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THE ELLIPTIC MODULAR FUNCTIONS ASSOCIATED WITH THE
ELLIPTIC NORM CURVE E'*

BT

ROSCOK WOODS

Introduction

The elliptic norm curve E' in space 5„., admits a group G^„2 of collineations

and there is a single infinity of such curves which admit the same group. A
particular £" of the family is distinguished by the coordinates of a point on a

modular curv-e, the ratios of these coordinates being elliptic modular functions

defined by the modular group congruent to identity (mod n). In the group

Ci^t there are certain involutory collineations with two 'fixed spaces. HE'
is projected from one fixed space upon the other, a family of rational curves C"

mapping the family of E"'s is obtained. The quadratic irrationality separat-

ing involutory pairs on E" involves the coordinates of a point on the modular

curve and the parameter t on a member of the family C".

Miss B. I. Millerf has discussed the elliptic norm curves for which m = 3, 4,

5. In these cases the genus of the modular group is zero and a point of the mod-

ular curve can be denoted by a value of the binary parameter t. The irration-

ality separating involutory pairs on E" was used by her to define an elliptic

parameter

(^0/
where a is the tetrahedral, octahedral, or icosahedral form. This form of u

T

is invariant under all the cogredient tranformations of t and r which leave a''

unaltered.

The cases considered by Dr. Miller are relatively simple, due to the fact that

the genus of the modular group is zero. In this paper, the case m = 7 for which

the genus is 3, one which is fairly typical of the general case, is subjected to a

* Presented to the Society, April 14, 1922.

t See these Transactions, vol. 17 (1916), p. 259.

(179)
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similar investigation. Many of the results may be extended to the case where

n is any prime number and in some features to the case where n is any odd num-

ber. By methods of geometry and group theory, we derive in this discussion the

well known elliptic modular functions attached to this group as well as some new

ones and obtain a number of their algebraic properties.* This treatment sug-

gests a number of "root functions," i. e., square roots of modular functions which

are themselves uniform.

In §1, the groups and subgroups associated with the K' are discussed and

thrown into a canonical form. The equations of the transformation from S^ to

the fixed spaces Sj, 53, and the equations of the groups of transformations in

these spaces are derived. These have been found without the aid of function

theory and have been checked with Klein's results in Klein-Fricke's Elliptische

Modulfunktionen. In §11, a single Kleinian formf is derived which furnishes the

fourteen linearly independent quadrics whose complete intersection is E''. From

this form in §111 the fundamental elliptic modular functions ti : t2 : ti are de-

termined. Also the families C"^, C of rational curves in 52 and 5,, are found. In

§IV, the loci in 53 are discussed. The paper closes with a parametric represen-

tation of £'.

I. The groups connected with E''

1 . The group G^-ii of coUineations of E^ into itself. The homogeneous coordi-

nates of a point of the eUiptic norm curve £' are Xo : Xi :•. x^ = 1 : p{u) :

p'{u) : • • : p^{u). As u runs over the period parallelogram coi, co2 the £' is

obtained in a six-dimensional space S^. It is knownj that the only birational

transformations of the general elliptic curve into itself are given by m' = ± m

-|- b, where h is any constant.! From the parametric representation of the

£' as set forth above, it is evident that seven points of the £' on a hyperplane

section are characterized by the fact that the sum of their parameters is con-

gruent to zero (mod coi, wa) and conversely. In view of this, all transformations

for which 76 =; (mod oi, C02) are coUineations. This congruence has three

irreducible solutions

(1) 6 = 0, 6 = coi/7, h = W2/7.

* In the case n = 4, Miss Miller has expressed the opinion that the properties of the elliptic

integral associated with E* and the Dycjc quartic should apply to Klein's quartic which occurs

in this case. This has not been verified.

t By a Kleinian form is meant a form in several variables invariant under isomorphic linear

groups on these variables.

% Appell-Goursat, Fonctions Algebriques, p. 474.

§Segre, Mathematische Annalen. vol. 27(1887), p. 296.

Klein-Fricke, Theorie der elliplischen Modulfunktionen, vol. 2, p. 241. Hereafter the

'initials K. F. will be used to refer to this work.
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These furnish the substitutions

5oi : m' = M + woi,

(2) Sio : m' = w + «io, (ijj = ioii/7 + /a)2/7,

V -.u' == -u, {i,j = 0, 1 6).

Soi and Sw are collineations of period seven and generate a group G-;- which is

abehan in its elements. F is a colhneation of period two which adjoined to G-ji

generates a group G2-!t. This group G2T. of collineations contains all the collin-

eations of the general E'' into itself.

The G^t in the G'2.7. contains 8 cyclic Cy's and no other subgroups. These are

denoted hy G^^Gi, . . ., Ge where G^ is generated by .Soi and G, by SioSJi {i = 0,

1, . . . , 6). The elements of G271 not in Gji are of the form

(3) Vij :u' = -u + i^ii (i, ; = 0, 1, . . . , 6),

and are of period two. The V,j form a conjugate set. Any cyclic G^ with one

involution generates a dihedral G2 7 which contains seven involutions. Hence

there are 56 dihedral G 's. These with the cyclic 6'2's complete the subgroups

of (j2 7»- The relations satisfied by the generators of G'2-72 are

\^) -'01 ~ •-'10 ~ 1'

5oi5io = SioSou VSio = -S^iol^i VSoi = SqiV.

2. The fixed heptahedra of the 8 cyclic Gi's. The condition that a hyperplane

section touch the £' in seven coincident points is given by

(5) 7m S5 (mod 0)1,0)2).

The irreducible solutions of this congruence furnish the 49 parameters coy of the

singular points. Under Gx the 49 points w^y separate into 7 sets of seven con-

jugate points such that each set is on a hyperplane. Such a set of seven hyper-

planes will be called a heptahedron. Since there are 8 cyclic G{s, there are 8

heptahedra which will be designated by Hx, Ho, . . ., Hg.*

The 49 singular points are now arranged in a matrix (using only the subscripts)

in such a way that the rows furnish the 7 sets of conjugate points which deter-

mine the 7 hyperplanes of Hx, while the columns furnish the 7 hyperplanes of

/30>

* The reason for calling one heptahedron Hx. will appear later. These heptahedra can be

determined from the resolvent equation of the 8th degree associated with the Galois problem
of degree 168. Compare K. F., vol. 1, p. 732.
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00 01 02 03 04 05 06

10 11 12 13 14 15 16

20 21 22 23 24 25 26

30 31 32 33 34 35 36

40 41 42 43 44 45 46

50 51 52 53 54 55 56

«0 61 62 63 64 65 66

[March

Each row of this matrix is transformed into itself by Co,, each column into

itself by Gn. Further the seven hyperplanes of each heptahedron are linearly

independent. Let us prove this for Gaa- If the seven hyperplanes Xi are not

independent, there is a relation among them involving 7 — ^ of these X's such

that these 1 — k X's Ao not satisfy further relations. Then the 7 — )fe X's in

this relation are all fixed under G^ and meet in an 5^ which is also fixed under

Goo. Hence &<» permutes the Ss's on the fixed S^ in such a way that 1 — k oi

the Ss's are fixed. Therefore by projection from 5^ upon an 5b_^, we should

have in Si_k 7 — k fixed spaces no. 6 — k oi which were related. But such a

collineation is the identity in Sb-*- Hence every Sb on 5^ is fixed, contrary to

the fact that Gx has only a finite number 7 of fixed spaces.

3. A canonical form of the G2T- Let then the heptahedron //ac withhnearly

independent faces be chosen as a reference figure and denote these faces by JY,

(t = 0, 1, . . ., 6).* These are determined by the rows of the matrix (6). The

reference figure is- completed by choosing a unit-hyperplane. This hyperplane

will be chosen as the one containing the singular points of the first column of the

matrix (6).

In terms of the coordinates thus defined the generators of the G^-p of collinea-

tions of the K' into itself have the form

(7)

Soi : Xi — Xi^i
Sio ' Xi = e Xi

V:X'i = X_,

iX, + i^Xi)
{i = 0,1, .... 6)

(X_i = X,_i)

where « is a seventh root of unity. The formulas (7) constitute a first canonical

form of Gj.yi.

4. The family of £''s. The curve E'' depends upon the ratio co = coi/toa.

For each value of co, there is an £', hence there is a family F of E'^'s. But the

* Xi is written instead of Xi{u). The X, can be represented as the products of sigma

functions, i. e.,

ny
= 6

i = a {u- wii)

where the a,- are constants which insure the double periodicity of the ratios Xi. Compare K.
F., vol. 2, p. 238.
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group Gjvi of colUneations is the same for each member of the family F since its

coefficients are numbers independent of the ratio «. For each curve of F the

set of 8 heptahedra is the same, since the heptahedra are determined by their

common 63. 72.

All colUneations which leave each member of F unaltered have been deter-

mined. If there are further colUneations which interchange the members of F,

they must arise from integer period transformations of determinant + 1 . Con-

sider then the transformation

(8) ' IS aS — /37 = 1
^ ' Oi2 = 70)1 + OW2

where a, 0, 7, S are integers. The curve as first expressed in terms of p{u) and

its derivatives is unaltered by (8). In the new reference system the curve and

each Wij are unaltered if (8) is congruent to identity (mod 7) . On the other hand

if (8) is not congruent to identity (mod 7), the w,^ are permuted and we may

look upon this operation either as merely a change in the coordinate system in

which the curve is fixed or as a colUneation in which the reference system is fixed

and the E'' passes into a new curve which belongs to F. Therefore all trans-

formations (8) which are congruent to identity (mod 7) give rise to the identical

colUneation. These transformations constitute a subgroup of (8) of index 2- 168.

All elements of (8) in a coset of this subgroup give rise to a colUneation which

-1

-1
which is the element V.permutes the curves of F except the element

Hence there are 2-168/2 or 168 colUneations which interchange the members of

F* These colUneations may be represented by the elements of (8) reduced

modulo 7, that is

(9)
0,; = acoi + /3a„

«5 - ^7 - 1 (mod 7).

It is well known that any transformation of the group (8) is a combination of

the transformations

(10) 5:o)' = o> + l T:oi'=-l/o}.

where 5 is of period 7 and T is of period 2 when reduced modulo 7. Since

r» = 5' = (ST)^ = (5*7)* = It, these relations define a Gm of colUneations

on the reduced periods which permutes the members of the family F- There-

fore we have the following theorem

:

SeeK. F.. vol. l,P-398.

tit should be noted that in homogeneaus form, T is of period 4, (S*T) \s of period 8. Hence

V and T^ are the same- Compare Dickson, Linear Groups, p. 303.
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Theorem I. The family F of elliptic E'''s, each member of which is unaltered by

G2.T1, is unaltered as a whole by a collineation group G'2-7=-i68 for which 6^2-7! *^ <^**

invariant subgroup. Under the group of F each curve belongs to a conjugate set of

168 curves.*

The collineation T permutes the Hf (i = 00 , 0, 1, . .
.

, 6) as follows: ( 00 0),

(16), (25), (34), where the subscripts only are used. The collineation S permutes

the Hi (i = 0, 1, . . ., 6) cyclically and leaves Hx invariant. Under the group

(8) the Hj are permuted like the 8 points 00 , 0, 1, . . ., 6 in a finite geometry

modulo 7, there being 8 points on a line.

The equations of the coUineations S and T in terms of A', aref

(11)

S :X'i = e-'Va X<

T -.X'i = cJ^e'^X^ (i ^0,1, ...,6).
p = o

5. The fixed spaces. In G2-7». the 7^ involutions Vjj {i,j = 0,l,..., 6) have

the form u' = —u + lOfj. The fixed points of these involutions are u ^ w<^/2

+ P/2 where P/2 can evidently have the values 0, a)i/2, 0)2/2, and (wi + co2)/2.

We consider the simplest set, i. e., the set for which i = j = 0.

Due to the involutory character of V, there are two skew spaces of fixed points

in Si, an Si and an 53. If the coordinates of these fixed spaces be denoted by

y,-,and Zj (z = 0, 1, 2, 4; / = 1, 2, 4) respectively, the equations of the trans-

formation from the coordinates Xi to those of y and z are

Xa = yo,

Xi + X, = 2yi, Xi-X, = 2zi.
^'^''^

X2 + X, = 2y2, X2- X, = 2z2,

Xi+.Xz = 2yi, Xi- X3 = 2z4.

In terms of y and z, V now has the form

(13) y'i = Vi, z] = - Zj (i = 0, 1, 2, 4; ; = 1, 2, 4).

In (12), j'j = determine the 52 of fixed points and Zj = determine the S3 of

fixed points. The fixed Si's are either on S2 with equations aojo + onyi + a2j'2

+ atyt = or on S3 with equations fiiZi + PiZi + fiiZi = 0. The as may be

determined by putting the 55 on Mi, Ui, Ug, three arbitrary points on E'', so that

necessarily this S^ ciits E'' in the points —Ui, — M2, — M3. Therefore the S^ con-

tains the point u = 0, but no proper half period point. Hence all the fixed

S5's on the 52 and therefore 52 itself, contain the point u = but no proper

• See K. P., vol. 1, p. 398.

t Compare K. P., vol. 2, p. 292. The formula for 5 is compatible with Klein's for w a

prime number. As we deal with coUineations in homogeneous forms we do not need to keep

c of the K. P. formula; it is therefore dropped in the remamder of the work.
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half period point. Therefore S3 contains the proper half period points since

. they are also fixed points.

The family F of £''s projected from the fixed 52 upon the fixed S^ becomes a

family Fi of rational cubics doubly covered, since the pairs (=*=«) corresponding

under V each project into the same point. In a similar manner, by projection

from 53 upon S2, F becomes a family F2 of conies doubly covered.

It is my purpose to discuss the families Fi, F2, for which the curves in each

family will vary with co whereas the points on a particular curve will vary with

the pairs (* m) on the original F'. The ^2 yj-ies has now reduced to a Gus in

52 and 53 which leaves Fi and F2 invariant. This Gies is generated by 5 and T
whose equations are easily found to be

S : !' _ ^72,
' a = 0, 1, 2, 4; ; = 1, 2, 4)

(14)

T

Zj = €•" Zi

y'i = yo + Zi («'' + *"'•'')

yj {i = 0, 1, 2, 4)

^* = E, (^'* - *"'*)
'i ^'' k, I =1,2, 4).

Formulas (12), (13) and (14) constitute a second canonical system of coordinates

for £'.

II. The quadrics on F^

1. The pencil of quadrics on F'. Hermite has shown that the number of lin-

early independent quadrics on F' is fourteen. These fourteen quadrics cut out

the F' completely with no extraneous intersection.* In the second system of

coordinates a general quadric has the form

6

(15) 9. = X;«.* ^.^* = 0'

where a,fe are constants. Let us suppose that the Ujk are so determined that

the quadric contains the curve F'. Under the collineation 5io, F^ is transformed

into itself. Hence the quadric (15) is transformed into a quadric on.F'. The

transforms of q, under Sw are of the form

(16) qj = J2 «'*
*''"^*^ ^•^'* = 0' = 0, 1, . .

. ,
6).

Since each Qj is on F', a linear combination of them will be on the curve. Mul-

tiplying each qj by unity and adding we obtain a particular quadric Qo on F'

characterized by the fact that it consists only of those terms for which i + fe =
(mod 7). Using the multipHers 1, «^ e', e', «', t*, t^, respectively, we obtain a

Compare K. F., vol. 2, p. 245.
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second particular quadric Qi on £' characterized by the fact that it consists only

of those terms for which i + k ^ I (mod 7) . Proceeding in this way we obtain

7 particular quadrics on £'. They are

(17) Qi = a,o^? + 2a,-,Xi+jX.-_, + 2a,2 X,+2X,_2 + 2a,4Xi+4X,-4

= (i = 0, 1, . . . , 6).

Any quadric on the curve E'' is a linear combination of the Q's, since the seven

Q's contain as yet 28 arbitrary coefficients. But since each Q,- is sent into

Qi+i by 5oi, these 28 coefficients reduce to four, i. e., ao, ai, a^, 014. From these

seven Q's, we know that we must be able to get the 14 linearly independent quad-

rics on the E'. The as therefore must contain a parameter linearly and there

will be one quadric of the type Q, for which a particular a will vanish.* At

most, then, a pencil can arise from the four terms of each Q^. Any one of these

seven pencils is defined by the fact that it admits one of the seven dihedral

G'2.7's whose cyclic subgroup is 5io. For example Qo admits the dihedral (5ioV').

Since the a's contain a parameter linearly, they may be interpreted as the

coordinates of a point on a hne in an S3. By choosing two members from the

pencil of quadrics, the line is determined. We shall determine the a's later as

functions of w and the parameter just mentioned.

2. The group on the quadrics. Under (72.72 each member of the family F of

JS^'s is transformed into itself and the quadrics on each curve are transformed

into quadrics on that curve, so that a group of collineations is induced upon the

Qi as variables. Moreover since 5 and T interchange the members of the 168

sets of conjugate curves, they will send the quadrics on a given curve into a linear

combination of the quadrics on the transformed curve. If we indicate the group

Cg.yj.ies on the X/s in (7) and (11) by ^(e), then the induced group on the quad-

rics Qi is G'(e^).

In order to express all the quadrics (17) by one equation, consider the general

quadric obtained by taking a linear combination of them. Such a quadric has

the form.

(18) J2 ^'<^' = 0'

1-0

where the L, are arbitrary constants. On a given curve of F determined by a

proper set of values of a,- {i = 0, 1, 2, 4), the bilinear form (18) is an identity in

L and u. If we require that this bilinear form be an invariant under G'(e^), there

will be a certain group induced upon the L, as variables. This group on the

variables L, is G"(«~*).

* Compare K. F., vol. 2, p. 268. Klein obtained the quadrics on the elliptic curves from

the three-term sigma relation.



1922] ELLIPTIC MODULAR FUNCTIONS 187

3. A Kleinian form. Since the properties of the groups on the L, and (?, are

the same as those on the A',, we isolate one of the involutions in the Lj, (?, groups,

i. e., that one induced by V which was isolated in the A', group. We introduce

the variables v and u, f and d with Q, and L„ respectively, as y and z were intro-

duced with the X,. The equations of the transformations from Q; and L, to

V, u, f and t? can be written down as were those for y and z. After this change

of variables, (18) has the form

F' = fo[ao/o + 2aiyl + 2aiyl + 2a,y\ - 2aiz\ - 2c^\ - 2a^\\

+ 2 filotoT? 4- 2ajyp>'2 + 2a^\y^ + 2(Myi.y\ + a^\ + 2ai^\Z^ — 2042224]

+ 2 fsiaoj-j + 2aiyyyx + 2aj>'o3'4 + 2 0L^\yi~2 aiZ-fit, + ooZj + 20421*]

(19) +2 f4[ao>'4 + 2axyiyt. + 2atyxyi. + 2<my^y\ + 2ai2s24 - 2aiiZi28 + 0024 ]

+ 4 t>i [ac>'i2i + «ijo22 — <»i{y\Zt. + J'42.) + a4(3'224 — ^422) ]

+ 4 ty2[ao>'222 + ai()'42i — ^'124) + aiy^x — <x^{y\Zi, + j'221)]

+ 4 i>4 [aoV424 — q:i(>'224 + >'422) + a2(>'i22 — J'22i) + a\y^^ - 0.

On E' the above form is an identity in f, 1? and can be separated into seven

parts. However we shall have occasion to separate it into two parts, P\ and Pz,

such that the part P\ contains the coefficients f and the part Pj the coefficients

I?. The part P\ is partly symmetrical and partly alternating in the coefficients

a and f , hence the f 's can be interpreted as the coordinates of a point on a line in

an 53 and are therefore cogredient to the as. Hence we may conclude this

section with the theorem

Theorem II. F' is a Kleinian form which remains invariant under the simul-

taneous transformation by the isomorphic groups M{t) of (14) on the variables y
and 2; M(«~2) on the variables f and a and tJ. The form F' determines the curve

E' uniquely when the modular functions a are properly given, i. e., subject to the

relation which connects their ratios.

III. The INTERPRETATION OF THE FORM F'

1, Its fundamental elliptic modular fuQctions. Each curve of the family F has

on it the point whose parameter is m = 0. As w = &)i/w2 varies this zero point

generates a locus. It has already been pointed out that the zero point is in the

space 52 of fixed points, i. e., when m = all the y's vanish. Let 2, = ti (i =

1, 2, 4) for M = 0; then F' in (19) reduces to

(20)

ro[0 - 2 ait\ - 2 a^l - 2 a^tl]

+ 2 fi[ao/5 -0 + 2 Oititi - 2 04*2/4]

+ 2 tiWotl - 2 aititi -0 + 2 04*1/2]

+ 2.UaQtl + 2 aititi - 2 attitt - 0] sO.
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Since (20) is an identity in the fj, their coefficients must vanish. These coeffi-

cients are hnear in the a's.all of which do not vanish simultaneously, therefore

the determinant of the as must vanish. After removing numerical factors,

we find a skew-symmetric determinant of even order. This determinant is a

perfect square.* It furnishes in variables ti Klein's quartic, which is denoted

as follows

:

(21) K = t\t2 + tlu + Ah = 0.

K is the equation of the locus of the zero point of the family of £''s and admits a

group des of collineations into itself, cogredient to the group in z in (14). The

ratios ti -.ti : U are the fundamental elliptic modular functions of the form F'.

The expressions for these ratios as uniform functions of the modulus co may be

obtained by setting m = in the expressions for the z's in terms of u, oji, co2.

as indicated.

Since the curve £' varies with co, and since each £' possesses a zero point, i. e.,

a point t which is on K, it is clear that the variation of £' with w may be imaged

by the variation of / on K. We shall express other elliptic modular functions

associated with the family of £''s in terms of the <,-.

2. The null-system. The form in (20) is a null-system, since it can be written

in the form

(22) {aoh)t\ + («or2)'2 + {<^<iU)t\ + 2(a4f2)ii<2 + 2{a,U)hU + 2iaiti)kh = 0,

where (a.ffc) = a,f^ — a^f,. Since (20) vanishes independently of the

f's it represents a singular null-system.] Hence (22) is the equation of a line

whose coordinates may be taken as

(aofi) = + 2 titi, {aiU) = t\,

(23) {aoh) = + 2 titi, (aif4) = tl,

{ot^U) = + 2 tA, {aiU) = tl

where a. is clearly a point on a line. Since the coordinates of the line of the as

are functions of t, we shall call it the modular line and denote it by L„. The

intersection of the coordinate planes of the reference tetrahedron in the space of

the as, an 5'"', with L„ furnishes four convenient sets of values of the a's, which

substituted in F' give rise to the 28 quadrics on £', of which only 14 are linearly

independent, since any two sets of the a's are linear combinations of the remain-

ing two sets. These sets of values are

* Burnside and Panton, Theory of Equations, vol. 2, p. 46.

t See Veblen and Young, Projective Geometry, vol. 1, p. 324.
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(24) ao : ai : at : Ui ==

2t3U

2tth

-2hh -2hh :

+t\ :

-tl :

tl -tl :

-2hU
*5

The sets (24) suggest that we make a transformation on the as in F' . Let

f be a plane such that it intersects L„ in the point a. From (24) we find this

transformation to be

(25)

ao = + 2<i<j?i + 2hUh. + 2Wi|4.

ai = -2hhh + - t% + t%,

ai = -2^2/4^0 + ^4^1 +
a4 = -2Wi^, - t\^x + i\h. +0.

<?«4,

If F' is transformed by (25), it will take the form

(26) Y. ^i ^i *'> +E ^' '^' '^^^ = (''• ^' = 0, 1, 2, 4 ; / = 1, 2, 4).

The 28 quadrics on the curve £', of which naturally only 14 are linearly inde-

pendent, are found by equating to zero the coefficients of the terms f^ f, and

^, t?j respectively, i. e., the ^^j and (^,j. We shall have occasion to use all of

these quadrics, but will refer to them briefly in the above notation.

3. The rational curves in 52 and 53. We have seen that a and f are cogredient

variables and that P\ is partly alternating and partly symmetrical in a and f

.

We now rewrite P\ so as to exhibit this property. It has the form

(27) aofoJo + 4^a,fiyoy2 + 2^(aofi + OL^K^y\ + 4^(a2r4 + ot^^yxj-i

+ 22(aori)25 + 4^(a4f2) 21^2 = 0,

where 2, unless otherwise denoted, refers to the cyclic advance of the subscripts

1, 2, 4. This form furnishes the means by which the projections of the family

F of £''s upon the fixed spaces 52 and 53 are found. The second part Pi, bilinear

in y and 2, does not enter in these projections, since it vanishes when either

space is considered separately.

Since f is perfectly arbitrary, consider it on the modular line L„. Now in-

terchange a and f in (27). The new form is similar to the old except that the

sign of each term in z is changed. Denote the transformed P\ by Pj. Since

Pi in (27) is a quadric on K' and since we consider f on L„, Pi is also a quadric

on K'. Whence their sum Pi \- Pi and their difference Pi — Pi are quadrics

on £'. Consider the former;

(28) a^Uyl + 4^a,f,yo3'2 + 2^(aori + aifo)y' + 4^(a2r4 + "if2)j'iJ'2 = 0.
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The equation (28) for arbitrary a and f on L„ furnishes a system of quadrics in

53 which intersect in a cubic curve. From the symmetry of a and f in (28),

we lose no generahty by setting a, » f,. We then have

(29) alyl + 4 ^alyoyt + 4 ^aoaiyl + 8 Y^aiUiyiyt = 0.

Since a is linear in a parameter X on L„, (29) furnishes a system of quadrics

quadratic in X. The coefficients of this quadratic system of quadrics ar« func-

tions of t, so that as t varies on K, we get a family Fi of cubic curves C in 5s.

Hence we may state the following theorem

:

(30) Theorem III. The projection C^ of the curve E'' upon S3 is the base curve

of the quadratic system of quadrics (29)

.

Consider now the difference Pi — Pi. This is a conic in Si. It has the

form

(31) Y^iMiVi + 2 Y,{a,U)ziZ2 = 0,

which from (23) may be written as follows

:

(32) Y)^UA + Y/\z^Zi = 0.

This shows that the system of conies varies with t on K. It is the polar conic of

AT as to 2. Hence the theorem

:

(33) Theorem IV. The projection C^ of the family F of E'''s upon S2 is the sys-

tem of polar conies of Klein's quartic K.

4. The net of quadrics in S3 ["'. The quadric in (29) will be the square of a

plane when the rank of its discriminant is 1. Its discriminant is of rank 1 if

only the three relations

(34) aaci2 — a\ = 0, ooUi — aj = 0, ooai — a| = 0,

are satisfied.

Consider now the net of quadrics

(35) tiiomai — al) + tiiaoUi — a]) + ti{aoai — a|) = 0.

From the transformations S and T in (14) we conclude that (35) is a Kleinian

form.

The discriminant of the net (35) is K. Hence so long as t is on K, the quadric

(35) has a double point. If we border the discriminant (35) with variables J

and expand, we find the equation of this double point to be

(36) iaiY = £HW4 +X) (-'!'<«'4) ??+£ (2,«D(2&.fi)+X; (2 <!0(2fife) '0.
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Therefore the coordinates of the double-point are

(37)

pao= "^4/1/2*4 2tittU

tA

tA

tit, :

t%

pai = ^-tl-tlh tit.

pa,= ^-tl-tlti tlti

pa,= <-t\-t% -tl- tit.

where p is 1, ao, «i, aj, ««, respectively. That is to say, we can express the entire

system (37) rationally and without extraneous factors by giving the ten quadratic

combinations of the as. These combinations are the coefficients of the terms

^, i, in (36).

The order of the linear modular group in the space of the ^''s and as is double

the order of the group* in the space of the z's, that is, the group is a (72.168, due to

the fact that the identical coUineation appears in the form Ji = =*= y,- Hence

the coordinates of a modular-point or plane in Sz^"' and likewise in Si cannot be

expressed rationally in terms of the t, without an extraneous factor. The coordi-

nates may however be expressed irrationally in terms of t as above, and it is to

be noted that their ratios are uniform functions of co.

A number of such modular root functions are suggested by the geometry of

the system of cubic curves C^ in Sj. Thus the locus of the zero point on the

curves C, the locus of the plane of the half period points, the locus of the point

where the tangent at the zero point meets the half period plane, as well as the

transforms of these points and planes in the null-system of C^, give rise to func-

tions of this type. Some of these are determined later.

The locus of the double point (36) as t varies on 7v is a well known space curve

J of order 6 in 53^"\t whose points are in a one-to-one correspondence with the

points of K. If we border the discriminant of (35) with ^ and tj, which are to

be thought of as parameters, we have 00 ' curves of the third order in t which

intersect K in 12 points' which correspond to the 12 meets of the planes ^, r]

with J. Hence when ^ = v the cubic in t will be a contact cubic of K. Thus

the system (36) for variable J is a system of contact curves of the third order

associated with J. {

5. The modular line and spread . If a point y be taken on /, a quadric of the

net (35) has a node at y and the polar plane of this point as to this quadric van-

ishes, while the polar planes of the other two quadrics meet in a line. Take the

coordinates of the point y on 7 as those in the second column of (37) . The three

* Compare K. F., vol. 2, p. 313.

t Compare Snyder and Sisam, Analytic Geometry of Space, p. 168.

i See K. F., vol. 1, p. 716.
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polar planes of this point as to the quadrics in the net (35) are in a pencil, and

have the form

aot\ — + 2 02^1^4 — 2 04/2^4 = 0,

(38) aoil - 2 aihh -0 + 2 04^1/2 = 0,

aotl + 2 ai;2/4 - 2 aihk -0 = 0.

The axis of the pencil of planes (38) is the modular line L„. Every point on

L„ is in a one-to-one correspondence with the point y on /. Since the coordi-

nates of L„ and of the point 5' on 7 are functions of t, the variation of y and of

L„ also may be imaged by the variation of t on K. Hence as y generates /,

L„ generates a ruled surface of order 8. ThatM is of order 8 may be shown as

follows. The condition that a line / meet L„ is a linear condition on their

coordinates, or a conic in t. This conic in t meets K in 8 points to each of which

there corresponds a meet of / and M, whenceM is of order 8.

Let us now consider the general quadric Q in the net (35), and put on it the

condition that it have a node. The four partial derivatives ()Q/bai must then

vanish simultaneously. These are

+ ai^4 + aiti. + a4^2 = 0,

/oq\ «oi4 — 2ai<2 = 0,

^ '' aotl - 2a2/4 = 0,

aati — 204^1 = 0.

The discriminant of these equations is K. If we eliminate t from the equations

(39), we find four cubic surfaces on each of which is /. Hence their common

intersection is J. The equations of these are obtained from the vanishing of

the third order determinants in the matrix of the equations (39). They are

(40)

5i = ao — 8 aia2a4 = 0,

52 = ao«4 + 2 aortj + 4 aial = 0,

53 = alai + 2 aoal + 4 a^al = 0,

54 = ala2 + 2 aoa\ + 4 atal = 0.

The modular spread M multiplied by ao is the following combination of 5

in (40)

:

(41) Si - 8 S2S3S, = aoM = 0.

From this result it is evident that J is a triple curve on M. Further, it can be

shown that through every point of J there pass three trisecants of J and that L„

itself is a trisecant of J*
This section can be partially summarized in the following theorem

:

* The equation of M and the facts concerning J are easily obtained from a Cremona trans-

formation of the third order.
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Theorem V. Through every paint a ( = ao, a,, a^, Ui) on the octavic ruled surface

M there passes a line L„ and the pencil of points a on L„ set in the form F' de-

termines the quadrics on the curve E''. As the line L„ varies on M, the E'' varies

in the family F. The line L„ {itself a trisecant of f) meets the triple curve f on

M in three points which correspond to the three trisecants of J that meet in a point t

of J. Thus the points t of J are in a one-to-one correspondence with the curves of

the family of E'''s.

This completes the determination of the coefficients a of the quadrics F'

which define the curve E''.

IV. The loci IN 53

1. The net of quadrics in S3. In (35) a net of quadrics in Ss^"^ was considered.

The modular line L„ and the modular spread were associated with this net.

Consider now a similar net of quadrics in plane coordinates U in S3, and let us

find the condition that this net have a double plane. From the contragredient

transformations S and T on the y's in (14)*, we conclude that the following net

is a Kleinian form

:

(42) ti{2 UoUi - V\) + <2(2 C7o[/2 - C/D + «4(2 C/of/4 - C/^ = 0.

The discriminant of this net is K. The bordered form of the discriminant is

the square of a plane in point coordinates, i.e.,

(43) tM,y\ + X) (- '2 - hi'^yl + 2 X) i\hym + 2 X) ^Ay^y^ = o.

So long as t is on K, the coordinates of the double plane (43) are

pUo=^ tititi

(44) pUi = < -tl-t^i:

pU2='^-t\-t4\

pU,=<-t\-t,tl

: tit^ti tlh tlh :

: tit. -tl-tA tA

: tit. t,tl .-tl-tA:

: Hh : t\u : tA :

nil,

th

t i^

— t^— t t^

where p is 1, Ug, Ui, U2, U4, respectively. As in (37), we may express the entire

system in (44) by taking the 10 quadratic combinations of the L'''s from (43).

The remarks following (37) apply here. The plane coordinates U, taken from

the second column of (44) are the modular systems Ay developed by Klein.

f

With the net (42) there will be a modular line L„, four cubic surfaces 5,', a

modular surface M' and a sextic f. The coordinates of L^ can be developed

• See K. F., vol. 1, p. 719.

t See K. F., vol. 1, p. 719.
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in a manner similar to that used in finding those of L„ as the axis of the pencil

of planes (38). They are

(UoU{) = Uh, iU,U\) = tl

(45) iUoUl) = hh. {U,U'^ = t\,

To every position of the plane (Uy) = in (43) we have a line L^ whose

coordinates are given in (45). Since the coefficients of the plane (Uy) = and

L^ are functions of /, the variation of the plane (Uy) and L^ also may be im-

aged as the variation of t on K. It should be noted that the space of the a's is

different from the space of the y's. Hence the modular lines L„, L^; the

curves J, J'; the spreads M, M'; and the cubic surfaces 5,-, 5< are all distinct.

2. Theplaneof the half period points. For the three half period points, the

z's all vanish. If in the 14 linearly independent quadrics on £' we set the z's all

zero, we then obtain 8 quadrics in y (since 6 of the 14 quadrics are bilinear in

y and z and vanish for z set equal zero). These 8 quadrics must pass through

the half period points. If we call the plane of these points {Uy), then we should

be able to obtain from these 8 quadrics the four combinations yi{Uy) {i = 0,

1, 2, 4). The combinations furnishing these types of quadrics come from the

systems

tit^<i>i2 + tit2ti<i)H — tit^chi ~ ilh'hi + t2i^4>^Q = 0,

(46)* tl<l>il + h<i>n - /4<^04 = 0,

hfi>\i + U4>^ — t\4>m = 0,

U^i + <l<^04 ~ ^2002 = 0.

The common factor {Uy) obtained from these equations (46) when the s's

are zero is precisely the plane

(47) {Uy) = hUityo + t\t^i + tit^2 + tlt^y^ = 0,

whose square appeared in (43) . Hence the coordinates of the half period plane

are the modular functions set forth in (44).

Since the half period plane is of the form S a^yi = (i = 0, 1, 2, 4), and

since it may be considered as an S^ in Se, it contains the point u — Q and three

pairs of points ( =*= w) on £', since the three pairs are sufficient to determine the

a's. It is therefore a fixed 56 on the fixed 52. Since the pairs (=»= m) are the

half period points, they are coincident points in 56, hence the half period plane

(47) considered as an S^ is a tritangent hyperplane of E^, tangent at the points

oii/2, C02/2 and (wi + co2)/2 and passing through the point m = 0.

* We draw from the entire system of quadrics 00(16 in number) for convenience. These

4>ii are the coefficients of the terms {i{,- in F' after the transformation in (25).
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Let us now consider the systems of quadrics in (46) with the z's different

from zero. These expressed in terms of y and z are

iiyo(Uy) = + 2t,tlz^ (41) + (- 2lit^iZi - 2tlUz,) (12),

(48) iiyiiUy) = - tlUz^ (12) + (tlt,z^ - t%z,) (41),

txy^iUy) = - t\t,z, (24) + {tlhz, - tlt,z,) (12),

kytiUy) = - t]t^^ (41) + {t\t2Zi - ilt.z,) (24),

where (ik) = /,Zt — i^z,-. Each of the above quadrics vanishes for Z; = /,, that

is each conic on the right in (48) intersects the polar conic C in the zero point.

The three remaining variable intersections of these conies and the polar conic

correspond to the intersection of the plane («,>',) = and the curve C^ in S3.

Hence the system of quadrics (48) give a parametric representation of the curve

C To each z in (48) there is a definite point y in Ss except at the base point of

the system z, = /,-. This representation can be put in a simpler form if we

multiply the quadrics in (48) by tit^, so that each quadric on the left has the

common factor tihU{Uy), which may be dropped, leaving the parametric repre-

sentation of the curve C as follows

:

j-o = p[+ 2t\f^^ (41) + (- 2 i\t\u Zj - 2/i/^/4Z,) (12)],

(49) yi = p[- tAtA^A (12) + ihtlUz^ - t\tlzd (41)],

:V2 = P[- htlh^i (24) + {ht\t,z^ - tlt\zi) (12)],

y4 = P[- Ut\t^z^ (41) + {Ut\t^, - tltlz,) (24)].

Hence the doubled C^ in S2 is mapped upon the doubled C in the fixed Sz by means

of the equations in (49)

.

3. The locus of the zero point in S^. In S2 we find K as the locus of the zero

point. Each curve of the system C^ has one such point, which generates A' by

the variation of w. Each curve of the system C has on it the zero point. What
is the equation of its locus? Since z,- = /,• is the base point of the mapping sys-

tem which maps C^ upon C^ all the >''s vanish at this point, but as z approaches

t the limiting position Of the direction is that of the tangent to the polar conic

C^ at z, = ti- If the factors {ik) in (49) are replaced by the coordinates of the

tangent to the polar conic at the point z^ = i,-, and if we set z, = <,• in the other

factors, the y's do not vanish, and become nonic functions of t which have a

common factor ^1/2^4. However, a much simpler way to get this parametric

representation of the locus of the zero point in St is to solve the bilinearforms <^'oi

= <^'o2 = <^'o4 = for 3/,, and put z,- = /, in the result, from which the factor

tititA can be removed. These equations are:

j'o = - l^t\tltl

(50) y, = t\t\ - dt\tl - 5t,tlti

y^ = t\t\ - Ztlt\ - bt^t\t\,

J'4 = t\t\ - Ztlt\ - dtfitl
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These equations map the locus of the zero point in 52 upon a locus in the space

of the j-'s. The order of this locus is 18, for a plane section {U'y) = gives a

sextic in t which intersects K in 24 points, but we find that this variable sextic

and K have 6 fixed intersections at the flex points tj = 1^ = and consequently

IS variable ones. Hence the locus of the zero point in S3 is a curve of order 18 and

will be denoted by C*.

It has already been pointed out that the order of the group of the y's is double

the order of the group of the z's and that to express a form in y and z covariantly

its points and planes in S3 must appear squared. This C* can evidently be rep-

resented covariantly if we take the 10 quadratic combinations of the y's from

the equations (50) from which we can eliminate the factor tlt2t^ and thereby

eliminate the fixed intersections each taken twice, and if we take in primed

variables the corresponding quadratic combinations of the U's as the coefi5cients

of these quadratic combinations of the y's. This form is

(51) fit", t') = 0,

and is of the third order in t', and of the ninth order in /. The number of var-

iable points in which this nonic intersects K is 36, which is double the order of

C"'^ since its points appear squared in (51). U t = t' in (51) we find a form

of order 12 which is K^ + 16//^, where H is the Hessian of K. We can then

say that the form (51) is the third polar of K^ + 16//^ plus covariant terms con-

taining the line co5rdinates tt'. To obtain these further terms one would make

use of the complete system of invariants and covariants of K which has been

calculated and tabulated by Gordan.*

4. Summary. The results obtained may be briefly summarized. The well

known elliptic modular functions associated with the elliptic norm curve £' and

the algebraic relations connecting them have been readily found from the

geometric point of view. The system of contact cubics in (37), the coordinates

of the modular lines L„ and L^ and the parametric representation of the locus

of the zero point in S3 are new types of functions. The system of modular func-

tions By (in Klein's notation)! which define a curve of order 14 has not been

found.

If a pair of points in the involution on the curve E'' is isolated, the quadratic

irrationality associated with the curve £' is obtained. This irrationality can

be obtained from the system y,- in (44). If we substitute the values of these

yi in any of the quadrics (19) (except those bilinear in y and z), p is obtained as

the square root of the reciprocal of a conic g(<*, z^). This conic has the form

(52) g{i\ z^) = z]{2titlti + t%tl) + zl{2tMt) + zlit%ti) + zMt\tlt4

- 2tltl) + Zi?i{- 4tltl - tlti) - ZiZi{3tltl),

Mathematische Annalen, vol. 17 (1880), pp. 217, 359.

t See K. F., vol. 2, p. 396-397.
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and constitutes the part in 2 of a quadric on the curve £' whose part in y is the

square of the half period plane (47).* We can now write down the parametric

representation of the curve £'. It is

y^ = ^ 2tY^^ (41) - {2tY4^z^ + 2t^AU^^ (12),

y[ = - i,t\hz, (12) + (/,4^z, - t\fifi^) (41),

^2 = - '2^4/1^1 (24) + {U\t^z^ - t\e^z^ (12),

(53) y\= - tAhz^ (41) + {iAt^, - tlt\z,) (24),

z[ = zitxhh<g{f\z^,

z'i = ZititoMylgjt*, z^,

z'i = ^Jltik^lgit^ z^).

If < is on iC the above system maps the doubled C upon the E''. It should be

noted that the y's vanish for z, = /, and the z's vanish when 2 is on a half period

point, t

• Professor Sharpe of Cornell pointed out this fact to me, as well as a method of eliminat-

ing an extraneous factor Ukh from the parametric representation of the curve E'. I append
the method in a foot note at the end of the paper.

t All the terms in y; contain the factor IMt except one term in yo *nd this term contains

a Zi. If we now find the intersection of the pencil of lines through the point /, Xi(42) -f- Xj(14)

= and the polar conic C^, we get the following values for zi

:

21 = X?(-2<5fe-«?) +>-ltihk-3tl + /4X1X2,

Z2 = \ititl + \l{-2tlu-tl)-{2tit2 + tl)\i\2,

Zi = ^ihhh + X2'2'4 h + '4X1X2.

Hence when these values are put in (53) the factor tMt can be removed.

University op Illinois,

Urbana, III.
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