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Preface 

This book is more than an instruction manual on FORTH, for it 

attempts to provide information not only on how to use the language but 

also on the way it can be implemented. Indeed the intelligent reader, by 

the time that he has read to the end. should be in a position to imple¬ 

ment his own version of FORTH should he wish to do so. The book is 

aimed at the reader who has already gained some experience in pro¬ 

gramming (possibly in BASIC), who is accustomed to thinking in 

algorithmic terms, and who has realised that the programmer has to 

make an effort to understand the operation that is really performed by a 

sequence of commands, in contrast to what its designer intended it to 

perform. 

Although the technical detail may seem frightening to the new¬ 

comer, the treatment is progressive. The reader is led into the language 

step-by-step, so that by the end of Chapter 3 he should be capable of 

w'riting quite complex systems. If he wishes, he can postpone reading 

the technical material until he needs it to answer queries that will 

inevitably arise in the course of using the language, for a language as 

close to the machine as FORTH cannot be properly understood without 

some appreciation of its mechanism. A number of exercises have been 

included in the text, and model answers are provided at the end of the 

book. Programming exercises have deliberately been simplified. When 

he has had some experience the reader can improve upon them to make 

them more realistic. 

FORTH is an unusual concept. It has been heavily criticised by those 

who do not understand its virtues; but it is not difficult to use once its 

rules have been mastered; and it does permit systems to be developed 

interactively. Moreover it gives rise to fast code that occupies much less 

memory than would be possible with a well-structured compiled lan¬ 

guage. From an educational standpoint FORTH can provide the same 

sort of insight into the workings of a binary machine that assembler 

does; but FORTH is simpler to use than an assembler, being susceptible 

to examination at every stage without the need for a debugger, and 

providing its own operating system. 

FORTH was invented by C. H. Moore, and was first used, of all 

things, to control a radio telescope. Moore invented it because what was 

vii 



viii Preface 

available at the time did not give him the ease of use, speed, and storage 

economy he wanted. Its name arises because it was his fourth attempt, 

and it is so spelt because it was initially implemented using a version of 

Fortran that permitted names of up to five characters only. It has 

spawned a few imitators, such as STOIC and CONVERS; but here we 

shall be concerned only with implementations that bear the FORTH 

name. 

There is no official authority for FORTH, though there is a FORTH 

Standards Team that from time to time issues specifications that have 

much authority. We have followed here in the main the FORTH-83 

standard*, which superseded the still widespread 79-standard; but we 

include a number of words derived from other implemtations as well. In 

particular we refer to MMSFORTH from Miller Microprocessor Ser¬ 

vices!, and the multi-user POLYFORTH. 

We follow the implementation recommendations of the FORTH 

Interest Group (fig) when explaining typical ways in which things work. 

Nevertheless, every implementation differs in detail (doubtless with 

good reason) from its predecessors; so we have tried to point out the 

most likely areas of disagreement. The FORTH Standards Team them¬ 

selves admit that “...the choice to deviate is acknowledged as beneficial 

and sometimes necessary.” We give a glossary at the end of the manual; 

but the reader is advised to use this in conjunction with the glossary for 

his own system, and to note carefully any differences. 

Aberystwith 

January 1985 

* Obtainable from Forth Standards Team, P.O. Box 4545. Mountain View. Ca 94040, 
USA. 

t 61 Lake Shore Road, Natick, Mass 01760, USA. 



Chapter 1 

HSILOP 

The conventions we use when writing algebraic expressions have been 

with us since the sixteenth century. Their only advantage — though it is 

a very big one — is that we are accustomed to them; but they have 

disadvantages that we can easily illustrate. The value of the arithmetic 

expression 3 + 4 x 5 is 23; but if you press in turn the keys 

3 + 4X5 

on a cheap pocket calculator, you get the "answer" 35. The discrepancy 

is due to operator precedence. The calculator recognises no precedence. 

It simply applies the operators in turn as they are keyed in; thus 3 + 4 

gives 7, 7 X 5 gives 35. In the conventions of ordinary algebra, howev¬ 

er, the multiply operator has a higher precedence than the add operator, 

and should be applied first. If we had really wanted the addition to be 

done first, then we should have had to use parentheses, thus 

(3 + 4) x 5 

However, we can get the right answer on our calculator by altering the 

order of evaluation and keying 

4x5 + 3 

instead. 

The actual evaluation sequence for this last expression might be 

described as 

take 4 

take 5 

multiply 

take 3 

add 

We can write, this sequence in short as 

4 5x3 + 

in which we imply the simple evaluation rule: 

1 
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"working from left to right, apply each operator in turn to the two 

values preceding it", with the general undertanding that the result of 

a previous operation is available for use by a succeeding operator. 

There are several other ways in which we could have written the 

same expression to give the same result, for instance 

3 4 5 x + 

Notice that in this case the 3 is kept in hand until after the multiplica¬ 

tion has yielded the single value 20. 

Exercise 1. Using the same convention give an expression that corres¬ 

ponds to the parenthesised (3 + 4) x 5. What are the steps in its 

evaluation? 

POSTFIX NOTATION 

What we have just been doing is evolving an alternative way of writing 

algebraic expressions, one moreover that corresponds more closelv with 

the actual evaluation process. This new notation is known as postfix, 

since each operator is written after the values to which it is to be 

applied, in contrast to the conventional infix notation in which the 

operator is written between the two values. It is also known as reversed 

Polish notation, hence the title of this chapter". 

Postfix notation has the added advantage that there is no need for 

brackets: the order in w'hich the operators are applied is determined 

solely by their positions in the sequence. Thus the infix expression 

(A + B) X (C - D) 

becomes 

A B + C D - x 

in postfix. Nor is there any need for operator precedence in quite the 

same w'ay as in infix notation. The infix expression 

3 4-4x5 

is capable of two different interpretations as we saw. and as our pocket 

calculator illustrated; so a precedence rule had to be devised. 

* Polish, or prefix, notation, in which the operator precedes the operands to which it is to 

be applied, is so named in honour of its inventor, the Polish logician Jan Lukasiewicz. 
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Exercise 2. Translate the infix expressions 

(i) A x (B - C) + D 

(ii) (A + B) x (C - D) 

into postfix notation. 

STACKS 

Let us now attempt to devise an algorithm to evaluate postfix express¬ 

ions. This is not difficult — indeed there are several pocket calculators 

on the market that actually require their input to be in postfix form, 

thereby avoiding anomalies such as the one we referred to earlier. What 

we need is a data structure that will allow us to store values in the order 

in which they are supplied (by direct input or as results of earlier 

calculations) and return them to us in the order in which we want them. 

In other words, we want to impose a last-in-first-out (LIFO) discipline 

upon our data. A suitable structure is well known: it is called a stack. 
We may think of a stack as a sequence of items that is accessible at only 

one end; consequently we can only extract the last item that we put in. 

For convenience, let us imagine that our stack is vertical with the 

accessible end at the top. The rules for evaluating postfix expressions 

then become: 

(i) evaluate expression from left to right, 

(ii) push each value in turn on to the stack, 

(iii) apply each operator to the top two items removing them both. 

(iv) leave the result in the top position. 

To illustrate these rules, consider the postfix expression 

5 4 + 5 2 - x 

(What is the infix equivalent?) Successive configurations of the stack are 

shown in Fig. 1.1. Notice that we have established here a further 

Fig. 1.1. 
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convention: that in the non-commutative operation of subtraction the 

operands appear in the same order as they do in normal infix. We shall 

follow a similar convention regarding division and comparison oper¬ 

ators. Notice too that though there are four numbers and two intermedi¬ 

ate values only three stack locations are used. This illustrates a further 

advantage of stack evaluation. Less working space is needed, since 

values are overwritten when they have been “used up”. 

Exercise 3. Show the successive stack configurations in the evaluation 

of 

(i) 3 2 x 4 - 5 x 

(ii) 7 4 3 + x 2 + 

(iii) 9 6 + 2 x + 

Quite right. The third example was a cheat; it is not a well-formed 

postfix expression. With these three operators we need four values, not 

three. However, a correctly designed processing system should be able 

to detect an error of this kind and issue a “stack empty" diagnostic 

message if there are not enough values for the next operator to work on. 

0 

FORTH OPERATORS 

FORTH is a postfix language. A FORTH program is simply a (usually 

very complex) postfix expression; and a FORTH system uses a stack 

for storing data and intermediate results. Following the convention of 

most modern processors, FORTH makes its stack grow downwards 

from higher addresses to lower. Nevertheless, we shall continue to 

refer to the accessible end of the FORTH stack as its “top". In 

accordance with the ideas developed above, FORTH operators “use 

up” the values they operate on and replace them with the results they 

generate. The operators + and — have the same significance in 

FORTH as in ordinary algebraic notation, the operator — substracting 

the top stack item from the second, leaving the difference as the new 

top item and reducing the stack height by one. 

As in most programming languages, the FORTH multiply oper¬ 

ator is ★ and the division operator /. These are both integer operators. 

The operator / generates an integer result by truncation, i.e. by simply 

dropping the fractional part of the quotient if there is one. Thus 
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5 6 + 3/ 

leaves 3 on the stack. 

There is another division operator MOD which throws away the 

quotient and yields the remainder instead; so 

5 6 + 3 MOD 

leaves 2 on the stack. If we want both the integer quotient and the 

remainder, FORTH provides an operator /MOD which leaves the quo¬ 

tient as the top stack item with the remainder below it. 

No ambiguity arises in division when both divisor and dividend are 

positive. When either is, or both are, negative, two results are possible. 

Thus dividing -12 by 5 could give the quotient as -2 with a remainder 

of —2, or the quotient as -3 with a remainder of +3. In FORTH-83 the 

second of these two conventions has been chosen. The rule is that the 

vremainder takes the same sign as the divisor. The quotient, which is 

positive if divisor and dividend have the same sign, and negative other¬ 

wise, is truncated to the next lower integer, sometimes referred to as the 

“floor” of the number. Thus 

10 divided by 7 gives 1 with remainder 3 

-10 7-2 4 

10 -7 -2 -4 

-10 -7 1 -3 

The operators + — * / MOD and /MOD are known as dyadic 
operators because they operate on two values. (The word dyadic is 

preferred to binary for obvious reasons.) Another dyadic operator 

found in some versions of FORTH is *★ , which performs the operation 

of exponentiation (raising to a power). Thus 

4 3 ** 

yields 64. 

We also need unary or monadic operators that operate on only one 

value. The monadic minus is an example. In ordinary algebraic nota¬ 

tion, the same symbol - is used for both the dyadic and monadic 

operators. It is not possible to do this in postfix notation (why not?), so 

FORTH uses the symbol NEGATE to perform the monadic operation. 

Thus the sequence 

4 NEGATE 5 ★ 

leaves -20 on the stack, whereas 
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should give an error message, since the operator - is dyadic and needs 

to be supplied with two operands, not just a 4. Some implementations 

use MINUS instead of NEGATE. 

There are also some ternary or triadic operators in FORTH. As an 

example, the operator ★/ multiplies the second and third stack values 

together and divides the result by the top item. Thus 

6 5 4 */ 

yields 7, in contrast to 

6 5 4 */ 

which yields what? There is also an operator */MOD , which operates 

in the same way, except that it yields both quotient and remainder. 

A word of caution, however. Most FORTH operators expect 

signed 16-bit quantities. These will normally be in twos-complement 

form, which means that the most significant bit is used to indicate the 

sign. Consequently only 15 bits are available to indicate magnitude. 

Ordinary operators therefore cannot handle signed numbers outside 

the range —32768 to 32767. Now the multiplication in */ and */MOD 

could generate a product outside this range even though the final 

result may be within it. In such cases some FORTH systems may 

produce the wrong answer. However if the system has been written in 

accordance with the FORTH-83 specification, or a later one, it will 

generate a double-length intermediate result and will produce the 

correct answer in the end. We shall deal with double-length arithmetic 

later on. 

Exercise 4. Evaluate by hand 

(i) 40 7 /MOD * 

(ii) 10 9 8 */MOD + 

(iii) 82 3 /MOD 3*4- 

To complete our review of the arithmetic operators that should be 

built into all FORTH systems, we shall first mention two dyadic 

operators MAX and MIN whose effect is to leave on the stack the 

larger (or smaller) of the top two items and drop the other. Thus 

6 7 5 MAX MIN 
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yields 6. MAX and MIN can be used successively on a sequence of 

items to find the largest (or smallest); but they cannot always be used 

in the way just given to find the middle value. There is also a monadic 

operator ABS , which replaces the top value on the stack with its 

absolute value. Thus 

-5 ABS 

yields 5. In some systems there is an operator +— that negates the 

second stack item if the top item is negative, and drops the top item. 

DISPLAY 

Having calculated a value, we shall probably want to display it. We can 

do this with the “dot” operator . (full stop or point), which causes the 

top item on the stack to be sent to the standard output device. Most 

users of FORTH systems will be operating in an interactive environ¬ 

ment through a video display unit (VDU) or typewriter console. The 

standard output device is then the VDU screen or the typewriter platen. 

The FORTH sequence 

54*3-. 

should display 17 on the user’s terminal in the next position on the 

device, i.e. the cursor position on a VDU or the head position on a 

typewriter. 

The number output by . is signed single-length, and must therefore 

be within the range -32768 to 32767 . However there is nothing to stop 

us from keying in unsigned numbers up to 65535 : though most FORTH 

systems treat such numbers thereafter as if they were in signed twos- 

complement form. Numbers greater than 32767 therefore appear as 

their complements with respect to 65536, for instance typing 

40000 . 

should result in the output of -25536 . Notice that in twos-complement 

the negative range is one more than the positive range; consequently 

simple negation can put a number out of range. Try 

-32768 NEGATE . 

To assist us to tabulate results neatly, FORTH provides another 

output operator .R (dot-R), which outputs a number right-justified in a 

field of specified length. In this case the number to be output must 

actually be the second on the stack, the top item giving the length of the 
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567 8 .R 

will output the number 567 displaced five spaces to the right of the 

previous cursor position. 

FORTH-83 provides an operator .( referred to as “dot-paren” to 

display messages. This is one of a few operators that differ from the 

norm in that they take their operands not from the stack but from the 

program text. .( expects to be followed by a string, i.e. a sequence of 

characters that must be terminated with a ) immediately after the last 

character to be displayed. For instance 

.( GOOD MORNING TO EVERYONE HERE) 

FORTH-83 makes no specification with regard to the maximum length 

of string. Most systems allow up to 127 characters of text, though some 

may allow more. 

STACK MANIPULATION 

The operators . and .R follow the general rule of FORTH and “use up” 

the numbers they operate on. Thus the stack is reduced in height by one 

by the operator . , and by two by the operator .R . If we wish to preserve 

the top stack item, then we must duplicate it using the operator DUP 

57*DUP. 

displays 35 but leaves 35 still on top of the stack. Notice that ABS is the 

same as 

DUP +- 

There is also an operator ?DUP (in some systems -DUP ), which 

duplicates the top stack item only if it is nonzero. 

Remember that only the top stack item is directly accessible to a 

monadic operator, the top two to a dyadic operator, and so on. 

Consequently it often happens that we find items disposed upon the 

stack in the wrong order for the operations that we want to perform on 

them. FORTH provides several operators for stack manipulation, of 

which DUP and ?DUP are of course examples. Another is DROP which 

simply removes the top stack item. OVER duplicates the second item 

on to the top of the stack. SWAP exchanges the top two items; and 
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ROT rotates the top three items, bringing the third into the top posi¬ 

tion. 

Assuming that the stack originally contained the values 12 3 with 3 

at the top, we may summarise the effects of the five stack-manipulation 

operators as follows: 

DUP 1233 

DROP 12 

OVER 1232 

SWAP 1 3 2 

ROT 2 3 1 

in which the stack top is on the right. Thus 

7 DUP 6 + SWAP 5 - * 

evaluates to 26. Notice that, apart from DROP , the stack-manipulation 

operators do not remove values from the stack. Notice too that ROT is a 

ternary operator. 

Exercise 5. The top two items on the stack are 567 in top position and 8 

below it. Write a FORTH sequence that will output 567 at the right- 

hand end of an eight-character field but leave the stack as it was before. 

Exercise 6. What are the full effects of the following sequences (output 

and final stack configurations)? 

9 4- DUP 

7 8 9 ROT + DUP . * 

Write a sequence of commands to invert the order of the top four 

stack items. 

There are two stack operators of more generality than the foregoing. 

These are PICK and ROLL. 

n PICK 

copies the nth stack value (not counting n itself) and leaves it in place of 

n on top of the stack. Thus OVER is equivalent to 1 PICK , and DUP to 

0 PICK. 

n ROLL 
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moves the nth value to the top, pushing all the items above it down one 

place. Thus ROT is 2 ROLT and SWAP is 1 ROLL. 

RADIX CONTROL 

In our explanation to date we have assumed all input and output to be in 

decimal radix. This is the situation when the basic FORTH system is 

first loaded; but FORTH permits alternative number bases to ten. The 

word HEX causes input and output to be handled as if all numbers were 

in radix sixteen; and the word DECIMAL causes the radix to revert to 

decimal. Thus, just after loading FORTH, the sequence 

22222 HEX . 23AB DECIMAL . 

will output in turn the numbers 56CE and 9131 . Some systems provide 

OCTAL as a radix-change operator as well; and all FORTH systems 

provide a variable BASE that can be set to give any desired radix. 

However, we shall defer consideration of BASE until we deal in general 

with variables in the next chapter. Changes induced by HEX and 

OCTAL persist until the next radix change. Some systems provide H. 

and O. , which output a single number in hexadecimal or octal and then 

revert to the previous radix. 

Exercise 7. What is the full effect of: 

7 5 HEX * DUP . DECIMAL . 

Numeric output is of course signed, whatever radix it is in. For 

instance 

HEX AB12 . DECIMAL 

will actually output -54EE . Negative hexadecimal numbers can be 

thought of as if they are stored as their complements with respect to 

10000, which of course is the hexadecimal equivalent of 65536. In 

general, of course, we do not want hexadecimal information in signed 

form. Later we shall see how FORTH provides facilities for displaying 

individual bytes. Negative octal numbers are stored as their comple¬ 

ments with respect to 200000. 
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The FORTH Language 

Before we discuss the language in more detail, it will be useful to look 

more closely at the operating system of FORTH. FORTH is always in 

one of two modes: either it is accepting input, or it is executing the last 

sequence input. Input is terminated by the newline key (RETURN or 

ENTER depending on the design of keyboard), and this causes the 

system to start execution. The operators in the sequence just entered 

are then executed in turn; and this may or may not involve output, or 

even call for more input. Provided that it does not get hung in a 

permanent loop, FORTH eventually outputs either OK , to indicate 

that it has completed the sequence of operations successfully, or a 

diagnostic message, to show that it has not. In the simplest case, input 

comes from the keyboard. We shall see later how sequences for execu¬ 

tion can be taken alternatively from files. 

VARIABLES 

So far our operands have all been simple integer constants. But prog¬ 

rams need variables; so we must have some way of declaring identifiers. 

This is provided by the defining word VARIABLE. The sequence 

VARIABLE X 

defines a variable called X by allocating sixteen bits of memory to it. 

Once we have assigned a value to it, we can use X in arithmetic 

expressions; but be careful. Simply quoting the identifier X has the 

effect of placing on the stack not its value but the address of the location 

containing it. It is necessary to do this of course because we may be 

quoting X not as the source of a numeric value but as a destination for 

storing a new value. In some older implementations VARIABLE auto¬ 

matically initialises the value to the top value on the stack. This is not 

true of the FORTH-83 standard. 

Identifiers can be of any length up to a system-defined limit; and 

they may consist of any printable graphic characters. However, there 

are a few micro-based systems in which, with the idea of saving memory, 

only the length of the identifier and its first three characters are stored. 
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The design of FORTH reflects the design of the machines on which it is 

most commonly implemented. Consequently addresses refer to bytes 

even though most operands are two bytes long. In some implementa¬ 

tions variables may be stored only at even addresses. 

If we want the value of a variable in contrast to its address, we use 

the “contents" operator, which is @ . Thus the sequence 

X @ 7 + . 

adds seven to the current value of X and outputs the result. 

To change the stored value of a variable, we use the "store” operator 

! . This puts the second stack item into the location whose address is 

given as the top item. The sequence 

X @ Y ! 

copies the value of X into Y . 

As well as the variables that the user defines for his ow n private use, 

there are a number of variables that are provided by the system, some of 

which are public in multi-user systems. These are known as user vari¬ 
ables. An example is BASE which contains the radix that is to be used 

for input or output of data. The sequence 

25 7 BASE ! . DECIMAL 

will change the value of BASE to 7 and then output 34. which is the 

base-7 representation of decimal 25. Notice the use here of DECIMAL 

to restore the original radix. In our exercises and examples we shall 

assume that the value of BASE is initially ten. unles- the contrary is 

specified. 

The letters from G onwards are available for use as digits when the 

radix is greater than sixteen. Thus 

19 20 BASE ! . DECIMAL 

will output J . Unfortunately J cannot be used alone as a digit on input, 

since, as we shall see, it has a quite different significance in FORTH: but 

it should be accepted if preceded by zero: i.e. 

20 BASE ! 0J DECIMAL . 

should output 19. Indeed it is good practice to use 0 to preface all 

numbers that do not start with a decimal digit, since otherwise the 

system may attempt to treat the number as an operator or character 

string. 

Some implementations provide a word SET that can be used to 
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define a new word that will set a variable to a particular value. Thus if 

our system did not have a word OCTAL we could define it by 

8 BASE SET OCTAL 

VARIABLE stores the name of the new variable in a memory 

structure known as the dictionary, and assigns space close to the name to 

hold the variable value. This arrangement is perfectly satisfactory for 

private user-defined variables, and even for user variables in single-user 

systems. However, in multi-user systems the basic dictionary, which 

contains all the user variables, should be held in common. Unfortunate¬ 

ly system variables such as BASE can have different values for different 

users, and cannot therefore be common. What most versions of 

FORTH do is establish a private user area in memory and store user 

variables there. The dictionary then holds not the value of the variable 

but an offset giving the position of the variable's value relative to the 

base of the user area, all individual user values being held in the same 

relative position in the user areas for the different users. Reference to 

the name of a user variable, like reference to that of a private variable, 

places the address on the stack; but in the former case the address is 

computed by adding the offset to the base of the user area. 

Some systems provide a word USER that enables users to define 

new variables in the user area. USER takes the top stack item as the 

offset and stores this in the dictionary. Remember though that addresses 

in FORTH refer to bytes not 16-bit items. Thus the declaration 

50 USER Y 

establishes Y as an identifier for the twenty-sixth 16-bit item (0 is the 

first) in the user area. If you decide to use USER you will have to find 

first which locations have been pre-empted by the system. 

If we wish to increase the stored value of a variable X, by seven say, 

we can write 

X DUP @ 7 + SWAP ! 

However, this is rather a longwinded sequence for such an obviously 

useful operation; so most FORTH systems provide a single operator +! 

to add values into memory. Thus 

7 X +! 

is a much neater way to do the same thing. 

Another useful shorthand operator is the query ? which outputs the 

content of the address at the top of the stack. In other words, ? is the 
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same as @ . which is just what one would expect it to mean. The 

sequence 

VARIABLE Y 9 Y ! Y ? 

should define Y , initialise it to 9, and then output its value. Notice that 

BASE ? will always output 10, since that is the value of any number in 

its own radix. 

CONSTANTS 

Programs need constants as well as variables, and FORTH provides a 

defining word CONSTANT . Thus 

12 CONSTANT IN/FT 

associates a memory location with the identifier IN/FT and places the 

value 12 in it. There is one important difference between variables and 

constants in FORTH: quoting a constant identifier places not the 

address but its stored value on the stack. Thus we might convert feet to 

inches using the sequence 

FEET @ IN/FT ★ INCHES ! 

FEET holding the original value in feet and the new value being stored 

in INCHES. 

We shall see later how to get hold of the address of a constant, and 

how to change it, should this be necessary. Of course there is nothing to 

stop us from writing 

25 IN/FT ! 

but this does not do at all what we want, since it stores 25 not in the 

location allocated to IN/FT but in location 12. If 12 happens to be in 

read-only memory, then no harm is done; but, if not, then the system 

itself could be corrupted. Moral — do not use ! (or +! or for that matter 
any other of the “store” operators that we shall meet) unless you are 
quite sure you know what you are doing. Notice too that ? should be 

used with caution on constants. 

IN/FT ? 

prints not 12 but the content of location 12. And another caveat — some 
systems define as variables what others define as constants. Make sure 

you know which are which. 



15 The FORTH Language 

Exercise 8. Assuming that the declarations 

46 USER Y 5 CONSTANT K 

have been made, and that a variable X has been initialised to 9, what 

effects have the following if executed in turn as written? 

8 BASE ! X @ . DECIMAL 

7 Y ! K Y @ + X ! 

X DUP ? DUP @ K ★ OVER ! 

WORDS 

We have been talking of operators; but the term used in FORTH for all 

functional components of the language, whether they be operators in 

the conventional sense or identifiers, is “word . Thus * — *! are 

words in FORTH, as are DUP OVER and VARIABLE . So too, once 

we have defined them, are the variables and constants X IN/FT and so 

on. FORTH words are strings of any printable characters, and they 

must be separated from one another by at least one space, since writing 

two operators contiguously implies that together they form a single 

word. 
FORTH itself is a FORTH word. It has the effect of calling the basic 

vocabulary of FORTH, and is thus in effect executed on startup. In this 

book we describe FORTH-83, which has a standard required word set 

together with a controlled reference set of words and several extension 

sets. The controlled reference set comprises words that, while not being 

obligatory in the standard, must not be included unless they operate 

according to the definition given. The glossary in this book includes the 

whole of the required word set and most of the controlled reference set 

together with most of the extensions. Some implementations include a 

word FORTH-83, which will only execute provided that the imple¬ 

mentation complies with the standard. A fundamental feature of 

FORTH is the facility to define new words. We have seen how this 

can be done using the defining words CONSTANT, USER and 

VARIABLE ; but we are able too to define new operators. This is done 

using the defining word : (colon). Thus the sequence 

; SQUARE DUP * ; 

defines a new word SQUARE to be equivalent to the two-word sequ- 
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ence DUP ★ . When we have defined SQUARE we can write for 

instance 

3 SQUARE . 

which has the same effect as writing 

3 DUP * . 

and prints 9. 

The word SQUARE identifies what in other languages might be 

called a subroutine. The word : starts compiling the “subroutine”; and 

the word ; (semicolon) terminates the compilation. The result is to add 

SQUARE to the store of words in FORTH’s dictionary, so that there¬ 

after it qan be used just like any other FORTH word. In contrast to most 

other languages, FORTH subroutines do not have arguments as such. 

All parameters are passed via the stack, and results are returned in the 

same way. Since quoting a variable name places its address and not its 

value on the stack, we should note that therefore variable parameters 

are called by reference, which means that they can be changed as a 

side-effect of the call. 

The facility for defining new words makes FORTH indefinitely ex¬ 

tensible. Most of the words provided in the basic vocabulary are built by 

“colon definition” from a relatively small number of primitives: but they 

can themselves be regarded as primitives for any special-purpose system 

that the user may wish to build on top of them. The obligation to 

proceed by successive definition forces the user to obey a discipline of 

program structuring more strictly than with other programming lan¬ 

guages of a similar degree of complexity, such as early dialects of 

BASIC. This in turn makes FORTH programs relatively easy to under¬ 

stand and consequently to maintain. 

Exercise 9. Define new words 

(i) CUBE2 to form the cube of the second stack item without 

deleting it, 

(ii) H. to output a single number in hexadecimal. 

(iii) DUODECIMAL to change the radix. 

DOUBLE LENGTH 

We mentioned earlier that FORTH has a double-length or double¬ 

precision feature. This treats two adjacent stack items as one double- 
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length signed quantity with 32-bit precision. In FORTH-83 the item 

nearer the stack top is the high-order half; though you may find systems 

in which the opposite convention is followed. In a minimal FORTH 

system there should be at least three double-precision arithmetic oper¬ 

ators D+ DNEGATE and D< . The first of these treats the top four 

stack items as two double-length numbers, and forms their sum. 

DNEGATE , which may alternatively appear as DMINUS , replaces a 

double-length number by its negative. D< enables two double-length 

quantities to be compared. 

The system may have other double-length operators as well. D— is 

used for subtraction, D>, D= and D0= are used for comparing quanti¬ 

ties, and D. and D.R output the full double-length number in the radix 

given in BASE according to the conventions of . and .R . Many systems 

provide other double-length facilities such DABS , DMAX and DM1N. 

An unsigned double-length comparator DU< may also appear. Some 

double-length operators are prefaced by a 2 instead of a D . Examples 

are 2! , 2@ , 2CONSTANT , 2DROP , 2DUP , 2DROP , 20VER , 

2ROT , 2SWAP , 2VARIABLE etc.; but it should be possible to make 

up any double-length operations with the limited facilities provided in 

the reference set. There may also be an operator S->D that converts 

from single to double length by extending the sign bit. Notice by the way 

that double-length duplication is simply OVER OVER . By judicious 

use of whatever features are available, it is possible to perform arithme¬ 

tic to quite high precision without too great a sacrifice of computing 

speed. 

To fix the structure of double-length numbers in the mind, the 

following sequences 

50000 0 50000 0 D+ D. 

and 50000 0 50000 0 D+ . . 

respectively output 100000 and 1 followed by —31072. 

Exercise 10. With the aid of no other double-length arithmetic operator 

than the basic three, define the operations D-, 2SWAP and D> . 

The fig-FORTH implementation derives the double-length oper¬ 

ators, and even some single-length operators, from a set of unsigned 

double-length primitives. This approach is possible of course only be¬ 

cause the sign convention in use is twos-complement. Signed and un¬ 

signed addition and subtraction are identical operations in twos-comple¬ 

ment, provided of course that the result remains within range, the only 

difference being in the way the quantities are interpreted, for instance 
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for output. There is an unsigned multiply UM* which forms the double¬ 

length product of two unsigned single-length numbers in the range 0 to 
65535. The single-length twos-complement signed product is then 
formed simply by dropping the high order half of the result, provided of 
course that it is within range. There is also a divide operator UM/MOD 
that divides a double-length unsigned dividend by a single-length un¬ 
signed divisor to give single-length quotient and remainder. For technic¬ 
al reasons, this may only accept a 31-bit dividend. Unsigned double¬ 

length relations U< , U> and U= can also be found, as can unsigned 
output operators U. and U.R , which operate in the same way as . and 
.R . 

From the unsigned primitives, we can derive not only the signed 
single-length operators but also signed mixed-mode operators. Thus M* 
multiplies two single-length signed numbers to give a signed double¬ 
length product; and M/ divides a signed double-length number by a 

signed single-length number to give a signed single-length quotient. 
Some systems also have a signed M/MOD . 

CONDITIONAL BRANCHES 

Programming languages need control structures, so that the course of a 
program can be changed during execution in accordance with conditions 
relating to the data being processed. In common with most program¬ 

ming languages, FORTH provides three types of control structure: an 
IF branch, a counting loop, and an indefinite repeat loop. The simplest 

IF structure is of the form 

IF . THEN 

or on some systems 

IF . ENDIF 

Notice that these structures operate according to the spirit of FORTH. 

The word IF tests the value of the top item on the stack, dropping it in 
accordance with the usual FORTH convention. If the condition is 
satisfied, i.e. if the tested value was nonzero, then the sequence be¬ 
tween IF and THEN (or ENDIF ) is executed: if it is not satisfied, i.e. if 
the value was zero, then control passes direct to the sequence following 

THEN (or ENDIF ). 
Following usual practice, FORTH has an alternative structure 

IF ELSE THEN 
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or IF . ELSE . END1F 

In this case, the sequence between IF and ELSE is executed if the top 

value on the stack was nonzero; and the sequence between ELSE and 

THEN (or ENDIF) is executed if it was zero. In either case control 

passes afterwards to the sequence following THEN (or ENDIF ). 

RELATIONS 

Notice that the operation of IF described here implies that FORTH 

treats any nonzero quantity as being equivalent to logical "true” and 

zero alone as equivalent to “false". FORTH also provides the compari¬ 

son operators (relations) > < and = to compute truth values. In 

FORTH they are of course postfix operators, and they return 0 if the 

relation is false, and the standard all-ones configuration (equivalent to 

-1) if it is true. The order of operands is the same as in infix notation. 

Thus 

7 5 > 

returns the same result as infix 

7 > 5 

which is true: 

9 4 < 

returns the same as infix 

9 < 4 

which is false. Following the normal convention of FORTH, the two 

items compared are “used up", and are replaced by the truth value. 

There is strictly no need for an inequality comparator. If we want an 

inequality test we simply subtract the two operands, which leaves zero 

(false) if they are equal, and nonzero (true) if they are unequal. Never¬ 

theless some systems do provide a word <> to test for inequality and 

leave the standard values for “true" or "false". 

FORTH provides three further comparison operators, 0< 0> and 

0= . The first of these replaces the top stack item by -1 (true) if it was 

negative (less than zero), and by 0 if it was positive. Thus 

X @ 0< 

is equivalent to 
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X @ 0 < 

or, if you prefer, 

0 X @ SWAP < 

0> performs the inverse operation, except that of course both 0> and 

0< return 0 (false) if the number was zero. 

The word 0= replaces the top stack item by -1 if it was zero and by 0 

if it was nonzero. It can therefore be used to reverse the truth value of 

the top stack item, that is, perform the NOT operation. Indeed in some 

systems the word NOT is actually used instead of 0= . As an example of 

the foregoing, consider the definition of MIN ( MAX is trivially diffe¬ 

rent). 

: MIN OVER OVER > IF SWAP ENDIF DROP ; 

Exercise 11. How would you perform the non-strict inequality opera¬ 

tions >= and <= ? 

Exercise 12. Define a word D= that will test the equality of two 

double-length numbers, assuming that it does not already exist. (You 

may use D— defined in exercise 9.) 

LOGICAL OPERATORS 

Relations can be combined together by using logical operators. FORTH 

provides at least AND OR and XOR . These perform bitwise opera¬ 

tions upon the top two stack items, leaving respectively their intersec¬ 

tion, union and exclusive union. Thus 

28 14 AND yields 12 

40 10 OR yields 42 

40 10 XOR yields 34 

(Write the numbers in full binary if you need convincing. ) Some systems 

provide NOR and NAND logical operators as well. AND and OR work 

correctly if the top two items on the stack are being interpreted as truth 

values rather than bit sequences. For instance 

nonzero zero AND yields zero 

nonzero zero OR yields nonzero 

Thus for instance one can write 
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X Y > Z Y = AND IF .... 

The operator XOR may yield zero or nonzero, depending on the 

actual positions of the bits; but if we keep strictly to -1 as the only 

representation for “true”, then this operator too will work for truth 

values. NOT (or 0= ) converts any pattern of ones to a zero word and 

converts a zero word to -1. A word can be complemented (Is replaced 

by Os and Os by Is) by forming the twos complement ( NEGATE ) and 

subtracting unity; though some systems do provide a complementation 

operator COM . 

To assist with masking operations, a word MASK is sometimes 

provided. This replaces the top stack item with that number of ones, 

left-aligned if the number is positive, right-aligned otherwise. Thus 

B @ 4 MASK AND 

would select the first digit of a BCD number stored at B . A variant of 

this is the operator @BITS . The top stack item is the mask, and the 

second item is the address of the unmasked word. Thus 

B 4 MASK ©BITS 

would have the same effect as the sequence just given. A word 1BITS in 

some systems masks the third word on the stack by the top word, and 

stores it in the address given in the second. For example 

B @ C 4 MASK 1BITS 

stores the first digit of B in C . 

When handling bit strings, it is useful to have shift operators as well. 

SHIFT shifts the second stack item a number of places specified by the 

first — left if positive, right if negative. An arithmetic shift operator 

ASHIFT is sometimes available that takes account of the sign of the 

number that is being shifted. 

Exercise 13. Define a word that will split a byte into two BCD digits, 

and store them in two consecutive (16-bit) locations. 

INDEFINITE LOOPS 

The simplest form of indefinite loop is 

BEGIN . UNTIL 

The sequence between BEGIN and UNTIL is executed repeatedly until 

the top stack item at the end of the sequence (i.e. just before UNTIL is 
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encountered) is nonzero (true). In some systems UNTIL is replaced by 

END . Notice that UNTIL (or END ) “uses up” the truth value gener¬ 

ated by the word preceding it, whether or not the condition is satisfied. 

If the condition is satisfied, control passes to the sequence following 

UNTIL . To take a simple example, the following definition generates a 

word that will output a number of Xs controlled by the number on top of 

the stack when it is called 

: EXES BEGIN 1 - X" DUP 0= UNTIL ; 

we might call the new word as 

7 EXES 

to give the output XXXXXXX (7 of them). Notice the use here of the 

word ." to print a single X. ." operates like .( except that it is compiled to 

do its work at execution time. It prints the string following it, which 

must be terminated by a double quote. 

In place of the two words 1 and - , we might have used the FORTH 

word 1- . Most FORTH implementations provide 1+ . 2+ and 2- as 

well, to increment and decrement the top stack item. Some systems 

provide operators such as 1 + ! and 1-! to increment or decrement 

memory locations, 2* and 2/ to double or halve the top stack item, and 

so on. 

To give a more complex example of an indefinite loop: to find the 

highest power of one number contained in a second we might define a 

word PWRIN as follows 

: PWRIN OVER SWAP BEGIN ROT ROT OYER * 

ROT OVER OVER > UNTIL DROP SWAP : 

Thus the call 

3 90 PWRIN 

leaves the result 81 . 

The BEGIN ... UNTIL structure requires the looping test to be 

made at the end of the cycle; consequently the loop is always executed 

at least once. It is sometimes preferable to make the test at or near the 

beginning so that the words within the loop need not be executed at all. 

This is in fact the case with our example PWRIN . since the definition 

just given produces the wrong result if the first number happens to be 

greater than the second. An alternative form of indefinite loop 

BEGIN WHILE REPEAT 
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is provided therefore. WHILE tests (and drops) the top item on the 

stack. If this is zero (false) then control passes direct to the sequence 

following REPEAT ; otherwise the sequence following WHILE is ex¬ 

ecuted, REPEAT unconditionally returning control to the start of the 

loop. Thus we may rewrite our definition of PWRIN correctly as 

: PWRIN SWAP DUP BEGIN ROT OVER OVER < 

WHILE ROT ROT OVER * REPEAT DROP SWAP / ; 

To give a simpler example to illustrate the operation of this struc¬ 

ture, the following word produces a sequence of Ys and Zs starting and 

ending with a Y . 

: WYZE BEGIN 1+ ." Y" DUP WHILE ." Z" REPEAT 

DROP ; 

Thus the call 

4 WYZE 

produces the output YZYZYZY . This same structure appears in sever¬ 

al guises in different sytems, such as 

BEGIN . IF . AGAIN 

WHILE . PERFORM ... PEND 

As a final example, consider Euclid’s algorithm for finding the 

highest common factor of two numbers. This is simply 

: EUCLID BEGIN SWAP OVER MOD ?DUP 0= END ; 

Exercise 14. Define a word that will halve the top stack item if it is 

even, and hence define a word that will find the largest (not necessarily 

prime) odd divisor of the top stack item. 

COUNTING LOOPS 

We also need a counting loop. In FORTH this takes the form 

DO   LOOP 

The top item of the stack on entry to the loop is the starting value of 

the index; and the item below this is the terminating value. The index is 

increased by unity every time the word LOOP is encountered; and 

control is returned to the DO unless the limit has been reached or 

exceeded. Thus we might redefine the word EXES defined above as 



24 Chapter 2 

: EXES 0 DO X" LOOP ; 

Here zero is the starting value for the loop index. So 

7 EXES 

gives the same output as before. 

To allow the index to be increased by values other than unity, the 

word LOOP can be replaced by +LOOP . which causes the top item on 

the stack at that point to be added to the index before it is tested. 

+LOOP operates quite generally, and if we wish we may write the 

sequence so that the index is increased by a different amount each time 

round. We shall give an example of the use of +LOOP later. 

It often happens that we want to terminate a counting loop on some 

condition other than completion of the count. For instance, suppose 

that we wish to skip up to twenty items from an input device, stopping 

either when we have counted to twenty or if the last character read was a 

newline. Assuming that we have already defined a word READ to place 

the next input character on the stack, we could define a word GET thus 

: GET 0 DO READ 13 = IF LEAVE THEN LOOP ; 

Since 13 (decimal) is the ASCII code for return, the call 20 GET will 

read up to 20 characters, terminating if a return character is read before 

the twentieth. 

A word of warning, though. The word LEAVE operates in a rather 

unexpected way. All it does is alter the count so that it becomes at least 

as great as the terminator. The remainder of the loop is then executed in 

the normal way up to the word LOOP . The LOOP test now fails, so 

that control is not returned to the start. The loop is indeed "left", but 

not necessarily, it must be understood, at the point where LEAVE is 

situated. 

The index of a DO loop is maintained by the system: but it is 

accessible to the user. The word I in most systems causes a cope of the 

current index to be pushed on to the stack. Thus the sequence 

DO . I . LOOP 

prints out the index on each cycle — a useful debugging technique. 

Notice that DO appears to “use up” the initial index and terminator. 

What it does in fact is transfer them temporarily to a second stack, 

called the return stack, where they are manipulated by LOOP . We shall 

have a lot more to say about the return stack later. 

As a final example, consider the loop 
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DO I +LOOP 

This doubles the index each time around so that, if the index stands 

initially, at 1, the number of cycles is the base-2 logarithm of the 

terminator. 

The use of a second stack for holding index and terminator makes it 

possible to nest DO loops to an arbitrary (system-dependent) depth. 

The word I of course always refers to the index of the innermost loop. 

FORTH-83 also specifies a word J . which permits the user access to the 

index of the next enclosing loop, thus 

DO . DO ... I ... J ... LOOP ... I ... LOOP 

This facility is useful when handling two-dimensional arrays. Notice that 

the first I in the examples produces the index of the inner loop, while the 

second produces that of the enclosing loop, i.e. it gives the same value 

as the preceding J . Some systems provide a word K that yields the index 

of a second enclosing loop. 

COMPILING WORDS 

There is one very important point that must be made about all the 

foregoing control structures: the words DO IF BEGIN and the other 

words associated with them differ from most of the words we have 

discussed previously in that they are compiling words; that is, not only 

do they cause operations to be performed when they are executed, but 

they also cause modifications to be made to the program when they are 

compiled. This means that they cannot be used directly. We cannot for 

instance write 

DUP 0< IF . ELSE DROP THEN newline 

and expect that this will print the top stack item if it is negative. 

Compiling words must be introduced with a “colon” or other code 

definition, for instance 

: PRNEG DUP 0< IF . ELSE DROP THEN ; 

is quite acceptable. The definition gives an opportunity for IF to do the 

compiling part of its job when PRNEG is compiled, and to do the 

condition-testing part later when PRNEG is called. The reason for this 

will be evident when we come to discuss the compilation process. In the 

meantime you will have to accept the rule and obey it. 



26 

THE RETURN STACK 

Chapter 2 

The return stack is an essential component of FORTH's system for 

transfer of control between words in the dictionary: its use in controlling 

loops is incidental. It is accessible to the ordinary user through three 

special operators. These are >R R> and R@ (referred to as to-R, 

R-from and R-fetch). The first moves the top item of the main stack on 

to the return stack — moves, notice, in contrast to copies, which is what 

I does; the second moves the top item of the return stack back to the 

main stack; and the third copies the top item without affecting the 

return stack. In most systems, therefore, I is a synonym for R@; but this 

cannot be guaranteed, since there is nothing in the FORTH-83 speci¬ 

fication to oblige the loop index and terminator to be stored in a 

particular order. Try a loop containing 

I R@ = . 

on your own system. 

These three words are commonly employed when the return stack is 

used for temporary storage; but be very careful when you are doing this, 

otherwise a loop or other control structure may find its parameters 

changed in some unforeseen way. As an example of this application 

consider how mixed-mode signed multiplication M* can be defined 

from mixed-mode unsigned multiplication. 

: M* OVER OVER XOR >R ABS SWAP ABS U* R> 

D + - ; 

In this definition we use the return stack as temporary store. We are 

interested only in the sign of what is stored there. This is negative if the 

signs of the two operands are different. It is to be used subsequently to 

adjust the sign of the product. 

Exercise 15. Define words 

(i) to output the largest of the top four items on the stack without 

deleting them, 

(ii) to copy the fourth stack item to the top without using PICK, 

(iii) to swap two double-length items. 

DO loops can be nested within other control structures; but this 

must be proper nesting: they must not interlace. It would be wnong, for 

instance, to write 

: WRONG DO READ IF LOOP THEN ; 
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As a final example on the use of DO loops, the word FIBO defined 

below outputs a sequence of Fibonacci numbers as specified by the top 

stack item. (The numbers in the Fibonacci series are characterised by 

the fact that each is the sum of the previous two, the first two numbers in 

the series both being 1.) 

: FIBO 0 1 ROT 0 DO DUP 10 .R CR SWAP OVER + 

LOOP ; 

The word CR causes a newline on the output device; consequently the 

numbers in the sequence are printed in a neat column. In fact FIBO may 

give an overflow diagnostic: the twenty-third Fibonacci number is the 

largest within single-length range. 

Exercise 16. Define a word that will calculate the factorial of n (i.e. n x 

(n—1) x ... x 2). 

BLOCK MOVES 

FORTH has facilities for handling blocks of bytes. A block of 

memory can be filled with any desired byte value by the use of the word 

FILL . Here the character to be used is the top stack item, the number 

of bytes and the starting address being the second and third respectively. 

From this we can define a word ERASE that fills a number of bytes in 

memory with zeros, thus 

: ERASE 0 FILL ; 

The number is given as the top stack item; and the starting (lowest) 

address as the second. We can define a word BLANKS that works in a 

similar way, except that the block is filled with ASCII space characters 

(hex 20, decimal 32). 

: BLANKS 32 FILL ; 

There is also a block-move operator CMOVE that transfers a num¬ 

ber of bytes from one place to another in memory. Again the byte count 

is the top stack item, the starting address of the destination is the 

second, and that of the source is the third; for example 

FROM TO 100 CMOVE 

If there is a need for a word-move operator for 16-bit items, it could be 

defined as 

: WMOVE DUP + CMOVE ; 
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Notice that CMOVE operates from low address to high address; 

consequently, if the destination is above the source and the areas 

overlap, some information can be lost. This fact can actually be made 

use of in the definition of FILL . 

; FILL SWAP >R OVER C! DUP 1+ R> 1 - CMOVE ; 

Some systems provide an additional move CMOVE> that operates 

from high address to low. C! is defined below. 

Exercise 17. Define a word MOVE that cannot overwrite even if the 

two areas do overlap. (Use CMOVE and CMOVE> .) 

N.B. Some systems use MOVE to denote a 16-bit move operator. 

BYTE OPERATORS 

Practically all FORTH systems are implemented on byte-addressed 

machines. What this means is that the FORTH 16-bit numeric item is 

implemented as two consecutive bytes and stored in two consecutive 

addresses. FORTH-83 does not specify the byte order within a 16-bit 

field in memory, and implentors are likely to follow the natural conven¬ 

tions of the processors they are using. Thus Motorola microprocessors 

store the high-order byte in the lower of a pair of addresses: Intel and 

Zilog machines in contrast store the high-order byte in the higher 

address. The latter may look at first sight to be more logical; but the 

former is more convenient when handling strings of text. 

FORTH provides facilities for handling individual bytes or charac¬ 

ters. These are for the most part analogues of the integer-handling 

facilities. They operate on byte addresses, so their precise effects de¬ 

pend on the byte order in which data is stored. C(a (C-fetch) replaces an 

address at the top of the stack by the byte stored in that address. The 

byte is placed in the low-order half of the top stack item (which, as we 

have seen, is not necessarily the lower byte address of the pair), the 

remainder being made zero. Thus the sequence 

HEX ABCD X ! X DUP C@ . 1+ C(a . 

would output AB and CD but in an order dependent upon implementa¬ 

tion details. It is worth while trying this sequence out on vour own 

system to see what happens. 

There is also a word C! (C-store) to store bytes. The address for 

storage is the top stack item; and the byte to be stored is the low-order 

half of the second item. For example 
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Y C@ X 1+ C! 

would copy the byte of Y stored in the lower address into the higher 

byte address of X . Many systems have more byte-handling facilities 

than these — such as C? CVARfABLE and so on. Some systems 

provide a byte-swap operator >< and an operator >MOVE< that 

moves a block of 16-bit words performing a byte-swap operation on the 

way. This is useful when transferring data from, say, an Intel system to a 

Motorola. 

It is worth noting that some systems require 16-bit items to be stored 

in an even-odd pair of memory locations. Thus the sequence 

10 X C! 10 X 1+ ! 

would give an “odd address” diagnostic on such a system, as would a 

word move if given an odd address. 

Here is a useful definition, which will give a hexadecimal dump of 

successive bytes. The number of bytes to be output is placed on top of 

the stack, with the starting address below it. 

: DUMP HEX 0 DO DUP I + C@ . LOOP DECIMAL ; 

Exercise 18. Rewrite DUMP to print the address as well as the con¬ 

tents, neatly tabulated. 



Chapter 3 

Transput and Files 

Byte information is usually intended to be interpreted as a sequence of 

ASCII codes for printing. The ASCII code is reproduced in an appen¬ 

dix. The word EMIT (in some systems ECHO ) outputs the low-order 

byte of the top stack item not as a number but as a graphic character. 

Thus 

HEX 7A42 EMIT 

outputs the letter B . EMIT may also increment a user variable OUT , 

which refers to the cursor position and can be used if desired for 

line-length formatting. 

The inverse of EMIT is KEY . When KEY is executed, it puts the 

ASCII value of the next key pressed into the low order position of the 

top stack item, and clears the high-order half. Thus by executing 

KEY 

you can find the ASCII value of any key on your keyboard. Despite its 

name, KEY should have the same effect whatever the input device. 

Thus it should operate also when loading from file. Some systems have 

an additional word ASCII that skips blanks until it finds a non-blank 

character. There is a lot of divergence between systems in this area. 

There are also one or two useful ASCII output words. CR has 

already been mentioned. It can be used in contexts in which the use of 

the newline key would have a different significance. SPACE outputs a 

space. SPACES outputs spaces to a number given as the top stack item. 

There may also be a word BELL that operates the beeper on the 

console if this is the current output device. Other specialised words may 

be provided to make use of whatever features the hardware offers. On 

computers with timers there might be a word MS to interpose a delay of 

a number of milliseconds as given by the top stack item. 

STRING OUTPUT 

The form of text output performed by the words .( and .” is suitable for 

constant strings — user communication, headings, diagnostic messages. 

30 
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and the like. Variable strings that have been processed by program and 

are held in working storage are best output using the word TYPE which 

incidentally is called by .( and . The number of characters to be 

output by TYPE is the top stack item, and the starting address of the 

string the second item. Elowever, strings of characters are usually 

“counted”, i.e. held in memory together with their length count, which 

is the first byte. The word COUNT takes a string stored in this way, with 

the starting address (i.e. the address of the count byte) supplied as the 

top stack item; it stacks the count above the address, and then advances 

the address by unity. Parameters are then in the right form for the string 

to be output by TYPE . 

A full definition of TYPE is a nice illustration of the use of several of 

the words we have considered so far. It is 

: TYPE ?DUP IF OVER + SWAP DO I C@ EMIT LOOP 

ELSE DROP THEN ; 

The heart of this is the DO loop. The limits set when this loop is entered 

are actually the starting and finishing addresses of the string to be typed. 

Consequently I gives on each cycle the address of the next character to 

be output. The loop terminates when the last character has been 

emitted. 

TYPE displays text starting at the current position of the cursor, and 

leaves the cursor position just after the last character typed. If you want 

newlines, then you must either put in a CR command or else include the 

ASCII return and linefeed codes in the string. TYPE outputs everything 

it is given, including trailing blanks if there are any. To remove trailing 

blanks FORTH provides a word -TRAILING , which adjusts the count 

to ignore them, the address and count having been placed on the stack 

as required by TYPE . A possible definition of -TRAILING is 

: -TRAILING DUP 0 DO OVER OVER + 1- C@ BL - 

IF LEAVE ELSE 1- THEN LOOP ; 

The sequence OVER OVER + 1- generates the address of the last 

character in the string. If this is a blank, then the count is reduced by 

one, and the (new) last item is tested. This continues until the last item 

is non-blank. 

STRING INPUT 

Input of character strings is achieved using the word EXPECT and 

WORD . EXPECT reads from the terminal a number of characters as 
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specified by the top stack item, and stores them starting at the address 

given as the second item. EXPECT refers only to input from the 

terminal; input from file is handled differently. In case the actual num¬ 

ber of characters is not known beforehand, input may be terminated 

with a keyboard “return”, the count on the stack then serving only to set 

a maximum limit. The actual number of characters received is stored in 

a user variable SPAN . 

EXPECT is used by the operating system to read commands into the 

terminal input buffer for interpretation. The start address of this buffer 

is held in standard systems in a user variable TIB , and the number of 

characters it contains in a user variable #TIB . The following FORTH 

program displays itself on the terminal: 

TIB @ #TIB @ TYPE 

Exercise 19. Define words that will read up to 20 characters from the 

keyboard, and output them again 

(i) with all blanks suppressed, 

(ii) in reverse order. 

(You may assumne that a scratchpad containing at least 20 bytes is 

available, that its address is generated by the word PAD . and that there 

is a constant BL containing the ASCII blank.) 

Before we discuss the operation of WORD it will be helpful to 

consider briefly how FORTH words and their definitions are stored. 

The dictionary is a simple linear list that grows from low addresses to 

high. The next address above the current top of the dictionary is stored 

in the dictionary pointer DP (in some systems H) which is usually 

available as a user variable. The content of DP, i.e. the address of the 

first free location, is referred to as HERE . Thus HERE is equivalent to 

DP @ . 

The dictionary structure is shown in Fig. 3.1. Notice that the conven¬ 

tion used throughout this book is to show memory with the lowest 

addresses at the top of the page and the highest at the bottom. The top 

stack item can be stored direct into the dictionary at HERE by the 

operator , (comma), which also increases HERE by two. We shall see 

the function of , more clearly later when we discuss compiling. There is 

also a byte operator C, for storing individual bytes in the dictionary. The 

conventions are similar to those for C! . 
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low memory 

DICTIONARY 

HERE -► 

high memory 

Fig. 3.1. The FORTH dictionary. 

Another useful word is ALLOT which adds the top stack item to 

HERE so as to leave space in the dictionary, for instance to store an 

array. To leave space for an array of, say, ten integers (20 bytes) one 

would write 

20 ALLOT 

The definition of ALLOT is simply 

: ALLOT DP + ! ; 

The principal use of the word WORD is to read names when con¬ 

structing new dictionary entries. To assist in this, all the characters read 

by WORD are stored at the top of the dictionary and are preceded by 

the character count, which is consequently stored at HERE . WORD 

does not read direct from the input device, but from a buffer associated 

with it. The number of the buffer currently being used is held in a user 

variable BLK . The number zero is associated with the terminal buffer: 

numbers greater than zero are associated with file buffers. WORD 

starts reading at a point in the buffer defined by an offset contained in a 

user variable >IN (just IN in some systems); and it advances the content 

of >IN after reading a character. It reads until it encounters a delimiter. 
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The actual delimiter can be selected by the user, who puts its ASCII 

value in the top stack position before calling WORD. To simplify 

things, WORD is designed to ignore any leading occurrences of the 

delimiter, which will normally be a space. WORD counts characters as 

it reads them, and stores the count at HERE, i.e. just ahead of the 

character string. 

Figure 3.2 shows the situation after WORD has transferred the 

letters “INPUT" from the buffer to the top of the dictionary. We show 

HERE- 

TIB 

>IN 

#TIB 10 

DICTIONARY 

5 1 

N P 

U T 

low memory 

1 N 

P U 

T 

D A 

T A 

BUFFER 
high memory 

Fig. 3.2. Operation of WORD . 
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the memory as if it were two bytes wide, the better to illustrate the 

16-bit structure of FORTH. The low-order byte is on the left, so that 

text appears in the normal European left-to-right sequence. As a further 

example of the use of WORD consider the definition of the word ( , 

which introduces a comment 

: ( 41 WORD ; 

41 is the decimal ASCII value of “)” so WORD continues to read from 

the input device until it reches the closing delimiter of the comment. 

Since the string is merely a comment, there is nothing else to be done 

with it. 

FILING 

FORTH data and source-program text are stored in blocks on whatever 

backing device is supplied with the system. The first machines on which 

FORTH was implemented had a file block of 128 bytes, which was an 

inconveniently small unit for editing. It had the further disadvantage 

that, where tape was used, it led to inefficient utilisation. Consequently 

a larger data unit had to be used as well. This is 1024 bytes. Since 1024 

bytes can conveniently be displayed simultaneously on a VDU, it is 

referred to as a screen. Because the storage block on early systems was 

much smaller than a screen, a constant B/SCR was provided to make the 

conversion easier. In newer implementations the size of a file sector is 

usually made the same as a screen, so the value of this constant is unity; 

the terms “block” and “screen” are then synonyms, and will be so used 

here. 

Techniques for handling transfers to and from file naturally depend 

on what file-handling facilities the operating system provides. The 

majority of FORTH implementations are on small machines with ran¬ 

dom file devices (usually diskette) and a simple two-level memory. 

Microdrives may be considered to be slow diskettes; but other types of 

tape filing, such as cassettes, give rise to rather specialised schemes; and 

we shall hardly concern ourselves with them here. Machines with virtual 

memory, can handle files of the order of 100 screens as part of the 

program space. Very long files, or multiple files, are again handled in a 

system-dependent manner that likewise we cannot consider here. 

FORTH incorporates a rudimentary virtual-memory scheme, which 

operates very efficiently in practice. In the standard system, the virtual 

memory consists of a set of blocks, 32 being regarded as a minimum, 

numbered from 0. A small number of buffers (usually three screens’ 



36 Chapter 3 

worth) is provided to receive data transferred from file. A constant 

B/BUF in some implementations stacks the number of bytes in a buffer, 

normaly 1024. The word BLOCK searches these buffers to determine 

whether or not the block whose number is on top of the stack is already 

there. If it is not, then a read command is issued to the backing device in 

order to retrieve it. It is then read into one of the buffers. In either case 

BLOCK returns the start address of the buffer on top of the stack. 

Special care must be taken when using cassette-based systems. Since 

stepping back is not normally possible, manual intervention is necessary 

to retrieve a block with a number earlier than that of the block last 

loaded. 

Several algorithms are possible for deciding which buffer to over¬ 

write next. A simple (and popular) one is to take the buffers strictly in 

turn, but avoid the one most recently used. The address of this is held in 

a variable PREV , while that of the next buffer to use is held in a 

variable USE . This will normally be the “stalest”, i.e. the one that was 

least recently taken from file. If the original contents of this buffer have 

not been altered since they were read, then an exact copy still exists on 

file, and no further action is necessary. If, on the other hand, the buffer 

has been updated, then the new version must first be written back to 

file. In neither case does the user have to concern himself with the 

details. All “page turning” is performed by the system. 

A block whose contents have been changed can be tagged by using 

the word UPDATE , which marks the most recently used buffer (i.e. 

the one whose address is in PREV ) typically by putting a 1 in the most 

significant position of the first word. There is also a word EMPTY- 

BUFFERS , which removes the update marker from all buffers, pre¬ 

venting them from being written back and thereby erasing them from 

the system. The main use of this word is on initialisation. The word 

SAVE-BUFFERS (in some systems FLUSH ) writes all updated buffers 

back to file store. 

EDITING 

All FORTH systems incorporate an editor, which is not necessarily part 

of the main system, and may have to be loaded separately in some 

system-dependent manner. Editors differ widely; but all of them take 

care of much of the detail involved in handling screens of text; for 

instance an editor will automatically mark as updated any screen that it 

writes to. 

The word LIST retrieves from backing storage the screen whose 
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serial number is the top item on the stack, displays it on the current 

output device, and copies the serial number to a user variable SCR . If a 

printer is fitted, and the output is currently switched to it, the screen will 

be printed. LIST formats text in sixteen lines of 64 characters, with line 

numbers inserted on the left. Some editors have a word LINE that 

places on the stack the buffer location of the start of the nth line of the 

screen designated by SCR , n being the top stack item. 

Some editors include a word CLEAR that makes reusable the buffer 

containing the block whose number is the top stack item. The old 

contents of the buffer are lost, though a (possibly earlier) version of its 

contents may still exist on file. Operating in a similar manner, there is 

often a word COPY that copies one buffer to another. The second stack 

item specifies the number of the screen to be copied, while the top item 

gives the screen number to be associated with the copy. CLEAR is used 

to create a new block when editing. CLEAR and COPY together can be 

used for renumbering screens. 

Some systems have facilities for displaying a sequence of three 

screens, known as a triad. The display device in this case is normally a 

printer. The word TRIAD displays the triad containing the screen 

whose number is the top stack item, and will start with the lowest 

numbered of the three, whose serial number is consequently a multiple 

of three. Another useful facility sometimes found is a word INDEX that 

lists the top line of every screen, conventionally containing a title. 

LOADING PROGRAMS 

If a screen contains FORTH code then it is presumably intended to be 

compiled or executed at some stage. The word LOAD treats the screen 

whose serial number is on top of the stack as if it were being entered 

from the standard input device, and causes it to be compiled or executed 

in the same way. The number of the last block loaded is held in a user 

variable BLK . The word LINELOAD on some systems enables loading 

to start with a particular line of a screen, the line number having been 

placed on the stack. 

All buffers, including the terminal buffer, end with a null character 

(ASCII 00 hex.). This is actually a dictionary entry which is executed to 

terminate loading. However most FORTH programs run to more than 

one screen. To make it easier to load screens that are numbered con¬ 

secutively, FORTH provides a “next-screen” operator —> , which 

can be written at the end of one screen if the next in sequence is to be 

loaded after it. In case the screens to be loaded are not sequential, a 
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sequence of LOAD commands can be issued, or a LOAD command can 

be placed at the end of one screen to ensure loading of the next in logical 

sequence. Some older versions of FORTH had a word THRU to control 
sequential loading. Thus 

20 25 THRU 

loads blocks 20 to 25 inclusive. 

To save having to remember the numbers of the screens where our 

different programs are stored, we can define a constant of the appropri¬ 

ate value. Thus, for instance, if we had written a system caled WORD- 

PROCESSOR starting on screen 96, then we could place a constant 
definition 

96 CONSTANT WORD-PROCESSOR 

in some standard screen of first loading. Subsequently then 

WORD-PROCESSOR LOAD 

would cause screen 96 and any subsequent “next” screens to be loaded. 

Other systems have a word LOADS such that 

96 LOADS WORD-PROCESSOR 

has a similar effect simply on a call of WORD-PROCESSOR . Some 

versions of LOADS will also cause a change of vocabulary (see below). 

WRITING TO FILE 

Remember that TYPE is designed to feed the standard output stream. 

By default this will be the console, though text can usually be copied or 

redirected to a printer. Most systems also permit redirection to a named 

file. For users who wish to program their own file transfers, there is a 

word BLOCK that obtains the block whose number is the top stack 

item, and then leaves in its place on the stack the first-word address of 

the buffer containing it. If the desired block is already in memory, this is 

a trivial operation: if not, the block is transferred from backing store, 

with a possible need for a rewrite. 

New blocks are created using the word BUFFER . The number of the 

block to be created must be at the top of the stack. A buffer is allocated 

to it; and the previous contents of that buffer are written to file if 

necessary. The buffer address is left on the stack, so BUFFER operates 

rather like BLOCK except that there is no file search if the block is not 

already in memory. Strings can be moved to the new block with 
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CMOVE or CMOVE> . This way of working enables the file to be 

formatted as the user wishes, but leaves the responsibility of writing 

back to file to the FORTH system, provided of course that the block has 

been marked by using UPDATE . 

FORMATTING OUTPUT 

FORTH systems provide a text scratchpad for general use during input 

and for formatting output. This occupies space above the current top of 

the dictionary ( HERE ) and access to it is gained by using the word 

PAD , which is defined in FORTH-83 as 

PAD HERE 84 + ; 

The scratchpad can extend upward until it meets the main stack, which 

grows into the same memory area (see Fig. 3.3). The “top” of the stack 

low memory 

SP 

SO 

high memory 

Fig. 3.3. PAD . 
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is held in a user variable SP ; and many systems provide a word SP@ 

(SP-fetch) that returns the address of the top of the stack. Consequently 

the amount of memory available for scratchpad use is output by 

SP@ HERE - . 

There may also be a word SP! for initialising the stack pointer on reset. 

If SP is not available, the word DEPTH used in conjunction with the 

address of the stack base can be used to generate the stack pointer. The 

stack base is usually referred to as SO . In FORTH-83 this is treated as a 

constant yielding the base address direct: in other implementations it is 

a user variable, so it is obtained by writing SO @ . In many implementa¬ 

tions SO is the same as TIB , the start of the input buffer. 

The addresses above PAD are used by certain elements of the 

FORTH system notably the editor. The addresses below it are used for 

numeric output. When outputting a numeric item, we need to carry out 

a conversion from binary into the radix given in BASE . This is done by 

successively dividing by the base; but this of course generates the digits 

in the reverse order to that in which they are output — hence the need 

to work downward from PAD , so that the digits are left in the correct 

sequence to be output using TYPE . 

FORTH provides simple number-formatting facilities. These are 

initiated by the word <# (less-sharp) and terminated by the word #> 

(sharp-greater). The operator # (sharp) generates a single digit by 

dividing the number at the top of the stack by the base, converting the 

remainder to ASCII code, and storing it below PAD . The quotient 

remains on the stack. The word #S (sharp-S) converts whatever remains 

on the stack into ASCII characters dividing successively by the base 

until it can do so no longer. The word HOLD adds one ASCII character 

to the formatted string, and can therefore be used to insert other 

symbols such as a point. 

In FORTH-83 the word SIGN places an ASCII minus on the top of 

the stack if the previous top quantity was negative, though on some 

systems it works slight differently. The following pictured output sequ¬ 

ence 

<# # # 46 HOLD #S 36 HOLD #> TYPE 

outputs the top stack item with precisely two digits after the point, and a 

currency sign at the start; i.e. it outputs an integral number of pence 

(cents) in the normal form for pounds and pence (dollars and cents). 

FORTH-83 requires # and #S tc operate on double-length quantities; 

but in some implemtations they may be found to work only for 16-bit 



Transput and Files 41 

numbers. 

Exercise 20. Write a pictured output sequence to prepare a length in 

inches for output in the form of yards, feet and inches. 

A typical mechanism for all this is to make the word <# copy PAD 

into a temporary variable HLD , which then acts as a pointer durihg the 

conversion. As each digit is converted, it is deposited in the address 

given in HLD and HLD is decremented by unity. Under this scheme, 

the definition of HOLD becomes 

: HOLD -1 HLD +! HLD @ C! ; 

which implies that HOLD may be used only after <# . The word #> 

restores initial conditions, except of course that the item output has 

been dropped from the stack, and leaves the appropriate address (i.e. 

the final value of HLD ) and the character count on the top of the stack 

ready for the string to be output by TYPE . 

NUMERIC INPUT 

The word CONVERT converts numbers during input into binary using 

the radix given in BASE . CONVERT converts a numeric ASCII string, 

stored starting at the address given as the top stack item, into double¬ 

length binary, accumulating the result into the second stack item. Con¬ 

version proceeds until a character is encountered that cannot be a digit 

in the radix of the base. Thus input numeric quantities can be delimited 

by spaces, newlines, file terminators or digits outside the range of the 

base. 

Exercise 21. Design a simple calculator that will accept unsigned decim¬ 

al integers when keyed in, output them again in a neat column with the 

digits spaced in threes, and output their sum when an = sign is keyed in, 

all items input to be delimited by newlines. 

Exercise 22. Modify exercise 21 to become a “cash register” handling 

quantities with two digits after the point. 
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The FORTH Dictionary 

To conserve memory space, many microprocessor versions of FORTH 

record only the first three characters of a word together with the 

character count. Thus the words CATASTROPHE and CATERPIL¬ 

LAR become equivalent, both appearing as 11CAT in the dictionary. 

Although a good FORTH system will warn you if you redefine an 

existing dictionary name, there is nothing to stop you from doing this; 

and indeed it is often most useful, since thereby one can obtain 

something of the convenience of local identifiers in block-structured 

languages. FORTH however goes further than this, and operates a 

system whereby the same word can have different interpretations in 

different contexts. This is achieved by offering the user a choice from 

several vocabularies. The main vocabulary is named FORTH ; but most 

systems provide additional vocabularies named EDITOR and 

ASSEMBLER respectively; and the user can define further vocabular¬ 

ies of his own. 

When a word is compiled into a new definition, or when it is 

executed direct from input, it is sought within the dictionary, starting 

with the most recent entry in the vocabulary pointed to by a user 

variable CONTEXT . Thus for instance the word I . which yields the 

loop index in the FORTH vocabularly, would probably cause insertion 

of new text in the context of an EDITOR vocabulary, and might refer to 

an index register if the context happened to be ASSEMBLER . A list of 

the words in the context vocabulary can be obtained by typing VLIST ; 

on some systems the word CATALOG is used instead. This lists the 

words in reverse order of definition. 

Simply typing the name of a vocabulary makes that the context; thus 

EDITOR VLIST 

makes EDITOR the new context vocabulary and then lists the words in 

this context. There are certain other words that can change the context 

automatically; for instance, on some systems the word LIST automati¬ 

cally puts the system into EDITOR context, and CODE or ;CODE 

puts it into ASSEMBLER context. 

When a new word is defined, it is put into the vocabulary pointed to 

42 
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by the variable CURRENT . This is not necessarily the same as the 
context vocabulary. In fact in most systems the current vocabulary is 
searched if the desired word cannot be found in the context. Normally 
however the current and context vocabularies are the same, in which 
case the two operations CONTEXT ? and CURRENT ? will output 

the same address. If CURRENT and CONTEXT do not indicate 
the same vocabulary, they can be made to do so with the word 
DEFINITIONS which sets CURRENT from CONTEXT . Thus 

EDITOR DEFINITIONS 

first sets the context to EDITOR and then sets CURRENT to be the 
same. If we wish to go back to the original context, we merely type 

FORTH , leaving EDITOR still the current vocabulary for new defini¬ 
tions. However, one effect of the defining colon may be to set CON¬ 
TEXT to CURRENT, since the compiler refers to CONTEXT not 

CURRENT to find the parameters for constructing new words. Details 

in this area are not standardised. 
Since CONTEXT is the first vocabulary to be searched when compil¬ 

ing or executing direct from input, it is best for this to be the one 

containing the commonest words. If a w'ord cannot be found in the 
context vocabulary, most systems search the vocabulary within which 
this context was first defined, and so on recursively. For most vocabular¬ 
ies the “parent" is the FORTH vocabulary. If the word still cannot be 
found after a recursive search of both context and current vocabularies, 
an attempt is made to treat it as an integer in the radix given in BASE. 
Only if this is still not possible does the system issue an error message. 

USER VOCABULARIES 

We can define new vocabularies with the defining word VOCABUL¬ 
ARY . This adds the new vocabulary name to the current vocabulary, 

and associates it with a pointer that will chain to words defined in the 
new vocabulary. In some systems it is also added to a chain headed by 

user variable VOC-LINK . 
Once created, the new vocabulary can be made the context in the 

normal way by quoting it; and it can then be made current by using 

DEFINITIONS . For instance, we might write 

VOCABULARY FRENCH FRENCH DEFINITIONS 

and then go on to define new words such as 
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: MITTERAND ; 

or even new vocabularies 

VOCABULARY LANGUEDOC 

which will be added to the FRENCH vocabulary. 

Finally the word FORGET may be used to delete groups of defini¬ 

tions, or even complete vocabularies from the dictionary 

FORGET MENOT 

deletes from the dictionary the word MENOT and all words defined 

after it, regardless of what vocabulary they are in. This only happens, of 

course, provided that MENOT is present in an accessible vocabulary. 

To avoid the chaos that would ensue if the user happened by accident to 

attempt to FORGET part of the basic vocabulary, a variable FENCE is 

provided giving an address below which FORGET is not permitted to 

operate. However this precaution is not necessary if the basic FORTH 

system is in ROM. One can protect the whole dictionary defined to date 

by writing 

LATEST FENCE ! 

The main purpose of FORGET is to release memory in situations in 

which space is at a premium. Many FORTH users make a dummy 

definition such as 

: TASK ; 

at the beginning of a session, so that a subsequent 

FORGET TASK 

will delete everything added that session. Some systems provide a word 

EMPTY to do the same thing. Others provide a word REMEMBER, 

which can be used to define a word that, when executed, will delete 

itself and all words defined after it. 

Exercise 23. What are the effects of the following sequences of words 

executed in turn? 

VOCABULARY FRENCH FRENCH DEFINITIONS 

: DEGAULLE ;FORTH 

VOCABULARY GERMAN : GAUSS ; 

FORGET DEGAULLE 
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DICTIONARY STRUCTURE 

In most systems every FORTH dictionary item comprises four fields as 

shown in Fig. 4.1. The first is the name field. On small systems this is 

exactly four bytes long, the first giving the full length of the name, and 

the remainder the first three characters. If the name has fewer than 

three characters, then the field is filled with spaces. On larger systems 

the full name is stored. The length byte also carries some tags whose 

functions we shall consider later. In Fig. 4.1, following the convention of 

the book, we show memory with the lowest address at the top. This 

previous words 
in vocabulary 

execution 
code 

Fig. 4.1. Dictionary entry. 
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makes the name fields more readable. We also show the structure as 

being two bytes in width, since the remaining fields are made up of 

two-byte items. To this end we have chosen words with odd numbers of 

characters in our example. 

The second field in every dictionary entry is known as the link field. 

It is two bytes long, and it carries a link to the beginning of the name 

field of the previous word defined in the current vocabulary. It is by 

travelling down a chain of such links that the system is able to look up 

words in the dictionary. The third field is the code field. It also contains 

an address, which points to the code that is to be invoked when the word 

is executed. All dictionary entries created by the same defining word 

have the same pointer in their code field; and it is the code-field address 

that is placed upon the stack when a word has been found in the 

dictionary. 

The first three fields are sometimes known as the head of the 

dictionary entry. The fourth is the parameter field or body of the entry. 

Its length is variable; and it gives a full definition of the word. In most 

implementations (including that of fig-FORTH) the body is contiguous 

with the head, though there is nothing in the standard that makes this 

obligatory. The simplest bodies belong to constants and variables, and 

are only two bytes long. The body of an entry created by the word 

CONSTANT is simply the constant value itself; and the code field 

points to a routine to load this value on the stack. The body of an entry 

created by VARIABLE is similar; but the code in this case loads the 

parameter-field address, not the value, on the stack. The body of an 

entry created by USER , if the system provides this word, contains an 

offset giving the relative position of the variable in the user area. The 

code executed in this case adds this offset to the pointer to the start of 

the user area. Figure 4.2 shows these three cases, the dictionary entry 

being on the left, with the stack configuration obtained by executing the 

defined words on the right. 

THREADED CODE 

The parameter field of an entry created by a colon definition depends on 

the definition itself. It provides the threads needed in the threaded-code 

execution of FORTH. Threaded code can take one of several forms. 

The form adopted in FORTH is a sequence of compilation addresses. In 

the fig-FORTH model these are pointers to the code fields of the words 

in the sequence to be executed. Thus for instance when the definition 

: MAX OVER OVER < IF SWAP THEN DROP ; 
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Fig. 4.2. Constant, variable and user entries. 

user area 

STACK AFTER EXECUTION 

is compiled, the parameter field is filled with pointers to the code fields 

of OVER < and so on in turn. Some of these words themselves have 

threads in their parameter fields; for instance < could be defined as 

Eventually a thread leads to a word defined wholly in machine code. 

This is executed, and control returns to the next thread in the same 

definition. Notice that the process is recursive: words are executed in 
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turn until a semicolon returns control to the next higher level. Figure 4.3 

illustrates the example, and assumes that OVER and - are primitives 

defined in code, but that < is colon-defined. 

This simple form of threaded code is possible because FORTH is a 

postfix language, and words are executed strictly in the sequence in 

which they are written. There is an exception to this rule when a word is 

used as data for a preceding word, as for instance strings output by ." or 

identifiers in VARIABLE definitions. Otherwise the sequence of con¬ 

trol is strictly observed. 

The need for sequential execution also explains why structures like 

Fig. 4.3. Threading. 
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IF ... THEN may occur only in compiled definitions, and cannot be 

executed directly on input. When IF is executed, it may find the condi¬ 

tion false, in which case it has to transfer control to THEN . It might 

have been possible to design a FORTH interpreter that scanned forward 

in this case until it found a THEN in the input stream; but this would 

have made it impossible to nest IF ... THEN sequences. What actually 

happens is that during compilation IF leaves on the stack an address 

pointing (typically) to an empty location in the parameter field of the 

word being compiled. Later during the same compilation, THEN stores 

there a pointer to its own location. We shall consider this process in 

more detail later on. 

The word ' (single quote mark, or “tick”) is very powerful despite its 

size. It searches the dictionary for the next word in the input stream, and 

puts its compilation address on top of the stack. It is therefore like and 

VARIABLE in requiring to be followed by its parameter. It is used 

principally in the word ['] , which retrieves thread pointers during 

compilation and places them in the parameter field of the word being 

defined. However, the word ' is available for general use, and can be 

used for instance to change the value of a constant in the dictionary, 

constants being stored as we have seen in the parameter fields of the 

relevant dicitionary entries. To do this we must have some way of 

converting from compilation address to parameter-field address. This is 

achieved by the word >BODY , which in the fig. model simply has to 

add 2. Thus if some lunatic government should decide to decimalise the 

foot, we could make the necessary adjustment by executing 

10 ' IN/FT >BODY ! 

Notice that the tick is followed by its argument only during inter¬ 

pretation. To compile a word to change a constant value, either use LIT 

: NEWIN/FT LIT IN/FT >BODY ! ; 

or else delay quoting the name until you want to perform the change 

: CHANGE ' >BODY ! ; 

10 CHANGE IN/FT 

Having found the compilation address of the desired word, we can 

convert it to the link-field address or to the starting address of the name 

field. Some systems make available words LFA and NFA to perform 

such conversions. There may also be a word PFA that converts the 

name-field address to the parameter-field address. Another convention 

uses >LINK and LINK> , >NAME and NAME> to convert be- 
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tween the compilation address and the addresses of the other fields. 
The word TRAVERSE may also appear in the vocabulary. This can 

be used to move from one end to the other of a name field of arbitrary 
length, the starting address being given as the second stack item, and the 
sign of the top stack item specifying the direction of traverse. In the 
fig-FORTH implementation, TRAVERSE uses the convention that the 
top (128) bit of the first (length) byte and of the last byte in the 

name-field are ones. There is also a word LATEST that stacks the 
name-field address of the last word defined in the current vocabulary; 
though in some implementations it gives the last word defined — poss¬ 

ibly in a vocabulary current earlier on. Another useful word sometimes 
found is ID. which prints the name of a dictionary entry, given its 
name-field address on the stack. Thus 

LATEST PFA LFA @ ID. 

will output the name of the last word but one. In some systems LATEST 

is contained in a user variable LAST . LAST should be the same as 
CURRENT @ except during actual compilation. 

USER-DEFINED TYPES 

We are now in a position to describe one of the most useful features of 

FORTH, one that makes it as powerful as many much larger languages. 

The basic FORTH vocabulary provides only a small number of different 
data types. There are variables, constants, and what might be regarded 
as functions, the last being created by using colon definitions. But 

FORTH also permits new types of object to be defined as well as 
new instances of existing types. This is achieved by using the words 

CREATE and DOES> . The principal function of CREATE is to 
create a new dictionary entry; but it is used in this special way as well. 
The syntax when it is used in conjunction with DOES> is 

: type-name CREATE compile-time actions DOES> 
execution-time actions ; 

When the new type name is used in a definition of the form 

type-name name-of-instance parameters ; 

it creates a new instance of the type. It does this by using the word 

CREATE to build a new dictionary entry. CREATE puts the name-of- 
instance in the name field, enters an appropriate value into the link 
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field, enters a pointer to the code for constant definitions into the code 
field, and puts zero into the first location in the parameter field. In some 
systems <BUILDS is a synonym for CREATE . 

DOES> modifies the code field to point to a special code segment 

designed to handle definitions of this kind, and replaces the zero in the 
first parameter location by a pointer to the sequence of execution-time 
actions given in the original type definition. Consequently, in the final 
execution, when the name-of-instance is invoked, control passes direct 
to those execution-time actions. These operate on the current stack 
contents, and any other structures built during the definition of the 

instance, to produce the desired result. CREATE and DOES> are 
executed when the new instance is compiled. Further compile-time 

actions can be specified by additional words between them. For instance, 
we might wish to allocate more space in the parameter field of the new 
object, or link the parameter field to a structure elsewhere in memory. 

A simple example may help to make the description clearer. 
Suppose that we wish to store dates in the form 

day month year 

and to have the date displayed when called for. We can do this by 

defining a new word to define DATE as follows 

: DATE CREATE , , , DOES> 

DUP 2+ DUP 2+ ? ? ? CR ; 

Having compiled the word DATE we can use it to define actual dates, 
as for instance 

5 1 85 DATE TODAY 

or 4 7 1776 DATE INDEPENDENCE 

CREATE in the definition of DATE creates the necessary dictionary 
entry with TODAY or INDEPENDENCE in its name field; and the 
three commas put the three numeric items previously stacked into the 
parameter field of this entry. 

When TODAY is called, the code associated with DOES> stacks 
the first parameter-field address, and then invokes the part of DATE 
following DOES>. This then constructs the next two parameter-field 
addresses, stacking them above the first. The three ? operators then 
cause the three components of the stored date to be displayed; CR gives 
a newline, and the semicolon returns control in the normal way. 
DOES> has an exact or near synonym in some implementations. 
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Exercise 24. Define a word TRACE such that the call 

TRACE AA 

will cause a copy of the top stack item when TRACE is called to be 
saved in the dictionary and displayed when AA is called subsequently. 

Exercise 25. In Chapter 2 we introduced a word SET that defines a 
word that executes to store a value in a given address. Use CREATE ... 
DOES> to define SET . 

THREADING MECHANISM 

The threading mechanism is usually based on the use of an instruction 

pointer (IP) and a working pointer (W), which together determine the 
flow of control. Ideally these two will be implemented in machine 
registers, though neither will of course be the processor’s own program 

counter. Suppose that we are just completing a code sequence associ¬ 
ated with parameter (n-1) in the current definition. IP is then pointing 
to the parameter (n), which in turn is pointing to the code field of the 
next word to be obeyed, as in Fig. 4.4. 

At the end of the code associated with parameter (n—1) we obey a 
standard code sequence, which we shall refer to as NEXT . This trans¬ 
fers the new parameter (n) to W, advances IP and W by one 16-bit 
address, and jumps to the appropriate code segment. The position is 
then as shown in Fig. 4.5, PC being the processor’s program counter. 

At this point W is pointing to the first parameter of the new word; so 
we have several possibilities, depending on the type of object that this 
word represents. If it is a constant, then the code associated with it will 
simply stack the parameter pointed to by W and obey NEXT again, 
which will advance to the next parameter at the original level. If it is a 

variable, then the process is similar, except that the address not the 
value is stacked. If the word is one that was defined in code as part of 
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the FORTH nucleus, then in most implementations its code field points 

to the first location in its parameter field, which in this case consists of 

the code sequence. The sequence ends with NEXT which returns con¬ 

trol in the same way as for constants and variables. 

If however the new word pointed to by parameter (n) was created by 

a : (colon) definition, then the process is slightly more complicated. It is 

here that the return stack comes into its own. The code associated with 

colon definitions saves the old value of IP on the return stack, and the 

value of W is copied to IP . The position is then as shown in Fig. 4.6. 

The colon code ends as usual with NEXT which advances IP to the 

second parameter of the new word and enters the code sequence associ¬ 

ated with the first parameter. The situation is then the same as it was 

originally (Fig. 4.4), except that the system is now operating at a lower 

threading level. Since the return address is saved on the return stack on 

every regression to a lower level, the process is recursive; regressions 

Fig. 4.6. Effect of : . 
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can be retraced when necessary. This is the function of the semicolon. 
The code associated with this simply restores IP from the return stack, 

and enters NEXT to get the code associated with the next parameter at 
the higher level, Notice that one consequence is that the return stack is 
available for communication between words only if they are at the same 

level. Any attempt to communicate between words at different levels 
using the return stack results in corruption of the return address. 

Words containing CREATE and DOES> are also defining words, 

Fig. 4.7. A user-defined type. 
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and have their own sequence of operations at execution time. Take for 
instance the example we just gave of a defining word DATE that is used 
to define a new word TODAY . The situation just before TODAY is 
called as a parameter of another word, or as one of a sequence of words 

entered direct from the keyboard is shown in Fig. 4.7. 
When TODAY was defined by DATE its first parameter was set to 

point to the first parameter in the DOES> section of DATE . The code 
field of TODAY points to a segment of code associated with the 

definition of the word DOES> . This first transfers the current IP to the 
return stack, then points IP to the first DOES> parameter of DATE , 

and finally puts the address of the second parameter of TODAY on the 
main stack. This parameter of course contains the year of today’s date. 
The situation now is as shown in Fig. 4.8. 

The DOES> code ends in the usual way with the sequence NEXT 
which transfers control to the first of the DOES> parameters of DATE 
and advances IP . The parameters are then executed one by one until 
eventually a semicolon returns control to the address stored on the 
return stack. This address refers of course not to a parameter of 
TODAY but to a parameter in the sequence that called TODAY . 

VOCABULARY MECHANISM 

There are a number of different mechanisms for handling vocabularies 
in existing FORTH systems. We shall describe here the mechanisms 
used in the fig-FORTH implementations, which is probably the one 
found most frequently. The operation of VOCABULARY may con¬ 
veniently be described using the CREATE ... DOES> feature, thus 

: VOCABULARY CREATE A081 , 

CURRENT @ 2- , 
HERE VOC-LINK @ , 

VOC-LINK ! DOES> 
2+ CONTEXT ! ; 

The first parameter, set by the first comma operator, is A081 (given 
in hex for clarity) which is equivalent to the name field for a word 

“space”*. The second parameter (second comma) will eventually form 
the head of the chain of link fields for all the words to be defined in this 

* Since the convention used here is that the low byte precedes the high byte, 81 is the 

length byte, the 8 providing the bit that marks the start of the name field. The single¬ 

character name is “space”, or 20 (hex), which becomes AO when the end-of-field bit is 
added. 
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vocabulary. It is set initially to point to the starting point of the vocabul¬ 
ary within which the new vocabulary was defined (in this case FORTH), 

thereby ensuring that the new vocabulary grows as a branch of the old 
one. The DOES> part of the definition of VOCABULARY ensures 
that its address becomes the CONTEXT pointer when the new vocabul¬ 
ary is called. 

Fig. 4.8. Calling a user-defined type. 
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Finally, the third parameter (third comma and ! ) forms part of a 
chain that connects all the vocabularies together. Figure 4.9 shows the 
structure just after a new vocabulary LATIN has been defined within 

the context of FORTH (i.e. LATIN is the latest word defined in the 
FORTH vocabulary). Figure 4.10 shows the structure after LATIN 
has been made current, i.e. after LATIN DEFINITIONS has been 
executed, and AMO has been defined as the first word in this 
vocabulary. AMO is now at the head of the current chain; and, being so 
far the only word in the vocabulary, it is linked direct to the end, which 

Fig. 4.9. A new vocabulary. 
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is the FORTH entry. 

Now if LATIN is the context, any directory search will look first at 

the words in the LATIN vocabulary. If the word sought is not found in 
LATIN, then, on reaching the earliest word defined in this vocabulary 
( AMO in our example) the search will pass to the pseudo-word “space” 
in the parameter field of the entry for FORTH. This will actually look 
like an ordinary dictionary entry with a link field that is chained to the 

latest word that was defined in the FORTH vocabulary (which could 
have been LATIN itself). The search therefore continues (backward) 

Fig. 4.10. Adding a word. 
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through the whole FORTH vocabulary. The first word of all to be 
defined in the FORTH vocabulary, and hence the last in the search, 
( LIT in fig-FORTH) has zero in its link field; and this serves to halt the 
search. Thus in fig-FORTH the vocabularies form a tree, with FORTH 

at the root, which is searched recursively. Since searching terminates as 
soon as a match is found, words can be multiply defined, the definition 
chosen in any given context being that nearest to the start of the search. 

The tree structure is not universal. For instance, some systems organise 
the dictionary not as a linked list but as a hashed set. This greatly speeds 
up searching. But searching, remember, occurs only during compilation 
or direct interpretation, so its effect on precompiled programs is likely 

to be small. Moreover, hashing makes it difficult to organise a flexible 

scheme for redefinition. 
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Compiling and Executing FORTH 

Two processes are involved in running FORTH programs — compila¬ 
tion and execution. Of course, compiling is just executing a defining 

word, but it is convenient to consider the two processes as separate. 
During “colon” compilation, words in the input stream are looked up in 
turn in the dictionary, and their addresses are threaded together by 
entering them into the parameter field of the new dictionary entry. Thus 
the time-consuming part of the job, the dictionary lookup, is carried out 

once only, at compilation time. Subsequently, when the word is ex¬ 
ecuted, control is rapidly passed down the threads, with no need for 

further reference to the dictionary. It is this that makes FORTH, and 
for that matter any other threaded language, so fast in comparison with 

fully interpreted languages like BASIC, in which every symbol has to be 
looked up anew every time it is used. 

A small nucleus of primitive FORTH operations is implemented 
directly in code; these are used to build up more complex functions by 
threading them together in different combinations. Thus the amount of 

raw machine code in a FORTH system is quite small. This is in contrast 
to a fully compiled language, in which a new copy of each primitive is 
compiled every time it appears in the program. Certainly some time is 
consumed in simply following the FORTH threads; but this is a small 
price to pay for a system that can pack quite a complex program into 
very little space. 

COMPILING 

Compiling then is simply executing a defining word, i.e. any word that 
puts a new word into the dictionary. The header for a dictionary entry is 
built by the word CREATE . This is a complex and system-dependent 
operation. In the fig. model it reads the length and characters of the new 
word into the next free area in the dictionary, using WORD , so 
generating the name field of the new entry directly on top of the 

dictionary. It issues a warning if a word is being redefined within the 
same context. An important function of CREATE is to “smudge” the 
first byte (the length byte) of the name field by setting the 32-bit. This 

60 
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has the effect of making the word unrecognisable should it be referred 
to within its own definition. Were this not done, the compiler might 
enter a recursive loop from which it could not escape. CREATE chains 
the link field to the previous word defined in the current vocabulary, 
and plants a link to its name field in the parameter field of the current 

vocabulary. It sets the code field initially to zero. Later this will be made 
to point to the code for that particular type of entry. This is often held in 
the parameter field of the defining word that called CREATE . Finally 
HERE is updated to point to the first address of what will eventually 
form the new parameter field. The structure at this stage is shown in 

Fig. 5.1. 

VOC-LINK 
chain 

HERE 

name field 
of previous 

word 

Fig. 5.1. Effect of CREATE . 
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The parameter field of a constant entry is simply the value of the 
constant, which at this stage is the top item on the stack. The definition 
of CONSTANT is thus 

: CONSTANT CREATE SMUDGE , ;CODE code for 

constants 

SMUDGE toggles the “smudge” bit, in this instance of course setting it 
back to zero, CREATE having earlier set it to one. The definition of 
VARIABLE is then simply 

: VARIABLE 0 CONSTANT ;CODE code for variables 

and that for USER is 

: USER CONSTANT ;CODE code for user variables 

with a code sequence to perform the required addition of offset and 

base. The word ;CODE operates just like ; except that it also links the 
code field of the new word to the code that follows it in the definition of 
the compiling word. We shall have more to say about this later. 

COLON COMPILATION 

Colon compilation is controlled by a user variable STATE . Every item 
in the dictionary carries a precedence code. If this is lower than the 
value of STATE then the item is compiled as a component of the 

current dictionary entry. If it is equal or higher, then the word is said to 
be IMMEDIATE and is executed. In early versions of FORTH the pre¬ 
cedence code was held at the high end of the link field. But this 

limited address size, so modern implementations carry the precedence 
code as the 64 bit in the length byte of the name field. Since the top bit. 

(128 bit) of this byte is a 1 , the variable STATE is usually set to either 0 

or 192 (CO hex) to enable a direct comparison to be made without the 
need to mask out the remaining bits. 

On entering a colon definition, the system therefore alters STATE 
to 192. This value is set by the word ] , defined as 

: ] 192 STATE ! ; 

STATE is eventually set back to 0 by the word [ . The definitions of J 
and [ thus make it possible to include a directly executed interlude 

within a compiled sequence simply by enclosing it within square brack¬ 
ets, e.g. 
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: JOE .” EXECUTING JOE” ...[.( COMPILING 

JOE) ] . . . ; 

We give the definition of the defining word : here as if it were itself a 
colon definition; but in fact it will be precompiled in any working 
system. 

: : ?EXEC !CSP CURRENT @ CONTEXT ! CREATE ] 
;CODE colon code IMMEDIATE 

Thus : first checks to make sure that the system is in execution mode 

(one cannot compile a thread to a colon sequence). It then sets the 
context to CURRENT to ensure that the components of the new defini¬ 
tion are accessible to the vocabulary in which it is being defined; and 

calls CREATE to compile the appropriate header. Finally the right 
square bracket sets the system into compile mode. The word !CSP at the 
start stores the current stack pointer in a special vairable CSP so that its 
value can be checked at the end of the compilation. 

IMMEDIATE WORDS 

Certain words have to be executed, not compiled, whichever state the 
system is in, : being one. Other examples are ( and .( . Vocabulary 

names too, which change the context, must normally be executed, not 
compiled. There is also a class of words that require some operations to 
be performed at compile time and others at execution time. Words like 
IF and DO are in this category, as is ; . All these words have the 
precedence bit set to 1 and are said to be immediate. Any user-defined 

word can be made immediate by putting the word IMMEDIATE after 
the definition. IMMEDIATE however is not immediate. 

The word ; may be defined as 

: ; ?CSP COMPILE EXIT SMUDGE [ ; IMMEDIATE 

It threads only one word for subsequent execution, namely EXIT , 
which does the exiting at the end of the definition to which the semi¬ 

colon refers. The word EXIT has to be compiled not executed. The use 
of COMPILE ensures this, even though the word ; is immediate. All the 
other words are executed at compile time. ?CSP checks the stack 
pointer that was saved in CSP at the beginning of the compilation, 
SMUDGE toggles the 32-bit back to zero in the length byte of the name 
field of the word being compiled, and [ returns the system to the execute 
state. 
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When it is eventually obeyed during execution, EXIT restores the 
thread for the next level up, which has temporarily been held on the 

return stack. In some implementations EXIT has a synonym ;S : in 
others it is constrained to operate only during compilation, and makes 
use of ;S after calling ?COMP . ;S can be called at the top level. Its 

effect then is to terminate interpretation of the current line and call for 
the next line from the terminal. If the system is currently loading from 
file, then the loading of that block is prematurely terminated. 

The word COMPILE must be used in the definition of all words that 
are partly executed at compile time, and in particular in words involving 
transfer of Control. Consider, for instance, the definition 

: SHEEP 0 DO BAA ” LOOP ; 

Thus, for instance, executing 3 SHEEP would print BAA BAA BAA . 
Now the definitions of DO and LOOP are typically 

: DO COMPILE (DO) <MARK 3 ; IMMEDIATE 

and 

: LOOP 3 7PAIRS COMPILE (LOOP) 

<RESOLVE ; IMMEDIATE 

During the compilation of SHEEP, DO , being immediate, starts to 
execute. However, the first thing it does is compile the word (DO) 

whose purpose is to transfer the terminator and initial index to the 
return stack when SHEEP is executed. Having threaded (DO) in the 

parameter field of SHEEP the system marks the current position in the 
parameter field of SHEEP by putting the address on the stack. It then 
places the number 3 on the stack. The parameter field of SHEEP then 

receives a pointer to .", which is not immediate, and the string 3BAA. 

LOOP again is immediate, so it places 3 on the stack and executes 
7PAIRS to ensure that DO and LOOP have been properly paired up. 

7PAIRS issues an error message if it does not find two identical values 
in the top two stack positions, in this case a pair of 3s. The word 
(LOOP) is then compiled. At execution time this will increment the 
index, compare it with the terminator, and jump back if the first is less 
than the second. Finally <RESOLVE takes the address previously 
planted on the stack by <MARK and computes an offset that will be 
used by (LOOP) at execution time to perform the jump back. 

<RESOLVE is called BACK in some systems. Figure 5.2 shows the 
eventual dictionary structure of the entry SHEEP. 

Words containing IF and THEN are compiled in a similar way. The 
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Fig. 5.2. Structure of sheep. 

definition of IF is 

: IF COMPILE 7BRANCH >MARK 2 ; IMMEDIATE 

Thus, after compiling a thread to 7BRANCH , which will do the actual 
testing at execution time, the compiler executes >MARK , which puts 
the current dictionary address on the stack and stores zero at that 
address. Notice that >MARK is different from <MARK in that the 
former allots space in the dictionary. 

The definition of THEN is 

: THEN 7COMP 2 7PAIRS >RESOLVE ; IMMEDIATE 

which first checks that the system is compiling ( 7COMP ) and that 
THEN has been properly paired with an IF . It then executes 
>RESOLVE , which stores an offset (difference between THEN and IF 
locations) in the parameter following 7BRANCH , so that 7BRANCH 
can perform the exit jump correctly. >RESOLVE may be defined 

: >RESOLVE HERE OVER - SWAP ! ; 

THEN does all its work at compile time. There is no execution-time 
activity, so no need for COMPILE . 

Exercise 26. Devise a word BREAK that will cause immediate exit 
from a DO loop in contrast to LEAVE , which continues to execute the 
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loop. (You may have to devise an alternative form of LOOP to go with 
it). 

The word COMPILE may be defined as 

: COMPILE ?COMP R> DUP 2+ >R @ , ; 

The word 7COMP calls an error diagnostic unless the system is currently 
compiling. The address on the return stack at this stage is pointing to the 
next parameter, which in turn points to the word to be compiled. It is 

incremented to point to the next word, and its original value is then used 
to obtain the address of that word’s code field and store it in the 
dictionary, i.e. compile it. Figure 5.3 shows the execution of COMPILE 
when compiling (DO) within DO . 

COMPILE is used to force a word to be compiled when the word 
containing it is immediate and therefore being executed. There is 
another word [COMPILE] that can be used to force compilation of an 

immediate word when the word containing it is being compiled. The 
difference is subtle but important. For one thing, [COMPILE] is im¬ 
mediate, while COMPILE need not be, since it is normally used within 
immediate words. A typical use of [COMPILE] is in the definition of 
aliases of immediate words; for example 

: ENDIF [COMPILE] THEN ; IMMEDIATE 

THEN is immediate; but it has to be compiled as part of ENDIF . 

A better example is ELSE which illustrates both COMPILE and 
[COMPILE], The definition is 

: ELSE 2 7PAIRS COMPILE BRANCH >MARK 

SWAP 2 [COMPILE] THEN 2 ; IMMEDIATE 

Between checking that it is paired with an IF and setting a 2 to ensure 
pairing with a THEN it compiles an unconditional branch that will cause 

the “else" sequence to be skipped if the “if" condition has been satis¬ 
fied. >MARK then allots space to hold the offset for BRANCH just as 
it does in IF . Finally, THEN is compiled as part of ELSE , and of 
course executed when ELSE is (eventually) executed. The SWAP is 
there to make sure that the >RESOLVE inside this THEN operates on 
the mark set by IF , the second mark being set for the benefit of the final 

THEN . Notice the extra 2 which is needed for the “pairs” check in 

THEN. COMPILE is used here because BRANCH is immediate, 
[COMPILE] because ELSE is immediate. The reader will probably 
understand the foregoing better if he considers in detail the compilation 
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of a simple word such as 

: .TRUTH IF TRUE" ELSE FALSE " THEN CR ; 

[COMPILE] may be defined 

: [COMPILE] FIND 0= 0 7ERROR DROP CFA , ; 

IMMEDIATE 



68 Chapter 5 

Thus it simply searches for the next word in the input, registers an error 
if it cannot be found, and compiles a thread to it if it can. 

CONDITIONAL COMPILATION 

Some implementations provide facilities for conditional compilation 
similar to those offered by macro assemblers. They are obtained by 
using the sequence 

IFTRUE .... OTHERWISE .... IFEND 

For instance, if it were necessary to compile different sequences de¬ 
pending on the amount of memory available, we might include within a 
colon definition 

[ SO HERE — 1000 > IFTRUE big memory sequence 

OTHERWISE small memory sequence IFEND ] 

Notice that IFTRUE and OTHERWISE can operate at the top level, in 
contrast to IF and ELSE . IFTRUE simply ignores text up to OTHER¬ 

WISE if the condition is false, and OTHERWISE ignores text up to 
IFEND if it is true. One consequence of this is of course that IFTRUE 
sequences cannot be nested. 

CODE 

The bodies of the defining words are rather unusual, in that in most 

systems they contain the actual machine code that will be accessed from 
the code fields of the words that they define. Thus one effect of a 
defining word is to enter into the code field of the word being defined a 

pointer to part of its own parameter field. In the fig-FORTH imple¬ 
mentation, the word ;CODE is used to do this at compile time. ;CODE 

also separates the words executed at compile time from the code sec¬ 
tion. 

Any word can of course be defined entirely in machine code, pro¬ 
vided of course that an assembler is available: in fact all the primitive 
kernel operations are. Some implementations permit the introduction of 
a code definition by the use of the word CODE . CODE first creates a 
new dictionary entry, as does any defining word, and places in its code 
field a simple pointer to the next memory location, i.e. the first location 

in its parameter field. Thus when the word is executed the code is 
entered through the normal mechanism. Every code sequence is termin¬ 
ated with a machine-code jump that returns control to the next piece of 
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code to be executed. This is compiled by the word END-CODE , which 
should terminate every code interlude; though in most implementations 
a newline is an alternative terminator. The difference between ;CODE 
and CODE is illustrated in Fig. 5.4. 

: JOE...; 

CODE JOE... 

ASSEMBLER 

Practically all versions of FORTE! provide an assembler, usually as a 
separate vocabulary. The principle is quite simple: all the symbols in the 
assembly language are defined as immediate FORTH words that store 
the appropriate codes in the dictionary. The complexity of the assem¬ 
bler depends of course on the complexity of the assembly code. For 
instance, if the value to be given to an assembly mnemonic depends 



70 Chapter 5 

upon the parameters associated with it, then its definition in FORTH is 
dependent in a similar manner and is correspondingly complex. To 

make it easier to resolve such dependences, FORTH assemblers usually 
require parameters to precede function codes in the normal postfix 
manner; and this can be disconcerting to someone accustomed to con¬ 
ventional assemblers. Address expressions too must naturally be in 
postfix form. 

Apart from these, there may well be other differences in detail 

between a FORTH assembler and a conventional assembler for the 
same code. The assembler can be greatly simplified if different mnemo¬ 
nics are used for different addressing modes; and advantage is often 
taken of this fact to reduce the size of the assembler. Thus the user may 

have rather more work to do when writing assembly-language sequences 
for FORTH than when writing them for a conventional assembler. 
Against this, the FORTH assembler may be able to make use of some 
high-level constructs of FORTH itself, such as 

IF .... THEN. One problem does arise — that of setting labels. Most 

FORTH assemblers include a word LABEL that sets the following 
name as a constant, with value equal to the current program location. 
Forward jumps, to labels that have not yet been set, do constitute a 
difficulty that can normally be resolved only by avoiding the issue and 
using some construct such as IF .... THEN . 

RECURSION 

FORTH is not a recursive language, although the use of a stack during 

compilation provides the potential for recursion. Auto-recursion, i.e. 
the power of a word to call itself, is expressly prevented by the “smudg¬ 

ing” process, which deliberately corrupts the name field of a word in the 
dictionary until after it has been defined. This prevents the system from 
entering an infinite loop, which might occur during compilation if the 

system tried to call a word for immediate execution while trying to 
compile it, or during execution if a word tried to jump back to itself. 
Mutual recursion, one word calling another word that in turn, either 
directly or indirectly, calls the first, cannot be performed in a simple 

manner in FORTH, since the definition of a word can only include 
words that have already been entered into the dictionary. 

There are, nevertheless, ways of getting round limitations of the 
language. For instance, the following word can be incorporated into any 
definition, and will stack the code-field address of the word being 
defined. 
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: THISCODE CURRENT @ @ PFA CFA ; IMMEDIATE 

The sequence of words 

THISCODE LITERAL EXECUTE 

will then compile an auto-recursive call. For example, the following 
definition provides a truly recursive computation of a factorial. 

: FAC DUP 2 = IF ELSE DUP 1 - THISCODE LITERAL 
EXECUTE * THEN ; 

Some systems provide the equivalent of this triplet in the form of the 

word RECURSE . 

IMPLEMENTATION 

Any FORTH implementation will consist of several layers. At the 
bottom comes the nucleus, consisting of those words that are to be 
regarded as system primitives. Indeed the nucleus could be regarded as 

comprising two layers — those words that are implemented wholly in 
code and those that are defined in terms of other words but are precom¬ 

piled, since they are needed for the construction of the compiler. 
A third layer is concerned with input, output and filing. The inter¬ 

preter provides a fourth layer. Once the words in this layer have been 
added (in precompiled form) the system is capable of executing sequ¬ 
ences of words from an input device. However, it is not until the fifth 
layer, the compiler layer, is complete that new words can be added to 

the dictionary. Above the compiler layer the user can add layers of his 
own to cover his own application. 

The layer structure described here corresponds roughly to the way in 
which a system is built up for a new system; though there may be 
exceptions. For instance, some of the device layer can be left until after 
the compiler is working, since only one input and one output device is 
necessary initially. Inevitably, though, a policy of graceful implementa¬ 

tion conflicts with brevity and execution speed. Particularly in the 
compiler layer, there will be forward references, which have to be 
entered initially as zero, and reassembled when the layer is complete. 

The actual method of implementation will depend heavily upon the 
facilities that the assembler provides. For instance, a powerful macro¬ 
generator can be invaluable in creating and linking the headings of the 
dictionary entries. The FORTH Interest Group offers an implementa¬ 
tion manual. The kernel of this is written in 6502 code; but the remain- 
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der is in FORTH. It is particularly valuable in suggesting a logical order 
in which words can be defined. 

MEMORY MAP 

Figure 5.5 shows the fig-implementation memory map. Most single-user 

FORTH implementations will be similar to this, unless the processor 
has special characteristics, and employs certain pages for special pur¬ 
poses. In addition to its private memory environment, FORTH makes 
use of whatever monitor or operating-sytem routines are provided else¬ 

where in memory. The low-address end of the FORTH memory area 
typically holds the “boot-up” literals, i.e. the default values that are 
loaded into the major variables on initialisation. Above these comes the 
dictionary, in more or less layered order. There are two sets of these: 
the nucleus of primitives defined in code, and the precompiled colon 
and other definitions. The top of the dictionary is marked by the 
dictionary pointer DP , which may or may not be held in a user variable. 

The main stack grows into the same area of memory as the diction¬ 
ary. Whenever a new word is defined, the system checks that adequate 
space is available for it, for the stack, and for any data that is being 
saved relative to PAD . 64 bytes are regarded as sufficient for the main 
stack; and 2000 bytes at least should be available to the user for his own 
additions to the dictionary. The base of the stack is marked by SO and its 
top by SP . SO is often directly available to the user as a constant; but SP 

is variable, so may not be in view of the damage that can easily be 
caused by manipulating it unwisely. The difference, SO-SP , is stacked 
by the word DEPTH . 

The addresses just beyond the base of the main stack are occupied 
by the terminal input buffer, which normally has a capacity of 80 
characters. Beyond this again is the return stack, growing from high to 

low address in the normal way. Its size should not be less than 48 bytes. 
The base of the return stack (pointer R0 ) usually coincides with the 
base of the user area (pointer UP ). The size of the user area is fixed at 
FORTH load time; and the user may have some trouble to change it. 
The user area is bounded by the area allocated to the file buffers 
(typically three) each of which occupies 1024 bytes. The variable LIMIT 
points to the first address above the FORTH memory area. Some of the 

pointers shown in Fig. 5.5 will be available in FORTH user variables; 

others will exist only as assembly-time identifiers, and thus be inaccessi¬ 
ble to the user of FORTH . However they can usually be redefined, with 
a little ingenuity. For instance, if we wanted a pointer to the start of the 
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user area, we could write 

0 USER UP UP DUP ! 

to define it and its contents. 

ORIGIN 

FENCE 

BOOT-UP LITERALS 

(predefined) 

DICTIONARY 

PAD 

TIB-► 
MAINS >TACK 

TERMINAL BUFFER 

DP 

SP 

SO 

UP 

FIRST 

LIMIT 

RETUR N STACK 

USER AREA 

I/O BUFFERS 

RP 

RO 

Fig. 5.5. Memory map. 
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There are a few multi-user versions of FORTH. The principal differ¬ 

ence between these and the single-user versions is that the predefined 
part of the dictionary is shared between all users to save memory space. 
It must therefore consist of pure procedural code, and not be write- 
accessible. The boot-up literals are the same for all users; but some of 
them are relative and must be relocated in the individual user memory 
areas. 

THE SOURCE INTERPRETER 

The converse of COMPILE is EXECUTE , which is one of the kernel 
words, and has the effect of passing control to the word whose code¬ 
field address is on the top of the stack. It is called repeatedly by the 
source interpreter, which comes into operation on start-up, and controls 
the execution of sequences either typed in direct or loaded from file. 
Thus in immediate-execution mode the system is simply searching for 
words in the dictionary, stacking their code-field addresses, and then 
executing them. 

The precise details of startup for FORTH are, of course, machine- 
dependent; but eventually the system executes a word QUIT , which 
really embraces the whole interpretive process. QUIT is so named 

because it is called in the event of unrecoverable error. It thus repre¬ 
sents a “warm” restart of the system. The core of QUIT is a loop of the 
form 

BEGIN RP! CR QUERY INTERPRET STATE @ 0= 

IF .” OK” THEN REPEAT 

The effect of RP! is to restore the return stack to its proper starting 
condition, the main stack having been reset earlier either on startup or 
by the error routine that called QUIT . CR sends a newline to the 

interpretive echo device, and QUERY accepts a line of up to 80 charac¬ 
ters from the keyboard, placing them in the terminal buffer. The word 

INTERPRET is then called to execute in sequence the words in the line. 
Provided that the line contains a complete sequence of operations, i.e. 
provided that the state at the end of the line is not compiling, the system 
prints OK . In any case, control is returned to the start of the loop to 
read more program. If the system is compiling then it will continue to 
compile text from the new line. 

INTERPRET may be defined as follows 

:INTERPRET 

BEGIN BL WORD FIND ?DUP 
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IF STATE + IF EXECUTE 

ELSE , THEN 7STACK 
ELSE NUMBER DPL @ 1 + 

IF DLITERAL 
ELSE DROP LITERAL THEN 

7STACK THEN 
UNTIL ; 

The word FIND searches the dictionary for the next word in the 
buffer, after WORD has read it on to the top of the dictionary. If it fails 
to match it, then “false” is left on the stack; otherwise its compilation 
address is substituted for the address of the original string, and “true” is 

stacked above it. If the word is immediate, then “true” is represented by 

1, otherwise it is represented by -1. If the word is not immediate and 
the value of STATE is 1, then the word is threaded, i.e. its compilation 
address is stored in the dictionary entry currently being compiled: 
otherwise it is immediately executed. FIND is a rather specialised 
compiling word. A word in some implementations operates in a 
broadly similar manner. 

If the word cannot be found in the dictionary, then an attempt is 
made to convert it into a number according to the radix in BASE . 
NUMBER is not one of the FORTH-83 required word set; but it calls 
one of the required words, CONVERT , which we reproduce here for 
the sake of the techniques it illustrates. 

: CONVERT 

BEGIN 1+ DUP >R C@ BASE @ DIGIT 

WHILE SWAP BASE @ U* DROP ROT 

BASE @ U 63 D+ DPL @ 1 + 
IF 1 DPL +! THEN R> 

REPEAT R> ; 

This word is more general than NUMBER , as it converts the number 
pointed to by the top stack item, accumulating it in the second stack 
item, and leaving the top of the stack pointing to the first unconverted 

character. DIGIT is one of the kernel words. It converts an ASCII 
character lying second on the stack in accordance with a base placed on 
top of the stack if this is possible, returning “true” on the stack top with 
the digit value below it; otherwise it returns “false” on the stack and 
drops the ASCII character. 

NUMBER uses CONVERT to convert the string read by WORD 

into a double-length number on the stack. It returns the position of its 
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point in user variable DPL , the value of DPL being -1 if there was no 

point. INTERPRET handles the number as a double-length only if it 

contained a point; otherwise the high-order half is dropped. If the word 

cannot be interpreted as a number, then NUMBER calls the error 

processor. 

The words LITERAL and DLITERAL used in INTERPRET are 

immediate. LITERAL is defined 

: LITERAL STATE @ IF COMPILE LIT , THEN ; 

so that it is simply a dummy operation when the system is in the 

execution state ( STATE zero ) and leaves the number unchanged on 

the stack. If the system is compiling, however, LITERAL compiles the 

word LIT and then stores the number in the dictionary after it. Subse¬ 

quently at execution time LIT will reload the number on to the stack 

from the parameter field of the word being executed. DLITERAL 

works similarly. 

INTERPRETATION FROM FILE 

When the word LOAD is executed, text is interpreted from file instead 

of the keyboard, the number of the block to be interpreted having 

previously been placed on the stack. LOAD is defined 

: LOAD BLK @ >R >IN @ >R 0 >IN ! BLK ! 

INTEPRET R> >IN ! R> BLK ! ; 

Thus the current block number (in BLK ) and position pointer within 

the block (in >IN ) are saved on the return stack, making LOAD 

recursive. This means that it is possible to initiate a new LOAD within a 

block that is already in process of loading. 

The task of reading a new block into memory is carried out by 

WORD when called from INTERPRET . WORD is a much more 

complex operator than we implied in Chapter 3. It first tests the value of 

BLK ; if this is zero, then it takes text from the terminal input buffer, 

whose address is in user variable TIB . If it is nonzero, then it calls 

BLOCK to ascertain whether or not the desired block is already in 

memory, and to transfer it if it is not. BLOCK leaves the start address of 

the appropriate buffer on the stack. The interpreter stops automatically 

when execution comes to the end of a buffer, whether file or terminal. 

This is because every buffer ends with a null byte (00 hex, which is not 

the same as either ASCII zero or space). There is actually a dictionary 

entry for “null”, which is usually referred to as X in the glossaries, since 
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ASCII null is non-printable. The effect of “null” is to drop the current 

return address from the return stack, thus ensuring that control is 

returned to the next higher level, i.e. not to the word following EX¬ 

ECUTE , as would normally be the case, but to the word following 

INTERPRET (normally inside QUIT ). The definition of X is quite 

complex, since its operation depends on whether the code is coming 

from file or a terminal. 

ERROR CHECKS 

All versions of FORTH provide error checks within the system; and 

these are available for users to incorporate in their own extensions. The 

definition of INTERPRET given above includes a word 7STACK that 

checks for stack underflow and overflow. We saw earlier how the word 

7PAIRS could be used to check correct pairing of words like DO and 

LOOP . There are also words 7COMP and 7EXEC that call the error 

processor unless the system is compiling or executing respectively. A 

common cause of error in stack processing is to assume that the stack 

has returned to a certain earlier state when it has not. The word !CSP 

stores the current stack pointer in a variable CSP ; and the word 7CSP 

enters the error processor if the present stack pointer is not the same as 

the value stored in CSP . This is an invaluable aid in development. 

Techniques for error handling may differ from system to system. 

Typically the error-test words stack “true” or "false" with a character¬ 

istic error number above it, for instance 

: 7PAIRS - 13 7ERROR ; 

The pair of items are differenced. If they were equal then zero (false) is 

passed as a parameter to 7ERROR , which then simply tests the truth 

value and enters the full error routine if an error has occurred, dropping 

the error number it not. 7ERROR is defined as 

: 7ERROR SWAP IF ERROR ELSE DROP THEN ; 

The word ERROR is thus called with an error number on top of the 

stack. It prints a query mark, and then calls the word MESSAGE , 

which operates differently according as the system is or is not fitted with 

disc filing. If there is no disc, the message printed might simply be the 

word “error” followed by the error number. If a disc file is available, 

however, the error number is taken as the number of a line on a 

particular screen (typically 4 or 5), and the content of that line is 

printed. The presence or absence of a disc file is recorded by a 1 or 0 in a 
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variable WARNING . If this variable is made negative, the error 

process is by-passed and the word (ABORT) is called. This word calls 

the predefined ABORT , which resets certain parameters and then calls 

the system-dependent QUIT . The idea of providing (ABORT) as well 

as ABORT is to enable the user to define his own rejection procedure if 

he wishes. (ABORT) calls ABORT by default. There is also a word 

ABORT" , which tests the top stack item and, if it represents “true", 

prints a string of (diagnostic) text before termination, such text being 

terminated in the program by a double quote. 



Answers to Exercises 

The following model answers have been checked using a Sinclair QL 
with COMPUTER ONE software. They are not guaranteed to work for 

other systems, especially if the 83 standard has not been followed. 

L 3 4 + 5 x 

2. (i) A B C - x D + 

(ii) A B + C D - x 

3. (i) 2 4 5 
3 3 6 6 2 2 10 

(ii) 3 
4 4 7 2 

7 7 7 7 49 49 51 

(iii) 6 2 
9 9 15 15 30 stack error 

5. OVER OVER SWAP .R 

6. SWAP ROT 4 ROLL 

9. (i) : CUBE2 OVER DUP DUP * * ; 

(ii) : H. HEX . DECIMAL ; 

(iii) : DUODECIMAL 12 BASE ! ; 

10. : D- DNEGATE D+ ; 

: 2SWAP 3 ROLL 3 ROLL ; 

: D> 2SWAP D< ; 

11. : >= < 0= ; 

: <= > 0= ; 

79 
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12. : D= D- 0 SWAP 0 D+ + 0= ; 

Note that D- + 0= gives the wrong answer if the two halves of 
the difference happen to be complementary. 

13. Assume stack configuration on call is 
-byte address 

: BCD! OVER 15 AND OVER ! SWAP -4 SHIFT 

15 AND SWAP 2+ ! ; 

14. : EVEN/2 DUP 2 / OVER OVER DUP + = 

IF SWAP THEN DROP ; 

: ODDIV BEGIN DUP EVEN/2 DUP ROT = UNTIL ; 

15. (i) : 4MAX >R >R MAX R> MAX R> MAX . ; 

(ii) : 4PICK >R >R >R OVER R> SWAP R> SWAP 

R> SWAP ; 

(iii) 2SWAP >R ROT ROT R> ROT ROT ; 

16. : FAC 1 SWAP 1+ 1 DO I ★ LOOP . ; 

17. : MOVE >R OVER @R + OVER < 

IF R< CMOVE ELSE R< <CMOVE THEN ; 

18. : DUMP HEX 0 DO DUP I + DUP 10 .R 

C@ 5 .R CR LOOP DECIMAL ; 

19. : BLANKS BL FILL ; 

: >PAD PAD 20 BLANKS PAD 20 EXPECT ; 

: NOBL PAD DUP 20 + SWAP 

DO I C@ DUP BL = 

IF DROP ELSE EMIT THEN LOOP CR ; 

: REV PAD 19 + 20 0 DO DUP I - C@ 
EMIT LOOP CR ; 

N.B. The location of PAD changes if you define a new word. You 

may find that your system inserts a null at the end of the input. 
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20. : CONV #S DROP 32 HOLD ; 

YDFTIN 12 UM/MOD 3 /MOD SWAP ROT 0 
<# CONV CONV #S #> ; 

21. : 3DIGITS # # # 32 HOLD ; 
: PRCOLS OVER OVER CR <# 3DIGITS 3DIGITS #S # 

> TYPE ; 

: READ TIB @ 10 EXPECT ; 

: ACCUMULATE 0 0 TIB @ 1+ CONVERT ; 

: CALCULATOR 0 0 BEGIN READ ACCUMULATE C@ 
61 oWHILE PRCOLS D+ REPEAT 2DROP PRCOLS ; 

Will handle totals up to 4294 967 295. 

22. : PRCOLS OVER OVER CR <# # # 46 HOLD 
3DIGITS 3DIGITS # # 96 HOLD #> TYPE ; 

and recompile CALCULATOR. 

24. : TRACE CREATE DUP , DOES> ? ; 

25. : SET CREATE , , DOES> DUP 2+ @ SWAP @ ! ; 



hex 

00 

01 
02 
03 
04 

05 
06 
07 

08 
09 
0A 
OB 

OC 
OD 

OE 
OF 
10 
11 

12 
13 
14 

15 

16 
17 

18 
19 
1A 
IB 

1C 
ID 

IE 
IF 
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Appendix 

The ASCII Character Set 

icimal character key 

0 null 
1 SOH CTRL/A 
2 STX CTRL/D 
3 ETX CTRL/C 
4 EOT CTRL/D 
5 ENQ CTRL/E 
6 ACK CTRL/F 
7 BEL CTRL/G 
8 BS CTRL/H 
9 H TAB CTRL/I 

10 LF CTRL/J 
11 V TAB CTRL/K 
12 FF CTRL/L 
13 CR CTRL/M 
14 SO CTRL/N 
15 SI CTRL/O 
16 DLE CTRL/P 
17 DC1 CTRL/Q 
18 DC2 CTRL/R 
19 DC3 CTRL/S 
20 DC4 CTRL/T 
21 NAK CTRL/U 
22 SYN CTRL/V 
23 ETB CTRL/W 
24 CAN CTRL/X 
25 EM CTRL/Y 
26 SUB CTRL/Z 
27 ESC SHIFT CTRL/K 
28 FS SHIFT CTRL/L 
29 GS SHIFT CTRL/M 
30 RS SHIFT CTRL/N 
31 US SHIFT CTRL/O 



20 
21 
22 
23 
24 

25 
26 
27 

28 
29 
2A 
2B 

2C 
2D 

2E 
2F 
30 
31 
32 
33 

34 
35 
36 
37 

38 
39 
3A 
3B 

3C 
3D 
3E 
3F 

40 
41 

42 
43 
44 

45 
46 
47 
48 
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32 
33 ! • 

space bar 
SHIFT ! 

34 n " or SHIFT '' 

35 # SHIFT # 

36 $ SHIFT $ 

37 % SHIFT % 

38 & SHIFT & 

39 
t ' or SHIFT ' 

40 ( SHIFT ( 

41 ) SHIFT ) 

42 ★ SHIFT * 

43 + SHIFT + 

44 , , •> 
45 - - 

46 
47 / / 

48 0 0 

49 1 1 

50 2 2 

51 3 3 

52 4 4 

53 5 5 

54 6 6 

55 7 7 

56 8 8 

57 9 9 

58 SHIFT : 

59 5 ; 

60 < SHIFT < 

61 = = 

62 > SHIFT > 

63 ? SHIFT ? 

64 @ SHIFT @ 

65 A SHIFT A 

66 B SHIFT B 

67 C SHIFT C 

68 D SHIFT D 

69 E SHIFT E 

70 F SHIFT F 

71 G SHIFT G 

72 H SHIFT H 



84 

49 
4A 

4B 
4C 
4D 
4E 
4F 
50 

51 
52 

53 
54 
55 
56 
57 
58 
9 
5A 
5B 
5C 
5D 
5E 
5F 

60 
61 
62 

63 
64 

65 
66 
67 

68 
69 
6A 
6B 

6C 
6D 
6E 

6F 
70 
71 

Appendix 

73 I SHIFT I 
74 J SHIFT J 
75 K SHIFT K 
76 L SHIFT F 
77 M SHIFT M 
78 N SHIFT N 
79 O SHIFT 0 
80 P SHIFT P 
81 Q SHIFT Q 
82 R SHIFT R 
83 S SHIFT S 
84 T SHIFT T 
85 U SHIFT U 
86 V SHIFT V 
87 w SHIFT W 
88 X SHIFT X 
89 Y SHIFT Y 
90 Z SHIFT Z 
91 [ [ 
92 \ \ 
93 ] SHIFT ] 
94 A SHIFT ' 
95 _ _ 

96 £ or ' £ or ' 
97 a A 
98 b B 
99 c C 

100 d D 
101 e E 
102 f F 
103 g G 
104 h H 
105 i I 
106 j J 
107 k K 
108 1 F 
109 m M 
110 n N 
111 0 O 
112 P P 
113 q Q 
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72 114 r R 
73 115 s S 
74 116 t T 
75 117 u U 
76 118 V V 
77 119 w w 
78 120 X X 
79 121 y Y 
7 A 122 z Z 
7B 123 { { 
7C 124 SHIFT 
7D 125 } SHIFT 
7E 126 - SHIFT 
7F 127 DEL DEL 

Legend: 

SOH start of header NAK neg acknowledge 
STX start of text ETB end of text block 
ETX end of text CAN cancel 
EOT end of transmission EM end of medium 
ENQ enquiry SUB substitute 
ACK acknowledge FS file separator 
SO shift out GS group separator 
SI shift in RS record separator 
DLE data-link escape US unit separator 
DC device control 

N.B. The codes given here are probably the commonest, but 
means universal. 



Glossary and Index 

The items in this glossary are arranged in ASCII order. Each entry is 
made up as follows: 

The word, and its page reference(s) 

A short description — refer to main text for fuller explanation. 

A picture of the stack top before and after execution, 
<condition before>-<condition after> 
The highest stack item is on the right. 

Symbols used as follows: 

n 16-bit number 

d double-length number 
addr 16-bit address 

t/f logical flag 

b byte (low-order in 16-bit field) 

Special points (displayed at end of entry), coded as follows: 

R FORTH-83 required word 

O one of the controlled reference words 
E in a FORTH-83 extension set 

C permitted within colon def only 
I immediate 
U user variable 

! 12 
Store n at address 
n addr- R 

1BITS 21 
Store nl masked by n2 in addr 
nl addr n2- 

!CSP 63 
Store stack pointer in CSP. 

by current BASE and put in output 
string. Keep quotient. May only be 
used between <# and #> . 
dl-d2 R 

#> 40 
End pictured numeric output con¬ 
version. Drop top stack item and 
leave address and count of output 
sequence. 
d-addr n R 

# 40 
Generate next digit from an un¬ 
signed double number by dividing 

#S 40 
Convert remaining digits of un¬ 
signed double number adding each 

86 
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to pictured output string. May only 
be used between <# and #> . 
d-0 0 R 

#TIB 32 
Leave address of word containing 
the number of characters in the ter¬ 
minal buffer. 
- addr R, U 

' 49 
Leave compilation address of next 
word in input stream. 
- addr R 

( 35 
Acccept comment up to ) 
- R 

(ABORT) ' 78 
User-definable reset sequence. Pre¬ 
defined as ABORT 

and Index 87 

nl n2 n3-n4 n5 R 

+ 4 
Leave single-length sum of top two 
items. 
nl n2-n3 R 

+! 13 
Add n to store at addr. 
n addr- R 

+ - 7 
Leave nl, negated if n2 was nega¬ 
tive 
nl n2-(—)nl 

+LOOP 24 
Add signed increment n to loop in¬ 
dex. Return to DO if result is less 
than limit; otherwise discard loop 
parameters and exit, 
n- R, I, C 

(DO) 64 
Execution-time actions of DO. 

(LOOP) 64 
Execution-time actions of LOOP. 

* 4 
Leave single-length product of top 
two items. 
nl n2-n3 R 

** 5 
Raise nl to power n2. 
nl n2-n3 

*/ 6 
Multiply nl by n2 giving double¬ 
length product, and divide by n3 
giving single-length result, 
nl n2 n3-n4 R 

, 32 
Copy 16-bit number from stack to 
dictionary. Increase HERE by 2. 
n- R, I 

4 
Subtract n2 from nl and leave dif¬ 
ference. 
nl n2-n3 R 

75 
Leave parameter-field address be¬ 
low “false” of next name in input 
stream. If not present, leave “true”. 
-addr f 
-t 

— > 37 
Continue loading next screen. 
- LO 

★/MOD 6 
As */ but leave remainder n4 and 
quotient n5. 

-DUP 8 
Duplicate n iff it is nonzero, 
n-n n (n <> 0) 
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0-0 

-TRAILING 31 
Adjust character count nl of a 
string beginning at addr to exclude 
trailing blanks. 
addr nl-addr n2 R 

7 
Print n according to BASE, 
n -- R 

22 
Accept text up to next " and com¬ 
pile so that later execution will dis¬ 
play it. 
- R 

■( 8 
Accept and immediately display 
text up to next ). 
- R, I 

.R 7 
Print nl right-aligned in a field of 
length n2. 
nl n2- O 

/ 4 
Integer divide nl by n2 and leave 
quotient. 
nl n2-n3 R 

/MOD 5 
Integer divide nl by n2 to leave re¬ 
mainder n3 and quotient n4. 
nl n2-n3 n4 R 

0< 19 
Test n. If negative leave “true” 
n-t/f R 

19 

R 
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0> 19 
Test n. If positive and nonzero 
leave “true” 
n-t/f R 

1+ 22 
Increase n by unity, 
n-n + 1 R 

1 + ! 22 
Add unity into memory location 
pointed to by addr. 
addr- 

1- 22 
Decrease n by unity, 
n-n—1 R 

1 —! 22 
Subtract unity from memory loca¬ 
tion pointed to by addr. 
addr- 

2! 17 
Store d at addr. 
d addr- E 

2* 22 
Double n (neglecting overflow), 
n-2n O 

2+ 22 
Add two to n. 
n-n+2 R 

2- 22 
Subtract two from n. 
n-n—2 R 

2/ 22 
Shift nl right one bit. 
nl-n2 R 

2@ 17 
Leave double-length number stored 
at addr. 
addr-d E 

0= 

Test n. If zero leave “true 
n-t/f 
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2CONSTANT 17 
Define next input string as the 
name of a double-length constant, 

initialised to the value of d. 

d- E 

2DROP 17 
Remove a double-length number 

from the stack. 
d- E 

2DUP 17 
Duplicate a double-length number, 

d-d d E 

20VER 17 

Copy dl to the stack top. 
dl d2-dl d2 dl E 

2ROT 17 

Move dl to the stack top. 
dl d2 d3-d2 d3 dl E 

2SWAP 17 
Exchange two double-length items, 
dl d2-d2 dl “ E 

2VARIABLE 17 
Assign next word in input stream to 
a new double-length variable. 
- E 

79-STANDARD 
Output a confirming message if the 
FORTH-79 standard is available; 
otherwise treat as an error. 

; 15, 62 
Create a new dictionary entry, us¬ 

ing the next input string as the 
name. Compile threads to following 
words up to the next semicolon. If 
input stream is exhausted before a 
semicolon, report an error. 

89 

16 
Terminate current colon definition 
and stop compilation. 
- R. I, C 

;; 51 
Introduce code segment in a com¬ 

piling word. 

;CODE 42, 62, 68 
Used to terminate the definition of 
a compiling word and introduce the 

code obeyed by all words defined 

bv this word. 
E 

:S 64 
Execution-time actions associated 

with the semicolon. 

< 19, 47 
Leave "true" if nl is less than n2. 

nl n2-t/f R 

<> 19 
Leave "true" if top two items are 

unequal, 
nl n2-t/f 

<# 40 
Initialise pictured numeric output. 
- R 

<MARK 64 
Mark destination of a backward 
branch during compilation. 
-addr C, I, E 

<RESOLVE 64 
Compile offset at source of back¬ 
ward branch. 
addr- C, I, E 

R 19 
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Leave “true” if top two items are current radix. 
equal. addr- 
nl n2-t/f R R 

> 19 
leave “true” if nl is greater than n2. 
nl n2-t/f 

>< 29 
Swap bytes, 
nl-n2 

>BODY 49 
Convert compilation address to pa¬ 
rameter-field address, 
addrl-addr2 R 

>IN 33 

Leave address of a variable contain¬ 
ing a pointer to the current position 
in the input buffer. 

- addr U, R 

>MARK 65 
Allot space for offset and mark 
source of forward branch. 

-addr C, I, E 

>MOVE< 29 
Move block of n 16-bit words start¬ 
ing at addrl to addr2 performing a 
byte swap on each, 
addrl addr2 n- 

>R 26 
Move top item to top of return 
stack. 
n- R 

>RESOLVE 65 
Compile offset for forward branch 
and store it at marked source loca¬ 
tion. 

addr- C, I, E 

‘/BRANCH 65 
Transfer control to location given 
by offset immediately following if 
flag is true. 

t/f- C, E 

?CSP 63, 77 
Check that the current stack pointer 
has the same value as that previous¬ 
ly stored by !CSP. Error if unequal. 

?DUP 8 
Duplicate top item if it is nonzero. 
n-n n (n nonzero) 
0-0 R 

‘/ERROR 77 
Issue error message number n if flag 
represents "true”, 
t/f n- 

'/PAIRS 64, 77 
Issue error message if top two stack 
items are unequal, 
nl n2- 

/STACK 77 
Issue error message if the stack is 
out of bounds. 

@ 12 
Replace addr by its contents, 
addr-n R 

@BITS 21 
Return contents of addr masked by 
nl. 
addr nl-n2 

? 13 
Display the number in addr, using 

ABORT 
Warm restart. 

78 
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R 

ABORT" 78 
Print message that follows if top 
item represents “true”, then per¬ 

form warm restart, 
t/f- R, C 

ABS 7, 8 
If top item is negative, twos com¬ 

plement it. 
nl-n2 R 

B/BUF 36 
Leave number of bytes in a disc 

buffer. 
-n 

BEGIN 
Start repetitive sequence. 

21, 22 

I, C, R 

BELL 30 
Operate warning device on ter¬ 

minal. 

ALLOT 33 
Add n bytes to dictionary pointer, 

n- ' R 

AND 20 
Leave the logical AND of the top 
two items. 
nl n2-n3 R 

ASCII 30 
Return next printable character in 
input stream. 
-b 

ASHIFT 21 
Perform an arithmetic left shift of 
nl by n2 places. 
If n2 is negative, shift right, 
nl n2-n3 

ASSEMBLER 42, 69 
Change context vocabulary to 
assembler. 
- E 

BACK 64 
Compile offset for backward 
branch. 

BASE 10, 12 
Leave address of current numeric 
base. 
-addr 

BL 32 
Leave ASCII value for space 
-32 O 

BLANK or BLANKS 27 
Store n blanks in memory starting 

at addr. 
addr n- O 

BLK 33, 67 
Leave address of variable contain¬ 
ing number of current disc block. 
- addr U, R 

BLOCK 36, 38 
Leave address of buffer containing 
start of block n (unsigned). If block 
n is not in main memory, perform a 
main-store transfer, 
n-addr R 

BRANCH 66 
Transfer control according to offset 
immediately following in parameter 

field. 
- C, E 

BUFFER 38 
Leave address of buffer to be 
associated with a (possibly new) 
block numbered n. 
n-addr R 

U, R 
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C, 32 
Store b at top of dictionary, and 
advance pointer. 
b- O 

C! 28 
Store b in addr. 
b addr- R 

C@ 28 
Leave contents of byte addr. 
addr-b R 

CATALOG 42 
List the names in the context voca¬ 
bularies. 

CLEAR 37 
Write all updated buffers back to 
mass store. 

CMOVE 27 
Move n bytes from addrl to addr2. 
addrl addr2 n- R 

CMOVE> 28 
Move n bytes from addrl to addr2 
starting at the highest address 
(addrl + n — 1). 
addrl addr2 n- R 

CODE 42, 68 
Create a dictionary entry to be de¬ 
fined wholly in assembler code. 
- E 

COM 21 
Leave ones complement of nl. 
nl-n2 

COMPILE 64, 66 

Compile compilation address of 
next word in input string into dic¬ 
tionary, and advance pointer. 

C, R 

CONSTANT 14, 46, 62 
Define next string in input as the 

name of a constant whose value is 
n. 
n- 

CONTEXT 42 

Leave address of variable specifying 
vocabulary for initial search. 
- addr U, E 

CONVERT 41, 75 
Numeric conversion according to 
current base of string pointed to by 
addrl. Accumulate into dl. Leave 
address of first non-convertible 
character. 

dl addrl-d2 addr2 R 

COPY 37 
Copy contents of screen nl to 
screen n2. 
nl n2- 

COUNT 31 
Leave address of first byte and the 
character count of string pointed to 
by addr. 
addr-addr+1 n R 

CR 27, 30 
Output newline. 

- R 

CREATE 50, 60 
Create a dictionary entry with next 
word in input string as the name. 

R 

CURRENT 43 
Leave address of a variable specify¬ 
ing vocabulary for new definitions. 
- addr U, E 

CSP 63 
Leave address of variable tempor¬ 
arily storing the stack pointer. 
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D+ 17 
Leave sum of two double-length 
numbers. 
dl d2-d3 R 

D- 17 
Leave difference between two dou¬ 
ble-length numbers, 
dl d2-d3 E 

93 

plement. 
dl-d2 E 

DECIMAL 10 
Set conversion base to ten. 
-- R 

DEFINITIONS 43 
Set content of CURRENT equal to 
that of CONTEXT. 
- R 

D. 17 
Display signed double-length num¬ 
ber according to current base, 
d- E 

DEPTH 72 
Leave number equal to the number 
of items on the stack. 

D.R 17 
Display d right-aligned in a field n 
characters wide at current cursor 
position. 
d n- E 

D0= 17 
Leave “true” if d is identically zero, 
d-t/f E 

D2/ 
Shift dl right one place, 
dl-d2 E 

D< 17 
Leave “true” if dl is less than d2. 
dl d2-t/f R 

D> 17 
Leave “true” if dl is greater than 
d2. 
dl d2-t/f 

DIGIT 75 
Convert low byte of nl (assumed 
ASCII) according to base given as 
n2, leaving binary equivalent and 
“true”. If not possible leave only 
“false”. 
nl n2-n3 true 
nl n2 •-false 

DL1TERAL 76 
If executing, do nothing. If compil¬ 
ing, compile d as a double-length 
literal in the dictionary, 
d- 

DM AX 17 
Leave larger of dl and d2. 
dl d2-d3 E 

DM1N 17 
Leave smaller of dl and d2. 
dl d2-d3 E 

D= 17 
Leave “true” if two d-1 items are 
equal. 
dl d2-t/f E 

DABS 17 
If dl is negative, leave its twos com¬ 

DMINUS 17 
Replace d by its twos complement, 
d-d 

DNEGATE 17 
Replace d by its twos complement. 
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d-d 

DO 23, 64 
Begin a counting loop. 

L C, R 

DP 32, 72 

Leave address of variable contain¬ 
ing dictionary pointer. 
- addr U 

DPL 76 
Leave address of variable contain¬ 
ing a count of the number of digits 
to the right of the last decimal point 
input. 
--- addr U 

DOES> 50 
Terminate compile-time actions 
and commence run-time actions in 
defining a new defining word. 

- I, C, R 

DROP 8 
Delete top stack item. 
n --— R 

DU< 17 
Leave “true” if dl is less than d2, 
both treated as unsigned, 
dl d2-t/f E 

DUP 8 
Duplicate top stack item, 
ri-n n R 

DUMP 29 
List contents of n locations starting 
at addr. 

addr n- O 

ECHO 30 
Output low byte to. top item as an 

ASCII code, 
n- 

EDITOR 42 
Change context vocabulary to 
editor. 

- O 

ELSE 18, 66 
Terminate true part and start false 
part of conditional statement. 

:- I, C, R 

EMIT 30 
Output low byte of top item as an 
ASCII code. 
n —R 

EMPTY 44 
Delete all dictionary entries to 
FENCE. 

EMPTY-BUFFERS 36 
Mark all file buffers as empty. 

- O 

END 22 
Test condition in repeated block. 
Exit if true. 

I, C 

END-CODE 68 
Terminate a definition introduced 
by CODE or ;CODE. 
- E 

ENDIF 18, 66 
Terminate conditional sequence. 

- I, C 

ERASE 27 
Transfer n zero bytes to memory 
starting at addr. 
addr n- O 

ERROR 77 
Notify error number n, and execute 
warm restart, 
n- 

Glossary and Index 
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EXECUTE 74 
Execute dictionary entry whose 
compilation address is addr. 
addr- R 

EXIT 63 
When executing a colon-defined 
word, terminate execution. 
- C, R 

FORTH 42 
Return to prime vocabulary. 
- I, R 

FORTH-83 
Output confirming message if sys¬ 
tem conforms to FORTH-83 stan¬ 

dard. 
- R 

EXPECT 31 
Read from terminal, storing at 
addr. Stop on newline or when n 
characters have been transferred, 
addr n- R 

FENCE 44 
Places on stack the address of a 
variable containing the dictionary 
address below which entries should 
not be deleted. 
- addr U 

FILL 27, 28 
Fill memory with n instances of b 
starting at addr. 
addr n b- R 

FIND 75 
Place on stack the compilation 

address of the word starting at 
addrl, with “true” above it. If not 
found, leave original address and 
“false”. 

addrl-addr2 t/f R 

FLUSH 36 

Write to mass storage all blocks 
marked as updated, and delete “up¬ 
date” markers. 
- R 

FORGET 45 

Delete from dictionary all entries 
up to and including next word in 
input stream. 

- R 

H. 10 
Output one number in hexadecim¬ 

al, returning to original base. 

HERE 32 
Return address of next available 

dictionarv location. 
- R 

HEX 10 
Change number base to sixteen. 
- O 

HLD 41 
Return address of a variable hold¬ 
ing address of latest text character 
during output conversion. 

- addr U 

HOLD 40 
Insert b as a character in a pictured 

output stream. 
b- R 

I 24 

Return index of innermost loop. 
-n C, R 

I' 
Return index of innermost loop. 

-n C 

ID. 50 
Print a dictionary entry name, given 

name-field address, 
addr- 
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IF 18, 23, 49; 65 
Test flag and execute conditional 
statement. 
t/f- I, C, R 

KEY 30 
Return ASCII value of next charac¬ 
ter from input device. 
-— b R 

IFEND 68 
Terminate conditional interpreta¬ 
tion. 

IFTRUE 68 
Introduce conditional interpreta¬ 
tion. 

IMMEDIATE 63 
Mark latest dictionary entry to be 
executed immediately if encoun¬ 
tered during compilation. 

- R 

IN 33 

Leave address of a variable contain¬ 
ing a pointer to the current position 
in the input buffer. 
- addr U 

INDEX 37 
Print first line of every screen over 
range given by nl and n2. 
nl n2- 

INTERPRET 74 
Begin interpretation in block whose 

number is given in BLK starting at 
character indexed by >IN. 

O 

J 25 
Return index of' next enclosing 
loop. 
-n C, R 

K 25 
Return index of second enclosing 
loop. 

C, O 

LAST 50 
Leave address of a variable contain¬ 
ing the name-field address of the 
last dictionary entry. 
- addr U 

LATEST 50 
Leave name-field address of last 
word in the current vocabulary. 
-addr 

LEAVE 24 
Alter loop limit to value of current 
index so forcing termination on 
completion of loop. 

C. R 

LFA 49 

Convert a parameter-field address 
to the corresponding link-field 
address. 
addr-addr 

LIMIT 72 
Constant equal to one greater than 
the largest available memory 
address. 
-addr 

LINE 37 
Leave physical address of the begin¬ 
ning of line n of the screen whose 
number is in SCR. 
Range is 0 .. 15. 
-addr 

LINELOAD 37 

Start interpretation at line nl in 
screen n2. 
nl n2- 

n LIST 36 
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Display screen n. 
n- O 

LIT 59, 76 
Place contents of next dictionary 

parameter on the stack. 

-n 

LITERAL 76 
Compiling ... compile LIT followed 
by the numeric value of the top 

stack item; 
Interpreting ... ignore. 

LOAD 37, 76 

Begin interpreting screen n. 

n- R 

LOADS 38 
Define next word in input stream as 
a command to load screen n. 

n- 

LOOP 23, 64 
Compile words to increment and 
test loop index. If less than limit 
branch back to DO, otherwise exit. 

C, R 

M* 18, 26 
Multiply two signed single-length 
items nl and n2 to give a double¬ 

length result, 
nl n2-d 

M/ 18 
Divide double-length signed quanti¬ 
ty d by single-length signed quantity 
nl to leave quotient (N.B. quot 
may be d-1 in some systems.) 
d nl-n2 

MASK 21 
Return mask of nl ones, left- 
aligned if positive, right if negative, 

nl-n2 

97 

MAX 6, 20, 46 

Return greater of two numbers, 

nl n2-n3 R 

MESSAGE 77 
Print line n of message screen, 

n- 

MIN 6, 20 
Return lesser of two numbers, 

nl n2-n3 R 

MINUS 5 
Return twos complement of top 

item. 
n--n 

M/MOD 18 
Divide double-length signed item 
by single-length signed item. Leave 

double quotient d2 with remainder 

n2. 
dl nl-n2 d2 

MOD 5 
Divide nl by n2, leaving remainder 
with same sign as dividend, 

nl n2-n3 R 

MOVE 28 
Move n bytes from addrl to addr2 
without overwriting, 
addrl addr2 n- 

MS 30 
Wait n milliseconds, 

n- 

NAND 20 
Perform NAND operation on top 

two items, 
nl n2-n3 

NEGATE 5, 21 
Return twos complement of top 

item. 
n-— n 

and Index 

R 
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NFA 49 

Convert parameter-field address to 
corresponding name-field address, 
addr-addr 

NOR 20 
Perform NOR operation on top two 
items. 
nl n2-n3 

NOT 20 

Leave ones complement of top 
item. 
nl-n2 R 

NUMBER 75 

Convert a character string starting 
at addr, with preceding count, to a 
signed double number according to 
current base, 
addr-d 

O. 10 
Output one number in octal and re¬ 
turn to original base, 
n- 

OCTAL 10 
Reset current base to eight. 
- O 

OR 20 
Perform bitwise OR on top two 
items. 

nl n2-n3 R 

OTHERWISE 68 

Terminate "true” sequence and 
start “false” sequence in conditional 
execution. 

PAD 32, 39 
Return top address of scratch area 
above the dictionary. Normally 84 
bytes long. 
- addr R 

PFA 49 

Convert name-field address to cor¬ 

responding parameter-field 
address. 

addrl-addr2 

PICK 9 
Return contents of nlth stack item, 
excluding nl. 

nl-n2 R 

PREV 36 
Return address of variable contain¬ 
ing address of most recently used 
buffer. 
- addr U 

QUERY 74 

Accept up to 80 characters from the 
terminal into terminal buffer. 

- O 

QUIT 74 
Warm restart. 

- R 

R> 26 
Move top item of return stack to 
top of main stack. 

-n r 

R@ 26 
Return top item of return stack. 
-n R 

OVER 8 

Return a copy of the second stack 
item. 

nl n2-nl n2 nl R 

R0 72 

Leave address of variable contain¬ 
ing base address of return stack. 
- addr u 
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RECURSE 71 
Compile compilation address of 
current word so that it may be ex¬ 

ecuted recursively. 
- " C, 1, O 

REMEMBER 44 
Define next input word as a com¬ 
mand that deletes itself and all 
words defined subsequently from 

the dictionary. 

REPEAT 22 

Terminate repetitive loop. 
- I, C, R 

ROLL 9 
Move nth item of stack (not count¬ 
ing n itself) to the top, moving in¬ 

termediate items down. 
nl n2 ... nn n-n2 ... nn nl 

R 
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SCR 37 
Return address of a variable con¬ 
taining the number of the screen 

most recently listed. 
- addr U, O 

SET 12 
Define the next input word as a 
command that will store n in the 

given address, 
n addr - 

SHIFT 21 
Perform logical shift of nl by n2 

bits, left if positive, right if nega¬ 

tive. 
nl n2-n3 

SIGN 40 
Store a minus sign in the next posi¬ 
tion in a pictured output sequence if 

n is negative. 

ROT 8 
Move third stack value to the top. 
nl n2 n3-n2 n3 nl R 

RP! ’ 74 

Initialise return stack. 

S—>D 17 
Sign-extend a single-length number 

to form a double, 
n-d 

SO 40, 72 
Return address of a user variable 
containing base address of main 

stack. 
- addr U 

SAVE-BUFFERS 36 
Write all updated buffers to mass 

storage. 

SMUDGE 62 
Toggle the third bit in the name 
field of a word being compiled. 

SP 40, 72 
Leave address of a variable contain¬ 

ing the stack pointer. 
- addr U 

SP! 40 
Initialise the main stack pointer. 

SP@ 40 
Return address of top of main stack 

just before SP@ was executed. 

- addr O 

SPACE 30 
Output an ASCII space. 
- R R 
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SPACES 30 
Output n spaces. 
n- R 

SPAN 32 
Leave address of variable contain¬ 
ing the count of characters received 
during the last EXPECT. 

- addr U, R 

STATE 62 
Leave address of a variable contain¬ 
ing the compilation state. 

- addr U, R 

SWAP 8 

Exchange top two stack values, 
nl n2-n2 nl R 
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Print an unsigned number accord¬ 
ing to current base, 

n- R 

U.R 18 

Print nl as an unsigned number 
right justified in a field of n2 bytes, 
nl n2- O 

U< 18 
Leave “true” if nl < n2 both tre¬ 
ated as unsigned. 
nl n2-t/f R 

U> 18 
Leave “true" if nl > n2 both un¬ 
signed. 
nl n2-t/f 

THEN 18, 65 
Terminate conditional sequence. 

- I, C, R 

THRU 38 
Load consecutively blocks nl 
through n2. 

nl n2- O 

TIB 32, 73 
Leave address of a variable contain¬ 
ing the address of the terminal 
buffer. 

- addr U, R 

TRAVERSE 50 

Move across a name fiejd starting at 
addrl, to right if n is positive, left if 
negative. Leave address of end of 
field. 

addrl n-addr2 

TYPE 31 
Send n characters starting at addr to 
current output device, 
addr n- R 

U. 18 

UM* 18 

Form unsigned double-length pro¬ 
duct of nl and n2. 
nl n2-d R 

UM/MOD 18 

Divide d by nl (unsigned) leaving 
unsigned remainder n2 and un¬ 
signed quotient n3. 
d nl-n2 n3 R 

UNTIL 21 
Compile words to test top stack 
item. Loop if false, exit from loop if 
true. 

t/f- I, C, R 

UPDATE 36 

Mark most recently referenced 
block so that it will be written back 
to mass store before being over¬ 
written. 

- R 

USE 36 
Leave address of variable contain¬ 
ing address of least recently used 
buffer. 
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- addr U 

USER 13, 46, 62 
Assign the next word in the input 
stream as the name of a user vari¬ 

able with offset n. 

n- 

VARIABLE 11, 46, 62 
Assign the next word in the input 
stream to a new variable entry in 

the dictionary. 
_ R 
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Copy characters from the input buf¬ 
fer to the top of the dictionary until 
a delimiter given by b is encoun¬ 
tered. Ignore leading instances of 
the delimiter. Insert the character 

count as the first byte of string, and 
leave its address on the stack, 

b-addr R 

X 76 
Pseudonym for the dictionary entry 
whose name is ASCII null. Its effect 
is to terminate text interpretation. 

VLIST 42 
List the names in the context voca¬ 

bularies. 

VOCABULARY 43, 55 
Assign the next word in the input 
stream as the name of a new voca¬ 
bulary that will become the context 

when the name is quoted. 
_ R 

VOC-LINK 43 
Leave the address of a variable con¬ 
taining the head of a chain linking 

all vocabularies. 
- addr U 

WHILE 22 
Compile code to test a flag and exit 
from a repetitive loop if false, 
otherwise continue to obey loop, 

t/f- I, C, R 

XOR 20 
Perform exclusive OR on top two 

items. 
nl n2-n3 R 

[ 
End compilation mode. 

62 

I, R 

['] 49 

Compile compilation address of 
next word in input stream as a liter¬ 

al into the dictionary. 
C, I, R 

[COMPILE] 66 
Force compilation of the following 

word in the input stream. 
— I, c, R 

] 62 

Set compilation mode. 
R 

WORD 33, 76 


