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PREFACE.

MY object in the preparation of this text-book has been to

present the subject of graphs in a connected form, simple

enough in the early stages for the mere beginner while

including in the ultimate development such of its more

important applications as come within the range of elemen

tary mathematics. The present tendency of mathematical

teaching is perhaps to overestimate the value of graphical
methods and to depreciate unduly those of analysis ;

but

in spite of the evils attendant upon the reaction from

the neglect of graphical methods, these possess, when

judiciously used, a high educational value and are of

essential importance to all engaged in experimental work.

From the educational point of view a graph has the great
merit of representing in a simple manner the fundamental

notion of functional dependence. The beginner s conceptions
of a variable are usually very crude, and it is necessary
that they should be clear and definite if he is to understand

mathematical principles and processes ;
as an aid to the right

comprehension of a variable, the graph renders very great
service. But the graphical method may also be badly
used; one of these bad uses is, in my judgment, the too

common practice of plotting a graph from an insufficient

number of points. The behaviour of a function, for example,
in the neighbourhood of its turning values cannot be

adequately understood by the beginner unless he tests it in

typical cases by calculating the values of the function for a

succession of values of the argument at small intervals.

The process known as &quot;cramming&quot;
is quite possible in

graphical work and is less excusable there than in other

departments of mathematics.

M577220



VI PREFACE.

I have included, as opportunity arose, many applications
of a practical kind, and I am deeply indebted to my
colleagues Professors Longbottom, Maclean and Watkinson
for the use of their Laboratory Note-books, on which I have
drawn heavily for examples. In the text and among the
Exercises examples occur which have been manufactured

simply to illustrate certain processes, but examples in which
the data are stated to be experimental are of course taken

directly from the record of the experiments. The answers

given are such as can be obtained by the methods illustrated
in the text; they have been worked out by my friends
Mr. John Dougall and Mr. John Miller and will be found, it

is hoped, to be as accurate as the data warrant.
The Tables at the end of the book are sufficient for

the calculations required in the examples; in questions
on gradients however there would in some cases be an

advantage in using seven-figure Tables.

Besides the gentlemen already named, my friends Dr.
J. S. Mackay, Dr. A. Morgan, Mr. P. Bennett, Mr. W. A.

Lindsay and Mr. P. Pinkerton have been kind enough to

take an interest in the preparation of the book, and for

their help in proof reading I tender them my hearty thanks.
I owe a special debt of gratitude to Professor R. A. Gregory
and Mr. A. T. Simmons for their advice in all matters

bearing on the passage of the book through the press.
The work of proof reading has however been made com
paratively simple by the excellence of the printing, and I

gratefully acknowledge my debt to the printing staff of

Messrs. MacLehose.

GEOEGE A. GIBSON.

GLASGOW, August, 1904.



CONTENTS.

CHAPTER I.

STEPS. COORDINATES. PLOTTING OF POINTS.

ART. PAGE

1. Positive and Negative Numbers, - 1

2. Steps, 1

3. Positive and Negative Steps, 2

4. Geometrical Representation of Numbers, - - 4

5. Coordinates,
------- 5

Exercises/.,----- 8

6. Plotting of Points. Additional Examples. Areas, - 9

7. Trigonometric Ratios,
___.-. 13

Exercises II.,
- - 14

8. Distance between two points,
- - - - - - 15

Exercises III.,
- - - - - - 17

CHAPTER II.

EQUATION OF THE STRAIGHT LINE.

9. Coordinates connected by an Equation,
- - - - 18

Exercises IV., 20

10. Equation of a Straight Line,
------ 21

11. Scale Units, - - 23

12. Examples on the Straight Line. Solution of Equations,
- 24

Exercises V.,
. - - * - - 28



viii CONTENTS.

CHAPTER III.

NOTION OF A FUNCTION. PKACTICAL APPLICATIONS
OF GKAPHS.

ART. PAGE

13. Variable. Constant. Function, 29

Exercises VI., 32

14. Gradient of a Straight Line, ------ 33

Exercises VIL, ... 37

15. Applications of Graphs, 38

16. Statistics. Prices. Problems, 41

Exercises VIII., 45

17. Continuous Graphs. Physical Applications, 49

18. General Remarks, - - 54

Exercises IX. 55

CHAPTER IV.

QUADRATIC FUNCTIONS.

19. Plotting of Curves from Equations,
- 63

20. Graph of y= %*,-
~ 64

21. The Symmetry of the Curve, - - 66

22. Turning Points. Maximum and Minimum Values, - - 66

Exercises X.,
- - - 68

23. Graph of y= ax2
,

... - 69

24. Change of Scale, 71

25. Applications of the Graph of ax2
,

- 73

Exercises XL, 76

26. Graph of y= ax2+ bx+ c,
- - 79

27. Application to Quadratic Equations and Quadratic

Relations,

Exercises XII.,
- - - - - 83

28. Change of Origin,
- 85

29. The Parabola,
- - 86

30. Average Gradient,
- 87

Exercises XIII., ----- 91



CONTENTS. ix

CHAPTER V.

FRACTIONAL FUNCTIONS. CUBIC AND BIQUADRATIC
FUNCTIONS.

ART. PAGE

31. Infinity,
93

32. Fractional Functions
a

, ,
94

x a?
2

33. Rectangular Hyperbola, 96

34. Applications of the Hyperbola, 98

Exercises XIV., 101

35. Graphs of ^ and #*,
104

36. Cubic Equations, 105

37. Graph of Cubic Function, 107

38. Building up of a Graph, - - - - 110

39. Solution of Equations. Method of Trial and Error, - - 111

Note on the Cubic Function, - - - - - - 112

Exercises XV., 114

CHAPTER VI.

LOGARITHMIC AND EXPONENTIAL FUNCTIONS.

40. Graphs of log x and 10% 117

41. Inverse Functions, 119

Exercises XVL, 120

42. Graphs of xn and I/x
n

,
n fractional, 121

43. Adiabatic Curves, - - 123

44. Applications,
124

Exercises XVIL, - - - - 125

45. Napierian Logarithms, 128

46. The Exponential Function, - - 128

Exercises XVIIL, 129

CHAPTER VII.

TRIGONOMETRIC FUNCTIONS.

47. Trigonometric Functions, - 131

48. Graphs of the Circular Functions, 132



CONTENTS.

49. Simple Harmonic Motion,- ...... ^
50. Composition of Harmonic Curves, - - . . - 137
51. Decomposition of a Curve into Harmonic Components, - 139
52. Solution of Equations, - - . . . . - 143

Exercises XIX., ----- 143

CHAPTER VIII.

CONIC SECTIONS.

53.



CHAPTER I.

STEPS. COOKDINATES. PLOTTING OF POINTS.

1. Positive and Negative Numbers. In ordinary arith

metic, numbers are not distinguished as positive and

negative ;
the signs -f- and are used simply to indicate

the operations of addition and subtraction, and the number
to be subtracted must not be greater than that from which
it is to be taken away. The introduction of negative
numbers in algebra removes this restriction on the number
to be subtracted, and there is no confusion caused by using
the signs + and

,
not only to indicate the operations of

addition and subtraction, but also to distinguish positive
and negative numbers. The interpretation of positive and

negative numbers as representing credit and debit, gain
and loss, and similar notions, will be familiar to the student

;

we will consider a certain geometrical interpretation which
is of special importance in graphical work.

2. Steps. Let A and B be two points on an unlimited

straight line X X (Fig. 1), and let the segment AB be

thought of as traced out by a point moving along XX
from A to B. In this motion the point moves a definite

distance in a definite direction and the segment AB, when
considered as a straight line having a definite length and
drawn in a definite direction, is called a directed segment or,

more shortly, a step. In naming the step, the point from
which the motion begins, the initial point of the step, is

written first
;
the other end of the- step may be called the

G.Q. A &amp;lt;s



2 TREATISE ON GRAPHS.

final point. Thus, AB denotes the step traced out by a

point moving from A to B, while BA denotes the step
traced out by a point moving from B to A

;
the step BA

therefore is not the same as the step AB.
Two steps AB and CD are defined to be equal when,

and only when, they agree in the following three respects :

(1) they have the same length,

(2) they lie on the same straight line or on parallel

straight lines, and

(3) D is on the same side of C as B is of A.

The student must particularly note that equality of steps
means not merely equality in length but also sameness in

X A B E D C D ~~X

C D
Fig. 1.

direction. Thus, if D is at the same distance from C as D
is but on the opposite side (Fig. 1), the steps AB and CD
are not equal ; they are different steps because, though they
have the same length, the direction from C to D is not the

same as that from A to B. In tracing AB the point moves
to the right while in tracing CD it moves to the left

;
AB

may therefore be called a right step and CD a left step.
The right steps AB and D C are equal ;

the left step CD
is equal to the left step BA.

3. Positive and Negative Steps. Whatever be the relative

positions of the three points A , J5, C on a straight line (Fig. 2

shows all the possible cases) a point which has moved

along the line from A to B and then from B to C will be at

the same distance from A and on the same side of A as if

it had moved directly from A to C. The single step AC is

therefore called the sum of the two steps AB and BC, and
the operation of adding steps is expressed by the equation

AB+BC=AC. -. (1)
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To find the sum of the steps AB and CD when,^ in

Fig. 1, the final point B of the first step does not coincide

with the initial point C of the second step, mark oft the

step BE equal to the step CD
;
the sum of AB and BE,

that is AE, is the sum of AB and CD. Of course, not only
must BE be of the same length as CD, but E must be on

the same side of B that D is of C.

If C coincides with A the step AC becomes the step AA ;

the step AA since it has no length is called the zero step,

and is denoted by 0. Equation (1) becomes in this case

AB+BA=0 (2)

The form of this equation at once suggests that we
should write

BA=-AB (3)

Now if AB is a right step BA is a left step and equation

(3) states that a left step is equal to the right step of the

same length taken with the negative sign. We are thus

led to consider steps as algebraic quantities, the sign of the

step being interpreted as indicating the direction in which

the step is traced out. If we agree to call a right step

positive then a left step will be negative ;
if the left step

be called positive then the right step will be negative. It

does not matter which is considered positive but usually it

is the right step that we shall consider positive ;
if X X is

vertical the upward step will usually be considered positive.

C B B

b

B C A C ABC BA
d e f

Fig. 2.

It will be an easy and instructive exercise to test by

inspection of the different cases of Fig. 2 that the rule for

adding steps is exactly the same as that for algebraic
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addition, right and left steps corresponding to positive and

negative numbers.

Thus, in (a) the sum of the two right steps AB and BV
is the right step AC ]

in (/) the sum of the two left steps
AB and BG is the left step AC; in (e) the sum of the right

step AB and the left step EG (the length of the step BG
being greater than that of AB) is the left step AC. These

correspond exactly to the formulae

Again, to see what is meant by subtracting a step write

equation (1) in the form

BC=AG-AB.........................(4)

By the meaning of the sum of BA and AC we have

BC=BA+AC,
that is, by interchanging the terms BA and A C,

BG=AG+BA; ........................(5)

and now, by comparing equations (4) and (5), we see that

the subtraction of the step AB is equivalent to the addition

of the opposite or reversed step BA ; exactly as in algebra,
the subtraction of a number is equivalent to the addition of

the number with its sign changed.

Example. A, B, C, D are four points on a straight line ; find the

position of the point P when

(i) AP=AB+CD, (ii) when AP=AB-CD.
Consider the cases in which neither C nor D lies between A and B and
in which one of them lies between A and B. Take definite lengths,

say AB two inches and CD three inches, or AB two inches and DC
three inches, and compare with algebraical results

;
note for example

that when CD is a right step of 3 inches DC is a left step of 3 inches.

4. Geometrical Representation of Numbers. Let XX
(Fig. 3) be an unlimited straight line, a fixed point on it;

let U be another fixed point on it, say to the right of 0.

Take A, B to the right of and A
,
B to the left of 0,

making the length of OA and of OA twice that of OU and
the length of OB and of OB thrice that of OU.
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Considering OU, OA, OA ... as steps we have

0^ = 20^, OA =-OA=-20U]
OB = 30U, OB = -OB = -SOU.

If OU is taken as the unit step, that is the step of unit

length in the positive direction (for example, a right step

of one inch), it may be denoted by the number 1. The

numbers 2 and 2 will then denote the steps OA and OA

X
7
~B7 X ~6 U~ ~A~ B X

Fig. 3.

respectively, and the steps may be taken as representing

the numbers. Similarly the numbers 3 and 3 will denote

the steps OB and OB and the steps will represent the

numbers.

Quite generally, if OP = aO U, the number a will denote

the step OP and OP will represent the number a
;

if a is

positive P will be to the right of but if a is negative P
will be to the left of 0. Since OU is the unit step, we

may write simply OP a] the numerical value of a gives

the length of OP, the sign of a gives the direction of OP.
^

It is this method of representing numbers that is

employed in defining coordinates ( 5).

5. Coordinates. Let X OX, TOY (Fig. 4) be two

unlimited straight lines at right angles to each other.

Take a point P in the plane of the diagram and draw PM,
PN perpendicular to X X, Y Y respectively. For this

point P the steps OM, ON are definitely fixed
;
and con

versely, when the steps OM, ON are given, P is definitely

determined as the point of intersection of the perpendiculars

MP, NP.
Let OU be the unit step for the direction X X and 0V

the unit step for the direction Y Y; we will for the

present suppose these steps to be of the same length, say
one inch

(I&quot;),
but there is no necessity that they should be

of the same length (see 11, 24).

The step OM, or its equal the step NP, will be positive

when P is to the right of Y Y but negative when P is to
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the left of Y Y
;
the step ON or its equal the step MP will

be positive when P is above X X but negative when P is

below X X.

Suppose now that

\ ON=yOV.

u ivi

Y

Fig. 4.

The numbers x, y are called the coordinates of P with

respect to the coordinate axes X X, Y Y\ x is the abscissa,

y is the ordinate and P is described shortly as
&quot; the point

(x, y)&quot;
In thus describing the point the first coordinate

is understood to be the abscissa and the second the ordinate.

The axes will be always assumed to be at right angles to

each other. is called the origin of coordinates
;

it is the

point (0, 0).

The axes X X and Y Y are often called the x-axis and
the y-axis respectively ; similarly the abscissa is often

called the x of a point and the ordinate the y of the

point.

The axes divide the plane into four compartments or
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quadrants; the first quadrant (I) is bounded by OX and

OF, the second (II) by OF and OX
,
the third (III) by OX

and OF, and the fourth (IV) by OF and OX. The signs

of the coordinates show at once the quadrant in which a

point lies : in I the signs (the first being that of the

abscissa) are +, + ;
in II, , + ;

in III, , ;
and in

IV, + ,
-.

When a point is specified by its coordinates, that is when
the values of x and y are given, the process of marking its

position on the diagram is called plotting the point. This

process is made very easy by using &quot;squared paper&quot;
or

&quot;

section
paper,&quot;

that is, paper ruled twice over with two
sets of equidistant parallel lines, the lines of one set being
perpendicular to those of the other. In most papers every
tenth line, sometimes every fifth, is rather heavier than the

rest or is coloured differently.
To indicate the position of a point, a small cross is used

or a small circle is drawn round the point; a mere dot
should never be used to indicate the position of the point.
All lines should be drawn with a sharp, hard pencil. The
best results are obtained by using two pencils : one with a

needle-point for marking points on the diagram, the other

with a sharp chisel-edge for drawing fine lines.

The following example shows how to proceed :

Example. Plot the points 4(13, 12), B(-8, 12), C(-8 t -6),
Z)(13, -6) ;

find the lengths of the sides and the area of the quad
rilateral ABCD (Fig. 5).

Let the unit of length be one division of the paper. To serve as a

guide in plotting the points, the number 10 is placed at the point
where the 10th line to the right of crosses X X and also at the point
where the 10th line above crosses Y Y. Other leading points are

shown by the number 10 placed 10 units to the left of and 10 units

below 0.

Now to plot A move to the right 13 units, then up 12
; to plot B

move to the left 8 units, then up 12
;
to plot C move to the left 8 units,

then down 6
; finally to plot D move to the right 13 units, then down 6.

The beginner is advised to read the sign of a coordinate as &quot; to the

right
&quot; or &quot; to the

left,&quot;

&quot;

up
&quot; or &quot;

down.&quot;

ABCD is clearly a rectangle. BA, CD are each 21 units and DA,
CB are each 18 units.

The rectangle is divided by the horizontal lines into 18 strips, and
each strip contains 21 small squares ;

the area of ABCD is therefore
18 x 21, that is 378, times the area of a small square.
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In the diagram the side OE of a large square is one inch and there
fore one division of the paper is one-tenth of an inch. Since one
division represents the number 1 the scale of the figure is stated by
saying that &quot;

one-tenth of an inch represents unity&quot; or &quot;^ inch= l
&quot;

or thus &quot;1&quot;=10.

10

-10

-10

Fig. 5.

The number 21, which gives the length of BA and CD, represents 21
tenths of an inch

; BA, CD are therefore 2 1&quot;. Similarly DA, CB are 1 8&quot;.

The area of a small square is one-hundredth of a square inch
;
the

area of ABCD is therefore 378 hundredths of a square inch, that is 3 78
square inches.

EXERCISES. I.

In this set of Exercises let the unit of length be one division
of the paper. Assuming that one division is one-tenth of an inch,
state lengths and areas thus (taking as an example the problem just
worked) :

BA =21 (21 in.) ; ABCD= 378 (378 sq. in.).
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Plot the points in examples 1-20 :

1. (10, 10). 2. (5, 5). 3. (7, 7). 4. (16, 16).

5. (-10, -10). 6. (-5, -5). 7. (-7, -7). 8. (-16, -16).

9. (8,12). 10. (-8,12). 11. (-8, -12). 12. (8, -12).

13. (7,17). 14. (17,7). 15. (-13,6). 16. (13, -6).

17. (14,0). 18. (0,14). 19. (-14,0). 20. (0, -14).

Plot the four points in each of the examples 21-25
;
show that in

each case the four points are the vertices of a rectangle and find the
sides and the area of each rectangle :

21. (4, 2), (20, 2), (20, 14), (4, 14). 22. (7,0), (23,0), (23,23), (7,23).

23. (8,12), (-7,12), (-7, -6), (8, -6).

24. (-2, 6), (-14, 6), (-14, -16), (-2, -16).

25. (-13, 0), (-13, -
15), (15, -15), (15, 0).

Plot the three points in each of the examples 26-33 and find in each
case the area of the triangle of which the three points are the
vertices :

26. (0, 0), (20, 0), (20, 20). 27. (4, 6), (22, 6), (22, 22).

28. (
-

8,
-

4), (
-

8, 7), (12, 7). 29. (16, 8), (
-

13, 8), (
-

1 3,
-

5).

30. (-15, -15), (15, -15), (0, 10). 31. (10,20), (-10,20), (5, -10).
32. (16, 12), (-10, 0), (16, -12). 33. (12, 14), (-14, 4), (12, -8).

6. Plotting of Points. Additional Examples. Areas.

Example 1. Plot the points J(25, 1), (-1, 1 5), 6 (~1 5
&amp;gt;

-1 5),

Z)(l, -2). Join AB, BC, CD, DA and give the coordinates of the

points where these lines cross the axes.

In this example take a larger scale than in 5
;
let the unit steps

U, V (Fig. 6) be each one inch.* In this case the distance between

any two consecutive lines is one-tenth of the unit and therefore

represents 0*1. The point midway between and U is 5 of the
unit to the right of and at this point the number 0*5 is placed.

Similarly 5 is placed at the point midway between and V. The
point on X X marked - 1 is 1 unit to the left of : the point on Y Y
marked - 2 is 2 units below and so on.

To plot A move to the right 2 5 units, then up 1
;
to plot B move to

the left 1 unit, then up 1 5 and so on.

AB crosses F Fat E, and E lies, as far as we can ju^ge, midway
between the 3rd and 4th lines above the point marked 1. OE is thus

greater than 1 3 by half of O l, that is OE is equal to l S + 05 or
1*35

;
the sign is + since OE is a positive step. The coordinates of E

are therefore (0, T35). (See the remarks on the estimation of distance
at the end of example 3.)
BC crosses X X at F, midway between the 2nd and 3rd lines to the

left of the point marked - 1
;
hence OF is - 1 25, the sign being

negative since OF is a left step. F is thus the point (
- 1 25, 0).

.
* The diagram from which Fig. 6 is reproduced was drawn to this scale.
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Similarly, G is the point (0,
-
T8) and H the point (2, 0).OF is 1 inch and 0#=1 35 0V; the second figure after the decimal

point therefore represents hundredths of an inch. It requires careful
drawing and thin lines to secure accuracy in this second decimal

;

besides, m many of the cheaper papers, the errors due to irregular
spacing of the lines amount to more than a unit in the second decimal.

Fig. 6.

Example 2. On Fig. 6 plot the point ^(3, -
1) ; let KO cut A D at L

and let KO produced cut EC at M. State the coordinates of L and M.
The x of the point L is rather greater than 17, say ^=171 ;

the y
of L is negative and is numerically less than 0*6, say ?/= -0 57. L is
therefore the point (171, -0 57).M is the point (- 1 18, 39).

Example 3. At what point does the horizontal line through V
(Fig. 6) cut J3C, and at what point does the vertical through (1 3, 0)
cut OKI
The point on BC is (

-
1-Q8, 1) ;

the point on OK is (1 3,
-
O43).

Facility in reading off distances can only be gained by practice ;

gross errors, such as the misplacing of the decimal point or the omission
of the negative sign, are easily avoided by making a rough estimate
and then comparing this estimate with the results obtained from the
more careful inspection of the figure.
Another matter requires notice, namely : the numbers that are

estimated for the lengths of lines should not suggest a degree of accuracy
above that which the scale of the drawing admits. Thus in examples
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1-3 one division of the paper is one-tenth of an inch and
represents

O l
;
on this scale a length which is judged to be say two-thirds of a

division should not be stated as 06 but as 07, which is the nearest two-

place decimal approximation to of O l. This approximation implies
that distances may be estimated to hundredths of an inch but not to

thousandths
;
this standard of approximation is the one we shall assume.

Similarly, on the same scale, 3f would be plotted as 3 29
; v/3 as

1-73 as 58 and so on.

The beginner must be particularly careful not to state results to a

number of figures beyond what the scale admits.

60 170

10 X_

574=

Fig. 7.

It may be noted that, when in example 1&quot; it is stated that OH is 2,

all that is meant is that, if OH does differ from 2, the difference is less

than one-hundredth; properly stated, OH is 2*00, though in such cases

it seems customary to omit the zeros.

Before reading the following examples the beginner should try some
of the Exercises II., 1-18.

Example 4. Plot the points .4(17, 6), (-9, 16), #(-15, -4),

Z)(8, -9) and find the area of the quadrilateral A BCD (Fig. 7).
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Take one division as unit of length ; 10 divisions =1 inch.
The dotted lines divide ABCD into four right-angled triangles and

a rectangle, the lines being drawn parallel to the axes.

The triangle ABE is half the rectangle whose adjacent sides are EA
and EB. The side EA contains 26 units and the side EB 10, so that
the rectangle contains 260 and the triangle 130 small squares. In the
same way the areas of the other triangles are found.

Again, EH contains 17 and FE 10 units, so that the rectangle EFGH
contains 170 small squares. Hence

ABCD=EFGH+ABE+BCF+CDG+DAH
= 170 + 130 + 60 + 57^ + 67
= 485.

Since one division represents one-tenth of an inch, one small square
represents one-hundredth of a square inch and the area of ABCD is

4 85 square inches.

By a similar process the quadrilateral ABCD in Fig. 6 is found to
contain 950 small squares ;

its area is therefore 9^ times the square of
side OU.
When the figure is bounded wholly or partially by curved lines the

area can be found to a fair approximation by counting squares. When
only a part of a square lies within the area the usual rule is to count 1

when the part looks greater than half a complete square, but to count
when the part looks less than halfa complete square ;

a part that appears
to be exactly a half may be counted as |.

B

Fig. 8.

In Fig. 8 the area ABC contains about 98 small squares. The
triangle ABD is \AD . DB ;

AD=8, DB=ll 1 so that ABD is 46 -8.

Example 5. Show by measurement that the sides of the quadri
lateral in Fig. 6 are

^5= 3-54, BC= 3-04, (7Z&amp;gt;
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7. Trigonometric Ratios. Good practice in reading off

distances is furnished by the trigonometric ratios. The three

principal ratios are denned as follows.

IP

M

Fig. 9.

Let one arm of an angle A coincide with OX, the positive
direction of the x-axis. On the other arm take any point
P and draw PM perpendicular to OX.
When A is an acute angle, P will lie in the first quad

rant and its coordinates OM, MP will be positive numbers.
When A is an obtuse angle, P will lie in the second

quadrant ;
the abscissa of P will then be negative but the

ordinate will be positive. The line OP, which is the

hypotenuse of the right-angled triangle OMP, is always
to be considered positive. The three fractions or ratios

MP OM MP
OP OP OM

are called respectively
the sine, the cosine, the tangent

of the angle A or XOP. The phrase
&quot;

sine of the angle A
&quot;

is usually contracted to &quot;sinJ.&quot;; similarly &quot;cos A&quot; and
&quot;tan .4&quot; mean &quot;cosine of the angle A&quot; and

&quot;tangent of

the angle A
&quot;

respectively. Hence

sin A =MP
OP cos A = OMOP tanA =MPOM
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Note that MP is the ordinate and OM the abscissa of the

point P ; or, again, MP is the side opposite to the angle A
and OM the side adjacent to the angle A in the right-angled

triangle OMP. When the angle A is greater than a right

angle the words &quot;

opposite
&quot;

and &quot;

adjacent
&quot;

are not very
appropriate.

In calculating these ratios from measurements OP should
be not less than two inches.

EXERCISES. II.

In examples 1-15 let one inch represent unity.

Plot the points in examples 1-15 :

1. (2-5, 1-5). 2. (1-5, 2-5). 3. (27, 1 8).

4. (-2-3,1-4). 5. (-3-2, -1-3). 6. (2 1, -1 6).

7. (1-54, 1-63). 8. (2-60, 1-72). 9. (0 37, 1 49).

10. (-2-76, -1-23). 11. (-1-98,0-81). 12. (0 88, -071).
13. (11 2f). 14. (If, If). 15. (VW3).

Plot the points in examples 16-18, taking one inch to represent 10 :

16. (6i 7). 17. (8?, 9ft. 18. (10^/2,10^/3).

Plot the four points in each of the examples 19-24 and find the sides

and the area of each of the quadrilaterals having the four points as

vertices. Scale 1&quot;
= 1.

(19) (3-5,2), (1-5,2), (1-5, -1), (3-5, -1).

20. (27,3), (0-4,3), (0-4, -1 2), (27, -1 2).

21. (1-8,1-3), (-2-4,1-3), (-2-4, -07), (1 8, -07).

22. (2|, 11), (-31,11), (-31 -21), (2f, -2*).

23. (1-24,2-62), (0,2-62), (0,0), (1-24,0).

24. (1-86,2-27), (-2-14,2-27), (-2-14, -1 45), (1 86, -1 45).

Find the coordinates of the point of intersection of the straight
lines AC, BD and the area of the quadrilateral ABCD in each of the

examples 25-28 :
*

. 25. 4(2,l) f 5(-2,2), &amp;lt;7(-l, -1), Z&amp;gt;(3, -1).

26. 4(17,2-3), 5(-l-8, 1-3), tf(-l 6, -0 5), /)(2 1, 3).

27. 4(21 1), 5(2, -3), &amp;lt;?(-ij, -1), /&amp;gt;(-!,!?).

28. 4(3-8,2-3), 5(0-4,1-6), &amp;lt;7(-l 3, -2 2), Z&amp;gt;(2-4, -17).

*In some cases it may be convenient to draw through 4, B, C, D
parallels to the axes outside the quadrilateral, forming a circumscribed

rectangle. ABCD will then be the rectangle diminished by four triangles.
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Find the area of the triangles whose vertices are the points in

examples 29-34 :

29. (0, 0), (2-4, 0-5), (2-4, 2-1).

30. (0,0), (-2-3,0-8), (-2-3, -1-4).

31. (0, 0), (1-5, 2), (0-6, 3).

, 32} (0-6, 0-4), (2-8, 1-3), (1*3, 2 4).

33. (1-6,1-2), (-1,2-3), (-0-4, -1).
V
34. (2-4, -1-8), (-2-6, 2-3), (-1, -1 4).

Draw, using a protractor, the angles in examples 35-46 and calculate

from measurements their three trigonometric ratios :

]
35. 25. 36. 30. 37. 35. 38. 55. 39. 60. 40. 65.

1 41. 115. 42. 120. 43. 125. 44. 145. 45. 150. 46. 155.

8. Distance between two points. Let P (Fig. 10) be the

point (a, b) and Q the point (c, d) ;
draw PM, QN perpen

dicular to XX and PR parallel to XX, PR meeting NQ or

NQ produced at R.

R

W N

Fig. 10.

The steps PR and MN are equal ;
but

X

and therefore PR = c a. In the same way we find

d-b............. (2)

These expressions for the steps MN (or PR) and RQ are

true whatever be the positions of P and Q. If PR be called
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the ^-component and RQ the ^/-component of the step PQ
(from P to Q) the results (1) and (2) may be stated thus:

^-component of step PQ = (x of Q)-(x of P), .....(I
7

)

^/-component of step PQ= (y of Q)-(y of P), ..... (2 )

The numerical value of c a gives the length of the step
PR or MN while the sign of c a tells whether the step is

right or left.

Now, PQ* =P&+RQ\
and therefore PQ2 =

(c
-

a)
2+ (d

-
b)

2
,
.................. (3)

and the length of PQ is given by

PQ = J{(c-af+ (d-b)*} ................ (4)

The length of OP is given by
OP = J(OM*+ MP*) = J(a?+ W)............. (5)

Equation (5) is clearly that case of (4) in which Q coin

cides with and therefore c = 0, d = 0.

To gain familiarity with and confidence in the results

(I ), (2 ) the beginner should take several positions of P
and Q, for example

P(-2,3), &amp;lt;2(1,2); P(3,2). Q(-l, 1);

P(-2,-3), Q(3,-2).

Example. Calculate the distance between the points ^1(2 5, 1),

(-l, 1-5) shown in Fig. 6, p. 10.

= (x of B-x of Ay+ (y of B-y of A?
= (-l-2-5)2+ (l-5-l)

2

= 12-25 + 0-25

= 12-50,

By measurement we found J^=3 54 (example 5, p. 12).

The following definitions will save explanations at a

later stage.
Definitions. Two points A and B are said to be symmetric

with respect to a straight line when the line bisects AB and
is perpendicular to AB.
Two points A and B are said to be symmetric with respect

to a point when is the middle point of AB.
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EXERCISES. III.

Calculate the distance between the pairs of points in examples 1-6

1. (0,0), (3-2, -2-3). 2. (0,0), (-3-2, 2-3).

3. (1-6, 2-3), (2-3, 1-6). 4. (-1-3, 2 1), (2 1, 1-3).

5. (-2-5, -1-2), (2-5, -3-2). 6. (4 3, -2 4), (-3 4, -2 4). _
7. Show that the following points lie on a circle whose centre is

the origin and whose radius is 5.

(5, 0), (4, 3), (3, 4), (0, 5), (-3, 4), (-4, -3), (3, -4).

8. Show that the following points lie on a circle whose centre is

the point (6, 7) and whose radius is 5.

(11, 7), (10, 10), (9, 11), (3, 11), (2, 4), (6, 2).

9. Calculate the sides and diagonals of the quadrilaterals in

Exercises II. 25, 26 and test your results by measurement.

10. Show from the diagram of 7 that

(i) SmM+coSM = l; (ii) 1+taiAd =^ ; (iii) tan^

[sinM means &quot;the square of sin A&quot; etc.].

11. Verify the formulae (i), (ii), (iii) of example 10 for the ratios

found in Exercises II. 36, 38, 46.

12. Find the coordinates of the points symmetric to the following

points with respect to the .r-axis.

(i) (3, 2) ; (ii) (-1, 3) ; (iii) (-2,-!); (iv) (2, 3).

13. Find the coordinates of the points symmetric to the points
in example 12 with respect to the y-axis.

14. Find the coordinates of the points symmetric to the points in

example 12 with respect to the origin.

G.Q.



CHAPTER II.

EQUATION OF THE STEAIGHT LINE.

9. Coordinates connected by an Equation. We shall now
plot some points whose coordinates, x and y, are connected
by an equation.

.Example 1. In the equation y= 2x + 3 give to x in succession the
values

-6, -3, -1, 0, 1, 3, 4;

associate with each value of x the corresponding value of y deduced

o

Y
Fig. 11.

from the equation, take each pair of corresponding values of x and
?/

as the coordinates of a point and plot the seven points thus obtained/
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When #=-6, y - 9 ;
when #= -

3, ?/=
- 3 and so on. The values

may be tabulated as follows :

X
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Example 2. In the equation 3#-2y= 4 give to x in succession the
values -1,0, 1, 3, find the corresponding values of y from the equation
and plot the points as in example 1.

The points are (-1, -3^), (0, -2), (1, -\\ (3, 2^) ;
these are in a

straight line. Draw the line and produce it (Fig. 12 (i)).
From the equation 5^ + 4?/= 14 find the values of y corresponding to

the values -
1, 0, 1, 3 of x and plot the points, using the same axes and

scale as before (Fig. 12 (ii)).

The points are (-1, 4|), (0, 3|), (1, 2), (3,
-
J) ;

these again lie in a

straight line. Draw the line.

At what point do the lines intersect? Do the coordinates of this

point satisfy either or both of the equations ?

The point is (2, 1) and the coordinates satisfy both equations.
In examples 1 and 2 the points have been obtained by first choosing

values for x and calculating the values of y from the equations. Of
course we might have first chosen values for ?/ and calculated the

corresponding values of x from the equations. The student may, for

example, give to y in example 1 the values -|, ^, H, calculate the

corresponding values of x and test whether the points lie&quot;on the straight
line.

EXERCISES. IV.

In each of the examples 1-14 plot the six points obtained by giving
to x the values 5, 2, 0, 1, 2, 6 and show by applying a ruler

that each set of six lies on a straight line.

Find, by giving to x (or ?/)
other values, other points whose

coordinates satisfy one of the equations and test whether the points
lie on the straight line constructed from that equation. Do this for

examples 1, 8, 13.

Take on each straight line the points whose abscissae are 5, 4,
-

1,
-

4, read off the diagram the corresponding ordinates and then test

whether the coordinates of the points satisfy the equation used in

constructing the line.

1. y=x. 2. ?/=#+2. 3. y=x-Z. 4. y=-x.
5. y=-^+ 3. 6. y=-x-Z. 7. y= 2x. 8. y= 2^+ 4.

9. y= 2.r-4. 10. y=-2x. 11. y=-2^+ 3. 12. y=-2^-3.
13. 2#+ 3y= 4. 14. 3^-2?/+ 4= 0.

15. Having proved that the points given by equation 1 lie in a

straight line how could you show, without calculating the coordinates

of each point, that the points given by equations 2 and 3 are in each

case in a straight line ? Consider in the same way the relation of 5

and 6 to 4, of 8 and 9 to 7, and of 11 and 12 to 10.

16. A point P moves in a plane in such a way that its abscissa with

reference to chosen axes is always 2
;
what is the locus of P, that is

what path does P describe ?

What is the locus of P if it moves so that its ordinate is always 2 ?
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17. What is the locus of a point in the following cases :

(i) when its x is always
- 3

; (ii) when its y is always 3
;

(iii) when its x is always ; (iv) when its
?/

is always ;

(v) when its x is always a fixed positive or negative number, +a
or -a

;

(vi) when its y is always a fixed positive or negative number, +a
or -a?

18. Find any two points, A and B say, whose coordinates satisfy the

equation 3x+ 4y= 7 and any two points, C and Z), whose coordinates

satisfy the equation 4r-3?/ = l. Plot A, B, C, D on the same diagram
and read off the coordinates of the point in which the straight lines

AB and CD intersect. Test whether the coordinates of this point

satisfy both equations.

Try whether other pairs of points, found in the same way as

A) B, C, D, give the same straight lines.

19. The same problem as in example 18 for the equations

^-y= ,
^ y

=
.

20. The same problem as in example 18 for the equations

4#-2y + 5=0, 5^+ 8^-15 = 0.

10. Equation of a Straight Line. When pairs of T

are chosen at random and the points plotted which have
these numbers as coordinates, there will usually be no

orderly arrangement among the points; they will be

scattered all over the diagram. The case is altered how
ever when the coordinates satisfy an equation. The
student who has carefully worked through the examples
of 9 and the exercises on pp. 20, 21 must have observed

(i) that not merely the few points whose coordinates

were first calculated, but all the points he tried whose
coordinates satisfied an equation lay on the (unlimited)

straight line corresponding to that equation ;

(ii) that the coordinates of every point he took on the

line satisfied the corresponding equation.
In these examples the equation connecting the coordinates

x and y is of the first degree in x and y ;
in other words

each equation is of the form
ax+ by + c =

)
......................... (1)

where a, b, c are numbers. Thus, in example 1, 9, a = 2,

b= 1, c = 3, for the equation may be written in the form

The inference that all points whose coordinates satisfy
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an equation of the form (1) will lie in a straight line is

almost inevitable, after the numerous cases that have been
tested

;
a formal proof that the inference is correct is given

in 14. Meanwhile, assuming the truth of the inference,

we see that we have obtained a geometrical meaning for

an algebraic equation; namely, whatever be the values of

a, 6, c the points whose coordinates satisfy equation (1) lie

in a straight line, each set of values of a, 6, c giving rise to

a different line.

It is usual to express this fact by saying that every

equation of the first degree in the coordinates, that is, every

equation of the form (1) represents a straight line; and

conversely, that a straight line is represented or given by an

equation of the first degree. The equation is called, with

respect to the line, the equation of the line
;
the line is often

called the graph of the equation.

An equation of the first degree in x and y, since it is the

^nnation of a straight line, is frequently called a linear

equation.

Test or condition that a given point should lie on the graph

of a given equation. How can we tell, without drawing the

graph, that a given point (that is, a point whose coordinates

are given) lies on the graph of a given equation ? The
answer is, by testing whether the coordinates satisfy the

equation.

For example, does the point (
-

4,
-

4) lie on the graph of

Yes; because 3x(-4)-2x(-4) + 4 = 0,

that is, the equation is true when x -4 and y= -4.

Does the point (4, 3) lie on the same line ? No
;
because

3x4-2x3 + 4= 10,

that is, the equation is not true when #=4 and ;/
= 3.

It is very important that the beginner should thoroughly

grasp the fact that a point does or does not lie on a graph

according as its coordinates do or do not satisfy the equation

of the graph.

To draw a straight line, only two points on it are needed;

these should be as far apart as possible so that any slight

inaccuracy in plotting them may not cause a serious dis-
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placement of the line. It is easiest to find the points where
the line crosses the axes, but these are seldom the best

points to choose.

For example, to draw the graph of

we may proceed as follows : The x of all points on the y-axis is zero
;

but when x=^0 the equation gives y= 2, so that the line crosses the

y-axis at the point (0, 2). The y of all points on the .^-axis is zero
;

but when y= the equation gives x= 1|, so that the line crosses the

.r-axis at the point (
- 1, 0). It would be better, however, to find

another point than (-1J, 0); for example, the point (2, 5) or the

point (4, 8).

It is often useful to plot three points as a test of accuracy.
It is perhaps worth noting specially that the equation

of the i/-axis is # = 0, and that of the a^axis is y = 0. The

equation x= a, where a is a definite number, represents a

line perpendicular to the cc-axis, while the equation y = a

represents a line parallel to the cc-axis. (See examples 16,

17, pp. 20, 21.)

11. Scale Units. Points have often to be plotted whose
coordinates differ considerably in magnitude ;

such points,
for example, as (1, 16), (2, 32), (3, 48). In such cases the

choice of equal unit steps OU, 0V (5) requires either a

very small unit length or a very large diagram. We are,

however, quite at liberty to choose these unit steps of

different lengths ;
such a choice is quite consistent with the

definition of coordinates. Thus, in Fig. 4, OM=xOU,
MP =yOV and the point P is definitely fixed whether U
and V have the same length or not.

In many of the most important applications of the

method of coordinates the numbers x and y refer to quan
tities of different kinds, and there is no necessity that the

segment which represents a unit of the one quantity should

have the same length as that which represents a unit of

the other
;
the scales of representation of the two quantities

may, and usually must, be chosen quite independently. As
a matter of fact, the student will find as he proceeds that it

is in most cases the relative and not the absolute length of

the ordinates that is of importance ;
if in the same diagram

the same unit is used for the ordinates throughout, it does
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not matter whether it is of the same length as the unit

used for the abscissae or not. (See also 24.)
A proper choice of scales contributes greatly to the use

fulness of a diagram ;
before making his choice the student

should find out as far as possible the greatest numbers that
have to be represented.
We will now work some examples and show how the

graphs may be used to solve equations.

12. Examples on the Straight Line. Solution of Equations.

Example 1. Draw the straight lines given by the equations

30

20

To

Fig. 13. Scale reduced to one-half.

Equal horizontal and vertical units would give an inconvenient

representation. Let 1 inch along OX be the #-unit but let 1 inch

along OF count 10 ?/-units, that is, take the vertical unit line to be

i^th of the horizontal unit line.

The origin (0, 0) is a point on (i) ;
to get another point let #=2 and

we get the point (2, 20). To plot the point (2, 20), move 2 horizontal
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units to the right along OX, then 20 vertical units upwards ;
that is,

move 2 inches to the right, then 2 inches upwards.
For (ii) and (iii) put and 2 for x

;
we thus get the points (0, 12),

(2, 32) on line (ii) and the points (0,
- 1 2), (2, 8) on line (iii).

Fig. 13 shows the lines. They seem to be parallel and it is easy to

prove that they are so. The line (ii) is simply the line (i) moved 12

units up the diagram ;
for if we take any two points, one on each line,

having the same abscissa, the ordinate given by (ii) is greater by 12

than that given by (i). Similarly line (iii) is simply line (i) moved
12 units down the diagram.
The student will have no difficulty in seeing that the line given by

y= ax+ b, where a and 6 are any two numbers, is parallel to that given

byy= cu7; the latter passes through the origin and the former lies

b units above it when b is positive, but below it when b is negative.

Example 2. Draw on the same diagram and with the same scales* the

straight lines given by the equations
(i ) y= 4x+ 10, (ii) *1x+ 2y= 50

and state the coordinates of their point of intersection.

X

20

10*

Fig. 14. Scale reduced to two-thirds.

*By the phrase
&quot; with the same scales

&quot; we shall always mean, when two
or more equations are given, that the #-scale of the one is the same as the
x-scale of the other and the y-scale of the one the same as the 7/-scale of the

other, not that the a-scale is the same as the y-scale.
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Two points on line (i) are (0, 10), (3, 22) j two points on line (ii) are

(0, 25), (4, 11).

For scales, let 1 inch represent the value 2 of x and the value 10

of ?/.

The lines are shown in Fig. 14. The point of intersection A is

(2, 18) ;
so far as we can see from the diagram the x is exactly 2 and the

y exactly 18.

Since A lies on both lines its coordinates must satisfy both equations
( 10) ;

trial shows that both -equations are true when #=2, y=18.
The roots of the simultaneous equations (i) and (ii) are therefore #=2,
y=18.

It is evident that we have now a graphical method of

solving two simultaneous equations of the first degree ;
all

that we have to do is to draw the lines given by the equations

and read off the coordinates of their point of intersection. In

applying this method it is essential that the same scales

should be used for the two equations.

Conversely, to find the point of intersection of two

straight lines whose equations are given, we must solve

the equations, treating them as simultaneous equations.
The solution of the equation 4oj+ 10 = is equivalent to

the solution of the simultaneous equations

(i) j,
= 4a;+ 10, (ii) i/

= 0;

we draw the line given by (i) and find where it crosses the

line given by (ii), that is, find where it crosses the #-axis,

whose equation is y = 0. The value of x for that point is

the root required.
For an equation of the first degree in one unknown the

method is of little importance but, as we shall see, it is of

great value for equations of higher degrees.

Example 3. Find the equation of the straight line that passes

through the points (2, 3), (-4, 1).

Whatever may be the values of a, b, c, the equation

ax+ by+ c = Q .................................... (i)

represents a straight line. We must therefore choose the numbers a,

6, c so that the equation may be true both when .r= 2 and y= 3 and

also when x= 4 and y= \. Hence we have to solve the two simul

taneous equations

Since there are only two equations we solve for two of the numbers

a, b, c in terms of the third
;
we get a= }c, b= -%c. Substitute these
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values in (i) ;
c will now occur in every term and may therefore be

divided out. Clearing of fractions we find for the required equation

and it is easy to verify that the given coordinates satisfy the equation.

In later work the equation of the straight line will

usually be taken of the form

y = ax+ b, ............................. (ii)

which is really equivalent to (i), although it contains only
two numbers a, b while (i) contains three a, b, c. For, after

division by b and transposition of terms, (i) becomes

a c

arid the form is now that of (ii). We may represent the

fractional forms
j, T by single letters, since each letter

may represent any number, positive or negative, integral
or fractional

;
we take a, b as standard letters, but the a, b

of (ii) are of course not the same as the a, b of (i).

The only exception is the case in which b of equation (i)

is zero
;
that equation is then ax+ c = and represents a

straight line perpendicular to the #-axis. If the two given

points happen to be in a line perpendicular to the #-axis,

the form (ii) would give two inconsistent equations for

finding a, b.

Thus, if the points are (1, 1), (1, 3), equation (ii) gives

and these are inconsistent. Equation (i) however gives

and now 6= 0, c= a and the equation of the line is

ax a = 0, or x= 1.

If form (ii) gives inconsistent equations, then form (i)

may be taken
;
but with a very little practice the student

will notice at once whether the points are in a line per
pendicular to the ic-axis, and will be able to write down
the equation without calculation.

It should be noticed that the two numbers a, b of (ii)

and the two fractions of (iii) correspond to the property
that two points determine a straight line.
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EXERCISES. V.

1. Find, without drawing the line, which, if any, of the points

(3,2), (4,3), (-2, -2), (8,6), (5,4),

lie on the line given by 4,r 5y= 2.

Solve equations 2-15 graphically and verify your solutions by testing
whether the coordinates satisfy both equations.

2. 3^-2?/ = 0, 3. .?-2y+ll=0, 4. 4^-7?/=13.

5.\ 4#+ #= 10, 6. 2^p+ 4y= 15, 7.

3jp-4y=17. 4.r+ 2?/=15. 8x+ 6y =3
8. 3^+ 9y+14= 0, 9. 3#- 2y =2, 10. y = 25.2?+ 13,

9x+12y + 2= 0. 20#-25# + 24 = 0. y= 50^-62.

5?/
=36^+ 76. 8^+45^=130! 3.x-+13y=161.

2-14r-2 36j/
= 5. 18 4.r-46 6y= 857.

16. Solutions of the equation 3.r+ 4= a are wanted for several values
of a

;
how may the solutions be obtained graphically ?

If solutions of 3#+ 4 = bx+c are wanted for various values of b and

/how
may they be obtained graphically ?

, 17. Find the equations of the straight lines through the following

pairs of points :

(i) (5, 6), (-5, -3); (ii) (-7, 8), (7, -8); (iii) (6, -4), (-7, -3);
(iv)(6,7), (-3,7); (v)(2,-3), (2,4).

18. Find the coordinates of the vertices of the triangle whose sides

are given by the equations :

Show by solution of equations that the three straight lines

whose equations are

all pass through one point. Verify by drawing the lines.

^-20. Show that the three points (3, -1), (-2, 4), (5, -3) are in a

straight line, and find the equation of the line.

21. Find the equations of the straight lines AC, BD in examples
25-28, Exercises II. (p. 14), and determine the coordinates of the

point of intersection of the lines by solving their equations as

simultaneous equations.



CHAPTER III.

NOTION OF A FUNCTION. PEACTICAL APPLICATIONS
OF GRAPHS.

13. Variable. Constant. Function. As a point moves

along the straight line given by the equation y = 6x -f- 5,

the x of the point goes through, or takes, a succession of

values
;
the y of the point also goes through a succession

of values, but the values that y takes can be calculated

from the equation when those of x are known. Or, again,
we may say that if we give to x a series of values, y is

restricted by the equation to another series of values, and
the two series determine a point which moves along the

straight line as x goes through its values.

In other words, x is a variable
;

so is y, but since the

equation fixes the value of y as soon as a definite value is

given to -x the variable y is said to be dependent on x. Since

the values of x are supposed to be first given, x is called

the independent variable of the equation. We might, of

course, first assign values to y and then calculate those of x
;

y would now be the independent, and x the dependent
variable. It is usually a mere matter of convenience which
is taken as independent; that variable whose values are

the objects of inquiry or calculation is the dependent one.

Another method of stating the connection between two

variables, one of which is dependent on the other, is to say
that the dependent variable is a function of the other

variable, which is then often called the argument of the

function.
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The graph of an equation shows very clearly how the
function varies as the argument changes. The abscissa is

usually taken as the argument or independent variable,
and the ordinate then represents the function

;
the graph

is therefore often called the graph of the function. Thus,

Fig. 13 shows the graphs of the three functions

IQx, 10a;+ 12

the two expressions &quot;the graph of the function 10a?&quot; and
&quot; the graph of the equation y=10x

&quot;

mean the same thing.
Since the graph of the function ax+ b is a straight line

this function is often called a linear function of x.

In the expression ax+ b there are three letters, but only
one of these is a variable in the sense now explained. The
letters a, b denote definite numbers

; they fix the particular
line we are dealing with. For each set of values of a and b

we get one line, and x and y vary from point to point as

we go along the line
;
a change in a or b would give rise

to a new line and to a new case of the linear function.

Letters such as a, b that retain the same value all through
any one investigation are called constants.

It is customary to denote constants by the earlier letters

of the alphabet a, b, c ...
,
and variables by the later letters

z, y, SB ...
;
but when there is any advantage in denoting

a variable by a or a constant by z there is of course no
reason against doing so.

Example 1. The variables x and y are connected by the equation

express y explicitly as a function of x.

The equation clearly makes y dependent on .r,
for if we give to x

any value we can calculate the value of y ;
in mathematical language,

the equation is said to define y as a function of x. To see more plainly
how y depends upon x, solve the equation for y in terms of x

;
we find

(2#-5)#= 3#-7
3# 7

and therefore y --y 2#-5

y is now said to be expressed explicitly as a function of x while, so

long as the equation is not solved for y, it is only implicitly expressed
as a function of x

;
in the unsolved form of the equation y is an

implicit function of x while in the solved form it is an explicit function
of x.
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The equation also defines x as a function of ?/, namely
5?/-7

/yi_ ....*/ ^

~2y-3
as may be seen by solving the equation for x. Both functions are

fractional functions of their arguments.

Example 2. A stone is thrown vertically upwards with a velocity
of Ffeet per second

; express the distance travelled in a given time as a
function of the time.

Suppose that in t seconds the stone has risen s feet above the point
of projection ;

then it is shown in books on mechanics that, when the
resistance of the air is left out of account,

*=Vt-$gt*,
where g is a constant, equal to 32*2 approximately. The distance
travelled is therefore a function of the time

;
since the time t enters

into the expression of the function in the second and no higher degree,
the distance s is a quadratic function of the time t.

The velocity v at time t is a linear function of the time because

v = V-gt. f

The graph of the velocity v is a straight line
;
the graph of the

distance s is a curved line called a parabola ( 29).
In this example s, v, t are variables

;
I
7
, g are constants.

Example 3. A point moves in a circle of radius 5, and centre 0, the

origin of coordinates
; express the ordinate of the point as a function

of its abscissa.

Let
.T, y be the coordinates of P in any one of its positions ;

then

and therefore ^2+y2= 25, ...................................... (i)

so that y= */(25 #2
) ........................... (ii)

To express y fully we must remember that the root may be either

positive or negative ;
the symbol J(25

- x2
) is two-valued, namely is

either + N/(25-#
2
) or -

^(25 - #
2
).

The + sign goes with points
above the 47-axis, the -

sign with points below that axis.

Equation of a circle. We have here found the equation
of a circle. It is easy to find the equation of any circle.

Let its centre be the point A (a, b) and let its radius be
c

;
then if P (x, y) is any point on it we have ( 8)

c
2
................... (c)

which is the required equation.
The student should verify the equation for different

positions of the centre and different values of the radius.
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EXERCISES. VI.

1. The base of a triangle is b inches, its height h inches and its area
A square inches

;
write down the equation that connects &, h and A.

If h is constant and 6, A variable what kind of function is A of b ?

Represent graphically the relation between 6 and A when h is constant.

2. The radius of a circle is r, its circumference is c and its area A.

What kind of function is (i) c of r, (ii) A of r ? Represent graphically
the relation between r and c.

3. When a quantity of gas expands at constant temperature, the

product of its pressure, p Ib. per sq. in., and its volume, v cub. in., is

constant, equal to C say. Express p as a function of v.

4. If the effort, E Ib., required to raise a load, W Ib., is a linear

function of the load write down the general expression for E as a
function of W.

5. y is given as a function of x by the equation

axy + bx+ cy+d= ;

express y explicitly as a function of x.

6. Draw (with compasses) the circle whose centre is the origin and
whose radius is 5, and find the coordinates of the points in which it is

cut by the straight line whose equation is

[In this case the unit length must be the same for the y-scale as for

the #-scale.]

7. Draw the circle, centre (2, 3) and radius 3, and find the

coordinates of the points in which it is cut by the straight line

Of what two simultaneous equations are these coordinates the roots?

8. What are the coordinates of the point or points in which the

circle of example 7 cuts (i) the .r-axis, (ii) the ?/-axis ? What are

the equations that the values of x in case (i) and the values of y in

case (ii) satisfy ?

9. Find the equations of the following circles :

(i) centre (-2, 3), radius -5. (ii) centre (2, -3), radius=5.

(iii) centre (- 1J, -2|), radius= 6. (iv) centre (2*4, -2 4), radius= 2 4.

10. Show that the equation

represents a circle and find its centre and radius.

[The equation may be written

that is (x
-

2)
2 + {y

-
(
-
3) }

2=
(\/6)

2
.

By comparing with equation (c), p. 31, we see that this equation

represents a circle, centre (2,
-

3) and radius s/6 or 2 449.]
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27. In what proportion must tea at 2s. 6d. per Ib. be mixed with

tea at 4s. per Ib. so that the mixture may be sold at 3s. 6d. per Ib. ?

28. How many Ib. of tea at 2s. 6d. per Ib. must be mixed with

6 Ib. of tea at 4s. per Ib. so that the mixture may be sold at 3s. 6d.

per Ib. ?

17. Continuous Graphs. Physical Applications. We shall

now discuss some examples in which the plotted points are

to be connected by a smooth curve.

Example 1. Draw a curve to illustrate the variation of temperature
in the course of a day from the following data, the temperature being
in degrees Fahrenheit.

Time, -
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In the same way a curve representing the variation in

the height of the barometer may be drawn. Frequently
however the temperature for a week or a month is given
by stating the maximum and minimum temperature for

each day of the week or month. In such cases the data

may be considered statistical and the representative graph
is perhaps better shown as a broken line after the manner
of statistical graphs.

Example 2. In a test of a Pelton wheel with a constant head of
water the brake horse-power (B.H.P.) at N revolutions per minute was
found to be as follows :

N
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When the
jrraph

is not a straight line we are not yet in a
position to find its equation ;

some simple practical cases
will be given in later chapters.

0-67oi __,.- =^^_
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till the plotted points are either covered by the thread or about equally
distributed on opposite sides of it. It is very unlikely that all the

points will be on the straight line, because experimental work is

always subject to error, but of course we are only entitled to conclude
that the straight line is the proper graph if no points are at relatively
great distances from it.

10 20 30 40 50 60 70

Loads, 1 1nch to 80 fbs.

Fig. 24. Scale reduced to one-third.

80 90 700

Since the graph is a straight line, the effort is a linear function of

the load
;
therefore

(1)

where
,
b are constants. To find the values of a and b, select any

two convenient points on the line
;

it might happen that the line did

not go through any of the plotted points, but in this case it goes

through (30, 6|) and (100, 16|). Substituting these coordinates in

equation (1) we get

These equations give = 146 ...
,
6 = 1-857 ... . We might take 15

for a and T86 for b
;
but if we substitute these values in (1) and then

calculate the values of E for W equal to 10, 20... it will be found
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that the calculated values do not agree so closely with the given
values as when we take 146 for a and 1 86 for b. We take

therefore for the relation between E and W, or the law of the

machine as it is usually called,

E= 0-146 W+ 1-86 (2)

It is always advisable to test the law by calculating E from the

equation found and comparing with the given values.

It is shown in books on mechanics that, if r is the velocity ratio of

the machine, the work lost through friction and otherwise is

proportional, for a given rise of the load, to rE - W. The force

rE - W is often taken as measuring the friction of the machine
;
we

may denote it by F.
In the case in hand r was 24. From the equation

F=^E W
calculate the values of F, using the given values of E and TF, and then

plot the points for W and F as has been done for W and E. The
points will be found to lie nearly in a straight line and the equation
of the line can be found as before. That equation might be got by
means of (2) ;

for

F= 24E - W= 2-504 W+ 44 64.

This equation should be compared with that obtained from the plotted
points.
The efficiency e of the machine, expressed as a percentage, is

=
w

W()= loow= 100Tf

rE 2E 3-504 TF+ 44-64
&quot;

where the last fraction is obtained by using (2).

Corresponding values of W and e are given by :

W
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same as has been illustrated in this example. The student
should note examples 29-31 of the next set. These show
how in certain cases the equation of a curved line may be
found

; similar devices are sometimes useful in other cases
(see for example 34) but except in very simple examples
the problem of finding the equation of a curve in this
manner is too difficult to be discussed in an elementary
book. Fortunately the curves amenable to elementary
treatment are of considerable practical importance.

18. General Remarks. The student may have a difficulty
in deciding which is the simplest curve that passes evenly
among the points. As he proceeds in his study of the

graphical representation of equations he will find that all

ordinary equations are represented by smooth curves, that
is, by curves without angular points like the teeth of a saw;
the curve bends gradually, there is no abrupt change of
direction in passing along it. It is only in very special
cases that such abrupt change takes place ; the rule is that
the curve is well rounded.
Hence when the graph is to represent some physical

process, or some relation deduced from observation or

experiment, the curve should not, as a rule, possess sharp
angles ;

the bending should be gradual. It may be of use
to study the traces of the self-registering instruments
so common now for recording the temperature of the

atmosphere and the height of the barometer; it is the

exception for these graphs to show sharp angles.
In dealing with statistics on the other hand it is perhaps

best to follow the method of 16
; problems on prices also

may be treated as in that section.

In deducing conclusions from the study of a graph one
must not go beyond the range fixed by the data

;
thus we

may find from the graph of example 3, 17, or the

equivalent equation (2), the effort required to raise any
weight between 10 and 100 pounds but we are not justified
in using it to find the effort to raise 200 pounds. In many
cases the law seems to be different for different ranges of
the variables

;
or it may be that the law* which holds for a

wide range of the variables is somewhat complicated but
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may be represented approximately for smaller ranges by
expressions or graphs that are comparatively simple but
that differ for different ranges.-

EXE&CISEU IX,

1. Draw a curve to represent the variation of temperature giveri

by the following data, the temperature being in degrees Fahrenheit :

Time, -
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4. The rainfall in inches, and the dust fall, measured by the weight
of dust, in grains, falling on a dish of 75 sq. in. area, at Edinburgh
during the year 1902 are given as follows :

Month,
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N
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14. A lath of yellow pine, 1&quot; broad and 55&quot; deep, is supported at

points 24&quot; apart and loaded at the point midway between the points
of support. The deflection, d inches, for a load of W Ib. is as follows :

W
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19 In an experiment to determine the friction of brass on iron

(rubbing surface about 5 square inches) the friction F Ib. for a load c

W Ib. was found to be :

(i) for dry surfaces

W
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23. The battery resistance, b ohms, for a current of C amperes was
found in a certain test to be as follows :

b
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tion of temperature with time from the following readings ;
M denotes

the number of minutes after starting and T the temperature in

degrees Centigrade.

M
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30. Find as in example 29 the equation of the curve on which the
following points lie :

X



CHAPTER IV.

QUADKATIC FUNCTIONS.

19. Plotting of Curves from Equations. When an equation
is given that contains x and y, but that is not of the first

degree in these variables, it is still possible, by giving a

series of values to x, to calculate a corresponding series of

values of y and then to plot the points as in 9. It will

be found however that the points do not now lie on a

straight line
; but, when the difference between successive

values of x is small, the points will be arranged in such a

way as to suggest a definite curve on which they all lie.

If we draw a curve freehand through ail the plotted points,

adapting the curve to the general trend of the points,
it will be seen by trial that the curved line so drawn

possesses (within the limits of accuracy prescribed by the

diagram) the two properties noted in 10 as characteristic

of the straight line in relation to its equation, namely :

(i) all points whose coordinates satisfy the equation lie

on the curve
;

(ii) the coordinates of every point on the curve satisfy
the equation.
The process thus described is called

&quot;

plotting the curve

from its equation.&quot;
As in the case of the straight line, the

curve* is said to be represented by or to be given by or to be

the graph of the equation ;
in reference to the curve the

equation is called the equation of the curve or graph.

It may be well to warn the beginner that the word curve is often
* to include straight line as well as curved line,
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The equation will define y as a function of x (example 1,

p. 30) and the ordinate y will represent the function.
Hence the curve is often called the graph of the function.
Thus the curve represented by an equation such as

is often called the graph of the function 3a2
-2&amp;lt;c+ l. The

properties of a function its greatest and least values, the

way in which it increases or decreases as x changes, etc.,
__

are usually understood most readily by studying the

graphical representation of it.

We shall now plot some simple curves; but we first

remind the student of what was said in 10 about the
condition that a point should lie on a curve whose equation
is given. For curved as well as straight lines, the sole test
is that a point lies on the curve if and only if its coordinates

satisfy the equation of the curve.

20. Graph of y = x2
. For the moment let us confine

ourselves to values of x from x=-2tox=+2, and let us
take the horizontal and vertical unit lines of the same
length, say one inch.

To obtain a convincing proof of the form of the graph,
we must take the difference between consecutive values
of x fairly small

;
we must plot the curve, so to speak,

point by point. The imagination of experience will enable
the student to reduce the number of points whose co
ordinates must be calculated, but his knowledge of curves
and of functions will rest on no sound basis unless, to begin
with, he plots points enough to assure himself that he has
obtained the proper bending of the curve.

Let the successive values of x differ by 01, that is let x
increase or decrease by 01

;
the successive increments of

y will therefore be also fairly small, as the calculations
show. Tabulate as follows :

X
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X
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21. The Symmetry of the Curve. It is obvious that in

this case half the calculations might have been avoided,
since any two values of x that differ only in sign give the
same value of y, thus y = T96 both when # = r! and when
x=- 1-4. Again, the points (1 4, T96) and (-T4, 1 96) are

symmetric ( 8, p. 16) with respect to the ^/-axis ; and, in

general, to any point P on the curve with a positive
abscissa there is a symmetric point P lying at the same
distance to the left of the t/-axis as P does to the right.
The curve is therefore said to be symmetrical about the

Hence, to plot this particular curve it is sufficient to

calculate y for positive values of x
;
the points A, B\ ...

on the left of OF are symmetric to the points A, B, ... on
the right and can be plotted as soon as A

, B, ... are laid

down. In fact, the part OAD will coincide with the partOAD if it is turned over and A laid on A and D on D
;

or, again, it may be said that the part OAD is the image or

reflection in the ^/-axis (considered as a mirror) of the

part OAD.
As a rule a curve is not symmetrical about either axis,

but the student should be on the watch for symmetry
because its presence saves labour.

22. Turning Points. Maximum and Minimum Values. As
a point moves along the curve (Fig. 25) from any position
on the left of Y to any position on the right, the ordinate

of the point decreases till the point reaches and then
increases. The point is therefore called a turning point

of the graph ; and, by analogy, the value of the ordinate (or

function) at in this case, zero is called a turning value

of the ordinate (or function).
In general, those points on a graph at which the ordinate

either ceases to decrease and begins to increase, or else

ceases to increase and begins to decrease, are called turn

ing points of the graph, and the values of the ordinate (or

function) at the turning points are called turning values.

The value of the ordinate (or function) at that turning

point where it ceases to decrease and begins to increase

is a minimum value
;
at a turning point where it ceases to
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increase and begins to decrease, the ordinate (or function)
has a maximum value.

The meaning now given of the words maximum and
minimum is that generally understood in mathematics and
should be particularly noted. A maximum ordinate is one
that is greater than any other ordinate of the curve near it

and on either side of it
;

it is not necessarily, though it

sometimes is, the greatest ordinate of the curve. Similarly,
a minimum ordinate is merely one that is less than any
other ordinate of the curve near it and on either side of it.

A minimum ordinate may even be greater than a maxi
mum one.

For example, on a contour road map the trace of an undulating
road has several turning points, but the lowest point of a hollow (at
which the height of the road above the datum line is a minimum)
may well be at a greater height above the datum line than one of

the crests of the road.

Again, let the student note how slowly the length of the

ordinate changes near the turning point in Fig. 25
;
this

property of slow change near a turning point is characteristic

of turning points on all ordinary graphs and should be
verified in all graphs the student draws.

The manner in which the length of the ordinate (which
measures the value of the function x2

) changes at different

parts of the curve should also be studied. Thus, as x
increases from to J, the ordinate (or function x2

) increases

very slowly ;
as x increases from \ to 1, the ordinate in

creases more rapidly ;
and as x increases from 1 to 2, the

ordinate increases still more rapidly.
It will be readily seen that as x increases beyond 2, the

ordinate grows very rapidly and, with the units chosen for

the diagram, could not be shown on a sheet of moderate
.size even for such a small value of x as 5 not to say 10.

For such cases the vertical unit step must be taken smaller
than the horizontal one

;
in special cases it may be necessary

to draw more than one graph, with different scales, so as

to get a complete knowledge of the curve. See also 24.
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EXERCISES. X.

1. Draw, with the scales and values of x given in 20, from
x= -2 to #= 2 the graphs of

(i) ^= #2 + 1, (ii) y = x2
-I, (iii) y= -#2 + 1, (iv) y= -#2-1.

State the turning points of the graphs and the turning values of the
functions.

2. Draw the graph of y = l(Xr2 from x= -2 to x= 2, taking the
values of # in 20 but making the y-scale one-tenth of the #-scale

;

say, 1&quot; representing the value 1 of x and the value 10 of y. Compare
the graph with Fig. 25.

3. With the scales and values stated in example 2 draw the graphs
of (i) y= 10.r2 +10, (ii) y = 10^2

-10, (iii) y= -10

(iv) y=-
State the turning points and turning values.

4. Draw the graph of y= T\r
^2 from #=-2 to x= 2 taking the

?/-scale 10 times the #-scale. Compare with Fig. 25.

5. With the scales of example 4 draw the graphs of

(i) y= iV2+ T O &amp;gt; (&quot;) y= To^
2 ~

State the turning points and turning values.

6. Draw the graph of y= x2 from #= to #= 10, taking the values
of x suggested in 20

;
for scales let 1&quot; represent the value 2 of x and

the value 20 of y.
How is the graph of y= -x2 related to that ofy=a? 1

7. On the same axes and with the same scales ( 12) draw the

graphs of ty=x2 and 6y = 2#+ 3
from x= 1 to x= &.

State the abscissae of the points of intersection of the two graphs
and write down the equation of which these abscissae are the roots.

8. The same problem as in example 7 for the equations

9. Plot the points given by the table :

X
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10. Plot the points given by the table :

X
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y==x
2 with respect to the a-axis; because the value of y

given by y= -x2
,
for any chosen value of x, differs only in

sign from that given by y = x2 for the same value of x.

The graph of - 2x2
(a = -

2) may be obtained by doubling
the ordinates of that of x2

;
or it may be got by taking

the image in the a-axis of the graph of 2x2
. Similarly the

graphs of -%x2
,
-3x2

... may be constructed.
The curves for negative values of a lie below the #-axis

in Fig. 26.

The equation by = cx2 may be written y = jx
2 and is

therefore of the form just discussed.

In practice it is usually best to draw the graphs by
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plotting points but the process just considered shows that

the graph of a#2
,.for different positive values of a, is of the

same general character as that of a? and that the graph
of ax2

,
for different negative values of a, is of the same

general character as that of a;
2

. The greater a is the

more rapidly does the graph recede from the &-axis.

If b is positive, the graph of ax2+ b is simply that of ax2

moved b units up the diagram, for it may be obtained from
that of ax2

by increasing each ordinate by 6. Similarly
the graph of ax2 b is that of ax2 moved b units downwards.
The origin is a turning point on the graph of ax2

, but,
if a is negative, the ordinate at the origin, namely zero, is

a maximum, when considered algebraically ;
because every

ordinate except that at the origin is negative and zero is

algebraically greater than any negative number.
The curve given by the equation y = ax2+ b is called a

parabola ( 29) ;
this equation is a particular case of that

of 29.

24. Change of Scale. There is another method of con

sidering the graph of ax2
depending on the scales used in

plotting it. The graph of y = x2
(Fig. 25) will, if the

vertical unit line be properly chosen, represent the graph
of y = ax2

for any positive value of a.

For example ,
let a = 1 0. When x = 1

,
the equation y= 1Ox2

gives 2/
= 10; let therefore the segment OF which in 20

represents 1 now represent 10. In other words let the

new vertical unit segment OF be -f-^fh of the former unit

segment OF. Every vertical step therefore will now
represent a number 10 times as large as it represented on
the first scale. ED for example is 40 F, that is, 400F

;

when F is the unit the ordinate of D is 4, but when V
is the unit the ordinate of D is 40.

Now, every ordinate of the graph of y Wx2 is 10 times

the ordinate of the graph of y = x2 for the same value

of x
;
but on the new scale every vertical step represents

a number that is 10 times as great as the number it

represented on the first scale. Therefore the graph of

y = Wx2
is simply that of y = x2 with OF

,
instead of OF,

representing unity.
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Similarly the graph of y = x2
,
constructed with OF as

unit, will be the graph of y = ax2
(a being positive) provided

the scale is changed so that V shall represent, not 1 but, a.

Thus it will be the graph of 2x2 if OF=2, of x2
if OV= J

and so on.

The graph of y = x2 stands in the same relation to that

of y = ax2 when a is negative as the graph of y = x2 does to

that of y = ax2 when a is positive. Thus the graph of

y= x2 will represent that of y= I0x2
provided OF=10

(Fig. 26).
These considerations also show that a change of scale

like that just treated is equivalent to a stretching or con

tracting of all lines in the paper parallel to the ^/-axis.

2

Fig. 27.

4 X

In studying the purely geometrical properties of curves

it is desirable that the two unit steps OU, 0V should be of

the same length ;
but such a choice is often impracticable.

The more advanced student will readily see that a change
in the length of the steps OU, V, so long as the lengths
are kept equal, merely changes the size and not the shape
of the figure because all lines are altered in the same pro

portion. When OU and OF are of different lengths the

curve is distorted and its geometrical properties are often

much disguised; for example, a circle would be flattened

and appear to be an ellipse.

Fig. 27 shows two curves both of which represent y = x2
.

In both the #-scale is Y to 2, but in the upper curve the

2/-scale is 1&quot; to 2 while in the lower curve it is Y to 20.
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In interpreting a graph it is essential that the scales be

known.
From what has been stated in this article and in 23 the

student should now have no difficulty in picturing to himself

the graph of y = ax2+ b
;
in employing the graph for the

solution of problems very much depends on a proper choice

of scales. It will not now be necessary to choose the values

of x so near to each other; a few points, to act as guide

points, will generally be sufficient. The proper rounding
at a turning point should be specially attended to.

Before proceeding to 25 the student should work several

of the examples in Exercises XI. 110.

25. Applications of the Graph of ax2
. We shall take two

illustrations of the way in which the graph may be usefully

applied.

20

10

X -1 -5 Q
Fig. 28.

Example 1. Solve graphically the equation

X

Write the equation in the form

then draw the graphs of

(i)

(ii)

(iii) and ^=-18^+ 5.............(iv)

These graphs intersect in two points A and B (Fig. 28). The
coordinates of A satisfy both of the equations (iii) and (iv), because A
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is on both graphs. At A therefore the y of (iii) is the same as the v of

(iv), and the x of (iii) the same as the x of (iv). Hence the x ofthe
point A is such that

in other words the x of the point A satisfies (ii) which is equivalent
to (i).

Similarly we see that the x of B satisfies (i).

Thus, to solve equation (i), plot the graphs of equations (iii) and (iv)
and read off the abscissae of the points of intersection. These abscissae
are the roots of the equation.A preliminary rough sketch of the graphs will show that they
intersect a little to the right of and a little to the right of the point
for which x - 1

;
we only require therefore to plot the graphs care

fully near these points.
The roots are approximately 0*21 and -O93

;
on the scale to which

the figure was originally drawn the roots were read as 214 and
934. The roots, when the equation is solved algebraically, are

0-2141... and -0 9341...

Fig. 29.

In general, the roots of axz+ bx+ c = Q may be found as

the abscissae of the points of intersection of the graphs of

y = ax2 and y = bx c.

Sometimes it may be more convenient to take the graphs
f

y = ax2+ c and y= bx.

In many cases however it is preferable to use the method
shown in the next example.
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Example 2. Solve the equation 523^2 - 726# -213 = 0.

Divide by the coefficient of .r
2
, express the fractions as two-place

decimals and write the equation in the form #2= 1 39#+ 41.

To draw the linear graph take the points (1, T80) and (-1, -0 98);

when the line is drawn note, as a test of accuracy, whether it crosses

the ?/-axis at the distance 41 above the origin.

A rough sketch of the graph of xl shows that the two abscissae are

1-6... and -0 2... ;
the roots are then easily found to be 1 64 and

- 0-25 (Fig. 29).
When the coefficients are large this method should be taken

; indeed,

it is usually the best method. If many equations have to be solved it

is useful to have a well-drawn graph of x?. The straight line need not

be actually drawn
;
a ruler placed in the position for drawing the line

will enable the roots to be read.

O t 2 3 4
Sco/e,o/ E, 1=2

Fig. 30.

Example 3. Corresponding values of two quantities E and R are

given by the table :

s
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suit the table. To find a take the point (2, 1 09) which is on the

graph ;
this point gives

l-09= 4a; a= 2725.

Try another point, say (3, 2 -46) ;
this gives

9a a= 273....

We might therefore take a= 0*273, which gives the relation

When the values of R are calculated from this equation, for the

different values of E, the results are found to agree pretty well with

the given values
;
the above relation is therefore the one sought.

When the curve suggests the equation R =aE2+ b, two points must
be taken to determine the two numbers a, 6, exactly as in the case of

the

not the

suggests B , _
values of E\ take these values as abscissae and the corresponding
values of R as ordinates. If E&quot; be denoted by F, say, and if it is found

that the points (F, R} lie on a straight line, then F and R satisfy the

linear equation R= aF+b, so that E and R satisfy the quadratic

equation R=aE2+ b. Naturally, this method involves a good deal of

calculation but it is sometimes very useful.

A better method of determining a when R= aE2 is the following.
Calculate the quotient R/E* for each pair of corresponding values ;

for the above set these quotients are, in order,

0-240, 0-263, 0-307, 270, 256, 278, 288.

These quotients are not equal but, allowance being made for the

errors of observation, they may be considered as equal. Hence

R/E2 is constant, so that R=aE2
.

The value to be taken for a is the mean of the quotients, that is, the

sum of the quotients divided by the number of them, in this case 7.

We find
1 902

sum of quotients= 1-902 ;
mean= y-=0 272 ;

so that /2=0-272 J

2
. The value of a suggested by the points taken on

the graph was 273 ;
one value can hardly be considered much better

than the other.

EXERCISES XI.

1. Graph the equations y= IWx* and y= lOOx2 - 164 from #=0 to

b.

2. Graph the equation y= 250 - 16#2 for positive values of y.

3. Graph the equation 22^2 + 5y= 80 for positive values of y.
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4. Draw to a large scale the graph of y = x* from x= 6 to #= 7 ;

from the graph find, as accurately as your scales allow, y/45. (The

origin of coordinates should be outside the sheet.)

5. Draw the graph of y^^x. How is this graph related to that of

?/
= .r

2
?

More generally, how is the graph of x= ay
i related to that of

y= ax*1

6. On the same axes and with the same scales draw the graphs of

xi=y and
?/
2=

837, carrying the curves sufficiently far to make sure that

you have got all their points of intersection. State the abscissae of the

points of intersection and write down the equation of which these

abscissae are the roots.

7. The same problem as in example 6 for the equations

0*= 5y, f= l2x.

8. The same problem as in example 6 for the equations

a*=-5y, /= 12x

9. The same problem as in example 6 for the equations

tf2 =(?/+ io
5 y2= .r+ 4.

10. The same problem as in example 6 for the equations

Solve the equations in examples 11-16 :

11. 9^2 -5^-2= 0. 12.

13. 3-2^2+ 1 3#-2 = 0. 14. 332^2- 576^-428 = 0.

15. l 8#2 -9-3&p+ 8-72 = 0. 16. 2 15^2 - 1

17. Find the greater positive root of the equation

Find the relation between x and y in examples 18-20.

18.

19.

20.

X



78 TREATISE ON GRAPHS.

21. A particle moves m a straight line and its distance, s feet, from
a fixed point in its line of motion t seconds after startino- is given bv
the table :

J

t
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26. Graph of y = ax2+ bx 4- c. We will draw the graph
for two typical cases, (i) for a a positive number, (ii) for a
a negative number.

(i) Draw the graph of y= 4r2 -8^-7 from ,x= -3 to #= 5.

Calculate first the values of y for the integral values of x
;
we

thus obtain the table :

X
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(ii) Draw the graph of y= 7 + 8# 4^&amp;gt;2 from x= 3 to x= 5.

The value of y in this equation differs only in sign from that of y in

(i) for the same value of x we therefore plot the points (
-

3,
-

53),

(-2, -25)..., (5, -53). This graph is the image of the first one in

the .r-axis. (Fig. 32.)

10

\

Fig. 32.

The two equations just discussed are of the form

y = ax2+ bx+ c.

As will be seen in 29 the value of a determines the shape
of the curve

;
the values of b and c determine its position

with respect to the coordinate axes. When a is positive,

the curve is concave upwards (Fig. 31) ;
when a is negative,

the curve is convex upwards (Fig. 32). The curve is called

a parabola ( 29).

Another method of drawing the graph is to plot with

the same scales the graphs of ax2 and bx+c and then to

add the ordinates. This method is of great importance for
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more complicated curves and will be illustrated in drawing
the graph of a cubic function ( 37, 38).

27. Application to Quadratic Equations and Quadratic

Relations. We shall discuss two applications of the graph
of a

Example 1. Solve the equation 4#2 - 8# - 7 = 0.

The roots of this equation are the values of x that satisfy the

simultaneous equations

^= 4^2 -8^-7 ...... (i), y= Q ........................... (ii) ;

in other words, they are the abscissae of the points where the graph of

equation (i) crosses the ^-axis.

From Fig. 31 we see that the roots are 2 66 and - 66.

Similarly we see that the roots of

4 2 -8.r-7 = 10 .................................... (a)

are the abscissae of the points where the graph of (i) is cut by the

straight line y= 10. From Fig. 31 the roots are seen to be 3 29 and
-1-29.

When a graph is to be used merely for the purpose of

solving an equation it need not be traced except for points
on it near the #-axis (or other line) and there it should be

traced as accurately as possible. To find the neighbourhood
of the points where it crosses the a&amp;gt;axis, observe that the

value of y given by a value of x a little less than the root

is of opposite sign to that given by a value of x a little

greater than the root.

For example, take y= 4#2 8x - 7. When 3?=2, y=-7 and when
#=3, 3/

= 5
;
the curve therefore must cross the .r-axis at some point

between x= 2 and #= 3. Similarly, when #= 0, y= 7, and when
#= 1, y= 5; the curve therefore must cross between #=0 and
x=\. The neighbourhoods of the two roots being thus found, a few
values of y will give the shape of the curve near these points and thus

the roots themselves.

In the same way to solve equation (a) find values of #, not differing
much from each other, that make y a little less and a little greater
than 10.

As examples the student may try to solve some of the

equations 11-16, p. 77.

G.G. F
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Example 2. Find a relation between x and y that will satisfy the
following system of values :

X



EXERCISES. XII. 83

very laborious. It is not however difficult in any case to

plot the points and to obtain from the curve a suggestion
as to the algebraic relation between the quantities; but
more powerful mathematical methods than are employed in

this book are often required for the practical evaluation

of the coefficients. In Mr. Bashforth s works on the

Resistance of the Air to the Motion of Projectiles excellent

examples will be found of the more difficult type.*

EXERCISES. XII.

Draw the graphs of equations 1-6 for values of x from x= 5 to

x=b. State the turning points and say whether the value of y at the

turning point is a maximum or a minimum.

1. 3/
= 2.r+#2

. 2. y= Zx-x*. 3. y=4x+x2
,

4. y=kc-x\ 5. y= Wx+4x*. 6. .y
= 10^-4^2

.

7. Graph the function 13 + 30.^ 9^?
2

;
extend the graph far enough

to obtain the roots of the equations

(i) 9^2 -30^ -13 = 0. (ii) 9#2 - 30.? - 24= 0.

8. Graph the function 10+ 3*4^-0*6^2
. Find its maximum value

and the values of x for which it vanishes.

Find as accurately as you can by means of a graph the maximum or

the minimum value of each of the functions 9-11 and state the value

of x for which the function has its turning value.

9. (#-l)(#-3). 10. (2#+ 3)(#-i). 11. #(12-#).
12. Show by a graph the relation between the area and one side of

a rectangle the perimeter of which is 72 inches. What is the greatest
area the rectangle can have ?

13. .rand y are two numbers such that 3^p+ 4j/
= 48

;
what are the

values of x and y when the product xy has its greatest value ?

14. A point P moves along the straight line given by the equation

and M, N are the projections of P on the coordinate axes OX, OY.
What is the greatest value of the rectangle OMPN, the coordinates of

P being positive ?

15. Corresponding values of u and v are given as follows :

u
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Show that u and v are connected by an equation of the form

and find the values of a, b, c.

16. Corresponding values of t and R are given as follows :

t
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What path does the point describe ? For what value of t is
?/

a
maximum and what are then the values of y and x ? For what values
of t is y zero ?

24. If x= 5 - 6#, y= 5 + Qt - 2
,
where #, y, have the same meanings

as in the preceding example, trace the path of the point and answer the
same questions as in example 23.

28. Change of Origin. If the graph of y = 4#2
is plotted

with the same scales as are taken for the graph of (i) 26

it will be found that the two graphs can be made to

coincide, by superposition ;
in other words, they are the

same curves but they occupy different positions with

respect to the coordinate axes. The student should make
the test for himself; it is easily done by using tracing

paper.
In general, the graph of ax^+ bx+c can be made to

coincide, by superposition, writh that of ax2 if both graphs
are drawn with the same scales. The proof of the general

proposition depends on changing the origin of coordinates
;

we will indicate the method fully for the equation

y = 4&amp;lt;x

2-8x-7 (i)

By the method of
&quot;

completing the square
&quot;

equation (i)

may be written

2/ + H=4(^-l)2
(ii)

Nowlet x-l=X, 2/ + ll = 7, (iii)

and equation (ii) becomes

F=4X2
(iv)

The graph of (iv), with X, Y as coordinates, is obviously
the same graph as that of y = 4&amp;gt;x

2
,
with x, y as coordinates,

provided the scales are the same. To see the meaning
of the coordinates X, Y notice that, by equations (iii),

X = gives a; = l; F=0 gives y= - 11.

Let O
l (Fig 31) be the point (1, -11) and draw X^XV

Y
1

fY
l horizontally and vertically through 0^ ; X, Y are the

coordinates, referred to the axes X^X^ Y
l

/Y
1 of the point

whose coordinates referred to the axes X X, YY are x, y.

For, if X
l
X

l
cut YY at L and if the perpendicular from

the point P (x, y) cut X X at M and X
l
X

l
at N we have

X=0
1N, Y=
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Also the step Z0
1
= l and the step Z0 = ll; OL is the

step 11.

Now x = LO
l+ O

lN=I+X; x l=X.

y =NP-NM=NP-LO=Y-ll; y+ ll = Y.

This proves that the change from x and y to X and F is

simply equivalent to choosing the point 6j(l, 11) as a
new origin and measuring the coordinates X, Y along the

axes through Oj parallel to the old axes.

The transformation given by equations (iii) is called

change of the origin, the new axes being parallel to the old

axes.

It is a very simple problem to show, in general, that if

the coordinates of the new origin are a and b and if the

coordinates of any point P are x and y when referred to the

old axes, and are X and F when referred to the new axes
x = a+ X, y = b+Y; x-a=X, y-b=Y. (A)

Notice that the coordinates of the new origin are obtained

by putting X and F=0.
Take now the general case y = ax2+ bx+ c. This may be

written, by the method of completing the square,

. b

and the equation becomes F= aX2
,
the graph of which is

clearly the same as that of y = ax2
.

The new origin is the point given by the equations

b b2 -4,ac

~2a&amp;gt;
y ~

~&T~&amp;gt;-

these values being obtained by putting JT= 0, F=0 in

equations (B). The point given by (c) is the turning point
of the graph ;

the line through this point parallel to the

ic-axis is a tangent to the graph.

29. The Parabola. The curve given by the equation

......................... (1)
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is called a parabola ;
from the discussion in the last article it

is plain that its shape depends only on a.

The straight line about which the curve is symmetrical
(OF in Fig. 25

; 1 *\ in Figs. 31, 32) is called the axis of

the parabola. The point in which the axis meets the curve

(0 or Oj) is called the vertex of the parabola. The number

I/a is sometimes called the parameter of the parabola.
The parabola is not a closed curve like the circle; it

extends to infinity on both sides of its axis, because the

equation y = ax2
gives a real value of y for every real value

of x and when x becomes very large so does y.
The vertex of the parabola given by equation (1) is always

either the highest or the lowest point of the curve
;

it is the

highest when a is negative, the lowest when a is positive.
The knowledge of the position of the vertex is of great
assistance in tracing the curve, not only because it is the

highest or the lowest point on the curve but because the
curve is symmetrical about the vertical line through it.

30. Average Gradient. The gradient of a straight line

is the vertical rise from any point P on it to any other

point Q on it divided by the horizontal advance from P to

Q ;
the same quotient is obtained whatever two points are

taken on the line. The quotient obtained by taking two

points on a curved line however will clearly depend on
the positions of both points ;

in Fig. 25, for example, the

quotients for the three portions OK, OA, AD of the curve
are

__ l _^ _ (,~ ~~
L&amp;gt; AF~

When a point is moving along a curve, the direction in

which it is moving when it has reached the point P is that

of the tangent to the curve at P; the gradient of the

tangent line is therefore taken as the gradient of the curve
at the point P. We are not yet in a position to calculate

this gradient, though we can calculate approximations to it

by finding the gradient of the chord PQ, where Q is a point
on the curve near P. The gradient of the chord, or secant,

PQ is called the average gradient of the arc PQ ;
this number,
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when multiplied by the horizontal advance from P to Q,
will give the actual rise or fall in passing along the curve
from P to Q. When Q is very close to P the gradient of the
chord will clearly differ very little from that of the tangent.
The gradient of a straight line measures the rate of

increase of the ordinate or of the function which it repre
sents. Similarly, the average gradient of a portion PQ of

a graph measures the average rate of increase of the ordinate,
or of the function which it represents, as the abscissa or

argument increases from its value at P to its value at Q.
When the argument is denoted by x we speak of the

average ^-gradient of the function; when by t, of the

average ^-gradient and so on, but if no ambiguity is to be
feared the x and the t may be omitted.

In calculating gradients we always suppose the abscissa

to increase algebraically ;
the amount by which the abscissa

increases, that is the horizontal advance from P to Q, may
be called the increment of the abscissa. The vertical rise or

fall from P to Q may be called the increment of the ordinate
;

this increment will be positive if the ordinate of Q is

algebraically greater than that of P, but negative if less

than that of P.

Hence in all cases

,. c Dn (ord. of Q)-(ord of P)
average gradient of arc PQ= 7\- 5-7^

~ /
x

(absc. of Q) (absc. of P)

_ increment of ord. of P
increment of absc. of P

Example 1. Find the average gradient of the graph of yx1 as x
increases (i) from to 1, (ii) from 1 to 2, (iii) from 2 to 3, (iv) from - 2

to -
1, (v) from - 1 to 0.

(i) When x= 0, y= and when .#= 1, y= l
;
the increment of x is 1

and the increment of y is also 1 so that

, 1-0
av. grad.

=
-^
= 1.

(ii) When x increases from 1 to 2, y increases from 1 to 4, so that

the increment of x is 1 and the increment of y is 3 and therefore

: = ?= 3
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(iii) When x increases from 2 to 3 we find in the same way
, 9-4 5

av.grad. =3-2=^
= 5.

(iv) When #= 2, #= 4 and when x= 1, y = l
;
the increment of

x is 1 and the increment of y is - 3. Note that y changes from 4 to 1

and that the increment is obtained by subtracting the value from
which it has changed from the value to which it has changed.

*

The
increment of y is in this case negative and the arc has a right-hand
downward slope.

av.grad.= _/_-*_ 2)

=
^|= -3.

(v) In this case

0-1 -1- =-1.

These gradients give a rough idea of the steepness of the graph
along different portions of it

;
thus in case (iii) the average steepness

is 5 times as great as in case (i). From the point of view of rates the

average rate at which the function x2 increases as x increases from 2

to 3 is 5 times as great as when x increases from to 1.

Example 2. Find the average gradient of the graph of y x* as x
increases (i) from 2 to 2 5, (ii) from 2 to 2*1, (iii) from 2 to 2 01,

(iv) from 2 to 2 + A.

. ~? ==4 5 -

/O-l \2_02
(ii)

(iii) av. grad. =^^~ = 4O1.

For case (iv) observe that when #=2+ h, y= (2-\-h)
2

;
hence

It will be noticed that (iv) includes (i), (ii), (iii) ;
to obtain (i) from

(iv) put A=0 5, to obtain (ii) put A 0*1, and to obtain (iii) put
A= 0-01.

When h is very small, say A=0 01 or O OOl, the direction of the
chord PQ will be very nearly the same as the direction of the tangent
to the graph at P. The student may try to give a sound (not merely
a plausible) reason for the conclusion that the gradient of the tangent
at P is exactly 4

;
test the conclusion by drawing the tangent.

Example 3. When a stone falls freely from rest under gravity the
distance it falls in t seconds is 16 2 feet approximately. What is the

average velocity of the stone during (i) one second, (ii) half a second,
(iii) one-tenth of a second, (iv) the fraction A of a second, each of these
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intervals of time being reckoned from the instant given by =
2, that

is, just after the stone has been falling for 2 seconds ?

Let s denote the number of feet the stone falls in t seconds
;
then

s= 16*2.....................................(1)

(i) To find the distance the stone falls in case (i) we subtract the
distance it falls from rest in 2 seconds from the distance it falls from
rest in 3 seconds

; these distances are obtained by putting t equal to

2 and 3 respectively in equation (1). Hence the number of feet the
stone falls in case (i) is 16 x 32 - 16 x 22= 80.

Now the average velocity with which the stone falls during any
interval of time is obtained by dividing the number of feet in the
distance it falls during the interval by the number of seconds in

the interval. In this case the number of feet is 80 and the number
of seconds 1, so that the quotient is 80. The average velocity is

therefore said to be 80 feet per second.

It is clear that if the stone fell for 1 second with the uniform velocity
of 80 feet per second, the distance it would fall would be 80 feet

;
the

average velocity is thus equal to that uniform velocity with which in

the same time the stone would fall through the distance it actually
travels.

(ii) The number of feet the stone falls in this case is

16x(2)2 -16x22 = 36,

and the time during which it falls is \ second, so that, dividing 36

by \ we find the average velocity to be 72 feet per second.

(iii) In this case the number of feet per second in the average

velocity is
16 x (2-1)2-

(iv) The distance the stone falls in (2 + A) seconds is 16 (2 + A)
2
feet,

so that the distance it falls in the fraction h of a second is, in feet,

16(2 + A)
2 -16x22= 64A+ 16A2

.

The average velocity during the fraction A of a second is therefore

64A+ 16A2

^
that .^ 64 + 16A feet per secon(L

We shall now state these results in a general form. In t
l
seconds

let the stone fall s
l
feet ;

in (^ + A) seconds let it fall s2 feet. Then
the distance, in feet, that it falls during the interval of A seconds is

s2
-^ and we have ^= 16^ S2== i6 (^ + A)

2

so that s2 -s1
= 16(*1 + A)

2 -16*1

2= 32*
1
A+ 16A2

.

The average velocity during the interval, A seconds, that succeeds the

first
tfj

seconds of its fall, is

^2 Sl feet per second,

that is, 32^ + 16A feet per second.
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Let the graph of s= l6t2 be drawn, with t as abscissa ; then, clearly,

if P is the point on it whose abscissa is ^ and Q the point whose
abscissa is ^+ A, the average velocity during the interval h seconds is

simply the average gradient of the arc PQ.
The velocity at time ^ seconds is the gradient of the tangent to the

graph at P.

Again, since the average rate at which s increases, as t increases from

*! to
t-i
+ k, is the quotient of the increment s-2 -s1

of s by the increment
h of t, we see that the average velocity during the interval h seconds

is the average rate at which the function s or 16 2 increases as t increases

from
j
to t

1 + k.

All cases of average velocity are treated as in these examples.
As soon as the relation between the distance, s feet say, travelled in

time, t seconds, is known we can calculate the distance, s
2 s

l feet,

travelled during any interval, h seconds
;
the quotient (s2 Si)/Ais the

average velocity, in feet per second, during the h seconds. The
student should note how, as in cases (i), (ii), (iii), the quotient comes
nearer and nearer to a fixed number as the interval is made smaller

and smaller
;
case (iv) shows that, however small h may be, the quotient

will never be quite 64 but may be brought as near to 64 as we please

by sufficiently diminishing A.

What property will the number 64 measure (a) with respect to the

graph of s=l6t2
, (b) with respect to the motion of the stone ?

EXERCISES. XIII.

Find the coordinates of the vertex, the equation of the axis and the

equation of the tangent at the vertex of each of the parabolas in

examples 1-4, and write each of the four equations in the form Y=aXz
.

Sketch the parabolas.

1. y= 3^2 -12#+ 8. 2. y= 9 + 30^-25^2
.

3. 3y= 5a2 -7#-4. 4. 5^= 8- \\x -4.r2.

Write each of the equations 5-8 in the form X=aY2
. Hence

show that each equation represents a parabola ;
find the coordinates

of the vertex, the equation of the axis and the equation of the tangent
at the vertex. Sketch the parabolas.

5. ^=2?/2
-12y+ 21. 6. ^-=

7. 5#=4/2 -24 + 21. 8. 7

9. If y=^-
2+ 2^+3 calculate the value of y for each of the follow

ing values of x : (i) 3, (ii) 3 1, (iii) 3+ A, (iv) a, (v) a + h.

What is the increment of y when x increases (a) from 3 to 3 1,

(/3) from 3 to 3+ A, (y) from a to a+ h ?

10. If y= 15 + 20.r 4x2 what is the increment of y as x increases

(i) from 2 to 2 5, (ii) from 2 to 2 + A, (iii) from 5 to 6, (iv) from 5 to 5 5,

(v)from 5 to 5 + hi
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Find the average gradient of the arc PQ of the graphs of equations
11-19. In each case several values of the abscissa of Q are stated for
one value of that of P

;
several gradients have therefore to be calcu

lated and the student should note how these gradients change as the
difference between the abscissae of P and Q becomes less and less.

The probable value of the gradient of the tangent to the graph at the

point P should be stated.

11. y=x2+ 3; A-ofP=3; x of @= 4, 3 5, 3 1, 3 01, 3 + A.

12. y= 5x-a?-, .rofP=3; x of Q= 4, 3 5, 3 1, 3 01, 3 + A.

13. 3/
= 10 + 3^-2.r2

;
x of P=0

;
# of Q= l, 5, O l, O Ol, h.

14. y= l2-6x+ x2
, ^ofP=-2; x of Q= -1, -1 5,

-
-1-9,

-
T99,- 2 + h.

15. y=xz -$x+ ;
#of P=4; a? of $= 5, 4 5, 4 1, 4 01,

16. y=10+ 9^-^2
; .rofP=4; x of =5, 4 5, 4 1, 4 01,

17. y= 5 + 7x-3x2
; tfofP=2; x of Q= 3, 2 5, 2 1, 2 01,

18. y= 6+ 4:X-x2
; xoiP=a; x of. Q =

19. = axz+ bx+ c; xoiP=u x ol =

20. A point is moving in a straight line, and at time t seconds from
a chosen instant its distance from a fixed point on the line is s feet,
where

Find the average velocity of the point as t increases (i) from 4 to 5,

(ii) from 4 to 4 5, (iii) from 4 to 4 1, (iv) from 4 to 4 01, (v) from 4 to

4-f-A. With what velocity is the point moving when = 4?

21. Find the average velocity of the point whose motion is specified
in example 20, as t increases from ^ to ^ + A. With what velocity is

the point moving when t= t
l
?

22. If the relation between s and t is given by the equation

find the average velocity of the moving point as t increases from t
l
to

tj +h. What is the velocity of the point when t= t
1
1

23. If^=400, y= 100-16Z2
,
what is the average rate at which

x and y increase as t increases from t
1
to ^ -f- h ? At what rates are x

and y increasing when t= i
l
1

24. A point is moving in a straight line with a velocity of v feet per
second, and at time t seconds from a chosen instant the relation

between v and t is given by the equation

What is the average rate at which the velocity changes as t increases

from t1 to ti + hl



CHAPTER V.

FRACTIONAL FUNCTIONS. CUBIC AND BIQUADRATIC
FUNCTIONS.

31. Infinity. The quotient of a by x is defined to be

that number which, when multiplied by x
t gives a

;
but if

x is zero the definition fails : the symbol a/0 is not defined.
It is possible however to assign a meaning to this symbol,
and in the next section we shall see the graphical inter

pretation of it.

For simplicity suppose a I. By giving to x smaller

and smaller values, say 01, O Ol, 0*001 ... we see that I/x
takes larger and larger values, namely 10, 100, 1000

Further, we can give to x a value small enough to make
I/a? larger than any assigned number, no matter how large
that number may be : for example, to make I/a? larger than
10 million we may take x equal to the fraction one divided

by 10 million and one. The symbol 1/0 is therefore taken
as representing an infinitely large number or &quot;

infinity.&quot;

The usual symbol for infinity is oo.

Similarly, if a is not zero, a/0 also represents an infinitely

large number. When the quotient a/x is positive, a/0 is

said to be positively infinite (-f-oo); when a/x is negative,

a/0 is said to be negatively infinite (00).
When x is very large, a/x is very small

;
when x is in

finite, a/x is zero.

It must be specially noted that infinity is not a number
in the same sense that 2 is a number

; for example, it does
not follow that oo/oo is equal to 1. We are only concerned
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at present with the limiting case of a fraction like a/x ,

we say nothing about other operations in which the

symbol for infinity may appear. Further, a/0 is not neces

sarily infinite if a= 0; the symbol 0/0 has no meaning
of any kind as yet.

Fractional Functions, -,
-

x
The simplest case is that32.

given by y = l/x.
Take first the values of y for positive values of x

; they
are easily calculated and the curve can be plotted, say from
x= 0*4 to x 3 (Fig. 34). For smaller values of x however
the values of y become very large ;

a point on the graph as

Fig. 34.

it gets near to the /-axis rises to a great distance above
the -axis. So long as y is finite, no matter how large it

may be, x is also finite though small and the graph has not

reached the i/-axis ;
when the graph reaches the 7/-axis, x
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has become zero and y has become infinite. The graph is

in this case said to approach the 7/-axis asymptotically, or, to

have the ^/-axis as an asymptote ;
as a point moves upwards

along the graph it gets nearer and nearer to the 7/-axis, but
it does not reach the axis till it has moved off to an infinite

distance.

In the same way it may be seen that the ic-axis is an

asymptote of the graph.
When x is negative, y is also negative, and the graph

approaches the negative ends of the two axes asymptoti
cally. The complete curve consists of two branches lying
one in the first and the other in the third quadrant ;

it is

called a hyperbola ( 33).

Definition. In general, when a curve has a branch ex

tending to infinity, the branch is said to approach a straight
line asymptotically, or to have the straight line for an
asymptote, if, as a point moves off to infinity along the

branch, the distance from the point to the straight line

tends towards zero as a limit that is, if, as the point moves
off to infinity, the distance becomes and remains less than

any given length, however small that length may be.

There is a kind of symmetry, called central symmetry,
about the graph of l/x. For let a be any number; then
the points (a, I/a) and ( a, I/a) are both on the graph
because their coordinates satisfy the equation y= l/x. But
these points are symmetrical with respect to the origin;
therefore to every point on the curve there corresponds
another point symmetrical to it with respect to the origin
and also on the curve. The curve is in this case said to

have the origin as a centre of symmetry. The use that may
be made of central symmetry in plotting the graph is

obvious.

The graph of l/x will be the graph of a/x, when a is

positive, provided OF is taken to represent not 1 but
a (24).
The graph of l/x (and therefore of a/x when a is

positive) lies in the second and fourth quadrants. If the
axes in Fig. 34 be interchanged so that OF becomes the
new OX and OX becomes the new OF, the graph of I/a?
will become that of l/x; the number 1 on OF will
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become the number 1 on the new OX, and the number 1
on the OX of the diagram will become the number 1 on
the new OF.
The graph of I/a;

2
,
for positive values of x, resembles

that of l/x ^
it lies above that of l/x when x is less than 1,

but below it when x is greater than 1. Both the a-axis
and the 2/-axis are asymptotes. The curve is symmetrical
about the 2/-axis and consists of two branches lying in the
first and second quadrants. It is represented by the dotted
curve in Fig. 34.

The graphs of l/x
3

, l/x*,... for positive values of x
resemble that of l/x, but they approach the sc-axis more
rapidly when x is greater than 1, and ascend more rapidly
when x is less than 1.

33. Rectangular Hyperbola. The function l/x is the

simplest case of the fractional function given by the
e1uation ax+ b

in which both numerator and denominator are linear
functions of x. To see the general nature of the graph of

(1) consider the equation

*- ................... - .......
(*&amp;gt;

This equation may be written

Now put X for x-2 5 and F for y-2, that is, shift the

origin ( 28) to the point 1 (2 5, 2) and the equation becomes

r-ir ............................^
If therefore we take as new axes the lines X

1

/

1
XVYiiXv drawn through 1 parallel to X OX, TOY re

spectively, the graph will be of the same shape as that of

y = l 5/x-} the asymptotes are the lines X^X^ Y
l
Yr The

graph is shown in Fig. .35
;
for negative values of X com

paratively little is shown.
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For other values of a, b, c, d equation (1) can also be

reduced to the form of equation (2 ) because

ax+ b_a (be ad)/c
2_ - g

cx+ d c x+ d/c J
x-\-

O 1 3

Fig. 35.

X

If therefore we put X for x -f li and Y for y /, equation

(1) becomes Y=g[X (I
7

)

In all cases then the graph of (1) resembles that of

y = I/x, but the asymptotes are not usually the coordinate

axes
; they are in general parallel to the axes.

To draw the graph of equation (2) it is perhaps best to begin by
drawing the asymptotes. The asymptote Yl

Y
l

is given by the value
of x that makes

?/ infinite, and is therefore obtained by equating to

zero the denominator of the fraction, namely 2^-5
;
Y

1
Y1 is the line

given by 2^-5 = or #= 2 5. In the same way the asymptote X^X^
is given by the value of y that makes x infinite

;
to find it, solve the

equation for x in terms of y and then equate the denominator to zero
;

or divide the given fraction by its denominator and equate y to the

integral part of the quotient. The equation of XX
l
is y= 2.

When the asymptotes have been drawn the calculation of a few
ordinates will readily give the curve.

A case of equation (1) that is of considerable importance
is that for which 6 = 0. This case has been met with in

17, example 3. Equation (3) of that example is

100W
e =

3-504 TF+ 44-64
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and the graph is the curved line of Fig. 24. The asymptote
parallel to the axis of W is given by

e =
3-504

and the curve approaches this asymptote from below.
The graph of equation (1) is called a rectangular hyperbola.

The word
&quot;rectangular&quot;

is used because the asymptotes
are at right angles to each other

;
as a rule, the asymptotes

of a hyperbola are not at right angles to each other.

34. Applications of the Hyperbola. The graphs just dis

cussed are sometimes useful in suggesting a relation between
variables of which a few corresponding values are known

;

we give some illustrations.

.Example 1. The pressure p, measured in centimetres of mercury,
corresponding to the volume, -v cubic centimetres, of a quantity of air

kept at constant temperature was determined experimentally, and the

following pairs of corresponding values were obtained :

V
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The rectangular hyperbola is therefore an isothermal

curve, because it represents the relation between pressure and
volume when the temperature is constant. The equation

pv = constant

expresses Boyle s Law.

The equation pv
n= a, (iii)

of which the one just treated is a particular case, will be

discussed in the next chapter; but we may here note a

method by which the determination of the constants ??, a in

(iii) may be reduced to a problem on the straight line.

Take the logarithm of each member of equation (iii) ;
then

logp+ n log v = log a.

Now put x = log v,y = log p and we get the linear equation

y+nx=loga (iv)

Hence when v, p satisfy equation (iii), x, y satisfy

equation (iv). If therefore the points (v, p) seem to lie on
a curve with an equation of the form (iii) a good method
of testing is to plot the points (x, y) and see whether they
lie on a straight line. The values of n and log a are

obtained from the linear graph as in 17, example 3. The
best method, however, of finding a is to calculate the values

of pv
n
(the value of n being taken from the graph) and then

to take the mean of these values
;
in any case the products

pv
n should be tested so as to verify the value of n.

Example 2. Find a simple relation connecting x and
?/, pairs of

corresponding values of these quantities being as in the table.

X
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of the constants can be reduced in various ways to a problem on the

straight line.

Putting 6= in equation (1) 33 we obtain

cxy (a)

Dividing both sides of (a) first by x, next by y and lastly by xy, we
derive the three forms

Now in (/?) put u for y\x, in (y) put v for xjy and in (8) put X for

l/# and F for 1/y ;
these equations then take the forms

cy
= a-du (/? ) ;

cx=av-d (y ) ;
c=aY-dX (8 ).

Y

4
Fig. 30.

8 X

Equation (/? ) represents a straight line when
ty and u are taken as

coordinates
;
so does equation (y ) when x and v are taken and equation

(8 ) when X and F are taken.
To test then whether a graph can be represented by an equation of

the form (a) we may use any of the equations (/? ), (y ), (8 ) ; naturally,
we take the equation that gives us the most manageable coordinates.
For the example in hand take (y ) ;

we therefore form the table,
after calculating the values of v by dividing each value of x by the

corresponding value of y.

X
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x and v
; taking the points for which x= 4 and #= 8 we get the equation

It will be found on trial that this equation is satisfied very
approximately by the given values of x and y.

When the term 6 in equation (1) 33 is not zero these

transformations are not applicable. That equation really
contains only three independent constants, for it may be

written in the form
Ax+B

To test this equation we must select three points on the

graph which will give three equations to determine A,B,D.
It need hardly be added that similar transformations to

those of the present example may easily be devised for

special cases. Thus, to test the equation

y= a/x
2+ d

we may put u for l/x
2 and test whether the points (u, y)

lie on a straight line. No general rule however can be

given ;
the plotting of the logarithms of the variables, as

suggested in example 1 and as will be shown more fully at

a later stage, is even more useful than the method just
treated.

EXERCISES. XIV.

1. Draw the graph of y= 25/4^ for positive values of x, and find

graphically the roots of the simultaneous equations

2. Graph the equations

(i) #y= 10, (ii) .*%
= 10, (iii) .r

3
v/
= 10.

Find the abscissae of the points in which each of the graphs cuts

the straight line given by

and write down the equations of which these abscissae are the roots.

Will it be necessary to plot each graph for negative values of x in

order to find the roots ?

3. If p is the pressure in pounds per square inch and v the

volume in cubic feet of one pound of air at the temperature 32 F.,

then pv= 182. Represent graphically the relation between v andjo.
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4. Draw to the same axes and with the same scales the curves
given by the following equations :

(i) Z6= f -i.r2 from #= to #= 1, u= - for x&amp;gt;l ;x

(ii) v- from #= to #= ]
,

=
-^ for # &amp;gt; 1 ;

(iii) w= - 1 from #=0 to #= 1, w= -
3
for # &amp;gt; 1.

These graphs are of importance in the Theory of the Potential
(E.G., pp. 154, 155).*

5. Graph the following equations :

#-3

6. Graph the equation

#?/-3#+ 2y-4=

and find the abscissae of the points in which it is cut by the straight
line #+.y= 3. Of what equation are these abscissae the roots ?

10

-4

7. Graph the equation y + 4=

8. The deflection d of a galvanometer for a total resistance R ohms
was found to be as follows :

R
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10. Boyle s &quot;Table of the Condensation of the Air&quot; by which he
verified the law that bears his name is as follows, p representing the

pressure in inches of mercury and v being proportional to the volume.

V
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15. The numbers in the following table are supposed to be con
nected by an equation of the form

test the supposition.

X
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A point, such as 0, where a curve crosses its tangent and
bends away from it in opposite directions on opposite sides

of the point is called a Point of Inflexion
;

the tangent at

the point is called an Inflectional Tangent.
The graph of #4

is symmetrical about the ^/-axis.

Fig. 37.

In Fig. 37 the graphs of x2
, a? and x* are shown from

x = 1 to x = 1
; they are extended a little to the left and a

little to the right, but when x becomes greater than 1 the

increase of x3 and x* is so rapid that their graphs cannot

be shown on the somewhat large scale of the diagram.
The student will do well to draw the graphs say from x =
to x = 4, taking a small vertical unit.

The graphs of ax3 and ax^ need no further discussion

after the explanations of 23, 24.

36. Cubic Equations. First suppose the term in x2 to be
absent

;
the equation is therefore of the form

Q (a)
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As in 25 we see that the roots are the abscissae of the

points of intersection of the curves given by

y = ax3 and y = bx c.

For example take the equation

10

-1 O X

Fig. 38.

In Fig. 38 the curve ABOC is the graph of S.r3 and the straight line

ABC the graph of 7x 3. J, S, C are the points of intersection of the

graphs and the abscissae of these points are respectively 1 60, 46,
- 2 06. The equation therefore has three roots, given by these numbers.

It will often be more convenient to divide first by the

coefficient of xs and to take the graphs of the equations

, be
y = x3 and y= x .

a a

Next, suppose the cubic equation to be complete, that is,

of the form

(b)
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In this case we may take the graphs of

y ax3 and y= bx2 ex d,

b c d
or 01 = -- or x ,

a a a

or of y = ax*+ d and y= bx2
ex,

but any method involves a good deal of labour (see also 39).

Again, it is easily seen that the roots of (b) are the

abscissae of the points of intersection of the parabola and

the hyperbola given by the equations
= x2 and

(compare Exercises XIV. 1, 2).

Similar methods apply to equations of higher degrees.

Thus, the equation ax*+ bx+ c = can be solved by

taking the graphs of ax4&quot; and bx c.

37. Graph of Cubic Function. To obtain a satisfactory

curve by plotting points demands of the beginner a con

siderable amount of calculation. We shall indicate two

methods, taking in both cases the equation

y=2x
3 -7x+ 3.

First Method. Take a series of integral values of x, so

as to obtain suggestions as to the points where the curve

crosses the a&amp;gt;axis and also as to turning points. Form the

table

X
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A few more values should now be calculated so as to
obtain more exactly the points where the curve crosses the
#-axis and where it turns. The following table will be
sufficient :

-2-3
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and therefore that their direction is as important as their

length.
Hence y = QP and, if we mark off the step MR equal to

the step QP (not PQ), R will be a point on the required

graph. It is easy now to plot points and to obtain a satis

factory curve. The curve is RRR, Fig. 40.

R

M
R

10

Fig. 40.

Consider now the graph of

In this case
2/
=

2/1+ 2/2
- To find the point, S say, such

that MS is the sum of MP and MQ, mark off from the

point P the step PS equal to the step MQ and S will be the

required point. The graph is the curve 888, Fig. 40.

When x is large, ^ is much larger than yz ;
even for x = 5 we

have
7/j_
= 250, y2

= 32. Hence at points at a moderately great
distance to the right or to the left of the y-axis the curves
whose ordinates are yl y9 and yl+ yz

will differ very little

from that whose ordinate is yr The student should plot on
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the same diagram the graphs of y lt y^-y^ and y^+y2
from

x = 5 to x = lO taking the y-scale smalf, say I&quot; to 250;
integral values of x will be sufficient.

The fact that, for large values of x, the term of highest
degree determines the behaviour of the graph is of
considerable importance in higher work.

38. Building up of a Graph. The method just given of

plotting the graphs of one or more terms of the function
arid then adding, by the rule for the addition of steps,
corresponding ordinates of the component graphs is of very

Fig. 41.

great importance and should be carefully studied. When
the component graphs are of a well-known shape the
resultant graph can be obtained with much less labour, and
with more certainty, than by plotting points. In this way
the graph of an equation such as

y
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can be easily drawn. The equation may be written

and the graphs of 2a?+ 3 and
4&amp;gt;/x

2 can be readily laid down.
In Fig. 41 ABC is the graph of 2^+ 3, DBE that of 4/cc

2

and FGH that of 2x+ 3+ 4/x
2

;
the curves are only drawn

for positive values of x. G is the turning point; at G
x = 1*6 and y = 77 approximately.
When x becomes moderately large the ordinate of the

curve differs very little from that of the straight line
;

clearly the straight line is an asymptote to the curve. On
the other hand, when x is a small fraction the ordinate of

the curve differs very little from that of the graph of
4&amp;gt;/x

2
;

the difference, no doubt, is always greater than 3, but 3 is

very small compared with 4/x
2 when x is a small fraction.

39. Solution of Equations. Method of Trial and Error.

When rough approximations to the roots of an equation
have been obtained, closer approximations may be got by a

process that may be called the method of trial and error.

Take for example the equation

A rough sketch of the graphs of 3$? and 7 + 8^ 4.#2 (Fig. 32) will

show that the equation has three roots, equal approximately to 1*5,

-0 8 and -2 1. To obtain a closer approximation to the first of these

roots, notice that when #=1*5, y= (H25. The point (1*5,0*125) is

above the .r-axis
; when x is greater than 1 5, y is positive so that the

root is less than 1*5.

Now try .r= l 49; this gives y= -0*116 and the point (1*49, -0*116)
is below the .r-axis. We therefore try a value of x between 1*49 and
1*5

;
since 0*125 and 0*116 are nearly equal we try #= 1*495, that is

half the sum of 1*49 and 1 5. This gives y= 0*0042.

A still better approximation is a?= 1-4948; for this value of x we
- find y=- 0*0006.

In the same way better approximations to the other two roots are

found to be -0*752 and -2*076.
In applying this method the graph is only needed to suggest first

approximations, though by plotting the portion of the graph near the
.r-axis on a very large scale we can get the closer approximations in

the usual way.
It may be noticed that 1*495 differs from the true value of the root

by less than 0*07 per cent, of that value, as may be seen thus. The
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root is greater than 1 494 but less than 1/495 and therefore differs
from either by less than O OOl. The fractional error is therefore less

than 5^1
1-494

and the percentage error is less than this fraction multiplied by 100.

But
5^21 x 100= 0-06... &amp;lt;0-07.
j. 4y4

The methods that have been given of solving an equation
are all laborious if more than a moderate approximation to
the roots is desired

;
for more powerful processes see any

book on the Theory of Equations or the author s Calculus,

Chap. XII.

Note on the Cubic Function. The graph of a quadratic function
is always a parabola, with its vertex at the highest or at the lowest

point of the curve. The following discussion shows that the graph of
a cubic function has two distinct forms, one in which there is no
turning point and a second in which there are two turning points.
The discussion also leads easily to the tests for the nature of the roots
of a cubic equation.

In the equation y= a,3?+ bx*+cx+d ..............................(1)

put X + h for a?, that is, shift the origin to the point (h, 0) ; the equa
tion becomes, when arranged in descending powers of T,

y=aX 3+ (3ak+ b)X2+ (3A2+ 26A + c)X+ ah?+ bh*+ ch + d. ... .(2)

Now choose h so that the coefficient of X* shall be zero
; therefore

h= b/3a. When this value of h is substituted in (2), that equation
becomes

(3)

Let us now put 7 + (26
3 -9a5c+ 27a2

^)/27a
2 for y and we obtain

from (3)

r=aX*+*^X. .............................(4)oC

Finally, for Y put aY and we get

F=^+&quot;X ..............................(5)

It will be noticed that (4) is deduced from (1) by a change of origin
to the point (A, k) where

b , 2b3

Equation (5) is derived from (4) by a change of scale
;

if a is negative,
the change of scale is accompanied by reflection in the X-axis.
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The origin is a point of inflexion on the graph of (5) ;
it is also

a centre of symmetry, and therefore, in considering the graph of (5),

we may restrict ourselves to positive values of X.

If 62= 3ac, equation (5) becomes Y X 3
,
the graph of which has no

turning point (Fig. 37). We must take now the cases for which

(i) 62
&amp;lt;3ac,

and (ii) 62
&amp;gt;3ac.

(i) Let (3ac-6
2
)/3

2= 3wi2
,
a positive quantity. (The form 3m2 is

chosen for the sake of symmetry of notation
;
in case (ii) the value

- 3^2 makes the calculations simpler). Equation (5) is for this case

(7)

As X increases from to oc
,
Y steadily increases from to oc

,
and

therefore the graph has no turning point. The graph resembles SSS

(Fig. 40), the origin for (7) being the point (0,
-

3) in Fig. 40,

The equation X 3+ 3m 2X=0 has only one real root, and so also has

the equation
................. (8)

where I is any constant ;
because the graph of X 3+ 3m2X + l is simply

that of X3+ 3m2
X, shifted parallel to the T-axis.

When I has the value /a, where k is given by (6), equation (8) is

equivalent to the equation

Hence, when b2 &amp;lt;3ac equation (! ) has one, and only one, real root.

(ii)
Let (3ac-6

2
)/3a

2= -3ft2
,

a negative quantity. In this case

equation (5) takes the form

r=X3 -3ft2
Z, ................................. (9)

which may be written, as an easy calculation shows,

F=(X-ft)
2
(X+2ft)-2ft

3
........................... (9 )

We may, without loss of generality, assume n as well as X to be

positive ; equation (9 ) then shows that Y is always greater than - 2ft3
,

except when X=n. Hence Fis a minimum, -2ft3
,
when X=n

;
from

symmetry we infer that Y is a maximum, 2ft3
,
when X= -ft. The

points (ft,
- 2ft3) and (

-
ft, 2ft

3
) are the turning points of the graph of

(9) ;
the graph resembles RRR (Fig. 40), the origin for (9) being the

point (0, 3) in Fig. 40.

The equation X3 -3n2X=Q has three real roots, namely 0, ft^/3 and
-

fty/3 ;
it is easy from graphical considerations to determine the

nature of the roots of the equation

X 3 -3n2X+p=0 ...............................(10)

where p is any constant.

The roots of (10) are the abscissae of the points of intersection of

the graph of (9) and the straight line Y=-p. If the straight line

has the turning points of the graph of (9) on opposite sides of it, then

it will cut that graph in three points ; equation (10) will therefore

have three unequal roots. If the line touches the graph at either

turning point, equation (10) will have two equal roots and a third root

Q.G. H
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distinct from the equal roots. Lastly, if the line falls above the
maximum turning point or below the minimum turning point, it will

cut the graph of (9) only once, and therefore equation (10) will have

only one root.

Equation (10) therefore will have three, unequal, real roots if

p2
&amp;lt;4?*6; three real roots, two of which are equal, if j

2= 4ft6
; and

only one real root if p
2

&amp;gt;4n
6

.

If we put for n2 its value (b
2 -

3ac)/9a
2
,
and for p the value &/, we

find, after an easy calculation,

27a\p
2 -4nQ

)
= 4b3d-bW-l8abcd+4ac*+ Wa?d?..........(11)

With this value of p, equation (10) is equivalent to equation (! ).

Hence equation (! ) has two equal roots when p2= 4n6
,
that is, when

the right-hand member of (11) is zero.

The right-hand member of (11) is called the discriminant of the
cubic equation (I ). (See Exercises XV, 34.)

This note is substantially taken from a paper by Mr. P. Pinkerton
in the Proceedings of the Edinburgh Mathematical Society, Vol. xxn.

(June, 1904).

EXERCISES. XV.

1. From the graph of a? find the cube roots of T25, 375, 6 5.

2. Graph equations of the form y ax^+ b
;
for example

3. The equation 4^+ 3^-16 = has one real root
;
find it to two

decimals.

4. Solve a?
3 - 5^-16 = [one real root].

5. Solve 8.^+ 15^-30=0 [one real root].

Solve equations 6-11.

6. ^-^2 -l=0. 7. 8^-7^+ 10= 0.

8. ^3 -6^2+ 3^+ 5 = 0. 9. 3^-4^-4^+2=0.
10. 5#*-27# -10 = 0. 11. ^- 2^3+ 7.^-3 = 0.

12. Graph functions of the form ax?+ bx and find their maximum
and minimum values

;
for example

(i) x*+x; (i\)3?-x\ (iii)^
3+16^; (iv) 16^-^3

.

What kind of symmetry do the graphs possess ?

13. How may the graph of the function ax* + bx+ c be deduced from
that of ax*+ bx ? Plot the functions represented by the left side of

equations 3, 4, 5 above
; give the turning values of each function.
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14. Graph functions of the form ax^+ bx^ and find their turning
values

;
for example

(i) x*+ x\ (ii) tf-x\ (iii) ^2 -^, (iv) 2^-5.r2
.

Deduce the graphs of functions of the form ax3+ bx2+ c.

15. If x is positive find the maximum value of (1 +x)(l -x2
).

What is the maximum value of (R+x)(R*-x2
} when x is positive?

16. A cone is inscribed in a sphere of radius R
;

if the distance of

the base of the cone from the centre of the sphere is x, show that its

volume is ^7r(R+ x)(R
2 x2

). Apply example 15 to find the maximum
cone that can be inscribed in the sphere.

17. Graph the equation y= xL+ ISjx for positive values of x, and
find the minimum value of y.

18. An open tank is to be constructed with a square base and
vertical sides to hold a given quantity of water

;
show that the expense

of lining the tank with lead will be least if the depth is half the width.

[If a side of the base is x feet the surface is .r
2+ 4T7/^ square feet

where V is the volume of the tank in cubic feet
;

since the expense is

proportional to the surface the expense will be least when this function
is a minimum (take F=32).]

19. Graph the equation y= I0(x
-
\}(x

-
Z}(x

-
3) and find the turning

values of y.

20. Graph equations of the form y= (ax
z+ bx+ c)lx, and find the

turning values of y ;
for example .

21. Graph equations of the form y=(a**+6a-fc)/**; for example

(x positive)
.~ #3-4 ... 2^-^+ 8

22. Graph the equations

\v V ( l\(r 9\ w * t--llx/ 1 )\**s / *v J-

23. Graph functions of the form ax*+ bx2+ c and find their turning
values

;
for example

(i) x*+x*t (ii) x2 #4
, (iii) x* 2^2 10.

24. Graph the equation y= 5#4 6^7 10 and find the values of x for

which y is zero.

Find the average gradient of the arc PQ of the graphs of equations
25-32

;
state also the value you would deduce for the gradient of the

tangent at P. (Compare Exercises XIII, 11-19.)

26. y=a? ,
#of P=-l; x of $= 0, -0*5, -0 9, -0 99,

-
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27. y= x*
;
x of P=2

; x of $= 3, 2 5, 2 1, 2 01, 2 + 7*.

28. y= 16^-^3
;
# of P=0; # of =

1, 5, O l, O Ol, A.

29. y= IG^-^3
;
x of P=4

;
x of $ = 5, 4 5, 4 1, 4 01, 4 + A.

30. y=#4
;

a? of P=l
;
#of $ = 2, 1 5, I l, I Ol, 1+A.

31. y=^;
ff of ^=1

;
# of =

2, 1-5, M, 1-01, 1+A.

32. ?/
=^; #of P=l; ^of $= 2, 1-5, 1-1, I Ol, l+h.

oc

33. If V= - find the average rate at which V changes as x increases

from a to a+ h. At what rate is V changing when x=a ?

34. If D denote the discriminant of the cubic equation

show that

By using this expression for D, and applying the results stated on

page 113 for equation (8) and on page 114 for equation (10), show that
the cubic equation has three, unequal, real roots when D is negative ;

three real roots, two of which are equal, when D is zero
;
and one,

and only one, real root when D is positive.

35. From the fact that the abscissae of the turning points of the

graph of (9), page 113, are the roots of the equation JT 2
?i
2= show,

by replacing X by its value .r+ &/3a and n2
by its value (6

2 -
3ac)/9a

2
,

that the abscissae of the turning points of the graph of (1), page 112,
are the roots of the equation

36. Apply the result stated in example 35 to the determination

of the turning values of the functions in examples 12-16.



CHAPTER VI

LOGARITHMIC AND EXPONENTIAL FUNCTIONS.

40. Graphs of log x and 10*. We go on to consider

examples that require logarithms and we begin with the

graph of log x to the base 10
;
we shall generally use four-

figure logarithms.
The argument x of log x must be positive ;

when x is a

proper fraction log x is negative, and the beginner may be

cautioned to write the value properly. Thus,

log 0-2 = 1-301 - 0-301 - 1 = - 0-699
;

and when x is 2, y or log x is 699, equal to 07 say.

The graph of logx is ABC in Fig. 42
;
OF is an asymp

tote.

By the definition of a logarithm, x=Wy when y = \ogx;
that is, x is the antilogarithm of y or the number whose

logarithm is y. If y is taken as the argument and x or 10^

as the function, the curve ABC is the graph of the function

1(X
It is more convenient however to have the graph of 10*,

the argument being measured as usual along the horizontal

line. In 41 it is shown how the graph of 10* may,
without further calculation, be derived from that of

10*&amp;gt;,

but it is easy to take out the values of 10* from the table of

antilogarithms. Thus,

10 1&amp;lt;5 =
antilog. of 1-5 =31 62,

10- &amp;gt;5 = antilog. of - 5 = antilog. of f5 = 3162,

and so on.
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The graph of 10* is the curve A &C in Fig. 42
;
OX is

an asymptote.
The graph of 10-* is symmetrical to that of 10* with

respect to the ^/-axis ; because, whatever be the value of a,
the value of 10-* when x= a is equal to that of 10*
when x = a.

The curve A&quot;ETC&quot; (Fig. 42) represents y = 10-*; it

approaches the positive end of the as-axis asymptotically.

Fig. 42.

Example. Solve the equation 10**
l= 6x 8.

The roots are the abscissae of the points of intersection of the

graphs of y=lO*
a! &quot;1

(i) and y= 6x-8 (ii)

To plot the graph of (i) take the following values :

X
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equation however it is more important to have the unit for abscissae

fairly large, say I&quot; to 1.

To plot the straight line, take the points (2, 4), (4, 16).

Fig. 43 shows the graphs ;
in the diagram from which this figure is

reproduced the roots are read as 1 42 and 4*58.

41. Inverse Functions. The equation y = logx not only
defines y as a function of x but also defines x as a function

of y (example 1, p. 30). Two functions defined by the

same equation are said to be inverse to each other.

The function 10y
, since y occurs in it as an exponent, is

called an exponential function of y. (See also 46.) Thus,
the logarithmic and the exponential functions are inverse

30

20

10

Fig. 43.

to each other. The exponential function is the antilog-
arithmic function.

In the same way the equation y = x*, when solved for x,

ives x = and thus defines two functions which are

inverse to each other, namely the cube and the cube root.

A function and its inverse, for example log# and 10y
,
are both

represented by the same graph ;
but when one graph is taken as

representative of both functions, the argument of one of them is

measured along the vertical axis and not, as in the usual graphic
representation, along the horizontal. We can get the graph of lO3

into the standard position as follows.

Lift the sheet on which the curve ABC, the graph of y= log.r, is

drawn
;
then turn it over and place it so that Y is horizontal with Y

to the right of and OX vertical with X above 0. If we hold the
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sheet in this position and look through it against the light we shall

see that ABC has come into the position occupied by A D C in Fig. 42.

If ABC shows through the sheet when it is laid on another sheet we
can prick a few points and get A B C

;
a copy of ABC on tracing paper

would be useful. When the graph has been got into the standard

position we may write x for
?/
and y for x. Thus, given the graph of

log.?;, we have constructed the graph of 10*.

Similarly, from the graph of y =x* we get that of y
i =x\ that is, from

the graph of x2 we construct that of ^]x, and so on.

EXERCISES. XVI.

1. Graph the three functions

(i)log(l-M, (ii) log (1
- x\ (iii)loglf

from x= -0 9 to #= 9.

2. Graph the function 101og(5.r+ 2) from ,
=0to#=5 and solve

the equation IQ log (5#+ 2)
= 24 - 2 7.r.

3. Graph the function 31og(2 4.r+3 6), and solve the equation

4. Solve the equation 10*=20x

5. Graph the function x\og(I+x) from ^=0to^=10 and solve

the equations (i) (l + .*)*
= 387

&quot;4, (ii) (l+#)
x= 3874.

6. Draw to the same axes and with the same scales the graphs of

the equations (i)y=#-l, (ii) #= 2*3 log #, (iii) .?/
= !

30

Let the values of x range, say, from O5 to 5.

Show from the graphs that, except when #=1,

x-\ &amp;gt; 2-3 log a? &amp;gt; 1-i
00

7. Draw the graphs of the equations

(i) K%=i(10*-10-*), (ii)

from x= -3 to #= 3.

8. Solve the equation lO^&quot;

1^ 31 -

9. Solve the equation 10**= 16 + 4# - x*.

10. Graph the equation ^ = 100^10&quot;*, and find the maximum value

of y, and the value of x for which y is a maximum.

11. Graph the function #log# from #=0 1 to .r= 5, and find its

turning value, and the value of x for which it turns.

12. Find the average gradient of the arc PQ of the graph of log #,

the abscissa of P being 3 6 and the abscissa of Q being successively
4 6, 4-1, 3-8, 37.
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13. Find the average gradient of the arc PQ of the graph of 10*,
the abscissa of P being and the abscissa of Q being successively
1, 0-5, 0-1, O Ol.

14. The same as example 13, the abscissa of P being 1 and the
abscissa of Q being successively 2, 1*5, 11, TOl.

42. Graphs of xn and l/x
n

,
n fractional. These functions

are of considerable importance in mechanics and in physics

generally; we restrict ourselves, as a rule, to positive values
of x, since it is for positive values alone that the functions

are usually defined. If the complete representation of the

function is required the student has only to consider

whether x or y, or both, can take both positive and negative
values.

For example, the equation y
2= x? gives y s?. Here x cannot be

negative but the complete value of y is given by y=+x* and

y=-x^ ;
the graph corresponding to x* is symmetrical to that of

+ x* and the complete graph consists of these two portions.

Again, y
z

=v&amp;gt; gives y=x*. Here both x and y may be negative ;

the complete graph lies in the first and third quadrants like that of y?.

The remarks in the next three paragraphs apply to the

shape of the graph in the first quadrant.
When n is positive and greater than 1, the graph of xn

is

like that of x2 or x* in general appearance. Thus, f lies

between 2 and 3
;
the graph of ti* therefore lies between

those of x2 and XB
. These graphs touch the ic-axis at the

origin.
When n is positive and less than 1, the graph of xn touches

the ?/-axis at the origin. Thus, if y = x* we have x = y
2

,

and the graph is simply the parabola of 20 placed so that
its axis is horizontal and lies along OX instead of, as in

Fig. 25, along OF. The graph of y = x* is related in a
similar way to that of y = x3

.

When n is positive, the graph of l/x
n resembles that of

l/x or l/x
2 and has both OX and Y as asymptotes. For

example, the graph of 1/05* lies between those of l/x and
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We again remind the beginner that, when the index n
is fractional, the function xn is usually not defined for

negative values of x
; positive values alone are to be given

to x in all practical applications of the function, when n is

fractional.

The calculations will as a rule require logarithms.

Example. Graph the equations

T/^6^
2 35

, (i) ?/2
= 18-4-3.z-1&amp;gt;4:?

, (ii)

and solve the equation 6.r
2 35 + 4 3^1 43 -18 = (iii)

We have by the rules of logarithms

log(6^
235

)
=
log 6+ 2-35 log .r= 0-7782 + 2-35 log x,

log(4-3^
1 43

)
=
log 4-3 + 1-43 log #= 0-6335 + ] &quot;43 log a?.

The value of 4 3^v43 must, of course, be first obtained and the result

subtracted from 18 to find y^

Y

10

(D

1

Fig. 44.

In the following table the values are given as found from the. four-

figure tables, though it will not usually be possible to show the effect

of all the decimals on the graph.

X
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In Fig. 44, OAB is the graph of (i), CAD that of (ii).

The root of equation (in) is the abscissa of
&amp;gt;4,

the point of inter

section of the two graphs ;
its value is 1 32.

The beginner should compare these graphs with those of

= Qx* and = 18

he will see that the remarks as to the resemblance between graphs of

functions with fractional indices and those of functions with integral
indices are borne out.

43. Adiabatic Curves. To illustrate the case of l/x
n we

shall take an adiabatic curve. A given mass of gas is said

to expand adiabatically when it expands in such a way
that heat neither enters nor leaves it. In an adiabatic ex

pansion the equation connecting the pressure, p Ib. per sq. in.

110

80

;eo

678
Scale of Volume.

Fig. 45.

10

say, with the volume of the mass, v cub. ft., is of the form

pyy constant.

As a definite case, let v be the volume in cub. ft. of one

pound of saturated steam and p the pressure in Ib. per
sq. in. corresponding to the volume v

;
then approximately

To calculate p we use the equation

log&amp;gt;
=
log 480

- i
log v = 2-6812 - 1 log v.
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We may take the following set of values :

V
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-2-5. Equation (i) is therefore verified and the value of n is 2 5,

because the gradient of the line given by equation (i) is - n. Hence

we have the relation ^2-5 _ constant = a.

The value of a obtained from the graph of the straight line is about

0-44, but this value is unimportant ;
it is rather the relation between

k and the quantity discharged per second that is ultimately wanted.

In this experiment, the quantity discharged in t seconds was, in each

of the five cases, 1800 cubic inches. The discharge $, in cubic feet per

second, was therefore
1800 _ 1800 , 2 .

5

^~T728l~l728^

The best value for the coefficient of A2 5 is obtained by writing

Q _ 1800 _ 1800

1728a

and then calculating the quotient for each of the five pairs of values of

h and t. The average of these quotients is 2 34, so that finally we have

Example 2. In a gas-engine test corresponding values of the

pressure, p Ib. per sq. in., and the volume, v cub. ft., were obtained as

shown in the table :

V
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11. Graph the equation

and find the value of x for which y is zero.

12. Solve the equation 17^ 63= 43#r42+ 68.

13. Graph the equation

For what value of x is the ordinate a minimum, and what is the
minimum value ?

14. Draw a curve to suit the following values of v and p :

V
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18. The same problem as in example 17 for the data :

12T

ft
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25. Given the following table of values :

X
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At the end of the book will be found a table (Table XII.)
of values of ex and e~ x

.

The graph of ex resembles that of 10*. The graph of 10*
is the graph of e2 Sx

, because Ioge10 = 2 3 approximately, and
therefore 10-e2 3

,
10*= e2 3* W~ x= e- x

.

Thus, the graphs of 10* and 10 ~* are also those of e2 3* and

It should be noted that a mere change of the x-scale

turns the graph of ex into that of eax . For example,
let a = 2; then, if the step on the cc-axis that represents 2

for the graph of ex be chosen to represent 1 the graph will,

with the new scale, represent e
2
*.

Similarly, the graph of ex will represent e*
x

, provided the

step on the se-axis that represents \ for the graph of ex be
chosen to represent unity.
The graph of 10*, that is e2 3

*, will represent e
x

, provided
the step on the #-axis that represents 1 for the graph of

10* be chosen to represent 2 3.

The proofs of these statements should offer no difficulty
at this stage.

EXERCISES. XVIII.

1. Plot to the same axes the graphs of

(i) 10e-, (ii) 10(1 -e~
x
)

from #= to #= 5.

2. Graph the equations

from x= -4 to #=4.

3. Graph the function xe~x
;

find its maximum value, and the
value of x for which it is a maximum.

4. Graph the function e~ x2 from x 3 to #= 3. What kind of

symmetry does the graph possess ?

5. The pressure of the atmosphere, p Ib. per sq. in., at the height
x feet above sea level, is given by the equation

where P is the pressure at sea level, and H feet the height of the homo
geneous atmosphere. Represent graphically the relation between p
and X) taking P=15, H= 26000.

G.G. i
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6. Solve the equations

(i) e*=2. + 3; (ii)

(iii) 12e-^

7. The two equations

where Q= EC, T=RC give the current, i amperes, flowing into a
condenser, and the charge, q coulombs, in the condenser of capacity G
farads, t seconds after being connected with a source of constant

potential, E volts, by a circuit containing in series a resistance of R
ohms. Q is the final charge and T is the time-constant of the circuit.

Kepresent graphically the current and the charge when

(i) E= 100, R= 400, C= O OOO 001
;

(ii) ^=500, 72= 1000, tf= 0-000004.

8. What is the value of q (example 7) when t^Tl State the

physical interpretation of T.

9. If
,
in example 7, is taken as a function of C, plot the curve

from 7=0 to
&amp;lt;7=5/10

6 in the cases

(i) .#=100, 72= 200, = 0-0001
;

(ii) ,#=100, 72= 200, *= 0-0005.

10. Find a relation between t and v to suit the following values :

4-2 4-8 5-0 5-6 5-8

2-1 1-6 1-4 1-1 1-0
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TRIGONOMETRIC FUNCTIONS.

47. Trigonometric Functions. Before tracing the graphs
of trigonometric functions we remind the student of certain

important properties.

It follows at once from the definition of the functions that

sin (x n . 360)= sin x
;
cos (x n . 360)= cos x

;

tan (x n . 180)= tan x,

where n is any integer. In other words, when the angle x is increased

or diminished by any multiple of 360 the sine and cosine do not change
their value. Sin# and cos# are therefore called periodic functions

of x
;
the angle 360 (or 2?r radians, if the angle is measured in radians)

is called the period of sin x and cosx. The function tan# is also

periodic, but its period is 180 (or TT radians) ;
tan x is of course unaltered

when x is increased or diminished by any multiple of 360 but, since it

is unaltered when x is increased or diminished by any multiple of 180,
the period is 180 and not 360.

In general, a function of oo is said to be periodic if the function does

not change in value when x is increased or diminished by any multiple
of a number a, and a is called the period of the function. It is to be

understood that a is the smallest number that will secure this

repetition of values.

Their periodicity is one of the most important of the properties of

the trigonometric functions. In what follows we restrict ourselves

almost entirely to the sine, cosine and tangent.
The following relations are fundamental

(ia) sm(180 -#) = sm #, sin (#+ 180) = -sin #, sin (360 -x)= -sin x.

(ib) cos (180 -x)= -cos x, cos(^+180)=-cos^, eos(360-#)= cos#.

(ic) tan(180-^)= -
tan#, tam&amp;gt;+ 180)= tan#, tan(360-#)= - tan#.

(iia) cos x= sin (90 + x), (iib) cos x= sin (90
-

x).

(iii) sin( x)= sin^t
, cos( -#)=
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The relations (i) give the usual rules for taking out of the tables the
sine, cosine and tangent of an angle greater than 90

; the student
should have these rules thoroughly at command.

Either of the relations (ii) reduces the cosine graph to the sine graph.
The relations (iii) show that sin x and tan x are odd functions of x

;

that is, when x changes its sign but not its numerical value, sin x and
tan^ also change their sign but not their numerical value. On the
other hand, cos x is an even function, of x

;
that is, when x changes

its sign but not its numerical value, cos.r does not change either in

sign or in numerical value. So far as change of sign is concerned,
sin.r and tan^ behave like odd powers of x O3

,
tf
6
,...) while coax

behaves like even powers of x (#
2

, x\ ...).

Again, if x is the number of degrees and t the number of radians in
the same angle, we have the relation

In changing from one unit to the other we simply replace x by t or
t by x when the angle is the argument of a trigonometric function

;

thus, sin x becomes sin
t, the unit of angle being understood. But when

the angle is not the argument of a trigonometric function, we must
replace x by 1800r and t by nv;/180 ;

thus

~
sin(2^-60).OO

The graphs of sin t and t sin t will be identical with the graphs of

sin x and sin x respectively ; provided the segment that represents

180 when the degree is the unit of angle is the same as that which
represents TT when the radian is the unit, the vertical unit of course

being the same in both cases.

48. Graphs of the Circular Functions. With the help of
the tables the graphs are easily constructed

; or, the values
of the functions may be obtained from a circle of unit

radius, the circumference being divided by trial, or with the
aid of a protractor, into a sufficient number of equal parts.
The latter method, when carefully carried out, gives
excellent graphs.

In Fig. 46, OABCD is the graph of sin a from x = to
x = 360; DEF continues it on the right to a = 540 and
OHG continues it on the left to x= -180. The complete
graph of sin x consists of OABCD and its repetition infinitely
often to the right of D and to the left of 0.

The dotted curve (Fig. 46) is the graph of cos a?;

A B CLE is the graph of cos a from x = to a = 360 and
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_. o

: : : nd fro
;
the
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is simply ABODE, the graph of since from # = 90 to

a; = 450, shifted 90 to the left ( 47, iia).

Both of these graphs lie wholly between two straight
lines parallel to the &-axis at unit distance above and below
that axis

;
neither sin x nor cos x can be numerically greater

than unity.
The curve KOL and its repetitions K BL

t K&quot;DU, etc.,

represent tan x. The function tan x can take every value

between oo and +00 ;
the verticals through B

f

,
Df

etc.,

are asymptotes.
The graphs of cosec x, sec

x&amp;gt;
cot x are of less importance.

Like tan x, cot x can take every value between oo

and + oo
;
neither cosec x nor sec x can take any value that

is numerically less than unity.

Inverse Circular Functions. The equation y sin x not

only defines y as a function of x but also defines x as a

function of y (compare 41) ;
x is an angle whose sine is y.

Clearly, for any value of y (not greater numerically than 1)
there is an infinite number of values of x

;
for defmiteness,

we shall represent by the symbol sin&quot;
1
^/

the angle lying

between 90 and 90 or between and = radians (the
2i 2i

Acitreme angles 90 and 90 included) whose sine is y.
being ^

48 ,- sin-^30 ,
sin- 1(-i)=-30,

sin- 1! = 90, sin- 1(-l)=-90.
The equation x = sin* 1

?/ is represented by the portion HOA
of the sine-curve (Fig. 46).
The same range of angles is represented by the symbol

tan- 1

;*/ ;
that is, tan

1

?/
means the angle lying between 90

and 90 whose tangent is y. Thus,

tan- 1! = 45, tan- 1(-l)= -45,

tan- 1
(oo) = 90, tan-H-oo )= -90.

The equation x = tan ~ l
y is represented by the branch KOL

of the tangent-curve (Fig. 46).
When the angle is given by its cosine the range is

chosen differently ; by the symbol eos~ l
y is meant the angle
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between and 180, or between and TT radians, whose
cosine is y. Thus,

cos- 1^ 60, cos- l(-)

The equation cc = cos~ 1

2/
is represented by the portion

A B C of the cosine-curve (Fig. 46).
The graphs of sm~ l

x, cos&quot;
1
^, tan~% can be obtained from

those of sin&quot;&quot;

1

?/,
cos&quot;

1

;?/,
tan 1

?/ by the method explained in

41.

The restrictions on the range of the angle must be
remembered in all applications; the student will readily
see that, with the above restrictions, the angle is the

smallest (positive or negative) angle with the given sine,

cosine or tangent.

Example. Show that

(i) sm-1# + cos- 1
.r= 90

, (ii) tan- 1^1+ cot-1^= 90,
where cot&quot;

1^ means the angle between and 180 whose cotangent
is x.

49. Simple Harmonic Motion. When a point is moving
in a straight line in such a way that, at time t, its distance x
from a fixed point on the line is given by the equation

xa cos(nt+a\ or x=a 8m(nt+fi)........... (1)

the point is said to describe a simple harmonic motion.

The motion is obviously vibratory, or to and fro
;
the

point moves first in one direction to the distance a from 0,

then back through to a distance a on the other side, then
returns towards 0, and so on. The greatest distance from
that the point reaches, namely a, is called the amplitude of

the motion.

As t increases from to STT/TI (or from ^ to ^+2w/fi
where t

l
is any value of t) the point makes one complete to

and fro motion
; ^TT/U is therefore called the period of the

motion. The reciprocal of the period, namely n/27r, is

sometimes called the frequency of the motion. If T is the

period and p the frequency, then

ZTT In ZTT
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The function acos(7i + a), or asin(nt+ /3),
is frequently

called a simple harmonic function of t
;

its graph, that is the

cosine curve or the sine curve, is called a simple harmonic
curve. The function is of great importance in all branches
of physics.
The function of t given by the equation (k positive)

....... (2)or x =

is sometimes called a simple harmonic function with de

creasing amplitude ;
the coefficient ae

~ kt of the cosine or

sine is a function of t which decreases as t increases.

Physically, the equation represents what is termed a damped
vibration.

X

Fig. 47.

Fig. 47 is the graph of

and gives some idea of the nature of the function; two
waves are shown, but after a few periods of sin t the height

becomes very small. Thus, when
t=l()7r+-^

we find

x = e~ s BQsm
|
= 0-037.

The dotted curve is the graph of e~ t/w which touches the

other graph near the crests of the waves
;
at the first crest
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= 1-47, at the second crest = 7 75. The hollows (the
minimum values of x) are given by = 4 6 and = 10 9.

The amplitude of the function (2), when t has any value tv
is ae~ kti

;
when t has increased by ^T(where T is the period

2-TT/n of the circular function) the amplitude has decreased

to ae~ k ^tl+ ^. The ratio of the first to the second of these

amplitudes is

or

the Napierian logarithm of this ratio, namely %kTt
is called

the logarithmic decrement of the amplitude.

50. Composition of Harmonic Curves. Functions of the

form

y a
v
sin (x+ a

x) -f a2
sin (2x+ a

2 )+ a
3
sin (3a5+ a

s)+ . (1 )

occur frequently. Each term is a simple harmonic function.

The period of the 2nd term is one half, that of the 3rd term is

one third of the period of the first (or fundamental) term
;

the frequencies are therefore respectively twice and thrice

the frequency of the first. Those harmonics in which the

coefficient of x is an odd number are called odd harmonics
;

those in which the coefficient is even are called even

harmonics.

If the angle in the fundamental harmonic is nx+ av then
the angles in the odd harmonics will be nx+ av 3nx+ 3

. . .

and in the even harmonics 2nx+ a
2 ,

4r?oj+ a
4

. ...

To obtain the graph of (1), plot to the same axes the

components c^sin^-J-c^), a
2 sin(2a; + a

2 ),
... and then add

corresponding ordinates ( 38). The period of y is clearly
360

;
the complete graph will therefore consist of repetitions

of the portion between x = and x = 360.

Fig. 48 shows the graph of

2/
= 100sin^+ 50sin(3^-40) ................ (2)

from x= c
to x = 36()

;
the component curves are dotted.

The graph of 100 sin x is one complete wave
;

that of

50sin(3# 40), which is the third harmonic, consists of

three complete waves. The complete representation of y
consists of ABC ... K and its repetitions.
The function in (2) contains only odd harmonics and the
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graph possesses, in virtue of this fact, a special kind of

symmetry. For, if A is any angle,

,
etc.

Y

too

5 ffi

o

A

-50

-100

&-,:il

:\V
::: . ::*:.::WKHSW

Fig. 48.

Hence the value of y in (2) for x = x
l + I80 is simply the

negative of the value for x = o^where x^ is any value of x
;

for example, the value of y for x = 240 is the negative of

that for x = 60. The portion of the graph from x = 180 to

# = 360, namely EFGHK, will therefore, if it be shifted to

the left (each point moving parallel to the os-axis) till E
comes to the ?/-axis, be the image of ABCDE in the ^c-axis.
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E will become the image of A, F of B, G of C, H of D and
# of #.

The same kind of symmetry will obviously be present
whenever y contains only odd harmonics

;
such cases are of

special interest in the theory of Alternate Currents.

If equation (2) contains an absolute term, for example, if

the equation is

(3^--40 )
............(3)

the graph may be obtained by simply shifting AB...K
vertically upwards 150 units. The line with respect to

which EFGHK (when moved to the left) is symmetrical to

ABODE is no longer the #:-axis but is the line parallel to

the #-axis at the distance 150 units above it.

Before proceeding to 51 the student should work several of the

earlier examples in Exercises XIX.

51. Decomposition of a Curve into Harmonic Components.

There is a remarkable theorem, called Fourier s Theorem,

which shows that any periodic function of x can be

represented by a series of the form

+ a
3
sin (3x+ a

3) -f a4
sin

(4&amp;gt;x
+ a

4)+ ........(1 )

the period of the function being 360 or 2?r radians
;

if the

period is 360/n degrees or %Tr/n radians, then x is replaced

by nx. It is impossible to discuss this theorem here, but

there are some simple cases of great practical importance
that can be treated graphically. The series (1) is an infinite

series but, in the cases referred to, the function y can with

sufficient approximation be represented by the sum of two
or three harmonic terms.

The problem, then, is : given a curve, find the harmonic

curves which will, when compounded as shown in 50,

produce the given curve. The test of the solution is, of

course, that the harmonics found will actually yield the

given curve, with sufficient approximation.

We require the following theorem, proved in any text-book of

trigonometry : The sum of n terms of the series

(2)
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where the angles are in arithmetical progression is, unless B is 360 or

a multiple of 360,

when B is 360 or a multiple of 360 the sum is nsinA, because in

these cases each term is equal to sin A.

Note that the sum is zero when sin \nB, but not sin ^B, is zero, that is,

when nB, but not /?, is 360 or a multiple of 360
;
for example, when

?i= 3 and j5=120 the sum is zero, but when ?i = 3 and Z = 360 the sum
is 3 sin A.

If the curve to be analysed has the kind of symmetry noted

at the end of 50 there can be no even harmonics in it
;
we

will state the rule however for the general curve given by
equation (1), as the method is the same in all cases. For the

present, the term aQ is supposed to be zero. (See end of this

Article.)
To test whether any harmonic, say the third, occurs we

have the rule : divide the period (360 in this case) into

three equal parts ;
slide horizontally the two parts of the

curve lying between & = 120 and & = 240, and between
x = 240 and a; = 300, till they lie between x = Q and
& = 120; then add corresponding ordinates of the three

parts thus superposed, and divide each resultant ordinate by
3. The equation of the curve so obtained will be

y = a
3sin(3#+ a

3)+ a
6sin(6^+ a6)+ ............. (3)

that is, it will contain the third harmonic and its multiples,
if any of these occur in the given curve, but will not contain

any other harmonics.

The proof of the rule is very simple. Let x^ be any
value of x between and 120

;
the x of the second part

which after superposition is x
l was, before superposition,

^4-120 ;
and similarly the x of the third part which after

superposition is x
1 was, before superposition, a^+ 240 .

From the term a
1sin(cc+ a

1)
we therefore get the sum

alS
in(x+ a,)+ c^sin (x+ 120 + 04)+ a^in (x+ 240 + a,).

In (2) put A = x+ ap B = 120, n = 3
;
the sum is therefore

zero since sin j7iJ3
= sin 180 = and sin|5 = sin60, which

is not zero.
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Similarly, the term a
2sin(2a?+ a

2) yields a zero sum. On
the other hand, the term a

3sin(3#-f-a3) gives the sum

which is equal to 3a
3sin(3^+ a

3).

In the same way it may be seen that every term, except
those containing 3x, 6x, 9x, ... will give a zero sum, while

those containing 3x and its multiples will give three times

the corresponding terms.

Different possibilities for the resultant curve will now be

considered.

I. Resultant is a simple sine curve. If the resultant curve

is exactly, or with sufficient approximation, a simple sine

curve, equation (3) will have only one term on the right-
hand side. In the case of Fig. 48, 50, the resultant curve

is simply AB C
;

its equation is

y = assin(3a;+ a3)
= 50 sin(3^-40).

The values a
B
= 50, aB

= 40 are obtained from the

graph. (The maximum ordinate is 50, which is therefore

the value of &amp;lt;x3 ;
the ordinate is zero when c = 13^ so that

3x1 3^- + a
3
= or a

3
= 40. The accuracy of the numbers

obtained for a3 and a3
is of course conditioned by the scale

of the diagram.)
It may happen that the third harmonic is absent and the

sixth (but no other) present ;
the resultant curve given by

(3) will, in this case, consist of a simple sine curve with
two complete waves between x = Q and $ = 120. If (3)
contains only the 9th harmonic then the resultant curve

will be a simple sine curve with three complete waves
between x and # = 120, and so on.

II. Eesultant is a composite curve. If, however, the re

sultant curve is not a simple sine curve, proceed as before.

Thus, to test if the sixth harmonic is present in the original

curve, note that it is the second harmonic of the curve

given by (3). The period of y in (3) is 120; therefore

divide this period into two equal parts, superpose, add ordi-

nates and divide by 2. The curve so obtained, the second

resultant, will be given by
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where 6x arid its multiples may occur. If this resultant
is a simple sine curve of one complete wave it will have
for its equation y = a&amp;lt;,sm(Qx+ a

6),

and the values of a6 and a6 will be obtained from the

graph. The third harmonic of the original curve may now
be obtained by subtracting the ordinates of the second
resultant from the corresponding ordinates of the first

resultant.

The method just explained for finding the third harmonic
and its multiples is applicable in all cases. Of course, there
is no necessity for the actual superposition of the curves

;

it will often be more convenient to read corresponding
ordinates from the diagram (for example, the ordinates for

x
t
x+ I20, + 240), and then to add them, due regard

being paid to sign. The resultant curve would be plotted
from these values.

General Eule. To sum up, on the supposition that the
first five harmonics may occur; the rule is easily extended
if there should happen to be more. The absolute term a
is supposed to be zero.

(i) Find the even harmonics by halving the period. (If the
first resultant is the sc-axis, then no even harmonics are

present.) Repeat the operation to find the 4th
harmonic,

read its constants a
4
and a4 off this resultant, and then find

the 2nd harmonic by subtracting the ordinates of the second
resultant from the corresponding ordinates of the first

resultant.

(ii) Find the 3rd
harmonic, starting from the original curve,

(iii) Find the 5th
harmonic, starting from the original curve,

(iv) The first harmonic alone remains to be found. The
two constants a^ and ax may be calculated by taking two
values of x

t say x = and x 90
;
the ordinates correspond

ing to these may be read off the given curve and the other

constants are known. Other methods of obtaining av a
x

will readily suggest themselves.

If a is not zero it will appear in every resultant; its

value may be determined at the same time as the first

resultant simple sine curve from the equation

y = a + a
4
sin (4aj+ a

4).
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The a-axis will not in this case be the axis of symmetry of

the simple sine curve as it is when a is zero (see 50, end) ;

the axis of symmetry can be readily found from the

resultant curve and its distance above or below the #-axis is

the value of a
Q

. The occurrence of a constant term is

therefore tested by the position of the axis of symmetry of

the first resultant simple sine curve.

This method of analysing a curve involves a considerable

amount of labour, but it is of importance in practice.

The more advanced student will be able to diminish the

labour by combining analytical and graphical methods. In

the exercises will be found a few simple examples for

practice.

52. Solution of Equations. Equations in which trigo

nometric functions occur may often be solved by aid of the

graphs of the functions.

An equation of some importance in higher work is

tan x = mx.

It is evident that the graph of mx, which is a straight

line, will intersect the graph of tan x infinitely often
;
the

equation has therefore an infinite number of roots. Rough
approximations may be obtained from the graph; a full

discussion for the case m = l is given in the author s

Calculus, 107.

EXERCISES. XIX.

1. Graph the following functions from #=0 to #=360 :

(i) sin2^, (ii) cos 2^, (iii) sin3#, (iv) cos 3^,

(v) sin 4#, (vi) cos 4^, (vii) sin 5^, (viii) cos5.r.

State the period of each function.

2. From the graph of sin# find, merely by changing the origin of

- coordinates, that of (i) sin (#+ 75), (ii) sin (x -75).

How may the graphs of (i) sm(nx+ A\ (ii) sm(nx-A) be obtained

from that of sin nx ?

3. By what change of scale can the graph of sin x be interpreted
as the graph of (i) sin 2^, (ii) sin 3#, (iii) sinff, (iv) sinj^,

(v) sin??,?

4. Draw to the same axes the graphs of

(i) sin (#+ 27), (ii) cos(r+ 54), (iii) sin (#+ 27)+ cos (#+ 54).
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5. Graph the equation

y= 1 sin (x
- 36) + 5 cos (x+ 63)

from^=0 to ^= 360.

What are the turning values of y and what are then the values of x ?

Take the same problem as in example 5 for equations 6-11.

6. y= 100 sin x 50 cos x. 7. y= 50 sin (#+ 18) + 10 cos 2#.

8. y= 46 cos (x+ 36) + 30 cos (3#
-
72).

9. y= 20 sin #+ 10 sin 3#+ 5 sin 5x.

10. y =amx+ 8in4x. 11. y= 10 sin x+ 5 sin (3# 45) + 2 sin 7#.

12. Graph the following functions from #= to #= 180 :

-
; (iii) pr-p-

l

13. Graph the following functions for a range of one period :

(i) sin 2# cos x
; (ii) cos x cos 2#

; (iii) sin2
.?;

; (iv) sin3#.

[Use the transformations, sin2#cos#= !(sin 3#+ sin#), etc.]

14. Draw the graphs of

(i) y= logsin#; (ii) ?/
= logcos^; (iii) ?y

=
logtan.r.

Graph equations 15-18, from t= to =
1, the angle being measured

in radians.

15.
*

y= 50 sin 2-rrt+ 10 sin (4.7rt
-

873).

16. y= 50 sin 2irt+ 10 sin (for* -0-873).

17. y= 100 sin 2^ + 20 sin (lOzr*
- 4 189).

18. y= 100 sin Zirt+ 60 sin (Q^t
-

1-571)+ 10 sin (lOirt
- 3 142).

19. Graph the equations

(i) y=#-sin#, from x -TT to X=TT.

(ii) y=x$mx, from x= to X= %TT.

(iii) yx cos x, from x=0 to a?= 2?r.

(iv) y=x sin2^, from x= to x= ic.

20. Graph, from x= to #=7r,

?/
= sin x+ 1 sin 3^7+ 1- sin 5#+ y sin 7.^.

21. Graph, from x= to X= TT,

y= sin ^7 - 1 sin 2#+ sin 3# - 1 sin 4.r.

22. Graph, from #= to X TT,

23. Graph the equations
_t_ _i_

(i) x= e
20
sin (#+ 078); (ii) x=e~ w c

(iii) ^= e- 10
*sin(2007r^-0-5); (iv) ^=e~1%

(
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24. The values of a periodic function y (period 360) for values of x
at intervals of 10, namely 0, 10, 20 ... up to 180 are

-51-96, -12-64, 34-20, 80 00, 116 24, 136 60, 138 56,

123-97, 98-48, 70 00, 46 52, 33 97, 34 64, 46 60,

64-28, 80 00, 86-16, 77 36, 51 96.

The graph has the symmetry noted in 50. Analyse y into its

harmonic components.

25. The same problem as in example 24 for the values

-19-15, -15-94, 4-60, 33 55, 55 63, 59 95, 47 64,

30-91, 24-24, 33-93, 53 58, 68 63, 6679, 46 85,

19-64, 0-38, -2-05, 8 68, 19 15.

26. In the following example the intervals are the same as in

examples 24, 25, but the value of y for 360-^ is the negative of that

for x
; analyse y into its harmonic components.

0, 51-13, 95-21, 126-63, 142 39, 142 51, 129 90,

109-44, 86-71, 66-67, 52-51, 45 16, 43 30, 44 03,

43-91, 40-03, 3093, 16 93, 0.

27. Find the two smallest positive roots of the equations

(i) 36 sin (x+ 36) = 55 sin (3#
-
56).

(ii) 5 tan x= 9 sin (x 45).

In examples 28, 29 the angles are measured in radians.

28. Find the two smallest positive (not zero) roots of each of the

equations
(i) tan x= x

; (ii) tan x= 2.x.

29. Solve the equations

(i) ,r=3sin#; (ii) ^r= cos^.

30. The chord AB of a circle, centre (7, bisects the sector ACS ;
if

the angle A CB is x radians, show that ,r= 2 sin x and find x.

31. Find the average rate at which sin x increases as x increases

from 30 to 30 + A for the values 5, 2, 1, 5, O l of h, the angles being
measured in degrees.

32. The same problem as in example 31 as x increases from
45 to 45 + A.

The same problem as in example 31 for

33. COS.T. 34. tan#. 35, sin -2#.

G.G,



CHAPTER VIII.

CONIC SECTIONS.

53. The Ellipse. In this chapter the equations of the
curves called come sections will be discussed very briefly.

Definition. The locus of a point P which moves so that the
sum of its distances from two fixed points, S and $

,
is

constant is called an ellipse, of which the fixed points 8 and
8 are called the foci.

Let the constant be 2a. Bisect S 8 (Fig. 49) at C and on
8, produced both ways, take A and A so that CA and A C

are each equal to a. A and A are clearly points on the
ellipse ;

A A is called the major axis of the ellipse.
Let CS= eai then e is less than unity. Take A A as the

a-axis and the perpendicular to it through C as the y-axis.
Let the coordinates of P be x = CM, y = MP. Then

8P* = SM*+MP*= (ea
-xf+ y* = x*+ if+eV- 2eax,
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For brevity, let x2+ y
2+eW = d; then

(1)

and ^/(d+ 2eax)+ ^/(d 2eax) = 2a (2)

Square, rearrange and divide by 2
;
therefore

j (d
2-

4&amp;gt;e

2aV) = 2a2- d.

Square again and reduce, dividing by 4a2
;
therefore

2 2 2 rl (
fy\

Replacing d by its value and rearranging we get

x* y
2

or
~2&quot;^&quot;n

2
}

2~-^ (^)

Lastly, let (1 e
2
)a

2 = b2 and we obtain

which is the equation of the ellipse.

When x = 0, y = b. The ellipse therefore cuts the ^/-axis

at B and B where CB and CB have each the length b or

a^/(l e
2
).

55 is called the minor axis of the ellipse. C is

called the centre of the ellipse.

The curve is perhaps most simply constructed by taking points, such

as Mj between S and S and describing arcs with S and S as centres

and AM and A M as radii. The one point M will clearly give 4 points
of the curve, two to the left of C and two to the right. Other methods
will suggest themselves.

54. The Hyperbola. Definition. The locus of a point P
which moves so that the difference of its distances from

two fixed points, 8 and 8
,
is constant is called a hyperbola,

of which the fixed points 8 and 8 are called the foci.

Take the same notation as in 53. In this case A and

A will lie between 8 and S (Fig. 50), so that if CS= ea the

number e will be greater than unity. Instead of the plus

sign in equation (2) we now have the minus sign, but the

process of squaring gives the same equations (3), (4), (5) as

before. We write (5), however, in the form

__ _
a2

(e
2-l)a2

=1
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and put & = (e*-l)a?, which is positive since e is greaterthan 1. The equation of the hyperbola is thus

a

Fig. 50.

From (H) we get

so that y is imaginary when a; is numerically less than
a. No part of the curve therefore lies between the two
perpendiculars through A and A to the major (or transverse)axis A A

;
the curve consists of two branches, one extending

to infinity on the right of A and the other to infinity on the
left of A . The segment B B on the y-axis, where CB and
CB are each of length b, is called the conjugate axis

;
C is

the centre of the hyperbola.

55. Expression for Focal Distance. Equation (3) S 53 may
be written

First adding 2eax to each side, next subtracting 2eax from
each side we find, after taking the square root,

^/(d+ 2eax) = a+ ex; ^/(d - 2eax)= a~ex.
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Therefore by 53 (1) we get for the focal distances S P,

SP of the point on the ellipse whose abscissa is x

(Note that SP is a -ex, not ex -a, because ex is less than

a and the distances SP, S P are positive.)

For the hyperbola we have

when P is on the right-hand branch ;
when P is on the

left-hand branch the proper expressions are, since x is

negative,
SP= -

(ex+ a), 8P=- (ex
-

a).

56. Directrix. Eccentricity. On CA produced in Fig. 49,

and on CA between G and A in Fig. 50, take the point K
such that CK = a/e; draw KN perpendicular to A A and

PN perpendicular to KN. Then for the ellipse

and for the hyperbola

so that SP:PN= e:l.

Therefore in both cases the ratio of the focal distance SP
to the perpendicular distance PN of P from the line KN is

equal to the constant e. The line KN is called the directrix

for the focus $, and the constant e is called the eccentricity.

Similarly it may be proved that there is a second directrix

K N related to the focus $ in the same way as KN is to S
;

it lies at the distance a/e to the left of C and

57. Conic Sections. The property proved in 56 is that

usually taken as the definition of a conic section, namely :
-

Definition. A conic section (or, more briefly, a conic) is

the locus of a point P which moves so that its distance from

a fixed point S (the focus) is in a constant ratio e (the

eccentricity) to its distance from a fixed straight line KN
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(the directrix). The conic is an ellipse if e is less than

unity, a hyperbola if e is greater than unity, a parabola if e

is equal to unity.

That the curve we have called a parabola possesses this property is

easily proved. Let Fig. 51 be the graph of the equation

py= x* (1)

and let K, S be points on the y-axis such that KO= OS=^p. Draw
KN perpendicular to KS, and let the perpendicular PN, drawn to KN
from the point P on the graph, cut the #-axis at M\ also, draw SQ
perpendicular to NP.

Y

X

Fig. 51.

, y=MP, p= OS, equationIfP is the point (x, y) then, since x

(1) gives OS.MP=
Now SQ= OM, QP=MP- OS, NP=MP+ OS

;

hence SP*=OM*+(MP-OS?=*OS MP+(MP-
But 40S. MP+(MP-OS?=(MP+OS)*=NP\

and therefore SP= NP, so that the curve is a parabola of which S is

the focus and KN the directrix.

The circle is the particular case of the ellipse in which b = a.

But when b = a we must have e = 0, because b2 = (l e?)a
2

.

The circle therefore is a conic of which the eccentricity is

zero.

The ellipse (which includes the circle) and the hyperbola
are called central conies

; every chord through the centre G

(Figs. 49, 50) is bisected at G. The parabola has no centre.

The points A, A (Figs. 49, 50) are called the vertices of

the central conies. The circle on AA as diameter is called

the auxiliary circle. (See Exercises XXL, 2, 12, 13, 14.)

58. Equal Roots of a Quadratic Equation. In the next set

of Exercises the student will have occasion to apply the
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tests that the roots of a quadratic equation should be real,

and also that they should be equal. The roots of the

equation ax2+ bx+ c =

-b+ JQt-toc) -6-V(b2
-4oc)

are x,
= - -^-

- x
z
= -^~

x
l
and x

z
are real and different if 62 is greater than 4ac

;

they are real and equal if b2 = 4ac
; they are imaginary if 62

is less than 4ac.

Example 1. Find the equation of the tangent at the point (2, 4) on

the parabola y= xi
.

.

The equation of every straight line through the point (2, 4) is of

the form y-4=w(#~2).................................. (i)

To find the points in which this straight line meets the parabola,

we must solve (i) and the equation

as simultaneous equations. The equation for the abscissae of the

points of intersection is

#2=w(#-2)+ 4, or #2 -w,r+2m-4= ................ (iii)

Now, we know that .r= 2 is one root of (iii) ;
therefore #-2 must

be a factor of the left-hand side of (iii).
In fact, equation (iii) may

be written ^ _
3) (#

- m+ 2)
= 0.

The second value of x is therefore w-2. This will be the same as

the first value 2 if m- 2 = 2, that is, if m= 4. Therefore the straight

line given by the equation

^ 4= 4(# 2) or y= 4# 4

is the tangent.
We may also find the equation as follows : The line given by (i)

will meet the parabola only once if the two roots of equation (ill)
are

equal. But these roots are equal if

= 4(2wi-4) or w2 -

that is, if m=4.
.

The equation of the normal to the parabola at (2, 4) is

Definition. The normal at a point P on a curve is the

straight line through P perpendicular to the tangent to the

curve at P.

Example 2. In how many points does the straight line whose

equation is x=c cut the curve whose equation is
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To find the points of intersection we solve the equations as

simultaneous equations. Hence the y of the points of intersection is

given by the equation

The roots of this equation are

If 3c2
&amp;lt;12,

that is, if c2 &amp;lt;4 the roots are real and unequal, and
therefore for these values of c there are two points of intersection.

If c2
&amp;gt;4,

the roots are imaginary, and therefore if c2
&amp;gt;4 the line

does not intersect the curve.

If c2= 4, the two values y^ y2 are equal ;
therefore the lines whose

equations are #=2, x= -2 meet the curve each in only one point, that

is, they are tangents to the curve.

In the same way it may be seen that the lines given by y= 2, y
- 2

are tangents.
The curve is an ellipse inscribed in the square whose sides are given

by the equations
#= 2, .r=-2, y= 2, y=-2;

and the points of contact are

(2, -1), (-2,1), (-1,2), (1, -2).

A second set of Exercises is appended in which many of

the simpler and more important properties of the conic

sections are stated. The proofs should offer no difficulty,

and the theorems may be useful to students who cannot

afford the time for a fuller study. The notations of this

chapter are adhered to in the Exercises.

EXEECISES. XX.

1. Draw (i) an ellipse, (ii) a hyperbola whose axes are 8 and 6

respectively.

2. Plot the curves given by the following equations, and state the

eccentricity of each :

(i) 16.r2 + 25y
2= 400; (ii) 16^2 -25/= 400.

3. Plot the curves

(i) ^2+4/= 6.r; (ii) x2 -4f= 6x.

Show that (i) is an ellipse, (ii) a hyperbola, and find the axes, the

eccentricity and the coordinates of the centre of each.

4. Plot the curves

(i) ,?/

2-36^-9^2
; (ii) ?/

2= 36^+ 9^2
.

Show that (i) is an ellipse whose major axis is vertical ;
find the axes,

the eccentricity and the coordinates of the centre of each.
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5. Show that the equations

(i) y*
=2Ax-Bxt (ii) f= 2Ax+ Bx\

where B is positive, represent (i) an ellipse, and (ii) a hyperbola,
respectively.

6. Plot the graph of the equation x2 Zxy+ 3
t?/

2= 4.

[Solve for y : y=^x^ fj(l2-2x
2
).

2^72 therefore cannot be greater than 12, so that the curve lies between
two straight lines perpendicular to the #-axis given by x=+*j6,
x= v/6. These lines are tangents to the curve.

Similarly, solving for x we find that y
2 cannot be greater than 2, and

the curve lies between two lines parallel to the #-axis given by y= \/2,

y -
v/2. These lines also are tangents.

The curve crosses the #-axis (?/ 0) where #=2 and 2
;

it crosses

the y-axis (x= 0) where y= J&amp;gt;/12
and J^/12.

Other values of y can be obtained most readily from the solved

equation, each value of x giving two values of y.
The curve is an ellipse.]

7. Plot the equations

(i) 2^2
-2^?/+/= 9

; (ii) 3^2 + 2^-?/2= 9.

Write down the equations of the tangents parallel to the coordinate
axes.

8. Plot the equations

(i) (2^+3/)
2=y-2^; (ii) (y

- x+ I)
2= 4

(.* + ?/).

The curves are parabolas.

9. Show that 3^+ 8y= 25 is a tangent to the ellipse ^2+ 4?/
2= 25

and that 5x - 4y= 9 is a tangent to the hyperbola x
2 -

y*
= 9. Find the

coordinates of the point of contact of each tangent and write down the

equation of each normal.

10. Find the points of intersection of

x2
-t- by

2= 45 and x=my+ &quot;7,

and determine m so that the straight line may be a tangent.

11. Determine the value of c in terms of m so that the straight line

^y
= mx+ c may be a tangent to the conies

(i) 9#2+ 16y
2=144; (ii) 9^-16?y

2= 144
;

(iii) 6%2+ a2
y
2=a262

; (iv) 6%2 - a2/= a262.

12. The same problem as in example 11 for the curves

(i) 4y=^j (ii) ?/=^2+ 2^ + 3; (iii) y
2= 4ax.

EXERCISES. XXL
1. The double ordinate through the focus of a central conic is called

the latus rectum or the parameter of the conic ;
show that it is equal to
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For the parabola sketched in Fig. 51 the parameter is the double
abscissa through the focus

;
show that when the parabola is given by

py=xi the latus rectum or parameter is p. (Compare 29.)

2. On AA (Fig. 49) as diameter a circle is described
;

if MP is

produced to meet the circle at Q show that

MP : MQ= b : a= constant ratio.

[For, MP*= -I (a?
- x2

) ; MQ2= a2 - x\

This circle is called the auxiliary circle of the ellipse ( 57) ; the

points P and Q may be called corresponding points.]

3. Deduce from example 2 the following method of constructing an

ellipse : Let M be any point on a fixed diameter A A of a circle of

radius a, MQ the half chord perpendicular to AA and Pa point in MQ
such that MP : MQ= b : a

;
the locus of P for all positions of MQ is an

ellipse whose axes are 2a, 26.

What is the locus of P when P is taken in MQ produced outside the
circle so that MP :MQ= b:at

4. The angle ACQ in example 2 is called the eccentric angle of the

point P(.r, y) ;
if L ACQ=0 show that

x= a cos 8, y= b sin 0.

5. On the edge RQ of a straight ruler a fixed point P is taken
;

the point R is placed on a straight line Y Y and the point Q on a

straight line X X perpendicular to Y Y, and the ruler is moved about so

that R and Q always remain on T Fand XX respectively. Show that
P will describe the ellipse x2

/a
2+y2

/b
2= l where RP=a, QP=b and

x, y are the coordinates of P to the axes X X, Y Y.

Deduce a method of constructing an ellipse.

6. Show from example 2 that an ellipse is the projection of a circle.

7. If P, Q and P, Q are two pairs of corresponding points on an

ellipse and its auxiliary circle show that the chords PP arid QQ
intersect the major axis at the same point, T say. (Lines to be

produced.)

8. If the secant QQ T in example 7 is turned till it becomes the

tangent to the circle at Q, and if this tangent cut the major axis at T
show that PT is the tangent to the ellipse at P.

9. Deduce from example 8 that CM.CT=CA 2
. If m is the

projection of P on the minor axis., and if PT meet the minor axis at t

show that Cm. Ct = CS2
.

10. Show that a point Q is outside or inside an ellipse according as

the sum of its focal distances SQ, S Q is greater than or less than the

major axis.

For the hyperbola, show that a point Q lies between the two
branches or inside one of the branches according as the difference of

its focal distances SQ, S Q is less than or greater than the transverse

axis.
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11. Show by example 10 that every point on the bisector of the

exterior angle between the focal distances SP, SP of the point P on
an ellipse (except the point P itself) is outside the ellipse, and thus

prove that this bisector is the tangent to the ellipse at P.

Show that for the hyperbola the bisector of the angle SPS is the

tangent at P.

[For the ellipse, let the perpendicular from S on the bisector meet
SP produced at P

,
and let Q be any point, except P, on the bisector.

Then SP=P P, SQ= P Q, S Q+ SQ= S Q +P Q.

But S Q+ P Q is greater than S P which is equal to S P+SP, that is,

equal to the major axis. Q is therefore outside the ellipse.
The proof for the hyperbola is similar.]

12. If the perpendiculars SZ, SZ from the foci of a central conic on
the tangent at P meet the tangent at Z, Z respectively show that

CZ=CA = CZ
-,
that is, show that Z, Z are on the auxiliary circle of

the conic.

13. If, in example 12, ZS and Z C are produced to meet at W prove
C W= CZ = CA, S Z[

= S W. Then prove SZ . SZ = CB2
.

[W is on the auxiliary circle and therefore SZ. SW, which is equal
to SZ. S Z, is equal to CA2 - CS2 for the ellipse and to CS2 - CA 2 for

the hyperbola. Then compare values of b~, a2
,
a2e2 for ellipse and

hyperbola.]

14. Deduce from example 13 the following construction for drawing
a tangent to a central conic from an external point P : on SP as

diameter describe a circle cutting the auxiliary circle at Q and R ; PQ
and PR, produced if necessary, are the two tangents from P.

15. If the normal and tangent at P to a central conic meet the

major axis at G and T respectively, show that

CO. CT=C&
;
CG=e2x=e2CM.

[PG, PT are the bisectors of the angle SPS and therefore G, T
divide SS internally and externally in the same ratio, from which it

follows that CO . CT= CS2
. Again, using the values of SP, S P in 55,

we have
S G : GS=SP : SP=a+ ex :a-ex,

whence &amp;gt;S&quot;G : S S= a+ ex : 2a,

and therefore S G= e(a + ex\ CG=e2
x.}

16. From example 15 prove the first theorem of example 9 and then
deduce the second theorem.

[CM. CT : CG . CT= CM :CG=l:e2
.

But CG . CT= CS 2= e2a2 and therefore CM.CT=a2= CA2
.

This proof holds for the hyperbola as well as for the ellipse.]

17. Show that SP.S P= a2 - e2x2 for the ellipse, but eW - a2 for the

hyperbola.
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18. With the notation of example 15 prove that

[For PG*=
then use the value of y* in 53 (4).]

19. If is the eccentric angle of a point P on an ellipse show from

example 9 that CT=a/cos0, &amp;lt;7*
= &/sin0,

and prove that the equations of the tangent and normal at P are

respectively
x &amp;gt;

11 . * ax by 79*

20. Find the coordinates of the points in which the line through C

parallel to the tangent at P meets the ellipse.

[The line is -cos 0+|sin
=

; combining with the equation of

the ellipse we get two points D(
- a sin 0, b cos 0), D (a sin 0,

- b cos 0).

The two semi-diameters CP, CD are said to be conjugate; each

is parallel to the tangent at the end of the other. The eccentric angle

of D is 90 + 0, and of D is 0-90 or + 270.]

21. Show from example 20 that CP2+ CD2= CA2+CB2
,
that is that

the sum of the squares of two conjugate semi-diameters is constant.

22. Show from Examples 17 and 20 that CD2= SP. S P.

[CD
2= a2sin2 + 62cos2 = a 2 -

(a
2 - b2

) cos
2 = a2 - eW.]

23. From C a perpendicular CF is drawn to the tangent at P;
show that the coordinates of F are

a2b sin

^= a2sin2 + 62cos2

and that CF=

24. Show from example 23 that the area of the parallelogram formed

by the tangents at the ends of two conjugate diameters PCP ,
DCD is

constant, and equal to 4a6 or AA . BB
,
the rectangle contained by the

[A quarter of the area is clearly CF. CD which is equal to &.]

25. Show that the equations of the tangent and normal at the point

(a?!, y,) on the hyperbola a?/a*-y*l&=l are respectively

f-f-
26. Show that the straight lines y= bx/a, y=- bxja are asymptotes

of the hyperbola.

[Let jfc-$ y=^2 - 2
);

then



PROPERTIES OF CONICS. 157

and therefore when x becomes very large the difference between yl9

the ordinate of the straight line, and y, the ordinate of the hyperbola,
becomes very small.

When b= a the asymptotes are at right angles to each other; the

hyperbola, when b= a, is called rectangular.]

27. From any point P(x, ?/)
on the rectangular hypQicholsiX

2
y

2= a?

PL is drawn perpendicular to the asymptote E CE (Fig. 50) ;
if

CL=x
, LP=y show that

and therefore that xi
y^= a1 becomes

[The values of #, y are proved at once by projection. The result

shows that when referred to its asymptotes as axes the equation of the

rectangular hyperbola is xy= %cP. (Compare 33).]

28. Show that for a parabola the point P is outside or inside the
curve according as the distance SP of P from the focus is greater than
or less than its distance PN from the directrix.

29. Deduce from example 28 that the bisector of the angle SPJ9 is

the tangent at P to the parabola. Show that the normal at P
bisects the angle between NP produced and SP.

30. A is the vertex of a parabola ;
the tangent and normal at P cut

the axis of the parabola at T&D& G respectively ;
H is the projection of

P on the axis, and Z the projection of S on the tangent at P. Prove

ST=SP=SG-, SP=AS+AH; TA = Aff;ffG= 2AS;
LASZ=LPSZ; SZ*= AS.SP.

Show also that Zlies on the tangent at the vertex A.

31. Prove from example 30 the following method of drawing a

tangent to a parabola from an external point P : On SP as diameter
describe a circle cutting the tangent at the vertex in Q and R

; PQ and
PR are the two tangents from P.
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TABLE I.

SQUARES OF NUMBERS FROM 10 TO 99.
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TABLE III.

SQUARE ROOTS OF NUMBERS FROM 10 TO 99.
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TABLE VI. LOGARITHMS.
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TABLE VI. LOGARITHMS. Continued.
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TABLE VII. ANTILOGAKITHMS.
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TABLE VII. ANTILOGAFJTHMS Continued.
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TABLE VIII. NATURAL SINES.

DEO.
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TABLE VIII. NATUEAL SINES Continued.
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TABLE IX. NATURAL COSINES.

DEG.
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TABLE IX. NATURAL COSINES- Continued.

DEO.
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TABLE X. NATURAL TANGENTS.

DEG.
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TABLE X. NATURAL TANGENTS- Continued.

DEO.
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TABLE XL

RADIAN MEASURE OF ANGLES.

DEG.
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TABLE XL

RADIAN MEASURE OF ANGLES-Continued.

DEG.
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TABLE XII.

THE EXPONENTIAL FUNCTION.

X
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Exercises. III. PAGE 17.

1. 3-94. 2. 3-94. 3. 99. 4. 3 49. 5. 5-39. 6. 7 7.

9. .45=4-12; 5(7=3-16; &amp;lt;7Z&amp;gt;
= 4; DA=2 24-, .4(7=3-61

;
5Z&amp;gt;= 5 83.

^45= 3-64; 5(7= 1-81; &amp;lt;7Z&amp;gt;
= 3 79; Z^4=2 04; ^4(7=4-33; 5Z&amp;gt;= 4 03.

12. (i)(3, -2); (ii)(-l, -3); (iii) (
-

2, 1) ; (iv) (2, -3).
13. (i)(-3,2); (ii)(l, 3); (iii) (2,

-
1) ; (iv) (

-
2, 3).

14. (i)(-3, -2); (ii)(l, -3); (iii) (2, 1) ; (iv) ( -2, -3).

Exercises. IV. PAGE 20.

16. A straight line parallel to the y-axis.

A straight line parallel to the o;-axis.

17. In all cases the locus is a straight line
;
in (i), (v) parallel to the y-axis,

in (iii) the y-axis itself ; in (ii), (vi) parallel to the x-axis, in (iv) the

x-axis itself.

Exercises. V. PAGE 28.

1. (3,2), (-2, -2), (8,6). 2. x= 2; y = 3.

3. x=-3; y= 4. 4. x=-2; y=-3.
5. o; = 3; y=-2. 6. x= y= 2-5.

7. x^-2-25; y = 3 5. 8. x= 3 33; y=-2 67.

9. x= 2 S-, y= 3 2. 10. x= 3; y = 88.

11. x= 4; y = 44. 12. x= -40
; y=10.

13. a;= 32; y = 5. 14. x= 3 41 ; y = 91.

15. a?= 38-9; y= -3 03.

17. (i)9a:-10y + 15 = 0. (ii) 8x + 7y= 0. (iii) a;+13y + 46 = 0.

(iv)y = 7. (v)a:= 2.

18. (-2,1); (1, -2); (2,3). 20. x + y = 2.

21. (i) AC, 2a:-3y=l; J5Z), 3x + 5y = 4
; (17/19,5/19).

(ii) AC, 2-8o? - 3% + 2-83= 0; 5Z), ce +3% = 3-27 ; (-0-02,0-84).

(iii) AC, 12x-15y=lQ-, BD, 71x + 105y= 79 ; (0 96, O lO).

(iv)AC, l 5a;-l-7y=l-79; 57), 3 3a? + 2y= 4-52
; (1-31, O lO).

Exercises. VI. PAGE 32.

4. #=
6. (3-15, 3-89); (-4-91, -0 95).

7. (1-48,5-95); (-0 68, 1 65);

8. (i) (2, 0) ;
x2 -4;r + 4= 0. (ii) (0, 76) ; (0, 5 -24) ; y*-6

9. (i) x
2 + 7/

2 + 4x-6y = 12. (ii)

55. (iv) x
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11. (i)(-l, 2); 2. (ii)(-3, -2); 3. (iii) (
-

4, 6) ; 8. (iv) (1-5, 5) ; 2.

14. (i)(-2-5, 3); 3-91. (ii) (0, 0) ; 1-414 (=^2). (iii) (i -J); 4 -22.

1.

3. y = -4; 1.

5. 2y= 3a.

7. 5a;-3y+13 =
9.

11.

13.

15.

19.

Exercises. VII. PAGE 37

f. 2.

4.

6.

10.

12.

14.

16.

20.

1.

3.

5.

10.

12.

14.

16.

18.

20.

21.

22.

23.

25.

27.

10.

14.

16.

17.

18.

19.

20.

22.

(ii)54.

44 27 ; 38 65; 28 65.

229.

VIII. PAGE 45.

2. 1-99.

(i) 76 ; (ii) 53.

1 93; 2 &quot;64.

7 68; 12 43 ; 14 62.

13s. 5d. ; 28s. 4d.
;

35,. Id.

45. 10s. ; 61.

4.

9.

11.

13.

15.

17. 6d.

19. 4J hrs.

34 3, 42 9, 51
&quot;4, 60, 68 6, 77 1, 85 7

Exercises.

1-42&quot;; 7-051b.
- 40.

(i)90;

49-58;

1487.

ll.s.

121
;

11.54a.m.; 16 8 miles from A.

Once
;
after an hour.

Ten times; after 8 6, 17 1, 25 7

minutes.

(i)
21-8 min. after 4. (ii) 5 5 and 38 -2 min. after 4.

1 1 -4 min. after 3. 24. 1 -88 days.

30 min. 26. 17 5 min.

1 Ib. at 2s. 6d to 2 Ib. at 4s. 28. 3.

Exercises. IX. PAGE 55.

?/
= 4-10-0-41x. 11. y = MOa?-0-28.

About 50. d = Q-Q2W. 15. About 95 Ib.

#= -056 JF+ 0-46; ^=3 98W+40 9.

#=0-072^+0 092; ^=2-71^+4-74.
#=0-0136^+ 0-24; ^=0-156^+17-9.

( i) F= -226W- 0-06; (ii) ^=
/&amp;gt;
= 1-0917 . 21.

^=2-8330+0-92. 29.

31.
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Exercises. X. PAGE 68.

1. (i) x= 0, y=l ; (ii) x= 0, y = -1 ;
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21. x= -1-445, y=- 17 91 ; z=l 7960, y=-16-77. 20. Min.= -

22. ar= 2, y = 2; a?= -0 443, y = Q-$2;x= -0 099, y=l 79; x= 2 5

23. A parabola.
= 3 125, ?/

= 156-25, a:- 1250. t = and 6 25.

24. *= 3, x= -13, y = 14, = 6-74 and -0 74.

Exercises. XIII. PAGE 91.

1. (2, -4); a= 2; y=-4; y + 4= 3(z-2)
2

.

2. (0-6,18); tf=0-6;y=18; y- 18= -25(z-0 6)
2

.

3. (0-7, -2-15); x= Q-7 ; y=-2 I5

5. o:-3^2(y-3)
2

; (3,3); y = 3; a:= 3.

6. a;- 16= -3(y-2)
2

; (16,2); y= 2; a;^16.

7. x + 3 = 0-8(7/-3)
2

; (-3,3); y= 3; a;= -3.

8. *-3=-|(y-)
9

; (3, I) ; y = J; = 3-

9. (i) 18, (ii) 18-81, (iii) 18 + 8/i + A2
, (iv)

2 + 2a + 3;

(v)
2 + 2a + 3 + 2(a + l)A + A2

; (a) 81, (j8) 8A + /t
2

, (7) 2(a+ 1)^ + ^2.

10. (i) 1, (ii)4/i-A
2
, (iii) -24, (iv) -11, (v) -20A-4A2

.

11. 7, 6-5, 6-1, 6-01, 6 + /t; 6.

12. -2, -1-5, -1-1, -1-01, -(! + &); -1.

13. 1, 2, 2-8, 2-98, 3-2A; 3.

14. _g
s _9-5, -9-9, -9-99, -10 + A; -10.

15. 1, 0-5, 0-1, 0-01, h; 0. 16. 0, 5, 9, 99, 1 - h ; 1.

17. -8, -6-5, -5-3, -5-03, -(5 + 3/0; -5.

18. 4-2a-A; 4-2a. 19. 2au + b + ah; 2au + b.

20. -44, -36, -29-6, -28-16, -28-16A; - 28 feet per second.

21. 100-32^-16/i; 100 - 32^ feet per second.

22. V-gt-i- \qli ; V-gt^ feet per sec.

23. 400 and (100
- 32^ -

16A) feet per sec.; 400 and (100
-

32/j) feet per sec.

24. (36
-

18&amp;lt;!

-
9A) feet per sec. per sec.

Exercises. XIV. PAGE 101.

1. (2-5, 2-5); (0-83, 7 5).

2. (i) 0-5
; 2; 2a;2 -5rc + 2= ; (ii) 2 31, 76, -0 57; 2x

(iii) 0-85, 2-43 ;
2x4 - 5x: + 2= 0. Only necessary in (ii).

6. -2-73, 0-73; xz + 2x-2= 0. 8. J?d=
9. 6a;=0-5918. 11. a% =

12. xy= 4:-15x-l-2
r

ly. 13. a^=

14. ari/^8-39a; + 2-60?/. 15.

16. ^=1^ + 13.4. 17. ^77-992T-5475.

18. #= 4; y= 8. 19. x= 4
;
least perimeter is 16&quot;.

20. = 4: = Q. 21. 9. 22. Radius= 6&quot;;
Sum= 9&quot;.
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Exercises. XV. PAGE 114.

1. 1-08, 1-55, 1-87. 3. 1-43. 4. 3-17.

5. 1-162. 6. 1-466. 7. -0-851.

8. -0-67, 1-42, 5-25. 9. -0-916, 392, 1-858.

10. -0-367, 1-864. 11. -1-577, 449.

12. (i) Neither max. nor min.

(ii) Min. - 385 when x-0 577. Max. 385 when x = -0-577.

(iii) Neither max. nor min.

(iv) Max. 24-63 when a:= 2-31. Min. - 24 63 when x- - 2-31.

Central symmetry.

13. Raise or lower the a;-axis :

(i) No turning values.

(ii) Min. -20 3 at a; =1-29. Max. -11-7 at a=-l-29.
(iii) No turning values.

14. (i) Min. at x= Q. Max. 0-148 at x= - 667.

(ii) Max. at a;= 0. Min. -0 148 at rc-0 667.

(iii) Min. at x=.Q. Max. 148 at .or= 0-667.

(iv) Max. at x= 0. Min. -4 63 at a;= 1-67.

15. Max. 1-19 at a; = 33. Max. } 1QR3 at x = Q-33R.

16. a?= 33/?; max. vol. of cone = l 24#3
. 17. 12.

19. Max. 3-85 at a; =1-42. Min. - 3 85 at a;= 2-58.

20. (i) Max. -4 at x= -2. Min. 4 at a;= 2.

(ii) No turning values.

(iii) Min. 7 at a; = 2. Max. -9 at x= -2.

(iv) No turning values.

21. (i) Min. 3 at a;= 2. (ii) Max. -3 at x= -2.

(iii) Min. 5 at x= 2.

23. (i) Min. at a?= 0.

(ii) Max. 0-25 at a;= 0-71. (iii) Min. -11 at x- -I.

Min. at a;= 0. Max. -10 at a;=0.

Max. 0-25 at x= -0 7l. Min. -11 at a:=l.

24. -0-96, 1-38.

25. 7, 4-75, 3-31, 3-0301, 3 + 3/t + ft
2

; 3.

26. 1, 1-75, 2-71, 2-9701, 3-3A + A2
; 3.

27. 19, 15-25, 12-61, 12-0601, 12 + 6A + A2
;

12.

28. 15, 15-75, 15-99, 15-9999, 16 -A2
; 16.

29. -45, -38-25, -33-21, -32-1201, -(32 + 12A + A2
) ; -32.

30. 15, 8-125, 4-641, 4-060401, 4 + 6h + 4/t
2 + h3

; 4,

&amp;lt;N _i _? _15 _122 _L
2 3 IT 101 ~Y+h
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20100 _
10201 (1 + h)

2

a*

Exercises. XVI. PAGE 120.

2. 3-94 3. 3-64. 4. 057, 1-468.

5. (i) 3-80. (ii) 4-73. 8. 2-87. 9- l
&&amp;gt;,

-2 47.

10. 15-98 cat ^= 0-434. 11. -0 16 at a;= 37.

12. 0-1065, 0-1130, 0-1175, 0-1190.

13. 9, 4-324, 2-59, 2-3. 14. 90, 43 24, 25-9, 22.

Exercises. XVII. PAGE 125.

11. 1-8045. 12. 2-79. 13. 9 &quot;56 when x=l 59.

14. ^1065= 482-9. 15. jw
1404 = 501 4.

16, 17, 18. In each case the value of n is approximately 5.

19. The simplest approximation is, thl 5= constant= 1 97, though some of

the values do not satisfy it very well.

20. pv =158, roughly ;
more nearly pv

1 05 171.

21. w= 7-94A*. 22. F=2 26J*.

23. 7
7=8-l 06

.
2*. 32y= o;

3
. 25. 2/

3= 32000*.

Exercises. XVIII. PAGE 129.

3. 0-37 when x=\. 4. Symmetry about the y-axis.

6. (i) 1-924, -1-373; (ii) 1-377, -0 679; (iii) 0-877, 4-814
; (iv) 0-807.

8.
e ~

^O. T is the number of seconds after joining up before the charge
&amp;gt; 1

reaches the fraction of its final value.

10. v=14-5e- 46
*, or vfi=53.

Exercises. XIX. PAGE 143.

1. (i), (ii), 180 ; (iii), (iv), 120 ; (v), (vi), 90 ; (vii), (viii), 72.

2. Move the origin (i) to f , 0\ (ii) to
^
--,

OJ-

3. New a-unit is equal to (i) 2, (ii) 3, (iii) , (iv) i, (v) n in old scale.

5. Max. 5 -12 at x = 134 47 . Min. -5 12 at x=3U 47 .

6. Max. 111-8 at cc= 116 34 . Min. -111-8 at x= 296 34 .

7. Max. 44-64 at x= 48 37 . Min. -58 91 at x=259 55 .
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/ AY
v

ii illll_ =1

~B IP ~B

7. (i) a:= 3, x= -3, y= 3fj2, y= -3J2.

(ii) #= f, x= -f, none parallel to the x-axis (a hyperbola).

9. (i) (3, 2) ;
8a; - 3y = 18. (ii) (5, 4) ;

4* + 5y - 40.

10
/35+W45ma -20 - 7m + \/45m2 -20\

\ 5 +m2 5 +m2
/

35 - mv/45w2 - 20 - 7m - v/45m2 -

5 +m2

181

11. (i) c=

(iii) c =

12. (i) c--m2
; (ii) c=

; (ii) c =

; (iv) c=

?w-
; (m) c=-.



INDEX.

Abscissa, 6.

Accuracy in estimation of lengths,

Adiabatic curves, 123.

Amplitude of S.H.M., 135.

Areas, estimation of, 8, 12.

Argument of function, 29.

Asymptote, 95.

Auxiliary circle, 150.

Axes, coordinate, 6.

of conies, 146-148.

Boyle s Law, 99, 103.

Composition of harmonic curves,
137.

Conic section, 149.

properties of, 153-157.

Constant, 30.

Coordinates, 5.

Cubic functions, 104-114.

Curve, equation of, 63.

Decomposition into harmonic com
ponents, 139.

Decrement, logarithmic, 137.

Diameters, conjugate, 156.

Directed segment, 1.

Directrix of conic, 149.

Discriminant of cubic, 114.

Distance between two points, 15.

Eccentric angle, 154.

Eccentricity of conic, 149.

Ellipse, 146.

properties of, 153-157.

Equation of a curve, 63.

of circle, 31.

of ellipse, 147.
of hyperbola, 95, 148, 157.
of parabola, 86, 150.

of straight line, 21.

Equations, solution of, 24, 74, 81,
105, 111, 118, 143.

transformation of, 101.

Even function, 132.

Exponential function, 1 19, 128.

Focal distance, 148.

Focus, 146, 149.

Fourier s theorem, 139.

Fractional functions, 94-104.

Frequency of S.H.M., 135.

Function, 29.

even, 132.

explicit, 30.

graph of, 30, 64.

implicit, 30.

inverse, 119.

linear, 30.

note on cubic, 112.

odd, 132.

periodic, 131.

simple harmonic, 136.

uniformly varying, 36.

Gradient, 35.

average, 87.

Graph of an equation, 22, 63.

of a function, 30, 64.

building up of, 110.

The numbers refer to pages.
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Harmonics, 137.

Harmonic motion, 135.

Hyperbola, 95, 147.

properties of, 153-157.

rectangular, 96, 157.

Inflectional tangent, 105.

Inflexion, point of, 105.

Inverse functions, 119.

Latus rectum, 153.

Linear function, 30.

Logarithmic decrement, 137.

Logarithmic functions, 117-130.

Maximum value, 67.

Minimum value, 66.

Napierian logarithm, 128.

Normal, 151.

Odd function, 132.

Ordinate, 6.

Origin of coordinates, 6.

change of, 39, 85.

Parabola, 86, 150.

axis of, 87.

properties of, 157.

vertex of, 87.

Parameter of conic, 153.

Period of S.H.M., 135.

Periodic functions, 131.

Plotting of points, 7, 9.

of curves, 63.

Point, of inflexion, 105.

turning, 66.

Quadratic functions, 63-92.

Rate of variation, 36.

average, 88.

Scale, 8, 23.

change of, 71.

Segment, directed, 1.

Simple harmonic motion, 135.
with decreasing amplitude, 136.

Slope, 35.

Steps, 1-4.

Straight line, equation of, 21, 33.

gradient of, 33.

Symmetry, 16.

centre of, 95.

Transformation of equations, 101.

Trigonometric functions, 131-145.

ratios, 13.

Turning points, 66.

values, 66.

Uniformly varying function, 36.

Variable, dependent and indepen
dent, 29.

Velocity, average, 90.

Vertex of conic, 150.

Vibration, damped, 136.

The numbers refer to pages.
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