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PREFACE
THE idea of expanding an arbitrary function in terms of the solutions

of a second-order differential equation goes back to the time of Sturm

and Liouville, more than a hundred years ago. The first satisfactory

proofs were constructed by various authors early in the twentieth

century. Later, a general theory of the 'singular' cases was given

by Weyl, who- based i on the theory of integral equations. An
alternative method, proceeding via the general theory of linear

operators in Hilbert space, is to be found in the treatise by Stone

on this subject.

Here I have adopted still another method. Proofs of these expan-

sions by means of contour integration and the calculus of residues

were given by Cauchy, and this method has been used by several

authors in the ordinary Sturm-Liouville case. It is applied here to

the general singular case. It is thus possible to avoid both the theory

of integral equations and the general theory of linear operators,

though of course we are sometimes doing no more than adapt the

latter theory to the particular case considered.

The ordinary Sturm-Liouville expansion is now well known. I

therefore dismiss it as rapidly as possible, and concentrate on the

'singular' cases, a class which seems to include all the most interesting

examples. In order to present a clear-cut theory in a reasonable

space, I have had to reject firmly all generalizations. Many of the

arguments used extend quite easily to other cases, such as that of

two simultaneous first-order equations.

It seems that physicists are interested in some aspects of these

questions. If any physicist finds here anything that he wishes to

know, I shall indeed be delighted; but it is to mathematicians that

the book is addressed. I believe in the future of 'mathematics for

physicists', but it seems desirable that a writer on this subject should

understand physics as well as mathematics.

E. C. T.

NEW COLLEGE, OXFOBD,

1946.
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THE STURM-LIOUVILLE EXPANSION

1.1. Introduction. Let L denote a linear operator operating on

a function y = y(x). Consider the equation

Ly - AT/, (1.1.1)

where A is a number. A function which satisfies this equation and

also certain boundary conditions (e.g. which vanishes at x = a and

x = b) is called an eigenfunction. The corresponding value of A is

called an eigenvalue. Thus ifi/tn(x) is an eigenfunction corresponding

to an eigenvalue \n ,

L^(x) = \Mx). (1.1.2)

The object of this book is to study the operator

,72

where q(x) is a given function of x defined over some given interval

(a, b). In this case y satisfies the second-order differential equation

and
tffn(x) satisfies

&(s)+{A-?(*)W(*) = 0- (1J.5)

If we take this and the corresponding equation with m instead of n,

multiply by iftm(x) 9 ^n(x) respectively, and subtract, we obtain

Hence
b

(AM-AJ J lUaOiM*) dx = [0m()^(a;)-^(a:)
a =

if
*(im(x)

and $ rl(x) both vanish at x ~ a and x = b (or satisfy a more

general condition of the same kind). If \m ^ An ,
it follows that

b

\tm(x)tn(x)dx
= Q. (1-1.6)

a
4967



2 THE STURM-LIOUVILLE EXPANSION Chap. I

By multiplying if necessary by a constant we can arrange that

(x)dx = l. (1.1.7)

The functions $n(x) then form a normal orthogonal set.

Our main problem is to determine under what conditions an

arbitrary function f(x) can be expanded in terms of such functions,

in the manner of an ordinary Fourier series. If this is possible, and

the expansion is

then on multiplying by $m(x) and integrating over (a, 6), we obtain

formally
ft

)*(*) dx. (1.1.9)

In some cases the eigenvalues are not discrete points, but form

a continuous range, say, for example, over (0, oo). The expansion
then takes the form

/(*) = j
dX. (1.1.10)

All this has its simplest illustration in the case of ordinary Fourier

series. Suppose, for example, that q(x) = 0, and that the interval

considered is (0, TT). The solution of (1.1.4) which vanishes at x =
is then y sin(xVA). This vanishes at x TT if and only if A = n2

,

where n is an integer. These then are the eigenvalues, and the corre-

sponding eigenfunctions are the functions sinnx. That an arbitrary

function can be expanded in terms of these functions is the familiar

theorem on Fourier's sine series.

1.2. An argument which has sometimes been used to suggest the

validity of the above expansions runs as follows. Consider the partial

differential equation

Lf=i%, (1.2.1)

where / = /(#,) If/CM) is given for one value of t, it is fixed by
this equation for a slightly greater value of t. Thus we should expect
to have one solution, and only one, for any given initial value of
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/(#,), i.e. for /(#,) equal to an arbitrary f(x) when t = 0. Suppose
now that the solution can be expressed as a Fourier integral,

/(*,*)==
- F(x,\)e-^d\, (1.2.2)

where F(x, A)
= -,-i-

J /(*, i)e* dt. (1.2.3)

00

Substituting in (1.2.1), we obtain

OO CO

f e-**LF(x, A) d\ = f Xe-**F(x, A) dA.

CO 00

Since this holds for all values of L we can equate the coefficients of

e~***, which gives

Thus F(x, A) is an eigenfunction of the operator L belonging to the

eigenvalue A. Now putting t = in (1.2.2), we obtain

which gives an expression for the arbitrary function f(x) in terms of

eigenfunctions. Iff(x, t) were expressible in a Fourier series instead

of an integral, we should obtain similarly a series expansion.

The difficulty of justifying directly an argument such as the above

is obvious.

1.3. The argument assumes, for one thing, that /(a?, t) is small as

t -> oo, since this is required for the Fourier integral formula (1.2.2),

(1.2.3) to hold. However, a more general form of the formula is as

follows. Let
OO

^V(^A) = -

77|^ fMO^* (I(A)>0), (1.3.1)
V(^77J J

#-M) = -i- f /(a, *)*** (I(A)<0). (1.3.2)
Vl^77

") J
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The inverse formula is then

ic-\ oo ic' +00

, .. 1

fcj J
'-<***

tc-oo ic'-oo
(1.3.3)

where c > 0, c' < 0. Using this and (1.2.1), we obtain formally
00

LF+(x,X) = -^ J
Lf(r, t)J dt

(1-3.4)

iff(x,l) reduces to/(x) when t = 0. Similarly

,A). (1.3.5)

The method to be employed is therefore as follows. We construct

the solutions F+ and F^ of (1.3.4) and (1.3.5) which satisfy given

boundary conditions. Then (1.3.3), with t = 0, gives

fH-oo if '-|- oo

'<*> =^) J
^ (^' A) ^

+^j. J
^ A) dX - (L3 ' 6)

-iV oo ic' co

In the simplest cases .PL^A) is found to be minus the analytic con-

tinuation of F+(x,\) across the real axis. Writing

O(s,A) - -i<J(2ir)F+(x,X) (1.3.7)

(1.3.4) becomes (L-A)O(*,A) - -/(), (1.3.8)

and (1.3.6) becomes
, ic' 4- co \c co .

*)
=

-!,(
f + f WAJctt.

27TM J J /^'~
(1.3.9)

The expansion is then obtained from the calculus of residues, the

terms of the series being the residues at the poles of O(#,A).
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In any case, since (1.3.4) and (1.3.5) differ only in having the sign

of i changed, the two terms in (1.3.6) are conjugate. Hence we

also have
.,-,MOO

'/ j

1C ~00

= -ifI f 0(*,A)ZAJ. (1.3.10)

*\-oo '

The expansion formula is obtained from this by making c -> 0.

The above argument indicates in particular that A must be treated

as a complex variable; but the analysis is of course still purely formal.

1.4. In the particular case in which the operator L is given by

(1.1.3), (1.3.8) is the second-order differential equation

In this case the function O(#,A) can be expressed in terms of the

solutions of (1.1,4). Let Wx ((/),i[t)
or PF(</>,</0 denote the Wronskian

W(<f>,i/j)
=

<f)(x)i/j'(x)(f>'(x)i/j(x) of two functions ^ arid
ifj.

Now let

(/>(x,X) and
i/j(x, A) be two solutions of (1.1.4) such that W^^ifj)

= 1.

Then a solution of (1.4.1) is

x b

0(*,A) = ,/,(*, A) J 4(y,X)f(y) dy +<f>(x,X) J t(y,X)f(y) dy, (1.4.2)

a x

as is easily verified by differentiating twice.

Another starting-point for the theory, which (in the case of

(1.1.3)) avoids an appeal to Fourier integrals, is as follows. Suppose
the theory already established, and consider the properties of the

function
,

O(#) O(#,A) V c* x
\ (1.4.3)

^w A A n

This gives

<!>"(#) q(x)<b(x) = ^S ,JiLLJ "

-4 A /

2c n \ n Jjn (x)

-A-A
-- - i



6 THE STURM-LIOUVILLE EXPANSION Chap. I

This is (1.4.1) again, so that we are again led to consider solutions

of this differential equation. If we can solve it, (1.4.3) then indicates

that the terms of the
expqgfcion

of f(x) will be the residues at the

poles of <!>(#, A).

Our general method consists of defining <X>(#, A) by (1.4.2); integra-

tion round a large contour in the complex A-plane then gives the

value /(#), and the singularities ofO(#, A) on the real axis give a series

or an integral expansion as the case may be.

1.5. The Sturm-Liouville expansion. We shall suppose

throughout that q(x) is a real function of x, continuous at all points

interior to the interval (a, b) considered. In the classical Sturm-

Liouville case (a, b) is a finite interval, and q(x) also tends to finite

limits as x -> a and x->b.

The general theorem on the existence of solutions of (1.1.4) is as

follows.

THEOREM 1.5. Ifq(x) satisfies the above conditions, and a is given,

the equation (1.1.4) has a solution <f)(x) (a ^ x < b) such that

(f)(a)
= sin a:, </>'(&)

= cos a.

For each x, (f>(x) is an integral function of X.

Let 2/oO*0 sina (# a)cosa,

and for n = 1, 2,...,
y

2/
= y (*)+ J feW-AK-iWfc-O

dt.

a

Let \q(x)\ < M, \yQ (x)\ < K, for a ^ x < 6, and let |A| < N. Then

(M+N)K(x-t)dt = i

(*)-y-i(*)l < (M+N)(b-a) J l^-iW-^
a

K(M+N)*(b-a) [.. .

-- r
-2^ I

(t-a)

a

K(M+N) 2
(b-a)(x-a)

3
-_
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and so generally

Hence the series

n 1

converges, uniformly with respect to A if |A| < N, and with respect

to x over a ^ x ^. b. Since for n ^ 2

the first and second differentiated series also converge uniformly with

respect to #. Hence

so that (j)(x) satisfies (1.1.4). It also clearly satisfies the boundary
conditions.

1.6. Now let
<f>(x, A), #(#,A) be the solutions of (1.1.4) such that

</(, A) sin a, </>'(&, A)
= cos a,

(1.6.1)
X(o,A) snip, x'(>A) ^ cos p. ;

Then

= 0.

Hence W (<f>,x) ^s independent of x, and so is a function of A only

say cu(A). It is clear from the above theorem that it is an integra

function of A.

Let
x b

<*' A)
= ^r f #y> A)/fo) ^+^ f x(y,W(y) *y .

w(A) J co(A) J
a cc

(1.6.2)
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It is at once verified by differentiation that <!>(#, A) satisfies (1.4.1),

and also the boundary conditions

>'(, A)sin a ~ 0,

(1.6.3)= 0,
'

for all values of A.

Suppose that the only zeros of o>(A) are simple zeros A
,
Alv .. on

the real axis. Then the Wronskian of (f)(x,Xn ) and x(x>^n) *s zero,

so that x(#,AJ is a constant multiple of <^(#, A ;i ), say

X(*A) = MMJ- (1.6.4)

It follows from the boundary conditions that kn is neither nor oo.

Hence (#, A) has the residue

b

**-#*, AJ f9%,A
> (-U J

a

at A = A,,. The above formalities therefore indicate that there should

VIP an expansion of the form

7 C

/(*) = V _^_^ (a;,AJ <t>(y,Xn)f(y)dy. (1.6.5)

n4 " (
A

) J

This is the Sturm-Liouville expansion.

If we start with any two independent solutions
<^ (x, A) and XQ(X > A)

of (1.1.4), and write o (A)
=

W((f>Q,xo)> then

and x(x, A) is obtained by replacing a, a by 6, /?.
Then

(a, Aw)si

and the analysis proceeds as before.

The case of ordinary Fourier series is obtained by taking q(x) = 0.

The equation (1.1.4) is then

Solutions are <J>Q(X,X)
= cos#VA, Xo(x>ty sin#VA, and coQ (X)

= VA.
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Take first the case a = 0, jS
= 0. Then

VA

The zeros of o>(A) are A
;l
=

{mr/(& -)}
2

(TZ- 1, 2,...). We have

,n x
b a

(
, . (__ iwft__a \

" (AJ - ~^--^s((b~~a)^/xn}
= >

' v

',
JA

/t -A, fc

and i - ^oCMJ _ coH{6w7r/(6-a)} _ H
/l

^o(^J cos{W7r/(6-a)}

Hence (1.6.5) givew Fourier's sine series

i \
^ ^ . / x a\ f . / y~a\ . . ,^ =

b=-a z sm
(

M7r

6=^) J
smrM/(y) y -

Similarly, by taking a = ^77, ^8
=

ITT, we obtain the cosine series

b
oo

b

*, ^
1 f *t \ j ,

2 NT^ / o^ a\ f / ?//w = ^. J
fw dy+f â 2 cos

(

W7r^ J ^("'fc
a w- 1 a

1.7. We have now to make the above analysis rigorous. We begin

by proving some lemmas.

LEMMA 1.7 (i). Let (f>(x)
=--

<f>(jr, A) be the solution of (1.1.4) defined

in 1.5, and let A = s2 . Then

(j)(x)
-
cos{(rr a)}sino:

1 f . (
,

x
, ,

x f/ . . ,_ _.-
sin{s(x-y)}q(y)<f>(y) dy. (1.7.1)

<9 J

&ins(xa)----- -
;

5

The last term is equal to

X

-
$in{s(x~

* J
a

by the differential equation. On integrating by parts twice we obtain

X

I*
sin{s(# y)}<f>"(y) dy = S(f>(x)

Jr^m{s(x a)}cosa
a

x

(,r a)}sina 52
I sin{s(o;

This proves (1.7.1).
4957



10 THE STURM-LIOUVILLE EXPANSION Chap. I

LEMMA 1.7 (ii). For s = a+it, \s\ > s
,
sin a ^ 0,

(1.7.2)

) ) (1.7.3)

while if sin a = 0, <f>(x) 0(eM*-y |a|), (1.7.4)

., x sins(x-~a)'
(1.7.5)

holds uniformly for a ^ x ^ b.

Putting <f>(x)
e^x^F(x) 9 (1.7.1) gives

X
I f

.-Jrin{,(*-j,

Let
fji
= max |-f(^)|. Then it follows that

COS a

i ,,-
\q(y)\pdy>

i

6
i j

.e.

i

provided that the denominator is positive. This is true if \s\ is large

enough, and (1.7.2) and (1.7.4) follow. Also (1.7.3) follows on sub-

stituting (1.7.2) in the integral on the right of (1.7.1); and similarly

for (1.7.5).

Of course a general asymptotic expansion of (f>(x) as a function of

$ can be obtained by repeating the process.

LEMMA 1.7 (iii). //sin a ^ 0,

<f>'(x) ssm{$(xa)}sinu+0{eW
x-a

)}, (1.7.6)

and if sin a 0,

<f>'(x)
= -GOs{s(xa)}cosoi+0(e^

x
-^/\s\). (1.7.7)

This follows at once on differentiating (1.7.1) and using Lemma
1.7 (ii).

Similarly we obtain

x(x) ~ cos{s(fc #)}sin/J, x(x)
~

$sin{s(6 ^)}sin^3 (1.7.8)



1.7,1.8 THE STURM-LIOUVILLE EXPANSION 11

(or similar formulae if sin/? = 0); and

or similar formulae in the other cases. It follows in particular that

o>(A) is not identically zero. Actually o> is an integral function of s

of order 1, and so an integral function of A of order Jk

1.8. Orthogonal property of the expansion. IfL~q(x)d2
/dx

2
,

and F and G are any functions of x with continuous second

derivatives,

6 b

|
F.LGdx-

|
G.LFdx

a a

b

= -
J (FG"-GF") dx = Wa(F, Q)Wb(F, G). (1.8.1)

a

If F and G satisfy the same boundary conditions at a and at 6, so

that F'/F = G'/G at these points, it follows that

b b

(F.LGdx^
J
G.LFdx. (1.8.2)

a a

Now let F = </>(#, A), G ~
</>(#, A') be solutions of (1.1.4) satisfying

(1.6.1). Then Wa(F, G) == 0. If A is a zero of <o(A), the Wronskian

of </>(x, A) and -%(x, A) vanishes, so that

where k is a constant, which is neither nor oo, by the boundary
conditions. Hence by (1.6.1)

JL/7 \\ _ S^n ^ J.'/^ \\ __ COS)8

A/ /b

Similarly, if A' is a zero of co(A), (f>(x,X
f

)
satisfies the same conditions

at x = b. Hence

J #3, A)2#(a, A') ^fe -
J <f>(x, \')J4(x 9 A) cfa.

a a

Since i^(a:,A)
-

A<^(a?,A), I4(x,X') = A'^^A') it follows that

&

(A_A') J 0(a;, A)</>(#, A') rfo; - 0. (1.8.3)
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b

Hence, if A = A',
J <f>(x, X)<f>(x, A') dx = 0, (1.8.4)

a

the orthogonal property.

If A = u+iv were a complex zero of co(A), then so We.

A' = A ~ %- ft?

be. Since <f>(x,\) is the conjugate of
</>(#, A), (1.8.4) gives

which is impossible if
</>

is not identically zero. Hence all the zeros

of a> (A) are real.

Again, taking F ~~
<j>(x,X),

=
</>(#, A') in

x -.8.1), we obtain

b

(A-A') <l>(x 9 X)<l>(x,X')dx
= -<f>(b,XW(b 9 X')+<l>'(b,X)<l>(b 9

X
f

).

Also oi(A)= -<(M)cos/3-f(M)sin/3.

Hence, if sin^ 7^ 0,

(A-A')sinj8 J <j>(x,X)<f,(x,\') dx - o)(A')^(6,

If A is a double zero of co(A), then co(A ii?')
~

0(?;
2
)
as ^ ~v 0. Hence,

taking A =- X -{-iv, A' A ~ i^, the right-hand side is 0(v
2
). Bat the

left-hand side b

so that we obtain a contradiction. Hence all the zeros of co(A) are

simple. If sin /3
== 0,

b

(A-A') J <t>(x,X)<f>(x,X') dx = MA)#'(&, A
/

)-^(A
/

)#
/

(6, A)},

a

and the result again follows.

It also follows from (1.7.9) that a>(X) ^ for s == it (t > tQ ), i.e. for

A negative and sufficiently large.

1.9. THEOREM 1.9. Let f(y) be inlegmble over (a, b). Then if

a < x <i b the tfturmLiouville expansion (1.6.5) behaves as regards

convergence in the same way as an ordinary Fourier series. In parti-

cular, it converges to i{/(#+0) +/(#())} iff(x) is of bounded variation

in the neighbourhood of x.
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Consider the integral

^JcD(.r,A)r/A,
(1.9.1)

where <3>(o;, A) is defined by (1.6.2), taken round a large closed contour

in the A-plane. Let A = s2 and let the upper half of the A-contour

correspond to the quarter-square in the s-plane made up by the lines

b-t

b a

where s a-{-it\ and let the A-contour be symmetrical about the

real axis. Then (1.9.1) is equal to a finite sum of the Sturm-Liouville

series.

Consider the case sin a = 0, sin/3 7^ 0. Then by Lemma 1.7 (ii)

4>(y>X)
= cos( (y a)}su

and x(^>A) ~ cos
c (&-

on the above quarter-square; and by Lemmas 1.7 (ii) and (iii)

On the quarter-square |sin{*(6 a)}\ > Aef(b
~a

\ and hence

_L. = .^_. .-1
.

... -(i-HO

Hence

Co (A) s sin{s (b a)}

and

x
> A) f / / \ N // \ 7 f cos

{
(b x)} cos{?(y a)}- j *(y,W(y}dy =- _ (PV-r.

;j -i
;

'/

J 5sui{^(6 )}

Let < 8 < # a; then the last term is

-8
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Since dX/ds = 2s, this contributes to (1.9.1)

x
\ (

x

*+ f l/(y)l %Kl7i) 1*1 = of f
-*

*.|)+o
f

J
J \l*l/ U *

|J 1 J
2C X O

The second term can be made arbitrarily small by choice of S; and,

having fixed S, the first term tends to zero as n -> oo; for it is

0- c-(+o e-S(^^)^-a) r/(J

)'

(n + l)ir/(b-a) , , ( } J)7r/

-
f c-(+oU f" J ) \

n J
o

v
o

A similar argument applies to the other term in <&(#, A) in which

x < y < 6. Altogether (1.9.1) is equal to

1 /* I /* nf\c*ft>fh /v\l /-cifo//1* /i_
J

I

J
//

l

\\

^
a

LLJ Mil LA A_ U f(y) dy\ d\ + O ( I ) .
I 'fit \\ " \y / \s

j

* \ /

/ oSllijOiO wif > Iv
\_ \ I } i /

+

The first term is precisely what we should obtain in the corresponding

problem relating to Fourier's cosine series, and consequently it is

equal to a finite sum of the Fourier cosine series of /(#). This, of

course, is easily verified directly by the calculus of residues. The

theorem on the relation between the Sturm-Liouville expansion and

the Fourier series therefore follows. If sin a = or sin/?
~

0, the

theorem can be proved in a similar way.

In the case in which /is of bounded variation in the neighbourhood
of the point x, it is also easy to obtain the result directly, without

appeal to the theory of Fourier series. In the first place

~{s(y-a)}
a)}"

whence the part of (1.9.2) with a <J y < x8 tends to zero, as before.

For x 8 ^ y <C x,

cos{s(b-~x)}cos{s(y--a)} _ e
-i8^

^" " "" .....
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if 8 < b x. The contri&iawoirot tne O-ierm tends to zero, as before.

The main term contributes^ the ^/-integral in (1.9.2):

2s

.c-S

*->%+^ J **->{/(*-0)-
x-S

J .e^-^/^^-O)

The first term is/(# Q)/($A;, which contributes ^f(x 0), aw required.
The second term is 0(e-

/8
/|A|), which gives a zero limit. Also, since

/ is of bounded variatibn, we can write /(#0) /(y) = g(y)h(y),
where g(y) and h(y) are positive and steadily decreasing, and tend

to zero as y -> x. By the second mean-value theorem

g(x 8) f

This contributes to (1.9.1)

J
o \d\\

=

which can be made as small as we please by choice of 8. Similarly
for the term involving h(y), and for the terms with y > #, and this

proves the theorem.

Writing tt(s)
=

( *^\fy(a.,
AJ,W (

An)/

the formulae (1.1.6)-(1.1.9) are now valid.

If x ~ a, similar results hold, and can be proved in the same way,

provided that sin a ^ 0. If sin a = 0, $(, A) vanishes identically, ancl

the result fails unless /(a+0) 0. The situation at x = 6 i

We also have the following result:

Iff(x) is any function integrable over (<&, 6), and a ^ x ^
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This easily follows on integrating

r 3>(x,z)

J ~z~X

round the same contour as before. The series is the Sturm-Liouville

expansion of <P(o;, A), and it is easy to verify that

*(x,\)$n(x) dx. (1.9.4)

1.10. Example. Let q(x) -= 0, = 0, a = 0, b > 0. Then

., ,, sinxVA , sin{(6 ^)VA} .

f ,

(f>(X,A)-^~- /~~~9 X(X>") ~ ~~ A~ ~ COSp+ COS{(6

and co(A)
~ -,- sin(6VA)cosj3+cos(6VA)sinjS.

VA

The A^ are the roots of

sin(WA)
-tan/Scos(6VA).

'V/X

f o vi /j o

Now

VA

tan bs tan /?

fc />

has all its roots real if tan/? < or tan/? > 6, and two equal

and opposite purely imaginary roots if < tan/3 < 6. Also

'

-,

and
AH - cosj8cos(6VAJ VAw sinj8si

= cosjScos^V

Hence the expansion is

*> -
12 r+A7^n-1

where VAa may be purely imaginary.
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In the case tan/?
-

6, we have

o>(A)
- si

\

so that there is a zero at the origin. In the neighbourhood of A =

} A)
=

(6 #

Hence
a; cos /3

J
2//(?/) dy 3#

j
yf(y) dy

Hence the first normalized eigenfuiiction is (it')
= &b~*x.

1.11. An expansion involving Bessel functions. Bessel's

equation of order v is

and the standard solutions are Jv (xs), Yv(xs). Putting y = x^y^ we
obtain the equation

,72,,. / _.2 1\

t
= 0. (1.11.2)

Solutions of this are therefore x*Jv(xs} y x^Yv(xs). This equation is of

the form considered, with

If we consider an interval a < x < 6, where a > 0, the conditions

of the above theorem are satisfied. Let

where s = VA. Then

o, (A)
- sx{Jv(xs)Y'v (xs)~-Yv(xs)J

t

v(x8)}
- 2

. (1.11.4)
7T

Taking a = and /?
= 0, we have

and co (A)
=

4957
I>
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Hence

co'(A)
=
-\naW ŝ

{Jv(bs)-Y'v(as)-J'v(as)Yv(bs)}-

-{J'v(bs)Yv(as)-Jv(as)Y
'

v(bs)}.

Substituting for the Y'v by means of (1.11.4), we obtain

b _ _
J
v(bs)\'

Hence if the zeros of o>(A) are \n , and VAM = sn ,

n
24 Jv(aSn)Jv(bsn )

Also ^ = I^Jv(bsn)ljv(asn ).

\a/ i

The expansion obtained is therefore

^ - T 2 -^^^w^(.)^^^^
x

a

A similar result can be obtained from the more general boundary
conditions.

REFERENCES
Birkhoff (1), (2), Dixon (1), (2), Haar (I), (2), Hilb (1), (2), Hilbert (1), Hobaon

(1), Kneser (1), (2), (3), Liechtenstein (1), Priifer (1), Schur (1), Tamarkin (1),

(2), Titchmarsh (2), Zaanen (1), Zygmund (1).



II

THE SINGULAR CASE: SERIES EXPANSIONS

2.1. In many of the most interesting examples the function q(x) has

a singularity at one end or both ends of the interval considered,

or the interval extends to infinity in one direction or in both. We
shall now consider these cases, but, in this chapter, with a limitation

which makes the expansion still a series. The result is a particular

case of the more general one obtained in the next chapter, but it

seems worth while to prove it separately on account of its com-

parative simplicity.

We begin by considering the case in which the interval is (0, oo),

q(x) being continuous over any finite interval. The case of a finite

interval with a singularity at one end is quite similar to this.

If F(x) and G(x) satisfy the differential equations

and the corresponding equation with A' instead of A, respectively, then
b b

(A'-A) J F(x)G(x) dx =
j [F(x){q(x)G(x)-G'

f

(x)}-

-G(x){q(x)F(x)-F"(x)}}dx
b

= -
\{F(x)G"(x)Q(x)F

H

(x)}dx

= W(F,Q)-Wb(F,G). (2.1.2)

If A u-\-iv, A' = A = uiv, and G = JP, this gives
6 _ _

2v
j \F(x)\*dx - iWQ(F,F)-iWb(F 9 F). (2.1.3)

o

Now let </)(x)
=

0(#, A), 8(x)
=

6(x, A) be the solutions of (2.1.1) such

= sn ex, <0 = -cos a,

6(0) = cos a, 0'(0) sill a, /

V J

where a is real. Then

Wx(^0) = W (<f>,6)
== sin2a+cos2

o: = 1.

The general solution of (2.1.1) is of the form 0(x)+l^(x). Consider

those solutions which satisfy a real boundary condition at x = 6, say

j8
- 0,



20 THE SINGULAR CASE: SERIES EXPANSIONS Chap. II

where /? is real. This gives
'

For each 6, as cot ft varies, I describes a circle in the complex plane,

say Cb . Replacing cot ft by a complex variable z,

r _ n -v _ 0(b)z+ff(b)-

Here Z = oo corresponds to z = -<'(&)/((&). Hence the centre of

<76 corresponds to the conjugate, 2 =
<f>'(b)/(j)(b)', it is therefore

Wb(6, $

Also i'

which has the same sign as v, by (2.1.3) with F ~
(f>,

since

Hence, if w > 0, the exterior of Cb corresponds to the upper half of

the z-plane.

Since 6'(b)/<f>'(b) is on Cb (for 2 = 0) the radius rb of Cb is

0'(b)

2v

t/

;

J |^(o;)

o

. (2.1.6)

Now I is inside Cb if I(z) < 0, i.e. if i(zz) > 0, i.e. if

,
^"" -* '

i<f>(b)+e(b)

""

if(b)+S(b) I

i.e. if
;{|J|W6 tf, ^)+^(#, ^)+^(^ #)+F6 (tf, 5)} > 0,

i.e. if

i.e. (by (2.1.3)) if

6

2v
J

Since T (^tf) = 1, W (4,}) - 0, etc.,

Hence Z is interior to Cb if v > 0, and

f |0+ty|
2 <&< -^. (2.1.7)

J v
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The same result is obtained if v < 0. In each case the sign of 1(1)

is opposite to that of v.

It follows that, if I is inside Cb ,
and < b' < 6, then

&' b T/7\Jr "(*/
I (7 ~j~ '<p I QW <C I C/ p / $$? <C "

J V

Hence I is also inside Cb .. Hence Cb
> includes Cb if 6' < 6. It follows

that, as b -> oo, the circles Cb converge either to a limit-circle or to

a limit-point.

If m = m(\) is the limit-point, or any point on the limit-circle,

b
j/

x

J
"^

v
o

for all values of b. Hence

J \0+m<f>\
2 dx (2.1.9)

It follows that, for every value of A other than real values, (2.1.1) has

a solution ., XN n/ A .
,

belonging to i2
(0,oo).

In the limit-circle case, rb tends to a positive limit as 6 -> oo; hence,

by (2.1.6), <f>(x) is i 2
(0,oo); so in fact, in this case, every solution of

(2.1.1) belongs to 2
(0,oo).

2.2. For a given /?,
I = /(A) is an analytic function of A; in fact

it is a meromorphic function, regular except for poles on the real

axis. For the poles of Z(A) are the zeros of

<(&, X)co&p-\-(f)'(b, A)sin/3,

and this is co(X) in the notation of 1.6.

Also on the circle Cb (if v > 0)

...

I t
z
) <E

v v

6 6

and ^ |Z|
2 f |^|

2
rfa; -

o

Solving for \l\, this gives

1*1

1

+ -+
'dx\
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But the above argument shows that, for a given A, the region of the

/-plane covered by the circles Cb decreases as b increases. Hence l(\)

converges boundedly in any region entirely in the upper (or lower)

half of the A-plane. Hence its limit m(X) is analytic in either half-

plane.

Since the above right-hand side is 0(l/v) as v -> 0, for any fixed 6,

it also follows that m(A) = 0(l/v). Hence, if m(A) has poles on the

real axis, they are all simple.

We shall assume in this chapter that the only singularities of m(X)

are poles. Let them be A
,
A

1?
A2 ,...,

and let the residues be r
,
r
l9

r
2 ,... .

2.3. LEMMA 2.3. For any fixed complex A and A'

lim W{ifj(x, A), 0(s, A
7

)}
- 0. (2.3.1)

X~><X>

Since 6(x,A)+l(A)(f)(x,A) satisfies at x = b a boundary condition

independent of A,

^(,A)+/(A)^,A),%,A
/

)+/(A
/

W(a?,A
/

)}
- 0,

i.e.

JW*,A)+{J(A)^^ - 0,

i.e.

(x, A), #*, A')}+{Z(A)-m(A)}W*, A), 0(ar, A')

+{Z(A)-m(A)}{Z(A')-m(A')}JW(*, A), <f>(x, A')}
- 0. (2.3.2)

Now b

(x,X),t(x,X')}
= (A'- A) J #3, AM*, A') dx

as b -> oo, A and A' being fixed. In the limit-point case

|J(A)-m(A)| < 2rb = ( f \^(x,X)\
2

[
o

so that lim {l(\)m(X)}Wb{^(x, A), 0(a;, A')}
= 0.

This also holds in the limit-circle case, if Z(A) -> m(A), since then
b

I \<f>(x,X)\
2 dx is bounded. Similar arguments apply to the other

o

terms in (2.3.2), and (2.3.1) follows.
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2.4. The following general lemma on sequences of integrals will

be used.

LEMMA 2.4. Let fv(x) be a sequence of functions which converges in

mean square to f(x) over any finite interval, while

for all v. Then f(x) is L2
(Q, oo), and if g(x) belongs to L2

(Q, oo),

OO 00

lim ( fv(x)g(x) dx =
\f(x)g(x)dx.

V-+CO " "

We have
JL JL

i [f(x)\
2 dx = lim

j
\fv(x

J v >-oo

for every X, so that/(#) is L2
(0,oo). Now

If (f-f>)9 dx < f|+ fJ J I J
1 ' X

! +

The second term can be made less than any given e, for all v, by
choice of X. Having fixed X, the first term tends to zero as v -> oo,

and the result follows.

2.5. By (2.1.2)

b

(A' A)
j

i/t(x, X)ifj(x, A') dx = WQ{I/J(X, A), ifj(x, A
7

)} Wb{t{j(x, A), ifj(x, A')}.

The first term on the right is

{cos a+m(A)sin a}{sin a w(A')cos a}

{cosa+m(A
/

)sina}{sina w(A)cosa) = m(A)m(A
/

),

and, if A and A' are not real, the second term tends to zero as 6 -> oo,

by Lemma 2.3. Hence

fi/ *\i/ v\^ m(A) ra(A') /O fci\
I

i/j(x, A)if/(xt A ) ax = ~
^-^

~. (2.5.1)

o
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In particular, taking A' = A,

|fla,A)|'fa=-^, (2.5.2)
l/

so that the case of equality holds in (2.1.9).

Now let Xn be an eigenvalue, and let A' = Xn+iv9 v->0. Then

for any fixed X
x

j | vt(x, A')+rn <(>(x, AJ |

2
dac ~> 0.

For the left-hand side is

x

j \vB(x, \')+{vm(\')+irn}<f>(x, \')-irn{<f>(x, \')-<t>(x, AJ}|* dx

and each of the three terms obviously contributes zero to the limit.

Also, by (2.5.2),
00

J \v$(x,\
r

)\* dx < \vm(\')\ = 0(1)
o

as v -> 0, since the pole of w(A') at Xn is simple. On multiplying

(2.5.1) by iv/rn , making v -> 0, and using Lemma 2.4, it follows that

<(>(x,
Xn ) is

2
(0, oo), and

J t(x, \)<f>(x,\n ) dx = j-L-. (2.5.3)

o
n

If A tends to a different eigenvalue Am ,
on multiplying (2.5.3) by

iv/rm arid making v -> 0, we obtain

AB)*B = 0. (2.5.4)

If A tends to the same eigenvalue Aw ,
it follows similarly that

--. (2.5.5)

o
Tn

Hence the functions

0(*) = -i^,A) (2-5.6)

form a normal orthogonal set.

(2.5.3) can now be written as

00
*

f $(x, AW-n(x) dx = -Is-. (2.5.7)
A~A
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2.6. The function O(#, A). Let/(*/) be L2
(0,oo), and

X 00

0(ar,A) = j(x,X) J ^(y,A)/(y) rfy +#*,A) J tf(y,A)/(y) rfy, (2.6.1)

X

where < and ^ are the functions defined above. Then, for every #,

<[>(#, A) is an analytic function of A, regular for I(A) > or I(A) < 0.

Also, iff(y) is continuous,

d>'(*, A)
= f (x, A) J(y,A)/(y) rfy +f (x, A) J ^(y, A)/(y) rfy

and

<'(*, A)
=

^'(ar, A) J%(y,A)/(y) rfy +#'(*, A)
/V(y,A)/(y) rfy

. (2.6.2)

Thus O(o:, A) satisfies the differential equation suggested by 1 .3-1 .4;

and

<D'(0,A)
= f(0,A) t(y,X)f(y) dy,

so that O satisfies the boundary condition

<D(0, A)cosa+O
7

(0, A)sin a = 0. (2.6.3)

If Q>x(x > A) is the corresponding function with/(y) for y > X,
then

x X
<&*(*, A)

=
fl(ar, A) J #(y,A)/(y) rfy +#(a:,A) J %,A)/(y) dy +

This is clearly regular everywhere except at A = A
,
A1? ..., where it

has simple poles with residues

4957
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Let C denote a rectangle of the form

& < R(z) < fz , -T} < l(z) < ,,

excluding all \H 's. If A is in C,

Now Ojf (#, A)
-^ O(x, A) if A is not real; and as v = I (A) ->

0^,A) = 0( U(y,A)/(y)dy)
=

o( f |^,A)|*rfy)*
= 0(tr)

l x j 1 '

by (2.5.2), if A tends to a value not an eigenvalue. Hence making
X -> oo we obtain by dominated convergence

. . .. 1 C<b(x,z) ,

**.A) = s-. -i-Y<fe.2iri J z A
C

It follows that <$(x, A) is analytic throughout C, i.e. that the functions

so denoted in the upper and lower half-planes are analytic continua-

tions of each other. If C includes a point An ,
we find similarly that

$>(x, A) has a simple pole at A,,, its residue there being the limit of

the residue of O Ŷ (o:, A), i.e.

00 00

*Vi00Mn) J <l>(y>*n)f(y) dv = M*) / $n(y)f(y) dy = cn<A-

2.7. The following two theorems will now be proved.

THEOKEM 2.7 (i). Letf(x) and

L{f(x)}
= q(x)f(x)-f"(x)

be i2
(0,oo); fe /(0)cos+/

/

(0)sina - (2.7.1)

anrf Km W{*fi(x, A),/(a:)}
- (2.7.2)

#->oo

/or every non-real A. TAen-

/() = l^^n (a:) (0<a:<cx)), (2.7.3)

<7ie 5erte5 6ein^ absolutely and uniformly convergent in any finite

interval.

THEOREM 2.7 (ii). Letf(x) be i2
(0,oo). Then

f {/(*)}&= | c. (2.7.4)
J w-O



2.7,2.8 THE SINGULAR CASE: SERIES EXPANSIONS 27

Either theorem can be used as a means of proving the other. We
shall first prove 2.7 (ii) and deduce 2.7 (i), and then give the alter-

native procedure.

We require a number of lemmas.

2.8. LEMMA 2.8. Iff(x) is any function o/I>
2
(0,oo),

OO GO

J
\<S>(x, A)|

2 dx < 1
J |/(a,-) I* dx. (2.8.1)

Suppose first that f(x)
= for x ^ X. Then the 'condition of

self-adjointness
'

GO OO

J (x, X)IA>(x, X) dx -
J <!>(#, A')O(a;, A) dx (2.8.2)

is satisfied. For

f

I {<&(x, X)LQ>(x, A') O(#, A')^O(^, A)} rfe

f

- -
J {O(a?, AJO^ar, A'J-O^, A'JO^rr, A)} rte

o

=
-[<D(.f, A)<D'(x, A') -0(a;, A')<I>'(*, A)]J.

The integrated term vanishes at x = 0, since

<1>'(0, A)
= COS a I

*/f(f/,/

The integrated term at x = tends to as -> oo, since, if x > X y

x

o

x

and the result follows from Lemma 2.3.

Putting A' A in (2.8.2), and substituting from (2.6.2), we obtain

00 00

J *(,A){A"<D(a:, *)-/()} dx -
J <S>(x,\){\<I>(x,X)-f(x)} dx,
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00 00

i.e. (A-A) J |O(z, A)|
2 dx =

j {O(s, X)-O(a, X)}f(x) dx.

Hence, if A u-\-iv, v > 0,

oo oo

2w
J !*(*, A) |

2 dx < 2
| !<&(*, A)/() |

dx

oo oo

Hence f |O(a;, A)|
2 dx < -- f \f(x) |

2
dx,

o o

the required result in the restricted case.

If now f(x) is any function of L2
(0 3 oo), and the above functions

are distinguished by a suffix X,

A" X'

lim
|
\<$x(x,X)\

2 dx ~ f |O(a;, A)|
2 dx

A-K
Q o

by uniform convergence, for a fixed X' . Now

A"' oo

r r
I I CO i T1 A 1 1

u n "T* '^ I (I) f i* Ail" ^7'i*
I I Mr7 "V" l*v, /XJ\ \AjJj ^<^ I |*^_"V V > / w**/

The result therefore follows on making first X -> oo, then X' -> oo.

2.9. LEMMA 2.9. // f(x) satisfies the conditions of Theorem 2.7 (i),

then

*,A)}, (2.9.1)

O* depends on Lf in the same way as O depends onf.
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We have
X

J
<(</,

M</)/(2/)-/"(2/)}<%) dy

on integrating by parts twice; and the integrated term vanishes at

the lower limit, by (2.7.1). Similarly

+
oo

I J {i(y)f(y)-f"(y)}t(y) dy,

and the integrated term vanishes at the upper limit, by (2.7.2).

Substituting in (2.6.1), the result follows.

If G(x,y,X) denotes the 'Green's function'

G(x, y, A) ifj(x, A)</(?/, A) (y < x), <f>(x, A)0(y, A) (y > x),
00

then 0(, A)
=

J G(x, y, A)/(y) rfy,

00

,A)
=

J G(x,y,X)L{f(y)}du,

and (2.9.1) is
,

/(*) =
J"

G(x, y, A)[A/(j/)- L{/(y)] rfy. (2.9.2)

2.10. LEMMA 2.10. ///(a;) is Z,
2
(0,oo),

This is the 'Bessel's inequality'. We have

< {/(*)- I cMx)}*
dx

J \ n-0 }

-
f {/(*)}' rfx + fc-2 f CB
J n=0 ^0

for every N, and the result follows.
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2.11. LEMMA 2.11. Let F(\) be an analytic function of A = u+iv,

regular for r < u < r, r < v < r, and fe

in this square. Then

3Jf
, n ^ ^ x

(u = 0, r < # < r).

Let (A)

On the upper and lower sides of the square

\0(X)\ < (|A|
2+r2

) < 3rM.
r

On the left- and right-hand sides

Hence \G(X)\ < 3rM throughout the square. Hence on the imagi-

nary axis

I mil < 3rM - 3rM < 3M
I^WI -

|

A2_r2
|

~
v2+r* ^ r

2.12. Proof of Theorem 2.7 (ii). Suppose first that f(x) satisfies

the conditions of Theorem 2.7 (i), and also that/(#) = for suffi-

ciently large values of x. Let

0(a:,A)cb;, (2.12.1)

this being really an integral over a finite range. Then X
F(A) is regular

except for simple poles at the points An , where it has residues

c*

o

By (2.9.1)
00 OO

VpV\\ ___
A

I / /Y/rVl2 /7/r ! I rf)*/'^ >^ f^^ //'y /9 1 9 9\X (A)
-

i iJ(X)} ax -j-
-

i w (x,A)j(X)ax, (z.iz.z)

and the last term is

o o

by Lemma 2.8, applied to Lf.



2.12 THE SINGULAR CASE: SERIES EXPANSIONS 31

Let C(R) denote the contour formed by the segments of lines

(R i, R-\~i) and (
E i, R+i), joined by semicircles of radius R

and centres i. Then

f Y(A) dX

OCR)
-R<Xn<R

if none of the Xn is equal to

On the part of the upper semicircle in the first quadrant, we have

Hence the last term in (2.12.2), integrated round this quadrant, gives

A similar argument applies to the other quadrants. Hence the

integral of Y(A) round each semicircle tends to

00

TTI
j {f(x)}

2 dx

as R -> oo. To prove the theorem for the class of functions con-

sidered, it is therefore sufficient to prove that

R K
lim f T(A)dA-0
*-"*> R-i

and a similar result with .R in place of R.

Let

Then x(A) is regular for Rl ^ A < ^2+1, and

K.I. ^
,1
+R 2111

where c(R) -> as R -> oo. Hence, by Lemma 2.11,

on the segment (7? i, .R+fc')- Hence

lim
I

^(A) dX = 0.
JR-" R-i
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R+i

R-i

since the path of integration can be replaced by a semicircle on the

side opposite to Xn ,
and on this semicircle the integrand is bounded.

Hence

R+i

f y ^dx^oi 2 4)
= o(i).

- A n ^-KA^B+I >

This proves the theorem for the special class of functions.

Now letf(x) be any function of L2
(0,oo). Then we can determine

a function f (x) of the special class such that

Let y ==
f ^ (#)/()(#) dx.
J

Then

jv ^ F o
N N

**

~
N

dx

By what has been proved, the last bracket is less than e ifN is large

enough. Hence

and also
CO OO

jtj-

< 2
f {/(x)-/ (x)}

2
rfa; + 2 f (/(*)- ^ y<A(^]

J J i n=0

{/(*)}

of

if iV is large enough. Hence

Combining this with Lemma 2.10, the result follows.
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It also follows that, if g(x) is another function of L2
, with 'Fourier

coefficients' dn , then

00 OO 00

jf(x)g(x) dx=%j {f(x)+g(x)Y dx -i J (f(x)-g(x)}* dx

= cn dn . (2.12.3)
n=

This formula is also true for complex functions /(#), g(x), by separa-
tion into real and imaginary parts.

2.13. Deduction of Theorem 2.7 (i) from Theorem 2.7 (ii).

From the formula

- W{t(x, A), ftx, AJ}-Wbty(x, A), <f>(x, AJ},

and (2.5.3), it follows that the second term on the right-hand side

tends to as b -> oo. Hence we may take f(x) = iffn(x) in (2.9.2),

which gives

f G(*,y,X)tn(y) dy = ^. (2.13.1)
o

A~~A*

Also G(x, y, A) is L2
(0 ^ y < oo), for a fixed x y and A not real. Hence

l*J

2 (2.13.2)

is convergent.

Now let/(#) satisfy the conditions of Theorem 2.7 (i), and let

g(x) = \f(x)-L{f(x)}.
If A is not real

OO 00 00

J t(y, *){/(</)} dy = jf(y)L{^(y, A)} rfy
= A

J 0(y, A)/(y) rfy.00
Put A = Xn+iv, multiply by v, and make v ~> 0. Using Lemma 2.4

as in 2.5, we obtain

J

4957
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Hence, if dn is the 'Fourier coefficient' of g(x),

dn = (A-A,X, (2.13.3)

and 2 |A-AJ
24 (2-13.4)

is convergent.

From (2.9.2), and (2.12.3) with f(y) replaced by (?(#,*/, A), it fol-

lows that
00

/(*)
=

JG(x,y,)()g(y)dy

Z<l>n(*.A=;

n==0

the required result. The absolute convergence of the series follows

from that of (2.13.2) and (2.13.4).

2.14. To prove Theorem 2.7 (i) directly, the following lemma is

required.

LEMMA 2.14. If f(x) is L2
(0,oo), x is fixed, and v = 0,

The formula

t

J (Z-yY(y-xW
X X

is at once verified by integration by parts. The left-hand side is

equal to

Writing C=
[j {/(*)}<&]'

we have

(

$(f-*)3

J
X

;<-*){/*/
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by Lemma 2.8. Similarly

Hence
4Cf

The result follows on taking #

2.15. Proof of Theorem 2.7 (i). The absolute convergence of

the series (2.7.3) is first proved as in 2.13. This depends on Lemma
2.10 only, not on Theorem 2.7 (ii). Now

f Ofc, A) dX - 2iri 2
C(fi)

-R<X
(x), (2.15.1)

where C(R) is the same contour as in 2.12. By (2.9.1), and Lemma
2. 14 applied to $*,

f{v\ i i \

(2.15.2)

The integral of the last term round the semicircles tends to zero, as

in the case of the corresponding term in 2.12. Hence the contribu-

tions of the semicircles to (2.15.1) together tend to 27rif(x) as R ~> oo.

Hence finally it is a question of proving that

R+i

lim f <3>(x y X)dX->0
R->c R

J
~i

(and similarly for R). Let

A "^^a A-AA

'

Then i(A) is regular for R 1 ^ A < 12+1, and

/ 1 \ /I \. *

as u -> oo. Hence by Lemma 2.11
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uniformly for 1 ^ v < 1. Hence

R+i

J <Q(A) d\ -> 0.

R-i
Also

R+i R+i

j I
c^*= I

/
. ,^ ^r,,, n -

flli R-l^n^R+l

This completes the proof.

2.16. Deduction of Theorem 2.7 (ii) from Theorem 2.7 (i).

Let f(x) satisfy the conditions of Theorem 2.7 (i),
and let

N

71=0

'

N(x) ->f(x) uniformly over any finite interval, and

{/*(*)}'** =
o
J w

Hence by Lemma 2.4

oo co

lim f fN(x)f(x) dx = f {/(ar)}
AT-oJ J

i.e. lim c=

This is the required result for the special class of functions. The

general result then follows as in 2.12.

2.17. THEOREM 2.17. // f(x) is i2
(0,oo), and A is not equal to any

The series is absolutely convergent. This follows from Lemma 2.10

and the convergence of (2.13.2), if A is not real; and the result, proved
for any A, clearly follows for all A.

Now consider the integral

1 z-Â
dz
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and proceed as in 2.15. By Lemma 2.14

l|z|*|I(z)|/'

Hence the integrals round the semicircles tend to zero. The proof
is then completed as in 2.15.

2.18. The interval (00,00). Now consider the case where the

interval extends to infinity, or has a singularity, at each end. We
actually consider the case where the interval is (00,00), and q(x)

is continuous for oo < x < oo.

Let
<f>(x, A), 0(x, A) be the solutions of (LX)y = such that

0(0) - 1, 0'(0)
= 0.

Then W(<f>,0)
= 1.

By the previous theory, there are functions mx(A) and w2 (A),

regular in the upper half-plane, such that

&(*,A) - 0(x 9 X)+ml(^(x 9 X) (2.18.1)

is L2
( oo,0), and

2 (a?,A)
- %,A)+m2(A)^(^,A) (2.18.2)

is i2
(0,oo). Then

As in 2.5
oo

J \^(x,\)\
z dx =^ J |^(*,A)|dii:

= -^.
- oo

(2.18.3)

Hence !(/%) > 0, I(w2 ) < >
f r ^ > 0.

Let

(2.18.4)

oo

and *(*,*)= J0(x,y,\)f(y)dy,
00

where / is the arbitrary function to be expanded. The expansion
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will reduce to a series if both m-^A) and w2 (A) are meromorphic
functions. We have

X

f

J

0<aj} J
oo

(ii) mx (A) and w2 (A) both have simple zeros,

Then O(o:, A) has the residue

1 r

f^l 1^2 v
CO

(iii) m^X) and m 2(X) both have simple poles,

I

v >__/_

(2.18.5)
There are three possibilities:

(i) At an eigenvalue Xn , w<i(Xn )
= w*2(AM )

=
/x,

Then <t>(x, A) has the residue

Then O(a?, A) has the residue

*, An )

Ml"^

The theory of this case is much the same as that already considered.

Suppose in particular that q(x) is an even function. Then
(f>(x, A)

is an even function of #, and 6(x, A) is an odd function. It follows

that, if 0(s,A)+m2(A)e(a;,A) is i2
(0,oo), 0(z,A)-ra2(A)<(o;,A) is

L2
( oo, 0). Hence mx (A)

= m2(A). All eigenvalues occur under

(ii) or (iii), and each eigenfunction is either odd or even.
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Ill

THE GENERAL SINGULAR CASE

3.1. We now consider the same problem as in the last chapter, but

we no longer make the hypothesis that ra(A) is a meromorphic func-

tion. All that is known so far is that it is an analytic function of A,

regular in the upper half-plane, and that Iw(A) < 0.

We proceed formally as follows. Defining <&(#, A) as before, it can

be proved that

f
i ^T* \

"^i ITT J
*'

V
\ t, . i

where S > 0. It is then a question of the behaviour of this integral

as 8 -> 0. Now

(x, A)
= MX, A) J ^(y, *)/(y) dy + M*. A

) J <%>
x

X

,ty f My>^f(y) */ +

oo

, A) J {%, X)+m(\)My,
JL>

We shall prove that
A

lim
I
{ Iw(w+iS)} du = &(A),

where &(A) is a non-decreasing function of A. Hence we obtain

formally

[
i

R
T i

~*_JL*
(*'

j

[I/*

1

f
V J J

P
R+i8 oo ,

+ 1 -- f <f>(x, A) rfA
f {%, A)+m(A#(y, A)}/(y) rfy

77 J JL
-JF?4-tS x J

oo oo

if r

7T J J77

oo



40 THE GENERAL SINGULAR CASE Chap. Ill

as R -> oo, 8 -> 0, since 6(x, A) and <f>(x, A) are real for real A. Hence
the expansion formula involves Stieltjes integrals, and is formally

/() = i
J +(x,\) dk(\)

J
#y,A)/(y) dy. (3.1.1)

oo

oo

If we write jr(A)
-

J #y, A)/(y) rfy, (3.1.2)

o
oo

then (3.1.1) is /(#) = - f ^(s, A)gr(A) d*(A). (3.1.3)V J

lso
~

oo oo oo

J {f(x)Y dx .=
i f /() <fe

J
<(*,

Also

= 1
J

flr(A) (tt(A) J ^(*, A)/(ar) <e = i
J (3.1.4)

oo

This is the 'Parseval formula'.

Now consider the interval (00,00) instead of (0, oo). In this case

O(#, A) is given by the formulae of 2.18. We obtain

A

f i
lim I du = (A), (3.1.5)

o

lim I 4\^~V ~*s\
^u ~ ^A )' (3.1.6)

o

lim I *

^Tir~
2

''/^T7^\
^ "

(
A

)> (3.1.7)

o

where |(A) and ^(A) are non-decreasing functions of A, and ^(A) is of

bounded variation. Now

I <D(;r,A)dA

[
* J J

77 J ^lW ^(A) JL -+i8 -oo J

jK+io oo ~,

i /* /?^'v i \ i /vyj I\\A\(V \\ r
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Proceeding as before, we obtain formally the expansion formula,

OO CO

/(*) = 1
J

6(x,\) d^(\)
J %,A)/(y) dy +

oo oo

00 00

+ 1
J

0(a?, A) dr,(A) J 4(y,X)f<y) dy +
00 00

00 OO

+ 1
J #a;,A) dr?(A) J %,A)/(y) dy +
00 00

oo oo

+ 1
J f(x, A) d(A) J #y, A)/(y) dy. (3.1.8)

00 00

Writing
00 00

?(A) =
J
%, A)/(y) dy, A(A) = J <f>(y, A)/(y) dy, (3. 1 .9)

oo oo

this is equivalent to

oo oo

/(*) = i
J

0(*,A)sr(A) df(A) +^ J
0(*,

+ -
f#(^A) flr(A)rfi?(A)+- f^,A)A(A)dJ(A). (3.1.10)
J 7T J
-co oo

Multiplying by f(x) and integrating again, we obtain the Parseval

formula

J {/(*)} dx =
f

(sr(A)}2 df(A) +^ J
jr(A)A(A) d,(A) +

oo oo oo

oo

+ -
f{A(A)}dC(A). (3.1.11)

77 J
oo

In many cases these formulae take a simpler form. Suppose, for

example, that ^(A) tends to a real limit as I (A) -> 0, so that

is L2
( oo, 0). We then have formally

drj(u)
=
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Hence (3.1.8) reduces to

oo

12)/(*) = I
J fax, A) #(A)

J
&(y, \)f(y) dy. (3.1.

oo oo

Again, consider the case where q(x) is an even function. As in

2.17, this involves ^(A) = w2(A). Hence

m^A) m
2(A)

~~
2

and ??(A)
= 0. Hence the expansion formula is

+/(*) = i
J

6(x,\) dt(X)

oo oo

00 OO

+ i
J

fl*. A) dm
J t(y,\)f(y) dy. (3.1.13)

3.2. To justify the above formulae, we first prove two lemmas.

LEMMA 3.2. For any fixed u and u2

ut

jl{m(u+iv)}du (3.2.1)

Ui

is bounded as v -> 0.

Consider first the case of a finite interval (0, 6), with given boundary
conditions at the ends. Let An ft , $nj>(x) be the eigenvalues and eigen-

functions. Let Z(A) be the function so denoted in 2.1-2.2, and let

rn)b
be the residue of /(A) at Xnb . Since the formulae of Chapter II

hold in particular in this case (or may be verified directly),

J (0(x, A)+W(*, A)tyn ,6 (*)
=^- (3.2.2)

by (2.5.7). Hence the Parseval formula gives

J \B(x, A)+TO(x, A)| *dx = J
Taking A = t, the left-hand side is bounded as 6 -> oo, by the analysis

of 2.1; e.g. in (2.1.6) 1(1) is bounded as 6->oo, by the property of

the circles (76 ,
and v = 1. Hence

oo

V
n4

is bounded as 6 -> oo.
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Also, by (2.10.2) applied to the finite interval (0,6), and (3.2.3),

Hence
'

J
- .W) *, _'

|,M J^ i

02
I
v

Let 2V < Ui < u2 < 2V, where N > 1. Then if |An>6 |

\uXn J > iAM fc . Hence

vdu
~

. fdi
J ^n,b
Ui

[f |AB>6 |
< 2N,
W oo

f ___vdu _ ^ (
vc

J (^ ^,fc)
2+^2 ^

J (u ^n,

Hence
J I{/(A)}rfw

s less than an upper bound independent of 6 and v. Since Z(A) -> w(A)
is 6 -> oo, the result follows.

3.3. LEMMA 3.3. The function
A

Jc(X)
= lim

J I{w(w+tS)} dw (3.3.1)

K

!#&te /or a// /c and A except possibly for values belonging to an

numerable set; k(\) is a non-decreasing function, and
A A

lim f -I{if*(x,u+i8)} du = f <f>(x,u) dk(u). (3.3.2)
8 >o ^ J

t follows from the above lemma and (2.5.2) that as v ->

JrfM J \t(x,\)\*dx =
0/JJ

(3.3.3)

MI
^

or fixed wx and u2 . Now by (2.5.1), with A' = i (or any fixed value)
CO
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Hence

,

J |m(A)| du <
{(tea-%) J \m(X)\* du\* - 0(tr). (3.3.4)

W,

ua

Hence f dfe
|
|w(A)| du

1

is finite, and so f \tn(X)\ dv (3.3.5)

o

exists for almost all u.
A

Let M(X) = J m(z) dz.

i

Then M(\) tends to a limit as v ~> for almost all u. Let UQ be

a value of u for which (3.3.5) exists. Then

Wo+i Wo+iv u+iv \

(Wo+i

Wo+iv u+iv \

J
+

/
+ /

i ii ~K Woiiv

and the first term is constant, and the second term tends to a limit,

as v -> 0. Hence the last term also tends to a limit. Taking imaginary

parts, the existence of k(X) for almost all A follows. Since -

Ira(A) ^ 0,

k(X) is non-decreasing.

Actually the limit (3.3.1) exists wherever k(X) is continuous, i.e.

except in an enumerable set. For at such a A we can find
77
and

77'

such that

and such that the limit exists at X+TJ and A r/. Hence
A A|T;

J -I{m(u+iS)} du <
J I{m(u+iS)}du<

\rj' X7)'

for 8 < S . Hence

A

j
I{m(u-\-iS) m(u-\-i')} du

i8' du

A A

+
J I{m(u+i&)} du

j I{m(u+i&')}du

if 8 and 8' are sufficiently small. Hence the result.
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Now suppose that k is continuous at K and A. We have

A A

J
\*f*(x, u-\-iv) du = I

)
[0(x, u-\-iv)-{-m(u~{~iv)(f)(x, u~\-iv)} du

K
X

=
J I{0(x, u+iv)} du + f R{m(u+iv)}I{<l>(x, u+iv)} du +
K K

A

+
j

Since #(#, w) and <(#, u) are real for real u, I6(x, u-\-iv) and I((#, u-\-iv)

are 0(v), uniformly with respect to u over a finite interval. Hence

the first two terms tend to with v (using (3.3.4)). The third term is

A

\IM(u+iv)R<}>(x y u+iv)\
X

K
{ lM(u+iv)R<f> u(x,u+iv) du

K

A

Cftu(x, u) du
K

=
I

<f>(x, u) dk(u).

The process is justified since I7lf(A) is bounded, by Lemma 3.2.

A

3.4. Let x(#,A) t <f>(x,u)dk(u). (3.4.1)

K

Now
J { J ty(a, ^+i^)

dwJ

2

d < X, (3.4.2)

\K '

where K is independent of v, if K and A are in a fixed interval. For by

(3.2.2)

6 A

J $n t b(
x

) dx J tyb(x >
U+ IV) du

K
A

-vdu
""

Hence the Parseval theorem gives
6 , A

f
(

f I^(ar,+it;) du\'dx - *f ~' 2̂
= 0(1)

l (J
K

> ^ (
A ,6+ I

)

by (3.2.4). The result follows on making 6 -> oo. Making v -> 0, it

follows that xfo A) is L2
(0, oo).
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Let/(a;)bei
2
(0,oo). Then

oo

exists, and is a bounded function of A in any finite interval.

Now consider

if i T*/I Ofa,,

[
?r J

p
JR+iS x -.

= I\~ f t(x, A) d\ f #y, A)/(y) dy\ +
\

K J Ju
-JfM-iS

J

r +i8 oo TIf T I+ 1 <f>(x,X)d\ My, A)/(y) rfy . (3.4.4)w J J1
-fl+iS x J

Now

as S -> (for x and y in fixed intervals). Hence (3.4.4) is equal to

[x2+io

oo
-j

-1
J #*,A)cttJfly,A)/(y)dy

-

-JKi-i8
^

as S -> (^ fixed). Next

*2+iS ^

I U(x, A) c

J
-H+iS

0(8) Jdw J |^(y,+8)/(y)| dy
-R

= 0(8)1 J ( J
^-fl^o

=
0(8)1 I du I

\tff(y, ii-}-i8)\
2
dy]

~ 0(S*)
\ J J /
x- o '

by (3.3.3). Similarly

^ oo

f fr o r

J^
X,+ *,

J
(y y_ ( ).
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Hence (3.4.4) is equal to

R

-~
J

<(*, u) du
J I^y, u+i8)f(y) dy + 0(8*). (3.4.5)

-R

o oo A

fdu J -Iif>(y,u+iS)f(y) dy = j f(y) dy J

-R
Now

A

as 8 -> 0, by Lemma 2.4, uniformly over a finite A-range. Hence,

integrating (3.4.5) by parts, we obtain

[U
oo -.R

r f .1
(f>(x,u) I du' I I0(y, ^'+*8)/(y) cfo/

J J J
*

J
-I2

72 u oo

if f ' f

w J
u '

j j
R K

1 R i r

7T
' ~R

77 J
-12

If g1 is of bounded variation, this is equal to the Stieltjes integral
R

i r
I <j)(X) u) do-J(u\. (3.4.6)

77 J
Tf

3.5. We now require the following theorem.

Let
(f>(\)

be an analytic function of A = u+iv, regular for v > 0.

Let it be bounded on each line v constant, and let its maximum
modulus on the line tend toOasv->oo. Let <(A) = p(u, v)-\-iq(u, v), and

f \p(u,v)\ du^M (v> 0). (3.5.1)

00

Then there is afunction p(t), of bounded variation in (00, oo), such that

>0). (3.5.2)
7^^ J t

OO

u,

Also lim I p(u, v) du = p(u2)p(u1 ) (3.5.3)

for all values of u and u2 .
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Integrating <f>(z)l(zX) along the straight line (B-{-iyy R~\-iy) and

round the semicircle above it, where < y < v, and making B -> oo,

we obtain
R+iy

#A)=-Llim f tW dz . (3.5.4)
2mR-+ao J Z \

-R+iy

RHy

Similarly = -1

-. lim f ^- dz, (3.5.5)
27TlR-+ao J Z A

-R+iy

where A' = u-\-i(2y v). Subtracting the conjugate of (3.5.5) from

(3.5.4),

W) = i I *PA,dx. (3.5.6)
TTI J x+iyX

CO

From this and (3.5.1) it follows that

\p(,y)\ d
vvy

oo

and making y -> |^(A) | < . (3.5.7)
TTV

Now let x

dz = pl(u 9 v)+iql(u 9 v) 9

A

dz = P*(u> v)+iq2(u, v).

By (3.5.7), ^X (A)
=

O{log(l/i;)} as v -> 0, uniformly over a finite

^-interval. Hence ^2(^) tends to a limit as v ~> 0, uniformly over

a finite ^-interval. This limit
<f>2(u)

= p 2(u,Q)-\-iq2(u,Q) is thus a

continuous function of u.

.

Now <^(A) - -i
J $(iy) dy + j (f>(x+iv) dx,

v

1 u

i(u, v) = J }(0, y) dy + jp(x, v) dx

o

and hence ,

1

=
J<?(>2/)% +
V
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where M

X(UyV) =
J
{IM^l+X^)} a?,

o

For each v, the functions x and <*> are positive non-decreasing func-

tions of u, and x ^ ^> w ^ ^- Let

Then

, v, h) = . -!
.

h

P(u,v,h) = -
J
jp^

w
i

=
J ?(

where
w-l-fe M } 7i

Xl(u,v,h) ~= - x (
x

>
v

)
dx > <>iKv,A) = -

I w(a?,t;)da:.

w -u

For given w and v, the functions ^ and o>x are non-decreasing func-

tions of A, and I^-J ^ M, |o> 1 |

$C Jf. Hence if (hVJ
hv -}-S v )

are any

non-overlapping intervals,

1(u,v,hv+Sv)-a>1(u,v,hv)} < 4.M.

Making v -> 0, it follows that

Hence P(u, 0, A) is of bounded variation, and so tends to limits as

A->0. Thus ^2(^,0) has everywhere right-hand and left-hand

derivatives ^2,+(^> ^) and P%t-(u>, 0). Also

Making v -> 0,

This is bounded in any finite interval. Hence p^u, 0) is absolutely
4957 rr
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continuous, and so is the integral of its derivative, which exists

almost everywhere.

Further, Xi an(i wi are non-decreasing functions of u, for given

h and v. Hence, if (uv,uv-{-Sv) are non-overlapping intervals,

2 lP(uv+8v,v,h)-P(uv,v,h)l < 4M.
V

Making v -> 0, then h -> 0, it follows that p'2t+(u, 0) and p^(u 9 0)

are of bounded variation in (00, oo). Let

Integrating (3.5.6) by parts,

l
f yifoy) ^_ 2

f ^(*>*= 5 J (S+<FA)
d

-' J (-+

the integrated terms vanishing since ^(x, y) 0(1), p2(^ 9 y) = 0(x)

for fixed /. In the last formula we can make y -> 0, and obtain

OO

To justify this step, we observe that

a"

'-< W+lVv / ,x

+ J U(z)fe=0()+01ogi
t w-|-i

' ^ '

by (3.5.7). Hence

Pt(u,v)-pt(u^) = R
j Wu+iy) dy - o(^(^+log

(3.5.9)

o
I \

Hence as y ->

P^^P^O) dx==0
J (ar+ty-A)

3

QO

J {(i+^Ap-^=
since p2(x,Q) = O(o;), by (3.5.9) with v fixed.

Integrating (3.5.8) by parts,

: A)
2

vri J (x A)
~oo oo

and (3.5.2) follows on integrating by parts again.

(3.5.10)
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Since (3.5.10) is uniformly convergent, on integrating over (uv u2 )

and taking real parts we have
ttt 00

p(u,v)du - I-- ~----- ------ - z\p(x) dx.
J
^ J

77 J {(x-utf+v* (x-ujt+v*!^
}

(3.5.3) follows from this by the theory of Cauchy's singular integral.f

3.6. Let /(#), the arbitrary function to be expanded, satisfy the

same conditions as in Theorem 2.7 (i); viz. f(x) and Lf(x) are L2
(0 t oo),

/(0)cosa+/'(0)sina = 0,

and W{f(x),$(x,X)}->Q

as x -> oo for every complex A.

Using the notation of 3.2, and denoting by O6(#, A) the function

corresponding to <!>(#, A) for the interval (0,6), we have by (1.9.3)

where c^b J $ntb(x)f(x) dx.

Hence, as in 3.2,

By (2.13.3), with A = i,

where d
Utb

is the Fourier coefficient of if(x)Lf(x). Now
~ b
00

/ /V 1^7 I
2 <T I liftr} LffrMZ dr <" I IVf^r^ TJf(r\\%rl<r/ (W'wftl ^: I Iv v / / V /I ^i I I v \ / J \ /I

W'**'*

n==0
o o

Also
ifintb(x)/(i~hnib ) is the Fourier coefficient of Gb(x,y 9 X). Hence

. I /..\ 9 ft

V
: A

n,6
Zv i-A

o

b

a;

f See E. C. Titchmarsh, Fourier Integrals, pp. 30-1.
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Now
i/jb(x, i)

==
tjj(x, i)+{l(i)m(i)}<f>(x, i),

where tf/(x y i) is L2
(Q, oo), and either

<f>(x, i) is L2 and l(i) -> m(i) 9
or

/
. _m . _ Q l r .

2 I'
1

IJ

?

J

Hence, as 6 -> oo,

6 oo

J J

J \0b(x, 2/,i)|
2%

tt,

Hence
J

|IO6(#,A)| rfw < A",

t*i

where K is independent of %, ^2 , v, and 6. Making b -> oo, then

Wj -> oo, w2
-> oo, it follows that

00

j \I(x,X)\ du ^ K. (3.6.1)

oo

From (3.6.1) and (2.15.2) it follows that the conditions of the theorem

of 3.5 are satisfied by the function i(#,A). Hence

(3.6.2),
=

7T J A t

oo

where p(t) p(t,x) is of bounded variation in (00,00).
We can now prove the following theorem.

THEOREM. //
'

f(x) satisfies the above conditions and

A 00

X(x, A) = J <f>(x, u) dk(u), ^(A) J x(y, \)f(y) dy,

K
00

1 f
then f(x) = ~

\ $(x,u) dg+lu). (3.6.3)* J
00

Consider the integral f 3)(x,X) d\ (3.6.4)

taken round the rectangle with corners at jR+i8, jR+i. As in

2.15,
JR-fi

lira
I

O(x,A)rfA = Trif(x).
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Also by (3.6.2)

R0(a,A) = .

Hence
1 oo

RO(o:, B+iv) dv = - (arctan
- arctan- }dp(t)

J 7T J \
R t R t/

8

53

00

-A

~A A

which tends to zero as R -> oo (choosing first A and then R) uni-

formly with respect to S.

On taking the imaginary part of (3.6.4) and making first R suffi-

ciently large, then S sufficiently small, and using (3.4.6), we obtain

(3.6.3).

It is also easily seen that, under the conditions of this section,

gi(u) is of bounded variation in (00,00). If sin a ^ 0,

00

(0,A) sin a
J
o

and (3.6.1) with x = gives
00 OO

J J
oo

UV
\ i

Hence
J J
uv

for any set of uv . Hence
Uv i 1 oo

J"
UV

and making v ->

If sin a = 0, we can argue similarly with 0^(0, A).

3.7. The Parseval formula.

THEOREM 3.7. Let f(x) belong to i2
(0,oo). Then the sequence of

functions n
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converges in mean, with respect to k(X), over (00, oo), to a limit g(X); i.e.

lim

and
j {/(*)} dx = ~

I
fc(A)}

2
dk(\).

-*oo

To prove this, we require the mean convergence theorem for

Stieltjes integrals.

Consider first a finite interval (a, b) in which k(x) is bounded and

non-decreasing, and let there be a sequence of continuous functions

fn(x) such that
b

/ {/(*)-/(*)} dk(x) -> (3.7. 1)

a

as m -> oo, n -> oo.

The function | = &(#) maps the interval a < a; < b on the interval

&(a) < x < &(6) in the following way. If k(x) is continuous, to

each x corresponds just one value of . At a discontinuity, e.g. if

k(xl Q) < &(#!+()), the point xl corresponds to the whole interval

{k(xl 0),k(xl+0)} (open or closed as the case may be). If k(x) is

constant over an interval (xl9
x2 ), every x in the interval corresponds

to the same value of . Thus an inverse function x = x(), of the

same type as k(x), is also defined.

If the function f(x) is measurablef B (in particular, continuous),

the function /{#()} F() is also measurable B. The Stieltjes

integral off(x) with respect to &(#) is then

b k(b)

jf(x)dk(x)= J F(t)d.
a k(a)

Conversely, if F($) is measurable J5, and L{k(a) y k(b)} 9
then

J
k(a)

We can therefore put (3.7.1) in the form

k(b)

k(a)

f See E. W. Hobson, The Theory of Functions of a Real Variable (2nd ed.), vol. 1,

132 and 445-8.
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Hence there is a function F() of L2
{k(a), k(b)} y

such that

k(b)

J {F(f)-Fn(t)}*dt-+0.
k(a)

The usual method of defining this function shows that in fact it is

measurable B. Hence f(x) = F{k(x)} is measurable B, and

The case of an infinite interval can be discussed similarly.

Now let f(x) be any function of L2
(Q, oo). Then we can define a

sequence of functions fn (x), satisfying the conditions of the above

theorem, and zero for x > n, such that

lira f {/(x)-fn(x)}'dx = 0.
n^xJ

A

Then
J
hn(u) dk(u) - J dk(u) J <f>(y, u)fn(y) dy

A

n

say. The above theorem then gives
oo oo

fn(x )
= ~

<l>(x,u) dhltn(u)
= - t(x,u)hn(u) dk(u).

77 J ^ J
oo oo

This integral converges uniformly with respect to x over any finite

interval. Hence the process leading to (3.1.4) is valid, so that

oo
J {/(*

Similarly
00 00

J {/(*)-/.(*)}'<** = i
J
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Hence the functions hn(X) converge in mean square to a limit </(A),

such that
oo oo

J
oo

If 0(X) corresponds in the same way to F(x), we shall clearly have

similarly

J {f(x)-F(x)} dx = I
|

{j/(A)-G(A)} dk(\).

oo

Taking F(x) = f(x) (x ^ n), (x > n), we have G(\) = grn (A). Hence

OO 00

)-<7 rt(A)}
2
dk(X) =-. TT

J {/(*)}* (2x ->

as n -> oo. Thus ^(A) is also the mean square limit of gn (X). This

proves the theorem.

3.8. The interval (00, oo). The rigorous discussion of this case

is similar to that which has been given for the case (0, oo). We shall

indicate briefly how it proceeds.

We define functions ^(^A), 2 (#,A), G(x,y,X) as in 2.18. Let

a,b(
xiy>^)> ^n,a tb> ^n^.bi^ ^e ^ie Green's function, eigenvalues, and

eigenfunctions for the interval (a, b). Then (cf. (2.13.1))

f Ga,b(x,y,Wn>a,b(y) dy
= h#t(*>

. (3.8.!)
J A~"A

w,a,&

Hence the Parseval theorem gives

Hence, as in 3.2,

u* b

_ du

u\ a
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as v -> 0, uniformly with respect to a arid fe, x, uv and u2 being fixed.

Hence u$ ,

j
du

J |(*,*/, A)|
2 */-

Wj oo

Now let x = 0; by (2.18.4)

Hence, by (2.18.3),

i.e. fl( ^
,

u
J WiW-m.WJ

Also it is easily verified from (3.8.1) that

b t

I
Q f

a,b(
x>y>Wn,a,b(y) dy = i i

-

>

i
A-A

n>a>&

where the dash denotes differentiation with respect to x. Arguing
as before, we obtain

1/2

I ctu
j j

(JT (x, y t t

U\ -co

Now

^^ m2

Hence, by (2.18.3),

J

i.e. f l/J^fevv }cfo
= 0(1). (3.8.3)I I

/YYI [ \\ ** /Ail ^ '

It is also easily verified that

( \m : Wg/j
"^

\mr m2/ \m1 m
4957
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Hence

ii__?hPL- } du <
j \mi(\)-mz(\)} ^J
i Ui

^ \ T<
J

i*

The existence of the functions (A), 7?(A), and (A) defined by (3.1.5)-

(3.1.7) now follows as before.

Xl (x, A) - J 0(x, u) d(u), Xt(x, A) - J 0(x, u) dri(u) y

K K

A A

, A) = J <f>(x, u) dy(u), x*(x >
A )
=

J 4>(x >
u)

and gv(\)
= Xv(y,\)l(y)dy (v = I, 2, 3, 4).

Then the expansion formula is

oo

f(x) = i
J

(*,

+0(x,u)

This can now be proved in the same way as before.

3.9. The spectrum. In the case of the x-interval (0, oo) the

spectrum may be defined as the A-set which is the complement of

the set of points in the neighbourhood of which &(A) is constant. If

&(A) is constant in an interval, so are x(x>ty an(^ ffiW (^-^)- Such

an interval contributes nothing to the representation formula (3.6.3)

or the Parseval formula (3.1.4).

If m(A) is a meromorphic function, the spectrum is the set of its

poles. This is called a point-spectrum. On the other hand, an

interval throughout which k(A) increases steadily belongs to the

continuous spectrum.
In the case of the ^-interval (00, oo), the spectrum is the com-

plement of the set of points in the neighbourhood of which all the

functions (A), 7/(A), and (A) are constant.

REFERENCES
Weyl (1), (2), (3), Titchmarsh (6).



IV

EXAMPLES

4.1. In this chapter we consider a number of examples of the above

theory.

The simplest case is the Fourier case, with q(x)
= 0. If the interval

is (0, oo), and the boundary condition at is (2.1.4), then

9(x,X) = cosacps(WA)+A~*sinasin(#VA),

(f>(x,X)
= sin a cos (a;VA) A~ i

cosa:sin(^VA).

The function
ifj(x, A)

= 0(#,A)-f m(A)^(o:,A) must be a multiple of

e^vA if I(A) > 0, since e~MX is not L2
(0,oo). Hence

/N , sin a iVAcosa
m(A) =___ __________

.

cosa-fiVAsina

Hence

(A>0), (A<0)
a 2

a:

and (3.1.1) reduces to

This of course can be verified under the usual conditions for Fourier's

integral formula by direct consideration of the integrand. The general

theorem of 3.6 gives the formula in a comparatively indirect form.

Consider, e.g., the case a = |TT. Then

d(x,X) = A-*sin(o;VA), ^(^,A) cos(o;VA),

A

i(A)
=

J
u-* du (A > 0), (A < 0),

, A)
= f ~* du =

x

o

Thus we obtain Fourier's cosine formula in the form

00 , CO

-, v If
f(x) = -

77 J

7 -, v ,

dl --- ^^-
'f(x) dx\.x
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In the case of the interval (00,00) we have

0(x, A) = cos(WA), +(x, A) = -

ra2(A)
= iVA,

ii(A) wi2 (A)

1

(A > 0), (A < 0),
2VA

Hence (3.1.13) gives

~

-f- I

sin(^VA)^
r si

-oo

Putting A 52
,
this gives the ordinary form of Fourier's formula.

4.2. The Hermite expansion. Let q(x) = a;
2 (00 < x < oo).

We have then to solve the equation

(^-A)y=0. (4.2.1)

Putting y
"iz

ViJ we obtain

A solution of this is

(O-f)

yl
-

J
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where z-*A~* = exp{( A |)logz}, and log z is real at the beginning

of the contour. For this gives
,o , (O-H)

~dx* dx 1
J

-2 f
J

(0-f)

dz = 0.
dz

A solution of (4.2.1) is therefore

(0-f)

^ (a?,A)
= e-**

3

J
e-**-&z-^-* dz.

oo

Since (4.2.1) is unaltered if # is replaced by x, another solution

is< ( a, A).

If we take the above contour so that R(z) ^ 1 on it, then for

a fixed A
fax) - 0(e~**

2

+*)

as a: -> oo. It is also fairly easy to see that < (~~ x) is large for large

positive x'
9
for the maximum of xz %z

2 is at z ==
2a;, which indicates

that the integral is roughly of the order of ex*. It follows that the

functions ^1 (^, A), 2(^> ^) defined in the general theory are multiples

of < (~ #>A), <^ (o;, A) respectively. Let

Then

_ -, , ,
_ .__ TVV-~ \y

0)(\)

Now
(04-)

<^ (0, A)
-

J
e-**V*A-* rf2 -

(
e-^^+*)-l) J

e-*V A-* rf2

oo

= -(l+e-^)2-*A
-ir(i-JA)

for R(A) < 1, and so by analytic continuation for all A. Similarly

Hence

co(A)
= 2^ (0,A)#,(0,
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This has zeros at the points A = 2w.+ l; they are double zeros for

n < 0, single for n > (on account of the poles of the F-function).

But (o;,A) vanishes if A = 2n~}-l (n < 0). Hence G(x,y,X) has

simple poles at A 2n+l (n ^0). Now

(O-f)

Putting z = 2(z'x), this is

*'
f ^

~& } (z'^x)
(x+)

where Hn(x) is the Hermite polynomial of degree n. Also if

A

co(A)
= -(l~e-)

n\

Also
<f> ( x, 2n+l) = A<f> (x, 2n+l), since the Wronskian vanishes,

and A =
( I)"', by considering a;-> 0. Hence the function

has the residues

Hence the normalized eigenfunctions are

4.3. The Legendre expansion. The more general second-order

differential equation

= (4.3.1)
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can be reduced to the standard form as follows. Let

dX

Then +flao-HA-y^r = 0,

where ft*) = =
, y() =

(

Putting F = r(#)y, where

we obtain +{\-^(x)-^(x)-7 (
x

)}y = . (4.3.2)

The general Legendre equation is

=
- (4 - 3 - 3)

Here # = sin"1^, j3(a:)
= tana:, r(x)

= Vseco;, and the equation

reduces to

m2 sec2% - 0. (4.3.4)

4.4. LEMMA.

(277)*r _<**z_ dz=z l~ 2
)
m

J (cosz)
m+*

J...(m i

c

if C is a closed contour including J?r and \TT but excluding the other

zeros of cos z.

Denoting the integral by /m($), we have

,
. f cos(s l)zcosz sin(<s l)zsinz ,

fm(s )
= ~-

. , dz

= f
5?8(?.-zl)? dz+~ f

J cosm~*z m IJ
o c
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Now

. C c-m) =
J

-

and

Hence the result follows.

4.5. The ordinary Legendre expansion. Taking m = in

(4.3.4), the corresponding basic equation is

- (-> < x < |TT). (4.5.1)

Putting y = FVcosa;,

Putting x = g JTT,

^cot + (A l)Y = 0. (4.5.2)

A solution of this is

cos sz

(cosz cos)*
c

where A = #2
,
and C is a closed contour surrounding and , but

excluding all other singularities. For it gives

dY
___

C % sin cos sz -.

J (cos z cos )*

C f si
== ^

J (coaz

o

d2Y C f sin2^ i cos

Hence

7 lY- f
r

4
J (cosz cos^
C

On the other hand, integrating by parts,

'--/
isinz sin sz j2 dz

(cos z cos f)* 5
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__ f 4<30S2(cosz cos)+f sin2z cos sz ,

J (COS Z 'COS )* S 2

1 r---

5" J

c

f i cos 2
2- J cos z cos

---4
.

- -_-*
(COS 3 COS) f

c

Hence Y satisfies (4.5.2). A solution of (4.5.1) is therefore

COSS2f COS
---

J (cos z~
,

(IZ.

cos

Clearly another solution is ^ ( -#).

If a = |77-3, 8->0,

7T-8

J / \ , is f
n (a:)

= 4 sm*oov y

J

COS52J- -- r

(cos2+ cos 3)*

r(coso cos
8

77/8
/ Ji -t

= 4V2 S^ cos sn
-j 2
- ~ 4V2 cos ^77 8^ log

-

i

and
8

(

8
+

U-x) - 4 Bini8
f 7-

C(^" oa& = 08* f-^
J (cos 2 cos 8)* J ^(o"~-V

Hence all solutions of (4.5.1) are L?(\TT, ITT), arid we are in WeyPs
limit-circle case. We shall here merely select the point on the limit-

circle which leads to the ordinary Legendre expansion.

The function m2 (A) is a point on the limit-circle of the circles

~~~

as b -> ITT, where
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Taking cot/? = oo, we obtain

and W*' A)

Similarly l(A)
= -,

Hence for y <x
<t> (

a

-1
2

c
*
COS SZ

Hence

= 1677 sin 7r(J

= 877 COS 775 == 877COS77VA.

Hence the eigenvalues are

^=(rc+!) 2 (n=0, 1,...).

Now Jw+

f
J
o

n ( sin a;)

and, as A ^Xn , ^(0)^(0)

Hence 3>(#,i/,A) has a pole at Xn with residue

r
-iTT
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Thus the normalized eigenfunctions are

(
nJr i)* c s*# P^sin x).

4.6. Next let

q(x) = Jtan
2#+ra2 sec2

o; J ( -|TT < # < |TT),

where w is a positive integer. The basic equation is then

= 0.
ax*

Putting y Yl Vcoso:, x = ^ |TT,

A solution of this is

/ f? \m
r1 = Bm*~f(7

-?LJ r,
\rf

cos /

where F satisfies (4,5.2); i.e.

sin^ f
----C

J (COS 2 COS
(7

Hence solutions are
<f> (x)

= cos^^ and < (--#). Hence

and

Hence

J

8772
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This vanishes if * = n m+|, i.e. A = (n m~(-4)
2
(n = 0, !,...)

Also

This is if n < 2m, and if % ^ 2m it is

Putting n = ra+f, it follows that the eigenvalues are (/+^)
2

, r = m,

m+l,....

If a = nm-\-\-}-e,

Hence the residue is

^-m(sin y )

J ' y

*fl

-1
The expansion may be written in the form

4.7. If we apply the general expansion theorem to the above

formulae, we obtain a proof of the Legeiidre expansion under rather

restricted conditions. We shall now indicate briefly how to justify

the expansion under the same conditions as an ordinary Fourier

series.

We have in the notation of 4.5

f f -isz
i / \ i>

I /7

J (cos z cos )*

where the contour surrounds the points z . This contour can

be "replaced by loops round these points, each loop coming from
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ioo, passing over the point in the positive direction, and returning

to ioo. In the neighbourhood of z =

(cos z cos f)* =

Hence the loop round this point contributes

with error

Treating the other loop similarly, we obtain altogether

(4.7.1)

provided that sg\ > A.

If |$f |
< ^4, take the integral round a circle of fixed radius, and

we obtain
</>Q(x)

=
0(|sin*||).

We have

Substituting the leading term in (4.7.1) in the part with y < x, we
obtain

1 r

ITTS+^TT) s
Jo COS TTS

X
1 f r

3OS TTS J

For I(s) > this

X

~ 1
f e-**-x

and we proceed as in 1.9. The result is that the expansion is valid

under the same conditions as an ordinary Fourier series.
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4.8. Fourier-Bessel series. This is the case where the interval

is (0,6), and q(x) ==
(i>

2
%)/x

2
. Let A = s2 . Solutions of

are x*Jv(xs), x*Yv(xs). Let <(#,A), 6(x, A) be the solutions such that

0, <'(&)=-!, .

1, e'(b)
= 0.

Then

(4.8.1)

If v ^ 1, this is an example of Weyl's 'limit-point' case. The only

solution of .L2(0, 6) is x*Jv (xs), so that

A =- VA

The eigenvalues A
/t
are the zeros of Jj,(6VA). Now

Jv(6VA) = (A-AJl^tj;(6VAJ+....

Hence ?/i(A) has the residue rn = 2Aw/6 (negative because the

singularity is at the lower end). Also, if X
fl
=

5^,

Hence the normalized eigenfunctions are

/2\,U x*Jv(xan ) = 2

\ b ) *n b*Jl(bsn )
bJ'v(bsn )

'

and the Fourier-Bessel expansion is

oo

(x}
= P2 TI&* fw

r^i ^ v ' *^n i

If < v < 1, all solutions of the equation belong to L2
(0, 6), and

we are in the limit-circle case. Consider first the case < v < 1.

Since

Yv(z)
=
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we have

The limit-circle is the limit of the circles

= __ 6(a, A)oot+fl'(0,A)
(

.

^(a,A' V
' '

'

as a -> 0. Now as x -> (s fixed)

Hence

Now let

-")

where c is a constant. Then

cot a =

and

Hence the 0-terms in the above expression are negligible if

\v > v\, i.e. v < 1. Treating the denominator in (4.8.4) similarly,

(4.8.4) gives, when a -> 0,

Since c may have any value, m describes the circle obtained by

varying c, and so this is the limit circle. For each value of c, m is

an even function of 5, and so is a one-valued function of A. Its only
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singularities are poles, viz. the zeros of cJv(bVA) \vJ^v(b VA). Denoting
these by An , we have

2 sin VTT

The normalized eigenfunctions are |rn !*<(#, An ), where the rn are the

residues of m(A) at the points \n . For c = oo the expansion is the

ordinary Fourier-Bessel expansion of order v, and for c = it is

the expansion of order v.

In the case v = 0, we have

7 (a) = (y+log7T y A I 7FXS

as x -> (5 fixed). Hence

21

+ 0(a*|loga|cota)+0(a*|loga|)|.

Taking

-(y+log ~
) (a* cot ot-\-ia~*) -\

--r= c(a
5 cot a+ Ja~*)

7T\ 2/ 77a*

and proceeding as before, we obtain

m = - cJ' (te)-{Y' (b8)-(2ln)J' (bS)logs}

cJ (bs)-{Y (bs)-(2/n)J (bs)logs}-
{ >

This is an even function of s (see Watson, Theory of Bessel Functions,

3.51 (3)), and a result similar to the previous one is obtained.

4.9. Direct discussion of Fourier-Bessel series. The general

theory of Chapter II gives the Fourier-Bessel expansion under very

restricted conditions. A direct discussion of the formulae involved

gives the following more general result.
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THEOREM 4.9. Let f(y) be integrable over (0,6), and let v > \.

Then if < x < 6, the series (4.8.3) behaves as regards convergence in

the same way as an ordinary Fourier series.

Apply (1.7.5) to Bessel's equation, taking <(&) = 0, <'(&) = 1,

instead of the conditions at x = a. We obtain

Also, by the well-known asymptotic formula for Bessel functions,

for ^ argz ^|TT, \z\ ^ 1.

We have

J

6

J y*H(

Let < 8 < x, and let

<&(

where

r

J

and O2 (o;) is the remainder. Now for \s\ > 1/8

l/|*| 8

1/1*1

=
y*\y*\

v

\f(y)\dy\
I
o

j V/M

( _ V 1 fe
s/

rII II Isft I
V ^ 7 I I I /X A ' X t\

4957
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We now integrate round a quarter-square in the s-plane (s
=

with sides on the lines

6cr UTT-\-\vn -\-\TT, bt = UTT-{- \VTT-\- |TT.

Here ^(s) = 0(\8\-*4*-**)>

and the integral of this is easily seen to be 0(n~%) (for fixed S and x).

In <J>2(^) we can use the asymptotic formulae throughout, and the

argument proceeds as in 1.9. We obtain, for example,

77
j,

Jv(hs)Yv(xs) Yv(bs)Jv(xs) f , T/ ... . .

2
"" J

^^7(te)~^^
I y*Jv(y*)f(y) dy

. ___
8

-

On the contour considered

and the leading term is then the same as in the case of an ordinary
Fourier sine series. The result therefore follows.

Similar methods apply to the other Bessel-function formulae.

4.10. The Weber formula. Consider the case of Bessel functions

with the interval (a, oo), where a > 0. Taking, e.g., a = in the

boundary condition at a, we have

The only solution which is small as x -> oo, for I(s) > 0, is

It follows that

must be a multiple of this; hence

-8J'v(cu)-m(X)Jv(a8) = i{sY'v(as)+m(X)Yv(as)},
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Hence for A > 0, i.e. s real,

Jv(aS)rv(as)-Yt,(as)J'v(aa)

Also H^(iz) = -..e-*
v Kv (z), (4.10.2)

TTl

and ^T(z) is real for real z. Hence

is real for purely imaginary ,
i.e. for negative A. The final result

is therefore

- t , v
- vv__

j

______ x_____

00

J

If, instead of <P(a) 0, it is assumed that

O(a)cosa+O'(a)sina = 0,

we obtain the corresponding formula in which Jv(as) and Y
v (as) are

replaced by
T / \ / ,

Sln \Jv(a) cos a ~(-
--

\
^a

/

etc. For example, if tana --
-,

2v 1

then Jv(as) and Yv(as) are replaced by Jv+l (as) and

4.1 1. The Hankel formula. This is the Bessel-function case with

interval (0, oo). Each end is now singular. Take x = a as basic point

instead of the x = of the formulae of 2.18. Then

<f>(x,\)
-

^a*x*

8(x,\) - a^
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If v > 1, the solutions of L2
(Q,a) and L2

(a,co) are x*Jv(xs) and

x*H<?>(x8). Hence

a;*_~
a* Jv(as)

'

As in 4.10 m2(A)
--- (4.11.2)

Hence

o\

= J*(o8) (s > 0),

=
(s
=

it, t > 0).

Hence (3.1.12) gives
oo oo

f(x) = *
J aM^sVA) d\

j y*Jv(y4X)f(y) dy

oo

da
f y*Jy(y8)f(y) dy. (4.11.3)

Of course it is easily seen directly that

X

<S>(x,s)
= W(xs) y*Jy(ys)f(y) dy +

and ^

-I0(a:, s)
-
|^J,N) J

y*Jv(ys)!(y) dy (s > 0)

o

=
(s
=

it, t > 0).

This gives the result again.

Consider next the case < v < 1. Then m^X) is given by (4.8.5),

with a instead of 6, and w
2(A) by (4.11.2). This gives
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Also m1(A) m2(A)
= si -

I
j

Using the formula

we obtain

Hence for A > 0, i.e. s real and positive,

m1(A) m2(A) 2

For A < 0, s = i, where ^ is real and positive. Now

and
cJv(iat)(itY

vJ_v(iat)

Hence
mt(A) w2 (A) c t

2v

This is real, and if c < it is continuous. In this case the formula

(3.1.12) gives

00 00

(4.11.4)

If c > 0, there is also a pole at t c1 /2". Here

1 al

= ac1/2"

Also t
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Hence the residue of 1/{^1 (A) m2 (A)} qua function of A is

VTT

Also $i(x, cllv
)
~

Hence we have to add to the above right-hand side the term

00

VTT
V

J

In the case v 0, m^X) is given by (4.8.6), with a instead of b, and
ra

2 (A) by (4.11.2), with v = 0. Hence

0i (#, A) = -

T
--

a* cJn \

and

Hence for A > 0, i.e. 5 > 0,

__!_ J_ _j MM^ofaW" ?r " "

For A < 0, i.e. s
~

it, t > 0, we obtain

This has a pole at t == 6~ i7rr;
. As ^ -> e~ i77C it

Hence the complete formula is

,

X
jy*{cJ (ys)-Y (ys)+(2/7r)J (ys)log8}/(y)dy +

. (4.11.6)
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4.12. Further Bessel -function expansions. Let q(x) = x

(0 < x < oo). Solutions of

are

^ofoA) = (-A)*/t{S(a;-A)*}, (a,A) = (*

where (a; A)* is real and positive for A real, x > A.

(i) Let a = in the boundary condition at x = 0. Then

MX A) -= ^o( 'T
' A)^o( '

A)~fl>fo A#o(' A
>^" ' '

flte A) _ o-
1 ' '

o(OJi(0,A)-^ (0,A)^(0,A)'

Since < (#, A) is large as x -> oo, and (^, A) small, we must have

<o>

/NX 0i(0,A)
i.e. m(A) = JL2LJ_^.

0o(0,A)

The eigenvalues X
tl
are the zeros of (0,A). Now

Hence m(A) has the residue 1 at each pole. Hence the normalized

eigenfunctions are

To determine this in a real form, consider the value of (#, A) when

x < A. As A passes above x from the real axis on the left of it to

the real axis on the right of it, arg(# A) goes from to TT, and so

arg(# A)
8

goes from to f?r. Now

tfjfc)
- -Me^^^e^O-xience
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Hence, if x < A,

Hence the A^ are the zeros of

Also (from the recurrence formulae)

Hence the normalized eigenfunctions are

(ii) Similarly, if a = |TT, we obtain

where the /^ are the zeros of

J,(|A*)-J_f (fAi).

The two expansions together make up the expansion corresponding to

q(x) = \x\ (00 < x < oo).

4.13. Let q(x) a; (0 < x < oo), and let a = in the boundary
condition at a: = 0. Solutions of

are

and the Wronskian of these is S/TT. Writing for brevity

X = f (

we have therefore

Now ^ 1}
(^) contains a factor
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which is exponentially small as x -> oo, if I(A) > 0. All other solu-

tions of the equation are exponentially large, so that 0(#, A) must be

a multiple of H^(X). Hence

For A > 0, i.e. Z real,

-Ira(A) =
'i

For A < 0, let A i^f". Then Z fjne*
fflr

. Now

Hence

!/3-i7ri

(

L.Ki(x)
in

Hence

Hence

_
(i

_____ __

= _ W
/

"2"\

_37T~
4/X

Also

Hence, if x < A < 0,

4957 M
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and if A < x,

The expansion formula can then be written down from (3.1.1).

A similar result may be obtained with an interval (00,00). We
obtain

f
J
00

(X)

etc.

4.14. Let q(x) = ~-e2x
( oo < x < oo). Solutions of

are Jv (
e:r)> J_v(e

rr

), where v = iVA. If I(A) > 0, the former only is

L2
( oo, 0), but both are Z/2(0, oo). It is therefore the limit-point case

as x -> oo, the limit-circle case as x -> oo.

Since J
v(z)J'- v(z)-J'v(z)J_ v(z)

= ^
7TZ

the solutions B(x), <f>(x) satisfying 0(0) = 1, B'(0)
= 0, ^(0) 0,

<'(())
= 1 are

e(x] = -

Hence m^A) = -

^(x,A) = e(x)+mi(Xft(x)
= -Jv(e*)IJv(l).

Now consider the interval (0,6). In the notation of 2.1, we have

-Z(A)
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As b -> oo, the denominator is asymptotic to

and similarly for the numerator. Hence

-/(A) ~

(J.v (
1 )-</( 1 )}cos 1 VTT cos(e

b
+K)+{J_v(l)+Jv (

1 )}sin &nsin(e +K)
'

where cotK = e~b cotp. The limit-circle is obtained by giving

cot(e
b
-}-K ) any constant value C in this formula. Take, for example,

Hence

and the expansion formula is

*' =
J^S^p *

J

4.15. The Laguerre or Sonine polynomials. The Laguerre

polynomial of order n is defined by

The generalized Laguerre polynomials are

.

' '

Thus L<*>(X) - (-l)T(n+*+l)T*(X),

where the T%(X) are the Sonine polynomials.
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Now if u = e~xXn+, then

v du . . v .X = (n+oi X)u.

Differentiating n-\- 1 times,

dnu

Hence % = (djdX)
n
(e~
xXn+Ci

)
satisfies the differential equation .

K = o>

This is therefore the equation satisfied by X^L^^X).
Putting X = x2

, us
= #~a+ie~ ia:a^2 ,

we obtain

and u2
= exul satisfies

""J" /V

tta
= 0. (4.15.3)

(4 - 15 - 4)

as the eigenfunctions associated with

q(x) = z2+ ^~pt (0<x<ao). (4.15.5)x

Consider then the equation

We should therefore expect to obtain the functions

dx*~

This is equivalent to (4.15.4) if A = 4n+2a+2. Hence Y = x*-*

satisfies

-l\dY A+2a-2
vr~iTv; ~i 7^ u

V
*

corresponding to (4.15.3).

Assume as a solution

taken round a suitable contour. Integrating by parts,

Y= -~
g'(z)ex* dz,
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if the integrated term vanishes at the limits. Similarly

dX
-
J

zg(z)e*' dz - -i
J [zg'(z)+g(z)}ex* dz,

= f z*g(z)e
x* dz - -1 f (2V(^)+2^)}e^^.

Hence (4.15.7) gives

1 r

X J

-i(A+2a-2)flr(2)}e^ dz - 0.

This is true if

x+2) A-2a-2-
2(1)

-
(z_) 4

=
(2 l)M-2a-2)z-i<A+2a+2>_

Since

e-tJty =
J g(

z)ex<t-dz = j g(z'+%)e
x*' dz'

we obtain finally as solutions of (4.15.6)

^(x, A) = a;-
J (2- J)

A-2a-(2+ J)-l(A+2a+2)ea!
'a^ (4.15.8)

oo

and
<-+)

^2(ir,A)==a;*-
a f (2 J)

A-2 - 2)
(2+i)-^--

2a * 2>e^d2. (4.15.9)

Here the integrands have the value which is real and positive for

z real and greater than |, and A real.

As x -> oo, <
x is dominated by the part of the integral near z = \,

and so is asymptotic to

a*- f (z !)^-2*-2)e^^ ^ z*-ae**
a

J
oo oo

= a;-iA-t6ix2i sin{| 7T(A- 2o:~ 2)}r{i(A-2a+ 2)}.

Similarly
(-i+)

f
(
2+ J)-KA+2+?)c

^ ^
00

A-2a+2)}.
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<*+)

Also
<f>[
~ x*- f (z-%)M-

2 -*>2xzex** dz ~ xfa
CO

and similarly <
2
~ -~x

<t>v

Hence

8e*^<A
-2a-2

>sin{|7r(A- 2a 2)}sin{i7r(-A- 2a 2)} x

X r{J(A-2a+2)}r{J(-A+2a-2)},

We have

*> A )
=

w7Z~-r\(^ A)
f ^l(2/ '

^19^92)1 J

Now I/W((f)v <l>2)
has poles at the points

An -

Taking the upper sign
(1+)

L lr \ \ __ ri-a I
?>l(X>An) X

j

In this case there is no singularity at z =
,
so that

+)

^
cfe

(-t+)
^

(o+

>.(x 9
An )

- o:i~a f
(z~~^- CA rf2 - xi- e--i*

a f
iV^'^n/ ^

J ^_j_l\n+a+l J
CO

n (0+)
JL, /_ nw-r^f /= 3i- e-*^yLrL!-

q: jgr-n--le^ r!(n-r)I J

z
OO

- ~
^w r!(n r)!r=0 v ;

v ) v ~r a~r ;
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and <
2(*A) = ^i(aUn ).

Taking the lower sign

(-1-f) ___
&(*, AJ = **-

J ^iiil^I

1^ cb = o,

so that O(#, A) is regular at these points.

The residue of 1/Tf(^,^2 )
at A = 4n+2<*+2is -I>+a+l)/27r2

tt!

Hence the residue of (#, A) is

.* e--'J^()
J
r+*e-**'i

oo

+le
"
i:c3jL" )(x2)

J
V^-wi

oo

" 3

4.16. The 'hydrogen atom*. Let

q(x) ==
r^^l^ (0<x<oo), (4.16.1)

JC X

where r is zero or a positive integer. Then

This is the celebrated equation from which physicists have been able

to derive the theory of the hydrogen atom.

Putting y = x~r
Y, A = s2

, we obtain

ao;2 x dx

Assuming l
r =

|
g(z)e

xz dz

and proceeding as in the last section, we find that Y satisfies

(4.16.3) if

g'(z) __ c^2^+l)z __ k-r-l k+r+1__ __

g(z) z2 -\-s
2

z-\-is zis '

where k = \icjs. Hence

g(z) =
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Hence solutions of (4.16.2) are

1 f

y=- r \
(z+is)

k-r-l
(z~is)~

k-r-lex* (

xr
J

taken round suitable contours.

1 f
Let ^(tfjA) = (z+is)

k-r-l
(zis)-k

-r-lexz dz, (4.16.4)
xr

J
c

where C is a closed contour surrounding both is and is, and where

arg(z+is) and arg(2 is) both go from 77 to 77 round the contour.

Thus (z-\-is)
k

is multiplied by e27rik
,
and (z~-is)~

k
by e~27rik

,
and the

whole integrand returns to its original value.

Let

(is+)

(x,X) = ~ ( (z+is)
k~r-l

(z-is)-
k-r~lexz dz, (4.16.5)

xr
J

where the loop includes is but not is. Here arg(z is) goes from

77 to 77, and, for s in the first quadrant, arg(z+is) starts with the

value 77 and returns to 77 again.

Putting z =
(Q+)

r-^xs f
J
oo

where arg(14-/2is#) -> as -> 0. Hence by Whittaker and Watson,
Modern Analysis, 16.12,

The integral in ^t clearly represents a function regular near x = 0.

The coefficients of all powers of x up to #2r
vanish, as is seen on

expanding the contour to infinity. The coefficient of x2r+1 is

J

(again expanding the contour to infinity). Since Mkr+^(z)
~ zr+l for

small z, it follows that

Let ca(A)
= PT^!,^). Denoting the integrals in (4.16.4) and (4.16.5)

by /.and /
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Hence (2r)!co(A)
-

i
W (

As above we have 4v)
(0)
= for v 1,..., 2r, and /i

2'''
*>(()) 27ri.

Hence

(2r)!w(A) = 27ri/2(0)

(+)
= 2Tri ( (z+is)

k-r-l
(z~is)~

k~r~l dz

CO

(0+)

Let arg(is)
=

(^TT < < TT). We may turn the contour into a

position in which comes from infinity with arg = ff 27T, passes

round the origin, and returns to infinity with arg = #; and

arg(4~25i<s)
~ Q t Hence the last integral is equal to

f (^ ^fc-r-l^
fc-r-l-fc-r-l

MxHence oj A) = -

7 x/
^ ^

(r~k)(rh~ !)...( rA;
Now

0(x, A) =^ f ^(y)/(y) dy +^ f #a

co(A) J o>(A) J
a;

This has poles at the zeros of o>(A), i.e. at

k = r+n+l, A = A
TC
= -

(
= 0, I,.-)-

r-2r+i)!\ c )(n+2r+l)

877%!

Also

4957

I f
X J

xl2(n+nU C

N
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where z = isn-\~^/x y
and the contour is now a closed curve round

the pole. From (4J5.1) and Cauchy's formula for the^th derivative

tP l

f
2ri j

where (0 denotes (d/dt)
mLp (t). Hence

Hence O(a;,A) has the residue

CX

OO

J
X

The sum of these terms is the contribution of the part of the spectrum
with A < 0.

We can write

<-*+)

= -~
I" (z+is)

k~r-l
(z is)~

k~r~lex3 dz
xr

J

_1 f
(
z+is)

k-r-l
(z~is)-

k~r-lexz dz,

oo

where in the first integral arg(z+*s) goes from ~rr to TT, arg(2; i)
from TT to TT; in the second, arg(s+^) goes from TT to TT, arg(^ is)

from 7T to 77. The second term is thus
</>2(x,X), Now if in

<^2(#,A)

we increase arg s by TT, we get an expression apparently the same as

the above first term, but with arg(2 i#) going from 77 to TT instead

of from TT to TT. Hence

Also

Hence for A real and positive

w(X) ~"cu(Ae
2
^)

" "

w(X)
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Hence
OO

W>(x,X) = 1{<D(*, A)-d>(*, Ae2
"')}

= i ^%^ f
2& 2i co (A) J

o

where
.

1W( '
~

(r

___ 277(1 e- 77

Hence the interval < A < oo contributes a term

1 f (4s
2+c2

)...(4rV+c
2
)e .

, ,. , f .

,

J

v-
ZL^ A__^._!

L
^(a?, s2

)2s d5
J
^(y,_

4.17. Hypergeometric functions. Consider the equation

Z

(0<Xv). (4.17.1)

Solutions are

7!== F(a,b,c,X), F
2
= X 1-*]f'(a-c+l,b-c+l,2-c,-X),

where c = y, a+6 = a, a6 = A*,

say a = Ja+i(a
a-4A*), 6 = i- i(a

a
-4A*)>.

We transform into the standard form as in 4.3. Putting

.Y = siiih* i'f,

we obtain ^_j_j8(a;)^ +A*7 - 0, (4.17.2)
aa;'

! <te

where

cosha;+2y-l-cv
~ ~

sinhx

Putting F = r(x)y, where

we obtain + {A*-g*(*)}y = 0, (4.17.3)

where

a2 cosh2 + 2(ot 1 )(2y 1 a)cosh X+(2y 1 a)
2 2a

4sinh2#
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Finally, put A = A* Ja
2

,
and

q(x) - q*(z)-l**

_____
^

~ _
?

..
4 sinli-u*

we obtain ? + {A-~g(^)}//
= 0. (4.17.5)

In this notation a = Ja+iVA, 6 = ia iVA. Corresponding to Fx
and

Y2 we obtain solutions of (4.17.5) asymptotic to

as rK -> 0. Hence the origin is of limit-circle type if < y < 2, and

otherwise of limit-point type. To take a definite case, let y > 2.

Then the only solution of (4.17.5) belonging to L2
(0, 1) is

y = T^foA) {r(^)}-
1^(Ja+WA 3 |(x--iVA,y, --sinh2

U-).

A solution of (4.17.1) for X > 1 is

X~ b
F(b, l-c+6, l-a+6, -1/X).

This leads to

y ij 2 (a;, A)
=- {r^JJ^sinh-

26^^, 1 c+6, 1 0+6, sinli-2
Jz)

as a solution of (4.17.5).

As x -> oo,

7? 2(#, A) ~ siny^sinh-26 ix ~ Aeix^x
.

Hence
r/ 2

is L2
(l,oo) if < arg VA < 1-n.

The other solution, obtained by interchanging a and 6, gives

e~ix^
9
and so is not L2

. Also

smh-2b
ixl(b, 1 c+6, 1 a+b, si

(r(x)}-{X(X+l)}*W{F(a,b,c, -X),

X-F(b, l-c+6, 1-0+6, -1/Z)}

f(6)T(c-a)

-a) _
'
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as X -> oo. Since W(T]V r/ 2 )
is independent of #, this is its value. Hence

r(ia-tVA)r(y-i-iV\)_.-~__-- X

C

X %(z,A) J'

,A) J

When A is real and positive, ^ is real, and since a and 6 are con-

jugates

r( *?2(*,A) )

X

_
l ' J '

"
;

Hence there is a continuoxis spectrum from to oo, which contributes

to the expansion off(x) t

r

J

There may also be a finite number of poles on the negative real axis.

These will be at the points iVA = ia n or iVA --^ ^oLyn,
if these are positive for any positive integer values of n. The corre-

sponding residues are easily calculated.

4.18. The case y = i. In this case

, (4.18.1)'

and there is no singularity at x = 0. The ^-interval may be taken

as (~oo, oo). We have

r(x) 2-* a cosh-4,r,

and solutions of (4.17.5) are

0(x) = cosh a
Ja;jP

T

(Ja+iVA, ia iVA, *, si
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These are even and odd respectively. The solution which is small

as x -> oo is

sinh-26
\xlx nL , . , . . , 1 \

f- JHM+i, 1 +6, --U2T-
) \ smh2 ^/

.

* '

--
r(i~ia-- 91 ;

*

Hence, in the notation of 2.18 or 3.1

i
(-2

OL i

nd, since q(x) is even, m1(A)
~ M

2 (A). In the notation of 3.1

f (A)
- p{l/m2(A)}, '(A)

- -lI{w 2 (A)}.

There is a continuous spectrum from to oo, which contributes

OO 00

ir r-
6(x, A)f (A) aA Q(y y A)f(y) dy +^ J J

oo

OO 00

ir ' r

*J
'

J
oo

to the expansion off(x).

There may also be a finite number of poles on the negative real

axis. Suppose, for example, that a -= n-\-l, where n is a positive

integer. Then m2(A) has zeros at the points

-iVA - \n-r (r
= 0, 1,..., [>]),

the residue of l/w2(A) being

Ar -i r/T~

This is case (ii) of 2.18, with ^2 l/A r9 ^ l/^l r . Hence O(o;, A)

has the residue

where
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Actually the solutions of (4.17.5), where q(x) is (4.18.1), are associated

Legendre functions with argument tanh \x. In fact

[ffl ._ /J"\ I 4f

0(x,\) = (-l)-'2 - Pr 2r

This is easily verified by showing that the two sides satisfy the same

differential equation, and are equal, with their first derivatives, at

x = 0.

There are also poles of w2(A) at the points

-VA - in-J-r (r
= 0, 1,..., !>-]),

the residues being

(_l)r (
2f-n+ l)r(n+a-f)

r! r(-4 r)r(rc r)

"'

This is case (iii) of 2.18, with
p,2
= Br , ^ = JBr . Hence O(x, A)

has the residue

where

<f>(x, A;) 2 coshw+1 Jxsinh te J?(r+ 1,nr+^ f ,
-sinh2

It is easily verified as before that this is equal to

Another interesting particular case occurs when the coefficient of

cosh a; in (4.17.4) vanishes. The solutions are then expressible in

terms of associated Legendre functions with argument coth lx.

4.19. Another formula involving hypergeometric functions arises

as follows. Consider the equation

(4.19.1)

satisfied by F = F(a,b,c, X). Putting

weobtainf

f See Forsyth, A Treatise on Differential Equations, (4th ed.), 116.
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where

7 l-(l-c) 2 l-(c-a-6) 2
(l-c)

2
-(ffi-6)

2
+(c a-6)2 1= _

(_
_____

|

_ _

____^_
____

.

Putting y X-tY
lt
X = ex

,
this gives

g[+ (jr*Z+J)y = 0. (4.19.2)

Now Z-Z-j-A-^-^-A-fM.
where 4 = i(a-6)

2
-|(l-c)

2
, ,6 = J_i(C-a-6) 2

,

A = -i(l-c)
2

.

Writing 1 4jB = (1 2a)
2

, the relations between the parameters are

a = a-fiVA+iV(A~-4), 6 a+iVAiV(A--4), c l+ 2iVA.

Solutions of (4.19.2) which are L2
( oo, 0) and L2

(0,oo) respectively

for I(A) > are

^(x) = X
and

The resulting expansion formula is of the type (3,1.8), but does not

seem to reduce to a very simple form.

IfA = 0, the q(x) of this section is the same as that of 4.18. The

two sets of formulae are connected by the relation*)*
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V

THE NATURE OF THE SPECTRUM

5.1. The main object of this chapter is to determine how the

spectrum depends on the function q(x).

Take the interval to be (0, oo), with no singularity except at

infinity. Then there are, broadly speaking, four different cases. If

q(x) -> oo, there is purely a point-spectrum; the examples q(x) = x2
,

q(x) x of 4.2 and 4.12 illustrate this. If q(x) -> 0, there is a con-

tinuous spectrum in (0, oo), with a point-spectrum (which may be

null) in
( oo, 0); the formulae of 4.10 and 4.17 are examples. If

oo

q(x) -> oo, but so that
f \q(x)\~* dx is divergent, the spectrum

extends continuously from oo to oo, as in the formula of 4.13.
00

Lastly, if q(x) -> oo, and J |#(#)|~~
J dx is convergent, there is a con-

tinuous spectrum in ( oo, 0), and a point-spectrum (which may be

null) in (0,oo). This is illustrated by 4.14.

Actually in each case, except the first, we have to impose other

conditions, so that classification is by no means complete; but all

ordinary examples come under one or other of our theorems.

5.2. We begin with the second of the above cases, but actually

assume, instead of q(x) -> 0, that q(x) is L(Q,ao).

We require the following

LEMMA 5.2. Letf(x) > 0, g(x) ^ 0, and letf(x) be continuous, g(x)

integrable, in < x < X. Let

X

f(x) < C+
jf(t)g(t)

dt (0 < x < JC). (5.2.1)

]0(t)dl

Then f(x) < Ce (0 < x < X). (5.2.2)

Let
X

y =
jf(t)g(t)dt,

4957
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Multiplying (5.2.1) by g(x),

< Cg(x)+yg(x),

d I -Jrtfldn
lye

I ^ Cg(x)e

Integrating over (0, x)>

-a(0(# ( -g(0dt\ ( g(!)M \

ye
o < C 1-e , */<<7e 1,

and (5.2.2) follows.

5.3. Let <f>(x)
=

<f)(x, A) be the solution of

a =

with <t>(0)
= sina, <^'(0)

= cos a. By (1.7.1), with a = 0, A

sin ^a;

1
J sinH*-*,)}^)^) dy. (5.3.1)

Let s = a+^, ^ > 0, and write temporarily ^(x) = <f>(x)e~
lx

. Then

l/\ # /-^ Sill oio--
COSa+

s(x y)}q(y)<f>i(y) dy.

Since |cossx| ^ etx
9 \s'm$x\ ^ eix

,
it follows that

X
i i r

1^1(^)1 ^ M 1 I

Hence, by the lemma,

o

Since q(y) is L(0,oo), it follows that ^(x) is bounded for all x,
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Now consider real positive values of s. Then <(#) is bounded for

s ^ p. Hence (5.3.1) gives

., x .

<h(x)
= COSSXSlUoi-- COS a 4-

s

OO . 00

-
J

sins(x~-y)q(y)cf>(y) dy +0\
J

\q(y)\ dy

(5.3.2)

(as x -> oo), where
00

p,(s
2
)
= sin a -

I sin8yq(y)<f>(y)dy,

oo

- I cossyq(y)<f>(y)dy.

Since the integrals converge uniformly, ju,
and v are continuous func-

tions of a.

Similarly if 9(0) = cos a, 0'(0) = sin ex,

9(x) = />t1(A)cos5a;4-^i(A)sin5a:+o(l), (5.3.3)

where

cos a ~ smsyq(y)8(y)dy,

o

oo

/ x v sin a If / \ / / \ 7

(A) = ----p- cossyq(y)<f>(y)dy.
s s J

Also, differentiating (5.3.1),

<f>'(x)
= 5 sin 50: sin a cos s# cos a+ f cos5(a; y)q(y)<f>(y) dy.

o

Applying this in a similar way, we obtain

Similarly

6'(x) =
Hence
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Since W(^6) = 1, it follows that

A) = . (5.3.4)

Now consider complex values of s. For a fixed positive t, (5.3.1)

gives
0-18X

<f>(x)
= e-<MJ sinoH--- cos<x+0(e-

to
)

2is

X . X .

__Lf
e-**-v)q(y)<l,(y) dy + f

2*S
e! W

as x ~> oo. Since <f>(y)
= 0(eiv ), the last term is

= <)e-
J

|}(y)| % +oefe f^0 ' ^
aj-8

Also
J

e-{
*-v>q(y)<l>(y) dy = le1*

j | q(y) \dy\ =
X \ X '

Hence
<f>(x)

= e~te{lf(A)+o(l)}, (5.3.5)

oo

where M(\) = ^ 8in a+H^--L f
e**vq(y)<f>(y) dy. (5.3.6)

2i5 2is J
o

Similarly 0(x) = e"^{Jfl(A)+o(l)}, (5.3.7)

oo

where Jf^A) = |cos a-^--l f e"Vq(y)6(y) dy. (5.3.8)
^Ji-S Zi5 J

Since 0(z)+m(A)<(#) is I/2(0,oo), it follows that

m(\) = -JfjW/Jf(A). (5.3.9)

As 5 tends to a real limit, the numerator and denominator in (5.3.9)

tend to i/^i(A)+^V1(A) and i/u(A)+*V(A) respectively. By (5.3.4),

and y(A) cannot both vanish for any positive A. Hence

and the imaginary part of this is
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Hence in the notation of 3.3

J

dU
(5.3.10)

Hence the spectrum is continuous in (0, oo). The contribution of

this part to (3.1.1) is

77

-
f w^ferrau^ (*<

77 J AV2
(A)+y

2
(A)j J

J^*/*"*
Next let s -> it, where t is real and positive. The integrals in

(5.3.6) and (5.3.8) converge uniformly, and hence M(\) and

tend to the real limits
CO

sin OL-- +
i r*

J
e-'q(y)</>(y) dy,

i cos oc+5|~+ f e-'vq(y)9(y) dy.

o

Hence I(m) -+ except possibly at the zeros ofM(A). Since M(A) is

an analytic function of s, regular for I(s) > 0, the zeros are isolated

points. Hence there is a point-spectrum in oo < A < 0, which is

bounded below, since M(\) ~ |sina or cosot/2is as s -> oo.

5.4. A transformation of the basic equation. In order to deal

with cases in which q(x) is large at infinity, we make a transformation

of the equation

(5.4.1)

which will be used frequently in later sections. Suppose first that A

is real, q(x) < A, and let q'(x) and q"(x) be continuous. Let

=
{X-q(t)}* dt, rj(x)

=
(X-q(x)}ly.
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Then

dr, _ d-^dx _ P
fA

, oj^_l g'fc)~~ ~
l ^ ;;

_
dx 4 A-g(*)

q
'

(x)_

Hence (5.4.1) transforms into

This is an equation of the same form as (5.4.1); but in (5.4.2) the

coefficient of
r\

in the last term is in general small when A is large,

or when q(x) is large and negative.

It follows that, if
77 <(), ^ satisfies the integral equation

where r = g(t). This can be used as in previous sections to obtain

asymptotic formulae for <().

If A is not real, or q(x) > A, is not real, and the above formulae

would involve integrals along complex paths. It is not necessary

to introduce such integrals, since we can obtain the corresponding

integral equation in terms of the real variable x directly, as follows.

Let q(Q) = (this involves at most a change in the A-origin),

and write

Then

,

5 g
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Let

x

=
/1+ /2

by (5.4.4) and (5.4.1). Now

-
J Bin{(*)-

Hence ^(a) 7)(0)Gosg(x)+rj'(Q)\-*smt;(x)+I,

i.e. 17(3;) satisfies the integral equation

+ j sm{^)-^t)}R(t)r,(t) dt, (5.4.5)

In these formulae, if I(A) > 0, we take < arg A < TT, and, if e.g.

q(t) varies from to oo, arg{A q(t)} varies from arg A to TT.

5.5. The case q(x) -> oo. We impose the following additional con-

ditions. Let q(x) tend steadily to infinity, so that q'(x) > 0; let

q'(x) = 0[{q(x)Y] (0 < c < f), (5.5.1)

and let q"(x) be ultimately of one sign. Then



104 THE NATURE OF THE SPECTRUM Chap. V

and hence also

x x x

CO

Hence
j\R(x)\dx (5.5.2)

o

is convergent, uniformly with respect to A over any region for which

\Xq(x)\ > 8 > for < x < oo.

5.6. THEOREM 5.6. // q(x) satisfies the conditions of 5.5, the

spectrum is discrete.

the imaginary part of g(x) is positive if I(A) > 0; as x -* oo, while

A remains bounded, x

and so e~^x) -> oo.

We can now argue with (5.4.5), as we did previously with (5.3.1)

to obtain (5.3.5). Let ^(x) = el^(x). Then (5.4.5) gives

Hence
| ^(a;) | < | ,(0) |+ 1 V(0)A- I+ /

so that by Lemma 5.2

|}exp{ J
^

Hence

Applying this to (5.4.5), we conclude as before that, for any fixed A

in the upper half-plane, as x -> oo

rj(x)



5.6 THE NATURE OF THE SPECTRUM 105

Now let -q(x)
=

{A q(x)}*<f>(x, A). Then
1 yv' t (\\

77(0)
= A*sin<x, 7?'(0)

= A* cos a ^-^sina.
4 A*

Hence I<(^A)| < ^(A^expl
f \B(t)\ dt\~

* *
'

i
(5.6.1)

o

for all x and I(A) > 0; and for a fixed A, as x -> oo

JLln* \\ V / /K f O\
(p(X) A.)

'^*/

yr -.-
-

, ^.D.^j
{A ^(^)|

where

Jf(A)
= i

dt.

-i i 01 ^
Sumlarly *M
where ^(A) is obtained from M(\) by replacing sin a, cos a, <f>(t)

by cos a, sin a, 0(t). Hence

m(\) - -

Now it clearly follows from (5.4.5) and Lemma 5.2 (as in 5.3)

that rj(x) 0{|e-^
(ir)

|} uniformly with respect to A as A approaches

any interval of the negative real axis. Hence A~*M(A) is continuous

up to the negative real axis, and it is also obviously real there, (t)

and R(t) being purely imaginary.
If we do not choose g(0) = 0, the argument shows that

{A-gr(0)}-yf(A)

is real and continuous for A < g(O). But the whole argument could

be constructed equally well with an interval (X , oo) instead of (0, oo).

We should then obtain an alternative expression for M(A) involving
an integral over (JT, oo). Hence {A q(X)}~*M(X) is real and con-

tinuous for A < q(X)] hence in fact e~^i7T
M(\) is real and continuous

along the whole real axis. Since M(A) is regular in the upper half-

plane, it follows from the principle of reflection that M(A) is an

integral function. Similarly M (\) is an integral function. Hence

m(A) is meromorphic, and the result follows.

It will be shown later that the result holds if q(x) -> oo, without
4957 p
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any other restrictions. This depends on the theory of the zeros of

eigenfunctions given at the end of this chapter.

5.7. THEOREM 5.7. Let q(x) < 0, q'(x) < 0, q(x) -> oo,

?'(*)
=

0{\q(x)\*} (0<c<%) (5.7.1)

and let q"(x) be ultimately of one sign.

00

Then if j \q(x)\~* dx (5.7.2)

is divergent, there is a continuous spectrum over ( 00,00).

The conditions imply the convergence of (5.5.2).

For A real and positive, (5.4.5) now gives

rj(x)
=

Hence

#*,A) = {A-^)}-i{MA)cos^(o;)+v(A)sin^)+o(l)}, (5.7.3)

where

= A* sin a-
J
sin (t)R(t){X-q(t)}*<f>(t3 A) dt, (5.7.4)

o
oo

<7'(0)sincx cos ex /*

(5.7.5)

Similarly, if 6(x, A) is the solution of (5.4. 1) such that 0(0, A) = cos a,

0'(0,A) = sin a, then

0(#,A) = {Xq(x)}~^{pl(\)cos^(x)-\-vl(X)sm^(x)-}-o(l)} J (5.7.6)

where /xx and vl are obtained from ^ and v by replacing sin a, cos a,

and
<f> by cos a, sin a, and 0.

The argument also shows that the integrals in (5.7.4), etc., con-

verge uniformly with respect to A, and hence that ju,(A), etc., are

continuous functions of A.

Again, differentiating (5.4.5),
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Applying this in a similar way, we obtain

whence by (5.7.3) and (5.7.1)

<f>'(x,X)
~ {X-q(x)}*{v(X)cos(x)-iJi(X)sin(x)}. (5.7.7)

Similarly

O'(x, A) ~ {X-q(x)}^1(X)cos^(x)-^l(X^in^(x)}. (5.7.8)

Hence lim W(<, (9) ^(AKM-^AMA).
X-+CO

Since ^(<,0) = 1, it follows that

/i(AK(A)-^(AMA) = 1. (5.7.9)

Hence /i(A) and r(A) do not both vanish for any value of A.

The argument requires modification if A < 0; but then we can

choose X so that A q(x) > for x ^ X, and we can apply the whole

argument to the interval (X,ao) instead of to (0, oo). The same

conclusion then follows.

Now let A = u-\-iv, where v > 0. Taking x so that uq(t) > v

in x > XQ ,
we have

X X

() = J {+-?(<)}*
dt = &+ J {+>-?(<)}*

*

Hence as x -> oo

and so er1^ is large for large x. Hence (5.4.5) gives

/
*

\

<rj(x)
=

Je-tfto{<r)(Q)+iX-*rj'(Q)+i ei^R(t)ti(t) dt +0(1)}.
1 I

}

Proceeding as before, we obtain

Hence <(#, A)
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where

7l/f/\\ 1<vl '- i *'^ VVJOXM.L* , COSCXJ
.M(A; =

4A*
]

A* j

'

00

+ }< J e^E(t){X-q(t)}*<f>(t, X) dt,

o

and 0(#, A) ^

where M^X) is formed from M(A) by the same interchange as before.

According to the general theory of the solutions of (5.4.1), there

is, for v > 0, a solution

which is L2
(0, oo). It follows from the above formulae that

Also, as v->0, M(X)~> }2 fji(u)-{-^ii>(u) and -

since it is easily seen that the integrals involved converge uniformly

with respect to A. Hence

limm(X) = ..-**iM+*yiM ^ W^)+
V ^

>o

Since A;(A) is the integral of this over (0, A), the result stated follows.

5.8. THEOREM 5.8. // the conditions of Theorem 5.7 are satisfied

except that (5.7.2) is convergent, there is a continuous spectrum in

(oo,0) and a point-spectrum in (0, oo).

As x -> oo
X

6

X

= r_
oo

Is=

Xdt

say. Hence l(x,X) is bounded, and so cos(#) and sin(#) are
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bounded, whether A is real or complex. It is then clear that the

argument of 4 holds, in this case, for all values of A, real or complex.
Thus (5.7.3), (5.7.6), (5.7.7), and (5.7.8) hold for all values of A. In

particular, all solutions of (5.4.1) are L2
(0,oo), and we are in Weyl's

'limit-circle' case, in which the expansion formula involves an

arbitrary parameter.

Further /i(A), v(A), /^(A), and ^(A) are integral functions of A. For

consider e.g. (5.7.4). Here {A q(t)}* is an analytic function of A,

regular except on the negative real axis; similarly for g(t, A) and B(t),

and the integral in (5.7.4) converges uniformly with respect to A in

any finite region, as the argument clearly shows. Hence /x(A) is an

analytic function, regular except possibly on the negative real axis.

However, we could apply the argument leading to (5.7.3) equally

well with any interval (X , oo), where X > 0, instead of the interval

(0, oo). Hence we must also have

Hence
//,(A) is regular except possibly on the real axis between oo

and q(X)'y
and so in fact it is an integral function. Similarly so are

"(A), jMA), and ^(A).

Now consider the solution 0(#,A)+Z(A)<(#, A) of (5.4.1) which

satisfies the boundary condition

p =

at x b. This gives

0(6, A)cot /?+#'(&, A)-

As cotjS varies, l(X) describes a circle. According to Weyl's theory,

this circle tends to a limit-circle as b -+ oo. Now by (5.7.3) and (5.7.7)

the denominator in (5.8.2) is of the form

or, since {A-ff(&)}-*
= {-J(&)}-*{1+* (1)},

of the form

o8ft)+v(A)8in (b)+o (I)}cotj3+

+v(A)cos (6)-M(A)sin 6)+o (1)].



110 THE NATUBE OF THE SPECTRUM Chap. V

Putting { q(b)}-*cotfi
= coty, (5.8.2) takes the form

Putting y = c (&, 0), keeping c fixed and making b -> oo, this

tends to

m = /*i(A)cQ8{x(A)+c}+ yi(A)sin{x(A)+c}

As c varies this describes a circle, which is therefore Weyl's limit-

circle.

For A > 0, ^(A) is real, and Im(A) -> as A tends to a real value,

unless the above denominator vanishes. Hence the part of the

spectrum on the positive real axis consists of the zeros of the deno-

minator, which are isolated points since it is an analytic function.

On the other hand, if A < 0, ^ = Xi'^^X^ where ^2 > 0; for if

q(h)
= A, (5.8.1) gives

Hence, using (5.7.9), as A tends to a real negative value, I{m(X)}

tends to

which is finite and positive. Hence the spectrum is continuous from

oo to 0.

5.9. The zeros of eigenfunctions. This theory depends on the

following fundamental theorem, due to Sturm.

Let u be a solution of

and v a solution of t ^~h(x)v 0, (5.9.2)
dx

where g(x) < h(x) throughout the interval (a, b). Then between any two

consecutive zeros of u there is at least one zero of v.

Multiplying by v, u respectively, and subtracting,

u"vuv" == {h(x)g(x)}uv. (5.9.3)
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Let xl9 x2 be consecutive zeros of u. Integrating from xl to #2 ,

a?a

[u'vuv'lfc
=

J {h(x)g(x)}uv dx. (5.9.4)

Xl

Suppose that v has no zero in (xl9
x
2 ). We may suppose without

loss of generality that u ^ 0, v ^ in (xl9 x2 ). Then the right-hand
side is positive (assuming that u and v do not vanish identically).

Now the left-hand side is

and

u'(x^ > 0, u'(x2 ) < 0, v(x ) > 0, v(x2 ) > 0.

Hence the left-hand side is < 0, giving a contradiction.

5.10. We deduce the following theorem.

Let u be the solution of (5.9.1) such that

u(a) sin a, u'(a) = cos a,

and v the solution of (5.9.2) such that

v(a) = sin a, v'(a) = cos a.

Then if u(x) has m zeros in the interval a < x ^ 6, v(x) has at least

m zeros in the same interval, and the vth zero of v(x) is less than the

vth zero of u(x).

Suppose first that sin a 7^ 0, say sin a > 0, so that the left-hand

end-point is not a zero of either function.

In view of the previous theorem, it is only necessary to prove that

v(x) has at least one zero in the interval (a, a^), where x is the

smallest zero of u. Now on integrating (5.9.3) from a to xl9 we obtain

uf

(xl)v(x1 )
=

I
{h(x)~g(x)}uv dx.

If v(x) has no zero in (a 9 x^, the right-hand side is positive; but

u'fa) < 0, v(xj > 0.

Hence we obtain a contradiction.

The result follows similarly if sin a = 0.
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5.11. Now consider the eigenfunctions of Chapter I, defined as

the solutions of

q(x)}y=0, (5.11.1)

y(a)co8ot+y'(a)ainot = 0, (5.11.2)

2/(&)cosj8+2/'(&)sinj3
= 0. (5.11.3)

Consider first the solutions of (5.11.1) and (5.11.2), and suppose
that sin a ^ 0. Then y(a) ^ 0. The number of zeros of y(x) in (a, 6)

is a non-decreasing function of A, by the above theorem. Let

\q(x)\ < c in (a, 6). First compare (5.11.1) with

y1 = 0. (5.11.4)

The solution of this satisfying (5.11.2) is

yl
=

cosh{( Xc)l(x a)} r^^^ir^{( *~c)*(xa)}.

This has no zeros if A is negative and large enough. Hence the solu-

tion of (5.11.1) has no zeros in (a, b) if A is negative and large enough.

Similarly, by considering the solution of

with A large and positive, it follows that the number of zeros of

(5.11.1) in (a, 6) tends to infinity with A.

Also, by the above theorems, a zero of y travels steadily to the

left as A increases. Hence there is an increasing sequence of numbers

fji , /xlv .. such that y(b) = for A = /xm ,
and y(x) has just m zeros

in a < x < b.

If sin/? 0, the ^m are the eigenvalues.

Otherwise, we have

('

/\ / / / /\ \

---)\2u'-u(-+-}\ + uz
{h(x)-g(x)}U VJ\ \U VJ)

= (U t>

~.
W> *

+u*{h(x)-g(x)} > 0.

Hence u2
(u'/u v'/v) is steadily increasing.

Suppose that u and v have the same number of zeros in (a, 6).
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The zero xv next before c is a zero of u and not of v, for between a

and x
v lie at least v, and so exactly v, zeros of v. Hence

u'

(b)V
'

{b) *'M-*< - U'

(b) > V'<b)
' '

It follows that y'(b)ly(b) is a steadily decreasing function of A in each

interval (/^m,^m+i); and it must decrease from oo to oo, since

y(b) o at each end, and y'(b) ^= 0. Hence there is just one value

of A in the interval such that

Hence there is an increasing sequence of eigenvalues A
, Xv ... such that

the eigenfunction associated with Am has just m zeros in a < x < 6.

5.12. We now pass to the case in which the interval is (0, oo).

Let q(x) -> oo as x ~> oo. We shall show that this is quite similar

to the Sturm-Liouville case; there are discrete eigenvalues, and the

eigenfunction associated with Xn has n zeros.

We consider the solution y = y(x, A) of the equation

such that y(0) and y'(0) have given values. Since q(x) -> oo,

q(x) A > for x > x\, say. Suppose that for some xl > x\

y(xl9 X) >0, y'(xl9 X) > 0.

Then y"(x, X) > (x ^ xj, y'(x, A) increases steadily, and y(x, A) -+ oo.

If y( 1,A)>0, y'(xv X)<0
there are two possibilities. If y(x, A) remains positive for x ^ xv then

y"(x,X) remains positive, y'(x, A) increases steadily, and so tends to

a limit (finite or infinite). This limit cannot be negative, or y(x)

would tend to oo; if it is positive, y(x) -> oo. If y'(x) ~> 0, then

y'(x,X) < for x > xv Hence y(x) is steadily decreasing, and so

tends to a limit. Also

x* Xz

j (q(x)X}y(x) dx ==
J y"(x) dx

<



114 THE NATURE OF THE SPECTRUM Chap. V

Hence [q(x) X}y(x) is L(xv oo), and a fortiori y(x) is L(xlt oo). Hence

y(x) -> 0. Hence also y(x) is L2
(xv co).

On the other hand, if y(x) changes sign, it can do so at most once,

and then tends to oo, by the previous argument.
Similar arguments hold if y(xl ,X) < 0. Summing up, y(x,X) has

at most one zero for x > x^ and either y(x, A) -> 00, or y(x, A) -> 0,

y'(x, A) -> 0, and y(x,X) is L2
(xl9 oo).

It follows that each y(x, A) has a finite number of zeros in (0, oo),

say n(A). By the theorem of 5.10, n(\) is a non-decreasing function

of A. The argument of 5.11 shows that n(\) if A is negative and

large enough, and that n(X) -> oo as A -> oo.

Since n(X) changes by at least 1 at a discontinuity, it has only
a finite number of discontinuities in any finite interval. Hence they
are discrete points. We shall show that they are the eigenvalues of

the differential equation.

In addition to the above results, we can show that, if y(x, A) -> 0,

and p, > A, then y(x, p) has a zero greater than the greatest zero of

y(x, A). Suppose e.g. that y(x, A) > 0, y'(x,X) < for x large enough.

Suppose that y(x, p) > for x ^ a, where a is the greatest zero of

y(x, A). If y(x, p) -> 0, (5.9.4) gives

* *) J

which gives a contradiction as before. Otherwise, if y(x, /x) > for

large x, then y'(x,fji) > for large x. Hence

y(x,p,)y'(x,X)~y(x,X)y'(x,iJL) <

for large x, and we obtain a contradiction again.

In particular it follows that to each interval where n(X) = constant

corresponds at most one value of A for which y(x, A) is Z/2
,
and such

a value must be the right-hand end-point of the interval.

Now consider a decreasing sequence A
1?

A2 ,... tending to a limit A.

Since n(Xp ) w(A+0) for p large enough, we can suppose that

n(Xt )
= n(X2 )

= ... = k.

Let the zeros of y(x, Xp )
be a^

p)
,..., a^\ Then it follows from the above

argument about the interlacing of zeros that for every ra ^ k
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Let c be a constant such that q(x)Xl > for x > c. Then a(
p
\..., a^2l

remain less than c for all p, since y(x }
Xp ) has at most one zero

greater than c. Hence

exists for m 1, 2,..., fc 1, and the am are zeros of y(x,X). They
are all different, since if two coincided we should have y(am , A) = 0,

y'(am , A) = 0, which is impossible. Conversely, any zero of y(x, A) is

a limit-point of the affl. Hence y(x, A) has k or k 1 zeros according
to whether a^ tends to a finite limit or to infinity.

Now clearly y'(a$\Xp ) has the same sign for all p, say -)-. If

a^ -> oo, then a^ > c for sufficiently large p. Since none of the

y(x, Xp )
are i2

, we must have

y'(x, Xp ) > 0, y(x, Xp)< (c < x < ojf>).

Making JP -> oo, it follows that

2/'(z,A)>0, 7/(o;,A)<0 (a; > c).

Hence y(x, A) is L2
.

On the other hand, if a^ tends to a finite limit ak ,
then

y'(x,\) > 0, y(x,X) > (x > ak).

Hence y(x, A) is not i2
.

Summing up, either n(X) = ?i(A+0) or n(X) = ^(A+0) 1. In the

latter case, y(x, A) is i2
, in the former case not.

If we argue similarly with an increasing sequence Xv A2 ,..., the

af$ are decreasing, and therefore all tend to finite limits. Hence

n(X) = n(A-O).
It follows that to every n corresponds an interval of values of A

in which n(X) = n, and that the right-hand end-point of each such

interval is such that y(x, A) is 7A
Now let A

x and A" be interior points of an interval where n(X) is

constant, and let XQ be greater than the greatest zero of y(x, A) or

y'(x, A) for A' ^ A ^ A". Then y(x,X) is positive increasing (or

negative decreasing) for x ^ x
, A' < A < A". Let m be the lower

bound of \y(xQ,X)\ for A' < A < A", so that m > 0. Then

\y(x,X)\ ^m (x^ XQ ,
A' < A < A'').
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We can now take y(x, A) to be the function <f>(x, A) of Chapter III.

By (3.4.1)

A

A'

t m
A

I
dk(u)

> m{k(X"-0)-k(X'+Q)}.

But x(x, A) is L2 for every A. Hence

Hence k(X) is constant in the open intervals where ^(A) is constant.

Let the points of discontinuity be A^, the saltus at A^, kn . Then by

(3.4.1)

X(x>*)= 2 kn (/>(x y
Xn ).

K<An<A

oo

By (3.4.3) (7^)= 2 kn U(y,Xn)f(y)dy
<A<A g

and by (3.6.3)
00

f(x) --=
l-^ *n #(, An)

J
fly, AJ/(y) %.

n

Hence the expansion is a series.

Also, comparing (3.5.1) with (3.4.4)~(3.4.6), we have

ut

pK)-p(-%) =
J
tfau) dg^u).

u\

Hence in the present case p(x) is constant except at the points An .

Hence by (3.6.2) <!>(#, A) is regular except for simple poles at the

points An .

It follows also that m(A) is meromorphic; for iff(x) = for x ^ X,

(2.3.2) gives

*, A)
= 0(x, A) J fly, A)/(y) ^ +fl*, A) J fl(y, A)/(y) dy +

and the result follows.
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5.13. The interval (00,00). Theorems on the nature of the

spectrum when the interval is oo < x < oo can be deduced from

those already obtained for the interval (0, oo).

Let q(x) -> oo as x -> oo and as x -> oo. Then both m1(A) and

w2(A) are meromorphic. Hence the functions

___J_
9

ra
x(A) m1(A)m2(A)

(5.13.1)m1(A) m
2(A)

J m1(A)~m2(A)
J m1(A) m

2 (A)

occurring in the (00,00) formula are also meromorphic, so that the

corresponding expansion is a series and the spectrum is discrete.

The argument of 5.12 also extends without difficulty to this case.

Next let q(x) ~> oo as x -> oo, and q(x) -> oo as x -> oo,

/ \q(x)\~* dx being divergent. Then I{m1(A)} tends to a finite non-
00

zero limit along the whole real axis, while I{w2 (A)} tends to zero in

general but to infinity at certain discrete points. Hence the imaginary

parts of the functions (5.13.1) tend to finite limits, which can vanish

at most at discrete points. The spectrum therefore extends con-

tinuously from oo to oo. In fact it is clear that, if q(x)
- oo at one

end of the interval ( 00,00), the result is the same as if we had the

other half-interval only with a given boundary condition at x 0.

REFERENCES
5.2-5.3. Weyl (2), Titchmarsh (7).

5.4. This transformation occurs in Langer (4), 3.

5.7-5.8. So far as I know this is new.

5.9-5.11. Classical.

5.12. Weyl (2).



VI

A SPECIAL CONVERGENCE THEOREM

6.1. IK Chapter III it was proved that the general expansion formula

represents an 'arbitrary' function f(x), provided that f(x) is twice

differentiate, that f(x) and /"(#) #(#)/(#) are L2
(0, oo), and that

the 'boundary condition at infinity' (2.7.2) is satisfied. In this and

later chapters we shall show that, by imposing further conditions on

q(x), we can relax those bearing on/(#); and in fact it will be shown

that in certain cases the expansion converges to f(x) iff(x) satisfies

conditions similar to those for the convergence of an ordinary Fourier

series.

In this chapter it will be assumed that the integral

j \q(x)\dx (6.1.1)

is convergent. This is perhaps not the most interesting case, but it

is the simplest, and the analysis suggests the method which will be

used later in considering cases in which q(x) -> oo. The advantage
of this and other special assumptions is that they enable us to prove

asymptotic formulae for the functions <(#,A) and 0(#,A). In the

general case these formulae are not known, and we have to rely on

a direct discussion of the function <5)(x, A).

6.2. What we require primarily is a solution of the equation

,72,,,

(6.2.1)

which is small when I(A) is large and positive. Consider the integral

equation

x(x)
= e^+

x
(6.2.2)

in which A = s2 . On differentiating this twice, it is at once verified

(formally) that y = x(x ) satisfies (6.2.1). Now a solution of (6.2.2) can

be obtained as follows.

Let xi(
x

)
= ei8X

(
6 - 2 -3

)
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and, for n ^ 1,

^j-s J
ei8(

oo

+i J
X

. X co .

*)-xi() =
J

?(y) ^ +
J

2 ^(y) %
^ '

Then . x

Let s CT+^ (^ > 0), and let J denote the value of the integral

(6.1.1). Then
p-tx T

lx.(*)-xi(*)K^p
(
6 - 2 - 5 )

Next x

Xs(*)-Xa() = 4 J
eis(a;

+i J
e's(z/

whence by (6.2.3)
00 v

r 1

eC-)|g(y)|ty
J

-; (6.2.6)

and so on generally. It follows that, if \s\ > </, the series

2 {Xn+lW-Xn

is convergent, i.e. that Xn(x ) tends to a limit, say x(x )-

For every n

(6.2.7)

and x(x )
satisfies the same inequality. It follows by 'dominated

convergence
5

that we can make n->oo under the integral sign in

(6.2.4). Hence x(x ) satisfies (6.2.2), and so also (6.2.1).



120 A SPECIAL CONVERGENCE THEOREM Chap. VI

For a fixed s
y
or s in a bounded part of the region t > 0, \s\ > |J,

(6.2.2) now gives

fi8X /

x(x)
= e^+ gS J

e

oo

>?i'sic /*

~kj
The last two integrals tend to as x -> oo; hence

(6.2.8)

(6.2.9)

00

where K(X) = I + ~-
j

e-is
"q(y)x(y) dy.

6.3. Let 0(#,A) = 0(#,A)+m(A)<(#,A) denote as usual the solution

belonging to i2
(0, oo). Then

Now x(^A) is i2
(0,oo), but </>(x,X) is not, by (5.3.5), at any rate

if |A| is large enough ;
for (5.3.6) gives

M(X) ~ | sin a (sin a ^ 0),

cos a
,

. ,,
v^^- (sma = 0).

2is
v ;

Hence K2(\)
== 0, i.e.

As in 5.3, the asymptotic formulae (5.3.5) and (6.2.8) can be

differentiated, i.e. we can apply similar arguments to the differen-

tiated functions, and obtain (as x -> oo)

P(x) --isM(X)e-
i8X

,

X(x) ~ isK(\)e
isx

.

Hence

W(<f>,x)
~ M(X)isK(X)+isM(X)K(X) - 2i8K(X)M(X).

Hence W(<f>, 0)
~ 2isK(X)M(A)^(A).

But Wit) = 1. Hence

Hence i/j(x, A)
=

2isK(X)M(X)'
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6.4. THEOBEM 6.4. Let q(x) be i(0, oo), and f(x) L2
(0, oo) and also

L(Q, oo). Then the eigenfunction expansion is

/** +

where p,(\) and v(A) are defined in 5.3, and, in the sum, rn (n = 1, 2,...)

runs through the residues of m(\) at its poles on the negative real axis,

and 77T is the saltus of k(X) at A 0. The expansion converges under

the same conditions as an ordinary Fourier series; e.g. if/is of bounded

variation in the neighbourhood of x, its value is

Let
X 00

<D(;r, A) - 0(, A) J <;%, A)/(y) */ +#(, A) J 0(y, A)/(y) rfy

o o

a-
-S # v / x+8 oo v

+
/)
+
*A,(j

+
j)

Consider f <J)(x,A) c/A.

-/e+ie

This has the same value whether it is taken along the straight line,

or round the semicircle above it. Suppose, for example, that sin a ^
in the above formulae. Then for \s\ ^ J

Also

e-'"|/(2/)|% =

The integral of this round the semicircle tends to as R -> oo, for

any positive S. A similar argument clearly applies to Ox .

Now consider <I>3 . For # fixed, or in a finite interval,

(7i
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Also K(X) = l+ 0(\s\-
1
), M(X) = %sinoc+0(\s\-

1
).

Hence (*,A
t* sin a

Also <(#,A) = cosBsinal+

by (1.7.3). Hence
*^ j

. i <>x+b f x+bx-i-o f cc-t-o v

gisx i e-isx r
\
e*
x C I

<D3(#, A) = ^ eisvf(y) dy + 1 r I
e

~~iy
f(y) dy \ .

2is
a
j v sl

'

I i

( 1
x
f
s

}

The last term is \f(y)\dy\,
IIAIJ J

and the integral of this round the semicircle is

/ 2J-|-O \

o f
\f{y)\dy\,

[ i j

which can be made as small as we please, by choice of 8. The term

involving ei8X also gives a zero limit. The other term is the same as

in the case of an ordinary Fourier series; and similarly for O2 .

Altogether it follows that, e.g. in the bounded variation case,

im f O(a
-+CO J .R+l

lim f O(a, A) dX -> tiir{f(x+Q)+f(x0)}.
R

This is true uniformly for < e ^ 1.

Since f(x) is Z/2(0, oo), the analysis of 3.4 applies, so that

R
I i r \ i

lim
I

i

-R+ic J -R
where

, A

{R+i
v RIf
I

1 f
<!>(#, A) d\\ = -

<f>(x,X) dg^X),
177 J J

* J
-R+ie ' -R

oo A
r r

J
'

J

A

By (5.3.10)

taking r > 0. Since ^(/, u) is bounded for < < M ^ A, / -> oo,

it follows that
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Hence, if p > 0,

J
_.

p p

In the interval R < A < -// (p > 0), g (X) is constant except
for a finite number of discontinuities at the poles of m(A). Hence

each (f>(y,\ tl ) being I>2(0,oo), as in 2.5. Finally

f

where EQ is the saltus of ^(A) at A = 0. It easily follows from the

analysis of 3.4 that
CO

]$ = TrYn I 4>(y^ tyf(y} Ay )

j
o

where r is defined above. This completes the proof.

The form of the result makes it seem possible that the condition

that f(x) is L2 may be unnecessary; it has been introduced here so

that previous theorems which have been proved with this condition

may be used.

REFERENCE
Stone (1).
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THE DISTRIBUTION OF THE EIGENVALUES

7.1. In this chapter we suppose that q(x) -> oo, so that the differential

equation
J%>!

q(x)}y
=

(7.1.1)

has discrete eigenvalues A
,
Alv .. . We then ask how the distribution

of these eigenvalues is determined by the function q(x).

If A = A,,, then y = i/Jn (x) has just n real zeros (5.12). On the

other hand, by comparing the distribution of the zeros of (7.1.1)

with that of the zeros ofknown functions, we can obtain approximate
formulae for the number of zeros in terms of A,r Approximate rela-

tions between n and \n are thus obtained.

To carry out the analysis considerable restrictions have to be

imposed on the function q(x). We begin by assuming that q'(x) and

q"(x) exist, and that q'(x) > 0, q"(x) ^ for x > 0. It is also con-

venient to assume that #(0) = 0. This is no restriction, since it

merely involves a choice of the A-origin.

Let p = p(X) be defined by the equation q(p) = A, and let

X

= (A,z) = j{\-q(t)}*
dt (0 < x < p). (7.1.2)

o

Let <()() denote (temporarily) a twice-differentiable function of ,

and let

T = Y(x) = {A g(a?)}-ty(). (7.1.3)

Then =

Y" 7"
7 72 \^) <t>

2
(^)l <()

~^
4 \-q(xy 4 {X-q(x)}*'

Hence

1 q'(x)
,

5 j*(x)

16 A
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In particular, if <() = cos, then <"() = <(), and Y satisfies

the differential equation

,
. 1 q"(x) 5 q'

2
(x) \ v A

(x)-*^^ (7.1. 5)

7.2. THEOREM 7.2. If q(x) satisfies the above conditions,

Pn
I r

n > - {\?(a?
)}* dx f, (7.2.1)

77 J
o

wAere #n = p(AJ.

For < x < p, the coefficient of y in (7.1.1) is greater than that

of F in (7.1.5). Then by the theorem of 5.9, between any two zeros

of Y there is at least one zero of y. Hence if Y has Z zeros in (0,^n ),

then n > I 1.

The zeros of Y, i.e. of cosf, are at the points = (w-fiV, for

values of m for which this lies between and

Pn

Hence (Z-i> < J {An-^W} i * <
o

and the theorem follows.

Since #(#) is convex downwards, q(^pn )

Hence A^ < 87r2(w+f)
2/^ t

(7>2.2)

In particular, A^ ~ o(n
2
).

Actually we can prove this if q(x) is any function which is twice

differentiable and tends to infinity; for compare the solution of

(7.1.1) with

Yl = {A- 1 -(#)}-* cos

The coefficient of y in (7.1.1) exceeds that of Yv in the differential
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equation for Y
ly
over any finite interval (0, X), ifX is fixed and A is

large enough. Henpe

1*

Since X may be arbitrarily large, the result follows.

In the Sturm-Liouville (finite interval) case we have of course

Xn ~ An*.

In the case in which the interval is (00,00), and q(x) is an even

function, and q'(Q) = 0, there is a slightly more precise result, which

will be of use later. In this case, if n is even, $n(x) is an even func-

tion, with \n positive zeros and \n negative zeros. Let

Y(x) = ^(0)A*{Aw-^)}-lcos[ J{AB-j(0}
dt\.

LO -

Then 7(0) = W (0), 7'(0) = =
</4(0). Hence, by the theorem of

5.10, $n (x) has at least as many zeros in (Q,pn )
as Y(x) has. If

Y(x) has Z zeros in this interval, then

Pn

Hence n ^ -
f {An g(Q}* d 1. (7.2.3)

TT J

If n is odd, /<n(#) has \n | positive zeros. Let

F(ar) =
^(0)A;*{An-(*)}-*sinf /{A.-JW}*

cttl.

"-o
-*

Then 7(0) = = n(0), F'(0) = ^(0). Hence, if 7(as) has I zeros

for < x < #n ,

and (7.2.3) follows again.

7.3. In the problem of the upper bound of n, we have to assume

rather more about q(x).

THEOEEM 7.3. Let q(x) satisfy the above conditions, and also

}*]. (7-3.1)
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i
Then n ~ -

{An q(x)}* dx.
^J

(7.3.2)

We observe that, if q'(x) is non-decreasing and

q'(x) = 0[{q'(x)}y\ (1< y < 2), (7.3.3)

then

x

-
0[{q'(x)}^q(x)],

=-
O{q(x)}, q'(x)

=
0{q(x)}W-tf; (7.3.4)

and similarly with o instead of O. Thus (7.3.1) gives

q'(x) = o[{q(x)Y\. (7.3.5)

All such conditions imply a certain restriction on the regularity of

the growth of q(x), but not on its rate of growth.
Now let F! be the function obtained by replacing A by A+/H, (p > 0)

in r, with <() cos. Then the coefficient of Y
l9

in the differential

equation for Yl corresponding to (7.1.5), exceeds A q(x) if

This is true for < x < pn if

5</
/2

(ff M )
,
q"(pn )

__| <^ ^,.

Let /x
=

{q'(pn )}*. Using (7.3.1), this is seen to be true if pn is large

enough.
If the number of zeros of Fx in the interval (0,pn )

is m, then

m ^ n~l, and
Pn

Hence 71 ^ -
{A^+j^ ^(^)P^ +-
{A^+j^ ^(^

77 J
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To prove (7.3.2) we now require

Pn r Pn -i

(7.3.7)

Now

for q(x) ^ An . Also, since q(x) is convex downwards, q(\pn )

Hence Pn pn
r r

Hence (7.3.7) is true if /*
= o(A ;l ),

which is true by (7.3.4). This

proves the theorem.

Suppose, for example, that q(x) = xk (k > 0). Then_pw = A^
//c

,
and

Ai
/ft

-?^)}* dx -
J (A*-**)* cte

Hence it follows from the theorem that

This is easily verified in particular cases; e.g. ifk = l, the formulae

are those of 4.12. As A ~> oo

7r- JTT)}

Hence |A| ^TT
~ (n+$)7r,

agreeing with (7.3.8).

7.4. The following well-known property of Bessel functions is now

required.

LEMMA 7.4. In the interval (0, X), Jv(x) has X/rr-\-0(l) zeros.
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See Watson, Theory of Bessel Functions, 15.4; alternatively, consider

It is clear from this formula that f(x) has at least one zero in each

interval

mTT-\-\vn \TT 8 < X ^ mrr+^VTr jTr+S

if 8 is a fixed positive number less than |TT, and m is large enough;
for f(x) has opposite signs at the ends of such an interval. Also

Hence f'(x) is of constant sign throughout each such interval, so

thatf(x) has at most one zero in the interval. The result now follows.

7.5. Application of Bessel functions. In the problem of the

upper bound of n, the comparison function used above is not the

best that can be found. It was observed by Langer that a better

approximation to a solution of (7.1.1) is obtained by using Bessel

functions.

Let us now take

Bv fill 21By(L11 - 2)

Hence (7.1.4) gives

- "
y =

16 {A-
(7.5.2)

If v = ^, we return to the previous formulae. If v = $, the infinity

of the new term at x = p just cancels those of the following terms.

It is clear that this must be so; for as

and p p

=
J

{A-<7(OP * ~ ^J J
{*-

Hence 7 ~ A{q'(x)}-t{\-q(x)}

and no negative powers of A q(x) arise on differentiating.
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For our purpose, however, it is better to take v = 0, so as to have

something to spare in comparing (7.1.1) with (7.5.2).

Let N(x)-{- 1 be the number of eigenvalues not exceeding #, so that

Let x = p(y) be the inverse function ofy = q(x), so that p(X) = p,

JP(*n)
=

l>n. Then

N(X) > I
I

{X-q(x)}* dx +0(1). (7.5.3)

o

For this is true for each \n , by Theorem 7.2; and so, if An_x < A ^ A
ft

(denoting the integral by /(A)),

N(Xn)-l

77

since /(A) is steadily increasing.

We shall now prove

THEOREM 7.5. Lei q'(x) -> oo, q"(x) > 0, and

q"(x)^{q'(x)}v (Ky<j) (7.5.4)

for x > xQ . Then

i f= -
{A-g(*)}* dx +0(1). (7.5.5)

77 J

- 1 x 5

16{A_^)}2>
<
7 -5 -6

)

so that (7.5.2), with v = 0, is

_[_{A q(x)+ x(x,X)}Y = 0. (7.5.7)

Now
- * = ffA- n*'*J_

J !?'(0
X

< J_ f A- M '

t

=
{A-g(a!)}V?'(a:). (7.6.8)
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q
"
(x) 1 q

"

(x) 5 q
'

2(x)

16 {\-q(x)}
z 4 A q(x) 16 (\-q(x)}*

I q'*(x) 1 q"(x)

4\-q(x)'
{ '

Hence x(%, A) > provided that

\-q(x) < q'*(x)lq"(x), (7.5.10)

or, by (7.5.4), provided that

\-q(x) < {q'(x)}*-v. (7.5.11)

If (7.5.11) holds for xl ^ x < p, it follows from Lemma 7.4, with

v =. 0, that the number of zeros of y in the interval xl < x < ^ does

not exceed
#

i f {A-g(x)pcte+0(l). (7.5.12)
V J

Xi

It remains to consider the interval ^ x ^ xl9
and here the most

natural source of information seeii&s to be (5.4.5). Suppose, for

example, that 7/(0)
= 0. Then, writing

X

= cos|(#)+ sin{^(x)-^(t)}E(t)rjl(t) dt.

o

Suppose that (\E(t)\dt^8. (7.5.13)

Then

by Lemma 5.2, and

x t

S I |-R()|es dt

o

=
exp(

f
|JZ(0|ft)-l

^ o
'

< e-l < -?-. < 28,
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Consider the interval mr ^ (x) ^ (n-{-l)7T, and suppose, for ex-

ample, that n is even. If 8 < 1/(2V2), it follows that ^(x) is positive

for HIT ^S ^ (?&+i)7r and negative for (n+f)7r ^ ^ ^ (n-\-l)rr.

Hence there is at least one zero in the interval (n+ J)TT < < (ft+f )TT.

Also

and a similar argument shows that rj'^x) is negative throughout the

interval (ft+i)77
" < < (n+-f )TT. Hence ^(a;) decreases steadily, and

so has only one zero in the interval. The number of zeros of ??(#),

and so of y, in (0, o^) is therefore

Xi

-
f {A-j(*)

7T J

The theorem then follows from this, (7.5.12), and (7.5.3).

It remains to prove (7.5.13) with 8 < 1/(2V2) and A sufficiently

large. Now

Xi Xi

C q'
2
(t) 7 2 q'(x,) 2</'(0) 2 f

I *
(if 7 . ___ I I

The first integrated term tends to zero, since

A q(x) ^ {q
f

(x)}
2~^ (x ^ x).

It is therefore sufficient to prove that

f_9^_ dl _0.
J {A q(t)}*
o

Let g(o: )
=

|A. Then this integral is less than

1 dt -\

g'(* )-g'(o)
,

i r""

This all tends to zero (the first term since q'(xQ ) ^ q'(p) = o (A*) by

(7.3.5)). The theorem therefore follows.
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7.6. The following consequences of Theorem 7.5 will be required

later.

THEOREM 7.6. Under the conditions of Theorem 7.5,

tf(A+VA)-#(A) = 0{p(X)}, (7.6.1)

N(\+fji)-N(\) = O{|uA-*p(A)} (VA < /* < A), (7.6.2)

N(\+IL) = N(\){l+ 0(pl\)} (VA</*<A). (7.6.3)

By Theorem 7.5

at-A-a* dx +

J
*A

3(

J
p(A)

-
say. Now

For x ^ ^>(|A), q(x) ^ |A, so that this expression is bounded. Hence

2l = 0{p(|A)}
=

0{p(X)}.
Also

- n(\\ ^ ^ >n(\)

T _ nl I
v/x ^^

I _ nl >/%
I

^(x )
'

i
2

[PVA;

T r ^v/\

f _VAcfa ]_ [
VA

f

J (A+VA-^)}*] [q'{p(m J
P(iA)

J L
(JA)

X

Now #(#) = J q'(t) dt

Hence /2 = O{p(iA)}
=

0{p(X)}.

Finally
73 =
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and (7.6.1) follows. (7.6.2) follows on applying (7.6.1) 0(fiA-*) times,

and observing that, since p(x) is concave downwards,

Also (7.6.3) follows from (7.6.2), since by (7.5.3)

REFERENCES
Milne (1), Langer (1), (2), (3), Titchmarsh (8), (10).



VIII

FURTHER APPROXIMATIONS TO N(\)

8.1. The following argument is used by physicists. In quantum
mechanics the equation

O (8.1.1)

is considered, where F = V(x), and E, m, and h are constants, h

being small. Let x(x) be defined by

(8.1.2)

Then = +. (8.1.3)ax h

~r
h dx~\ h

Substituting in (8.1.1), and dividing by t/t,
we obtain

2?rt dx ,

2

If A were zero, it would follow that

x = {2m(E-V)}* = Xo (8.1.5)

say. Now suppose that ^ is expanded in a series of the form

Substituting in (8.1.3), and equating to zero coefficients of different

powers of y y we obtain equations which determine the Xn ^n succes-

sion. They are (8.1.5), and

%=*
= -I

o
Xn-mXm (n = 1, 2,...). (8.1.7)

1 v' IF'
Thus Vl = -^LO^^: --L_

f
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|7'2 yz y

5F'2

and so on.

Now apply these formulae to the problem of the relation between

n and \n . Replace x by a complex variable z, and suppose that F(z)

is an analytic function of z, regular in any relevant region. Then

any solution $ = </r(z) of (8.1.1) is an analytic function of z. Suppose
that there is a discrete spectrum, and let E En be the (rt-f-l)th

eigenvalue. Then
if/
= $n(z) has n real zeros. Suppose that there is

a contour C which includes these zeros but no others. Then

by (8.1.3). Hence

c

Let V(z) = E at z a and z = 6, and suppose that these are

simple zeros of V(z)~ E. Then xi(z) has simple poles at these points

with residue ^ at each. Hence

^-. f Xi(z) <fe = -*.
ZTTi J

Also, integrating by parts,

JF"(z)
3 T V' 2

(z)
dz = I dz.

fjfjj F(z)|* 2 I {E F(z)|*
c

I

c
r i

Hence

C

Hence we obtain the formula

r, T//m^ 7l f F/

J
^-^W) 1 &-

12?(2)* J {F
(8.1.8)

All the above analysis is, of course, purely formal. The validity of

an expansion of the form (8.1.6) remains to be investigated; and h

is not arbitrarily small, but merely a numerical constant. Even the
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formal appearance of successive approximations with h small, upon
which (8.1.6) depends, vanishes when we come to (8.1.8); for if E is

to be an eigenvalue of (8.1.1), it must depend on h. Suppose, for

example, that V(x) = ax*. On making the substitutions

-4
'

A

(8.1.1) takes the standard form

Z*),A = 0. (8.1.9)

If A is the smallest eigenvalue of this, that of (8.1.1) is

It is easily verified, e.g. by making the substitution z = &*, that

each term on the right-hand side of (8.1.8) is independent of h.

The above analysis is known as the B.W.K. (or W.B.K. or W.K.B.)
method.

8.2. The equation (8.1.1) reduces to the standard form on putting

, 87T2m^7/ .
,

.
/ O oi\

'
~ ^ = q(x)t ( J

We have therefore to consider the equation

= (8.2.2)

in which the usual real variable x is replaced by a complex variable

z, and q(z) is an analytic function of z, regular in a certain domain

containing z = 0. The argument of 1.5 is easily adapted to show

that, if
i/j(z)

satisfies given boundary conditions at z = 0, it is an

analytic function of z, for each A, regular in the same domain as q(z).

Since the solutions to be considered are eigenfunctions, A may be

supposed real.

The situation seems to depend a good deal on the nature of the

function q(z). In order to obtain precise results, we consider the

special case q(z)
= zk

,
where k is an even positive integer; but it will

be seen that it is possible to extend the method to any analytic q(z)

which mimics this special case sufficiently closely.
4957 T
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8.3. It is a question of obtaining approximations to solutions of

(8.2.2) in certain regions of the z-plane.

Let A be real and positive, and let p denote the real positive

value of A1
/*. Let

f(z)
-

J (A-t0*)* dw, 7j(z)
= (A-s*)tyn (s), (8.3.1)

o

where (A wk
)* and (A zk )* reduce to the real positive values of A*

and A* as w -> 0, z -> 0. As w passes above p from a real value less

than p to a real value greater than p y arg(A wk
)
decreases from to

77. Hence (Xwk
)* becomes -

i(w
k -~

A)*, where the square root is

real and positive. Hence e{&z) becomes exponentially large as z -> oo

along the real axis.

The analysis of 5.4 obviously extends to complex variables, so

that rj(z) satisfies the integral equation

rj(z)
-

+ ( sin{^(z)-~^(w)}B(w)r] (w) dw, (8.3.2)

1 g 5

4 {\-q(w)}* 16

5

4:(Xwk
)* 16

16(A

Consider first the region rr/k <C arg^ ^ |TT,

Then |z|
fc < Asin7r/&, and

for all z in this region. Taking the integral defining (z) along a

straight line, so that n/k < argdw; < -|TT,
it follows that

Hence
I{f(2)} ^ sin^

f |(A-ti^)* dw\ > KX*\z\,

o

where K denotes a positive number depending on k only.
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Putting j)(z)
= e-*&>U(z) in (8.3.2),

H(z) =

+ j
ei^-(^am{^(z)~^(w)}E(w)H(w) dw.

o

If n is even, *l*n (z) is an even function, 7?'(0)
= 0, and this gives

\H(z)\^\r,(0)\+j\B(w)H(w)dw\.

Hence by Lemma 5.2

o

It then follows from (8.3.2) that

r)(z)
= ^(0)008 (z)

where
r- / u;

J |B(w)|exp[ J

Hence

where

< |e**W|-t-2(exp
f \R(w) dw\-l\. (8.3.3)

1
o

>

2 t P \

Now f \E(w) dw\ = 0\ f
AP*"

2

+g^l!
d/)

\ ^ 0(A-*-i/*).
J \ J Af

/
o

x
o

'

If we also assume that \z\ > Kp, it follows that

a)(z)
= 0(A~^-1/A;

). (8.3.4)

The result is that, in the region considered,

0^) ^ |0n(0)
5

-c-^{l+co(2)}. (8.3.5)

8.4. The above result holds in particular on the segment of the

straight line I(z)
= ^pt&mr/k between the imaginary axis and

argz = iT/k. We next require a similar result on the same line as
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far as R(z) = p, and then round the circle \z p\ = %pta,n7r/k as far

as the real axis. Let C denote this curve, together with its reflections

in the real and imaginary axes.

Since

J
dw = e-*fo) e*&w>R(w)r(w) dw +

rw dw
J

and
Z 00

J e^^^^R(w)ji(w) dw = e*&>
J e^^B^^w) dw

oo

_
J ettto-toMR&Ww) dw,
Z

(8.3.2) is formally (i.e. apart from the question of the convergence

of the integrals at infinity) equivalent to

00

z

where A, JS, and z^ are independent of z.

Let F be the region defined by

^ I(z) ^ ^ptsniTr/k, \z p\ ^ ^pta,H7T/ky R(^) > 0,

together with the segment of straight line I(z) \p, \p < R(z) ^ p.

Let zl be the left-hand end-point of this segment, z any point of P.

Take A = 0, JS 1 in (8.4.1), and let the path from zl to z consist

of the curve C as far as the straight line through z parallel to the

real axis, and then this straight line. Let the path from z to infinity

be a straight line parallel to the real axis.

If w is in P, |

A wk
\
> K\w\

k
,
where K depends on k only. Hence

Kpk K K

since \w\ > Kp. Hence
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A similar argument applies to the rectilinear part of the path (zv z),

and the circular part is of length 0(p)> so that the integral of

|.R(w)| round this is also O(p~*
k~l

). Hence, if 8 denotes the maxi-

mum of

\ \R(w)dw\+ $ j \R(w)dw\

formed in the above manner, we have

8 =

Thus 8 < 1 if A is large enough.
Now take A = 0, = 1 in (8.4.1), and form a solution by itera-

tion. Let

%(*) = -*
and

Z

)r(w dw +

+ \i J
ei^^^M(w)7]v(w) dw

for v > 1. Then

%()-^i() = \^-^4 j R(w) dw + J e<fi)-ft^)lZ(tt;) dw\.

^Zi Z

w
Now i{(z)-(w)} = -

J (A-w'*)* dw',

Z

where \w'k lies in the lower half-plane, and so (A w'k)* lies in the

fourth quadrant (since it reduces to A* as w' -> 0); and dw' is real

and positive. Hence

-flu>)}] < o,

Hence
| rj2(z)

-
^(z) |

Similarly

w- dw

i
J
Z

%
and so on generally. Hence 2 {'Jv+it3) ^i^2)} is convergent, i.e.
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tends to a limit T](Z), which (as in the case of the similar formulae

of 6.2) satisfies (8.4.1) with A = 0, B = 1. Hence the corresponding

tff(z) satisfies (8.2.2). If A is an eigenvalue Xn ,
this ift(z)

must be a

multiple of the eigenfunction *l*n (z) 9
since any other solution of the

equation tends to infinity as z -> oo along the real axis.

Now oo

7?(Z)
= ril(z)+ 2{W*)-^(*0} = e-^U+ XiC*)}

v-l

say, where
| Xl (z)| < f 3 = ~, = 0(A--). (8.4.2)

V= l I- v

The result is therefore
/ p-i%&)

*n(z} = (vb^1+*l(z)}) (8 -4>3)

where c is a constant.n

8.5. Let z and z2 denote the points of C on the positive real and

imaginary axes respectively, and zl
the point defined above.

The function $n(z) is either odd or even suppose, for example,
that it is even. Let N be the number of zeros of

if>n(z) inside (7.

Then 2niN is equal to the variation of log *[>n(z) round (7, and so to

twice the variation of log ifin(z) round the upper half of G. Hence

The values taken by $n(z) between 2
2
and ZQ are the conjugates of

those taken between z2 and z . Hence log^r /l (
z

) log^w (22 ) is the

conjugate of Iog^n(z ) Iog^w(z2 ), and

Hence N - -I{log^(z2)-log ^n(z )}. (8.5.1)
77

Hence by (8.3.5) and (8.4.3)

N - ?I/-
77

(8.5.2)
CO

Now

J
-wk

)* dw

P P

\i
I

(A wk
)* dw i I (A wk

)* dw.

-P o
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Next, as z varies from z to z
2>

zk describes a spiral, starting to

the right of A and ending to the left of it, and not encircling it

again. Hence arg(z
fc

A) increases by IT. Lastly, if A is so large that

MS) I
< ! IXi()l < 1 on (7, log{l+co(z)} and log{l+ Xl(z)} may be

assigned their principal values; hence

Hence (8.5.2) gives
p

N = - f (\-wk
)* dw _J+OfA-*-

1
/*). (8.5.3)* J

Now
*f>n(z) has n real zeros, and by (7.2.3)

n > ? f (A-wfc)Mw 1.
" J

o

Also JV = M.+ 2m, where w is zero or a positive integer, since complex
zeros occur in conjugate pairs. Hence

If A is so large that the last term is less than f ,
then m 0, N = n,

so that there are no complex zeros inside the curve C. Replacing
N by n in (8.5.3), we obtain a formula equivalent to (8.1.8), with

the remainder after the first term on the right-hand side replaced

by an 0-term.

8.6. Further approximations. The next approximation to the

function rj(z) (0 5^ argz ^ 7r/k) is

where
Z 00

7j 2(z)
= c-ifi)-|- Jc-tffe> f E(w) dw +\ie

itM f e- 2i&w)R(w) dw,
J J

and Xt(z) = 0(82) = O(A-I-*).

Now

f utiwtm ^J e-)JZ(z) ,

f e- w> rf
f .R(i e-*lS(w>R(w) dw = ~ j^f+ XT T- IT^

J
v '

2i(\ zk)*
^

J 2t dw\(\

r j*i i

J wk+3
]
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{ZI+& j R(w) dw

A similar formula may be obtained in the angle njk < argz <
It follows that the term 0(\-*-V

k
) in (8.5.1) may be replaced by

f
477 J

c

This corresponds to (8.1.8), with the remainder after the second term

on the right-hand side replaced by an O-term. We can plainly pro-

ceed indefinitely in the same way. The formula (8.1.8) is therefore

justified for the functions q(z) = zk
,
or for any analytic functions

with sufficiently similar properties, provided that the eigenvalue is

large enough.

8.7. The case k = 4. Here

Consider first the formulae of 8.4. The curve C now consists of the

right-hand semicircle of \z p\ = %p, and the left-hand semicircle of

|z+jp| = |p, joined by segments of the lines I(z)
= %p. On the

upper half of the right-hand semicircle,

\pw\ = \p, \p+w\ > 2p, \p*+w*\ > 2p
2

and \w\ < %p. Hence

27V2/ 27\ 1 5-2

Integrating over a length JTTJP, we obtain approximately 4/p
3

.

On the straight line w ~ u+^ip, \p < u < p, we have

and
(f
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Hence

approximately. Integrating, we get again 4/p
3

;
hence

Zi

R(w)\dw<
*

P

On the straight line from z to infinity, where z is on or to the right

of the semicircle, we have

|p+w| ^ \w\, |^
2+w2

| ^ |^|
2

, \w p\ > \p.

o*\w\*+2\w\ ^

Hence

Hence this part is

17
approximately. Hence 8 < .

For 8 <C 1 we therefore want

X>17* = 44

roughly.

In 8.3, we have \w\ < 2~^, so that

P/V2

J | JZ(w) dw | < (^ t (%?Hence
| JZ(w) dw | < (%??+
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which is found to be less than 1/p
3

,
and so it is small if A satisfies the

above condition. A closer examination of the above integrals would

no doubt show that the method was valid for much smaller values

of A.

8.8. General character of the functions $n (z). If q(z) is an

integral function of z, so is
iff tl(z) for each n. From (8.3.2) it follows

that

and hence that

W)
For q(z)

= zk ,

Z

f(z)
= -i

j (w
k~Xn )* dw

(k = 2)

Hence

jn(z) = 0{| Z |*-*exp(i| Z
|*)} (* - 2),

(

|

Hence
i/>K (z) is an integral function of order J&+1 at most. Since

by (8.4.3)

for real a:, the order is exactly J&+L Hence $n(^z) or \lz$n(^z) is

an integral function of order J&+J, according to whether n is even

or odd.

In the case k = 2, (8.4.3) holds for all sufficiently large values

of z in the first quadrant. The curve C can be replaced by any circle

\z\-R with R > A*. Consequently ^n (z) has no complex zeros, if

n is sufficiently large. Actually this is well known to be true for all

values of n.

In the case k = 4, if>n (*Jz) or ^/z$n (*Jz) is an integral function of

order f ,
and so has an infinity of zeros, all but a finite number
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of which must be complex. An infinity of these zeros are purely

imaginary; for if z = iy, (8.2.2) becomes

0. (8.8.1)

The coefficient of
i/j

is positive for y > A*, indicating that the solution

is oscillatory. For y ^ (2A)*, y* A ^ |#
4

. Hence (8.8.1) has a zero

between any two consecutive zeros of a solution of

It is possible that in this case all the zeros of $H(z) are either purely

real or purely imaginary. For k > 4 the situation is probably still

more complicated.

REFERENCES
Brillouin (1), Wentzel (1), Kramers (1), Boll (1), Birkhoff (3), Dunham (1), (2),

Kemble (2), Langer (4), (6).

The method employed here is perhaps new.



IX

CONVERGENCE OF THE SERIES EXPANSION UNDER
FOURIER CONDITIONS

9.1. The problem of this chapter is similar to that of Chapter VI,

but it is now assumed that q(x) -> oo. The expansion thus takes

the series form

It will now be shown that, by imposing further conditions on q(x),

we can relax those which were imposed on f(x) in Chapter II; and
in fact that, for a wide class of functions q(x), the expansion con-

verges iff(x) satisfies conditions similar to those which are sufficient

for the convergence of an ordinary Fourier series.

As in Chapter VI, it is mainly a question of obtaining asymptotic
formulae for the functions

</>(x, A) and i/j(x, A) for large complex values

of A; these then give what is required for the function

X 00

<S>(x, A) - fla, A) J fly, A)/(y) dy +<f>(x, A) J fly, A)/(y) dy.

x
(9.1.2)

We obtain satisfactory results provided that A is not too near to the

positive real axis. A restriction of this kind is to be expected, since

it is here that <!>(#, A) must have an infinity of poles. However, in

the neighbourhood of the poles, the formula

(9.1.3)

can be used. For this purpose we have to know something about the

distribution of the eigenvalues An ,
and the analysis of Chapter VII

is needed.

9.2. It will be assumed that q(x) is twice differentiate,

q'(x) > 0, q"(x) ^ 0, and q*(x) < {q'W
for sufficiently large x, where 1 < y < |. Then Theorems 7.5 and

7.6 hold.

The analysis of 5.4 is required again here. With the notation

there used and the conditions assumed above, we have
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QO

LEMMA 9.2.
J | R(t) \

dt ->

o

as A -> oo, it being supposed that A = u+iv, v ^ 0, and A does not enter

the region between the positive real axis and the curve v = u2^2~^}xMl
x(u) being any continuousfunction which tends steadily to infinity with u.

The conditions assumed imply that

q'(x) = 0[{q(x)Y],

where c = l/(2 y), by (7.3.4). Hence

_ <fdq~
<JU

f ^

I _ zzz: \J { I (tt }

J |A q(t)\* \J I A 0(01*
o

v
o

;

If u ^ 0, put q = u-\-vr. We obtain

O J

F
(M+W)^^! ^

l-i,

If u < 0, the integral is

o

Since q'(t)
=

0[{q'(t)}v]
= 0[{q(t)}^q' (t)},

00

r
<f(t)dt_ ^ O t C <F^dg\

and similar results hold for this integral. The lemma clearly follows

from these results.

9.3. Let (f>(x, A) denote again the solution of

q(x)}y = (9.3.1)

such that <(0,A) = sin a, <'(0,A) = cos a. For a fixed #, or x in

a fixed finite range, Lemma 2 of 1.7 gives

^(a?,A)
= cos(cWA){sina+<9(|A|-*)} (9.3.2)

if sin a = 0, and

^Aizzz-^^loosa+OdAI-*)} (9.3.3)

if sin a = 0.
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For x -> oo, the relevant formulae are (5.6.1), (5.6.2). Also by (5.6.1)

and Lemma 9.2, the integral on the right of (5.3.6) is

as A -> oo in the region allowed by the lemma. Hence

and M(\) ~ A* sin ex (9.3.5)

as A -> oo in the above region, provided that sin a ^ 0. Similarly, if

sin a = 0,

M(\) --li~. (9.3.6)

The formula obtained by differentiating (5.6.2),

.[{*-q(x)W(x, A)]
~ -tJf(A){A-g(*)}*e-*fi*>, (9.3.7)

is also easily proved by first differentiating (5.4.5).

9.4. It is now a question of obtaining a solution of (9.3.1) which

is small for large x. We proceed as in 6.2 or 8.3, but e^x) is now
small for large x, not large as in 8.3. Hence (5.4.5) is formally

equivalent to

dt -
x

JL I ei{to*-tMR(t)n(t) dt +~ f ei{&

2i J 2i J
o x

00

--f'OA I

oo

+ 1. f eto-&R(t)ii(t) dt. (9.4.1)
2i J

or

'R(t)r,(t)dt
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Take A = 1, B = 0, ^ = e*&x\ and for n > 1

a;

J

Let J now denote
J \B(t)\ dt\ by the above lemma, J < 2 if A is

o

sufficiently large and in the above region. Arguing as in 6.2, it

follows that
r]n(x) tends to a limit rj(x), which satisfies (9.4.1) with

0, 5 = 1; and

(9.4.2)

(9.4.3)

In particular, j/(#)
=

^(a;){A q(x)}~* is ^2
(0, oo).

9.5. We have to apply this result to the function i/j(x,\). Now

and i/j(x,X) and y(x,X) are 7v2 (0, oo), while </>(#, A) is not, at any rate

if If(A) ^ 0. It follows that, if A is large enough and in the region

of the lemma,
$(x,\) == B(\)y(x,\).

Since

Now for a fixed A, x -> oo, (9.4.1) (with A = 1, B 0) gives

(CDl + jL f

o

say. As in previous cases, we also have

Hence
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Hence 2iB(\)M(X)K(\) = 1,

'

-

Clearly K(X) -> 1 as A -> oo in the above region.

For a fixed #, and A -> oo in the above region, this gives (if

sin a ^ 0)

// %x
XX

Jj(x A)^ ' }

Since

r^___
a* sin a iA*{A-g(a?)}*sina

=
j {X-q(t)}* dt

o

a

=
J{A*+O(A-)}ft

this also gives

Similarly

, A)

//(*, A)
sina

If sin a 0, the corresponding results are

pix-lXMX) A) ~ -
, ib'(x, A)

=
cos a cos a

(9.5.2)

(9.5.3)

(9.5.4)

9.6. All the above results apply to regions which do not come too

close to the positive real axis in the A-plane. In the neighbourhood
of the positive real axis the expression (9.1.3) has to be used, and

for this purpose some further information about the functions ^n(x)
is needed.

We have 0;(*)+{An-j(a:)}^w (a:)
- 0.

Let q(pn )
= An . Then for < x < pn the coefficient of $n(x) is

positive. Hence ^n(x) is concave downwards where it is positive,

and upwards where it is negative; it therefore has just one maximum
or minimum between consecutive zeros.

LEMMA 9.6 (a). The successive maxima of \$n(x)\ in < x < pn
form a non-decreasing sequence.

Let JM-
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,W _*&*$> a

Hence F(x) is non-decreasing. At a critical value ofifjn(x), iff'n(x) = 0,

so that F(x) = $n(x)-
The lemma therefore follows.

LEMMA 9.6(6). Let ^ 1? 772,...
be the zeros of $ri (x). Then

is a non-decreasing function of v.

Since F(x) =
-?*

at a; = %, >j2,."i this also follows from the above argument.

9.7. LEMMA 9.7. For any fixed x (or x in a fixed interval)

Let the successive maxima (or minima) and zeros of $n(x) in the

interval <. x ^ \pn be

1 < % < 2 < < *7*"

Consider a particular 77^.
Then by Lemma 9.6 (b)

IfeJI <"

Since g(a;) is convex downwards, ^(|^) ^ 29'(a; )- Hence

Hence |^(^)| < J 1^(^)1-
^

V-/X

Suppose e.g. that $n(x) is positive between
,
and

17^. Then

4957
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Hence l&0j,)l < A
J |tfn(*)l **

(,

Hence (9.7.1) gives

<
. v r tPn vVn }

<j2Xn f f
'

M-l[J
**

J J*- A n J

Now let a: be a given positive number. Let ^, ^+1 be the nearest

zeros of $'n(y) below and above a?, 77^
the zero of ^(^) between ^

and ^+1 . Then \$'n(x)\ ^ 1^(^)1- Now it is clear from the argu-

ment of 7.2 that
lPn

1 f"
^' ^> _ I n f^

77 J
03

>if;
a;

>^yw A* (9.7.3)

for n large enough. Hence

and the lemma follows.

9.8. LEMMA 9.8. For a fixed x

Consider again an interval (^, ij,,)
where $(%) > 0, ^(x) < 0,

* ^ . Then

Hence , ,,

J &(a:)#;(aO cfo > |AB J n(*){-0;
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Hence by (9.7.4), if 7?^ < x < ^,

|0wtf/4)|<4p*
and the lemma follows.

It is easily verified that, in particular cases, these results are

the best possible. For example, in the Hermite case, q(x) = x2
,

Xn = 2?i+l,p7l
== (2n+l)*, so that Lemma 9.8 gives $n(x) = 0(n-*).

Now (Szeg5, p. 94) for a fixed x

Hence /

f !H \

ilj(x\ = O\ -^ -Lil 1

9.9. We can now prove

THEOREM 9.9. Let f(y) belong to L2
(0, oo), emd fe< f(y) = iw. aw

interval of which x is an interior point. Then

fc tt /-
= <).

n=0

This shows that, as in the case of ordinary Fourier series, the

convergence of the series
]

cn ^fn(x) depends only on the behaviour

of the function f(y) in the immediate neighbourhood of the point x.

Ofcourse we have also assumed that/(j/) is L2
,
a condition not required

in the theory of Fourier series.

Let/(*/) = for x 8 ^ y ^ a;+3.

We have to prove that, under the conditions of the theorem,

lim f

as R -> oo through values not equal to any of the eigenvalues. We
have

e

f s, A) dx = CM*) xr = 2 cMx)I >

n= ^" " n=

(9.9.1)
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say. Now
] c| is convergent, since f(x) is L2

(0,oo). Let

Then

Reir>

/

Now In is bounded for all values of R and 7i (e.g. since we can take

it along an arc of a circle with centre at A = AJ. Since

|A-AJ ^ R-\n ,

and the length of the contour is 2Rr], it is also

o

From this and Lemma 9.8, it follows that

say, and

y

say.

In 6f3 , pn ^ p(R-R-r)), and the number of terms in the sum is

N(R-^E-r])-N(R-Rri). Hence

by (7.6.2), provided that

which is true if
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Next

fly

22'"
V _LZ 22*

Similarly 2
-

Lastly a similar argument gives

and summing terms of this type,

Altogether J O(a, A) dX = 0(B^)+0{e(^R)R^}. (9.9.2)

This tends to zero if
77

is a suitable function of R, e.g. if

(0 - 9 - 3>

(or of course for smaller
77,

but later we want R^rj -> oo).

9.10. Next consider the order of <!>(#, A) on the parabola v2 = u.

We have
M 2\1oo oo

The last sum does not exceed

(9101)- (9 - 10>1)

+ y l

We consider these sums in the same way as those of the previous
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section, with R and By replaced by u and v respectively. The third

sum, for example, is

N(u+v)-N(u-v)\ _ n n v\ __ /1\

p(u-v) I

~
\v* u*} W'

and similarly for the others. Hence on the parabola

<D(z,A) = 0(u~*) = 0(| A|-*). (9.10.2)

This also holds throughout the part of the first quadrant above the

parabola, since (9.10.1) is a decreasing function of v, for a fixed u.

In the second quadrant

the convergence of the series following from the above argument.
Now we also have

x-8 oo

<D(z,A) = fla, A) J #(y,A)/(y) dy +fl*,A) J fly, A)/(y) dy.
s+8

Combining (9.3.2), (9.3.3), (9.3.5), (9.3.6),

for a fixed x, or a; in a finite range. By (9.5.1) and (9.4.2)

for all x, and A in the region allowed by 9.2. Let A be real and

negative, say A = p,. Then

(x, u) = 0! j- I ^^/(y)] dy } +
\ ^ I I

foepx^fj* r

TrJ
The first term is clearly 0(jU,-

ie-8v't
); and so is the second, since the

integral does not exceed

{CO

CO \l./,* co \1
f f I* \ e-y.x+8Hfi c ]i

J
e-^^

J
\f(yWdy\ ^ l-^ J

l/(2/)l
2^

aH-8 z+8 ' *

o
'

Thus 0>(rc, -^t) = O(/i-e-
8
^). (9.10.3)

Let
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where A* is real on the positive real axis. By (9.10.3), F(\) is bounded

on the negative real axis. On the parabola v2 = u

Hence, by (9.10.2), F(y) is bounded on the parabola. It is therefore

bounded throughout the region between the parabola and the nega-
tive real axis, by the Phragmen-LindelOf theorem. Hence, putting

Hence, if < T? < |TT, jRsin2
^ ^ cos

77,

J O(a, A) d\ = ol
J
&e-**M dO\

= '

(9.10.4)

The same result holds, of course, for the integral over ~TT ^8 ^ rj.

Theorem 9.9 now follows from (9.9.2) and (9.10.4).

9.11. In view of the above theorem, we can now confine our

attention to a finite interval. We first prove

LEMMA 9.11. Letf(x) be of bounded variation over a finite interval

(a, 6), and zero elsewhere. Then

<*,<*) =
o(I).

Let f(x)
=

fi(x) f%(x), where f and /2 are bounded and non-

increasing in (a, 6). Then
b b

cn = J *l>n(y)f\(y) dy
-

J $n(y)fa(y) dy-
a a

By the second mean-value theorem

6 P

J tn(y)fi(y) dy - A(a+ 0) J jn{y) dy (a < j8 < 6)
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by Lemma 9.7. Similarly for the other integral. Hence by Lemma 9.8

c0(s
By Theorem (7.3)

and the lemma follows.

9.12. THEOREM 9.12. Let q(x) satisfy the conditions stated in 9.2,

and let f(y) be of bounded variation over an interval including the point

x, and zero outside this interval. Then

n^Q

We start again from (9.9.1), but now use cn $fl(x)
= 0(1/n) instead

of ^ cn < - We obtain

*\ ( ^-A P<v> \

+

say. Now

-^\ =
0(r,)

by (7.6.3), provided that
77 ^ R~*. Next

GO

2

VZ

-)
_
2*

1C 1

- 2 ^+ 2 ^
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Similarly for 22 ;

by (7.6.3), and adding 0(log JR) terms of this form,

=007 log*).

We may take for example 77
= jR~a , where < a < . Then

lim
f (x,X)d\ = 0.

#->oo >.
fle-17?

x+S

Now A = jRexp(ijR~
a

)
~ R+iR1-* lies in the region specified in

Lemma 9.2, if a is in the above interval. Hence on the remaining arc

of the circle |A|
= R we may apply the asymptotic formulae obtained

in 9.3-9.5.

Now
x

^*xb x

The second term can be written in the form

x+8 x+8

x

Now
x+8 x+8

+

/

Suppose, for example, that sin a ^ 0. Using (9.3.2) and (9.5.3),

) X

Hence lim f O^x.A) dA = t/(+0).
R-+00 . 'N..

4957
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In O2 ,
we can write

where g^ and gr2 are non-decreasing and tend to as i/ -> %. Now
ar-fS a+S

J ^(y,\)}gi (y) dy = fcfr+S-O) J R0(y,A) dy
a? a'

by the second mean-value theorem; and as before this integral is

O{\e
ix
^l\\}. Similarly for the imaginary part, and for the corre-

sponding integrals involving g2 . Altogether we obtain

$2 = l/| TTT
-j.

Hence
J (x, A) d\ =

Since 8 can be taken arbitrarily small, this contributes to the final

result.

Similarly for the other part of O(#, A), and the theorem follows.

9.13. Combining Theorem 9.9 and Theorem 9.12, the final result

of the analysis of this chapter is

THEOREM 9.13. Letf(y) belong to L2
(0, oo), and letf(y) be of bounded

variation over an interval including the point x. Let q(x) satisfy the

conditions stated in 9.2. Then

-O)} = f cn ,M*).
n=0

REFERENCE
Titchmarsh (10).
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SUMMABILITY OF THE SERIES EXPANSION

10.1. It will be assumed here merely that q(x) is continuous and

tends steadily to infinity, but not that it satisfies the other conditions

of Chapter IX. The asymptotic formulae previously used are no

longer available, or at any rate they have not been proved under

such general conditions. Consequently it is no longer possible to

prove the convergence of the eigenfunction expansion under Fourier

conditions. We can, however, prove the following summability
theorem.

THEOREM 10.1. Let q(x) be continuous and tend steadily to infinity,

and letf(x) be L2
(0,oo). Then

Km V *cMx) = J(x) (10.1.1)

^&> V+X

for every value of x for which

x(-n)
=

J l/(*+2/)-/(*)l Ay = o(r,) (10.1.2)

as
t]
-> 0. In particular (i) it holds almost everywhere, and (ii) it holds

wherever f(x) is continuous.

In view of (9.1.3), this is a question of the behaviour of <J>(o;,A)

on the negative real axis. Putting A = I
2

, it becomes a question

of the solutions of

g = {<+<*)}*

for real t, and q(x) tending steadily to infinity. This is dealt with

in the following lemmas.

10.2. LEMMA 10.2. Let Q(x) > Qfor x ^ XQ ,
and let y(x) be a solu-

tion of

belonging to L2
(xQ,co). Then y(x) and y'(x) have opposite signs, and

tend steadily to zero as x - oo.

Suppose, for example, that y(xQ ) > 0. Then y'(xQ ) < 0, or y(x)

would tend steadily to infinity, since it is convex downwards where
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it is positive. Thus y'(x) < as long as y(x) > 0. But y(x) cannot

change sign; for if xl were its first zero, and y(x) < for x just

greater than x
l9 there would be a point x^S such that y(xl+S) < 0,

y'(#i+S) < 0. Hence y(x) would decrease steadily past this point,

which is impossible if it belongs to L2
(x , oo).

It follows that, for x ^ x , y(x) > and y'(x) < 0. Hence y(x)

decreases steadily, and so tends to a limit, which must be zero if

y(x) is L2
. Since y"(x) > 0, y'(x) increases steadily, and so tends to

a limit, which clearly must also be zero.

10.3. LEMMA 10.3. In addition to the above conditions, let Q(x) be

non-decreasing. Then, if y(xQ ) > 0,

y(x) ^ y(xQ)exp- (Q(u)}* du (x > * ). (10.3.1)
^ X -*

We have for x ^ X
Q

-y'(x)y'(x) = Q(x)y(x){-y'(x)} ^ Q(xQ)y(x){~-y'(x)}.

Integrating from x to xv

Making xl
-> oo, and replacing XQ by x, it follows that

y'*(x) ^ Q(x)y*(x).

Hence y'(x)ly(x) ^ {Q(x)}*. (10.3.2)

Integrating from x to x,
X

logyfco) logyfc) ^ j (Q(u)}* du,

XQ

and the lemma follows.

10.4. LEMMA 10.4. Let Q(x) satisfy all the above conditions, take

XQ
= 0, and let

2/(0)cosa+7/'(0)sina: = 1, (10.4.1)

where sin ^ (instead ofy(0) being given). Then, if Q(Q) > cosec2
a,

By (10.4.1) and (10.3.2)

-i'
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Also by (10.3.1) and (10.3.2)

and (10.4.2) follows.

10.5. LEMMA 10.5. Under the same conditions

Suppose, for example, that y(x) is positive. Since Q(x) is non-

decreasing,

-y'(x)y*(x) - Q(x)y(x){^(x)} < Q(xl)y(x){^y'(x)} (x < ^).

Integrating from x to o^

Writing temporarily a = {^(a;!)}*, b = y'fai), this gives

Henoe

where yQ
= y(xQ ). Hence

(10.5.2)

Also, since y is positive and convex downwards,

(0 <*'<*).

Taking x' = x 1, this gives
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Hence, taking x^ x+l in (10.5.2),

and (10.5.1) follows.

10.6. LEMMA 10.6. Let Q(x) t
2
+q(%), where q(x) is non-

decreasing and independent oft, and let y(x) satisfy the above conditions.

Then as t -> oo

y(x) ~ y(Q)e-
xt

(10.6.1)

uniformly in any fixed range of values of x, if y(Q) is given; while if

(10.4.1) holds,

dO.6.2)

The first result follows at once from (10.3.1) and (10.5.1).

It follows from (10.3.2), with x = 0, that \y
f

(0)/y(0)\ tends to

infinity with t, and hence, if (10.4.1) holds, that y'(Q) has the same

sign as sin a, if t is large enough. Hence y(x) has the opposite sign

to sin a. Thus the sign in (10.6.2) is correct. It will then be sufficient

to consider one case, e.g. that in which y(x) is positive.

The required upper bound for y(x) follows at once from (10.4.2).

Also (10.4.1) gives

i< |y(o)|+|y'(0)s^

by (10.3.2) with x = 0. Hence

I'^fljoF+sr.-
(10 ' 6 -3)

Also, if xl > x,

y(x1)-y(x) =
X

*i-)K'+ y'(l)(*i-

Xl

'

(x)
= y(*3-yW L_ f

X-t~~~~X X-i~~~~X J

and hence \y'(x) \ < iL_*vL'+ (xl-x)Q(x1)y(x).
X-t X
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Now, by (10.5.1),

if x and x1 lie in a fixed interval. Hence

Taking (x1 x)t small and (xl x)t
2
large, e.g. xl

= a+H, we obtain

\y'(x)\ < ty(x)(l+8) (t > Z
(S)). (10.6.4)

The lower bound for y(x) implied by (10.6.2) now follows from

(10.5.1), (10.6.4), and (10.6.3).

10.7. Proof ofTheorem 10.1. Since f(x) is L2
(0,oo), (9.1.3) holds,

and the theorem is true if

0(z,-Z
2
)
--

f(x)/t* (10.7.1)

as t -> oo. Now

0(x, -t
2
)
= MX, -tz

) J <f>(y, -t*)f(y) dy +<f>(x, -t*) J ^(y, -t*)f(y) dy.

X

Since ^(0)
= sin a, <j>'(0)

= cos a, 6(0) = cos a, fl'(O)
= sin a, and

we obtain 0(0, <
2
)cosa+0'(0, -^

2
)sina = 1. (10.7.2)

Suppose first that sina ^ 0. By (1.7.3)

$(x)
= cosh xt sina+0(exi

/t) (10.7.3)

as ^->oo, uniformly in any finite x-interval; and y(x) = $(x,t
2
)

satisfies (10.6.2), uniformly in any finite ^-interval. Also by (10.4.2)

0(*,~Z
2
)-0(e-*<)

for all x and sufficiently large t. Hence, if S > 0,

x 8x / x \

-<2
) f #(y, ~<

2
)/(2/)^ = ^ f et"|/(y)| dy\

-
o
J l

'

o
J j

#(*, ~'
2
) f ^(2/> -^

2
)/(y) ^ = Ole* 1 e-*\f(y)\ dy}

l j

= &*{ I e~2yt dy
I J* '*L Ws s+s
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The remainder of O(#, t
2
) can be written

f(x)U(x, -t*) j fly, -**) dy +<f>(x, -t*)
J 0(y, -*)

dy)
+

*

f ? **
'

x+8

.(*,-<)/ t(y,-t
z
){f(y)-f(x)}dy.

X

The coefficient off(x) is asymptotic to

tfsina J J tfsina ^
2

z-8 a?

If (10.1.2) holds, the last term in the previous expression is

I xt

x
~r e-yt

|

\

e

J t
y y

]

-*u du\
'

Similarly for the second term; altogether

the required result. A similar argument holds in the case sin a == 0,

using (1.7.5) and (10.6.1).

10.8. An alternative proof of Theorem 9.12. There is a well-

known argument in the ordinary theory of Fourier series by which

we can deduce the convergence of the Fourier series of a function

of bounded variation from its summability ((7, 1). If f(x) is of

bounded variation over (0, 2??), and aw ,
bn are its Fourier coefficients,

then

<-) >-=
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00

The series |#o+ 2 (an GOsnx+bn suinx)
n=l

is summable (<7, 1) to the sum f(x) for each x\ hence, by Hardy's
'Tauberian' theorem, it also converges to f(x).

We are now in possession of the materials for a corresponding

proof of Theorem 9.12, viz. Lemma 9.11 and Theorem 10.1; but,

instead of Hardy's Tauberian theorem, we have to use a case of

Wiener's general Tauberian theorem.

Let an = cn i/jn(x), so that an = 0(l/n) by Lemma 9.11. Let

Then by Theorem 10.1

=o

as A -> oo. Let S(x) = 2 an
A<x

Then

, -A) = V a.f
^A V

Now

<- T - = - T -
WA

"
A W A %

N(X) I

by (7.6.3). Replacing A by 2A, 4A,... and adding, we obtain

Similarly 2 w
=

(A) '

Hence

= 0(1).
4957 z
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Also -A0(*, -A) ~ - dS(u) = S(u) du.

Hence

-A0(*, -A) ~
J

- dS(u) =
j

-0

oo

lim f
A~>QOJ

oo

8 - lim f -8(u) du
J

f ^.QO J
CO

K( }

eX

Now
CO CO CO

*-iu

and f .K^dte == 1.

CO

Hence, by Wiener's Theorem 4,f

CO CO

lim f Kt(ii)8(&) d^ = 8
f
K2(x) dx,

J

where K^) = (f < 0), r* (f > 0).

Thus f

5 = lim
] 0i-*8(ff>) d-n

/:_>co ^

= liml f
X^coiC J

f N. Wiener, TAe Fourier Integral, pp. 73-4.
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Let S be a number between and 1, independent of x. Then

a (1+8)8 s ,. i f

l+
r

*

N , r 0/ , 7 \S = \_HJ = hm I S(y) dy - S(y) dy\
J J I

X-+OQ OX I

by (7.6.3), provided that a?~* ^ S. Hence

(l-f-S)x (l+8)

1
J {/8f(y)-5(a !

)} <Zy
= l

J 0(8) dy

X X

=. 0(8).

Since S is arbitrary, it follows that

lim 5(a!)
= 8.

REFERENCES
Titchmarsh (9), (10).

= lim /%) dy
X-+OOOX J

X

[d+8(x)+ f
OX J

x
Now

= 2 )'

= -o V
I)TJ.J

;
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