
O'*6'

°2>e

0 <

CROYDON PUBLIC

LIBRARIES

Central library

This book is the pro¬

perty of the Croydon

Corporation and is

lent in accordance

with the current Regu¬

lations made by the

Corporation for the

control of its public

libraries.

Id ' ' %

COMPUTER SCIENCE TEXTS

The Students’ FORTH

GLYN EMERY
lately Professor of Computer Science,

University College of Wales. Aberystwyth

BLACKWELL SCIENTIFIC PUBLICATIONS

OXFORD LONDON EDINBURGH

BOSTON PALO ALTO MELBOURNE

SUBJECT SPECIALISATION

NOT TO BE DISCARDED

CRO VkC’N r'wiii Lir'*'..
i e V \ \ ^51
: Class, SIO • -1 FoR
1 v J KA&CL

ISck.
14 —-• - -

£ 1985 by
Blackwell Scientific Publications
Editorial offices:
Osney Mead. Oxford. 0X2 OEWL
5 John Street. London. WC1N 2ES
9 Forrest Road. Edinburgh, EH1 2QH
52 Beacon Street. Boston

Massachusetts 02108. USA
66” Lytton Avenue. Palo Alto

California 84301. USA
10“ Barry Street. Carlton,

Victoria 3053. Australia

All rights reserved. No part of this
publication may be reproduced, stored in
a retrieval system, or transmitted, in any
form or by any means, electronic
mechanical, photocopying, recording or
otherwise, without the prior permission of
the copy-right owner.

First published 1985

British Library
Cataloguing in Publication Data

Emery. Glyn
The students FORTFL—(Computer
science texts)
1. FORTH (Computer program

language)
I. Title II. Series
001.64'24 QA~6.73.F24

ISBN 0-632-01436-9

Distributed in North America bv
Computer Science Press. Inc..
11 Taft Court.
Box 6030. Rockville.
Maryland 20850. USA

Phoiotypeset by
Oxford Computer Typesetting

Printed and bound in
Great Britain at
The Alien Press. Oxford

Contents

Preface, vii

1 HSILOP, 1
Postfix notation, 2

Stacks, 3

FORTH operators, 4

Display, 7

Stack manipulation, 8

Radix control, 9

2 The FORTH Language, 11

Variables, 11

Constants, 14

Words, 15

Double length, 16

Conditional branches, 18

Relations, 19

Logical operators, 20

Indefinite loops, 21

Counting loops, 23

Compiling words, 25

The return stack, 26

Block moves, 27

Byte operators, 28

3 Transput and Files, 30
String output, 30

String input, 31

Filing, 35

Editing, 36

Loading programs, 37

Writing to file; 38

Formatting output, 39

Numeric input, 41

4 The FORTH Dictionary, 42

User vocabularies, 43

Dictionary structure, 45

Threaded code, 46

User-defined types, 50

V

VI

Threading mechanism, 52

Vocabulary mechanism, 55

Contents

5 Compiling and Executing FORTH, 60

Compiling, 60

Colon compilation, 62

Immediate words, 63

Conditional compilation, 68
Code, 68

Assembler, 69

Recursion, 70

Implementation, 71

Memory map, 72

The source interpreter, 74

Interpretation from file, 76

Error checks, 77

Model Answers to Exercises, 79

Appendix: The ASCII Character Set, 82

Glossary and Index, 86

Preface

This book is more than an instruction manual on FORTH, for it

attempts to provide information not only on how to use the language but

also on the way it can be implemented. Indeed the intelligent reader, by

the time that he has read to the end. should be in a position to imple¬

ment his own version of FORTH should he wish to do so. The book is

aimed at the reader who has already gained some experience in pro¬

gramming (possibly in BASIC), who is accustomed to thinking in

algorithmic terms, and who has realised that the programmer has to

make an effort to understand the operation that is really performed by a

sequence of commands, in contrast to what its designer intended it to

perform.

Although the technical detail may seem frightening to the new¬

comer, the treatment is progressive. The reader is led into the language

step-by-step, so that by the end of Chapter 3 he should be capable of

w'riting quite complex systems. If he wishes, he can postpone reading

the technical material until he needs it to answer queries that will

inevitably arise in the course of using the language, for a language as

close to the machine as FORTH cannot be properly understood without

some appreciation of its mechanism. A number of exercises have been

included in the text, and model answers are provided at the end of the

book. Programming exercises have deliberately been simplified. When

he has had some experience the reader can improve upon them to make

them more realistic.

FORTH is an unusual concept. It has been heavily criticised by those

who do not understand its virtues; but it is not difficult to use once its

rules have been mastered; and it does permit systems to be developed

interactively. Moreover it gives rise to fast code that occupies much less

memory than would be possible with a well-structured compiled lan¬

guage. From an educational standpoint FORTH can provide the same

sort of insight into the workings of a binary machine that assembler

does; but FORTH is simpler to use than an assembler, being susceptible

to examination at every stage without the need for a debugger, and

providing its own operating system.

FORTH was invented by C. H. Moore, and was first used, of all

things, to control a radio telescope. Moore invented it because what was

vii

viii Preface

available at the time did not give him the ease of use, speed, and storage

economy he wanted. Its name arises because it was his fourth attempt,

and it is so spelt because it was initially implemented using a version of

Fortran that permitted names of up to five characters only. It has

spawned a few imitators, such as STOIC and CONVERS; but here we

shall be concerned only with implementations that bear the FORTH

name.

There is no official authority for FORTH, though there is a FORTH

Standards Team that from time to time issues specifications that have

much authority. We have followed here in the main the FORTH-83

standard*, which superseded the still widespread 79-standard; but we

include a number of words derived from other implemtations as well. In

particular we refer to MMSFORTH from Miller Microprocessor Ser¬

vices!, and the multi-user POLYFORTH.

We follow the implementation recommendations of the FORTH

Interest Group (fig) when explaining typical ways in which things work.

Nevertheless, every implementation differs in detail (doubtless with

good reason) from its predecessors; so we have tried to point out the

most likely areas of disagreement. The FORTH Standards Team them¬

selves admit that “...the choice to deviate is acknowledged as beneficial

and sometimes necessary.” We give a glossary at the end of the manual;

but the reader is advised to use this in conjunction with the glossary for

his own system, and to note carefully any differences.

Aberystwith

January 1985

* Obtainable from Forth Standards Team, P.O. Box 4545. Mountain View. Ca 94040,
USA.

t 61 Lake Shore Road, Natick, Mass 01760, USA.

Chapter 1

HSILOP

The conventions we use when writing algebraic expressions have been

with us since the sixteenth century. Their only advantage — though it is

a very big one — is that we are accustomed to them; but they have

disadvantages that we can easily illustrate. The value of the arithmetic

expression 3 + 4 x 5 is 23; but if you press in turn the keys

3 + 4X5

on a cheap pocket calculator, you get the "answer" 35. The discrepancy

is due to operator precedence. The calculator recognises no precedence.

It simply applies the operators in turn as they are keyed in; thus 3 + 4

gives 7, 7 X 5 gives 35. In the conventions of ordinary algebra, howev¬

er, the multiply operator has a higher precedence than the add operator,

and should be applied first. If we had really wanted the addition to be

done first, then we should have had to use parentheses, thus

(3 + 4) x 5

However, we can get the right answer on our calculator by altering the

order of evaluation and keying

4x5 + 3

instead.

The actual evaluation sequence for this last expression might be

described as

take 4

take 5

multiply

take 3

add

We can write, this sequence in short as

4 5x3 +

in which we imply the simple evaluation rule:

1

2 Chapter l

"working from left to right, apply each operator in turn to the two

values preceding it", with the general undertanding that the result of

a previous operation is available for use by a succeeding operator.

There are several other ways in which we could have written the

same expression to give the same result, for instance

3 4 5 x +

Notice that in this case the 3 is kept in hand until after the multiplica¬

tion has yielded the single value 20.

Exercise 1. Using the same convention give an expression that corres¬

ponds to the parenthesised (3 + 4) x 5. What are the steps in its

evaluation?

POSTFIX NOTATION

What we have just been doing is evolving an alternative way of writing

algebraic expressions, one moreover that corresponds more closelv with

the actual evaluation process. This new notation is known as postfix,

since each operator is written after the values to which it is to be

applied, in contrast to the conventional infix notation in which the

operator is written between the two values. It is also known as reversed

Polish notation, hence the title of this chapter".

Postfix notation has the added advantage that there is no need for

brackets: the order in w'hich the operators are applied is determined

solely by their positions in the sequence. Thus the infix expression

(A + B) X (C - D)

becomes

A B + C D - x

in postfix. Nor is there any need for operator precedence in quite the

same w'ay as in infix notation. The infix expression

3 4-4x5

is capable of two different interpretations as we saw. and as our pocket

calculator illustrated; so a precedence rule had to be devised.

* Polish, or prefix, notation, in which the operator precedes the operands to which it is to

be applied, is so named in honour of its inventor, the Polish logician Jan Lukasiewicz.

HS1LOP 3

Exercise 2. Translate the infix expressions

(i) A x (B - C) + D

(ii) (A + B) x (C - D)

into postfix notation.

STACKS

Let us now attempt to devise an algorithm to evaluate postfix express¬

ions. This is not difficult — indeed there are several pocket calculators

on the market that actually require their input to be in postfix form,

thereby avoiding anomalies such as the one we referred to earlier. What

we need is a data structure that will allow us to store values in the order

in which they are supplied (by direct input or as results of earlier

calculations) and return them to us in the order in which we want them.

In other words, we want to impose a last-in-first-out (LIFO) discipline

upon our data. A suitable structure is well known: it is called a stack.
We may think of a stack as a sequence of items that is accessible at only

one end; consequently we can only extract the last item that we put in.

For convenience, let us imagine that our stack is vertical with the

accessible end at the top. The rules for evaluating postfix expressions

then become:

(i) evaluate expression from left to right,

(ii) push each value in turn on to the stack,

(iii) apply each operator to the top two items removing them both.

(iv) leave the result in the top position.

To illustrate these rules, consider the postfix expression

5 4 + 5 2 - x

(What is the infix equivalent?) Successive configurations of the stack are

shown in Fig. 1.1. Notice that we have established here a further

Fig. 1.1.

4 Chapter 1

convention: that in the non-commutative operation of subtraction the

operands appear in the same order as they do in normal infix. We shall

follow a similar convention regarding division and comparison oper¬

ators. Notice too that though there are four numbers and two intermedi¬

ate values only three stack locations are used. This illustrates a further

advantage of stack evaluation. Less working space is needed, since

values are overwritten when they have been “used up”.

Exercise 3. Show the successive stack configurations in the evaluation

of

(i) 3 2 x 4 - 5 x

(ii) 7 4 3 + x 2 +

(iii) 9 6 + 2 x +

Quite right. The third example was a cheat; it is not a well-formed

postfix expression. With these three operators we need four values, not

three. However, a correctly designed processing system should be able

to detect an error of this kind and issue a “stack empty" diagnostic

message if there are not enough values for the next operator to work on.

0

FORTH OPERATORS

FORTH is a postfix language. A FORTH program is simply a (usually

very complex) postfix expression; and a FORTH system uses a stack

for storing data and intermediate results. Following the convention of

most modern processors, FORTH makes its stack grow downwards

from higher addresses to lower. Nevertheless, we shall continue to

refer to the accessible end of the FORTH stack as its “top". In

accordance with the ideas developed above, FORTH operators “use

up” the values they operate on and replace them with the results they

generate. The operators + and — have the same significance in

FORTH as in ordinary algebraic notation, the operator — substracting

the top stack item from the second, leaving the difference as the new

top item and reducing the stack height by one.

As in most programming languages, the FORTH multiply oper¬

ator is ★ and the division operator /. These are both integer operators.

The operator / generates an integer result by truncation, i.e. by simply

dropping the fractional part of the quotient if there is one. Thus

HSILOP 5

5 6 + 3/

leaves 3 on the stack.

There is another division operator MOD which throws away the

quotient and yields the remainder instead; so

5 6 + 3 MOD

leaves 2 on the stack. If we want both the integer quotient and the

remainder, FORTH provides an operator /MOD which leaves the quo¬

tient as the top stack item with the remainder below it.

No ambiguity arises in division when both divisor and dividend are

positive. When either is, or both are, negative, two results are possible.

Thus dividing -12 by 5 could give the quotient as -2 with a remainder

of —2, or the quotient as -3 with a remainder of +3. In FORTH-83 the

second of these two conventions has been chosen. The rule is that the

vremainder takes the same sign as the divisor. The quotient, which is

positive if divisor and dividend have the same sign, and negative other¬

wise, is truncated to the next lower integer, sometimes referred to as the

“floor” of the number. Thus

10 divided by 7 gives 1 with remainder 3

-10 7-2 4

10 -7 -2 -4

-10 -7 1 -3

The operators + — * / MOD and /MOD are known as dyadic
operators because they operate on two values. (The word dyadic is

preferred to binary for obvious reasons.) Another dyadic operator

found in some versions of FORTH is *★ , which performs the operation

of exponentiation (raising to a power). Thus

4 3 **

yields 64.

We also need unary or monadic operators that operate on only one

value. The monadic minus is an example. In ordinary algebraic nota¬

tion, the same symbol - is used for both the dyadic and monadic

operators. It is not possible to do this in postfix notation (why not?), so

FORTH uses the symbol NEGATE to perform the monadic operation.

Thus the sequence

4 NEGATE 5 ★

leaves -20 on the stack, whereas

6

4 - 5 *

Chapter 1

should give an error message, since the operator - is dyadic and needs

to be supplied with two operands, not just a 4. Some implementations

use MINUS instead of NEGATE.

There are also some ternary or triadic operators in FORTH. As an

example, the operator ★/ multiplies the second and third stack values

together and divides the result by the top item. Thus

6 5 4 */

yields 7, in contrast to

6 5 4 */

which yields what? There is also an operator */MOD , which operates

in the same way, except that it yields both quotient and remainder.

A word of caution, however. Most FORTH operators expect

signed 16-bit quantities. These will normally be in twos-complement

form, which means that the most significant bit is used to indicate the

sign. Consequently only 15 bits are available to indicate magnitude.

Ordinary operators therefore cannot handle signed numbers outside

the range —32768 to 32767. Now the multiplication in */ and */MOD

could generate a product outside this range even though the final

result may be within it. In such cases some FORTH systems may

produce the wrong answer. However if the system has been written in

accordance with the FORTH-83 specification, or a later one, it will

generate a double-length intermediate result and will produce the

correct answer in the end. We shall deal with double-length arithmetic

later on.

Exercise 4. Evaluate by hand

(i) 40 7 /MOD *

(ii) 10 9 8 */MOD +

(iii) 82 3 /MOD 3*4-

To complete our review of the arithmetic operators that should be

built into all FORTH systems, we shall first mention two dyadic

operators MAX and MIN whose effect is to leave on the stack the

larger (or smaller) of the top two items and drop the other. Thus

6 7 5 MAX MIN

H SI LOP 7

yields 6. MAX and MIN can be used successively on a sequence of

items to find the largest (or smallest); but they cannot always be used

in the way just given to find the middle value. There is also a monadic

operator ABS , which replaces the top value on the stack with its

absolute value. Thus

-5 ABS

yields 5. In some systems there is an operator +— that negates the

second stack item if the top item is negative, and drops the top item.

DISPLAY

Having calculated a value, we shall probably want to display it. We can

do this with the “dot” operator . (full stop or point), which causes the

top item on the stack to be sent to the standard output device. Most

users of FORTH systems will be operating in an interactive environ¬

ment through a video display unit (VDU) or typewriter console. The

standard output device is then the VDU screen or the typewriter platen.

The FORTH sequence

54*3-.

should display 17 on the user’s terminal in the next position on the

device, i.e. the cursor position on a VDU or the head position on a

typewriter.

The number output by . is signed single-length, and must therefore

be within the range -32768 to 32767 . However there is nothing to stop

us from keying in unsigned numbers up to 65535 : though most FORTH

systems treat such numbers thereafter as if they were in signed twos-

complement form. Numbers greater than 32767 therefore appear as

their complements with respect to 65536, for instance typing

40000 .

should result in the output of -25536 . Notice that in twos-complement

the negative range is one more than the positive range; consequently

simple negation can put a number out of range. Try

-32768 NEGATE .

To assist us to tabulate results neatly, FORTH provides another

output operator .R (dot-R), which outputs a number right-justified in a

field of specified length. In this case the number to be output must

actually be the second on the stack, the top item giving the length of the

field. Thus

Chapter 1

567 8 .R

will output the number 567 displaced five spaces to the right of the

previous cursor position.

FORTH-83 provides an operator .(referred to as “dot-paren” to

display messages. This is one of a few operators that differ from the

norm in that they take their operands not from the stack but from the

program text. .(expects to be followed by a string, i.e. a sequence of

characters that must be terminated with a) immediately after the last

character to be displayed. For instance

.(GOOD MORNING TO EVERYONE HERE)

FORTH-83 makes no specification with regard to the maximum length

of string. Most systems allow up to 127 characters of text, though some

may allow more.

STACK MANIPULATION

The operators . and .R follow the general rule of FORTH and “use up”

the numbers they operate on. Thus the stack is reduced in height by one

by the operator . , and by two by the operator .R . If we wish to preserve

the top stack item, then we must duplicate it using the operator DUP

57*DUP.

displays 35 but leaves 35 still on top of the stack. Notice that ABS is the

same as

DUP +-

There is also an operator ?DUP (in some systems -DUP), which

duplicates the top stack item only if it is nonzero.

Remember that only the top stack item is directly accessible to a

monadic operator, the top two to a dyadic operator, and so on.

Consequently it often happens that we find items disposed upon the

stack in the wrong order for the operations that we want to perform on

them. FORTH provides several operators for stack manipulation, of

which DUP and ?DUP are of course examples. Another is DROP which

simply removes the top stack item. OVER duplicates the second item

on to the top of the stack. SWAP exchanges the top two items; and

HSILOP 9

ROT rotates the top three items, bringing the third into the top posi¬

tion.

Assuming that the stack originally contained the values 12 3 with 3

at the top, we may summarise the effects of the five stack-manipulation

operators as follows:

DUP 1233

DROP 12

OVER 1232

SWAP 1 3 2

ROT 2 3 1

in which the stack top is on the right. Thus

7 DUP 6 + SWAP 5 - *

evaluates to 26. Notice that, apart from DROP , the stack-manipulation

operators do not remove values from the stack. Notice too that ROT is a

ternary operator.

Exercise 5. The top two items on the stack are 567 in top position and 8

below it. Write a FORTH sequence that will output 567 at the right-

hand end of an eight-character field but leave the stack as it was before.

Exercise 6. What are the full effects of the following sequences (output

and final stack configurations)?

9 4- DUP

7 8 9 ROT + DUP . *

Write a sequence of commands to invert the order of the top four

stack items.

There are two stack operators of more generality than the foregoing.

These are PICK and ROLL.

n PICK

copies the nth stack value (not counting n itself) and leaves it in place of

n on top of the stack. Thus OVER is equivalent to 1 PICK , and DUP to

0 PICK.

n ROLL

10 Chapter 1

moves the nth value to the top, pushing all the items above it down one

place. Thus ROT is 2 ROLT and SWAP is 1 ROLL.

RADIX CONTROL

In our explanation to date we have assumed all input and output to be in

decimal radix. This is the situation when the basic FORTH system is

first loaded; but FORTH permits alternative number bases to ten. The

word HEX causes input and output to be handled as if all numbers were

in radix sixteen; and the word DECIMAL causes the radix to revert to

decimal. Thus, just after loading FORTH, the sequence

22222 HEX . 23AB DECIMAL .

will output in turn the numbers 56CE and 9131 . Some systems provide

OCTAL as a radix-change operator as well; and all FORTH systems

provide a variable BASE that can be set to give any desired radix.

However, we shall defer consideration of BASE until we deal in general

with variables in the next chapter. Changes induced by HEX and

OCTAL persist until the next radix change. Some systems provide H.

and O. , which output a single number in hexadecimal or octal and then

revert to the previous radix.

Exercise 7. What is the full effect of:

7 5 HEX * DUP . DECIMAL .

Numeric output is of course signed, whatever radix it is in. For

instance

HEX AB12 . DECIMAL

will actually output -54EE . Negative hexadecimal numbers can be

thought of as if they are stored as their complements with respect to

10000, which of course is the hexadecimal equivalent of 65536. In

general, of course, we do not want hexadecimal information in signed

form. Later we shall see how FORTH provides facilities for displaying

individual bytes. Negative octal numbers are stored as their comple¬

ments with respect to 200000.

Chapter 2

The FORTH Language

Before we discuss the language in more detail, it will be useful to look

more closely at the operating system of FORTH. FORTH is always in

one of two modes: either it is accepting input, or it is executing the last

sequence input. Input is terminated by the newline key (RETURN or

ENTER depending on the design of keyboard), and this causes the

system to start execution. The operators in the sequence just entered

are then executed in turn; and this may or may not involve output, or

even call for more input. Provided that it does not get hung in a

permanent loop, FORTH eventually outputs either OK , to indicate

that it has completed the sequence of operations successfully, or a

diagnostic message, to show that it has not. In the simplest case, input

comes from the keyboard. We shall see later how sequences for execu¬

tion can be taken alternatively from files.

VARIABLES

So far our operands have all been simple integer constants. But prog¬

rams need variables; so we must have some way of declaring identifiers.

This is provided by the defining word VARIABLE. The sequence

VARIABLE X

defines a variable called X by allocating sixteen bits of memory to it.

Once we have assigned a value to it, we can use X in arithmetic

expressions; but be careful. Simply quoting the identifier X has the

effect of placing on the stack not its value but the address of the location

containing it. It is necessary to do this of course because we may be

quoting X not as the source of a numeric value but as a destination for

storing a new value. In some older implementations VARIABLE auto¬

matically initialises the value to the top value on the stack. This is not

true of the FORTH-83 standard.

Identifiers can be of any length up to a system-defined limit; and

they may consist of any printable graphic characters. However, there

are a few micro-based systems in which, with the idea of saving memory,

only the length of the identifier and its first three characters are stored.

12 Chapter 2

The design of FORTH reflects the design of the machines on which it is

most commonly implemented. Consequently addresses refer to bytes

even though most operands are two bytes long. In some implementa¬

tions variables may be stored only at even addresses.

If we want the value of a variable in contrast to its address, we use

the “contents" operator, which is @ . Thus the sequence

X @ 7 + .

adds seven to the current value of X and outputs the result.

To change the stored value of a variable, we use the "store” operator

! . This puts the second stack item into the location whose address is

given as the top item. The sequence

X @ Y !

copies the value of X into Y .

As well as the variables that the user defines for his ow n private use,

there are a number of variables that are provided by the system, some of

which are public in multi-user systems. These are known as user vari¬
ables. An example is BASE which contains the radix that is to be used

for input or output of data. The sequence

25 7 BASE ! . DECIMAL

will change the value of BASE to 7 and then output 34. which is the

base-7 representation of decimal 25. Notice the use here of DECIMAL

to restore the original radix. In our exercises and examples we shall

assume that the value of BASE is initially ten. unles- the contrary is

specified.

The letters from G onwards are available for use as digits when the

radix is greater than sixteen. Thus

19 20 BASE ! . DECIMAL

will output J . Unfortunately J cannot be used alone as a digit on input,

since, as we shall see, it has a quite different significance in FORTH: but

it should be accepted if preceded by zero: i.e.

20 BASE ! 0J DECIMAL .

should output 19. Indeed it is good practice to use 0 to preface all

numbers that do not start with a decimal digit, since otherwise the

system may attempt to treat the number as an operator or character

string.

Some implementations provide a word SET that can be used to

13 The FORTH Language

define a new word that will set a variable to a particular value. Thus if

our system did not have a word OCTAL we could define it by

8 BASE SET OCTAL

VARIABLE stores the name of the new variable in a memory

structure known as the dictionary, and assigns space close to the name to

hold the variable value. This arrangement is perfectly satisfactory for

private user-defined variables, and even for user variables in single-user

systems. However, in multi-user systems the basic dictionary, which

contains all the user variables, should be held in common. Unfortunate¬

ly system variables such as BASE can have different values for different

users, and cannot therefore be common. What most versions of

FORTH do is establish a private user area in memory and store user

variables there. The dictionary then holds not the value of the variable

but an offset giving the position of the variable's value relative to the

base of the user area, all individual user values being held in the same

relative position in the user areas for the different users. Reference to

the name of a user variable, like reference to that of a private variable,

places the address on the stack; but in the former case the address is

computed by adding the offset to the base of the user area.

Some systems provide a word USER that enables users to define

new variables in the user area. USER takes the top stack item as the

offset and stores this in the dictionary. Remember though that addresses

in FORTH refer to bytes not 16-bit items. Thus the declaration

50 USER Y

establishes Y as an identifier for the twenty-sixth 16-bit item (0 is the

first) in the user area. If you decide to use USER you will have to find

first which locations have been pre-empted by the system.

If we wish to increase the stored value of a variable X, by seven say,

we can write

X DUP @ 7 + SWAP !

However, this is rather a longwinded sequence for such an obviously

useful operation; so most FORTH systems provide a single operator +!

to add values into memory. Thus

7 X +!

is a much neater way to do the same thing.

Another useful shorthand operator is the query ? which outputs the

content of the address at the top of the stack. In other words, ? is the

14 Chapter 2

same as @ . which is just what one would expect it to mean. The

sequence

VARIABLE Y 9 Y ! Y ?

should define Y , initialise it to 9, and then output its value. Notice that

BASE ? will always output 10, since that is the value of any number in

its own radix.

CONSTANTS

Programs need constants as well as variables, and FORTH provides a

defining word CONSTANT . Thus

12 CONSTANT IN/FT

associates a memory location with the identifier IN/FT and places the

value 12 in it. There is one important difference between variables and

constants in FORTH: quoting a constant identifier places not the

address but its stored value on the stack. Thus we might convert feet to

inches using the sequence

FEET @ IN/FT ★ INCHES !

FEET holding the original value in feet and the new value being stored

in INCHES.

We shall see later how to get hold of the address of a constant, and

how to change it, should this be necessary. Of course there is nothing to

stop us from writing

25 IN/FT !

but this does not do at all what we want, since it stores 25 not in the

location allocated to IN/FT but in location 12. If 12 happens to be in

read-only memory, then no harm is done; but, if not, then the system

itself could be corrupted. Moral — do not use ! (or +! or for that matter
any other of the “store” operators that we shall meet) unless you are
quite sure you know what you are doing. Notice too that ? should be

used with caution on constants.

IN/FT ?

prints not 12 but the content of location 12. And another caveat — some
systems define as variables what others define as constants. Make sure

you know which are which.

15 The FORTH Language

Exercise 8. Assuming that the declarations

46 USER Y 5 CONSTANT K

have been made, and that a variable X has been initialised to 9, what

effects have the following if executed in turn as written?

8 BASE ! X @ . DECIMAL

7 Y ! K Y @ + X !

X DUP ? DUP @ K ★ OVER !

WORDS

We have been talking of operators; but the term used in FORTH for all

functional components of the language, whether they be operators in

the conventional sense or identifiers, is “word . Thus * — *! are

words in FORTH, as are DUP OVER and VARIABLE . So too, once

we have defined them, are the variables and constants X IN/FT and so

on. FORTH words are strings of any printable characters, and they

must be separated from one another by at least one space, since writing

two operators contiguously implies that together they form a single

word.
FORTH itself is a FORTH word. It has the effect of calling the basic

vocabulary of FORTH, and is thus in effect executed on startup. In this

book we describe FORTH-83, which has a standard required word set

together with a controlled reference set of words and several extension

sets. The controlled reference set comprises words that, while not being

obligatory in the standard, must not be included unless they operate

according to the definition given. The glossary in this book includes the

whole of the required word set and most of the controlled reference set

together with most of the extensions. Some implementations include a

word FORTH-83, which will only execute provided that the imple¬

mentation complies with the standard. A fundamental feature of

FORTH is the facility to define new words. We have seen how this

can be done using the defining words CONSTANT, USER and

VARIABLE ; but we are able too to define new operators. This is done

using the defining word : (colon). Thus the sequence

; SQUARE DUP * ;

defines a new word SQUARE to be equivalent to the two-word sequ-

16 Chapter 2

ence DUP ★ . When we have defined SQUARE we can write for

instance

3 SQUARE .

which has the same effect as writing

3 DUP * .

and prints 9.

The word SQUARE identifies what in other languages might be

called a subroutine. The word : starts compiling the “subroutine”; and

the word ; (semicolon) terminates the compilation. The result is to add

SQUARE to the store of words in FORTH’s dictionary, so that there¬

after it qan be used just like any other FORTH word. In contrast to most

other languages, FORTH subroutines do not have arguments as such.

All parameters are passed via the stack, and results are returned in the

same way. Since quoting a variable name places its address and not its

value on the stack, we should note that therefore variable parameters

are called by reference, which means that they can be changed as a

side-effect of the call.

The facility for defining new words makes FORTH indefinitely ex¬

tensible. Most of the words provided in the basic vocabulary are built by

“colon definition” from a relatively small number of primitives: but they

can themselves be regarded as primitives for any special-purpose system

that the user may wish to build on top of them. The obligation to

proceed by successive definition forces the user to obey a discipline of

program structuring more strictly than with other programming lan¬

guages of a similar degree of complexity, such as early dialects of

BASIC. This in turn makes FORTH programs relatively easy to under¬

stand and consequently to maintain.

Exercise 9. Define new words

(i) CUBE2 to form the cube of the second stack item without

deleting it,

(ii) H. to output a single number in hexadecimal.

(iii) DUODECIMAL to change the radix.

DOUBLE LENGTH

We mentioned earlier that FORTH has a double-length or double¬

precision feature. This treats two adjacent stack items as one double-

17 The FORTH Language

length signed quantity with 32-bit precision. In FORTH-83 the item

nearer the stack top is the high-order half; though you may find systems

in which the opposite convention is followed. In a minimal FORTH

system there should be at least three double-precision arithmetic oper¬

ators D+ DNEGATE and D< . The first of these treats the top four

stack items as two double-length numbers, and forms their sum.

DNEGATE , which may alternatively appear as DMINUS , replaces a

double-length number by its negative. D< enables two double-length

quantities to be compared.

The system may have other double-length operators as well. D— is

used for subtraction, D>, D= and D0= are used for comparing quanti¬

ties, and D. and D.R output the full double-length number in the radix

given in BASE according to the conventions of . and .R . Many systems

provide other double-length facilities such DABS , DMAX and DM1N.

An unsigned double-length comparator DU< may also appear. Some

double-length operators are prefaced by a 2 instead of a D . Examples

are 2! , 2@ , 2CONSTANT , 2DROP , 2DUP , 2DROP , 20VER ,

2ROT , 2SWAP , 2VARIABLE etc.; but it should be possible to make

up any double-length operations with the limited facilities provided in

the reference set. There may also be an operator S->D that converts

from single to double length by extending the sign bit. Notice by the way

that double-length duplication is simply OVER OVER . By judicious

use of whatever features are available, it is possible to perform arithme¬

tic to quite high precision without too great a sacrifice of computing

speed.

To fix the structure of double-length numbers in the mind, the

following sequences

50000 0 50000 0 D+ D.

and 50000 0 50000 0 D+ . .

respectively output 100000 and 1 followed by —31072.

Exercise 10. With the aid of no other double-length arithmetic operator

than the basic three, define the operations D-, 2SWAP and D> .

The fig-FORTH implementation derives the double-length oper¬

ators, and even some single-length operators, from a set of unsigned

double-length primitives. This approach is possible of course only be¬

cause the sign convention in use is twos-complement. Signed and un¬

signed addition and subtraction are identical operations in twos-comple¬

ment, provided of course that the result remains within range, the only

difference being in the way the quantities are interpreted, for instance

18 Chapter 2

for output. There is an unsigned multiply UM* which forms the double¬

length product of two unsigned single-length numbers in the range 0 to
65535. The single-length twos-complement signed product is then
formed simply by dropping the high order half of the result, provided of
course that it is within range. There is also a divide operator UM/MOD
that divides a double-length unsigned dividend by a single-length un¬
signed divisor to give single-length quotient and remainder. For technic¬
al reasons, this may only accept a 31-bit dividend. Unsigned double¬

length relations U< , U> and U= can also be found, as can unsigned
output operators U. and U.R , which operate in the same way as . and
.R .

From the unsigned primitives, we can derive not only the signed
single-length operators but also signed mixed-mode operators. Thus M*
multiplies two single-length signed numbers to give a signed double¬
length product; and M/ divides a signed double-length number by a

signed single-length number to give a signed single-length quotient.
Some systems also have a signed M/MOD .

CONDITIONAL BRANCHES

Programming languages need control structures, so that the course of a
program can be changed during execution in accordance with conditions
relating to the data being processed. In common with most program¬

ming languages, FORTH provides three types of control structure: an
IF branch, a counting loop, and an indefinite repeat loop. The simplest

IF structure is of the form

IF . THEN

or on some systems

IF . ENDIF

Notice that these structures operate according to the spirit of FORTH.

The word IF tests the value of the top item on the stack, dropping it in
accordance with the usual FORTH convention. If the condition is
satisfied, i.e. if the tested value was nonzero, then the sequence be¬
tween IF and THEN (or ENDIF) is executed: if it is not satisfied, i.e. if
the value was zero, then control passes direct to the sequence following

THEN (or ENDIF).
Following usual practice, FORTH has an alternative structure

IF ELSE THEN

19 The FORTH Language

or IF . ELSE . END1F

In this case, the sequence between IF and ELSE is executed if the top

value on the stack was nonzero; and the sequence between ELSE and

THEN (or ENDIF) is executed if it was zero. In either case control

passes afterwards to the sequence following THEN (or ENDIF).

RELATIONS

Notice that the operation of IF described here implies that FORTH

treats any nonzero quantity as being equivalent to logical "true” and

zero alone as equivalent to “false". FORTH also provides the compari¬

son operators (relations) > < and = to compute truth values. In

FORTH they are of course postfix operators, and they return 0 if the

relation is false, and the standard all-ones configuration (equivalent to

-1) if it is true. The order of operands is the same as in infix notation.

Thus

7 5 >

returns the same result as infix

7 > 5

which is true:

9 4 <

returns the same as infix

9 < 4

which is false. Following the normal convention of FORTH, the two

items compared are “used up", and are replaced by the truth value.

There is strictly no need for an inequality comparator. If we want an

inequality test we simply subtract the two operands, which leaves zero

(false) if they are equal, and nonzero (true) if they are unequal. Never¬

theless some systems do provide a word <> to test for inequality and

leave the standard values for “true" or "false".

FORTH provides three further comparison operators, 0< 0> and

0= . The first of these replaces the top stack item by -1 (true) if it was

negative (less than zero), and by 0 if it was positive. Thus

X @ 0<

is equivalent to

20 Chapter 2

X @ 0 <

or, if you prefer,

0 X @ SWAP <

0> performs the inverse operation, except that of course both 0> and

0< return 0 (false) if the number was zero.

The word 0= replaces the top stack item by -1 if it was zero and by 0

if it was nonzero. It can therefore be used to reverse the truth value of

the top stack item, that is, perform the NOT operation. Indeed in some

systems the word NOT is actually used instead of 0= . As an example of

the foregoing, consider the definition of MIN (MAX is trivially diffe¬

rent).

: MIN OVER OVER > IF SWAP ENDIF DROP ;

Exercise 11. How would you perform the non-strict inequality opera¬

tions >= and <= ?

Exercise 12. Define a word D= that will test the equality of two

double-length numbers, assuming that it does not already exist. (You

may use D— defined in exercise 9.)

LOGICAL OPERATORS

Relations can be combined together by using logical operators. FORTH

provides at least AND OR and XOR . These perform bitwise opera¬

tions upon the top two stack items, leaving respectively their intersec¬

tion, union and exclusive union. Thus

28 14 AND yields 12

40 10 OR yields 42

40 10 XOR yields 34

(Write the numbers in full binary if you need convincing.) Some systems

provide NOR and NAND logical operators as well. AND and OR work

correctly if the top two items on the stack are being interpreted as truth

values rather than bit sequences. For instance

nonzero zero AND yields zero

nonzero zero OR yields nonzero

Thus for instance one can write

21 The FORTH Language

X Y > Z Y = AND IF

The operator XOR may yield zero or nonzero, depending on the

actual positions of the bits; but if we keep strictly to -1 as the only

representation for “true”, then this operator too will work for truth

values. NOT (or 0=) converts any pattern of ones to a zero word and

converts a zero word to -1. A word can be complemented (Is replaced

by Os and Os by Is) by forming the twos complement (NEGATE) and

subtracting unity; though some systems do provide a complementation

operator COM .

To assist with masking operations, a word MASK is sometimes

provided. This replaces the top stack item with that number of ones,

left-aligned if the number is positive, right-aligned otherwise. Thus

B @ 4 MASK AND

would select the first digit of a BCD number stored at B . A variant of

this is the operator @BITS . The top stack item is the mask, and the

second item is the address of the unmasked word. Thus

B 4 MASK ©BITS

would have the same effect as the sequence just given. A word 1BITS in

some systems masks the third word on the stack by the top word, and

stores it in the address given in the second. For example

B @ C 4 MASK 1BITS

stores the first digit of B in C .

When handling bit strings, it is useful to have shift operators as well.

SHIFT shifts the second stack item a number of places specified by the

first — left if positive, right if negative. An arithmetic shift operator

ASHIFT is sometimes available that takes account of the sign of the

number that is being shifted.

Exercise 13. Define a word that will split a byte into two BCD digits,

and store them in two consecutive (16-bit) locations.

INDEFINITE LOOPS

The simplest form of indefinite loop is

BEGIN . UNTIL

The sequence between BEGIN and UNTIL is executed repeatedly until

the top stack item at the end of the sequence (i.e. just before UNTIL is

22 Chapter 2

encountered) is nonzero (true). In some systems UNTIL is replaced by

END . Notice that UNTIL (or END) “uses up” the truth value gener¬

ated by the word preceding it, whether or not the condition is satisfied.

If the condition is satisfied, control passes to the sequence following

UNTIL . To take a simple example, the following definition generates a

word that will output a number of Xs controlled by the number on top of

the stack when it is called

: EXES BEGIN 1 - X" DUP 0= UNTIL ;

we might call the new word as

7 EXES

to give the output XXXXXXX (7 of them). Notice the use here of the

word ." to print a single X. ." operates like .(except that it is compiled to

do its work at execution time. It prints the string following it, which

must be terminated by a double quote.

In place of the two words 1 and - , we might have used the FORTH

word 1- . Most FORTH implementations provide 1+ . 2+ and 2- as

well, to increment and decrement the top stack item. Some systems

provide operators such as 1 + ! and 1-! to increment or decrement

memory locations, 2* and 2/ to double or halve the top stack item, and

so on.

To give a more complex example of an indefinite loop: to find the

highest power of one number contained in a second we might define a

word PWRIN as follows

: PWRIN OVER SWAP BEGIN ROT ROT OYER *

ROT OVER OVER > UNTIL DROP SWAP :

Thus the call

3 90 PWRIN

leaves the result 81 .

The BEGIN ... UNTIL structure requires the looping test to be

made at the end of the cycle; consequently the loop is always executed

at least once. It is sometimes preferable to make the test at or near the

beginning so that the words within the loop need not be executed at all.

This is in fact the case with our example PWRIN . since the definition

just given produces the wrong result if the first number happens to be

greater than the second. An alternative form of indefinite loop

BEGIN WHILE REPEAT

23 The FORTH Language

is provided therefore. WHILE tests (and drops) the top item on the

stack. If this is zero (false) then control passes direct to the sequence

following REPEAT ; otherwise the sequence following WHILE is ex¬

ecuted, REPEAT unconditionally returning control to the start of the

loop. Thus we may rewrite our definition of PWRIN correctly as

: PWRIN SWAP DUP BEGIN ROT OVER OVER <

WHILE ROT ROT OVER * REPEAT DROP SWAP / ;

To give a simpler example to illustrate the operation of this struc¬

ture, the following word produces a sequence of Ys and Zs starting and

ending with a Y .

: WYZE BEGIN 1+ ." Y" DUP WHILE ." Z" REPEAT

DROP ;

Thus the call

4 WYZE

produces the output YZYZYZY . This same structure appears in sever¬

al guises in different sytems, such as

BEGIN . IF . AGAIN

WHILE . PERFORM ... PEND

As a final example, consider Euclid’s algorithm for finding the

highest common factor of two numbers. This is simply

: EUCLID BEGIN SWAP OVER MOD ?DUP 0= END ;

Exercise 14. Define a word that will halve the top stack item if it is

even, and hence define a word that will find the largest (not necessarily

prime) odd divisor of the top stack item.

COUNTING LOOPS

We also need a counting loop. In FORTH this takes the form

DO LOOP

The top item of the stack on entry to the loop is the starting value of

the index; and the item below this is the terminating value. The index is

increased by unity every time the word LOOP is encountered; and

control is returned to the DO unless the limit has been reached or

exceeded. Thus we might redefine the word EXES defined above as

24 Chapter 2

: EXES 0 DO X" LOOP ;

Here zero is the starting value for the loop index. So

7 EXES

gives the same output as before.

To allow the index to be increased by values other than unity, the

word LOOP can be replaced by +LOOP . which causes the top item on

the stack at that point to be added to the index before it is tested.

+LOOP operates quite generally, and if we wish we may write the

sequence so that the index is increased by a different amount each time

round. We shall give an example of the use of +LOOP later.

It often happens that we want to terminate a counting loop on some

condition other than completion of the count. For instance, suppose

that we wish to skip up to twenty items from an input device, stopping

either when we have counted to twenty or if the last character read was a

newline. Assuming that we have already defined a word READ to place

the next input character on the stack, we could define a word GET thus

: GET 0 DO READ 13 = IF LEAVE THEN LOOP ;

Since 13 (decimal) is the ASCII code for return, the call 20 GET will

read up to 20 characters, terminating if a return character is read before

the twentieth.

A word of warning, though. The word LEAVE operates in a rather

unexpected way. All it does is alter the count so that it becomes at least

as great as the terminator. The remainder of the loop is then executed in

the normal way up to the word LOOP . The LOOP test now fails, so

that control is not returned to the start. The loop is indeed "left", but

not necessarily, it must be understood, at the point where LEAVE is

situated.

The index of a DO loop is maintained by the system: but it is

accessible to the user. The word I in most systems causes a cope of the

current index to be pushed on to the stack. Thus the sequence

DO . I . LOOP

prints out the index on each cycle — a useful debugging technique.

Notice that DO appears to “use up” the initial index and terminator.

What it does in fact is transfer them temporarily to a second stack,

called the return stack, where they are manipulated by LOOP . We shall

have a lot more to say about the return stack later.

As a final example, consider the loop

The FORTH Language 25

DO I +LOOP

This doubles the index each time around so that, if the index stands

initially, at 1, the number of cycles is the base-2 logarithm of the

terminator.

The use of a second stack for holding index and terminator makes it

possible to nest DO loops to an arbitrary (system-dependent) depth.

The word I of course always refers to the index of the innermost loop.

FORTH-83 also specifies a word J . which permits the user access to the

index of the next enclosing loop, thus

DO . DO ... I ... J ... LOOP ... I ... LOOP

This facility is useful when handling two-dimensional arrays. Notice that

the first I in the examples produces the index of the inner loop, while the

second produces that of the enclosing loop, i.e. it gives the same value

as the preceding J . Some systems provide a word K that yields the index

of a second enclosing loop.

COMPILING WORDS

There is one very important point that must be made about all the

foregoing control structures: the words DO IF BEGIN and the other

words associated with them differ from most of the words we have

discussed previously in that they are compiling words; that is, not only

do they cause operations to be performed when they are executed, but

they also cause modifications to be made to the program when they are

compiled. This means that they cannot be used directly. We cannot for

instance write

DUP 0< IF . ELSE DROP THEN newline

and expect that this will print the top stack item if it is negative.

Compiling words must be introduced with a “colon” or other code

definition, for instance

: PRNEG DUP 0< IF . ELSE DROP THEN ;

is quite acceptable. The definition gives an opportunity for IF to do the

compiling part of its job when PRNEG is compiled, and to do the

condition-testing part later when PRNEG is called. The reason for this

will be evident when we come to discuss the compilation process. In the

meantime you will have to accept the rule and obey it.

26

THE RETURN STACK

Chapter 2

The return stack is an essential component of FORTH's system for

transfer of control between words in the dictionary: its use in controlling

loops is incidental. It is accessible to the ordinary user through three

special operators. These are >R R> and R@ (referred to as to-R,

R-from and R-fetch). The first moves the top item of the main stack on

to the return stack — moves, notice, in contrast to copies, which is what

I does; the second moves the top item of the return stack back to the

main stack; and the third copies the top item without affecting the

return stack. In most systems, therefore, I is a synonym for R@; but this

cannot be guaranteed, since there is nothing in the FORTH-83 speci¬

fication to oblige the loop index and terminator to be stored in a

particular order. Try a loop containing

I R@ = .

on your own system.

These three words are commonly employed when the return stack is

used for temporary storage; but be very careful when you are doing this,

otherwise a loop or other control structure may find its parameters

changed in some unforeseen way. As an example of this application

consider how mixed-mode signed multiplication M* can be defined

from mixed-mode unsigned multiplication.

: M* OVER OVER XOR >R ABS SWAP ABS U* R>

D + - ;

In this definition we use the return stack as temporary store. We are

interested only in the sign of what is stored there. This is negative if the

signs of the two operands are different. It is to be used subsequently to

adjust the sign of the product.

Exercise 15. Define words

(i) to output the largest of the top four items on the stack without

deleting them,

(ii) to copy the fourth stack item to the top without using PICK,

(iii) to swap two double-length items.

DO loops can be nested within other control structures; but this

must be proper nesting: they must not interlace. It would be wnong, for

instance, to write

: WRONG DO READ IF LOOP THEN ;

27 The FORTH Language

As a final example on the use of DO loops, the word FIBO defined

below outputs a sequence of Fibonacci numbers as specified by the top

stack item. (The numbers in the Fibonacci series are characterised by

the fact that each is the sum of the previous two, the first two numbers in

the series both being 1.)

: FIBO 0 1 ROT 0 DO DUP 10 .R CR SWAP OVER +

LOOP ;

The word CR causes a newline on the output device; consequently the

numbers in the sequence are printed in a neat column. In fact FIBO may

give an overflow diagnostic: the twenty-third Fibonacci number is the

largest within single-length range.

Exercise 16. Define a word that will calculate the factorial of n (i.e. n x

(n—1) x ... x 2).

BLOCK MOVES

FORTH has facilities for handling blocks of bytes. A block of

memory can be filled with any desired byte value by the use of the word

FILL . Here the character to be used is the top stack item, the number

of bytes and the starting address being the second and third respectively.

From this we can define a word ERASE that fills a number of bytes in

memory with zeros, thus

: ERASE 0 FILL ;

The number is given as the top stack item; and the starting (lowest)

address as the second. We can define a word BLANKS that works in a

similar way, except that the block is filled with ASCII space characters

(hex 20, decimal 32).

: BLANKS 32 FILL ;

There is also a block-move operator CMOVE that transfers a num¬

ber of bytes from one place to another in memory. Again the byte count

is the top stack item, the starting address of the destination is the

second, and that of the source is the third; for example

FROM TO 100 CMOVE

If there is a need for a word-move operator for 16-bit items, it could be

defined as

: WMOVE DUP + CMOVE ;

28 Chapter 2

Notice that CMOVE operates from low address to high address;

consequently, if the destination is above the source and the areas

overlap, some information can be lost. This fact can actually be made

use of in the definition of FILL .

; FILL SWAP >R OVER C! DUP 1+ R> 1 - CMOVE ;

Some systems provide an additional move CMOVE> that operates

from high address to low. C! is defined below.

Exercise 17. Define a word MOVE that cannot overwrite even if the

two areas do overlap. (Use CMOVE and CMOVE> .)

N.B. Some systems use MOVE to denote a 16-bit move operator.

BYTE OPERATORS

Practically all FORTH systems are implemented on byte-addressed

machines. What this means is that the FORTH 16-bit numeric item is

implemented as two consecutive bytes and stored in two consecutive

addresses. FORTH-83 does not specify the byte order within a 16-bit

field in memory, and implentors are likely to follow the natural conven¬

tions of the processors they are using. Thus Motorola microprocessors

store the high-order byte in the lower of a pair of addresses: Intel and

Zilog machines in contrast store the high-order byte in the higher

address. The latter may look at first sight to be more logical; but the

former is more convenient when handling strings of text.

FORTH provides facilities for handling individual bytes or charac¬

ters. These are for the most part analogues of the integer-handling

facilities. They operate on byte addresses, so their precise effects de¬

pend on the byte order in which data is stored. C(a (C-fetch) replaces an

address at the top of the stack by the byte stored in that address. The

byte is placed in the low-order half of the top stack item (which, as we

have seen, is not necessarily the lower byte address of the pair), the

remainder being made zero. Thus the sequence

HEX ABCD X ! X DUP C@ . 1+ C(a .

would output AB and CD but in an order dependent upon implementa¬

tion details. It is worth while trying this sequence out on vour own

system to see what happens.

There is also a word C! (C-store) to store bytes. The address for

storage is the top stack item; and the byte to be stored is the low-order

half of the second item. For example

29 The FORTH Language

Y C@ X 1+ C!

would copy the byte of Y stored in the lower address into the higher

byte address of X . Many systems have more byte-handling facilities

than these — such as C? CVARfABLE and so on. Some systems

provide a byte-swap operator >< and an operator >MOVE< that

moves a block of 16-bit words performing a byte-swap operation on the

way. This is useful when transferring data from, say, an Intel system to a

Motorola.

It is worth noting that some systems require 16-bit items to be stored

in an even-odd pair of memory locations. Thus the sequence

10 X C! 10 X 1+ !

would give an “odd address” diagnostic on such a system, as would a

word move if given an odd address.

Here is a useful definition, which will give a hexadecimal dump of

successive bytes. The number of bytes to be output is placed on top of

the stack, with the starting address below it.

: DUMP HEX 0 DO DUP I + C@ . LOOP DECIMAL ;

Exercise 18. Rewrite DUMP to print the address as well as the con¬

tents, neatly tabulated.

Chapter 3

Transput and Files

Byte information is usually intended to be interpreted as a sequence of

ASCII codes for printing. The ASCII code is reproduced in an appen¬

dix. The word EMIT (in some systems ECHO) outputs the low-order

byte of the top stack item not as a number but as a graphic character.

Thus

HEX 7A42 EMIT

outputs the letter B . EMIT may also increment a user variable OUT ,

which refers to the cursor position and can be used if desired for

line-length formatting.

The inverse of EMIT is KEY . When KEY is executed, it puts the

ASCII value of the next key pressed into the low order position of the

top stack item, and clears the high-order half. Thus by executing

KEY

you can find the ASCII value of any key on your keyboard. Despite its

name, KEY should have the same effect whatever the input device.

Thus it should operate also when loading from file. Some systems have

an additional word ASCII that skips blanks until it finds a non-blank

character. There is a lot of divergence between systems in this area.

There are also one or two useful ASCII output words. CR has

already been mentioned. It can be used in contexts in which the use of

the newline key would have a different significance. SPACE outputs a

space. SPACES outputs spaces to a number given as the top stack item.

There may also be a word BELL that operates the beeper on the

console if this is the current output device. Other specialised words may

be provided to make use of whatever features the hardware offers. On

computers with timers there might be a word MS to interpose a delay of

a number of milliseconds as given by the top stack item.

STRING OUTPUT

The form of text output performed by the words .(and .” is suitable for

constant strings — user communication, headings, diagnostic messages.

30

31 Transput and Files

and the like. Variable strings that have been processed by program and

are held in working storage are best output using the word TYPE which

incidentally is called by .(and . The number of characters to be

output by TYPE is the top stack item, and the starting address of the

string the second item. Elowever, strings of characters are usually

“counted”, i.e. held in memory together with their length count, which

is the first byte. The word COUNT takes a string stored in this way, with

the starting address (i.e. the address of the count byte) supplied as the

top stack item; it stacks the count above the address, and then advances

the address by unity. Parameters are then in the right form for the string

to be output by TYPE .

A full definition of TYPE is a nice illustration of the use of several of

the words we have considered so far. It is

: TYPE ?DUP IF OVER + SWAP DO I C@ EMIT LOOP

ELSE DROP THEN ;

The heart of this is the DO loop. The limits set when this loop is entered

are actually the starting and finishing addresses of the string to be typed.

Consequently I gives on each cycle the address of the next character to

be output. The loop terminates when the last character has been

emitted.

TYPE displays text starting at the current position of the cursor, and

leaves the cursor position just after the last character typed. If you want

newlines, then you must either put in a CR command or else include the

ASCII return and linefeed codes in the string. TYPE outputs everything

it is given, including trailing blanks if there are any. To remove trailing

blanks FORTH provides a word -TRAILING , which adjusts the count

to ignore them, the address and count having been placed on the stack

as required by TYPE . A possible definition of -TRAILING is

: -TRAILING DUP 0 DO OVER OVER + 1- C@ BL -

IF LEAVE ELSE 1- THEN LOOP ;

The sequence OVER OVER + 1- generates the address of the last

character in the string. If this is a blank, then the count is reduced by

one, and the (new) last item is tested. This continues until the last item

is non-blank.

STRING INPUT

Input of character strings is achieved using the word EXPECT and

WORD . EXPECT reads from the terminal a number of characters as

32 Chapter 3

specified by the top stack item, and stores them starting at the address

given as the second item. EXPECT refers only to input from the

terminal; input from file is handled differently. In case the actual num¬

ber of characters is not known beforehand, input may be terminated

with a keyboard “return”, the count on the stack then serving only to set

a maximum limit. The actual number of characters received is stored in

a user variable SPAN .

EXPECT is used by the operating system to read commands into the

terminal input buffer for interpretation. The start address of this buffer

is held in standard systems in a user variable TIB , and the number of

characters it contains in a user variable #TIB . The following FORTH

program displays itself on the terminal:

TIB @ #TIB @ TYPE

Exercise 19. Define words that will read up to 20 characters from the

keyboard, and output them again

(i) with all blanks suppressed,

(ii) in reverse order.

(You may assumne that a scratchpad containing at least 20 bytes is

available, that its address is generated by the word PAD . and that there

is a constant BL containing the ASCII blank.)

Before we discuss the operation of WORD it will be helpful to

consider briefly how FORTH words and their definitions are stored.

The dictionary is a simple linear list that grows from low addresses to

high. The next address above the current top of the dictionary is stored

in the dictionary pointer DP (in some systems H) which is usually

available as a user variable. The content of DP, i.e. the address of the

first free location, is referred to as HERE . Thus HERE is equivalent to

DP @ .

The dictionary structure is shown in Fig. 3.1. Notice that the conven¬

tion used throughout this book is to show memory with the lowest

addresses at the top of the page and the highest at the bottom. The top

stack item can be stored direct into the dictionary at HERE by the

operator , (comma), which also increases HERE by two. We shall see

the function of , more clearly later when we discuss compiling. There is

also a byte operator C, for storing individual bytes in the dictionary. The

conventions are similar to those for C! .

Transput and Files 33

low memory

DICTIONARY

HERE -►

high memory

Fig. 3.1. The FORTH dictionary.

Another useful word is ALLOT which adds the top stack item to

HERE so as to leave space in the dictionary, for instance to store an

array. To leave space for an array of, say, ten integers (20 bytes) one

would write

20 ALLOT

The definition of ALLOT is simply

: ALLOT DP + ! ;

The principal use of the word WORD is to read names when con¬

structing new dictionary entries. To assist in this, all the characters read

by WORD are stored at the top of the dictionary and are preceded by

the character count, which is consequently stored at HERE . WORD

does not read direct from the input device, but from a buffer associated

with it. The number of the buffer currently being used is held in a user

variable BLK . The number zero is associated with the terminal buffer:

numbers greater than zero are associated with file buffers. WORD

starts reading at a point in the buffer defined by an offset contained in a

user variable >IN (just IN in some systems); and it advances the content

of >IN after reading a character. It reads until it encounters a delimiter.

34 Chapter 3

The actual delimiter can be selected by the user, who puts its ASCII

value in the top stack position before calling WORD. To simplify

things, WORD is designed to ignore any leading occurrences of the

delimiter, which will normally be a space. WORD counts characters as

it reads them, and stores the count at HERE, i.e. just ahead of the

character string.

Figure 3.2 shows the situation after WORD has transferred the

letters “INPUT" from the buffer to the top of the dictionary. We show

HERE-

TIB

>IN

#TIB 10

DICTIONARY

5 1

N P

U T

low memory

1 N

P U

T

D A

T A

BUFFER
high memory

Fig. 3.2. Operation of WORD .

35 Transput and Files

the memory as if it were two bytes wide, the better to illustrate the

16-bit structure of FORTH. The low-order byte is on the left, so that

text appears in the normal European left-to-right sequence. As a further

example of the use of WORD consider the definition of the word (,

which introduces a comment

: (41 WORD ;

41 is the decimal ASCII value of “)” so WORD continues to read from

the input device until it reches the closing delimiter of the comment.

Since the string is merely a comment, there is nothing else to be done

with it.

FILING

FORTH data and source-program text are stored in blocks on whatever

backing device is supplied with the system. The first machines on which

FORTH was implemented had a file block of 128 bytes, which was an

inconveniently small unit for editing. It had the further disadvantage

that, where tape was used, it led to inefficient utilisation. Consequently

a larger data unit had to be used as well. This is 1024 bytes. Since 1024

bytes can conveniently be displayed simultaneously on a VDU, it is

referred to as a screen. Because the storage block on early systems was

much smaller than a screen, a constant B/SCR was provided to make the

conversion easier. In newer implementations the size of a file sector is

usually made the same as a screen, so the value of this constant is unity;

the terms “block” and “screen” are then synonyms, and will be so used

here.

Techniques for handling transfers to and from file naturally depend

on what file-handling facilities the operating system provides. The

majority of FORTH implementations are on small machines with ran¬

dom file devices (usually diskette) and a simple two-level memory.

Microdrives may be considered to be slow diskettes; but other types of

tape filing, such as cassettes, give rise to rather specialised schemes; and

we shall hardly concern ourselves with them here. Machines with virtual

memory, can handle files of the order of 100 screens as part of the

program space. Very long files, or multiple files, are again handled in a

system-dependent manner that likewise we cannot consider here.

FORTH incorporates a rudimentary virtual-memory scheme, which

operates very efficiently in practice. In the standard system, the virtual

memory consists of a set of blocks, 32 being regarded as a minimum,

numbered from 0. A small number of buffers (usually three screens’

36 Chapter 3

worth) is provided to receive data transferred from file. A constant

B/BUF in some implementations stacks the number of bytes in a buffer,

normaly 1024. The word BLOCK searches these buffers to determine

whether or not the block whose number is on top of the stack is already

there. If it is not, then a read command is issued to the backing device in

order to retrieve it. It is then read into one of the buffers. In either case

BLOCK returns the start address of the buffer on top of the stack.

Special care must be taken when using cassette-based systems. Since

stepping back is not normally possible, manual intervention is necessary

to retrieve a block with a number earlier than that of the block last

loaded.

Several algorithms are possible for deciding which buffer to over¬

write next. A simple (and popular) one is to take the buffers strictly in

turn, but avoid the one most recently used. The address of this is held in

a variable PREV , while that of the next buffer to use is held in a

variable USE . This will normally be the “stalest”, i.e. the one that was

least recently taken from file. If the original contents of this buffer have

not been altered since they were read, then an exact copy still exists on

file, and no further action is necessary. If, on the other hand, the buffer

has been updated, then the new version must first be written back to

file. In neither case does the user have to concern himself with the

details. All “page turning” is performed by the system.

A block whose contents have been changed can be tagged by using

the word UPDATE , which marks the most recently used buffer (i.e.

the one whose address is in PREV) typically by putting a 1 in the most

significant position of the first word. There is also a word EMPTY-

BUFFERS , which removes the update marker from all buffers, pre¬

venting them from being written back and thereby erasing them from

the system. The main use of this word is on initialisation. The word

SAVE-BUFFERS (in some systems FLUSH) writes all updated buffers

back to file store.

EDITING

All FORTH systems incorporate an editor, which is not necessarily part

of the main system, and may have to be loaded separately in some

system-dependent manner. Editors differ widely; but all of them take

care of much of the detail involved in handling screens of text; for

instance an editor will automatically mark as updated any screen that it

writes to.

The word LIST retrieves from backing storage the screen whose

37 Transput and Files

serial number is the top item on the stack, displays it on the current

output device, and copies the serial number to a user variable SCR . If a

printer is fitted, and the output is currently switched to it, the screen will

be printed. LIST formats text in sixteen lines of 64 characters, with line

numbers inserted on the left. Some editors have a word LINE that

places on the stack the buffer location of the start of the nth line of the

screen designated by SCR , n being the top stack item.

Some editors include a word CLEAR that makes reusable the buffer

containing the block whose number is the top stack item. The old

contents of the buffer are lost, though a (possibly earlier) version of its

contents may still exist on file. Operating in a similar manner, there is

often a word COPY that copies one buffer to another. The second stack

item specifies the number of the screen to be copied, while the top item

gives the screen number to be associated with the copy. CLEAR is used

to create a new block when editing. CLEAR and COPY together can be

used for renumbering screens.

Some systems have facilities for displaying a sequence of three

screens, known as a triad. The display device in this case is normally a

printer. The word TRIAD displays the triad containing the screen

whose number is the top stack item, and will start with the lowest

numbered of the three, whose serial number is consequently a multiple

of three. Another useful facility sometimes found is a word INDEX that

lists the top line of every screen, conventionally containing a title.

LOADING PROGRAMS

If a screen contains FORTH code then it is presumably intended to be

compiled or executed at some stage. The word LOAD treats the screen

whose serial number is on top of the stack as if it were being entered

from the standard input device, and causes it to be compiled or executed

in the same way. The number of the last block loaded is held in a user

variable BLK . The word LINELOAD on some systems enables loading

to start with a particular line of a screen, the line number having been

placed on the stack.

All buffers, including the terminal buffer, end with a null character

(ASCII 00 hex.). This is actually a dictionary entry which is executed to

terminate loading. However most FORTH programs run to more than

one screen. To make it easier to load screens that are numbered con¬

secutively, FORTH provides a “next-screen” operator —> , which

can be written at the end of one screen if the next in sequence is to be

loaded after it. In case the screens to be loaded are not sequential, a

38 Chapter 3

sequence of LOAD commands can be issued, or a LOAD command can

be placed at the end of one screen to ensure loading of the next in logical

sequence. Some older versions of FORTH had a word THRU to control
sequential loading. Thus

20 25 THRU

loads blocks 20 to 25 inclusive.

To save having to remember the numbers of the screens where our

different programs are stored, we can define a constant of the appropri¬

ate value. Thus, for instance, if we had written a system caled WORD-

PROCESSOR starting on screen 96, then we could place a constant
definition

96 CONSTANT WORD-PROCESSOR

in some standard screen of first loading. Subsequently then

WORD-PROCESSOR LOAD

would cause screen 96 and any subsequent “next” screens to be loaded.

Other systems have a word LOADS such that

96 LOADS WORD-PROCESSOR

has a similar effect simply on a call of WORD-PROCESSOR . Some

versions of LOADS will also cause a change of vocabulary (see below).

WRITING TO FILE

Remember that TYPE is designed to feed the standard output stream.

By default this will be the console, though text can usually be copied or

redirected to a printer. Most systems also permit redirection to a named

file. For users who wish to program their own file transfers, there is a

word BLOCK that obtains the block whose number is the top stack

item, and then leaves in its place on the stack the first-word address of

the buffer containing it. If the desired block is already in memory, this is

a trivial operation: if not, the block is transferred from backing store,

with a possible need for a rewrite.

New blocks are created using the word BUFFER . The number of the

block to be created must be at the top of the stack. A buffer is allocated

to it; and the previous contents of that buffer are written to file if

necessary. The buffer address is left on the stack, so BUFFER operates

rather like BLOCK except that there is no file search if the block is not

already in memory. Strings can be moved to the new block with

39 Transput and Files

CMOVE or CMOVE> . This way of working enables the file to be

formatted as the user wishes, but leaves the responsibility of writing

back to file to the FORTH system, provided of course that the block has

been marked by using UPDATE .

FORMATTING OUTPUT

FORTH systems provide a text scratchpad for general use during input

and for formatting output. This occupies space above the current top of

the dictionary (HERE) and access to it is gained by using the word

PAD , which is defined in FORTH-83 as

PAD HERE 84 + ;

The scratchpad can extend upward until it meets the main stack, which

grows into the same memory area (see Fig. 3.3). The “top” of the stack

low memory

SP

SO

high memory

Fig. 3.3. PAD .

40 Chapter 3

is held in a user variable SP ; and many systems provide a word SP@

(SP-fetch) that returns the address of the top of the stack. Consequently

the amount of memory available for scratchpad use is output by

SP@ HERE - .

There may also be a word SP! for initialising the stack pointer on reset.

If SP is not available, the word DEPTH used in conjunction with the

address of the stack base can be used to generate the stack pointer. The

stack base is usually referred to as SO . In FORTH-83 this is treated as a

constant yielding the base address direct: in other implementations it is

a user variable, so it is obtained by writing SO @ . In many implementa¬

tions SO is the same as TIB , the start of the input buffer.

The addresses above PAD are used by certain elements of the

FORTH system notably the editor. The addresses below it are used for

numeric output. When outputting a numeric item, we need to carry out

a conversion from binary into the radix given in BASE . This is done by

successively dividing by the base; but this of course generates the digits

in the reverse order to that in which they are output — hence the need

to work downward from PAD , so that the digits are left in the correct

sequence to be output using TYPE .

FORTH provides simple number-formatting facilities. These are

initiated by the word <# (less-sharp) and terminated by the word #>

(sharp-greater). The operator # (sharp) generates a single digit by

dividing the number at the top of the stack by the base, converting the

remainder to ASCII code, and storing it below PAD . The quotient

remains on the stack. The word #S (sharp-S) converts whatever remains

on the stack into ASCII characters dividing successively by the base

until it can do so no longer. The word HOLD adds one ASCII character

to the formatted string, and can therefore be used to insert other

symbols such as a point.

In FORTH-83 the word SIGN places an ASCII minus on the top of

the stack if the previous top quantity was negative, though on some

systems it works slight differently. The following pictured output sequ¬

ence

<# # # 46 HOLD #S 36 HOLD #> TYPE

outputs the top stack item with precisely two digits after the point, and a

currency sign at the start; i.e. it outputs an integral number of pence

(cents) in the normal form for pounds and pence (dollars and cents).

FORTH-83 requires # and #S tc operate on double-length quantities;

but in some implemtations they may be found to work only for 16-bit

Transput and Files 41

numbers.

Exercise 20. Write a pictured output sequence to prepare a length in

inches for output in the form of yards, feet and inches.

A typical mechanism for all this is to make the word <# copy PAD

into a temporary variable HLD , which then acts as a pointer durihg the

conversion. As each digit is converted, it is deposited in the address

given in HLD and HLD is decremented by unity. Under this scheme,

the definition of HOLD becomes

: HOLD -1 HLD +! HLD @ C! ;

which implies that HOLD may be used only after <# . The word #>

restores initial conditions, except of course that the item output has

been dropped from the stack, and leaves the appropriate address (i.e.

the final value of HLD) and the character count on the top of the stack

ready for the string to be output by TYPE .

NUMERIC INPUT

The word CONVERT converts numbers during input into binary using

the radix given in BASE . CONVERT converts a numeric ASCII string,

stored starting at the address given as the top stack item, into double¬

length binary, accumulating the result into the second stack item. Con¬

version proceeds until a character is encountered that cannot be a digit

in the radix of the base. Thus input numeric quantities can be delimited

by spaces, newlines, file terminators or digits outside the range of the

base.

Exercise 21. Design a simple calculator that will accept unsigned decim¬

al integers when keyed in, output them again in a neat column with the

digits spaced in threes, and output their sum when an = sign is keyed in,

all items input to be delimited by newlines.

Exercise 22. Modify exercise 21 to become a “cash register” handling

quantities with two digits after the point.

Chapter 4

The FORTH Dictionary

To conserve memory space, many microprocessor versions of FORTH

record only the first three characters of a word together with the

character count. Thus the words CATASTROPHE and CATERPIL¬

LAR become equivalent, both appearing as 11CAT in the dictionary.

Although a good FORTH system will warn you if you redefine an

existing dictionary name, there is nothing to stop you from doing this;

and indeed it is often most useful, since thereby one can obtain

something of the convenience of local identifiers in block-structured

languages. FORTH however goes further than this, and operates a

system whereby the same word can have different interpretations in

different contexts. This is achieved by offering the user a choice from

several vocabularies. The main vocabulary is named FORTH ; but most

systems provide additional vocabularies named EDITOR and

ASSEMBLER respectively; and the user can define further vocabular¬

ies of his own.

When a word is compiled into a new definition, or when it is

executed direct from input, it is sought within the dictionary, starting

with the most recent entry in the vocabulary pointed to by a user

variable CONTEXT . Thus for instance the word I . which yields the

loop index in the FORTH vocabularly, would probably cause insertion

of new text in the context of an EDITOR vocabulary, and might refer to

an index register if the context happened to be ASSEMBLER . A list of

the words in the context vocabulary can be obtained by typing VLIST ;

on some systems the word CATALOG is used instead. This lists the

words in reverse order of definition.

Simply typing the name of a vocabulary makes that the context; thus

EDITOR VLIST

makes EDITOR the new context vocabulary and then lists the words in

this context. There are certain other words that can change the context

automatically; for instance, on some systems the word LIST automati¬

cally puts the system into EDITOR context, and CODE or ;CODE

puts it into ASSEMBLER context.

When a new word is defined, it is put into the vocabulary pointed to

42

43 The FORTH Dictionary

by the variable CURRENT . This is not necessarily the same as the
context vocabulary. In fact in most systems the current vocabulary is
searched if the desired word cannot be found in the context. Normally
however the current and context vocabularies are the same, in which
case the two operations CONTEXT ? and CURRENT ? will output

the same address. If CURRENT and CONTEXT do not indicate
the same vocabulary, they can be made to do so with the word
DEFINITIONS which sets CURRENT from CONTEXT . Thus

EDITOR DEFINITIONS

first sets the context to EDITOR and then sets CURRENT to be the
same. If we wish to go back to the original context, we merely type

FORTH , leaving EDITOR still the current vocabulary for new defini¬
tions. However, one effect of the defining colon may be to set CON¬
TEXT to CURRENT, since the compiler refers to CONTEXT not

CURRENT to find the parameters for constructing new words. Details

in this area are not standardised.
Since CONTEXT is the first vocabulary to be searched when compil¬

ing or executing direct from input, it is best for this to be the one

containing the commonest words. If a w'ord cannot be found in the
context vocabulary, most systems search the vocabulary within which
this context was first defined, and so on recursively. For most vocabular¬
ies the “parent" is the FORTH vocabulary. If the word still cannot be
found after a recursive search of both context and current vocabularies,
an attempt is made to treat it as an integer in the radix given in BASE.
Only if this is still not possible does the system issue an error message.

USER VOCABULARIES

We can define new vocabularies with the defining word VOCABUL¬
ARY . This adds the new vocabulary name to the current vocabulary,

and associates it with a pointer that will chain to words defined in the
new vocabulary. In some systems it is also added to a chain headed by

user variable VOC-LINK .
Once created, the new vocabulary can be made the context in the

normal way by quoting it; and it can then be made current by using

DEFINITIONS . For instance, we might write

VOCABULARY FRENCH FRENCH DEFINITIONS

and then go on to define new words such as

44 Chapter 4

: MITTERAND ;

or even new vocabularies

VOCABULARY LANGUEDOC

which will be added to the FRENCH vocabulary.

Finally the word FORGET may be used to delete groups of defini¬

tions, or even complete vocabularies from the dictionary

FORGET MENOT

deletes from the dictionary the word MENOT and all words defined

after it, regardless of what vocabulary they are in. This only happens, of

course, provided that MENOT is present in an accessible vocabulary.

To avoid the chaos that would ensue if the user happened by accident to

attempt to FORGET part of the basic vocabulary, a variable FENCE is

provided giving an address below which FORGET is not permitted to

operate. However this precaution is not necessary if the basic FORTH

system is in ROM. One can protect the whole dictionary defined to date

by writing

LATEST FENCE !

The main purpose of FORGET is to release memory in situations in

which space is at a premium. Many FORTH users make a dummy

definition such as

: TASK ;

at the beginning of a session, so that a subsequent

FORGET TASK

will delete everything added that session. Some systems provide a word

EMPTY to do the same thing. Others provide a word REMEMBER,

which can be used to define a word that, when executed, will delete

itself and all words defined after it.

Exercise 23. What are the effects of the following sequences of words

executed in turn?

VOCABULARY FRENCH FRENCH DEFINITIONS

: DEGAULLE ;FORTH

VOCABULARY GERMAN : GAUSS ;

FORGET DEGAULLE

45 The FORTH Dictionary

DICTIONARY STRUCTURE

In most systems every FORTH dictionary item comprises four fields as

shown in Fig. 4.1. The first is the name field. On small systems this is

exactly four bytes long, the first giving the full length of the name, and

the remainder the first three characters. If the name has fewer than

three characters, then the field is filled with spaces. On larger systems

the full name is stored. The length byte also carries some tags whose

functions we shall consider later. In Fig. 4.1, following the convention of

the book, we show memory with the lowest address at the top. This

previous words
in vocabulary

execution
code

Fig. 4.1. Dictionary entry.

46 Chapter 4

makes the name fields more readable. We also show the structure as

being two bytes in width, since the remaining fields are made up of

two-byte items. To this end we have chosen words with odd numbers of

characters in our example.

The second field in every dictionary entry is known as the link field.

It is two bytes long, and it carries a link to the beginning of the name

field of the previous word defined in the current vocabulary. It is by

travelling down a chain of such links that the system is able to look up

words in the dictionary. The third field is the code field. It also contains

an address, which points to the code that is to be invoked when the word

is executed. All dictionary entries created by the same defining word

have the same pointer in their code field; and it is the code-field address

that is placed upon the stack when a word has been found in the

dictionary.

The first three fields are sometimes known as the head of the

dictionary entry. The fourth is the parameter field or body of the entry.

Its length is variable; and it gives a full definition of the word. In most

implementations (including that of fig-FORTH) the body is contiguous

with the head, though there is nothing in the standard that makes this

obligatory. The simplest bodies belong to constants and variables, and

are only two bytes long. The body of an entry created by the word

CONSTANT is simply the constant value itself; and the code field

points to a routine to load this value on the stack. The body of an entry

created by VARIABLE is similar; but the code in this case loads the

parameter-field address, not the value, on the stack. The body of an

entry created by USER , if the system provides this word, contains an

offset giving the relative position of the variable in the user area. The

code executed in this case adds this offset to the pointer to the start of

the user area. Figure 4.2 shows these three cases, the dictionary entry

being on the left, with the stack configuration obtained by executing the

defined words on the right.

THREADED CODE

The parameter field of an entry created by a colon definition depends on

the definition itself. It provides the threads needed in the threaded-code

execution of FORTH. Threaded code can take one of several forms.

The form adopted in FORTH is a sequence of compilation addresses. In

the fig-FORTH model these are pointers to the code fields of the words

in the sequence to be executed. Thus for instance when the definition

: MAX OVER OVER < IF SWAP THEN DROP ;

The FORTH Dictionary 47

VARIABLE X

1 I x
link

code

0

16 USER FENCE

5 F

E N

C E

link

code

16

DICTIONARY ENTRY

Fig. 4.2. Constant, variable and user entries.

user area

STACK AFTER EXECUTION

is compiled, the parameter field is filled with pointers to the code fields

of OVER < and so on in turn. Some of these words themselves have

threads in their parameter fields; for instance < could be defined as

Eventually a thread leads to a word defined wholly in machine code.

This is executed, and control returns to the next thread in the same

definition. Notice that the process is recursive: words are executed in

48 Chapter 4

turn until a semicolon returns control to the next higher level. Figure 4.3

illustrates the example, and assumes that OVER and - are primitives

defined in code, but that < is colon-defined.

This simple form of threaded code is possible because FORTH is a

postfix language, and words are executed strictly in the sequence in

which they are written. There is an exception to this rule when a word is

used as data for a preceding word, as for instance strings output by ." or

identifiers in VARIABLE definitions. Otherwise the sequence of con¬

trol is strictly observed.

The need for sequential execution also explains why structures like

Fig. 4.3. Threading.

49 The FORTH Dictionary

IF ... THEN may occur only in compiled definitions, and cannot be

executed directly on input. When IF is executed, it may find the condi¬

tion false, in which case it has to transfer control to THEN . It might

have been possible to design a FORTH interpreter that scanned forward

in this case until it found a THEN in the input stream; but this would

have made it impossible to nest IF ... THEN sequences. What actually

happens is that during compilation IF leaves on the stack an address

pointing (typically) to an empty location in the parameter field of the

word being compiled. Later during the same compilation, THEN stores

there a pointer to its own location. We shall consider this process in

more detail later on.

The word ' (single quote mark, or “tick”) is very powerful despite its

size. It searches the dictionary for the next word in the input stream, and

puts its compilation address on top of the stack. It is therefore like and

VARIABLE in requiring to be followed by its parameter. It is used

principally in the word ['] , which retrieves thread pointers during

compilation and places them in the parameter field of the word being

defined. However, the word ' is available for general use, and can be

used for instance to change the value of a constant in the dictionary,

constants being stored as we have seen in the parameter fields of the

relevant dicitionary entries. To do this we must have some way of

converting from compilation address to parameter-field address. This is

achieved by the word >BODY , which in the fig. model simply has to

add 2. Thus if some lunatic government should decide to decimalise the

foot, we could make the necessary adjustment by executing

10 ' IN/FT >BODY !

Notice that the tick is followed by its argument only during inter¬

pretation. To compile a word to change a constant value, either use LIT

: NEWIN/FT LIT IN/FT >BODY ! ;

or else delay quoting the name until you want to perform the change

: CHANGE ' >BODY ! ;

10 CHANGE IN/FT

Having found the compilation address of the desired word, we can

convert it to the link-field address or to the starting address of the name

field. Some systems make available words LFA and NFA to perform

such conversions. There may also be a word PFA that converts the

name-field address to the parameter-field address. Another convention

uses >LINK and LINK> , >NAME and NAME> to convert be-

50 Chapter 4

tween the compilation address and the addresses of the other fields.
The word TRAVERSE may also appear in the vocabulary. This can

be used to move from one end to the other of a name field of arbitrary
length, the starting address being given as the second stack item, and the
sign of the top stack item specifying the direction of traverse. In the
fig-FORTH implementation, TRAVERSE uses the convention that the
top (128) bit of the first (length) byte and of the last byte in the

name-field are ones. There is also a word LATEST that stacks the
name-field address of the last word defined in the current vocabulary;
though in some implementations it gives the last word defined — poss¬

ibly in a vocabulary current earlier on. Another useful word sometimes
found is ID. which prints the name of a dictionary entry, given its
name-field address on the stack. Thus

LATEST PFA LFA @ ID.

will output the name of the last word but one. In some systems LATEST

is contained in a user variable LAST . LAST should be the same as
CURRENT @ except during actual compilation.

USER-DEFINED TYPES

We are now in a position to describe one of the most useful features of

FORTH, one that makes it as powerful as many much larger languages.

The basic FORTH vocabulary provides only a small number of different
data types. There are variables, constants, and what might be regarded
as functions, the last being created by using colon definitions. But

FORTH also permits new types of object to be defined as well as
new instances of existing types. This is achieved by using the words

CREATE and DOES> . The principal function of CREATE is to
create a new dictionary entry; but it is used in this special way as well.
The syntax when it is used in conjunction with DOES> is

: type-name CREATE compile-time actions DOES>
execution-time actions ;

When the new type name is used in a definition of the form

type-name name-of-instance parameters ;

it creates a new instance of the type. It does this by using the word

CREATE to build a new dictionary entry. CREATE puts the name-of-
instance in the name field, enters an appropriate value into the link

51 The FORTH Dictionary

field, enters a pointer to the code for constant definitions into the code
field, and puts zero into the first location in the parameter field. In some
systems <BUILDS is a synonym for CREATE .

DOES> modifies the code field to point to a special code segment

designed to handle definitions of this kind, and replaces the zero in the
first parameter location by a pointer to the sequence of execution-time
actions given in the original type definition. Consequently, in the final
execution, when the name-of-instance is invoked, control passes direct
to those execution-time actions. These operate on the current stack
contents, and any other structures built during the definition of the

instance, to produce the desired result. CREATE and DOES> are
executed when the new instance is compiled. Further compile-time

actions can be specified by additional words between them. For instance,
we might wish to allocate more space in the parameter field of the new
object, or link the parameter field to a structure elsewhere in memory.

A simple example may help to make the description clearer.
Suppose that we wish to store dates in the form

day month year

and to have the date displayed when called for. We can do this by

defining a new word to define DATE as follows

: DATE CREATE , , , DOES>

DUP 2+ DUP 2+ ? ? ? CR ;

Having compiled the word DATE we can use it to define actual dates,
as for instance

5 1 85 DATE TODAY

or 4 7 1776 DATE INDEPENDENCE

CREATE in the definition of DATE creates the necessary dictionary
entry with TODAY or INDEPENDENCE in its name field; and the
three commas put the three numeric items previously stacked into the
parameter field of this entry.

When TODAY is called, the code associated with DOES> stacks
the first parameter-field address, and then invokes the part of DATE
following DOES>. This then constructs the next two parameter-field
addresses, stacking them above the first. The three ? operators then
cause the three components of the stored date to be displayed; CR gives
a newline, and the semicolon returns control in the normal way.
DOES> has an exact or near synonym in some implementations.

52 Chapter 4

Exercise 24. Define a word TRACE such that the call

TRACE AA

will cause a copy of the top stack item when TRACE is called to be
saved in the dictionary and displayed when AA is called subsequently.

Exercise 25. In Chapter 2 we introduced a word SET that defines a
word that executes to store a value in a given address. Use CREATE ...
DOES> to define SET .

THREADING MECHANISM

The threading mechanism is usually based on the use of an instruction

pointer (IP) and a working pointer (W), which together determine the
flow of control. Ideally these two will be implemented in machine
registers, though neither will of course be the processor’s own program

counter. Suppose that we are just completing a code sequence associ¬
ated with parameter (n-1) in the current definition. IP is then pointing
to the parameter (n), which in turn is pointing to the code field of the
next word to be obeyed, as in Fig. 4.4.

At the end of the code associated with parameter (n—1) we obey a
standard code sequence, which we shall refer to as NEXT . This trans¬
fers the new parameter (n) to W, advances IP and W by one 16-bit
address, and jumps to the appropriate code segment. The position is
then as shown in Fig. 4.5, PC being the processor’s program counter.

At this point W is pointing to the first parameter of the new word; so
we have several possibilities, depending on the type of object that this
word represents. If it is a constant, then the code associated with it will
simply stack the parameter pointed to by W and obey NEXT again,
which will advance to the next parameter at the original level. If it is a

variable, then the process is similar, except that the address not the
value is stacked. If the word is one that was defined in code as part of

The FORTH Dictionary 53

the FORTH nucleus, then in most implementations its code field points

to the first location in its parameter field, which in this case consists of

the code sequence. The sequence ends with NEXT which returns con¬

trol in the same way as for constants and variables.

If however the new word pointed to by parameter (n) was created by

a : (colon) definition, then the process is slightly more complicated. It is

here that the return stack comes into its own. The code associated with

colon definitions saves the old value of IP on the return stack, and the

value of W is copied to IP . The position is then as shown in Fig. 4.6.

The colon code ends as usual with NEXT which advances IP to the

second parameter of the new word and enters the code sequence associ¬

ated with the first parameter. The situation is then the same as it was

originally (Fig. 4.4), except that the system is now operating at a lower

threading level. Since the return address is saved on the return stack on

every regression to a lower level, the process is recursive; regressions

Fig. 4.6. Effect of : .

54 Chapter 4

can be retraced when necessary. This is the function of the semicolon.
The code associated with this simply restores IP from the return stack,

and enters NEXT to get the code associated with the next parameter at
the higher level, Notice that one consequence is that the return stack is
available for communication between words only if they are at the same

level. Any attempt to communicate between words at different levels
using the return stack results in corruption of the return address.

Words containing CREATE and DOES> are also defining words,

Fig. 4.7. A user-defined type.

55 The FORTH Dictionary

and have their own sequence of operations at execution time. Take for
instance the example we just gave of a defining word DATE that is used
to define a new word TODAY . The situation just before TODAY is
called as a parameter of another word, or as one of a sequence of words

entered direct from the keyboard is shown in Fig. 4.7.
When TODAY was defined by DATE its first parameter was set to

point to the first parameter in the DOES> section of DATE . The code
field of TODAY points to a segment of code associated with the

definition of the word DOES> . This first transfers the current IP to the
return stack, then points IP to the first DOES> parameter of DATE ,

and finally puts the address of the second parameter of TODAY on the
main stack. This parameter of course contains the year of today’s date.
The situation now is as shown in Fig. 4.8.

The DOES> code ends in the usual way with the sequence NEXT
which transfers control to the first of the DOES> parameters of DATE
and advances IP . The parameters are then executed one by one until
eventually a semicolon returns control to the address stored on the
return stack. This address refers of course not to a parameter of
TODAY but to a parameter in the sequence that called TODAY .

VOCABULARY MECHANISM

There are a number of different mechanisms for handling vocabularies
in existing FORTH systems. We shall describe here the mechanisms
used in the fig-FORTH implementations, which is probably the one
found most frequently. The operation of VOCABULARY may con¬
veniently be described using the CREATE ... DOES> feature, thus

: VOCABULARY CREATE A081 ,

CURRENT @ 2- ,
HERE VOC-LINK @ ,

VOC-LINK ! DOES>
2+ CONTEXT ! ;

The first parameter, set by the first comma operator, is A081 (given
in hex for clarity) which is equivalent to the name field for a word

“space”*. The second parameter (second comma) will eventually form
the head of the chain of link fields for all the words to be defined in this

* Since the convention used here is that the low byte precedes the high byte, 81 is the

length byte, the 8 providing the bit that marks the start of the name field. The single¬

character name is “space”, or 20 (hex), which becomes AO when the end-of-field bit is
added.

56 Chapter 4

vocabulary. It is set initially to point to the starting point of the vocabul¬
ary within which the new vocabulary was defined (in this case FORTH),

thereby ensuring that the new vocabulary grows as a branch of the old
one. The DOES> part of the definition of VOCABULARY ensures
that its address becomes the CONTEXT pointer when the new vocabul¬
ary is called.

Fig. 4.8. Calling a user-defined type.

57 The FORTH Dictionary

Finally, the third parameter (third comma and !) forms part of a
chain that connects all the vocabularies together. Figure 4.9 shows the
structure just after a new vocabulary LATIN has been defined within

the context of FORTH (i.e. LATIN is the latest word defined in the
FORTH vocabulary). Figure 4.10 shows the structure after LATIN
has been made current, i.e. after LATIN DEFINITIONS has been
executed, and AMO has been defined as the first word in this
vocabulary. AMO is now at the head of the current chain; and, being so
far the only word in the vocabulary, it is linked direct to the end, which

Fig. 4.9. A new vocabulary.

Chapter 4 58

is the FORTH entry.

Now if LATIN is the context, any directory search will look first at

the words in the LATIN vocabulary. If the word sought is not found in
LATIN, then, on reaching the earliest word defined in this vocabulary
(AMO in our example) the search will pass to the pseudo-word “space”
in the parameter field of the entry for FORTH. This will actually look
like an ordinary dictionary entry with a link field that is chained to the

latest word that was defined in the FORTH vocabulary (which could
have been LATIN itself). The search therefore continues (backward)

Fig. 4.10. Adding a word.

59 The FORTH Dictionary

through the whole FORTH vocabulary. The first word of all to be
defined in the FORTH vocabulary, and hence the last in the search,
(LIT in fig-FORTH) has zero in its link field; and this serves to halt the
search. Thus in fig-FORTH the vocabularies form a tree, with FORTH

at the root, which is searched recursively. Since searching terminates as
soon as a match is found, words can be multiply defined, the definition
chosen in any given context being that nearest to the start of the search.

The tree structure is not universal. For instance, some systems organise
the dictionary not as a linked list but as a hashed set. This greatly speeds
up searching. But searching, remember, occurs only during compilation
or direct interpretation, so its effect on precompiled programs is likely

to be small. Moreover, hashing makes it difficult to organise a flexible

scheme for redefinition.

Chapter 5

Compiling and Executing FORTH

Two processes are involved in running FORTH programs — compila¬
tion and execution. Of course, compiling is just executing a defining

word, but it is convenient to consider the two processes as separate.
During “colon” compilation, words in the input stream are looked up in
turn in the dictionary, and their addresses are threaded together by
entering them into the parameter field of the new dictionary entry. Thus
the time-consuming part of the job, the dictionary lookup, is carried out

once only, at compilation time. Subsequently, when the word is ex¬
ecuted, control is rapidly passed down the threads, with no need for

further reference to the dictionary. It is this that makes FORTH, and
for that matter any other threaded language, so fast in comparison with

fully interpreted languages like BASIC, in which every symbol has to be
looked up anew every time it is used.

A small nucleus of primitive FORTH operations is implemented
directly in code; these are used to build up more complex functions by
threading them together in different combinations. Thus the amount of

raw machine code in a FORTH system is quite small. This is in contrast
to a fully compiled language, in which a new copy of each primitive is
compiled every time it appears in the program. Certainly some time is
consumed in simply following the FORTH threads; but this is a small
price to pay for a system that can pack quite a complex program into
very little space.

COMPILING

Compiling then is simply executing a defining word, i.e. any word that
puts a new word into the dictionary. The header for a dictionary entry is
built by the word CREATE . This is a complex and system-dependent
operation. In the fig. model it reads the length and characters of the new
word into the next free area in the dictionary, using WORD , so
generating the name field of the new entry directly on top of the

dictionary. It issues a warning if a word is being redefined within the
same context. An important function of CREATE is to “smudge” the
first byte (the length byte) of the name field by setting the 32-bit. This

60

61 Compiling and Executing FORTH

has the effect of making the word unrecognisable should it be referred
to within its own definition. Were this not done, the compiler might
enter a recursive loop from which it could not escape. CREATE chains
the link field to the previous word defined in the current vocabulary,
and plants a link to its name field in the parameter field of the current

vocabulary. It sets the code field initially to zero. Later this will be made
to point to the code for that particular type of entry. This is often held in
the parameter field of the defining word that called CREATE . Finally
HERE is updated to point to the first address of what will eventually
form the new parameter field. The structure at this stage is shown in

Fig. 5.1.

VOC-LINK
chain

HERE

name field
of previous

word

Fig. 5.1. Effect of CREATE .

62 Chapter 5

The parameter field of a constant entry is simply the value of the
constant, which at this stage is the top item on the stack. The definition
of CONSTANT is thus

: CONSTANT CREATE SMUDGE , ;CODE code for

constants

SMUDGE toggles the “smudge” bit, in this instance of course setting it
back to zero, CREATE having earlier set it to one. The definition of
VARIABLE is then simply

: VARIABLE 0 CONSTANT ;CODE code for variables

and that for USER is

: USER CONSTANT ;CODE code for user variables

with a code sequence to perform the required addition of offset and

base. The word ;CODE operates just like ; except that it also links the
code field of the new word to the code that follows it in the definition of
the compiling word. We shall have more to say about this later.

COLON COMPILATION

Colon compilation is controlled by a user variable STATE . Every item
in the dictionary carries a precedence code. If this is lower than the
value of STATE then the item is compiled as a component of the

current dictionary entry. If it is equal or higher, then the word is said to
be IMMEDIATE and is executed. In early versions of FORTH the pre¬
cedence code was held at the high end of the link field. But this

limited address size, so modern implementations carry the precedence
code as the 64 bit in the length byte of the name field. Since the top bit.

(128 bit) of this byte is a 1 , the variable STATE is usually set to either 0

or 192 (CO hex) to enable a direct comparison to be made without the
need to mask out the remaining bits.

On entering a colon definition, the system therefore alters STATE
to 192. This value is set by the word] , defined as

:] 192 STATE ! ;

STATE is eventually set back to 0 by the word [. The definitions of J
and [thus make it possible to include a directly executed interlude

within a compiled sequence simply by enclosing it within square brack¬
ets, e.g.

Compiling and Executing FORTH 63

: JOE .” EXECUTING JOE” ...[.(COMPILING

JOE)] . . . ;

We give the definition of the defining word : here as if it were itself a
colon definition; but in fact it will be precompiled in any working
system.

: : ?EXEC !CSP CURRENT @ CONTEXT ! CREATE]
;CODE colon code IMMEDIATE

Thus : first checks to make sure that the system is in execution mode

(one cannot compile a thread to a colon sequence). It then sets the
context to CURRENT to ensure that the components of the new defini¬
tion are accessible to the vocabulary in which it is being defined; and

calls CREATE to compile the appropriate header. Finally the right
square bracket sets the system into compile mode. The word !CSP at the
start stores the current stack pointer in a special vairable CSP so that its
value can be checked at the end of the compilation.

IMMEDIATE WORDS

Certain words have to be executed, not compiled, whichever state the
system is in, : being one. Other examples are (and .(. Vocabulary

names too, which change the context, must normally be executed, not
compiled. There is also a class of words that require some operations to
be performed at compile time and others at execution time. Words like
IF and DO are in this category, as is ; . All these words have the
precedence bit set to 1 and are said to be immediate. Any user-defined

word can be made immediate by putting the word IMMEDIATE after
the definition. IMMEDIATE however is not immediate.

The word ; may be defined as

: ; ?CSP COMPILE EXIT SMUDGE [; IMMEDIATE

It threads only one word for subsequent execution, namely EXIT ,
which does the exiting at the end of the definition to which the semi¬

colon refers. The word EXIT has to be compiled not executed. The use
of COMPILE ensures this, even though the word ; is immediate. All the
other words are executed at compile time. ?CSP checks the stack
pointer that was saved in CSP at the beginning of the compilation,
SMUDGE toggles the 32-bit back to zero in the length byte of the name
field of the word being compiled, and [returns the system to the execute
state.

64 Chapter 5

When it is eventually obeyed during execution, EXIT restores the
thread for the next level up, which has temporarily been held on the

return stack. In some implementations EXIT has a synonym ;S : in
others it is constrained to operate only during compilation, and makes
use of ;S after calling ?COMP . ;S can be called at the top level. Its

effect then is to terminate interpretation of the current line and call for
the next line from the terminal. If the system is currently loading from
file, then the loading of that block is prematurely terminated.

The word COMPILE must be used in the definition of all words that
are partly executed at compile time, and in particular in words involving
transfer of Control. Consider, for instance, the definition

: SHEEP 0 DO BAA ” LOOP ;

Thus, for instance, executing 3 SHEEP would print BAA BAA BAA .
Now the definitions of DO and LOOP are typically

: DO COMPILE (DO) <MARK 3 ; IMMEDIATE

and

: LOOP 3 7PAIRS COMPILE (LOOP)

<RESOLVE ; IMMEDIATE

During the compilation of SHEEP, DO , being immediate, starts to
execute. However, the first thing it does is compile the word (DO)

whose purpose is to transfer the terminator and initial index to the
return stack when SHEEP is executed. Having threaded (DO) in the

parameter field of SHEEP the system marks the current position in the
parameter field of SHEEP by putting the address on the stack. It then
places the number 3 on the stack. The parameter field of SHEEP then

receives a pointer to .", which is not immediate, and the string 3BAA.

LOOP again is immediate, so it places 3 on the stack and executes
7PAIRS to ensure that DO and LOOP have been properly paired up.

7PAIRS issues an error message if it does not find two identical values
in the top two stack positions, in this case a pair of 3s. The word
(LOOP) is then compiled. At execution time this will increment the
index, compare it with the terminator, and jump back if the first is less
than the second. Finally <RESOLVE takes the address previously
planted on the stack by <MARK and computes an offset that will be
used by (LOOP) at execution time to perform the jump back.

<RESOLVE is called BACK in some systems. Figure 5.2 shows the
eventual dictionary structure of the entry SHEEP.

Words containing IF and THEN are compiled in a similar way. The

Compiling and Executing FORTH 65

5 S

H E

E P

link

code

3 B

A A

offset

(DO)

(LOOP)

Fig. 5.2. Structure of sheep.

definition of IF is

: IF COMPILE 7BRANCH >MARK 2 ; IMMEDIATE

Thus, after compiling a thread to 7BRANCH , which will do the actual
testing at execution time, the compiler executes >MARK , which puts
the current dictionary address on the stack and stores zero at that
address. Notice that >MARK is different from <MARK in that the
former allots space in the dictionary.

The definition of THEN is

: THEN 7COMP 2 7PAIRS >RESOLVE ; IMMEDIATE

which first checks that the system is compiling (7COMP) and that
THEN has been properly paired with an IF . It then executes
>RESOLVE , which stores an offset (difference between THEN and IF
locations) in the parameter following 7BRANCH , so that 7BRANCH
can perform the exit jump correctly. >RESOLVE may be defined

: >RESOLVE HERE OVER - SWAP ! ;

THEN does all its work at compile time. There is no execution-time
activity, so no need for COMPILE .

Exercise 26. Devise a word BREAK that will cause immediate exit
from a DO loop in contrast to LEAVE , which continues to execute the

66 Chapter 5

loop. (You may have to devise an alternative form of LOOP to go with
it).

The word COMPILE may be defined as

: COMPILE ?COMP R> DUP 2+ >R @ , ;

The word 7COMP calls an error diagnostic unless the system is currently
compiling. The address on the return stack at this stage is pointing to the
next parameter, which in turn points to the word to be compiled. It is

incremented to point to the next word, and its original value is then used
to obtain the address of that word’s code field and store it in the
dictionary, i.e. compile it. Figure 5.3 shows the execution of COMPILE
when compiling (DO) within DO .

COMPILE is used to force a word to be compiled when the word
containing it is immediate and therefore being executed. There is
another word [COMPILE] that can be used to force compilation of an

immediate word when the word containing it is being compiled. The
difference is subtle but important. For one thing, [COMPILE] is im¬
mediate, while COMPILE need not be, since it is normally used within
immediate words. A typical use of [COMPILE] is in the definition of
aliases of immediate words; for example

: ENDIF [COMPILE] THEN ; IMMEDIATE

THEN is immediate; but it has to be compiled as part of ENDIF .

A better example is ELSE which illustrates both COMPILE and
[COMPILE], The definition is

: ELSE 2 7PAIRS COMPILE BRANCH >MARK

SWAP 2 [COMPILE] THEN 2 ; IMMEDIATE

Between checking that it is paired with an IF and setting a 2 to ensure
pairing with a THEN it compiles an unconditional branch that will cause

the “else" sequence to be skipped if the “if" condition has been satis¬
fied. >MARK then allots space to hold the offset for BRANCH just as
it does in IF . Finally, THEN is compiled as part of ELSE , and of
course executed when ELSE is (eventually) executed. The SWAP is
there to make sure that the >RESOLVE inside this THEN operates on
the mark set by IF , the second mark being set for the benefit of the final

THEN . Notice the extra 2 which is needed for the “pairs” check in

THEN. COMPILE is used here because BRANCH is immediate,
[COMPILE] because ELSE is immediate. The reader will probably
understand the foregoing better if he considers in detail the compilation

Compiling and Executing FORTH 67

of a simple word such as

: .TRUTH IF TRUE" ELSE FALSE " THEN CR ;

[COMPILE] may be defined

: [COMPILE] FIND 0= 0 7ERROR DROP CFA , ;

IMMEDIATE

68 Chapter 5

Thus it simply searches for the next word in the input, registers an error
if it cannot be found, and compiles a thread to it if it can.

CONDITIONAL COMPILATION

Some implementations provide facilities for conditional compilation
similar to those offered by macro assemblers. They are obtained by
using the sequence

IFTRUE OTHERWISE IFEND

For instance, if it were necessary to compile different sequences de¬
pending on the amount of memory available, we might include within a
colon definition

[SO HERE — 1000 > IFTRUE big memory sequence

OTHERWISE small memory sequence IFEND]

Notice that IFTRUE and OTHERWISE can operate at the top level, in
contrast to IF and ELSE . IFTRUE simply ignores text up to OTHER¬

WISE if the condition is false, and OTHERWISE ignores text up to
IFEND if it is true. One consequence of this is of course that IFTRUE
sequences cannot be nested.

CODE

The bodies of the defining words are rather unusual, in that in most

systems they contain the actual machine code that will be accessed from
the code fields of the words that they define. Thus one effect of a
defining word is to enter into the code field of the word being defined a

pointer to part of its own parameter field. In the fig-FORTH imple¬
mentation, the word ;CODE is used to do this at compile time. ;CODE

also separates the words executed at compile time from the code sec¬
tion.

Any word can of course be defined entirely in machine code, pro¬
vided of course that an assembler is available: in fact all the primitive
kernel operations are. Some implementations permit the introduction of
a code definition by the use of the word CODE . CODE first creates a
new dictionary entry, as does any defining word, and places in its code
field a simple pointer to the next memory location, i.e. the first location

in its parameter field. Thus when the word is executed the code is
entered through the normal mechanism. Every code sequence is termin¬
ated with a machine-code jump that returns control to the next piece of

69 Compiling and Executing FORTH

code to be executed. This is compiled by the word END-CODE , which
should terminate every code interlude; though in most implementations
a newline is an alternative terminator. The difference between ;CODE
and CODE is illustrated in Fig. 5.4.

: JOE...;

CODE JOE...

ASSEMBLER

Practically all versions of FORTE! provide an assembler, usually as a
separate vocabulary. The principle is quite simple: all the symbols in the
assembly language are defined as immediate FORTH words that store
the appropriate codes in the dictionary. The complexity of the assem¬
bler depends of course on the complexity of the assembly code. For
instance, if the value to be given to an assembly mnemonic depends

70 Chapter 5

upon the parameters associated with it, then its definition in FORTH is
dependent in a similar manner and is correspondingly complex. To

make it easier to resolve such dependences, FORTH assemblers usually
require parameters to precede function codes in the normal postfix
manner; and this can be disconcerting to someone accustomed to con¬
ventional assemblers. Address expressions too must naturally be in
postfix form.

Apart from these, there may well be other differences in detail

between a FORTH assembler and a conventional assembler for the
same code. The assembler can be greatly simplified if different mnemo¬
nics are used for different addressing modes; and advantage is often
taken of this fact to reduce the size of the assembler. Thus the user may

have rather more work to do when writing assembly-language sequences
for FORTH than when writing them for a conventional assembler.
Against this, the FORTH assembler may be able to make use of some
high-level constructs of FORTH itself, such as

IF THEN. One problem does arise — that of setting labels. Most

FORTH assemblers include a word LABEL that sets the following
name as a constant, with value equal to the current program location.
Forward jumps, to labels that have not yet been set, do constitute a
difficulty that can normally be resolved only by avoiding the issue and
using some construct such as IF THEN .

RECURSION

FORTH is not a recursive language, although the use of a stack during

compilation provides the potential for recursion. Auto-recursion, i.e.
the power of a word to call itself, is expressly prevented by the “smudg¬

ing” process, which deliberately corrupts the name field of a word in the
dictionary until after it has been defined. This prevents the system from
entering an infinite loop, which might occur during compilation if the

system tried to call a word for immediate execution while trying to
compile it, or during execution if a word tried to jump back to itself.
Mutual recursion, one word calling another word that in turn, either
directly or indirectly, calls the first, cannot be performed in a simple

manner in FORTH, since the definition of a word can only include
words that have already been entered into the dictionary.

There are, nevertheless, ways of getting round limitations of the
language. For instance, the following word can be incorporated into any
definition, and will stack the code-field address of the word being
defined.

Compiling and Executing FORTH 71

: THISCODE CURRENT @ @ PFA CFA ; IMMEDIATE

The sequence of words

THISCODE LITERAL EXECUTE

will then compile an auto-recursive call. For example, the following
definition provides a truly recursive computation of a factorial.

: FAC DUP 2 = IF ELSE DUP 1 - THISCODE LITERAL
EXECUTE * THEN ;

Some systems provide the equivalent of this triplet in the form of the

word RECURSE .

IMPLEMENTATION

Any FORTH implementation will consist of several layers. At the
bottom comes the nucleus, consisting of those words that are to be
regarded as system primitives. Indeed the nucleus could be regarded as

comprising two layers — those words that are implemented wholly in
code and those that are defined in terms of other words but are precom¬

piled, since they are needed for the construction of the compiler.
A third layer is concerned with input, output and filing. The inter¬

preter provides a fourth layer. Once the words in this layer have been
added (in precompiled form) the system is capable of executing sequ¬
ences of words from an input device. However, it is not until the fifth
layer, the compiler layer, is complete that new words can be added to

the dictionary. Above the compiler layer the user can add layers of his
own to cover his own application.

The layer structure described here corresponds roughly to the way in
which a system is built up for a new system; though there may be
exceptions. For instance, some of the device layer can be left until after
the compiler is working, since only one input and one output device is
necessary initially. Inevitably, though, a policy of graceful implementa¬

tion conflicts with brevity and execution speed. Particularly in the
compiler layer, there will be forward references, which have to be
entered initially as zero, and reassembled when the layer is complete.

The actual method of implementation will depend heavily upon the
facilities that the assembler provides. For instance, a powerful macro¬
generator can be invaluable in creating and linking the headings of the
dictionary entries. The FORTH Interest Group offers an implementa¬
tion manual. The kernel of this is written in 6502 code; but the remain-

72 Chapter 5

der is in FORTH. It is particularly valuable in suggesting a logical order
in which words can be defined.

MEMORY MAP

Figure 5.5 shows the fig-implementation memory map. Most single-user

FORTH implementations will be similar to this, unless the processor
has special characteristics, and employs certain pages for special pur¬
poses. In addition to its private memory environment, FORTH makes
use of whatever monitor or operating-sytem routines are provided else¬

where in memory. The low-address end of the FORTH memory area
typically holds the “boot-up” literals, i.e. the default values that are
loaded into the major variables on initialisation. Above these comes the
dictionary, in more or less layered order. There are two sets of these:
the nucleus of primitives defined in code, and the precompiled colon
and other definitions. The top of the dictionary is marked by the
dictionary pointer DP , which may or may not be held in a user variable.

The main stack grows into the same area of memory as the diction¬
ary. Whenever a new word is defined, the system checks that adequate
space is available for it, for the stack, and for any data that is being
saved relative to PAD . 64 bytes are regarded as sufficient for the main
stack; and 2000 bytes at least should be available to the user for his own
additions to the dictionary. The base of the stack is marked by SO and its
top by SP . SO is often directly available to the user as a constant; but SP

is variable, so may not be in view of the damage that can easily be
caused by manipulating it unwisely. The difference, SO-SP , is stacked
by the word DEPTH .

The addresses just beyond the base of the main stack are occupied
by the terminal input buffer, which normally has a capacity of 80
characters. Beyond this again is the return stack, growing from high to

low address in the normal way. Its size should not be less than 48 bytes.
The base of the return stack (pointer R0) usually coincides with the
base of the user area (pointer UP). The size of the user area is fixed at
FORTH load time; and the user may have some trouble to change it.
The user area is bounded by the area allocated to the file buffers
(typically three) each of which occupies 1024 bytes. The variable LIMIT
points to the first address above the FORTH memory area. Some of the

pointers shown in Fig. 5.5 will be available in FORTH user variables;

others will exist only as assembly-time identifiers, and thus be inaccessi¬
ble to the user of FORTH . However they can usually be redefined, with
a little ingenuity. For instance, if we wanted a pointer to the start of the

73 Compiling and Executing FORTH

user area, we could write

0 USER UP UP DUP !

to define it and its contents.

ORIGIN

FENCE

BOOT-UP LITERALS

(predefined)

DICTIONARY

PAD

TIB-►
MAINS >TACK

TERMINAL BUFFER

DP

SP

SO

UP

FIRST

LIMIT

RETUR N STACK

USER AREA

I/O BUFFERS

RP

RO

Fig. 5.5. Memory map.

74 Chapter 5

There are a few multi-user versions of FORTH. The principal differ¬

ence between these and the single-user versions is that the predefined
part of the dictionary is shared between all users to save memory space.
It must therefore consist of pure procedural code, and not be write-
accessible. The boot-up literals are the same for all users; but some of
them are relative and must be relocated in the individual user memory
areas.

THE SOURCE INTERPRETER

The converse of COMPILE is EXECUTE , which is one of the kernel
words, and has the effect of passing control to the word whose code¬
field address is on the top of the stack. It is called repeatedly by the
source interpreter, which comes into operation on start-up, and controls
the execution of sequences either typed in direct or loaded from file.
Thus in immediate-execution mode the system is simply searching for
words in the dictionary, stacking their code-field addresses, and then
executing them.

The precise details of startup for FORTH are, of course, machine-
dependent; but eventually the system executes a word QUIT , which
really embraces the whole interpretive process. QUIT is so named

because it is called in the event of unrecoverable error. It thus repre¬
sents a “warm” restart of the system. The core of QUIT is a loop of the
form

BEGIN RP! CR QUERY INTERPRET STATE @ 0=

IF .” OK” THEN REPEAT

The effect of RP! is to restore the return stack to its proper starting
condition, the main stack having been reset earlier either on startup or
by the error routine that called QUIT . CR sends a newline to the

interpretive echo device, and QUERY accepts a line of up to 80 charac¬
ters from the keyboard, placing them in the terminal buffer. The word

INTERPRET is then called to execute in sequence the words in the line.
Provided that the line contains a complete sequence of operations, i.e.
provided that the state at the end of the line is not compiling, the system
prints OK . In any case, control is returned to the start of the loop to
read more program. If the system is compiling then it will continue to
compile text from the new line.

INTERPRET may be defined as follows

:INTERPRET

BEGIN BL WORD FIND ?DUP

75 Compiling and Executing FORTH

IF STATE + IF EXECUTE

ELSE , THEN 7STACK
ELSE NUMBER DPL @ 1 +

IF DLITERAL
ELSE DROP LITERAL THEN

7STACK THEN
UNTIL ;

The word FIND searches the dictionary for the next word in the
buffer, after WORD has read it on to the top of the dictionary. If it fails
to match it, then “false” is left on the stack; otherwise its compilation
address is substituted for the address of the original string, and “true” is

stacked above it. If the word is immediate, then “true” is represented by

1, otherwise it is represented by -1. If the word is not immediate and
the value of STATE is 1, then the word is threaded, i.e. its compilation
address is stored in the dictionary entry currently being compiled:
otherwise it is immediately executed. FIND is a rather specialised
compiling word. A word in some implementations operates in a
broadly similar manner.

If the word cannot be found in the dictionary, then an attempt is
made to convert it into a number according to the radix in BASE .
NUMBER is not one of the FORTH-83 required word set; but it calls
one of the required words, CONVERT , which we reproduce here for
the sake of the techniques it illustrates.

: CONVERT

BEGIN 1+ DUP >R C@ BASE @ DIGIT

WHILE SWAP BASE @ U* DROP ROT

BASE @ U 63 D+ DPL @ 1 +
IF 1 DPL +! THEN R>

REPEAT R> ;

This word is more general than NUMBER , as it converts the number
pointed to by the top stack item, accumulating it in the second stack
item, and leaving the top of the stack pointing to the first unconverted

character. DIGIT is one of the kernel words. It converts an ASCII
character lying second on the stack in accordance with a base placed on
top of the stack if this is possible, returning “true” on the stack top with
the digit value below it; otherwise it returns “false” on the stack and
drops the ASCII character.

NUMBER uses CONVERT to convert the string read by WORD

into a double-length number on the stack. It returns the position of its

76 Chapter 5

point in user variable DPL , the value of DPL being -1 if there was no

point. INTERPRET handles the number as a double-length only if it

contained a point; otherwise the high-order half is dropped. If the word

cannot be interpreted as a number, then NUMBER calls the error

processor.

The words LITERAL and DLITERAL used in INTERPRET are

immediate. LITERAL is defined

: LITERAL STATE @ IF COMPILE LIT , THEN ;

so that it is simply a dummy operation when the system is in the

execution state (STATE zero) and leaves the number unchanged on

the stack. If the system is compiling, however, LITERAL compiles the

word LIT and then stores the number in the dictionary after it. Subse¬

quently at execution time LIT will reload the number on to the stack

from the parameter field of the word being executed. DLITERAL

works similarly.

INTERPRETATION FROM FILE

When the word LOAD is executed, text is interpreted from file instead

of the keyboard, the number of the block to be interpreted having

previously been placed on the stack. LOAD is defined

: LOAD BLK @ >R >IN @ >R 0 >IN ! BLK !

INTEPRET R> >IN ! R> BLK ! ;

Thus the current block number (in BLK) and position pointer within

the block (in >IN) are saved on the return stack, making LOAD

recursive. This means that it is possible to initiate a new LOAD within a

block that is already in process of loading.

The task of reading a new block into memory is carried out by

WORD when called from INTERPRET . WORD is a much more

complex operator than we implied in Chapter 3. It first tests the value of

BLK ; if this is zero, then it takes text from the terminal input buffer,

whose address is in user variable TIB . If it is nonzero, then it calls

BLOCK to ascertain whether or not the desired block is already in

memory, and to transfer it if it is not. BLOCK leaves the start address of

the appropriate buffer on the stack. The interpreter stops automatically

when execution comes to the end of a buffer, whether file or terminal.

This is because every buffer ends with a null byte (00 hex, which is not

the same as either ASCII zero or space). There is actually a dictionary

entry for “null”, which is usually referred to as X in the glossaries, since

77 Compiling and Executing FORTH

ASCII null is non-printable. The effect of “null” is to drop the current

return address from the return stack, thus ensuring that control is

returned to the next higher level, i.e. not to the word following EX¬

ECUTE , as would normally be the case, but to the word following

INTERPRET (normally inside QUIT). The definition of X is quite

complex, since its operation depends on whether the code is coming

from file or a terminal.

ERROR CHECKS

All versions of FORTH provide error checks within the system; and

these are available for users to incorporate in their own extensions. The

definition of INTERPRET given above includes a word 7STACK that

checks for stack underflow and overflow. We saw earlier how the word

7PAIRS could be used to check correct pairing of words like DO and

LOOP . There are also words 7COMP and 7EXEC that call the error

processor unless the system is compiling or executing respectively. A

common cause of error in stack processing is to assume that the stack

has returned to a certain earlier state when it has not. The word !CSP

stores the current stack pointer in a variable CSP ; and the word 7CSP

enters the error processor if the present stack pointer is not the same as

the value stored in CSP . This is an invaluable aid in development.

Techniques for error handling may differ from system to system.

Typically the error-test words stack “true” or "false" with a character¬

istic error number above it, for instance

: 7PAIRS - 13 7ERROR ;

The pair of items are differenced. If they were equal then zero (false) is

passed as a parameter to 7ERROR , which then simply tests the truth

value and enters the full error routine if an error has occurred, dropping

the error number it not. 7ERROR is defined as

: 7ERROR SWAP IF ERROR ELSE DROP THEN ;

The word ERROR is thus called with an error number on top of the

stack. It prints a query mark, and then calls the word MESSAGE ,

which operates differently according as the system is or is not fitted with

disc filing. If there is no disc, the message printed might simply be the

word “error” followed by the error number. If a disc file is available,

however, the error number is taken as the number of a line on a

particular screen (typically 4 or 5), and the content of that line is

printed. The presence or absence of a disc file is recorded by a 1 or 0 in a

78 Chapter 5

variable WARNING . If this variable is made negative, the error

process is by-passed and the word (ABORT) is called. This word calls

the predefined ABORT , which resets certain parameters and then calls

the system-dependent QUIT . The idea of providing (ABORT) as well

as ABORT is to enable the user to define his own rejection procedure if

he wishes. (ABORT) calls ABORT by default. There is also a word

ABORT" , which tests the top stack item and, if it represents “true",

prints a string of (diagnostic) text before termination, such text being

terminated in the program by a double quote.

Answers to Exercises

The following model answers have been checked using a Sinclair QL
with COMPUTER ONE software. They are not guaranteed to work for

other systems, especially if the 83 standard has not been followed.

L 3 4 + 5 x

2. (i) A B C - x D +

(ii) A B + C D - x

3. (i) 2 4 5
3 3 6 6 2 2 10

(ii) 3
4 4 7 2

7 7 7 7 49 49 51

(iii) 6 2
9 9 15 15 30 stack error

5. OVER OVER SWAP .R

6. SWAP ROT 4 ROLL

9. (i) : CUBE2 OVER DUP DUP * * ;

(ii) : H. HEX . DECIMAL ;

(iii) : DUODECIMAL 12 BASE ! ;

10. : D- DNEGATE D+ ;

: 2SWAP 3 ROLL 3 ROLL ;

: D> 2SWAP D< ;

11. : >= < 0= ;

: <= > 0= ;

79

80 Answers to Exercises

12. : D= D- 0 SWAP 0 D+ + 0= ;

Note that D- + 0= gives the wrong answer if the two halves of
the difference happen to be complementary.

13. Assume stack configuration on call is
-byte address

: BCD! OVER 15 AND OVER ! SWAP -4 SHIFT

15 AND SWAP 2+ ! ;

14. : EVEN/2 DUP 2 / OVER OVER DUP + =

IF SWAP THEN DROP ;

: ODDIV BEGIN DUP EVEN/2 DUP ROT = UNTIL ;

15. (i) : 4MAX >R >R MAX R> MAX R> MAX . ;

(ii) : 4PICK >R >R >R OVER R> SWAP R> SWAP

R> SWAP ;

(iii) 2SWAP >R ROT ROT R> ROT ROT ;

16. : FAC 1 SWAP 1+ 1 DO I ★ LOOP . ;

17. : MOVE >R OVER @R + OVER <

IF R< CMOVE ELSE R< <CMOVE THEN ;

18. : DUMP HEX 0 DO DUP I + DUP 10 .R

C@ 5 .R CR LOOP DECIMAL ;

19. : BLANKS BL FILL ;

: >PAD PAD 20 BLANKS PAD 20 EXPECT ;

: NOBL PAD DUP 20 + SWAP

DO I C@ DUP BL =

IF DROP ELSE EMIT THEN LOOP CR ;

: REV PAD 19 + 20 0 DO DUP I - C@
EMIT LOOP CR ;

N.B. The location of PAD changes if you define a new word. You

may find that your system inserts a null at the end of the input.

Answers to Exercises 81

20. : CONV #S DROP 32 HOLD ;

YDFTIN 12 UM/MOD 3 /MOD SWAP ROT 0
<# CONV CONV #S #> ;

21. : 3DIGITS # # # 32 HOLD ;
: PRCOLS OVER OVER CR <# 3DIGITS 3DIGITS #S #

> TYPE ;

: READ TIB @ 10 EXPECT ;

: ACCUMULATE 0 0 TIB @ 1+ CONVERT ;

: CALCULATOR 0 0 BEGIN READ ACCUMULATE C@
61 oWHILE PRCOLS D+ REPEAT 2DROP PRCOLS ;

Will handle totals up to 4294 967 295.

22. : PRCOLS OVER OVER CR <# # # 46 HOLD
3DIGITS 3DIGITS # # 96 HOLD #> TYPE ;

and recompile CALCULATOR.

24. : TRACE CREATE DUP , DOES> ? ;

25. : SET CREATE , , DOES> DUP 2+ @ SWAP @ ! ;

hex

00

01
02
03
04

05
06
07

08
09
0A
OB

OC
OD

OE
OF
10
11

12
13
14

15

16
17

18
19
1A
IB

1C
ID

IE
IF

82

Appendix

The ASCII Character Set

icimal character key

0 null
1 SOH CTRL/A
2 STX CTRL/D
3 ETX CTRL/C
4 EOT CTRL/D
5 ENQ CTRL/E
6 ACK CTRL/F
7 BEL CTRL/G
8 BS CTRL/H
9 H TAB CTRL/I

10 LF CTRL/J
11 V TAB CTRL/K
12 FF CTRL/L
13 CR CTRL/M
14 SO CTRL/N
15 SI CTRL/O
16 DLE CTRL/P
17 DC1 CTRL/Q
18 DC2 CTRL/R
19 DC3 CTRL/S
20 DC4 CTRL/T
21 NAK CTRL/U
22 SYN CTRL/V
23 ETB CTRL/W
24 CAN CTRL/X
25 EM CTRL/Y
26 SUB CTRL/Z
27 ESC SHIFT CTRL/K
28 FS SHIFT CTRL/L
29 GS SHIFT CTRL/M
30 RS SHIFT CTRL/N
31 US SHIFT CTRL/O

20
21
22
23
24

25
26
27

28
29
2A
2B

2C
2D

2E
2F
30
31
32
33

34
35
36
37

38
39
3A
3B

3C
3D
3E
3F

40
41

42
43
44

45
46
47
48

83 The ASCII Character Set

32
33 ! •

space bar
SHIFT !

34 n " or SHIFT ''

35 # SHIFT #

36 $ SHIFT $

37 % SHIFT %

38 & SHIFT &

39
t ' or SHIFT '

40 (SHIFT (

41) SHIFT)

42 ★ SHIFT *

43 + SHIFT +

44 , , •>
45 - -

46
47 / /

48 0 0

49 1 1

50 2 2

51 3 3

52 4 4

53 5 5

54 6 6

55 7 7

56 8 8

57 9 9

58 SHIFT :

59 5 ;

60 < SHIFT <

61 = =

62 > SHIFT >

63 ? SHIFT ?

64 @ SHIFT @

65 A SHIFT A

66 B SHIFT B

67 C SHIFT C

68 D SHIFT D

69 E SHIFT E

70 F SHIFT F

71 G SHIFT G

72 H SHIFT H

84

49
4A

4B
4C
4D
4E
4F
50

51
52

53
54
55
56
57
58
9
5A
5B
5C
5D
5E
5F

60
61
62

63
64

65
66
67

68
69
6A
6B

6C
6D
6E

6F
70
71

Appendix

73 I SHIFT I
74 J SHIFT J
75 K SHIFT K
76 L SHIFT F
77 M SHIFT M
78 N SHIFT N
79 O SHIFT 0
80 P SHIFT P
81 Q SHIFT Q
82 R SHIFT R
83 S SHIFT S
84 T SHIFT T
85 U SHIFT U
86 V SHIFT V
87 w SHIFT W
88 X SHIFT X
89 Y SHIFT Y
90 Z SHIFT Z
91 [[
92 \ \
93] SHIFT]
94 A SHIFT '
95 _ _

96 £ or ' £ or '
97 a A
98 b B
99 c C

100 d D
101 e E
102 f F
103 g G
104 h H
105 i I
106 j J
107 k K
108 1 F
109 m M
110 n N
111 0 O
112 P P
113 q Q

The ASCII Character Set 85

72 114 r R
73 115 s S
74 116 t T
75 117 u U
76 118 V V
77 119 w w
78 120 X X
79 121 y Y
7 A 122 z Z
7B 123 { {
7C 124 SHIFT
7D 125 } SHIFT
7E 126 - SHIFT
7F 127 DEL DEL

Legend:

SOH start of header NAK neg acknowledge
STX start of text ETB end of text block
ETX end of text CAN cancel
EOT end of transmission EM end of medium
ENQ enquiry SUB substitute
ACK acknowledge FS file separator
SO shift out GS group separator
SI shift in RS record separator
DLE data-link escape US unit separator
DC device control

N.B. The codes given here are probably the commonest, but
means universal.

Glossary and Index

The items in this glossary are arranged in ASCII order. Each entry is
made up as follows:

The word, and its page reference(s)

A short description — refer to main text for fuller explanation.

A picture of the stack top before and after execution,
<condition before>-<condition after>
The highest stack item is on the right.

Symbols used as follows:

n 16-bit number

d double-length number
addr 16-bit address

t/f logical flag

b byte (low-order in 16-bit field)

Special points (displayed at end of entry), coded as follows:

R FORTH-83 required word

O one of the controlled reference words
E in a FORTH-83 extension set

C permitted within colon def only
I immediate
U user variable

! 12
Store n at address
n addr- R

1BITS 21
Store nl masked by n2 in addr
nl addr n2-

!CSP 63
Store stack pointer in CSP.

by current BASE and put in output
string. Keep quotient. May only be
used between <# and #> .
dl-d2 R

#> 40
End pictured numeric output con¬
version. Drop top stack item and
leave address and count of output
sequence.
d-addr n R

40
Generate next digit from an un¬
signed double number by dividing

#S 40
Convert remaining digits of un¬
signed double number adding each

86

Glossary

to pictured output string. May only
be used between <# and #> .
d-0 0 R

#TIB 32
Leave address of word containing
the number of characters in the ter¬
minal buffer.
- addr R, U

' 49
Leave compilation address of next
word in input stream.
- addr R

(35
Acccept comment up to)
- R

(ABORT) ' 78
User-definable reset sequence. Pre¬
defined as ABORT

and Index 87

nl n2 n3-n4 n5 R

+ 4
Leave single-length sum of top two
items.
nl n2-n3 R

+! 13
Add n to store at addr.
n addr- R

+ - 7
Leave nl, negated if n2 was nega¬
tive
nl n2-(—)nl

+LOOP 24
Add signed increment n to loop in¬
dex. Return to DO if result is less
than limit; otherwise discard loop
parameters and exit,
n- R, I, C

(DO) 64
Execution-time actions of DO.

(LOOP) 64
Execution-time actions of LOOP.

* 4
Leave single-length product of top
two items.
nl n2-n3 R

** 5
Raise nl to power n2.
nl n2-n3

*/ 6
Multiply nl by n2 giving double¬
length product, and divide by n3
giving single-length result,
nl n2 n3-n4 R

, 32
Copy 16-bit number from stack to
dictionary. Increase HERE by 2.
n- R, I

4
Subtract n2 from nl and leave dif¬
ference.
nl n2-n3 R

75
Leave parameter-field address be¬
low “false” of next name in input
stream. If not present, leave “true”.
-addr f
-t

— > 37
Continue loading next screen.
- LO

★/MOD 6
As */ but leave remainder n4 and
quotient n5.

-DUP 8
Duplicate n iff it is nonzero,
n-n n (n <> 0)

88 Glossary

0-0

-TRAILING 31
Adjust character count nl of a
string beginning at addr to exclude
trailing blanks.
addr nl-addr n2 R

7
Print n according to BASE,
n -- R

22
Accept text up to next " and com¬
pile so that later execution will dis¬
play it.
- R

■(8
Accept and immediately display
text up to next).
- R, I

.R 7
Print nl right-aligned in a field of
length n2.
nl n2- O

/ 4
Integer divide nl by n2 and leave
quotient.
nl n2-n3 R

/MOD 5
Integer divide nl by n2 to leave re¬
mainder n3 and quotient n4.
nl n2-n3 n4 R

0< 19
Test n. If negative leave “true”
n-t/f R

19

R

and Index

0> 19
Test n. If positive and nonzero
leave “true”
n-t/f R

1+ 22
Increase n by unity,
n-n + 1 R

1 + ! 22
Add unity into memory location
pointed to by addr.
addr-

1- 22
Decrease n by unity,
n-n—1 R

1 —! 22
Subtract unity from memory loca¬
tion pointed to by addr.
addr-

2! 17
Store d at addr.
d addr- E

2* 22
Double n (neglecting overflow),
n-2n O

2+ 22
Add two to n.
n-n+2 R

2- 22
Subtract two from n.
n-n—2 R

2/ 22
Shift nl right one bit.
nl-n2 R

2@ 17
Leave double-length number stored
at addr.
addr-d E

0=

Test n. If zero leave “true
n-t/f

Glossary and Index

2CONSTANT 17
Define next input string as the
name of a double-length constant,

initialised to the value of d.

d- E

2DROP 17
Remove a double-length number

from the stack.
d- E

2DUP 17
Duplicate a double-length number,

d-d d E

20VER 17

Copy dl to the stack top.
dl d2-dl d2 dl E

2ROT 17

Move dl to the stack top.
dl d2 d3-d2 d3 dl E

2SWAP 17
Exchange two double-length items,
dl d2-d2 dl “ E

2VARIABLE 17
Assign next word in input stream to
a new double-length variable.
- E

79-STANDARD
Output a confirming message if the
FORTH-79 standard is available;
otherwise treat as an error.

; 15, 62
Create a new dictionary entry, us¬

ing the next input string as the
name. Compile threads to following
words up to the next semicolon. If
input stream is exhausted before a
semicolon, report an error.

89

16
Terminate current colon definition
and stop compilation.
- R. I, C

;; 51
Introduce code segment in a com¬

piling word.

;CODE 42, 62, 68
Used to terminate the definition of
a compiling word and introduce the

code obeyed by all words defined

bv this word.
E

:S 64
Execution-time actions associated

with the semicolon.

< 19, 47
Leave "true" if nl is less than n2.

nl n2-t/f R

<> 19
Leave "true" if top two items are

unequal,
nl n2-t/f

<# 40
Initialise pictured numeric output.
- R

<MARK 64
Mark destination of a backward
branch during compilation.
-addr C, I, E

<RESOLVE 64
Compile offset at source of back¬
ward branch.
addr- C, I, E

R 19

90 Glossary and Index

Leave “true” if top two items are current radix.
equal. addr-
nl n2-t/f R R

> 19
leave “true” if nl is greater than n2.
nl n2-t/f

>< 29
Swap bytes,
nl-n2

>BODY 49
Convert compilation address to pa¬
rameter-field address,
addrl-addr2 R

>IN 33

Leave address of a variable contain¬
ing a pointer to the current position
in the input buffer.

- addr U, R

>MARK 65
Allot space for offset and mark
source of forward branch.

-addr C, I, E

>MOVE< 29
Move block of n 16-bit words start¬
ing at addrl to addr2 performing a
byte swap on each,
addrl addr2 n-

>R 26
Move top item to top of return
stack.
n- R

>RESOLVE 65
Compile offset for forward branch
and store it at marked source loca¬
tion.

addr- C, I, E

‘/BRANCH 65
Transfer control to location given
by offset immediately following if
flag is true.

t/f- C, E

?CSP 63, 77
Check that the current stack pointer
has the same value as that previous¬
ly stored by !CSP. Error if unequal.

?DUP 8
Duplicate top item if it is nonzero.
n-n n (n nonzero)
0-0 R

‘/ERROR 77
Issue error message number n if flag
represents "true”,
t/f n-

'/PAIRS 64, 77
Issue error message if top two stack
items are unequal,
nl n2-

/STACK 77
Issue error message if the stack is
out of bounds.

@ 12
Replace addr by its contents,
addr-n R

@BITS 21
Return contents of addr masked by
nl.
addr nl-n2

? 13
Display the number in addr, using

ABORT
Warm restart.

78

91 Glossary and Index

R

ABORT" 78
Print message that follows if top
item represents “true”, then per¬

form warm restart,
t/f- R, C

ABS 7, 8
If top item is negative, twos com¬

plement it.
nl-n2 R

B/BUF 36
Leave number of bytes in a disc

buffer.
-n

BEGIN
Start repetitive sequence.

21, 22

I, C, R

BELL 30
Operate warning device on ter¬

minal.

ALLOT 33
Add n bytes to dictionary pointer,

n- ' R

AND 20
Leave the logical AND of the top
two items.
nl n2-n3 R

ASCII 30
Return next printable character in
input stream.
-b

ASHIFT 21
Perform an arithmetic left shift of
nl by n2 places.
If n2 is negative, shift right,
nl n2-n3

ASSEMBLER 42, 69
Change context vocabulary to
assembler.
- E

BACK 64
Compile offset for backward
branch.

BASE 10, 12
Leave address of current numeric
base.
-addr

BL 32
Leave ASCII value for space
-32 O

BLANK or BLANKS 27
Store n blanks in memory starting

at addr.
addr n- O

BLK 33, 67
Leave address of variable contain¬
ing number of current disc block.
- addr U, R

BLOCK 36, 38
Leave address of buffer containing
start of block n (unsigned). If block
n is not in main memory, perform a
main-store transfer,
n-addr R

BRANCH 66
Transfer control according to offset
immediately following in parameter

field.
- C, E

BUFFER 38
Leave address of buffer to be
associated with a (possibly new)
block numbered n.
n-addr R

U, R

92 Glossary and Index

C, 32
Store b at top of dictionary, and
advance pointer.
b- O

C! 28
Store b in addr.
b addr- R

C@ 28
Leave contents of byte addr.
addr-b R

CATALOG 42
List the names in the context voca¬
bularies.

CLEAR 37
Write all updated buffers back to
mass store.

CMOVE 27
Move n bytes from addrl to addr2.
addrl addr2 n- R

CMOVE> 28
Move n bytes from addrl to addr2
starting at the highest address
(addrl + n — 1).
addrl addr2 n- R

CODE 42, 68
Create a dictionary entry to be de¬
fined wholly in assembler code.
- E

COM 21
Leave ones complement of nl.
nl-n2

COMPILE 64, 66

Compile compilation address of
next word in input string into dic¬
tionary, and advance pointer.

C, R

CONSTANT 14, 46, 62
Define next string in input as the

name of a constant whose value is
n.
n-

CONTEXT 42

Leave address of variable specifying
vocabulary for initial search.
- addr U, E

CONVERT 41, 75
Numeric conversion according to
current base of string pointed to by
addrl. Accumulate into dl. Leave
address of first non-convertible
character.

dl addrl-d2 addr2 R

COPY 37
Copy contents of screen nl to
screen n2.
nl n2-

COUNT 31
Leave address of first byte and the
character count of string pointed to
by addr.
addr-addr+1 n R

CR 27, 30
Output newline.

- R

CREATE 50, 60
Create a dictionary entry with next
word in input string as the name.

R

CURRENT 43
Leave address of a variable specify¬
ing vocabulary for new definitions.
- addr U, E

CSP 63
Leave address of variable tempor¬
arily storing the stack pointer.

— — addr

Glossary and Index

U

D+ 17
Leave sum of two double-length
numbers.
dl d2-d3 R

D- 17
Leave difference between two dou¬
ble-length numbers,
dl d2-d3 E

93

plement.
dl-d2 E

DECIMAL 10
Set conversion base to ten.
-- R

DEFINITIONS 43
Set content of CURRENT equal to
that of CONTEXT.
- R

D. 17
Display signed double-length num¬
ber according to current base,
d- E

DEPTH 72
Leave number equal to the number
of items on the stack.

D.R 17
Display d right-aligned in a field n
characters wide at current cursor
position.
d n- E

D0= 17
Leave “true” if d is identically zero,
d-t/f E

D2/
Shift dl right one place,
dl-d2 E

D< 17
Leave “true” if dl is less than d2.
dl d2-t/f R

D> 17
Leave “true” if dl is greater than
d2.
dl d2-t/f

DIGIT 75
Convert low byte of nl (assumed
ASCII) according to base given as
n2, leaving binary equivalent and
“true”. If not possible leave only
“false”.
nl n2-n3 true
nl n2 •-false

DL1TERAL 76
If executing, do nothing. If compil¬
ing, compile d as a double-length
literal in the dictionary,
d-

DM AX 17
Leave larger of dl and d2.
dl d2-d3 E

DM1N 17
Leave smaller of dl and d2.
dl d2-d3 E

D= 17
Leave “true” if two d-1 items are
equal.
dl d2-t/f E

DABS 17
If dl is negative, leave its twos com¬

DMINUS 17
Replace d by its twos complement,
d-d

DNEGATE 17
Replace d by its twos complement.

94

d-d

DO 23, 64
Begin a counting loop.

L C, R

DP 32, 72

Leave address of variable contain¬
ing dictionary pointer.
- addr U

DPL 76
Leave address of variable contain¬
ing a count of the number of digits
to the right of the last decimal point
input.
--- addr U

DOES> 50
Terminate compile-time actions
and commence run-time actions in
defining a new defining word.

- I, C, R

DROP 8
Delete top stack item.
n --— R

DU< 17
Leave “true” if dl is less than d2,
both treated as unsigned,
dl d2-t/f E

DUP 8
Duplicate top stack item,
ri-n n R

DUMP 29
List contents of n locations starting
at addr.

addr n- O

ECHO 30
Output low byte to. top item as an

ASCII code,
n-

EDITOR 42
Change context vocabulary to
editor.

- O

ELSE 18, 66
Terminate true part and start false
part of conditional statement.

:- I, C, R

EMIT 30
Output low byte of top item as an
ASCII code.
n —R

EMPTY 44
Delete all dictionary entries to
FENCE.

EMPTY-BUFFERS 36
Mark all file buffers as empty.

- O

END 22
Test condition in repeated block.
Exit if true.

I, C

END-CODE 68
Terminate a definition introduced
by CODE or ;CODE.
- E

ENDIF 18, 66
Terminate conditional sequence.

- I, C

ERASE 27
Transfer n zero bytes to memory
starting at addr.
addr n- O

ERROR 77
Notify error number n, and execute
warm restart,
n-

Glossary and Index

R

Glossary and Index 95

EXECUTE 74
Execute dictionary entry whose
compilation address is addr.
addr- R

EXIT 63
When executing a colon-defined
word, terminate execution.
- C, R

FORTH 42
Return to prime vocabulary.
- I, R

FORTH-83
Output confirming message if sys¬
tem conforms to FORTH-83 stan¬

dard.
- R

EXPECT 31
Read from terminal, storing at
addr. Stop on newline or when n
characters have been transferred,
addr n- R

FENCE 44
Places on stack the address of a
variable containing the dictionary
address below which entries should
not be deleted.
- addr U

FILL 27, 28
Fill memory with n instances of b
starting at addr.
addr n b- R

FIND 75
Place on stack the compilation

address of the word starting at
addrl, with “true” above it. If not
found, leave original address and
“false”.

addrl-addr2 t/f R

FLUSH 36

Write to mass storage all blocks
marked as updated, and delete “up¬
date” markers.
- R

FORGET 45

Delete from dictionary all entries
up to and including next word in
input stream.

- R

H. 10
Output one number in hexadecim¬

al, returning to original base.

HERE 32
Return address of next available

dictionarv location.
- R

HEX 10
Change number base to sixteen.
- O

HLD 41
Return address of a variable hold¬
ing address of latest text character
during output conversion.

- addr U

HOLD 40
Insert b as a character in a pictured

output stream.
b- R

I 24

Return index of innermost loop.
-n C, R

I'
Return index of innermost loop.

-n C

ID. 50
Print a dictionary entry name, given

name-field address,
addr-

96 Glossary and Index

IF 18, 23, 49; 65
Test flag and execute conditional
statement.
t/f- I, C, R

KEY 30
Return ASCII value of next charac¬
ter from input device.
-— b R

IFEND 68
Terminate conditional interpreta¬
tion.

IFTRUE 68
Introduce conditional interpreta¬
tion.

IMMEDIATE 63
Mark latest dictionary entry to be
executed immediately if encoun¬
tered during compilation.

- R

IN 33

Leave address of a variable contain¬
ing a pointer to the current position
in the input buffer.
- addr U

INDEX 37
Print first line of every screen over
range given by nl and n2.
nl n2-

INTERPRET 74
Begin interpretation in block whose

number is given in BLK starting at
character indexed by >IN.

O

J 25
Return index of' next enclosing
loop.
-n C, R

K 25
Return index of second enclosing
loop.

C, O

LAST 50
Leave address of a variable contain¬
ing the name-field address of the
last dictionary entry.
- addr U

LATEST 50
Leave name-field address of last
word in the current vocabulary.
-addr

LEAVE 24
Alter loop limit to value of current
index so forcing termination on
completion of loop.

C. R

LFA 49

Convert a parameter-field address
to the corresponding link-field
address.
addr-addr

LIMIT 72
Constant equal to one greater than
the largest available memory
address.
-addr

LINE 37
Leave physical address of the begin¬
ning of line n of the screen whose
number is in SCR.
Range is 0 .. 15.
-addr

LINELOAD 37

Start interpretation at line nl in
screen n2.
nl n2-

n LIST 36

Glossary

Display screen n.
n- O

LIT 59, 76
Place contents of next dictionary

parameter on the stack.

-n

LITERAL 76
Compiling ... compile LIT followed
by the numeric value of the top

stack item;
Interpreting ... ignore.

LOAD 37, 76

Begin interpreting screen n.

n- R

LOADS 38
Define next word in input stream as
a command to load screen n.

n-

LOOP 23, 64
Compile words to increment and
test loop index. If less than limit
branch back to DO, otherwise exit.

C, R

M* 18, 26
Multiply two signed single-length
items nl and n2 to give a double¬

length result,
nl n2-d

M/ 18
Divide double-length signed quanti¬
ty d by single-length signed quantity
nl to leave quotient (N.B. quot
may be d-1 in some systems.)
d nl-n2

MASK 21
Return mask of nl ones, left-
aligned if positive, right if negative,

nl-n2

97

MAX 6, 20, 46

Return greater of two numbers,

nl n2-n3 R

MESSAGE 77
Print line n of message screen,

n-

MIN 6, 20
Return lesser of two numbers,

nl n2-n3 R

MINUS 5
Return twos complement of top

item.
n--n

M/MOD 18
Divide double-length signed item
by single-length signed item. Leave

double quotient d2 with remainder

n2.
dl nl-n2 d2

MOD 5
Divide nl by n2, leaving remainder
with same sign as dividend,

nl n2-n3 R

MOVE 28
Move n bytes from addrl to addr2
without overwriting,
addrl addr2 n-

MS 30
Wait n milliseconds,

n-

NAND 20
Perform NAND operation on top

two items,
nl n2-n3

NEGATE 5, 21
Return twos complement of top

item.
n-— n

and Index

R

98 Glossary and Index

NFA 49

Convert parameter-field address to
corresponding name-field address,
addr-addr

NOR 20
Perform NOR operation on top two
items.
nl n2-n3

NOT 20

Leave ones complement of top
item.
nl-n2 R

NUMBER 75

Convert a character string starting
at addr, with preceding count, to a
signed double number according to
current base,
addr-d

O. 10
Output one number in octal and re¬
turn to original base,
n-

OCTAL 10
Reset current base to eight.
- O

OR 20
Perform bitwise OR on top two
items.

nl n2-n3 R

OTHERWISE 68

Terminate "true” sequence and
start “false” sequence in conditional
execution.

PAD 32, 39
Return top address of scratch area
above the dictionary. Normally 84
bytes long.
- addr R

PFA 49

Convert name-field address to cor¬

responding parameter-field
address.

addrl-addr2

PICK 9
Return contents of nlth stack item,
excluding nl.

nl-n2 R

PREV 36
Return address of variable contain¬
ing address of most recently used
buffer.
- addr U

QUERY 74

Accept up to 80 characters from the
terminal into terminal buffer.

- O

QUIT 74
Warm restart.

- R

R> 26
Move top item of return stack to
top of main stack.

-n r

R@ 26
Return top item of return stack.
-n R

OVER 8

Return a copy of the second stack
item.

nl n2-nl n2 nl R

R0 72

Leave address of variable contain¬
ing base address of return stack.
- addr u

Glossary

RECURSE 71
Compile compilation address of
current word so that it may be ex¬

ecuted recursively.
- " C, 1, O

REMEMBER 44
Define next input word as a com¬
mand that deletes itself and all
words defined subsequently from

the dictionary.

REPEAT 22

Terminate repetitive loop.
- I, C, R

ROLL 9
Move nth item of stack (not count¬
ing n itself) to the top, moving in¬

termediate items down.
nl n2 ... nn n-n2 ... nn nl

R

and Index 99

SCR 37
Return address of a variable con¬
taining the number of the screen

most recently listed.
- addr U, O

SET 12
Define the next input word as a
command that will store n in the

given address,
n addr -

SHIFT 21
Perform logical shift of nl by n2

bits, left if positive, right if nega¬

tive.
nl n2-n3

SIGN 40
Store a minus sign in the next posi¬
tion in a pictured output sequence if

n is negative.

ROT 8
Move third stack value to the top.
nl n2 n3-n2 n3 nl R

RP! ’ 74

Initialise return stack.

S—>D 17
Sign-extend a single-length number

to form a double,
n-d

SO 40, 72
Return address of a user variable
containing base address of main

stack.
- addr U

SAVE-BUFFERS 36
Write all updated buffers to mass

storage.

SMUDGE 62
Toggle the third bit in the name
field of a word being compiled.

SP 40, 72
Leave address of a variable contain¬

ing the stack pointer.
- addr U

SP! 40
Initialise the main stack pointer.

SP@ 40
Return address of top of main stack

just before SP@ was executed.

- addr O

SPACE 30
Output an ASCII space.
- R R

100 Glossary

SPACES 30
Output n spaces.
n- R

SPAN 32
Leave address of variable contain¬
ing the count of characters received
during the last EXPECT.

- addr U, R

STATE 62
Leave address of a variable contain¬
ing the compilation state.

- addr U, R

SWAP 8

Exchange top two stack values,
nl n2-n2 nl R

and Index

Print an unsigned number accord¬
ing to current base,

n- R

U.R 18

Print nl as an unsigned number
right justified in a field of n2 bytes,
nl n2- O

U< 18
Leave “true” if nl < n2 both tre¬
ated as unsigned.
nl n2-t/f R

U> 18
Leave “true" if nl > n2 both un¬
signed.
nl n2-t/f

THEN 18, 65
Terminate conditional sequence.

- I, C, R

THRU 38
Load consecutively blocks nl
through n2.

nl n2- O

TIB 32, 73
Leave address of a variable contain¬
ing the address of the terminal
buffer.

- addr U, R

TRAVERSE 50

Move across a name fiejd starting at
addrl, to right if n is positive, left if
negative. Leave address of end of
field.

addrl n-addr2

TYPE 31
Send n characters starting at addr to
current output device,
addr n- R

U. 18

UM* 18

Form unsigned double-length pro¬
duct of nl and n2.
nl n2-d R

UM/MOD 18

Divide d by nl (unsigned) leaving
unsigned remainder n2 and un¬
signed quotient n3.
d nl-n2 n3 R

UNTIL 21
Compile words to test top stack
item. Loop if false, exit from loop if
true.

t/f- I, C, R

UPDATE 36

Mark most recently referenced
block so that it will be written back
to mass store before being over¬
written.

- R

USE 36
Leave address of variable contain¬
ing address of least recently used
buffer.

Glossary

- addr U

USER 13, 46, 62
Assign the next word in the input
stream as the name of a user vari¬

able with offset n.

n-

VARIABLE 11, 46, 62
Assign the next word in the input
stream to a new variable entry in

the dictionary.
_ R

and Index 101

Copy characters from the input buf¬
fer to the top of the dictionary until
a delimiter given by b is encoun¬
tered. Ignore leading instances of
the delimiter. Insert the character

count as the first byte of string, and
leave its address on the stack,

b-addr R

X 76
Pseudonym for the dictionary entry
whose name is ASCII null. Its effect
is to terminate text interpretation.

VLIST 42
List the names in the context voca¬

bularies.

VOCABULARY 43, 55
Assign the next word in the input
stream as the name of a new voca¬
bulary that will become the context

when the name is quoted.
_ R

VOC-LINK 43
Leave the address of a variable con¬
taining the head of a chain linking

all vocabularies.
- addr U

WHILE 22
Compile code to test a flag and exit
from a repetitive loop if false,
otherwise continue to obey loop,

t/f- I, C, R

XOR 20
Perform exclusive OR on top two

items.
nl n2-n3 R

[
End compilation mode.

62

I, R

['] 49

Compile compilation address of
next word in input stream as a liter¬

al into the dictionary.
C, I, R

[COMPILE] 66
Force compilation of the following

word in the input stream.
— I, c, R

] 62

Set compilation mode.
R

WORD 33, 76

