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PREFACE

THE idea of expanding an arbitrary function in terms of the solutions
of a second-order differential equation goes back to the time of Sturm
and Liouville, more than a hundred years ago. The first satisfactory
proofs were constructed by various authors early in the twentieth
century. Later, a general theory of the ‘singular’ cases was given
by Weyl, who based it on the theory of integral equations. An
alternative method, proceeding via the general theory of linear
operators in Hilbert space, is to be found in the treatise by Stone
on this subject.

Here I have adopted still another method. Proofs of these expan-
sions by means of contour integration and the calculus of residues
were given by Cauchy, and this method has been used by several
authors in the ordinary Sturm-Liouville case. It is applied here to
the general singular case. It is thus possible to avoid both the theory
of integral equations and the general theory of linear operators,
though of course we are sometimes doing no more than adapt the
latter theory to the particular case considered.

The ordinary Sturm-Liouville expansion is now well known. I
therefore dismiss it as rapidly as possible, and concentrate on the
‘singular’ cases, a class which seems to include all the most interesting
examples. In order to present a clear-cut theory in a reasonable
space, I have had to reject firmly all generalizations. Many of the
arguments used extend quite easily to other cases, such as that of
two simultaneous first-order equations.

It seems that physicists are interested in some aspects of these
questions. If any physicist finds here anything that he wishes to
know, I shall indeed be delighted; but it is to mathematicians that
the book is addressed. I believe in the future of ‘mathematics for
physicists’, but it seems desirable that a writer on this subject should
understand physics as well as mathematics.

E.C.T.
NEW COLLEGE, OXFORD,
1946.
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I
THE STURM-LIOUVILLE EXPANSION

1.1. Introduction. Let L denote a linear operator operating on
a function y = y(x). Consider the equation

Ly =My, (1.1.1)

where A is a number. A function which satisfies this equation and
also certain boundary conditions (e.g. which vanishes at x = a and
xz = b) is called an eigenfunction. The corresponding value of A is
called an eigenvalue. Thus if 4,(x) is an eigenfunction corresponding
to an eigenvalue A,

Ll//n(x) - ’\nlpn(x)' (1.1.2)
The object of this book is to study the operator
2
L = — 1.1.
1)~ (1.13)

where q(z) is a given function of x defined over some given interval
(a,b). In this case y satisfies the second-order differential equation

d%y -
T+l = o, (L.1.4)
and i, (x) satisfies
;TC(‘E)—*_{AIL—Q(‘Z)}IILH(‘I‘) = 0. (1'1'5)

If we take this and the corresponding equation with m instead of n,
multiply by ¢,,(2), ,(x) respectively, and subtract, we obtain

d , .
Hence z
A=) [ In(@Woal@) d2 = [@hr(@)—ha(@)in2);
‘ =0

if ,,() and ¢, (x) both vanish at = a and = b (or satisfy a more
general condition of the same kind). If A, 5 A,, it follows that

b

[ dm(@)p(2) da = 0. (1.1.6)

4957 B



2 THE STURM-LIOUVILLE EXPANSION Chap. I

By multiplying if necessary by a constant we can arrange that
b
f Yn(x) do = 1. (1.1.7)

The functions i, (z) then form a normal orthogonal set.

Our main problem is to determine under what conditions an
arbitrary function f(x) can be expanded in terms of such functions,
in the manner of an ordinary Fourier series. If this is possible, and
the expansion is

@

fa)= 3 cathul@), (1.1.8)

=o

then on multiplying by ¢,,(x) and integrating over (a,b), we obtain
formally

b
On = [ f@)pm(@) da. (1.1.9)

In some cases the eigenvalues are not discrete points, but form
a continuous range, say, for example, over (0,00). The expansion
then takes the form

f@) = f cA)y() dA. (1.1.10)
0
All this has its simplest illustration in the case of ordinary Fourier
series. Suppose, for example, that ¢(x) = 0, and that the interval
considered is (0,7). The solution of (1.1.4) which vanishes at x = 0
is then y = sin(xvA). This vanishes at = = if and only if A = n?,
where 7 is an integer. These then are the eigenvalues, and the corre-
sponding eigenfunctions are the functions sinnz. That an arbitrary
function can be expanded in terms of these functions is the familiar
theorem on Fourier’s sine series.

+

1.2. An argument which has sometimes been used to suggest the
validity of the above expansions runs as follows. Consider the partial
differential equation

of
Lf =9, 1.2.1
f=i2 (1.2.1)
where f = f(x,t). If f(z,t) is given for one value of ¢, it is fixed by
this equation for a slightly greater value of ¢. Thus we should expect
to have one solution, and only one, for any given initial value of
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f(x,?), i.e. for f(z,?) equal to an arbitrary f(z) when ¢ = 0. Suppose
now that the solution can be expressed as a Fourier integral,

a8 = Wi}_)l Pz, Ne=N dp, (1.2.2)
where F(x,)) = :/(%175—1: fla, t)e dt. (1.2.3)

Substituting in (1.2.1), we obtain
f =ML (2, \) dA == f Ae=NMF (2, A) d.

—

Since this holds for all values of t) we can equate the coefficients of
e~ which gives

LF(z,d) = AF(z, ).

Thus F(z,A) is an eigenfunction of the operator L belonging to the
eigenvalue A. Now putting ¢ = 0 in (1.2.2), we obtain

1 0
) = ——-—— | F(x,A)dA,
f@) J(Qﬂ)_i ()

which gives an expression for the arbitrary function f(x) in terms of
eigenfunctions. If f(x,t) were expressible in a Fourier series instead
of an integral, we should obtain similarly a series expansion.

The difficulty of justifying directly an argument such as the above
is obvious.

1.3. The argument assumes, for one thing, that f(z, t) is small as
t > oo, since this is required for the Fourier integral formula (1.2.2),
(1.2.3) to hold. However, a more general form of the formula is as
follows. Let

Fo(w,)) = «7(%77) f S, 0eMdt (1Y) > o), (1.3.1)
0

Fz,)) = «7(;7) f fa,0eiNdt (IN) < 0). (1.3.2)
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The inverse formula is then

¢4 o ic’ o

Slz,t) = @ ) f F(x,A)e=™M d) _{_w-_ j F (2, \)e=M d),
(1.3.3)

where ¢ > 0, ¢/ < 0. Using this and (1.2.1), we obtain formally

LF,(@,}) = «7(§%7) f Lf(ee, e dt

: J‘ f iM
—_— RCAPLLL A
27 ot

’\/( ) K

(=]

= x/(l. )[ flx, e 7 f S, t)e™ dt

= «/(2 )f(x)—{—/\F ' (x,2) (1.3.4)

if f(x,t) reduces to f(x) when ¢ = 0. Similarly

LF_(x,2)= NE )far)+)\F (x,A). (1.8.5)

The method to be employed is therefore as follows. We construct
the solutions #, and F_ of (1.3.4) and (1.3.5) which satisfy given
boundary conditions. Then (1.3.3), with ¢ = 0, gives

1¢4-00 il
o | BN f]f‘x/\)d/\ (1.3.6)
e,

ic—w

‘ p—

J@) =

In the simplest cases F_(x,A) is found to be minus the analytic con-
tinuation of F, (z, ) across the real axis. Writing

D(x,A) = —i/(2m)F (2,A) (1.3.7)
(1.3.4) becomes (L—X)D(x,A) == —f(x), (1.3.8)
and (1.3.6) becomes

i¢’+ o i¢ —©
fa) = L ( f f )(D(x A) da. (1.3.9)
i¢’— o ic o
The expansion is then obtained from the calculus of residues, the
terms of the series being the residues at the poles of ®(x, ).
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In any case, since (1.3.4) and (1.3.5) differ only in having the sign
of ¢ changed, the two terms in (1.3.6) are conjugate. Hence we
also have iy

/@) =R{ A/(;) f wF+(x,/\) d/\}

ic-oo
_ —I{l f Oz, A) d,\]. (1.3.10)
el
The expansion formula is obtained from this by making ¢ — 0.
The above argument indicates in particular that A must be treated
as a complex variable; but the analysis is of course still purely formal.

1.4. In the particular case in which the operator L is given by
(1.1.3), (1.3.8) is the second-order differential equation

2)+{A—q(®)}®(x) = flx). (1.4.1)
In this case the function ®(z,A) can be expressed in terms of the
solutions of (1.1.4). Let W(¢#,) or W(é,) denote the Wronskian
W(d, ) = (x)'(x)—¢'(x)h(x) of two functions ¢ and . Now let
é(x,A) and J(x,A) be two solutions of (1.1.4) such that W(é,¢) = 1.
Then a solution of (1.4.1) is

x b
O, X) = h(x,d) [ $ly, f @) dy +$(x.2) [y Nf) dy, (1.4.2)

as is easily verified by differentiating twice.

Another starting-point for the thcory, which (in the case of
(1.1.3)) avoids an appeal to Fourier integrals, is as follows. Suppose
the theory already established, and consider the properties of the
function

O(z) = b(x,A) = z ?;'\Lfﬂ)f”)-. (1.4.3)
This gives "

(I)"(.’IJ) q(:L‘)(D .’E) Z n{‘l‘;’L “)‘x)‘ibn SL‘)}

z M) =S o125

n=0

= f(x)—AD(x).
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This is (1.4.1) again, so that we are again led to consider solutions
of this differential equation. If we can solve it, (1.4.3) then indicates
that the terms of the cxpz'ion of f(x) will be the residues at the
poles of @(z,A).

Our general method consists of defining ®(x,A) by (1.4.2); integra-
tion round a large contour in the complex A-plane then gives the
value f(z), and the singularities of ®(x, A) on the real axis give a series
or an integral expansion as the case may be.

1.5. The Sturm-Liouville expansion. We shall suppose
throughout that g(x) is a real function of x, continuous at all points
interior to the interval (a,b) considered. In the classical Sturm-
Liouville case (2,b) is a finite interval, and q(z) also tends to finite
limits as « - a and x - b.

The general theorem on the existence of solutions of (1.1.4) is as
follows.

THEOREM 1.5. If q(x) satisfies the above conditions, and « is given,
the equation (1.1.4) has a solution ¢(x) (@ << x << b) such that

d(a) = sina, ¢'(a) = —cosa.
For each x, $(x) 1s an integral function of A.
Let Yol®) = sina— (r—a)cos «,

and forn =1, 2,...,
T
Yal@) = yo(e)+ [ {at) =Ny, (O)@—0) de.

Let |q(x)] << M, |yo(x)| < K, fora << o < b, and let |A| << N. Then
X
lyy (@) —yo(z)| < f (M+-N)K (x—t) dt = L(M~+N)K(x—a).

a
Forn >1,

Yal®)=Yua@) = [ {aO) =D}y ()= oY1) db,
900~ Yna@)] < AAN)O—) [ 12— Yaa)]
Hence e
) —n@) < =D [ eapa

__ K(M+N)}b—a)(z—a)®
- 3! ’
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and 8o generally
K(M—f—N)"(b a)n-—l(x a)n+1

lyn(x)—yn-l(x)l —_—— + l)'—w A

Hence the series
95(5(1) = yo(x)+ ngl {:’/n(x)—'yn—l(x)}

converges, uniformly with respect to A if [A| <{ NV, and with respect
to x over @ <L x < b. Since for n > 2

Yl@)—Yp-a(x) = f (4O =Ny s) =20} 1,

yn(x) yn 1 (x) == {Q(x) A){:’/n -1 CI?) Yn—al .’K)}
the first and second differentiated series also converge uniformly with
respect to . Hence

$@) = 3 @y
= (@) [y 3 Yrr®) =y, -o(@)]

= {q(*)—A}$(@),
so that ¢(x) satisfies (1.1.4). It also clearly satisfies the boundary
conditions.
1.6. Now let ¢(x,A), x(z,A) be the solutions of (1.1.4) such that
d(a,A) = sfn a, ¢'(a,A) = —cosaq, } (1.6.1)
x(b,A) = sinp, x'(0,A) = —cosB.

Then
d ” ”
Wb x) = $@)x @) —x(@) @)
= {g(@)—A}p(x)x(x)—{g()— A} x(@)d(x
= 0.
Hence W (¢, x) is independent of x, and so is a function of A only
say w(A). It is clear from the above theorem that it is an integra

function of A.
Let
D, ) = X(x A) f ¢, X ) f(y) dy.

(1.6.2)

8
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It is at once verified by differentiation that ®(z,)) satisfies (1.4.1),

and also the boundary conditions
®(a,)cosa+D'(a,A)sin« == 0, } (1.6.3)
(b, A)cos B+D’(b, A)sin B = 0, o

for all values of A.

Suppose that the only zeros of w(}) are simple zeros A, A,,... on
the real axis. Then the Wronskian of ¢(x,A,) and x(z,A,) is zero,
so that x(x,A,) is a constant multiple of ¢(z,A,), say

x(@,4,) =k, (x,4,). (1.6.4)

It follows from the boundary conditions that k,, is neither 0 nor co.
Hence ®(z,A) has the residue

k,
@A)
at A = A,. The above formalities therefore indicate that there should
he an expansion of the form

k
- nZOZ(/\

This is the Sturm-Liouville expansion.

b
bx,2,) f By, A f ) dy

2, f SN @) dy.  (1.6.5)

If we start with any two independent solutions ¢q(x,A) and x,(x, A)
of (1.1.4), and write wy(A) = W(d,, x,), then

B(,2) — Po@)xo(@)eos ot xp(@)sin of — xo(@o()c0s a-t-o(a)sin o
, wy(A)

and y(z, ) is obtained by replacing @, « by b, 8. Then
¢0(b A )CO§B+¢0 b ’\n SIH,B Xo(b An)COS:B_I_XO b /\n Slll,B

Bo(@, A,)cBs a+do(@, A )sina  xo(@, A, )sin atxp(a, A, )sina

m

and the analysis proceeds as before.
The case of ordinary Fourier series is obtained by taking q(x) = 0.
The equation (1.1.4) is then

d% .
(—i;c—z-{—/\y = 0.

Solutions are ¢y(z,A) = coszVA, x,(z,A) = sinzvA, and wy(A) =
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Take first the case « = 0, § = 0. Then

__sin{(x— a)\/A} _ sin{(b—x)VA}
#o, ) = — (e, ) = SO e,

_ sin{(b—a)VA}
w(A) = —

The zeros of w(A) are An = {nn/(b—a)}* (n == 1, 2,...). We have

W) =" o % cos{(h—a)Wd,} — (“U (b;_fi)

$o(0, )\,,) _costhnr/(b—a)}

d k
" e ¢0 @, ) cosjanw/([,_a)}

Hence (1.6.5) gives Fouricr’s sine series

o b
2 . r—a - y—a
flx) = i a 1; sm(mr Z)—~a.) f blll(nﬂ’ b——_a)f(y) dy.

Similarly, by taking « = }m, B = 1w, we obtain the cosine series

fo) == f oy, 2> wb(nwj:“) f cos(nn}}-)f(./) ay.
a n=1 a

1.7. We have now to make the above analysis 1‘ig0f0us. We begin
by proving some lemmas.
Lemma 1.7 (i). Let ¢(x) = ¢(x,A) be the solution of (1.1.4) defined
n §1.5, and let X = s2. lecn
$(x) — cos{s(x—a)}sin a—

%m s(r—a)

-, - ocosad f sin{s(x—y)lq(y)py) dy.  (1.7.1)

The last term is equal to

€T

! f sinfs(@—y}*$)+6" W)} dy

a

by the differential equation. On integrating by parts twice we obtain

f sin{s(x—y)}¢"(y) dy == s$(x)+sin{s(x—a)}cos a—

a

—s cos{s(r—a)}sin a—s? J sin{s(x—y)}$(y) dy.
This proves (1.7.1). ‘

4957 o
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Lemma 1.7 (ii). For s = o+-1t, |8| > 8, sina #~ 0,

$(x) = Ofela-a), (1.7.2)

d(x) = cos{s(x—a)}sin a O(|s|-Lelz-a), (1.7.3)

while if sina = 0, d(x) = O(et@-a/|g|), (1.7.4)
(x) = *ﬁii’_f(::@ cosat o(eil';i_l—")) (1.7.5)

Each result holds uniformly for a < x < b.
Putting ¢(x) = el=-DF(x), (1.7.1) gives

sin s(:L —a)

F(x) = (cos{s(x—a)}sin o— cos a)eﬂmw-u)_f_

o+ [ sinfsta—y)e-e-vg)F(0) dy.

Let p = max | F(x)|. Then it follows that

a<z<h
lsma;+"’°”’ flq(y)l.udy,
i.e. p < |s1noc|—|—lc05a|/ls|’
flq(J ) dy

provided that the denominator is positive. This is true if || is large
enough, and (1.7.2) and (1.7.4) follow. Also (1.7.3) follows on sub-
stituting (1.7.2) in the integral on the right of (1.7.1); and similarly
for (1.7.5).

Of course a general asymptotic expansion of ¢(z) as a function of
s can be obtained by repeating the process.

Lemma 1.7 (iii). Ifsina £ 0,

¢'(x) = —ssin{s(x—a)}sin a4 Ofe@-a)}, (1.7.6)
and if sina = 0, .

¢'(r) = —cos{s(z—a)}cos a+ O(eH=-2)/|s]). (1.7.7)
This follows at once on differentiating (1.7.1) and using Lemma

1.7 (ii).
Similarly we obtain
x(z) ~ cos{s(b—z)}sin B, x'(x) ~ ssin{s(b—=x)}sinf (1.7.8)
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(or similar formulae if sinf8 = 0); and
w(A) ~ [ cos{s(x—a)}sin{s(b—x)}+sin{s(x—a)}cos{s(b—=)}]sin asin B
= ssin{s(b—a)}sin asin B, (1.7.9)

or similar formulae in the other cases. It follows in particular that
w(A) is not identically zero. Actually w is an integral function of s
of order 1, and so an integral function of A of order }.

1.8. Orthogonal property of the expansion. If L = g(x)—d?/da?,
and F and @ are any functions of & with continuous second
derivatives,

fF LG dx — f G.LF de

b
f (FG"—QF"yde = W(F,Q)—W,(F, Q). (1.8.1)

a

If F and @ satisfy the same boundary conditions at @ and at b, so
that I'/F = @'/G at these points, it follows that

b b
fF.LG dw = j G.LF dx. (1.8.2)

Now let F = ¢(x,A), G = ¢(x,A’) be solutions of (1.1.4) satisfying
(1.6.1). Then W (F,G) = 0. If X is a zero of w(A), the Wronskian
of ¢(x,A) and yx(z,A) vanishes, so that

~ x(,2) = k(a,N),
where & is a constant, which is neither 0 nor co, by the boundary
conditions. Hence by (1.6.1)

cos BB

o0 =B g =

Similarly, if A" is a zero of w(/\), é(x,X’) satisfies the same conditions
at x = b. Hence

« b b
f b, ) Lp(2, N') dox = f b(x, X') L(, ) de.
Since L(z,A) == Ap(x, ), Lep(x,X’) = X'd(x,X’) it follows that

b
A—X) f bz, \)d(z,N) dz = 0. (1.8.3)
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b
Hence, if X 54 X, f $(x, Vb2, N') d = 0, (1.8.4)

the orthogonal property.
If A == u-}9v were a complex zero of w(A), then so we
No=X:=u—ip

be. Since ¢(x,A) is the conjugate of ¢(x,A), (1.8.4) gives

b
[ 16, dx = 0,

which is impossible if ¢ is not identically zero. Hence all the zeros
of w(A) are real.
Again, taking F — ¢(r,A), = ¢(x,A") in ..3.1), we obtain
b

A=X) [ bl N, N) die = —p(, N (b, )+ (5, Nb(b, X).

Also w(A) = —¢(b, A)cos B—¢’(b, A)sin B.
Hence, if sinf -+ 0,

b
(A=A)sinB [ b, N, X') dir == @()p(b, 1) —w(N)$ (b, X).

If A, is a double zero of w(A), then w(A,4-2w) —= O(w?) asv — 0. Hence,

taking A = Ay-fev, A" == Ay—iv, the right-hand side is O(v?). But the

left-hand side b

~ zminﬁf |, A)|2 da,
@

so that we obtain a contradiction. Hence all the zeros of w(A) are
simple. If sinf = 0,

b
A—X) f B, (2, X') die = ~{wM)P (b, ) —w(X)$' (b, A)},

and the result again follows.

It also follows from (1.7.9) that w(A) 5% 0 for s = 4t (£ > ¢,), i.e. for
A negative and sufficiently large.

1.9. TueoREM 1.9. Let f(y) be inlegrable over (a,b). Then if
a < x << b the Sturm—Liouville expansion (1.6.5) behaves as regards
convergence in the same way as an ordinary Fourier series. In parti-
cular, it converges to 1{f(x+-0)+4-f(x—0)} <f f(x) vs of bounded variation
in the neighbourhood of x.
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Consider the integral

‘,1 : f D(x, A) dA, (1.9.1)
LT

where @(x, A) is defined by (1.6.2), taken round a large closed contour
in the A-plane. Let A = s® and let the upper half of the A-contour
correspond to the quarter-squarc in the s-plane made up by the lines

o = (e (0/t<(”+1‘) )

b—a a
e YT (o )
b—a b—a

where s == o+-i; and let the A-contour be symmetrical about the
real axis. Then (1.9.1) is equal to a finite sum of the Sturm-Liouville
series.

Consider the case sina 54 0, sin 8 5% 0. Then by Lemma 1.7 (ii)

$(,X) = cos{ (y—a)jsin a-Offs|elv-)

and x(@,A) = cos_ (b—z)}sin B4- Of|s|~1e/0-2)}

on the above quarter-square; and by Lemmas 1.7 (ii) and (iii)
w(A) = ssin{s(b—a)}sin asin f+4 Ofel®-2},

On the quarter-square [sin{s(hb—a)}| > Ae/®-9, and hence

v v ivofL
o) ssin{s(b~a,)}sinasin,@ll I U([s[)}'

Hence
x(@ A)p(y,A) _ cos{s(b—=)jcos{s(y—a)} 0 elw-7)
Cw@)  ssin{s(b—a)} (182[ )’
and
x,A) ¥ __ [ cosls(b—a)jcos{s(y—a)}
| s dy f sty )y +

x

+ol 2

o f el ”ny)ldy}

Let 0 << 6 << x—a; then the last term is

(1) {l S f ) ’d’}
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Since dA/ds = 2s, this contributes to (1.9.1)
(l_f

s [malfg - [t o fons

The second term can be made arbitrarily small by choice of §; and,‘
having fixed 8, the first term tends to zero as n — co; for it is

(n+4)7/(b—a)

0{1 of e—8‘dt}+0{

n

ni })n_/(b~a)

1 e—dn+ml—a)
n

= 0 (_1_> 4 O(E—S(n+i)1r/(b—a)) .
nd

A similar argument applies to the other term in ®(x,]) in which
z < y < b. Altogether (1.9.1) is equal to

1 ([ [ eosfso—a)eosfsty—a)} :
. f {f f) dy -+

2mi ssin{s(b—a)}

b '

cos{s(b—y)}cos{s(x—a)} C
+ f T ssinfs(b—a)) =) d?/} dA +-o(1). (1.9.2)

The first term is precisely what we should obtain in the corresponding
problem relating to Fourier’s cosine series, and consequently it is
equal to a finite sum of the Fourier cosine series of f(x). This, of
course, is easily verified directly by the calculus of residues. The
theorem on the relation between the Sturm-Liouville expansion and
the Fourier series therefore follows. If sina = 0 or sinf == 0, the
theorem can be proved in a similar way.

. In the case in which f is of bounded variation in the neighbourhood
of the point z, it is also eaSy to obtain the result directly, without
appeal to the theory of Fourier series. In the first place

cos{s(b—ux)}jcos{s(y—a)}

elb—x) 1 Uy —a)
- ) (){
sin{s(b—a)}

elb—a) -

: = O(e-te-v),

whence the part of (1.9.2) with ¢ < y <{ x—§ tends to zero, as before.
For z—8 < y < «,
cosf(h—onfaly—a)) _ e Oe-H0-)e-su-ofl-1 Of-o-e)
sinfs(b—a)} e~ 15001 | () (e~ 2b-)}
= — Jeets@-0{]1 4 0(6-2&)}’
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if8 < b—x. The contribution ot the O-term tends to zero, as before.
The main term contributes:to the y-integral in (1.9.2):

T

:'_i “o|  pis(z—y)
%5 f e ==Uf(y) dy
z—38

=§ﬁu4niﬁww@+%feM%m%4me@

1—e?sd

= fe—0) L5 o f D f(5—0)—f(y)} dy.

The first term is f(x~0,)/(2)«), which contributes § f(x—0), as required.
The second term is O(e~#/|A|), which gives a zero limit. Also, since
f is of bounded variation, we can write f(x—0)—f(y) = g(y)—h(y),
where g(y) and h(y) are positive and steadily decreasing, and tend
to zero as y - x. By the sccond mcan-value theorem

e ¢
[ Reese-)g(y) dy = g@—3) [ Reisedy
r—~8 r—9
o g(z—3)
= g(x—3)R J el dy = 0( ,),
x—38 |8{

This contributes to (1.9.1)

fofe?

which can be made as small as we please by choice of §. Similarly
for the term involving A(y), and for the terms with y > x, and this
proves the theorem.

Writing ) = -

[dA] = Ofg(x—9)j,

o) 8,

the formulae (1.1.6)—(1.1.9) are now valid.

If & = a, similar results hold, and can be proved in the same way,
provided that sina 54 0. If sina = 0, ®(a, A) vanishes identically, and
the result fails unless f(a-0) = 0. The situation at x = b is similar,

We also have the following result: '

If f(x) is any function integrable over (@,b), and a < x < b

A
D) = cﬁﬁm (1.9.3)

n=0
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This easily follows on integrating
f D(x, z) dz

round the same contour as before. The series is the Sturm-Liouville
expansion of ®(x, A), and it is easy to verify that

_f_ﬂ,\“ = [ @, () da. (1.9.4)

>

1.10. Example. Let q(x) = 0, ¢« == 0, @ = 0, b > 0. Then

P(x,A) = *fgl/é\l@, x(@,A) == Si»ll{(—l{;\f VA cos B--cos{(b—x)vA}sin 3,

1 sin(bvA)cos B4-cos(bvA)sin B.

and w(A) = A

The A,, are the roots of

sin(bVd) /
—n tan B cos(bVA).
tanbs  tanf
Now By e .

has all its roots real if —tanp < 0 or —tanp > b, and two equal
and opposite purely imaginary roots if 0 <X —tanf << b. Also

w'(\,) == b cos(bVA, Jeos B— -7 sin(bvA )sm,B-—-—sm bVA,)cos B

2, ;«/,T 223
__bceosBeos(bVA,) [, ; tan(bvA,)
=" {l tan Btan(bvA,)vA, —- b\v//\vy}

bcos Bcos(bVA,) tan B

= oo 2)\ {l—}—)\ntan B4 - ~}

k,, = cosBcos(bVA,)— VA, sinBsin(bvA,)
== cos ffcos(bVA, ){14-A, tan?B}.

and

Hence the expansion is

2 142, tan?p
f(@) = 3 Z 1A, tan2B 4 tan, /37b in(zva,) f sin(yVA,)f(y) dy,

where VA, may be purely imaginary.
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In the case tanfB = —b, we have

sin bV
bVA

w(A) = sinﬁ(cosbxf)\— ) = —3b2AsinB+...

so that there is a zero at the origin. In the neighbourhood of A = 0
bz, ) = —z+...,
x(x,A) = (b—=x)cos B-}-sin B+... = —xcosB+....

Hence 4 H
zcos [ yf(y) dy 3z [ uf(y) dy
o —_
T gsimpem T pa

Hence the first normalized eigenfunction is yy(z) = 3t-1a.

Dz, ) =

1.11. An expansion involving Bessel functions. Bessel’s
equation of order v is

d | ldy v?
—_" —_—— Y = O’ 1.1].1
da? ' 2 d. L-i ( x? Y ( )
and the standard solutions are J,(xs), Y, (xs). Putting y == a~ty,, we
obtain the equation
2, —3 )
dx=+( -»»-»,—4)111 = 0. (1.11.2)

Solutions of this are therefore xtJ, (rs), x3Y, (xs). This equation is of
the form considered, with

g(x) = "2;;%-. (1.11.3)

If we consider an interval @ <{ & <C b, where @ > 0, the conditions
of the above theorem are satisfied. Let

bo(@, ) = atl(ws),  xo(x,d) = @V (xs),
where s = ¥A. Then
wo(A) = s, (xs)Y ,(xs)—Y, (ws)J ,(xs)} =

SR

(1.11.4)

Taking « = 0 and 8 = 0, we have
$(z,2) = dn(az)J, (@)Y, (as) — Y, (xs)J,(as)},
x(@, A) = 3m(bx)¥{J, (xs)Y, (bs)—Y, (xs)J,(bs)},
and w(d) = jmatb¥{J, (as)Y, (bs)—Y, (as)],(bs)}.

4957 D
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Hence
w'(d) = —gwaib*r {J (b8)Y ,(as)—J,(as)Y, (bs)}—

— matbt ég{Jl(bs)Y,(as)——Jv(as)Y;(bs)}-

Substituting for the ¥, by means of (1.11.4), we obtain

iy a (as) ] (as) 2
W' () = —%watbfég[Jv(bs){ T 3:17&3)} (as)Y,,(bs)]—

_gnalb*% [J;(bsm(as)_.fv(as){ v(’l’]"fib;)(ﬁ)Jr%bE%@}]

o by e e
2s J,(as) * 2s J,(bs) 2s% \J,(as) J,(bs)
Hence if the zeros of w(A) are A, and VA, = s,
_atbt Ji(bs,)—J(as,)

+

CO)= 5 s bs,)
. (0\}
Also b = (o) e, )
The expansion obtained is therefore
fx) = _sndibs,) xQ{J s, )Y, (as,)—Y,(xs,)J,(as,)} X
2 P JZ asn) Jz n n n n

x f UM, (Y5, (as,) =Y, (ysa), (as,)}f(¥) dy.

A similar result can be obtained from the more general boundary
conditions.

REFERENCES
Birkhoff (1), (2), Dixon (1), (2), Haar (1), (2), Hilb (1), (2), Hilbert (1), Hobson
(1), Kneser (1), (2), (3), Lichtenstein (1), Priifer (1), Schur (1), Tamarkin (1),
(2), Titchmarsh (2), Zaanen (1), Zygmund (1).



II
THE SINGULAR CASE: SERIES EXPANSIONS

2.1. In many of the most interesting examples the function ¢(x) has
a singularity at one end or both ends of the interval considered,
or the interval extends to infinity in one direction or in both. We
shall now consider these cases, but, in this chapter, with a limitation
which makes the expansion still a series. The result is a particular
case of the more general one obtained in the next chapter, but it
seems worth while to prove it separately on account of its com-
parative simplicity. ,

We begin by considering the case in which the interval is (0, ),
g(z) being continuous over any finite interval. The case of a finite
interval with a singularity at one end is quite similar to this.

If F(x) and G(x) satisfy the differential equations

Y a—g@ly =0, (2.1.1)
and the corresponding equation with A’ instead of A, respectively, then
b
=) [ F@)G(x) de = f [F (@){q(x) O(x) — G" (@)} —
0

—G(x}{q(@) F(x)—F"(x)}] dx
b
- f {F(2)G" (x)— G (x)F"(2)} d

— W(F, Q) —W(F, G). (2.1.2)
If A = utiv, X = X = u—iv, and G = F, this gives

b
zvfu«" 2)|2 dw = iWy(F, F)—iW,(F, F). (2.1.3)

Now let ¢(x) = ¢(x A), 8(x) = 0(x,A) be the solutions of (2.1.1) such

that $(0) = sina, <}'> (0) = —cosa, } (2.1.4)

0(0) = cosa, 0’(0) = sin «,
where « is real. Then
W.($,80) = Wy(¢,0) = sin®a+cos?x = 1.
The general solution of (2.1.1) is of the form 6(x)+Ip(x). Consider
those solutions which satisfy a real boundary condition at x = b, say

{6(b)-+1p(b)}cos B-{6'(b)+1¢'(b)}sin B = 0,
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where B is real. This gives

1=10) = 6(b)cot B+6'(b)

~ $(b)eot B+¢'(b)’
For each b, as cot S varies, I describes a circle in the complex plane,
say C,. Replacing cotS by a complex variable z,

(2.1.5)

__0(b)z+-6'(5)
= l =]
R S 20}
Here ! = oo corresponds to z = —¢'(h)/$(b). Hence the centre of
C, corresponds to the conjugate, z = —d¢'()/$(b); it is therefore
_ W6, 9)
X))
#'( ¢')_F@ NACKS)
Al I 17 —3 2P
¥ =50 ~ #5550 ~ 140
which has the same sign as v, by (2.1.3) with F = ¢, since

Hence, if v > 0, the exterior of C, corresponds to the upper half of
the z-plane.

Since —0'(b)/$’(b) is on C, (for z = 0) the radius r, of C, is
9’(6) W,6,6)| | (6, ¢ 1
b
FO Wik d)| Wm«z o0 0
0

Now 1 is inside C, if I(2) < 0, i.e. if i(z—2) > 0, i.e. if

. (2.1.6)

b=

. qu b)+0'(b) Z‘f,’i +5;b) <
@{ T60)-L60) T IFB)-L8b) } 0
Lo if  i{LEW (b, B)-+ U, B)+ 10, B)-- W6, 8)) > O,

i.e. if iW,(0+14,0+1F) > 0,
i.e. (by (2.1.3)) if

b
20 f 0-+1p 2 dee < TWy(0-+1p, B+15).

Since Wy(¢,0) = 1, Wy($,$) = 0, etc.,
Wy(0-+18,0+1f) = 1—1 = 21(1).

Hence [ is interior to Cj if v > 0, and

b .
fw+z¢;2dx < —11()9. (2.1.7)
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The same result is obtained if » << 0. In each case the sign of I(I)
is opposite to that of v.
It follows that, if [ is inside C}, and 0 << b’ < b, then
% b
I(
[16+1g12de < [ 1641912 dw < _19
0 0

v

Hence [ is also inside C,.. Hence C}, includes Cj if b’ < b. It follows
that, as b — oo, the circles ), converge either to a limit-circle or to
a limit-point. _

If m = m(A) is the limit-point, or any point on the limit-circle,

b
f |0-+-m|2 dx < —1%”—) (2.1.8)
0
for all values of b. Hence
f [6-+me|? de < __I%’L). (2.1.9)
: 0

1t follows that, for every value of X other than real values, (2.1.1) has

@ solution $(@,2) = 0z, )L mA)p, )
belonging to L*(0, c0).

In the limit-circle case, 7, tends to a positive limit as b — oo; hence,
by (2.1.6), $(x) is L?(0,00); so in fact, in this case, every solution of
(2.1.1) belongs to L3(0, c0).

2.2. For a given B, I = [() is an analytic function of A; in fact
it is a meromorphic function, regular except for poles on the real
axis. For the poles of I(A) are the zeros of

(b, A)cos B+¢’ (b, A)sin B,
and this is —w(A) in the notation of § 1.6.
Also on the circle C, (if v > 0)

b
IQ) _ 1
2y = — 2 X
of |0-+1|2 da S<
b b
and > |l|2f |¢[2dx—f|0|2dx.
0
Solving for |!|, this gives ’
b 1
f[ﬁ]zrlx :
< —— | + !

20 |$]* da f1¢12dx
0 0

4vz(f!¢|2 dx)z
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But the above argument shows that, for a given A, the region of the
l-plane covered by the circles C, decreases as b increases. Hence [(A)
converges boundedly in any region entirely in the upper (or lower)
half of the A-plane. Hence its limit m(A) is analytic in either half-
plane.

Since the above right-hand side is O(1/v) as v - 0, for any fixed b,
it also follows that m(d) = O(1/v). Hence, if m(A) has poles on the
real axis, they are all simple.

We shall assume in this chapter that the only singularities of m(A)
are poles. Let them be Ay, Ay, A,,..., and let the residues be 7y, 4, 75,... .

2.3. LEMMA 2.3. For any fixed complex A and X’

lim W {(z, %), $(z, )} = 0. (2.3.1)

Since O(z,A)+1(A)p(x,A) satisfies at * = b a boundary condition
independent of A,
W5 {0(, ) +1Q)p(, A), 0(x, X) HI(X)p(2,X)} = O,
ie.
W[(x, D)+ {lA)—m(A)}p(, A), h(z, X')+{UX")—m(X)}b(x, )] = O,
ie.
H{A)—mX )W, A), (@, X))+
{0 —mWHIN ) —mN (e, ), b, V)} = 0. (2.3.2)
Now b

Wb, X), (2, X)} = (X' —2) j e, Wble, N') da -+ Wolih(x, Nip(z, X))
~of f [$(a V2 dzf+-00)
as b - oo, A and A’ being ;ixed. In the limit-point case
1)—m)] < 27, = o f e N2 da]
so that Lim {I0) —m )W {d(x, ;), e, ')} = 0.
This also holdl:; the limit-circle case, if I(A) - m(}), since then

b
f |$(x,A)|2dx is bounded. Similar arguments apply to the other
0

terms in (2.3.2), and (2.3.1) follows.
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2.4. The following general lemma on sequences of integrals will
be used.

LeMMmA 2.4. Let f,(x) be a sequence of functions which converges in
mean square to f(x) over any finite interval, while

finere < x
0
for all v. Then f(x) vs L*0,0), and if g(x) belongs to L3(0,c0),
lim [ f,(2)g(z) dz = [ fl)g(z) de.
0 0

We have N .
[ f@Pde = lim [ |f,@)]2de < K
0 y—>0 0

for every X, so that f(x) is L*0,00). Now

< {frf~fy|2dxflg|2dx}*+

X

J

(=]

H]

—
=

[ ~t)g da

[ J17-pirds [ igpaaft
0 X

The second term can be made less than any given e, for all v, by
choice of X. Having fixed X, the first term tends to zero as v —> o0,
and the result follows.

2.5. By (2.1.2)

b
=) [ e, At X) die = Wiz, X), (e, X )}— Wi, ), e, V).

The first term on the right is
{cos a+m(A)sin a}{sin a—m(A’)cos o} —
—{cos a+m(A")sin a}{sin a—m(A)cos o} = m(A)—m(X’),

and, if A and A’ are not real, the second term tends to zero as b — co,
by Lemma 2.3. Hence

fsl'(w Nih(a, N') da = W"; _A( ), (2.5.1)
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In particular, taking A\’ = A,

@

[ 1@ de = 1A%, (2.5.2)

0
so that the case of equality holds in (2.1.9).
Now let A, be an eigenvalue, and let A’ = A, %, v~ 0. Then
for any fixed X

X
f [z, X')ir, d(x, A,) |2 da — 0.
0
For the left-hand side is
X
[ 106Gz, X) - fomX) i} (e, X ) — i, (b, ) —p(@, )} 2 da
0

and each of the three terms obviously contributes zero to the limit.
Also, by (2.5.2),

flvs/f(x,/\')lzdx < [om(X)| = O(1)

as v — 0, since the pole of m(X’) at A, is simple. On multiplying
(2.5.1) by w/r,, making v - 0, and using Lemma 2.4, it follows that
$(z,2,) is L3(0,0), and

f Pz, Nd(,A,) de = XZE)T (2.5.3)
0 n

If A tends to a different eigenvalue A,,, on multiplying (2.5.3) by
w/r, and making v - 0, we obtain

[ $@A)b(@,2,) dz = 0. (2.5.4)
0
If A tends to the same eigenvalue A, it follows similarly that
[ @Er)yde= 1. (2.5.5)
0 Tn
Hence the functions
l)l’n(x) = 7%(]5(16, ’\n) (256)
form a normal orthogonal set.
(2.5.3) can now be written as
® §
[ dw, Nio(a) d = % (2.5.7)
J A—A,
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2.6. The function ®(z,1). Let f(y) be L?(0,00), and

O(z,2) = (. ) [ b Nf@) dy +@,2) [ by, Nf@) dy, (2.6.1)
0 z

where ¢ and i are the functions defined above. Then, for every =,
®(x, A) is an analytic function of A, regular for I(A) > 0 or I(d) < 0.
Also, if f(y) is continuous,

O'(2,2) = §(@,2) [ $@Nf) dy +4'z,2) [ by Af() dy
and

V(@) = §"(@, ) [ $,f@) dy +4"( ) [ $@, Vi) dy +
0 x

+{' (2, Db (w, ) — ' (, A (2, A)}f ()
= {q(x)— A0 (z, 1) +f(z). (2.6.2)

Thus ®(z, A) satisfies the differential equation suggested by §§1.3—1.4;
‘and

©(0,2) = $(0,2) [ ¥y, NS () dy,

©'(0,) = $(0,) [ $(y, Nf(y) dy,
0
so that @ satisfies the boundary condition

®(0,A)cos a+P'(0,A)sina = 0. (2.6.3)

If ® ¢ (x,A) is the corresponding function with f(y) = 0 for y > X,
then

T X
Cx(@,2) = 0z,2) [ 44, )f) dy +(.3) [ 6 )f(y) dy +

X
+mQ)b(z,A) [ ¢4, NS () dy-
0

This is clearly regular everywhere except at A = A, A,,..., where it
has simple poles with residues

X
rad(@A) [ S, M) () dy.

49567 E
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Let C denote a rectangle of the form

excluding all A,’s. If Aisin C,
(@) = ____f(bx(x z)d

Now @y (x,A) > O(x,A) if A is not real; and as v = I(A) > 0

Oxe.) = 0| [ Wy, 0t dy) = 0| [ 1t dy} = 0107

by (2.5.2), if X tends to a value not an ecigenvalue. Hence making
X — o0 we obtain by dominated convergence
1 [ D(x,2)
bl A) = 2mi ) z—2A
¢
It follows that ®(z, A) is analytic throughout C, i.c. that the functions
8o denoted in the upper and lower half-planes are analytic continua-
tions of each other. If € includes a point A,, we find similarly that
®(x,2) has a simple pole at A, its residue there being the limit of
the residue of @ ¢(x,A), i.e.

rad@ ) [ 6 A)@) dy = (@) [ .0 @) dy = e, ().
0 0

dz.

2.7. The following two theorems will now be proved.
THEOREM 2.7 (i). Let f(x) and
L{f(2)} = q(@)f(x)—f"(2)
be L?(0,00); let f(0)cos a+-f'(0)sin o = 0 (2.7.1)
and llm IV{I/J x,A), f(x)} =0 (2.7.2)

for every non-real A. Then
flw) = f.ocnslfn(x) (0 <2 <o), (2.7.3)

the sertes being absolutely and wuniformly convergent in any finite
interval.

THEOREM 2.7 (ii). Let f(x) be L%0,00). Then
f{ faNrde = 3 2. (2.7.4)
a3 n=0
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Either theorem can be used as a means of proving the other. We
shall first prove 2.7 (ii) and deduce 2.7 (i), and then give the alter-
native procedure.

We require a number of lemmas.

2.8. Lemma 2.8, If f(x) is any function of L3(0,0),

f(cb(x,,\)[ﬁdx <1 J Lf(@)]2 de. (2.8.1)
0

»2
0

Suppose first that f(z) == 0 for 2 > X. Then the ‘condition of
self-adjointness’

f Oz, \) LDz, X') dix = f Oz, ) LD(2, ) d (2.8.2)
0 0
is satisfied. For
¢
J {®(x,\) Ld (2, ) —D(2, N') LD(x,\)} dz

0

¢
= — f (D, D" (x, \')—D(x, \)D" (2, \)} du
0

= —[ D, )P’ (@, ) —D(x, X)D’ (, ) 5.

The integrated term vanishes at @ = 0, since

©(0,4) = sina [ (5, ) f(y) dy,

O'(0,2) = —cosa [ () f(y) dy.
0
The integrated term at x = ¢ tends to 0 as & - o0, since, if z > X,

X
O(,A) = $(,) [ (NS (y) dy,

X
O'(,2) = ¢ (@,2) [ by, \f) dy,
0

and the result follows from Lemma 2.3.
Putting A’ = A in (2.8.2), and substituting from (2.6.2), we obtain

f(l)(x, NAD (@, A)—f(x)} do == j‘?(b(x, N{AD(z,A)—f(x)} d,
0 0
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i.e. A—=2) f |D(z, A)|2 da = f {®(z, ) —D(x, \)}f(z) da.
’ 0 0

Hence, if A = u-}v, v > 0,

21)}0] DOz, N)|2de < _T}(D (2, ) f(z)| dx
0

0

- 2{ ffd)(x,/\)lzde lf(x)]zdx}%.
0 0

(oo} 1 o0
Hence [ D, )2 de < ~; | |f(x)|2de,
Jrenreea]

the required result in the restricted case.
If now f(x) is any function of L0, ), and the above functions
are distinguished by a suffix X,

X’ X’
lim [ [D (e, )2 de = [ D, )] do
X—w S 0

by uniform convergence, for a fixed X’. Now

X

Jl@x(x,h)lzdx < j?[(bx(x,)\)lzdx

0

<[ s ar
0

1
v?

f’ [f(@)]? de.

0

) b'¢
= i [ 1@ <
0
The result therefore follows on making first X - oo, then X’ — c0.

2.9. LemmMmA 2.9. If f(x) satisfies the conditions of Theorem 2.7 (i),
then

D(z,A) {f(x)—}—fl)* 2, \)}, (2.9.1)

where ®* depends on Lf in the same way as ® depends on f.
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We have

T

f by, N f(y) dy = ; f q@)y)—¢" W)} f(y) dy
0

0

= XS O~ N+ [ w0~ )

on integrating by parts twice; and the integrated term vanishes at

the lower limit, by (2.7.1). Similarly
f W) 10) dy = SO ) —F D)) +

+ f W) ) —1" W) dy,

and the integrated term vanishes at the upper limit, by (2.7.2).

Substituting in (2.6.1), the result follows.
If G(x,y, ) denotes the ‘Green’s function’

Gz, Y, ’\) = x//(x, )‘)‘ﬁ(.ﬁ A) (y << @), (;S(JJ Ay, A)

then Dz, ) = f G, y,\) [ () dy,

D*(, ) = f G, 5, ) L{f(y)} dy,
and (2.9.1) is ’

2.10. Lemma 2.10. If f(x) is L*0, c0),
S < [ (wyds,
n=0 o

This is the ‘Bessel’s inequality’. We have

0

0< [[f@)— 3 cupuo)f do
0

n=0

I
8 S —g

——f{f }W—zc-

for every N, and the result follows.

= [ Gy, NMW)— L)} dy.

N N
(@) de + 3 i—2 3 o, [ fah@) do

(y > x),

(2.9.2)
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2.11. LemMa 2.11. Let F(A) be an analytic function of X = u--1v,
reqular for —r < u < r, —r < v <, and let

M
FQ) < —
O <
in this square. Then
_3M
IFA < — (=0, —r<v<7)
Let G) = (AB2—r2)F(d).

On the upper and lower sides of the square
GO < (Nr0) < g,

On the left- and right-hand sides

|GQ)] < [9](A1+7) ﬂfl < 3.

Hence |G(A)| < 3rM throughout the square. Hence on the imagi-

nary axis
3rM 3rM < M

FO < s = s <

2.12. Proof of Theorem 2.7 (ii). Suppose first that f(x) satisfies
the conditions of Theorem 2.7 (i), and also that f(x) = 0 for suffi-
ciently large values of . Let

P(A) = ff(x)(l)(x, A) dx, (2.12.1)

this being really an integral over a finite range. Then ‘t'(1) is regular
except for simple poles at the points A,, where it has residues

¢ [ $a(@)f(x) do = c3.
By (2.9.1) ’

>

V() — % f {f(@)? dw 4+ f Q¥ N f@) dz,  (2.12.2)
0 0

and the last term is

O{D!ﬁ[ f |D* (2, V) |? da f {f)? dw]%} = 0(,—;@,—,)

by Lemma 2.8, applied to Lf.
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Let C(R) denote the contour formed by the segments of lines
(R—v, R+41) and (— R—1, — R+-1), joined by semicircles of radius R
and centres 4+¢. Then

flm) =27 Y
oB) —R<A,<R

if none of the A, is equal to 4 R.
On the part of the upper semicircle in the first quadrant, we have

=i+ Re% (0<¢< im).
Hence the last term in (2.12.2), integrated round this quadrant, gives

i
Rdd _ deé
i tten) U afeo] [ 24

- ool oo

A similar argument applies to the other quadrants. Hence the
integral of W(A) round each semicircle tends to

mi [ {f@)}? da

as R > o0. To prove the theorem for the class of functions con-

sidered, it is therefore sufficient to prove that
R+i
lim WQA)dr =0

Roo pY o

and a similar result with — R in place of R.

Let AN =FN— 3 o
R-1<IM<R+1 A—
Then y(A) is regular for R—1 < A < B+1, and
K 1 e(R)
N < 5=+ C?,' < -
XN < it 2 7

R—-1<M<R+1
where e(R) — 0 as R - c0. Hence, by Lemma 2.11,

IXA)| < 3¢(R)

on the segment (R—1%, R+14). Hence
R+i

lim f x(A) dA = 0.

R—w RYi
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R+i o

AISO T = 0(1)’
A=A,
. R>:
since the path of integration can be replaced by a semicircle on the
side opposite to A,, and on this semicircle the integrand is bounded.
Hence
R+i

2
j Z Xc—/\n n= O{R—1<AZn<R+1 c%} = o).

RYi R—1<MA<R+1

This proves the theorem for the special class of functions.
Now let f(x) be any function of L2?(0,c0). Then we can determine
a function fy(x) of the special class such that

[ @) o)) dz < e.

Let Vo = [ $u@)fol) de.
Then ’

[ 1= Sutof ae = [ e + $ =2 $

@ N
> [{fa)rde — 3,
n=0
and also °

<2 [y —dieyrae + 2 [ e 3y de

< 2et2 [ thipae— 3 4

By what has been proved, the last bracket is less than ¢ if IV is large
enough. Hence

g N
[ (@) de < 3 c2t4e
n=0
0
if N is large enough. Hence
[y de <3 .
o n=0

Combining this with Lemma 2.10, the result follows.
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It also follows that, if g(x) is another function of L2, with ‘Fourier
coefficients’ d,, then

[F@g@) dz = } j {(f@)+9@)} de —} [ {f@)—g@))? da

0

= z n+dn)2 ingo(cn_dn)z

=Y c,d,. (2.12.3)
n=0
This formula is also true for complex functions f(z), g(z), by separa-

tion into real and imaginary parts.

2.13. Deduction of Theorem 2.7 (i) from Theorem 2.7 (ii).
From the formula

b
A=) [z Dl A,) do
0

= W{,{«/;(x, A), $(x, A)L)}—Wb{!ll(x’ A), ¢(x: An)},
and (2.5.3), it follows that the second term on the right-hand side
tends to 0 as b > oco. Hence we may take f(x) = ¢, (z) in (2.9.2),
which gives

[ G, ) dy = ;b_(—;f) (2.13.1)
0 n

Also G(x,y,]) is L¥0 < y << o), for a fixed #, and A not real. Hence

Z Pu(2) |2

n)\/\

(2.13.2)

is convergent.
Now let f(z) satisfy the conditions of Theorem 2.7 (i), and let

g9(x) = Af(x)— L{f(x)}.

If A is not real
[ 4@ NL{F@)} dy = [ f) L, M} dy = X [ $(y. Df() dy.
0 0 0

Put A = 2,4, multiply by v, and make » > 0. Using Lemma 2.4
as in § 2.5, we obtain

[ ) Lifw)} dy = A\, [ da)f(w) dy

= A, Cp.
4957 F
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Hence, if d, is the ‘Fourier coefficient’ of g(z),

. d, = A—=A,)c,, (2.13.3)
and > A—=A, %2 (2.13.4)
is convergent.

From (2.9.2), and (2.12.3) with f(y) replaced by G(z,y,]), it fol-
lows that

o

f@) = [ G,y Ngly) dy

oo

Z x)(/\ A)

n=0

o0

2 n l/’n(x)!

the required result. The absolute convergence of the series follows
from that of (2.13.2) and (2.13.4).

2.14. To prove Theorem 2.7 (i) directly, the following lemma is
required.
Lemma 2.14. If f(x) is L*0,c0), z is fized, and v # 0,
O(x,A) = O(|A}v[).
The formula

3 ¢
[ E—v3y—=)0"(y) dy = (E—2)D()+ [ (6y—20—4£)0(y) dy

x
is at once verified by integration by parts. The left-hand side is
equal to

f .
[ €= y—2)a)0@) -2 w)+/w)} dy.

Writing C = [ fw {f(z)}? clx]%

we have

¢ ¢
| €—yru—2)0) dy} < (¢—ap f )] dy

f :
(6| [y [ n%)my} < Cle—a)o|
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by Lemma 2.8. Similarly
—yy—x)(y)P(y) dy| < C(¢— w)‘maXIq(y)l/lv,

3
[ €—yrw—a)fw dy| < CE—a),

3
| (6y—22—4£)0(y) dy| < 40(E—2)!/[v].

4C
[v](—2)t’

O¢—a)t
o (Al max|a)+lel)

The result follows on taking & = x4 ||~}

Hence |®(z)] <

2.15. Proof of Theorem 2.7 (i). The absolute convergence of
the series (2.7.3) is first proved as in §2.13. This depends on Lemma
2.10 only, not on Theorem 2.7 (ii). Now

Oz, A)dA =271 > c, (@), (2.15.1)
o(R) —R<A<R
where C(R) is the same contour as in § 2.12. By (2.9.1), and Lemma
2.14 applied to ®*,

O,y =& )+0(M—|§l~vl>' (2.15.2)

The integral of the last term round the semicircles tends to zero, as
in the case of the corresponding term in §2.12. Hence the contribu-
tions of the semicircles to (2.15.1) together tend to 2= f(x) as B — co.
Hence finally it is a question of proving that
R+1

lim f(I)(x A)dX >0

(and similarly for —R). Let

QM) = (@)1 - Gudal2)
R—1<A,<R+1 "
Then Q(A) is regular for B—1 < A << B+1, and
1 1 o(1)
Q@) = 0<I’A,—vl)+O(I—?;'IR—1<AZ”<RHICn¢n(x”) = W
as w - co. Hence by Lemma 2.11
Q(R-+iv) = o(1)
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uniformly for —1 < » < 1. Hence
R+i

f Q1) dAr— 0.
R—1
Also
R+ 1)[, ( ) R+t d/\
C X
n(®) g — @) [ 25
R‘_[- R—K%glzﬂ A=A, R—K%@?H R—i A=A

=0 3 jed@l]-o
R—-1<A,<R+1
This completes the proof.

2.16. Deduction of Theorem 2.7 (ii) from Theorem 2.7 (i).
Let f(x) satisfy the conditions of Theorem 2.7 (i), and let

N
Iv@) = 3 cuhal@).

Then fy(x) — f(x) uniformly over any finite interval, and
f U@ de= 3 ci < f (@)} de.

Hence by Lemma 2.4

lim [ fy(@)f(z) dv = [ {f(z)}* dz,
Nowo g 0

. li X 2 ¢ 24
ie. Nl-l;‘?o ngo c2 -aof{f(x)} x.

This is the required result for the special class of functions. The
general result then follows as in §2.12.

2.17. THEOREM 2.17. If f(x) is L*0,0), and A is not equal to any
of the A,

“ A=A,

The series is absolutely convergent. This follows from Lemma 2.10
and the convergence of (2.13.2), if A is not real; and the result, proved
for any A, clearly follows for all A.

Now consider the integral

@2) 4,

z—A
c(Rr)
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and proceed as in §2.15. By Lemma 2.14
O(z,2) 0 1
z=—x  \[2[HI@))

Hence the integrals round the semicircles tend to zero. The proof
is then completed as in §2.15.

2.18. The interval (—o0,00). Now consider the case where the
interval extends to infinity, or has a singularity, at each end. We
actually consider the case where the interval is (—o0, o), and ¢(z)
is continuous for —co < z << o0.

Let ¢(x,A), 8(x,A) be the solutions of (L-—A)y = 0 such that

$(0) =0,  ¢'(0) = —
6(0) =1,  6'(0) = 0.
Then W(¢,0) = 1.

By the previous theory, there are functions m,(A) and m,(]),
regular in the upper half-plane, such that

(@, A) = 0(x, A)+m,(A)é(x, ) (2.18.1)
is L?(—o00,0), and

(@, ) = Oz, \)+myN)(x, ) (2.18.2)
is L?(0,00). Then

W (i, y) = my(A)—my(A).
Asin §2 5

f (e )2 dz = 1),

[ Wiz e = 22
° (2.18.3)

Hence I(m,) > 0, I(m,) < 0, for v > 0.

Let
G,y 2 = PENLGA gy B@NRGN

N 73{1()\) mz(’\) my(A)—my(A)

(2.18.4)

and O(z,2) = f G(e,9, M) dy,

where f is the arbitrary function to be expanded. The expansion
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will reduce to a series if both m,(A) and m,(A) are meromorphic
functions. We have

o, = "L rmCIEn f {0, )+ 1Ny, M) dy +

Oz, A)+m,(N)p(, A)

T ) —ma(h)

f 6y )+ my Ny, N}f @) dy.

(2.18.5)
There are three possibilities:

(i) At an eigenvalue A,, m,(A,) = my(A,) = p,
my(A)—my(A) ~ (A=A, ).
Then ®(x, A) has the residue

L0 A+ 2,0} f (6.2, +1bly, M) dy.

(ii) m4(A) and m,(A) both have simple zeros,
ml(A) ~ ,’LI(A.——AH)’ 7)L2()‘) ~ :U’2(A—'An)'
Then ®(z,A) has the residue

0z, 2,) f 0y, )/ () dy.
1R

(iii) n,(A) and m,(A) both have simple poles,

my(A) ~ 2

My(A) ~ 2,

it
A=A, A—A,
Then ®(z,A) has the residue

Saks o, f (4. 0,) () dy.
The theory of this case is much the same as that already considered.

Suppose in particular that g(x) is an even function. Then ¢(x,A)
is an even function of z, and 6(x,A) is an odd function. It follows
that, if 6(x,A)+my(A)p(x,A) is L30,00), O(x,A)—my(A)d(x,A)
L*(—00,0). Hence m,(A) = —my(A). All eigenvalues occur under
(ii) or (iii), and each eigenfunction is either odd or even.

REFERENCES
Weyl (1), (2), (3), Titchmarsh (4), (5), (7), (9), Kemble (1).



II1
THE GENERAL SINGULAR CASE

3.1. We now consider the same problem as in the last chapter, but
we no longer make the hypothesis that m(A) is a meromorphic func-
tion. All that is known so far is that it is an analytic function of A,
regular in the upper half-plane, and that Im(A) < 0.

We proceed formally as follows. Defining ®(z, A) as before, it can

be proved that R+id
f@) = nm{—f— [ 2@ dA},
R—>o Zz o
—R+id

where 8§ >> 0. It is then a question of the behaviour of this integral
as § > 0. Now

O(z,2) = $(,2) [ $.0f@) dy + b ) [ NS) dy

= {8, ) +mNg(z, 1)} [ ¢, NS () dy +
0

+8@ M) [ {8 )-+mNbly, M}/ () dy.

We shall prove that )
lim f {—Im(u+i8)} du = k(}),
3—»00

where k(A) is a non-decreasing function of A. Hence we obtain
formally

R+id
1[_.1. f ®(x, ) d/\]

T
—~R+i8
R+i8

:I[—% f {0(x, A)+m(A)(x,A)} dA f $(y, A [f(y) dy}+
—R+18 0
R+18

+I[—;lr [ sena [ own+mosw ) dy]

—R+i3

L1 f $) k) [ 4,010 dy
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as B — o0, 8§ - 0, since f(x,A) and ¢(x,A) are real for real A. Hence
the expansion formula involves Stieltjes integrals, and is formally

f@ =3 [s@nam [swnma.  @Ly
—w 0
If we write gA) = fqlz(y, A) fly) dy, (3.1.2)
0
then (3.L1)is  f(x) =§ f (@, \g(\) dk(N). (3.1.3)

Also

[ty dr =~ [ sy de [ g Noe aroy

l (=] o0 1 o)
=2 o ao) [ g@nferde = 1 [ o a. @14
— 0 — 00
This is the ‘Parseval formula’.

Now consider the interval (—co, o) instead of (0,c0). In this case
®(x,A) is given by the formulae of § 2.18. We obtain

A
. 1
%1_13 : _-Iﬁflrr(iﬁ:iﬁ):;rfz;(ﬂ?{g) du = &), (3.1.5)
A
: _ ml(u‘}‘ff?)uA ) —
Lim 0 L wis)—myiisy @ = 1A (3.1.6)
lim [ —1 "at®)my(ut®) o (3.1.7)

80 m, (u+18)—mg(u-18)

where £(A) and {(A) are non-decreasing functions of A, and 5(A) is of
bounded variation. Now

R+18
I[—— f(b(x,)\)d)\]

—~R+1i8

R+13
=1[_1 B(ar, )+ my(N)(@, A)

Y etea d. ] A
T e a—m) “_[o {60y, A)F-ma )¢<y,A)}f<y)dy]+

R+ ©
[ 0@)+m N, A)
+I["% - ml()\)__lmz()\) dA ch {6y, ) +ma Ny, N} () dy]-

—R+id
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Proceeding as before, we obtain formally the expansion formula

fwy = [ oanaeey [ o, N dy +

1 [ dn) [ b0 s dy +

oo ©o

+5 [t [ 010y +

+ [#enae [ e @

Writing

g0) = f 0y, Nf) dy, Q) = f SN W) dy,  (3.1.9)

this is equivalent to

s =5 [ 0N de) 4 [ 00w, h) dn(h) +

1 [ B 2o any +1 [ gy a. @.1.10)

Multiplying by f(z) and integrating again, we obtain the Parseval
formula

[trenras =1 [ oz +2 [ one anoy +

+;1T f (AR dLN). (3.1.11)

In many cases these formulae take a simpler form. Suppose, for
example, that m,(}) tends to a real limit as I(A) - 0, so that

(2, A) = 6(x,A)+my(A)b(, A)
is L?(—o0,0). We then have formally
dn(u) = my(u)dé(u),  d{(u) = {m,(u)}* dé(u).

4967 G
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Hence (3.1.8) reduces to
1@ = [hwna [hewa. 6L

Again, consider the case where g(z) is an even function. As in
§2.17, this involves m,(A) = —m,(A). Hence
@) 1

mQ)—my(A) ~ 2
and n(A) = 0. Hence the expansion formula is

s = - [ oy k) [ 0w 0fw) dy +

+1 [penam [sunswa. @11

3.2. To justify the above formulae, we first prove two lemmas.

LemmMma 3.2. For any fixed u, and u,

T'I{m(u—i—iv)} du (3.2.1)

18 bounded as v — 0.

Consider first the case of a finite interval (0, ), with given boundary
conditions at the ends. Let A, ,, ¢, ,(x) be the eigenvalues and eigen-
functions. Let [(A) be the function so denoted in §§2.1-2.2, and let
7, be the residue of [(A) at A,,. Since the formulae of Chapter II
hold in particular in this case (or may be verified directly),

¥
f (00, -V @) = 17~ (3.2.2)
by (2.5.7). Hence the Parseval formula gives
b ©
2 Jy — o Tmb

of P@NHOB@ A de = D o™y (3.23)
Taking A = ¢, the left-hand side is bounded as b — co, by the analysis
of §2.1; e.g. in (2.1.6) I(J) is bounded as b — oo, by the property of

g P
the circles €y, and v = 1. Hence

2

n=0

is bounded as b — co.
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Also, by (2.10.2) applied to the finite interval (0, 4), and (3.2.3),

—IA)} = v z = )2 T

Hence f —I{{(A)} du = z nb f WA v,f)tz’i-v“'

U

Let —N << wu, <wu, <N, where N > 1. Then if [A,,| = 2N
'u_l\n.b' > %An,b' Hence

Us

Uy
vdu 4 du SN 16N
| TR 2
P (u—A, p)2+2v? = p A = A2 TA2,+1
[f A, 5] < 2N,
vdu r vdu 4N24-1

_ovew o vew o
(u—2,,p)%+02 \_ (w—A, )2 +0? TR AZp+1

Hence f —I{(A)} du

Uy

Uy
s less than an upper bound independent of b and v. Since I(A) > m(A)
18 b — 00, the result follows.

3.3. LemMmA 3.3. The function
A
k() = lim f —I{m(u+1i8)} du (3.3.1)
—0

xists for all « and X except possibly for values belonging to an
mumerable set; k() is a non-decreasing function, and

éi_l,%j. —I{y(z, u+143)} du = f¢(x, u) dk(u). (3.3.2)

't follows from t;e above lemma and (2.:3.2) that as v —> 0
f’duflz/z(x, A)|2de = 0(})) (3.3.3)
or fixed %, and u,. ;IIOW lo)y (2.5.1), with A’ = 7 (or any fixed value)

m(A) = m(z)+(i—A) fn/;(x, Af(z, ) dx
0

- o{fl.p(x, A)[“’dx}%.
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Hence
j m)| du < {(uz—ul) f ) 2du}"= Ow).  (3.3.4)
1
Hence J dv f Im(A)| du
1
is finite, and so f [m(A)| dv (3.3.5)

exists for almost all «.

A
Let M) = fm(z) dz.

Then M(A) tends to a limit as v — 0 for almost all w. Let u, be
a value of u for which (3.3.5) exists. Then

Uoti UtV utiv

M) = ( + )m(z) dz,

f u.'[t uo-}fiv
and the first term is constant, and the second term tends to a limit,
as v - 0. Hence the last term also tends to a limit. Taking imaginary
parts, the existence of k() for almost all A follows. Since —Im(A) =0,
k(}) is non-decreasing.

Actually the limit (3.3.1) exists wherever k() is continuous, i.e.
except in an enumerable set. For at such a A we can find 5 and 7’
such that

kQA+2)—kQA—n") <e
and such that the limit exists at A4+~ and A—»'. Hence

A Ad
f —I{m(u+18)} du < J"I——I{m(u—l—iS)} du < e
A“ﬂ’ A'—‘,I’
for 8 < 8,. Hence
A
f —fm(u+i8)—m(uti8')} du
U Ay
= fl —X{m(u+1i8) —m(u+18")} du +
"o A
+ f —X{m(u+18)} du — f —I{m(u+i8)} du
A=y’ A=y’

< 3e
if 8 and &’ are sufficiently small. Hence the result.
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Now suppose that k is continuous at x and . We have

A A
J.Ic,b(x,u+z'v) du = If{B(x,u—l—iv)—i—m(u+z’v)¢(z,u-{—iv)} du
) A - A

= f I{f(x, u+v)} du + f R{m(u—+-iv)}I{$(x, u+1v)} du +

A
+ f Im(u+iv)Re(x, u+w) du

Since 0(x, ) and ¢(x, u) are real for real u, I6(x, u-+v) and Id(x, u-+v)
are O(v), uniformly with respect to « over a finite interval. Hence
the first two terms tend to 0 with » (using (3.3.4)). The third term is

A
(1M (u+iv)Re(x, ut-iv) | — f IM (u+iv)R¢  (z, u+1v) du

> [{kw)+ Clg(a w)[— f (k) + O, w) du

- A
= J.q/)(x, u) dk(u).

The process is justified since I} (A) is bounded, by Lemma 3.2.

A
3.4. Let x(®@,A) = j b, u) dh(u). (3.4.1)
w0, A “ 2
Now | { [ Wt utiv) du= dx < K, (3.4.2)

where K is independent of v, if « and A are in a fixed interval. For by
(3.2.2)

b A

[ (@) dze [ Bpo(w, ut-iv) du

0

K

A
—vdu r}
= 0 n,b )
f n, b)z‘l—vz ( 'n b'+'

Hence the Parseval theorem gives
b

of{flc/xb(x u-+1v) du} dx = 0 2 X’im 0(1)

by (3.2.4). The result follows on makmg b - 0. Making v —> 0, it
follows that y(x,A) is L*(0, o).
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Let f(x) be L*0,00). Then

(oo}

6@ = [ x@.)f(y) dy (3.43)

0
exists, and is a bounded function of A in any finite interval.
Now consider
R+1d
1[~l f O, )) dA]
ka
—R+1d
R+i8 T
— I{ =2 [ werna [ swnmw) dy]+
—R+18 0
1 R+48 @
+1[—; | sena [ wwnme dy}. (3.44)

—R+i3

Now
as 8 > 0 (for x and y in fixed intervals). Hence (3.4.4) is equal to

R+1d ®
I[ =2 [ senar [pwnm) dy]+0<8)
0

—R1i8
as 8 - 0 (R fixed). Next

R+i8

[ 18,2 dX [ Rg(y, Nf(y) dy

— R+14d
— 06) [t 1+ 80 dy

R
)

(fd

R

(f [y, u-ti8) f(y)| dy) du}%

0

u [ 1t w9 )t = 0@

0

by (3.3.3). Similarly

R @©
| (R, uti8)— (e, u)} du [ 1y, 0)f(y) dy = O(3*).
-R 0
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Hence (3.4.4) is equal to

R ©
— [ #ww au [ W urdiw) dy + 0@).  (3.45)
Now , F ° \
f du f —I(y, u+id)f(y) dy = f fy) dy f —I(y, u+1d) du
K 0 0 K

> 91(A)
as 8 > 0, by Lemma 2.4, uniformly over a finite A-range. Hence,
integrating (3.4.5) by parts, we obtain

@

u R
},[qs(x, w) [[aw [ —1pgw+i3)s9) dy] -
K 0 -R

R u
]. ’ — ’ y
_;_i b2, ) f du f Ij(y, w'+i8)f(y) dy

° R
1 1
> [ @y [ bule gt du.
By
If g, is of bounded variation, this is equal to the Stieltjes integral

R
> [ ) oy, (3.4.6)
-r

3.5. We now require the following theorem.

Let (A) be an analytic function of A = u+-iv, regular for v > 0.
Let 1t be bounded on each line v = constant, and let its maxrimum
modulus on the line tend to 0 as v — co. Let ¢(A) = p(u, v)+1iq(u,v), and

f Ip(u,v)| du < M (v > 0). (3.5.1)

Then there is a function p(t), of bounded variation in (—o0, ), such that
_ 1 [dp(t)

d(A) = =i (v > 0). (3.5.2)

Also lim [ p(,v) du = plug)—p(u) (3.5.3)

for all values of u, and u,.
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Integrating ¢(z)/(z—A) along the straight line (— B+-4y, R+-vy) and
round the semicircle above it, where 0 << y < v, and making R —> oo,
we obtain

1 Ry ¢( )
. V4
$O) = 5 lim f %) g, (3.5.4)
—R+iy
1 Ry
Similarly 0= ;L lim f j(z;f dz, (3.5.5)
s —>00 —_
B —R+iy

where A’ = u+14(2y—v). Subtracting the conjugate of (3.5.5) from
(3.5.4),

0

_1 [ py)
$(A) = »—:_f iy dz. (3.5.6)

From this and (3.5.1) it follows that

1 [ M
A X ;. .’ X T, N
B0 < o ?”_i ip ) de < 2L
. M
and making y > 0 [d(A)] < — (3.5.7)

Now let Y
$10) = [ $(2) dz = py(u, v)Figy(u, v),

A
$2(2) = [ $1(2) dz = pylu, v)+iga(u, v).

By (3.5.7), ¢,(A) = Oflog(1/v)} as v — 0, uniformly over a finite
u-interval. Hence ¢,(A) tends to a limit as v — 0, uniformly over
a finite w-interval. This limit ¢y(u) = p,(u, 0)+ig,(u,0) is thus a
continuous function of «.

1 u
Now $12) = —i [ $(iy) dy + [ pla—+iv) de,
v 0

and hence 1 w
Pa(,v) = [ 9(0,9) dy + [ p(z,v) de
v 0

1
= [2(0,9) dy + x(u,)—w(u,v),
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where

x(w,9) = § [ {Ip@,v)| +p(z, )} da,
0

w(w,v) = } [ {{p@, )| —plz,v)} da.

For each v, the functions y and w are positive non-decreasing func-
tions of w, and y < M, o << M. Let

P(u,v,h) = Dpo(u+t-h, U)—pz(u, v) .

h
Then
uth
Plu,v,h) —= le f pule,v) da
u
1
= f q(01 ?/) d?/ + Xl(u) U, k)_wl(u: TJ, }I‘)I
where °
uth uth

xa(w, v, h) = }L f x(x, v) dx, wy(u,v,h) = 1 f w(z,v) dz.

>

(2
u

For given u and v, the functions y, and w, are non-decreasing func-
tions of A, and |x,| < M, |w,| << M. Hence if (h,, k,+38,) are any
non-overlapping intervals,

z ,P(u: v, hy+3,,)—P(u, v, ’I,y)’
< g {Xl(u’ v, hy—f-sv)—-xl(u, v, kv)}—[-
42 {oy (%, v, b, +-8,)—w,(u, v, h,)} < 4M.

Making » — 0, it follows that

z IP(U, 0, hy+8v)——-P(u> 0, hv)l < 4M.

14
Hence P(u,0,%) is of bounded variation, and so tends to limits as
h— £0. Thus py(u,0) has everywhere right-hand and left-hand
derivatives p, ,(«,0) and p; _(u,0). Also

lp(u: v,h)~P(u,v, l)l < 4M.
Making v - 0,
| P(u,0,h)| < 4M+|py(u+t1,0)[+]|py(u, 0)[.

This is bounded in any finite interval. Hence p,(, 0) is absolutely
4957 H
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continuous, and so is the integral of its derivative, which exists
almost everywhere.

Further, x, and w, are non-decreasing functions of u, for given
h and v. Hence, if (u,,u,+3,) are non-overlapping intervals,

2 |P(u,+3,,v,h)— P(u,,v,h)| < 4¢M.

Making v — 0, then A — +0, it follows that p, (%, 0) and p; _(u, 0)
are of bounded variation in (—o0,0). Let

P(u) = %{p;ﬁ-(u_}_o’ 0)+p;,+(u_05 O)}'
Integrating (3.5.6) by parts,

x+1y—A)? m ) (x+1y—A)?R

the integrated terms vanishing since p,(z,y) = O(1), py(z,y) = O(z)
for fixed y. In the last formula we can make y - 0, and obtain

$0) = L f : Py g 2 [P Y)

$(A )- = f’;(x;;) z. (3.5.8)

—00

To justify this step, we observe that

(f i+:f)¢<z) d= = 0fu)-+0[1og)

by (3.5.7). Hence
Pl 0)—pafu, 0) = R [[iy(u-tiy) dy = 0{v(u+log}))}. (3.5.9)
0
Hence as y - 0

Po(%,y) P, 0) 4 y(|x| +log 1/y) )
fz(xwfh)ﬁ “Of Tt o)

@

and also f {(x+igl/—/\)3_(x—l/\)3:p2(x’ 0) dz = o(1),

since p,(z, 0) = O(zx), by (3.5.9) with v fixed.
Integrating (3.5.8) by pa,rts

A 0) g — 1 [ p@
¢()~— | - A), = ) - A)2d (3.5.10)

and (3.5.2) follows on mtegratmg by parts again.
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Since (3.5.10) is uniformly convergent, on integrating over (u,, %,)
and taking real parts we have

Us

1 r v v
dw = - (- * Y
Uy —

(3.5.3) follows from this by the theory of Cauchy’s singular integral.}

3.6. Let f(x), the arbitrary function to be expanded, satisfy the
same conditions as in Theorem 2.7 (i); viz. f(z) and Lf(x) are L?(0, c0),

J(0)cosa+-f'(0)sina = 0,

and W{f(x), y(z,A)} - 0
as - oo for every complex A.

Using the notation of § 3.2, and denoting by ®,(x, ) the function
corresponding to ®(z, A) for the interval (0,b), we have by (1.9.3)

(I)b(x,A) = S c',l'!’,l,'b"gb,(?i)

= 7)\——/\,1,,, ’
b
where Cnp = f‘/’n,b(x)f(x) dz.
0
Hence — 1D, (,A) = ,%'L'l’,',/’ﬂ?@

noo (u-An,b)z"l" v?

Hence, as in § 3.2,
Uy

f II(Db(x’ A)I du < anolcn,b '1['n,b(x)l .

By (2.13.3), with A = ¢,
dn,b = (i_—’\n,b)cn,b’
where d,, ;, is the Fourier coefficient of if(x)— Lf(»). Now

© b @©
314,12 < [ 1§ (@) — Lf @) dw < [ |4 () — Lf(2)|* da.

Also i, ,(x)/(i—A, ;) is the Fourier coefficient of Gy(x,y,A). Hence

i—Anp

[+ o)

2.

n=0

2 b
< [ |Gy, D)2 dy

0

x b
= [(a, )12 [ 140, 9)12 dy +1(,5)I2 [ |4y (y, )2 dy.

1 See E. C. Titchmarsh, Fourier Integrals, pp. 30-1.
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Now ho(x, 1) = P, 3)+{I(1) —m()}(x, 1),
where (z, 1) is L0, 00), and either ¢(x, ) is L2 and I(¢) — m(¢), or

1y—m(i) = of f b, da)
0

Hence, as b — oo,

b o
Yol ) > (@), [ Wy 0)I2dy > [ 1y, )2 dy,

b

[ 16,9, )12 dy > [ 16, y)|* dy.
0 0

Uy
Hence f [10,(z, )| du < K,

(5%
where K is independent of u,, u,, v, and b. Making b - co, then
Uy —> —00, U, —> 00, it follows that

f 10(z,A)] du < K. (3.6.1)

From (3.6.1) and (2.15.2) it follows that the conditions of the theorem
of § 3.5 are satisfied by the function i®(x,A). Hence

Q(z,A) = % :\lpf(tt), (3.6.2)

where p(t) =: p(t,x) is of bounded variation in (—o0, c0).
We can now prove the following theorem.

TarOREM. If f (x ) satusfies the above conditions and

[ee]

x(@, ) == f blx,u)dk(w), g, = [ x(0,Nf@) dy,
0

then f(x) = f(ﬁ x,u) dg,(u). (3.6.3)

Consider the imtegral f D(z,A) dA (3.6.4)

taken round the rectangle with corners at 4 R4, 4 R-+:. As in

§2.15,
R+1
lim f O(z,A) dA = —mif(z).

B g
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Also by (3.6.2)

[ e}

w—t
O(2,2) — f e 00

-0
Hence
1

. 1 [ 1
fRQ(x,R-}—w) dv = —f (arctanR_t arctanR )dp()

3
_ofm +0f|;lé°(tt+0f|d 0

which tends to zero as R — oo (choosing first A and then R) uni-
formly with respect to 3.

On taking the imaginary part of (3.6.4) and making first R suffi-
ciently large, then & sufficiently small, and using (3.4.6), we obtain

(3.6.3).
It is also easily seen that, under the conditions of this section,

g,(u) is of bounded variation in (—o0,00). If sina 7 0,
®(0,2) = sina [ $(5Af(¥) dy,
0

and (3.6.1) with z = 0 gives

f Lj(y, N[ () dy
0

Hence 2 f

Uy

o0

I

—00

du << K.

o5}

[ W@ Nf) dy

0

du < K

for any set of ,. Hence

S| T af |

[ [ Wiy, Nfw) dy
and making v -> 0

< K,

Uy

> 19(ty1y)—g(w,)| < K.

If sina = 0, we can arguc similarly with ®,(0,2).

3.7. The Parseval formula.

THEOREM 3.7. Let f(x) belong to L%*(0,00). Then the sequence of
Junctions

gud) = fw, (v) dy
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converges in mean, with respect to k(A), over (—o0, ), to a limit g(A); t.e.

Tim [ {gO)—gaN)* k) = 0;

and [ ey ae = | ooy aon.

w
— 00

To prove this, we require the mean convergence theorem for
Stieltjes integrals.

Consider first a finite interval (a,b) in which k(z) is bounded and
non-decreasing, and let there be a sequence of continuous functions
Jo(x) such that

b
[ f n@) (@)} dh(z) > 0 (3.7.1)

as m —> 00, | —> 00.

The function ¢ = k(x) maps the interval @ << x < b on the interval
k(a) < x < k() in the following way. If k(x) is continuous, to
each z corresponds just one value of (. At a discontinuity, e.g. if
k(x,—0) < k(x,+0), the point x, corresponds to the whole interval
{k(x,—0), k(z,+0)} (open or closed as the case may be). If k(x) is
constant over an interval (z,,z,), every « in the interval corresponds
to the same value of ¢, Thus an inverse function z == z(§), of the
same type as k(z), is also defined.

If the function f(x) is measurable} B (in particular, continuous),
the function f{x(¢£)} = F(£) is also measurable B. The Stieltjes
integral of f(x) with respect to k(x) is then

{ s ave) = | Feae.
Conversely, if F(£) is measurable I;,(a;nd L{k(a), k(b)}, then
T F@ de = [ Py o
We can therefore ;(;)t; (3.7.1) in the form
k:jib){Fm(ff)—Fn(f)}z d¢ — 0.

t See E. W. Hobson, The Theory of Functions of a Real Variable (2nd ed.), vol. 1,
§§ 132 and 445-8.
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Hence there is a function F'(§) of L*{k(a), k(b)}, such that
k(b)

[ FO—-F)pdé—o0.
k(a)
The usual method of defining this function shows that in fact it is
measurable B. Hence f(z) = F{k(z)} is measurable B, and

b
[ (f@)=f. @) k(@) > o.

The case of an infinite interval can be discussed similarly.

Now let f(x) be any function of L%0,00). Then we can define a
sequence of functions f,(x), satisfying the conditions of the above
theorem, and zero for x > n, such that

lim f {(f@)—fo@))? de = 0.

Let k@) = [ $(y, N uly) dy.

0

A A n
Then f b (u) dk(u) = f dk(u) f $(y, W f,(y) dy
K K 0

St

A
Fa0) dy | $(y,u) dk(u)

= [falw)x(y,2) dy
0

= hl,n(A))
say. The above theorem then gives

1) = ¢ [ $w ) dhn) = [ pla () diw).

This integral converges uniformly with respect to « over any finite
interval. Hence the process leading to (3.1.4) is valid, so that

[ tayae = [ ooy ar.

Similarly

| et = [ 01— a0 1),
0 ~
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Hence the functions %,(A) converge in mean square to a limit g(A),
such that

oo} 1 el
[@ypar =1 | oy a.
0 —o
If G(A) corresponds in the same way to F(x), we shall clearly have

similarly

[ ve—Faya =~ [ Gm—ey am.
0 —a0
Taking F(z) = f(z) (x < n), 0 (x > n), we have G(A) = ¢,(A). Hence

[ oW —g. 2 dk@) = 7 [ {f@)}?dz—>0

as n— oo. Thus ¢(A) is also the mean square limit of g,(A). This
proves the theorem.

3.8. The interval (—o0,00). The rigorous discussion of this case
is similar to that which has been given for the case (0,00). We shall
indicate briefly how it proceeds.

We define functions i;(x,A), ¥,(x,A), G(x,y,A) as in §2.18. Let

Gop(@,4,A), Aaps ¥napl®) be the Green’s function, eigenvalues, and
eigenfunctions for the interval (a,b). Then (cf. (2.13.1))
b
[ @9, Mhaly) dy = Frs). (3.8.1)
’ e A— An a,b
a
Hence the Parseval theorem gives
i N
2 — n,a,b
J lGa,b(x’ 3/, A)l dy 1; ( n,ab)2+v2

Hence, as in §3.2,

Uy

fd“f‘ ol 9,4 ’2"*’“2‘&“"‘ [ i

_ (;i**;fl)F {; fb 16l y,mzdy}

()

S|
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as v - 0, uniformly with respect to @ and b, x, u,, and u, being fixed.
Hence us o . .
2 = -
J du_'!; [z, y,A) |2 dy = O(U).

Now let z = 0; by (2.18.4)

l/’l(y’ 5[’ (J’
G(0,y,2) = my(\)—mg(A) (y<0), ml()&z)*‘#i(r)() (y > 0).
Hence, by (2.18.3),
[ Tmy () —m A gy, —
L im@—myy T A
. r 1,
ie. f%?@ﬁﬂ?()\)] du = O(1). (3.8.2)

Uy

Also it is easily verified from (3.8.1) that

f G, Noonap(y) dy = ;\/Jf")’f,"(xi’

where the dash denotes differentiation with respect to x. Arguing
as before, we obtain

Tdu [ 16y dy = 0(%).
Now
G'(O, y, /\) e mz ’\)l/’l y’ ’\) (?/ < 0), ~ ')Z'z y’ A) (y > 0)_

my(A)—mg(A) “;(A) —my(A)

Hence, by (2.18.3),

" ma(N)] 2 Ty W)} — g ) 2 Hmg(N)}
J ’Izmllm m(lA)l2 W= o,

Uy

: o mma) |
ie. f I{ﬂﬁf;7n2(h)} du = O(1). (3.8.3)

Uy

It is also easily verified that

) =< o) G
my—m, my—my/ \my—m

4957 1
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Hence

f ] m1<;;l():nz '}Id'“gf ,’I{mlmimgm}I{myf&(?)—mffg?)n}

< [j 'I{ml(/\)lmz()\) H mrf}f))\)mnji’\;)”dur= o(1).

The existence of the functions £(A), n(A), and {(A) defined by (8.1.5)-
(3.1.7) now follows as before. :
Let A A
0@ ) = [ ,u) de@), @) = [ 6,u) dn(u),

%dfu

K LY

A
@A) = f e, u) dn(w),  xu@d) = [ $lz,u) dl(w),

and g,() = f W@ dy (=1,2,3, 4)
0

Then the expansion formula is

) = [ 8wy day(w) + ) dayt) +

+0(x, w) dgs(u) + $(z, u) dgy(u).
This can now be proved in the same way as before.

3.9. The spectrum. In the case of the z-interval (0,c0) the
spectrum may be defined as the A-set which is the complement of
the set of points in the neighbourhood of which k(}) is constant. If
k(A) is constant in an interval, so are x(x,A) and g,(A) (§3.4). Such
an interval contributes nothing to the representation formula (3.6.3)
or the Parseval formula (3.1.4).

If m(}) is a meromorphic function, the spectrum is the set of its
poles. This is called a point-spectrum. On the other hand, an
interval throughout which %(A) increases steadily belongs to the
continuous spectrum.

In the case of the z-interval (—o0, ), the spectrum is the com-
plement of the set of points in the neighbourhood of which all the
functions ¢(A), n(A), and {(A) are constant.

REFERENCES
Weyl (1), (2), (3), Titchmarsh (6).



IV
EXAMPLES

4.1. In this chapter we consider a number of examples of the above
theory.
The simplest case is the Fourier case, with ¢(x) = 0. If the interval

is (0,00), and the boundary condition at 0 is (2.1.4), then

0(x,A) = COSac;)s(x«//\)—}—/\—*sinasin(x«/)\),

#(z, ) = sin a cos(zvA) —A~* cos asin(zvA).
The function y(z,A) = O(x,A)+m(A)d(x,A) must be a multiple of
eiw¥A if I(A) > 0, since e~i#¥A i3 not L%(0,0). Hence
_ sina—ivAcosa

M) = osafivAsina:
Hence
—Im(A) = W (A >0), 0 A<0)
cos?a-+Asina
and (3.1.1) reduces to
fay =1 [ o tG) i [ g s av.
0 0

This of course can be verified under the usual conditions for Fourier’s
integral formula by direct consideration of the integrand. The general
theorem of §3.6 gives the formula in a comparatively indirect form.
Consider, e.g., the case a = {m. Then

O(x,A) = A-tsin(@Vd),  é(x,A) = cos(zV]A),

A
k() = f wtdu A>0), 0 (A<O0),

A .
X(x, )\) = f COS(x\/u)u—i du — gﬂla(‘f_i)‘) ’
0
@ p J
7 = f 29111;&3) J(a) de

0
Thus we obtain Fourier’s cosine formula in the form

[c4) w

flx) = 1 f cos(xvu) d{f ggqu\/u)f(x) dx}

T
0 0
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In the case of the interval (—oo,c0) we have

0(z,A) = cos(zwA), $(x,A) = __S_ill_(gj/_)‘) ’

A
my(A) = A, Py(x,A) = e-tzA
mz()\) = —WA, lljz(x’A) - eiz«/k’

0 = 1oy ) = e

=ﬁ (A > 0), 0 (A<0),
) = —1[ AmaA). 1(—5"'\)
vor = =1 ) = 15
=2 a0, 0 a<o.
Hence (3.1.13) gives
flx) = 717 f cos(zVA) %\;\ cos(yVA) f(y) dy +

1
_I,._ﬁ
T

QL—.)B

[
sin(zvA) SO f sin(yVA) f(y) dy.
Putting A = s2, this gives the ordinary form of Fourier’s formula.

4.2. The Hermite expansion. Let g(z) = 2* (—o0 < z < o).
We have then to solve the equation

d2
%ﬂg — (2—A)y = O. (4.2.1)

Putting y = ¢-1*’y,, we obtain

4%y, d.%
p A=y =o.

A solution of this is

0+)
Yy = f e—r2—128y—1A-} dz,

@©
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where 2~#-t = exp{(—3}A—})log 2}, and logz is real at the beginning
of the contour. For this gives
0+)

dy, . dy et i
%?1-—%321—*-()\—1)3/1 = ! e~Tr-¥g--4(32 L 221 A —1) dz

<o+)d
= —2 d—z(e—”-*z’z-“‘“) dz = 0.

A solution of (4.2.1) is therefore
(0+)
Polx,A) = e—io* f i At B 2
Since (4.2.1) is unaltered if z is replaced by —=z, another solution
i8 @o(—2, A).
If we take the above contour so that R(z) > —1 on it, then for

a fixed A (@) = O(e—t=+2)

as x - oo. It is also fairly easy to see that ¢,(—z) is large for large
positive z; for the maximum of xz— }2? is at 2 = 2, which indicates
that the integral is roughly of the order of e**. It follows that the

functions ,(x, A), Y,(x, A) defined in the general theory are multiples
of ¢o(—x,A), do(x,A) respectively. Let

W{?So(—x: A)’ ¢0(x: A)} - w()()

Then

_ Bo(—2, )81, 4)

= "0"'";?()\)0 Py > ).
Now

0+) o
$o(0,2) = f et dy — (e-2midA+h_1) f et dp
© 0
= —(I+emi2-M-i(— 1)
for R(A) < 1, and so by analytic continuation for all A. Similarly
(0+)

¢(',(0, A) = — f e—12%— 1+t Jy — (1—}—6‘"")‘)2“‘)‘*"'11(2-——&)\),

Hence
() = 2¢4(0,A)g(0,) = — (1+4e-"A)221-AT'(} —INT(F—1A)
= —(1+e*"i")22*—*"1r*I‘(§—éA).
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This has zeros at the points A = 2n+-1; they are double zeros for
n < 0, single for n > 0 (on account of the poles of the I'-function).
But ¢(z,A) vanishes if A = 2n+1 (n < 0). Hence G(x,y,)A) has
simple poles at A = 2n+4-1 (n = 0). Now

do(z, 2n+1) = e~ f e-za-1ty-n-1 I,
(0+)
Putting z = 2(2’'—x), this is

eix’ e-—z’ ez’ 9 d\» "
? e~
f '— 90)"+1 Tl " (dx)

27 . nl

where I, (x) is the Hermite polynomial of degrec n. Also if

A= 2n+l4e,

w()() = —(1__e*‘ﬁie)221—n_§€7T§I1(_n~%€)
N,,2€221_n"}(——1)n 1 (_.1)11.-122_%,,6
nl —fe n! )

Also ¢o(—2, 2n+1) = Ady(x, 2n+1), since the Wronskian vanishes,
and 4 = (—1)*, by considering « —> 0. Hence the function

(@, ) = [ 6,4, 0f(y) dy

has the residues

o

n! 472
- o2 - ,
J‘ 22— nﬂ.ﬁ 22:1(ny) H, (.’17)6 v Iin(:l/)f(y) dy

-0

e—!x’Hn(x) N —4y?
= Tonplat e~ H,,(y)f(y) dy.

Hence the normalized eigenfunctions are
e~ #o'H, (x)
2n ()it
4.3. The Legendre expansion. The more general second-order
differential equation

a(X) g%-;-b(X)%-}-{A—c(X)}Y —0 (4.3.1)
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can be reduced to the standard form as follows. Let

aX
va(X)'
Then L 8 E 1 p—y)¥ =0,
b(X)—ha'(X)

where Blx) = 2. 2 s y(x) = c(X).

Putting ¥ = r(z)y, where
r(x) = e~t]B@dz,

. d y
we obtain ngﬁ—{/\—;}ﬁ?(x)—%ﬂ (x)—y(x)}ly = 0. (4.3.2)
The general Legendre equation is
(1— Xz)

n(n+1)— Y=0  (4.3.3)

m2
dX2 —2Xaxt —Xx
Here z = sin—'X, B(z) = —tanz, r(z) = «/secx, and the equation
reduces to

Z—Zﬁ—{n(n—}u 1)+ % tan?x+ 3 —m?seckly = 0. (4.3.4)

4.4, LEMMA.

cossz .. (—2)™ Zmy

J (coszymd™ T 4o (m—13) T —dm+ 3o)D(F— dm—hs)

if C is a closed contour including — }mw and ym but excluding the other
zeros of cosz.

Denoting the integral by f,.(s), we have

N cos(s—1)zcosz—sm(s-l)zsmz
Fnl®) = j (cosz)ym+t e

C

cos(s—1)z —1 _
= f P dz+m f cos(s—1)z. (cosz)—m+t dz
c c

= "'n;n*—i;%fm—l('g_l)
_ (mts—P(mts—§—2)..(—mts+}),
(m—}%)..3 °

(8—m).
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Now
i

Jos—m) = f?f)ﬂi UL 4]003(8-—m
0

costz costz

¢ _ okt
T T@+is—m)IF—1s+1im)

and
L@—3s+im) = (—i—3s+im)...(F—3s—Im)I'(§—4s—im).
Hence the result follows.

4.5. The ordinary Legendre expansion. Taking m = 0 in
(4.3.4), the corresponding basic equation is

%+(A+itan2x+i‘)y =0 (—dr<z<in). (4.5.1)

Putting y = Y+cosz,

‘;I; tanxd +@A—3Y =o0.
Putting z = £—17,

a2y ay

A solution of this is
co8 82
Y=  — —2.
f (cosz—cos &)* dz,
&

where A = s2, and C is a closed contour surrounding £ and —§, but
excluding all other singularities. For it gives

dY [ }sinfcossz

7 (cos z—cos £)t

dzY % sin2é — % cos £(cosz—cos €)
g f i

cos sz dz.
(cosz—cos )t

Hence
dY §—}cosfcosz—} cos%z
d §2 + t§ —1Y = f (cosz—cosé)i cos sz dz.
On the other hand, integrating by parts,
_ $sinz sin sz
Y= (cosz—cos &)t s d
¢
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_ J’%cosz(cosz~cf>s§ +§sin% c_qﬁgd
(cosz—cos §)2

cos sz dz.

1 “% 1 cos®z—}coszcos €
s? (cos z—cos &)}
¢

Hence Y satisfies (4.5.2). A solution of (4.5.1) is therefore
¢

$o(x) = Y coste = 4 cosly cos sz

(cos z—cos &)}

Clearly another solution is ¢q(—x).
Ifx = in—3,8 >0,

m—38
Cco8 82

$of@) = 4sinid f (cos z—+cos 8)} dz

= 4sm*8f(—coss =9 ag

cos 8—cos )}

™

dg
~ 48t cos s f (e—syp
3

/8
_4\/285cos37rf\/ @) 4«/2cosm8*log%

and
8

dz
— 4sin? COS%E dr—=olst | -, TF L= o).

Pol—2) sin'3 f (cos z—cos )t 5 V(@2 —22) (%)

0

Hence all solutions of (4.5.1) are L*(— 3, }m), and we are in Weyl’s
limit-circle case. We shall here merely select the point on the limit-
circle which leads to the ordinary Legendre expansion.

The function m,(A) is a point on the limit-circle of the circles

(b)cot B+6'(D)

= — g4 6)

as b — 4, where

_ po(—a) () ‘150( z ¢(z)
I R T

4957 K
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Taking cot 8 = oo, we obtain

) = $ol0)

— $(0)

__ $o(—2)
and (2, ) = ;0(0) :
Similarly myA) = d"’(o) Py (@,A) = Po()

 (0)’ $o(0)”

Po(—2) do(y)

Hence fory < =

O B0 L alls)
G(z,y,A) = 2¢0 2 $o(0)do(0)
. $0(0)
ow __ [cossz , (2m)t
MW—J@ S 7 3 P -
, . 1 (fcossz, 24t
$o(0) = —5 Cf costz T TE+3s)T(G—139)’
Hence 167°

PO0) = B 4T = 1) TG — 9T+ 1)
= 16w sinw(}—4s)sinw(}-+1s)
= 8w cosms = 8w coswVA.

Hence the eigenvalues are

A, = (n+4)?2 (n=0,1,..).
Now ymtx

— dcosiy | _cos(rti)z

$o( Ar) o' (cosz-sinz)#
= 2427 costz P,(—sinz)
= (—1)"2v2 7 costx P, (sin x),

Bo—2,A) = (—1)ofz, \,),
, (—1)*~472(A—A )
d, as A=A, 0)d,(0) ~
and, as A, o(0)$i(0) ~ 7
Hence ®(z,y,A) has a pole at A, with residue

i

J. ?;—;} 872 costz P, (sin x)costy P, (siny)f(y) dy
u

—m i

= (n+3)costz P, (sinx) f costy P, (siny)f(y) dy.

-4
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Thus the normalized eigenfunctions are
(n+3%)} costa P, (sin z).
4.6. Next let
q(x) = —}tan®x+m2secr—} (—ir <z < i),
where m is a positive integer. The basic equation is then

2
Z_%_*_(A—]-%tan%—mzseczx—i-i)y = 0.
Putting y = ¥, veosz, z = {—1m,

—|-cot§ ‘—}— (A—m?cosec2é —1)Y; = 0.

d§2 d¢

A solution of this is

Y, = sinimg (d c((Z)s )mY’

where Y satisfies (4.5.2); i.e.
= (—1)m — Dginim
Y, = (—1)"}...(m—P)sining f .

cos 8z .
cos £)m+

Hence solutions are ¢,(x) = costzY; and ¢o(—=z). Hence

$o(0) = (—1)"}.. "”‘“%)f cggi;i”
om-+id

T b )P —dm—1s)

and $o(0) = (—=1)y"#14.. (’”+l)f (cggz;:” z
om+igd

T T et NG —m— )

Hence
$0(0)o(0)

22m+47.r3
I'(§—dm+3s)D(F—4m+3s) LG —dm—Es)T(—dm—4s)
92m+4,3 9-t-mis Q-t-m-s
= al(}—m—+8)['(3—m—s)
872
T IME—mts)F(i—m—s)’
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This vanishes if +¢ = n—m--4, i.e. A = (n—m-+-1)? (n =0, 1,...).
Also

$ofe, (n—m-+1)% = sinin+ig (d o

f)m 2¥27 P,_,(cos€).

This is 0 if n < 2m, and if » > 2m it is
242 wsin¥é P (cosé).
Putting n = m-r, it follows that the eigenvalues are (r+%)2, r = m,
m—+1,....
If s = n—m-+3+te
872 872

$0(0)¢o(0) = f(n—2m—|—l-|-e)I‘(_€_n) ~ (v2m)] (—1)nle
~ . 87 —1)n-1g y)‘ (n— m+1})2
(n—-2m)' 2(n—m+1%)

Hence the residue is

}‘ﬂ (_%)(— )"~18n% coste P, (sinz)costy P7 , (siny)

 8aX(—1)!/(n—2m)! 2(n—m+}) Ju)dy

—

=(-n__n—2'@' (n—m~+3%)costa PT_ smx)f costy P (siny)f(y) dy.

—im
The expansion may be written in the form
b 3d

f@) = 2 ) -+ Yeosta Pr(sing) | costy PP(siny)f(y) dy.

—3m

4.7. If we apply the general expansion theorem to the above
formulae, we obtain a proof of the Legendre expansion under rather
restricted conditions. We shall now indicate briefly how to justify
the expansion under the same conditions as an ordinary Fourier
series.

We have in the notation of §4.5

e—1i8z

bo(z) = sindé f

(cosz—cos &)}

where the contour surrounds the points z = 4-£. This contour can
be replaced by loops round these points, each loop coming from
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—100, passing over the point in the positive direction, and returning
to —400. In the neighbourhood of z = ¢

§— f-l-Z)

(cosz—cos§)t = (2 s1n—2— sin

~ (£—z)tsinié,

Hence the loop round this point contributes

e—1isz 1 e—isz e—is¢ [ p-—isz’ ,
[t =i e [ e

e—18¢ Qe—tin

Treating the other loop similarly, we obtain altogether

st ()
$ol(z) = —it—— sm(8§+lw){l+0(! ‘)} (4.7.1)

provided that |s¢]| > 4.

If |s¢| << A4, take the integral round a circle of fixed radius, and
we obtain ¢y(x) = O(|sin¥¢|).

We have

O(z,2) = ft:,T,—c(;s—ﬂs{dm( 2) quo(y)f(y ) dy +

_}”

isf
with error 0( e

st

i
+do() f bo(—y)f(y) dy}-

x
Substituting the leading term in (4.7.1) in the part with y < x, we
obtain

sin(—sx -+ Yms+}m) fsm sy-+ins-++3n)f(y) dy

8 CO8 78
— &
%“66;;9 f [cos{(y—=)s+ms+}m}—cos{(x+y)s}] f(y) dy.
—}r
For I(s) > 0 this
x
1 S —4 L7 X S
2se_mfe-l(n_z+y) binf(y) dy = __feu vsf(y) dy,
—im -7

and we proceed as in §1.9. The result is that the expansion is valid
under the same conditions as an ordinary Fourier series.
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4.8. Fourier-Bessel series. This is the case where the interval
is (0,b), and g(x) = (v®*—})/2%. Let A = s% Solutions of

d% vi—}
=y =
are xtJ (xs), 217, (xs). Let ¢(x,A), 6(x,A) be the solutions such that

$(b) =0, $'(b)=—1,
o) =1, 6'(b)=0.

Then

$(z, ) = Jatbi{J(es)T, (b)Y, (@s)J, (b3)},
(4.8.1)

O(z,A) = g wtbis{J,(xs)V,(bs)—Y,(ws) T (bs)}.

If v > 1, this is an example of Weyl’s ‘limit-point’ case. The only
solution of L2(0,b) is atJ, (xs), so that

e ) = ) — P
. b«//\
ie. m(A) = —W\J((b«//\)) (4.8.2)
The eigenvalues A, are the zeros of J,(bvA). Now

J,(OVA) = (A—2A,)30A; T (bVA,)+-... .
Hence m(A) has the residue r, = —2A,/b (negative because the
singularity is at the lower end). Also, if A, = s2,

Bl \) = Tibh s, )T, s,) = — 20 2AE).
2 8, bJ(bs,)

Hence the normalized eigenfunctions are

(2A );- bt (xs,) _ 2tatJ(as,)

b L Jibs,)  bJi(bs,)
and the Fourier-Bessel expansion is
b
e =5 > iy f Pl @)y (483)

If 0 < v < 1, all solutions of the equation belong to L?(0,b), and
we are in the limit-circle case. Consider first the case 0 < v << 1.

Since
Y,(2) = {J,(z)cosvm—J_,(2)}cosecvm
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we have
matb
Bz = — sfnb; (J, (@), (bs)—J_,(23)J, (b))},
P natbls
(,A) = —é'gi;;;r{J (w8)J _,(bs)—_,(xs)J,(bs)}.

The limit-circle is the limit of the circles

- _ Y@ Neotatb'(a,A) (4.8.4)

b(a, A)cot a4’ (a, )
as @ > 0. Now as & — 0 (s fixed)

(xzs)” var—lgv

m + O(av+2), Jo(x8) = m+ O(x*+1).

J(x8) =

Hence

{at+v cot at (3 +v)a—i+}—

6(a)cot a+-6'(a) = mbts [ svJ ", (bs)

T 2sinvm [ 2T(14v)

i‘i"%léi {at~v cot a+(3—v)a—t"}+ O(al-7|cot o|)+ O(ai-")]
Now let

at~Vcotat-(J—vja~t _ al+’cotat(3+v)a i+
2-'T'(1—v) o 2T(14v) ’

where ¢ is a constant. Then

2T(14v)(F—v)a—i—>—c 2 T'(1—v)(} + v)a 4+ “ (1
coba = ¢ 2T (1—v)ab ™ — 2T (1 v)at- N O(ﬁ)

and
at+ cot at(§+v)a—?

B — 21T (14) o
T 2o T(A—v)atr—2T(A4v)at—~ "

Hence the O-terms in the above cxpression are negligible if
3—v > v—4,i.e.v < 1. Treating the denominator in (4.8.4) similarly,
(4.8.4) gives, when a - 0,

_e87J,(bs)—s"J L, (bs)

os7 T (bs)—s"J_,(bs) ° (4.8.5)

Since ¢ may have any value, m describes the circle obtained by
varying ¢, and so this is the limit circle. For cach value of ¢, m is
an even function of s, and so is a one-valued function of A. Its only



72 EXAMPLES Chap. IV

singularities are poles, viz. the zeros of ¢J,(6vA)—A*J_,(b~A). Denoting
these by A,, we have

B = — T (T NN ML B — L @B}

OO AN ) — L A}

2sinvmr

The normalized eigenfunctions are |7, | $(z, A,,), where the 7, are the
residues of m(A) at the points A,. For ¢ = oo the expansion is the
ordinary Fourier-Bessel expansion of order v, and for ¢ = 0 it is
the expansion of order —v.

In the case v = 0, we have

Yy(ws) = % (y+log “%f) {1+ 0(?)}, Yo(xs) = 772} + O(z|logz|)
as z —> 0 (s fixed). Hence

O(a)cota+-0'(a) = mb? Sl:{Yo(bs) Jo(bs)= <'y+log§)}(ai cota+t3a-t)—

—-—a;J(',(bs)—f-O(aillogalcot «)+ O(at|log a[)]

= %%[{Y’o(bs)—zJ(;(bs)logs}(a* cot a-4a-t)—
(bé‘){ (’y+10g )(a* cot a--}a-t) + f;}-i—

O(at|log a|cot a)-+ O(a?|log a})] .
Taking
g('y~l—log (—L) (at cot a+Ja—t) - 2 _ c(@} cot a-ya-t)
T 2 mat

and proceeding as before, we obtain
¢ o(bs)—{Y 5(bs)— (2/m)J o(bs)log s}
= — 4.8.6
y cdy(bs)—{Yy(bs)— (2/m) J(bs log s} * ( )
This is an even function of s (see Watson, Theory of Bessel Functions,
3.51 (3)), and a result similar to the previous one is obtained.

4.9. Direct discussion of Fourier-Bessel series. The general
theory of Chapter II gives the Fouricr-Bessel expansion under very
restricted conditions. A direct discussion of the formulae involved
gives the following more general result.
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THEOREM 4.9. Let f(y) be integrable over (0,b), and let v > —1.
Then if 0 << x << b, the series (4.8.3) behaves as regards convergence in
the same way as an ordinary Fourier series.

Apply (1.7.5) to Bessel’s equation, taking #(b) = 0, ¢'(h) =1,
instead of the conditions at x = a. We obtain

i — 10o—2)
Zsin{s(b—a)} | O(L.i),

ls[?

J, (b)Y, (xs) —Y, (Ba)J,(ws) = —

w8

Also, by the well-known asymptotic formula for Bessel functions,
J(2) = (E>% cosze— vr—}m)+ 0O (IT_;I)

for 0 < argz <im, |2| =1

We have
(2, 2) = jmat PO (xf,) (bj; Abe), f Y (ys)f () dy +
T (2 b
. x;Jva ) f YT (b3)Y, (ys) =Y, (b63),(ys)}f () dy.

Let 0 < 8 < z, and let
O(x) = ©,(x)+Dy(x),
where

8
i) = Gt SO [t a,
0

and ®,(x) is the remainder. Now for |s| > 1/8

.4 1/|sl )
of Y, (ys) f(y) dy = of +1 LI

1/is|
= 0“?/*1.1/81 If(y ldy}+0{fy*u8plf(y)l y}

0
1/ls|

— 0 -3 v+
{181 offys( *lf(y)ldy}—JrO{] Pf lfy)ldy}

oue+0(55) = o)

4957 L
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We now integrate round a quarter-square in the s-plane (s = o--tt)
with sides on the lines
bo = nr+Yvr+}m, bt = nm+{vn+-in.
Here O, (x) = O(]s|~te®-¥),

and the integral of this is easily seen to be O(n-?) (for fixed & and z).
In @y(x) we can use the asymptotic formulae throughout, and the
argument proceeds as in §1.9. We obtain, for example,

72793 17, (b8)Y, (M)v(bz; " (bs), (x3) J’ y*J,(ys) f(y) dy

- {Si““’—x) 10 (ew ))}ﬂy)dy

s COS(bS— tvm—}m) |
)

On the contour considered
cos(ys—dvm—3im) — e=we-b)1 Of. }
cos(bs— Jym—}) |s]
and the leading term is then the same as in the case of an ordinary

Fourier sine serics. The result therefore follows.
Similar methods apply to the other Bessel-function formulae.

4.10. The Weber formula. Consider the case of Bessel functions
with the interval (@,c0), where @ > 0. Taking, e.g., « = 0 in the
boundary condition at @, we have

$(z,2) = T alat{],(as)Y,(as)—Y,(ws)J, (as)},

O(x,A) = ~a*x93{J (x8)Y (as)—Y, (xs)J (as)).

The only solution which is small as z — oo, for I(s) > 0, is
HM(xs) = J,(ws)-}+1Y, (ws).
It follows that
P(@,4) = 0(x,A)+mA)g(z, )
must be a multiple of this; hence
—sJ (as)—m(A)J,(as) = i{sY(as)+m(A)Y,(as)},
)¢
Eﬁ;ig ((Zj)) —s % (é‘s‘;_) . (410)

m(d) =
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Hence for A > 0, i.e. s real,
[ Jas)+i¥(as)
=t = 1{e e
J(as)Y (as)—Y, (as)J (as)
J%(as)+YZ(as)
2 1
a J¥(as)+Y¥(as)'

Also HMV(iz) = —‘z—z,e““"iKy(z), (4.10.2)
w

and K (2) is real for real z. Hence
§ V' (as)
HM(as)
is real for purely imaginary s, i.e. for negative A. The final result
is therefore

@«

xs)Y (as) =Y, (xs)J,(as)

f o i—YZ(aS)

0

sds X

@

X fy*{Jv(ys)Yv(as) Y, (ys)J, (as)} f(y) dy. (4.10.3)

If, instead of ®(¢) == 0, it is assumed that
O(a)cos a+P'(a)sina == 0,
we obtain the corresponding formula in which J,(as) and Y, (as) are
replaced by
sin «

J, (as)(cos a-f Waﬁ) -, (as)sinas,

ete. For example, if tanaq = ——,
2v—1

then J,(as) and Y, (as) are replaced by J,,(as) and ¥, (as).

4.11. The Hankel formula. This is the Bessel-function case with
interval (0, 00). Kach end is now singular. Take x = « as basic point
instead of the 2 = 0 of the formulae of §2.18. Then

d(x,A) = aéx*{J (x8)Y, (as)—Y, (xs)J (as)},

O(x,A) = a*x*s{J (x8)Y (as)—Y, (xs)J,(as)}.
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If v > 1, the solutions of L?(0,a) and L%*(a,o0) are xtJ,(xs) and
xtH(M(xs). Hence

my(A) = ST (as)’ (4.11.1)
Yz, A) = Z—;a*x*sz(xs) S(as)— Y(as)J ((Zj))}
b J (xs)
~ at J(as)
. H(l) (as)
As in §4.10 My(A) = i (;‘:) (4.11.2)

Hence
1 1

=) 18{] (@s) H&U'(as)}
J(as)  HP(as)

=1 Trhan) ()| = TLUas) (s > 0),
=0 (s=1att>0).
Hence (3.1.12) gives

@) = 1 [ 28, dh [ yid Wit dy
0

atJ (xs)s ds f yiJ,(ys)f(y) dy. (4.11.3)
0
Of course it is easily seen directly that

x

(z,5) = LA HD(as) f Y (ys)f(y) dy +

0
gas) [ PHD ) dy

and w
—10(a) = Tt (as) [ L)) dy (s> 0)

0
=0 (s=1t,t>0).
This gives the result again.
Consider next the case 0 << v << 1. Then m,(A) is given by (4.8.5),
with a instead of b, and m,(A) by (4.11.2). This gives
xt cJ, (x8)—s?J_ (x8)
@A) = at cJ (as)—s?J_ (as)




4.11 EXAMPLES 77

Hsn'(as)_cJ;ws)—s”J'-v(as)}
H{P(as) el (as)—s®J_(as) |

Also mq(A)—my(A) = s{

Using the formula
HM(z) = tcosecva{e~7],(2)—J_,(2)}
we obtain

20 c—s¥e—tvm
m(3)—my) = ma HY(as){c],(as)—s?J_,(as)}
Hence for A > 0, i.e.  real and positive,

p Y gre HPas)ed (as) s (as)}

M4 (A)—my(A) 2 c—gve—wvm

_ma ey (as‘)(c—sz" cosvr)+Y, (as)s® sinvm
= 5 (e (as) s (as)} ™ —2¢s? cos 2v+-s¥

_ ma{cd,(as)—s*J_ (as)}?

T2 c2—2¢8¥ cosym s

For A < 0, s = ¢, where ¢ is real and positive. Now

HW(at) — Ze-wmiK (at)
ey

and
e, (1at)— (it)J_ (iat) = cet ™ (at)—e*mit>e~tvmi]_ (at)
= ebmi{c] (at)—1*I_ (at)}.
1 __aK (at){cL(at)—t*]_,(a )}
H LI
M TN () c—

This is real, and if ¢ < 0 it is continuous. In this case the formula
(3.1.12) gives

fl@) = f e fws) s (@)} g f yMed,(ys) — s (ys)}f () dy.
0

€2—2¢8% cos ymr 8%

0 (4.11.4)
If ¢ > 0, there is also a pole at ¢ = c!/*. Here
o b ek(aell (et~ L (ab)
my(A)—my(A) 2pcv-Dizv(§ — i)
1Izysm v K}(at)

vr (t—ci)’

tz_cllv "A_cllv

—cly = 7~ T
Also t—c P Soilew
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Hence the residue of 1/{m,(A)—my,(A)} qua function of A is

2acth SRV K2(acl>),
vm
xt K, (xc?)
at K (acllzv)
Hence we have to add to the above right-hand side the term

-]

91y SIIVT sinvr gKv(xcl/zv) f y*[( cllﬁv)f(y (4.11.5)

v

Also (@, —cl) =

0
In the case v = 0, m;(A) is given by (4.8.6), with a instead of b, and
my(A) by (4.11.2), with v = 0. Hence
bl N) = & Col@s)—To(as) 2#%%&?
n at cdy(as)—Yo(as)+(2/m)dy(as)log s’
and

My (A)—my(A) = s{

H®(as)  cdy(as)—Y,(as)+ (2/m)Jy(as)log s
2 14-2c-+19( Z/w)l()gs

H{ (as) o y(as)— Y’(as) (2/m)J (@ )logs}

T ma H{P(as){cy(as)—Y,(as)+(2/m)Jy(as)log s}
Hence for A > 0, i.e. s > 0,

R L Ima {CJ_ as)—Yy(as)+(2/m)Jy(as logs}2.
ml()\)—mg(/\) = e+ (2/m) logs}‘—i— 1
For A < 0, 1.e. 8 = 1t, t > 0, we obtain
1 _ aKy(at){cly(at)+(2/m)](at)log t-+ (2/m) Ky at)}
ml(/\) m2(/\) e+ 2/7r)100t
This has a pole at ¢ = e, Ast—e-im it
aKj(at) 2ak K§(ae-tm)
ebme(f—e—tme) T ) —gmme

Hence the complete formula is

Jsds X

a¥edy(xs)—Y,(xs)+(2/m)Jy(s)log s}
J(w) = f {c+(2/m)log 8}2+1

X [ yMedolys)—Yolys)+(2/mMys)log s}f(y) dy +
0

224K (we ) [y Ky (ye ) f(y) dy.  (4.11.6)
0
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4.12. Further Bessel-function expansions. Let ¢(x) =z
(0 < x < o0). Solutions of

d?y
F (x—A)y =0
are
bo(@,A) = (@—AL{F(x—A)2, (@, ) = (—APK{F(z—A)}},
where (x—A)? is real and positive for A real, x > A.

(i) Let o = 0 in the boundary condition at z = 0. Then
Bo(@, A)thy(0, A) — (2, M)y (0, A)
A
PN 500, a0, 2) (0, 1500, )
Bz, ) = Pol® Vibo(0, 1) —tho(, N)bo(0, A)

Bo(0, A (0, A)—f10(0, M) (0, A)”
Since ¢y(x, A) is large as & - 00, and ,(x, A) small, we must have

B2 $0(0, )

$0(0, A)
m(A) = — 21
( ) ¢'0(0, A)
The eigenvalues A, are the zeros of i;,(0,A). Now

P
Po(0,) = (A—2,) {Xtﬁﬁ(o,m}ﬁ...
= ~~(A_'\n)lljt')(o> An)—+—

Hence m(A) has the residue 1 at cach pole. Hence the normalized
eigenfunctions are
l/IO(x? An)

ul@) = dlo,d,) = — gt

To determine this in a real form, consider the value of y(z,A) when
x << A. As A passes above x from the real axis on the left of it to
the real axis on the right of it, arg(x—A2) goes from 0 to —, and so
arg(x—A)? goes from 0 to —3n. Now

Ky(z) = Lmietmi H® (zebmi),

ie.

Hence
K(ze~¥) = Lmied" H{V(ze~im)
= Jmied"{H{(z)+e- 47 H{(2)}
m)*’”

= gt £ = @) et ) — Ly 2]

2 sir

= '@{JJ;(Z)'{”J-;(Z)}-
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Hence, if v < A,

Yo(@, ) = TE A= [RGA—2)) -+, {3A—2)H]
Hence the A, are the zeros of

Jy(GAN)+J_4(3AY).

Also (from the recurrence formulae)
il X) = DRG0~

Hence the normalized elgenfunctlons are

_\/3l/‘0 ’ n
Pl = e RGN T (A}

(ii) Similarly, if « = }=, we obtain
) — V3o(, 1)
) D I
where the p, are the zeros of ’
J3(3A1) —J_4(3A).
The two expansions together make up the expansion corresponding to
qx) = || (—oo < & < ).

4.13. Let q(x) = —z (0 < & < o), and let « = 0 in the boundary
condition at x = 0. Solutions of

1%y
Tt Oty =

are (x4-A {3 (x+A)H, (x4 {5(@+2)8}
and the Wronskian of these is 3/m. Writing for brevity
X =@, Y =iV, 4=

we have therefore
$(x,A) = —)\* (@+A)HIY X)X (2)— Yy (X)Jy(2)},
6(z,1) = ZMa-+VHL(X)Y(2)—Y(X)T(2)}.
Now H &”(X ) contains a factor

o nffesn] - fiof 1)
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which is exponentially small as x — oo, if I(A) > 0. All other solu-
tions of the equation are exponentially large, so that (x, ) must be
a multiple of H{¥(X). Hence

—NTY(Z)—mN(2) = i (Z) +mMN(Z)),
B Y E) _ _ HP'()

m(A) =

J(Z)+iYy(Z) HMZ)
For A > 0, i.e. Z real,
@Y YZ)-Y(Z)](Z) 3 1
—In®) = ¥ Y ) = m AT

For A < 0, let A == pe”. Then Z = ulet’”. Now

Hil)(xeiiw) — _{e—&vwiKv(xe‘hr)
e

_ 2 pbomifeymiK (2)—mi (@)).
™

Hence e—tmi
H{(xelim) = 2{— Kg(x)——e‘*m'ls(x)}
m

= —2{-1-K}(w)+e'*"i1§(x)}-

o HY' (edim) K*(x)—{—we’*mli(x)
Hence el 31)««»6 i) = K@) fme-tril@)

Hence

K (2 )—}—776 *’”I 5#3)
—Im(\) = — Iy 8H h
" = I ) e 3

3 3L (3pd) Ky (Buh) — Li(Guh) Ky (3pt)}

ST (K, (Bud) 4 me ¥ L (Fud) {UK (ud) - et L (3ub)}

. ’}77' l 1
R ‘u, ,[\'}+ﬂ112+\/31TK}1*
377 1

Also
B, A) = — %A*(wﬂ—)\)*{Jé(X)J_}(Z)—J_,(X)J,(Z)}.

Hence, if —z < A < 0,

B, Y) = — 2m VR L G+ (DL G}

4957 M
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and if A < —uz,
B X) = oo u— ) (B3 — )} (3d) — Ly (s— )}y (Bt

The expansion formula can then be written down from (3.1.1).
A similar result may be obtained with an interval (—oo,0). We

obtain
x

0@ ) = Tt HPE) [ @-+)HPES) dy +

+ AN EPE) [ GHPEPOS) dy,
ete. :

4.14. Let g(x) = —e® (—o0 << & < o). Solutions of
d%y o

At-e¥ )y = 0
dx2+( +e2)y

are J,(e%), J_,(e7), where v = ¢vA. If I(d) > 0, the former only is
L3(—0, 0), but both are L?(0,00). It is therefore the limit-point case
as x - —oo0, the limit-circle case as x — co.

Since T (2)J " (2)— T W (2) = _2Si‘;””,
.
the solutions 6(z), ¢(x) satisfying 6(0) =1, 6'(0) = 0, ¢(0) = 0,
¢'(0) = —1 are

B(z) = — 5 ()T (D)= (e)T YD)},
B(2) = — 5 LW D)=y (e5) (1)}
Hence my(A) = —J,(1)/J,(1)

(@, 4) = 0(@x)+myA)p(x) = —J,(€7)/J,(1)
Now consider the interval (0,b). In the notation of §2.1, we have
—I(A)

LT (1) =T ()T y(1)}cot B+eHT (€))L (1) —J () Jy(1)}
= (D) — J_y(eb>J<1>}cot/3+eb{J @, (D=7}
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As b —» oo, the denominator is asymptotic to
(;%)i{J_,,(l)cos(eb Yvr—}n)—J (1)cos(eb+ $vmr—}mr)}cot B—

— (%f)%{e]_v( 1)sin(e?— fvm—}m)—J,(1)sin(eb+ fvm —}m)},

and similarly for the numerator. Hence

—IQA) ~

{J_,(1)—J,(1)}eos jvr cos(e’+- K) —}—{J'_v l)—{-J 1)}sin jvmsin(eb4-K)
{J_,(1)—J,(1)}cos bvm cos(e? -+ K) +{ 1)4-J,(1)}sin fvmsin(e’+ K)

where cot K = e-?cotB. The hmlt-clrcle is obtained by giving

cot(e®+ K) any constant value C in this formula. Take, for example,
C = 0. Then

YD)
= L
J,(e%)+J_,(e7)
b = = )
Hence .
0N = o [T sae) J Tttt dy +

o) f Ui+ Lo} 0) do|

and the expan%ion formula is

Jan(e7) (e
f 4sinh ﬁZ/X)__ d’\ f {Ton(e¥) I (e} f(y) d

4.15. The Laguerre or Sonine polynomials. The Laguerre
polynomial of order » is defined by

X[ d e
1,(%) = & () . (£.15.1)

The generalized Laguerre polynomials are

LX) =& 7{}'_“ ((]‘f‘()n (e-X X n+)

n I'(n+a+1) - .
:Zo" n—r)! T'(n— r+a+1)( —X)»r. (4.15.2)

Thus LE(X) = (—1)"T(n-at 1) THX),
where the 7%(X) are the Sonine polynomials.
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Now if 4 = e~XX"+2 then
du
X X = = (n+a—X)u.
Differentiating n-+1 times,
x P ) BT e X) T )
an+2 an+1 an+1 an

Hence u, = (d/dX)"(e-XX"+*) satisfies the differential equation .

dX2+(X+I—a)du1+ (n+4-1)u; = 0,

and %, = eXu, satisfies
d*u, ( oa— 1) du, n—{—cx

This is therefore the equation satisfied by X*L{(X).
Putting X = a2, uy = x~>He-1"y, we obtain
dPuy
dac?
We should therefore expect to obtain the functions
geHe=4et [()(52)

as the eigenfunctions associated with

( 2+___4n 2<x—2) Us. (4.15.4)

% (0 < & << o0). (4.15.5)

q(x) =

Consider then the equatlon

2, —1
;l_oo%+(,\_xe_“ zj)y —o. (4.15.6)

This is equivalent to (4.15.4) if A = 4n+42a+2. Hence Y = zx-tetz’y

satisfies
a2y N\dY  A+2a—2,
d—X—z—(l-}- - )dX+ —— 2y — 0 (4.16.7)

corresponding to (4.15.3).
Assumme as a solution

Y = fg(z)exz dz
taken round a suitable contour. Integrating by parts,

Y = —jlf—fg’(z)exz dz,



4.15 EXAMPLES 85

if the integrated term vanishes at the limits. Similarly

av _
dX

d2Y 2 Xz 1 2! Vo X2z
= | 2 g(2)eX? dz == _Xf{zg (2)+229(2)}e x> dz.

Hence (4.15.7) gives

e)exeds = — ¢ f (o' (2)+9(2)}e > d,

—% f 2% (2)+229(2) —29' (2) —g(2)+ (a—L)2g (2) —

—}A+2a—2)g(2)}eX= dz = 0.
This is true if
9'®) _ —(at e+ 0+20+2) _A—20—2 A4-20+42

9(2) 2(z—1) 4z—1) 4z’
g(z) = (z_l)i(A-zavz)z—i(A+2a+2)'

Since
e XY == [ g(z)eXC-Vdz = fg(z'+§)exz' dz'

we obtain finally as solutions of (4.15.6)

+)
B, \) = xh- f (z— })i0-20-2)(5 | 1)~1A+20427% (fz  (4.15.8)

and
(—4+)
b, A) = xt-o f (z— })10-20-2) 5 1)~i0+20102% . (4.15.9)
Here the integrands have the value which is real and positive for
z real and greater than 1, and A real.
As & — o0, ¢, is dominated by the part of the integral near z = 4,
and so is asymptotic to

+) 0+)
b« f (z— %)i(/\—2a——2)ew’z dz = gpi—-oetz? f 2iA-20-2)pz% ]

—o —o0

= z-M-1ed2; sin{}n (A — 20— 2)}T{}(A— 20+ 2)}.

Similarly
(=1+)
$y ~ at-oetiTA-20-2) f (z-+}) 1A +2a+2e2®z (]
—

— gih-le-i'9jetind-20-2in L rr(—A— 20— 2)) T {}(—A— 20+ 2)}.
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G3+)
Also ¢y ~ a2 f (2—3})¥A-22-22527" dz ~ x¢,
—o

and similarly ¢y ~ — 2,
Hence

Wby, b)) ~ —22¢, b,
~ 8etimA-2a-2gin 1y (A — 20— 2)}sin{}mr(—A—2a—2)} X

X (A —2a+ 2 T{H(— A+ 20—2)},

' - Sm2etin(A-2a-2)
ie. ($1, b)) = {320t 2— X)) T (20t 2+ 1)
We have

(D(x’ A) =

l X
Wi B [ 0010+

@) [ 0 0S) dy)

Now 1/W(¢,,$,) has poles at the points
A, = +(4n+2a4-2) (n=0,1,.).

Taking the upper sign
@+)

$i(,1,) = ate f (...@-%)" o g,

a gyt

—

In this case there is no singularity at z = }, so that

N =1y
_ 2— 2, _ o | z— ’ 3,
é1(x,2,) = xt- f é+%)n+a+le‘ dz = xb-2e-1z Sy e*? dz
— 0 — 0
" R
=x&~ae-—}z’z(_'l) ";; f 2r—n—0—1p7% (o
ot ri(n—r)! J
1)n-rn! . .
= gi-e-iz* S (=1 (—1)*"24sin 7o X
— r! (n— r)'

X F(r_n_a)x21t—2r+2a

l)n-ern-—zrny

r! (n— r)'I‘(n r4-ad-1)

= —xxtte—12'2iy z

— 2t ! rothe- “’L(o‘)(xz)

(n+a+ 1)
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and ¢2(x’ An) = ¢1(.’17, An)'

Taking the lower sign
(—1+)

Bala,),) = - f (f%;_;;:l &' dz = 0,

so that ®(x, A) is regular at these points.
The residue of 1/ W(¢,, b,) at A = dn+2a+2is —I'(n-+a--1)/272n!
Hence the residue of ®(x, A) is

Pntad1) 2m%(nh)* o her pege i a+hg—dy [() (32 d
o pee e e L) [ e W L) dy
2 .Jn! gocthe—ia® [(0)(22) JED y*+e—v' L)(y2) f(y) dy.

T Tntatl) " "

4.16. The ‘hydrogen atom’. Let
rr+1) e
X

@) = —— (0 <z < ), (4.16.1)

where r is zero or a positive integer. Then

d%y c r(r4+1))
e { g xz——}y—o. (4.16.2)

This is the celebrated equation from which physicists have been able
to derive the theory of the hydrogen atom.
Putting y = 7Y, A = 2, we obtain

&Y 2rdy Ao
o —}—(;—*—s )Y = 0. (4.16.3)
Assuming Y = J. g(z)ex dz

and proceeding as in the last section, we find that Y satisfies
(4.16.3) if

g'(z) _c—20+1z _k—r—1_ k+r+l

g(z) 22+82 T 24as z—18

where k = }ic/s. Hence

g(z) = (z-{'*is)k""l(z_{s)—k—r—l‘
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Hence solutions of (4.16.2) are
-~ f (24 is)o=r-1(z—is)k~r-1g% d
taken round suitable contours.

Let éi(z,A) = j (z4-18)e—"-1(z—is)~k-T-1ezz gz, (4.16.4)
P .
where C is a closed contour surrounding both ¢s and —is, and where
arg(z+-1s) and arg(z—1s) both go from —= to 7 round the contour.
Thus (z-+¢s)* is multiplied by e?7%  and (z—1s)~* by e~27%, and the
whole integrand returns to its original value.
(is+)

Let do(,A) = 1 f (z-+i8)k-r-1(z—1is)~*-T-1¢% dp, (4.16.5)
where the loop includes #s but not —is. Here arg(z—is) goes from
—m to 7, and, for s in the first quadrant, arg(z--¢s) starts with the
value 7 and returns to = again.

Putting z = s+ {/z,

(0+)
. k—r-1
bl ) = at(Risyeor-tess (1+2§S§) {k-r-tel dg,

where arg(1+-{/2isx) - 0 as { - 0. Hence by Whittaker and Watson,
Modern Analysis, §16.12,
217?56' (2

The integral in ¢, clearly represents a function regular near x = 0.

The coefficients of all powers of & up to z vanish, as is seen on
expanding the contour to infinity. The coefficient of x¥+! is

18) "W, _,_y(— 2isz).

271

—r— k1,271 Jy —
f(z—{—zs l(z—1s) 27l dy = @D

(2r+1

(again expanding the contour to infinity). Since M, ,,;(z) ~ 2"+ for
small z, it follows that
2w M, (—2isx)
A) = Pkt
h@ D = G (= iy
Let w(A) = W(¢,, ¢,). Denoting the integrals in (4.16.4) and (4.16.5)

by I, and I, o) = z-rW(l, L,).
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Hence @) w(\) = [(i)" W(11,12)]
dx =0
As above we have I{(0) = 0 for v = 1,..., 2r, and [{*11(0) = 2.

Hence
(2r)!' w(A) = —2mi1,(0)
(is+)
= —2m [ (aris)rMz—is) < dz
(0+4)

= —2mt f (L 24s)k-r-17-k-r-1 g,

Let arg(is) = 6 (37 < 0 < =). We may turn the contour into a
position in which { comes from infinity with arg{ = 60— 2x, passes
round the origin, and returns to infinity with arg{ = 6; and
arg({-+2vs) = 6. Hence the last integral is equal to

@
ei@(k—r—l)(eiﬂ(—k—r)__ei(9-21r)(—k—r))I2i81—2r~1 J‘ (E4-1)k-r-1g—k-1-1 4¢
0

— (2is)-2r-1(1—e2imk) L (=T —=R)L2r+1)

Dr4-1—4k)
— 2771(2i8)~2~1(1 — k)
(r—k)r—k—1)...(—r—k)

Hence w(A) =
Now

0N — f 4w dy + 252 [ s dy.

This has poles at the zeros of w(}), i.e. at
C =01
T T n — > yoeo)e
4(r+n+1)°
Now oy Am2is ) dk
OV T Ty (—n—1—2r) dA
_ 4a™! [ w4l w1 2(ntr+-1)>3
T (m2r-1)! c c?
_ 8m2n! (n;{—r—}—l)f”“
(n2rH1)1 i3

E=rintl, A=A, = —-

Also
¢1(x’ An) = ¢ (CL‘ ’\n) - **f (z“*‘wn)n(z_zs )—n =2 dz
- xr+le—c:c/2(n+r+l)f (L+ 2ixs, P L-n-2r-2¢L dE,

4957 N
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where z = is,+{/x, and the contour is now a closed curve round
the pole. From (4.15.1) and Cauchy’s formula for the pth derivative

2 = 4 [ i G a,

P+l Z 1 I+t
1)2 t)yp-m -

where L7'(t) denotes (d/dt)™L,(t). Hence

2min!
éq(2,A,) = artle-crmir+l) AT peri (Mcx )

{(n4-2r 1) g e 11
Hence ®(z, A) has the residue

2r4+3 !

C n: cx
1p—c. 1 l 2T'f 1

artle Tfetr+1) r+1( )

B+ 74 1)F+ {(np-2r )12 prrtl

0
The sum of these terms is the contribution of the part of the spectrum
with A < 0.
We can write
1 (—i8+)
led) = f (s )1z is)k-r-1ens dz +

-0

(is+)
+-w}; f (z4-is)k-r-1(z—4s)~k-T-1gz2 {7

where in the first integral arg(z+-4s) goes from —= to =, arg(z—1s)
from —= to —=; in the second, arg(z-4s) goes from = to =, arg(z—1s)
from —= to w. The second term is thus ¢,(x,A). Now if in ¢y(x,A)
we increase args by =7, we get an expression apparently the same as
the above first term, but with arg(z—is) going from = to = instead
of from —= to —=. Hence

bu(2,A) = ety (x, Xe¥im) -+ By(x, A).
Also w(AeT) = —e~2mikgy(A).
Hence for A real and positive
$a(x,A) _ do(x, Ae?™) $o(@,A) €2 y(x, Ae2™) _ dy(x,A)

w(A) w(dem) T w(A) T w@)
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Hence

10 ) = ;(0( N — (e, A} = o AED f A0 Nf0) dy,

where () — 21r(28)~2r=1(1—e-mcls)
T (12 6[4s?)...(14¢2/ds?)(c/23)
2m(l—erh)

T (4s4-c?)...(dr2s2 )

Hence the interval 0 << A << oo contributes a term

1[4 (4% -c (
L f 52 —I~C (4r2s2+-0%) © by (x, 52)2s dsfc/)l(y, s%)f(y) dy
5 0

e-—m/s

4.17. Hypergeometric functions. Consider the equation
X(X41) ?;,Jr{,ﬁu a1 X}~—- MY =0 (0< X <o) (4.17.1)

Solutions are
Y, = F(a,b,c, —X), Y, = X'-*F(a—c-+1,b—c+1,2—c, —X),
where c =1y, a+b = a, ab = A%,
say a = Yot 3(a2—4A%)}, b = Ja—J(a®—4A*)k
We transform into the standard form as in §4.3. Putting
X = sinh?lx,

. a2y (IY .
we obtain P +B(x) 5 4-A*Y == (4.17.2)

where
B(x) = + (1) X — (X+ ) acoshw+2y—1—«
v T E&X+nE sinh 2 :

Putting ¥ = r(z)y, wherc

1\t+ia-y
= i —}a
r(x) = (ex_*_ 1) sinh—log,

=+ {A*—g*(x)ly = 0, (4.17.3)

. d*y
we obtain T2

where
7*(x) = 1p¥x)+ 4B’ (x)
a?cosh®z+2(a—1)(2y—1—a)cosha+(2y—1—a)®—2a
4sinh?% )
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Finally, put A = A*—}o?2, and

q(x) = q*(x)—]a*
_ 2a—1)(2y—1—o)cosh 20— dya +(1—2y)2,

4.17.4
4 sinh2x ( )

. d%y
we obtain %»2—}—{)«-—(1(90)}?/ = 0. (4.17.5)

In this notation @ = Ja+¢vA, b = Ja—ivA. Corresponding to ¥; and
Y, we obtain solutions of (4.17.5) asymptolic to

Axv-t, A2 -vay=t = Axi-v
as x - 0. Hence the origin is of limit-circle type if 0 << y < 2, and

otherwise of limit-point type. To take a definite case, let v > 2.
Then the only solution of (4.17.5) belonging to L?(0,1) is

y = nya,A) = {r@)} F(JativA, Ja—iVA, y, —sinh? Lx).
A solution of (4.17.1) for X > 1 is
X-°F(b,1—c-+b,1—a-+b, —1/X).
This leads to
Yy = 15(@,A) = {r()}~ sinh~* JaF (b, 1—c+b, 1 —a+b, —sinh~* fx)

as a solution of (4.17.5).
As x — o0,
75(®,A) ~ sinh?®z sinh-20 Lo ~ Aeiovd,

—

Hence 7, is L3(1,00) if 0 < arg VA < im.
The other solution, obtained by interchanging a and b, gives
e~=A and so is not L2 Also

Wy, 2)
= {r(x)}2W{F(a,b,c, —sinh?}x),
sinh-* {x F(b,1—c-+b,1—a+b, —sinh~2{z)}
— (o)) X X+ VP W(F(a,b,c, —X),
X-v#(b, 1—c+b,1—a--b, —1/X)}

{X(X+1 ¥ TEe)(b—a) a _ _
= @2 TB)(c—a W{X F(a,1—c+a,1—b+a, —1/X),

X—bF(b 1—c+b,1—a+b, —1/X)}

T'(c)['(b— a)( gy ZHVATGII(—2i)
T'(5)(c—a) T(3a— iV (y— ba—ivA)

~ Qa+b
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as X — o0. Since W (5, ,) is independent of z, this is its value. Hence

Dz, ) = C(a—ivA) F(y__gﬁTzVA)
20+ A T (y)[(—20VA)

< ) [ 00100 dy -+ [t 010 )

When A is real and positive, 5, is real, and since ¢ and b are con-
jugates
i ol = 2t
X { ’%1%?%;“) X 1 —ch, 1, —1/X)—
— (;I(,((L()llﬂ(j))_(—b—é&—)x‘(*“l’(a ]‘—c +a,1—b--a, —l/X)}

-

1 (@)Y (c—a)l -2 )F(a be,—X)

_ (
T 2etlp(x)i(a—b)  Tc)[(b—a) [ a ), =
1 (,044 M/)\) (y—dat z\/)\) ;
Towiz\| D(y)l(2iVA) ”1(“”)‘)'
Hence there is a continuous spectrum from 0 to co, which contributes
to the expansion of f(x) - .

1 FTGat s (y— Ja-tiva) 2
2"‘+27rf T'(y)[(2iA)
0

There may also be a finite number of poles on the negative real axis.
These will be at the points —iVA = —J}a—n or —ivVA = Ja—y-—n,
if these are positive for any positive integer values of n. The corre-
sponding residues are easily calculated.

eV [ mw V) dy
0

4.18. The case y = }. In this case
a(l—a)
q(x) = Loosh? Ja’
and there is no singularity at = 0. The z-interval may be taken
as (—oo0,0). We have
r(z) = 2-t*cosh—* 1z,

(4.18.1)

and solutions of (4.17.5) are
0(x) = cosh® }a F(Ja--1VA, fa—14A, §, —sinh? Lz),

$(z) = —2cosh* fwsinh §o I'(3+Ja+ VA, 3+ Ja—iVA, §, —sinh? }z).
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These are even and odd respectively. The solution which is small
as x —> 00 is

sinh-2 }x 1
“ghen) L (“”H" 1—a+b, —gﬁmz)

D(1)T(1—2ivA) () —
I'(1—}a—iVA)T (34 Ja—ivd)

10(— )1 —2iWR)
T — S iV D (Ja— i) P

Hence, in the notation of §2.18 or §3.1

I'a—} La— VA (3 4—9«—1,\/)\)
P(z—— lo—iVA)T («x——z\//\) ’

nd, since ¢(x) is even, m,(A) == —m,(A). In the notation of §3.1
EO) = MmN, UO) = — L}

There is a continuous spectrum from 0 to co, which contributes

My(A) ==

f@x NE )\)d)\fﬂ,/,/\)f(y)dy -+

L1 f Bz, LA ) f N f) dy

w

to the expansion of f(x).

There may also be a finite number of poles on the negative real
axis. Suppose, for example, that « = n-}-1, where n is a positive
integer. Then m,(A) has zeros at the points

—iVA == In—r (r==0, 1,..., [in]),
the residue of 1/m,(A) being

_(=1y (@2r—n)'(n—r+1})
Tl T—r)T(—r41)
This is case (ii) of § 2.18, with p, = 1/4,, u; = —1/A,. Hence ®(z, )
has the residue :

~34,6(,)) [ 6(y.2,)f(v) dy,

where
6(z,),) = cosh™! }z F(r-+}, n—r+1, 4, —sinh?§z).
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Actually the solutions of (4.17.5), where g(x) is (4¢.18.1), are associated
Legendre functions with argument tanh jx. In fact

n—r \
0(z,2,) = (—1)r-r2n (‘2,%.,.)2 | P (tand ).
This is easily verified by showing that the two sides satisfy the same
differential equation, and are equal, with their first derivatives, at
z=0.
There are also poles of m,(A) at the points

—i\ = dn—}—r (r=0, L., [In—}),

the residues being
g _ (=1 @r—nt-)I(nti—r)

. D(—3—r)D(n—r)

This is case (iii) of §2.18, with u, = B,, p, = —B,. Hence ®(z, )
has the residue

lB</>fo¢y, y) dy,

where
é(x,A;) = —2cosh™+! Jxsinh jx F(r4 3§, n—r-+4%, 3, —sinh? §x).
It is easily verified as before that this is equal to
2 (n—r)r! oy
n—r’ n—2r—1
(—1) (@n—2r)! P (tanh ).

Another interesting particular case occurs when the coefficient of
coshz in (4.17.4) vanishes. The solutions are then expressible in
terms of associated Legendre functions with argument coth }u.

4.19. Another formula involving hypergeometric functions arises
as follows. Consider the equation

dY

(1+X —|—{c—|-(a+b+l) } ------ -|-abY—O (4.19.1)

dX?

satisfied by ¥ = F(a,b,c, —X). Putting

Y1 = Xtc(] +X)i(a+b+1—c)y
24
dX?

t See Forsyth, A Treatise on Differential Equations, (4th ed.), § 116.

we obtaint +2ZY, =0,
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where
_1=(=c)* 1—(c—a—b)* (1—c)*—(a—b)*+(c—a—b)*—1
Z = “axe T 4(14+X)? + 4X(1-+X) o
Putting y = XY}, X = %, this gives
d*y 27 -
(X2 hy = o. (4.19.2)
AX BX
2y 1.y 24 DA N
Now X2Z—}=A X11 (XLif A—q(x),
where A = }a—b)*—}(1—c)?% B = }—}c—a—b)?
A= —1(1—c)

Writing 1—4B = (1—2a)?, the relations between the parameters are
a = a+iVA+iJA—A4), b = at-ivA—i,JA—A), ¢ = 1-4-24VA,
Solutions of (4.19.2) which are L#(—oc0,0) and L?(0,c0) respectively
for I(A) > 0 are
$a() = Xio-b(14 X)Herv+1-0F(q, b, c, — X)
and
do(x) = Xie-i=-0(1 X )@01-Op(h 1 —c-+b, 1—a+b, —1/X).

The resulting expansion formula is of the type (3.1.8), but does not
seem to reduce to a very simple form.

If A = 0, the g(x) of this section is the same as that of §4.18. The
two sets of formulae are connected by the relationt

(142)?P F(2P,2P+1—Q, Q,z) = F{P, P-}}, @, 4z/(1-}2)*}.
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§ 4.17-18. Weyl (1); information regarding Py supplied by Miss K. Sarginson.
§ 4.19. Eckart (1).
t Forsyth, ibid. 241, 5 (i).
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THE NATURE OF THE SPECTRUM

5.1. The main object of this chapter is to determine how the
spectrum depends on the function g(x).

Take the interval to be (0,00), with no singularity except at
infinity. Then there are, broadly speaking, four different cases. If
q(x) - oo, there is purely a point-spectrum; the examples ¢(z) = 22,
g(x) = x of §4.2 and § 4.12 illustrate this. If g(x)— 0, there is a con-
tinuous spectrum in (0,c0), with a point-spectrum (which may be
null) in (—o0,0); the formulae of §4.10 and §4.17 are examples. If

g(x) > —oo, but so that f l[g(x)|~tdx is divergent, the spectrum
extends continuously from —oo to oo, as in the formula of §4.13.

Lastly, if g(x) > —o0, and j |g(x)|~} dx is convergent, there is a con-
tinuous spectrum in (—o0,0), and a point-spectrum (which may be
null) in (0,00). This is illustrated by § 4.14.

Actually in each case, except the first, we have to impose other
conditions, so that classification is by no means complete; but all
ordinary examples come under one or other of our theorems.

5.2. We begin with the second of the above cases, but actually
assume, instead of ¢(x) - 0, that q(x) is L(0, c0).
We require the following

LeEMMA 5.2. Let f(x) = 0, g(x) = 0, and let f(x) be continuous, g(x)
integrable, in 0 < «x << X. Let

f@) < O+ [fpgw dt (0 <z < X). (5.2.1)
0
fow
Then flx) < Ce? 0 <z < X). (6.2.2)

Let
y = [fg) dt,

4957 o
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Multiplying (5.2.1) by g(z),

dy
o < Cg(x)+-yg(),

- [ oot ~foou
d—da—:{ye gg }<Cg(x)e t{” .

Integrating over (0, z),

- fomat - fowa fowa
1 e

ye ° < Cf1 e’

and (5.2.2) follows.
5.3. Let ¢(x) = ¢(x, A) be the solution of

. _
Txﬁ{)\—q(x)}y =

Chap. V

with ¢(0) = sina, ¢'(0) = —cosa. By (1.7.1), with @ = 0, A = s,

2z
cos a4

. ins
d(x) = cossxsin o — s
8

+sl f sin{s(x—y)}q(y)p(y) dy.
0

Let s = o41t, ¢t >> 0, and write temporarily ¢,(z) =

sin sz
di(x) = e cossrsina—e* " cosa-t
s

(5.3.1)

d(x)e~*=. Then

n .81_ f e-te-Dsin{s(z—y))a(y)dy(y) dy.
0

Since |cossx| < e, |sinsz| < e, it follows that

[¢1()] l+ + f lq(y)$:(y)| dy.

Hence, by the lemma,

[$1(@)] < (1 +|—;—|) eXP{gllf lg(y)| dy}-
0

Since ¢(y) is L(0,00), it follows that ¢,(x) is bounded for all z,

s =Zp>0,¢2>0.
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Now consider real positive values of s. Then ¢(x) is bounded for
8 > p. Hence (5.3.1) gives

é(x) = cosszsin o — D 5T

cos o

+§ f sins(x—y)q(y)P(y) dy +0{ f lg(y)| dy}
0 z

= p(A)cos sx+-v(A)sinsz+o (1) (5.3.2)

(as x — o0), where

0

pO) = pls?) = sina— f sinsyq(y)$(y) dy,

0

CosS «

o) = =22 [ cossya)ély) dy.
0

Since the integrals converge uniformly, p and v are continuous func-
tions of s.

Similarly if 6(0) = cosa, 0’(0) = sina,

0(x) = py(A)cossz+vy(A)sinsz+-o (1), (5.3.3)
where

Col)-—l

() = cosa— f sinsyq(y)d(y) dy,

1
n) = 20y 1 f cossyq(y)by) d
0

Also, differentiating (5.3.1),

¢'(x) = —ssinsxsin a—cos sx cos a+ J. cos s(x—y)q(y)p(y) dy.
0

Applying this in a similar way, we obtain

¢’ (x) = —sp(A)sin sx+sv(A)cos sx+o(1).
Similarly
0'(x) = —s8u, (A)sin sz+-svy(A)cos sx+-o0(1).
Hence
W(¢,0) = W{u(A)cossz+v(A)sin sz, p(A)cos sx+v,(A)sin sx}+o (1)

= s{uA)ry(A)—p AW A} o0 (1).
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Since W(é,0) = 1 it follows that
EAA)—p Ap@) = (5.3.4)
Now consider complex values of s. For a fixed positive ¢, (5.3.1)
gives

$(@) =

—t:c) —_

x

e—ww—wq(y)qb(y dy +0( [ e =M g(y)$(y)| dz/}
0

T s
0

as ¢ - 0o0. Since ¢(y) = O(e), the last term is

o{ [ ao-=1at) )

0
z—8 x

= ofee ] 4] dy|+-0e [ 1ot ) dy) = o(e=).

Mo [eeigtypiy) dy = 0o« [lgtl dy) = o(e)

Hence P(x) = e~B={M(A)+o(1)}, (5.3.5)

where  M(\) = }sinat S5 2118 f ¢ig(y)b(y) (5.3.6)
0

Similarly O(x) = e~s={M,(A\)+o0(1)}, (5.3.7)

where M,@A) = %cosa—gg—:—%—g f evg(y)6(y) dy. (5.3.8)

0
Since 0(x)-+m(A)é(x) is L2(0,0), it follows that
m(A) = —M,(A)/ M (). (5.3.9)

As s tends to a real limit, the numerator and denominator in (5.3.9)
tend to 4u,(A)+39v,(A) and Ju(A)+3ev(d) respectively. By (5.3.4),
w(A) and »(A) cannot both vanish for any positive A. Hence

lmmQy — — O+

pA)+w@)

and the imaginary part of this is
_ B Q) — i APQ) 1

HEA)+12A) T A2Q) 2N}
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Hence in the notation of § 3.3
A

du
k(A) = ! W)—} . (5.3.10)

Hence the spectrum is continuous in (0,00). The contribution of
this part to (3.1.1) is

0

{f $(z, A) _}dqus (v, )/ (y) dy

-

2 (, $?) r 2
= j ¥ szﬂfqgg—) ds f $(y, %) f(y) dy.
0 0
Next let s — ¢t, where ¢ is real and positive. The integrals in
(5.3.6) and (5.3.8) converge uniformly, and hence M(A) and M (A)

tend to the real limits

[}
cosa . 1

—5; 1355 | ¢ "W$) dy,
0

©
sina

$cosa +~—+ e""q(y)ﬂ(y) dy.

Hence I(m) - 0 except possibly at the zeros of M(A). Since M(A) is
an analytic function of s, regular for I(s) > 0, the zeros are isolated
points. Hence there is a point-spectrum in —oo << A < 0, which is
bounded below, since M(A) ~ }sin« or cos«/2is as § - 0.

5.4. A transformation of the basic equation. In order to deal
with cases in which ¢(z) is large at infinity, we make a transformation
of the equation

d?y I
Y gy = 0 (5.4.1)

which will be used frequently in later sections. Suppose first that A
is real, q(x) << A, and let ¢'(x) and ¢"(x) be continuous. Let

f) = [Q—q@dt, @) = P—q@)y.
0
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d'r)_dndx_ 1 q¢'(x) 1
0~ dx 0 [{A ? "’}*dx 1 p—g@t ] Pg@

1 q(x)

d®n '@ 5 q%) 1
A— * RS N LY .
¢ [{ B {{A —q(x }+4{/\—q(w)}*}y]{/\~q(x)}*
Hence (5.4.1) transforms into
d*n 1 ¢'@) 5 q*x) _
A T T o L

This is an equation of the same form as (5.4.1); but in (5.4.2) the
coefficient of % in the last term is in general small when A is large,
or when ¢(x) is large and negative.

It follows that, if y = $(£), ¢ satisfies the integral equation

H(£) = $(0)cos £-+4'(0)sin é—

£
e ¢*()
f [4{/\ q(t)}2+16{A @ }3]¢(T)d”', (5.4.3)

where T = £(¢). This can be used as in previous sections to obtain
asymptotic formulae for ¢(¢).

If A is not real, or g(x) > A, £ is not real, and the above formulae
would involve integrals along complex paths. It is not necessary
to introduce such integrals, since we can obtain the corresponding
integral equation in terms of the real variable x directly, as follows.

Let ¢(0) = 0 (this involves at most a change in the A-origin),
and write

= p—gwp ] 0—e@) Gl - T4 G4
Then .
2,
P) = gt ] O g T | - 7

- [_1_ g 5 J@_] ,
4 {A—g(x)} * 16 {A—g(x)}?
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Let

x

1= [t g0y

0

- f sinfe(@) —£(0) 7| -0} e+

P()
q@p

+ f sin{g(e) —EO}A—q(O)ty dt
= L+1, ’
by (5.4.4) and (5.4.1). Now .
1= [sintee) 00— ] + f cos{E(@)— £} d
— o/ (OWsin (o) [eos(Ele)— £ —
— finte—g0)p—a0}a0) e

= —n/(0)A-¥sin &(x)-+n(x)—n(0)cos &(z)— L,
Hence n(@) = 7(0)cos &(x)+ 7' (O sin &)+ I,
i.e. n(x) satisfies the integral equation

7(x) = n(0)cos £(x)+n’(0)A~1 sin £(x) +
+ [ sin{é@)— @)} RO() dt,  (5.4.5)

1 ¢"0) 5 %)
- AN T . 5.4.6
4 {d—q@}! 16 fa—q(e)}! (G40
In these formulae, if I(A) > 0, we take 0 << argA < =, and, if e.g.
q(¢) varies from 0 to oo, arg{A—q(t)} varies from argA to =.

where R(t) =

5.5. The case g(x) - c0. We impose the following additional con-
ditions. Let g(x) tend steadily to infinity, so that ¢'(x) = 0; let

¢'(x) = O[{g®)}*] (0 <ec<3}), (5.5.1)
and let q"(x) be ultimately of one sign Then
x
%) 4 4@ .
J o] gtz

= 0[{q a)etlz, = O(1),



104 THE NATURE OF THE SPECTRUM Chap. V

and hence also

X
@) g [4@]F  3[¢*@ 4 _ o
2 @i * [{q(x)}']x.,J%X @y ™ 1)

Hence f |R(x)| dx (5.5.2)
0

is convergent, uniformly with respect to A over any region for which
[A—q(x)] =8 > 0 for 0 < x << o0.

5.6. THEOREM 5.6. If q(x) satisfies the conditions of § 5.5, the
spectrum is discrete.

Since bargd << argd—q(0)} < in,
the imaginary part of &(x) is positive if I(A) > 0; as x - o0, while
A remains bounded,

£@) ~ i [{a)} dr,

and so e~%® > oo,
We can now argue with (5.4.5), as we did previously with (5.3.1)
to obtain (5.3.5). Let 7,(x) = e¥@ny(z). Then (5.4.5) gives

(@) = 7(0)e¥® cos {(x)+7'(0)A~4e™@sin £(x)+

+ fe"ff(x)*f(‘” sin{£(x)—£()} R (), (t) dt.
0

Hence  |ny(@)| < |9(0)+]7" (O |+ [ | R@)m(®)] de,
so that by Lemma 5.2 ’

Imy(@)] < {Im(0)]+] 7' (O *|}exp{ IR(t)Idt}

°§8 Oty

< O+ O exp| [ ) dt}-

Hence

(e)] < {n(O) -+ O+ exp] [ R() defe-i
0
Applying this to (5.4.5), we conclude as before that, for any fixed A

in the upper half-plane, as x - 0

(@) ~ {%n(0)+%in'(0)ﬂ‘*+%icfoeif“’R(t)n(t) dt}r"f@’-
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Now let n(z) = {A—q(x)}¢(x,A). Then
14(0)

7(0) = Atsina, 7'(0) = —Ad OOSOL—-Z —erma
Hence [, )| < O(A*)exp[f [R()] dt: le”" il (5.6.1)
[A—g(x)]?
for all z and I(A) > 0; and for a fixed A, as x — o0
M(A)e—té@

¢m»~ﬁ%ﬁ%’ (5.6.2)

where
M) = %A*sina——lz{cosa.}_q( )sma}+

43 | SHORMA—()h00) .
My et
P—g@}’

where M, () is obtained from M(X) by replacing sina, —cosa«, $(2)
by cosa, sina, 0(t). Hence

m(A) = — M)/ M Q).

Now it clearly follows from (5.4.5) and Lemma 5.2 (as in §5.3)
that 5(z) = O{|e-#%®|} uniformly with respect to A as A approaches
any interval of the negative real axis. Hence A-tJ(}) is continuous
up to the negative real axis, and it is also obviously real there, £(¢)
and R(f) being purely imaginary.

If we do not choose ¢(0) = 0, the argument shows that

A—q(0)}tM ()

is real and continuous for A < ¢(0). But the whole argument could
be constructed equally well with an interval (X, oo) instead of (0, c0).
We should then obtain an alternative expression for M(A) involving
an integral over (X,00). Hence {A—gq(X)}~*M(A) is real and con-
tinuous for A < ¢(X); hence in fact e~¥7M(}) is real and continuous
along the whole real axis. Since M(A) is regular in the upper half-
plane, it follows from the principle of reflection that M(A) is an
integral function. Similarly £ (A) is an integral function. Hence
m(A) is meromorphic, and the result follows.

It will be shown later that the result holds if ¢(x) - co, without
4957 P

Similarly O(x,A) ~
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any other restrictions. This depends on the theory of the zeros of
eigenfunctions given at the end of this chapter.

5.7. THEOREM 5.7. Let q(x) < 0, ¢'(x) < 0, g(x) >
¢'(@) = O{lg)I} (0<c<$ (6.7.1)
and let q"(x) be ultimately of one sign.
Then if T!q(z)l—* dx (5.7.2)

18 divergent, there is a continuous spectrum over (—o0,o0).

The conditions imply the convergence of (5.5.2).
For A real and positive, (5.4.5) now gives

n(®) = n(0)cos £(x)-+7'(0A-¥sin é(2)+
+ [ sinfé(@)—£@O}ROO) de + o(1).
0

Hence
é(x,A) = A—g(x)}Hu(A)cos £(x)+v(A)sin é(x)+o (1)}, (5.7.3)
where
p(A) = Adsina— f sin £(t) R(A—q(6) (2, ) dt, (5.7.4)
0
V) = _q"‘l);in"‘_‘m% f cos £(6) R(PA—q(t)} (¢, A) dt.

(5.7.5)
Similarly, if 6(x, A) is the solution of (5.4.1) such that 6(0,A) = cos «,
6'(0,A) = sin «, then

6(x,2) = A—g@)}H{pmA)cos £@)+r,Nsin £@)+o (L)}, (5.7.6)

where p, and v, are obtained from p and v by replacing sin «, —cos a,
and ¢ by cosa, sina, and 6.

The argument also shows that the integrals in (5.7.4), etc., con-

verge uniformly with respect to A, and hence that p(A), ete., are

continuous functions of A.
Again, differentiating (5.4.5),

2) = (A\—q(@)} [y’ (0)cos é(z)—n(0)sin £()+

+ [ cos{g@)—£@) RO() dt].
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Applying this in a similar way, we obtain

d .

- [A—a@}(@ V] ~ A—q@)}p(Ncos () —p(Nsin §@)},

whence by (5.7.3) and (5.7.1)
¢'(z,A) ~ {A—q(x)}{r(A)cos {(x) —pu(A)sin £(x)}. (5.7.7)

Similarly
0'(z, ) ~ {A—q(@)}{ry(A)cos é(x) —p, (A)sin £(x)}. (5.7.8)
Hence lim W($,6) = Qs (\)— (WM.
Since W(¢,0) = 1, it follows that
HO ) = A() = L. (5.7.9)

Hence p(A) and »(A) do not both vanish for any value of A.

The argument requires modification if A < 0; but then we can
choose X so that A—q(x) > 0 for z > X, and we can apply the whole
argument to the interval (X,o0) instead of to (0,00). The same
conclusion then follows.

Now let A = u+1v, where v > 0. Taking x, so that u—q(t) > v
in x > x,, we have

E(x) = f {utiv—q()}t dt = &+ f {u+tv—q(e)}t dt
0 o

it f fu—q(O)}t dt + biv f fu—q(O)~ dt +0{v2 f lq(®)] dt}.
Hence as 2 —°> (o) ; “
1) ~ o [ {u—q(t)}* at,
and so e~#%® ig large for large w.n Hence (5.4.5) gives
) = 2oy (0) +idby O) i f et R @t +o(v)
Proceeding as before, we obtain '

n(x) ~ ée“if(x){n(0)+i/\-*17’(0)—|—ife"f(‘)R(t)n(t) dt;.

(1]

Hence Bz, A) ~ M(A){A_q(x)}—}e—if(x),
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where .
M) = Brtsin a_%,-{i.(i);:na +9%§_g} N
+34 Teig(oR(t){/\—q(t)}%(t, N dt,
0
and O(x,A) ~ Ml()\){/\—q(x)}—ie—if(z)’

where M;() is formed from M(X) by the same interchange as before.
According to the general theory of the solutions of (5.4.1), there
is, for v > 0, a solution

P(x,A) = (2, A)+m(A)d(x,A)
which is L2(0,00). It follows from the above formulae that

_ M@
Also, as v—> 0, M(A) - du(u)+Lw(u) and M (A) - Sp,(u)+ vy (u),
since it is easily seen that the integrals involved converge uniformly
with respect to A. Hence

lim m(\) = — H‘l(u)’*"“’l(u) _ ‘{lfl(u)+w1(u)}{/‘(u)'—w(u)}

o pw)Fww) p(u)v3(w) ’
. _ b)) —pmp) 1
11‘1’1‘1){ Im(QA)} = “lz(u)_,‘_vz(u) ~ p2(w) ()

Since k(A) is the integral of this over (0,A), the result stated follows.

5.8. TurorREM 5.8. If the conditions of Theorem 5.7 are satisfied
except that (5.7.2) 18 convergent, there is a continuous spectrum in
(—o0, 0) and a point-spectrum in (0, c0).

As - 00

£z, \)—€(, 0) = [ [—q(e) —{—q(O)}] at
0

B f Adt
) B0 {—ap

N Adt
J =g g0y

say. Hence I¢(z,A) is bounded, and so cosé(z) and sin(z) are

=x() (5.8.1)
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bounded, whether A is real or complex. It is then clear that the
argument of § 4 holds, in this case, for all values of A, real or complex.
Thus (5.7.8), (5.7.6), (5.7.7), and (5.7.8) hold for all values of A. In
particular, all solutions of (5.4.1) are L?(0,0), and we are in Weyl’s
‘limit-circle’ case, in which the expansion formula involves an
arbitrary parameter.

Further u(A), v(A), (), and v;(A) are integral functions of A. For
consider e.g. (5.7.4). Here {A—q(t)}! is an analytic function of A,
regular except on the negative real axis; similarly for £(¢,A) and R(¢),
and the integral in (5.7.4) converges uniformly with respect to A in
any finite region, as the argument clearly shows. Hence u(A) is an
analytic function, regular except possibly on the negative real axis.
However, we could apply the argument leading to (5.7.3) equally
well with any interval (X, c0), where X > 0, instead of the interval
(0,00). Hence we must also have

= A—q(X)}(X,A)— f sin £(t) R()A—q(t)}4 (¢, A) d
b'e
Hence p(A) is regular except possibly on the real axis between —oo
and ¢(X); and so in fact it is an integral function. Similarly so are
v(N), pa(X), and v ().

Now consider the solution 6(x,A)+1(A)d(x,A) of (5.4.1) which

satisfies the boundary condition

{B(0)+Tp(b)}cos B+ {0 () + 14 (b)}sin B = 0
at « = b. This gives

10) — — 86 NeotB1-6(b, )

T 46, N0t BB, N

As cot B varies, I(A) describes a circle. According to Weyl’s theory,
this circle tends to a limit-circle as b - co. Now by (5.7.3) and (5.7.7)
the denominator in (5.8.2) is of the form

PA—g(®)}Hp(M)cos £(b)+v(Nsin £(6)+o (1)}cot B+
+{A—q(®)}{v(A)cos £(b)—pA)sin £(b)+o (1)},
or, since {A—q(b)}t = {—q(®)}H{1+o0 (1)},
of the form
{A—qO)R[{—q(d)}Hu(A)cos £(b)+v(A)sin £(b)+o (1)}cot B+
+v(A)cos £(b)—p(A)sin £(b)+o(1)].

(5.8.2)
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Putting {—g(b)}~¥cot B = coty, (5.8.2) takes the form

_ 1aN)eos{E(b) -+ (Nsinféb)+7}+o (1)
p(A)cos{é(b)+y}+vy(A)sin{é(b) +y}+o0 (1)

Putting y = c—£(b,0), keeping ¢ fixed and making b — co, this

tends to

10N =

) — 1 0SA) e} sinfx ) o}
p(A)cos{x(A)+c}+v(A)sin{y(A) 4-c}

As ¢ varies this describes a circle, which is therefore Weyl’s limit-

circle.

For A > 0, x(A) is real, and Im(A) > 0 as A tends to a real value,
unless the above denominator vanishes. Hence the part of the
spectrum on the positive real axis consists of the zeros of the deno-
minator, which are isolated points since it is an analytic function.

On the other hand, if A < 0, ¥ = x,-+tx,, Where y, > 0; for if
q(h) = A, (5.8.1) gives

h
x: = [ {a(@)—Xt da.

Hence, using (5.7.9), as A tends to a real negative value, —I{m()}
tends to

o AsinhiZe(}

| (A)eos{x(A)+c}+-v(A)sin{x(A)+-c}*
which is finite and positive. Hence the spectrum is continuous from
—o0 to 0.

5.9. The zeros of eigenfunctions. This theory depends on the
following fundamental theorem, due to Sturm.

Let u be a solution of

d>u
d~x2+g(x)u = O’ (5.9.1)
. d%
and v a solution of c—im—z—{—h(x)v =0, (5.9.2)

where g(x) << h(x) throughout the interval (a,b). Then between any two
consecutive zeros of u there is at least one zero of v.

Multiplying by v, u respectively, and subtracting,
w'v—uv” = {h(x)—g(x)juv. (5.9.3)
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Let z,, z, be consecutive zeros of ». Integrating from z, to z,,
T3
[wv—w' [ = f {h(x)—g(x)juv da. (5.9.4)

Suppose that » has no zero in (z,,z,). We may suppose without
loss of generality that w > 0, v > 0 in (x,%,). Then the right-hand
side is positive (assuming that 4 and v do not vanish identically).
Now the left-hand side is

w' (2)v(25) —u’ ()0(,)
and

u'(z,) > 0, u'(x,) < O, v(x,) =0, v(z,) = 0.
Hence the left-hand side is < 0, giving a contradiction.
5.10. We deduce the following theorem.
Let w be the solution of (5.9.1) such that
u(a) = sina, %’(a) = —cosa,
and v the solution of (5.9.2) such that
v(a) = sinq, v'(a) = —cosa.

Then if w(x) has m zeros in the interval a < x < b, v(x) has at least
m zeros in the same interval, and the vth zero of v(x) is less than the
vth zero of u(x).

Suppose first that sina # 0, say sina > 0, so that the left-hand
end-point is not a zero of either function.

In view of the previous theorem, it is only necessary to prove that
v(z) has at least one zero in the interval (@,x,), where x; is the
smallest zero of u. Now on integrating (5.9.3) from a to x,, we obtain

W@ olar) = [ (i) —g@uo de.

If v(z) has no zero in (@, z,), the right-hand side is positive; but
u'(z,) < O, v(z,) > 0.

Hence we obtain a contradiction.
The result follows similarly if sina = 0.
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5.11. Now consider the eigenfunctions of Chapter I, defined as
the solutions of

%-{-{z\—-g(m)}y =0, (5.11.1)
y(@)cos a4ty (a)sina = 0, (5.11.2)
y(b)cos B+y'(b)sin B = 0. (5.11.3)

Consider first the solutions of (5.11.1) and (5.11.2), and suppose
that sina £ 0. Then y(a) % 0. The number of zeros of y(x) in (a, b)
is a non-decreasing function of A, by the above theorem. Let
lg(x)] < ¢ in (a,b). First compare (5.11.1) with

@ yl+()\+c)y1 = 0. (5.11.4)

The solution of this satisfying (5.11.2) is

cot o

¥, = cosh{(—A—c)i(x—a)}— smh{( —A—c)i(z—a)}.

This has no zeros if A is negative and large enough. Hence the solu-
tion of (5.11.1) has no zeros in (a, b) if A is negative and large enough.

Similarly, by considering the solution of

2
%%“l‘ A—c)y, =0
with A large and positive, it follows that the number of zeros of
(5.11.1) in (a, b) tends to infinity with A.

Also, by the above theorems, a zero of y travels steadily to the
left as A increases. Hence there is an increasing sequence of numbers
Hos M1 Such that y(b) = 0 for A = p,, and y(r) has just m zeros
ina<x<b.

If sin B = 0, the p,, are the eigenvalues.

Otherwise, we have

d w v u v w” v w2 ov'?
dm{u2(—“;;—)} = Zuu (;*5)“2(;“‘5)—“2(;?‘?)
—~ u(%—%){%—u(%%)} +u?{h(z)—g(x)}

+u*{h(x)—g(x)} > 0.

Hence u?(u'/u—1v’[v) is steadily increasing.
Suppose that 4 and » have the same number of zeros in (a,b).
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The zero z, next before ¢ is a zero of « and not of v, for between a
and z, lie at least v, and so exactly v, zeros of ». Hence

uz(b){u'(b) v'(b)} - uz(x,,){u,(x") ”'(xy)} —o, u'(b) _ v'(b)

u(d)  v(b) wx,) o, u(b)

wd) ~ o)’

It follows that y'(b)/y(b) is a steadily decreasing function of A in each
interval (w,,, ttusq); and it must decrease from oo to —oo, since
y(b) = 0 at each end, and y'(b) = 0. Hence there is just one value
of X in the interval such that

AQ) cot B.

yob)
Hence there is an increasing sequence of eigenvalues A, Ay,... such that
the eigenfunction associated with A, has just m zeros in a << x << b.

5.12. We now pass to the case in which the interval is (0, o).

Let ¢(z) - c0 as @ - 00. We shall show that this is quite similar
to the Sturm-Liouville case; there are discrete eigenvalues, and the
etgenfunction associated with A, has n zeros.

We consider the solution ¥ = y(z, A) of the equation

%+{A~q(x)}y =0
such that y(0) and ¢’(0) have given values. Since g(x)— oo,
q(x)—A > 0 for z > x;,, say. Suppose that for some x; > x,
y(x,A) > 0, y'(x1,A) > 0.
Then y"(x,A) > 0 (x = x;), ¥'(x, A) increases steadily, and y(x,A) > 0.
If y(xy,A) > 0, y'(x,A) < 0

there are two possibilities. If y(x,A) remains positive for x > z,, then
y"(x,A) remains positive, y'(x, ) increases steadily, and so tends to
a limit (finite or infinite). This limit cannot be negative, or y(x)
~would tend to —oo; if it is positive, y(x) - co. If y'(x) - 0, then

y'(x,A) < 0 for x > x;. Hence y(z) is steadily decreasing, and so
tends to a limit. Also

[ )Ny do = [y (@) do

= y' () —y (%) < —¥y'(x,).
4957 Q
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Hence {g(x)—A}y(x) is L(x,,0), and a fortiori y(x) is L(x,,0). Hence
y(x) > 0. Hence also y(z) is L*(z,, 0).

On the other hand, if y(z) changes sign, it can do so at most once,
and then tends to —oo, by the previous argument.

Similar arguments hold if y(z;,A) < 0. Summing up, y(z,A) has
at most one zero for x > z,, and either y(z,A) - 400, or y(z,A) - 0,
y'(x,A) — 0, and y(z,A) is L*(x,, 0).

It follows that each y(z,A) has a finite number of zeros in (0, ),
say n(A). By the theorem of § 5.10, n(A) is a non-decreasing function
of A. The argument of § 5.11 shows that n(A) = 0 if A is negative and
large enough, and that n(A) - 00 as A - co.

Since n(A) changes by at least 1 at a discontinuity, it has only
a finite number of discontinuities in any finite interval. Hence they
are discrete points. We shall show that they are the eigenvalues of
the differential equation.

In addition to the above results, we can show that, if y(x,A) - 0,
and p > A, then y(z,n) has a zero greater than the greatest zero of
y(x,A). Suppose e.g. that y(z,A) > 0, y'(z,A) < 0 for x large cnough.
Suppose that y(z,pu) > 0 for « > a, where a is the greatest zero of
y(x,A). If y(x,p) — 0, (5.9.4) gives

(=) [y, Ny(@, 1) dz = —y(a, p)y'(@, ),

which gives a contradiction as before. Otherwise, if y(x, n) > 0 for
large x, then y'(x, u) > 0 for large z. Hence

Y, w)y' (@, A)—y(z, \y'(x, n) < 0

for large x, and we obtain a contradiction again.

In particular it follows that to each interval where n(A) = constant
corresponds at most one value of A for which y(x,2) is L?, and such
a value must be the right-hand end-point of the interval.

Now consider a decreasing sequence A,, A,,... tending to a limit A.
Since n(A,) = n(A40) for p large enough, we can suppose that

n(y) = 1) = ... = k.

Let the zeros of y(z,),) bea{?,..., af). Then it follows from the above
argument about the interlacing of zeros that for every m < k

ad) < al® < .. <ap.
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Let ¢ be a constant such that g(x)—A, > 0 forxz > c¢. Thena{,..., a{?,
remain less than ¢ for all p, since y(x,A,) has at most one zero
greater than c. Hence

lima® =a, <c

p—>0
exists for m =1, 2,..., k—1, and the a, are zeros of y(x,A). They
are all different, since if two coincided we should have y(a,,,A) = 0,
y'(a,,A) = 0, which is impossible. Conversely, any zero of y(x, ) is
a limit-point of the a{®. Hence y(x,A) has k or k— 1 zeros according
to whether a{? tends to a finite limit or to infinity.

Now clearly y'(af?,A,) has the same sign for all p, say +. If

a{P’ - oo, then afP) > ¢ for sufficiently large p. Since none of the
y(x,A,) are L% we must have

Y@,A) >0,  y@,A) <0 (c<z<ap)
Making p — oo, it follows that
Y@ >0, y@N)<0 (z>o)

Hence y(z, ) is L2
On the other hand, if a{?’ tends to a finite limit a,, then

Y@d) >0,  y@A) >0 (x> a).

Hence y(x,A) is not L2,

Summing up, either n(A) = n(A+0) or n(A) = n(A40)—1. In the
latter case, y(x,A) is L2, in the former case not.

If we argue similarly with an increasing sequence A, A,,..., the
a®) are decreasing, and therefore all tend to finite limits. Hence
n(A) = n(A—0).

It follows that to every n corresponds an interval of values of A
in which n(A) = n, and that the right-hand end-point of each such
interval is such that y(x,A) is L2

Now let A’ and A" be interior points of an interval where n(A) is
constant, and let x, be greater than the greatest zero of y(x,A) or
y'(x,A) for X’ <A <<A". Then y(z,A) is positive increasing (or
negative decreasing) for x > x5, ' <A << A", Let m be the lower
bound of |y(z,,A)| for A’ << A < A, so that m > 0. Then

N =m @0, X <AL
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We can now take y(z, ) to be the function ¢(x,A) of Chapter III.
By (3.4.1)

Ap
x(@, A")— x (@, X') = f bz, u) dk(w)
P

A-
>m f dle(w)
AI

= m{k(A"—0)—k(X"-0)}.
But y(«,2) is L? for every A. Hence
kA" +0) = k(A"—0).

Hence k(}) is constant in the open intervals where n(A) is constant.
Let the points of discontinuity be A, the saltus at A,, k,. Then by

(3.4.1)
X@X) = 3 ki)
Kk<A<A
By (3.4.3) nW) = 3k f By, 1)

and by (3.6.3)
fl@) = 1 S kad@ ) [ $ M) dy.
" 0

Hence the expansion is a series.
Also, comparing (3.5.1) with (3.4.4)-(3.4.6), we have

plata)—p(—s) = [ $(o, ) dgs(u).

Hence in the present case p(x) is constant except at the points A,,.
Hence by (3.6.2) ®(x,A) is regular except for simple poles at the

points A,,.
It follows also that m() is meromorphic; for if f(x) = 0forx > X,

(2.3.2) gives
T X
O,2) = 6(z,)) [ $y, f () dy +4(@, ) [ 6y, Nf () dy +

mA)$(z, A)j¢ v, Nf(9) dy,

and the result follows.
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5.13. The interval (—oo,o). Theorems on the nature of the
spectrum when the interval is —o0 < # << o0 can be deduced from
those already obtained for the interval (0, c0).

Let ¢(z) > o0 as x > —o0 and as @ > 0. Then both m,(A) and
my(A) are meromorphic. Hence the functions

1 ) mAmA) 5 g9

my(A)—mg(A)”  my(A)—my(R)” my(A)—my(R)
occurring in the (—oo,0) formula are also meromorphic, so that the
corresponding expansion is a series and the spectrum is discrete.
The argument of § 5.12 also extends without difficulty to this case.
Next let g¢(x) >0 as z->o0, and q(x) > —o0 as x—> —oo,
f lq(x)|~t dx being divergent. Then I{in,(A)} tends to a finite non-

zero limit along the whole real axis, while I{m,(A)} tends to zero in
general but to infinity at certain discrete points. Hence the imaginary
parts of the functions (5.13.1) tend to finite limits, which can vanish
at most at discrete points. The spectrum therefore extends con-
tinuously from —oo to co. In fact it is clear that, if ¢(x) — oo at one
end of the interval (—o0, c0), the result is the same as if we had the
other half-interval only with a given boundary condition at 2 = 0.
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V VI
A SPECIAL CONVERGENCE THEOREM

6.1. I~ Chapter III it was proved that the general expansion formula
represents an ‘arbitrary’ function f(z), provided that f(x) is twice
differentiable, that f(z) and f"(x)—q(x)f(x) are L%0,00), and that
the ‘boundary condition at infinity’ (2 7.2) is satisfied. In this and
later chapters we shall show that, by imposing further conditions on
g(z), we can relax those bearing on f(z); and in fact it will be shown
that in certain cases the expansion converges to f(x) if f(x) satisfies
conditions similar to those for the convergence of an ordinary Fourier
series.
In this chapter it will be assumed that the integral

f lg(x)| da (6.1.1)
[}

is convergent. This is perhaps not the most interesting case, but it
is the simplest, and the analysis suggests the method which will be
used later in considering cases in which ¢(x) - 0. The advantage
of this and other special assumptions is that they enable us to prove
asymptotic formulae for the functions ¢(x,A) and $(x,A). In the
general case these formulae are not known, and we have to rely on
a direct discussion of the function ®(x, A).

6.2. What we require primarily is a solution of the equation
d2
d_xy2+{)\—q(x)}y =0 (6.2.1)

which is small when I(}) is large and positive. Consider the integral
equation

T
@) = ot oo [[eevy)x) dy + 5 f -2y x(y) dy,
0 (6.2.2)
in which A = s2. On differentiating this twice, it is at once verified
(formally) that y = x(x) satisfies (6.2.1). Now a solution of (6.2.2) can
be obtained as follows.
Let (@) = e (6.2.3)
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and, forn > 1, z
Xn41(®) = €¥% 4 — 5 f e#==Vq(y)x,(y) dy +
0

1

+5is f - (y)xa(y) dy.  (6.2.4)

8

X2(®)—x1(%) = %;{ f q(y) dy + f e2is - (y) dy}-

0
Let s = o+t (¢t > 0), and let J denote the value of the integral

(6.1.1). Then L
[x2(®)—xa(2)| < 2|s([I (6.2.5)

Next z
xa(®)—xo(x) = 51* f e =g(y){xs(y)—x:1(y)} dy +

] -

-+

[

)

f =2 (y}xa(y)—x2(¥)} dy,

whence by (6.2.3)
_ir x <o}
| xa(%)—xa(2) | < %s—l'—‘;{ f lq(y)| dy + f 2=V q(y)| dy}
0 xz

< (éﬂ%w; (6.2.6)

and so on generally. It follows that, if [s| > }J, the series
2 {X7L+1(x)_‘Xn(x)}
n=1

is convergent, i.e. that y,(x) tends to a limit, say y(x).
For every »

an(x)l < IXl(x)l+lX2(x)———X1(x)l++IXIL(‘E)—X7l—l(x)]
J
—tx
< eyt
e—tr
T I=4J]lsl’
and x(x) satisfies the same inequality. It follows by ‘dominated

convergence’ that we can make n — oo under the integral sign in
(6.2.4). Hence y(x) satisfies (6.2.2), and so also (6.2.1).

(6.2.7)



120 A SPECIAL CONVERGENCE THEOREM Chap. VI

For a fixed s, or s in a bounded part of the region ¢ > 0, [s| > 4J,
(6.2.2) now gives

X 1:.sau00 )
x@%=¢”+%gfrmmwﬂwdy~

0
— e_if —1i8 fis_f 13(y —2) .
%5 emmmw+%fe q(y)x(y) dy
The last two integrals tend to 0 as x — co0; hence
x(x) = ei*={KA)+o (1)}, (6.2.8)
where K@) = 1-{-5—1,g f e~"vq(y)x(y) dy. (6.2.9)
°

6.3. Let (x,A) = 0(x,A)+m(A)$(x,A) denote as usual the solution

belonging to L?(0,c0). Then
Pz, ) = K;(N)x(x,A)+ K (A)(x, ).
Now x(,A) is L%0,00), but ¢(x,A) is not, by (5.3.5), at any rate
if |A| is large enough ; for (5.3.6) gives
M@A) ~ }sina  (sina # 0),
cosa .
~ e (sino = 0).
Hence K,(A) = 0, i.e.
Pz, A) = K (A)x(z, A).

As in §5.3, the asymptotic formulae (5.3.5) and (6.2.8) can be
differentiated, i.e. we can apply similar arguments to the differen-
tiated functions, and obtain (as x —> o0)

#' () ~ —isM(N)e-is,

x' () ~ 1sK(A)ets=,
Hence

W(d, x) ~ MQA)isKA)+isMA)K(A) = 2isK(A)M ().
Hence W(, ) ~ 2tsK(A)M(A)K;(A).
But W(¢,¢) = 1. Hence
2tsKA)M(A)K;(A) = 1.
x(@, A)

Hence P(x,A) = 53K MQ)
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6.4. THEOREM 6.4. Let g(x) be L(0,00), and f(x) L*0, c0) and also
L(0,00). Then the eigenfunction expansion is

d(x, A)
f ) L) f $(y, N ) dy +

+ 3 @A) [ A1) dy,
[}

where pu(A) and v(}) are defined in § 5.3, and, in the sum, r,(n = 1, 2,...)
runs through the residues of m(X) at its poles on the negative real axis,
and wr, 18 the salius of k(X) at A = 0. The expansion converges under
the same conditions as an ordinary Fourier series; e.g. if f is of bounded
variation in the neighbourhood of x, its value is

HSf(x+0)+f(z—0)}.
Let

O(z,2) = (@A) [ $u @) dy +$(2) [ $(y.)f) dy
0 0

=¢(x,A>(xf g f8)+¢(x,A>(Ta /)

z+3
=0, +P, 404D,
R+tte
Consider f D(x, A) dA.
—R+ie
This has the same value whether it is taken along the straight line,
or round the semicircle above it. Suppose, for example, that sin« £ 0
in the above formulae. Then for |s| > J
2e~tv Ae
WS g < T
Also d(x,A) = O(e).

elx B o108
Hence D,(x,A) = O ol f e~ f(y)| dy} = O(I_ST)
z+8

The integral of this round the semicircle tends to 0 as B — oo, for
any positive §. A similar argument clearly applies to @,.

Now consider ®@,. For z fixed, or in a finite interval,
J ) Aet=

<

) S e

@) —et| < e
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Also  KQX)=1+0(s|),  MQ) = }sina+0(s|).

) . e'LGZ‘ -];'
Hence @, ) = Z"’“ssina{“o(] I)}
Also d(x,A) = cossxsma(l-{—Ol |)
by (1.7.3). Hence
ise ' isr z+8 z+8
(Da(x’)\) - ?__—2*_§ - f ewuf ./)dy +0{I Iz f e-—lyf(y) d?/}
y 1 z+8
The last term is O{I—X_If [ fa)| dy},

and the integral of this round the semicircle is

x+8
OU 1/@)] dy},

&
which can be made as small as we please, by choice of 3. The term
involving €7 also gives a zero limit. The other term is the same as
in the case of an ordinary Fourier series; and similarly for ®@,.
Altogether it follows that, e.g. in the bounded variation case,
Rtie

lim f @(x, A) dX - Yin{f(x+0)+f(x—0)}.
R—w©

—R+ie
This is true uniformly for 0 << e < 1.

Since f(x) is L?(0,0), the analysis of § 3.4 applies, so that

R+ie
lim I{_l f Oz, ) d)\} f (@, ) dg, (M),

-0 m
—R+te
where

6@ = [ xw. V@) dy,  x.) = f $(y, ) de(r)
0 K

A
By (5.3.10) x(y,A) = f u;{#"sff’;,, 2u)}

taking « > 0. Since ¢(y,u) is bounded for 0 <<k < u < A, y - o,
it follows that

=]

A
_ du
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Hence, if p > 0,
R

qum a0 = [ sl d“qus(y, ) dy.

P
In the interval —R << A << —p’ (p" > 0), g,(A) is constant except
for a finite number of discontinuities at the poles of m(A). Hence

(e dnm == S rder) | o150,
—R 0

-—R<hn<—P'

each ¢(y, A,) being L?0,00), as in §2.5. Finally

lim f B, A) dg,(A) == Ry(z,0),
PP

where R, is the saltus of g,(A) at A = 0. It easily follows from the
analysis of § 3.4 that

Ry = mry [ $(y, 0)f(y) dy,
0

where 7, is defined above. This completes the proof.

The form of the result makes it seem possible that the condition
that f(x) is L? may be unnecessary; it has been introduced here so
that previous theorems which have been proved with this condition
may be used.

REFERENCE
Stone (1).



VII
THE DISTRIBUTION OF THE EIGENVALUES

7.1. In this chapter we suppose that g(x) — oo, so that the differential
equation

d
Y gy = 0 (7.1.1)

has discrete eigenvalues A, A,.... We then ask how the distribution
of these eigenvalues is determined by the function ¢(x).

If A =2, then y = ,(x) has just »n real zeros (§5.12). On the
other hand, by comparing the distribution of the zeros of (7.1.1)
with that of the zeros of known functions, we can obtain approximate
formulae for the number of zeros in terms of A,. Approximate rela-
tions between » and A, are thus obtained.

To carry out the analysis considerable restrictions have to be
imposed on the function g(x). We begin by assuming that ¢'(x) and
q"(x) exist, and that ¢'(z) > 0, ¢"(x) > 0 for x > 0. It is also con-
venient to assume that ¢(0) = 0. This is no restriction, since it
merely involves a choice of the A-origin.

Let p = p(}) be defined by the equation ¢(p) = A, and let

¢ = ¢\ ) f P—qHdt (0 <z < p). (7.1.2)
Let ¢(¢) denote (temporarily) a twice-differentiable function of ¢,
and let
Y = Y(z) = {A—q(@)}-H(6). (7.1.3)
Y' @)y, 1 4@
then Y= 50° Tir—gw’
I_’_”_Z?_:{¢”(§) $(8) }5,2 ¢(§)§,, 1g@ 1 g%
Y Y2 4 ¢%é) ¢(§ 4 A—q(x) 4 {d—q@)}?
Hence
@ FO KOO L0 5 0%
4’(5)f 4-4\"(5){%t A— !I(w)}+4/\—¢1(x) 16 {A—q(2)}®
— O—aen® ) 1 ¢'(2) q'*(x)
P10 6+ 3+ 16 g (714
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In particular, if ¢(¢£) = cosé, then ¢"(¢) = —$(€), and Y satisfies
the differential equation

sz 1
dx? {A—() 4

7.2. THEOREM 7.2. If q(x) satisfies the above conditions,

q"(x) 5 ¢?%=x)
e 16{)\ e }2}1’ 0. (7.1.5)

n> = f{/\ —q(a)jt dx —3, (7.2.1)

where p,, = p(A,).

For 0 < & < p, the coeflicient of y in (7.1.1) is greater than that
of Y in (7.1.5). Then by the theorem of § 5.9, between any two zeros
of Y there is at least one zero of y. Hence if Y has [ zeros in (0, p,,),
then n > [—1.

The zeros of Y, i.e. of cos¢, are at the points & = (m-+3)w, for
values of m for which this lies between 0 and

Dn
[ g a

Hence (I—Y)m f Pa—g@OM dt < ((+3)m
and the theorem follows.
Since g(x) is convex downwards, ¢(3p,) < iA,, and
iDn

n> 2 [ g de —3
[}

> inn(afw—%.

Hence A, < 87%(n+3)%/pe. (7.2.2)

In particular, A, = o(n?).

Actually we can prove this if g(x) is any function which is twice
differentiable and tends to infinity; for compare the solution of
(7.1.1) with

¥, = {A—1—¢q)}? cos[ f{/\m 1—q@)p dt] .
0

The coefficient of y in (7.1.1) exceeds that of Y}, in the differential
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equation for Y}, over any finite interval (0, X), if X is fixed and A is
large enough. Hence

X
n > %J‘{An—l—q(w)}* dz —}
0

> AXM.
Since X may be arbitrarily large, the result follows.

In the Sturm-Liouville (finite interval) case we have of course
A, ~ An?.

In the case in which the interval is (—o0,00), and ¢(z) is an even
function, and ¢’(0) = 0, there is a slightly more precise result, which
will be of use later. In this case, if n is even, i, (z) is an even func-
tion, with {n positive zeros and in negative zeros. Let

xT
V(@) = o ON— o) eos| [ 3, —go)t at].
0
Then Y(0) = ¢,(0), Y'(0) = 0 = ,(0). Hence, by the theorem of
§5.10, ¢, (x) has at least as many zeros in (0,p,) as Y(z) has. If
Y (x) has [ zeros in this interval, then

Pn
[u—a@)tdt < (+Hm < (nt-Hm.
0

Dn
Hence n > gf{hn—q(t)}* dt —1. (7.2.3)
™

0
If » is odd, ¢, () has }n—3 positive zeros. Let

Y(2) = ¢;.(0>A;*{An—q<x)}-*sin[ [ =gt dt].
0

Then Y(0) = 0 = 4,(0), Y’(0) = 4,(0). Hence, if Y(x) has [ zeros
for 0 <z < p,,

Dn
[Pu—a} dt < (417 < (dn+B)m,
and (7.2.3) follows again.

7.3. In the problem of the upper bound of z, we have to assume
rather more about gq(z).

THEOREM 7.3. Let q(x) satisfy the above conditions, and also
¢" () = o[{¢'(®)}!]. (7.3.1)
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1 DPn
Then net f A —g(@) da. (7.3.2)
w
0

We observe that, if ¢’(x) is non-decreasing and
q¢"(x) = O[{g'(x)}] 1<y<?2), (7.3.3)
then z
¢'(@) = [¢"(t) dt +4'(0)
(V]

= 0[ f {g@) dt]

= ol @y IEC ]

= O[{¢'(@)}r"q(=)],
{{ @) = Ofglx)},  ¢'@@) = Ofg@*";  (7.3.4)
and similarly with o instead of O. Thus (7.3.1) gives

¢'(x) = o[{g(@)]. (7.3.5)
All such conditions imply a certain restriction on the regularity of
the growth of ¢g(x), but not on its rate of growth.
Now let Y] be the function obtained by replacing A by A4-p (1 > 0)
in Y, with ¢(§) = cosé. Then the coefficient of ¥}, in the differential
equation for ¥, corresponding to (7.1.5), exceeds A—gq(x) if

) ¢ (@)
G < p. (7.3.6)
160+ p—g@)) " 4At+u—q@)}
This is true for 0 < « < p,, if
59°%(pn) | 9"(Pn)
16p2 4

Let u = {¢'(p,)}!. Using (7.3.1), this is seen to be true if p, is large
enough.

If the number of zeros of Y, in the interval (0,p,) is m, then
m > n—1, and

(m—dm < [Qutu—g@ de < (.

<p

Pn
Hence n < EJ\{A"—*—[L—Q(.’IJ)}* dx +3.
o
0
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To prove (7.3.2) we now require

Dn Dn

[t n—g@li—u—g@] e = o | [Pu—glo)t s

0 : 0

(7.3.7)
Now

Pt g@P = —g@t = 5y <

for g(x) << A,. Also, since g(x) is convex downwards, ¢(3p,) <<-3A,.
Hence

Dn $pn
f Pu—g@t de > [ (0) do = Lp, (30
0

Hence (7.3.7) is true if u = o(A,), which is true by (7.3.4). This
proves the theorem.
Suppose, for example, that ¢(x) = 2% (k£ > 0). Then p, = AY/*, and
Al/k

N —q@)t de = [ (\,—a*)td
f{ q(z)}t dw of( ak) da

0

1
= lA,iﬁllk f (1—12)delk-1 gy

') I1(1/70) A+1k,

T EPEF1/k) "
Hence it follows from the theorem that

7kI'(3+1, l/L) ; kl(he+2)
~ . 7.3.8
v~ 738
This is easily verified in particular cases; e.g. if £ = 1, the formulae

are those of §4.12. As X > o0

3
AT ~ (55 (con(EN —dm—fm)+ cos(@¥t- )
_ 3 cos(3At— )
= m g ).
Hence 2N —dr ~ (nt+d)m
agreeing with (7.3.8).
7.4. The following well-known property of Bessel functions is now

required.
LemMa 7.4, In the interval (0,X), J,(x) has X[m+ O(1) zeros.
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See Watson, Theory of Bessel Functions, § 156.4; alternatively, consider
J, (x) 2\} o 1\)1
f@) = { (%32) cos(@— pvm—}m)+ o(x_,) L

It is clear from this formula that f(x) has at least one zero in each
interval

mrn+r—inr—8 < v < mrt+-vr—4n4-8
if & is a fixed positive number less than }x, and m is large enough;
for f(x) has opposite signs at the ends of such an interval. Also

f'(@) = _donal@) _ __‘(%)%cos(x—%vﬂ-—%")"l‘o(a—}g)}%'

Iid

Hence f’(x) is of constant sign throughout each such interval, so
that f(x) has at most one zero in the interval. The result now follows.

7.5. Application of Bessel functions. In the problem of the
upper bound of n, the comparison function used above is not the
best that can be found. It was observed by Langer that a better
approximation to a solution of (7.1.1) is obtained by using Bessel
functions.

Let us now take

$(€) = {£(p)—EPJT{E(p)— £} (7.5.1)

¢ _ vt

Hence (7.1.4) gives

@Y [y CP—DA—g@)} 1 @) 5 %) ]y _
o [ Ep)—E@) 4A—g@) 16 {A—q(x)}ZJ 7502‘)

If v = 44, we return to the previous formulae. If v = }, the infinity
of the new term at x = p just cancels those of the following terms.
It is clear that this must be so; for as ¢ — £(p)

{E(p)—EPJ{é(p)— €} ~ Alé(p)—&}

and

E(p)—£ = f A—q(t)}} dt ~ q‘%;) f QA—q(e)}t dt

= §{A—q(@)}/q'(x)
Hence Y ~ A{q'(2)}{A—q(=)}

and no negative powers of A—q(x) arise on differentiating.
4957 s
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For our purpose, however, it is better to take v = 0, so as to have
something to spare in comparing (7.1.1) with (7.5.2).
Let N(x)+1 be the number of eigenvalues not exceeding z, so that

NO)=n (O, <A<

Let « = p(y) be the inverse function of y = ¢(z), so that p(A) =
P(A,) = p,. Then

D
NQ) > 1‘_1 f A—q(@)} de +0(1). (7.5.3)

0
For this is true for each A,, by Theorem 7.2; and so, if A, _; < A <A,
(denoting the integral by I(})),
NQ) = N@,)—1
> 110,)+0q)
kg

> Ligy+oq),

3

since I(A) is steadily increasing.
We shall now prove

THEOREM 7.5. Let ¢'(x) - o0, ¢"(x) = 0, and

(@) <{g@p A<y<y) (7.5.4)
for x > x,. Then
»
NQ) = % f P—q@)}t do +0(1). (7.5.5)
0
o x@ ) = 4@ 1 4@ b ¥ g5

4E(p)—E@) 4d—ql@) 16 A—q(@)}¥’
so that (7.5.2), with v = 0, is

a2y

E-x—2+{3—q(x)+x(x, MY = 0. (7.5.7)
Now

£(p)— @) = f A—qO)q (t)_(t_)dt

< m f PA—q(t)ig'(t) dt

= §{A—q@)}/q (). (7.5.8)
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Hence
9 ¢%) 1 q@ 5 g%
x(x,A) = 16 {A~—q(w)}2——z A—q(x) 16 A—q(@)}?
1 ¢%x) 1 ¢'(x) (7.5.9)

T AQ—q@)P 1A—q)
Hence y(z,A) > 0 provided that

A—q(z) < ¢'*()/q" (), (7.5.10)
or, by (7.5.4), provided that
A—q(x) < {g'(@)}*. (7.5.11)

If (7.5.11) holds for z; < « < p, it follows from Lemma 7.4, with
v = 0, that the number of zeros of y in the interval z; < z <C p does
not exceed

»
1
2 f A—q(@)} do +0(1). (7.5.12)

It remains to consider the interval 0 < z <{ z,, and here the most
natural source of information seems to be (5.4.5). Suppose, for
example, that »'(0) = 0. Then, writing 7,(x) = 7(z)/%(0),

(%) = cos (@) - [ sin{é(@)—EO}RO,(@) dt.
0

T
Suppose that f |R(t)| dt < 8. (7.5.13)
(1]

Then z

Im@)] < 1+ [ [R@m()] do,
0

[m(x)] < GXP{ f |R(t)| dt},
0

by Lemma 5.2, and

z

f sinf§(x) — ()} R (1) 7 (2) dtl < j |R(t)]ed B gy

0 0

= exp{ f | R(2)] dt}——l
0

)
5 <%

<eé-1<
if§ < %
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Consider the interval nm < £(x) < (n+1)m, and suppose, for ex-
ample, that n is even. If § < 1/(2v2), it follows that 7,(x) is positive
for nw < € < (n+4)7 and negative for (n+-3)m < € < (n4-1)m.
Hence there is at least one zero in the interval (n+})7 < ¢ < (n+43)7.
Also

x
n(x) = —&'(x)sin (x)+ € (x) f cos{é(x)—£(t)}R(t)n,(t) dt,
°
and a similar argument shows that 7;(x) is negative throughout the
interval (n+4})7m < § << (n+32)m. Hence 7,(x) decreases steadily, and

80 has only one zero in the interval. The number of zeros of 7(x),
and so of y, in (0, ;) is therefore

1 [
;f@~meM+vax

The theorem then follows from this, (7.5.12), and (7.5.3).
It remains to prove (7.5.13) with & < 1/(2v2) and A sufficiently
large. Now

q'%(?) _ 2 q@)  24(0)
{A—q(t)}’dt_ﬁh——'b(;a P3N T3 f PA—q(t)}? q .
0

The first integrated term tends to zero, since

A—q@) = {g @)} (x <2y

It is therefore sufficient to prove that

q"(¢)
J {/\_w dt - 0.

Let q(xo) = JA. Then this integral is less than

q (t)
J +fmmﬁwﬂt

—T@)—q0), 1 [ 11 ]
o 2—3y/2L{g" @)} {g'(w)}> ]

This all tends to zero (the first term since ¢'(x,) < ¢'(p) = o(A}) by
(7.8.5)). The theorem therefore follows.
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7.6. The following consequences of Theorem 7.5 will be required
later.
THEOREM 7.6. Under the conditions of Theorem 7.5,
NQA++vA)—N(@) = O{p(\)}, (7.6.1)
NO+p)—NQ) = Ofud-p)} (VA < p <)), (7.6.2)
NQO-Hp) = NOYI+H0@N} (W<p<)). (7.63)

By Theorem 7.5
p(3A)

TNOEW =N} = [ [+ A—g@)i—A—q@)}] dz +
0

)
+ [ [ "A—g@)}—A—g@)] dz +
p(F)
DA+VA)

+ [ Q+A—q@) de +-0(1)
p(A)

= 1+Iz+13+0(1)

say. Now

A+ VA—g(2)—{A—g(@)}} = VA

A+VA—g@)} P —g@)}
For x < p(3A), ¢q(x) < 1A, so that this expression is bounded. Hence

I, = O{p(3N)} = O{p()}.

Also \ N
I -0 i ~A dx —0 VA e q'(x) dx
2 f P+ A—g@)| 7| ()} f A+ VA—g(@)}
D(3A) p(3A)
VA A A
= 0| -2 _A+A—gq(x)]"? g
lrman A1 = 0w
Now q(x) = fZQ'(t) dt < zq'(x).
0
Hence 7PN} > Q{p(‘fj‘)’}- _ %:A).
Hence I, = O{p(}A)} = O{p(N)}.
Finally

Iy = O[M{pQ+~2)—pQA)}] = O{Xtp' (M)}

- ol ole) - .
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and (7.6.1) follows. (7.6.2) follows on applying (7.6.1) O(uA-?) times,
and observing that, since p(z) is concave downwards,
(@) < 2p(3z).
Also (7.6.3) follows from (7.6.2), since by (7.5.3)
N@A) > AMip(3A) > AAip(A).

REFERENCES
Milne (1), Langer (1), (2), (3), Titchmarsh (8), (10).



VIII
FURTHER APPROXIMATIONS TO N()

8.1. The following argument is used by physicists. In quantum
mechanics the equation

8mim

‘/’+ " B~V = 0 (8.1.1)

is considered, where V = V(z), and K, m, and h are constants, h
being small. Let x(x) be defined by

Y = exp {2h f dz} (8.1.2)
Ay 2my
Then T ~—h—l/l, (8.1.3)
s 271'1,(,&dx 2miy
d* = h da:+( ) -

Substituting in (8.1.1), and dividing by i, we obtain
2m dx+(2mx) —{—ngm(E V) =0

h dx
or —h—z %X = 2m(E—V)—x* (8.1.4)
If h were zero, it would follow that
x = {2m(E—V)}} = x, (8.1.5)

say. Now suppose that y is expanded in a series of the form

h
X = Xo+2mxl+(2 z) X2t (8.1.6)

Substituting in (8.1.3), and equating to zero coefficients of different
powers of y, we obtain equations which determine the y,, in succes-
sion. They are (8.1.5), and

d _ n
Ti;' P=— z Xn-mXm (m=1,2,.). (8.L.7)
m=0

_ Iy 1V
= 2X0—4E-—~V’

Thus
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_ Xt 1 v e v’ }
Xe = —Tg = 2x,,‘16(E——V)2+4(E—V)2+4(E—V)
’ _ - 5V'2 - V// .
322m)H(E—V)t  82m)(E—V)’
and so on.

Now apply these formulae to the problem of the relation between
n and A,. Replace x by a complex variable 2z, and suppose that V(z)
is an analytic function of 2, regular in any relevant region. Then
any solution ¢ = (z) of (8.1.1) is an analytic function of z. Suppose
that there is a discrete spectrum, and let £ = E, be the (n-+1)th
eigenvalue. Then ¢y = ¢,(2) has n real zeros. Suppose that there is
a contour C which includes these zeros but no others. Then

L1 (e,
2777 o) f x(z) dz

by (8.1.3). Hence
1 1 h
n = }"Lf Xo(2) dz+§;; f x1(2) dz—;;rg f x2(2) dz +
¢ ¢ bej

Let V(2) = E at z=a and z = b, and suppose that these are
simple zeros of V(z)— E. Then y,(z) has simple poles at these points
with residue —} at each. Hence

o [ @ de = —4.
C

Also, integrating by parts,

V() 3 V3(z)
) {E_V(T)}ad"* “2) pvep™
V'Z(z)
Hence J:XZ(Z) 32(2m ) = 140

Hence we obtain the formula
_ (27n) f BV de— P V)
ti= IV de— e omy J @E=vERY T
(8.1.8)
All the above analysis is, of course, purely formal. The validity of

an expansion of the form (8.1.6) remains to be investigated; and A
is not arbitrarily small, but merely a numerical constant. Even the
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formal appearance of successive approximations with ~ small, upon
which (8.1.6) depends, vanishes when we come to (8.1.8); for if F is
to be an eigenvalue of (8.1.1), it must depend on k. Suppose, for
example, that V(z) = ax®. On making the substitutions

X = (S”Zm“)*x, A= 4E (”4:”2)*,

h? h*a
d*p _
T3t A—X =o. (8.1.9)

If Ay is the smallest eigenvalue of this, that of (8.1.1) is

By — ﬁl(’”’“ )5

(8.1.1) takes the standard form

4 \mim?

It is easily verified, e.g. by making the substitution z = A#{, that
each term on the right-hand side of (8.1.8) is independent of .

The above analysis is known as the B.W.K. (or W.B.K. or W.K.B.)
method.

8.2. The equation (8.1.1) reduces to the standard form on putting

8m*mE 8m2m
__.._"h2 = A, _%_ V(z) = q(®). (8.2.1)
We have therefore to consider the equation
d2
T 1 g = 0 (8.2.2)

in which the usual real variable x is replaced by a complex variable
2z, and ¢(z) is an analytic function of z, regular in a certain domain
containing z = 0. The argument of §1.5 is easily adapted to show
that, if () satisfies given boundary conditions at z = 0, it is an
analytic function of z, for each A, regular in the same domain as ¢(z).
Since the solutions to be considered are eigenfunctions, A may be
supposed real.

The situation seems to depend a good deal on the nature of the
function ¢(z). In order to obtain precise results, we consider the
special case ¢(z) = 2¥, where k is an even positive integer; but it will
be seen that it is possible to extend the method to any analytic g(z)

which mimics this special case sufficiently closely.
4957 T
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8.3. It is a question of obtaining approximations to solutions of
(8.2.2) in certain regions of the z-plane.

Let A be real and positive, and let p denote the real positive
value of AUk, Let

2
£e) = [A—uwb)idw,  n) = A—2F)(),  (8.3.1)

0
where (A—w¥)¥ and (A—2*)t reduce to the real positive values of At
and At as w —> 0, z > 0. As w passes above p from a real value less
than p to a real value greater than p, arg(A—w*) decreases from 0 to
—a. Hence (A—wk)t becomes —i(w¥—A)}, where the square root is
real and positive. Hence e#® becomes exponentially large as z - o

along the real axis.
The analysis of §5.4 obviously extends to complex variables, so

that 7(2) satisfies the integral equation

7(z) = 7(0)cos £(z)+7'(0)A~*sin £(2)+

+ [ sinfé(e)—Ew)}Rw)n(w) dw, (8.3.2)
1]

where R(w) _ —}— qn(w) —_5— qlg(w) )

4 {d—gl)t 16 d—g(w)}?
_k(k—1)wk-2 5 k-2

4A—w*)t 16 (A—wk)t
kw24 (k—1)A - ( Ic+4)wk}
16(A—w*)t

Consider first the region =/k < argz < §=, |2| < p(sinn/k)Vk,

Then [z|¥ < Asin=/k, and

_TL arg(A—2%) < -

k

for all z in this region. Taking the integral defining £(z) along a
straight line, so that »/k < argdw < }=, it follows that

K\ +Z
2]0 < arg{(A—wk)} dw} < +5%
Hence I{é(z)} > sm——f |A—w*)t dw| > KAi|z],

where K denotes a positive number depending on k£ only.
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Putting 7(z) = e~#®I(z) in (8.3.2),
H(z) = (0)ei9)c0s £(2)+ Xy (0)eif)sin £(z) +

2
+ f eié@-£w) gin{¢(2) — (w)} R(w)H (w) dw.
0
If n is even, i, (z) is an even function, %'(0) = 0, and this gives

[H ()| < [7(0)[+ f | R(w)H (w) dw|.
Hence by Lemma 5.2 °
HE) < [n0)exp] [ RGw) du.
It then follows from (8.3.2) that °
7(z) = 7(0)cos £(z)+e~%@x(z),

where
%@ < 1) [ 1R lexp [ R@w') du}iauw]
0 0
= [7(0)||exp} | |R(w)dw|)—1f.
ol o)1
Hence 7(2) = 37(0)e=%D{1+w(z)},
where
lw(z)| < (€250 4-2(x(2)|/|7(0)]
< [ezif(2)|.+~2<exp f | R(w) dw[—l}. (8.3.3)
Now f]R(w) dw| = O(prk 2;\';”% de) = O(\-i-1lk),
0 0

If we also assume that |z| > Kp, it follows that
w(z) = OA-+-1k), (8.3.4)

The result is that, in the region considered,

¥ul@) = 1 (0) (3 k)* e~ 01+ w(z)}. (8.3.5)

8.4. The above result holds in particular on the segment of the
straight line I(z) = lptann/k between the imaginary axis and
argz = w/k. We next require a similar result on the same line as
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far as R(z) = p, and then round the circle [z—p| = }ptann/k as far
as the real axis. Let C denote this curve, together with its reflections
in the real and imaginary axes.

Since

2 21
f ¢HE-£€6D R(w)n(w) dw = e~ %@ f i) R(w)n(w) dw +
1]

0

1 [ et Riw) ) duw
and z

2 ©
f ¢iE@~£w) R(w)n(w) dw = €t f e~ R(w)y(w) dw —
0 0

_ f ei(é@~£aN R(w)n(w) dw,

(8.3.2) is formally (i.e. apart from the question of the convergence
of the integrals at infinity) equivalent to

z
n(z) = Ae"f(z)_l_ Be—ff(z)_i_%i J. e’b{f(w)"g(z»R(w)n(w) dw _I_.

Z1

+34 f HED~EN R(w)n(w) dw, (8.4.1)

where 4, B, and 2, are independent of z.

Let T be the region defined by

0 < I(2) < iptana/k, le—p| = iptann/k, R(z) > 0,

together with the segment of straight line I(z) = 1p, ip < R(z) <
Let z, be the left-hand end-point of this segment, z any point of I‘
Take A = 0, B =1 in (8.4.1), and let the path from 2, to z consist
of the curve C as far as the straight line through z parallel to the
real axis, and then this straight line. Let the path from z to infinity
be a straight line parallel to the real axis.

Ifwisin I', ]A—w*| > K|w|*, where K depends on £ only. Hence

Kp* K K

lwlik+2+|w|§k+2 le*k+2

| B(w)| <

since |w| > Kp. Hence

jolR(w) dw| = ( l ik+2) - (Pi}cﬂ)'
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A similar argument applies to the rectilinear part of the path (z,,2),
and the circular part is of length O(p), so that the integral of
| R(w)| round this is also O(p-i*-1). Hence, if 8 denotes the maxi-
mum of

1 [ 1R@) dw|+} [ | Bw) dw|

formed in the above manner, we have
8 = O(A-t-1k),

Thus 8 < 1 if A is large enough.
Now take A = 0, B =1 in (8.4.1), and form a solution by itera-
tion. Let
m(e) = e

and
2

,41(2) = e~ %O 1 f HEW~E@) R(w)m, (w) dw +

23
©

+4i [ €080 R(w)n, (1) dw

z

for v > 1. Then

Ed @

mle)—mte) = die60] [ Blw) du + [ e¥t6e-£ R(w) do).

21 w 2

Now {é(R)—E(w)} = —1 f A—w'k)t dw’,
2
where A—w'* lies in the lower half-plane, and so (A—w'%)} lies in the
fourth quadrant (since it reduces to At as w’ — 0); and dw’ is real
and positive. Hence
R[ifé(z)—¢(w)}] < 0,
| e2ité@)-Swn| < 1.

Hence | na(2)—ny(2)| << Sextéen,
Similarly
M5(2)—a(2) = ki [ €MD Ru){gy(a) —my(0)} dwo +

+4i [ 405D Bw){, (1) —ma ()} doo,

z

[ ns(2) —7a(2)| < 826N,

and so on generally. Hence > {7,.,(2)—7,(2)} is convergent, i.e. 1,(z)
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tends to a limit 7(z), which (as in the case of the similar formulae
of § 6.2) satisfies (8.4.1) with A = 0, B = 1. Hence the corresponding
i(z) satisfies (8.2.2). If A is an eigenvalue A,, this §(z) must be a
multiple of the eigenfunction ,(z), since any other solution of the
equation tends to infinity as z - co along the real axis.

Now ©
1) = Mm@+ 2 ) =@} = e 14y ()}

say, where Ix1(2)] < i o = 1—8_8 = O(A-1-1/%), (8.4.2)
v=1 -
The result is therefore
c e—t@)

where ¢, is a constant.

8.5. Let 2, and z, denote the points of C on the positive real and
imaginary axes respectively, and z, the point defined above.

The function y,(2) is either odd or even—suppose, for example,
that it is even. Let N be the number of zeros of i, (z) inside C.
Then 2miN is equal to the variation of log,(z) round C, and so to

twice the variation of log,,(z) round the upper half of C. Hence

N = lI{log P (—20) —log i, ()}

The values taken by ,(z) between z, and —z, are the conjugates of
those taken between z, and z,. Hence log,(—z,)—logi,(z,) is the
conjugate of logi,(zo)—log,(2,), and

Klog ¢,(—2y)—log ,(2,)} = I{log s, (25) —log i, (2)}-
Hence N = ;I{logJJN(zg)——log (zo))- (8.5.1)
Hence by (8.3.5) and (8.4.3)
N = —I{—zf(zz) it(e0) —logh— +

+“’(z2) log X)) (g 50
+ 0g1+ (= 1)+ Og1+X1(zo)} ( )

Now
—if(zy)+if(z) = — ¥ f (A—wk) duw

=3 | A—w*)t dw =1 | A—wk)} dw.
(i

-p
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Next, as z varies from z, to z,, 2% describes a spiral, starting to
the right of A and ending to the left of it, and not encircling it
again. Hence arg(z*—A) increases by =. Lastly, if A is so large that
()| <1, [xu(z)] <1 on C, log{l-+w(x)} and log{l+x,(z)} may be
assigned their principal values; hence

log{l+w(z)} = OQA-#-1E),  log{l+y,(2)} = OA-#1).

Hence (8.5.2) gives
D
v=2 f A—wk)t dw — 3+ O(A-4-11k), (8.5.3)
w
0

Now i,,(2) has n real zeros, and by (7.2.3)

=Ht\:>

D
J(A —wk)t dw —1.
0

Also N = n-2m, where m is zero or a positive integer, since complex
zeros occur in conjugate pairs. Hence
m < 3+ O(-+-1).

If A is so large that the last term is less than 3, then m = 0, N = =,
so that there are no complex zeros inside the curve C. Replacing
N by n in (8.5.3), we obtain a formula equivalent to (8.1.8), with
the remainder after the first term on the right-hand side replaced
by an O-term.

8.6. Further approximations. The next approximation to the
function (z) (0 << argz < #/k) is
7(2) = 1a(2]{1+ x2(2)}>

where

ny(2) = €@ Lie=i@ f R(w) dw +Jiei® f ~2£00) R(w) dw,

and x2(2) = 0(8?) = O(A~1-%k),
Now
0 ‘ _ lf(z)_R(z) we—zif(w) d R(w)
—-2lf( ) — € : I
f e Rw) dw = F +f 2 dw:(A~w")*} dw
- O{A—l—z/kle—%f<z>|}+0{!e- o [[|.50, }

— 0{/\—1—2/k]e—2i§(z)‘}.
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z
Hence 7(z) = e“?‘”{l—i—%if R(w) dw +0(A-1-z/k)}_
4 A

A similar formula may be obtained in the angle n/k < argz < 3=
It follows that the term O(A-#-1k) in (8.5.1) may be replaced by

L f R(w) dw +O(-1-%),
4
c

This corresponds to (8.1.8), with the remainder after the second term
on the right-hand side replaced by an O-term. We can plainly pro-
ceed indefinitely in the same way. The formula (8.1.8) is therefore
justified for the functions ¢(z) = 2*, or for any analytic functions
with sufficiently similar properties, provided that the eigenvalue is
large enough.

8.7. The case k = 4. Here
w¥(3p*+2wt)

(p*—wh)t
Consider first the formulae of § 8.4. The curve C now consists of the
right-hand semicircle of |z—p| = }p, and the left-hand semicircle of
|z++p| = 1p, joined by segments of the lines I(z) = 43p. On the
upper half of the right-hand semicircle,

lp—w| ={p,  |p+w|>2p, |pP+w?| > 2p?

and |w| < §p. Hence

3p4(9p2/4)+-2(3p/2)®  2742(, 2
‘R(w)|<<p(p/2g)pt)(p/) _ ;2 (]+"81

Rw) = —

1 5:2
P
Integrating over a length }np, we obtain approximately 4/p®.
On the straight line w = -+ }ip, p < u < p, we have
lw|? < 5p?/4,

2 2
[ptwl® = (utp)*+1p® > (ﬁzﬂ) +1p® = 5—12°~

and
[PP+w?|? = |p*+ui+ipu—}p?[?

= (u+1p?)pu?

5pl
>pitipt =2
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Hence
5p? 5p2\3
4L A
3P +2( 4)
(2op) (3p)t

3.2¥
(o2

3.16
= o252

| B(w)| <

1 8
< 5*.2*.3——-:—-—
= pt pt

approximately. Integrating, we get again 4/p3; hence
| Ry dw <

On the straight line from z to infinity, where z is on or to the right
of the semicircle, we have

|[ptw| = |wl, [p24w?| = [w]?, lw—p| = 3p.
3ptw|24-2|lw|®  3.28pt 2
Hence RBw)| < = .
| w¥Ep) ¥ T

Hence this part is

2]

2§p§
< J (s i)

»

= (3.20.3421, 2)_ —gr16)Y2 = 20
P P
. 17
approximately. Hence < b
For 8 <1 we therefore want
A > 17t = 44
roughly.
In §8.3, we have |w| << 2-¥p, so that
< 3P +2p°
6za/~/2
Hence f [ Bw) ol < (o)} | Gotor2) dp,
0

4957 U
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which is found to be less than 1/p3, and so it is small if A satisfies the
above condition. A closer examination of the above integrals would
no doubt show that the method was valid for much smaller values
of A.

8.8. General character of the functions i, (z). If ¢(z) is an
integral function of z, so is ¢,(z) for each n. From (8.3.2) it follows
that

n(2) = Ofexp|I{{(2)}(],

$.u(2) = O[lq(z)|t exp|I{¢(2)}]-

and hence that
For ¢(z) = 2%,
£e) = —i [ (wh—2,)t duw
0

f A
= —1 f (w*’c—m—”yc+...) dw -+0(1)
= —40224-4A, logz+0(1) (k= 2)
. . 2ik+1

= —igt o) (k> 2).

P (2) = Ofz|Ptexp(i|z[?)} (k= 2),

ik
P (2) = 0{|z|—*’“ exp(%’c—_li;)} (k > 2).

Hence

Hence i,(2) is an integral function of order }k-1 at most. Since

by (8.4.3)
Y, (x) = O{xKexp(——xﬁtl—)}
" $h+4-1
for real z, the order is exactly }k+1. Hence i,(vz) or vzi,(V2) is
an integral function of order }k+1, according to whether » is even
or odd.

In the case k = 2, (8.4.3) holds for all sufficiently large values
of z in the first quadrant. The curve C' can be replaced by any circle
|z| = R with B > A}. Consequently i,(z) has no complex zeros, if
n is sufficiently large. Actually this is well known to be true for all
values of n.

In the case k = 4, y,(V2) or vz, (¥z) is an integral function of
order %, and so has an infinity of zeros, all but a finite number
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of which must be complex. An infinity of these zeros are purely
imaginary; for if z = vy, (8.2.2) becomes

"’+(J A = 0. (8.8.1)

The coeflicient of i is positive for y > A}, indicating that the solution
is oscillatory. For y > (2A)}, y*—A > }y*. Hence (8.8.1) has a zero
between any two consecutive zeros of a solution of

¢+%y4t/1 =0,

e.g. of J*!I*<3VO>

It is possible that in this case all the zeros of 4, (z) are either purely
real or purely imaginary. For & >> 4 the situation is probably still
more complicated.
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IX

CONVERGENCE OF THE SERIES EXPANSION UNDER
FOURIER CONDITIONS

9.1. The problem of this chapter is similar to that of Chapter VI,
but it is now assumed that g¢(x) > co. The expansion thus takes
the series form

o0

f@) = % c,in(@). (9.1.1)

n=0
It will now be shown that, by imposing further conditions on g(x),
we can relax those which were imposed on f(x) in Chapter II; and
in fact that, for a wide class of functions ¢(x), the expansion con-
verges if f(x) satisfies conditions similar to those which are sufficient
for the convergence of an ordinary Fourier series.

As in Chapter VI, it is mainly a question of obtaining asymptotic
formulae for the functions ¢(x, A) and (x, A) for large complex values
of A; these then give what is required for the function

T ©
O(z,2) = (@A) [ $(y, )f(y) dy +(z. ) [ ¥y, Nf) dy.
0 z (9.1.2)
We obtain satisfactory results provided that A is not too near to the
positive real axis. A restriction of this kind is to be expected, since
it is here that ®(x,A) must have an infinity of poles. However, in
the neighbourhood of the poles, the formula

Oz, \) = O (@) (9.1.3)
A—A,
n=0
can be used. For this purpose we have to know something about the
distribution of the eigenvalues A,, and the analysis of Chapter VII

is needed.

9.2. It will be assumed that ¢(x) is twice differentiable,
7@ >0, q'(xr) >0, and ¢'() <{d@)}

for sufficiently large =, where 1 <<y << §. Then Theorems 7.5 and
7.6 hold.

The analysis of §5.4 is required again here. With the notation
there used and the conditions assumed above, we have
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LEMMA 9.2. f | R(t)| dt — 0
(1}

as A - oo, it betng supposed that A = u-+iv, v = 0, and A does not enter
the region between the positive real axis and the curve v = w? 3@~y (u);
x(u) being any continuous function which tends steadily to infinity with w.

The conditions assumed imply that

= O[f{g(x)}’],
where ¢ = 1/(2—v), by (7.3.4). Hence

oo

[ Re)-l en
A—q J - oy ) = T

If w > 0, put ¢ = u+vr. We obtain

of [ tetetuw)=o(=)

—ulv

If w < 0, the integral is

w_q_cj_q_, — c—4
0{0 (|A|2+q2)*} OUAP-

Since ¢"(¢) = O[{g'(¢ }7] = O[{g(®)}*"'¢'®)],

W _ of [ dq}
|A gt J 1A—ql?

and similar results hold for this integral. The lemma clearly follows
from these results.

9.3. Let ¢(z,A) denote again the solution of
d
%-F{A—q(w)}y =0 (9.3.1)

such that $(0,A) = sin«, ¢'(0,A) = —cosa. For a fixed z, or z in
a fixed finite range, Lemma 2 of § 1.7 gives

$(z,A) = cos(zvA){sin a+ O(|A|~)} (9.3.2)
if sina % 0, and

$,)) = — sm(x«/z\)

{cosa+O(|A|-H)} (9.3.3)

if sino = 0.
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For x - o0, the relevant formulae are (5.6.1), (5.6.2). Also by (5.6.1)
and Lemma 9.2, the integral on the right of (5.3.6) is

0{ Al of ROl dt] = o)

as A - oo in the region allowed by the lemma. Hence
MA)e-#@
PA—gq@)}’
and M) ~ $Atsina (9.3.5)

$(x,A) ~ (9.3.4)

as A - oo in the above region, provided that sin« 3 0. Similarly, if
gina = 0,

MQA) ~ —3i ——. (9.3.6)
The formula obtained by differentiating (5.6.2),
2 [0 —g@)t(@ ] ~ —i MNP —g@Pete,  (0.37)
is also easily proved by first differentiating (5.4.5).

9.4. It is now a question of obtaining a solution of (9.3.1) which
is small for large x. We proceed as in §6.2 or §8.3, but ¢¥® is now
small for large z, not large as in §8.3. Hence (5.4.5) is formally
equivalent to

(&) = I(0)elie-160)—Fin (OAHeibe— -89}

T ©
_!_% f eilE@—£0) R(t)y(t) dt +§1§ f eHEO-E@)} R(t)n(t) dt —
0 T

2y

B 51‘ f €O R () n(t) dt
?
0
or

x
n(x) = Aett@ Be—if(m)+% f eHé@-Et) R(t)n(t) dt +
(2
0

+2i¢ f O£ R(tyn(t) d.  (9.4.1)
I
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Take A =1, B = 0, n; = €@, and for n >1

T
Tuaale) = 661 [ -0 R (), ) dt +
0

+2_15 f GHEO-EN R(t)n, (8) d.

Let J now denote [ [R(t)| dt; by the above lemma, J < 2 if A is
0

sufficiently large and in the above region. Arguing as in §6.2, it
follows that 7, (x) tends to a limit n(x), which satisfies (9.4.1) with
A=0,B=1;and

In(@)] < J_el__gﬂ (9.4.2)
~ 1*‘7}:]-,
1
|,7(x)__ei§(x)| < T{%w‘faq_ (9.4.3)
2

In particular, y(x) = n(r){A—q(x)}~t is L0, 0).

9.5. We have to apply this result to the function ¥(xz, ). Now
Pz, A) = AQ)p(x,A)+- BA)y(z,A)

and (x,A) and y(x,A) are L3(0,00), while ¢(x,A) is not, at any rate
if M(A) 5= 0. It follows that, if A is large enough and in the region
of the lemma,

Since W(¢,y) =1, BA)W(d,y) = 1.
Now for a fixed A, x - o0, (9.4.1) (with 4 =1, B = 0) gives

n(x) ~ eif(w){l—{-élZ J e~EOR(t)(t) dt} = K(\)ei@
o

say. As in previous cases, we also have
7' (@) ~ IKA){A—q(x)}iet@,
Hence
W($,y) = P—q@)}W[{A—q@)}(, A), (x,A)]
~ A—q(@)}H MA)e- €@K A){A—q(x)}eié@ |
+iMA)A—q(x)} e~ €@K (X)eit)]
= 20M(A)K(A).
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Hence 2IBA)MAN)K(A) =1,
; ' . _ _Y&,2)
ie. Pz, A) = SMNKRN) (9.5.1)

Clearly K(A) -1 as A - oo in the above region.
For a fixed z, and A— oo in the above region, this gives (if
sina # 0)

~ Y(x, A) ~ ei@d
@A) Msinae  IAA—g(x)}isina’
Since

£z) = [ P—q)p dt

- f X0} de
0

= aAi+0(\Y),

izVA
this also gives Pz, A) ~ i/\i_sin_.. (9.5.2)
o

eizvA

Similarly P'(z,A) ~ (9.5.3)

sina’
If sin« = 0, the corresponding results are
Pea) INbgizvA

P, ) ~ s YA = . (9.5.4)

COS x CcoS «

9.6. All the above results apply to regions which do not come too
close to the positive real axis in the A-plane. In the neighbourhood
of the positive real axis the expression (9.1.3) has to be used, and
for this purpose some further information about the functions ¢, (x)
is needed.

We have @)+ P —g(@) (@) = 0.
Let ¢(p,) = A,. Then for 0 < x < p, the coefficient of i, (x) is
positive. Hence i,(x) is concave downwards where it is positive,

and upwards where it is negative; it therefore has just one maximum
or minimum between consecutive zeros.

LemmA 9.6 (a). The successive maxima of |f,(x)] in 0 < x < Pn
form a non-decreasing sequence.
()
Lot F(z) = J3(0)+
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Then Fle) = OG-

D= =g~
Hence F(x) is non-decreasing. At a critical value of ,,(2), yn,(z) = 0,
so that F(x) = y2(x). The lemma therefore follows.

LemMA 9.6 (b). Let 7y, 1,,... be the zeros of i, (x). Then

,"pn(")v
1A, —q(n,) I}
18 @ non-decreasing function of v.
Since Flx) = Yar(@)
An“q (x)

at = 7y, 1y,..., this also follows from the above argument.

9.7. Lemma 9.7. For any fixed x (or x in a fixed interval)
Pulz) = OQL P ).

Let the successive maxima (or minima) and zeros of ¢, (x) in the
interval 0 < z < §p,, be

fl < m < 52 < oo Nn-
Consider a particular 7,. Then by Lemma 9.6 (b)

[a(m)| z Il
,An 9(7)“” —[.L+l [An"q(nv
Since ¢(x) is convex downwards, g(ix) <\ 1q(x). Hence

Q(%pn) < %Q(pn) 'il’,An'
’ "/2 ’
Hence alnl < o= Z,L ACHIE (9.7.1)

I

Suppose e.g. that ,(x) is positive between £, and 7,. Then

M "]v ( )
x

T
> Ai f (@) do
§V

N AASAS)
_¥alm).

n
4957 X
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M
Hence ()| < A [ 190(@)] dec
’ &

1Dn
et < 22 f )] o

D 0n
vea, [ 3
<5 Hl“{‘/’” o)) dxofdx]

A ph

_ 9.7.2
Now let « be a given positive number. Let £,, £,., be the nearest

zeros of Y, (y) below and above z, 7, the zero of i, (y) between &,

and §,,;. Then [fp(z)| < [¢n(n,)]. Now it is clear from the argu-

ment of §7.2 that +0n

—p > Tlr f P—gy)}t dy —

10n

>1 f (A dy —3
w

Hence (9.7.1) gives

&€
> Ap, M (9.7.3)
for n large enough. Hence
¥m(nu) | < AN pit, (9.7.4)

and the lemma follows.

9.8. LEMMa 9.8. For a fixed x
(@) = O(pyt).

Consider again an interval (£,,m,) where ¢, (x) > 0, Y, (x) < O,
z < 4p,. Then
Pa@)n(x) = A, —q@)}, (@){— (@)}

My Ny
[ dnt@pite) do = A, [ dolel—dn@)} dz,
EV fl‘

Hence

W) =g (€,) = WJPRE) i)
i (m) 2 A di(6,)-
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Hence by (9.7.4), if n,_; <z < 1,,

(€] < Apy?
and the lemma follows.

It is easily verified that, in particular cases, these results are
the best possible. For example, in the Hermite case, ¢(x) = a?,
A, = 2n+1, p, = (2rn+1)}, so that Lemma 9.8 gives ¢,(x) = O(n-?).
Actually e (z)

() = m

Now (Szego, p. 94) for a fixed x

) = Of )

Hence
. (n!)é o (nntie—n)}
#0) = Ogur(ga ] = loaaperes)

= O(n?).

9.9. We can now prove

THEOREM 9.9. Let f(y) belong to L*(0,0), and let f(y) = 0 in an
tnterval of which x is an interior point. Then

f Cn‘l’n(x) = 0.
W=

This shows that, as in the case of ordinary Fourier series, the
convergence of the series > ¢, ,(x) depends only on the behaviour
of the function f(y) in the immediate neighbourhood of the point z.
Of course we have also assumed that f(y) is L?, a condition not required
in the theory of Fourier series.

Let f(y) = 0 for x—08 < y < z+43.

We have to prove that, under the conditions of the theorem,

®(x,A) dX = 0
AI=R

as R — oo through values not equal to any of the eigenvalues. We

have
Reln Reln ©

f O, dh = > ol f e nnﬁn D)1,
i Re=tn (9.9.1)
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say. Now 3 ¢2 is convergent, since f(z) is L2(0,00). Let

«(R) = (3 e2).
Then (A”>R )

Refn

(x’ A) dA z |c7L l/'n(x)ln] z |cI'L ¢’7L(x)IIL|

{z 3. 1) }{2c221¢n<x> 2}

M<iR /\,.\; ASir S
— O{AngRl«/:n(mc)InIziiur O[e(éR){’\”ngn(x) In|2} ]

Now I, is bounded for all values of R and n (e.g. since we can take
it along an arc of a circle with centre at A = A,). Since

Re~1

A=A, | = R—A,,
and the length of the contour is 2Ry, it is also
R
0(~_~_” )
From this and Lemma 9.8, it follows that
7?2
S @ =0 3 L) — o),
An\ R /\ngian
say, and
R21]2
@2 = of g+
An<2iR ‘/In nl }R</\”<R_R,’)(R-“An)2pn
R2n2
i 2 )
R-Ryhg<R+InPn M<E1Ry (A.—R)*p,,

= 0(8,)+0(85)+0(8y),

say.
In 8;, p, = p(R—Ry), and the number of terms in the sum is

N(R+ Rn)—N(R— Ry). Hence

N(R+ Rn)—N(R—Rny) Ry

< -— — = }
IS ) () = o

by (7.6.2), provided that

J(B—Rn) < 2Ry < R— Ry,

which is true if
1
<
VR =T

1.

N

(84
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Next .
R21’2
S, = -
Z R+2""R1)<2A”<R+2k3.q (AIL—R) Pn
< 1
= z z 22"'%—_
k=1 I+2¥1Ry<A.<E+2*Ry n
< i 1 N(B+2*Ry)—N(R+2-1Rn)
=t p(R+251Rn)
1 2k-1 Ry
= 2, s 0( 7 ) — O(Bh).
k=1
Slmlla;rly S2 —_ O(Rt'q)

Lastly a similar argument gives

1 2-k-1R Rt
o~ ]~ 0w
k-1 1k’
2""1R</\<2"‘Rp (2 R) 2

and summing terms of this type,

S, = O(Rin?).
Ret"
Altogether f ®(x,A) dA = O(Riy)+Ofe(4 R) Rini}. (9.9.2)
Re™"
This tends to zero if 7 is a suitable function of R, e.g. if
1

1= BRI R (9.9.3)

(or of course for smaller 7, but later we want Rin -> c0).

9.10. Next consider the order of ®(z,A) on the parabola v? = u.

We have . .
B, )] < {z Z }

n=0

{i 'xtu”)z+vz} : (9.10.1)

n=0

$u(®) x)

The last sum does not exceed

wt 2 ot 2 ot
/\,.<w P U<, <u— v u—v<Ap<utv n
1
+ z (/\n""u)gpn.
u+v<)«n
We consider these sums in the same way as those of the previous
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section, with R and Ry replaced by « and v respectively. The third
sum, for example, is
0{1 N(u—J,-v)——N(u-—v)} _ 0{1 _v_} _ O(i)’

v? p(u—v) v2 ut
and similarly for the others. Hence on the parabola
D(x,A) = O(u~t) = O(|A|}). (9.10.2)

This also holds throughout the part of the first quadrant above the
parabola, since (9.10.1) is a decreasing function of v, for a fixed u.
In the second quadrant

o) = 0f > Bl = on)

the convergence of the series following from the above argument.
Now we also have

O(2,A) = () j $(, Nf(y) dy +$(. ) f $(v, N(y) dy.

z+8
Combining (9.3.2), (9.3.3), (9.3.5), (9.3.6),
$(@,A) = O{A-tM(N)e~i=/[}
for a fixed x, or z in a finite range. By (9.5.1) and (9.4.2)
(@, ) = O{|A-1eH@ M ()|}
for all z, and A in the region allowed by §9.2. Let A be real and
negative, say A = —pu. Then

@) = [ {nta®p dt > avp.
0

Hence

-8
—zVp
Oz, —p) = O{e——— eV r f(y)] dy} +
pt Of

[ et dy}.

z+8

The first term is clearly O(u—te-3#); and so is the second, since the
integral does not exceed

© 3 +8 $
{ [ ey f lfy)lzdy} <{‘i?‘ ”" f lf(y)lzdy}

z+d x+d
Thus Oz, —p) = O(u-te-dm), (9.10.3)
Let FQ) = Me-N(z, 1),
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where At is real on the positive real axis. By (9.10.3), F(A) is bounded
on the negative real axis. On the parabola v? = u
it __ . Sv .
e~ioA" — exp{—-zSu*—}-W-}-...} = 0(1).

Hence, by (9.10.2), F(y) is bounded on the parabola. It is therefore
bounded throughout the region between the parabola and the nega-
tive real axis, by the Phragmén-Lindelof theorem. Hence, putting

— preif
T O, A) = O(r-te-brisimif) — O(r-te-8ri6im),
Hence, if 0 << 9 < {7, Bsin?y > cosy,
D, \) dA = o( [ Bic-sntar do) — O(e-3RHin),
N =R,p<0<m 7 (9.10.4)

The same result holds, of course, for the integral over —7 < § < —1.
Theorem 9.9 now follows from (9.9.2) and (9.10.4).

9.11. In view of the above theorem, we can now confine our
attention to a finite interval. We first prove

Lemma 9.11. Let f(x) be of bounded variation over a finite tnterval
(@, b), and zero elsewhere. Then

Cothp(z) = O (%)

Let f(x) = fi(x)—f,5(x), where f, and f, are bounded and non-
increasing in (a,b). Then

b b
en = [ i) dy — [ $u)fulw) dy.
a a
By the second mean-value theorem

b B
[ i) dy = fila+0) [ @) dy (@ <B<b)

B
~ —fato) [ (P ay

B
. ____fl(a‘*"o) ” d o

=f1(a+_0_) " (o) —l!
et U —4i(6)

= OQztpat)
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by Lemma 9.7. Similarly for the other integral. Hence by Lemma 9.8
Catpu(®) = O Ipz?).
= O p,),
Astpgt = O(n)

By Theorem (7.3)

and the lemma follows.

9.12. THEOREM 9.12. Let q(x) satisfy the conditions stated in § 9.2,
and let f(y) be of bounded variation over an vnterval including the point
x, and zero outside this interval. Then

3 cathu@) = H{fle+0)Hfw—0)}

We start again from (9.9.1), but now use ¢, () = O(1/n) instead
of 3 ¢ < . We obtain

Refn

jcp(x,,\)dx=0{ > g}+0{ > n(RRnA,,)}+

Re-n In<iR tR<\,<R—Rn

+0{

o] o)
R-Ry<M<I+Ry" An> Ry n(A,—R)

say. Now
_ (R+Rn) (R lﬁn)} —
by (7.6.3), provided that n > R-* Next

< R
2= Z Z (Aan)

k=1 R+2*-1Rp<A,<R+2%Ry

z ‘R+2kR17 N(R-- 2"“1R77) 1

N(B+261Ry) 251

k=1

[ee)
Lo o]

ZO 2k~ an 1
R—‘er 1R17 2k—1

= 3 o+ > 0f5)
2klp<1 2k-1p>1

1 1
=0 nlog—)+0(n) = 0(n10g~>-
U] "

S
[
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Similarly for 3 ; and
NG R)—N(1R)

NGR) = o

SI3

~ oy
tR<M<iR
by (7.6.3), and adding O(log R) terms of this form,

2, = O(ylog R).
We may take for example » = R~%, where 0 < o << }. Then

Refn
lim | ®(z,2)dX = 0.
R—0
Rein
Now A = Rexp(tR~*) ~ R-+tR!-%* lies in the region specified in
Lemma 9.2, if « is in the above interval. Hence on the remaining arc

of the circle |A| = R we may apply the asymptotic formulae obtained

in §§9.3-9.5.
Now 5
D) = pY) | SN )dy+¢x>of¢y, f) dy.
z—8
The second term can be written in the form
z+9 z+8
f@t0)b@N) [ N dy +(@.2) [ bl M) —~f@+0) dy
) ’ — , 4,
Now
z+d l‘[;”( A)
_ Y,
JW’M‘U* fA qy)
Y@ (16,2 q@)d
T A—q(@) A—q(z+9) )+ f Ve, ){/\ q(y)}2

Suppose, for example, that sina % 0. Using (9.3.2) and (9.5.3),
D, = f(x+0)cos(zvA){sin a4 O(J]A| 1)} X

[ o5 )=o)

~ fo0) BN g, +0) A+0<‘e M')}-

Hence lim f @,(z, ) dA = 3 f(@-+0).

R—w

largAl=7
4957 Y
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In ®,, we can write

fy)—=fx+0) = g,(y)—9.(¥),

where g, and g, are non-decreasing and tend to 0 as y > x. Now
49 z+8
[ Ry, Mga(v) dy = g:(a+3—0) [ Reb(y, A) dy
x x’
by the second mean-value theorem; and as before this integral is
O{lei="*/A[}. Similarly for the imaginary part, and for the corre-
sponding integrals involving g,. Altogether we obtain
o, = O(gl(x+8)+g2(x+8) .
Al
Hence [ @@ dr = Ofgy(@-+8)+g:(+8)}.
larg A|>7
Since 3 can be taken arbitrarily small, this contributes 0 to the final
result.
Similarly for the other part of ®(x, A), and the theorem follows.

9.13. Combining Theorem 9.9 and Theorem 9.12, the final result
of the analysis of this chapter is

TaEOREM 9.13. Let f(y) belong to L*(0, o), and let f(y) be of bounded
variation over an tnterval including the point x. Let q(x) satisfy the
conditions stated in §9.2. Then

HI@+0)+@—0} = 3 cufn(a).

REFERENCE
Titchmarsh (10).



X
SUMMABILITY OF THE SERIES EXPANSION

10.1. It will be assumed here merely that ¢(x) is continuous and
tends steadily to infinity, but not that it satisfies the other conditions
of Chapter IX. The asymptotic formulae previously used are no
longer available, or at any rate they have not been proved under
such general conditions. Consequently it is no longer possible to
prove the convergence of the eigenfunction expansion under Fourier
conditions. We can, however, prove the following summability
theorem.

THEOREM 10.1. Let q(x) be continuous and tend steadily to tnfinity,
and let f(x) be L*(0,00). Then

o0
. v
lim .
v
v Ly +A,

for every value of x for which

Cnn(®) = f(x) (10.1.1)

n
x(n) = [ |f@+y)—=f(@)| dy = o(n) (10.1.2)
0

as n— 0. In particular (i) it holds almost everywhere, and (ii) ¢t holds
wherever f(x) s continuous.

In view of (9.1.3), this is a question of the behaviour of ®(x,A)
on the negative real axis. Putting A = —¢2, it becomes a question
of the solutions of

Y @y

dx?
for real ¢, and q(x) tending steadily to infinity. This is dealt with
in the following lemmas.

10.2. Lemma 10.2. Let Q(x) > 0 for x > x,, and let y(x) be a solu-
tion of

Y _ Quy

da?
belonging to L3(xy,00). Then y(x) and y'(x) have opposite signs, and
tend steadily to zero as x — oo.
Suppose, for example, that y(z,) > 0. Then y'(z,) < 0, or y(x)
would tend steadily to infinity, since it is convex downwards where
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it is positive. Thus y’(x) << 0 as long as y(z) > 0. But y(z) cannot
change sign; for if z, were its first zero, and y(z) << 0 for = just
greater than z,, there would be a point z,-8 such that y(z,;+8) < 0,
¥'(;+8) < 0. Hence y(x) would decrease steadily past this point,
which is impossible if it belongs to L?(z,, c).

It follows that, for z > z,, y(z) > 0 and y’(z) < 0. Hence y(z)
decreases steadily, and so tends to a limit, which must be zero if
y(x) is L% Since y"(x) > 0, y'(x) increases steadily, and so tends to
a limit, which clearly must also be zero.

10.3. Lemma 10.3. In addition to the above conditions, let Q(x) be
non-decreasing. Then, if y(z,) > 0,

y(x) < y(w,) eXP[ f {Qu)t du| (x> x,). (10.3.1)

We have for z > «,
—y'(@)y" (@) = Qly@N—y @)} = Q@oy(x){—y' (@)}
Integrating from z, to x,,
Hy (o) —y"*(@1)} = $Q(@0){y*(wo)—y2(2y)}-
Making x, - oo, and replacing z, by z, it follows that
¥3(@) = Q)y’(x).
Hence —y'()/y(x) = {Q)} (10.3.2)

Integrating from z, to z,
x

logy(zo)—logy(x) > [ {Q)} du,

and the lemma follows. -

10.4. LeMMA 10.4. Let Q(x) satisfy all the above conditions, take

xy = 0, and let
y(0)cos a+y'(0)sina = 1, (10.4.1)

where sin « 7 0 (instead of y(0) being given). Then, if Q(0) > coseca,

exp| - [ (@) du
ly(x)] < {Q(O)?*[sina]——l . (10.4.2)
By (10.4.1) and (10.3.2)

ly'(0)sin | < 14 1y(0)] < 14+{Q(0)}}|y'(0
, 1
ly'(0)] < e {0
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Also by (10.3.1) and (10.3.2)

(@) < !y(O)lexp[ - f (@)t du]
0

< YO {Q)}* exp[- [ 1@y du},
and (10.4.2) follows. ’ ’

10.5. LEMMA 10.5. Under the same conditions

2y(x)exp — (@ —2){ Q@+ 1)}*]
ly(@)| = == 1+{1+1/Q(;+1)}* . (10.5.1)

Suppose, for example, that y(z) is positive. Since Q(z) is non-
decreasing,

—y' (@)y" (@) = Q)ye}{—y' (@)} < Qy@){—y' (@)} (= < 2y).

Integrating from z to z,

Hy (@) —y ()}

< 1Q@){y (@) —y*(x0)}
< $Q(zy)y*().
Writing temporarily ¢ = {Q(,)}}, b = —y'(x,), this gives

dy\* 2.1 p2
(az) < @yt iR
Hence f J@ o) 2+ 5 —x,,
where ¥, = y(z,). Hence
Yot/ (y5+b/a?)

—Xy,

B <

y+ A/ <y2+22) {yo+ A/ (yo )}e‘“‘x‘“’\ 2y, ==,

(10.5.2)
Also, since y is positive and convex downwards,

@) <MV <o <z,

Taking " = x—1, this gives
ly'(@)] < ylx—1).
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Hence, taking z; = 241 in (10.5.2),

ve)+{ye) + L | > 2ygexpl—(@a-+ 1)z

and (10.5.1) follows.

10.6. LEMmA 10.6. Let Q(x) = t24-q(x), where q(x) is non-
decreasing and independent of t, and let y(x) satisfy the above conditions.
Then as t -

y(x) ~ y(0)e=* (10.6.1)
uniformly in any fixed range of values of x, if y(0) is given; while if
(10.4.1) holds,

—t
¢ (10.6.2)

y@) ~ T tsine’

The first result follows at once from (10.3.1) and (10.5.1).

It follows from (10.3.2), with = = 0, that |y’(0)/y(0)| tends to
infinity with ¢, and hence, if (10.4.1) holds, that y’(0) has the same
sign ag sina, if ¢ is large enough. Hence y(z) has the opposite sign
to sina. Thus the sign in (10.6.2) is correct. It will then be sufficient
to consider one case, e.g. that in which y(x) is positive.

The required upper bound for y(x) follows at once from (10.4.2).
Also (10.4.1) gives

1< [y(0)|+1y'(0)sina| < {Q(0)}~y'(0)]+ |y (0)sin o]
by (10.3.2) with = 0. Hence

ly'(0)] = (10.6.3)

1
{Q(0)}*+sina’
Also, if z; > =,

y(e)— f y'(6) dé
=¥ @) f)]"‘+f Y (E)wr—8) df

= (o) (@& —2)+ f QEW(E) @ —8) dé,

y(z) = LED—Y@) f Q) @y —8) ¢,

r,—x

()] < -’ZS’L?/—‘—«”“’Hxl—x)Q(xl)y(x).

and hence ly
xl"— x
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Now, by (10.5.1),
y(@y) = ylx)e =-2{14-0(1/t)}

if # and «, lie in a fixed interval. Hence
@) < vie)| of L+ 010t}

Taking (z; —2)¢ small and (z,—2)f? large, e.g. , = x-+t-1, we obtain

ly'(x)] < ty(@)(1+38) (8 > 1,(3))- (10.6.4)
The lower bound for y(x) implied by (10.6.2) now follows from
(10.5.1), (10.6.4), and (10.6.3).

1—e —(x1—x)

x,—x

10.7. Proof of Theorem 10.1. Since f(z) is L*(0, 00), (9.1.3) holds,
and the theorem is true if

O(z, —1%) ~ —f(z)/[t? (10.7.1)
as t - oo. Now

O, —t2) = Yl —t) [ 40, —A)f W) dy +(e, —1) [y, —)f(y) dy
0 x

Since ¢(0) = sina, ¢'(0) = —cosa, §(0) = cosa, §'(0) = sinx, and
Plx,A) = 0(z, 1) +mA)p(x, ),

we obtain (0, —t?)cos a4’ (0, —t?)sin o = 1. (10.7.2)
Suppose first that sina #% 0. By (1.7.3)
$(x) = coshatsin o+ O(e™/[t) (10.7.3)

as t - oo, uniformly in any finite z-interval; and y(x) = ¢(z, —¢?)
satisfies (10.6.2), uniformly in any finite 2-interval. Also by (10.4.2)

(@, — %) = O(e™)

for all » and sufficiently large ¢. Hence, if § > 0,
z—8 z—8

b, 1) f By, —t2)f(w) dy = { = [ 1) ldy} 0(e¥)
0
and

e~ [ bt~ dy = 0fe# [ e )] o)

z+d z+8

=ofex{ [emmay [ 1w aslt] = o,

z+8 z+3
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The remainder of ®(x, —12) can be written
z+8

f@)|pte, ) j Bl =) dy <+, =) [ —yay|4

iz, — %) f $(y, —(f)—f(@)} dy +
-8 z+d

+é(z, —2) [ Yy, —B)fy)—f(@)} dy.

The coefficient of f(z) is asymptotic to
z+8

f 1evisina dy —}e™sina f

z

-yl

1
dy = —t—2+ 0(8—&).

tsma tsin o

If (10.1.2) holds, the last term in the previous expression is
z+8

O{eﬁ f iy —f(x)ldy}

i

0[%[e-w WP+ f e-uly(u) d }

Il

N')—-‘

e=| f(w+u)—f )| du}

e—s’/t)-{—o(fe—“’u du) = o(t2).
0

Similarly for the second term; altogether
Oz, —12) = —f(@)/t2+o (t-2),

the required result. A similar argument holds in the case sina = 0,
using (1.7.5) and (10.6.1).

10.8. An alternative proof of Theorem 9.12. There is a well-
known argument in the ordinary theory of Fourier series by which
we can deduce the convergence of the Fourier series of a function
of bounded variation from its summability (C,1). If f(x) is of
bounded variation over (0, 2=), and a,, b, are its Fourier coefficients,

then
a, = 0(1), b, = 0(1)
n n
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0

The series tay+ X (a,cosnz+b, sinnx)
n=1

is summable (C,1) to the sum f(x) for each z; hence, by Hardy’s
‘Tauberian’ theorem, it also converges to f(x).

We are now in possession of the materials for a corresponding
proof of Theorem 9.12, viz. Lemma 9.11 and Theorem 10.1; but,
instead of Hardy’s Tauberian theorem, we have to use a case of
Wiener’s general Tauberian theorem.

Let a, = c, ¢,(x), so that a, = O(1/n) by Lemma 9.11. Let

8 = Hf(@+0)+f(z—0)}.
Then by Theorem 10.1
—AD(z, —A) =

//\M uMS

as A > o0. Let S(x) =
Then

SQA)+AD(x, —A) = z n(l _A':An) - z ,\(fﬁ/)\\n

Now

D] ped

A<A.<2An n A<A, <22 NQ)<Kn<N(2)\)

- o) of

by (7.6.3). Replacing A by 2A, 4A,... and adding, we obtain

2= %)

A
Similarly =2 = 0().-
éx "
Hence
S(A) = O(1).

4957 VA
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Also -0, —)) = f A_j{adsm) - f (I\—_'_%—FS(u) du.
-0 1]

Hence
. A
§ = lim f S
= li [ S(enen d
_el-rfof eEpen )7 0
. eé-n
= lim [ Ere—m)S(en) o,
eiE
where K (x) = A
Now
> . ea:—wx . —’L‘u
J Kuiereveae ) e~ j i
= F(H—W«) (1—wu) # 0,
and J‘ K (x) dx = 1.

Hence, by Wiener’s Theorem 4,}

lim L Ky(E—n)S(en) dn = S_L Ky(x) dz,

where K@ =0 (£<0), et (£>0).
Thus ¢
S = éim en-68(en) dn

x

= lim a%f S(y) dy.

0

1 N. Wiener, The Fourier Integral, pp. 73-4.

Chap. X
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Let 8 be a number between 0 and 1, independent of z. Then

14+8)S—8 e
S___(_i_;; lim < { f S(y)dy—fS(y dy]
1(1+8)a:
=g$§f8@@
“ 1(1-!-8)9::
= 7101-130 [S(x)—i—s—i f {S(y)—8(»)} dy]-
Now )
1
sS—s@ = > a,= 3 of;)
<M<y <A<y

— 0{ l} — 0{ l}
e Ao N@)<nSM(a+8)a} "
N{(l+8)x} —N(x)] _
= oM = oo
by (7.6.3), provided that -} <{ 3. Hence
1+d)x

1 1 (1+8)z

5 | Sw—s@yay =g [ oeay
X

= 0(9).

Since § is arbitrary, it follows that

lim S(z) = §S.

REFERENCES
Titchmarsh (9), (10).
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