point of view.

As a circle which passes through two infinitely near

points on a curve is said to have contact of the first order with



Newton
7

s Method of Investigating Curvature. 291

the curve, so the circle which passes through three infinitely

near points on a curve is said to have contact of the second

order with it, and is called the circle of curvature, or the

osculating circle at the point.

Again, the centre of the circle which passes through
three points, P, Q, -R, is the intersection of the perpendicu
lars drawn at the middle points of PQ and QE ;

but when

P, Q, R become infinitely near points on a curve, the per

pendiculars become normals, and the centre of the circle

becomes the limiting position of the intersection of two infinitely

near normals to the curve. (Compare Art. 37, note.)

From this it is easily seen that we obtain for the length
a&amp;lt;p

of the radius of the circle in the limit, as before.

230. Newton s Method of investigating Radii of
Curvature. When the equation of the curve is algebraic
and rational it is easy to obtain an

expression for its radius of curvature*

at any point.

For, take the origin at the

point, and the tangent and normal
for co-ordinate axes; let P be a

point on the curve near to 0, and
describe a circle through P and

touching the axis of x\ draw PN
perpendicular to OX and produce
it to meet the circle in Q ;

then we have

ON2 = PN . NQ.

Hence, if x and y be the co-ordinates of P, we get

But when P is infinitely near to 0, NQ, becomes OD, the

* This method of finding the radius of curvature is indicated by Newton
(Principia, Lib. I., Sect, i., Lemma xi.), and has been adopted in a more or lei?

modified form by many subsequent writers.

U 2
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diameter of the circle of curvature, and if p be its radius, we
have

x2

2p = limit of when # is infinitely small.

Again, since the axis of x is the tangent at the origin,
the equation of the curve, by Art. 208, is of the form

% = c x* + 2dxy + Cif + terms of the third and higher degrees

= C&?
1 + 2c&y + c^ + u* + ut + &c. (9)

On dividing by y we obtain

bi = c + 2CiX + c2y + + &o.

y

Again, when x is infinitely small, becomes 2/0, and

each* of the other terms at the right-hand side becomes infi

nitely small ; hence

Thus, for example, the radius of curvature at the origin in

the curve

is -, the axes being rectangular.

* We have assumed above that the terms , -, &c., become evanescent

along with x
;
this can be readily established as follows :

Let 3 = as3 + ftx*y + yxy* + Sy
3
,

then - = a- + fix* + yxy + 5y;

x2

each of the terms after the first vanishes with x, while the first becomes a x,

or
2a/&amp;gt;#,

which also vanishes with x, when p is finite.

#4
Similar reasoning is applicable to the terms, ,

&c.
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From the preceding it follows that when the axis of x is

a tangent at the origin, the length of the radius of curvature

at that point is independent of all the coefficients except
those of y and x*.

231. Case of Oblique Axes. If the co-ordinate axes

be oblique, and intersect at an angle CD, then PQ no longer

passes through the centre of the circle in the limit, but be

comes the chord of the circle of curvature which makes the

angle o&amp;gt; with the tangent ; accordingly, we have in this case

ON* x* .

2/0 sin W =
-pjy.

=
,
in the limit.

Hence, in the case of oblique axes, we have

i

p smw = . (lo)
2Co

If bi and c have opposite signs, p is negative ; this

indicates that the centre of curvature lies below the axis of #,

towards the negative side of the axis of y.

The preceding results show that the radius of curvature

at the origin is the same as that of the parabola, by = CQX
Z

,
at

the same point ;
and also that the system of curves obtained

by varying all the coefficients in (9), except those of y and

x*, have the same osculating circle, in oblique as well as in

rectangular co-ordinates.

Again, as in Art. 223, the osculating circle, since it meets
the curve in three consecutive points, cuts the curve at the

point, in general, as well as touches it.

If Co = o in the equation of the curve, and bt be not zero,
the radius of curvature becomes infinite, and the origin is a

point of inflexion. This is also evident from the form of the

equation, since the axis of x meets the curve in this case in

three consecutive points.

232. In general, the equation of a curve referred to any
rectangular axes, when the origin is on the curve, may be
written in the form

uz + &o.
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Here bQ x + b\y
= o is the equation of the tangent at the

origin ; and the length of the perpendicular PN from the

point (#, y) on this tangent is

v/V + b?

Also, OP2 = x* + y\ and OP2 = 2P . PNin the limit.

Accordingly, we have, when x and y are infinitely small,

1- 2PN
p~ Up*

(since the point x, y is on the curve).

Again, the terms contained in -=;, &c., become evanes-
x + y

cent in the limit, as before (see note, Art. 230).
Hence we have

y.

c^
C + 2C^ +

But for points infinitely near the origin we have

Substituting this value instead of - in the preceding equation,x

it becomes

~ =
C b

*

V*+ 18

)*

^ ^
The student will find no difficulty in showing the identity

of this result with that given in (7).
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233- Radii of Curvature of Inverse Curves. It

may be convenient to state here that if two curves be inverse

to each other with respect to any origin, their osculating circles

at two inverse points are also inverse to each other with respect

to the same origin.
This property is evident geometrically from the con

sideration that a circle is determined when three points on

it are given.

Again, since the centres of the two inverse circles are

in directum with the origin, we can construct the centre of

curvature at any point on a curve, when that for the cor

responding point on the inverse curve is known.

Also, if the osculating circle at any point on a curve

pass through the origin, the corresponding point is a point of

inflexion on the inverse curve. .

We shall next proceed to establish another expression for

the radius of curvature, which is of extensive application in

curves referred to polar co-ordinates.

234. Radius of Curvature in terms of r and p.
Let PN and PC be the tangent
and normal at any point P on a

curve, PN and P C those at

the infinitely near point P
7

,
then

C is the centre of curvature cor

responding to the point P. Let
be the origin.
Join 0(7, and let 00 =

S,

OP =
r, OP&quot; = /, ON = p,

ON =/, OP = CP* =
p ;

then

we have

00* = OP2 +CP*-20P.CP. cos OPC9

or & = r* + p*
-

2pp.

In like manner we have

- 2Pp
f
.

Subtracting, we get

/2 -r2 = 2p(p -p), or
/- r

Y^~P
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Hence we have
dr p dr

= -, or p = r . (12)
dp r dp

This formula can also be deduced immediately from Art.

191 : thus

dp dp ds dp dp dr dp-- = ---r = p^- = p^--r = p cost^-;da ds du r
ds

r
dr ds

r
dr

dp dr
.*. f*p-j-, or p = r .r dr dp

235. Chord of Curvature through the Origin.
Let 7 denote half the intercept made on the line OP by the

circle of curvature, and we evidently have

j-pemOPN-pZ-pjp (13)

This and the preceding formula are of importance when
ever we can express the equation of the curve in terms of the

lines represented by r andjt?.

Their use will be illustrated by the following elementary

examples :

EXAMPLES.

1. To find the radius of curvature at any point on a parabola.

Taking the focus as pole, the equation of the curve in terms of r and p
evidently is p2 = 2tnr.

dr pr /2r
3\i dr p2

Hence , -r - - --
(-)

; also, 7 -p- = - = ,r.

2. To find the radius of curvature in an ellipse.

Taking the centre as origin, the equation of the curve is

dr aW
&quot;^71&quot;

3. To find the radius of curvature in the Lemniscate.

Here, by Ex. 3, Art. 190, we have r3 = a?p ;

3^
2 = 2

;
hence p

=
; also, y- .

dp 3** 3
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4. To find the chord of curvature which passes through the origin in the

Cardioid
r = a(i 4- cos0).

In this case, we have r3 = 2ap
z

.

dr 2

Hence fy=p
di&amp;gt;

=
^
r

5 . To find the radius of curvature at any point on the curve r = fl&quot; cos mO.

Here r fl = amp, by Art. 190.

am
i

*&quot;

Hence p = &amp;gt;

. TN^m_i
=

,m , , \
5
also 7 =

, -

This result furnishes a simple geometrical method of finding the centre of cur

vature in all curves included under this equation.

d z
i)

236. To prove that p =p + . If p and w have the

same signification
as in Art. 192, the formula of that Art.

becomes
ds dz

p

EXAMPLES.

i. In a central ellipse prove that______
p = */a

2 cos2
CD + b2 sin cw,

and hence deduce an expression for the radius of curvature at any point on the

Ur
a! In a parahola referred to its focus as pole, prove that p = m sec

,
and

hence show that p
= 2w sec3 w.

237. Evolutes and Involutes. If the centre of cur

vature for each point on a curve be Pl Pa

taken, we get a new curve called the

evolute of the original one. Also, the

original curve, when considered with

respect to its evolute, is called an in

volute. .

To investigate the connexion be

tween these curves, let Pi, P^ -Ps, &-&amp;gt;

represent a series of infinitely near

points on a curve; d, Ct ,
Cs , &c., the

corresponding centres of curvature,

then the lines P^,, P^C^ PA &c.,

are normals to the curve, and the lines
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each of the normals P^, P2 &amp;lt;72 ,
P3C3 , &o., passes through two

consecutive points on the evolute, they are tangents to that
curve in the limit.

Again, if Pl , pz , p 3 , ^4, &c., denote the lengths of the radii
of curvature at the points Pl9 P2 ,

P3 ,
P4 ,

&c ., we have

Pl
= P 1C19 P2

= P2 &amp;lt;72 , P3
= P3 &amp;lt;73, pi

= P4 (74 ,
&o.

;

. . PI
-

P*
= Pid - P2 &amp;lt;72

= P& - PZ C* = ft ft ;

also p2
- ^ =

&amp;lt;72 &amp;lt;73 , ?3
-

/Q4
= ft(74 ,

. . .^ -
Pn = CUC7 ;

hence by addition we have

...+ CLi On.

This result still holds when the number n is increased

indefinitely, and we infer that the length of any arc of the
evolute is equal, in general, to the difference between the radii of
curvature at its extremities.

It is evident that the curve may be generated from its

evolute by the motion of the extremity of a stretched thread,

supposed to be wound round the evolute and afterwards
unrolled

;
in this case each point on the string will describe

a different involute of the curve.

The names evolute and involute are given in consequence
of the preceding property.

It follows, also, that while a curve has but one evolute, it

can have an infinite number of involutes
;
for we may regard

each point on the stretched string as generating a separate
involute.

The curves described by two different points on the

moving line are said to be parallel; each being got from the
other by cutting off a constant length on its normal measured
from the curve.

238. volutes regarded as Envelopes. From the

preceding it also follows that the determination of the evolute
of a curve is the same as the finding the envelope of all its

normals. We have already, in Ex. 3, Art. 219, investigated
the equation of the evolute of an ellipse from this point of

view.

239. Evolute of a Parabola. &quot;We proceed to deter

mine the evolute of the parabola in the same manner.
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Let the equation of the curve be y*

its normal at a point (a?, y) is

X M&amp;gt; TT

299

2w#, then that of

o.

or y
8 + 2wy (m - X) - 2mzY = o.

The envelope of this line, where y is regarded as an arbi

trary parameter, is got by eliminating y between this equa
tion and its derived equation

3?/
2 + 2m (m

- X)

Accordingly, the equation of the

required envelope is obtained by

substituting ^ instead of y&
2 m - X

in the latter equation.

Hence, we get for the required v
evolute, the semi-cubical parabola

27wr2 = S (X - m)
3
.

The form of this evolute is exhi

bited in the annexed figure, where

VN = m = 2 VF. If P, P, repre
sent the points of intersection of the

evolute with the curve, it is easily seen that

M

Fig. 34-

240. Evolute ofan Ellipse. The form of the evolute of

an ellipse, when e is greater

than
-J- -\/2, is exhibited in

the accompanying figure ;

the points Jf, N, Mf

,
Nf

,
are

evidently cusps on the curve,

and are the centres of cur

vature corresponding to the

four vertices of the ellipse.

In general, if a
curve^

be

symmetrical at both sides

of a point on it, the oscu

lating circle cannot intersect
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the curve at the point ; accordingly, the radius of curvature
is a maximum or a minimum at such a point, and the corre

sponding point on the evolute is a cusp.
It can be easily seen geometrically that through any point

four real normals, or only two, can be drawn to an ellipse,

according as the point is inside or outside the evolute.

It may be here observed that to a point of inflexion on

any curve corresponds plainly an asymptote to its evolute.

241. Evolute of an Equiangular Spiral. We shall

next consider the equiangular or logarithmic spiral, r = a 6
.

Let P and Q be two points
on the curve, its pole, PC,
QC the normals at P and Q ; join
00. Then by the fundamental

property of the curve (Art. 1 8 1
) ,

the angles OPO and OQO are

equal, and consequently the four

points, 0, P, Q, (7, lie on a circle :

hence L QOO = L QPO , but^in
the limit when P and Q are coin-

Fig 36&amp;gt;

cident, the angle QPO becomes

a right angle, and becomes the centre of curvature belong*

ing to the point P; hence POO also becomes a right angle,

and the point is immediately determined.

Again, L OOP = LOQP; but, in the limit, the angle

OQP is constant; . . L OOP is also constant
;
and since the

line CP is a tangent to the evolute at (7, it follows that the

tangent makes a constant angle with the radius vector 00.

From this property it follows that the evolute in question is

another logarithmic spiral. Again, as
the^

constant angle is

the same for the curve and for its evolute, it follows that the

latter curve is the same spiral turned round through a known

angle (whose circular measure is - -
logoff).

241 (a).
Involute of a Circle. As an example of

involutes, suppose APQ to represent a portion of an involute

of the circle BAC, whose centre is 0. Let

00= a, L COA =
0,

and OA the length of the string unrolled; then

CP=CA =
&amp;lt;.
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Draw ON perpendicular to the tangent at P, and lei

ON = p, then we have

p =
ay,

Hence, since

the pedal of the curve APQ is a
&quot;

spiral of Archimedes.

Also, since

OP2 = OCZ + CP\
we have

rz = p
z + a*,

which gives the equation to the involute of a circle in terms

of the co-ordinates r and p.

Again, if AP =
s, we have

37-

from which it is easily seen that

242. Radius of Curvature, and Points of In
flexion, in Polar Co-ordinates. We shall first find an

expression for p in terms of u (the reciprocal of the radius

vector) and 6.

By Article 183. we have

hence

Also

i dp

dr
P &quot; r ^~ =

dp

i du^
,: ~7~

u dp
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. ._,
+
W#, , . .

P ~u ( 5)
U +

A ! i du i dr
Again, since u =

-, we have = -__,

,

^- ^; A/A,- 06)

This result can also be established in another manner, as
follows :

On reference to the figure of Art. 1 80, it is obvious that
= 6 + ^ ;

where is the angle the tangent at P makes with
the prime vector OX.

__
d(j&amp;gt; d\fj dd&amp;gt; ds d\L

Hence
dO

= I+
dO&amp;gt;

T
^dO

= l+
M&amp;gt;

d\L

i _d$_
f
d

p ds ds

de

Again, denoting -^ and -^ by r and r, we have
clu c(/\/

r
tan

i//
= -

;
and hence

d\L . r* - rr r* -rr_ = COS^__ %T
_

;

ds ,
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Hence, we get

Or, replacing r and r by their values,

Again, since
/o
= oo at a point of inflexion, we infer that

the points of intersection of the curve represented by the

equation

with the original curve, determine in general its points of

inflexion.

In some cases the points of inflexion can be easier found

by aid of (15), which gives, when p =
oo,

EXAMPLES.

1. Find the radius of curvature at any point in the spiral of Archimedes,

(i + Q )8
r = aB. ^W5 . a i___.

2. Find the radius of curvature of the logarithmic spiral r = a .

Ans. r(i +

3. Find the points of inflexion on the curve

Q
r = 29 n cos 20. Ans. cos 20 = .

ii

4. Prove that the circle r = 10 intersects the curve

r = n 2 cos 56

in its points of inflexion.

5. Prove that the curve

r = a + b cos nQ

has no real points of inflexion unless a is &amp;gt; b and
&amp;lt;(i

+ w2
) b. When a lies he-

tween these limits, prove that all the points of inflexion lie on a circle ; and show
how to determine the radius of the circle.
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242 (a). Intrinsic Equation of a Curve. In many
cases the equation of a curve is most simply expressed in
terms of the length, 5, of the curve, measured from a fixed

point on it, and the angle, 0, through which it is bent,
i. e. the angle of deviation of the tangent at any point from
the tangent at the fixed point, taken as origin. These are

styled the intrinsic elements of the curve by Dr. Whewell,*
to whom this method of discussing curves is due.

The relation between the length s and the deviation for

any curve is called its intrinsic equation.
If this relation be represented by the equation

then if p be the radius of curvature at any point, we have

Also, if Si denote the length of the evolute, from Art. 237
it is easily seen that the equation of the evolute is of the form

Si =f((j&amp;gt;)
+ const.

From this it follows that the series of successive evolutes
are in this case easily determined by successive differentiation.

The simplest case of an intrinsic equation is that of the

circle, in which case we have

= Cl(

Again, from Art. 241(0), the intrinsic equation of the

involute of a circle is reducible to the form

We shall meet with further examples of intrinsio equa
tions subsequently.

243. Contact of Different Orders. As already
stated, the tangent to a curve has a contact of the first order

with the curve at its point of contact, and the osculating
circle a contact of the second order. We now proceed to

distinguish more fully the different orders of contact between

two curves.

Cambridge Philosophical Transactions, Vols. viu, and ix.
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Suppose the curves to be represented by the equations

=/(*), and y =
0(0),

and that x\ is the abscissa of a point common to both curves,
then we have

Again, substituting x + h, instead of x in both equations,
and supposing y^ and y2 the corresponding ordinates of the

two curves, we have

V, -/(* + K) -/(0 + hfM + ^f (xi) + &o.,

Subtracting, we get

+ &o. (17)

Now, suppose y&quot;(a?i)
=

(#i), or that the curves have a
common tangent at the point, then

Vi-V,-^-t (/ (O-^WI-t-r-r-r (/ &quot;(.) -#&quot;(*,)}+ &o.
1 . ^ 1.2.3

In this case the curves have a contact of the first order
;

and when h is small, the difference between the ordinates is

a small quantity of the second order, and as y:
- y2 does not

change sign with h, the curves do not cross each other at the

point.

If, in addition

then yi
-

y,
= ~ / &quot;a,

- &quot;

+ &c.

In this case the difference between the ordinates is an in

finitely small magnitude of the third order when h is taken
an infinitely small magnitude of the first; the curves are
then said to have a contact of the second order, and approach
infinitely nearer to each other at the point of contact than in



36 Radius of Curvature.

the former case. Moreover, since y^
-

?/2 ^anges its sign
with h, the curves cut each other at the point as well as touch.

If we have in addition / &quot;(#i)
=

0&quot; (#i), the curves are
said to have a contact of the third order: and, in general, if

all the derived functions, up to the nth
inclusive, be the same

for both curves when x = x^ the curves have a contact of the
nth

order, and we have

Also, if the contact be of an even order, n + i is odd, and

consequently hn+l changes its sign with h, and hence the curves
cut eac other at their point of contact

;
for whichever is the

lower at one side of the point becomes the upper at the

other side.

If the curves have a contact of an odd order, they do not
cut each other at their point of contact.

From the preceding discussion the following results are

immediately deduced :

(i). If two curves have a contact of the nth
order, no curve

having with either of them a contact of a lower order can
fall between the curves near their point of contact.

(2). Two curves which have a contact of the nth order at

a point are infinitely closer to one another near that point
than two curves having a contact of an order lower than
the nth

.

(3). If any number of curves have a contact of the second
order at a point, they have the same osculating circle at the

point.

244. Application to Circle. It can be easily verified

that the circle which has a contact of the second order with a

curve at a point is the same as the osculating circle determined

by the former method.

For, let (X -
a)

2 +
(
T -

j3)
2 = *

be the equation of a circle having contact of the second order

at the point (a?, y) with a given curve
; then, by the preceding,

the values of / and -^ must be the same for the circle and
dx dxz

for the curve at the point in question.



Application to Circle. 307

Differentiating the equation of the circle twice, and sub

stituting x and y for X and P, we get

*-o + (y-/3)J =
o, (19)

+-

Hence 9-f.^.--m .
l ()

-
j3

2

)
=

This agrees with the expression for the radius of curvature

found in Art. 226.

The co-ordinates a, [3 of the centre of curvature can
be found by aid of equations (21) ;

and the equation of the

e olute by the elimination of x and y between these equa
tions and that of the curve.

In practice, the following equations are often more useful :

thus, by differentiation with respect to #, we get from (19),

&amp;lt;P d

In like manner, from the equation

we obtain

dx
(y

-
0) + (*

-
o)

=
o,

d dx\ ; ,

3-[*T\ (
2 3)

dy\ dy

245. Centre of Curvature, and Involute ofEllipse.
As an illustration, we shall apply these equations to de-

X 2



Radius of Curvature.

termine the co-ordinates of the centre of curvature, and the
equation of the evolute of the ellipse

+
a* b*

~

dy b* dx a*

d
dx dx

~

Hence y = -
,U

dx* a? \dx) a* a* f

In like manner, we have

Substituting in (22) and (23), we obtain for the co-ordinates
of the centre of curvature

(a* -ay-
(24)

Again, substituting the values of x and y given by these
/vt-

rty*

equations, in the equation +
|^= i, we get for the equation

of the evolute

(aa)l + Q3fi)i
=

(a*
-

b*)l.

246. It may be noticed that the osculating circle cuts the
curve in general, as well as touches it. This follows from
Article 243, since the circle has a contact of the second order
at the point.

At the points of maximum and minimum curvature the
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osculating circle has a contact of the third order with the

curve
;
for example, at any of the four vertices of an ellipse

the osculating circle has a contact of the third order, and does

not cut the curve at its point of contact (Art. 240).

247. Osculating Curves. When the equation of a

curve contains a numher, n
t
of arbitrary coefficients, we can

in general determine their values so that the curve shall have

a contact of the (n
-

i)
th order with a given curve at a given

point ; for the n arbitrary constants can be determined so

that the n quantities

dy d?y
y

dx da?
9

shall be the same at the point in the proposed as in the

given curve, and thus the curves will have a contact of the

(n
-

i)
th order.

The curve thus determined, which has with a given curve

a contact of the highest possible order, is called an osculating

curve, as having a closer contact than any other curve of the

same species at the point.
For instance, as the equation of a circle contains but

three arbitrary constants, the osculating circle has a contact

of the second order, and cannot, in general, have contact of a

higher order ; similarly, the osculating parabola has a contact

of the third order
; and, since the general equation of a conic

contains five arbitrary constants, the general osculating conic

has a contact of the fourth order. In general, if the greatest
number of constants which determine a curve of a given
species be n, the osculating curve of that species has a contact

of the (n
-

i)
th order.

248. Grcometrical method. The subject of contact

admits also of being considered in a geometrical point of view ;

thus two curves have a contact of the first order, when they
intersect in two consecutive points ; of the second, if they inter

sect in three ; of the nth
,

if in n + i . For a simple investi

gation of the subject in this point of view the student is

referred to Salmon s Conic Sections, Art. 239.

249. Curvature at a Double Point. We now pro
ceed to consider the method of finding the radii of curvature
of the two branches of a curve at a double point.
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In this case the ordinary formula (8) becomes indetermi
nate, since

du _ du
-j-

=
o, and = o

ax dy

at a double point. The question admits, however, of being
treated in a manner analogous to that already employed in
Art. 230 : we commence with the case of a node.

250. Radii of Curvature at a Node. Suppose the

origin transferred to the node, and the tangents to the two
branches of the curve taken as co-ordinate axes, w represent
ing the angle between them.

By Art. 210, the equation of the curve is in this case of
the form

2hxy = ax3 + fix*y + yxy* + gy
3 + u^ + &o. :

dividing by xy we obtain

2h = a - + Qx + yy + 8 + + &c.
y x xy

Now, let pi and
/o2 be the radii of curvature at the origin

for the branches of the curve which touch the axes of x and y,

respectively; then, by Art. 231, we have

XZ
1J
Z

2pi sin w =
,
and 2o2 sin w =

,
in the limit.

y x

Again, it can be readily seen, as in the note to Art. 230,

that the terms in
, &c., become evanescent along with x

xy
x~ if

and y, and accordingly the limiting values of and can
y &

be separately found, as in the Article referred to.

Hence we obtain

Also, if a =
o, we get pi

=
co, and the corresponding

branch of the curve has a point of inflexion at the origin.

Similarly, if $ =
o,

/&amp;gt;

2
= oo.
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If a = o, and S =
o, the origin is a point of inflexion on

both branches. This appears also immediately from the

consideration that in this case uz contains u2 as a factor.

If the equation of a curve when the origin is at a node

contain no terms of the third degree, the origin is a point of

inflexion on both branches. An example of this is seen in

the Lemniscate, Art. 210.

EXAMPLES.

1. Find the radii of curvature at the origin of the two branches of the curve

ax* - 2bxy + cy* = ** + y*t

b b

the axes being rectangular.
&amp;lt;ans.

- and -.

2. Find the radii of curvature at the origin in the curve

Transforming the equation to the internal and external bisectors of the angle

between the axes, it becomes

hence the radii of curvature are
2a&amp;lt;&amp;lt;/2

and - 2\/ 2
&amp;gt; respectively.

251. Radii of Curvature at a Cusp. The preceding

method fails when applied to a cusp, because the
angle^

w

vanishes in that case. It is easy, however, to supply an in

dependent investigation : for, if we take the tangent and

normal at the cusp for the axes of x and ?/, respectively, the

equation of the curve, by the method of Art. 210, maybe
written in the form

= ax* + & + x + $f + u, + &o. (26)

Now in this, as in every case, the curvature at the origin

depends on the form of the portion of the curve indefinitely

near to that point ; consequently, in investigating this form

we may neglect ?/
2

,r, ?/
3

, &c., in comparison with y~ ;
and a?

4

arfy, &c., in comparison with xz
.
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Accordingly, the curvature at the origin is the same, in

general, as that of the cubic

y
z = a^ + j3aty. (27)

Dividing by #*, we get

-5
= ax +

x

Hence, in immediate proximity to the origin,
- be-
x

comes very small, i. e. y is very small in comparison with x.

Accordingly, the form of the curve near the origin is repre
sented by the equation

f = ax*.

From this we infer that the form of any algebraic curve
near a cusp is, in general, a semi-cubical parabola (see Ex. 2,
Art. 211.

x

Again, since

we have, by Art. 230,

from which we see that p vanishes along with a?, and accord

ingly the radii of curvature are zero for both branches at the

origin.

This result can also be arrived at by differentiation, by
aid of formula (i).

252. Case where the Coefficient of x* is wanting._
Next, suppose that the term containing x* disappears, or
a =

o, then the equation of the curve is of the form

&f + aV + &o.
;

and proceeding as before, the curvature at the origin is the
same as in the curve

7/
=

/3rA/ + V. (28)
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The two branches of this curve are determined by the

equation

Z (29)

The nature of the origin depends on the sign of |3
2 + 40 , and

the discussion involves three cases.

(i). If )3
2 + 4a

; be positive, it is evident that the curve
extends at both sides of the origin, and that point is a double

cusp (Art. 215(0)).
On dividing equation (28) by y

z
, and substituting 2p for

/2

-, we get i =
2/3p +

4a&amp;gt;

2
. (30)

y
The roots of this quadratic determine the radii of curva

ture of the two branches at the cusp.
These branches evidently lie at the same, or at opposite

sides of the axis of #, according as the radii of curvature
have the same or opposite signs : i. e. according as a has a

negative or positive sign.
These results also appear immediately from the circum

stance, that in this case the form of the curve very near the

origin becomes that of the two parabolas represented by
equation (29).

(2). If /3
2 + 4a be negative, y becomes imaginary, and the

origin is a conjugate point.

(3). If /3
2 + 40 =

o, the equation (30) becomes a perfect
square : we proceed to prove that in this case the origin is a

cusp of the second species.

To investigate the form of the curve near the origin, it is

necessary in this case to take into account the terms of the
fifth degree in x (y being regarded as of the second) : this gives

(y
_ Zjy =

yxff + ptfy + aV =
x(ciy

i + p#y + aV^ (3l)

It will be observed that the right-hand side changes its

sign with x
; accordingly the origin is a cusp. Also, the cusp

is of the second species, for the two roots of the equation in y
plainly have the same sign, viz., that of |3 ; and consequently
both branches of the curve at the origin lie at the same side
of the axis of x,
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Moreover, as equation (30) has equal roots in this case,
the radii of curvature of the two branches are equal, and the
branches have a contact of the second order.

We conclude that when the term involving x* in equation
(28) disappears, the origin is a double cusp, a cusp of the second

species, or a conjugate point, according as )3
2 + 4a &amp;gt;

= or &amp;lt; o.

Moreover, if a =
o, one root of the quadratic (30) is in-)

finite, and the other is ?. The origin in this case is a double

cusp, and is also a point of inflexion on one branch. Such a

point is called a point of oscul-inflexion by Cramer.
If j3

= o in addition to a =
o, the origin is a cusp of the

first species, but having the radii of curvature infinite for both
branches.

It is easy to see from other considerations that the radii

of curvature at a cusp of the first species are always either

zero or infinite.

For, since the two branches of the curve in this case

turn their convexities in opposite directions, --f must have

opposite signs at both sides of the cusp, and consequently it

must change its sign at that point ;
but this can happen only

in its passage through zero, or through infinity.
It should be observed that the preceding discussion applies

to the case of a curve referred to oblique axes of co-ordinates,

provided that we substitute y instead of p ;
where y is half

the chord intercepted on the axis of y by the osculating circle

at the origin.

253. Recapitulation. The conclusions arrived at in the

two preceding Articles may be briefly stated as follows :

(i). Whenever the equation of a curve can be transformed

into the shape /
2 = ax3 + terms of the third and higher degrees,

the origin is a cusp of the first species ;
both radii of curva

ture being zero at the point.

(2). When the coefficient of x3

vanishes,* the origin is

* In this case, if v\ be the equation of the tangent at the cusp, the equation
of the curve is of the form

Vi
2 + ViVz -t #4 + &C. = O.

This is also evident from geometrical considerations.
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generally either a double cusp, a conjugate point, or a cusp
of the second species. In the latter case the two branches

of the curve have the same centre of curvature, and conse

quently have a contact of the second order with each other.

(3). If the lowest term in x (independent of y] be of the

^
th

degree, the origin is a point of oscul-inflexion.

If, however, the coefficient of o?y also vanish, the origin
is not only a cusp of the first species, but also a point of

inflexion on both branches of the curve.

254. General Investigation of Cusps. The pre

ceding results admit of being established in a somewhat more

general manner as follows :

By the method already given, the equation which deter

mines the form of an algebraic curve near to a cusp may be

written in the following general shape :

f = 2Axa
y + Bx* + Cxc

, (32)

where 2Axa
is the lowest term in the coefficient of

y&amp;gt;

and
Bxb

,
Cx* are the lowest terms independent of y.

By hypothesis, a, b, c are positive integers, and a &amp;gt; i, b&amp;gt; 2,

c &amp;gt; 3 ; now, solving for y, we obtain

y = Axa

which represents two parabolasf osculating the two branches

at the origin.
The discussion of the preceding form for y resolves itself

into three cases, according as 2a is &amp;gt;
= or &amp;lt; b.

(i). Let 2a = b + h, then

b + h b

(a). If b be odd, x* becomes imaginary for negative values

of x, and accordingly the origin is a cusp of the

first species in this case.

* This term is retained, as it is necessary in the case of a cusp of the second

species.

t The word parabola is here employed in its more extensive signification.



3 i 6 Radius of Curvature.

(/3). If b be even, and ^ positive, y is real for all values
of x near the origin ; accordingly that point is a
double cusp.

(y) . If b be even, and B negative, the origin is a conjugate
point.

(2). If 20, = b, we have

y = Axa xa
&amp;lt;/(A*

+ B)

In this case, the origin is either a double cusp, or a conju
gate point, according as A* + B is positive or negative.

Again, if A* + B =
o, we have

c-b

(a). Ifc-b be an odd number, the origin is a cusp of the
second species.

()3) . If c - b be even, the origin is a double cusp or a con

jugate point according as C is positive or negative.

(3). 2a &amp;lt; b, or b = 2a + h.

Here y = Axa xa
&amp;lt;/A

z + Bxh + Cxc~za
,

and the curve evidently extends at both sides of the origin,
which accordingly is a double cusp.

This method of investigating curvature is capable of being
modified so as to apply to the case of multiple points of a

higher order
;
the discussion, however, is neither sufficiently

elementary, nor sufficiently important, to be introduced here.

255. Points on volute corresponding to Cusps on
Curve. In connexion with evolutes and involutes, the pre
ceding results lead to a few interesting conclusions.

(i). If a curve has a cusp of the first species, its evolute
in general passes through the cusp. However, if in addition
the cusp be a point of inflexion, the normal at it is an asymp
tote to the evolute.

(2). To a cusp of the second species corresponds in general
a point of inflexion on the evolute : in some cases the point
of inflexion lies altogether at infinity.

(3). To a double cusp corresponds a double tangent to the

evolute.
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256. Equation of the Osculating Conic. As an

additional illustration of the principles involved in the pre

ceding investigation, it is proposed to discuss the question of

the conic which osculates an algebraic curve at a given point.

Transferring the origin to the point, and taking the tangent
as axis of #, the equation of the curve may be written in the

form

ay = a

+ &c. + d x* + &c. (33)

In considering the form of the curve near the origin, as a

first approximation we may, as in Art. 251, neglect xy, y\ &c.,

in comparison with y ;
and #3

,
#4

, &c., in comparison with x*
;

thus the equation reduces to the form

ay = a?. (34)

Hence the form to which every curve of finite curvature

approximates in the limit is that of the common parabola, as

already seen in Art. 231.
To proceed to the next approximation, we retain terms of

the third order (remembering that when x is a very small

quantity of the first order, y is one of the second), and the

equation becomes

ay = a? +

On substituting ay instead of xz
in the term #3

,
the pre

ceding equation becomes

ay = x* + (! + bQa)xy. (35)

This represents a conic having contact of the third order
with the proposed curve at the origin. When x + b a =

o, the

parabola ay = x2 has a contact of the third order at the origin,
and accordingly so also has the osculating circle.

In proceeding to the next and final approximation, we re

tain terms of the fourth order, and we get

(36)
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Moreover, from the preceding approximation we have

b axy = hx3 + b xz

y (a { + abQ).

Hence, we get for the equation of the conio having a

contact of the closest kind with the given curve

(37)

This conic, since it has the closest contact possible with

the given curve at the origin, is the osculating conic (Art. 246)

for that point.
In like manner the parabola

since it has the closest contact possible for a parabola, is the

osculating parabola at the point.
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EXAMPLES.

1. Prove that the radius of curvature at the vertex of a parabola is equal to
its semi-latus rectum.

2. Find the length of the radius of curvature at the origin in the curve

3. Find the radius of curvature at the origin in the curve

2
y = bo? +

cx&quot;*y. Ans. oo.

4. Prove that the locus of the centre of a conic having contact of the third
order with a given curve at a common point is a right line.

5. Prove that the locus of the centres of equilateral hyperbolas, which have
contact of the second order with a given curve at a fixed point, is a circle, whose
radius is half that of the circle of curvature at the point.

6. Prove geometrically that the centre of curvature at any point on an ellipse
is the pole of the tangent at the point, with respect to the confocal hyperbola
which passes through that point.

7. The locus of the centres of ellipses whose axes have a given direction, and
which have a contact of the second order with a given curve at a common point,
is an equilateral hyperbola passing through the point ?

8. Prove that the locus of the focus of a parabola, which has a contact of
the second order with a given curve at a given point, is a circle.

9. Prove that the radius of curvature of the curve ct
m~ l

y = xm at the origin is

zero, -, or infinity, according as m is &amp;lt;
= or &amp;gt;

2 : m being assumed to be greater

than unity.

10. Two plane closed curves have the same evolute : what is the difference

between their perimeters ?

Ans. 2nd, where d is the distance between the curves.

11. Find the radius of curvature at the oriin in the curve

find also at what points the radius of curvature is infinite.

12. Apply the principles of investigating maxima and minima to find the

greatest and least distances of a point from a given curve
;
and show that the

problem is solved by drawing the normals to the curve from the given point.

(a). Prove that the distance is a minimum, if the given point be nearer to

the curve than the corresponding centre of curvature, and a maximum if it be
further.
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(b). If the given point be on the evolute, show that the solution arrived at

is neither a maximum nor a minimum
;
and hence show that the circle of curva

ture cuts as well as touches the curve at its point of contact.

13. Find an expression for the whole length of the evolute of an ellipse.

3 -3
Ans. 4- .

ab

14. Find the radii of curvature at the origin of the two branches of the curve

C Q*

s*- ax 2-
y axy

1
*- + azy

z = o. Ans. a and -.
2 4

15. Prove that the evolute of the hypocycloid

a* + */l
= al

is the hypocycloid
(a + 0)1 + (a

-
0)1 = 2ai.

1 6. Find the radius of curvature at any point on the curve

y + */ x
(

i x)
=

sin&quot;
1
*yx.

17. If the angle between the radius vector and the normal to a curve has a

maximum or a minimum value, prove that y = r
; where 7 is the semi-chord of

curvature which passes through the origin.

18. If the co-ordinates of a point on a curve be given by the equations

x - c sin 20 (i + cos 20), y = c cos 20 (i
- cos 20),

find the radius of curvature at the point. Ans. 40 cos 30

19. Show that the evolute of the curve

rz - a2 = Hip*
1

has for its equation
r2 - (i

- f) a2 = mp\

20. If a and jB be the co-ordinates of the point on the evolute corresponding

to the point (#, y} on a curve, prove that

^ ^ + l = o.
dx dfi

21. If p be the radius of curvature at any point on a curve, prove that the

radius of curvature at the corresponding point in the evolute is
;
where u&amp;gt;

is the angle the radius of curvature makes with a fixed line.

22. In a curve, prove that

dx ds
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23. Find the equation of the evolute of an ellipse by means of the eccentric

angle.

24. Prove that the determination of the equation of the evolute of the

curve y = kx&amp;gt;
1 reduces to the elimination of x between the equations

n 2 7s
2 w2

,
2n I

x a:
2

&quot;
1

,
and =

n - i n- i

25. In figure, Art. 239, if the tangent to the evolute at P meet the parabola
in a point H, prove that UN is perpendicular to the axis of the parabola.

26. If on the tangent at each point on a curve a constant length measured
from the point of contact be taken, prove that the normal to the locus of the

points so found passes through the centre of curvature of the proposed curve.

27. In general, if through each point of a curve a line of given length be
drawn making a constant angle with the normal, the normal to the curve locus

of the extremities of this line passes through the centre of curvature of the pro
posed. (Bertrand, Gal. Dif., p. 573.)

This and the preceding theorem can be immediately established from geome
trical considerations.

28. If from the points of a curve perpendiculars be drawn to one of its tan

gents, and through the foot of each a line be drawn in a fixed direction, pro
portional to the length of the corresponding perpendicular ;

the locus of the

extremity of this line is a curve touching the proposed at their common point.
Find the ratio of the radii of curvature of the curves at this point.

29. Find an expression for the radius of curvature in the curve p =
V/w2-r

p being the perpendicular on the tangent.

30. Being given any curve and its osculating circle at a point, prove that
the portion of a parallel to their common tangent intercepted between the two
curves is a small quantity of the second order, when the distances of the point
of contact from the two points of intersection are of the first order.

Prove that, under the same circumstances, the intercept on a line drawn
parallel to the common normal is a small quantity of the third order.

31. In a curve referred to polar co-ordinates, if the origin be taken on the

curve, with the tangent at the origin as prime vector, prove that the radius of

3urvature at the origin is equal to one-half the value of in the limit.
6

32. Hence find the length of the radius of curvature at the origin in the

curve r = a sin nd. Am. p = .

33. Find the co-ordinates of the centre of curvature of the catenary; and
show that the radius of curvature is equal, but opposite, to the normal.

34. If p, p be the radii of curvature of a curve and of its pedal at corre

sponding points, show that

p (2r*-pp)=f*.
2nd. Civ. Ser. Exam., 1878.
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CHAPTER XVIII.

ON TRACING OF CURVES.

257. Tracing Algebraic Curves. Before concluding the
discussion of curves, it seems desirable to give a brief state
ment of the mode of tracing curves from their equations.

The usual method in the case of algebraic curves consists
in assigning a series of different values to one of the co-ordi

nates, and calculating the corresponding series of values of
the other

;
thus determining a definite number of points on

the curve. By drawing a curve or curves of continuous cur
vature through these points, we are enabled to form a tolerably
accurate idea of the shape of the curve under discussion.

In curves of degrees beyond the second, the preceding
process generally involves the solution of equations beyond
the second degree : in such cases we can determine the series

of points only approximately.
258. The following are the principal circumstances to be

attended to :

(i). Observe whether from its equation the curve is sym
metrical with respect to either axis; or whether it can be
made so by a transformation of axes. (2). Find the points
in which the curve is met by the co-ordinate axes. (3). De
termine the positions of the asymptotes, if any, and at which
side of an asymptote the corresponding branches lie. (4). De
termine the double points, or multiple points of higher orders,
if any belong to the curve, and find the tangents at such

points by the method of Art. 212. (5). The existence of

ovals can be often found by determining for what values of

either co-ordinate the other becomes imaginary. (6). If the

curve has a multiple point, its tracing is usually simplified by
taking that point as origin, and transforming to polar co-or

dinates : by assigning a series of values to we can usually
determine the corresponding values of r, &c. (7). The points
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where the y ordinate is a maximum or a minimum are found

from the equation -f
= o : by this means the limits of the

dx
curve can be often assigned. (8). Determine when possible
the points of inflexion on the curve.

259. To trace the Curve
posed positive.

In this case the origin is

a conjugate point, and the

curve cuts the axis of x at a

distance OA = a. Again,
when x is less than #, y is

imaginary, consequently no

portion of the curve lies to

the left-hand side of A.
The points of inflexion, I

and 1
,
are easily determined

from the equation -=-f
= o

;
the

ax

x* (x
-

a) ;
a being sup

Fig. 38-

OA
corresponding value of x is

; accordingly AN =
o o

Again, if TI be the tangent at the point of inflexion 7, it

a AN
can readily be seen that TA = - = -

.

9 3

This curve has been already considered in Art. 213, and
is a cubical parabola having a conjugate point.

260. Cubic with three Asymptotes. We shall next

consider the curve*

y*x + ey = ax* + bx* + ex + d, (i)

where a is supposed positive.
The axis of y is an asymptote to the curve (Art. 200), and

the directions of the two other asymptotes are given by the

equation

if
- ax2 =

o, or y =

* This investigation is principally taken from Newton s Enumeratio Li-

nearum Tertii Ordinis.

Y 2
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If the term W be wanting, these lines are asymptotes ;
if b

be not zero, we get for the equation of the asymptotes

/-a /- b

y = x */a +
, y -f x

&amp;lt;/a
+ - = o.

2

On multiplying the equations of the three asymptotes

together, and subtracting the product from the equation of

the curve, we get

ey = (c } x + d :^
this is the equation of the right line which passes through the

three points in which the cubic meets its asymptotes. (Art.

204.)

Again, if we multiply the proposed equation by x, and

solve for xy, we get

e I e
2

xy =
\ax^ + bx* + ex* + dx + -: (2)

2 \ 4

from which a series of points can be determined on the curve

corresponding to any assigned series of values for x.

It also follows that all chords drawn parallel to the axis
/&amp;gt;

of y are bisected by the hyperbola xy +
- = o : hence we infer

that the middle points of all chords drawn parallel to an

asymptote of the cubic lie on a hyperbola.
The form of the curve depends on the roots of the bi

quadratic under the radical sign. (i). Suppose these roots

to be all real, and denoted by a, |3, 7, S, arranged in order of

increasing magnitude, and we have

e / -/-

xy = -
-&amp;lt;/a(x-

Now when x is &amp;lt; a, y is real
;
when x &amp;gt; a and &amp;lt;

/3, y is

imaginary ;
when x &amp;gt; ]3 and &amp;lt; 7, y is real

;
when x &amp;gt; 7 and

&amp;lt; 8, y is imaginary ;
when x &amp;gt;

, y is real.
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We infer that the curve consists of three branches, extending
to infinity, together
with an oval lying
between the values

]3 and 7 for x.

The accompany
ing figure* repre
sents such a curve.

Again, if either

the two greatest
roots or the two
least roots become

equal, the corres

ponding point be

comes a node.

If the interme

diate roots become FiS- 39-

equal, the oml shrinks into a conjugate point on the curve.

If three roots be equal, the corresponding point is a cusp.

If two of the roots be impossible and the other two un

equal, the curve can have neither an oral nor a double point.
If the sign of a be negative, the curve has but one real

asymptote.
261. Asymptotes. In the preceding figure the student

will observe that to each asymptote correspond two infinite

branches
;
this is a general property of algebraic curves, of

which we have a familiar instance in the common hyperbola.

By the student who is acquainted with the elementary
principles of conical projection the preceding will be readily

apprehended ;
for if we suppose any line drawn cutting a

closed oval curve in two points at which tangents are drawn,
and if the figure be so projected that the intersecting line is

sent to infinity, then the tangents will be projected into

asymptotes, and the oval becomes a curve in two portions,
each having two infinite branches, a pair for each asymptote,
as in the hyperbola.

The figure is a tracing of the curve

9*y
3 + ic% = (x

-
5) (x

-
II) (x

-
12).
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It should also be observed that the points of contact at

infinity on the asymptote in the opposite directions along it

must be regarded as being one and the same point, since they
are the projection of the same point. That the points at

infinity in the two opposite directions on any line must be

regarded as a single point is also evident from the considera

tion that a right line is the limiting state of a circle of in

finite radius.

The property admits also of an analytical proof; for if

the asymptote be taken as the axis of #, the equation of the

curve (Art. 204) is of the form

y\ + fa
=

o, or y =
,

where fa is at least one degree lower than : in x and y.

Now, when x is infinitely great, the fraction becomes in

general infinitely small, whether x be positive or negative ;

and consequently the axis is asymptotic to the curve in both

directions.

262. To trace the Curve Y

where a and b are both positive.

Here ya? =xi

(x + 6)4.

The curve is symmetrical with respect

to the axis of a?, and has two infinite

branches ;
the origin is a double cusp.

The shape of the curve is exhibited in the

figure annexed. Fig. 40.

If 6 were negative, we should have

ycfi
= a? (x 6)4.

Here y becomes imaginary for values of x less than 6
;

accordingly, the origin is a conjugate point in this case : the

curve has two infinite branches as in the former case

263. To trace the Curve
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From the form of its equation we see that the origin is

a point of oscu /-inflexion (Art. 251).

Solving for y, we can easily

determine any number of points
on the curve we please. It has

two infinitebranches at opposite
sides of the axis of x, and a loop
at the negative side of that axis,

as exhibited in the figure.

264. To trace tlic Curve

x* + a*y + y*
= x (ax*

-
faf).

(i). Let a and b have the

same sign, then the origin is

a triple point, having for its

tangents the lines

x =
o, x */a + y vb =

o,

and x*a-y

Fig. 42.

Moreover, since the curve

has no real asymptote, it is

a finite or closed curve with

three loops passing through the

origin ;
and it is easily seen that its shape

is that represented in the accompanying

figure.

(2). If a and b have opposite signs, the

lines represented by ax* - bif
= o become

imaginary. The curve in this case consists

of a single oval as in the figure.

This and the preceding figure
^

were

traced for the case where b = 3^ : if the

value of - be altered, the shape of the curve

will alter at the same time. If a be greater than b, the

curve (2) will lie inside the tangent at the point A.

2 65 Form of Curve near a Double Point. W nen-

ever the curve has a node or a cusp, by transforming the

origin to that point, the shape of the curve for the branches

Fig- 43-
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passing through the point admits of being investigated by the
method explained in Arts. 250, 251. It is unnecessary to
enter into detail on this subject here, as it has been already
discussed in the articles referred to.

266. In connexion with the tracing and the discussion of
curves there is an elementary general principle which may
be introduced here.

If the equation of a curve be of the form

LL - MMf =
o,

where Z, M, Z ,
Mf

are each functions of the co-ordinates x
and y, the

_

curve evidently passes through all the points
of intersection of the curves represented by the equationsL = o and H = o

; similarly it passes through the intersec
tions of L = o and M = o

;
and also those of M = o and

Lr = o
;
and of L&quot;

= o
and^
M = o. Moreover, if L and L f

become identical, the points of intersection coincide in

pairs, and the equation of the curve becomes of the form
Lz - MM = o

;
which represents a curve touching the curvesM =

o, Mf =
o, at their points of intersection with the curve

L = o.

This principle admits of easy extension
;
but as the subject

belongs properly to the method of trilinear co-ordinates, it is

not considered necessary to enter more fully into it here.

267. On Tracing Curves given in Polar Co-ordi
nates. The mode of procedure in this case does not differ

essentially from that for Cartesian co-ordinates. We have

already, in Arts. 206 and 207, considered the method of

finding the asymptotes and asymptotic circles in such cases.

It need scarcely be observed that the number and variety of
curves whose discussion more properly comes under the
method of polar co-ordinates are indefinite. We propose to

confine our attention to a few varieties of the class of curves

represented by the equation

rm = am cos mO.

268. On the Curves rm = am cos mO. In this case,
since the equation is unaltered when is changed into -

0,

the curve is symmetrical with respect to the prime vector :

again, when =
o, we have r = a

;
and as 6 increases from zero
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to ,
r diminishes from a to zero. When m is a positive in-

2m

teger, it is easily seen that the curve consists of m similar loops.

There are many familiar curves included under this

equation. Thus, when m = i
,
we have r = a cos 0, which

represents a circle: again, if m = -
i, the equation gives

r cos =
a, which represents a right line. Also, if m= 2, we

have r2 = tf
2
cos 20, a Lemniscate (Art. 210). If m = -

2, we

get r2 cos 26 = 2

,
an equilateral hyperbola.

jf m _ i we get rs = ah cos -, whence r = -
(i + cos 0), a

cardioid (Ex. 4, p. 232) ;
with m = -

-, itisr* cos - =
&amp;lt;?*,

a

parabola (Ex. i, p. 231) ;
and so on. As already observed,

if we change m into - m we get a new curve, inverse of

the original. Also, the reciprocal polar is obtained by sub

stituting - instead of m.
m + i

The tangent and normal can be immediately drawn at

any point on a curve of this class by aid of the results arrived

at in Art. 190. The radius of curvature at any point has

been determined in Ex. 5, Art. 235. The method of finding

the equations of the successive pedals, both positive and

negative, has been also already explained.
A few examples in the case of fractional indices are here

added.

Example i.

yi = #8 COS .

3

Here when = o, we have r =
a,

and the curve cuts the prime vector

at a distance OA equal to a : again,

when 9 = -, r = J
--^-: also when

2 o

The shape of the curve is given in the accompanying

figure. This curve is the inverse of the caustic considered in

Example 18, p. 277.
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Ex. 2. Ex. 3. Ex. 4.

cos -r* = r/f cos- 9. r* = a* cos - 0. H =
4 5 3

In Ex. 2, as increases from zero to 120, r diminishes
from a to zero : when 9 increases
from 120 to 240, r increases from
zero to a: when 9 increases from
240 to 360, r diminishes from a
to zero. By assigning negative
values to 9, the remaining part of
the curve is seen to be symmetrical
with that traced as above. The
same result plainly follows by con

tinuing the values for 9 from 360
up to 720. The form of the curve
is exhibited in the annexed figure. FI-. 45 .

In Ex. 3, according as cos - 9 is positive or negative, we

get equal and opposite real values, or imaginary values, for r.

Hence it is easily seen that for values of 9 between -
TT the

8
radius vector traces out two symmetrical portions of the

curve : again, between TT and
-^ TT we get two other

Fig. 46. Fig. 47.

symmetrical portions. The shape is that given in the former
of the two accompanying figures.
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The latter figure represents the curve in Ex. 4 ;
it consists

of five symmetrical portions ranged round the origin.

The results above stated admit of generalization, and it

can be shown, without difficulty, that in general the curve

r^ = cfl cos consists of p similar portions arranged about
q

the origin; and that the entire curve is included within a

circle of radius a when p is positive, but lies altogether
outside it when p is negative.

Many curves can be best traced by aid of some simple

geometrical property. We shall terminate the Chapter with

one or two examples of such curves.

269. The Umavoii. The inverse of a conic section

with respect to a focus is called a Limacon. From the polar

equation of a conic, its focus being origin, it is evident that

the equation of its inverse may be written in the form

r = a cos + ft,

where a and b are constants.

It is easily seen that - is the eccentricity of the conic.

The curve can be readily traced by drawing from a fixed

point on a circle any number of chords, and taking off a

constant length on each of these lines, measured from the

circumference of the circle.

If a be less than ft, the curve is the inverse of an ellipse,

and lies altogether outside the circle.

If a be greater than ft,
the

curve is the inverse of a hy
perbola, and its form can be

easily seen to be that exhibited

in the .annexed figure, where
OD = a -

ft, and the point is a

node on the curve.

If ft = 0, the curve becomes
the inverse of the parabola,
and is called a cardioid. The
inner loop disappears in this

case, and the origin is a cusp
on the curve. Fig. 48,
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&quot;When a= 2b, the Limacon is called the Trisectrix ; a
curve by aid of which any given angle can be readily
trisected.

270. The Conchoid of Nicomedes. If through any
fixed point A a secant P^AP be
drawn meeting a fixed right line LM
in It, and RP and RP, be taken
each of the same constant length ;

then the locus of P and P l is called

the conchoid.

This curve is easily traced from
the foregoing geometrical property,
and it consists of two branches,

having the right line LH for a

common asymptote. Moreover, if

the perpendicular distance AB of

A from the fixed line be less than

RP, the curve has a loop with a

node at A, as in the annexed figure.
It is easily seen that when

AB = RP, the point A is a cusp
on the curve

;
and when AB is

greater than RP, A is a conjugate

point.
The form of the curve in the Fig. 49.

latter case is represented by the dotted lines in the figure.
If AB =

a, RP =
b, the polar equation of the curve is

(r b) cos 9 = a.

When transformed to rectangular co-ordinates, this

equation becomes

(a* a - b
z x\

The method of drawing the normal, and finding the

centre of curvature, at any point, will be exhibited in the

next Chapter.
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EXAMPLES.

1. Trace the curve y (x
-

i) (x 2) (x 3), and find the position of its

point of inflexion.

2. Trace the curve y
3 - $axy + x3 =

o, drawing its asymptote.

This curve is called the Folium of Descartes.

3. Tra the curve a?x = y (W- + #2
), and find its points of inflexion, and

points of greatest and least distance from the axis of x.

4. If an asymptote to a curve meets it in a real finite point, show that the

corresponding branch of the curve must have a point of inflexion on it.

5. Find the position of the asymptotes and the form of the curve

= o.

6. Show that the curve r = a cos 20 consists of four loops, while the curve
r = a cos 30 consists of but three. Prove generally that the curve r = a cos nd
has n or 2n loops according as n is an odd or even integer.

7. Trace the curve

y
2
(x
-

a}(x
-

b]
= c*(x + a)(x + b).

8. Show that the curve x*y* + #4 = a2
(x

z
y2

)
consists of two loops passing

through the origin, and find the form of the curve.

9. Trace the curve y(x + a)*
= bzx(x + c)

2
, showing the positions of its

asymptotes and infinite branches.

10. Trace the curve whose polar equation is

r = a cos0 + b cos 20,

ttnd show that it consists of four loops passing through the origin.

11. Giyen the base and the rectangle under the sides of a triangle, find the

equation of the locus of the vertex (an oval of Cassini). Exhibit the different
forms of the curve obtained by varying the constants, and find in what case the
curve becomes a Lemniscate.

12. Trace the curve y* = ax* + tfx* + ^cx+ d, and find its points ofgreatest
and least distance from the axis of x.

Show that two of these points become imaginary when the roots of the cubic
in x are all real.

13. Given the base and area of a triangle, prove that the equation of the
locus of the centre of a circle touching its three sides is of the form

xty
- a (x* + y*}

- F (y
-

a) = o.
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14. Prove that all curves of the third degree are reducible to one or other of

the forms

(i). xy
1 + ey = aoj3 + bx* + ex + d.

(2). xy = ax3 + bx* + ex + d.

(3). y
z = ax3 + bx* + ex + d.

(4). y = ax3 + bx2 + ex + d.

Nawton, JEnum. Linear. Ter. Ordinis.

15. Prove that all curves of the third degree can be obtained by projection
from the parabolas contained in class (3) in the preceding division. [Newton.]

For every cubic has at least one real point of inflexion : accordingly, if the

curve be projected so that the tangent at the point of inflexion is projected to

infinity, the harmonic polar (Art. 223) will bisect the system of parallel chords

passing through this point at infinity. Hence the projected curve is of the

class (3). [This proof is taken from Chasles, Histoire de la Geometric, note xx.]

1 6. Trace the curve r = --, and show that it has a point of inflexion
Q~ i

when d- = 3 ;
find also its asymptotes and asymptotic circle.

17. Trace the curve y = a sin-, and show how to draw its tangent at any

point. (This is called the curve of sines.)

1 8. The base of a triangle is fixed in position ;
find the equation of the locus

of its vertex, when the vertical angle is double one of the base angles.

Trace the locus in question, finding the position of its asymptote.

19. Show geometrically that the first pedal of a circle with respect to a

point on its circumference is a cardioid.

20. Show in like manner that the Lima9on is the first pedal of a circle with

respect to any point.

21. Trace the curve

= am? -f #4
,

and find the equations of its asymptotes, and of the tangents at the origin.
Ind. Civ. Ser. Ex., 1876.
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CHAPTEE XIX.

ROULETTES.

271. Roulettes. When one curve rolls without sliding

upon another, any point invariably connected with the rolling
curve describes another curve, called a roulette.

The curve which rolls is called the generating curve, the

fixed curve on which it rolls is called the directing curve, or

the base, and the point which describes the roulette, the tracing

point. We shall commence with the simplest example of a

roulette : viz., the cycloid.

272. The Cycloid. This curve is the path described by
a point on the circumference of a circle, which is supposed to

roll upon a fixed right line.

The cycloid is the most important of transcendental

curves, as well from the elegance of its properties as from its

numerous applications in Mechanics.

We shall proceed to investigate some of the most

elementary properties of the curve.

Let LPO be any position of the rolling circle, P the

generating point, the point of N
r

L B
contact of the circle with the fixed

line. Take the length AO equal
to the arc PO, then, from the

mode of generation of the curve,

A is the position of the generating

point when in contact with the Fis- 5

fixed line ; also, if AA be equal to the circumference of the

circle, A will be the position of the point at the end of one

complete revolution of the circle. Bisect AA in D, and
draw DB perpendicular to it and equal to the diameter of

the circle, then B is evidently the highest point in the

cycloid. Draw PN perpendicular to AA
,
and let PN =

y,

AN =
a?, L PCO =

0, 00 =
a, and we get

0(0- sin 0), y = PN=a(i -cos0). (i)

AN A
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The position of any point on the cycloid is determined by
these equations when the angle is known, i. e. the angle
through which the circle has rolled, starting from the position
for which the generating point is upon the directing line.

2 73- Cycloid referred to its Vertex. It is often

convenient to refer the cycloid to its vertex as origin, and to

the tangent and normal at that point as axes of co-ordinates.

In the preceding figure let

then we have

* = BN = a(6 + sin ), y = PN = a (i
- cos ). (2)

274. Tangent and Normal to Cycloid. It can be

easily seen that the line PO is normal at P to the cycloid ;

for the motion of each point on the circle at the instant is one
of rotation about the point 0, i. e. each point may be regarded
as describing at the instant an infinitely small circular* arc

whose centre is at : and hence PO is normal to the curve.

This result can also be established from the values of x

and y in ( i
)

: for

dx dy= (i-cos0), = flsm0: .(3)

dy sin ,0 n T ~
.-. -f = - = cot - = cot PLO

;

dx i - cos 2

and, accordingly, PL is the tangent, and PO the normal to

the curve at P.

Again, if we square and add the values of and
-^,

we

obtain

=
= az

{(i
- cos 0)

2 + sin
2

0)
=

du

* This method of finding the normal to a cycloid is due to Descartes, and

evidently applies equally to all roulettes.
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hence
d8 * B/l= 2# sm- = PO.
dO 2

(4)

275. Radius of Curvature and Evolute ofCycloid.
Let p denote the radius of curvature at the point P, and

then
ds ds

From this

Fig. 51.

or the radius of curvature is double the normal,

value of p the evolute of the curve

can be easily determined. For,

produce PO until OP = OP, then

P is the centre of curvature be

longing to the point P. Again,

produce LO until 00 =
OL^

and

describe a circle through 0, P and
Of

;
this circle evidently touches

AA
,
and is equal to the generating

circle ZPO.
Also, the arc OP = arc OP = AO ;

.-. arc OP = OP O - P O = AD - AO = OD = B O .

Hence the locus of P is the cycloid got by the rolling of

this new circle along the line

B O
,
and accordingly the evo

lute of a cycloid is another

cycloid. It is evident that the

evolute of the cycloid ABA
is made up of the two semi-

cycloids, AB
f

and B*A, as in

figure 51. Conversely, the

cycloid ABA is an involute of

the cycloid AB A.
The position of the centre of

curvature for a point P on a

cycloid can also be readily de

termined geometrically, as fol

lows :

Suppose Oi a point on the

Circle infinitely near to 0, and take

z

00,
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be the centre of curvature required, and draw POi and P 2 ,

Now suppose the circle to roll until Oi and 2 coincide, then
002 becomes perpendicular to AD, and POi and P 2 will

lie in directum (since P is the point of intersection of two
consecutive normals to the cycloid). Hence

L OCO, = L PO,Q = L OPO, + L OPO,,

since each side of the equation represents the angle through
which the circle has turned.

But L 000, = 2 LOP 0,. (Euclid, III. 20.)

Hence L OPOl
= L OP O^,

/. P01
= P 1 ;

and consequently in the limit we have

PO = P O,
as before.

&quot;We shall subsequently see that a similar method enables

us to determine the centre of curvature for a point in any
roulette.

276. Length ofArc ofCycloid. SinceAP B (Fig. 51)
is the evolute of the cycloidAPB, it follows, from Art. 2 3 7, that

the arc AP of the cycloid is equal in length to the line PP
,

or to twice P O ; hence, as A. is the highest point in the

cycloid APB ,
it follows that the arc AP measured from the

highest point of a cycloid is double the intercept P O, made
on the tangent at the point by the tangent at the highest

point of the curve.

Hence, denoting the length of the arc AP by s, we have

s = 4$ sin P OD = 4$ sin &amp;lt;. (6)

This gives the intrinsic equation of the cycloid (see Art.

242 ()). Hence, also, the whole arc AB is four times the

radius of the generating circle : and accordingly the entire

length ABA of a cycloid is eight times the radius of its

generating circle.

Again, if the distance of Pf

from AA f

be represented by
y, we shall have

P O2 = 00 x y = 2 ay.

Hence s
2 - 4P

/ 7 = Say. , 7)
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This relation is of importance in the applications of the

cycloid in Mechanics.

Again, since AO = arc OF, if we represent AO by v, we*have

277. Trochoids. In gener.il,

right line, any point in the,

plane of the circle carried round
with it describes a curve. Such.

curves are usually styled tro-

choids. When the tracing
point is inside the circle, the
locus is called a prolate tro-

choid
;
when outside, an oblate.

the accompanying figure.

if

(8)

circle roll on a

Fig- 53-

Their forms are exhibited in

Their equations are easily determined; for, let #, y be
the co-ordinates of a tracing point P, referred to the axes
AD, and AI (A being the position for which the moving
radius CP is perpendicular to the fixed line).

Then, if CO =
a, CP =

d, L OOP =
0, we have

(9)
y = PN = a - d cos 9.

278. Epicycloids! and Hypocycloids. The investi-

and

^ O -^v*,*x^iij .*. , vv \.w \sjjiifwwv JL / Wfl-VWlslfW/ldf iO/ /l.
&quot;

J.UL

general, if a variable line, in any of its position, make an intercept v on the axis
of y, and an angle with it; then the equation of the line is

x + y cot - y = o;

and v, 0, the quantities which determine the position of the line may be called
i co-ordinates. From this it follows that any relation between v and

$&amp;gt;,

such

=/(*),

will be the tangential equation of a curve, which is the envelope of the line.&quot;

J^or
applications, the reader is referred to Professor Casey s Memoir. See also

Dub. hxam. Papers, Graves, Lloyd Exhibition, 1847.
f
I
ha

7r
in this edition adopted the correct definition of these curves as

given by Mr. Proctor in his Geometry of Cycloids. I have thus avoided the
anomaly existing in the ordinary definition, according to which every epicycloid

Z 2
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gation of the properties of the cycloid naturally gave rise to

the discussion of the more general case of a circle rolling on a

fixed circle. In this case the curve generated by any point
on the circumference of the rolling circle is called .an epicycloid,

or a hypocycloid, according as the rolling circle touches the outside,

or the inside of the circumference of the fixed circle. We shall

commence with the former case.

Let P be the position of the generating point at any in

stant, A its position when
on the fixed circle

;
then

the arc OA = arc OP.

Again, let C and (7 be

the centres of the circles,

a and b their radii,

then, since arc OA = arc

OP, we have aO = bO.

Now, suppose C taken

as the origin of rectangu
lar co-ordinates, and CA
as the axis of x

;
draw PN

and C L perpendicular,
and PM parallel, to CA, and we have

x = CN = CL - NL =
(a + b) cos 9 - b cos (9 + 9 ),

y = PN=CL- CM= (a + b)sm9-b sin (9 + );

or, substituting
- 9 for 9

,

x =
(a + b) cos 9 - b cos

j- 0,

. /

y =
(a + b) sin 9 - b sin 7 9.

(10)

is a hypocycloid, but only some hypoeycloids are epicycloids. While according

to the correct definition no epicycloid is a hypocycloid, though each can be gene

rated in two ways, as will be proved in Art. 280.
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When the radius of the rolling circle is a submultiple of

that of the fixed circle, the tracing point, after the circle

has rolled once round the circumference of the fixed circle,

evidently returns to the same position, and will trace the

same curve in the next revolution. More generally, if the

radii of the circles have a commensurable ratio, the tracing

point, after a certain number of revolutions, will return to its

original position : but if the ratio be incommensurable, the

point will never return to the same position, but will describe

an infinite series of distinct arcs. As, however, the suc

cessive portions of the curve are in every respect equal to

each other, the path described by the tracing point, from
the position in which it leaves the fixed circle until it returns

to it again, is often taken instead of the complete epicycloid,
and the middle point of this path is called the vertex of the

curve.

In the case of the hypocycloid, the generating circle rolls

on the interior of the fixed circle, and it can be easily seen

that the expressions for x and y are derived from those in (10)

by changing the sign of b
;
hence we have

x =
(a

-
b) cos B + b cos 9,

y = (a
-

b) sin 9 - b sin 9.

The properties of these curves are best investigated by
aid of the simultaneous equations contained in formulas (10)
and (n).

It should be observed that the point A, in Fig. 54, is a

cusp on the epicycloid ; and, generally, every point in which

the tracing point P meets the fixed circle is a cusp on the

roulette. From this it follows that if the radius of the rolling
circle be the nth

part of that of the fixed, the corresponding epi-

or hypo-cycloid has n cusps : such curves are, accordingly,

designated by the number of their cusps : such as the three-

cusped, four-cusped, &c. epi- or hypo-cycloids.

Again, as in the case of the cycloid, it is evident from

Descartes principle that the instantaneous path of the point P
is an elementary portion of a circle having as centre

;
ac-
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cordingly, the tangent to the path at P is perpendicular to

the line P0, and that line is the normal to the curve at P.
These results can also be deduced, as in the case of the

cycloid, by differentiation from the expressions for x and y.
We leave this as an exercise for the student.

To find an expression for an element ds of the curve at

the point P; take
,

0&quot;
,
two points infinitely near to on

the circles, and such that 00 =
00&quot;; and suppose the gene

rating circle to roll until these- points coincide :* then the
lines CO and &amp;lt;7 0&quot; will lie in directum, and the circle will

have turned through an angle equal to the sum of the angles
0(70 and 06&quot;

0&quot;; hence, denoting these angles loydO andt/0
,

respectively, we have

ds = OP (dO + d8
)
= OP(I +&amp;lt;#; (12)

since dff = r dO.
o

279. Radius of Curvature of an Epicycloid.

Suppose a) to be the angle OSN between the normal at P and
the fixed line CA, then

u = C OS-C CS = ----Q; . . &--d0[i+4i-22 ( 2b)

Hence, if p be the radius of curvature corresponding to

the point P, we get

a + 2b

Accordingly, the radius of curvature in an epicycloid is

in a constant ratio to the chord 0P, joining the generating

point to the point of contact of the circles.

* It may be observed that O O&quot; is infinitely small in comparison with Off
;

hence the space through which the point moves during a small displacement
is infinitely small in comparison with the space through which Pmoves. It is

in consequence of this property that may be regarded as being at rest for the

instant, and every point connected with the rolling circle as having a circular

motion around it.
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Fig. 55*

280. Double Generation of Epicycloids and Hypo-
cycloids. In an Epicycloid, it can be easily shown that

the curve can be generated in a second manner. For,

suppose the rolling circle in

closes the fixed circle, and join

P, any position of the tracing

point, to 0, the correspond

ing point of contact of the two

circles ;
draw the diameter OJED,

and join O E and PD ; connect

(7, the centre of the fixed circle,

to
,
and produce CO to meet

DP producedin D ,
and describe

a circle round the triangle OPD \

this circle plainly touches the

fixed circle
;
also the segments

standing on OP, O P, and 00 are obviously similar ; hence,

since OP = 00 + OP, we have

arc OP = arc 00 + arc O P.

If the arc OOA be taken equal to the arc OP, we have

arc OA = arc OP
; accordingly, the pointP describes the same

curve, whether we regard it as on the circumference of the

circle OPD rolling on the circle OO E, or on the circumference

of OPD rolling on the same circle ; provided the circles each

start from the position in which the generating point coincides

with the point A. Moreover, it is evident that the radius oj

the latter circle is the difference

between the radii of the other two.

Next, for the Hypocycloid,

suppose the circle OPD to roll

inside the circumference of OO E,
and let C be the centre of the

fixed circle ; join OP, and pro
duce it to meet the circum

ference of the fixed circle in
;

draw OE and PD, join (70 ,

intersecting PD in D
,
and de

scribe a circle round the triangle

PD O. It is evident, as be

fore, that this circle touches the Fig. 56.
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larger circle, and that its radius is equal to the difference be
tween the radii of the two given circles. Also, for the same
reason as in the former case, we have

arc 00 = arc OP + arc O P.

If the arc OA be taken equal to OP, we get arc OP
= arc aA

; consequently, the point P will describe the same
hypocycloid on whichever circle we suppose it to be situated,
provided the circles each set out from the position for whichP coincides with A.

The particular case, when the radius of the rolling circle is
half that of the fixed circle, may be noticed. In this case the
point D coincides with (7, and P becomes the middle point of
00

,
and A that of the arc 00 . From this it follows im

mediately that the hypocycloid described by P becomes the
diameter CA of the fixed circle. This result will be proved
otherwise in Art. 285.

The important results of this Article were given by Euler
(Ada. Petrop., 1781). By aid of them all epicycloids can be
generated by the rolling of a circle outside another circle

;

and all hypocycloids by the rolling of a circle whose radius
is less than half that of the fixed circle.

^

2 8 1. Evolute of an Epicycloid. The evolute of an
epicycloid can be easily
seen to be a similar epi

cycloid.

For, let P be the trac

ing point in any position,
A its positionwhen on the
fixed circle

; join P to 0,
the point of contact of the

circles, and produce PO
L&amp;gt;1 TTV /-i-T 2Cl + 2 ^

until PP = OP - r ,

a + 2b

then P is the centre of

curvature by (13) ;
hence

OP = OP -^_.
a + 20 Fig. 57.

Next, draw P O perpendicular to P O; circumscribe the
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triangle OP O by a circle
;
and describe a circle with as

centre, and CO as radius : it evidently touches the circle OP (7.

Then 00 : OE = OF : OP = a : a + 26 = CO : CE;

or CO :CO=CO:CE ,

that is, the lines CE, CO, and CO are in geometrical pro

portion.

Again, join C to J5
,
the vertex of the epicycloid ;

let CI?
meet the inner circle in D, and we have

arc OD : arc OB = CO : CO=CO : CE=(?0:EO

= arcP : arc OQ.

But arc OS = arc OQ ;
.-. arc 07) = arc P(f.

Accordingly, the path described by P
f

is that generated by a

point on the circumference of the circle OP O rolling on the

inner circle, and starting when P is in contact at D. Hence
the evolute of the original epicycloid is another epicycloid.
The form of the evolute is exhibited in the figure.

Again, since CO : OE = CV : VO, the ratio of the radii

of the fixed and generating circles is the same for both epicy

cloids, and consequently the evolute is a similar epicycloid.

Also, from the theory of evolutes (Art. 237), the line

PP is equal in length to the arc P A of the interior epicy
cloid

;
or the length of P A, the arc measured from the

vertex A of the curve, is equal to

Hence, the length* of any portion of the curve measuredfrom
its vertex is to the corresponding chord of the generating circle as

twice the sum of the radii of the circles to the radius of the fixed
circle.

* The length of the arc of an epicycloid, as also the investigation of its

evolute, were given by Newton (Principia, Lib. i., Props. 49, 50).
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With reference to the outer epicycloid in Fig. 57 this

gives

..
The corresponding results for the hypocycloid can be

found by changing the sign of the radius b of the rolling
circle in the preceding formulas.

The investigation of the properties of these curves is of

importance in connexion with the proper form of toothed
wheels in machinery.

282. Pedal of Epicycloid. The equation of the pedal,
with respect to the centre of the
fixed circle, admits of a very
simple expression. For let P be
the generating point, and, as be

fore, take arc OA = arc OP, and
make AB = 90. Join CA, OB,
OP, and draw CN perpendicular
to DP. Let L PDO = L BON

Then sinceAO = PO, we have

n i n 2 b
av =

2bd&amp;gt; ; .*. 9 = 0.

Again, w = go-AON=0 +
2V

I + Fig. 58-

hence

Also

.*. p = (a + zb) sin r,
a + 2b

(15)

(16)

which is the equation of the required pedal.
2 83 . Equation of Epicycloid in terms of r and p.

Again, draw OL parallel to DN, and let &amp;lt;7P
=

r, and we have

r~-p* = PN2 = OLZ = 00* - CD = a2 - U2

;

\a + 2l
r
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--^-
Also, from (16) it is plain that the equation of DN, the tan

gent to the epicycloid (referred to CB and CA as axes of x

and y respectively), is

a? cos to + y sinw =
(a + 2b) sin-7. (18)

a ~\~ 20

The corresponding formulae for the hypocycloid are

obtained by changing the sign of b in the preceding equa
tions.

Again, it is plain that the envelope of the right line re

presented by equation (
1 8) is an epicycloid. And, in general,

the envelope of the right line

x cos & + y sin o&amp;gt;

= k sin
mo&amp;gt;,

regarding w as an arbitrary parameter, is an epicycloid, or a

hypocycloid, according as m is less or greater than unity. For

examples of this method of determining the equations of epi-

and hypo-cycloids the student is referred to Salmon s Higher
Plane Curves, Art. 310.

284. Epitrochoids and Hypotroclioids. In general,

when one circle rolls on another, every point connected with

the rolling circle describes a distinct curve. These curves are

called epitrochoids or hypotrochoids, according as the rolling

circle touches the exterior or the interior of the fixed circle.

If d be the constant distance of the generating point from

the centre of the rolling circle, there is no difficulty in

proving, as in Art. 278, that we have in the epitrochoid the

equations

x =
(a + b) cos 9 - d cos 7 0,

= (a + b) sin 9 - d sin r 0.
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In the case of the hypotrochoid, changing the signs of I

and d, we obtain

x =
(a

-
b) cos 9 + d cos 0,

]

y =
(a
-

b) sin 6 - d sin 0.

(20]

In the particular case in which a = 26, i.e. when a circle

rolls inside another of double its diameter, equations (20)
become

x =
(b + d) cos 0, y =

(b
-

d) sin ;

and accordingly the equation of the roulette is

(b + d)* (b-d)
&amp;lt;

which represents an ellipse whose semi-axes are the sum and
the difference of b and d.

This result can also be established geometrically in the

following manner :

285. Circle rolling inside another of double its

Diameter. Join Ci and to any

point L on the circumference of the

rolling circle, and let CiL meet the

fixed circumference in A
;
then since

L OCL = 20dA, and Od = 200, we
have arc OA = arc OL ; and, accord

ingly, as the inner circle rolls on the

outer the point L moves along CiA.

In like manner any other point on

the circumference of the rolling circle

describes, during the motion, a dia

meter of the fixed circle.

Again, any point P, invariably connected with the rolling

circle, describes an ellipse. For, if L and M be the points in

which CP cuts the rolling circle, by what has been just

shown, these points move along two fixed right lines C\A

and CiB, at right angles to each other. Accordingly, by a

Fig- 59-
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well-known property of the ellipse, any other point in the

line LM describes an ellipse.

The case in which the outer circle rolls on the inner is

also worthy of separate consideration.

286. Circle rolling on another inside it and of

half its Diameter. In this case, any diameter of the rolling

circle ahvays passes through a fixed point, which lies on the

circumference of the inner circle.

For, let dL and C2L be any two positions of the moving
diameter, C\ and C-2 being the corresponding positions of the

centre of the rolling circle : and 2 the corresponding posi

tions of the point of contact of the circles. Now, if the outer

circle roll from the former to the latter position, the right

lines CiOz and C02 will coincide in

direction, and accordingly the outer

circle will have turned through the

angle CzOz Ci ; consequently, the mov

ing diameter will have turned

through the same angle ;
and hence

L CzLCi = L Cz 2Ci ;
therefore the

point L lies on the fixed circle, and

the diameter always passes through
the same point on this circle.

Again, any right line connected

with the rolling circle will ahvays touch

a fixed circle.

For, let DE be the moving line in any position, and draw

the parallel diameter AB\ let fall C\F andLM perpendicular

to DE. Then, by the preceding, AB always passes through

a fixed point Z; also LM = dF= constant ;
hence DE always

touches a circle having its centre at L.

Again, to find the roulette described by any carried point

PL The right line Pjd, as has been shown, always passes

through a fixed point L ; consequently, since C,Pl is a con

stant length, the locus ofP l is a Limagon (Art. 269). In like

manner, any other point invariably connected with the outer

circle describes a Limacon ;
unless the point be situated on

the circumference of the rolling circle, in which case the

locus becomes a cardioid.

Fig. 60.
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1. When the radii of the fixed and the rolling circles become equal, prove
geometrically that the epicycloid becomes a cardioid, and the epitrochoid a

Lima^on (Art. 269).

2. Prove that the equation of the reciprocal polar of an epicycloid, with

respect to the fixed circle, is of the form

r sin mu&amp;gt;
= const.

3. Prove that the radius of curvature of an epicycloid varies as the perpen
dicular on the tangent from the centre of the fixed circle.

4. If a = 40, prove that the equation of the hypocycloid becomes

5. Find the equation, in terms of r and p, of the three-cusppd hypocycloid ;

i. e. when a = $b. Ans. r* = a? %p
z
.

6. Find the equation of the pedal in the same curve.

Ans. p = b sin 3.
7. In the case of a curve rolling on another which is equal to it in every

respect, corresponding points being in contact, prove that the determination of

the roulette of any point P is immediately reduced to finding the pedal of the

rolling curve with respect to the point P.

8. Hence, if the curves be equal parabolas, show that the path of the focus

is a right line, and that of the vertex a cissoid.

9. In like manner, if the curves be equal ellipses, show that the path of the

focus is a circle, and that of any point is a bicircular quartic.

10. In Art. 285, prove that the locus of the foci of the ellipses described by
the different points on any right line is an equilateral hyperbola.

n. A is a fixed point on the circumference of a circle ; the points L and M
are taken such that arc AL = m arc AM, where m is a constant

; prove that the

envelope of LM is an epicycloid or a hypocycloid, according as the arcs AL and
AM are measured in the same or opposite directions from the point A.

12. Prove that JLM, in the case of an epicycloid, is divided internally in the

ratio m : i, at its point of contact with the envelope ; and, in the hypocycloid,

externally in the same ratio.

13. Show also that the given circle is circumscribed to, or inscribed in, the

envelope, according as it is an epicycloid or hypocycloid.

14. Prove, from equation (14), that the intrinsic equation of an epicycloid is

4-b (a + 1} . a
s =- sm -,

a a + 20

where 5 is measured from the vertex of the curve.

15. Hence the equation s - I sin
n(f&amp;gt; represents an epicycloid or a hypo-

cycloid, according as n is less or greater than unity.
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1 6. In an epitrochoid, if the distance, d, of the moving point from the centre

of the rolling circle be equal to the distance between the centres of the circles,

prove that the polar equation of the locus becomes

**a

r = 2 (a + b) cos
a +

1 7 . Hence show that the curve

is an epitrochoid when m &amp;lt; i, and a hypotrochoid when m &amp;gt; i.

This class of curves was elaborately treated of by the Abbe Grandi in the

Philosophical Transactions for 1723. He gave them the name of &quot;

Ehodonese,&quot;
from a fancied resemblance to the petals ofroses. See also Gregory s Examples
on the Differential and Integral Calculus, p. 183.

For illustrations of the beauty and variety of form of these curves, as well as
of epitrochoids and hypotrochoids in general, the student is referred to the admi
rable figures in Mr. Proctor s Geometry of Cycloids.

287. Centre of Curvature of an Epitrochoid or
Hypotrochoid. The position of the centre of curvature for

any point of an epitrochoid can be easily
found from geometrical considerations. For,
let Ci and &amp;lt;72 be the centres of the rolling
and the fixed circles, P2 the centre of cur
vature of the roulette described by PI ; and,
as before, let O l and 2 be two points on the

circles, infinitely near to 0, such that OOi
= 002 . Now, suppose the circle to roll until

0i and 02 coincide; then the lines CM
and (72 2 will lie in directum, as also the
lines PM and P2 2 (since P2 is the point
of intersection of two consecutive normals to

the roulette) .

Hence L 0ft 0i + L 0&amp;lt;72 2
= L 0PM + L 0PM,

since each of these sums represents the angle through which
the circle has turned.

Fig. 61,

Again, let L ft

then L OC

00 l
= 002

= ds
;

ds

ds cos

OP l

L 0PM S COS0

0PT
:
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consequently we have

Or, if OP, = n, OP, = ra ,

ii /i i- + T = COS + -
a b

r
\r, r%

From this, equation r2 ,
and consequently the radius of curva

ture of the roulette, can be obtained for any position of the

generating point P^
If we suppose Pi to be on the circumference of the rolling

OP
circle, we get cos &amp;lt;

= ^ ; whence it follows that

OP,

which agrees with the result arrived at in Art. 279.
288. Centre of Curvature of any Roulette. The

preceding formula can be readily extended to any roulette : for

if Ci and &amp;lt;72 be respectively the centres of curvature of the

rolling andfixed curves, corresponding to the point of contact 0,
we may regard OOi and 002 as elementary arcs of the circles

of curvature, and the preceding demonstration will still

hold.

Hence, denoting the radii of curvature OCi and OCZ by
P! and p2, we shall have

ii /i i\ , x
+ = COS d&amp;gt;

(
4- - . (22)

Pi pz Vi rzj

It can be easily seen, without drawing a separate figure,
that we must change the sign of p z in this formula when the

centres of curvature lie at the same side of 0.

It may be noted that PI is the centre of curvature of the

roulette described by the point P2 ,
if the lower curve be sup

posed to roll on the upper regarded as fixed.

289. Geometrical Construction* for the Centre of

* This beautiful construction, and also the formula (22) on which it is based,
were given by M. Savary, in his Lemons des Machines a V Ecole Polytechnique,
See also Leroy s Gtometrie Descriptive, Quatrieme Edition, p. 347.
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Curvature of a Roulette. The formula (22) leads to

a simple and elegant construction for the centre of curva
ture P3 .

We commence with the case when the base is a right
line, as represented in the accom

panying figure.
Join PI to ft, the centre of curva

ture of the rolling curve, and draw
ON perpendicular to OPi, meeting
Pi ft in N; through N draw NM A

parallel to Oft, and the point P2 in

which it meets OPi is the centre of

curvature required.

For, equation (22) becomes in

this case

_i_ = cos (J-+
I

Oft \OPi
tohence we get

P~P T 1

1 -i 9. 1 J

Fig. 62.

OP2

OP* . OP2 Oft sin ft ON NO, sin C,NO NC, . OP,

PiP2

OP2 NO,

and, accordingly, the line NP* is parallel to Oft. Q. E. D.
The construction in the general case is as follows :

Determine the point N as in the former

case, and join it to ft, the centre of curva

ture of the fixed curve, then the point of

intersection of NCZ and PiO is the required
centre of curvature.

This is readily established ; for, from

the equation
N

00, OCZ

weget
oftToft&quot; OP^

cos

Fig. 63.

2 A
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But, as before,

OCi cos

hence

Roulettes.

C.N.OP, 0(7:008

NP,

OP,

oc,

Consequently, by the well-known property of a transversal

cutting the sides of a triangle, the points &amp;lt;72 ,
P2 , and N are

in directum.

The modification in the construction when the rolling
curve is a right line can be readily supplied by the student.

290. Circle of Inflexions. The following geometrical
construction is in many cases more
useful than the preceding.

On the line 00, take OD l such
that

and on OA as diameter describe a

circle. Let E1 be its point of inter

section with OPi, then we have

ODS

and formula (22) becomes Fi
s&amp;gt;

64-

,&quot; OD, cos
&quot;

OE

Hence, if the tracing point PI lie on the circle*

. .

* This theorem is due to La Hire, who showed that the element of the

roulette traced by any point is convex or concave with respect to the point of

contact, O
t according as the tracing point is inside or outside this circle. (See
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the corresponding value of 0P2 is infinite, and consequently
P! is a point of inflexion on the roulette.

In consequence of this property, the circle in question is

called the circle of inflexions, as each point on it is a point of

inflexion on the roulette which it describes.

Again, it can be shown that the lines P }P2 , P\0 ^jid
PI E,

are in continued proportion ; as also C\C^ CiO, antl CiD\.

For, from (23) we have

PiP2 i

OP, . OPZ OE;

Hence PiP2 : P,0 = 0P2 :

. . P,PZ : AO = P,P, - OP2 : P,0 -OE^P.O: P,E,. (24)

In the same manner it can be shown that

C& : 0,0 = C,0 : C,D,. (25)

In the particular case where the base is a right line, the

circle of inflexions becomes the circle described on the radius

of curvature of the rolling curve as diameter.

Again, if we take OD2
= ODL, we shall have, by describing

a circle on ODZ as diameter,

and also P2Pi : P2
= P2 : P2^2 . (26)

The importance of these results will be shown further on.

291. Envelope of a Carried Curve. We shall next

consider the envelope of a curve invariably connected with the

rolling curve, and carried with it in its motion.

Since the moving curve touches its envelope in each of its

Me/noires de I ^Lcademie des Sciences, 1706.) It is strange that this remarkable

result remained almost unnoticed until recent years, when it was found to

contain a key to the theory of curvature for roulettes, as well as for the

envelopes of any carried curves. How little it is even as yet appreciated in

this country will be apparent to any one who studies the most recent produc
tions on roulettes, even by distinguished British Mathematicians.

2 A 2
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positions, the path of its point of contact at any instant must
be tangential to the envelope; hence the normal at their
common point must pass through 0, the point of contact of
the fixed and rolling curves.

In the particular case in which the carried curve is a

right line, its point of contact with
its envelope is found by dropping a

perpendicular on it from the point of

contact 0.

For example, suppose a circle to

roll on any curve : to find the envelope*

of any diameter PQ :

From draw ON perpendicular
to PQ, then N, by the preceding, is

Fi 6
a point on the envelope.

On OC describe a semicircle; it will pass through JV,

and, as in Art. 286, the arc ON = arc OP = OA, if A be
the point in which P was originally in contact with the

fixed curve. Consequently, the envelope in question is the

roulette traced by a point on the circumference of a circle

of half the radius of the rolling circle, having the fixed curve

A for its base.

For instance, if a circle roll on a right line, the envelope of

any diameter is a cycloid, the radius of whose generating circle

is half that of the rolling circle.

Again, if a circle roll on another, the envelope of any
diameter of the rolling circle is an epicycloid, or a hypocycloid.

Moreover, it is obvious that if two carried right lines be

parallel, their envelopes will be parallel curves. For ex

ample, the envelope of any right line, carried by a circle

which rolls on a right line, is a parallel to a cycloid, i.e. the

involute of a cycloid.

These results admit of being stated in a somewhat different

form, as follows :

If one point, A, in a plane area move uniformly along a

right line, while the area turns uniformly in its own plane,
then the envelope of any carried right line is an involute to a

cycloid. If the carried line passes through the moving point

* The theorems of this Article are, I believe, due to Chasles : see his Histoire

cU La Geometrie, p. 6q.
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A, its envelope is a cycloid. Again, if the point A move

uniformly on the circumference of a fixed circle, while the

area revolves uniformly, the envelope of any carried right

line is an involute to either an epi- or hypo-cycloid. If the

carried right line passes through A, its envelope is either an

epi- or hypo-cycloid.

292. Centre of Curvature of the Envelope of a

Carried Curve. Let aA represent a

portion of the carried curve, to which Om
is normal at the point m ; then, by the

preceding, m is the point of contact of aj) l

with its envelope.

Now, suppose az bz to represent a por
tion of the envelope, and let PI be the

centre of curvature of
aj&amp;gt;^

for the point ?,

and P2 the corresponding centre of cur

vature of az b z .

As before, take O l and 2 such that

00, = 002 ,
and join P,0, and P2 2 .

Again, suppose the curve to roll until

Oi and 2 coincide; then the lines PiOi

and P2 2 will come in directum, as also

the lines OiCi and 2 (72 ; and, as in Art.

288, we shall have

and consequently

i i

&quot;oc^ol
cos ( + }

VOP, OPJ (27)

From this equation the centre of curvature of the enve

lope, for any position, can be found. Moreover, it is obvious

that the geometrical constructions of Arts. 289, 290, equally

apply in this case. It may be remarked that these construc

tions hold in all cases, whatever be the directions of curvature

of the curves.

The case where the moving curve a, h is a right line is

worthy of especial notice.
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In this case the normal Otn is perpendicular to the moving
line

; and, since the point P l is infinitely

distant, we have

COS0 =
oa

+
oo

=
oa (Art - 290);

Fig. 67.

whence, P2 is situated on the lower circle of

inflexions. Hence we infer that the dif

ferent centres of curvature of the curves en

veloped by all carried right lines, at any
instant, lie on the circumference of a circle.

As an example, suppose the right line ON. to roll on a

fixed circle, whose centre is C2 ,
to

find the envelope of any carried right

line, LM.
In this case the centre of cur

vature, P2 ,
of the envelope of LM,

lies, by the preceding, on the circle

described on 00 as diameter; and,

accordingly, OP2 is perpendicular
to the normal PiP2 .

Hence, since L OLPi remains

constant during the motion, the line

OP2 is of constant length ; and, if

we describe a circle with as centre,

and (7P2 as radius, the envelope of
Fig. 68.

the moving line LM will, in all positions, be an involute of a

circle. The same reasoning applies to any other moving

right line.

We shall conclude with the statement of one or two other

important particular cases of the general principle of this

Article.

(i). If the envelope a-z bz of the moving curve a l b l be a right

line, the centre of curvature Pl lies on the corresponding circle of

inflexions.

(2). // the moving right line ahoays passes through a fixed

point, that point lies on the circle ODJB+
292 (a). Expression for Radius of Curvature of

Envelope of a Right Line. The following expression
for the radius of curvature of the envelope of a moving right
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line is sometimes useful. Let p be the perpendicular distance

of the moving line, in any position, from a fixed point in the

plane, and w the angle that this perpendicular makes with a

fixed line in the plane, and p the radius of curvature of the

envelope at the point of contact; then, by Art. 206, we have

d*P /,o\
p = p ^ , v

20
/

Whenever the conditions of the problem givej) in terms of

w (the angle through which the figure has turned), the value

of p can be found from this equation. For example, the re

sult established in last Article (see Fig. 68) can be easily

deduced from (28). This is left as an exercise for the student.

293. On the Motion ofa Plane Figure in its Plane.

We shall now proceed to the consideration of a general

method, due to Chasles, which is of fundamental importance

in the treatment of roulettes, as also in the general investi

gation of the motion of a rigid body.
We shall commence with the following theorem :

When an invariable plane figure moves in its plane, it can

be brought from any one position to any other by a single rotation

round a fixed point in its plane.

For, let A and B be two points of the figure in its first

position, and Ai, B their new

positions after a displacement.
Join AAi and BB^ and sup

pose the perpendiculars drawn

at the middle points of AAi
and BBi to intersect at ;

then we have AO = AiO, and

BO = BiO. Also, since the

triangles AOB and AiOBl

have their sides respectively

equal, we have LAOB = LA,OB,\ .-. L AOA, = LBOB,.

Accordingly, AB will be brought to the position A,B, by

a rotation through the angle AOA l round 0. Consequently,

any point C in the plane, which is rigidly connected with AB,
will be brought from its original to its new position, ft, by

the same rotation. .

This latter result can also be proved otherwise thus :--Join

OC and Oft ;
then the triangles OAC and OA& are equal,
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because OA = OA^ AC = -4id, and the angle OAC, being
the difference between OAB and BAG, is equal to OA^d,
the difference between OA 1B1 and B^iCi ;

therefore OC
= Od, and LAQC= LAiQCy, and hence L AOA l

= L COC,.

Consequently the point C is brought to C\ by a rotation

round through the same angle A OAi. The same reasoning

applies to any other point invariably connected with A and B.

The preceding construction re

quires modification when the lines

AAi and BB^ are parallel. In this

case the point, 0, of intersection of the

linesBA and BA\ is easily seen to be

the point of instantaneous rotation.

For, since AB = A VB^ and
BB19 are parallel, we have OA =

and OB = OBi. Hence, the figure will be brought from its

old to its new position by a rotation around through the

angle AOA t .

Next, let AA^ and BB\ be both equal and parallel. In

this case the point is at an infinite distance
;
but it is

obvious that each point in the plane moves through the same

distance, equal and parallel toAA l ;
and the motion is one of

simple translation, without any rotation.

In general if we suppose the two positions of the moving

figure to be indefinitely near each other, then the line AA^
joining two infinitely near positions of the same point of the

figure, becomes an element of the curve described by that point,

and the line OA becomes at the same time a normal to the curve.

Hence, the normals to thepaths described by all the points of the

moving figure pass through 0, which point is called the instan

taneous centre of rotation.

The position of is determined whenever the directions of

motion of any two points of the moving figure are known; for it

is the intersection of the normals to the curves described by
those points.

This furnishes a geometrical method of drawing tangents

to many curves, as was observed by Chasles.*

* This method is given by Chasles as a generalization of the method of Des

cartes (Art. 273, note). It is itself a particular case of a more general principle

concerning homologous figures. See Chasles, Histoirc de la Geometric, pp. 548-9 :

also Bulletin Universel dcs Sciences, 1830.
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The following case is deserving of special consideration :

A right line always passes through a fixed

point, while one of its points moves along a

fixed line : to find the instantaneous centre of

rotation. Let A be the fixed point, and AB
any position of the moving line, and take

B A = BA
;
then the centre of rotation, 0, is

found as before, and is such that OA = OA,
and OB = OB . Accordingly, in the limit the

centre of instantaneous rotation is the inter-
Fig ?I

section of BO drawn perpendicular to the fixed

line, and AO drawn perpendicular to the moving line at the

fixed point.
In general, if ABI& any moving curve, and ZJ/any fixed

curve, the instantaneous centre of rotation is the point of inter

section of the normals to the fixed and to the moving curves, for

any position.

Also the normal to the curve described by any point in

variably connected with AB is obtained by joining the point

to 0, the instantaneous centre.

More generally, if a moving curve always touches a fixed

curve A, while one point on the moving curve moves along a

second fixed curve B, the instantaneous centre is the point of

intersection of the normals to A and B at the corresponding

points; and the line joining this
centre^

to any describing

point is normal to the path which it describes.

We shall illustrate this method of drawing tangents by

applying it to the conchoid and the limacon.

294. Application to Curves. In the Conchoid (Fig. 49,

page 332), regarding AP as a moving right line, the

instantaneous centre is the point of intersection of AO
drawn perpendicular to AP, with RO drawn perpendicular to

LM
;
and consequently, OP and OP l are the normals at P

and Pi, respectively. t

For the same reason, the normal to the Limacon (Fig. 48,

page 331) at any point Pis got by drawing OQ perpendicular

to OP to meet the circle in Q, and joining PQ.
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EXAMPLES.

1. If the radius vector, OP, drawn from the origin to any point P on a curve,
be produced to PI, until PPi be a constant length ; prove that the normal at PI
to the locus of PI, the normal at P to the original curve, and the perpendicular
at the origin to the line OP, all pass through the same point.

2. If a constant length measured from the curve be taken on the normals

along a given curve, prove that these lines are also normals to the new curve
which is the locus of their extremities.

3. An angle of constant magnitude moves in such a manner that its sides

constantly touch a given plane curve ; prove that the normal to the curve de
scribed by its vertex, P, is got by joining Pto the centre of the circle passing
through P and the points in which the sides of the moveable angle touch the

given curve.

4. If on the tangent at each point on a curve a constant length measured
from the point of contact be taken, prove that the normal to the locus of the

points so found passes through the centre of curvature of the proposed curve.

5. In general, if through each point of a curve a line of given length be
drawn making a constant angle with the normal, the normal to the curve locus
of the extremities of this line passes through the centre of curvature of the pro-

295. motion of any Plane Figure reduced to
Roulettes. Again, the most general motion of any figure
in its plane may be regarded as consisting of a number of

infinitely small rotations about the different instantaneous

centres taken in succession.

Let 0, , 0&quot;, &quot;, &c., represent the successive centres of

rotation, and consider the instant when
the figure turns through the angle i00
round the point 0. This rotation will

bring a certain point Oi of the figure to

coincide with the next centre . The next
rotation takes place around ;

and suppose
the point 2 brought to coincide with the

centre of rotation 0&quot; . In like manner, by
a third rotation the point 3 is brought to

coincide with 0&quot;
,
and so on. By this

means the motion of the moveable figure
is equivalent to the rolling of the polygon
0010203 . . . invariably connected with the figure, on the

polygon 00 0&quot;0
&quot;

. . . fixed in the plane. In the limit, the

polygons change into curves, of which one rolls, without
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sliding, on the other
;
and hence we conclude that the general

movement of anyplane figure in its own plane is equivalent to the

rolling of one curve on another fixed curve.

These curves are called hy Reuleaux* the &quot;

centrodes&quot; of

the moving figures.

For example, suppose two points A and B of the moving

figure to slide along two fixed right
lines CX and CT ;

then the instan

taneous centre is the point of inter

section of AO and BO, drawn perpen
dicular to the fixed lines. Moreover,
as AB is a constant length, and the

angle ACB is fixed, the length CO is

constant ; consequently the locus of

the instantaneous centre is the circle
Fi

described with C as centre, and CO as

radius. Again, if we describe a circle round CBOA, this

circle is invariably connected with the line AB, and moves

with it. Hence the motion of any figure invariably connected

with AB is equivalent to the rolling of a circle inside another

of double its radius (see Art. 285).

Again, if we consider the angle XCY to move so that its

legs pass through the fixed points A and B, respectively ;
then

the instantaneous centre is determined as before. More

over, the circle BCA becomes a fixed circle, along which the

instantaneous centre moves. Also, since CO is of constant

length, the outer circle becomes in this case the
rolling^curve.

Hence the motion of any figure invariably connected with tho

moving lines CX and CY is equivalent to the rolling of the

outer circle on the inner (compare Art. 286).

295 (a). Epicyclics. As a further example, suppose one

point in a plane area to move uniformly along the circum

ference of a fixed circle, while the area revolves with a uniform

angular motion around the point, to find the position of the

&quot;

centrodes.&quot;

The directions of motion are indicated by the arrow

heads. Let C be the centre of the fixed circle, P the position

* See Kennedy s translation of Eeuleaux s Kinematics of Machinery,

pp. 65, &c.
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of the moving point at any instant, Q a point in the moving
figure such that CP = PQ.
Now, to find the position of

the instantaneous centre of

rotations it is necessary to

get the direction of motion of
the point Q.

Let P! represent a con
secutive position of P, then
the simultaneous position of Q
is got by first supposing it to

move through the infinitely
small length QP, equal and

parallel to PP^ and then to

turn round P19 through the

angle PPjQ,, which the area

turns through while P moves
to PI. Moreover, by hypo-

Fig. 74.

thesis, the angles PCP, and RP,Q, are in a constant ratio:
if this ratio be denoted by m, we have (since PQ =

P&amp;lt;7)

RQ,= mPP1
= mQR.

Join Q and Q l5 then QQ, represents the direction of mo
tion of Q. Hence the right line Q0, drawn perpendicular
to QQi, intersects CP in the instantaneous centre of rotation.

Again, since the directions of PO, PQ, and QO are, re

spectively, perpendicular to QP, RQi, and QQ,, the triangles
QPO and QiRQ are similar;

.-. PQ = mPO, i.e. CP = mPO.

Accordingly, the instantaneous centre of rotation is got
by cutting off

CPPO =
. (29)m v y/

Hence, if we describe two circles, one with centre C and
radius CO, the other with centre P and radius PO; these

circles are the required centrodes ; and the motion is equivalent
to the rolling of the outer circle on the inner.
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Accordingly, any point on the circumference of the outer

circle describes an epicycloid, and any point not on this cir

cumference describes an epitrochoid. When the angular
motion of PQ is less than that of

&amp;lt;7P,
i.e. when m &amp;lt; i,

the point lies in PC produced. Accordingly, in this

case, the fixed circle lies inside the rolling circle; and the

curves traced by any point are still either epitrochoids or epi

cycloids.
In the preceding we have supposed that the angular

rotations take place in the same direction. If we suppose them

to be in opposite directions, the construction has to be modified,

as in the accompanying figure.

In this case, the angle

J?PiQi must be measured in

an opposite direction to that

of PGP i ; and, proceeding as

in the former case, the direc

tion of motion of Q is repre
sented by QQi; accordingly,
the perpendicular QO will in

tersect CP produced, and, as

before, we have

m

Hence the motion is equi- Fig. 75-

valent to the rolling of a circle

of radius PO on the inside of a fixed circle, whose radius is

CO. Accordingly, in this case, the path described by any

point in the moving area not on the circumference of the

rolling circle is a hypotrochoid.

Also, from Art. 291, it is plain that the envelope of any

right line which passes through the point P in the moving
area is an epicycloid in the former case, and a hypocycloid

in the latter.

Again, if we suppose the point P, instead of moving in a

circle, to move uniformly in a right line, the path of any

point in the moving area becomes either a trochoid or a

cycloid.
Curves traced as above, that is, by a point which moves
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uniformly round the circumference of a circle, whose centre moves

uniformly on the circumference of a fixed circle in the same
plane, are called epicydies, and were invented by Ptolemy
(about A.D. 140) for the purpose of explaining the planetary
motions. In this system* the fixed circle is called the deferent,
and that in which the tracing point moves is called the

epicycle. The motion in the fixed circle may be supposed in
all cases to take place in the same direction around (7, that
indicated by the arrows in our figures. Such motion is called
direct. The case for which the motion in the epicycle is direct
is exhibited in Fig. 74.

Angular motion in the reverse direction is called retro

grade. This case is exhibited in Fig. 75. The corresponding
epicyclics are called by Ptolemy direct and retrograde epicy-

The preceding investigation shows that every direct epi-

cyclic is an epitrochoid, and every retrograde epicyclic a

hypotrochoid.
It is obvious that the greatest distance in an epicyclic

from the centre C is equal to the sum of the radii of the circles,
and the least to their difference. Such points on the epicyclic
are called apocentres and pericentres, respectively.

Again, if a represent the radius of the fixed circle or

deferent, and /3 the radius of the revolving circle or epicycle ;

then, if the curve be referred to rectangular axes, that of x

passing through an apocentre, it is easily seen that we have
for a direct epicyclic

x = a cos 9 + |3 cos mO, \

y = a sin + |3 sin mO. )

* The importance of the epicyclic method of Ptolemy, in representing ap
proximately the planetary paths relative to the earth at rest, has recently been

brought prominently forward by Mr. Proctor, to whose work on the Geometry of

Cycloids the student is referred for fuller information on the subject.
We owe also to Mr. Proctor the remark that the invention of cycloids, epi

cycloids, and epitrochoids, is properly attributable to Ptolemy and the ancient

astronomers, who, in their treatment of epicyclics, first investigated some of

the properties of such curves. It may, however, be doubted if Ptolemy had

any idea of the shape of an epicyclic, as no trace oi such is to be found in the entire

of his great work, The Almagest.
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The formulae for a retrograde epicyclic are obtained by
changing the sign of m (compare Art. 284).

It is easily seen that every epicyclic admits of a twofold

generation.

For, if we make mO =
&amp;lt;, equation (30) may be written

$
X = 8 COS 6 + a COS ,m

$
y =

|3 sm $ + a sin
,

which is equivalent to an interchange of the radii of the

deferent circle and of the epicycle, and an alteration of m

into . This result can also be seen immediately geometri-m
cally.

It may be remarked that this contains Euler s theorem

(Art. 280) under it as a particular case.

296. Properties of the Circle of Inflexions. It

should be especially observed that the results established in

Art. 290, relative to the circle of inflexions, hold in all cases

of the motion of a figure in its plane, and hence we infer

that the distances of any moving pointfrom the centre of curva

ture of its path, from the instantaneous centre of rotation, and

from the circle of inflexions, are in continued proportion.

Again, from Art. 292, we infer that if a moveable curve

slide on a fixed curve, the distances of the centre of curvature of
the moving, from that of the fixed curve, from the centre of in

stantaneous rotation, and from the circle of inflexions, are in

continued proportion.
The particular cases mentioned in these Articles obviously

hold also in this case, and admit of similar enunciations.

These principles are the key to the theory of the curvature

of the paths of points carried by moving curves, as also to the

curvature of the envelopes of carried curves.

We shall illustrate this statement by a few applications.

297. Example on the Construction of Circle of
Inflexions. Suppose two curves afa and Cidh invariably con

nected with a moving plane figure, always to touch two fixed
curves azb2 and czd-Zj to find the centre of curvature of the roulette

described by any point R\ of the moving figure.
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The instantaneous circle of inflexions is easily constructed

in the following manner : Let

PI and P2 be the centres of cur

vature for the point of contact

m for the curves afa and a2b2 ,

respectively : and let Q 1? Q2 ,
he

the corresponding points for

the curves c^ and c^dz . Take

PA -

then, by Art. 290, the points F
-

6

Ei and Pi lie on the circle of

inflexions. Accordingly, the circle which passes through 0,

Ei and PI, is the circle of inflexions.

Hence, if RiO meet this circle in 6ri, and we take

R O2

RiRz =
WTT&amp;gt;

the point Rz (by the same theorem) is the
jO/iCn

centre of curvature of the roulette described ly RI.

In the same case, by a like construction, the centre of cur

vature of the envelope of any carried curve can be found.

The modifications when any of the curves aibh a2b^ &c.,

becomes a right line, or reduces to a single point, can also be

readily seen by aid of the principles already established for

such cases.

298. Theorem ofliobillier.* If two sides of amoving

triangle always touch two fixed circles, the third side also always
touches a fixed circle.

Let ABC be the moving triangle ;
the side AS touching

at c a fixed circle whose centre is 7, and AC touching at b a

circle with centre /3. Then the instantaneous centre is the

point of intersection of ft/3 and cj.

Again, the angle j30y, being the supplement of the con

stant angle BA C, is given ;
and consequently the instanta

neous centre always lies on a fixed circle.

* Cours de geometric pour les ecoles des arts et metiers. See also Collignon,

Traits, de Mecanique Cinematiquc, p. 306.
This theorem admits of a simple proof by elementary geometry, The in

vestigation above has however the advantage of connecting it with the general

theory given in the preceding Articles, as well as of leading to the more general

theorem stated at the end of this Article.
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Also if Oa be drawn perpendicular to the third side BC,
a is the point in which the side

touches its envelope (Art. 291).

Produce aO to meet the circle

in a
;
and since the angle a 0/3

is equal to the angle ACB, it

is constant ;
and consequently

the point a is a fixed point on the

circle. Again, by (4) Art. 292,

the circle j30y passes through
the centre of curvature of the

envelope of any carried right
line

;
and accordingly a is the

centre of curvature of the enve

lope of BC\ but a has already
been proved to be a fixed point ;

consequently BC in all positions touches a fixed circle whose

centre is a. (Compare Art. 286.)
This result can be readily extended to the case where the

sides AB and AC slide on any curves ; for we can, for an in

finitely small motion, substitute for the curves the osculating
circles at the points b and c, and the construction for the point
a will give the centre of curvature of the envelope of the

third side BC.

298 (a). Analytical Demonstration. The result of the

preceding Article can also be established analytically, as was

shown by Mr. Ferrers, in the following manner :

Let a, b, c represent the lengths of the sides of the moving
triangle, and p l9 p29 p3 the perpendiculars from any point
on the sides a, b, c,. respectively ; then, by elementary

geometry, we have

api + bp z + cp3
= 2 (area of triangle)

= 2 A.

Again, if /oi, /o 2 , p 3 be the radii of curvature of the enve

lopes of the three sides, and w the angle through which each

of the perpendiculars has turned, we have by (28),

ap\ + bp 2 + cp 3
= 2 A. (31)

Hence, if two of the radii of curvature be given the third

can be determined.

2 B
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We next proceed to consider the conchoid of Nicomedes.

299. Centre of Curvature for a Conchoid. Let A
be the pole, and LM the directrix of a conchoid. Construct

the instantaneous centre 0, as before : and produce AO until

OA {
= AO.

It is easily seen that the circle circumscribing A^ORi is

the instantaneous circle of inflexions : for the instantaneous

centre always lies on this circle
;
also RI lies on the circle

by Art. 290, since it moves along a right line : again, A lies

on the lower circle of inflexions of same Article, and conse

quently A] lies on the circle of inflexions.

Hence, to find the centre of curvature of the conchoid

described by the moving point PI, produce P^O to meet the

circle of inflexions in FI, and take

PiP2
=

^-=-; then, by (22), P2 is

the centre of curvature belonging to

the pointP }
on the conchoid.

In the same case, the centre of

curvature of the curve described by
any other point Q&amp;gt;,

which is inva

riably connected with the moving
line, can be found. i or, if we

produce QiO to meet the circle of

inflexions in E-,, and take Q\Q
0*

= ^ ; then, by the same theorem

Q2 is the centre of curvature re- Fig. 78.

quired.
A similar construction holds in all other cases.

300. Spherical Houiettes. The method of reasoning

adopted respecting the motion of a plane figure in its plane

is applicable identically to the motion of a curve on the sur

face of a sphere, and leads to the following results, amongst
others :

(i). A spherical curve can be brought from any one

position on a sphere to any other by means of a single

rotation around a diameter of the sphere.

(2). The elementary motion of a moveable figure on a

sphere may be regarded as an infinitely small rotation

M
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around a certain diameter of the sphere. This diameter is

called the instantaneous axis of rotation, and its points of

intersection with the sphere are called the poles of rotation.

(3). The great circles drawn, for any position, from the

pole to each of the points of the moving curve are normals to

the curves described by these points.

(4). When the instantaneous paths of any two points are

given, the instantaneous poles are the points of intersection

of the great circles drawn normal to the paths.

(5). The continuous movement of a figure on a sphere

may be reduced to the rolling of a curve fixed relatively to

the moving figure on another curve fixed on the sphere.

By aid of these principles the properties of spherical roulettes*

can be discussed.

301. Motion of a Rigid Body about a Fixed
Point. We shall next consider the motion of any rigid

body around a fixed point. Suppose a sphere described

having its centre at the fixed point ; its surface will intersect

the rigid body in a spherical curve A, which will be carried

with the body during its motion. The elementary motion of

this curve, by the preceding Article, is an infinitely small

rotation around a diameter of the sphere ;
and hence the

motion of the solid consists in a rotation around an instan

taneous axis passing through the fixed point.

Again, the continuous motion of A on the sphere by (5)

(preceding Article) is reducible to the rolling of a curve

L, connected with the figure A, on a curve X, traced on the

sphere. JBut the rolling of L on A is equivalent to the

rolling of the cone with vertex standing on L, on the cone

with the same vertex standing on A. Hence the most general
motion of a rigid body having a fixed point is equivalent to

the roiling of a conical surface, having the fixed point for its-

summit, and appertaining to the solid, on a cone fixed in

space, having the same vertex.

These results are of fundamental importance in the gene
ral theory of rotation.

* On the Curvature of Spherical Epicycloids, see Resal; Journal de

Poll/technique, 1858, pp. 235, &c.

2 B 2
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EXAMPLES.

1. If the radius of the generating circle be one-fourth that of the fixed,

prove immediately that the hypocycloid becomes the envelope of a right line of

constant length whose extremities move on two rectangular lines.

2. Prove that the evolute of a cardioid is another cardioid in which the

radius of the generating circle is one-third of that for the original circle.

3. Prove that the entire length of the cardioid is eight times the diameter of

its generating circle.

4. Show that the points of inflexion in the trochoid are given by the

equation cos + - = o
;
hence find when they are real and when imaginary.

5. One leg of a right angle passes through a fixed point, whilst its vertex

slides along a given curve
;
show that the problem of finding the envelope of

the other leg of the right angle is reducible to the investigation of a locus.

6. Show that the equation of the pedal of an epicycloid with respect to any

origin is of the form

ad
r = (a + 2#) cos--- - c cos (9 + a).

a + 20

7. In figure 57, Art. 281, show that the points C, P and Q are in directum.

8. Prove that the locus of the vertex of an angle of given magnitude, whose

sides touch two given circles, is composed of two lin^ons.

9. The legs of a given angle slide on two given circles: show that
^

the

locus of any carried point is a Iima9on, and the envelope of any carried right

line is a circle.

10. Find the equation to the tangent to the hypocycloid when the radius of

the fixed circle is three times that of the rolling.
jLns. x cos CD + y sin &amp;lt;a

= b sin 3.

This is called the three-cusped hypocycloid. See Ex. 5, Art. 286.

11. Apply the method of envelopes to deduce the equation of the three-

cusped hypocycloid.

Substituting for sin 30* its value, and making t = cot w, the equation of the

tangent becomes

xt* + (y
-

3&) t* + xt + b -f y = o,

in which t is an arbitrary parameter. If t be eliminated between this and its

derived equation taken with respect to t, we shall get for the equation of thfc

hypocycloid,

j/
s
) + 24i*

2
y -%3 =

27**.
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12. If two tangents to a cycloid intersect at a constant angle, prove that the

length of the portion which they intercept on the tangent at the vertex of the

cycloid is constant.

13. If two tangents to a hypocycloid intersect at a constant angle, prove
that the arc which they intercept on the circle inscribed in the hypocycloid is of
constant length.

14. The vertex of a right angle moves along a right line, and one of its legs
passes through a fixed point : show geometrically that the other leg envelopes a

parabola, having the fixed point for focus.

15. One angle of a given triangle moves along a fixed curve, while the

opposite side passes through a fixed point : find, for any position, the centre of
curvature of the envelope of either of the other sides, and also that of the curve
described by any carried point.

1 6. If a right line move in any manner in a plane, prove that the locus of
the centres of curvature of the paths of the different points on the line, at any
instant, is a conic. (Kesal, Journal de VEcole Polytechnique, 1858, p. 112).

This, as well as the following, can be proved without difficulty from equa
tion (22), p. 352.

17. &quot;When a conic rolls on any curve, the locus of the centres of curvature
of the elements described simultaneously by all the points on the conic is a new
conic, touching the other at the instantaneous centre of rotation. (Mannheim,
same Journal, p. 179.)

1 8. An ellipse rolls on a right line : prove that p, the radius of curvature of

the path described by either focus, is given by the equation
- = ---; wherepar

r is the distance of the focus from the point of contact, and a iss the semi-axis

major. (Mannheim, Ibid.)

19. The extremities of a right line of given length move along two fixed

right lines : give a geometrical construction for the centre of curvature of the

envelope in any position.

20. Prove that the locus of the intersection of tangents to a cycloid which
intersect at a constant angle is a prolate trochoid (La Hire, Mem. de VAcad. des

Sciences, 1704).

21. More generally, prove that the corresponding locus for an epicycloid is

an epitrochoid, and for a hypocycloid is a hypotrochoid. (Chasles, Hist, de la

Gt-om., p. 125).

22. If a variable circle touch a given cycloid, and also touch the tangent at
the vertex, the locus of its centre is a cycloid. (Professor Casey, Phil. Trans

1877.)

23. Being given three fixed tangents to a variable cycloid, the envelope of
the tangent at its vertex is a parabola. (Ibid.)

24. If two tangents to a cycloid cut at a constant angle, the locus of the
centre of the circle described about the triangle, formed by the two tangents and
the chord of contact, is a right line. (Ibid.)

25. If a curve (A) be such that the radius of curvature at each point is n
times the normal intercepted between the

point and a fixed straight line (),
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then when the curve rolls along another straight line, (B) will envelope a curve

in which the radius of curvature is n + i times the normal.

Thus, when n = -
2, (A] is a parabola, and () the directrix

;
and when

the parabola rolls along a straight line, its directrix envelopes a catenary (for

which n = i
),

to which the straight line is directrix.

&quot;When the catenary rolls along a straight line, its directrix passes through a

fixed point, for which n = o.

When the point moves along a straight line, the straight line which it car

ries with it envelopes a circle (n = i), and (B) is a diameter.

When the circle rolls along a straight line, its diameter envelopes a cycloid

(n = 2), to which () is the base. When the cycloid rolls along a straight line

its base envelopes a curve which is the involute of the four-cusped hypocycloid,

passing through two cusps, and is in figure like an ellipse whose major axis is

twice the minor. (Professor Wolstenholme.)

The fundamental theorem given above follows immediately from equation

(27), P- 357-

26. Prove the following extension of Bobillier s theorem : If two sides ofa

moving triangle always touch the involutes to two circles, the third side will

always touch the involute to a circle.

27. Investigate the conditions of equilibrium of a heavy body which rests on
a fixed rough surface.

In this case it is plain that, in the position of equilibrium, the centre of

gravity G of the body must be vertically over the point of contact of the body
with the fixed surface.

Again, if we suppose the body to receive a slight displacement by rolling on

the fixed surface, the equilibrium will be stable or unstable, from elementary
mechanical considerations, according as the new position of G is higher or

lower than its former position, i. e. according as G is situated inside or outside

tJis circle of inflexions (Art. 290).

Hence, if pi and pz be the radii of curvature for the corresponding fixed and

rolling curv 3, and h the distance of G from the point of contact of the surfaces,

the equilibrium is stable or unstable according as h is &amp;lt; or &amp;gt;
. See Walton s

Problems, p. 190 ; also, for a complete investigation of the case where h = Plp2

pi + pz

Minchin s Statics, pp. 320-2, 2nd Edition.

28. Apply the method of Art. 285 to prove the following construction for

the axes of an ellipse, being given a pair of its conjugate semi-diameters OP, OQ,
in magnitude and position. From P draw a perpendicular to OQ, and on it take

PD PQ ; join P to the centre of the circle described on OD as diameter by a

right line, and let it cut the circumference in the points E and F ; then the right
lines OE and OF are the axes of tho ellipse, in position, and the segments PE
and PF are the lengths of its semi-axes (Mannheim, Nouv. An. de Math. 1857,

p. 1 88).

29. An involute to a circle rolls on a right line : prove that its centre describes

a parabola.

30. A cycloid rolls on an equal cycloid, corresponding points being in con

tact : show that the locus of the centre of curvature of the rolling curve at the

point of contact is a trochoid, whose generating circle is equal to that of either

cycloid,
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CHAPTER XX.

ON THE CARTESIAN OVAL.

302. Equation of Cartesian Oval. In this Chapter*
it is proposed to give a short discussion of the principal pro

perties of the Cartesian Oval, treated geometrically.

&quot;We commence by writing the equation of the curve in its

usual form, viz.,

where r\ and rz represent the distances of any point on the

curve from two fixed points, or foci, Fl
and JF, while

/*
and

a are constants, of which we may assume that
ju

is less than

unity. We also assume that a is greater than FiF2 ,
the dis

tance between the fixed points.
It is easily seen that the curve consists of two ovals, one

lying inside the other
; the former corresponding to the

equation n + /*r2
=

#, and
the latter to n -

JJLTZ
= a.

Now, with Fl as centre,

and a as radius, describe a

circle. Through F2 draw

any chord DF, join FiL
and FiF; then, if P be

the point in which FiD
meets the inner oval, we
have

Fig, 79-

From this relation the

point P can be readily
found.

* This Chapter is taken, with slight modifications, from a Paper published

by me in Hermathena, No. iv., p. 509.
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Again, let Q be the corresponding point for the outerU n -^ = a
; and we have, in like manner, DQ = ^F,Q ;

. . F2Q : F2P = QD:DP;
consequently, FJ) bisects the angle PF2Q

Produce QF2 and PF2 to intersect ^, and let P, and Q,
be the points of intersection.

Then since the trianglesPF2D and P,F2E are equiangular,we have P,E = ^F, ; and consequently the point P, lies on
the inner oval. In like manner it is plain that Q, lies on
the outer.

Again, by an elementary theorem in geometry, we have

FZP . F2Q =

. . (i
-

/z

2

)
FZP . F2Q

Also, by similar triangles, we get

consequently

(i
-
M

2

) F,Q . F2P, = F2D . F2E = const.
(2)

Therefore the rectangle under F2Q and F2P, is constant; a
theorem due to M. Uuetelet.

303. Construction for Third Focus. Next draw
QF3 making ^.FtQF, = LF,F,P, ; then, since the points Pl9F

lf Q, F3 lie on the circumference of a circle, we get

F,Fa . F2F3
= F2Q . F2P, = const.

(3 )

Hence the point F* is determined.
We proceed to show that F3 possesses the same properties

relative to the curve as F, and F2 ; in other words, that F, is
a thirdfocus*

For this purpose it is convenient to write the equation of
the curve in the form

in which c3 represents FiFz ,
and

/, m, n are constants.
It may be observed that in this case we have n &amp;gt; m &amp;gt; /.

* This fundamental property ^of
the curve was discovered by Chasles. See

Histoire de la Geome trie, note xxi., p. 352.
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Now, since L F,F3Q = LFiP& = L F,PFZ ,
the triangles

and F ẐQ are equiangular ; but, by (4), we have

accordingly we have

rnF.F, + IF*Q = nFiQ,

or nFiQ - IF.Q = mF.F, ;

i. e. denoting the distance from F3 by r3 and F^FZ by cz,

This shows that the distances of any point on the outer oval

from F
l
and F3 are connected by an equation similar in form

to (4) ; and, consequently, F3 is a thirdfocus of the curve.

304. Equations of Curve, relative to each pair of

Foci. In like manner, since the triangles F^F2 and FJ&amp;lt;\P

are equiangular, the equation

gives

Hence, for the inner oval, we have

This, combined with the preceding result, shows that the con

jugate ovals of a Cartesian, referred to its two extreme foci,

are represented by the equation

nr, Ir3 = mcz . (5)

In like manner, it is easily seen that the conjugate ovals re

ferred to the foci Fz and F3 are comprised under the equation

nr2
- mr3

= lcl} (6)

where

305. Relation between the Constants. The equa
tion connecting the constants /, m, n in a Cartesian, which

has three points F,, F2 ,
F3 for its foci, can be readily found.
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For, if we substitute in (3), c3 for F^ &c., the equation
is easily reduced to the form

or PFtFs + m^F, + nz
F,Fz

=
o, (7)

in which the lengths F2F3 , &c., are taken with their proper
signs, viz., FZF^ = - F^, &c.

306. Conjugate Ovals are Inverse Curves. Next,
since the four points F29 P, Q, F3 ,

lie in a circle, we have

F,P . F,Q = F
lFz .F,F3

= const. (8)

Consequently the two conjugate ovals are inverse to each other

with respect to a circle* whose centre is Flt and whose radius

is a mean proportional between F^F* andP
l
F-A .

It follows immediately from this, since Fz lies inside both

ovals, that F3 lies outside both. It hence may be called the

external focus. This is on the supposition that the constants!
are connected by the relations n &amp;gt; m &amp;gt; I.

Also we have

LPF& = LPQF, = L F,Q,P, = L FZF,P, ;

hence the lines F2P and FJP\ are equally inclined to the

axis FiF3 . Consequently, if P2 be the second point in which

the line F$P meets the inner oval, it follows, from the sym
metry of the curve, that the points P2 and Pi are the

* It is easily seen that when I = o the Cartesian whose foci are FI, F^ F^
reduces to this circle. Again, if n = o, the Cartesian becomes another circle,

whose centre is FS, and which, as shall he presently seen, cuts orthogonally the

system of Cartesians which have F\, F?, F$ for their foci. These circles are

called by Prof. Crofton (Transactions, London Mathematical Society, 1866), the

Confocal Circles of the Cartesian system.
f From the above discussion it will appear, that if the general equation of

a Cartesian be written \r + p.r
= vc, where c represents the distance between

the foci; then (i) if, of the constants, A, /*, v, the greatest be v, the curve is

referred to its two internal foci
; (2) if v be intermediate between A and

yu, the

curve is referred to the two extreme foci
; (3) if

&amp;lt;/ be the least of the three, the

curve is referred to the external and middle focus
; (4) if A =

/u, the curve is a

conic
; (5) if v = A, or v /u, the curve is a lirr^on ; (6)

if one of the constants

\, ju, v vanish, the curve is a circle.
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reflexions of each other with respect to the axis F\F*, and the

triangles F^F* and FiP,Fz are equal in every respect.

Again, since

*
= LF2QF3

= L F^Pi = L FZF,PZ,

the four points P, Pz, Fl
and Fz lie on the circumference of a

circle.

From this we have

. F3PZ
= F3Fi . F3FZ

= constant.

Hence, the rectangle under the segments, made by the inner oval,

on any transversalfrom the externalfocus, is constant.

In like manner it can be shown that the same property

holds for the segments made by the outer oval.

If we suppose P and P2 to coincide, the line FJ? becomes

a tangent to the oval, and the length of this tangent becomes

constant, being a mean proportional between _FJj and FJFZ .

Accordingly, the tangents drawn from the external focus

to a system of triconfocal Cartesians are of equal length.

This result may be otherwise stated, as follows : A system

of triconfocal Cartesians is cut orthogonally by the confocal circle

whose centre is the externalfocus of the system (Prof. Crofton).

This theorem is a particular case of another also due, I

believe, to Prof. Crofton which shall be proved subsequently,

viz., that if two triconfocal Cartesians intersect, they cut each

other orthogonally.

307. Construction for Tangent at any Point.

We next proceed to give a geometrical method of drawing
the tangent and the normal at any point on a Cartesian.

Eetaining the same notation as before, let R be the point

in which the line F2D meets the circle which passes through
the points P, Fz ,

F3 , Q ;
then it can be shown that the lines

PR and RQ are the normals at P and Q to the Cartesian

oval which has Fl
and F* for its internal foci, and F3 for its

external. For, from equation (4), we have for the outer oval

dr\ dr-im - - I - = o.
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Hence, if wi and w2 be the angles which the normal at Q
makes with Q/

Fl and QF2 respectively, we have

m sin oi = I sin w 2 ;
or sin wi : sin cu 2 = / : m.

Fig. 80.

Again, we have seen at the commencement that

l:m = DQ:FzQ;

also, by similar triangles,

but

hence
: RFZ

= sinRQP : sin RQF* ;

sinRQFl : sin RQF2
= I : m.

(10)

Consequently, by (9), the line RQ is the normal at Q to the
outer oval. In like manner it follows immediately that PR
is normal to the inner oval.

This theorem is given by Prof. Crofton in the following
form : The arc of a Cartesian oval makes equal angles with the

right line drawn from the point to any focus and the circular arc
drawn from it through the two other foci.

This result furnishes an easy method of drawing the

tangent at any point on a Cartesian whose three foci are

given.
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The construction may be exhibited in the following
form :

Let Fi, Fz ,
F3 be the three foci, andP the point in question.

Describe a circle through P and two foci F* and F9 ,
and let

Q be the second point in which F\P meets this circle
;
then

the line joining P to R, the middle point of the arc cut off

by PQ, is the normal.

308. Confocal Cartesians intersect Orthogonally.
It is plain, for the same reason, that the line drawn from

P to JRi, the middle point of the other segment standing on

PQ, is normal to a second Cartesian passing through P, and

having the same three points as foci Fz and 3̂ for its in

ternal foci, and Fl for its external.

Hence it follows that through any point two Cartesian ovals

can be drawn having three given points which are in directum

for foci.

Also the two curves so described cut orthogonally.

Again, if EC be drawn touching the circle PRQ, it is

parallel to PQ, and hence

KG : F,C = FZR : ED = F2R* : FZR . RD
;

but FZR . ED - RP2

;

/. F,C : F,C = FZR2
: PR* = m* : I

2
. (i i)

Hence the point C is fixed.

Again

GR : F,D = RFZ : DFZ
= m* : mz - I*

;

which determines the length of CR.
Next,

^

since RP=RQ, if with R as centre and RP as
radius a circle be described, it will touch each of the ovals,
from what has been shown above.

Also, since C is a fixed point by (i i), and CR a constant

length by (12), it follows that the locus of the centre of a circle
ichich touches both branches of a Cartesian is a circle (Quetelet,
Nouv. Mem. de VAcad. Roy. de Brux. 1827).
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This construction is shown in the following figure, in
which the form of two conjugate
ovals, having the points Fl9

Fz ,

F39 for foci, is exhibited.

Again, since the ratio of

F2R to RP is constant, we get
the following theorem, which
is also due to M. Quetelet :

A Cartesian oval is the

envelope of a circle, whose
centre moves on the circum

ference of a given circle, while

its radius is in a constant ratio

to the distance of its centre

from a given point.

310. Cartesian Oval as an Envelope. This con

struction has been given in a different form by Professor

Casey, Transactions Royal Irish Academy, 1869.

// a circle cut a given circle orthogonally, while its centre

moves along another given* circle, its envelope is a Cartesian

oval.

This follows immediately ;
for the rectangle under FiP

and F& is constant (8), and therefore the length of the tan

gent from FI to the circle is constant.

This result is given by Prof. Casey as a particular case of

a general and elegant property of bicircular quartics, viz. : if

in the preceding construction the centre of the moving circle

describe any conic, instead of a circle, its envelope is a bicir

cular quartic.

* It is easily seen that the three foci of the Cartesian oval are : the centre

of the orthogonal centre, and the limiting points of this and the other fixed

circle.
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EXAMPLES.

i. Find the polar equation of a Cartesian oval referred to a focus as pole.
If the focus F\ be taken as pole, and the line F\F-t as prime vector, we easily

obtain, for the polar equation of the curve,

(m?
- P)r* - 2c3 (mn - I

3 cos 0) r + c

The equations with respect to the other foci, taken as poles, are obtained by
a change of letters.

2. Hence any equation of the form

r2 - 2 (a + b cos 0) r + cz = o

represents a Cartesian oval.

3. Hence deduce Quetelet s theorem of Art. 302.

4. If any chord meet a Cartesian in four points, the sum of their distances

from any focus is constant ?

For, if we eliminate between the equation of the curve and the equation of

an arbitrary line, we get a biquadratic in r, of which 40. is the coefficient of

the second term.

5. Show that the equation of a Cartesian may in general be brought to the

form

where S represents a circle, and L a right line, and k is a constant.

6. Hence show that the curve is the envelope of the variable circle

2\S + &2 = o.

Compare Art. 309.

7 . From this show that the curve has three foci
;

i. e. three evanescent

circles having double contact with the curve.

8. The base angles of a variable triangle move on two fixed circles, while

the two sides pass through the centres of the circles, and the base passes through
a fixed point on the line joining the centres ; prove that the locus of the vertex

is a Cartesian.

9. Prove that the inverse of a Cartesian with respect to any point is a bi-

circular quartic. (See Salmon, Higher Plane Curves, Arts. 280, 281.)

jo. Prove that the Cartesian

rz - 2 (a + b cos 6)r + cz = o

has three real foci, or only one according as

a - b is &amp;gt; or &amp;lt; e.



CHAPTER XXI.

ELIMINATION OF CONSTANTS AND FUNCTIONS.

311. Elimination of Constants. The process of dif
ferentiation is often applied for the elimination of constants
and functions from an equation, so as to form differential
equations independent of the particular constants and func
tions employed.

We commence with the simple example if = ax + b. By
differentiation we get ^j-= a, a result independent of I.

A second differentiation gives

a differential equation containing neither a nor b, and which
accordingly is satisfied by each of the individual equations
which result from giving all possible values to a and b in the
proposed.

In general, let the proposed equation be of the form
/(#&amp;gt; y&amp;gt; )

= o. By differentiation with respect to #, we get

df dfdy
~r + ~r ~r = o.
dx dy dx

The elimination of a between this and the equation/^, y, a)
= o

leads to a differential equation involving #, y and
, which

holds for all the equations got by varying a in the proposed.
Again, if the given equation in

x_
and y contain two

constants,^ and b
; by two differentiations with respect to a?,

we obtain two differential
equations&quot;, between which and the



Examples. 385

original, when the constants a and b are eliminated, we get a

differential equation containing #, y, -j-
and -~.

u/x clx

In general, for an equation containing n constants, the

,,. ,., , . , ,. , . dy (Pu dnv
resulting differential equation contains %, y, -p, ^ . . .

-
;

dx dx~ dxn

arising from the elimination of the n constants between the

given equation and the n equations derived from it by suc

cessive differentiation.

EXAMPLES.

f I. Eliminate a from the equation

y-2ay + * = a. Am.
(&amp;lt;*-2

V- -

^2. Eliminate a and from the equation

N/3. Eliminate the constants a and # from the equation

y = acosnz + psinnx. Ans. _.?

y 4. Eliminate as and 5 from the equation

(
-

a)
2 + (y

-
i)

2 = c\ Ans.

This agrees with the formula for the radius of curvature in Art. 226.

5. Eliminate a and /3 from the equation

(n
\ d l

ii riAiu
- + . Ans. r + f
a ] dx* x*

6. Eliminate the constants o ^i&amp;gt; n from the equation

&**
J 7. Eliminate a and )8 from the equation

/8. Eliminato a and b from the equation

. O.
ax* ax

ay = -+fcH.. ^. ^+2^-^ = 0.^4
fi?a;

9. Eliminate tf and c from the equation

y = #* + c aw
*

Ans. x*- = y.
dx*

*

20
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312. Elimination of Transcendental Functions.
The process of differentiation can also be employed for the
elimination of transcendental functions from equations
of given form

; for example, the logarithmic function
can be eliminated by differentiation from the equation

i f I \ A

y =
log 0(a?), which gives -/

= tii. We have met several
ax

(f) (X)
instances of this process of elimination already; thus, in
Art.

^86,
we found that the elimination of the symbolic

functions, sin and sin&quot;
1

, from the equation y = sin (m sin^a?)
leads to the differential equation

/ 2 \ ^y dy

&amp;lt;^&amp;gt;d*-*I
+ &quot;*V-P.

The principles involved in this process of elimination are
of great importance in connexion with the converse problem
viz., the procedure from the differential equation to the

primitive from which it is derived. This part of the subject
belongs to the Integral Calculus in connexion with the solu
tion of differential equations.

EXAMPLES.

I. y = tan&quot;a;. Ans. *?
*

dx I +

-

3. Eliminate the exponential and logarithmic functions from the equation

ya= log (. + ,-*). Ans.
d

êfe*

4. Eliminate the circular arid exponential functions from y = e* siu x.

TT ^y
Here = e* Bmx+ ex cosz = y + e*cos#;

., ,, (Py dy du
therefore ^ = + e* cos x - ex sin x = 2 - 2y.dx2 dx dx

Ans. x&amp;gt; -+ a?

dzz dx
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In the preceding examples we have only considered the
case of a single independent variable : the differential equa
tions arrived at in such cases are called ordinary differential

equations.
When our equations are of such a nature as to admit of

two or more independent variables the equations derived from
them by differentiation are called partial differential equa
tions. We proceed to consider some cases of elimination

whicji
introduce differential equations of this class.

^313. Elimination of Arbitrary Functions. The
equations hitherto considered contained only two variables

;

we now proceed to the more general case of an equation in

volving three variables, two of which accordingly can be

regarded as independent. We shall denote the independent
variables by the letters x and #, and the dependent variable

by z.
^

It will also be found convenient to adopt the usual

notation, and to represent the partial differential coefficients

dz
dz_

d-z
d*z_

d*z

dx ~d&amp;gt;

~

by the letters p, q, r, s and
zf, respectively.

We proceed to show that in this case we are enabled by
differentiation to eliminate functions whose forms are alto

gether arbitrary. In fact we have already met with examples

of this process : for instance, if z=xn$ (-), we have seen, in
\xj

Art. 1 02, that in all cases we have

dz dz
XT -\-y~-- nz. (i\
dx y

dy
v ;

whatever be the form of the function : this function accord

ingly may be regarded as completely arbitrary in its form,
and the preceding differential equation holds whatever form
is

assigned^
to it. This can also be shown immediately by

differentiation. Conversely, it can be established without
y

difficulty that xn
&amp;lt;t&amp;gt;

K is the most general form of z which
\xj

satisfies the preceding partial differential equation, and con

sequently z =
&amp;gt;f^ ]

is said to be the solution of equation (i),

2 C 2
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where the function $ is perfectly arbitrary. This latter

process, as in the case of ordinary differential equations,
comes under the province of the Integral Calculus, and is

mentioned here for the purpose of showing the connexion

between the integration of differential equations and the

formation of such equations by the method of elimination.

As another simple example, let it be proposed to eliminate

the arbitrary function from the equation z =f(x? +- y
2

).

Here p =
^= 2xf(x

i + f), q
= -- = 2yf(x* + f);

hence we get yp
-
xq = o

;

an equation which holds for all values of z whatever the form

of the function (/) may be.

EXAMPLES.

4-ns. aq = bp.

nxn~l q =

xzp + yzq = xy. J

- j-4- Condition that one Expression should be a

Function of another. Let z =
0(#), where v is a known

function of x and y. -/

dz
,

(
.dv dz _ ,. .dv

^

dz dv dz db dv dv
therefore 3- -7-

-
-7- 7-

=
o, orp -

q T = o.
dx dy dy dx dy dx

This furnishes the condition that z should be a function of

the quantity represented by v. Also, denoting z by F, and

supposing F and v to be two_given explicit functions of x and

?/, the condition that V is a function ofvis that the equation

dV dv dV dv |\ T
=O \\

L
(2)

dx dy dy dx \\
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shall hold for all values of x and y, i. e. shall be identically

satisfied. For instance, if

x + y

dVdv dVdv ., ,. ,,

we get -r -
-j- j-

=
o, identically ;

dx dy dy dx

hence V is a function of v in this case.

This can also he independently verified : for, if x = sin 0,

and y = sin 0, we get

COS & - COS (h 0+0= - tan--
5asm - sin

v = sin cos + cos 9 sin = sin (0 + 0) :

this establishes the result required.
We have here assumed that whenever equation (2) is satis

fied identically, V is expressible as a function of v : this can

be easily shown as follows :

Since V and v are supposed to be given functions of x and

y, if one of these variables, //,
be eliminated between them we

can represent F as a function of v and x.

Accordingly, let

dV _df (tfdv dV__ dfdv_~ =&quot;~ &quot;~ ~

dVdv dVdv dfdv j-~ = ~ Jtherefore

Hence, since the left-hand side is zero by hypothesis, we must

have 2. = o
;

i.e. the function/(#, v) or F reduces to a func-
dx

tion of v solely ;
which establishes the proposition.
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315. More generally, let it be proposed to eliminate the

arbitrary function from the equation

where V and v are given functions of three variables, x, y,
and z.

Eegarding x and y as independent variables, we get by
differentiation

dV dV . . dv dv

dV dV Jdv dv
-r- + q =

(v) + q :

d ds d *
dz

eliminating (?) we obtain

dVdv dVdv fdVdv dv dV\_ _ _ _ _ i

Y) I _ __ I

dx dy dy dx \dz dy dz dy J

dVdv dvdV\

a result independent of the arbitrary function 0.
This equation can also be established as follows :

Differentiating the equation V =
0(0), considering x, y, s

as all variables, we get

dV . dV . dV,
,,
Jdv

,
dv _ dv

dx + dy + dz = (v) dx + dy +
dx dy dz \dx dy dz

Then, since the form of 0(0) is perfectly arbitrary, this equa
tion must hold whatever be the form of the function

/

(#)&amp;gt;

and hence we must have

dV . dV . dV .

dx + - dy + - dz = c
dx dy dz

(4)
dv dv dv

J
dx + dy + dz = o.

dx dy dz
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Moreover, introducing the condition that 2 depends on x

and y^ we have

dz = pdx + qdy ;

consequently, eliminating dx, dy, dz between this and the

equations in (4), we get

dV dV dV_
dx

9

dy dz

dv dv dv

dx dy dz

- i

= o.

This agrees with the result in (3).

(5)

EXAMPLES.

Eliminate the arbitrary functions in the following cases :

I. x =
&amp;lt;^&amp;gt; (a sin x + b sin y),

y_

3.2 ;

x
I * /_I\
z x \y xl

f+(y)*

dz dz
Am. ocosy- a cos x = o.y

dx dy

dz dz z

99 dx
+

~dy

=
&quot;a

dz dz xu

dz dz
-r + 8-r
dx dy

cz).

dz dz
Am. (bz

-
cy] -f (ex az}

= ay-
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316. Next, let it be required to eliminate the arbitrary
function from the equation

F{x,y, *, 0(tt)} =o,

where u is a given explicit function of #, y and z.

Begarding x and y as the independent variables, we may
differentiate the equation with respect to x, and also with
respect to y\ then, since z is a function of x and y, we have

,, Jdu du \

K* + *v
, d. (f)(u) (du du

and r^ 2 = (h (u}\ + a i*

dy \dy efcV
hence we obtain two partial differential equations involving
#

y-)^-) P&amp;gt; &amp;lt;1&amp;gt; &amp;lt;l&amp;gt;(u)

and $ (u). Accordingly, if
(f&amp;gt;(u)

and $ (u) be
eliminated between these and the original equation, we shall
have a resulting equation containing only #, y, %

9 p and g.

317. Case of Two or more Arbitrary Functions.
If the given equation contain more than one arbitrary func
tion, we must proceed to partial differentiations of a higher
degree in order to eliminate the functions : thus, in the case
of two arbitrary functions, $(u) 9

and
t//(e?), the first differen

tiations with respect to x and y introduce the functions $ (u)
and !//(#). It is plainly impossible, in general, to eliminate
the four arbitrary functions between three equations; we
accordingly must proceed to form the three partial differen
tials of the second order, introducing two new arbitrary
functions

0&quot;(tf)
and

4&amp;gt; (v). Here, again, it is in general
impossible to eliminate the six functions between six equa
tions, so that it is necessary to proceed to differentials of the
third order : in doing so we obtain four new equations, con

taining two additional functions, tf&quot;(u]
and

4&amp;gt;&quot;\v).
After

the elimination of the eight arbitrary functions there would
remain, in general, two resulting partial differential equa
tions of the third order.

3 1 8. There is one case, however, in which we can always
obtain a resulting partial differential equation of the second
order viz., where the arbitrary functions are functions of

the same quantity, u.
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Thus, suppose the given equation of the form

F{x,y, 2, 0(w), iM}=o, (6)

where u is a known function of #, ^ and z.

By differentiation we get

dF dF dFdu du

dF dF dFfdu du\
=

dy
^
dz du \dy dz)

Eliminating between these equations, we obtain

dFdu dFdu (dFdu _ d^Fdu\

~dx~dy dy dx \dz dy dy dz)

(dFdu dFdu\_ , .

+ 9
~~

17J

This equation contains only the original functions
&amp;lt;t&amp;gt;(u),

$(u), along with #, /, z, p and q. Again, if we apply the

same method to it, we can form a new partial differential

equation, involving the same functions
&amp;lt;j&amp;gt;(u)

and $(u) 9 along

with x, y, *,p, q,r, s, t.

The elimination of the unknown functions, 0(n) and \l/(u),

between this last equation and equations (6) and (7), leads to

the required partial differential equation of the second order.

The result in (7) admits also of being arrived at by the

method adopted in the second proof of Art. 315. For, re

garding x, y, z, as .all variables, we get from (6), on differen

tiation,

dF dF ,
dF 7 dFfdu . du du \ ,^

dx+-r dy +
-r dz + -r (-r dx + dy +T dz = o. (8)

dx dy dz du\dx dy dz J

dF dF . dF ,
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and accordingly, since (8) must hold for all values of
&amp;lt;j&amp;gt; (u}

and \l/(u) 9
we have

dF

and

dx + -7- dy + dz = o, j

dy dz

du _ du . du
dx + -dy + -dz=o

j

(9)

Eliminating between these equations and

dz = pdx + qdy,

we get the following determinant :

dF dF dF
dx

9

dy dz

du du du

dx
9

dy* dz

(10)

which, plainly, is identical with (7).

This admits also of the following statement: substitute c

instead of u in the proposed equation ;
then regarding c as con

stant, differentiate the resulting equation, as also the equation
u = c (on the same hypothesis) : on combining the resulting

equations with

dz =pda + qdy,

we get another equation connecting (c) and $ (c) ;
and

applying the same method to it, we obtain the result, on

eliminating the arbitrary functions 0(c) and i//(c)
between

the original equation and the two others thus arrived at.

These methods will be illustrated in the following ex

amples :
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EXAMPLES.

I. * = x$(z)+yty(z).

Here p = &amp;lt;j&amp;gt;(z)

+ {x$ (z) + yf (z) }p,

q = ^(z} + {x&amp;lt;p(z)
+ yy(z}}q.

Hence
|
=
|g =^), suppose.

Applying the principle of Art. 314, we have

or q^r 2pqs -f p^t = o.

Otherwise thus : let z = c, and we get dz = o, and
&amp;lt;p(c)dx + \^(c) dy = o

also pdx + qdy o
;

therefore - = ^f.
q $(c)

Differentiating again, we have

qdp - pdq = O,

or q{rdx + sdy}
-
p(sdx -f tdy) = O,

which, combined with pdx + qdy = O,

leads to the same result as above.

2. z =
X(f&amp;gt;(az

+ by) + yfy(ax + by).

Here p =
&amp;lt;t&amp;gt;(ax

+ by) + a{x$ (ax + by) + y^ (ax + by) },

q = ty(ax + by) + b{x&amp;lt;l&amp;gt;(ax
+ by) + yty (ax + by)};

therefore bp aq = bty(ax + by) aty(ax + by) ;

hence br - as = a{b$ (ax + by) aty (ax + by) };

bs at =
b{b&amp;lt;p (ax + by)

therefore b*r - 2abs + a-t - o.
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Otherwise thus : let ax + by = c, then adx + bdy = o
; also,

dz =
&amp;lt;f&amp;gt;(c)dx

+ \l/(c) dy, and dz = pdx + qdy ;

hence

fe-?**()-K4*

Differentiating again, we get

bdp adq = o, or b(rdx + sdy) a(sdx + tdy]
= O.

Combining this with the equation adx + bdy
-

o, we get

b*r - 2abs + a?t = o,

as before.

319. Case of n Arbitrary Functions of same
Function. It can be readily seen that the preceding
method is capable of extension to the elimination of any
number n of arbitrary functions from an equation, provided
that they are all functions of the same quantity u.

For the equation (7) plainly holds in this case, and, pro
ceeding as in the last Article, we obtain a series of equations
(the last being of the nth order of differentiation), each con

taining the n arbitrary functions along with the variables and
their derived functions. If the n functions be eliminated
between the n differential equations and the original equation,
we obtain a differential equation of the nth order which is

independent of the arbitrary functions in question.
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EXAMPLES.

I. Given y = eax(G + C x], prove that

2. Eliminate the constants from the equation

d^y dy
y = Cie

Zx cos 32 + C?,e
lx sin 30;. ^4ws. - -

4 -7- -f

3. Eliminate C and C&quot; from the equations

cosmx
,

.

(a) y = + C cos wa; + C sin a?,

(*) S

Ans. (a) -^
+ rPy = cos mx. (b)

-~~

4. Eliminate the arbitrary functions from the equation

#3

e = -r- +
&amp;lt;p(y

+ ax) + My -
ax}. Ans. r-a-t- xy.

o

;.
Eliminate the functions from the equation

y = A cos (a sin- 1 - + b). Ans. (c
2 -a;3

)- ^
~
^^~+ aV =

6. Eliminate ^i and o from

y = ^4 cos (n cos # + a) . Ans. - cot x~- + n2
y sin2

a: = o.
dx~ dx

7. If z = cos ax
&amp;lt;j&amp;gt;

(
-

J
+ sin axty ( -

J
, prove that

. &amp;lt;

ro;2 + 2sxy + ty* + atx^z = o.

8. If i, 2, s he the roots of the equation

z3 + p
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prove that the result of eliminating the exponentials from the equation

dy

9. Find the result of the elimination of the arbitrary functions from

z =
&amp;lt;p(x

+ ay) + y(x
-

ay}. Am. a?r - t = o.

/ 10. If z =/ p + $(xy), prove that

II. If ae-v + berv = cex + de~x
, prove that

t - (m + n - i}(px + qy] + mnz = o.

y 13. Eliminate the arbitrary functions from the equation

Ans. ps - qr = o.

14. Prove that y = Aeax satisfies the differential equation with constant
coefficients

dn dn~l

provided is a root of the equation

15. Show that

is the general solution of the equation in Ex. 14, where ait az . . . an are the
n roots of the equation in z, and Ai, A 2, . . . An are arbitrary constants.

1 6. Eliminate the constants from the equation

ay? + 2bxy + cy* + 2dx + 2ey +f= o.

J.. _7O 19

Ans.
dx*
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CHAPTEE XXII.

CHANGE OF THE INDEPENDENT VARIABLE.

320. Case of a Single Independent Variable.

have already pointed out the distinction between indepen
dent and dependent variables in the formation of differen

tial coefficients.

In applications of the Differential Calculus it is sometimes

necessary to make our differential equations depend on new

independent variables instead of those which had been origi

nally selected.

To show how this transformation is effected we commence
with the case of one independent variable, and suppose Fto

represent any function of as, y, -, ,
&c. We proceed to

show how the expressions for -~,
~

f &c., are transformed,
clx cix

when, instead of #, any function of x is taken as the indepen
dent variable.

Let this new function be denoted by t, and suppose that

, , &c., are represented by x, x, then, in all cases
dt civ

we have
du _dudx du
~ = ~~ =

Tx

where u is any function of x
;

or

Hence =
; (2 )dx xdt v
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- d*y dy
i a i/ df? /// / _ \

hence ~ = a*
. (3)

dx* x3

Again

and so on for differentiations of higher degrees.
If y be taken as the independent variable, we obtain the

corresponding values by making

dy

^ =
Hence dx

dy \dy,

fdz%\ z dx d*x

d?y \dy
i&amp;gt;

) dy dy*

fofl

= &quot;&quot;

7ZA5 S (6 )

and so on.

The preceding results can also be arrived at otherwise,
as follows: The essential distinction of an independent
variable is, that its differential is regarded as constant

;
ac

cordingly, in differentiating -^,
when x is the independent
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variable we have d{ -/ }
= -~. However, when x is no longer

\dxj dx

regarded as the independent variable we must consider the

numerator and the denominator of the fraction -^ as both
dx

variables, and, by Art. 15, we get

i(dy\
dx cPy

-
dy dzx d (dy\

dx
d&quot;*y dy d^x

\dxj dx2

dx\dxj dx*

Differentiating again on the same hypothesis, we get

d
fd&quot;*y\

dx* d*y
- dx dy d*y

-
3dx d*x dz

y + 3 (d
z

x)
2

dy

fa\dx*

These results are perfectly general whatever function of x

be taken as the independent variable. Their identity with

the equations previously arrived at is manifest.

EXAMPLES.

1. Being given that x - a (0
- sin 0) and y = a(i - cos 0), find the value of

dzv - i

^. Ana. -.
dxz a(i-cos0)~

2. Hence deduce the expression for the radius of curvature in a cycloid.

a + b a + b

3. If x = (a + b} cos - b cos and y = (a + b) sin Q-b sin = 0, find
o b

the value of .

a + b
COS - COS T

TT dy b
Hero / = T

dx .a + b
sin - sm

b

d*y a + 2b

dtf
=

4* (a + b) sin ^ cos3

1-^-
+ i

J0

4. Change the independent variable from x to 9 in the expression -^, sup

posing x = sin 0.

dy
I d2y .

sm0
TTpvp

dx
~

cos de dx* cos de \cos del cos3 ww
COS0

2 D
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5. Transform the equation

* = e*
into another in which 6 is the independent variable, being given x = ee.

Here
de dx de

&quot;

dx

hence -
(

d
JL\ = x t (x

d
JL\ or

^ _ &^ *y
u

dd\dej dx\ dx) d~&*~ d& + x
Tx&amp;gt;

therefore s2^ =^V_^
and the transformed equation is

^y_ ^dy

6. Transform the equation

into another where z is the independent variable, being given * = I.
z

It is evident that in this case x^ = -z^- hence
dx dz

dy

+ + * =* + *dx2 dx dz L
dz

therefore *%+*%..&,dx* dx dz*

and the transformed equation is

7. Change the independent variable from x to z in the equation

#4

dxZ
+

&amp;lt;#&quot;y

= o, where x = -.

. d*t/ 2 (hi

**&*-. ?
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321. Two Independent Variables. We will next

consider the process of transformation for two independent
variables, and commence with the transformations intro

duced by changing from rectangular to polar coordinates

in analytic geometry. In this case we have

x = r cos 0, y = r sin 6 ; (7)

and therefore r* = x*+tf, tan0 = -. (8)x

Accordingly, any function F of x and y may be regarded
as a function of r and 0, and by Art. 98 we have

*r-__ ^ i ^ _-

dr dx dr dy dr J

But, from (7),

*/-* f\ -*^ r\ *f r.^-*~* n &

hence we obtain

dV dV dV

dV dV dV
r-r- = x +y. (12)
dr dx dy

These transformations are useful in the Planetary Theory
Again, we have

= -)

dx dr dx dO dx I

__
dy dr dy dO dy J

2 D 2
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But from (8) we have

dr x dr

& =
;
=cos0

dj
mem

&amp;gt;

dB y sin 9 dO cos 9
,dx x2

r dy r
,

=-
; (15)v

therefore
&amp;lt;f=cos0?-, (

l6
)dx dr r d9 v

The two latter equations can also be derived from equa

tions (i i) and (i 2) by solving for - and .

dx dy

322. Transformation of - - and- . Since for-
dx* dy*

mula (16) holds, whatever be the form of the function F,
we have

d , . .. d sin 9 d .-W = cose-W -
_(,),

where
^&amp;gt;

stands for any function of x and y. On substituting
c?F .

instead of 0, this equation becomes

d(dV\-- -

dr r d9 J

_ _ cos sin d?V cosflsinfl^F

dr* r drd9
+

r2 dS

cos 9-^^ - sin 9
r

[_ drd9 dr J
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dx* dy*

9e,

or -r-i- = cos a --- +-r-i- -7-5- m
dtf dr2 r \rd& drdO J

~r~ dr ~72
&quot;~W

In like manner we get

dV

cos
2 d2 V

dr&quot; ~r^~ dP

The latter result can also be readily deduced from the

preceding by substituting in it 6 for 0.

If these equations be added we have

df dr* r dr r* dti*
(I

323. Transformation of - + -^ +
-y^-

to Polar
dx

dy&quot;
ctz

Coordinates.

Let the polar transformation be represented by the equa
tions

y = r sn sn
&amp;lt;/&amp;gt;,

also, assume p = r sin 0, and we have

x =
p cos

&amp;lt;, y = p sin $ ;

hence, by (18), 3- +
-7-5-

= -rT + - -r- +
y-^-

o^;
2

dif dp* p dp p d(j&amp;gt;-
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Again, from the equations

p = r sin 0, s = r cos 0,

we have in like manner

= idV
dp* dz2

~
dr*

+
rdr

Accordingly,

^2 %2
dz2

dr* pdp
But by (17) we have

dV .

therefore I . I +
p 4&amp;gt;

r ^r r2 dO
&quot;

Hence we get finally

i rf
2F

*i*d&

d
t&amp;gt;

dV

324. Remarks on Partial Differentials. As already
stated in Art. 113, the student must be careful to attach the
correct meaning to the partial differential coefficients in each
case.

Thus in finding in (10) we regard x as a function of r

and 0, and differentiate on the supposition that 9 is constant;
dt&quot;

in like manner the value of in (14) is found on the suppo-
CIJO

sition that y is constant.
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The beginner, accordingly, must not fall into the con

fusion of supposing that in this case we have x = i .

This caution is necessary, as some mathematical writers,

from not paying proper attention to the meaning of partial
derived functions, have fallen into a similar error.

325. Geometrical Illustration. The following geo

metrical method of determining the proper values of and

under the preceding hypotheses may assist the beginner
towards forming correct ideas on this important subject.

Let P be the point whose coordinates are x and y ; then

OH =
x, PM =

y, OP =
r,

POX = 0. Now, in finding

regarding- as constant,
dr

we take on the radius vector

OP produced a portion PQ
= Ar, and draw QN perpen
dicular to OX-, then Aa?, the

corresponding increment in a?,

is represented by MN or PL ;

A* PL
therefore - = ^-^ = cos 0,

Q

Fig. 82.

or
dx a= COS V.
dr

dr
Again, to find on the supposition that y is constant :

let MN be Aa?, the increment in a?, and draw the parallelo

gram PLMN, and join OZ, meeting in I a circle described

with radius r and centre ;
then LI represents the corre

sponding increment in r, and we have

dr f AP ,. ., IL n= limit of = limit of =-f = cos 6
;

dx Aa?

so that in this case the values of and are each equal to

cos 6 or -, as before.
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The values of
,
& . can also be readily represented

geometrically in a similar manner.

326. Linear Transformations. If we are given

x = aX+ bY+ cZ
9 y = a X + b Y+ c Z, s = a&quot;X+ b&quot;Y+

c&quot;Z, (20)

then any function F, of x, y and 2, is transformed into a
function X

t Y, Z; and, as in Ex. 2, Art. 98, we have

dV dV ,dV ,,dV= a + a +a &quot;

dA. ax d dz

-
dY&quot; \ix ciy -fo*

dV dV ,dV ,,dV=c + c+c
dZ dx dy dz

Again, proceeding to second differentiation, we get

&V d( dV ,dV ,,dV\ ,d(dV ,dV ,,dV\
TY*** a -T\ aT~ +a ~l~ +a ~r- l

+ a -r (a-r- + a +
IdXz

dx\ dx dy dz j dij\ dx dy dz J

dV ,dV ,,d
a T -j- ~r

dz\ dx dy

dV\
-7-
dz j

Y + 2aa -+2aa-
J r + 2aa--r

ax* dxdy dxdz dzdy

1

dy* dz*

Similarly we have

d2 V d2 V
7 // tl/ * W T- + 20 b -r-r ;

dxdn dzdy
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, ,^ ,

dZ*~
C
dtf* df rfs

2
H

,,,

+ 2CC - + 2C C-
.

dxdz azay

327. Orthogonal Transformations. If the transfor

mation be such that

we have

2 + 2 +
&quot;2

=I, ^
2 +6 2 + ^/2

=I, C
2 + C

/2 + 6-
/2 =I. (21)

ab + ab + a&quot;b&quot;= o, ac + a c + a&quot;c&quot;= Oj be + b c + b&quot;c&quot;= o. (22)

Again, multiplying the first of equations (20) by #, the

second by a
,
and the third by a&quot;,

we get on addition, by aid

of (21) and (22),

In like manner, if the equations (20) be respectively

multiplied by b, b
, b&quot;,

we get

similarly,
&amp;lt;Z

If these equations be squared and added, we obtain

a* + V + # =
i, a 2 + b

* + c* =
i, a&quot;

8 + b&quot;

2 + c&quot;

2 = i. (23)

aa + 66 + cc =
o, aa&quot;+ bb&quot;+ cc =

o, aa&quot;+ b b&quot;+ c c&quot;= o. (24)

Hence in this case, if the equations of the last Article be

added, we shall have
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The transformations in this and the preceding Article

are necessary when the axes of co-ordinates are changed in

Analytic Geometry of three dimensions
;
and equation (25)

shows that, in transforming from one rectangular system to

,, ,, , , ,, ,. tfV d~V tfV .

another, the value of the function -? + -rT- + r isun-
dx* dy* dz

z

altered.

328. General Case of Transformation for Two
Independent Variables. Suppose that we are given the

equations
a =

0(r,0), y = ^M), (26)

then any function of x and y may be regarded as a function

of r and 9, and we have, from (9),

dV _dVdx dVdij
dB

~
dx~ dO

+
dy dff

dV__dV_dx_ dV_dy
dr dx dr dy dr

where the values of ~-^ -JL ,
~ can be determined from

au au dr dr

equations (26).

Whenever these equations can be solved for r and 0,

separately, we can determine, by direct differentiation, the

. dr dr dO dd , , ... ,. / \

values of
, , , ,

and hence, by substituting in (13),

v* t dpr A dV
we can obtain the values of - and

dx dy

When, however, this process is impracticable, we can ob-

A . ., , .dr dr , , . . . dV , dV
tain the values of

, , &c., by solving ior -- and -
dx dy dx dy

in the preceding equations.
Thus we obtain

F dVdy _
dd dr dr dO

dx =
: :
-

: 5

dx dy dx dy

TQ^~ dr~dO
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(28)

dVdx _dVdx
dV dO dr ~dVdQ

dy dx dy dx dy
drdO~ dtidr

The values of ,

^-y
, &c., can be deduced from these :

but the general formulae are too complicated to be of much
interest or utility.

329. Concomitant Functions. We add one or two
results in connexion with linear transformations, commencing
with the case of two variables. We suppose x and y changed
into aX + bY and a X + I Y, respectively, so that any func
tion (#, y) is transformed into a function of X and Y : let

the latter be denoted by &amp;lt;j&amp;gt;i(X, Y), and we have

^(x,y) = ^(X, Y).

Again, let x and y be transformed by the same substitu

tions, i. e.j

then since x + kx* = a(X + kX
)
+ b(Y+kY

7

),

and y + ky = a (X + kX
)
+ b (Y+kY),

it is evident that

&amp;lt; (x + kx, y + ky )
=

&amp;lt;j&amp;gt;

i(X+ kX ,
Y+kY ).

Hence, expanding by the theorem of Art. 127, and

equating like powers of k, we get

^ M_ x,dfr d^
*
dx+ y ~d-

C

dX
+ Y

d~Y&amp;gt;

&c, &c. (30)
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Accordingly, if u represent any function of x and y, the

expressions denoted by
d ,d\ ,d ,d\*

are unaltered by linear transformation.

Similar results obviously hold for linear transformations
whatever be the number of variables (Salmon s Higher Algebra,
Art. 125).

Functions, such as the above, whose relations to a quantic
are unaltered by linear transformation, have been called con
comitants by Professor Sylvester.

330. Transformation of Coordinate Axes. When
applied to transformation from one system of coordinate
axes to another, the preceding leads to some important
results, by applying Boole s method* (Salmon s Conies,
Art. 159).

For in the case of two dimensions, when the origin is

unaltered we have

z 2 + 2x y
f
cos w + y

~ = X z + 2X Yf
cos & + F 2

, (31)

where M and Q denote the angle between the original axes
and that between the transformed axes, respectively.

Multiply (31) by A, and add to (30): then denoting
i(-&amp;gt; Y) by U we get

2xy T-^- + cosw +y
dt* J \dxdij

Now, suppose A assumed so as to make the first side of

this equation a perfect square, it is obvious that the other

side will be a perfect square also. The former condition

gives
f

dzu . \ fd*u \ [ dzu
+ A + X 1 = (M

* I am indebted to Prof. Burnside for the suggestion that the equations of

this Article are immediately obtained by Boole s method.
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,
2

.
2

.

or A2 sm2w + A - + - - 2
dxz

dy* dxdy
cos

d^ud^u
( d?u y_

dx* dy* \dxdy)

Accordingly, we must have at the same time

Hence, comparing coefficients, we get

- (
d~u V~ ~

y* \dxdy dX* dY* \dXdYJ
sin w sin U

and

d?u d*u
_ dzu d^TT d*U d?U

r-s =
. . (33)sm2

o&amp;gt; sm2O

Consequently, if u be any function of the coordinates of
a point, the expressions

are unaltered when the axes of coordinates are changed in any
manner, the origin remaining the same.

In the particular case of rectangular axes, it follows that

d^ (Pu d*u d*u
_

f d*u V
dtf

+
df

*

7Way~ \dx~dy)

preserve the same values when the axes are turned round

through any angle.
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331. Application to Orthogonal Transformation.
When the transformations are orthogonal it is easy to extend
the preceding results to three or more variables (Art. 327).

Thus, in the case of three variables, we have

+
y&quot;&amp;gt;

+ z
2 + Y 2 + Z \

Multiplying this by A, and adding the result to the equation
that corresponds to (30), it follows that the expression

2x

dzdx ax ay

is unaltered by orthogonal transformation.

Next, suppose that A is such that the quadratic function
in #

, y and z is the product of two linear factors
; then, by

Art. 107, we have

dxdy* dxdz

dxdy* dŷ
+ A

&amp;gt;

dydz

~ + \

= o. (34)

dxdz dydz dz

But, as the transformed expression must also be the product
of two linear factors, we have

T-* + A,
dzu

dx2

dxdy* dxdz

i 3~2 ~*~ ^1
dydx* dy*

dxdz dydz dz

dydz

d2u
^ZT

1* A

dX A, dXdY dXdZ

dXdY dY

d2U

^TT2 + A, dTdZ

rf
2
?7

, .^.r + A

(35)
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Equating the coefficients of like powers of A, we see that the

expressions

d*u d2u f dz
ii Y d*H ^u

i

dx2

dy* \dxdy) dx* dz*

V d*u &amp;lt;?u
(
d*u V

~df d^
&quot;

\dyd~z)

and

dx dxdy dxdz

d*u d2u dhi

dxdy dif dzdy

dxdz dydz dz*

are unaltered by orthogonal transformation.

The first of these results has been already arrived at by
direct substitution (Art. 327).

These results readily admit of generalization.
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EXAMPLES.

I. Being given y=f(u) and w =
&amp;lt;(#),

find

2. If y = .F(*), * =/()i =
&amp;lt;J&amp;gt;(#),

find the value of

Am. F (t}f(u] + (f(*)}
2
{/ F (t] + (f (n}

3. Change the independent variable from # to z in the equation

&y , fy l

x* - 2nx* --1-

2
y = O. where x = -.

dx2 dx z

dZiu 2 (n + i) dyAm. ~\ + -i- /+az6 z az

4. Transform (i
- a2

) ^-|
-

-7- -f
2
y = o, being given x = sin z.

dx dx

Ans. -y
az

5. If x = r sin0
cos^&amp;gt;, y = rsin0sin0, 2 = r cos 0, prove that =

,

where and $ are regarded as constants in finding ;
while y and z are re

dr

garded as constants in finding .

6. If z be a function of two independent variables, x and y, which are

connected with two other variables, u and v, by the equations

fi(xt y, u, v)
= o, /2(*, y, , 0)

= o;

&amp;lt;fz , dz . f dz dz
show how to express

- and m terms oi and
dx dy du dv

7. Transform the equation

gy 2x dy _y_
dx* i + 2 dx (i + a;

2
)

2

into another in which is the independent variable, supposing x = tan 0.



Examples.

8. If 2 be a function of x and y, and u = px + qy z, prove that when
p and q are taken as independent variables, we have

du du
x. =

dhi

dp dq dp* rt s &quot;

dp dq rt s2 dq
2 rt sz

where p, q, r, s, t denote the partial differential coefficients of z, as in Art. 304.

9, If the equation

be transformed to depend on 0, where x = eO, prove that the coefficients in the
transformed differential equation are all constants.

10. Given x
, y =

|rj|,
prove that

F(t], F (t) t F&quot;(t]

f(0 f (0

2E



CHAPTEE XXIII.

SPHERICAL HAUMONIC ANALYSIS.

332. IT is proposed in this chapter to give a brief discussion

of the differential equation

an equation which occurs so frequently in physical investi

gations. We shall denote the symbolic operator

dz d2 dz
,

^ + ^ + ^ byV

Adopting this notation, we readily see that

(du dv du dv du dv
V z

(uv) = tlV V + 0V tf + 2 T-3- + T&quot;T~
+ T~ IT/ v ;

\dx dx dy dy dz dz

Again, since (r
m

)
= mxr *,

dz

we have -
(r
m

)
= mrm~* + m (m

-
2) x? r&quot;

1 &quot;4

,

UX

and we readily get

V 2

(r
m

)
= m(m+ i) rm~*. (3)

Hence, from (2), we have

i&amp;gt;

dV dV
dx dy

Moreover, if V be a homogeneous function of the nth de

gree in x, y, Zj we get, by Euler s theorem of Art. 98,

y2 (
r V) = rmv 2 F+ m (m + 2n + i) rm~*

V. (5)
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333. Solid Harmonic Functions. Any homogeneous
function in x, y, z which -Satisfies equation (i) is called a solid

spherical harmonic function, and frequently a solid harmonic.
We shall denote a solid harmonic of the nth

degree byVn ,
in

which^
the degree n may be positive or negative, in

teger or fractional, real or imaginary.
It is evident that any constant multiple of an harmonic is

also an harmonic of the same order.

^
(5) it follows that a solid harmonic of the nth

degree
satisfies the equation

V* (r
mVn)

= m (m + 2n + i) rm &quot;zVn .
(6)

Hence we see that if Vn be a solid harmonic, ~ is also

a solid harmonic, whose degree is - (n + i).

Again, from (3) we see that - is a solid harmonic of the
r

degree
- i. Also it can be readily shown that - is the only

function of r that satisfies equation (i). For by (19), Art.
323, we can transform that equation into

d dV\ i d . dV i

Hence, if V be a function of r solely, we must have

~ T* ~

r )

=
* in the form &quot;

dr dr

In like manner, if Fbe a function of the angle solely,

it must satisfy the equation = o : this leads to V= a$ + b.

Hence we observe that tan 1

f
-

)
is a solid harmonic of the

\xj
degree zero.

Again, if Fbe a function of 6 solely, we have

d

2 E 2
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Hence we see that log f tan -
J

satisfies the equation

V 2 F= o, and we infer that log (
-

)
is a solid harmonic.

\r- zj
A* _i_ sy*

4* _i_ ^y

In like manner, log
- and log

-- are also solid har-
r x r y

monies.

satisfies equation (7) ;

hence we see that

r -

is a solid harmonic, of zero degree.

If V satisfies* equation (i) it is seen immediately that

,
-

, and -r- also satisfy it, as also the general expres-
dx dy dz

dP+2+
r

J7&quot;

sion--_ in which p, q, r are any positive integers.
dxp dyq dzr

Hence, from any solid harmonic, a number of others can

be immediately deduced by differentiation.

dV
Again, since -y-?

is a harmonic of degree n -
i, it follows

ClvC

from (6) that --^ is also a solid harmonic, whose degree
r
2 &quot; 1 dx

is - n : and so on.
$*i*i n\

For example, any expression of the form .

k
-

t
(

-J

is a solid harmonic, whose degree is - (j + k+ 1+ i).

EXAMPLES.

i. Find the condition that

ax* + by* + c# + dxy + exs + fyz

should be a solid harmonic. -4*. a + b + e = o.
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2. Prove that
* y v -\- z

z tan-1 -. and z log 2r.
, \a ** VCMJ. *

r+z r(r-fz) a?

are solid harmonics.

3. If Fo be a solid harmonic of degree zero, prove that y2 &quot;-1

-j=
is also a

solid harmonic.

4. Hence prove that - * is a harmonic function.

For, let Fo = tan 1

(

-
j

; then, since y = x tan 0, it can be shown, as in

Art. 46, that

^(tan-^)=(-d& \ x)

Hence is a solid harmonic, as also any function derived from

it by differentiation.

5. Prove that u=
&quot; n

is a solution of the differential equation
2 (2 + 3)

7% = FM .

334. Complete Solid Harmonics. A solid harmonic

that is finite and single valued for all finite values of the co

ordinates is said to be a complete harmonic. It can be proved,

by aid of the Integral Calculus, that every complete solid

harmonic is either a rational integral function of the coordi

nates, or is reducible to one by multiplication by some power
of r. Assuming this, it follows that the number of indepen
dent complete harmonics of degree n is 211 + i, when n is

positive.
For it is readily seen that the number of terms in Fn ,

a

rational homogeneous function of the nth
degree in x.

y&amp;gt; z, is

(n + 2) (n + i) zrr~
; and also the number ot terms in v V is

n
(
n ~ l

.

hence, since V2Vn = o identically, we must have

_L 11 linear equations connecting the coefficients in Vn \

Consequently, the number of independent constants is

(n + 2) (n + i) n(n - i

2 2
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It can now be shown that every complete harmonic can be

deduced from - by differentiation.

For the solid harmonic

when the differentiations are performed, is readily seen to be

a fraction of which the numerator is a homogeneous func

tion of the degree n, and whose denominator is
-^&amp;gt;

where

yn

n = k +j + I If this function be represented by -^, the

numerator Fn , by (6), is also a solid harmonic.

We can now show that the number of independent har

monics of degree n that can be thus derived is 2n + i.

For, since

we see that

in which + T can l)e expanded bythe binomial theorem*

as if and were algebraic quantities, and the resulting
dx dy

differentiations of - taken.

Hence, if / be even, we have

i

d*M /l\
__

2

d^d^z1

\r)

~
(
~ l

*

dxidi/ \dat dif

and, if I be odd,

dzr
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Accordingly, in the former case, we get a number of terms

each of the form f
-

J,

where p + q = n
;
and in the

latter, terms of the form
q

f
-

j |
,
in which p + q = n - i .

Now there are
^&amp;gt;

+ q + i
,
or n + i terms in the former case,

and n in the latter. Hence there are 2n + i independent
forms, as was to be proved.

335- Spherical and Zonal Harmonics. If a solid

.
harmonic Vn be divided by rn, the quotient may be regarded
as a function of the two angular coordinates, or spherical
surface coordinates, 9 and &amp;lt;. Such a function is called a

spherical surface harmonic of the degree n.

Hence, if Vn = rnYn) then Tn is a spherical harmonic of

the nth
degree.

It is obvious that the general spherical harmonic of the first

degree is of the form a cosO + b sin cos &amp;lt;

+ c sin sin
&amp;lt;/&amp;gt;,

where

a, b, c are arbitrary constants. Also, the general expression
for F2 can be written down readily (see Ex. i, Art. 333).

Again, by (19), Art. 323, we see that Tn satisfies the

differential equation

rf(sin0^V ^ + B
(w+I) rn = o. (8)

sin d8 \ dS J sm2

d&amp;lt;f&amp;gt;

z

This equation admits of a useful transformation : for, let

fj.
= cos 0, then, since

we get

!i&amp;lt;-&amp;lt;- &amp;gt;f1*7^&quot;&amp;lt;-&amp;gt;r
&amp;lt;

Again, if a spherical harmonic be a function of solely, it

is called a zonal harmonic. Hence, if Pn be a zonal harmonic

of the nth
order, it must satisfy the equation
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When n is a positive integer, the value of Pn can be readily
represented by a finite series. For since, by hypothesis, Pn

is a function of the nth

degree in /u, we may assume

m=n

P, = s

Hence -

Substituting in (10), and equating the coefficient of
//&quot;

to

zero (since the result must vanish identically), we get

(m + i) (m + 2} am^ = -
(n

-
m) (m + n + i) am .

Hence, observing that the highest power of /i is n, we
have

n (n
- i

)

and we may write

P. . an L* -

where r/n is an arbitrary constant.

This is the general form of a zonal harmonic of integer

positive degree ; and we see that two zonal harmonics of the
same degree can only differ by a constant multiplier.

It can be shown independently of the above that
d n

(/u

2 -
i)

n
satisfies the equation (10).

. */
In order to prove this we shall assume u =

ju

2 - i
,
and

write the symbol D for -7- ; then we have to prove that
Oft

D {uD (u
n
)}

- n (n -f i) Dn
(u

n
)
= o.
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Now, observing that
j-

= 2^ we get, by Leibnitz s

theorem of Art. 48,

(t*&quot;)
+ 2(w +

Again, since

D(&
n+1

)
= 2 (w+ i)fW

n
,

we have

j)
(
tt

*ij
= 2 (n+ i) Dn

(juw
n
)

= 2 (n + i) juD
n
(w

n
)
+ 2fi (w + i) D*-

1

(w
w
)

Equating these values of Dn+1
(t*

n+1
), we get

uD l

(u
n
) =n(n+ i)D

n
~*(u

n
};

hence /) {wD
w+1

(&quot;)}

-
(

+ i)
n
(*

n
)
= o (

I2
)

Consequently Dn
(w

n
)

satisfies the equation in question.

Hence we infer that

The student can verify, by direct differentiation, that

this expression differs only by a constant factor from the

value of Pn found in (i i).

It is usual to assume that Pn is that value of the pre

ceding expression which becomes unity when ji= i.

To find this value, we have

by Leibnitz s theorem.
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(d
\
n~2

j
(ju

a - 1)^ = when/*

hence, when
fj.

= i
,
we have

Consequently, when ju= i,

and we have

The foregoing result can be readily shown in another

manner. For 2 \ n I
) (u

2 -
i)
n
is the coefficient of hn in the

L-VW
expansion of (i

-
2^1 + hz

)^ (see Ex. 6, p. 155).

Again

(a-
_ ay + y

z + s
2

)

2 = (r
-

zarjii + a3

)&quot;*

--
(i

-
hfj.

+ hz

)-k, where h =
-,

in which we suppose a &amp;gt; r.

But v-

hence

) (u
2 -

i)
n

satisfies equation (10), &o.

fa
The functions Pi, ... Pn are usually called Legendre a

Coefficients.
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EXAMPLES.

1. If
/j. I, prove that P, = I for all values of n.

2. If ft
= -

i, prove that Pn = (- l).

3. If p. &amp;lt; I, show that the series

Pi + P2 + . . . + P + . . .

is convergent.

4. Prove the relations

p 35/*
4
-3Q/*

2 +3 p 63^ - 70^P4 =--, P6 =-
5. Prove the equations

|-(Pn+1 -A-l) = (2f l)Pn,

dp.

(n + i)P+i - (2 + i)/*P + wPM.i = o.

336. Complete Spherical Harmonics.

From Art. 334 it follows that a complete spherical har

monic Tn of the nth
order, when n is an integer, contains

211 + i arbitrary constants. Its value can be expressed by
aid of the corresponding zonal harmonic Pn ,

as we proceed
to show.

Since Tn is in this case a rational integer function of

sin 8 cos 0, sin sin and cos 0, we may suppose it expressed
in a series of sines and cosines of multiples of

&amp;lt;f&amp;gt;,

whose coef

ficients are functions of 0, or of ju. We accordingly assume
that Tn consists of a number of terms each of the form
Ms coss(f&amp;gt; , then, substituting in equation (8), and observing
. .

,
dz

cos s6 .

that
2

= - s
2
cos s0, we obtain, on equating to zero the

coefficient of cos sty,

If, as before, we write u for u2 -
i, and D for, this

dfi

becomes

]

- s
2Ms -n(n+ i)uMs

= o. (15)
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s

Now, let Ms^tfv; then

i+i i
uDMs

= u* Dv + Sau v ;

*therefore

wD (tilXaf.)
= w2+2D2

e; + 2 (s +

*+i

Substitute in (15), and divide by uz
;
then

wDV-f 2 (s + i) ]uDv+ {s(s+ i) n(n+ i)}^
= o. (16)

It is readily seen that this equation is satisfied by assum

ing v = DsPm -

9
for substituting this value for v in (16), it

becomes

2

- n(n + i)D
sPm = o;

but by Leibnitz s theorem the first three terms are equivalent
to Dm (uDPm) ;

whence the equation becomes

D8*1
(uDPm) -n(n+i)DsPm = o.

But this equation follows immediately from (10) by
differentiating it s times with respect to /*.

Accordingly, the expression

satisfies equation (14), and hence

satisfies (8).

In like manner, as
8

= - s
2 sin s$, the expression

also satisfies the same equation.

Accordingly, equation (8) is satisfied by the expression

-f d\*

in which A, and Bs are arbitrary constants.
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This expression is called a Tesseral Surface Harmonic, and

is said to be of the degree n and order s.

If we give all integer values to s from i to n, the com

plete spherical harmonic Tn can be written in terms of

Tesseral harmonics as follows :

s-dsPn

i)
2

-j-7, (18)
r1

in which f ) (fj.

z -
i)

n may be substituted for Pn if neces-

W/
sary.

This equation contains the proper number 2n + i of arbi

trary constants, and consequently may^ be regarded as a

general expression for a complete spherical harmonic of in

teger positive degree.
There is no difficulty in showing by differentiation that

]

+

V2 -
0&quot;

differs only by a constant from

2(2*-i

2.4.(2-

Hence that part of Yn which depends on the angle s$ may
be written

(A. cos^ + Bs sin &amp;lt;

2(21*- 1)

This agrees with the general expression given by Laplace

(Htcanique Celeste, tome in., chap, ii., p. 46).

337. Laplace s Coefficients. It is immediately seen

that the expression
{(^y + (y

_
/)2 + (t_^ satisfies the

general equation (i), as also the corresponding equation

_=
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Transferring to polar coordinates, the preceding expression
may be written (r

2 - 2\rr
f

+ /2

) , where

x = / sin cos $ , y = / sin & sin $ ,
z = r cos

;

and A = cos 9 cos + sin 9 sin 9 cos
(&amp;lt;

-
).

If P and P be the points whose coordinates are xyz and
x y x

, respectively, then

r

Accordingly, if

(i
- 2\h +

#&amp;gt;)-*

= i + ZxA + Z2/a
2 + . . . + Lnh

n + . . .,

we have

PP r

and

i i 2j\T Ju&amp;lt;2.r Lnr
n

- + r- + + . . . + - + . . . when r &amp;gt; r

i i Lir Lzr
z _,= -7 + -7T + 77- + . . . + -T + . . . when r &amp;lt; /.PP / r z r 3 r n*

Hence, since v 2
f -pjy J

&quot; o, we must have vz
I

-
^ )

s
o,

\ / \* /

and also V2

(Lnr
n
)
= o.

From this we see that Ln is a spherical harmonic of the

degree n, and that it satisfies the equation

The functions ij, Z2 ,
. . . Zn are called Laplace s Coef

ficients, after Laplace, to whom their introduction into

analysis is due.

The value of Ln may be deduced from that of Pn in (i i)

or (13), by substituting ju// + &amp;lt;/i

-
tf ^/i -

ju

2 cos (0
-
$ ) in

place of ju, where p = cos 0, and ju
= cos . Hence it is a

function of the ^degree in ju, ^ i -^ cos and -v/i
-

as also in
ju , \/i -

ju

/2
cos

&amp;lt;/&amp;gt;

and \/i -
f/

2
sin
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Moreover, since Ln is a spherical harmonic of the nth

degree, and symmetric in
JJL

and //, as also in $ and $ ,
it

must, by (18), be of the form

s s dsP dsPnf

in which the coefficients a
,
a l9 . . . as . . . are constants, the

values of which remain to be determined.

It is immediately seen that a = i : for if p =
i, we have

Pn
f =

i, and n = Pn ,

In the Integral Calculus, Art. 233, it is shown that

2 \n s

as
=

(- i) Assuming this result, we have
n + s

Some further applications of spherical harmonics will be

found in the Integral Calculus, Arts. 230-5, but for a more

complete treatment of the subject, which involves the applica
tion of Multiple Integrals as well as the solution of Differential

Equations, the student is referred to Thomson and Tait s

Treatise on Natural Philosophy ; to Ferrers Spherical Har
monics ; or to Todhunter s Treatise on Laplace s, Lamp s, and
Bessel s Functions.
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EXAMPLES.

1. If u be a solution of the differential equation

dxz
dy

z dzz
~

du du du
prove that x- + y^--\-z- will also be a solution of it.

dx dy dz

2. Show that each of the quantities

- - n
z
, (

i - ju
2
)
cos 20, (i

-
fj?} sin 20, pVi-fj? cos 0, juVi-u* sin

3

is a surface harmonic of the second degree.

3. Prove that the expressions

, r+ z z r+ z z r + z 2rxz
z log 2r, log -, x log +

r - z rA r- z r3 &
r - z xz + y

z

are solid harmonic functions.

4. If the polar variables be replaced by u and v, where

fl . f\

cot -e^ Uf tan - e^ = v, and i = V&quot;^i,
2 2

prove that any surface harmonic of the order n satisfies the equation

dzF n(n+i)r =
dudv (u + v)

z

5. If p
2

, pi
2
, pa

2 be the roots of the equation in \,

1 = -

A A. - A2 A - K2

and if

dp dpi
&quot; =

prove that

&amp;lt;Pv

transforms into
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CHAPTEE XXIV.

JACOBIANS.

338. Jacobians. The results obtained in Articles 330
and 331 are particular cases of a class of general theorems

in determinants which were first developed by Jacobi (Crelle s

Journal, 1841).

Thus, if u, v, w be functions of a?, y, z, the determinant

du du

dx* dy*

dv dv

dx
y

dy

dw div

du

dz

dv

dw

d*

(0

was styled by Jacobi a functional determinant. Such a

determinant is now usually represented by the notation

d(u, r. w)

and is called the Jacobian of the system w, v, w with respect
to the variables a?, /, z.

In the particular case where u, v, w are the partial diffe

rential coefficients of the same function of the variables #, y, *,

their Jacobian becomes of the form given in Art. 33 T
&amp;gt;

an(i

is called the Hessian of the primitive function. Thus the

determinant in Art. 331 is called the Hessian of
,
after

Hesse, who first introduced such functions into analysis, and

pointed out their importance in the general theory of curves

and surfaces.

2F
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More generally, if ylf yz, yz .

. . . #n,
the determinant

i dyl

i d-xj

yn be functions of ec
l9

dy*

dxn

dyn dyn dyn

daci
9

dx2 dxn

is called the Jacobian of the system of functions y J9 yt ,
... yn

with respect to the variables %
19 x^ . . . xn ; and is denoted by

Again, if yit yz ,
. . . yn be differential coefficients of the

same function the Jacobian is styled3 as above, the Hessian

of the function.

A Jacobian is frequently represented by the notation

the variables x^ #2 ,
. . . xn being understood.

If the equations for y i9 yz ,
. . . yn be of the following form,

/a(i, ^2, #3),
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it is obvious that their Jacobian reduces to its leading term,
viz.

T = dyi dy* ^/n (-A=

dxl dxz dxn

This is a case of a more general theorem which will be

given subsequently (Art. 343).

EXAMPLES.

i. Find the Jacobian of y\ t yz ,
. . . yn, being given

yi = i - xi, 2/2
= x\(i- xz),

2. Find the Jacobian of x\, x^ ... xn with respect to 0i, 2 ,
. . . n , being

given

#i = cos 0i, a;2 = sin 0i cos 2, #3 = sin 0i sin Z cos 0s, ...

= sin 0i sin 2 sin 3 ... sin 0,,-i cos M .

-Aw. 1(

?
?

!
2&amp;gt;

&quot;

?! = (~ )&quot;

smM 0i . sin&quot;-
1

2 . . . sin0rt .

a (0i, 02, ... n)

339. Case where tlie Functions are not Indepen
dent. If y l9 yz . . . yn be connected by a relation, it is

easily seen that their Jacobian is always zero.

For, suppose the equation of connexion to be represented
by

then, differentiating with respect to the variables

we get the following system of equations :

dF dyl dF dyz dF dyn
~j
--

~j
+ ~j

--T~ + + ~J
--

7
=

%i dXi dyt dxi dyn dx

2F2
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dy* dx*

dyl dxn dy* dxn dyn dxn

dF dF dF
whence, eliminating ,

. . . -7- ,
we get

ayi ay* ayn

d
(a?!,

a;2 ,
. . . xn)

The converse of this result will be established in Art. 344 ;

and we infer that whenever the Jacobian of a system of

functions vanishes identically the functions are not indepen

dent. This is an extension of the result arrived at in Art.

314-

340. Case of Functions of Functions. If we sup

pose ?/!, 2 , s to be functions of y^ yz , yz ,
where y^ yl9 fr are

functions of a?i,
a?2 ,

xz ;
we have

_

dy*

du! dui dyi dui dy2 dui dy*_
~ = ~~ ~

&c.
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Hence, by the ordinary rule for the multiplication of

determinants, we get

dxi dxz

9

dx3

duz duz duz

dxi dxz dx3

du3 du3 du3

dx
9

dxz dx3

or

dyi dyz dy3

duz duz duz

dyi dyz dy3

du3 du3 du3

dyi dyz dy

j) d(Uiy UZy Uz)

dx
9

dxj dx3

dyz dyz dyz

dxi dx* dx3

dy3 dy3 di/3

dxi dxz
*

dxz

, (5)

It follows as a particular case, that

(6)

These results are readily generalized, and it can be shown
by the method given above that

. . u ^2 , ... un) d(yi, ya ,
. . . yn]

9 yz ,
. . yn) dfa, x2 ,

. . . xn)
(7)

This is a generalization of the elementary theorem of
Art. 19, viz.

du du dy
dx dy dx

Again,

rl(v I ~I~\ fffj,

~
7TT

=
(SJ

W^PI, a?2, . . . xn) a(&amp;lt;/i,
2/2

&amp;gt; yn)

This may be regarded as a generalization of the result

dx _ dy

dy dx



438 Jacobwns.

341. The Jacob!an is an Invariant. In the parti
cular case of linear transformations we have a system of

equations as follows:

In this case

y*
=

y=

yn)

+ lnxn .

tt\ Cfz . . ttn

/I 4 n

This determinant is a constant, and is called the modulus

of the transformation.

Accordingly, in linear transformations the transformed

Jacobian is equal to the original Jacobian multiplied by the

modulus of the transformation.

In the case of orthogonal transformation (see Art. 327)
the modulus of the transformation is unity, and accordingly
the Jacobian is unaltered by such a transformation,

342. Jacobian of Implicit Functions. Next, if

u, v, w, instead of being given explicitly in terms of #, y, s
9

be connected with them by equations such as

then u, v, w may be regarded as implicit functions of #, y,

In this case we have, by differentiation,

dFl dFl du dFi dv dFl dw _
dx du dx dv dx dw dx

dy

dFi du
H

du dy dv dy

dFi dw

dw dy
= o,

dx

dF2 du

du dx

Fz dv

dv dx
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Hence we observe, from the ordinary rule for multiplica
tion of determinants, that

dFl dFl dF,

du dv dw
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343* Again, the equations connecting the variables are

always capable by elimination of being transformed into the

following shape :

01 (01, 02, ... 0, 2/l)
=

,

02 (02, 03, ... n
&amp;gt; 2/U ^2)

=
O,

03 (03, 04, ... 0, y\t y*, ys)
=

o,

0n(0, 2/i&amp;gt;2/2&amp;gt;

... 2/J
= O.

In this case the Jacobian determinant

02, ... 0)
2/2, ... 2/n)

as in Art. 338, reduces to its leading term

d(f&amp;gt;i d&amp;lt;f)
Z

&amp;lt;f0
3

In like manner,

reduces to

dij

dx

Accordingly, in this case, the Jacobian

2/n)

(13)

344. Case where Jacobiaii vanishes. We can now

prove that if the Jacobian vanishes, the functions 2/1, 2/2, ... 2/n

are not independent of one another,
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For, as in the previous Article, the equations connecting
the variables are always capable of being transformed into

the shape given in
(
1 2), and accordingly, if / (y\ y^ . . . y^}

- o,

we must have

flfyi dfa d&amp;lt;f)
n ^

dJCi dxz dxn

that is, we have V- = o for some value of * between i and n.

dxi

Hence, for that particular value of i the function &amp;lt; must
not contain Xi ;

and accordingly the corresponding equation
is of the form

&amp;lt;; (a*n, . 0, yi, 2/2, ... Hi)
= o.

Consequently, between this and the remaining equations,

0Hi
=

O, &amp;lt;^
+2
=

O, . . .
&amp;lt;}),

=
O,

the variables x^ Vi+z ,
. . . xn can be eliminated so as to give

a final equation between yl9 y^ . . . yn alone. This establishes

our theorem.

Also, it follows that if the Jacobian does not vanish,
the functions are independent.

345. In the particular case where

we have
^ (yi, 2/2, . . . yn) = dy\ dy-^

dt/n
^

d
(a?i,

^2 ,
... fl?n) dx\. dxz dxn

It may be observed that the theory of Jacobians is of

fundamental importance in the transformation of Multiple
Integrals (see Int. Calc., Art. 225).
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EXAMPLES.

i. Find the Jacobian of yi, y2 ,
. . . y, with respect to r, 0i, 2 ,

. .

being given the system of equations

yi = r cos 0i, y2 = r sin 0i cos 2, y$ = r sin 0i sin 2 cos 03, ...

y = r sin 6\ sin 2 ... sin n-i.

If we square and add we get

yi
2 + yz

2 + . . . yn
* = r3.

Assuming this instead of the last of the given equations, we readily find

j-. fn-i sin-201 einn
-3

2 ... sin 6n -z&amp;gt;

2. Find the Jacobian of y\, y2 . . . y,,, being given

Here, yi -f y + . . . y = *i, and we get

..yn) = ^

346. Case where a Relation connects the Depen
dent Variables. If y1? f/2 yn, which are given func

tions of the n variables #u #2, ...#, be connected by an

independent relation,

F(yi,y. . .y) = o, (15)

we may, in virtue of this relation, regard one of the variables,

xn suppose, as a function of the remaining variables, and thus

consider y^ y^ . . . yn-\ as functions of #1, z2, . . . xn-\* In
this case it can be shown that

dF

d(yi, y*&amp;gt;

. . . y-Q
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For, if we regard xn as a function of #1, #2
&amp;gt;
&c., we nave

Also, from equation (15),

dF
+
dFd*n = o ^

dxl dzn dxi d#2 xnxt

dF dF dF

flfoj , dx2 , fe-i

Again, let A t
=

^p,
A2
=
^, . . . AM-I -

^,

dxn dxn dxn

., dxn , dxn , &amp;lt;fen
-j.

then -j
= - AH T~&quot;

= &quot;&quot; A2 * * ^T
&quot; An~1%

* , \
d?/ 1 \

d^1 d
(,,\

yi \ yi &oHence (y^ -^, _W=^-X2 ,
&o,

....... &c.

Accordingly, substituting in the Jacobian

it becomes

*
dxn

, ^fi-i dyn-\ . yn-1 _\ ^
~ Al J

&quot;

2 *

If this determinant be bordered by introducing an addi

tional column as in the following determinant, the other



444 Jacobians.

terms of the additional row being cyphers, its value is readily
seen to be

or
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the theorem is established, since we readily find that the

determinant is reducible to
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i. Being given

Jacobians.

EXAMPLES.

yi ts r sin 0i sin 2 , yt - r sin 0i cos 2,

= r cos 0i sin 3 , 3/4
= r cos 0i cos 3 ,

find the value of the Jacobian
2

, 0i, 02, 3)

2. Find the Jacobian
, ; , being given

a (r, 0, ()

a; = r cos cos
&amp;lt;, y = r sin v i w2 sin2

^&amp;gt;,

z

where 7
2+w2 = i.

~2

^4ws.

3. Being given

-m2 sin2 ^) Vi
2sin

find the value of the Jacobian of yi, /2,

4. In the Jacobian

if we make

prove that it becomes

&amp;lt;? du\ du% dun

~dx\ dx\ dx\ dxi

du du\ duz dun

dxz dx2 dx*
&quot;

dxl

du du\ duz dun

dXn dXn dXn
&quot;

dxn

Ans. 4,

This determinant is represented by the notation E(u, MI, . . . wn).

5. If a homogeneous relation exists between u, wi, . . . u
n&amp;gt; prove that

K(u, MI, . . . w,,)
= o.

6. In the same case if yi, ^2, y possess a common factor, so that

= MW, &c., prove that

2/2,
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CHAPTEE XXV.

GENERAL CONDITIONS FOR MAXIMA OR MINIMA.

347. Conditions for a Maximum or minimum for

Four Variables. The conditions for a maximum or a

minimum in the case of two or of three variables have been

given in Chapter X.
It can be readily seen that the mode of investigation, and

the form of the conditions there given, admit of extension

to the case of any number of independent variables.

&quot;We shall commence with the case of four independent
variables. Proceeding as in Art. 162, it is obvious that the

problem reduces to the consideration of a quadratic expres

sion in four variables which shall preserve the same sign for

all real values of the variable.

Let the quadratic be written in the form

2034^4, *

in which n, 0i 2 , 22 , &c., represent the respective second

differential coefficients of the function, as in Art. 162.

We shall first investigate the conditions that this ex

pression shall be always a positive quantity. In this case

n, 22, 033, &o., evidently are necessarily positive : again,

multiplying by au ,
the expression may be written in the

following form :

1023-012^2

+ (0H044
~

014
2

) #4
2 + 2 (011023

-
012013)^2^3

+ 2 (011024
-

012014) %&i + 2 (0n034
-

0i30u)X&*
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Also, in order that the part of this expression after the
first term shall be always positive, we must have, by the
Article referred to, the following conditions :

and

011022
~

012
2

&amp;gt; O, (3)

(011022
~

0J2
2

) (011#33
~

013
2

)
-

(011023
~

01201s)
2

&amp;gt; O, (4)

011023
~

#12^13, 011033
~

013
2
, 011034

~
013#14

~
013#14, #n#44 ~ #14

2

&amp;gt; O. (5)

^

To express the determinant (5) in a simpler form, we
write it as follows:

i

#n

011, 012, 013, 01

O, 011022 -012
2
, 011#23-012013, 011024

~

O, #ll#23
~

#12013, #11#33 -#13, #11#34
~

#13#14

O, #11024
-

#12#14, #11#34
~

#23014,

(6)

Next, to form a new determinant, multiply the first row

by #12, #13, #i4, successively, and add the resulting terms to

the 2nd, 3rd, and 4th rows, respectively; then, since each
term in the rows after the first contains an as a factor, the

determinant is evidently equivalent to

011

011, 012, #13, 014

012, 022, 023, 024

013, #23, 033, #34

014, 024, 034, 044

(7)

In like manner the relation in (4) is at once reducible to

the form

011, 012, 013

011 #12, 022, #23

013, 023, 033

&amp;gt; O.
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Hence we conclude that whenever the following condi
tions are fulfilled, viz.

I

filly #12
&amp;gt; o,

#12, #22

#11, #12, #13

#12, #22 j #23

#13, #23, #33
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and the conditions that the quadratic expression shall be

always positive are, that the determinant (9) and the series

of determinants derived in succession by erasing the outside

row and column shall be all positive.
To establish this result, we multiply the quadratic func

tion by au ,
and it is evident that

anu + ...H01 + fl 12#2 + . . . a lnxn +

+ (#il#nn
~

0&amp;gt;\n}Xn
+ 2

+ 2 (anarn
- a lra ln) xrxn + &o.

In order that this should be always positive it is necessary
that the part after the first term should always be positive.

This is a quadratic function of the n - i variables ajA ,
o?2 ,

. . .
%n&amp;gt;

Accordingly, assuming that the conditions in question hold

for it, its discriminant must be positive, as also the series of

determinants derived from it. But the discriminant is

#11#22
~

#12
&amp;gt;

#11#23
~

#11#23
~

#12#13&amp;gt;

10)

Writing this as in (6), and proceeding as in Art. 347, it

is easily seen that it becomes

M-2

^12} ^22j ^23)

#13, #23, #33,

171, JH5

i.e. the discriminant of the function multiplied by an
n 2

.

Hence we infer, that if the principle in question hold for

n - i variables it holds for n. But it has been shown to hold

in the cases of 3 and 4 variables, consequently it holds for

any number.
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We conclude finally that the quadratic expression in n

variables is always positive whenever the series of determi
nants

#11, #12

#12, #22

#11, #12, #13

#12, #22, #23

#13, #23, #33

#12j ) #2tt

#!&amp;gt; #2n, ft)

are all positive.

According as the number of rows in a determinant is

even or odd, the determinant is said to be one of an even or

of an odd order.

If the determinants of an even order be all positive, and
if those of an odd order, commencing with r/n ,

be all negative,
the quadratic expression is negative for all real values of the

variables.

Hence we infer that the number of independent conditions

for a maximum or a minimum in the case of n variables is

n -
i, as stated in Art. 163.
It is scarcely necessary to state that similar results hold

if we interchange any two of the suffix numbers
;

i. e. if any
of the coefficients, 22, 33 ,

. . . ,, be taken instead of an as

the leading term in the series of determinants.

If the determinants in
(
1 2

j
be denoted by Ai, A 2 , A 3 ,

. . . A n ,

it can be seen without difficulty that whenever no one of these

determinants vanishes the quadratic expression under con

sideration may be written in the form

jr... ( 3)

Hence, in general, when the quadratic is transformed into a

sum of squares, the number of positive squares in the sum

depends on the number of continuations of signs in the series

of determinants in (12).
It is easy to see independently that the series of conditions

in (12) are necessary in order that the quadratic function

under consideration should be always positive ;
the preceding

2 G2
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investigation proves, however, that they are not only necessary,

but that they are sufficient.

Again, since these results hold if any two or more of the

suffix numbers be interchanged, we get the following theorem

in the theory of numbers : that if the series of determinants

given in (12) be all positive, then every determinant obtained

from them by an interchange of the suffix numbers is also

necessarily positive.

Also, since when a quadratic expression is reduced to a

sum of squares the number of positive and negative squares
in the sum is fixed (Salmon s Higher Algebra, Art. 162), we
infer that the number of variations of sign in any series of

determinants obtained from (12) by altering the suffix

numbers is the same as the number of variations of sign
in the series.

349. Orthogonal Transformation. As already stated,

a quadratic expression can be transformed in an infinite

number of ways by linear transformations into the sum of

a number of squares multiplied by constant coefficients;

there is, however, one mode that is unique, viz. what is

styled the orthogonal transformation (see Art. 341).

In this case, if Xl9
X2 ,

JC3 ,
- %n denote the new linear

functions, we have

x? + x? + . . . + xn
2 = XS + X2

2 + &o. 4- Xn
2 = F;

also, denoting the coefficients of the squares in the transformed

expression by #1, #2 ,
. . . an ,

2a lrxlxr + . . .

Hence, equating the discriminants of U - X V for the two

systems, we get

#u -
X, #12, . #m

#12) #22
-

X, ... #2

#13) #23) #3
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Accordingly, the coefficients a\, a2 ,
. . . an are the roots of

the determinant A.

Moreover, in order that the function U should be always

positive or always negative for all real values of the variables

#1, #2 ^? the coefficients a-^ a&amp;gt;t . . . an must be all positive
in the former case, and all negative in the latter

;
and con

sequently, in either case, the roots of the determinants in (14)
must all have the same sign.

For a general proof that the roots of the determinant A
are always real, and also for the case when it has equal
roots, the student is referred to Williamson and Tarleton s

Dynamics, Second Edition, Chapter XIII.



454 Miscellaneous Mxamples.

MISCELLANEOUS EXAMPLES.

i. If o, j8, 7 be the roots of the cubic

a;
3 + pa? + qx + r = o,

show that

2. Being given the three simultaneous equations

dp
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10. If the determinant of the n th order

p, a, a, a

455

be denoted by A tt , prove that

11. Prove that the ellipses

a2^2 + 2^2 = ffl
22

(j) ?
fl2^ sec*

(f) + tfy* COS6C4
&amp;lt;f&amp;gt;

= C4 4
(2),

are so related that the envelope of (2) for different values of $ is the evolute of

(i) ;
and the point of contact of (2) with its envelope is the centre of curvature

at the point of (i) whose excentric angle is
(p.

12. Being given the equations

prove that

;
A2_2 2_ M2

13. If i y ay
m = o, develop y

r in terms of a by Lagrange s Theorem.

14. Being given x r cos 0, y = r sin 0, transform

I
+ l-r-

into a function of r and 0, where 6 is taken as the independent variable.

15. Apply the method of infinitesimals to find a point such that the sum of

its distances from three given points shall be a minimum.

If p\ , pa, ps denote the three distances, we have dpi -f
dp&amp;lt;z

+ dps = o : suppose

dpi
= o, then d(pz + ps)

= o, and it is easily seen that pi bisects the angle be

tween p2 and ps, and similarly for the others
;
therefore &c.

1 6. Eliminate the circular and exponential functions from the equation

y = sin
~

*.

17. One leg of a right angle passes through a fixed point whilst its vertex

slides along a given curve, show that the problem of finding the envelope of the

other leg of the right angle may be reduced to the investigation of a locus.
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18. If two pairs of conjugates, in a system of lines in involution, be given
by the equations

u = ax2 + 2bxy -f cy*
1

o, u
f = ax* 4- 2b xy + c y^ = o,

show that the double lines are given by the equation

du du d^l du
---- - = O. (Salmon s Comes, Art. 342 ).

dx dy dy dx

T . %\ x* XH-I
19. If Mi = , 2 = , Wn-1 =- ,

Xn Xn Xn

where xi, x-z, . . . xn are connected by the relation

a-i
2 + #22 + ^s

2 + + xj =
I,

prove that the Jacobian

d(ui, ui, . . . ^-i) _ i

d(x\, Xz t *n-l) ^n&quot;&quot;

1

20. If the variables yi, y-z, ...
y&amp;gt;

are related to x\, %z, ... ^ by the

equations

y\ = ai%i+ azx2 + . . . + anxn ,

+ b2 x2 +... + bnxn,

and if we have also

x? + xj + . . . + xj =
I,

2/i
2 + y2

2 + . . . + yn
2 =

i,

prove that the Jacobian

d (yi, */2, . . . yn-i) _ yn

rf(*l, 2, . . . ^-l) Xn

21. Prove that the equation

z = px + ^y

may be reduced to the form + z = o by putting x = u cos v, y = u sin v.

22. Investigate the nature of the singular point which occurs at the origin

of coordinates in the curve

a;
4 2axz - ax* -f

22 = o.
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23. Investigate the form of the curve represented by the equation y = e~*

24. How would you ascertain whether an expression, F, involving x, y, and z,

is a function of two linear functions of these same variables ?

Ans. The given function must be homogeneous ;
and the equations

dV dV dV
= o, =

o,
- = o,

ax ay dz

must be capable of being satisfied by the same values of x, y, z : i.e. the result

of the elimination of x, y, and z between these equations must vanish identi

cally.

25. If y = $ (a;
2
), prove that

26. If x + iy = (a + i)n
,
where i = V^T, prove that

^2 + dyi _ 2
&amp;lt;7g

2 + ^2

a;
3 + y

2
:

o2 + s

27. If tan tan i//= ^F==, prove that ^ + J[ \
Sm
^ = o.

28. If x =
, prove that

ky

transforms into

Prove that ()

29. Hence prove that

/ d\ I d \ ^fcu
\*T\ (

x 1}U=X* .

\ dxj \ dx ] dx*

,,
/ d \ I du\ I d \ du du d^u

For (x
-
}(x )

=
(x+ x* }-*sx + xz -,

\ dxj \ dx) \ dx) dx dx dx*

W- )(=)
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30. Prove that

! d\ t d \ I d \
\*T\ \

X -T
- 1

I 1*-- 2 )u =
\ dx) \ dx J \ dx 1

By the preceding example we have

d

*-

d

therefore

31. Prove, in general, that

This can be easily arrived at from the preceding by the method of mathematical
induction : that is, assuming that the theorem holds for any positive integer ,

prove that it holds for the next higher integer (n + I), &c.

32. Find - +
2
1
-J

in terms of rt when r2 = a2 cos 26. Am. ^
33. If u = (^

2 + t/
2 + a2

)i, prove that

* dz dx* dy*

34. If z = -; , and $ = tan-1
f -

J
, prove that

dnz _ I . 2 . 3 . . . n. cos (M + i) ft .cos&quot;*
1

ft

dx~
&quot;

(
~

I)W
&quot;

a;
&quot;

1

~

&amp;lt;f^Z I . 2 . 3 . . . 2H . COS (2 + I) ft . COS2 &quot;
1
ft

df
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35. If u be a homogeneous function of the n th
degree in x, y, z, and if MI, M2, MS,

denote its differential coefficients with regard to x, y, z, respectively, while

MII, ^12, &c., in like manner denote its second differential coefficients, prove that

Mil, M]2 , Mis, M!
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prove that

du dv dv dn

and explain the meaning of the result.

40. Find the minimum value of

sinA sin S sin C
+ ZT7rz~A +

... , n * whereat + E + (7= 180
sin .5 sin (7 sin G sin .4 sin ^4 sin I?

41. Prove that

where (a:) is a rational function of x.

42. Show that the reciprocal polar to the evolute of the ellipse

with respect to the circle described on the line joining the foci as diameter, has
for its equation

43. If the second term he removed from the quantio

(o, 01, 02, . . . a,)(x, y)
n

hy the substitution of x --- y instead of x, and if the new quantlc be denoted

by (Ao, o, Az, A 3 ,
. . . An)(x, y} show that the successive coefficients

At, AS . . . An are obtained by the substitution of a\ for x and - a for y in
the series of quantics

(o, i, 02) (s, y), (&amp;lt;z , &amp;lt;/i,
2 , *3) (*, &amp;lt;/),

. K, 01, ..

44. Distinguish the maxima and minima values of

I + 2x tan-1 x

I +xz

a x* + 2l x 4- c

45. If y = ----
, prove that

axz + 2bx 4- c

l^dy__ (ac
- b 2

) 7/
2 + (ac + a c - 2bb

} y + a c -
b&quot;*

2dx~ (ab )x
z -

(ca }x + (be }

where (ab )
= aV - ba

t
&o. . . .
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46. If IX + mY + nZ, ?X + m 7+n Z, l&quot;X + m&quot;T+ n&quot;Z,
be substituted

for x, y, z, in the quadratic expression ax* + b&amp;gt;,~ + cz2 + 2dijz + 2ezx + 2/xy ;

and if a
,
b

t
c

,
d

,
e ,f be the respective coefficients in the new expression ;

prove that

/ b d = O whenever
j &amp;gt;

w t

e
,

d
,

c
,

47. If the transformation be orthogonal, i.e. if

/, *, *

&amp;lt;?,
d, e

o.

prove that the preceding determinants are equal to one another.

48. Prove that the maximum and minimum values of the expression

are the roots of the cubic

a3z3 - 3 (a
2/ - 3#2

)
z2 + 3K 2 - 1857) z - A = O,

where -2&quot;
= ac bz

,
I =ae qbd + 3C

2
,

a, b, c I

b, c, d ,
and A = I3 - 27/2.

c, d, e
I

By Art. 138 it is evident that the equation in z is obtained by substituting

e - z instead of e in the discriminant of the biquadratic ; accordingly, since the

discriminant of the biquadratic is

_ 27/2 = 0&amp;gt;

we have for the resulting equation

In general, the equation in z whose roots are the n l maximum and mini

mum values of a given function of n dimensions in x can be got from the dis

criminant of the function, by substituting in it, instead of the absolute term,

the absolute term minus z.

It is evident that the discriminant of the function in x is, in all cases, the

absolute term in the equation in z.

49. If A be the product of the squares of the differences of the roots of

xzpx
z + qx - r = O,
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find an expression for - by solving from three equations of the form

dA _ dA. dp d& dq dA dr

da dp da dq do. dr da

Ans. 2 (j8+7-2a) (7 + a-2) (a-f 0-27).

50. If X + Y V^i be a function of x + y V^T, prove that X and Y satisfy
the equations

d*X d?X
,
&Y d*Y

~T^&amp;gt;
+ TV =

&amp;gt;

and
&quot;TV + TT =

dx* dy
z dxz

dy
z

51. If the three sides of a triangle are a, a + a, a -f ft, where a and ft are

infinitesimals, find the three angles, expressed in circular measure.

TT a + ft IT 2a-ft TT 2ft -a
Ans. --- , |

--
,

I
--

.

3
&amp;lt;/?

3 \/3 3
&amp;lt;V3

52. If y = x + ax3
,
where a is an infinitesimal, find the order of the error in

taking x = y - ay*.

53. The sides a, b, c, of a right-angled triangle become a + a, b + ft, c -f- 7,
where a, ft, 7 are infinitesimals

;
find the change in the right angle.

cy aa -
bft* -

*
-

54. If a curve be given by the equations

22! -f ^t~ - 2tf

zy = i/fi~+~2t
- */P - 2t

t

find the radius of curvature in terms of t.

55. In the curve whose equation is y = (Tx
*

y
determine all the cases where

the tangent is parallel to the axis of x.

If B be the greatest angle which any of its tangents makes with the axis of *,

prove that tan0 = J-.

56. In a curve traced on a sphere, prove the following formula for the

radius of curvature at any point :

sin rdr
tan p = --- .

cos pdp

57. Apply this form to show that in a spherical ellipse we have

sinj? sin j!/
= const.,

where p and p are the perpendiculars from the foci on any great circle which

touches the ellipse.
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58. Prove the following relation between (p, p ), the radii of curvature at

corresponding points of two reciprocal polar curves :

F-

where
|/

is the angle between the radius vector and normal.

59. If AB, C, CD, ... be the sides of an equilateral polygon inscribed in

any curve, and HAD be produced to meet J5(7in P, prove that, when the sides

of the polygon are diminished indefinitely, BP = 3 ,,
where p and p are the

radii of curvature at B and at the corresponding point of the evolute.

oo. If

x-y

and

dU dV dV dU
and the value of _-_ - _

^,

61. If F-* + i, and * = * + !,

prove that

62. Determine b and k so that the curve

(x
z + y

2
} (x cos a + / sin o a)

= A2 (x cos + / sin j8 J)

may have a cusp ; o, ,
and a being given, and the coordinates being rectan

gular.

Prove that in this case the cuspidal tangent makes equal angles with the

asymptote and with the line drawn from the cusp to the origin.

63. Find the coordinates of the two real finite points of inflexion on the

curve y~ = (x 2)
3
(x 5), and show that they subtend a right angle at the

double point.

64. If x, y, z, be given in terms of three new variables, u, v, w, by the fol

lowing equations : x = Pu, y=(P-b)v, z - (P - c] w, where

r + Iv* -f cw1
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is required to prove that dxz + dy* + dz*

termine the actual values of Z, M, N.

65. If x + y = X, y = XT, prove that

it is required to prove that dxz + dy* + dz* = ZW + MW + N2dw\ and to
determine the actual values of Z, M, N.

du

dxdy

_

66. Being given x = w3 -
3^*, y = 3^ -

,, find what^
y &quot;

y&amp;lt;fo

hecomes
in terms of u, v, dtt, dv. xdx + ydy

udv vdu
Ans.- .

udtt + vdv

67. If the polar equation of a curve be r = a sec2 -, find an expression for

its radius of curvature at any point.

68. Show that the differential ; is transformed into

Idy

^/(i + y
z tan2

A) (i + y2 cot
2
A)

by assuming x = \/~ -, and find the value of A.

Ans. \ = ; 30 .

. If y
4 + xy = I, prove that

70. The pair of curves represented hy the equation

r2 - 2rF (w) + c7 = o

may he regarded as the envelope of a series of circles whose centres lie on a
certain curve, and which cut orthogonally the circle whose radius is c, and
whose centre is the origin (Mannheim, Journal de Math., 1862).

71. A chord PQ cuts off a constant area from a given oval curve
;
show that

the radius of curvature of its envelope will be ^PQ (cot 9 + cot
&amp;lt;f&amp;gt;),

6 and ^ being
the angles at which PQ cuts the curve.

72. In the polar equations of two curves,

J?(r,w) = o, f(r,w)=o,

if Htn be substituted for r, and nl for u, prove that the curves represented by
the transformed equations intersect at the same angle as the original curves.

W. Roberts, Liowille s Journal, Tome 13, p. 209.
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This result follows immediately from the property that is unaltered by

the transformation in question.

73. A system of concentric and similarly situated equilateral hyperbolas is

cut by another such system having the same centre, under a constant angle,
which is double that under which the axes of the two systems intersect.

Ibid., p. 210.

74. In a triangle formed by three arcs of equilateral hyperbolas, having the

same centre (or by parabolas having the same focus), the sum of the angles is

equal to two right angles. Ibid., p. 210.

75. Being given two hyperbolic tangents to a conic, the arc of any third

hyperbolic tangent, which is intercepted by the two first, subtends a constant

angle at the focus. Ibid., p. 212.

An equilateral hyperbola which touches a conic, and is concentric with it, is

called a hyperbolic tangent to the conic.

76. A system of confocal cassinoids is cut orthogonally by a system of equi
lateral hyperbolas passing through the foci and concentric with the cassinoids.

Ibid., p. 214.

The student will find a number of other remarkable theorems, deduced by
the same general method, in Mr. Eoberts Memoir. This method is an exten

sion of the method of inversion.

77. If on each point on a curve a right line be drawn making a constant

angle with the radius vector drawn to a fixed point, prove that the envelope of

the line so drawn is a curve which is similar to the negative pedal of the given
curve, taken with respect to the fixed point as pole.

78. If 2 U = ax- -f 2bxy + cy
1
, 2V = a x&quot; + 2b xi/ + c y

2
t

and

dU dU
&quot;die* ~dy

dV
dV_

Tx* ~dy

,
find A, By

C.

79. Prove that the values of the diameters of curvature of the curve y
2
=f(x)

at the points where it meets the axis of x are/ (a),/ (#), .... if a, /8, ... be
the roots of/ (x)

= O.

Hence find the radii of curvature of y
n- =

(x
z - ni 2

} (x a] at such points.

80. A constant length PQ is measured along the tangent at any point F on
a curve ; give, by aid of Art. 290, a geometrical construction for the centre of

curvature of the locus of the point Q.

8 1. In same case, if PQ be measured equal to PQ, in the opposite direction

along the tangent, prove that the point P, and the centres of curvature of the

loci of Q and Q lie in directum.

82. A framework is formed by four rods jointed together at their extremities

prove that the distance between the middle points of either pair of opposite sides

2 H
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is a maximum or a minimum when the other rods are parallel ; heing a maximum
when the rods are uncrossed, and a minimum when they cross.

83. At each point of a closed curve are formed the rectangular hyperbola,
and the parabola, of closest contact

;
show that the arc of the curve described by

the centre of the hyperbola will exceed the arc of the oval by twice the arc of

the curve described by tbe focus of the parabola ; provided that no parabola has

five-pointic contact with the curve. (Camb. Math. Trip., 1875.)

84. A curve rolls on a straight line : determine the nature of the motion of

one of its involutes. (Prof. Crofton.)

85. Prove the following properties of the three-cusped hypocycloid :

(r). The segment intercepted by any two of the three branches on any
tangent to the third is of constant length. (2). The locus of the middle point
of the segment is a circle. (3). The tangents to these branches at its extremities

intersect at right angles on the inscribed circle. (4). The normals corresponding
to the three tangents intersect in a common point, which lies on the circum

scribed circle.

Definition. The right line joining the feet of the perpendiculars drawn to

the sides of a triangle, from any point on its circumscribed circle, is called the

pedal line of the triangle relative to the point.

86. Prove that the envelope of the pedal line of a triangle is a three-cusped

hypocycloid, having its centre at the centre of the nine-point circle of the

triangle. (Steiner, Ueber due beaondere curve dritter Idasse und vierten grades,

Crelle, 1857.)

This is called Kleiner s Envelope, and the theorem can be demonstrated,

geometrically, as follows :

Let Pbe any point on the circumscribed circle of a triangle ABC, of which D
is the intersection of the perpendiculars ;

then it can be shown without difficulty

that the pedal line corresponding to P passes through the middle point of DP.
Let Q denote this middle point, then Q lies on the nine-point circle of the

triangle ABC. If be the centre of the nine-point circle, it is easily seen that,

as Q moves round the circle, the angular motion of the pedal line is half that of

OQ, and takes place in the opposite direction. Let It be the other point in

which the pedal line cuts tbe nine-point circle, and, by drawing a consecutive

position of the moving line, it can be seen immediately that the corresponding

point Ton the envelope is obtained by taking QT= QR. Hence it can be

readily shown that the locus of T is a three-cusped hypocycloid.
This can also be easily proved otherwise by the method of Art. 295 (a).

87. The envelope of the tangent at the vertex of a parabola which touches

three given lines is a three-cusped hypocycloid.

88. The envelope of the parabola is the same hypocycloid.

For fuller information on Steiner s envelope, and the general properties of

the three-cusped hypocycloid, the student is referred, amongst other memoirs, to

Crernona, Crelle, 1865. Town send, Educ. Times. Reprint. 1866. Ferrers,

Quar. Jour, of Math., 1866. Serret, Nouv. Ann., 1870. Painvin, ibid.
t 1870

Cahen, ibid., 1075.
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ON THE FATLTTEE OF TAYLOR S THEOREM.

As no mention has been made in Chapter III. of the cases when Taylor s

Series becomes inapplicable, or what is usually called the failure of Taylor s

Theorem, the following extract from M. Navier s Lemons d Analyse is intro

duced for the purpose of elucidating this case :

On the Case when, for certain particular Values of the
Variable, Taylor s Series does not give the Development of
the Function. The existence of Taylor s Series supposes that the function

f(x) and its differential coefficientsf (x},f&quot; (#), &c. do not become infinite for

the value of x from which the increment h is counted. If the contrary takes

place the series will be inapplicable.

Suppose, for example, that f(x) is of the form -, m being any positive

number, and F(x] a function of x which does not become either zero or infinite

when x = a.

If, conformably to our rules,
- be developed in a series of posi

tive powers of h, all the terms would become infinite when we make x = a. At

the same time the function has then a determinate value, viz. :
-

; but,hm

as the development of this value according to powers of h must necessarily con
tain negative powers of h, it cannot be given by Taylor s Series.

Taylor s Series naturally gives indeterminate results when, the proposed
function f(x) containing radicals, the particular value attributed to x causes

these radicals to disappear in the function and in its differential coefficients.

In order to understand the reason, we remark that a radical of the form
p_

(x a)0, p and q denoting whole numbers, which forms part of a function /(#),

gives to this function q different values, real or imaginary. As this same radical

is reproduced in the differential coefficients of the function, these coefficients also

present a number, q, of values. But, if the particular value a be attributed to x,

the radical will disappear from all the terms of the series, while it remains
p

always in the function, where it becomes A?. Therefore the series no longer re

presents the function, because the latter has many values, while the series can
have but one. The analysis solves this contradiction by giving infinite values

to the terms of the series, which consequently does not any longer represent a
determined result.

The development of f(x) ought, in the case with which we are occupied, to

p_

contain terms of the form hi. &quot;We should obtain the development by making
x = a -(- h in the proposed function.
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Fractional powers of A would appear in the latter development : for example,

suppose

f(x)
= 2ax - x* + a v/z2 - a* ;

this gives
ax

/ (*)
= 2(a-x) + ,_ ;

/ = -2 +

On making x =
a, we have f(x) = a3

,
and all the differential coefficients

become infinite. This circumstance indicates that the development of f(x + A)

ought to contain fractional powers of A when x = a : in fact the function be
comes then

f(a + A)
= a2 - A2 + a vWi 4- A2

,

of which the development according to powers of A would contain A*, A?, A&, &c.

It should be remarked that a radical contained in the funotio4l/(*) may
disappear in two different ways when a particular value is attributed to the

variable x; that is, i, when the quantity contained under the radical vanishes :

2, when a factor with which the radical may be affected vanishes.

In the former case the development according to Taylor s Theorem can never

agree with the function f(x + A) for the particular value of # in question, for

the reason already indicated.

But it is not the same in the latter case, because the factor with which the

radical is affected, and which becomes zero in the function, may cease to affect

the radical in the differential coefficients of higher orders
;
in fact it may not

disappear at all, and the series may in consequence present the necessary number
of values.

For example, let the proposed function be

m being a positive integer,
Here we have

* - b 4(2
-

J)

Each differentiation causes one of the factors of (x
-

o)
m to disappear in the

first term. After m differentiations these factors would entirely disappear ;
and

consequently the supposition x = a, in causing the first m-derived functions to

vanish, will leave the radical Vx b to remain in all the others.
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ACNODE, 259.

Approximations, 42.
further trigonometrical applica

tions of, 130-8.
Arbogast s method of derivations, 88.

Arc of plane curve, differential ex

pressions for, 220, 223.
Archimedes, spiral of, 301, 303.

Asymptotes, definition of, 242, 249.
method of finding, 242, 245.
number of, 243.

parallel, 247.
of cubic, 249, 325.
in polar coordinates, 250.

circular, 252.

Bernoulli s numbers, 93.

series, 70.

Bertrand, on limits of Taylor s series,

77-
Bobillier s theorem, 368, 374.
Boole, on transformation of coordi

nates, 412.

Brigg s logarithmic system, 26.

Burnside, on covariants, 412.

Cardioid, 297, 372.
Cartesian oval, or Cartesian, 233, 375.

third focus, 376.

tangent to, 379.
confocals intersect orthogonally,

38i.

Casey, on new form of tangential

equation, 339.
on cycloid, 373.
on Cartesians, 382.

Cassini, oval of, 233, 333.

Catenary, 288, 321.

Cayley, 259, 266.

Centre of curve, 237.

Centrode, 363.

Change of single independent variable,

399-

Change of two independent variables,

403, 410.

Chasles, on envelope of a carried right

line, 356.
construction for centre of instan

taneous rotation, 359.

generalization of method of draw

ing normals to a roulette, 360.
on epicycloids, 373.
on Cartesian oval, 376.
on cubics, 454.

Circle of inflexions in motion of a plane

area, 354, 358, 367, 374.

|

Complete Solid Harmonics, 42 1 .

!

Conchoid of Nicomedes, 332, 361.
centre of curvature of, 370.

Concomitant functions, 411.

[

Condition that Pdx + Qdy should be a

total differential, 146.

Conjugate points, 259.

Contact, different orders of, 304.

Convexity and concavity, 278.
Crofton on Cartesian oval,

v

,378, 379,

380.

Crunode, 259.

Cubics, 262, 281, 323, 334.

Curvature, radius of, 286, 287, 295,

297, 301.
chord of, 296.
at a double point, 310.
at a cusp, 311, 3 13.

measure of, on a surface, 209.

Cusps, 259, 266, 315.
curvature at, 311.

Cycloid, 335, 356.

equation of, 335, 336.
radius of curvature, and evolute,

length of arc, 338.
Descartes, on normal to a roulette, 336.

ovals of, 375.
Differential coefficients, definition, 5.

successive, 34.
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Differentiation of, a product, 13, 14.
a quotient, 15.
a power, 16, 17.
a function of a function, 17.
an inverse function, 18.

trigonometrical functions, 19, 20.

circular functions, 21, 22.

logarithm, 25.

exponential functions, 26.

functions of two variables, 115.
three or more variables, 117.
an implicit function, 120.

partial, 113, 406.
of a function oftwo variables,

115.
of three or more variables,

applications in plane trigono
metry, 130.

in spherical trigonometry,

I33-.
successive, 144.

of (x + at, y + 0*) with respect
to t, 148.

Discriminant of a ternary quadratic
expression, 129, 194, 196.

of any quadric, 449.
Double points, 258, 261.

Elimination, of constants, 384.
of transcendental functions, 386.
of arbitrary functions, 387, 396.

Envelope, 270.
of LoP + 2Ma + JN = o, 272.
of a system of confocal conies,

Ex. 8, p. 276.
of a earned curve, 355.

centre of curvature of, 357.

Epicyclics, 363.
are epi- or hypo-trochoids, 366.

Epicycloids and hypocycloids, 339,

356, 466.
radius of curvature of, 342.

cusps in, 341.
double generation of, 343.
evolute of, 344.

length of arc, 345.

pedal, 346, 372.

regarded as envelope, 347.

Epitrochoids and hypotrochoids, 347-

ellipse as a case of, 348, 363.
centre of curvature of, 351.
double generation of, 367.

Equation of, tangent to a plane curve,
212, 218.

normal, 215.
Errors in trigonometrical observation,

J 35-
Euler, formulae for sin x and cos x, 69.

theorem on homogeneous func

tions, 123, 127, 148, 162.
on double generation of epi- and

hypo-cycloids, 344.
Evolute, 297.

of parabola, 298.
of ellipse, 299, 308 ;

as an enve

lope, 297.
of equiangular spiral, 300.

Expansion of a function, by Taylor s

series, 6r.

by Arbogast s method, 88.
of $(x + h, y + k), 156.
of $(*+ h, y + k, z + l), 159.

Family of curves, 270.
Ferrers, on Bobillier s theorem, 369.

on Steiner s envelope, 466.
Folium of Descartes, 333.

Functions, elementary forms of, 2.

continuous, 3.

derived, 3.

successive, 34.

examples of, 46.

partial derived, 113.

elliptic, illustrations of, 136, 138.

Graves, on a new form of tangential

equation, 339.

Harmonic polar of point of inflexion

on a cubic, 281.

Huygens, approximation to length of

circular arc, 66.

Hyperbolic branches of a curve, 246.

Hypocycloid, see Epicycloid.

Hypotrochoid, see Epitrochoid.

Indeterminate forms, 96.
treated algebraically, 96-9.
treated by the calculus, 99, etseq.

Infinitesimals, orders of, 36.

geometrical illustration, 57.

Inflexion, points of, 279, 281.

in polar coordinates, 303.
Intrinsic equation of a curve, 304.

of a cycloid, 338.
of an epicycloid, 350.
of the involute of a circle, 301.



Index.

Inverse curves, 225.

tangent to, 225.
radius of curvature, 295.

conjugate Cartesians, as, 378.

Involute, 297.
of circle, 300, 358, 374.
of cycloid, 356.
of epicycloid, 357.

Jacobians, 433-45.

Lagrar.ge, on derived functions, 4, note.

on limits of Taylor s series, 76.

on addition of elliptic integrals,

136.
theorem on expansion in series,

I 5 I -

on Euler s theorem, 163.
condition for maxima and minima,

191, 197, 199, 202.

La Hire, circle of inflexions, 354.
on cycloid, 373.

Luiiden s transformation in elliptic

functions, 133.

Laplace s theorem on expansion in

series, 154.

coefficients, 429.

Legendre, on elliptic functions, 137.
on rectification of curves, 233.
coefficients of, 426.

Leibnitz, on the fundamental principle
of the calculus, 40.

. theorem on the n th derived func

tion of a product, 5 1 .

on tangents to curves in vectorial

coordinates, 234.

Lemniscate, 259, 277, 296, 329, 333.

Limaqon, is inverse to a conic, 227,

. .
331, 334&amp;gt; 349, 36i, 372.

Limiting ratios, algebraic illustration

of, 5-

trigonometrical illustration, 7.

Limits, fundamental principles, II.

Maclaurin, series, 65, 81.

on harmonic polar for a cubic, 282.

Manheim, construction for axes of an

ellipse, 374.
Maxima or minima, 164.

geometrical examples, 164,

algebraic examples, 166.

of-, ,66, 177-
a xi + 2b xy + e y

z

condition for, 169, 174.

problem on area of section of a

right cone, i8i^/
for implicit functions, 185.

quadrilateral of given sides, 186.

for two variables, 191 ; Lagrange s

condition, 191, 197.
for functions of three variables,

198.
of n variables, 199, 449.

application to surfaces, 200.

undetermined multipliers applied

to, 204.

Multiple points on curves, 256, 265,

.
367-

Multipliers, method of undetermined,

204.

Napier, logarithmic system, 25.

Navier, geometrical illustration of

fundamental principles of the

calculus, 8.

on Taylor s theorem, 467.
Newton, definition of fluxion, 10.

prime and ultimate ratios, 40.

expansions of sin x, cos x, sur 1/
,

&c., 64, 69.

by differential equations, 85.
method of investigating radius of

curvature, 291.
on evolute of epicycloid, 345.

Nicomedes, conchoid of, 332.
Node, 259.

Normal, equation of, 215.
number passing through a given

point, 220.

in vectorial coordinates, 233.

Orthogonal transformations, 409, 414,

452.
Osc-node, 259.

Osculating curves, 309.

circle, 291, 306.

conic, 317.

Oscul-inflexion, point of, 314, 317.

Parabola, of the third degree, 262, 288.

osculating, 318.
Parabolic branches of a curve, 246.

Parameter, 270.
Partial differentiation, 113, 406.

Pascal, Iima9on of, 227.
Pedal, 227.

tangent to, 227.

examples of, 230.

negative, 227.
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Pliicker, on locus of cusps of cubics

having given asymptotes, 265.

Points, de rebroussement, 266.

of inflexion, 279.
Polar conic of a point, 219.

Proctor, definition of epi- and hypo-

cycloids, 399.

epicyclics, 366.

Ptolemy, epicyclics, 366.

Quetelet, on Cartesian oval, 376, 381.

Radius of^curvature, 286.

in Cartesian coordinates, 287,289.
in r, p coordinates, 295.
in polar coordinates, 301.
at singular points, 310.
of envelope of a moving right

line, 358.

Reauleaux, on centrodes oi moving
areas, 363.

Reciprocal polars, 228, 230.

Remainder in series, Taylor s, 76, 79.

Maclaurin s, 8l.

Resultant of concurrent lines, 234.

Roberts, W., extension of method of

inversion, 464.

Rotation, of a plane area, 359.

centre of instantanous, 360, 364.

of a rigid body, 371.

Roulettes, 335.
normal to, 336.
centre of curvature, 352 ;

Sa-

vary s construction, 352.

circle of inflexions of
, 354.

motion of a plane figure reduced

to, 362.

spherical, 370.

Savary s construction for centre of
*

curvature of roulette, 353.

Series, Taylors, 61, 70, 76.

binomial, 63, 82.

logarithmic, 63, 82.

for sin x and cos x, 64, 66, 81.

Maclaurin s, 64, 81.

exponential, 65, 81.

Bernoulli s, 70.

convergent and divergent, 72, 75.

for sin- #, 68, 85.

for tan&quot;
1

^-, 68, 84.

for sin MX and cos mx, 87.

Arbogast s, 88.

a
Lagrange s, 151.

Solid Harmonic functions, 419.

Spherical Harmonics, 423.
Spinode, 259.

Stationary, points, 266.

tangents, 282.

Subtangent and subnormal, 215.

polar, 223.

Symbols, separation of, 53.

representation of Taylor s theo

rem bv, 7) 1 60.

Tacnode, 266.

Tangent to curve, 212, 218, 258.
number through a point, 219.

expression for perpendicular on,

217, 224.

expression for intercept on, 232.

Taylor s series, 61.

symbolic form of, 70.

Lagrange on limits of, 76.

extension to two variables, 156.
to three variables, 159.

symbolic form of, 160.

on inapplicability of, 467.
Tessera! Surface Harmonics, 429.

Three-cusped hypocycloid, 350, 372.

466.

Tracing of curves, 322, 328.

Transformations, linear, 408.

orthogonal, 409, 452.

Trisectrix, 332.

Trochoids, 339.

Ultimate intersection, locus of, 271.

for consecutive normals, 290.

Undetermined multipliers, application
to maxima and minima, 204.

applied to envelope, 273.

Undulation, points of, 280.

Variables, dependent and indepen

dent, i .

Variations of elements of a triangle,

plane, 130; spherical, 133.

Vectorial coordinates, 233.

Whewell, on intrinsic equation, 304.

Zonal Harmonics, 423.

THE END.
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